Steps Towards The Automatic Creation of
Search Heuristics

Istvan T. Hernadvolgyi® Robert C. Holte”

& University of Ottawa, School of Information Technology € Engineering, Ottawa,
Ontario, KIN 6N5, Canada,

b University of Alberta, Computing Science Department, Edmonton, Alberta, T6G
2E8, Canada,

Abstract

The long-term goal of our research is to develop robust methods that use ab-
straction to create heuristics automatically from a description of a search space.
Our research has progressed significantly towards this goal. This paper reviews the
current state of the art, and the major open problems remaining to be solved.

Pattern databases are the foundation of the approach. The paper describes do-
main abstraction, which extends the notion of “pattern” in a way that permits
available memory to be more fully exploited to reduce search time.

The paper demonstrates that a certain easily computed approximation to a for-
mula developed by Korf and Reid [20] is monotonically related to the actual number
of nodes expanded using the pattern database. This involves a large-scale experi-
ment involving all possible domain abstractions for the 8-Puzzle in which the blank
tile remains unique.

The principal remaining obstacle to automatic heuristic creation is shown to
be the difficulty of predicting or controlling the size of a pattern database. This
difficulty arises for two reasons, the main one being “non-surjectivity”: domain
abstractions can create abstract spaces in which some states do not have a pre-
image. The paper identifies two specific causes of non-surjectivity, related to the
space’s orbits and blocks, and illustrates others.

L This research was supported in part by an operating grant and a postgraduate
scholarship from the Natural Sciences and Engineering Research Council of Canada.

Preprint submitted to Elsevier Preprint 4 November 2001

1 Introduction

The long-term goal of our research is to develop robust methods that use
abstraction to create heuristics automatically from a description of a search
space. There are both practical and scientific motives for this research. On
the practical side, it is often difficult to hand-craft good, provably admissible
heuristics for a new search space. This human effort, and the potential for
human error, would be obviated by a fully automated method, and a method
based on abstraction would be guaranteed to generate monotone heuristics,
not just admissible ones. On the scientific side, such a method would enable
large-scale experiments to study properties of heuristics. For this purpose it is
essential to create not just one heuristic for a search space, but many different
ones whose properties can be controlled more or less directly by the experi-
menter. In this way general hypotheses about heuristics can be investigated
experimentally.

Our research has progressed very considerably towards this goal. This paper
reviews the current state of the art, and the major open problems remaining
to be solved.

Our general approach to creating heuristics automatically is the same as others
who have studied this problem. The description of the given search space, S,
is altered to create a description of a “simpler” search space, S’. Care is taken
to ensure the new space has certain desirable properties. In particular, for
every state in S, there must be a corresponding state in S’ (but one state in
S" might correspond to many different states in S), and the distance between
any two states in S, must be greater than or equal to the distance between
the corresponding states in S’. A space with these properties is called an
abstraction of the original space [23]. Any abstraction of S gives rise to a
monotone heuristic for searching in S: the distance between states s; and s
in S can be estimated by the exact distance between the corresponding states
in S'.

In particular, we follow the pattern database approach[4], which has been in-
strumental in defining sufficiently accurate and cost-effective heuristics to solve
very large state spaces (Rubik’s Cube [19], the 15-Puzzle [4]). In this approach,
an abstraction is defined by treating some of the distinct values in the defini-
tion of the search space as if they were identical. Our version of this intuitive
idea, which we call domain abstraction, generalizes the notion of ”pattern” in
the pattern database work. Once an abstraction has been chosen, the distance-
to-goal for the entire abstract space is precomputed and stored in a lookup
table — the pattern database — with one entry for each abstract state. To cal-
culate h(s), the heuristic value for state s € S, one simply looks up the entry
for the abstract state corresponding to s.

Prior work on pattern databases has not been concerned with the automatic
creation of heuristics. The focus has been on hand-crafting heuristics to solve
particular problems, and the pattern database framework was developed, and
has proven highly successful, for quickly hand-crafting very effective heuristics.

However, by their very nature, pattern databases provide an ideal framework
for creating heuristics automatically. The space of all possible patterns, or
domain abstractions, is easy to represent and enumerate.

A simple local-search algorithm for searching through the space of pattern
databases is given in Figure 1. More sophisticated search methods are possible,
of course, but this suffices to provide a framework in which to understand the
main topics discussed in the paper.

Given:

e m, the maximum size of the pattern database

e score, a function computing the quality of a pattern database
e S, a state space

e D, the domain for S

e goal, a goal state

Return:

e D' an abstract domain (|D’'| < |D|)

¢ : D — D', a domain abstraction

S" = ¢(S), the abstract state space induced by ¢ on S
PDB, the pattern database for S’ (a heuristic for .S)

(1) initialize ¢
(2) Repeat
(a) enumerate S’ = ¢(S) to create PDB
(b) If the enumeration fails (because |S'| > m) make
¢ more abstract
(c) If the enumeration succeeds (|S'| <m):
(i) compute score(PDB)
(ii) if |S'| < m: make ¢ less abstract
(iii) if |S'| =m: change ¢ randomly
(3) return the highest-scoring PDB with |PDB|<m

Fig. 1. Pseudocode for the automatic generation of heuristics. See the text for details.

Section 2 introduces our method of abstraction — domain abstraction — and
pattern databases. Section 3 is concerned with the scoring function, score,
used in Figure 1. Ideally the highest scoring pattern database would define
the heuristic that resulted in the least search effort. A natural candidate is
the formula derived by Korf and Reid [20] for the complexity analysis of search
heuristics. This formula is introduced and evaluated as a scoring function in a
large-scale experiment involving thousands of automatically created heuristics.

Section 4 introduces the problem of finding a domain abstraction whose corre-
sponding pattern database is of a certain size. This is important because the
pattern database must fit in the memory allocated for it. The non-trivial na-
ture of this problem is reflected in Figure 1 by the fact that the size can only
be determined by enumerating the pattern database (aborting if it exceeds
the maximum allowable size). Section 4 also introduces heuristic methods for
increasing or decreasing “abstractness” required in steps 2(b) and 2(c)(iii) of
Figure 1 and discusses other aspects of this search procedure.

Section 5 continues the discussion of the issue of pattern database size, intro-
ducing a complication, non-surjectivity, that is the major remaining obstacle
to fully automatic generation of pattern database heuristics.

Section 6 illustrates what is currently possible. First it uses two novel search
spaces — the Pyraminx and the Skewb Cube puzzles — to illustrate how non-
surjectivity can be avoided by human analysis and guidance of the heuristic-
creation process. Second it describes a successful application of a simplified
version of Figure 1 to the problem of finding optimal-length macro-operators
for Rubik’s Cube[11].

1.1 Previous Work

The earliest work on automatically creating heuristics ([8], [9], [22]) proposed
using abstractions in which S and S’ have precisely the same set of states but
S’ is more richly interconnected. If search spaces are described in a STRIPS-
like language, this type of abstraction can be created by dropping precon-
ditions from operators, or by adding macro-operators to the original set of
operators. Gaschnig [8] calls such an abstraction an “edge supergraph”; Pearl
[22] calls it a “relaxed problem”. We will refer to such abstractions as embed-
dings, since the original search space is embedded in the abstract space.

This early work focused on hand-worked demonstrations that many existing
heuristics could be created in this way. Automatic methods were not imple-
mented. Nevertheless, there was an immediate concern about the efficiency
of doing a separate, complete search every time a heuristic value was needed.
Even if these searches were in a “simpler” space, it was feared that their total
cost would outweigh the benefits of having a heuristic to guide the search in
the original space. A heuristic whose cost to compute outweighs its benefits
is called ineffective. Valtorta [24] proved that if the abstraction used to define
a heuristic is an embedding the heuristic is always ineffective: every node ex-
panded by blindly searching in the original space will also be expanded if the
heuristic is computed by blindly searching in the abstract space. In short, em-
beddings on their own cannot be used to create effective heuristics. Gaschnig

[8] did not address this difficulty; in his only example he hand-crafted a very
efficient algorithm for finding solutions in the abstract space. Guida and So-
malvico [9] suggested caching information generated during every search in the
abstract space and using it to speed up subsequent searches in the abstract
space. Pearl [22] proposed searching for abstractions having special proper-
ties that can be automatically detected and exploited to ensure distances in
the abstract space can be computed efficiently. Both the latter ideas proved
successful in subsequent research, but in conjunction with alternative ways of
doing abstraction ([23], [21], [14]).

A more promising type of abstraction is the homomorphism, which maps sev-
eral different states in S to the same state in S’ thereby enabling the abstract
space to be considerably smaller than the original space. This type of abstrac-
tion was first identified by Kibler [16] and Banerji [1]. A version of Valtorta’s
theorem applies to all types of abstraction [14] but for homomorphisms the
theorem gives clear hope for substantial speedup, and, indeed, Hierarchical
A* [14] achieved speedup using homomorphic abstractions with the heuristic
values computed on demand by searching in the abstract space.

ABSOLVER ([23], [21]) was the first system to automate all aspects of this
general approach to creating heuristics automatically. ABSOLVER works with
a restricted STRIPS representation and has seven different abstraction meth-
ods, each of which can be applied to a given search space description in a
variety of ways. This, together with the fact that the composition of two ab-
stractions is also an abstraction, creates a rich space of possible abstractions.
ABSOLVER searches this space for abstractions to which it can apply one
or more of its six speedup transformations. The latter are deemed necessary
because it is felt that without them computing heuristic values on demand by
searching in an abstract space will be too inefficient. ABSOLVER was tested
on 13 different domains and automatically created heuristics for all of them.
Slightly over half of these could be computed efficiently enough to speed up
the overall search process.

