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Abstract—This paper presents a single-instruction-mul-
tiple-data (SIMD) based implementation of the transient stability
simulation on the Graphics Processing Unit (GPU). Two program-
ming models to implement the standard method of the transient
stability simulation are proposed and implemented on a single
GPU. In the first model the CPU is responsible for part of the
simulation, while the onerous computations were offloaded to the
GPU, creating a hybrid GPU-CPU simulator. In the second model,
the GPU performs all the computations, while the CPU simply
monitors the flow of the simulation. The accuracy of the proposed
methods are validated using the PSS/E software for several large
test systems. A substantial increase in speed was observed for the
GPU-based simulations.

Index Terms—Graphics processors, large-scale systems, parallel
programming, power system simulation, power system transient
stability.

I. INTRODUCTION

A POWER system is constantly mutating as the grid con-
ditions change dynamically. System operators utilize

the energy management system (EMS) to keep track of these
changes and take necessary control actions on the grid. Tran-
sient stability evaluation is a crucial part of this decision-making
process formally referred to as the dynamic security assessment
(DSA) program executed on the control center computers
[1]. Currently, this analysis takes several hours to complete
for a realistic-size power system. The overriding reason is
that transient stability simulation of a large system involves
computationally onerous time-domain solution of thousands of
nonlinear differential algebraic equations (DAEs), which must
be solved for each condition of a large set of possible outage
conditions on the grid. Since the 1960s several approaches
have been developed to perform this simulation faster for
large-scale systems on parallel computing hardware [2]–[4].
A commonality of these methods is task-parallelism which
executes the component subsystems on parallel and distributed
hardware composed of clusters of CPUs. Nevertheless, there
are two limitations in these methods that contribute to the speed
bottleneck: 1) data-sequential computation on the CPUs of
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the cluster, and 2) limited data bandwidth, and latency of the
inter-processor communication channels of the cluster.

Recently, the graphics processing unit (GPU) has revealed the
potential to revolutionize state-of-the-art research in data-par-
allel computing. In the early 2000s the GPU was a fixed-func-
tion accelerator originally developed to meet the needs for fast
graphics in the video game and animation industries [5]. The
demand to render more realistic and stylized images in these ap-
plications increased with time; a lifelike rendering of an image
requires billions of pixels per second with each pixel taking hun-
dreds of operations. The existing obstacle in the fixed-function
GPU was the lack of generality to express complicated graph-
ical operations such as shading and lighting that are impera-
tive for producing high quality visualizations. The answer to
this problem was to replace the fixed-function operations with
user-specified functions. Developers, therefore, focused on im-
proving both the application programming interface (API) as
well as the GPU hardware. The result of this evolution is a pow-
erful programmable processor with enormous arithmetic capa-
bility which could be exploited not only for graphics applica-
tions but also for general purpose computing (GPGPU). Com-
pared to a CPU, a GPU can deliver a much higher performance
at a lower cost and lower power consumption. Taking advantage
of the GPUs’ massively parallel architecture, the GPGPU appli-
cations quickly mushroomed to include intensive computations
such as those in molecular biology, image and video processing,

-body simulations, large-scale database management, and fi-
nancial services [6].

In this paper we introduce GPU-based transient stability sim-
ulation for large-scale power systems. The motivation for this
work is twofold: the mathematical complexity along with the
large data-crunching need in this simulation, and the substantial
opportunity to exploit parallelism. Both these characteristics are
uniquely suited to the GPU. However, since the GPU’s archi-
tecture is markedly different from that of a conventional CPU,
it requires a completely different algorithmic approach for im-
plementation. The GPU thrives on applications that have a large
computational requirement, and where data-parallelism can be
exploited. A data-parallel application consists of large streams
of data elements in the form of matrices and vectors that have
identical computation codes (kernels) applied to them. The data-
parallel characteristic of the GPU gives it a single-instruction-
multiple-data (SIMD) architecture. Therefore any computation
that is desired to be implemented on the GPU must be in the
SIMD format, otherwise the GPU cannot deliver its computa-
tional benefits. Here we propose two SIMD-based programming
models to exploit the GPU’s resources for transient stability
simulation. In the first model the GPU is used as a co-processor
for the CPU to offload certain computational tasks, whereas in
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the second model the GPU works as a stand-alone processor and
the CPU only controls the flow of the simulation. Both these
models were implemented using an inexpensive off-the-shelf
GPU (Geforce GTX 280 from NVIDIA®) for the transient sta-
bility simulation. The accuracy and efficiency of the simulation
were evaluated for several large test power systems with sizes
up to 1248 buses and 320 generators.

