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Abstract

We have investigated the effect of pairing fluctuations on the normal state 

of the attractive Hubbard model. This model describes a system of mutu

ally attracting fermions on a lattice. Our work has been motivated by the 

pseudogap phase found in underdoped cuprates, which we see as a precursor 

superconductivity effect.

The pairing problem is treated within the Green function formalism. An 

approximation scheme valid in the low density limit, the T-matrix approxi

mation, is presented, then critically tested in the atomic (O-dimensional) limit 

of the attractive Hubbard model. In this limit, we discuss the importance of 

feedback effects, an issue we re-examine later in higher dimensions. A pseu

dogap is found in the electronic density of states, for values of the interaction 

parameter ranging from weak to strong coupling, close to the critical temper

ature in three dimensions and over an extended temperature interval in two 

dimensions. The energy of the weak coupling pseudogap agrees remarkably 

well with the zero temperature BCS gap energy. The energy of the strong 

coupling pseudogap is much larger, especially in three dimensions.
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Chapter 1 

Introduction

The discovery, in 1986, of high-Tc superconductivity in copper oxide com
pounds by J. G. Bednorz and K. A. Muller [1] re-opened the discussion about 
the microscopic mechanism responsible for the transition from a normal metal 
to superconductivity. This problem had been settled very convincingly by 
Bardeen, Cooper and Schrieffer within their ‘BCS’ theory [2], very success
ful in describing the physics of conventional metallic superconductors, which 
undergo such a transition at much lower temperatures. In the case of High 
Temperature SuperConductors (HTSC), the puzzle starts with some peculiar 
properties in their normal phase.

The undoped cuprates — ‘parent compounds’ — are Anti-Ferromagnetic 
(AF) insulators. Upon hole doping they become superconductors, some com
pounds achieving critical temperatures above the boiling point of liquid ni
trogen at optimal doping [3] (holding the promise of endless technological 
applications at the time of their discovery [4]). On the overdoped side rel
ative to the optimal carrier density (the one producing the highest Tc). the 
normal state is reasonably well described by conventional Fermi liquid theory, 
the superconducting (SC) transition is fairly sharp and the magnitude of the 
SC gap (the maximum gap, since the gap has momentum dependence) scales 
with Tc [5], similarly to conventional materials. Decreasing the number of 
charge carriers beyond the optimal value lias rather drastic effects: a ‘pseu
dogap’ appears in the normal state at a temperature T* greater than the 
SC transition temperature, and the maximum gap increases with decreasing 
hole concentration, while Tc is suppressed [6]. The pseudogap signature on 
both static and dynamic properties has been documented experimentally to 
a great extent, and its presence in most cuprates is well established [7]. The

1
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origin of such unusual normal state behavior is still the subject of heated 
debate, as is the mechanism underlying high-Tc superconductivity and the 
possible connection between them.

1.1 The Pseudogap state in HTSC

1.1.1 Experimental evidence
Experimental indication of a pseudogap emerged within the early search for a 
superconducting gap in the hole-doped cuprate materials. Early experiments 
failed to find the expected signatures of an energy gap, namely the absence 
of quasiparticle excitations below an energy 2A appearing abruptly at the 
superconducting transition temperature Tc. Instead, the depression of exci
tations was incomplete and often started well above Tc in the normal state. 
It is well known now that this is the consequence of two basic properties 
of high-temperature superconductors: the d-wave character of the SC gap 
and the presence of a partial gap in the normal state. Both these properties 
have been solidly confirmed by the extensive experimental investigation of 
the cuprates that followed the initial experiments (see Ref. [7] for a review).

Many experiments performed on cuprates have found evidence for a pseu
dogap; both the loss in electronic entropy, reflected in thermodynamic quan
tities such as the electronic spin susceptibility (probed by Nuclear Magnetic 
Resonance (NMR) [8]) and specific heat [9], and the reduction in scattering 
rate suggested by transport properties such as dc electrical resistivity [10], 
thermal conductivity [11], magnetoresistance and Hall effect [12], are con
sistent with a depletion of electronic states near the Fermi energy. Fur
ther confirmation comes from spectroscopic measurements such as optical 
conductivity [13], vacuum tunneling spectroscopy [14] and Angle-Resolved 
Photo-Emission Spectroscopy (ARPES) [15, 16].

ARPES is probably the most ‘revealing' of all experimental probes, be
cause it can provide information about the. angular dependence of both the 
superconducting gap and the normal state pseudogap. The underlying prin
ciple is simple: light is shone on the surface of the sample, an electron in 
an occupied state absorbs a photon and is emitted out of the sample at an 
angle, depending on its initial energy. The existence of the surface breaks 
the translational invariance in the ^-direction (perpendicular to the sample 
surface), so the k: component of the momentum is not conserved. However,

2
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Figure 1.1: Schematic phase diagram for hole-doped cuprates (x indicates 
the concentration of doped carriers), indicating the anti-ferromagnetic (AF), 
superconducting (SC) and pseudogap (PG) regions.

two-dimensional translational invariance in the directions parallel to the sur
face is still preserved, and thus k\\ is conserved in the emission process. This 
allows one to obtain the in-plane momentum of the initial state by identifying 
it with the parallel momentum of the emitted electron. Because of their quasi 
2D nature, in many cases with no observable kz dispersion, the cuprates are 
very well suited to this technique, which is able to provide a direct image 
of the occupied electronic states as a function of momentum. This made 
ARPES the tool of choice for investigating the high Tc cuprates, leading to a 
more and more detailed picture of the electronic structure in these materials, 
as the energy and angular resolution have continued to improve providing 
greater and greater accuracy (for a survey of the extensive ARPES literature 
over the last decade see Ref. [17, 18]).

A conventional Fermi surface is seen above the superconducting transition 
temperature Tc on the overdoped side of the phase diagram - schematically 
shown in Fig. 1.1 - and above T x: however, for Tc < T  < T* the num
ber of states at the Fermi energy is slowly suppressed along all directions

3
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in momentum space except along the Brillouin zone diagonals. Below Tc, 
this suppression in spectral weight evolves smoothly into a c?-wave super
conducting gap, as suggested by both its magnitude and momentum space 
structure [19]. Interestingly, the maximum gap does not appear to change 
significantly when the temperature is raised. This behavior is consistent 
with other spectroscopic probes such as vacuum tunneling spectroscopy [14] 
and c-axis optical conductivity [20], which have found the gap energy to  be 
temperature independent, the gap filling in as the temperature increases (in 
contrast to the evolution of the gap around the Fermi surface in momentum 
space, where the gap energy does change, going to  zero - ‘closing’ - as the 
zone diagonal is approached).

The ARPES lineshape is complex, and indicates a variety of effects, re
flecting the many competing degrees of freedom th a t are a characteristic of 
the cuprate materials. As a consequence, often it has been difficult to un
equivocally interpret some of the features present in the data, from those 
related to crystal structure details to those explained in terms of quasipar
ticles coupling to collective modes. This has led to  oftentimes conflicting 
theoretical views, especially in the very underdoped regime, where there is 
still no clear picture of how exactly a doped M ott insulator becomes a metal 
and, upon cooling, a  superconductor. There have been, however, many topics 
on which ARPES results have obtained a general consensus, with a profound 
impact on our understanding of the physics of HTSC; we list below some of 
the most relevant:

• electronic correlations are very important in the cuprates;

•  the doping evolution of the electronic structure is qualitatively the same 
in all hole-doped cuprates;

• there is a well defined Fermi surface (FS) above the superconducting 
transition in the overdoped regime;

•  a  normal state pseudogap opens at T* > Tc in the underdoped regime;

•  the pseudogap evolves smoothly through the SC transition into the 
superconducting gap; however, in contrast to the incoherent spectrum 
in the normal state, a sharp quasiparticle peak appears below Tc;

•  both the pseudogap and the superconducting gap seem ‘tied’ to the FS 
(that is, the FS seen in the metallic phase coincides with the minimum

4
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gap locus in the ‘gapped1 phases);

• the pseudogap magnitude and momentum structure are very similar to 
those of the superconducting gap;

• the overall d-wave symmetry of the superconducting gap supports the 
universality of the pairing nature in the HTSC;

While recognizing its important contribution, it would be misleading to 
leave the impression that the ARPES investigation does not have its share 
of limitations. On top of the obvious one coming from the high purity re
quirements for the surface (easier to satisfy for some materials, such as the 
Bi-based compounds Bi2212 and Bi2201, but not a simple matter for others, 
which do not have the advantage of a natural cleavage plane), other compli
cations come from the strong inelastic background, and from the sometimes 
strong lineshape dependence on the photon energy. Also, ARPES can only 
access the occupied states, and some sort of symmetrization is necessary in 
order to extract the entire electronic spectrum. All these issues can make the 
interpretation of the data difficult and corroboration with other experiments 
is vital.

An experimental probe th a t has known a revival lately is tunneling spec
troscopy. This technique has played a crucial role in the investigation of 
conventional superconductors, and has confirmed the presence of a pseudo
gap in the cuprates early on [14]. Although ARPES has been preferred for 
its being both a momentum and a frequency resolved probe, tunneling has 
the advantage of a much better energy resolution, and that of being able to 
see unoccupied states as well as occupied ones. More recently, Davis's group 
at Berkeley have perfected the technique and, through Fourier analysis of 
the extensive and detailed spatial information collected in many STM scans, 
have been able to uncover details about the momentum space structure [21].

5
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1.1.2 Pseudogap scenarios
Given its ubiquitous presence in the cuprates, understanding the origin of 
the pseudogap phase is critical in order to achieve an adequate description 
of high Tc superconductivity. Consequently, a variety of models have been 
proposed attempting to elucidate the nature of this state. A review of the 
theoretical work, accompanied by relevant experimental evidence, can be 
found in Ref. [22], where the pseudogap is discussed in the more general 
context of the rich physics of the cuprate materials.

The pseudogap scenarios can be broadly divided into two classes: those 
which see the partial gap opening in the normal state as a precursor effect 
to superconductivity, and those which see it as the effect of a competing 
instability.

Within each class, the origin of the pseudogap can be seen quite differ
ently. For example, among the precursor superconductivity- scenarios, there 
is one category which places the superconductivity in the cuprates at the 
crossover between the BCS (large pair) and Bose-Einstein (small pair) de
scriptions. This view can be traced back to the work of Leggett [23], and is 
inspired by the small coherence length £, naturally associated with modest 
size Cooper pairs. Models in this category relate the pseudogap to pairing 
correlations above Tc. This is the view we will adopt in this thesis. We base 
our choice to a great extent on the abundance of experimental evidence sug
gesting that the superconducting gap and the normal state pseudogap are 
intimately related, particularly ARPES evidence.

A second category within the ‘precursor’ class places the emphasis on 
phase fluctuations, and is based on the low plasma frequency (related to 
the low carrier density in the cuprates). According to this line of thought, the 
amplitude of the order parameter is established at T*. while phase coherence 
occurs at the much lower temperature Tc. We mention here the picture 
of mesoscopically established regions of superconductivity, first proposed by 
Emery and Kivelson [24].

One model with subtle differences from the ‘pairing correlation’ hypoth
esis is the Resonance Valence Bond (RVB) scenario, introduced by Ander
son [25]. In this 2D model incoherent pairing applies to opposite spins, 
localized on neighboring sites for energetic reasons, effectively leading to a 
spin gap. This magnetic order is frustrated by doped holes, which are current 
carriers and contribute to the superfluid density. Thus, this picture leads to 
a realization of spin-charge separation, with a complete decoupling of the

6
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excitation gap (decreasing linearly with doping) from the order parameter 
(increasing linearly with doping). A finite temperature extrapolation wall 
associate the ‘pairing’ temperature scale with the spin gap, and the phase 
coherence temperature will be proportional to doping. This model has cer
tainly been controversial, and the physical reality of ‘holons’ and ‘spinons’ 
yet to be confirmed. We mention it here for its effort to address not only 
the pseudogap phase but the entire phase diagram from the Mott insulator 
to the overdoped regime. Some experimental backup for this picture has 
been offered by the relatively strong gap seen in NMR experiments (probing 
the spin channel), compared to the weaker gap-like depression observed in 
the in-plane infrared conductivity (the in-plane drop in resistivity is seen as 
due to less states available for the doped holes to scatter off of, as the spins 
pair up and become gapped). In contrast, the large effect seen in the c-axis 
transport measurements is explained by the necessary recombination of spins 
and charges into real electrons in order to tunnel betw-een planes (spin-charge 
separation, being a 2D effect, only occurs within a plane).

Not unrelated to the RVB scenario is the stripe picture, where doped holes 
form ID ‘rivers of charge’, balancing the frustration of the magnetic order 
with the Coulomb repulsion of the holes clumping together. While it is not 
yet established if Fermi liquids are inherently unstable in 2D, they definitely 
are in ID [26]. Thus, such models w-ould naturally lead to non-Fermi liquid 
behavior, and th a t’s why the ID physics of the stripes is so attractive. In 
this scenario the pseudogap is due to the spin gap present in the magnetic 
insulating domains between stripes. Below1, some temperature the stripes 
phase coherently lock via Josephson coupling, and the system crosses over 
from a ID non-Fermi liquid normal state to a 3D coherent superconducting 
state. Experimental evidence for the presence of stripes has been provided 
by inelastic neutron scattering experiments for LSCO [27], but it has proved 
hard to confirm their presence in other cuprates. The stripe scenario has 
common ground with the Emery and Kivelson model mentioned earlier.

One of the leading alternates to the preformed pairs picture is the mag
netic precursor scenario. This approach advocates spin fluctuation medi
ated superconductivity in the cuprates, and sees the pseudogap as the result 
of spin correlations anticipating the AF regime [28]. The precursor to the 
AF state is also discussed in Ref. [29], while a detailed agreement with ex
periments can be found in Ref. [30]. For spin fluctuations, the associated 
ordering grow's with underdoping, leaving less and less states at the Fermi 
surface available for pairing. This leads to an increasing suppression of the

7
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SC transition temperature on the underdoped side. In fact, the presence 
of two effects found in ARPES studies, a ‘higher energy pseudogap‘ and a 
‘leading edge pseudogap‘ (evident from the earliest studies, but not differ
entiated until later [18]), may reconcile the precursor pair hypothesis with 
the competing magnetic order scenario, in th a t the leading edge pseudogap 
seems to be a precursor to the superconducting gap, whereas the high energy 
pseudogap is a precursor to the magnetic insulating gap. The two ener
gies scale together with doping, demonstrating the close relation of magnetic 
and pairing correlations in the cuprates. Based on the spectroscopic data, 
though, it is hard to find support for a  number of theories advocating a com
peting phase with true long range order, often involving a quantum critical 
point [31, 32]. In these scenarios, the T* line crosses the Tc line and into the 
SC ‘dome’, vanishing on the T  =  0 axis near optimal doping. In support to 
these theories, Tallon and Loram [33] revisit the experimental evidence on 
the pseudogap and claim to have found support for the existence of a critical 
doping point just beyond optimal doping. Notably, more recent circularly 
polarized ARPES experiments [34] find evidence for broken time reversal 
symmetry, predicted by a competing scenario based on orbital currents, as 
proposed by Varma [35]. Orbital spin currents are also associated with the 
d-Density Wave (DDW) model promoted by Laughlin and collaborators [36], 
although the polarized ARPES experiment seems to favor the Varma picture. 
While more experimental investigation might be desirable in order to confirm 
this interpretation of the data, two things are quite clear: the physics of the 
cuprates is very complex, and the last word on the origin of the pseudogap 
has not been spoken yet.

1.1.3 Precursor pairing
Superconductivity in the BCS theory arises through the formation of an order 
parameter, characterized by both an amplitude and a phase [2]. The ampli
tude of the order parameter is associated with pairing of electrons, leading to 
a  gap in the single-particle excitation spectrum (the superconducting gap); 
phase coherence refers to the macroscopic occupation of the zero center of 
mass momentum pair state, leading to superflow properties. It is a very spe
cial feature of this theory, and of the conventional metallic superconductors 
so well described by it, that the two aspects occur at the same temperature. 
Fluctuations can impact both the amplitude and the phase, and have been 
suggested to be relevant to the anomalous normal state properties of the high

8
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temperature copper oxide superconductors.
The HTSC are different from the more conventional materials in many 

ways, particularly in the underdoped regime, as we hope to have made clear; 
however, superconductivity in these compounds exhibits the same two basic 
(and defining) properties: zero resistance and Meissner effect. The super
conducting objects have a 2e charge, indicating that pairs are formed. These 
pairs, though, have much less spatial extent, i.e., the coherence length is 
much shorter than those in the conventional superconductors. This has led 
to the idea of preformed bosonic pairs above Tc.

In fact, speculation about the possibility of Bose condensation, with pairs 
existing above the superconducting transition temperature, predates the dis
covery of the cuprates, and it was first brought forth in an article by Ea
gles [37]. After the presence of the normal state pseudogap became a well- 
established fact, a number of models [38, 39] trying to explain it have pro
posed a Hamiltonian containing a mixture of free fermions and bosons, with 
terms allowing for pairing of fermions into bosons and the decay of pairs into 
individual fermions. Such models are attractive because they are intuitively 
simple and lend themselves to analytical treatment. Their applicability is 
limited though, because they consider the pairs to be structureless point 
bosons, strictly valid only in the low- density, strong coupling limit.

A more convenient starting point is a conventional, fermionic Hamilto
nian that provides a standard pairing interaction. This approach has the 
advantage tha t the coupling strength may be varied, providing access not 
only to the extreme strong coupling limit, where two electrons already form 
a well defined boson at the critical temperature (where the bosons acquire 
phase coherence), but to the weak coupling regime as well, in an attempt to 
recover the BCS theory. Moreover, the ARPES studies attest the presence 
of a large FS even in the underdoped regime, consistent with a degenerate 
Fermi system, albeit one with non-Fermi liquid behavior. Tins would place 
the cuprates in the intermediate regime, rather than the Bose condensation 
(local pair) limit (in this limit, the chemical potential would lie beneath the 
bottom of the energy band).

It is this last approach which is assumed in this thesis. We will reserve 
extensive space to expand on the history of pairing fluctuations ideas in a 
subsequent chapter, where we will also present how a many-body framework 
may be formulated in an effort to understand this physics.
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1.2 The electronic nature of cuprate physics
The normal state of a  conventional metallic superconductor is a Fermi liquid, 
i.e.. most properties of the system can be described by a collection of inde
pendent quasiparticles (electrons shielded by strong Coulomb interactions), 
by virtue of adiabatic continuity; this implies the presence of a well-defined 
Fermi surface, the important excitations being those of quasiparticles near 
this energy level.

The BCS theory relies on the existence of a filled Fermi sea: the Cooper 
pairing idea considered two quasiparticles sitting in empty states above it. 
Cooper showed that even an infinitesimal attraction would lead to forma
tion of bound electron pairs [40]. That the attraction could be provided by 
phonons had already been suggested by Frolich in 1950 [41]. The lattice- 
mediated attraction is local in space and retarded in time, although the 
dynamics did not make it into the original BCS picture, where the phonon 
contribution is simplified to a density of states cut-off at some characteristic 
Debye energy u q . The effect of electrons coupling to dynamical phonons was 
addressed later, starting with Migdal [42] and Eliashberg [43].