One of ABSOLVER’s speedup transformations is to precompute the distance-
to-goal for the entire abstract space and store the result in a lookup table
with one entry for each abstract state. With such a table the heuristic value
for a state s is computed by determining the abstract state that corresponds
to s and then looking up the heuristic value in the table. The Centre-Corner
heuristic ABSOLVER discovered for Rubik’s Cube and the X-Y heuristic for
the 8-puzzle were made effective in this manner, leading ABSOLVER’s cre-
ators to observe that “abstraction coupled with precomputation can produce
effective heuristics”.

In fact, this statement underestimates the power of this technique. Schaef-
fer and Culberson independently developed the “pattern database” technique

([3], [4]), and used it to define very effective heuristics for the 15-puzzle. Korf
subsequently used pattern databases to define heuristics that enabled ran-
domly generated problems for Rubik’s Cube to be solved efficiently for the
first time [19], and most recently Edelkamp has successfully applied pattern
databases to classical planning problems[6]. A pattern database is precisely a
precomputed distance-to-abstract-goal lookup table based on a special form
of homomorphic abstraction.

The work presented in this paper extends the pattern database work in two
ways. First, our notion of domain abstraction generalizes the type of abstrac-
tion used to define a pattern database. Second, we present a method for
automatically creating abstractions whereas pattern databases have always
previously been handcrafted.

2 Using Abstraction to Create Pattern Database Heuristics

2.1 State Space Representation

A domain is a finite set of values called labels. Formally, the labels of domain D
are denoted by subscripting D (Do, D; ... Dip|-1), but when it is unambiguous
to do so, we will use the integers on their own to denote the labels (e.g. we
will write 1 instead of Dy).

A state “over domain D” is an instance of any data structure in which the
entries labels of domain D.

A state space is defined by a domain, D, a state, seed, over D called the “seed
state”, and a successor function, succ, which, given any state s, returns the
(possibly empty) set of states (over D) that can be reached directly from s.
The state space is the transitive closure of succ starting with its application
to seed. The notation S =< D, seed, succ > indicates the domain, seed state,
and successor function defining state space S.

States spaces will be defined in this paper using a simple vector notation which
we call PSVN (“production system vector notation”)[12]. In PSVN a state is a
fixed-length vector whose values are all drawn from the given domain, and a
successor function is a set of operators, where each operator is a production
rule in which the left-hand side (LHS) and right-hand side (RHS) are each
a vector the same length as the state vectors. Each position in the LHS and
RH S vectors may be a constant (a label), a variable, or an underscore (_). The
variables in an operator’s RH S must also appear in its LHS. An operator is
applicable to state s if its LH.S can be unified with s. The act of unification

binds each variable in LHS to the label in the corresponding position in s.
Underscores in the LHS act as “don’t cares”. The RHS describes the state
that results from applying the operator to s. The RH S constants and variables
(now bound) specify particular labels and an underscore in a RHS position
indicates that the resulting state has the same value as s in that position. For
example,

<A AL _BC>—<2_,_,,C B>

is an operator that can be applied to any state whose first two positions have
the same value and whose third position contains 1. The effect of the operator
is to set the first position to 2 and exchange the labels in the last two positions;
all other positions are unchanged.

This notation is used simply for presentation purposes; none of the results or
discussion hinges upon its use.

In this paper we assume that the successor relation is symmetric, i.e., s; €
succ(sz) if and only if sy € suce(s;). We also assume uniform (unit) costs of
proceeding from any state to any of its successors.

Fig. 2. 2 x 2 Sliding Tile Puzzle

The running example we will use for illustration throughout much of the paper
is the 2 x 2 sliding-tile puzzle depicted in Figure 2. The unoccupied position,
which we will regard as containing a blank tile, can exchange places with either
neighbouring tile. The number of states reachable from the state in Figure 2
is 12. The state space is shown in Figure 3.

One natural PSVN representation of this space has a vector position for each of
the four puzzle positions, with the value in vector position ¢ indicating which
tile is in the corresponding puzzle position. The domain in this case would
have 4 labels, {0, 1, 2,3}, with 0 representing the blank tile and labels 1-3 rep-
resenting the corresponding non-blank tiles. If vector positions 1-4 represent
puzzle positions “top left”, “top right”, “bottom left”, and “bottom right”
respectively, the state in Figure 2 would then be represented as < 1,2,3,0 >.

1|2 3
3 2
2 1
1]3 3|2
2 3
1(3
2(3 3|1
1 2
2|3 3
1 2(1
211

Fig. 3. The 2 x 2 Sliding Tile Puzzle State Space

2.2 State Space Abstraction

Definition 1 Domain Abstraction
A domain abstraction is any mapping ¢ : D — D', where |D'| < |D|.

For example, one possible domain abstraction for the 2 x 2 sliding-tile puzzle
is ¢ : {0,1,2,3} — {0,1} defined as:

In this mapping, the blank tile remains unique (label 0) but the non-blank tiles
are all mapped to the same abstract label (1), so they are still distinguishable
from the blank but are no longer distinguishable from each other.

The fact that three original labels map to one of the abstract labels and one
original label maps to the other abstract label is an important characteristic
of this abstraction. We say ¢; has a “granularity” of < 3,1 >. The general
definition of granularity is as follows.

Definition 2 Granularity

The “granularity” of domain abstraction ¢ : D — D' is defined to be a vector,
GRAN?, of length |D'|, with GRAN? = g;, the number of labels in D that

¢ maps to label D;. Without loss of generality we assume that GRAN;5 >
GRANY,, for all i.

For example, GRAN? =< 3,1 > as just discussed. The domain abstraction

maps two of the original labels to one abstract label (0) while the other two
original labels remain unique. Thus GRAN?? =< 2,1,1 >. The domain ab-
straction

has GRAN? =< 2,2 >.

The 1’s in GRAN? indicate labels that remain unique in the abstract space.
For brevity, when |D| is clear from the context we omit the 1’s from the
granularity vector (since the vector elements must add up to |D|, the number
of 1’s can be determined knowing the other values). Thus for the 2 x 2 puzzle
we will normally write GRAN? =< 3 > instead of < 3,1 > and GRAN?? =<
2>,

Definition 3 State Space Abstraction Induced by a Domain Abstraction

If state space S =< D, seed, succ > and ¢ : D — D' is a domain abstraction,
the abstract state space induced by ¢ on S, denoted p(S) =< ¢(D), ¢p(seed), p(succ) >,
is the transitive closure of ¢(succ) applied to ¢(seed).

For this definition to be complete, it is necessary to explain what it means to
apply ¢ to a state and to a successor function. If ¢ : D — D' and s is any
state over domain D, ¢(S) is the state (over D') constructed by applying ¢ to
each label in s.

The property required of the abstract successor function, ¢(succ), is that it
preserve the successor relation defined by succ in the sense that if so is a
successor of s; then ¢(sy) is a successor of ¢(s;)?. If successor functions are
written in PSVN, ¢(succ) can be computed simply by applying ¢ to each label
in succ[12].

2 this statement of what is required assumes costs are uniform

Fig. 4. Abstract space induced by ¢

For example, the state space abstraction induced by the domain abstraction
¢1 (defined above) on S = the 2 x 2 puzzle is shown in Figure 4. ¢;(S) has
four states, with three states of S mapped to each abstract state.

These definitions guarantee that the distance between any pair of states in S
is greater than or equal to the distance between the corresponding states in
#(S). Thus, abstract distances are admissible heuristics for searching in S (in
fact they are monotone heuristics [14]).

Definition 4 Heuristic based on a Domain Abstraction

Let S be a state space over domain D, g a state in S, and ¢ : D — D' a
domain abstraction. Then the heuristic, hy 4, for goal g based on ¢ is defined
as follows:

heg(s) = dys)(0(s), 6(g))

where dx (s, $2) is the distance — the length of the shortest path — from s; to
so 1n state space X .

It is important to realize that the definition of ¢(S) does not guarantee that
#(S) is exactly equal to the image of S under ¢. The definition guarantees
that the image of S under ¢ is embedded in ¢(S), but it also permits there to
be states and connectivity in ¢(S) that have no counterpart in S.

Definition 5 Pre-image of an Abstract State

The pre-image (under domain abstraction ¢) of an abstract state s € ¢(S) is
the set of states {so, s1,...5,} in S such that ¢(s;) = s. If there are no such
states the abstract state s is said to have no pre-image.

For example, the pre-image of < 1,1,1,0 > under ¢; is the set of states
{<1,2,3,0>,<2,3,1,0>, <3,1,2,0 >}.

10

2.8 Pattern Databases

The heuristic defined by an abstraction can either be computed on demand,
as is done in Hierarchical A* [14], or, if the goal state is known in advance,
the abstract distance to the goal can be precomputed for all abstract states
and stored in a lookup table (pattern database) indexed by abstract states.
In this paper we take the latter approach.

Definition 6 Pattern Database

Let g € S be a goal state and ¢ be an abstraction on S that induces a state
space homomorphism. A pattern database is a table indexed by the states of
¢(S). The entry in the table for s' € ¢(S) is dys)(s', ¢(9)).

The size of the pattern database is defined to be the number of states in ¢(S).

For a given state s € S, hy4(s) is computed by looking up the entry in the
pattern database indexed by ¢(s).

