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Abstract

The performance of reinforcement learning (RL) agents is sensitive to the choice of

hyperparameters. In real-world settings like robotics or industrial control systems,

however, testing different hyperparameter configurations directly on the environment

can be financially prohibitive, dangerous, or time consuming. We propose a new

approach to tune hyperparameters from offline logs of data, to fully specify the

hyperparameters for an RL agent that learns online in the real world. The approach

is conceptually simple: we first learn a model of the environment from the offline

data, which we call a calibration model, and then simulate learning in the calibration

model using several hyperparameters. We evaluate the hyperparameters inside the

calibration model based on some desirable performance criterion, and then identify

promising hyperparameters for deployment. We identify several criteria to make this

strategy effective, and develop an approach that satisfies these criteria. We empirically

investigate the method in a variety of settings to identify when it is effective and

when it fails. We demonstrate that tuning hyperparameters offline and deploying

an RL agent with these hyperparameters is a more feasible problem to tackle than

transferring a fixed policy learned from the offline data.
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Preface

This thesis is based on a manuscript “No more pesky hyperparameters: Offline

hyperparameter tuning for RL” by Han Wang∗, Archit Sakhadeo∗, Adam White,

Xutong Zhao, James Bell, Puer (Paul) Liu, Nathan Taylor, Alona Fyshe, and Martha

White. The paper is currently under review. Adam and Martha wrote and edited the

main part of the paper. James set up the code infrastructure. Nathan implemented a

visualization tool. Alona helped think through problems we were stuck on and gave

regular feedback on the work. Han, Xutong, Paul, and I were responsible in different

capacities for implementing the code, conducting the experiments, and writing the

appendix in the paper.

This thesis was inspired by a real-world project on optimizing a water treatment plant

using reinforcement learning (RL)†. The research direction of this thesis emerged from

the need to tackle the problem of deployment of an RL agent to control this water

treatment plant. Naturally, the first question that emerged regarding the problem

of deployment was, “How do we select the hyperparameters of such an agent offline

before deploying it on a real-world system?”. This thesis‡ attempts to tackle the above

question.

∗Equal contribution.
†AI pilot project aims to make water treatment greener, more efficient and less expen-

sive, https://www.ualberta.ca/folio/2020/10/ai-pilot-project-aims-to-make-water-treatment-greener-
more-efficient-and-less-expensive.html

‡This thesis was written in three countries - Canada, India and Mexico.
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“What if your life was a sacred responsibility?

The body, a temple.

Every motive, pure.

Every glance, compassionate.

Every word, true.

Every act, right.

Every moment, holy.”

- Naval Ravikant

“Any sufficiently advanced technology is indistinguishable from magic.”

- Arthur C. Clarke
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Chapter 1

Introduction

Reinforcement learning (RL) agents are sensitive to the choice of hyperparameters

that regulate speed of learning, exploration, degree of bootstrapping, amount of replay,

representational capacity and so on. The vast majority of work in RL is focused on

new algorithmic ideas and improving performance along some dimension: continued

exploration, early learning speed, asymptotic performance, sample efficiency, or robust

learning. These algorithmic and performance improvements in RL agents are almost al-

ways reported assuming near-optimal hyperparameters. The vast majority of empirical

comparisons involve well-tuned implementations and reporting the best performance

after a hyperparameter sweep. Reasonable progress has been made towards eliminating

the need for tuning some hyperparameters by using adaptive methods [24, 28, 35, 38,

62, 66, 68]. However, recent surveys show that widely used agents employ dozens

of hyperparameters and tuning is critical to their success in practice [22]. Recent

experiments confirm that significant sensitivity to hyperparameters is exhibited on

real robots as well [33].

The reason that domain specialization, hyperparameter sweeps, and fine-tuning

are possible—and perhaps why our algorithms are so dependent on them—is because

most empirical work in RL is conducted in simulation. Conducting experiments using

simulators is fast and it scales with compute resources. If something goes wrong the

experiments can be restarted without serious repercussions. Simulators are critical
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for research because they facilitate rapid prototyping of ideas and extensive analysis.

However, these features that make simulators desirable do not transfer to the real world.

Running rigorous experiments in the real world can be extremely time consuming (slow

action cycle time in the order of few seconds to few hours), monetarily expensive (high

energy usage, expensive machinery, stock-trading bots), might not always scale with

compute resources (difficult to deploy thousands of robots in parallel), and might have

safety related concerns (self-driving cars). As a result, it is not possible to exhaustively

sweep different hyperparameters in the real world. Often, it is not acceptable to test

poor hyperparameters on a real system that could cause serious failures. In many

cases, interaction with the real system is limited, or in more extreme cases only data

collected from a human operator is available.

In simulators, hyperparameters are evaluated directly in the deployment envi-

ronment. Whereas, in the real world, the deployment environment does not allow

evaluating hyperparameters due to the above reasons. This begs the question, “How

do we select hyperparameters before deploying online RL agents in the real world?”. To

the best of our knowledge, this problem has not been tackled before. Unfortunately,

simulators have allowed us to completely bypass this problem that researchers and

engineers would have to face before deploying their RL agents in the wild.

It is not surprising that one of the major roadblocks to applied RL in the wild is

extreme hyperparameter sensitivity [32, 33], and this is amplified by the absence of a

clear strategy to select good hyperparameters.