In the overdoped regime, the normal state of the copper oxide materials 
fits well the FL description. The superconducting state is reasonably well 
described by the BCS picture, with two important caveats: the interaction 
has momentum dependence, as suggested by the d-wave symmetry of the SC 
gap, and the characteristic frequency refers to a different bosonic excitation, 
most likely electronic in origin [25]. We note here, though, that the possible 
contribution of phonons was speculated by Lanzara and collaborators in rela
tion to a universal ‘kink’ found in the quasiparticle dispersion along the zone 
diagonal [44]. This effect was also investigated by our group [45]. We devised 
an inversion procedure in order to extract the underlying bosonic spectrum 
from the dispersion data. We were able to obtain the real part of the electron 
self-energy directly from the dispersion curves; the imaginary part was then 
calculated by performing a Kramers-Kronig integral. W ith the standard ap
proximations [46, 47], one can relate the imaginary part of the self-energy to 
the underlying electron-‘boson: spectrum. The result of the inversion indi
cated a frequency domain consistent with the phonon picture [44]. However, 
we found a ‘tail’ of high frequency spectral weight, a peculiar feature for 
a phonon spectrum. It is true that spin fluctuations are expected to have 
significant spectral weight at higher frequencies; in fact, significant spectral 
weight persists at frequencies much higher than the data indicates. Thus we
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were unable to definitely rule in favor of either alternative.
Clearly though, in the underdoped regime the anomalous normal state 

attests for a departure from Fermi liquid behavior. A logical extension is 
that one must go beyond BCS theory in order to interpolate between this 
anomalous normal state and the superconducting state in the cuprates. Far 
from clear is exactly how this is to be done. But no m atter what the most 
successful theory might turn out to be, one thing is certain: strong electronic 
correlations in these materials must be properly accounted for. To make our 
point more poignant, we will discuss next their basic electronic structure.

1.2.1 The im portant role of correlations
The HTSC are highly anisotropic, layered structures. The unit cell consists 
of a sequence of layers, of which one at least is a CuC>2 plane. The planes 
are separated by the so-called charge reservoir layers, because by changing 
their chemical composition, either by element substitution or by varying the 
oxygen content, carriers are effectively doped into the C u02 planes. The 
resulting electronic structure is quasi two dimensional, with weak dispersion 
along the 2 -axis.

Band structure calculations based on a square lattice with three orbitals 
(Cu 3 dx2 _ y 2 and 0  2px and 2py) at half-filling (i.e., one electron per Cu 
3dx2_y2 orbital, corresponding to zero doping) predict metallic behavior and 
a Fermi sea with a volume equal to half of the Brillouin zone. (In real 3D 
materials the inter-plane layers can cause distortions, resulting in in-plane 
anisotropy that can be significant in some compounds, such as YBC0123.) 
In reality, all undoped cuprates are AF insulators. This contradiction reflects 
the importance of correlations and the failure of the Fermi liquid theory based 
on the independent quasiparticle picture. The reason for this failure lies in the 
on-site electron-electron repulsion U, much greater than the bandwidth W. 
causing the conduction band to split into the upper and the lower Hubbard 
bands, separated by an optical gap of a few eV. For most of the transition 
metal oxides the charge transfer gap A is smaller than U, and these com
pounds are more appropriately described as charge-transfer insulators, rather 
than Hubbard-Mott insulators. Therefore it has been suggested that a proper 
description should explicitly consider Cu 3dx2_y2 as well as 0  2px and 2py or
bitals, as in the three-band extended Hubbard model [48, 49]. In the case of 
cuprates, however, there is a fair amount of hybridization, the relevant energy 
being the bonding-antibonding splitting involving the quantum mechanical
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mixture of Cu and 0  orbitals. As speculated earlier by Anderson [25], it is the 
C u-0 antibonding band which ‘Mott-Hubbardizes\ The one-band Hubbard 
model captures the essential physics of the cuprates, since the lowest electron 
removal states, corresponding to the O-derived Zhang-Rice singlet band [50], 
can be looked upon as an effective lower Hubbard band, and an in-plane 
Cu-derived band as the upper Hubbard band. When the on-site Coulombic 
repulsion is much larger than the characteristic hopping t, the upper Hub
bard band is projected out and the effect of U becomes virtual [51]. In this 
case the Hubbard model reduces to the t — J  model, where J  oc t2/U  is a 
superexchange interaction between the Cu spins. Thus, at half filling, the 
electrons gain kinetic energy by undergoing virtual hopping to neighboring 
sites, and because the Pauli principle forbids hopping for parallel spins, the 
ground state is AF, leading to an energy savings of the order t 2/U  from sec
ond order perturbation theory. The t  — J  model is considered the minimal 
model for the cuprates, as it furnishes an AF undoped ground state and it 
has been shown to produce a d-wave SC state away from half filling [52], 
However, it is not generally agreed upon. For instance, Varma [35] derives 
the orbital current state that he associates with the pseudogap by considering 
the full three-band Hubbard model, where non-trivial phase factors between 
the three bands become possible upon projection onto the low energy sector.

Our objection to the t — J  model is more a practical one, since this model 
is not directly amenable to many-body calculations, and not all parameter 
space is easily accessible. We choose instead to focus on the physics leading 
up to superconductivity and not be concerned with the details related to 
magnetic correlations. We will adopt the general consensus that the SC 
state is isomorphic to a BCS ground state of d-wave pairs, although we will 
not consider the momentum space structure for now. We assume that pairing 
is the result of an attraction between electrons, without worrying about its 
possible origin. The question we want to ask first is much simpler: in a system 
of many electrons provided with an attractive interaction, does pairing play 
a role in shaping the normal state?
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1.2.2 The attractive Hubbard model
The simplest lattice model that allows one to study the pairing problem is 
the Attractive Hubbard Model (AHM). The Hamiltonian is given by:

£  =  - * £  ( 4 Cja + h.c.) -  \U\ £  (1.1)

Here (c{CT) is the creation (annihilation) operator for a particle (electron 
or hole) on site i with spin <r, hia =  c]aci!T is the number operator, and (i j ) 
restricts the sum to nearest-neighbors only. The first term, the kinetic en
ergy term, is proportional to the nearest-neighbor hopping amplitude t. and 
the second term, the negative-£/ Hubbard term (different from the on-site 
Coulomb repulsion U in the regular Hubbard Hamiltonian), provides the 
on-site attraction between two electrons. This attraction is a useful sim
plification that bypasses the controversy about the pairing mechanism in 
cuprates. But despite its simplicity, the AHM Hamiltonian remains non
trivial to solve. We have to mention here the remarkable work of Lieb and 
Wu, who provided, in one dimension, an exact solution for all parameter val
ues and all sizes, including the thermodynamic limit (relevant for describing 
real solids) [26]. Their solution demonstrated, for the first time, the pos
sibility of ‘breaking’ the electron into separate spinless charge and neutral 
spin excitations. Another important result was that despite the decay of the 
electronic excitations into a  number of ‘pieces’, the system still had a Fermi 
surface (in fact, two Fermi points in ID), at the same location in momentum 
space, in agreement with Luttinger’s theorem [53]. Lieb and Wu studied the 
repulsive Hubbard model; nonetheless, this can be mapped into the AHM, 
as outlined by the authors in Ref. [26].

In higher dimensions, however, there are few exact results available, apart 
from two limiting cases: the zexo-U and zero-t limit. The U = 0 limit simply 
describes free electrons on a lattice, and is presented in Appendix A; the 
t  =  0 limit represents the extreme strong coupling limit, when the hopping 
becomes insignificant, and the system consists of a collection of uncorrelated 
sites (O-dimensional limit). We will discuss this limit in Chapter 3.

A functional integral approach, developed for a closely related continuum 
model [54, 55], was discussed in the context of the AHM by Randeria [56]. 
This approach led to an interpolation scheme for Tc that reproduced correctly 
both the weak coupling and the strong coupling limits. The weak coupling 
\U \/t <C 1 limit is well described by the BCS theory, with large-size pairs that
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dissociate and lose coherence at the same temperature Tc ~  iexp (—t/\U \). 
Above Tc one has a ‘well-behaved’ Fermi liquid. In the opposite, strong cou
pling \U \/t^>  1 limit, Bose-Einstein condensation is the appropriate theory, 
i.e., the ground state is a condensate of hard core bosons that lose coherence 
at Tc ~  t~/\U\ but remain well-defined as tightly bound pairs upon heating up 
to a much higher temperature T* ~  \U\. However, the interpolation scheme 
is least reliable in the intermediate coupling regime, which is, of course, the 
most interesting. At T  =  0 it was found [55] th a t a mean field approxima
tion is able to capture the physics of the SC ground state, and excitations, 
all the way from the BCS to the composite boson limit. However, such an 
approximation fails to describe, even qualitatively, the normal state physics 
beyond the weak coupling BCS limit.

For 2D systems, a  number of Quantum Monte Carlo (QMC) studies have 
been done on the AHM [57]. Such studies have also been done in 3D [58]. 
They have been very useful in elucidating the nature of the normal state, and 
they have indicated, in the coupling regime of interest, a departure from the 
FL behavior consistent with experimental observations. While their contribu
tion cannot be contested, one wishes to find analytically tractable approaches 
that may be applicable to more realistic models. After all, the ultimate goal 
is to extend the treatment to models with a momentum dependent electron- 
electron interaction, in order to properly reproduce the d-wave nature of the 
SC gap. There is no known simple model with a d-wave SC ground state 
amenable to QMC calculations; the main reason is the well-known fermion 
sign problem [59]. Thus, it is desirable to find a generic prescription to make 
approximations, ideally a scheme that can be derived rigorously and im
proved systematically. Developing a formalism that meets such requirements 
makes the subject of Chapter 2.
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1.3 Outline of the thesis
In this thesis we will adopt the precursor superconductivity line of thought 
and investigate the effect of pairing correlations on the normal state of a 
system of lattice fermions provided with an attractive interaction. The re
mainder of the thesis is structured as follows:

Chapter 2

• Within the Green function formalism, we look for approximate schemes 
that include two-particle correlations. We employ the Equation of Mo
tion (EOM) method to select an infinite subset of diagrams in the 
diagrammatic expansion of the one- and two-particle propagators; in 
the dilute limit, the EOM yields the so-called T-matrix theory, in which 
only the particle-particle channel is retained (to. infinite order). The 
limitations of the EOM prescription, together with constraints on any 
generalization, are subsequently discussed; in this context, we will em
phasize the importance of feedback effects on the T-matrix.

Chapter 3

• We will test different approximations in the zero-t (atomic) limit of 
the AHM, where an exact solution exists. In this limit, one particular 
T-matrix formulation that keeps the feedback effects to a minimum is 
the most successful when compared with the exact results.

Chapter 4

•  We will use the T-matrix approximation to calculate spectral properties 
of the fermionic system in two and three dimensions. While a self- 
consistent treatment is not deemed necessary for the 3D case, we will 
include minimal feedback on the T-matrix for the 2D calculations. A 
pseudogap is found in the density of states, even for weak coupling, 
close to Tc in 3D and over a broader temperature range in 2D.

Chapter 5

•  We will present conclusions of our work, ending with a discussion about 
its relevance to the high Tc materials.
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Chapter 2

Diagram m atic Approach And  
The T-m atrix Approxim ation

In the In tro d u c tio n , we have alluded to the fact that, while real physical 
systems are generally very complex, one’s efforts to understand such systems 
in all the details are both futile and impractical. In order to make progress, it 
is important to recognize the most relevant features one is trying to capture 
in a theory and find simple models to describe them. Thus we have argued 
that the AHM with its simplified on-site attraction has the merit of providing 
the electrons with the ‘means’ to form pairs, which we know is essential to 
superconductivity. And yet, despite its simplicity, a full description of this 
model is not available for all strengths of the interaction and in all dimensions. 
In this chapter, we will discuss how different diagrammatic schemes can be 
employed to treat the coupling regime of interest for this model.

2.1 Preamble to the Green function formal
ism

The Green function formalism is useful in treating models that cannot be 
solved by conventional theoretical techniques aimed at finding the full wave 
function. The Green functions (or propagators) contain the most impor
tant physical information about interacting many-body systems, such as the 
ground state energy* and other thermodynamic functions, the energy and 
lifetime of excited states and the linear response to external perturbations. 
Unfortunately, finding the exact Green functions is no easier than the original
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problem of finding the full wave function.
The usual approach is to separate the problem into a part that can be 

solved exactly, described by a known Hamiltonian Hq. and a ‘perturbing1 
potential V. Then, one proceeds with the perturbation theory, best formu
lated in the concise and systematic language of Feynman rules and diagrams. 
While there are a  few cases in physics where the first few terms in the per
turbation series will suffice, in the vast majority of problems the adequate 
description of an interacting system requires evaluating the Green function 
to all orders in the interaction potential. Dyson’s equation provides a formal 
way to do that and, more importantly, is independent of the original pertur
bation series. This allows for the possibility of non-perturbative approaches, 
with important implications, given the lesson learned from superconductiv
ity, that the properties of many-particie systems may be nonanalytic in the 
coupling constant. The difference between the full Green function G and 
the noninteracting one G° (associated with the noninteracting part of the 
Hamiltonian) is encapsulated in a function S, called the proper self-energy. 
Iterating Dyson’s equation yields the perturbation expansion to any arbitrary 
order in the perturbation parameter.

In principle, Feynman-Dyson perturbation theory produces the exact 
Green function to all orders in the interaction potential, but it is very of
ten impossible to pursue such a calculation in practice. Most of the times 
we must resort to non-exact techniques, and one wishes to find controlled, 
systematic ways to make approximations.

One approach is to retain the first few diagrams in the perturbation the
ory and to reinterpret the particle lines to represent the full Green function, 
instead of the noninteracting one. This way it includes infinite orders in the 
perturbation potential. Within these schemes the Green function is expressed 
in terms of itself, and therefore requires a self-consistent determination. An 
example of such an approximation is the Hartree-Fock approximation, il
lustrated diagrammatically in Fig. 2.1, following Ref. [60]. Expressing the 
Green function in terms of a complete set of (unknown) single-particle wave 
functions and energies will lead to the well-known Hartree-Fock equations - 
a system of coupled equations that allows the self-consistent determination 
of these wave functions and energies.

A different approach is to select an infinite subset of diagrams, expressed 
in terms of the noninteracting Green function G° and perform the summation 
to all orders. We will give here the example of the ladder approximation, 
appropriate for a dilute Fermi gas, where kp —► 0 (kp being the radius of the
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Figure 2.1: (a) Dyson's equation; (b) Self-consistent proper self-energy in 
the Hartree-Fock approximation; (c) Series for the proper self-energy in the 
Hartree-Fock approximation (adapted from Ref. [60]). Note that for the 
AHM, since the on-site potential only allows particles of opposite spin to 
interact, the exchange part is absent (second term in (b), second line in (c)) 
and one has only the Hartree bubble diagrams (first term in (b), first line 
in (c)).
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mation, in terms of the generalized interaction. Again, for the AHM the 
exchange part is absent (second line in (a) and (c)).
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Fermi sea in momentum space). In this case, even if the interaction parameter 
is too strong to lead to a convergent perturbation series, the product kpa, 
where a is the scattering length (related to the interaction strength), can be 
treated as an additional small parameter. For such a system, the average 
distance between fermions is much greater than the range of interaction and 
thus the two-particle collisions are the leading event. Analogously to the 
Hartree-Fock case where the average effect of the interaction with all the 
other particles was included to improve the single-particle picture, the ladder 
approximation considers the effect that the many-particle background has 
on an interacting pair of particles. This background limits the intermediate 
states available to the two particles involved in the scattering event. They 
may suffer any number of collisions outside the Fermi sea, before they are de
excited back into it. This effect translates into corrections of the order (kpa)2 
to the ground state energy (the Hartree-Fock correction is of the order kpa). 
Any scattering involving an intermediate particle-hole pair adds an extra 
power of kFa and may be neglected. Such a process really represents the 
transfer of an additional particle inside the Fermi sea, filling the original hole 
and leaving a new one in its place. Thus it leads to corrections of the order 
(.kpa)3, negligible in the dilute limit.

For completeness, we note that there are instances of dilute Fermi sys
tems where the treatment of kpa as a small parameter may no longer be 
adequate. We refer, for example, to the work of Pieri and Strinati on a 
general Fermi gas model with a point contact attractive interaction [61]; the 
same physics has been discussed in the context of superfluid pairing, near 
a Feschbach resonance, in ultra-cold Fermi gases trapped in electromagnetic 
fields [62]. The main idea is that, when going from weak to strong coupling, 
the scattering length changes from being negative to positive, and it does 
so by going through a divergence when the coupling is sufficiently strong for 
a bound state to appear. Beyond that point, Pieri and Strinati [61] argue, 
it is the residual interaction between composite bosons that determines the 
‘diluteness' condition, and not the original attraction between fermions. In 
that case, the ladder approximation is not expected to remain valid.

The ladder approximation is also known as the T-matrix approximation, 
by analogy with the well-known T-matrix for the scattering of two indepen
dent particles. The proper self-energy in the ladder approximation is shown 
in Fig. 2.2.

The ladder sum in the particle-particle (Cooper) channel was used by 
Thouless [63] to elucidate the nature of the superconducting instability, and
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allowed the possibility to study the superconducting transition away from the 
weak coupling limit for which BCS was initially designed. This demonstrates 
that, even in the case of superconductivity, where the order parameter is 
non-analytic in the interaction strength and no perturbative treatment with 
respect to the normal state of a system of many fermions could converge to 
the superconducting state, perturbation theory may still find its uses.

The two approaches outlined above can be combined, in the sense that 
one may select an infinite set of diagrams and reinterpret some of the parti
cle lines to represent the full Green function, thus requiring a self-consistent 
determination. We will further expand on the issue of how- to choose which 
of the particle lines are to be changed when we discuss the T-matrix approx
imation for the AHM.

2.2 Normal state formalism - Approaching Tc 
from above

Before we proceed with presenting the formalism, we want to set the frame
work, based on w-hat we hope to accomplish.

One could say tha t ‘modern’ interest in the influence of pair fluctuations 
on the superconducting transition w-as stimulated by Leggett [23]. He used 
a variational approach to show that for a dilute gas of fermions w-ith an at
tractive interaction there was a smooth crossover from the BCS ground state 
with overlapping Cooper pairs space to a BE condensate of tightly bound 
pairs. Some years later, this work was extended to lattice models and, more 
importantly, finite temperatures by Nozieres and Schmitt-Rink [64]. Using a 
diagrammatic formulation, they showed that, within their approximation, the 
transition temperature Tc evolves smoothly as a function of coupling strength 
from the BCS to the BE limit. The problem of the BCS-BE crossover was 
reviewed in detail by Randeria [56], using a variety of theoretical techniques. 
The main conclusion of his work followed along the same lines, that there is 
only one phase transition to a  state w-itli long range order, the superconduct
ing transition, which in the strong coupling limit was properly described by 
the Bose condensation of electron pairs.

But the nature of the transition in the two limiting cases is rather dif
ferent. In the BCS or w-eak coupling case, Cooper pairs form and condense 
at the same temperature, which is Tc. In the BE or strong coupling regime,
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there is another energy scale (but no phase transition), represented by the 
temperature T w at which real-space bound pairs appear (they are thermally 
dissociated above T*), well separated from Tc, at which the Bose condensa
tion takes effect.

Concerning the normal state just above Tc, the question remains: how 
does the system evolve, as a function of coupling strength, from a Fermi 
liquid with well-defined quasiparticle excitations in the weak coupling limit, 
to  a Bose liquid of tightly bound pairs at the strong coupling end? Thus 
the nature of the normal state in the intermediate coupling regime is a long 
standing puzzle th a t remains to be solved. It is natural to assume that the 
pairing tendency of the system, while not strong enough to lead to well- 
defined pairs, has significant influences on the normal state properties.

Since the motivation for our work is understanding the unusual normal 
state of the HTSC, particularly the pseudogap state, we find it natural to 
start our study above Tc. We adopt the point of view that the pseudogap is a 
precursor effect to superconductivity, and that the pairing correlations may 
be responsible for this anomalous behavior in the normal state. Thus we will 
look at schemes that allow for the inclusion of pairing fluctuations above the 
phase transition and stud}' the effect they have on the spectral properties 
of the system. When the system is cooled down, we expect the supercon
ducting transition to  be signaled by the divergence of the pair propagator, 
as correlations grow stronger and the interacting particles become unstable 
to pair formation.