For example, the pattern database for the goal state < 1,2,3,0 > of S = the
2 x 2 sliding-tile puzzle and the abstraction ¢,(S) (see Figure 4) is shown
in Table 1. h(< 0,3,2,1 >) is computed by looking up the entry indexed by
#(<0,3,2,1 >) =< 0,1,1,1 >. This estimates the distance from < 0,3,2,1 >
to to < 1,2,3,0 > to be 2 (the actual distance is 6).

s' dy,(sy(s', < 1,1,1,0 >)
<1,1,1,0 > 0
<1,1,0,1 > 1
<1,0,1,1 > 1
<0,1,1,1 > 2

Table 1
Pattern database for ¢

If S’s successor function is symmetric, as we are assuming in this paper, the
pattern database can be constructed by an exhaustive breadth first traversal of
#(S) starting at the goal state, ¢(g), using the abstracted successor function.

The “patterns” in previous pattern database work are a restricted form of do-
main abstraction in which the labels that do not remain unique are all mapped
to the same abstract label. ¢, is a pattern in this sense. The granularity of
these patterns thus consists of a single number (the rest of the entries being
one) which simply indicates how many labels do not remain unique.

11

GRAN? m n GRAN? m n
<8> 9 1 <4,2> 7560 | 420
<7> 72 8 <3,3> 10080 | 280

<6,2> | 252 | 28 <3,2,2> 15120 | 210
<6 > 504 | 28 <4> 15120 | 70

<53> | 504 | 56 <2,2,2,2> 22680 | 105

<4,4> | 630 | 35 <3,2> 30240 | 560

<5,2> | 1512 | 168 <2,2,2> 45360 | 420

<4,3> | 2520 | 280 <3 > 60480 | 56
<5> 3024 | 56 <2,2> 90720 | 210

<4,2,2 > 3780 | 210 <2> 181440 | 28

<3,3,2>|5040 | 280 | <1,1,1,1,1,1,1,1,1 > | 181440 | 1

Table 2
Abstraction granularities for the 8-puzzle.

To see the advantage of the richer notion of domain abstraction, consider
Table 2, which shows all the possible granularities of domain abstractions of
the 8-puzzle in which the blank tile remains unique in the abstract space. n is
the number of distinct domain abstractions that have a given granularity, and
m is the number of abstract states generated by each such abstraction. For
example, the entry for < 3,3,2 > indicates that there are n = 280 different
domain abstractions with this granularity, each of which produces an abstract
space containing m = 5040 states. Note that different granularities sometimes
produce the same number of abstract states (e.g. < 3,2,2 > and < 4 >).

The entries in this table that correspond to “patterns” are the single-digit
granularities — < 8 >, < 7 >,< 6 > and so on. Note that in between suc-
cessive patterns from < 6 > to < 3 > the size jumps considerably (relatively
speaking). The gap between the sizes becomes important when one size is
much smaller than the amount of memory available while the next size is big-
ger than the memory available. In [19] for example, a pattern in which 6 of
the Rubik’s Cube corner cubies remain unique produces a 20 megabyte pat-
tern database, while the next larger pattern produces a 244 megabyte pattern
database. If the actual memory available had been 200 megabytes the larger
pattern database could not have been used but the smaller one would have
used only 10% of the available memory. It is important to fully utilize memory
because larger pattern databases usually result in faster search (see below).

The domain abstractions that are not patterns fill in these gaps. In Table 2
between < 6 > and < 5 >, and again between < 5 > and < 4 > there are a

12

variety of intermediate sizes.

3 Efficiently Identifying Good Pattern Database Heuristics

Generally speaking, search time is inversely related to pattern database size[13,19].
This is illustrated in Figure 5, which shows how the average search perfor-
mance on 400 start states of all the pattern databases in Table 2 grouped
together by size. Clearly, the number of nodes expanded decreases as the size

of the pattern database increases.

100000

d=22 <—

10000

- 1000 |

100 |

10

! ! ! !
1 10 100 1000 10000 100000
m

Fig. 5. 8-Puzzle: Number of Nodes Expanded (y axis) vs Pattern Database Size (z
axis). Logarithmic scales on both axes.

However, pattern database size is not a perfect predictor of search perfor-
mance. Figure 6 shows the same data, but with each pattern database plotted
individually. Here it can been seen that there is significant overlap from one
size to the next: the best heuristic with less memory is often better than an
average heuristic with slightly more memory.

This observation is the primary motivation for the current section, which in-
vestigates a particular formula for predicting the search performance of a
heuristic. Our interest in this formula is to see how well it serves as the scor-
ing function in the search procedure in Figure 1 to select the “best” pattern
database of size m or less. Note that, for this purpose, it is not essential to
predict true performance exactly, it is only necessary to correctly determine
which of two pattern databases defines the better heuristic.

13

100000 T T T T

VOO O
A
IN
w
v

10000 | § <5>

N K
> DoDR
A
ANS
NOrWN A »OTS
WN
VVV
OCXDXO+O0XbXO+0XDdXO+0

1000 ¥ I <2,2:2>
8 <3>

+
100 | ! | g E

10 1 1 1 1
100 1000 10000 100000

Fig. 6. Number of Nodes Expanded by Individual Pattern Databases (y axis) vs.
Pattern Database Size (z axis). Logarithmic scales on both axes. The legend shows
granularity in order of increasing size.

3.1 Korf and Reid’s formula predicting the number of nodes expanded

In [20] Korf and Reid develop a formula to predict the number of nodes gener-
ated during search as a function of parameters that can be easily estimated for
pattern databases. Our reconstruction of their development, with some slight
differences, is as follows.

Let Sy be the set of states distance d from the goal, let Nodes(s,i,d) be the
set, of nodes at level 7 of the search tree when s € S; is the start state, and let
Fertile(s,i,d) be the set of x € Nodes(s, 1, d) such that f(z) = g(x)+ h(x) =
i+ h(x) < d. Korf and Reid’s key insight is that the total number of nodes
expanded for a search from s € S; to the goal is at most

t(s,d) =>_ |Fertile(s,i,d)| (1)

1=0

The expected number of nodes when starting distance d from the goal is then

Yses, E;-izo |Fertile(s,i,d)|

d) = | Sl

(2)

Defining P(s,i,d) = |Fertile(s,i,d)|/|Nodes(s,i,d)| this equation can be
rewritten

d .) .
(d) = Zs€8s ZiolNodfssCE's,z,dn P(s,i,d) @

14

The condition defining Fertile is equivalent to h(z) < d — i, and therefore
P(s,i,d) is the probability of encountering a node with a heuristic value less
than or equal to d — ¢ at depth ¢ of the search tree with s € S; as its starting
node.

Assuming |Nodes(s, i,d)| is the same for all s € S; the equation can be rear-
ranged as

(4)

t(d) = Z <|N0des(i, d)| -

)

Zsesd P(Sa ia d))
Sl

The latter part of the equation is just the average value of P(s, i, d) for s € Sy.
Denote this by P(i,d).

t(d) = 3" |Nodes(i,d)| - P(i, d) (5)

1=0

The development to this point has used exact definitions for |Nodes(i,d)|
and P(i,d). Unfortunately, in general it is not possible to efficiently compute
either of these values. To complete the development, easily computed approx-
imations of |Nodes(i,d)| and P(i,d) must be introduced, and this is where
complications arise.

|Nodes(i,d)| is usually approximated as b’ by assuming a constant branching
factor, b, across the entire space and strict exponential growth of the search
tree, but we have delayed this substitution until now to show that the analysis
does not depend on it in any way. Faced with a specific search space about
which one has knowledge pertaining to |Nodes(i,d)| a more appropriate ap-
proximation could be used. In addition, the search algorithm must be taken
into account. The assumption of a constant branching factor is reasonable
when the IDA* search algorithm[17] is being used, although calculating the
correct value for the branching factor is trickier than it might at first seem[7].
By contrast, the branching factor is certainly not constant when the A* search
algorithm[10] is being used. Because A* detects and prunes duplicate nodes,
its branching factor is smaller at deeper levels.

An easily computable approximation of P(i,d), with heuristics defined by
pattern databases, is IB(x), which is defined to be the percentage of the entries
in the pattern database that are less than or equal to z. P is the cumulative
distribution of the heuristic values stored in the pattern database, which is
related to, but different than, the overall distribution used in [20]. However,
if each abstract state has the same number of pre-images, then P and the
overall distribution are the same. This is the case for the abstractions in our
experiments, but it is not true in general (see sections 4 and 5), and that is

15

the key difficulty in trying to approximate P(i,d) from a pattern database.
A second difficulty in using this approximation arises with the IDA* search
algorithm. Because IDA* prunes nodes with sufficiently large heuristic values
but it does not detect and prune duplicate nodes, nodes with small heuristic
values will tend to recur more often than those with large heuristic values (a
similar observation is made in [19]). There is no efficiently computable way to
accurately adjust P(z) to account for this effect. It is primarily for this reason
that we have used A* instead of IDA* in our experiments.

Substituting these two approximations into the equation for ¢(d) produces the
the final formula we will use for estimating the number of nodes expanded by
a search starting distance d from the goal in a space with branching factor b

d ~

t(b,d) =>_b'P(d—1i) (6)

1=0

3.2 Experimental Fvaluation assuming b and d are known

To verify how well equation 6 predicts the number of nodes expanded we have
run an extensive experiment with the 8-Puzzle. We generated all 3510 different
abstractions described in Table 2 and evaluated them on the same 400 start
states randomly chosen from among the 23952 states that are distance 22 from
our chosen goal state. The experiment thus involved solving 1,404,000 problem
instances. The 8-puzzle was used because it is large enough to be interesting
but small enough that such a large-scale experiment was feasible.