1.1 Objective

There is an important constraint on selecting the agent hyperparameters before de-

ploying them into the real world - the hyperparameters cannot be directly evaluated

on the real system. Good hyperparameters are a function of the agent as well as the

environment it is deployed on. Thus, if the agent cannot interact with the real system

in any way, selecting the agent’s hyperparameters is a difficult task. Fortunately, there
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is an alternative avenue to evaluating algorithms without running on the real system:

using previously logged data under an existing controller (human or otherwise). In

applications like industrial control processes (eg: optimizing the process of water

treatment) that have been historically controlled by some degree of automation and

some degree of human controllers, logs of data are collected that include information

like the sensor readings and the actions taken. The data are logged at the action cycle

time of the controller which can be in the order of seconds to hours. These logs of data

contain rich information that give a window into the underlying real system. The data

logs can reveal the dynamics of the underlying environment while giving information

about the state space and the action space of the agent. The data logs can thus be

used as a proxy to the real system meant for deployment. Thus, these offline logs of

data could instead be used to evaluate and select hyperparameters without directly

interacting with the real world. Hyperparameters are general, and can even include a

policy initialization that is adjusted online. We call this problem of selecting the agent

hyperparameters for deployment purely from the offline data logs as the Data2Online

problem.

This thesis seeks to answer the question:

Can we develop a strategy to solve the Data2Online problem -

the problem of selecting the hyperparameters offline for the RL

agent to learn online in deployment, when we only have access

to offline data logs?

Overall, our objective is to take a closer look at the Data2Online problem, to

propose a solution strategy to this problem, and to highlight when the strategy works

and when it does not.
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1.2 Approach

We propose a novel strategy—to the best of our knowledge the first—to use offline data

logs for selecting hyperparameters. The idea is simple: 1) we use the offline data to

learn a calibration model (learned simulator/model of the underlying environment), 2)

evaluate hyperparameters in the calibration model, and 3) report the best performing

hyperparameter in the calibration model for deployment in the real world. The

calibration model captures the transition dynamics of the environment, that is, it

takes in the current state and action as input and outputs the next state, reward,

and the termination signal. Learning online in the offline calibration model mimics

learning in the environment, and so should identify or calibrate hyperparameters that

are effective for online learning performance. The calibration model need not be a

perfect simulator to be useful for identifying reasonable hyperparameters, whereas

learning a transferable policy typically requires accurate models [69].

Figure 1.1: Offline Hyperparameter Selection for Online RL. This figure illus-
trates how hyperparameters can be selected offline for deploying an online RL agent.
The water treatment plant resembles any real system. The controllers that operate
the plant typically log the interaction data. These data logs can be used to construct
a calibration model of the underlying plant. The calibration model need not resemble
the plant perfectly. Hence, the calibration model is illustrated using a blurred image
that approximately resembles the underlying plant. Each hyperparameter setting is
denoted by Λ. Each hyperparameter setting can be evaluated in the calibration model
based on some performance criterion - in this case it could be the ability to control
the plant while being energy-efficient. The best performing hyperparameter is then
selected for deployment in the underlying plant.

For example, consider designing a learning system for controlling a water treatment

plant, given only a set of data logs visualized in Figure 1.1. We may want an agent to
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control pump speeds, mixing tanks and chemical treatments to clean the water with

minimal energy usage—but how do we set the learning rate and other hyperparameters

of this agent? We can learn a calibration model offline from logs of data previously

collected while human operators controlled the plant. From there the calibration

model can be treated like any simulator to develop a learning system, including setting

the hyperparameters for learning in deployment.

The calibration model allows us to still have the benefits of using a simulator but

with the data actually being grounded in the real world.

1.3 Related Work

Somewhat surprisingly, the Data2Online problem has not been directly tackled before.

Most work on selecting hyperparameters introduces meta-algorithms that learn hyper-

parameters, including work on meta-descent for stepsizes [24, 50, 66] and selecting

the trace parameter [15, 35, 62]. These algorithms could be beneficial for offline

hyperparameter selection, because they help reduce sensitivity to hyperparameters;

but they are not a complete solution as they still have hyperparameters to tune. Other

work has provided parameter-free methods that have theoretically defined formulas

for hyperparameters [38]. Deriving such algorithms is important, but is typically

algorithm-specific and requires time to extend to broader classes of algorithms, includ-

ing new advances; it remains useful to consider how to tune hyperparameters for a

problem. Finally, recent work has examined online hyperparameter selection, using

off-policy learning to assess the utility of different hyperparameters in parallel [40, 55].

Otherwise, much of the work [10, 17, 25, 29, 39, 48, 49] has been focused on settings

where it is feasible to obtain multiple runs under different hyperparameters—such as

in simulation—with the goal to improve on simple grid search as in random search,

Bayesian optimization, HyperBand, etc.

The solution to the Data2Online problem that we propose includes having offline

logs of data, constructing a calibration model from these logs, and tuning the hyper-
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parameters on the calibration model for the agent to learn online in the deployment

environment with these hyperparameters. Following are some related topics in the

literature that also tackle the problem of deployment, albeit through different ap-

proaches. Some of these assume access to offline logs of data while some assume access

to a model of the environment. However, all of these approaches focus on transferring

a fixed policy in the deployment environment.

1.3.1 Offline RL

The Data2Online problem setting differs from the standard offline or batch RL setting

because the goal is to select hyperparameters offline for the agent to learn online in

deployment, as opposed to learning a policy offline. Typically, in offline RL, a policy

is learned on the batch of data using a method like Fitted Q Iteration (FQI) [16,

18, 45], and the resulting fixed policy is deployed. Our setting is less stringent, as

the policy is learned and continually adapts during deployment. Intuitively, selecting

just the hyperparameters for further online learning should not suffer from the same

hardness problems as offline RL (see [58] for hardness results), because the agent has

the opportunity to gather more data online and adjust its policy.

An inherent problem when using offline data in RL is that of insufficient coverage.

If the data does not cover a part of the space, then the agent cannot learn about

that part of the space. For hyperparameter selection, this is not as problematic since

the agent is not learning a policy for re-use. Rather, the agent would simply select

hyperparameters for a slightly different environment. The sufficient similarity in terms

of the input types, reward magnitudes and transition dynamics means the agent may

well still select reasonable hyperparameters for learning online.

Even in the offline batch RL setting, the hyperparameters of the learner must be

set and most approaches either unrealistically use the real environment to do so [63]

or use the action values learned from the batch to choose amongst settings [37] with

mixed success. Offline RL involves learning from a dataset, but their hyperparameter
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selection approaches are quite different due to the fact that they deploy fixed policies.