With this in mind, we wash to find ways to systematically include cor
relation effects in the proper self-energy, in particular two-particle correla
tions. Following Ref. [65], v-e will show* how- the Equation Of Motion (EOM) 
method can be used to accomplish that. Within this framework we will 
derive a Dyson's equation for the scattering T-matrix and discuss the limi
tations of the Kadanoff-Martin prescription. We will not limit ourselves to 
the particular scheme derived in Ref. [65], but will discuss the restrictions on 
any generalization based, on the one hand, on wdiether or not the resulting 
scheme obeys certain conservation lav-s, as shown by Baym and Kadanoff in 
[66], and on the other hand, on whether or not it results in expected physics.

We must emphasize that a description of high-7). superconductivity in its 
full complexity goes beyond the scope of this work. For a complete descrip
tion one must have a microscopic theory that, among other things, gives the 
correct symmetry of the order parameter and takes into account magnetic 
correlations, bound to  be important given that the cuprate superconductors
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are doped AF insulators. Nevertheless, we believe that the features th a t we 
do capture within the formalism we are about to  describe are relevant to the 
high-7). systems independently of microscopic details.

2.3 Derivation of the self-energy in the T- 
matrix approximation

2.3.1 Definitions and notations
Throughout this work we will use a shorthand notation where a single numer
ical index (m) denotes the pair of space-imaginary time coordinates (jm. rm). 
In the Heisenberg picture, the creation and annihilation operators are:

ca (m ) = e ~ KTmCjmQe Krm (annihilation operator)

c l ( m )  =  e~ KTmc^maeKTm (creation operator) (2.1)

Here, I\ =  H  — /xN is the grand canonical Hamiltonian, where H  is the 
AHM Hamiltonian given by Eq. (1.1), fx is the chemical potential and N  is 
the number operator. While real physical systems have a fixed number of 
particles and it would appear th a t the canonical ensemble should be used, 
for systems with very large numbers of particles the deviation, of the order 

is not significant. Moreover, in the thermodynamic limit Ar —s- oo 
the results are necessarily independent of system size. Although in the grand 
canonical ensemble N  is allowed to  fluctuate, for all practical purposes fx is 
chosen to  maintain a fixed density n(T, /x).

The one-, two- and three-particle Green functions (and the Green function 
of any arbitrary number of particles) are defined as ensemble averages of time 
ordered products of Heisenberg annihilation and creation operators.

G „ ( l;l ')  =  - ( r TM l)4 ( l ') ]> ,  (2.2)

G , M  1 2 ; 1'20 =  ( - l ) 2 ( rT[c 4 1 )c4 2 )4 (2 ')4 (l ') j) . (2.3)

G3,rf7 (123:1'2'3') =  ( - l ) 3( r r [ct,(l)cfl(2)C,(3 )c*(3 ')4 (2 ')4 (l')]). (2.4)

Note that, since the AHM does not contain any spin flipping mechanism, 
the Green function we have defined are diagonal in the spin indices.
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The utility of these functions comes from the fact tha t any response func
tion can be constructed from a Green function, evaluated in the appropriate 
limit. For example, the electron density is given by the following single
particle Green function:

n = <?T(1; 1+) +  Gx(l; 1+) =  2G(1; 1+). (2.5)

Also, one particularly important instance of the two-particle Green function 
is the pair propagator, (?2,n ( lh  T l'). It is a divergence in this quantity that 
signals the superconducting instability. The double-occupancy is obtained 
from the pair propagator evaluated in the following limit:

(nTn1) =  <?2,u ( l l ; l +l +). (2.6)

In the above, by (m+) we understand (jm. rm -f 0+), simply saying that the 
time ordering operator Tr acting on a product of two operators c(m) and 
c(m+) will place c(m+) to the left of c(m) (producing a minus sign any time 
a permutation of two such operators is necessary).

2.3.2 The equation of m otion (EOM) m ethod
This method starts with the equation of motion for the Heisenberg operators:

- - ^ - c a(m) = {ca(m),K}. (2.7)
OTm

Eq. (2.7), together with (2.2), (2.3) and the anti-commutation relations 
{cJm0., c^g}  =  leads to the following equation of motion for the
one-particle Green function:

3 \  ^
j v r') + 1 y ;  G |( /V i; jyTy)

— <ij:jj,<i(Ti — Ty) — \U\Go,] jiTy jy T y . j jT ^ ) . (2.8)

In the above equation the prime symbol indicates tha t the sum is restricted 
to nearest neighbors of only. Following Ref. [65], we define an operator 
G°( 1; T) such that

E d
dr, G K f r y j y r y )  =  [ ^ ( l ) ] " 1̂ (1, l') =  5(1, 1').

(2.9)
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As the nomenclature suggests, G° (1; 1') is the noninteracting (\U\ =  0) one- 
particle Green function. W ith this definition, Eq. (2.8) becomes

[GO(l)l-1GT( L l ’) =  5 ( l , l ' ) - | t / |G 2,n ( l l ; l ' l +). (2.10)

We have used the condensed form 5(1,1') =  5JiJ'5 (t1 — rv ) in the above 
expressions (and may use it elsewhere on occasion).

The right-hand side of Eq. (2.10) contains a two-particle Green function. 
Application of an imaginary time derivative to the two-particle Green func
tion requires the three-particle Green function, and so on. Only in some very 
fortunate circumstances does the hierarchy of equations close, and we will 
see an example in the atomic limit (t —s- 0) of the AHM in the next chapter. 
In most cases, however, we must force a truncation of this hierarchy at some 
point, and this constitutes an approximation.

Truncation by decoupling the two-particle Green function in Eq. (2.10) 
merely results in the Hartree approximation (the direct term of the Hartree- 
Fock approximation, which we briefly touched upon in §2.1, opening this 
chapter; there is no exchange term for the AHM). This is a mean-field ap
proximation, designed to renormalize single-particle properties. Nonetheless, 
we do anticipate that a decoupling is necessary, so we define the two-particle 
correlation function:

CoU (12; 1'2') =  G%n{ 12; 1'2') -  GT(1; l')G x(2; 2'). (2.11)

W ith this definition, Eq. (2.10) becomes

([G ’tl) ] -1 +  li/lG ^ l; 1+) ) g , (1. 1') =  5(1,1') -  |i7 |C ,.„ (ll: 1'1+). (2.12)

We introduce the operator

[G?(l)]-' =  [G°(l)]—1 +  |C1|G|(1:1+) =  [G °(l)]-' +  \U\n/2, (2.13)

where Eq. (2.5) and the spin symmetry of the AHM was used to obtain the 
last equality. The noninteracting inverse operator includes now a Hartree 
term, expressed diagrammatically by the first term in Fig. 2.1(b). This al
ready points to the necessity of self-consistent solutions. Analogously to 
Eq. (2.9), we can define the function G °(l; 1') such that

[ G ^ i r 'G ^ L T )  = 5 (1 ,1 '). (2.14)
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Rewriting Eq. (2.12) gives

[G“(l)]-> G ,( l , l ')  - G ? (U ')  = - |f 7 |C , .n ( l l ; l ' l +). (2.15)

The solutions to this equation can be written in integral form:

GT(1, 1') =  G°(l, 1') -  |G|G°(1, m )C,,n (mm; l 'm +), (2.16)

where the contracted variable means integrating over the internal space- 
imaginary time coordinates:

For further reference, we cast Eq. (2.16) into a Dyson’s equation form, dia- 
grannnatically shown in Fig. 2.1(a):

The comparison suggests a relation between the self-energy and the two- 
particle correlation function. We make the remark that the self-energy to 
be defined below’- contains only those proper self-energy corrections beyond 
first order in \U\, which have already been included in the ‘noninteracting’ 
function G°:

We go back to the two-particle correlation function defined in Eq. (2.11). 
Applying an imaginary time derivative to this function generates a three- 
particle Green function:

[G°(l)]-1C2,Ti(12; 1'2') =  -\U \  [G3,t u (121; l '2 'l+) -  C2,n (ll:  lT +)Gx(2; 2')

Similarly to Eq. (2.11), we can define a three-particle correlation function:

GT(1,1') =  G ?(l,l ')  + G ? (l,m )E ,(m :n )G ,(n ,l ')  (2.17)

£ r(l;n )G t (n ,l ')  =  - |G |G 2,u ( l l ; l ' l +) (2.18)

-G T(l;T)Gi ( l : l+)G1(2;2')] (2.19)
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C3,m (121; 1'2'1+) =  G3,m (121; l '2 'l+) - G T(l: l')G |(2; 2')G|(1: 1+)

+G T(1; l')G |(2; 1+)G |(1; 2') -  GT( 1; l')Co u (21; 2'1+) 

—Ga(2; 2')C2,u (11; l 'l+ )  +  G |( l: 2')Co n (12; l ' l +)

+G X(2; l +)C2,n ( ll :  1'2') -  Gx(l; 1+)C2, u (12; 1'2') (2.20)

At this point we remember our goal to terminate the chain of equations 
generated by the EOM and we choose to neglect correlations between three 
(or more) particles. Accordingly, we set the left-hand side of Eq. (2.20) to 
zero. This way we decouple the three-particle Green function that appears in 
Eq. (2.19), which we replace by the remaining terms in Eq. (2.20). W ith the 
definition in Eq. (2.13), we rewrite the EOM for the two-particle correlation 
function of opposite spin:

[G?(1)]-’C !,U(12; 1'2') =  \ u \ [G ,(l;2 ')C 2,U(12: l 'l+)+G j(2:1+)C2,„(11; 1'2') 

- G I( l ; l ')C 2,u (21:2 'l+) + G T( l: l ')G i(2 : l+)G1(l;2 ')] (2.21)

One can also write an EOM for the two-particle correlation function of 
parallel spin (after some algebra of the same type we have employed above):

[Gi (1)]-1C2.u (12; 1'2') =  |G| [Gi (1 ;2 ')C ,n (12; 1+1 ') -G 2(1; l')C 2.,,(12; 1+2')]
(2 .22)

Conveniently, this function is expressed only in terms of the correlation func
tion for antiparallel spins. Integrating Eqs. (2.21) and (2.22), and replacing 
the correlation function for particles of parallel spins with its solution in 
integral form, we can write for the Co;u :

Gou  (12:1'2') =  |C /|G °(l;m ){G T(m ;T )G i (2;m +)Gi (m:2')

-i-G|(m: 2') Go (m2; l /m +)+ G |(2 :m +)G2.n(m m ; 1'2')

— |t/|G |(m ; l^ G ^ m ; n) G |(n :2 /)Go,||(n2;n+m +)

■G|(n; m+)Co T|(n2; n+2')j} (2.23)

We have in Eq. (2.16) and (2.23) a set of coupled equations for the one- 
particle Green function and the two-particle correlation function that must 
be solved self-consistently. Alternatively, one can use Eqs. (2.17) and (2.18),
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and include correlation effects in the single-particle properties via the self
energy.

We have gotten thus far by retaining only correlations between two par
ticles. In order to make further progress we need to make additional approx
imations. In what follows we will specialize the above-mentioned equations 
to the dilute limit, where the density of either particles or holes goes to zero, 
n(2 — n) —» 0.

2.3.3 The T-m atrix approximation
In order to make the dilute limit more transparent, we introduce the vertex 
function T representing a generalized interaction between particles of oppo
site spin, such that

C2,n( 12:1'2') =  G?(l; m)Gri (2 :n )r(m n :m ,n ,)C?T(m /; 2') (2.24)

Substituting this into Eq. (2.23) and factoring out the external Green func
tions leaves an integral equation for T :

r (12; 1'2') =  |£/|£(1,2)<5(1,1,)<S(2,2')

+\U\S(1,2)G°(1, m)G |(2; n )r(m n ; 1'2')

+|[/|<5(1,2/)Gr|( l ,  m )G i(n: l +)r(m2; l 'n )

- \U \25(l, lOGjCl; 2,)Gj(m; l)G °(2 ',n ')G T(n; 2 ')r(m n; 2n')

+|C/|2d(l, T)G{(1; m )G |(m ; l +)G?(m, n)G T(n'; m +)r(2n : 2V ) (2.25)

The above equation is known as the Bethe-Salpeter equation, by analogy with 
similar equations in relativistic field theory. It is illustrated diagranimatically 
in Fig. 2.3. Based on the definition in Eq. (2.24), one can also write an 
expression for the self-energy in terms of F.

S t ( l:T )  =  -|C /|G ?(l:m )G i ( l:n ) r (m n ; lV J G ^ n ':  1+) (2.26)

Aiming to make either of the two alternate routes (see discussion at the end of 
the previous section, §2.3.2) to self-consistency practical, we will argue that 
in the low density limit the number of terms in Eq. (2.25) can be reduced. We 
have outlined in §2.1, following the discussion in Ref. [60], th a t for such sys
tems the relative weight of particle-hole scattering events to particle-particle
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Figure 2.3: (a) Generalized interaction, as derived with EOM method for the 
AHM. The terms that survive in the T-matrix approximation are shown in 
box; (b) Proper self-energy expressed in terms of the generalized interaction;
(c) Dyson’s equation. Note th a t the equations illustrated in (b) and (c) need 
to be solved self-consistently. (The spin associated with each propagator is 
indicated by a little arrow.)
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Figure 2.4: T-matrix approximation for the generalized interaction, as de
rived with the EOM method for the AHM (terms shown in box in Fig. 2.3(a)).
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events becomes vanishingly small. Thus in the dilute limit the dominant 
contributions are expected to come from the first two terms in Eq. (2.25), so 
they are the only ones retained in the T-matrix approximation.

Referring back to §2.1 and comparing Fig. 2.2 with Fig. 2.3 and Fig. 2.4, 
we have demonstrated that the EOM method provides a way to decide 
which of the propagators appearing in the ladder diagrams are to be rein
terpreted and self-consistently determined. Once again, we note that within 
this scheme even the ‘bare’ propagator G° is not all that ‘bare’, because it 
contains a full Hartree term, and it is therefore very much involved in the 
self-consistency loop.

2.3.4 Fourier representation
Most of the time it is more convenient to work with momentum-frequency 
coordinates. For one thing, the pairing that leads to superconductivity takes 
place in momentum space. We will also see th a t discrete sums over Matsub- 
ara frequencies are more easily handled than integrals over imaginary time.

Because of the translational and imaginary time invariance of the AHM, 
the one-particle Green function G (l; T) depends on its coordinates only 
through 1 — l 7. This naturally leads to the Fourier representation:

G „(l -  1') =  Y , (2.27)
k

Here and elsewhere we will be using the following notations:

k =  (fc, zcum),

E=^?E E ■ <2-28)
k k w».=—oo

k ■ (1 -  1') =  k  - (Rh -  R fJ  -  iu3m{7i -  TV).

In the above expressions, k is the momentum associated with the injected 
particle described by the one-particle Green function and i u m =  i n T ( 2 m  —  

1), m  e  Z, is the fermionic Matsubara frequency.
The Fourier transform for the two-particle Green function involves a 

three-index object Go&a'ikQq):

G W (  12:1'2') = ^ e ifc'(1- 2- 1'+2')ei0(2"2' ,ei,(1' 2,G2.a^(fcQ«?) (2.29)
kQq
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Here, the upper case index Q =  {Q, iun) indicates that its frequency compo
nent is a bosonic Matsubara frequency, ivn =  i'lvrTn, n e  Z. The significance 
of the momentum indices is as follows: 2k is the relative momentum of the 
particle pair, Q is the momentum of the center of mass, and q is the momen
tum transfer between the particles.

In the general case, the Fourier transform of T(12: l /2/) is a  three-index 
object T(kQq) as well. It enters the equation for the proper self-energy in 
momentum-frequency coordinates, obtained from the Fourier transformation 
of Eq. (2.26):

£ # )  =  - \U \  £ r ( f c Q 9)G ?(i +  9)Gj(<? -  * -  t )G d Q  ~  k) (2.30)
Qq

However, when only the ladder diagrams are retained, as discussed in §2.3.3 
and indicated by the box in Fig. 2.3, the vertex function really is F(12; 1'2') =  
<5(1,2)<5(l'2')r(ll; l'l'), and its Fourier transform loses its k and q depen
dence:

T(kQq) T(Q) =  |(7| +  \U\Xo(Q)T(Q)

-  |C/| (2.31)
i -  l^lxo(Q)’

We have introduced in the above equation the ‘bare’ pairing susceptibility 
Xo (Q), given by:

Xo ( < ? ) = £ < 3 ? ( k ) G iM - i ) .  (2.32)
k

We have mentioned before that one quantity of particular interest is the 
pair propagator, (?2.7x(ll; l 'l ') .  Its Fourier transform depends only on Q as 
well, and working our way back to Eq. (2.11), making use of Eqs. (2.32), 
(2.31), (2.24) along the way, together with Fourier representation, we arrive 
at the following expression:

GS,„(C ) =  x(Q) =  xo(<2) +  [xo(0)]2r((?) 

=  p r x o tO n G )

   Xo(Q)  fr\  O 0 \

~ i - \ u \ x o ( Q Y  { ]
One can view Eq. (2.33) as the linear response susceptibility to a fictitious 
‘pairing’ field [67]. The zero in the denominator, occurring at zero frequency
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and momentum, leads to a divergence in this quantity, which signals the 
superconducting instability [63, 68]. This is the so-called Thouless criterion:

1 -  |C7[xo(0,0) =  0, (2.34)

which can be used to calculate the superconducting transition temperature 
Tc.

Finally, within the T-matrix approximation, one derives the following 
expression for the self-energy:

fir W  = ~ \U \J 2  T (Q)G°(k' )Gi(Q -  fc')<?i(<3 -  k)
Q,k'

=  - |£ 7 |^ T ( Q ) x o ( e ) G 1(Q-<.-)
Q

= - \ U \ - J ^ X ( Q ) G 1(Q -  k). (2.35)
Q

Eq. (2.35) has been obtained by substituting Eqs. (2.31) and (2.33) into 
Eq. (2.30).

Inspecting one more time Eqs. (2.32), (2.33) and (2.3-5), we note that 
there are three one-particle Green functions entering the expression for the 
self-energy. The first propagator in the pair susceptibility is the ‘noninteract
ing’ one, Go(k). The other two represent fully interacting Green functions. 
Through Dyson’s equation, the self-energy defines the full one-particle Green 
function:

G (Q = [G 0- 1(* )- f ; ( fc ) ] -1 (2.36)

Eq. (2.36) is the Fourier space correspondent of Eq. (2.17). Thus the Dyson’s 
equation closes a self-consistency loop, ensuring that single-particle proper
ties ‘feel’ the pairing tendency of the system, while the use of the full propaga
tor in the pair susceptibility ensures that feedback is returned to two-particle 
properties.

One additional note here concerns the one-particle Green function G°(k). 
Analogously to the derivation in Appendix A, one can write

G°(L ium) = [iwm -  (e  ̂-  / / ) ] _1 • (2.37)

The difference between this function and the truly noninteracting G° given 
by Eq. (A.17) comes from the use of the modified chemical potential fx'. As
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a result of Eq. (2.13), a  Hartree term has been absorbed in the chemical 
potential: (x' =  jx +  \U\nj2. As shown in Eq. (2.5), which we re-write below 
in Fourier representation:

n = 2G{1:1+) =  2 ^  G (fc )e^0+
k

9 00
=  1 +  — ^GijzALOm). (2.38)

k ™.=-oo

this implies that the full Green function G(k) enters fx' via n, involving G° 
itself in the self-consistency loop, as we have already pointed out.