The paper is organized as follows: Section II gives a brief
summary of parallel processing based computation of transient
stability. In Section III an overview of the GPU’s hardware and
programming tools is presented. The SIMD-based formulation
for transient stability simulation is explained in Section IV. In
Section V a detailed analysis of the accuracy and efficiency of
the GPU-based simulation and discussions are presented. Fi-
nally, Section VI gives the conclusion of the study.

II. PARALLEL TRANSIENT STABILITY SIMULATION

The need for parallel processing in transient stability simu-
lation of large-scale systems was recognized decades ago due
to its overwhelming computational demand. Although there is
no agreed classification of these efforts, a primary categoriza-
tion of these approaches is hardware-based and software-based
schemes.

Exploring the literature reveals that from the hardware point
of view several types of multiple-instruction multiple-data
(MIMD) and SIMD parallel architectures [7] have been em-
ployed to accelerate transient stability simulation. Supercom-
puters [8], multiprocessor networks [9], [10], array-processors
[11], [12], and PC-cluster based real-time simulators [13] all
have been examined and reported for this application. Al-
though these hardware-based approaches helped to speed-up
the simulations, they were stymied by significant drawbacks.
The cost of the supercomputers, communication issues and
difficulties in the control of multiprocessor-based systems,
difficulties in the programming and required algorithms for
fitting in array-processors, and limitation on maximum system
size of the simulated networks in real-time simulators are some
of the noteworthy bottlenecks which limited their widespread
application.

Along with advancements in the processor hardware, a sub-
stantial amount of research has also been done in search of
solution algorithms to efficiently exploit the parallel hardware
architecture. The diakoptics method introduced by Kron [14]
tears the problem into several subtasks that can be run con-
currently on parallel computers. In parallel-in-space [15] and
waveform relaxation [16] methods the system is decomposed
into smaller subsystems and the computation is allocated to par-
allel computers. There are also parallel-in-time methods [17],
[18] which concurrently solve multiple time steps on parallel
processors. While parallel processing usually refers to simula-
tion techniques in which closely coupled processors are simul-
taneously working on the transient stability computation, the
concept of distributed processing employs a number of loosely
coupled and geographically distributed computers to simulate
large-scale power systems [19].

The new capability of the modern GPU, as a massively par-
allel processor, for general purpose high performance compu-
tation is the beginning of a new era in computing science. Al-
though at first glance the SIMD architecture of the GPUs and

Fig. 1. Hardware architecture of GPU mounted on the PC motherboard.

that of array-processors might look similar, there are signifi-
cant differences between these two technologies which will be
explained in the following section. Moreover, issues related to
processing elements’ communication overhead, programming
complexity, and cost effectiveness have been solved for the GPU
[20]. The advantages of modern GPUs, the demand for fast sim-
ulation, and the structure of the transient stability computation
makes the GPU very suitable for this application.

III. GRAPHICS PROCESSOR: AN OVERVIEW

A. GPU Hardware Architecture

Fig. 1 illustrates the architecture of the GPU [21] plugged
into the motherboard of a 2.5-GHz quad-core AMD® Phenom
CPU supported by 4 GB of RAM. The GPU and CPU com-
municate via the PCIe 2.0 16 bus that supports up to 8 GB/s
transfer rate. The GPU runs its own specified instructions
independently but it is controlled by the CPU. The computing
element in the GPU is called a thread. When a GPU instruction
is invoked, blocks of threads (with the maximum size of 512
threads per block) are defined to assign one thread to each
data element. All threads in one block run the same instruction
on one streaming multiprocessor (SM). The multiprocessor
creates, manages, and executes concurrent threads in hardware
with zero scheduling overhead. Fast barrier synchronization
together with lightweight thread creation and zero-overhead
thread scheduling efficiently support fine-grained parallelism
[20].