Yang et al. (2020) [67] introduce the Offline Policy Selection problem and use an

offline RL algorithm to learn and evaluate several different policies corresponding to

different hyperparameter settings. The key difference is those hyperparameters will

never be deployed in an online learning system, as we do in this thesis. Some offline

RL work examines learning from data and adapting the policy online [3], including

work that alternates between data collection and high confidence policy evaluation

[12, 13]. Our problem is complementary to these, as a strategy is needed to select

their hyperparameters.

1.3.2 Sim2Real

In Sim2Real the objective is to construct a high fidelity simulator of the deployment

setting, then learn a policy in the simulator and transfer the fixed policy, and—in

some cases—continue to fine tune in deployment. We focus on learning the calibration

model from real collected data, whereas in Sim2Real the main activity is designing

and iteratively improving the simulator itself [41] such that it closely resembles the

underlying environment. Again, however, approaches for Data2Online can be seen as

complementary and can highlight how to use the simulator developed in Sim2Real

to pick hyperparameters for fine-tuning. It could suggest design decisions in the

developed simulator for which hyperparameter selection for online learning is more

effective. If the deployment environment is too complicated to directly model (e.g.

unknown physical models), or if the simulator is expensive to sample, then our

approach could be employed. As described in the above section, since in Data2Online

we do not extract a policy, there are no strict requirements of having high coverage or

equivalently an accurate model of the environment [69]. Thus, if the logged data are

too limited to build an accurate model for Sim2Real, our approach could be used to

select hyperparameters.
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1.3.3 Domain Adaptation

Domain adaptation in RL involves learning on a set of source tasks to transfer to a

target task. The most common goal has been to enable zero-shot transfer, where the

learned policy is fixed and deployed in the target task [23, 65]. Our problem has some

similarity to domain adaptation in that we can think of learning in the calibration

model to identify hyperparameters as the source task, and then transferring the

selected hyperparameters in the deployment environment as the target task. Domain

adaptation, however, is importantly different than our Data2Online problem: (a) in

our setting the training in the source task (tuning hyperparameters) uses a learned

calibration model not a real environment and we need a mechanism to learn that

model, (b) the relationship between our source and target is different than the

typical relationship in domain adaptation, and (c) our goal is to select and transfer

hyperparameters, not learn and transfer policies.

1.3.4 Learning From Demonstration and Imitation Learning

Learning from demonstration (LfD) and imitation learning involve attempting to

mimic or extract a policy at least as good as a demonstrator. If the agent is learning

to imitate online, then it is unrealistic to assume the demonstrator would generate

enough training data required to facilitate hyperparameter sweeps. If the learner’s

objective is to imitate from a dataset, then this is exactly the problem studied in

this thesis. Unfortunately, hyperparameter tuning in LfD is usually not addressed;

instead it is common to use explicit sweeps [6, 8, 20, 36] or manual, task-specific

tuning [19]. According to Ravichandar et al. (2020) [44], hyperparameter tuning is a

major obstacle to the deployment of LfD methods.
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1.4 Contributions

Thesis Statement: Offline data can be used to effectively select hyperparameters

offline to be then transferred in the deployment environment for online learning, and

transferring hyperparameters is a more feasible problem to tackle than transferring

fixed policies.

This thesis contains three contributions that support the above statement.

1. Propose a new strategy to tackle the Data2Online problem and out-

line conditions on the solution strategy. (Chapter 3)

We first introduce our offline hyperparameter strategy to solve the Data2Online

problem using calibration models. We then outline conditions on the calibration

model and learning agents for this strategy to be effective. We then propose

a k-nearest neighbors (KNN) based model to obtain stable calibration models.

We finally propose using a distance metric based on the transition dynamics

by using the Laplacian representation [64] to more accurately find the nearest

neighbors.

2. Empirically demonstrate the effectiveness of our solution strategy

under various scenarios, highlight a failure case, and demonstrate

why transferring hyperparameters is a more feasible problem to tackle

than transferring a fixed policy. (Section 5.1)

We then investigate the approach in three environments with different types of

learning dynamics, using two different learning agents, under different offline

data collection policies, under different deployment situations, and with ablations

on the key components of our proposed calibration model. We demonstrate

the effectiveness of our approach under many of these conditions and highlight

one case where it fails to perform. We compare our approach against different
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baseline strategies. In this, we evaluate the ability of our approach to select

good hyperparameters among many other hyperparameters using grid search.

We also make a case for transferring hyperparameters as against transferring a

fixed policy from offline logs of data.

3. Demonstrate that the calibration model works well with hyperpa-

rameter optimization techniques smarter than grid search, and the

performance of the calibration model can further be improved by

fine-tuning the hyperparameters instead of selecting among a set of

hyperparameters. (Section 5.2)

We then develop a more efficient method to fine-tune hyperparameters in the

calibration model, based on the cross-entropy method for optimization. We

show that this addition can significantly improve over a hyperparameter grid

search, as well as reducing the burden on the designers (engineers/researchers)

to design sets of hyperparameters to sweep.

1.5 Thesis Layout

The thesis contains 6 chapters.

Chapter 2 covers background material needed to understand the remaining chapters.

This chapter can be skipped by readers familiar with the reinforcement learning

literature.

Chapter 3 covers the main description of the solution strategy that we propose to

tackle the Data2Online problem. This chapter discusses in detail how we construct

the calibration model, evaluate the hyperparameters on the calibration model, and

highlights some conditions on the solution strategy.

Chapter 4 covers the details about the experimental setup. This chapter discusses

the specifications of the environments, the learning agents that we use, the baseline

agents we compare against, different data collection schemes we use in our experiments,
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and how we evaluate the performance of our solution strategy.