Before we end this section, for future reference, we also re-write the 
double-occupancy, given by Eq. (2.6), in Fourier space:

(nTnj) =  Go,u ( l l ;  1+1+) =  y > _ ,n ( g ) e - n0 • (2.39)
Q

Alternatively, one can use Eqs. (2.11) and (2.18) to express double-occupancy 
in terms of one-particle properties:

(nTn i) =  G2.u ( l l ; l +l +)

=  G(l: 1+)G(1; 1+) -  |iy E ( l:  m)G(m; 1+)

=  r M ^ (W)' (2-40)

2.4 Self-consistency, BCS limit and conserva
tion laws in the T-matrix approximation

In section §2.3, we have shown a way to formulate a self-consistent scheme 
that allows a controlled, systematic inclusion of correlations into single par
ticle properties, as follows from the Kadanoff-Martin work described in [65]. 
Anticipating the next section, the self-consistency is needed to improve on 
the work started by Thouless [63] and re-addressed later on, in the context 
of high Tc cuprates, by Schmitt-Rink, Varma and Ruckenstein [69], by re
turning feedback to the two-particle properties, once the single-particle ones 
have been renormalized.
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There are, however, problems with the Kadanoff-Martin scheme. First of 
all, the weak-coupling limit of this particular scheme, expected to reproduce 
the BCS results, leads to the presence of states in the superconducting gap. 
In fact, any self-consistent scheme where the full propagator is used for the 
third Green function in the self-energy, the one that appears explicitly in 
Eq. (2.35) (see the last line), proved unable to properly reproduce the BCS 
gap [70, 29].

In order to correct this difficulty with the Kadanoff-Martin prescription, 
Patton [71] argued that the Green function in question should be replaced 
by its noninteracting counterpart. This ‘fix’ is based on the possibility* that 
vertex corrections, dropped in the T-matrix approximation, partially cancel 
some of the contributions retained in the above-described scheme. In recent 
times, this approach has been championed by Levin and co-workers [72] and 
has found some agreement with experiments on high Tc cuprates. However, 
the adjustment is completely ad hoc, and it doesivt cure another problem 
with Kadanoff-Martin scheme, the problem with the number conservation. 
Any given diagrammatic approximation must comply with a set of conditions 
derived by Baym and Kadanoff in order to ensure conservation of particle 
number, energy and angular momentum. In particular, the asymmetric form 
of the independent particle susceptibility (see Eq. (2.32)) is not consistent 
with a number conserving approximation. This was already acknowledged by 
Kadanoff and Martin in Ref. [65] (see the discussion at the end of section 3).

Alternatively, Bickers and coworkers [73] extended the theory formulated 
earlier by Baym [74], based on functional derivatives of a free energy func
tional. This procedure guaranteed that the resulting approximation, so-called 
‘̂ -derivable’, would be fully conserving. Its extension to lattice electrons is 
known as the FLuctuation EXchange approximation (FLEX) [73]. The T- 
matrix version of this theory (only particle-particle channel is retained) has 
all three instances of the one-particle Green function in the self-energy fully 
self-consistent. Although such a formulation would appear to be the most 
accurate of the T-matrix approximations, since it contains the most number 
of diagrams, it takes us right back into the problem with the states in the 
gap, as discussed above. The partial cancellation between terms dropped in 
T-matrix theories and some of the contributions retained appears likely.

Based on the arguments presented above, it would seem that the only 
viable choice is a symmetric form of the independent particle susceptibility 
(this translates into both fully self-consistent Green functions in Eq. (2.32)), 
and replacing the third Green function in Eq. (2.35) for the self-energy with
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its noninteracting counterpart. Indeed, this has been suggested [70, 75]. 
While this version of the T-matrix is not ‘̂ -derivable’ in the Bavin sense, 
it does lead to two-particle quantities that are conserving, and is able to 
reproduce the BCS gap.

We hope to have convinced the reader of the lively debate in the literature 
as to what the best self-consistent T-matrix theory might be. Any particular 
scheme has its advocates, with viable arguments pro their theory of choice 
and contra any other. Another altogether different approach was adopted by 
Vilk and Tremblay [29], implemented by Kyung et al. [76] for the AHM. They 
designed a technique th a t enforces self-consistency at the two-particle level, 
and determines the irreducible spin and charge vertices. This is in contrast to 
the T-matrix-type approaches, which attempt to get single, particle properties 
most correctly.

In the next chapter we will examine this issue once again, in a limit 
where exact results are available and a direct comparison with the prediction 
of different schemes may help discriminate between candidate theories.

2.5 Non-Self-Consistent T-matrix approxima
tion: is it enough?

We have mentioned a few times already that T-matrix-type approximations 
came to be used in the context of superconductivity following the original 
work of Thouless in 1960 [63]. In his approach, a pairing susceptibility w*as 
defined, just like in Eq. (2.33), but with both propagators ‘bareh In the 
conventional framework, this pairing susceptibility diverges at Tc, as defined 
by the BCS theory. Thus the Thouless criterion, Eq. (2.34), constitutes an 
alternate means of defining the transition temperature.

In more recent times (1980), a  revival of pair fluctuations ideas was ini
tiated by Leggett in Ref. [23]. His w'ork was extended five years later by 
Nozieres and Schmitt-Rink [64], who developed a diagrammatic scheme de
signed to include the effect of pairing fluctuations above Tc at the lowest 
order.

The unusual properties of High Tc superconductors motivated Schmitt- 
Rink, Varma and Ruckenstein (SVR) [69] to extend the scheme developed 
by Nozieres and Schmitt-Rink [64] to two dimensions (2D). One important 
technical point clarified in [64] was that the equation for the superconducting
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gap and the number equation had to be solved together. For two-dimensional 
systems, the Thouless criterion leads to a finite value of Tc if the chemical 
potential is held constant. Any finite temperature phase transition in two (or 
lower) dimensions is prohibited by the Mermin-Wagner theorem [77]. When 
the number equation is also considered, SVR concluded that, for a given 
electron density, as the temperature is lowered, the chemical potential would 
self-consistently adjust to avoid the Thouless instability. In fact, any value 
of the electron density would result in a situation at T  =  0 in which the 
Fermi surface no longer existed; the electrons are paired in Bose-like bound 
states, and the chemical potential is simply half of the single pair bound 
state energy. This result violates Luttinger s theorem [53], which states that 
the volume of the Fermi sea should be conserved. We warn the reader that 
this situation is different than the BCS-BE crossover scenario, where varying 
the coupling strength the two limits could both be reached; instead, here the 
depletion of the Fermi surface happens for a fixed strength of the interaction, 
when the temperature is lowered toward zero.

Improvements to the the SVR prescription due to Serene [78] and, a few 
years later, Tokumitu et al. [79], were motivated by an attem pt to correct this 
unphysical behavior found by Schmitt-Rink et al. in 2D. However, despite 
claims by Serene [78] that including repeated scattering of an electron by in
dependent pair fluctuations restored the robust character of the Fermi liquid 
behavior, such claims were proved unfounded, at least for lattice fermions 
[75]. In fact, including multiple scattering in the number equation do make 
the results for lattice fermions more physical, for example the electron density 
goes to one on the curve that signals the Thouless instability in the T  — fj. 
plane (Thouless curve), instead of being a diverging quantity. Again, the 
importance of simultaneous solutions for the superconducting transition and 
for the number equation must be emphasized. But the physics of Ref. [69] 
survives such an improvement.

The work of Serene made it clear that the SVR treatment amounted to 
the Non-Self-Consistent (NSC) T-matrix approximation. This corresponds 
to a pair susceptibility and a self-energy with only noninteracting one-particle 
Green functions in Eq. (2.32) and Eq. (2.35), respectively. Such a formulation 
has the appeal that further progress can be made analytically. Since the 
noninteracting propagators have known analytical form, shown in Eq. (2.37), 
the frequency summations in the non-self-consistent versions of Eq. (2.32) and 
Eq. (2.35) can be readily performed. Moreover, referring back to  section §2.4, 
with Serene's improvement the approximation is conserving, ‘̂ -derivable' in
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the Baym sense. But it leads to certain pathologies for lower dimensionality. 
The fact that such a treatment violates Luttinger’s theorem immediately 
suggests th a t renormalization of the single-particle propagators is important.

The impact of self-consistency on the SVR results of Ref. [69] is related to 
the more general question of feedback effects on the Thouless criterion. The 
existence of a diverging pairing susceptibility as the system is cooled towards 
the superconducting instability should affect the single-particle properties, 
so the electrons should ‘know’ about the pairing tendency of the system, 
and ‘adjust’ to it. Thus, self-consistent treatment is required. Indeed, it has 
been shown that any degree of self-consistency in the T-matrix is sufficient to 
drive the Thouless instability to zero temperature [72, 75]. Whether or not 
the self-consistent solution corresponds to a superconducting phase depends 
on the particular self-consistent scheme employed to calculate the self-energy.

With this discussion, we end the current chapter dedicated to formulating 
approximate diagrammatic techniques and move next to discuss results in the 
atomic limit.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3 

Atom ic Limit

We have shown in Chapter 2 that self-consistency can be enforced in the 
T-matrix in many ways. Deciding what configuration of bare and dressed 
propagators is most successful depends on which physical properties of the 
model one wants to reproduce.

This chapter is motivated by the fact that in the atomic limit an exact 
solution is readily available. This enables us to discriminate between different 
approximate theories. For the AHM the atomic limit represents the strong 
coupling limit, where the on-site coupling is very strong and the hopping 
becomes insignificant, leaving the different sites uncorrelated (O-dimensional 
limit). We intend to use the analysis presented here as a guide for suitable 
approximations in higher dimensions. We will also consider the Two-Particle 
Self-Consistent (TPSC) approach developed by Vilk and Tremblay [29] and 
implemented for the AHM by Kyung et al. [76].

3.1 Exact Results
We will formulate the problem in a manner that avoids Hartree diagrams, 
thus reducing the number of possible self-consistent versions one has to con
sider [80]. The Hamiltonian is given by:

H  = - t  +  h.c.) nu, - \U\ ^ ( n iT -  n /2 )(nu -  n/2), (3.1)
(:ij),a i,a i

where the sum in the first term (the hopping term) is restricted, as usual, 
to the nearest neighbors only. The mean field expectation value (ni(T) =
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na = n / 2  is subtracted from the electron density operator in the interaction 
term and the modified chemical potential //' is given in terms of the actual 
chemical by the relation / /  =  //-{- \U\n/2. The use of / /  instead of fx insures 
that all Hartree diagrams have been included automatically.

In the atomic limit (i.e., the zero-t limit, where the problem reduces to 
a  single site problem), one can proceed with the equation of motion method 
outlined in §2.3.2 and find that the hierarchy of equations will decouple at 
the two-particle level. This allows us to obtain the one- and two-particle 
propagators in closed form. For the one-particle propagator we find:

g t(2> = . + 1' - \ u \ r i , + (3'2)

and therefore, with the noninteracting limit, Gq(z) =  l / ( z Jr/j,') as a reference 
state,

-  n j
tW  z + fi' + \ U \ ( l - 2 n lY  (3'3)

Notably, the exact solution has a simple structure, with two poles, analogous 
to a lower and upper Hubbard band in the repulsive model, with energies 
separated by \U\.

The electron density is easily obtained in terms of the modified chemical 
potential fx'. from Eq. (2.38) specialized to the atomic limit:

2
n =

lU?m

= ____________ 2/ ( —P1 +  W \n!  2)____________
1 +  f i - l S  +  W\n/2) -  -  |t / |( l  -  n / 2 ))'

Inverting this relation, one obtains for the chemical potential:

(3.4)

fx' =  — -^-(1 — n) — Tln(a(n)/n).  (3.5)

Here the zero temperature result is given in the first term, while the second 
term gives the finite temperature corrections, with:

a(n) = (1 -  n) exp(-/? |f/|/2 ) -1- y/n(2 -  n) +  (1 -  n)2 exp(-/?|{7|). 

The pair propagator:

1 — n 
■2fi' + \U \ ( l - n )G2,n ( z ) - x ( z )  z + oIL' + \ U \ ( l - n )  ^
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leads to the following expression for double-occupancy:

<™Tnl) =  4 5Z Gr2,T l(^)eil"i0+
P .lUi

= ( l - n ) N ( - 2 ^ - | t / | ( l - n ) ) ,  (3.7)
where N{x) =  1 / (e^x — 1 ) is the Bose function. W ith the result of Eq. (3.5) 
this Simplifies’ to

2 n + a(n)exp(—P\U\/2)'

As T  —t 0 the result is quite simple and expected, (n-fTii) — n/2.

3.2 T-M atrix Approximation

3.2.1 NSC T-matrix
The NSC T-Matrix approximation corresponds to the all-bare configuration 
of propagators in Eq. (2.35). In this formulation of the problem, while pairing 
effects are included in the one-particle self-energy, no feedback is returned 
to the T-matrix. This leads to certain pathologies when the available phase 
space is small, and we will see this exemplified in the atomic limit. However, 
we believe th a t it provides some insight into how pairing fluctuations modify 
the structure of single-particle properties. Moreover, this approach becomes 
increasingly more reliable as the temperature is increased and feedback effects 
are less important.

The NSC result for the pair propagator is obtained from Eq. (2.31) when 
both Green functions in the pair susceptibility, Eq. (2.33), are the ‘bare’, 
noninteracting ones:

.  + (3-9)

where n 0 =  |  Go{i^m)el̂ m0+ =  2 / ( —//)  is the noninteracting value for 
the electron density and f ( x )  = lj{e<3x -I- 1 ) is the Fermi function. Substi
tuting this pair propagator into Eq. (2.35) leads to the following self-energy:

=  (3-1°)
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The one-particle propagator is then given by the Dyson’s equation, Eq. (2.36), 
and has the following form:

iNSC
(* ) =

Cl Co

z  +  fx' — z\ z  + ij! -  z2 

In Eqs. (3.10) and (3.11) we have used the following notations:

(3.11)

Cl,2 =

b = | t / |( l  — no) and 

a = \ U \2 [(nTnx) ^

Analogously to Eq. (3.7), the double occupancy is given by

+  ^  -  "o)

{n 1n l)NSC =  ( 1  -  no)Ar( - 2 fi' -  \U\(l -  no)).

(3.12)

(3.13)

The Green function in Eq. (3.11) provides n  via Eq. (2.38), but this n 
does not replace n 0 in Eq. (3.9), so there is no feedback on x- The divergence 
of the pair propagator, occurring at zero energy and zero momentum, signals 
the superconducting instability. For the NSC T-matrix approximation, the 
zero of the denominator in Eq. (3.9) leads to  a  non-zero solution for Tc:

Tr =
In [(

Eio It
(3.14)

This defines the ‘Thouless curve’ in the fi' — T  plane, and this is where an 
instability would occur when the temperature is lowered and / /  is held fixed. 
The Thouless curve delimits a region where no solutions exist for / / .  The 
divergence of the pair propagator leads to a divergence in the self-energy, 
and as a result the number density goes to one on the Thouless curve, as 
made evident by the second line in Eq. (2.38). At the two-particle level, it 
naturally leads to a diverging double-occupancy, which is clearly unphysical. 
Indeed, Fig. 3.1(b) shows that when the electron density is kept fixed (a more

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.0
0.999

n = 0.9

n = 0.7
-0.5

n = 0.5

n = 0 .3 -- 1.0

n = 0.1

n = 0.01
-1.5

0.0 0.1 0.2 0.3 0.4 0.5
T/|U|

0.0
^•'n = 0.999

n = 0.9

n = 0.7-0.5

=> n = 0.5
=L

- 1.0 n = 0 .3 ^

n = 0.1

,n = 0.01
-1.5

0.0 0.1 0.2 0.3 0.4 0.5
T/|U|

Figure 3.1: (a) Exact solutions (Eq. (3.5)) and (b) (GoGo)Go (NSC) results 
for jj! vs. temperature for different densities. In (b) the shaded region is the 
so-called Thouless region (see Eq. (3.14)). Note that it is absent in the exact 
solution.
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physical procedure), / /  adjusts so that a finite temperature phase transition 
is avoided (in accordance with the Mermin-Wagner theorem). As in higher 
dimensions (see the discussion in §2.5), the electrons form bound states, the 
Fermi sea is depleted and a  finite temperature transition is avoided for the 
wrong reason, as the comparison with the exact results shown in Fig. 3.1(a) 
demonstrates.

3.2.2 Enforcing self-consistency
We have seen that the NSC T-matrix is poor. Now, we address the question 
of enforcing self-consistency.

Work done in higher dimensions [72, 75], shows that indeed, self-consisten
cy can correct the unphysical features of the NSC T-matrix related to the 
superconducting instability. The root of the problem comes from neglecting 
the importance of feedback effects on the Thouless criterion. That is, the 
single-particle propagators should ‘know' about the pairing tendency of the 
system as the temperature is lowered and ‘respond' accordingly, and that 
will influence that pairing tendency.

The difficulty lies in deciding: how? We have mentioned in §2.4 the 
lengthy debate in the literature regarding the ‘proper' way to include feed
back in the T-matrix theory. Since the outcome of a self-consistent calcula
tion can differ dramatically when different schemes are employed, one must 
proceed with caution. The fact that several theoretical approaches may be 
used to rigorously derive different self-consistent schemes, some of which fail 
to reproduce expected physics, only adds to the confusion.

Given the above considerations, we have decided to examine all the possi
ble self-consistent schemes in the atomic limit and compare their predictions 
with the exact results. In this limit, with the particular form of the Hamil
tonian given in Eq. (3.1), the self-energy in Eq. (2.35) becomes:

S (ium)  =  - \ U \ 2-  ^ 2  1 J \ u \x o ( i u r, ) G ^ ~ lUTn +  i V n ) • ( 3 ' 1 5 )

The ‘bare’ susceptibility Xoij^n) is given by (rewriting Eq. (2.32) in the 
atomic limit):
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where the subscripts a, b, and c in the above two equations can either be 
absent (to indicate th a t the fully interacting Green function should be used) 
or can be set to ‘O’, to indicate that the noninteracting Green function is used. 
When all the subscripts are ‘0: one has the NSC case discussed in the previous 
section. If any of the Green functions occurring in Eqs. (3.15), (3.16) is the 
fully interacting one, G and E must be determined self-consistently using 
Dyson’s equation, Eq. (2.36).

3.3 TPSC Approach
The TPSC approach is fully documented for the Hubbard model in Ref. [29], 
and for the attractive Hubbard model in Ref. [76]. We summarize below the 
main results, specialized to the AHM, as given by Eq. (3.1), in the atomic 
limit.

These authors utilize an ansatz for the particle-particle irreducible vertex. 
In the case of the AHM it is:

IU  I =  \JJ\ ^  ~  n T)n l) (3
1 rrl 1 'o - n j X n i ) ’ 1 J

where nG is the particle density operator for spin a, and the angular brackets 
denote expectation values. Based on a series of conservation laws and sum 
rules, the self-energy at the first level of the approximation is derived:

£<» =  (\U„\ -  |C/|)(1 -  n )/2 , (3.18)

This expression for the self-energy differs from the original one derived in 
[76] by a Hartree term. The quantity of interest is / / .  This enters the single
particle Green function in the combination / / (1) — E^b

G(1) (z) =  [z +  n'{l) -  E (1)] _1, (3.19)

which should be the same as — S (1̂ derived in the original formalism (the
upper index indicates the level of the approximation). Since the contribution 
from the Hartree diagrams is included in / / ,  we subtracted it off the self
energy. This is related to the use of the special form of the Hamiltonian in 
Eq. (3.1).

As one can see in Eq. (3.17), the double occupancy is needed in order to 
obtain the irreducible vertex. This can be determined self-consistently from
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Eq. (2.39), where the two-particle susceptibility is given by an expression 
similar to Eq. (2.33), with one important difference, the ‘bare' interaction 
[27| is replaced by the irreducible vertex | Upp \. The resulting self-consistent 
equation for {«Tn J.) is:

both one-particle Green functions evaluated a t the first level of the approxi
mation, Eq. (3.19).

Eqs. (3.17) - (3.20), together with the number equation, Eq. (2.38), form 
a system of coupled equations, from which the double-occupancy (n jn i), the 
irreducible vertex Upp and the chemical potential, / / ,  can be determined for 
fixed electron density.