Each point in Figures 7 - 8 represents the average number of nodes expanded
on the 400 start states for one particular pattern database. The granularity
and the size of the pattern database are shown under each figure. Where there
are two different granularities that produce the same size pattern databases
(e.g. < 6 > and < 5,3 > both produce 504 abstract states) they are shown
on the same plot with different symbols.

Figures 7 and 8 show the predicted number of nodes expanded on the y axis
versus the actual values on the x axis when b and d are both known. If equation
6 precisely predicted the number of nodes expanded, the points would lie on
the y = x line. The points representing the small memory heuristics (m = 72
to m = 630) fall below the y = x line indicating that equation 6 underesti-
mates the number of nodes expanded even though this equation was derived
to be an upper bound. This anomaly is because b’ is not a perfect estimate of
Nodes(i,d). In particular, the use of the same branching factor, b, at each level
is problematic for inaccurate heuristics. As discussed above, A*’s duplicate-
node pruning causes the effective branching factor to decrease as A* reaches
deeper levels. The value for b we used in equation 6 is the arithmetic average

16

20000 - 10000
X 4 X -
18000 9000
16000
8000
14000
7000
00
12000
°
6000 2
10000 ¢
P oo
o 5000 A >
8000 e e
4 e
P o e
4000 2
6000 /
Y
p o
4000 & 3000
4000 6000 8000 10000 12000 14000 16000 18000 20000 3000 4000 5000 6000 7000 8000 9000 10000
<7T>,m=72 < 6,2>, m=252
6500 5500
<53 0. X ==
<65 & .
6000 e g
5000
5500
®
P &0 4500 . 22
5000 * o
of -
®
- + 4000
4500 el o8
- o0
Cem p
CHTh
4000 - 3500
YO"H
o ° e
3500 1608 @ %
st 3000 g
o
3000 B
o
Lo 2500
2500 e .
2000 L 2000
2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 2000 2500 3000 3500 4000 4500 5000 5500
<6>,<5,3> m =504 < 4,4 > m =630
2800 2000
o | e
080"
2600 3,
gw 1800
2400 S0 80l
Q‘) ©0 9
o B
2200 o 4 e 1600
&&9@’0
o R
2000 & ;
¢ 1400
@o% 0P
1800 e <.
0% o @
2% 1200 2.0p..
1600 . &0
°
1400 1000 L@
®
1200 (-
800
1000
o L 600
800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 600 800 1000 1200 1400 1600 1800 2000
<5,2> m =1512 < 4,3 > m = 2520

Fig. 7. Number of Nodes Expanded as Predicted by Equation 6 (y axis) vs. The
Average of the Actual Number of Nodes Expanded (z axis)

of the effective branching factor of every node that was expanded. This under-
estimates b for small depths and overestimates it for large depths. However,
equation 6 weighs b* by P(d — i) where i is the search depth. Since P(d — 4)
is greatest for the small depths, and b is significantly underestimated at these
depths for small memory heuristics, the overall formula underestimates the
total number of nodes expanded.

17

1800 1600

Xege || ke
o °
@ &
1600 - W
° 1400
% @ o
® 0
1400 e o
8% s
%o 1200 ®.
u &
1200 o o
’ &0
o i ® °
o® 1000
1000 o
g R
£°
o
800 800
600
600
400 -
400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 500 600 700 800 900 1000 1100 1200 1300 1400
< 5>, m=3024 < 4,2,2>, m = 3780
1300 T 1100
e e T
1200 4 1000 o
1100
900
o
el
1000 5
é’%;% % 800
®
900
700
800 o
°° 00
haad 600 |-
700 &
s
500
600
500 e 400
400 300 L=
400 500 600 700 800 900 1000 1100 300 350 400 450 500 550 600 650 700 750 800
< 3,3,2> m = 5040 < 4,2 > m = 7560
900 r 700 T =
A L3 <4> o
50 @ <32.2> +
800 G0 8,58 %0 ¢ s X
600
By
oy
P s et
700 . 4+
& 0 &
06 60 @ 00ty HELEH
o B8 N
Bhae® 500 o
600 5
o
o L 00
500 e 400
400
300
300
200
200
100 100
150 200 250 300 350 400 450 500 550 600 150 200 250 300 350 400 450
< 3,3 > m = 10080 <4>,<3,2,2> m =15120

Fig. 8. Number of Nodes Expanded as Predicted by Equation 6 (y axis) vs. The
Average of the Actual Number of Nodes Expanded (z axis)

Nevertheless, it is clear that for all sizes of heuristic the points in Figures 7 -
8 form a pattern that is sufficiently monotonic, on a large scale, that equation
6 can be used to reliably determine which of two heuristics will result in fewer
nodes being expanded.

18

3.8 Using Korf and Reid’s formula when b and d are not known

We have seen that equation 6 (Figures 7 - 8) accurately orders the heuristics
with respect to the number of states they expand when b and d are known
exactly. However, these values are unknown at the time we wish to compare
heuristics. b can be estimated by probing the search space, i.e., by searching
forward to a limited depth from a number of randomly chosen start states and
measuring the average branching factor in those searches.

Unlike b, d is not a fixed quantity to be estimated, since our aim is to de-
termine which of two heuristics will result in fewer nodes expanded over a
set of unknown start states. Assuming the number of nodes expanded grows
exponentially in d, the better heuristic is the one with the smaller ¢(b, d) for
large values of d. Let h denote the largest heuristic value stored in a given
pattern database. For z > h, P(x) = 1, so t(b, z) for z > h is monotone non-
decreasing for b > 1. Hence given two pattern databases with largest heuristic
values hy and hg, respectively, the one with the smaller ¢(b, max(hy, he)) will
expand fewer states when searching to large depths. To select the best among
n pattern databases with the same storage requirements, we choose the one
with the smallest ¢(b, maxz(hy, ho, ..., hy)).

In Figures 9 - 10 the actual rank with respect to the experimentally measured
the number of nodes expanded is on the x axis and the rank established by
equation 6 is on the y axis.

If equation 6 ranked heuristics perfectly then the plots on Figures 9 - 10
would be diagonals from the bottom-left to the top-right corner. It is clear
that the formula ranks quite accurately and, in particular, that its best-ranked
heuristics are always very good, if not best, in their actual performance.

Figure 11 compares the performance of the best ranked, the average of the
best ranked 10 and the average of all pattern databases on the same 400 start
states. The actual values are also tabulated in Table 3. The best heuristics are
two to three times faster than the average ones with the same size. This also
means that the best pattern database of size m often performs as well or better
than an average pattern database of size 2m. For d = 22, which has been fixed
throughout our experiments, the Manhattan distance heuristic expands 975
nodes, on average. From Table 3 the average of the pattern databases of size
3024 would perform slightly better, as would the best pattern database of size
1512.

19

o
o
° °
°
°
°
° o
°
°
°
°
°
°
°
o
°
°
o
°
o °
o
°
°
° °
°
°
<T7T>,m=72 < 6,2>, m=252
<6>
535 + °©
% o
+ o
+ o
" °
+ °
+ °
t7 S
°
+F °
.o, °
+ °
., °
i, o
" °
3+ °
+0o °
o o7 °
®+O °
+ 3 °
$ °
s °
+°o®+ °
3 °
+$ ©
+ 78 °
+ o °
+ o ot o
s ¢ s 7 °
°
S, B °
+3
3
<6>,<5,3> m=2504 < 4,4 > m =630
=9
o <%
S8 0
o 70 of,
8 o ofo
% %‘}o‘%
*, o P
o3 o
LAY oo 0 8
0 o ogele,
o PO
o 0 %% %
A o © 0°%8
0 o0 &
®o ° %%
o %o 002 90 °
© % 2.8
° 09 08 °
050 90 %0
E 8%
LR AP 820°8
o o ©° s
ER I o
o Od}o 80
° & &
s %5
% CPA
3 ° @
03 5 @ o 5 R
84 8 0 &
o P2
og%@ R, Fo
« o ©
o &o Q)o
o® § ofy
L g o
° %@og
° 78" o 6
o o 808
o 0 &
o ° %
£ °
< 5,2> m =1512 < 4,3 > m = 2520

Fig. 9. Rank as Determined by Equation 6 (y axis) vs. Actual Rank (z axis) (The
granularity and the size of the pattern database are placed under each plot).

4 Creating Pattern Databases of a Given Size

Given a state space and a maximum pattern database size, m, one would
like an automatic method for generating abstractions that give rise to pattern
databases of size m or less.