Chapter 5 discusses the main experiments we perform to demonstrate the effective-

ness of our approach under different variations of the calibration model, data collection

schemes, deployment environments, and learning agents. This chapter also describes

a situation where our strategy fails to select good hyperparameters. This chapter

demonstrates how our strategy can select good hyperparameters offline from a set of

several hyperparameters using grid search. This chapter further discusses how the

calibration model can be used with smarter hyperparameter optimization techniques

instead of grid search. It introduces a strategy based on the cross entropy method

(CEM) to fine-tune the hyperparameters. We then demonstrate the benefits of the

CEM based fine-tuning approach over grid search, and show how it can improve the

performance of our strategy.

Finally, the thesis ends with chapter 6 discussing the conclusions from the thesis

and future direction of work.

1.6 Summary

This chapter introduced the context the thesis is set in. This chapter motivated the

problem we tackle. It described the objective of the thesis and a high-level approach

we follow to tackle the problem. The chapter discussed how our work fits in the

broader RL literature and how our work can be thought of as complementary to many

other existing domains. The chapter then lists the contributions of this thesis. The

chapter ends with the layout of the thesis.
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Chapter 2

Background

We now discuss the background material needed to understand the concepts used later

in the thesis. Readers who are knowledgeable in topics like the MDP framework, value

functions, tile coding, online control algorithms like Expected Sarsa and Actor-Critic,

and offline RL can safely skip this chapter.

2.1 Learning as Reward Maximization

Reinforcement learning (RL) is a problem formulation to learning from interaction

[52]. An agent learns to make decisions through interaction with its environment to

achieve a desired goal. Formulating goals as maximization of a special signal, called

the reward, is one of the central ideas of reinforcement learning.

2.2 The MDP Framework

We formulate the reinforcement learning problem as a Markov Decision Process (MDP).

An MDP is described by the tuple (S,A,P ,R, γ). S is the state space and A the

action space. The transition probability P : S×A×S → [0, 1] describes the probability

of transitioning to the next state from a given state and action. R : S ×A× S → R

is the reward function that emits a scalar reward from a given state, action, and on

transitioning to the next state. γ : S ×A× S → [0, 1] is the discount function [61].

Figure 2.1 shows the agent-environment interaction in an MDP. On each discrete
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Figure 2.1: Agent - environment interaction in a Markov Decision Process

timestep t, the agent receives some representation of the environment’s state St ∈ S,

and on that basis selects an action At ∈ A. One timestep later, the agent is transitioned

to a new state St+1 ∈ S and receives a scalar reward Rt+1 ∈ R ⊂ R. This interaction

between the agent and the environment gives rise to a stream of experience: ...

St, At, Rt+1, St+1, At+1, Rt+2, St+2, ...

The agent selects actions at each timestep based on a policy π : S × A → [0, 1].

The policy is a function that maps the states to probabilities of selecting each possible

action in the states. The policy describes the agent’s behavior. The agent’s objective

is to find an optimal policy π∗ that maximizes the sum of future rewards. We formally

define π∗ in Section 2.3.

An optimal policy π∗ seeks to maximize the return Gt which is the sum of future

rewards. In general, we seek to maximize the discounted return Gt
.
= Rt+1 + γt+1Gt+1.

The scalar γt+1 ∈ [0, 1] depends on the transition (St, At, St+1) [61]. For continuing

problems, the discount may simply be a constant less than 1. For episodic problems

the discount might be 1 during the episode, and become zero when (St, At) leads to

termination. A constant discount rate γ signifies how far-sighted the agent is: γ = 0

indicates that the agent cares only about the immediate reward on the next step

while γ = 1 indicates that the agent has an infinite horizon and cares about all future

rewards equally. The effect of 0 < γ < 1 is somewhere in between these extremes, with

the importance of each reward geometrically decreasing further along the trajectory.
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Common approaches to learn a policy that estimates π∗ are Q-learning [59, 60] and

Expected Sarsa [47, 52], which approximate the action-values—the expected return

from a given state and action—and Actor-Critic methods [7, 27, 53] that learn a

parameterized policy (also see [52]).

2.3 Value Functions

Another way of describing the return (with constant discount function γ) is as follows,

Gt
.
= Rt+1 + γGt+1,

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ...,

Gt =
∞∑︂
k=0

γkRt+k+1.

The return at any given timestep is affected by the future rewards, that is, the return is

affected by various future sources of stochasticity — the agent’s policy, the transition

dynamics function, the reward function. Hence, the expected return, averaged over all

possible future sources of stochasticity, is a more useful measure than just the return.

The value function encapsulates precisely this.

Value functions lie at the core of many RL solution methods. Value functions are

a way to summarize the consequences of future behavior into a single number for a

given state. The state-value function vπ(s) is the value of a state s under a policy π.

It tells how much expected return the agent can receive if it follows policy π from

state s. It is described as follows:

vπ(s)
.
= Eπ

[︂
Gt

⃓⃓⃓
St = s

]︂
,

= Eπ

[︄
∞∑︂
k=0

γkRt+k+1

⃓⃓⃓
St = s

]︄
.

The action-value function qπ(s, a) is the value of a state s and action a under a policy

π. It tells how much expected return the agent can receive if it takes action a in state
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s and then follows policy π. It is described as follows:

qπ(s, a)
.
= Eπ

[︂
Gt

⃓⃓⃓
St = s, At = a

]︂
,

= Eπ

[︄
∞∑︂
k=0

γkRt+k+1

⃓⃓⃓
St = s, At = a

]︄
.

There is a unique state-value function [2], called the optimal state-value function v∗

that maximizes the value over all states:

v∗(s)
.
= max

π
vπ(s),

for all s ∈ S. All policies that share the same optimal state-value function are optimal

policies. An optimal policy is given as:

π∗
.
= argmax

π
vπ(s),

for all s ∈ S. Optimal policies also share the same optimal action-value function q∗,

which is given as:

q∗(s, a)
.
= max

π
qπ(s, a),

for all s ∈ S and all a ∈ A. Value-based RL methods typically estimate the optimal

action-value function as a means to an optimal policy. A deterministic policy π : S → A

that is greedy with respect to q∗ in all states is an optimal policy:

π∗(s)
.
= argmax

a
q∗(s, a),

for all s ∈ S.