A second level of approximation can be implemented within the TPSC 
approach, where an exact expression for the single electron self-energy [29] 
is used; the (unknown) functions required are obtained from the first step 
described above. The resulting self-energy resembles that obtained from a 
Migdal-like approach (where vertex corrections are neglected, as is the case 
with T-matrix theories); a very important difference is that one of the vertices 
is fully dressed:

Again, note that the Hartree term has been subtracted, for the same reasons 
as explained above. By computing the self-energy at this second level, the 
next level of approximation can be obtained. In the atomic limit, we can 
proceed analytically to  get

(3.20)

Here, the ‘bare’ pair susceptibility Xo \ ^ i )  is given by Eq. (3.16), but with

= -\U \\UPP\ G{l\ - i u m + ivn).  (3.21)

(3.22)

for the self-energy, and

(3.23)
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for the one-particle Green function. This Green function is then substituted 
in the number equation, Eq. (2.38), which can be inverted to provide fi' for 
fixed n. In Eqs. (3.22) and (3.23) we have used the following notations:

21.2 =  ~  ± {(

/ 2

b =  \Upp\(l -  n) +  i  In ~  ^  and

a=\U\\Upp\ ( n ^  + ^ l - n )  . (3.24)

3.4 Comparison of results

3.4.1 Chemical potential
We have examined all the possible variations for Eqs. (3.15), (3.16) at low 
electron densities. The results for p! vs. T  at a low electron density, n  =  0.3, 
are shown in Fig. 3.2(a). In addition we have also computed the result 
for the Vilk-Tremblay [76] TPSC theory. At very low electron densities all 
approximations work reasonably well. At low- (but not too low) electron den
sities, two emerge as particularly accurate, the (GGq)Gq T-matrix theory, 
and the Vilk-Tremblay theory. We use a nomenclature for the T-matrix the
ory to correspond to  (GaGb)Gc, where the a. 6, and c refer to the labels in 
Eqs. (3.15), (3.16). Focussing on the low temperature regime, two approxi
mations emerge as most accurate: the Vilk-Tremblay TPSC result and the 
(GGq)Go T-matrix approximation. For n = 0.3 the TPSC result is more 
accurate over an extended temperature range; in fact, a t still lower densi
ties (n =  0.1 showm in Fig. 3.3) the (GGo)Go result becomes more accurate 
than the TPSC result, and these tw-o remain the front-runners for all electron 
densities. Interestingly, both the TPSC and the (GGq)Gq results appear to 
become exact at low- temperatures.
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Indeed, we will use an ansatz appropriate for the zero temperature limit 
to confirm this analytically. In the (GGo)Gq formulation the ansatz

E{ium) =   ---------   (3.25)
tUJ-m ft

emerges if one considers only the term in Eq. (3.15) with n  =  0. Then A 2 =  
T\U\2xo{0)/{1 — |G|xo(0)). Insertion of this self energy into the one electron 
Green function allows one to evaluate the bare susceptibility in Eq. (3.16) at 
zero frequency. Earlier work [75] indicated that any degree of self-consistency 
in the ‘bare’ susceptibility drives the superconducting transition (signalled 
by 1 =  |£7|xo(0)) to zero temperature. Adopting this requirement in this 
case gives the parameter A2 in terms of jC/j and ft1. The number equation, 
Eq. (2.38), provides a second relation between A2 and ft': with these two 
equations all the zero temperature properties can be obtained analytically. 
Thus, for the chemical potential one obtains

A*' =  - ^ ( 1  -  (3.26)

which, remarkably, is the part of the exact result in Eq. (3.5) that survives 
in the T  —*■ 0 limit. Thus, the suppression of the Thouless instability to zero 
temperature is a feature in common with higher dimensional solutions.

In the case of the TPSC approximation, inverting the number equation, 
Eq. (2.38), where G(1)(zwm) given by Eqs. (3.19), (3.18) is used, leads to the 
following relation:

^ ■ ( l g » | - | % - B ) . r l n ( * m i )  (3.27)

In the T  —» 0 limit, solving Eq. (3.20) for (uj-u.j) self-consistently drives the 
irreducible vertex Upp to zero, so the zero-temperature result is identical to 
Eq. (3.26).

3.4.2 Two-particle correlations
We can press further the comparison between different approximations, and 
in particular probe two-particle correlations. An easy way to do this is by 
examining the energy per lattice site E. We use the exact relation [60] (in
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Figure 3.2: A comparison of the different approximations at n =  0.3; (a) / /  
vs. temperature; (b) energy (according to Eq. (3.29)) vs. temperature. The 
different T-matrix formulations are indicated according to Eqs. (3.15), (3.16). 
Note that the TPSC result (first step only) and the (GGq)G0 T-matrix ap
proximation are the most accurate; they both become exact as T  — 0. The 
insets focus on the TPSC and (GG0)Gq results at low temperatures; note 
in (b) how well the {GG$)Gq curve approaches the exact result over an ex
tended temperature range.
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Figure 3.3: Same as Fig. 3.2 but for a lower density, n =  0.1; (a) p! vs. 
temperature; (b) energy (according to Eq. (3.29)) vs. temperature. The 
insets focus on the TPSC and (GGq)Go results at low temperatures. Note 
that, for this density, the (GGq)Gq T-matrix approximation is more accurate 
than TPSC result; again, they both become exact as T  —*■ 0.
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Figure 3.4: Level 1 (Eq. (3.27)) vs. level 2  of the TPSC approximation at 
n =  0.3. Note th a t ‘improving’ the approximation fails spectacularly in the 
low temperature regime.
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the atomic limit there is no kinetic energy term)

m
(3.28)

to obtain the energy at any temperature, in the T-matrix theories. This 
equation and the atomic limit version of Eq. (2.40) lead to the following 
relation between E  and (nTnj):

Normally, E  w-ould be simply proportional to the double occupancy in the 
atomic limit. However, because of the special form of the Hamiltonian in 
Eq. (3.1), the contribution of the Hartree diagrams is not included in the 
self-energy, and this is reflected in the second term on the right-hand-side of

Fig. 3.2(b) shows the energy determined within the various approximation 
schemes along with the exact and the TPSC result, for n = 0.3. Once again 
the TPSC and (GGq)G$ results are exact at zero temperature. However, 
the TPSC result deviates immediately for T  > 0 , w*hile the (GGo)Go result 
follows closely over some temperature range. The same behavior is observed 
for the lower density (n =  0.1) exemplified in Fig. 3.3(b), w'here the better 
agreement of the (GGo)Gq T-matrix persists over an extended temperature 
range. That this latter result is true follows also from the analytical work 
described at the end of §3.4.1.

For the TPSC theory, the results used in the above analysis are for the 
first step in the TPSC approach described in §3.3 following Ref. [76]. If one 
presses further with the second step, the results deteriorate, as illustrated in

3.4.3 Spectral properties
To probe further the analytical structure of the various approximations, one 
w-ould like to examine the spectral function. To that end, the Green function 
on the real axis is needed (see Appendix B):

The analytic continuation of the exact finite temperature Green function from 
the imaginary axis to the whole complex plane is trivial (and was implicit

E  = - \ U \ < n , n l > + \U \{ ^ )2. (3.29)

Eq. (3.29).

Fig. 3.4.

A(u) = —Im G(u + i6)/n (3.30)
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in §3.1), iu>m is simply replaced by 2 . Once this is done, one can evaluate 
it anywhere in the complex plane, including just above the real axis (z = 
oj- r iS, 5—r 0+). As mentioned in §3.1, the exact Green function in Eq. (3.2) 
has two poles, resulting in two 5-functions in the spectral function, separated 
by |J7|:

A(u) = ( l  -  5 (u  + fj! -  -^\U\j + - 8  (u  + fj! + \U\ ( l  -  (3.31)

The spectral weight is distributed between the two 5-functions, and the sum 
of their weight factors equals one, as it should.

For the TPSC approach, the analytic continuation of G is just as trivial 
(and again, was implicit in §3.3), since the atomic limit allows closed form 
expressions for E and G to be derived as well. At the first level of the ap
proximation the self-energy is a constant, and the noninteracting propagator 
accommodates a simple Hartree-like renormalization. This accounts for a 
single pole in the one-particle propagator, which in turn produces a single 
5-function in the spectral function

A “\ u )  = 6 (u, +  /.'(« -  (\V„\ -  |C /|) i-= ^ )  , (3.32)

in obvious disagreement with the exact result. The result obtained in the 
second step of the TPSC approximation does contain two poles:

A^2\ cij) =  c\8{u +  / / (2) — Z\) +  Co5(uj -I- / / (2̂ — z2), (3.33)

where the notations used are the same as in Eq. (3.24). However, as shown 
in Fig. 3.5, it is fairly inaccurate.

The extrapolation of self-consistent T-matrix theories to the real axis is 
not so straightforward, and it must be handled with care. In Fig. 3.5 the 
spectral function for the (GGq)Gq has been obtained through Pade approx- 
imants (see §B.2). As already noted, the (GG0)Go theory reproduces the 
exact result at zero temperature. The agreement with the exact result at low 
temperatures is remarkable. Thus, even though both the TPSC theory and 
the {GGq)Gq T-matrix approximation give exact results for the chemical po
tential and the energy at low temperatures, only the latter fully reproduces 
the exact result as a function of frequency. Inspection of Fig. 3.2 shows that 
‘improving’ the degree of self-consistency deteriorates the agreement. This 
would mean that at low temperatures some cancellation occurs between the 
fully self-consistent T-matrix diagrams {(GG)G theory) and the omitted ver
tex corrections. This possibility remains to be shown, however.
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Figure 3.5: The spectral function for the (GGq)Gq T-matrix approximation 
(symbols), compared with the exact result (solid curve, Eq. (3.31)). The re
markable agreement shows that only partial self-consistency is a requirement 
to reproduce the exact result. The TPSC result (both first (Eq. (3.32)) and 
second (Eq. (3.33)) steps) are poorer in comparison. We have used a small 
artificial broadening, 5 =  0.01 \U\ to plot these results.
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3.4.4 Discussion
The agreement of the (GGq)Gq T-matrix and TPSC approximations for the 
thermodynamics (i.e. the chemical potential) at T  =  0 (note that neither 
approximation is particularly accurate at intermediate temperatures) raises 
the question of the origin of the effective potential. \UPP\, in the TPSC the
ory. W ithin a conserving approximation, a frequency-independent irreducible 
vertex, \UPP\, is accompanied by single electron propagators that, aside from 
a simple Hartree-like correction, are otherwise unrenormalized [76]. The 
(GG0 )G0 T-matrix approach, however, suggests that the origin of an effec
tive interaction is from the (partial) renormalization of the single electron 
propagator. That is, we can construct a theory that appears similar to the 
TPSC theory, i.e. with unrenormalized propagators everywhere in Eqs.(3.15), 
(3.16), but with an effective interaction vertex. Eq.(3.15) suggests this will 
be accomplished by

l^lxo(w'n) =  \U<ff\xoo(iVn), (3.34)
where Xooi^n) = ^ E m^o(*wm)G0 (-*u;m + ivn). Note that this requires 
| Uej j  | to depend on Matsubara frequency, but, in the spirit of TPSC (and 
many Parquet-like treatments of higher order corrections [73]), we will use 
Eq. (3.34) at zero Matsubara frequency to define an effective potential. Com
parisons with \Upp\ as obtained in the TPSC formalism, illustrated in Fig. 3.6 
show quantitative discrepancies, particularly as the temperature approaches 
zero. Thus, the two theories differ more substantively than Eq. (3.34) would 
suggest.

This difference is clearly illustrated in the results for the spectral function, 
Fig. 3.5. In the (GGo)Go approximation the spectral function is exact at low 
temperatures, while in the TPSC approximation it is qualitatively wrong in 
the first step. This also indicates that this level of T-matrix approximation 
does not just ‘mimic’ the TPSC result as was found above, in connection to 
Eq. (3.34). Rather, it would appear that a  more profound cancellation of 
diagrams occurs, the significance of which eludes us a present.

Here we conclude our critical examination of various approximations for 
the attractive Hubbard model in the dilute and strong coupling limit. We find 
that minimal self-consistency in the T-matrix approximation (the (GGo)Go 
theory promoted in particular in Ref. [72]) and the TPSC theory of Vilk- 
Tremblay [29] both reproduce the exact result best, particularly at low tem
peratures, where both become exact. Surprisingly, ‘improving’ the degree of 
self-consistency within a T-matrix approach leads to less accurate results.
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Figure 3.6: The ‘effective interaction’ associated with the (GGq)Gq version 
of the T-matrix approximation (see Eq. (3.34)) vs. the irreducible vertex of 
the TPSC approximation, at n =  0.3.
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Two-particle correlations (summarized in the total energy in this work) are 
faithfully reproduced by the (GGq)Gq calculation for a range of low tempera
tures, and, finally, the one electron spectral function is remarkably accurate, 
even a t nonzero temperature. These results suggest that, a t least for low 
electron densities, this T-matrix formulation is useful for higher dimension 
calculations, which make the object of the next chapter.
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Chapter 4 

Higher Dim ensions

Atomic limit (O-dimensional) work provided means to investigate how well 
different approximations worked, at least in the strong coupling limit. While 
we believe th a t such work is insightful, it needs to be extended to higher 
dimensions, in order to be relevant to real systems.

In this chapter, we will explore the ability of T-matrix-type approxima
tions to produce a pseudogap in the one-particle spectrum for higher dimen
sion lattice fermions provided with an attractive interaction. In this case, 
the progress that can be made analytically is limited, and one has to rely on 
heavy computational work. The difficulties are twofold: on one hand, with 
increased dimensionality, the numerical calculations become more computa
tionally costly; on the other hand, as a matter of practicality, we perform our 
calculations on finite lattices, and we must find ways to manage finite size 
effects, especially near instabilities (ideally, one is interested in the thermo
dynamic limit, N  —>■ oo). An additional challenge is related to the necessity 
to extrapolate to the real frequency axis, when one seeks to study dynamic 
properties of the model. We will address these issues while investigating the 
effect of pairing correlations on the normal state of the AHM.

4.1 The quest for the Pseudogap
We motivated our work by the presence of an unconventional pseudogap state 
above the superconducting transition on the underdoped side of the highly 
anisotropic, quasi-two-dimensional High Tc cuprates. This really means a 
depletion of single-particle states near the Fermi energy, anticipative of the
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true gap in the density of states in the superconducting phase of these ma
terials. Adopting the ‘precursor scenario’ line of thought, we have described 
a technique designed to incorporate pairing fluctuations into single-particle 
properties - the T-matrix approximation. There are many interpretations to 
this theory, the merits and shortcomings of which were outlined in §2.4 and 
investigated in greater detail in the atomic limit in Chapter 3. We hope to 
have given the reader a sense of the great deal of effort invested in T-matrix- 
type calculations by many researchers over the years. In addition, arguments 
against such formulations and in favor of alternate treatments requiring ver
tex corrections have also appeared, and we have mentioned the TPSC ap
proach of Vilk-Tremblay [29]. The ‘lack of satisfaction’ with the T-matrix 
approaches can be traced to the difficulty of studying two-dimensional sys
tems in which the Mermin-Wagner theorem precludes the' existence of true 
long-range order. Thus no realistic approach of this type applied to two 
dimensional (2D) systems can aim to a quantitative agreement with experi
mental values of Tc in cuprate materials: by necessity Tc from any Thouless 
criterion approach (by which we refer to any attempt to identify Tc through 
a diverging pair susceptibility) must be zero. In the case of the T-matrix 
approximation, we have shown that self-consistency ‘does the trick’, even in 
minimal formulation. Once the Mermin-Wagner result is restored, one can 
look for a pseudogap signature in the single-particle properties in the normal 
state, above Tc =  0. (To connect with real cuprate materials, their finite 
Tc is necessarily the result of coupling between the planes, unless the tran
sition is to the Kosterlitz-Thouless phase [82], the existence of which is still 
debated in the cuprates [83]; the Kosterlitz-Thouless physics is beyond the 
competence of T-matrix-type approximations.)

Alternatively, one can avoid the problem with the Mermin-Wagner theo
rem by studying a three dimensional (3D) system. In this case we avoid the 
necessity (and the computational effort) of using a self-consistent theory. For 
an infinite lattice in three dimensions, the NSC Thouless criterion gives pre
cisely the BCS result for Tc. It is true that most of the research on the subject 
associates the pseudogap with the lower dimensionality of the cuprates; in 
terms of fluctuations, this is simply a statement that one expects enhanced 
fluctuations towards the low-temperature phase, the lower the effective di
mensionality of the s\rstem. However, an interesting question is: should one 
expect a  pseudogap in a 3D system with purely electronic attractions? In 
fact, we will show- that a pseudogap does appear in the single-particle density 
of states of the 3D AHM at half filling, even at weak coupling. Moreover,
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the weak coupling magnitude of the pseudogap compares well with the BCS 
gap that would be found at zero temperature.

4.2 Imaginary axis calculations - finite size 
effects

Any numerical treatment of a lattice model suffers from finite size effects, i.e. 
the results depend on the size of the system considered. While at high enough 
temperatures the differences are usually small, the size dependence becomes 
important near instabilities. The larger the size of the system one can afford 
to work with, the closer the results to the thermodynamical limit (appropriate 
for real systems, with very large N). For ID systems one can normally afford 
to increase the size of the lattice until the results stop changing, indicating 
that the thermodynamic limit has been reached. This procedure becomes less 
practical with every added dimension. Moreover, the ability to increase the 
size might not be enough when one has to deal with diverging integrands. We 
will illustrate this issue by using the NSC T-matrix to solve for the AHM in 
one, two and three dimensions. We stress that this is not intended to provide 
an adequate solution for the ID and 2D cases, where we have established that 
the NSC T-matrix approximation is not adequate. But it will demonstrate 
where the difficulty comes from and how increasing dimensionality changes 
the nature of the problem.

4.2.1 NSC T-matrix
In the NSC T-matrix approximation, the independent pairing susceptibil
ity is obtained by replacing the fully dressed one-particle Green function in 
Eq. (2.32) with the noninteracting one:

Xoo(q, w n) =  j j z  G° ( ^ *w/)G°(-fe +  Q, ~iui +  i vn ), (4.1)
k 1

i - iwhere G°(k,iiom) = \iu>m ~  £*;] • This substitution allows for the frequency
summation in Eq. (4.1) to be done analytically, leading to

* » ( « ■ • * ) - —3 7 ?  • (4 -2)
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In the above equations, like elsewhere in this thesis, iu m =  inT(2m  — 1 ) 
and ivn =  %2'nTn, with m. n  € Z, are the fermionic and bosonic Matsubara 
frequencies, respectively, f ( x)  =  l/(e^ 2 -i-l) is the Fermi distribution function 
and =  (e^ — //)  represents the independent one-particle energy measured 
from the ‘corrected5 chemical potential / / .  Here, as in the rest of this work, 
we understand that p! differs from the true chemical potential by a Hartree 
term: fj.' = fj, + \U\n/2. In what follows we will ignore the prime in the 
notation, for simplicity.

The self-energy, according to the NSC version of Eq. (2.35), is then given
by

_ |t j ]2   ̂ _
E(&, iu m) = S  x(& iVn)G°(-k  +  q, - i u m +  ivn)

All the quantities entering Eq. (4.3) are known. Nonetheless it is not in a 
convenient form for two reasons. First, the Matsubara sum extends over 
all n € Z. Numerically, it must be truncated, and it is important that 
this is done in some sensible manner. Secondly, we use discrete momentum 
sums over the First Brillouin Zone (FBZ) of the finite size lattice considered 
for numerical calculations. While this works well at high temperatures, it 
fails for temperatures and chemical potentials near the Thouless curve. As 
T  —> Tc, the Thouless criterion 1 =  \U\xoo{q = 0, ivn =  0) leads to a diverging 
pair susceptibility Using discrete momentum sums, the {q =  0, ivn = 0) 
contribution, which contains the pairing instability, will lead to a self-energy 
that diverges in any dimension. This is the expected behavior in ID and 2D, 
however, a space phase argument following the Mermin-Wagner theorem [77] 
shows that the self-energy should not diverge in 3D. We need to remedy the 
numerical evaluation of Eq. (4.3) to capture this distinction between one, 
two and three dimensions.