20

o, o % OF
° £L
° < >
s ° ®8
9 R 008
k3 P o
° > %
8 o o %o
° L
° 62 o
o s ° %
° N o &
. O %, 068
o 2 ° %0
b
o % LN 8
°© o & o
4 o 00 °
S 0% 0% O o
° 0 %% o
o S QO%
3 00% o O
o % o
o 03
o P o
o 3
° Pec
° S o
° o8 e
° R
° o 3
8 3RS
° =
° o o
®o 00 0 3
3 &
g °
o LS
o ° 8>$<>
o kK
° 8
° &
o° &
o g
< 5>, m = 3024 < 4,2,2 >, m = 3780
o 8 %
0% 8 9 e
o o8 00 280 o
o 8 o o%s"ooo
o 00% e o 5570 %
o %% R, Bo 2.5 %
o QO 0 SO %g® o
® P00 % 3 B«
o o8 oy o o o %o %o O °
° LN o o o 0 o 00
° § e o stefos o
0 & 20 5g ° 0f 298 20
0o g% S 580 %0
° o % @ o Tl ©
3 ® ©° B 9% o ©
° & S 0° bogo 897 ¢
¢ & & oo o
> O RN S o%%o"‘” 8
° 4 PEENRS
0 © o %% <
BIEIE T @03%
0 6%, XQ YRy
® 3 % 000 °
3 0 T o o R0 o
> ° 2 $ o
o 0 o8 2
PRRS RS N
5 3% ° 88
0098 o N
% oo o 0&8@00
IR «%% %0
f R,
< Jet %
oo &2
2™ >
v @@
< 3,3,2> m = 5040 < 4,2 > m = 7560
R - Ve
0® 38 + K
° &, £322> %
ot o° by
o 0%, oo+
000 X7 o + F
o & ° N Tt
004 000 + + + 4
o 7% %0 - +
3 %% N Lt
° g oof;% 00 T
+
X S X AR
0% 0, + +
S © 000 +iy R
® g %0 LI N
0 o @ + + +*
PR o ++ A
° EXS o ey
0% + & +
® o % % o + o +
0 ’g o * o4 +
o £o & ++ Iy
$%0 4
o, ©° é%g M o L
> o ° ot T
oo%)& Loe Y L 4 . [
° S 5 + + +
0 9%, o S R -
§®° %o ° Foud 47
o0 % 5 o S aeted
%68 o O o e +
o X %0 o 80 4% y t
3 o ++
00333 < °%r% + +
9 © o oy $
g DAL I SN
o"gls yﬁwo o
9% ACEN N
“ °
o5 e, ¥ o
b oo °
< 3,3 > m = 10080 <4>,<3,2,2> m =15120

Fig. 10. Rank as Determined by Equation 6 (y axis) vs. Actual Rank (z axis) (The
granularity and the size of the pattern database are placed under each plot).

For special classes of state spaces there exists a simple formula relating the def-
inition of an abstraction to the size of the corresponding pattern database. For
example, consider the N-Perm puzzle. In this space a state is a permutation
of the values 0...(N —1). A state has N — 1 successors, with the k™ successor
formed by reversing the order of the first £ + 1 elements of the permutation
(1 < k < N). For example, if N = 5 the successors of state < 0,1,2,3,4 >

21

100000 T T T T

al -—
best -+-
bestl0 -8--

10000 [

1000

100

10 1 1 1 1
1 10 100 1000 10000 100000

Fig. 11. Size of Pattern Database (z axis) vs. Number of Nodes Expanded (y axis) by
All, the Best and the Best 10 Pattern Databases of Each Granularity. Logarithmic
scales on both axes.

are < 1,0,2,3,4>,<2,1,0,3,4>,<3,2,1,0,4 > and < 4,3,2,1,0 >. From
any state it is possible to reach any other permutation, so the size of the state
space, |S]|, is N!.

In the natural encoding of this space, the domain has N elements representing
the N distinct values that are being permuted. Suppose an abstraction maps
this domain to domain D’ having M values (M < N), with g; of the original
domain elements mapped to D} (0 <7 < M —1). For such an abstraction the
number of states in the original space which map to each abstract state is

glgi!- ... 'g(M—l)!

and therefore the number of abstract states is

B
golgi!- ... 'g(Mfl)!

Unfortunately, an analogous formula cannot be used in general, for two rea-
sons. One reason is that the abstract space may contain abstract states that
have no pre-image, and the formula just described makes no allowance for
these. This phenomenon is discussed in detail in Section 5.

The second reason is that the fundamental assumption underlying the formula
— that the number of states mapped to each abstract state is the same — is
not true in general, even if abstract states with no pre-image are ignored. For
example, consider the 3-disk Towers of Hanoi puzzle with a domain, {1, 2, 3},
whose labels represent the different disks (1=small, 2=medium, 3=big), and

22

database nodes expanded

m GRAN? best | best 10 all
9 < 8> 53097 53097 53097
72 <7> 8597 12384 12384

252 <6,2> 3998 4460 6192
504 <95,3 > 2346 3104 4515

504 <6 > 2195 | 2355 | 3356
630 <4,4> | 2338 | 2909 | 4123
1512 | <5,2> 854 991 1791
2520 | < 4,3> 662 780 1386
3024 <5> 459 630 965
3780 | <4,2,2> | 600 614 1026

5040 | <3,3,2> | 429 514 872
7560 | < 4,2 > 314 308 552

10080 | < 3,3> 197 264 469
15120 <4> 163 182 293
15120 | <3,2,2> | 240 250 341
22680 | < 2,2,2,2> | 227 234 258
30240 | <3,2> 86 94 182
45360 | <2,2,2> | 117 118 134
60480 <3> 40 66 90
90720 | < 2,2> 56 57 63

Table 3
Performance of the the Best, the Best 10 and all pattern databases on the same 400
start states

the abstraction that maps all these labels to the same abstract label (say, X).
With this abstraction there are still three disks but their sizes are indistin-
guishable. The abstract state in which the disks are all on different pegs has
a pre-image containing six Towers of Hanoi states, since any way of replacing
the three X'’s by distinct labels ({1, 2, 3}) is a legal, reachable Towers of Hanoi
state. But the abstract state in which the disks are all on the same peg has
only one Towers of Hanoi state in its pre-image, since only one legal, reach-
able Towers of Hanoi state is mapped to this abstract state (1 on top, 2 in the
middle, 3 on the bottom).

23

One consequence of pre-images being different sizes is that it is possible for two
domain abstractions of the same granularity to produce abstract spaces with
a different number of states, even if all the abstract states have non-empty
pre-images.

Fig. 12. Towers of Hanoi with four disks and a hand

To illustrate this consider the variation of the Towers of Hanoi puzzle depicted
in Figure 12 in which the operations are akin to those in the Blocks World:
there is a “robot hand” which, if it is empty, can pick up the disk on top of
any peg and which can put down the disk it is holding on any empty peg
or on top of a larger disk atop a peg. Suppose there are 4 disks represented
by labels {1,2,3,4} (1=smallest, ..., 4=biggest), and consider the following
abstractions

¢small(1) - ¢small(2) =a
¢small(3) =b
¢small(4) =cC

24

Prig(1) = a
¢big(2) =b
Prig(3) = Prig(2) = ¢

Osmau Maps the two smaller disks to the same abstract label and leaves the
larger disks unique, while ¢;, does the opposite, mapping the two larger disks
to the same abstract label and leaving the smaller disks unique. Both have
granularity < 2,1,1 >, and both create abstract spaces in which all the ab-
stract states have non-empty pre-images. But the abstract space produced
by ¢pig has three abstract states more than the space produced by ¢span (117
compared to 114). The difference increases as the number of disks is increased.
With 7 disks, the abstraction mapping the 3 largest disks to the same abstract
label and leaving the smaller disks unique produces an abstract space with 144
states more than the abstraction that maps the 3 smallest disks to the same
abstract label and leaves the larger disks unique (2100 compared to 1956).

4.1 Searching the Space of Domain Abstractions

Since it is not always possible to predict the size of the space induced by a do-
main abstraction, it is necessary to search in the space of domain abstractions
to find ones that produce pattern databases of a desired size. Because domains
are finite (indeed usually very small) it is easy to represent and enumerate all
possible abstractions of domain D. An abstraction ¢ can be represented by a
vector of length |D| with the value in position i representing ¢(D;).

Any type of search algorithm could be used for this purpose; a typical local
search algorithm is given in Figure 1. The search considers one abstraction at
a time. If the abstract space induced by the current abstraction is larger than
desired, the abstraction is changed to be less abstract. On the other hand, if
the induced space is smaller than desired, the abstraction is changed to be
more abstract.

A method to change the degree of abstractness (steps 2(b) and 2(c)(iii) in
Figure 1) can be based on the effect of changing the g; values on the formula

15|
golgi! ... g(|D|—1)!

If a label that is currently mapped to D; is changed to be mapped to Dj the

25

previous value of the formula will be multiplied by

gi
gj+1

because g; will decrease by 1 and g; will increase by 1. If g; < g; the overall
value of the formula will decrease, and if g; > (g; + 1) the value will increase.
Therefore, to make a given abstraction “more abstract” one can re-assign any
label mapped to D to any D;- such that ¢g; < g;, and to make an abstraction
“less abstract” one can re-assign any label mapped to D] to any D’ such that
gi > (g; + 1). This method is only a heuristic: it is not guaranteed to achieve
the expected effects because, for the reasons given above, the formula on which
it is based does not always exactly predict the size of the abstract space.

As an initial abstraction to begin the search (step (1) in Figure 1) two extreme
possibilities suggest themselves: the maximum abstraction, which maps the
whole original domain to the same abstract label, creating an abstract space
with just one state, and the minimum abstraction, which maps each label in
D to a distinct abstract label, creating an abstract space that is isomorphic
to the original space.® Because the changes made to an abstraction typically
have a multiplicative effect on the size of the abstract space even with these
extreme starting points the search is expected to quickly find abstractions that
are roughly size m.