2.4 Tile Coding

Tile coding [4, 5] is a method for feature construction that takes in some state space

and projects it into a high-dimensional space which allows for better generalization
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Figure 2.2: Overlapping grid tilings on a 2-dimensional state space: Figure
re-used from Sutton & Barto (2018) [52].

between similar states and better discrimination between dissimilar states. It is a

fixed representation method whose features are not learned as in neural networks. A

specific point in the underlying state space will always have the exact same feature

representation under tile coding even when learning progresses.

Tile coding gives us a method to deal with multi-dimensional continuous state

spaces by discretizing them using grid-like data structures. For the sake of simplicity,

let’s assume a 2-dimensional continuous state space as in Figure 2.2. Tile coding

partitions the state space using overlapping grids called tilings. Each tiling divides

the state space into smaller squares called tiles. Let’s assume a case where we have a

single tiling with multiple tiles in it. All points inside any given tile have the same

feature representation. This allows for state aggregation and generalization within

that specific tile. It also helps to discriminate points that lie in two different tiles

by assigning them different features. However, using one tiling cannot discriminate

between points that lie inside the same tile. This limitation is overcome by having

multiple overlapping tilings that are offset from each other by a small amount. Placing

multiple overlapping tilings in this manner leads to tiles in each tiling to intersect

with different tiles in other tilings. Thus, a point in the state space can now occupy

different intersecting tiles across multiple tilings. This leads to finer discrimination

among points that would have never been discriminated, as they would have existed
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inside the same tile in the case of a single tiling. Larger tiles result in increased

generalization, whereas having a large number of tilings on top of each other (offset

by some amount) improves the discriminative ability of tile coding. The benefits of

tile coding are two fold - it allows us to have better discrimination (more fine grained

control, less bias) without loss of generalization.

Tile coding creates a representation for each point in space by concatenating the

representation for each tiling. The representation for each tiling consists of a one

hot vector that has a one for the tile that the point falls within and zero otherwise.

Thus, it returns an n-hot representation where exactly one tile from every tiling is

active. Tile coding thus creates a non-linear representation with binary features. The

resulting feature vector can then be used with a parametric (e.g., linear or non-linear)

function approximator to estimate the value function. From this point of view, the

tile coded feature vector is a very high dimensional sparse representation of the low-

dimensional dense state space. Sparse representations have been shown to somewhat

reduce catastrophic forgetting [21, 30].

Tile coding can represent a wide range of functions, but its utility does not end

there. Since grids are uniform, it is easy to compute which cell the current point (state)

is in. The binary sparse feature representation only has a limited number of active

tiles, which makes aggregating the results much faster than a dense representation.

Due to its computational efficiency, tile coding can be used to quickly run preliminary

experiments in low dimensional environments. However, as the number of dimensions

grows, the number of required tiles grows exponentially. As a result, it can be

necessary to tile input dimensions separately. Whether or not input dimensions can

be treated independently depends on the specific problem. In this work, we tile the

state dimensions separately and also pair-wise and then concatenate the resulting

feature representation vectors.

A clear limitation of tile coding is that the features are non-adaptive. Thus, tile

coding may not give the best feature representation for some given input space if the
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task changes over time.

2.5 Expected Sarsa

Expected Sarsa is an online value-based RL algorithm which is used to estimate

near-optimal action values and policies. We use the on-policy version of Expected

Sarsa in this dissertation. In on-policy learning, the behavior policy (policy that

is exploratory and used to generate behavior) and the target policy (policy that is

learned about and that becomes the optimal policy) are same. We use the Expected

Sarsa(λ) algorithm from Sutton & Barto (2018) [52]. We also tile code the state at

each timestep to get a binary feature vector. For any incoming state St, tile coding

the state gives a feature vector ϕ(St). We use these feature vectors, the action At,

and a linear function approximator to estimate the action-values q̂. The function

approximator is parameterized by the vector w ∈ Rd. We update the action values

using the Adam optimizer [28]. The update equations are given as follows:

g = − δt zt,

m← β1 m+ (1− β1) g,

v← β2 v+ (1− β2) (g⊙ g),

m̂ =
m

(1− β1k)
,

v̂ =
v

(1− β2k)
,

wt+1 ← wt − α m̂⊙ 1√
v̂+ e

, (2.1)

where ⊙ is the operator for element-wise multiplication. Here α is the stepsize to

update the parameters, β1 = 0.9, β2 = 0.999, e = 10−8, m = 0d, v = 0d.
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Here, z is defined as follows:

zt
.
= γ λ zt−1 + ∇q̂

(︂
ϕ(St), At,wt

)︂
,

z−1
.
= 0d,

where λ is the eligibility trace parameter. Here, the TD error δt is given by:

δt = Rt+1 + γ

[︄∑︂
a

π
(︂
a
⃓⃓⃓
ϕ(St+1),wt

)︂
. q̂
(︂
ϕ(St+1), a,wt

)︂]︄
− q̂

(︂
ϕ(St), At,wt

)︂
,

Equation 2.1 is the semi-gradient Expected Sarsa update using linear function approx-

imation, tile-coded features, and Adam optimizer.

To keep the policy stochastic and exploratory, we assume the policy π to have a

softmax probability distribution over the action values. Thus, at timestep t,

πt

(︂
a
⃓⃓⃓
ϕ(St),wt

)︂
=

exp

⎛⎝ q̂
(︂
ϕ(St), a,wt

)︂
τ

⎞⎠
∑︂
b

exp

⎛⎝ q̂
(︂
ϕ(St), b,wt

)︂
τ

⎞⎠
,

∀ b ∈ A, where τ is the temperature of the softmax policy.