Each SM includes eight stream processor (SP) cores, an in-
struction unit, and on-chip memory that comes in three types:
registers, shared memory, and cache. Threads in each block have
access to the shared memory in the SM, as well as to a global
memory in the GPU. Unlike a CPU, the architecture of the GPU
is developed in such a way that more transistors are devoted to
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TABLE I
GEFORCE GTX 280 GPU SPECIFICATIONS

data processing rather than data caching and flow control. When
a SM is assigned to execute one or more thread blocks, the in-
struction unit splits and creates groups of parallel threads called
warps. The threads in one warp are managed and processed con-
currently on the eight stream processors. The target GPU spec-
ifications in this study are given in Table I.

B. GPU Programming

Depending on the application, the GPU programming
paradigms can be divided into two main categories: graphics
related programming, and GPGPU programming. In both these
categories the GPU follows the SIMD model.

1) Graphical Functionality: From the graphics point of view
the GPU has two types of programmable processors: vertex and
fragment processors [22]. In computer graphics 3-D objects are
typically represented with triangular meshes. The vertex pro-
cessors apply a vertex program (also called a vertex shader)
to transform each vertex based on its position relative to the
camera, and then each set of three vertices is used to compute a
triangle from which streams of fragments are generated. A frag-
ment contains all information, such as color and depth, needed
to generate a shaded pixel in the final image. The fragment pro-
cessors apply a fragment program (also called a pixel shader) to
each fragment in the stream to compute the final color of each
pixel.

2) General Purpose Functionality: Early GPGPU program-
ming directly used the existing graphics API’s to express com-
putations in terms of an image. In other words, the computa-
tional elements (i.e., vectors and matrices) were mapped onto
the graphical elements (i.e., vertices or pixels) which are the
components of shading programs. Shading languages used for
this purpose include Cg, HLSL, and OpenGL. Although this
technique has been successfully used in many research areas,
including power system load flow computations [23], it was
largely unapproachable by the common programmer. Firstly,
because there is a mismatch between traditional programming
and the graphics APIs, and secondly, because it is difficult to
debug or modify these programs.

3) High Level Programming Languages: Dedicated GPU
programming tools that bypassed the graphics functions of the
GPU were created for general purpose computing, starting with
Brook and Sh, and ultimately leading to commercial tools such
as AMD’s HAL and NVIDIA’s CUDA.

Compute unified device architecture (CUDA) provides a
C-like syntax to execute and manage computations on the
GPU as a data-parallel computing device. A CUDA program
consists of multiple phases that are executed on either the CPU
(host) or the GPU (device). The phases of the program that
exhibit little or no data-parallelism are run in the host-code after

compiling with the host’s standard C compiler, whereas the
phases that exhibit fine-grained parallelism are implemented
in the device-code in the form of kernels, the synonym for
GPU functions. Host-code uses a CUDA-specific function-call
syntax to invoke the kernel code. Calling a kernel distributes the
tasks among the available multiprocessors to be simultaneously
run on a large number of parallel threads. The programmer
organizes these threads into a grid of thread blocks. Thread
creation, scheduling, and resource management are performed
in hardware. Each thread of a CUDA program is mapped to a
physical thread resident in the GPU, and each running thread
block is physically resident on a SM.

Moreover, a library of the basic linear algebra subprograms
(BLAS) is provided that allows the integration with C++ code.
By using this library, called CUBLAS, portions of a sequential
C++ program can be executed in SIMD-form on the GPU, as
shown in Fig. 2, while other parts of the code are executed
sequentially on the CPU [24]. Wherever a kernel is invoked
a grid consisting of several blocks with equal numbers of
threads/block is created. Each block within a grid, and each
thread within a block are identified by individual indices that
make them accessible via the built-in variables in CUDA.
Threads determine the task they must do and the data they
will access by inspecting their own thread and block IDs.
Therefore in an application with highly intensive computations,
the onerous computation tasks can be offloaded to the GPU,
and performed faster in parallel, whereas mundane tasks such
as the flow control of the program, required initial calculations,
or the updating and saving of the variables can be done by
the CPU. This co-processing configures a hybrid GPU-CPU
simulator.