Figure 1 does not include any loop exit conditions because these are chosen to
suit the particular application. For instance, in some cases the loop might exit
as soon as the first pattern database smaller than m is generated, whereas
in others the search might continue until a sufficiently high score had been
achieved. Yet other applications might continue until a pre-determined number
of iterations had been executed.

5 Non-Surjective Abstractions

The main complication in trying to predict or control the size of the pattern
database induced by a domain abstraction is that an abstract space can con-
tain an arbitrarily large number of states that have no pre-images. We call
such an abstraction non-surjective.

Definition 7 Surjective State-Space Abstraction

3 this is not an “abstraction” according to Definition 1 but it is a convenient initial
value for ¢ in the search procedure being discussed.

26

Let ¢ be a domain abstraction and ¢(S) be the abstract space induced by ap-
plying ¢ to state space S. ¢ is surjective if and only if for every state s' € ¢(S)
there is a state s € S such that s" = ¢(s).

In other words, ¢ is non-surjective if ¢(S) contains states with no pre-image.

Non-surjective abstractions arise quite often, for a variety of reasons. Detect-
ing that an abstract state has no pre-image requires solving to a more general
reachability problem, which is not necessarily efficiently computable. Alterna-
tively, one might attempt to characterize the causes of non-surjectivity, and
then develop automatic methods to detect or avoid non-surjective abstrac-
tions.

To date, we have identified two major causes of non-surjectivity, orbits (Section
5.4) and blocks (Section 5.5). These are structural properties that naturally
arise in problems in which the operators move physical objects (e.g. the cubies
in Rubik’s Cube) and there are constraints on which positions an object can
reach or on how the objects can move relative to one another.

Unfortunately, these are not the only causes. Sections 5.1 to 5.3 give examples
of non-surjective abstractions which are not due to orbits or blocks.

5.1 Disk Order Not Preserved in the Towers of Hanot

Consider the 4-disk Towers of Hanoi puzzle and the domain abstraction:

¢(1) = ¢(4) =a
¢(2) =b
$(3) = ¢

¢ assigns the same abstract label to the smallest and largest disks and leaves
the two intermediate disks unique. In the original space the largest disk can
never be on top of another disk and the smallest can never be beneath another
disk. These restrictions cannot be enforced in the abstract space. The largest
and smallest disks are indistinguishable from each other in the abstract space
so and they get mixed in with the rest of the disks. Consequently, many
abstract states have no pre-images. For example, “b on @ on a on ¢ on pegl”
is a reachable abstract state, which obviously has no pre-image. This problem
arises in the original Towers of Hanoi puzzle and in the “robot hand” variation
(Figure 12). In the latter, ¢(S) actually has more states than the original space
(258 abstract states compared to 183 original states).

27

5.2 Multiple blanks in the 2 X 2 puzzle

The abstraction, ¢, of S = the 2 x 2 puzzle discussed in Section 2.2 is
surjective: each state of ¢;(S) has a (non-empty) pre-image. But consider the
domain abstraction ¢, defined as:

¢2(0) = ¢2(3) =0
(1) =1
$2(2) =2

¢ creates two blank tiles (0’s) in the abstract space. The 12 original reachable
states are mapped to 8 abstract states®: this is the size of the “image” of the
initial state space under ¢,. However, the abstract space, shown in Figure 13,
has 12 states in total. The abstract states in the image of the 2 x 2 puzzle
have solid boundaries; the 4 reachable abstract states that do not correspond
to reachable 2 x 2 puzzle states have dashed boundaries. Because there are
states in ¢5(S) which have no pre-image, ¢ is non-surjective.

2]1 11f2,

=
N
N

N !

Fig. 13. Abstract space induced by ¢2(.S)

4 the details in this paragraph depend on the encoding of the problem. Here we are
assuming the encoding used is the one given above. In the next subsection we will
see a second encoding in which the image has 9 states.

28

5.3 Dual encoding of the 2 X 2 puzzle

In this section we describe an alternative way of representing the 2 x 2 puzzle
which we call the dual representation. This representation is quite natural,
but has the unfortunate property that all non-trivial domain abstractions of
it are non-surjective.

In the representation of the 2 x 2 puzzle used so far, a state was represented
by vector of length four with the vector positions corresponding to the po-
sitions in the puzzle, and the four domain labels representing the different
tiles. An alternative is to have each vector position correspond to one of the
tiles, with the label in that position representing which puzzle position that
tile is currently in. For example, let vector positions 1-3 correspond to tiles
1-3 respectively and position 4 correspond to the blank tile. In this represen-
tation there will be four labels, one for each puzzle position. The labels are
{tl,tr,bl,br}, where tl stands for “top left” ¢r for “top right” and so on.

Examples of this dual representation are shown in Figure 14. Vector < br, tl, tr, bl >
represents the state where tile 1 is in the bottom right position, tile 2 is in the
top left, tile 3 is in the top right and the blank tile is in the bottom left.

2181 <prtltr.bl> 2 <bl tl.br tr>
1 113
1 3
<tr,br bl tlI> <br bl tr tlI>
3(2 211

Fig. 14. Examples of States in the Dual Representation of the 2 x 2 Puzzle

In this representation, a domain abstraction abstracts the positions the tiles
occupy rather than the tiles themselves and renders certain positions indistin-
guishable from one another. This effectively allows the tiles in those positions
to be swapped, which almost always leads to a state with no pre-image. For
example, consider domain abstraction ¢4 defined as

Gu(tr) = da(br) = br
a(tl) = 1l
@4(bl) = bl

This abstraction renders positions ¢r and br indistinguishable from one an-
other. Figure 15 shows the abstract space. The abstract states of ¢4(S) are
drawn as solid or dashed ellipses each containing 2 puzzle states. Reachable
puzzle states are drawn with solid boundaries, and those that are not reachable

29

are drawn with dashed boundaries. In total ¢4(S) has 12 states; the 3 abstract
states (ellipses) with dashed boundaries contain only unreachable puzzle states
and therefore do not have a pre-image in the 2 x 2 Puzzle. Hence ¢, is not
surjective.

<tl,tr,tr,bl> <tl,tr,bl,tr>

<tr,tr,bl,tI>

<bl,tltr,tr>

<tr,bl,tl,tr>

<tr,tl,tr,bl>
<tr,bl tr,tl>

Fig. 15. ¢4(S)

5.4 Orbits

The preceding subsections have given examples of non-surjective abstractions
that are somewhat problem-specific, although we believe they are suggestive
of general characteristics causing non-surjectivity. In this and the next sub-
section, we give two general causes of non-surjectivity, by generalizing the
standard concepts of orbits and blocks found in Group Theory. Our adapta-
tions assume states are represented by fixed-length vectors.

Definition 8 Orbit

Let x be a label and S a set of states represented as vectors. The orbit of x in
S, denoted x°, is the set of vector positions where x occurs in the states in S:

w° ={i:s€ S and s; =z}

In the sliding tile puzzles, every tile can be moved to every puzzle position,
so there is no interesting orbit structure: every label can occur in every vector
position. By contrast, in Rubik’s cube, there is a very important orbit structure

30

(assuming labels represent the individual “cubies”): corner cubies can only
be moved to the corner positions and edge cubies can only moved the edge
positions. This is an example of a space in which the orbits of some labels
have no overlap with the orbits of other labels. To see how this sort of orbit
structure interacts with domain abstraction, consider the very simple space,
S1, with this PSVN definition:

seed =< a,b,¢,d > domain = {a,b,c,d}

o1 <AB,,_.>=<B/A,__>
succ =
09: <, A B>><__BA>

St has four states: < a,b,c,d >, < a,b,d,c >, <b,a,c,d > and < b,a,d,c>.
The orbits of labels a and b are the same, {1,2}, and have no overlap with
the orbits of ¢ and d, which are both {3,4}.

Consider the domain abstraction

ba) =
4(b) = () = ¢
6(d) = d

#(S1) has four states: < a,c,c,d >, < a,¢,d,c >, < ¢,a,c,d > and <
¢,a,d,c > and is isomorphic to S;. Even though ¢(S;) appears to be a nontriv-
ial abstraction - GRAN? =< 2 > — the abstract space is exactly the same as
the original space. This is because labels b and ¢ have non-overlapping orbits
and therefore can be distinguished by their position even after they have both
been changed to c.

Non-surjectivity arises when labels that have partially overlapping orbits are
mapped to the same abstract label. The orbits become merged in the abstract
space allowing the labels to move to positions they could not reach in the
original space.

To illustrate this consider the state space, Sy, with this PSVN definition:

seed =< a,b,b,b,c > domain = {a,b,c}

31

01 :< A, B,b, ,_>—<b A B, _ > |

0y :< A, B,a,_,_.>—><a,A,B,_, _>
suce =

03 : < ,,c,A,B>>»<_ _ A B,c>

04:<_,,0,A,B>=<__ A Bb> |

Sy has the following states:

< a,b,b,byc>, <a,bb,c,b>,
< b,a,b,b,c >, <a,b,c,b,b>,
< b,a,b,c,b >, <b,b,a,b,c>,

<b,a,c,b,b >, <b,b,a,c,b>

The orbit of label a is {1,2,3}, which partially overlaps with the orbit of
label ¢, {3,4,5}. Consider an abstraction, ¢, which maps a and ¢ to the same
abstract label:

é(< bya,c,b,b >) =< b,a,a,b,b > and applying operator ¢(os) = 09 to this
state results in < a, a,b,b,b >, which has no pre-image in S,.

The general lesson illustrated these examples is that labels with non-overlapping

or partially overlapping orbits should not be mapped to the same abstract la-
bel.