2.6 Actor-Critic

Actor-Critic is an online policy gradient method that estimates π∗. Policy gradient

methods directly learn a parameterized policy that can select actions without consult-

ing the value function as in value-based methods. Actor-Critic separately learns a

parameterized policy (actor) and a parameterized state-value function (critic). We use

the One-step Actor-Critic (episodic) algorithm from Sutton & Barto (2018) [52]. The

actor learns a policy π parameterized by θ ∈ Rd that is used for choosing an action At

at each timestep, while the critic estimates the state-value function v̂ parameterized

by w ∈ Rd to assess the policy’s action selection online. For any incoming state St,
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tile coding the state gives a feature vector ϕ(St). We update the actor and the critic

using the following equations:

wt+1 ← wt + αw δt ∇v̂
(︂
ϕ(St),wt

)︂
,

θt+1 ← θt + αθ γt δt ∇ln π
(︂
At

⃓⃓⃓
ϕ(St),θt

)︂
,

where αw and αθ are the stepsizes to update the critic and the actor respectively.

Here, the TD error δt is given by:

δt = Rt+1 + γ v̂
(︂
ϕ(St+1),wt

)︂
− v̂

(︂
ϕ(St),wt

)︂
,

We do the update using the SGD optimizer. To keep the policy stochastic and

exploratory, we assume the policy π to have a softmax probability distribution over

the action preferences. The action preferences are obtained using linear function

approximation with tile-coded features. The action preferences p̂ are parameterized

by θ. Thus, at timestep t,

πt

(︂
a
⃓⃓⃓
ϕ(St),θt

)︂
=

exp
(︂
p̂
(︂
ϕ(St), a,θt

)︂)︂∑︂
b

exp
(︂
p̂
(︂
ϕ(St), b,θt

)︂)︂ ,
∀ b ∈ A.

2.7 Fitted Q Iteration

Fitted Q Iteration (FQI) [16] is a classical batch RL algorithm. For a given log of data

{(St, At, Rt+1, St+1, γt+1)}ndata
i=1 , FQI tries to extract a Q function that estimates q∗.

Greedifying with respect to this extracted Q function gives us a policy that estimates

π∗. FQI learns the Q function in a supervised learning manner by learning on a

randomly sampled mini-batch of data, thus breaking any temporal correlation in

sequential experiences. We use Regularized Fitted Q Iteration (RFQI) [18] in this

thesis. The detailed training algorithm is described in Algorithm 1.

20



Algorithm 1 Regularized Fitted Q Iteration
Input:
α: the learning rate
β1 = 0.9, β2 = 0.999: exponential decay rates for moment estimates
e = 10−8: term added to the denominator to improve numerical stability
nbatch: mini-batch size
q̂w: randomly initialized action-value function parametrized by w
D: offline dataset
K: number of training iterations
T : sync period

1: m = 0
2: v = 0
3: for iteration k = 1, . . . , K do
4: if (k mod T ) == 0 then
5: Sync target parameters: w′ ← w

6: Sample random mini-batch {(Si, Ai, Ri, S
′
i, γi)}

nbatch
i=1 from D

7: (Adam optimizer update:)
8: Compute the gradient g according to equation 2.2
9: m← β1m+ (1− β1)g
10: v← β2v+ (1− β2)(g⊙ g)
11: m̂ = m/(1− β1k)
12: v̂ = v/(1− β2k)
13: w← w− αm̂⊙ 1√

v̂+ e

Return: q̂w

At the kth iteration, we randomly sample transitions {(Si, Ai, Ri, S
′
i, γi)}

nbatch
i=1 from

the data log. For any incoming state S, tile coding the state gives a feature vector

ϕ(S). RFQI then minimizes the regularized mean squared temporal-difference error

(MSTDE) on this mini-batch as given below:

Lk(w) =

nbatch∑︂
i

∥yi − q̂w
(︂
ϕ(Si), Ai

)︂
∥2 + λfPen(q̂w).

Here q̂w is the action value estimate parameterized byw, yi = Ri+γimax
a
q̂w′

(︂
ϕ(S ′

i), a
)︂

is the target for transition i, w′ is the fixed target parameters, Pen(q̂w) is a penalty

term, and λf is the regularization coefficient. The gradient of the loss is obtained by

differentiating with respect to the weight parameter w:
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∇wLk(w) =

nbatch∑︂
i

[︂(︂
q̂w

(︂
ϕ(Si), Ai

)︂
− yi

)︂
∇w q̂w

(︂
ϕ(Si), Ai

)︂]︂
+ λf∇w Pen(q̂w) (2.2)

We set the penalty to squared L2 norm of the weights Pen(q̂w) = ∥w∥22. We update

the parameters using the Adam optimizer. The action values are obtained by using a

linear function approximator parameterized by w along with tile coded features and

the action.

2.8 Offline Logs of Data

We assume that the agent has access to an offline log of data that it can use to

initialize hyperparameters before learning online. This log consists of ndata tuples

of experience D = {(St, At, Rt+1, St+1, γt+1)}ndata
i=1 . This log of data could have been

historically generated by interaction in the environment using a human operator or

engineered semi-optimal controller(s). If no historical logs of data are available, we

can always deploy some controller to collect data logs before building our calibration

model which we describe in the next chapter.

2.9 Summary

This chapter covered the background material needed to understand the concepts that

come later on in this thesis. This chapter described the formulation of learning as

reward maximization and the formulation of the reinforcement learning problem as

a Markov Decision Process. The chapter gave a detailed background in tile coding

which is a method for feature construction. The chapter further described online RL

control algorithms like Expected Sarsa and Actor-Critic, while laying out their update

equations. Another offline RL algorithm—Fitted Q Iteration— is described with its

update equations. The chapter concluded with describing what the offline data logs

consist of and how to collect them.
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Chapter 3

Data2Online Using Calibration
Models

As described in Section 1.2, calibration models are a key component of our solution

strategy to the Data2Online problem. In this section, we introduce the idea of

calibration models and how they can be used for hyperparameter selection. We first

discuss how to use the calibration model to select hyperparameters before describing

a way to learn the calibration model. We then discuss certain design criteria on the

calibration model and the learning agent that make this strategy more appropriate.