C. Data-Parallel Computing

Here the fundamental difference in the computing model of a
GPU and a CPU is discussed, which leads us to a new method-
ology to implement the transient stability simulation on the data-
parallel architecture of GPU. Let us look at a simple example.
Suppose we want to evaluate , where , and are

real vectors. On the CPU, a single for loop is typically
used over all array elements as follows:

In this model two levels of computation are active: outside
the loop, the loop counter is increasing and compared with
the length of vectors , whereas inside the loop, the arrays are
accessed at a fixed position determined by the loop counter
and the actual computation is performed (addition on each data
element). The calculations performed on each data element
in the vectors are independent of each other, i.e., for a given
output position, distinct input memory locations are accessed
and there are no data dependencies between elements in the
result vector.

If we had a vector processor capable of performing operations
on whole vectors of length or even CPUs, we would not
need the for loop at all. This is the core idea of SIMD program-
ming. The computation on the GPU is performed by separating
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Fig. 2. Cooperation of the host and device to execute a CUDA program, and the hierarchy of computing structure in a GPU.

the outer loop from the inner calculations. The inner loop cal-
culations are extracted into a computational kernel as follows:

where index is the ID of the threads assigned to elements of
the vectors. Note that the kernel is no longer a vector expres-
sion but a scalar template of the underlying math that forms a
single output value from a set of input values. For a single output
element, there are no data dependencies with other output ele-
ments, and all dependencies to input elements can be described
relatively. Whenever a kernel is called, the driver logic hard-
ware schedules each data item into the different multiprocessors
(SM)—this is not programmable. Although internally the com-
putation is split up among the available SMs, one cannot control
the order in which they are working. One can therefore assume
that all work is done in parallel without any data interdepen-
dence.

IV. SIMD-BASED TRANSIENT STABILITY

SIMULATION ON THE GPU

A. Transient Stability Simulation

The general form of DAEs which describe the dynamics of a
multi-machine power system is given as

(1)

(2)

(3)

where is the vector of state variables, is the initial values of
state variables, and is the vector of bus voltages. (1) describes
the dynamic behavior of the system, while (2) describes the net-
work constraints on (1). In this work the detailed model of syn-
chronous generator including AVR and PSS is used. Each gen-
erating unit is modeled using a ninth-order Park’s model with
an individual reference frame fixed on the generator’s field

winding [25]. In this model the magnetic saturation of the syn-
chronous machines has been ignored, however, the AVR and
PSS include windup limits. The network, including transmis-
sion lines and loads, is modeled using algebraic equations in a
common reference frame. Thus, in a power network with

synchronous generators and buses, is a vector
and is a vector. The complete system representation
is given in Appendix A.

The standard approach to solve these nonlinear and coupled
DAEs involves three steps [26]:

Step 1) The continuous-time differential equations are first
discretized and converted to discrete-time algebraic
equations. Using the implicit Trapezoidal integra-
tion method, discretizing (1) results in a new set of
nonlinear algebraic equations:

(4)

where is the integration time-step.
Step 2) The existing nonlinear algebraic equations are lin-

earized by the Newton–Raphson method (for the th
iteration) as

(5)

where is the Jacobian matrix,
, and is the vector of nonlinear function

evaluations.
Step 3) The resulting linear algebraic equations are solved

to obtain the system state. (5) is solved using the
LU factorization followed by the forward-backward
substitution method.

Appendix A shows how to solve the network equations.

B. SIMD Formulation for Transient Stability Solution

The generator and the network model shown in Appendix A
are suitable for sequential computation on the CPU. To be able
to perform these computations on the GPU, the equations must
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be expressed in the SIMD format, i.e., instead of using single-
element values vectors or matrices of them must be used. This is
straightforward for the generator equations and is accomplished
by replacing all variables and parameters with the vectors whose
elements relate to each generator. For instance, the rotor angle
equation for the th generator, as given in (27), is discretized by
(4) as follows:

(6)

Allocating vectors whose length are the number of existing
generators, this equation can be expressed for SIMD computing
as follows:

(7)

where the superscript indicates the vector-format variable, and

(8)

(9)

Similarly other differential equations described in Appendix A,
i.e., (27)–(29), can be implemented in the SIMD format.