4.2.2 Low q analytical integration
In order to do that, we isolate the (q =  0, ivn = 0) contribution to the sum 
in Eq. (4.3). As a results, the self-energy can be separated into a singular 
and a non-singular part:

I7VI2 (X
G ° ( -k  + q, —iiom +  ivn). (4.3)

E (£  iu m) = ES(A iujm) +  S  n$(k, iu m). (4.4)
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The singular partio'-
|0

^  =  - § i H ” S =0 )o ,o )G° ( - g +  ( f -  0)’ (4"5)

diverges as (T — Tc)~l in all dimensions. The remaining contribution is

e - A  =  - g  t  + s  + ^  (4'6)

Fig. 4.1 shows the FBZ for a 8  x 8  square lattice. In this example, for each 
Matsubara frequency, the summand in Eq. (4.3) is evaluated a t each momen
tum point and added up. For zero frequency, the singular contribution comes 
from the point marked with “0” , with the weight 1 /N .  The correct results, 
corresponding to the thermodynamic limit, would involve a D-dimensional 
(two-dimensional, in the example in Fig. 4.1) integral over the whole FBZ. 
Treated numerically, even with a  finer mesh, there will still be a singular con
tribution at point “0” , but with less and less weight, as N  increases. Also, 
increasing N  becomes more and more computationally costly.

Instead, we will use a low q expansion for xoo> which allows an analytical 
treatment. It is true that this expansion is done here before the summation 
over the bosonic Matsubara frequencies, however, we assume we are in the 
renormalized classical regime, where the most important contribution comes 
from ivn =  0 [29]. The low q expansion allows us to do the integration over 
the region around q =  0  analytically, and add to it the rest of the terms in 
the sum for a reasonably low size finite lattice. With this procedure we hope 
to capture the thermodynamic behavior with much smaller lattices. We will 
demonstrate shortly that it works remarkably well.

With the above considerations, we replace the singular part of the self
energy in Eq. (4.5) by

4 \ -  _ M :  r  d°q X oo(9,°) w v  r  , -  x (a 7\ 
j ( ’ m )  P  (2^)° 1-1(71x00(9,0)' { ‘ 9 ' m ) - ( )

For small q. the ‘bare’ pairing susceptibility xoo can be approximated by

Xoo(<?,0) «  a2 -  b~q2, (4.8)

where q = \q\, ar = Xoo(0,0) and £r =  . For practical pur-
q= 0

poses, a2 and b2 are obtained by fits to Xoo(q, 0) at q = 0 and q = qo- Fig. 4.2
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Figure 4.1: First Brillouin Zone for a 8 x8  square lattice. The region around 
the origin is indicated for analytical treatment, as discussed in text.

shows an example in ID. We note that in 2D and 3D we will use an average 
value of 62, as fitting Xoo(<f, 0 ) along different directions between q =  0  and 
q =  <f0 results in slightly different values for this parameter. Fig. 4.3 illus
trates that the 3D fit reproduces very accurately the thermodynamic limit 
result at low q, even with the average value of the parameter b2 from fits 
along (O,0,0)-(go,0,0), (0,0,0)-(go,9o,0) and (0,0,0)-(g0,go,9o)-

If a low q expansion is also performed for G°(—k+q, the following
compact form emerges for Es, valid at small q:

.4 +  Bq1 1 + (4.9)

where D  is the dimensionality and we have introduced the following nota
tions:

A =  1 -  \U\ar, B =  \U\b2: 

9k =  1 +  €k) and

E ( dS )

0

D
2= 1

9k_
2D

D PP-f- 
dk?

7 =  1  C .

(4.10)
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Figure 4.2: Real part of the noninteracting susceptibility (Eq. (4.2)) vs. q in 
ID. The fit is obtained as described in text, based on the two lowest points 
(q = 0 and q — t t / 8 ); clearly, it reproduces very accurately the thermody
namic limit at low q.
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Figure 4.3: Real part of the noninteracting susceptibility (Eq. (4.2)) vs. q 
in 3D. The agreement with the thermodynamic limit at low q is remarkable, 
given tha t the fit has been obtained with the average fitting parameters along 
the (1 0 0 ), (1 1 0 ) and (1 1 1 ) directions.
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A  and B  are both positive numbers, however, the definition of ar makes it 
clear that A  is approaching zero as T  Tc. Note that in deriving Eq. (4.9) 
we made use of the symmetry of the hyper-cubic lattice in D  dimensions. 
With the additional definition

FE( , ) =  (4.11)

we will next specialize Eq. (4.9) to one, two and three dimensions.

ID results

In ID, using the definition in Eq. (4.11) into Eq. (4.9) leads to  the following 
expression for the singular part of the self-energy:

Es(fc, iujm) =  M gk r  dqFk(q) (4.12)
Jo

All the integrals in the above equation are elementary, with the following 
result:

2 s{k,iijjm) = — gk\ ~qo + —j= =  arctan ^
f a  { V a b  \ tJ a J b ,

+  dk +  — on — \ -=r arctan .________
3 b  ® M b  \ y f X f B ,

(4.13)

We have underlined the singular contribution in Eq. (4.13), all the other 
terms being finite. It is correct that this quantity diverges in ID. We note, 
however, that handling the small q integration analytically weakened the 
divergence; the singular term behaves now as 1/yJT — Tc. instead of the 
incorrect 1 /(T  — Tc).

Fig. 4.4 shows results for the number density in ID, computed for different 
lattice sizes with and without the small q correction. The results computed on 
a  128 site lattice are essentially in the thermodynamic limit, both the regular 
lattice summation and the low q analytical treatment yielding virtually the 
same result. The figure shows how remarkably this method works: even with 
the smallest lattice size shown, the low q integration technique produces 
results very close to the thermodvnamic limit.
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Figure 4.4: ID - Electronic density vs. temperature computed with and with
out the analytical correction for small q (Eq. (4.13)). The results computed 
on a 128 site lattice are essentially in the thermodynamic limit, and there is 
barely any difference between the two procedures (the corresponding curves 
are on top of one another). For the other two lattice sizes shown, the refine
ment discussed in text clearly leads to a much more accurate answer then 
just using lattice sums.
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2D results

Rigorously, the refinement to 2D requires an integration over a square with 
side of length 2q0 (the filled square in Fig. 4.1). Going to polar coordinates 
we rewrite Eq. (4.9) with D  =  2 (in deriving Eq. (4.9) we already took into 
account the square symmetry of the lattice, so the domain of integration is 
reduced to the first quarter of the above-mentioned square):

-  \U I r~l~ ri°(v)
Es(k:iujm)  =  j ^ 9 k J Q dV J Q (4-14)

where we have used the same definitions as in Eqs. (4.10), (4.11). The upper 
limit on the second integral, qo(tp), follows the edge of the elementary square. 
For the sake of simplicity we will integrate over a disc of radius go instead, 
and adjust the weight associated with the contribution to the discrete sum 
from the corner points to account for the missing area. We have checked 
numerically (both in 2D and in 3D, where we integrate over a sphere instead 
of a cube) that the difference to the final result is insignificant. With this 
simplification, the two integrals in Eq. (4.14) become independent and the 
result for self-energy is

\U\ f  9o 1 , ( A + Bq>\g j  - ¥  +  _ l o g f — —  \

+<4
A  +  Bq~o

(4.15)

Thus we see that the 2D self-energy still diverges, now logarithmically with 
T  -  Tc.

As previously noted, a diverging self-energy will cause the number density 
to go to one, as evident from Eqs. (2.38), (2.36). This is still the case in 
two dimensions, but Fig. 4.5(a) shows that the singularity produced by the 
low q integration technique is much weaker. Only very close to Tc is the 
effect of a logarithmically diverging self-energy visible at all, as opposed to 
the results obtained through regular lattice sums. Although thermodynamic 
limit results are not available for the 2D case, using the low q treatment 
described above results in much less change with the size of the system, as 
shown in Fig. 4.5(b).
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Figure 4.5: 2D - Electronic density vs. (a) temperature and (b) l (N x. for 
a Nx x Nx lattice, near the Thouless temperature. Note: in (a), while the 
effect of a very weak (logarithmic) singularity (see Eq. (4.15)) remains, it is 
exaggerated for the curves without the low q correction; in (b), the result 
with the low q analytical treatment converges much more quickly with lattice 
size.
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3D results

Finally, in 3D we must integrate over a cube of side 2q0 centered around 
origin. W ith the cubic symmetry already accounted for in Eq. (4.9) and 
going over to spherical coordinates, the 3D self-energy is given by:

17 7 1 rT'l- r^/- rqo(0,ip)
E s(k,icjm) =  J  dtp sin(0)d6 J  q2dqF^{q). (4.16)

Like in the 2D case, we integrate over a sphere of radius qo instead, and 
the upper limit on the third integral looses its p> and 9 dependence; the 
big difference in 3D is the Jacobian factor q2. which removes the singular 
behavior as <7 —> 0. The result of the integration is:

s ’ (k' iuJm) =  w ? gt
9o- V |  arctan ( - | U

+  dk 9« A a +
li ~B

3 /2

B
arctan (  q° >■ (4.17)

Inspection of Eq. (4.17) shows that as T —*• Tc, i.e. as A —*■ 0, the self-energy 
remains finite. In fact, terms that diverged in ID and 2D now vanish as 
A  —*■ 0. As is apparent from Fig. 4.6, this leads to qualitatively different 
behavior in 3D, compared with lower dimensions.

4.2.3 High frequency correction
We end this section on a technical note, concerning the frequency cutoff. We 
mentioned th a t numerically, the Matsubara frequency sums must be trun
cated: to ensure that this has a minimal impact on the results, in the actual 
calculations we have added and subtracted the 'noninteracting' pair suscep
tibility in the following manner:

E (k, iiOm) • i g v
/ 3 N ^q.n

Xoo(£ ivn)
J--\U\xoo{q-,ivn) -Xoo(q,iVn) G °(-k -r  q.—i’jJm -f ivn)

W\2
j  Y  Xoo(g, i V n ) G ° ( - k  +  q, - iW m  +  M'n)-f3N q̂.n

(4.18)
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Figure 4.6: 3D - Electronic density vs. temperature, with and without the 
low q analytical integration. Note tha t there is very little size dependence 
of the results computed with the low q correction; also, with this technique 
there is no remaining singularity in the electron density at the Thouless 
temperature (see Eq. (4.17)), while the singularity is clearly visible in the 
results computed just using lattice sums.
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The first term in Eq. (4.18) converges much more quickly at infinity now. and 
a straightforward truncation will work well; the small q treatment remains 
qualitatively the same, since no potential singularities exist in the noninter
acting susceptibility. The Matsubara sum in the second term can be done 
analytically, with the following result:

where S corr refers to the second line of Eq. (4.18).

4.3 Real axis calculations
The Matsubara formalism is very convenient and easy to use. Imaginary axis 
calculations provide thermodynamic quantities such the density, energy and 
specific heat, and we showed them :at work1 in the last section. However, 
in order to study spectral properties of the interacting many-body system 
one needs to extrapolate to the real frequency axis, and this must be done 
carefully. For example, in Eq. (4.2) the analytic continuation of XooiQ- 'tvn) 
to the complex plane is achieved trivially by the substitution ivn —> z, where 
2  can be anywhere in the complex plane, including just above the real axis: 
z = u  + i5. However, in Eq. (4.3) it would be incorrect to replace icjm by z 
before the Matsubara sum over ii/n is done.

4.3.1 Continued fraction approach
One way to approach the problem is to notice that the pair propagator

ĉorr (&, «4n)
1 /(?£') / (£_fc'+q) /(?_fc+g) I /(?p)/(C_p-i-if)

fc',9 iUm £-fc'+g ' £-k+g
(4.19)

1 - I^IXoo(9,2) i +  |/7 | i . £ \ -

admits a partial fraction decomposition, which can be written as:

(4.21)
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where Sq denotes the number of poles for each q, the energies E-'1 are real 
( £ )and the residues R y  are strictly positive, for £ =  1 , . . . ,  Sq. Substituting 

the above expansion into Eq. (4.3) and completing the Matsubara frequency 
sum analytically allows us to write the following analytic continuation for 
the self-energy:

l=\

(We note that strictly speaking, one should use different notations for the 
functions in Eqs. (4.21), (4.22) than for their imaginary axis counterparts: 
we kept the same notations for simplicity.) As elsewhere in this thesis, 
N (x ) =  l / ( e /3x — 1 ) and f ( x )  = l / ( e !3x +  1 ) are the Bose and Fermi dis
tribution functions, respectively. The self-energy in Eq. (4.22) requires the 
determination of the poles and residues of the partial fraction decomposition 
of the pair propagator. This approach was used in Ref. [84], together with a 
computer algebra system allowing for a symbolic calculation that produces 
numerical results for the poles and residues [70, 8 6 ].

4.3.2 Kramers-Kronig technique
We outline below a different approach, which will exploit the fact th a t the 
real and imaginary parts of the self-energy are related through a Kramers- 
Kronig integral. Using the spectral representation for the pair propagator

* ( , - * ) =  r f f c b * .  (4.23)
J — CO ~ ^

in the expression for self-energy, Eq. (4.22), enables us to perform the Mat
subara sum analytically. Then the analytic continuation is achieved by the 
substitution iu}m —* z, with the following result:

v (£ , 2 ) . - E ! T  r (4.24)
N  V V -o o  *

9

In the above equations, we have used the following definition for the spectral 
function associated to the pair propagator:

B(q. v) =  — ilm x (g , v  +  iS). (4-25)
7r
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Eq. (4.24) can provide the self-energy just above the real frequency axis, 
2  =  (<5 —» 0+). However, the frequency integral on top of the momentum
sum of a complex integrand is difficult to tackle computationally. The matter 
simplifies considerably if we separate the imaginary part and make use of the 
relation

— L j  s  V -  -  MTf(u), {->  0+, (4.26)
LJ -f" %0 U)

where V  denotes the principal part. Thus the imaginary part of Eq. (4.24) at 
2  =  uj 4- i5 involves a 5-function, which enables us to perform .the frequency 
integral right away:

E2(£, u  +  iS) =  7r S -  Y l  [  v ) +  /(C_fc+9-)l 5(uj - i s  + £_j:+j)dis
q J ~°°

= 7rT ( r  U +  N (.U +  f-jfc+f) +  f  (Z-k+q) ’ (4-27)
9

where we have used the definition E =  Ei +  iS 2.
In order to calculate E2, we need the spectral function B(q. is). According 

to Eq.(4.25), it works out to be

B(q, is) = Xoo.2(q, v  +  i5)
[1 -  \U\xoo, i (q,  v  +  i<5)]“ +  \U \2Xoo,2 (q: v  + iS)

(4.28)

Xoo.i and X00.2 denote the real and imaginary part of the noninteracting 
pair propagator: xoo =  Xoo.i +  *Xoo,2 - They are obtained by substituting 
iisn —*■ 2  —> is iS in Eq. (4.2) and using Eq. (4.26):

Xoo.2 0?, v  +  i6) =  [X ~  /(& ) “  /(^-S+,-)] 5 ( u ~  & ~  £-*+,-) >
k

Xoo.i(9> +  tf) =  ~ f P f  1 (4 2 9 >
£  ^k $-k+q

We now have all the ‘ingredients’ needed to calculate S 2. Once the imag
inary part is calculated, the real part of the self-energy is obtained through

E 2 (fc, <J -H i5)

a Kramers-Kronig integral:

1 /■
Ei(fc,w +  *5) =  —  /  V-  

H J—00

-dw'.UJ — us1 (4.30)
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The spectral function is then calculated from:

A(k. bj) = ——Im G(k. u  +  i5)
7r

i So(&, oj -F iS)
(4.31)

u) — — Sj(fc, uj +  iS) 4- Ylo{k, lj -t- id)

The Density Of States (DOS) is given by

(4.32)

4.3.3 Numerical treatm ent - finite size and broadening

Like the computations on the imaginary axis, the numerical treatment of the 
equations in §4.3.2 has to take into account finite size effects. Unfortunately, 
the low q treatment described in §4.2.2 is complicated by the fact that xoo is 
now a complex, continuous function of frequency, so a low frequency expan
sion is needed as well. No longer do we have the possibility of separating the 
zero frequency term in a discrete sum. That prevents us from being able to 
integrate the low momentum region analytically, and a regular lattice sum 
will include the q =  0 , 2  =  0  divergence in the pair propagator, leading to 
a diverging self-energy. The smaller the size of the lattice, the more weight 
(equal to 1 /N )  the divergent term will have in the sum.

There is a simple solution to by-pass the diverging term. In the ther
modynamic limit, the sum becomes a momentum integral over the FBZ. 
The regular sum over the FBZ of a hyper-cubic lattice is in fact numerically 
equivalent to the trapezoidal rule for performing the momentum integral. 
However, numerically this integral would be called 'improper', because it has 
an integrable singularity at the lower limit (at q = 0). To perform such an 
integral, the evaluation of the integrand at endpoints should be avoided, and 
this is done by using the mid-point rule [85]. In our case, we evaluate the 
integrand half-way between points in the FBZ. This way we avoid the diver
gent contribution at q =  0 and the self-energy will remain finite. Evidently, 
this leads to incorrect results in one and two dimensions, where the NSC T- 
matrix self-energy should diverge. This is because in ID and 2D the integral

effects
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is not ‘improper’, it is infinite (the q = 0  singularity is not integrable, as 
was illustrated in §4.2). Trying to find a numerical treatment for such an 
integral would be an ill-posed problem. For this reason, the NSC T-matrix 
approximation is not appropriate for the ID and 2D cases. Thus we will 
only apply it to the 3D case, and use the mid-point trapezoidal method to 
calculate a self-energy that remains finite.

Another numerical difficulty is related to d —> 0+ . The importance of this 
parameter is that it places the quantities of interest in the complex plane 
above, but infinitesimally close to the real axis. Numerically, d can be small 
but is by necessity a finite quantity, and its value may affect the outcome of 
the numerical calculation. We address this issue by progressively decreasing 
our numerical d and looking a t the effect on the resulting density of states.

Finally, similarly to the imaginary axis calculations, a frequency cut
off is needed for the numerical treatment of the Kramers-Kronig integral, 
Eq. (4.30). Also, we will make the integrand more quickly convergent around 
the u) = oj' singularity by adding and subtracting a term:

The term on second line of Eq. (4.33) turns out to be zero, which is easily 
seen after making a change of variables y  =  u '  — u  and noticing that the 
integrand is an odd function of y. Thus, the real part of the self-energy is 
given by the term on the first line of Eq. (4.33).

4.3.4 3D density of states - results
We have calculated the 3D DOS for a range of coupling strengths, using the 
mid-point trapezoidal rule for the momentum integration. DOS results on a 
16 x 16 x 16 lattice for two values of the coupling strength, corresponding 
to strong and weak coupling, respectively, are shown in Fig. 4.7, for a nu
merical broadening of d =  0.011 . Partly due to the interest in the cuprate 
superconductors and doped Mott insulators, and also for convenience, we 
have examined a noninteracting density of (n) 0 =  1, viz. half-filling. Also, 
DOS results for the same parameters, obtained through a partial fraction de
composition algorithm, are available for comparison in Ref. [84]. Fig. 4.7(a)

(4.33)
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shows results for the stronger coupling \U\ =  6 £. Each DOS curve presents 
peak structures that become sharper as the temperature is lowered towards 
Tc. It is natural to associate the location of these peaks with something 
analogous to the superconducting gap. Of course, the NSC T-Matrix ap
proximation is a normal state theory, and the DOS does not ever go to zero 
(at u / t  =  0 ), so the locations of the peaks are not true superconducting gaps. 
Instead, we think of the peak locations as indicating the energy of a pseu
dogap. Perhaps not surprisingly, a  robust pseudogap is found for the strong 
coupling case. However, as illustrated in Fig. 4.7(b), a similar analysis for 
\U\ =  31 finds evidence for a pseudogap (albeit much weaker) persisting to 
lower couplings.