We finally propose a specific approach to obtain (or learn) a calibration model, from a

batch of offline data, that respects the design criteria.

3.1 Using Calibration Models to Select Hyperpa-

rameters Offline

A calibration model is learned from an offline batch of data collected from some

environment. It simulates the transition dynamics of the underlying data. Thus it is

a learned simulator of the underlying environment. For a given state and action, it

outputs the next state, reward, and termination signal. By doing this it can simulate

one-step transitions, and a long rollout of such transitions gives a long trajectory of

interaction. In Data2Online, the agent needs to reason about online learning behavior

using only a static offline dataset. Such a long trajectory of interaction allows us to
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Figure 3.1: Agent - Calibration Model interaction: This figure is similar to
Figure 2.1 with the difference being that the calibration model has replaced the
environment. The blue thick border represents the calibration model. The internal
details of the calibration model are described in the later sections.

simulate online learning in the calibration model. Figure 3.1 illustrates the interaction

between the agent and the calibration model. It shows how the calibration model is

constructed from the offline data logs. Once the calibration model is constructed, the

agent can interact with it exactly how it interacts with the underlying environment

as was illustrated in Figure 2.1. Thus by testing each hyperparameter setting in

the calibration model, we can measure the online learning performance (eg: total

reward obtained in the interaction) for each hyperparameter. Finally we can select the

hyperparameter with the best online learning performance in the calibration model.

We can then deploy this selected hyperparameter in the deployment environment

without any remaining hyperparameters to tune. Thus, the calibration model can be

used to specify (or calibrate) hyperparameters in the agent. Algorithm 2 describes

this high level idea behind hyperparameter selection with calibration models.

Algorithm 3 gives a detailed description about the interaction between the agent

and the calibration model, and gives the pseudocode for evaluating the online learning

performance of the agent in its environment (here the calibration model). The

interaction between the agent and the calibration model begins with the agent receiving
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Algorithm 2 Hyperparameter Selection with Calibration Models
Input:
Λ: hyperparameter set for learner Agent
D: the offline log data
nsteps: number of interactions or steps
nruns: number of runs

1: Train calibration model C with D
2: for λ in Λ do
3: Perf[λ] = AgentPerfInEnv(C, Agent(λ), nsteps, nruns)

Return: argmax
λ∈Λ

Perf[λ]

a start state from the calibration model. The agent’s policy then selects some action

based on this state. The calibration model then transitions the agent to the next state

and returns some scalar reward and a termination signal 1. This interaction goes on

until the termination signal is true, which happens if the agent succeeds (or fails) in its

environment. The interaction can also be cut-off artificially. In our experiments, we

make the decision to let the agent experience at least 30 episodes inside the calibration

model in a given run for the agent to learn something useful. Each hyperparameter

λ ∈ Λ gets to learn online in the calibration model for a maximum of nsteps steps.

Since the evaluation scheme guarantees at least 30 episodes, each episode can have a

maximum of
nsteps

30
steps. For each hyperparameter, we average the online learning

performance across nruns runs in the calibration model and report this number. In our

case, we measure the average return observed in nsteps steps of interaction across nruns

runs as the online learning performance for a given hyperparameter.

Many components in this approach are modular and can be swapped with other

choices. For example, instead of average return during learning (online performance),

it might be more desirable to optimize the hyperparameters to find the best policy

after a budget of steps. This would make sense if in deployment cumulative reward

1The exact details of the EnvStep function can be safely ignored for now as they become apparent
in Section 3.3. At a high level, the function takes in the agent’s action as input, and returns the next
state, reward, and termination signal.
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Algorithm 3 AgentPerfInEnv

Input: C: the calibration model, Agent: the learner, nsteps: number of steps, nruns:
number of runs

1: ncutoff ← nsteps/30 ▷ Ensure at least 30 episodes
2: ReturnsAcrossRuns = [ ]
3: for i = 1 . . . nruns do
4: t← 0, Ret← 0, Returns = [ ]
5: state← EnvStart()
6: for j = 1 . . . nsteps do
7: action← Agent(state)
8: nextState, r, term = EnvStep(action)
9: Ret← Ret+ γtr
10: state← nextState
11: t← t+ 1
12: if term is true or t ≥ ncutoff then
13: Append Ret to Returns
14: state← EnvStart()
15: t← 0, Ret← 0

16: if last return Ret > average(Returns) then
17: append Ret to Returns ▷ Ensure last episode is not cut-off early

18: ReturnsAcrossRuns[i]← average(Returns)

Return: average(ReturnsAcrossRuns)

Algorithm 4 EnvStart (CalibrationModel)

Input: D: the offline dataset

1: Search s from the set of start states in D
Return: s

during learning was not important. We might also want a more robust agent, and

instead of average return, we may use median return. Finally, grid search can be

replaced with a more efficient hyperparameter selection method; we demonstrate

this in Chapter 5.2. We can also make this hyperparameter search more robust

to error in the calibration model by obtaining performance across an ensemble of

calibration models. This involves using nensembles random subsets of the log data, say

by dropping at random 10% of transitions, and training nensembles calibration models.

The hyperparameter performance can either be averaged across these models, or a

more risk-averse criterion could be used like worst-case performance. Using an average
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Algorithm 5 EnvStep (CalibrationModel)

Input: at: the action chosen by the agent
Trees: KD-trees
k: number of nearest neighbors

1: ϕ← ψ(st)
2: {(ϕ, s′, r, T, d)}k1 ← KDTreeSearch(ϕ, a, Trees, k)

3: p[i]← 1− di∑︁
j∈[1,k]

dj
, ∀i ∈ [1, k]

4: Sample (ϕ, s′, r, T, d)c according to probability p
5: st ← s′c

Return: s′c, rc, Tc

across models is like using a set of source environments to select hyperparameters—

rather than a single source—and so could improve transfer to the real environment.