[2] gives efficient algorithms for calculating orbits in permutation groups.
When the state space is not a permutation group, the orbits may not be
efficiently computable. An alternative to automatic computation of orbits is
to determine them by hand and restrict the domain abstractions considered
by the search procedure in Figure 1 so that it only maps labels with identical
orbits to the same abstract label.

5.5 Blocks

Another structural property which interacts with domain abstraction and can
cause non-surjectivity is a block structure of the labels. Informally, a block is
a set of labels which always move in a co-ordinated manner.

32

3] TX \/ 3 bz
Fig. 16. Three 2 x 2 Sliding Tile Puzzles on a Ring

Consider the puzzle shown in Figure 16. There are three 2 x 2 puzzles arranged
on a ring. The tiles can move as usual within each individual puzzles and the
puzzles can be rotated on the ring, but there is no way for a tile in one puzzle
to be exchanged with a tile in another puzzle. The set of labels representing
each individual 2 x 2 puzzle forms a block.

To illustrate how block structure can interact with domain abstraction to
produce non-surjectivity consider the search space S3 defined as

seed =< a,b,¢,d > domain = {a,b,c,d}
01 <AB,,_>><B,A,_ _>

succ =4 0y :< A,B,C,D >—=< C,D;A, B >

o3:<a,_, ,B>><a,a,B,B >

S3 has 12 states:

<a,be,d>, <c,dya,b>, <b,a,c,d>W
<a,a,d,d> <cdba> <d,cab>

<d,d,a,a>, <a,bdc> <d,cba>

(< a,a,¢,c>, <ba,dc> <c¢caa>)

Because of operators o; and o0, all labels can reach all positions: there is no
interesting orbit structure. But there is a block structure. {a, b} is a block, as
is {c¢,d}. Note that operator o3 cannot be applied if the {c¢,d} block is in the
first two positions.

33

Now consider the domain abstraction ¢ which maps ¢ and d to the same
abstract label

bla) = o(d) = a
b(b) = b
ble) = ¢

d(< d,e,a,b >) =< a,c¢,a,b > for which operator ¢(o3) = o3 applies and
produces < a,a,b,b > which has no pre-image in S.

Our notion of blocks is adapted from the blocks defined for Permutation
Groups [5], which play an important role in reduced representations. As with
orbits, for permutation groups there are efficient algorithms for calculating
blocks [2]. When the search space is not a permutation group, the blocks may
not be efficiently computable but, as in Figure 16, they are often evident to a
human in the physical system that generates the space.

6 Representative Applications

This section presents three applications illustrating the use of domain abstrac-
tion to define heuristics for novel search spaces. The first two are commercially
available combinatorial puzzles — the Skewb Cube has 6,298,560 states and the
Pyraminx has 75,582,720 states®. In the third application, heuristics are cre-
ated for the series of search spaces defined by macro-operator subgoals.

In all cases the orbits and blocks were identified easily by a hand inspection
of the physical puzzle that gave rise to the search space and used to constrain
the abstractions considered in order to avoid non-surjective abstractions.

The first two applications are essentially a manual execution of the procedure
in Figure 1. The granularity of the abstractions was chosen by hand, by trying
different granularities and seeing what size of pattern database they produced,
and the abstractions of the chosen granularity were ranked by manually ap-
plying equation 6 (Section 3) to them.

The third application used an automatic procedure to search for abstractions
that fit in memory.

% Skewb Cube and Pyraminx are copyrighted products of Uwe Meffert

34

6.1 Skewb Cube

Fig. 17. Skewb Cube

The Skewb Cube has six colored faces. Each face has a diamond shaped middle
piece and four triangular corner pieces. The operators twist half of the puzzle
about the diagonals by 120° degrees.

The orbit and block properties are physically manifested in this puzzle. There
is no way that a corner piece can be exchanged with a middle piece hence there
must be at least two orbits. Because of the 120° degree rotations, the corner
pieces move on two separate orbits. Thus there are three orbits altogether. If
the labels in a state actually represent the colored stickers on the faces, it is
also clear that every edge piece has three stickers glued on it, and hence those
labels form a block. The block’s orientation is uniquely determined by any one
of the three stickers.

Our state representation for this puzzle consists of the thirty labels®. As dis-
cussed in section 5.4, we will create domain abstractions which avoid mapping
labels on different orbits to the same abstract label, and because the corner
blocks have an orientation, when we assign an abstract label to one of the
stickers, the rest of the stickers on the same block will be assigned the same
abstract label. In particular, we choose one of the orbits of the corners and
paint all labels on three of the four corner pieces to the same new color. We
also choose two of the four corner pieces from the other orbit and paint the
labels on these to the same new color. Finally, we choose four of the five mid-
dle labels and assigned them a new color. This is a GRAN? =< 9,6,4 >
abstraction. All such domain abstractions produce abstract spaces with 6480
states.

While there are a large number of such domain abstractions, they fall into 15
equivalence classes by isomorphism. We chose one representative from each of
these 15 classes, and ranked them using equation 6. The best, the worst, and a
medium ranking abstraction were each used to solve the same 100 easy (length

6 one of the labels represents a middle piece that never moves

35

7), 100 medium (length 8) and 100 hard (length 9) start states. The average
performance is tabulated in Table 4. Clearly these small pattern databases
define very good heuristics for this space.

Problems

rank | easy | medium | hard

best 157 860 3383

medium | 200 1138 6717

worst 272 1520 7668

Table 4
The Average of the Number of Nodes Expanded by the Best, a Medium and the
Worst Ranked Abstractions on the Same 300 Start States.

6.2 Pyraminx

EDGE
é SUPPORT
w "

The Pyraminx is a Rubik’s Cube style puzzle, but the pieces make up a pyra-
mid. The number of different states is 75,582,720. There are three types of
building blocks. The four tip pieces are themselves little solid pyramids which
may be turned by 120° degrees. The tip pieces are mounted on the four support
pieces which also have three colored stickers. In between support pieces are the
six edge pieces which have two colored stickers. The pyramid also turns about
each support piece by 120° degrees as well. The support pieces do not move
with respect to each other but their orientation may be different. Because the
tip pieces are only attached to the support pieces, they do not move with
respect to each other but each can be oriented in three different ways. The
middle pieces can be exchanged with each other and can be oriented in two
different ways. The orbits and blocks — as with the Skewb Cube — physically
manifest themselves. Each tip, support and edge piece is a block. Each of the
tip and support pieces forms its own orbit because they do not move with

Fig. 18. Pyraminx

36

respect to each other. The middle pieces altogether also form an orbit. It is
also the case that the shortest path between two states can be decomposed
into five shortest path problems: first fix the support and middle pieces and
then fix the four tip pieces one by one. We do not take advantage of this fact
even though it would significantly reduce search effort. Taking into account
the orbits and blocks, we generated all abstractions which assign the same
labels to every face of three of the four support pieces. The stickers on two of
the four tip pieces also get a new label assigned and every sticker on three of
six edge pieces also gets mapped to a new label.

The abstract spaces under isomorphism fall into 6 different equivalence classes.
Each abstract space has 25920 states. We determined the A* branching factor
to be 9.03. Using this we ranked a representative pattern database from each
equivalence class using equation 6. We ran the best, a medium and the worst
ranked heuristics on 50 easy (length 7), 50 medium (length 9) and 50 hard
(length 11) problems. The results are tabulated in Table 5.

Problems

rank | easy | medium | hard

best 711 4535 38572

medium | 1079 5718 42638

worst 1185 5728 42949

Table 5
The Average of the Number of Nodes Expanded by the Best, a Medium and the
Worst Ranked Abstractions on the same 150 start states.

The difference between the best and worst heuristics is not as pronounced as
with the Skewb Cube or the 8-Puzzle. Interestingly, equation 6 predicted this
marginal ratio.

6.3 Optimal-length Macro-operators

This application is described fully in [11]. Here we just sketch the application
and how automatically created heuristics were instrumental in its success.

Korf[18] introduced the “macro-operator” approach to very quickly construct-
ing suboptimal solutions for search problems. A sequence of subgoals is de-
fined: each subgoal requires fixing additional state variables to their final values
while maintaining the values of the state variables fixed by previous subgoals.

Once the subgoal sequence is defined, the challenge is to find the macro-
operators (sequence of operators) needed to achieve each subgoal. Since these

37

macro-operators are going to be concatenated to create the final solution it
is desirable to find the shortest possible macro-operators for the subgoals.
However, when the original space is very large (e.g. Rubik’s Cube in this
application), the search spaces associated with many of the subgoals are also
very large, and good, admissible heuristics for each of these spaces are needed
in order to find optimal macro-operators.

An automatic method very similar to Figure 1 was used successfully to create
heuristics to search for optimal-length macro-operators for Rubik’s Cube [11].
The minimum abstraction was successively made more and more abstract until
it created a pattern database smaller than the maximum allowed size. This
automatic method was so successful that we were able to reduce the number
of subgoals from 18 to 6 by merging successive subgoals. This led to a very
significant reduction in the lengths of overall solutions, from an average of
about 90 moves (5 times optimal) to an average of about 54 moves (3 times
optimal).

This is an interesting example of a situation where it is highly desirable to
create heuristics automatically. The spaces defined by the subgoals, and the
corresponding heuristics, are of no interest once the macro-operators have
been found. It is very convenient to have a fast automatic method for finding
heuristics, rather than having to hand-craft heuristics for each of the subgoals.