For the network side, expressing the computations in SIMD
format is more complicated and requires a revision of the equa-
tions. For the generators in the system, the objective in the net-
work side equations is to compute two vectors whose elements
are the and of each generator given by (43) and (44). In
the sequential computing model, as shown by (45)–(47), and

are constructed based on the parameters to , and to
. Therefore, these parameters must first be computed in the

SIMD format to get the and vectors. We start with the
allocation of six vectors on the GPU as follows:

(10)

where the superscript indicates the vector-format variable.
for the th generator is computed based on (47). Having these
vectors on the GPU, a kernel was prepared to lay these vectors
on the main diagonal of a square matrix. Thus, six matrices are
built on the GPU whose diagonal elements are the and whose
off-diagonal elements are zero, as

(11)

where superscript indicates the matrix-format variable. From
the reduced admittance matrix shown in (37) two sets of vectors
and matrices are then extracted. The vectors are the real and
imaginary parts of the diagonal elements of the

:

(12)

(13)

The two matrices contain the off-diagonal elements of
and :

(14)

(15)

Note that vectors and , and matrices and
can be built and saved offline for any number of con-

tingencies and transferred to the GPU during the initialization
step. Once all of the above vectors and matrices are allocated on
the GPU, the SIMD computation for to can be expressed
as follows:

(16)

(17)

(18)

(19)

The SIMD computations of to is given as

(20)

(21)

(22)

(23)

where , and the star operation ‘ ’ refers
to a kernel that multiplies two equal-length vectors element by
element. Based on (16)–(23) the SIMD format of equations
and , and then and is achieved.

C. Hybrid GPU-CPU Simulation

The standard method of transient stability explained in the
previous section was implemented in a hybrid GPU-CPU con-
figuration. Benchmarking revealed that a majority of execution
time in the simulation was spent for Step 2) and Step 3), i.e.,
the nonlinear iterative solution using Newton–Raphson, and the
linear algebraic equation solution. Therefore these two steps
of the simulation were off-loaded to the GPU to be processed
in parallel, while the remaining tasks such as discretizing, up-
dating, and computation of intermediate variables were exe-
cuted sequentially on the CPU. The entire simulation code was
developed in C++ integrated with CUDA.

In this programming model discretization of the differential
equations, and building of the Jacobian matrix are done on the
CPU, whereas the network algebraic equations and the Jaco-
bian matrix solutions are performed on the GPU. At each time-
step, the Jacobian matrix is transferred to the GPU. It should be
noted that CUDA stores matrices on the GPU in a column-major
format. Therefore after the Jacobian matrix is constructed on
CPU, it needs to be transposed before or after being transferred
to the GPU. The other option is to construct the Jacobian matrix
in the column-major format from the beginning on the CPU ob-
viating the need for an extra transpose operation and thus saving
computation time. Here the latter option has been adopted in this
programming model.

With the Jacobian matrix in the proper format on the GPU,
the SIMD-format of the LU factorization method was used on
the GPU to handle large matrix decomposition. This factoriza-
tion scheme was implemented using a blocked algorithm, em-
ploying bulk matrices, specifically suited for data-parallelism
[27]. After transforming the Jacobian matrix into its upper and
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Fig. 3. Flowchart for the hybrid GPU-CPU transient stability simulation. The
colored boxes refer to the GPU operations, and white boxes refer to the CPU
operations.

lower triangular matrices, the BLAS2 function
of the CUBLAS library is used to solve the equation

for . The results are transferred back to the CPU
to update the state variables for the next iteration’s calculations.
Then the computations are continued on the GPU for the net-
work side solution as described by (10)–(23). Once the iteration
process converges, the time-step is advanced. These steps are
illustrated in the flowchart given in Fig. 3.

D. GPU-Only Simulation

In the second programming model the transient stability
simulation was carried out as a GPU-only computation. In
this model the CPU initializes the GPU with the system data,
and then all the three steps of the simulation are done on the
GPU, while the CPU monitors and controls the flow of the
simulation. In this programming model the Jacobian matrix is
completely constructed on the GPU. Constructing the Jaco-
bian matrix for a multi-machine power system is well suited
for exploiting data-parallel programming. For example, in
the row-major-saved Jacobian matrix, the first column is the
derivative of all nonlinear functions with respect to one of the
variables. Although these functions have different formula-
tions, they reoccur for all generators in the system. Therefore
the derivatives of all identical functions (that have the same

Fig. 4. Flowchart for the GPU-only transient stability simulation. The colored
boxes refer to the GPU operations, and white boxes refer to the CPU operations.

formulation but different data-input) can be evaluated in a
data-parallel model. After the sub-matrices of the Jacobian are
calculated they are combined together to form the full Jacobian
matrix on the GPU, and the simulation continues the same as
hybrid GPU-CPU model. At the end of simulation, the value of
the required variables is transferred to the CPU memory to be
saved or plotted. The flowchart in Fig. 4 illustrates this process.