As a  function of temperature, the pseudogap does not change apprecia
tively for small reduced temperature ([T —Tc]/Tc less then 0.1). At sufficiently 
high temperatures the gap disappears, and we find that it does so by filling 
in, as opposed to the pseudogap energy going to  zero.

We note that the pseudogap we find does not diverge as the temperature 
is lowered very close to Tc. In addition, Fig. 4.8 shows that for two different 
lattice sizes the pseudogap does not change. These two facts are an indica
tion th a t the mid-point trapezoidal q integration leads to results that are a 
good approximation to the thermodynamic limit. We contrast this finding 
to Ref. [84], were a 1/A' 2 scaling is used to extrapolate the pseudogap re
sults, displaying strong finite size effects, to the thermodynamic limit. Our 
pseudogap values correlate well with the extrapolated results of Ref. [84], 
for both strong and weak coupling. Furthermore, one can use BCS theory 
to calculate the superconducting gap at T  = 0 .  Fig. 4.9(c) compares the 
pseudogap, as obtained from the DOS peak positions for different coupling 
constants going from weak to strong coupling (shown on panels (a,b) of the 
same figure), with the BCS superconducting gap Agcs(O)- Remarkably, the 
lower coupling pseudogap follows the BCS results very closely for a range of 
coupling strengths, before crossing over to a higher energy scale at strong 
coupling, roughly three times larger than the BCS gap energy. The reason 
for the large difference in the strong coupling limit is unclear to us at present.

The purpose of Fig. 4.10 is to justify the value of the broadening param
eter 8 we have chosen for our DOS results. We mentioned that a finite value 
of 8 may affect the outcome of the calculations. While this is confirmed for 
values of <5/t greater than 0.01, for 8f t  below this value we find that results 
become noisier, but the position of the peaks in the DOS does not change. 
Thus we trust that the energy of the pseudogap that we find using a numer-
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Figure 4.7: DOS (Eq. (4.32)) for (a) \U\/t =  6  and (b) \U\ft =  3 at half
filling, for a  163 simple cubic lattice, at different temperatures above (and 
moving towards) Tc. Note the peak structures in the DOS curves, indicative 
of a pseudogap that fills in at higher temperatures.
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p/t = 0 (n=1), |U|/t = 6, 5/t = 0.01, T/Tc = 1.001
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Figure 4.8: DOS (Eq. (4.32)) for (a) \U\/t =  6  and (b) \U\/t =  3 at half
filling, near Tc, for two different lattice sizes. Note tha t the position of the 
peaks does not change with the size of the lattice.
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Figure 4.9: (a,b) DOS (Eq. (4.32)) for different coupling strengths at a tem
perature of 1.00irc, for a 163 simple cubic lattice at half-filling. The \U\jt in
crement in (b) is 0 .2 ; the peak position is indicated for each coupling strength, 
(c) Comparison of the pseudogap with the BCS SC gap at T  =  0.
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Figure 4.10: DOS (Eq. (4.32)) for (a) \U\/t =  6  and (b) \U\/t = 3 for a 123 

lattice a t half-filling, near Tc, for different values of the broadening parameter 
8. Note that while the position of the peaks changes with 5 above 8/t = 0.01, 
it stays the same for 8/t  less than this value (results for 8/t  =  0 .0 0 2 , not 
shown, confirm this finding).
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ical broadening of 0 . 0 1  (in units of t) is indeed correct, and not an artifact 
of the chosen <5.

The existence of a pseudogap in a model of a three-dimensional strongly 
correlated electronic system agrees with earlier (three-dimensional) work by 
Levin and coworkers [72]. However, they propose that the pseudogap they 
find can be understood in terms of a T-matrix resonance caused by interme
diate to large \U\, whereas we are finding the full value of the BCS gap above 
Tc even for weak coupling.

4.4 2D case - self-consistent treatment
The two dimensional case is of special interest, because the physics of the 
HTSC materials is essentially two-dimensional. We advocate the view that 
the anomalous normal state in the cuprates, i.e. the pseudogap phase, may 
be the result of pairing fluctuations above Tc. The simplest way to incorpo
rate pairing correlations into single particle properties is the NSC T-matrix 
approximation, used in the previous section for 3D calculations. While capa
ble of producing a well-defined pseudogap at low temperatures reminiscent 
of experiment [87], this approximation fails in two dimensions for reasons 
amply discussed in §2.5 and illustrated in the atomic limit in chapter 3.

The main conclusion of the atomic limit work is that self-consistency 
does indeed correct the anomalies of the NSC T-matrix theory. In that 
context, a minimal formulation of the self-consistent T-matrix theory seemed 
to work best, especially in the low-temperature, low-density regimes. In fact, 
it proved to be exact at T  =  0, and followed very closely the exact results for 
an extended temperature range above zero.

In this section we will use that minimally self-consistent version of the 
T-matrix approximation to solve for the attractive Hubbard model in two 
dimensions. Specifically, we will be searching whether or not this formulation 
produces a  ‘normal state gap’ in the single particle spectrum.

4.4.1 The approximation
We will include feedback effects into the T-matrix through the use of one full 
propagator in the ‘bare’ pair susceptibility:

X o{ Q W n)  = iui)G °{-k  +  q, - i u t +  ivn). (4.34)
k,l
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The self-energy is given by

^ I jry 12  v ^
E(k, iujm) = -  —  *(<?, ivn)GQ{—k +  q\ - iw m +  iun)

q,n

l^ |2 Y ^ Xo(9,^n)
r n ^ i - m x o i h ^ ) 001- k + s ' (4 3 5 )

This self-energy ‘dresses’ the one-particle propagator via Dyson’s equation, 
Eq. (2.36), which closes the self-consistency loop.

The calculations we have done in the atomic limit, as well as previous work 
on higher dimensions [72, 75], have shown that any degree of self-consistency 
drives the superconducting instability to zero temperature. We illustrate 
this property once again in Fig. 4.11, by comparing the 2D electron den
sity obtained through a self-consistent calculation with the NSC density we 
calculated in §4.2.2, both with and without the low q refinement discussed 
there. While the NSC density goes abruptly to one as the Thouless tem
perature is approached, indicating a diverging self-energy, the self-consistent 
result continues on smoothly, demonstrating the absence of a Thouless re
gion. Once this has been established, one can look for a pseudogap signature 
in the single-particle properties in the normal state, above T  =  0.

4.4.2 2D density o f states
As Eqs. (4.31), (4.32) show, calculating the DOS requires the one-particle 
Green function on the real axis. Within the Matsubara formalism we calcu
late G{k,ium) from its self-energy via Dyson’s equation, Eq. (2.36). Bavm 
and Mermin [8 8 ] ■ have proved that it is possible, in principle, to analytically 
continue the temperature Green function to the whole complex plane, pro
vided that we know its value at an infinite set of points on the imaginary 
axis. Supposing that the analytical continuation can be found, we merely 
evaluate it along the real axis, setting 2  =  tu-)-?’0+. In practice, however, any 
numerical treatment provides the value of S (k, iuim) (and thus G) a t a finite 
set of points. Moreover, the theorem of Baym and Mermin only shows the ex
istence and uniqueness of the analytical continuation, but there is no general 
prescription to find it, hence the need to resort to approximate techniques.

A widely used technique is the Pade approximant method, in which a 
continued fractions decomposition of the function to be extrapolated to the
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Figure 4.11: 2D - Electronic density vs. temperature and for a 16 x 16 lattice. 
Note the absence of a Thouless region in the self-consistent calculation (see 
Eqs. (4.34), (4.35)). The inset focuses on the region near the Thouless tem
perature, emphasizing once again the weaker (logarithmic) singularity when 
the low q contribution is handled analytically (see §4.2.2 for discussion).

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



real axis (see an example for the NSC pair propagator in §4.3.1) is artificially 
terminated. Numerically, this procedure is equivalent to fitting the function 
of interest by ratios of polynomials. The most common scheme, a recursive 
algorithm called Thiele's Reciprocal Difference Method, is presented in Ap
pendix B. This approximation was used by Vidberg and Serene [89] in the 
context of the Eliashberg equations.

The main concern with this technique is the high degree of accuracy it 
requires for the values on the imaginary axis of the function to be fitted, 
which puts a difficult strain on computer resources, especially when self- 
consistent calculations are involved. This prevented us from obtaining results 
for very low temperatures, where we felt that the output function could 
not be trusted to produce meaningful results. Fortunately, as we will see 
next, enhanced fluctuations in two dimensions come into effect well above 
the T  =  0 instability, making the access of the very low temperature regime 
not a necessity. This also alleviates our concern about finite size effects, 
expected to become important close to the pairing instability, but less of a 
factor away from it.

Next, we present DOS results obtained for the AHM on a 2D square lat
tice, solved with the SC T-matrix approximation presented in §4.4.1. We 
have obtained results for interaction parameters ranging from weak to strong 
coupling. Peak structures in the DOS curves indicate that a pseudogap is 
present in the single particle DOS, even for smaller values of the coupling 
strength. As Figs. 4.12 and 4.13 show, the pseudogap opens at higher tem
peratures, the stronger the coupling. For a given \U\/t value, the peak energy 
changes little with temperature for an extended temperature range. As the 
temperature is raised further, the pseudogap itself seems to fill in rather than 
close (i.e., its energy going to zero). This behavior is similar to that of the 
3D NSC pseudogap we found in §4.3.4. An important difference, compared 
to the 3D case, is the fact that in two dimensions a pseudogap is present 
at temperatures well above the critical temperature Tc = 0. This is not a 
surprise, however, since enhanced fluctuations towards the low-temperature 
phase are expected, the lower the dimensionality of the system.

Like in three dimensions, one can use BCS theory to calculate the su
perconducting gap at T  =  0. Fig. 4.14(b) shows that in the lower coupling 
regime the pseudogap energy is very close to the BCS (T=0) gap energy, 
while in the strong coupling regime the pseudogap energy is much larger. 
This is similar to what we have found in the 3D case. At the moment we 
don't understand the significance of the large difference in the strong cou-
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Figure 4.12: 2D - DOS (Eq. (4.32)) for (a) \U\/t =  4 and (b) \U\/t =  5 
for a 1 2  x 1 2  lattice at half-filling, from a self-consistent calculation (see 
Eqs. (4.34), (4.35)). We have used a broadening of 3% of the noninteracting 
bandwidth, namely 0 .1 2 £.
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Figure 4.13: 2D - DOS (Eq. (4.32)) for (a) \U\/t =  S and (b) \U\/t =  10 
for a 1 2  x 1 2  lattice at half-filling, from a self-consistent calculation (see 
Eqs. (4.34), (4.35)). We have used a broadening of 3% of the noninteract
ing bandwidth, namely 0 .1 2 t. Note the presence of a pseudogap at larger 
temperature as the coupling is increased.
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Figure 4.14: 2D - (a) DOS (Eq. (4.32)) for different coupling strengths, for a 
1 2  x 1 2  simple cubic lattice a t half-filling; the peak position is indicated for 
each coupling strength. The temperature for \U\/t =  3 and \U\/t =  4 is 0.4f, 
for \U\/t =  5 and \U\/t =  6  it is 0.5t, and for all the other coupling values it 
is 0.7f. (b) Comparison of the pseudogap with the BCS SC gap at T  =  0.
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pling limit; we can only speculate that strong coupling effects, not accounted 
for in the BCS theory, set a larger energy scale in the superconducting state, 
sensed by the pseudogap on the normal side of the transition.

4.5 Summary
In this chapter, we have extended the study of the T-matrix approxima
tion we have done in the atomic limit (O-dimensions) in Chapter 3 to higher 
dimensions. In its simplest form, the non-self-consistent version, this approx
imation correctly predicts a true phase transition at a nonzero temperature 
in three dimensions. We find that the NSC T-matrix approximation leads to 
a pseudogap in the single-particle density of states in the normal phase, even 
wThen the attraction is weak. Moreover, the energy of the :normal state gap’ 
is comparable to the T  =  0  BCS superconducting gap energy in the weak 
coupling limit; for larger coupling parameters we find a pseudogap energy 
that is much larger than the T  = 0 BCS gap energy.

As the analysis in §4.2 demonstrated, the nature of the problem changes 
with dimensionality, and the NSC T-matrix theory prediction of a finite tem
perature pairing instability leads to anomalies in lower dimensions. The in
clusion of feedback effects on the Thouless criterion drives the superconduct
ing instability to zero temperature, in agreement with the Mermin-Wagner 
theorem. In two dimensions, within a minimally self-consistent treatment, 
a pseudogap is present in the single particle DOS over an extended temper
ature range above the Tc =  0 superconducting transition. Similarly to the 
3D case, the lower coupling pseudogap energy is comparable to the T  = 0 
BCS gap energy, while the strong coupling pseudogap exceeds it significantly. 
The reason for the large difference in the strong coupling limit eludes us at 
present. We speculate that there might be strong coupling corrections that 
lead to such large gap values (in the superconducting state). Then it would 
be natural that the pseudogap senses this larger energy scale, in the same 
way it does for the BCS gap in the weak coupling regime.
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Chapter 5 

Conclusion

5.1 Summary of the T-matrix Approximation
This thesis has explored the effect of pairing correlations above the super
conducting transition, for a system of lattice fermions provided with an at
tractive isotropic interaction. We have used the T-matrix approximation, 
a diagrammatic scheme presented in Chapter 2 , designed to include two- 
particle correlation effects into single particle properties. The discussion in 
§2.5, as well as our work on the atomic (strong coupling) limit in Chapter 3, 
have demonstrated the importance of returning feedback to the two-particle 
properties, once the single particle quantities have been renormalized. This 
is particularly stringent when the available phase space is small, where ne
glecting such feedback effects can lead to certain pathologies.

For lower dimensionality, self-consistency is required to correct the un- 
physical behavior rooted in the NSC prediction of a finite temperature in
stability. A finite temperature phase transition is prohibited by the Mermin 
Wagner theorem. The Schmitt-Rink, Varma and Ruckenstein (SVR) treat
ment [69], improved by Serene [78], allows the system to adjust itself to avoid 
the instability. However, in doing so it leads to the destruction of the Fermi 
surface, in violation of Luttingers theorem, which requires that the Fermi 
volume be conserved.

The way in which self-consistency is enforced is equally important. While 
any degree of self-consistency will drive Tc (as calculated from the Thouless 
criterion) to zero, certain self-consistent formulations may have problems con
necting smoothly with the BCS theory, which, in the low-coupling limit at
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least, is the appropriate theory when approaching Tc from the superconduct
ing side. It has been shown [70] that any self-consistent scheme where the 
full propagator is used to close the self-energy (see the last line in Eq. (2.3-5) 
and Fig. 2.3(b)), leads to gapless superconductivity at Tc.

We have done an extensive analysis of different self-consistent versions 
of the T-matrix theory in the atomic limit in Chapter 3. We were moti
vated by the fact in this limit an exact solution is available, enabling us to 
discriminate between different candidate theories. We have also included in 
our analysis an alternate scheme, the TPSC approach of Vilk-Tremblay [29]. 
There, one of the ‘bare’ vertices \U\ is replaced by a frequency-independent 
irreducible vertex \UPP\, accompanied by propagators that contain a sim
ple Hartree-like renormalization. The TPSC approximation, together with 
a minimally self-consistent formulation of the T-matrix approximation, pro
moted in particular by the Levin group [72], proved to be 'front-runners', 
when compared with the exact solution. Both theories appear to be exact 
at T  =  0, and analytical work has demonstrated that this is indeed the case. 
However, analysis of the dynamics in the two approaches clearly favor the 
T-matrix formulation, which remains remarkably accurate over a broader 
temperature range above zero, at least for low electron densities. A greater 
degree of self-consistency does not translate in improved results. In fact, 
the contrary is true, the renormalization of more than one propagator in the 
pairing susceptibility deteriorates the agreement. This finding supports sug
gestions [65, 90] that at low temperatures some cancellation occurs between 
the fully self-consistent T-matrix diagrams and vertex corrections, omitted in 
all standard T-matrix approximations. The significance of this cancellation 
eludes us at present.

In three dimensions, the non-self-consistent version of the T-matrix ap
proximation seems to suffice. As formulated in the original work by Thou- 
less [63], the divergence of the NSC pairing susceptibility at Tc - the NSC 
Thouless criterion - reproduces precisely the BCS result for the transition 
temperature. Our three dimensional study in Chapter 4 demonstrates that 
this approximation is capable of producing a pseudogap in the normal state 
density of states, even for low coupling. Moreover, in the same low coupling 
regime the energy- of the pseudogap agrees very well with the T  = 0 BCS gap. 
In this case a self-consistent treatment is not deemed necessary, although we 
do expect feedback effects to reinforce the NSC result.

For the two-dimensional case, we have enforced minimal self-consistency, 
as suggested by the atomic limit work. We find a pseudogap in the single
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particle DOS over an extended temperature range above the Tc =  0 supercon
ducting transition. Similarly to the 3D case, the lower coupling pseudogap 
energy is comparable to the T  =  0 BCS gap energy. Both in two and three 
dimensions, the energy of the strong coupling pseudogap exceeds the BCS 
gap energy significantly. Currently, we don’t  fully understand the reason for 
the large difference in the strong coupling limit. We can only make the ten
tative assertion that one should look for an answer in the superconducting 
state, where strong coupling corrections beyond BCS theory may lead to a 
much larger energy scale for the superconducting gap. It would follow natu
rally that the pseudogap senses this larger energy scale, in the same way it 
does for the BCS gap in the weak coupling regime. We note, however, that 
exact strong coupling theory (atomic limit), as well as strong coupling BCS 
theory, gives A =  \U\/2 at half filling, and our results are well above this 
value, particularly in 3D.

5.2 Relevance to High Tc Superconductors
We have shown that pairing fluctuations above Tc are indeed capable of 
producing a  pseudogap in the normal state DOS. This result has general 
validity, since the model used throughout the thesis, the AHM, does not 
assume any particular pairing mechanism. It is true th a t for a complete 
description of High Tc superconductivity in its full complexity one must have 
a microscopic theory that, among other things, gives the correct symmetry 
of the order parameter and takes into account magnetic correlations. The 
latter are expected to become increasingly important as decreasing doping 
brings the metal-insulator transition nearer. Nevertheless, we believe that 
the conclusions of our work are relevant to the high Tc systems independent 
of microscopic details.

Most of the research on the subject associates the pseudogap phenomenon 
with the lower dimensionality of the cuprates: indeed, for these materials, it 
is clear th a t quasi two dimensionality will enhance critical fluctuations, and 
therefore reinforce the pseudogap effects. However, we find a pseudogap in 
three dimensions, even for low \U\. In previous 3D work [72] this effect is 
seen as a result of intermediate to large coupling. This would place stronger 
constraints on the mechanism leading to superconductivity in HTSC. As our 
work demonstrates, independently of the underlying mechanism and intensity 
of coupling, pairing correlations contribute to the pseudogap. Whether they
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axe the sole contributor or only a factor of the entire pseudogap scenario 
remains to  be established. Magnetic correlations or other effects may, also, 
ultimately play a role, especially in the extreme underdoped regime. In any 
case, it is clear that the role of pairing correlations must be calibrated in 
order to fully understand the physics of the cuprate superconductors.
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A ppendix A  

R esults in the noninteracting  
limit

A .l The noninteracting Hamiltonian
When the on-site interaction in the AHM is set to zero, the surviving part, 
the kinetic term, describes a collection of free electrons on a lattice:

Assuming periodic boundary conditions, the AHM given by Eq. (1 .1 ) is sym
metric under translation by a Bravais lattice vector. This translational sym
metry allows the use of the Bloch momentum as a good quantum number to 
label eigenstates of the AHM Hamiltonian. Introducing the Bloch operator 
c,- we have:K,Ct

(A.l)

(A.2)
k

(A.3)

where Rj is the Bravais lattice vector corresponding to site j  and k labels 
the Bloch vectors in the First Brillouin Zone (FBZ):
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^i,2 — —L  +  1 , — L +  2 , . . . ,  —1 ,0 .1 , . . . .  L — 1 , L (A-4)

for a D-dimensional hypercubic lattice with M  =  2L sites on each axis (N  =  
M D) and lattice constant a. The noninteracting Hamiltonian is diagonal in 
momentum representation:

where is the single particle dispersion and fj, is the chemical potential.