7 Discussion

The methods and results of previous sections raise numerous general issues
that will now be discussed. First, the positive contributions of our work will
be summarized. Then its limitations and some possible extensions will be
discussed.

7.1 Contributions

The heuristics created by domain abstraction have been seen to perform ex-
tremely well. In section 6 and in the original pattern database studies ([4],
[19]), the pattern databases were the difference between feasibility and infea-
sibility. On the 8-Puzzle an average pattern database of size 3024 outperforms
the venerable Manhattan distance heuristic.

Previous authors [16][23] have observed that their methods of abstraction,
in some circumstances, are not able to create useful abstractions because the
type of abstractions being considered are either too fine-grained, and therefore

38

very expensive to compute, or too coarse-grained, and therefore of little use
in guiding search. Although this depends to a large extent on how the search
space is encoded, we believe domain abstraction suffers less from this prob-
lem than previous methods of abstraction. Typically it offers a fair range of
granularities that are fine-grained enough to be useful but coarse enough that
the corresponding pattern database fits in memory. Precisely controlling the
size of the pattern database is difficult, in general. However, in certain cases,
including all the surjective abstractions in this paper, the size can be exactly
calculated, or at least estimated with reasonable accuracy, from a domain ab-
straction’s granularity. This calculation requires knowledge of a space’s orbits
and blocks, which in general cannot be efficiently determined automatically.
However, as was the case with the Skewb Cube and the Pyraminx puzzles, the
orbits and blocks are often evident from the physical structure of the system
that gives rise to the search space.

As illustrated in Section 6, domain abstraction, the formula for ranking pattern
databases (equation 6), and the procedure in Figure 1 are useful for creating
heuristics for novel spaces even if applied manually.

7.2 Limitations and Extensions

We believe that the methods presented in this paper will lead to a success-
ful system that uses domain abstraction to create heuristics automatically.
The one application we have attempted was highly successful [11], but this is
too little experience to draw general conclusions. We anticipate an automatic
method will be most successful when applied to novel search spaces, for which
no good heuristic is known. In such cases, we expect the computational cost
of finding a pattern database that fits in memory to be less than the cost of
solving one problem in the original space without a heuristic.

In [11] the automated heuristic-creation process stopped as soon as it found the
first pattern database that would fir in memory. It is an open question whether
it is worthwhile to search extensively for higher scoring pattern databases after
this point. For the spaces studied in this paper the best heuristic of a given
size is only about twice as good as the worst, implying there is not a strong
motivation for evaluating a large number of abstractions. We did not do any
such search

The greatest obstacle one encounters in using domain abstraction is that non-
surjective abstractions arise often if steps are not taken to avoid them. It
was shown that mapping labels on different orbits, or in different blocks, to
the same abstract label is never helpful and might result in a non-surjective
abstraction. Unfortunately we do not at this time have a complete charac-

39

terization of the causes of non-surjectivity. Although it is tempting to regard
non-surjectivity as a flaw in the domain abstraction, one example was pre-
sented — the dual encoding of the 8-Puzzle — in which non-surjectivity was
seemingly inherent in the way the problem was encoded.

By its very nature domain abstraction is most useful in domains with many
labels. For example if states are represented by binary vectors domain ab-
straction is entirely useless. To overcome this limitation, we are beginning to
investigate other methods of abstraction.

There are other techniques for using memory to speed up heuristic search. [15]
provides a good summary and an initial comparison of some of the techniques.
These techniques can be used in combination with each other and with pattern
databases. The optimal allocation of memory among these techniques is an
open research question.

In our experiments a single pattern database was used to guide search. This
was done in order to eliminate confounding factors in interpreting the results.
In practice, pattern databases would be used in conjunction with other knowl-
edge of the search space. For example, [4] uses hand-crafted pattern databases
in combination with the Manhattan distance and exploits symmetries in the
search space and the invertibility of the operators to decrease the size and
increase the usefulness of the pattern databases. [11] and [19] use multiple
pattern databases simultaneously.

8 Conclusion

Previous work has shown the pattern database approach[4] to be a highly suc-
cessful method for hand-crafting good heuristics. In this paper we have shown
that this is a very promising approach for creating heuristics automatically.
The paper describes domain abstraction, which extends the notion of “pat-
tern” in previous pattern database research in a simple way which permits
available memory to be much more fully exploited to reduce search time.

The paper has presented two of the key elements required to effectively search
through the space space of possible pattern databases to find ones that both
fit in memory and are good heuristics. The first is a mechanism for increasing
or decreasing the “abstractness” of an abstraction. The second is a formula
for scoring pattern databases such that higher scores tend to indicate better
heuristic performance.

The scoring function presented is based on a formula developed by Korf and
Reid [20]. Our contribution was to demonstrate that a particular approxi-

40

mation to this formula, easily computed from a given pattern database, is
monotonically related to the actual number of nodes expanded using the pat-
tern database. This demonstration took the form of a large-scale experiment
involving all possible domain abstractions for the 8-Puzzle in which the blank
tile remains unique.

An important contribution of the paper was identifying the remaining obsta-
cles to automatic heuristic creation. Foremost among these is the problem
of non-surjectivity: domain abstractions can create abstract spaces in which
some states do not have a pre-image. We have identified two causes of non-
surjectivity, related to the space’s orbits and blocks, but we also showed that
there are other causes which are not presently well understood. Several other
limitations and possible extensions have been discussed.

9 Acknowledgments

Thanks to Jonathan Schaeffer and Joe Culberson for their encouragement and
helpful comments and to Richard Korf for communicating his unpublished
extensions of the [20] work.

References

[1] R. B. Banerji. Artificial Intelligence: A Theoretical Approach. North Holland,
1980.

[2] G. Butler. Fundamental Algorithms for Permutation Groups. Lecture Notes in
Computer Science. Springer-Verlag, 1991.

[3] J. C. Culberson and J. Schaeffer. Efficiently searching the 15-puzzle. Technical
report, Department of Computer Science, University of Alberta, 1994.

[4] J. C. Culberson and J. Schaeffer. Searching with pattern databases. Advances
in Artificial Intelligence (Lecture Notes in Artificial Intelligence 1081), pages
402-416, 1996.

[5] J. D. Dixon and B. Mortimer. Permutation Groups. Graduate Texts in
Mathematics. Springer-Verlag, 1996.

[6] S.Edelkamp. Planning with pattern databases. Proceedings of the 6th European
Conference on Planning (ECP-01), 2001.

[7] S. Edelkamp and R. E. Korf. The branching factor of regular spaces. Proceedings
of the Fifteenth National Conference on Artificial Intelligence (AAAI-98), pages
299-304, 1998.

41

[8] J. Gasching. A problem similarity approach to devising heuristics: First results.
IJCAI pages 301-307, 1979.

9] G. Guida and M. Somalvico. A method for computing heuristics in problem
solving. Information Sciences, 19:251-259, 1979.

[10] P.E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems Science
and Cybernetics, 4:100-107, 1968.

[11] I. T. Hernddvoélgyi. Searching for macro operators with automatically generated
heuristics. Advances in Artificial Intelligence - Proceedings of the Fourteenth
Biennial Conference of the Canadian Society for Computational Studies of
Intelligence (LNAI 2056), pages 194-203, 2001.

[12] I. T. Hernddvolgyi and R. C. Holte. PSVN: A vector representation for
production systems. Technical Report TR-99-04, School of Information
Technology and Engineering, University of Ottawa, 1999.

[13] R. C. Holte and I. T. Hernadvolgyi. A space-time tradeoff for memory-
based heuristics. Proceedings of the Sixzteenth National Conference on Artificial
Intelligence (AAAI-99), pages 704-709, 1999.

[14] R. C. Holte, M. B. Perez, R. M. Zimmer, and A. J. MacDonald. Hierarchical
A*: Searching abstraction hierarchies efficiently. Proceedings of the Thirteenth
National Conference on Artificial Intelligence (AAAI-96), pages 530-535, 1996.

[15] H. Kaindl, G. Kainz, A. Leeb, and H. Smetana. How to use limited memory in
heuristic search. Proceedings of the Fourteenth International Joint Conference
on Artificial Intelligence (IJCAI-95), pages 236-242, 1995.

[16] D. Kibler. Natural generation of admissible heuristics. Technical Report TR-
188, University of California at Irvine, July 1982.

[17] R. E. Korf. Depth-first iterative-deepening: An optimal admissible tree search.
Artificial Intelligence, 27:97-109, 1985.

[18] R. E. Korf. Macro-operators: A weak method for learning. Artificial Intelligence,
26:35-77, 1985.

[19] R. E. Korf. Finding optimal solutions to Rubik’s Cube using pattern databases.
Proceedings of the Fourteenth National Conference on Artificial Intelligence
(AAAI-97), pages 700-705, 1997.

[20] R. E. Korf and M. Reid. Complexity analysis of admissible heuristic search.
Proceedings of the Fifteenth National Conference on Artificial Intelligence
(AAAI-98), pages 305-310, 1998.

[21] J. Mostow and A. Prieditis. Discovering admissible heuristics by abstracting
and optimizing: A transformational approach. IJCAIL pages 7T01-707, 1989.

[22] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison & Wesley, 1984.

42

[23] A. E. Prieditis. Machine discovery of effective admissible heuristics. Machine
Learning, 12:117-141, 1993.

[24] M. Valtorta. A result on the computational complexity of heuristic estimates
for the A* algorithm. Information Sciences, pages 47-59, 1984.

43