V. EXPERIMENTAL RESULTS

In this section we demonstrate results to verify the accu-
racy and efficiency of the SIMD-based programming models
described in the previous section for the transient stability sim-
ulation of large-scale power systems on the GPU. As mentioned
in Section II, the target GPU in this work is connected to the
motherboard of a quad-core CPU. Although the CPU has four
cores, to precisely control the execution of the CPU and to have
a clear comparison, thread programming was used to force
the CPU to run the C++ code on only one of the four cores.
Otherwise, the operating system decides each core’s execution
at each instant which leads to a vague evaluation.

A. Simulation Accuracy Evaluation

The accuracy of the programming models was validated using
PTI’s PSS/E software program. The case study used in this sec-
tion is the IEEE 39-bus New England test system whose one-line
diagram is shown in Fig. 5. All generator models are detailed
and equipped with AVR and PSS described in Appendix A.
The complete system can be described by 90 nonlinear differ-
ential equations and 20 algebraic equations. Several fault loca-
tions have been tested and the results were compared with those
of PSS/E. In all cases results from the proposed programming
models match the PSS/E results very well. A sampling of these
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Fig. 5. One-line diagram for the IEEE 39-bus power system (Scale 1 system).

results obtained from the hybrid GPU-CPU simulation is pre-
sented here. A three-phase fault happens at Bus 21, at
s and it is cleared after 100 ms. is the reference gener-
ator and the relative machine angles are shown in Figs. 6 and
7. For comparison PSS/E results are superimposed in these two
figures. As can be seen the transient stability code is completely
stable during the steady-state of the system, i.e., s. During
the transient state and also after the fault is cleared, the program
results closely follow the results from PSS/E. The maximum
discrepancy between generator angles from GPU-CPU co-pro-
cessing and the PSS/E simulation was found to be 1.46%, based
on (24):

(24)

where and are the relative machine angles
from PSS/E and GPU-CPU co-processing simulation, respec-
tively.

B. Computational Efficiency Evaluation

To investigate the efficiency of the proposed SIMD-based
programming models for the transient stability simulation, we
show comparative results in this section. Several test systems of
increasing sizes have been used for this evaluation whose speci-
fications are listed in Table II. The Scale 1 system is the IEEE’s
New England test system, illustrated in Fig. 5 and verified in
the previous section. The Scale 1 system was duplicated several
times to create systems of larger scales. Thus, we obtained test
systems of 78, 156, 312, 624, and 1248 buses. In these systems
a flat start was used, i.e., voltage and angle of all buses set to
1.0 p.u., and they were modeled in the PSS/E software to
find the load flow results. These results were then fed into the
prepared simulation codes.

Three separate simulation codes were prepared: the first
code is purely in C++ to be run sequentially on the CPU
(CPU-only), the second is C++ integrated with CUDA to be
completely run on the GPU (GPU-only), and the third is also
the integration of C++ and CUDA; however, it uses GPU as the

Fig. 6. Comparison of relative machine angles collected from hybrid simulator
and PSS/E simulation for IEEE 39-bus test system: � � � � � � � �

� � � � �, for a three-phase fault at Bus 21.

Fig. 7. Comparison of relative machine angles collected from hybrid simulator
and PSS/E simulation for IEEE 39-bus test system: � � � � � � � �

� � � � �, for a three-phase fault at Bus 21.

coprocessor (GPU-CPU). The difference between the second
and third programming models was explained in Section III.
The execution time of these three codes was compared for the
test systems. In Table II the columns indicated by CPU-only,
GPU-only, and GPU-CPU list the computation time of each
programming model to simulate a duration of 1580 ms with a
time-step of 10 ms for all systems. The CPU execution time of
PTI’s PSS/E software program is also included in Table II for
reference. Fig. 8 plots the computation times with respect to
the system size.