A .2 The noninteracting one-particle Green
function

In this section, for illustrative purposes, we will take the EOM formalism 
described in §2.3.2 to Fourier space, in order to derive an expression for the 
noninteracting one-particle Green function.

According to Eq. (2.2), the noninteracting one-particle Green function 
is defined as the ensemble average of the following time ordered product of 
Heisenberg annihilation and creation operators:

wl [
canonical ensemble. The operators c°(m), <4°(m) are the noninteracting 
equivalent of those given by Eq. (2 .1 ):

The difference comes from the use of the noninteracting grand canonical 
Hamiltonian K 0 — Hq — fj.N, where Ho is given by Eq. (A.l). Substituting 
Eq. (A.2) into Eq. (A.6 ) for the one-particle propagator (making note of the 
spin symmetry of the AHM, we will drop the spin indices to simplify the

(A.5)
k.a

(A-7)

notation):
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G°(l;l') = - ( r r [c°(r1)4°(r10])o

k

=  - ^  E  *1,710 (A.8 )
k

As a result of the imaginary time invariance of the AHM one can show, 
using the cyclic property of the trace, that the one-particle Green function 
G(k: r, t ') depends on its imaginary time coordinates only through their dif
ference t  — t ':

G \ k : r y ) ^ - ( T T[ c l ( r ) c ^ ( r ' ) } ) o

=  —7F-Tr |  e ~ ^ °  Tr [ e ~ ^ ° TC j : e ^ T~ T^ c i e ^ oT' ] j  

=  —-J-Tr { e - ^ ° r r[e"*o(T"T,)cge^o(T- T')ct]}

= - j - T r  { e - ^ T T[c%r -  r')4°(0)]}

=  G°(£;t - t'). (A.9)

The property in (A.9), together with the fact th a t the fermionic Matsubara 
Green functions are antiperiodic under shifts r  —► r  +  ft (again, this can be 
seen easily for G°{k;r) using the cyclic property of the trace) allows one to 
express the noninteracting Green function in terms of its Fourier component:

G°(k; r) =  i  Y ,  e~iWnTG°{k, iu n). (A.10)
n

G°(k:iujm) =  /  e ^ TG °(k.r). (A .ll)
Jo
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With Eq. (A. 10), Eq. (A.8 ) becomes:

G% 1: T) = G °(l-l') = (A.12)
k n

Substituting the above expression into the equation of motion of the free 
propagator given by Eq. (2.9) leads to

E d_
dri

_ L  ^  ^  eifc'{Rj" )e~iu’n(Tjl riif)G°(k, iun)
k n

= S j ih A n  ~  w )- (A.13)
As noted before, the prime symbol indicates that the sum is restricted to 
nearest neighbors of j \  only. The right hand side can be written as:

S u A n - r v )  =  E e““ “fe‘" TV’0
(A-14)

After a  few algebraic manipulations, the left hand side of Eq. (A.13) gives

0 N EE
k n

d
drx

j k . { R h  - R h , ) e - i w n (Th  - r h , ) Q Q ^  ^

=  m  E E (**■ -  £J +  ») ^  '  VG°(fc, iwn). (A.15)
k 71

The free one-particle dispersion, which also appears in Eq. (A.5), is given by

/ D
€- =  t  J ]  =  - 2 1 c o s ( k ia) (A. 16)

j" t=i

for a D-dimensional hyper-cubic lattice of lattice constant a.
Finally, putting the left hand side (A.15) and the right hand side (A. 14)

together we get

(iun -  e* +  fJ>)G (k. iun) =  1 or 

GQ{k,iun)  =  G?(Mwn) =  G j& iw *) =   ------   .
1U,'n €j: +  fX
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Like in the more general case, we require the number equation to relate the 
chemical potential to a particular electron density. In the noninteracting 
limit, Eq. (2.38) becomes:

,iuim 0+

The Matsubara sum can be performed analytically and we obtain the usual 
result,

A .3 Pairing susceptibility in the noninteract
ing approximation

Here we will derive an expression for the noninteracting pair propagator. 
Later, from the perspective set by Eq. (2.34), we will illustrate how the 
Cooper instability arises in the presence of interactions.

The pair propagator is a special case of the more general two-particle 
Green function G2,t.i(12; 1'2'). In the noninteracting limit, the latter is ob
tained from Eq. (2 .1 1 ) with the correlation function set to zero (this can be 
seen from Eq. (2.24) and (2.25) when |£/| =  0). Setting 2 =  1 and 2' =  T 
leads to the noninteracting pair propagator:

Expressing the two noninteracting one-particle Green functions in the above 
expression in term of their Fourier components, one has:

(A.19)
k

with f (x)  =  l / (e 0x +  1) the Fermi-Dirac distribution function.

GSu ( l l ; l T )  =  G?(l; l ' )C?;( l : l ' ) . (A.20)

= ^ 2 e iQ-{1- 1')G°1(k)G°l (Q -  k)

Q
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In the above relations we have used the compact notations:

k = (k, Q =  (q, ivn),

(A.22)
k £  m= —oo

Q •  ( 1  -  1 ' )  =  ?  •  ( - K j i  -  Rj[) -  -  Ty) .

where, like elsewhere in this thesis, iu m = inT(2m  — 1) and ivn =  in T ln , 
m ,n  € Z, are the fermionic and bosonic Matsubara frequencies, respectively. 
The last two lines in Eq. (A.21) lead to the following expression for the pair 
propagator in Fourier space:

^ 2,n(Q) =  Xoo(q, Wn) = -fip +  q, -iu>m +  iVn) (A.23)
k,m

The Matsubara sum can be readily evaluated, and we get

( -  _  1  ̂ ~  f { ek ~  f1) ~  f  (e-k+q ~  A1)
Xm<'g-Z ) ~  A - T  . (A- 4)

Thinking ahead, in Eq. (A.24) we have analytically continued the result to 
the upper half-plane (ivn —* z). To go further, one needs to perform the 
/c-sum according to the dimensionality and the size of any particular system.

When one deals with a finite size system, the sum over k is discrete, and 
poles occur a t the two particle scattering energies, ej: +  — 2 p. These
plots are often displayed in texts [91, 6 8 ]; one example, showing the real 
part of the susceptibility, is reproduced in Fig. A. 1 (a) for a ID system with 
N  = 32 sites. Note that as the temperature decreases, the zero frequency 
minimum increases in value; we have indicated with a horizontal line a typical 
value of 1 / | U\ (with \U\ =  21), anticipating the discussion about the Cooper 
instability problem. The other diverging parts of the curve are principal 
value parts, the true analytical properties of which will be more properly 
displayed in the thermodynamic limit (see below). In Fig.A. 1 (b) we show 
the imaginary part of the susceptibility as well (obtained by using a finite 
smearing parameter in place of the infinitesimal 8).

In the thermodynamic limit [92], the picture is quite different. We show 
in Figs. A.2(a) and A.2 (b) the corresponding results for an infinite system
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Figure A .l: Real (a) and imaginary (b) parts of the noninteracting sus
ceptibility (Eq. (A.24)) at zero wavevector vs. frequency, for three different 
temperatures. Note tha t poles occur at the energies corresponding to two 
single electron energies. In addition, the minimum at zero frequency diverges 
as the temperature goes to zero (not evident in (a) because the divergence is 
logarithmic). The figures were produced in one dimension with a finite lat
tice of length 32 sites. The horizontal line at 0.5 denotes the value of l/\U \ 
for \U\ = 2 1, for future reference.
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(in ID) at temperatures T  =  1 , 0.1, and 0.01 (in units of t). The real part of 
Xo{q =  0, v) clearly shows a maximum a t zero frequency; elsewhere there are 
no positive divergences as they have been integrated to a smooth curve in 
the principal value sense. The negative divergences occur at the band edges 
and are due to the divergent single electron density of states at the band 
edges in one dimension. As is apparent from Fig. A.2(a) these divergences 
are present at all temperatures. In fact, for the lowest two temperatures 
shown, the curves are essentially the same except for the region near zero 
frequency, where the maximum diverges as T  —> 0. This divergence in the 
noninteracting two-particle propagator is an indication that the electron gas 
is susceptible to pair formation (for superconductivity or charge and spin 
density waves).

Fig. A.2(b) shows the spectral function, B 0(q, v) =  — Imxo(<7 > v+iS)/'Kvs. 
frequency. Aside from the asymmetrization, this quantity provides an image 
of the single electron density of states. This remains true in any dimension, 
as can be seen from taking the imaginary part of Eq. (A.24):

B0(q =  0 ,i/) =  - ^ t a n h ^ ^ ( ^  +  fi) (A.25)

where g(e) is the single electron density of states and B q denotes the nonin
teracting result. As the temperature approaches zero, the hyperbolic tangent 
function simply changes sign at the origin. In Fig. A .l(b) the delta-function 
structure was merely providing an image of the discretized density of states 
for a finite system.

The well-defined symmetry of both figures is due to the particle-hole 
symmetry a t half-filling (we have set the chemical potential equal to zero). 
In the more general case, the chemical potential is adjusted such that, for a 
fixed electron number density, the number equation Eq. (A .I8 ) is satisfied.
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Figure A.2: Real (a) and imaginary (b) parts of the noninteracting sus
ceptibility (Eq. (A.24)) at zero wavevector vs. frequency, for three different 
temperatures, for the bulk limit in one dimension. Note that part (a) in 
particular looks very different from the finite size counterpart in Fig. A.l(a). 
In particular, the poles corresponding to sums of single electron energies are 
evident only in (b). The developing singularity at zero frequency remains, as 
is evident in (a).
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A .4 The Cooper instability
The plot shown in Fig. A. 1 (a) is used to illustrate how the Cooper instability 
arises in the presence of interactions. For quick reference, we rewrite below 
Eq. (2.33) for the pair propagator when interactions are included in a minimal 
way:

Go.„(Q) s  x(s, iUn) =  . (A.26)
1 -  \U\xoo(q,Wn)

W ith our eye on Fig. A. 1(a), the idea is tha t once the minimum crosses a 
horizontal line representing the value 1/\U\ (shown in Fig. A.l(a) at 0.5), 
an instability occurs. This results in two real roots joining together and 
becoming pure imaginary. This transition is viewed as a signal that the pair 
particle propagator becomes unstable in time [65, 91, 6 8 ]. We will clarify 
this point shortly.

In the thermodynamic limit [92], as one can see in Fig. A.2(a), an insta
bility would be signalled by the maximum crossing some line (representing 
1/\U\), a t which point a pole appears in the two electron propagator in the 
upper half plane. As in the finite lattice calculation the pole has a real 
part which is zero; unlike that case, however, the pole passes from the lower 
half plane to  the upper half one. The interpretation that this signals a two 
particle propagator that increases exponentially in time remains in the ther
modynamic limit, although the reasoning is somewhat different. Now we 
require both the imaginary and real parts of the denominator in Eq. (A.26) 
(with argument q =  0  and ivn analytically continued to complex z) to be zero. 
One can show, by adopting the approximate form, Xoo(Q =  0, z) «  1 /(a  — ibz) 
near the instability temperature, th a t the solution is given at a complex fre
quency with a real part of zero, and with an imaginary part which is negative 
above the instability and positive below it. The emergence of a pole for the 
two electron propagator in the upper half plane signals an instability, just as 
in the finite system.

To illustrate the onset of the instability, we will go from imaginary to 
real time (see the discussion in Appendix B, §B.l). Assuming an analytic 
continuation has been performed (easily in the case of Eq. (A.26), given 
Eq. (A.24)), one can convert the frequency integral in Eq. (B.2) (where the 
one-particle propagator is replaced by the pair propagator) into a complex 
contour integral. The contour extends from just above the real axis to infinity
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t<  0: Imi t>  0: Imi
4̂

R e; > R e;

Figure A.3: The upper and the lower integration contours, as discussed in 
text. The straight line portion of each contour lies infinitesimally above the 
real axis. The semi-circular arc extends to infinity.

in the upper half plane U (if t < 0) or in the lower half plane L (if t > 0):

According to the residue theorem, the integral in Eq. (A.27) is obtained by 
summing all the residues of the poles of e~iztx(q-. z) in U for t  < 0  (which is 
zero when all the poles of x(g, z) lie on the real axis M), and by summing all 
the residues of its poles in E  U L for t >  0 (which recovers the correspondent 
of Eq. (B.2) for x(Q-> -))- Now consider the contribution to the retarded pair 
propagator due to a single complex pole z0,

If this pole is not in the upper half plane (i.e., it is either real or in the 
lower half plane: zq € M U L), then its contribution is proportional to 
#(t)e-t(Rezo)te(Im Zo)t. This result is entirely consistent with the Heaviside 
factor in the definition of the retarded propagator (see Eq. (B.3)). More
over, since Imzo <  0 , the contribution to the pair propagator either remains 
constant in magnitude or decays exponentially in time.

Now consider what happens if the pole moves into the upper half plane 
(i.e., zq G U). First of all, there will be a contribution proportional to

(A.27)

(A.28)
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g —i( R e z 0 ) tg ( im  z0 ) t  e v e n  w h e n  t  < 0, in violation of the causality principle, 
since it gives a response before the initial injection of the pair at time zero. 
Furthermore, for t > 0 this contribution grows without bond as t —* oo (now, 
Im z0 >  0). The appearance of a mode that increases exponentially in time 
indicates that the system has become unstable.
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Appendix B 

Analytic continuation and Pade 
approximant s

B .l Analytic continuation
In many-body problems, analytic continuation arises from the need to recover 
real-time dynamics from a response function calculated at non-zero temper
atures in the Matsubara formalism. For example, one is often interested in 
the spectral function:

A(u) = — Im G V ), (B.l)
7T

where GR{u) is the Fourier transform of the retarded Green function:

GR(t) = —  /  d u je -^ G ^ u ) .  (B.2)
27r J-OQ

In real time, the retarded Green function

G*(t) =  -i<{c(f),c'(0) }>»(() (B.3)

describes the response of the system to when a particle is added at time zero 
and removed at time t.

Most of the time, however, the result of calculations provides the function 
of interest at a discrete set of Matsubara points on the imaginary axis: thus, 
one will have obtained the values of the Fourier components of the thermal 
Green function

G(r) = (B.4)
m
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In the Matsubara formalism, time is a complex quantity, related to temper
ature. Its definition involves a imaginary-time ordering operator, as seen in 
§2.3.1 and reiterated below (showing only the time, frequency dependence, 
respectively, for clarity, like in the rest of this Appendix):

G(T) =  -< r T[c(r)c*(0)]>, (B.5)

The fermionic (bosonic) thermal Green functions are antiperiodic (periodic) 
to shifts r  —*■ r  + f3: thus, both species are periodic with period 2(3 (prop
erty used in deriving Eq. (B.4)). The physical significance of the thermal 
(imaginary-time) Green function is not as clear as that of its real-time coun
terpart: nonetheless, it has the advantage of a clear and elegant mathematical 
formalism, and that of computational ease. Moreover, as we alluded to in 
opening this Appendix, all the information needed from real-time propaga
tors can potentially be extracted from the Matsubara formalism, by means 
of analytic continuation.

The foundation for this method was laid by Bavm and Mermin [8 8 ]. 
They have shown that there exists a unique function, defined on the complex 
domain, which takes on the values of the Fourier components of the thermal 
Green function at Matsubara points on the imaginary axis, and gives the 
Fourier transform of the retarded Green function just above the real axis:

G (ivm) = G(ium); (B.6 )

G(<j + iS) = G*(u), 6 ^  0 +. (B.7)

This function is analytic everywhere in the complex plane, with the exception 
of the real axis; this is a  causality requirement. The values of G in the upper 
and lower half planes are related by

G(z‘) =  [GM]‘ , (B.8)

which is a statement of the time reversal symmetry between the retarded 
and advanced Green functions. A consequence of this property is that the 
imaginary part of G may be discontinuous across the real axis. The measure 
of this discontinuity is given by the spectral function, as can be seen by using 
Eqs. (B.7) and (B.8 ) in Eq. (B.l):

A{oj) =  ——ImG(u; +  id) =  —-r—: [G(cj +  id) — G(w — id)] , (B.9)
7T 2 tTX
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Finally, in regard to  the properties of G, one can write a spectral (Lehmann) 
representation for this function:

G{z) = r  d w ^ - .  (B.10)
7-oo 2 -  w

Clearly, the function G can be very useful, assuming one can construct it. 
Baym and Mermin [8 8 ] have shown that this is possible, in principle, provided 
we know G(iwn) for an infinite set of points. In practice, however, we can 
only calculate the values of the thermal Green function at a finite number 
of M atsubara frequencies. Moreover, the theorem in Ref. [8 8 ] only shows 
the existence of the function G; there is no general method to perform the 
analytic continuation. This leads us to the need for approximate procedures 
such as the Pade approximant method.

B.2 Pade approximants - Thiele’s reciprocal 
difference algorithm

Typically, within the Matsubara formalism we calculate G(ium) from its self
energy S(?'u;TO), via Dyson’s equation, Eq. (2.36). In turn, the self-energy is 
calculated from some approximate theory, e.g., some version of the T-matrix 
theory. The Pade method is based on the assumption that G (or E) can be 
written as a rational polynomial or terminating continued fraction. The latter 
is usually more useful for investigating the analytic structure. Terminating 
a continued fraction decomposition is equivalent to expressing the function 
of interest by ratios of polynomials.

In what follows, we present a recursive algorithm called Thiele’s Recip
rocal Difference Method, used by Vidberg and Serene [89] in the context of 
the Eliashberg equations. In outlining the methodology of this procedure we 
follow Mitrovic et al. [93]. Suppose we know the values F{ of a complex func
tion F(z)  a t N  points z* {% =  1, . . . ,  N)  in the complex plane. The IV-point 
Pade approximant to F(z)  is defined as a continued fraction

• (B-u >

This can be written more conveniently as

ai a2(z -  zi) a2(z -  z2) aN( z - z N-i)
 ^ ------------------ i--------- • (B -12)
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such that Fx(zi)  =  Ft, i =  1 . . . . .  A'. In our case, the z* are the fermionic 
Matsubara frequencies iu m, m  =  1 , . . . .  Ar and the F'i are the corresponding 
values of the self-energy at those frequencies. The coefficients a, are given 
by recursion:

O-i — Qi{Zi)t Q\ (-‘•i) — Fi, i 1, . . . , A*

SpM =  97 - { ~ l )Z 9r~ f t ) ’ P *  2. (B.13)

It can be shown that

M z )  - S i  (B'14)
where P/v(z) and Qn (z) are polynomials given by the recursive formulae: 

P-n-t-i =  Pn{z) “r  (z zn)&ri + i P and

Qn+ 1 =  Qn(S “h (z Zr,)an+iQn- i ,  (B.15)

where P0 =  0, Pi = a1: Qo =  Qi =  1 and n  =  1 , . . . .  A" — 1 .
This algorithm is quite efficient numerically. However, the accuracy re

quirements for the solution on the imaginary axis can be very high. A discus
sion about the level of numerical precision needed for a reliable Pade result 
can be found in Ref. [8 6 ], together with an alternate algorithm implemented 
using the symbolic computation package MAPLE. The symbolic implemen
tation allows one to transcend the limits imposed by hardware floating-point 
numerics and enables calculations to any desired level of precision. The down
side is the high cost in computational resources that comes with enforcing 
such high accuracy.
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