The application of GPU (in both GPU-only and GPU-CPU
models) is truly advantageous for parallel computing on a large
set of input data. For small size of data, the communication over-
head and memory latency in the GPU are not insignificant com-
pared to the computation time. As such, we did not expect better
performance for Scale 1 and Scale 2 systems. When the size of
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TABLE II
SYSTEM SIZE VERSUS COMPUTATION TIME FOR VARIOUS CONFIGURATIONS FOR A SIMULATION DURATION OF 1580 MS

Fig. 8. Computation time variation with respect to system size.

TABLE III
SPEED-UP COMPARISON

system increases, however, the latency is dwarfed by the com-
putation time, and involving the GPU into the simulations re-
sults in a significant acceleration. For example, for Scale 32,
the GPU-CPU takes 1 min 44.4 s for simulation, whereas the
CPU-only needs 10 h. Table III lists the speed-up factors, de-
fined by (25) and (26), for the two GPU-based simulations:

(25)

(26)

The speed-up factors for the two simulations are plotted in
Fig. 9. As can be seen for the Scale 32 system GPU-CPU co-pro-
cessing is more than 340 times faster than CPU-only processing.

C. Discussion

The tabulated results and graphs reveal that for small systems
the hybrid GPU-CPU programming model is faster than the
GPU-only model, whereas for large-scale systems GPU-only

Fig. 9. Speed-up of GPU-based processing.

model is faster. This result is consistent with the performance
of a single GPU in other reported applications. However there
are applications where a GPU may need to communicate with
other entities or use services which may not be accessible to
a GPU, for example in a multiple GPU application. In such
cases and with the currently available GPU technologies, the hy-
brid GPU-CPU programming model is not only useful but also
unavoidable. Similar to all programmable processors, efficient
GPU programming needs a good understanding of its hardware
architecture. Managing the number of required active threads
for each kernel call, and the number of device-host interactions
are essential to make a timesaving program.

Another useful observation found from the achieved results
is the scalability of the proposed hybrid simulator. A system
whose performance improves after adding a specific hardware
component, proportionally to the capacity added, is said to
be a scalable system. In a single GPU expanding the size
of data-under-process asks for the co-operation of more SPs
which translates to adding more computing resources. In our
experiments the size of test systems and the hybrid simulators’
elapsed computation time change approximately at the same
rate. In the CPU-only simulation cases, however, the computa-
tion time increases at a rate that is approximately the cube of
the system size increment rate.

The last column in Table II indicates PSS/E’s computation
time for the test systems. It is important to put the lower
execution times of PSS/E into proper perspective so as not
to misjudge the performance of the GPU. PSS/E is a mature
software program developed over several decades which in-
corporates specialized techniques to optimize computational
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efficiency for large-scale system simulation. The intent of this
work is to illustrate the advantage of a GPU-based simula-
tion over a CPU-based one utilizing the same computational
methods; the efficiency comparison with PSS/E is provided
only for the sake of completeness, however, PSS/E utilizes very
different numerical methods and algorithms. In terms of the
numerical methods, the key factors that contribute to PSS/E’s
speed are as follows:

1) PSS/E uses the modified Euler integration algorithm which
is an explicit integration technique [31, Ch. 26]. This is a
simple and fast method, however, it can suffer from nu-
merical instability. For a given system configuration, de-
pending on the time-step value the simulation may either
converge or diverge. If it did not converge, the time-step
must be decreased and program must be rerun [32]. In
the proposed GPU-based simulation, the implicit trape-
zoidal integration method was used. This method avoids
numerical instability, however, it requires an iterative solu-
tion of the resulting nonlinear algebraic equations at each
time-step.

2) The outputs of an explicit integrator are not instantaneous
functions of their inputs, and a straightforward non-iter-
ative procedure would be enough to find the derivatives
of states, as it happens in PSS/E. However the proposed
GPU-based simulator uses the Newton–Raphson method
which consumes a large portion of the simulation time, al-
beit it gives accurate convergence. At each time-step the Ja-
cobian matrix is calculated, LU factorized, and then solved
using forward-backward substitutions. It is also possible
to use dishonest types of the Newton-Raphson method to
avoid refactorization of the Jacobian matrix in each itera-
tion for improved computational efficiency.

3) PSS/E takes advantage of the sparsity of the system ma-
trices. This is an important factor in its fast and successful
management of computer storage [31. Ch. 5]. The purpose
of this paper was to show how the same implementation of
a transient stability algorithm on a GPU is advantageous
with respect to a CPU implementation. Therefore sparsity
was not used in any of the proposed programming models.

VI. CONCLUSION

Transient stability simulation of large-scale power systems
is computationally very demanding. This paper investigated the
potential of using a GPU to accelerate this simulation by ex-
ploiting its SIMD architecture. Two SIMD-based programming
models to implement the standard method of the transient sta-
bility simulation were proposed and implemented on a single
GPU. The simulation codes are quite flexible and extensible;
they are written entirely in C++ integrated with GPU-specific
functions. The accuracy of the proposed methods were validated
by the PSS/E software. The efficiency was evaluated for several
large test cases. Based on the results obtained, it can be con-
cluded that:

• Using a GPU for transient stability simulations is highly
advantageous when the system size is large. As such, for
simulating realistic-size power systems, the application of
GPU looks promising.

• For small-scale systems the hybrid GPU-CPU simulation
was faster than the GPU-only simulation, while for large-
scale systems the GPU-only model was faster.

It is anticipated that the GPU can play an important role in
realizing the ultimate goal of online or real-time dynamic
security assessment in the energy control center. The transient
stability simulation algorithm in this paper employed the im-
plicit Trapezoidal integration method along with the iterative
Newton–Raphson procedure. However, as classified in [26],
there exist many other possibilities for solving the nonlinear
DAEs applicable to the transient stability problem, such as:

• explicit or implicit integration methods;
• iterative and non-iterative solvers;
• simultaneous or partitioned solution approaches;
• application of sparse methods to solve linear algebraic

equations [33].
In addition, it is also possible to implement improved parallel
methods for large-scale systems such as the parallel-in-space
or relaxation-based methods [4] for higher speed-ups. It is pre-
dicted that if a method accelerates the CPU-based simulation,
it would also accelerate the GPU-based model, if that approach
was efficiently implemented on the GPU. Research is currently
underway to use multiple GPUs to handle larger system sizes, to
provide a comprehensive library of power system components,
and to simulate multiple contingencies.

APPENDIX A
SYSTEM REPRESENTATION FOR THE TRANSIENT

STABILITY ANALYSIS

The detailed model of a synchronous generator used in this
paper is given here.

1) Equations of motion (swing equations or rotor mechanical
equations):

(27)

2) Rotor electrical circuit equations: This model includes
two windings on the axis (one excitation field and one
damper) and two damper windings on the axis:

(28)

3) Excitation system: Fig. 10 shows a bus-fed thyristor excita-
tion system, classified as Type ST1A in the IEEE Standard
[28]. This system includes an AVR and PSS:

(29)
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4) Stator voltage equations:

(30)

where

(31)

5) Electrical torque:

(32)

where

(33)

where
, and

are constant system parameters whose definition can
be found in [29].
According to this formulation the vector of state variables
in (1) and (2) for the synchronous generator is given as

(34)

6) Network equations [25]: Stator equations are solved to-
gether with the network equations. All nodes except the
generator nodes are eliminated and the admittance matrix
for the reduced network is obtained. The procedure for net-
work reduction is shown below. The nodal equation for the
network can be written as

(35)

where
... . denotes the number of gen-

erator nodes and denotes the number of remaining nodes. The
matrices and are partitioned as

(36)

Expanding (36) to find based on , we obtain

(37)

Thus

(38)

where the matrix is the desired re-
duced matrix. It has the dimensions where is the number
of generators. This matrix must be computed for steady-state,

Fig. 10. Excitation system with AVR and PSS.

during the transient state, and after the clearing of the transient
phenomena.

As the components in the network common frame are
of interest the above complex matrix equation can be written as
two separate real matrix equations:

(39)

(40)

To relate the components of voltages and currents expressed in
the reference of each individual machine to the common
reference frame , the following reference frame transfor-
mation is used:

(41)

(42)

where is the rotor angle of the synchronous machine.
The th iteration current components in the common refer-

ence frame can be expressed as [30]

(43)

(44)

where the and parameters are defined as follows:

(45)

and

(46)
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where

(47)

Having the above parameters and thus and , the compo-
nents of the bus voltages can be expressed as

(48)

(49)
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