In this work, we examine only the simplest form of this Data2Online strategy and use

only one calibration model, and leave these natural additions to future work.

3.2 Criteria for Designing Calibration Models

The previous section described how the calibration models can be used to simulate

online learning and how good hyperparameters can be selected based on their online

learning performance. In this section, we highlight four key desirable criteria for

designing the calibration model and selecting agents for which Data2Online should be

effective. The criteria are described as follows:

1) Stability and self-correction under model iteration

A stable model is one where, starting from any initial state in a bounded state

space, the model remains in that bounded space. Stability under model iteration is key

in model-based RL. However, certain model-based RL algorithms use transitions from

only short trajectories generated under the learned model, from real states observed

in the environment. On the other hand, the calibration model is iterated for many

steps because the agent interacts with the calibration model as if it were the true
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environment—for an entire learning trajectory. Longer rollouts of transitions risk the

accumulation of the prediction error. Hence, producing reasonable transitions under

many steps of model iteration is key for the calibration model; much more so than in

model-based RL.

Another scenario is that, even if the model is stable, it produces states that are

not possible. In many cases, this could be benign and may help generalize to unseen

states, but in other case this could be very misleading. For example, in a gridworld

with walls, a learned model might produce outcome states that go through a wall

because of generalization in the input space (x, y). Thus, model iteration can produce

increasingly non-sensical states, as has been repeatedly shown in model-based RL [1,

14, 26, 54]. A self-correcting model is one that, even if it produces a few non-real

states, it comes back to the space of real states.

It is key, therefore, that the calibration model be stable and self-correcting.

2) Calibration model that encodes pessimism and induces domain random-

ization

We would prefer to identify more conservative hyperparameters. We would rather

set the hyperparameters cautiously even if this means the agent learns slower than

it needed to in the real environment. This is even more important for our learning

setup, where it is likely that the logged data does not have much coverage. Thus

we would prefer the calibration model to encode pessimism in some form. A simple

way to do this is to make the transitions in the calibration model stochastic. Adding

stochasticity in the transitions also induces domain randomization which should help

in searching more general hyperparameters. We discuss other approaches to encode

such pessimism in the calibration model in Section 3.3.

3) Effective handling of actions with low data coverage

The model also needs to handle actions with no coverage or low coverage. It is
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possible that the agent has access to several actions, but the offline data log includes

only a few actions. The calibration model needs to deal with the scenario where the

agent decides to take an action that is absent in the offline data log. In this case,

the model cannot produce a reasonable transition with the absent action. A simple

way to deal with this is to produce a transition from such states, back to a default

state—like the start state—while sending a termination signal and the lowest return.

Doing this should avoid learning further unreasonable transitions. This should also

make the agent pessimistic about the actions not recorded in the offline data log.

A more likely scenario is that the agent decides to take an action in a given state,

whereas the offline data log contains a different action for that state. There needs to

be a strategy to deal with such scenarios. A simple way to deal with this is to undergo

the most plausible transition that could be caused by a similar state and a similar

action that are actually recorded in the offline data log. We describe more on this in

Section 3.3.

4) Agents with hyperparameters that govern early learning only

The final criterion is a condition on the agent, rather than the model. Attempting

to tune the hyperparameters for any long-running agent using only limited simulation

with the calibration model can be problematic. Practically, we can only test each

hyperparameter setting for a limited number of steps in the calibration model. So,

the calibration model is only simulating early learning. It is hard to imagine that we

could run the agent long enough to select hyperparameters for long run performance.

This suggests that this approach will be most effective if we tune initialization

hyperparameters: those that provide an initial value for a constant but wash away

over time. Examples include an initial learning rate which is then adapted; magnitude

of optimism for optimistic initialization; an initial architecture that is grown and

pruned over time; and meta-parameters that play the role of adjusting the primary

parameters online.
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3.3 Using KNN Models to Obtain Stable Calibra-

tion Models

The calibration model acts like a model that simulates the transition dynamics of the

underlying data. Thus for a given state and action, it outputs a next state, reward,

and a termination signal. It may happen that the agent is in a particular state s in the

calibration model, and the agent’s policy selects some action a that is not recorded for

state s in the offline data. Such a situation may arise if the action space is continuous,

because the exact real-valued action selected by the policy may never be present in

the dataset. A similar situation could also occur if the action space is discrete but the

dataset had a different action in state s. We need an effective method to handle such

situations while generating real next states and rewards.

We developed a non-parametric k-nearest neighbor (KNN) based calibration model

that always generates real next states and rewards from the dataset. The idea is

simple: we first use the entire offline data log to construct the model, with trajectories

obtained by chaining together transitions, and by iteratively finding the most plausible

transition—present in the offline data log—given the current state and action. It

ensures the agent always produces real states observed in the data and remains in

the true state distribution, and so is stable under many iterations. We construct it in

such a way that it respects the design criteria specified in Section 3.2. We provide

the pseudocode and summarize the approach in Algorithm 6, and highlight the key

details in the next section.

3.3.1 Constructing a KNN Based Calibration Model

We use a k-d tree [9] to construct the KNN model. A k-d tree is a data structure

that is typically used to quickly solve nearest neighbor queries. To initialize the

calibration model (Algorithm 6 2), we format the transitions in the offline dataset as

2In Algorithm 6, we can ignore the LaplaceRepTraining function for now. We discuss this
function in Section 3.3.2. Algorithm 6 would be valid by ignoring lines 2 and 3.
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(St, At, St+1, Rt+1, Tt+1) for every timestep, where T refers to the termination signal

which is True if γ = 0, or if there is a failure or if the episode resets, else it is False.

Every state-action pair (St, At) is used as the key in searching the k-d tree, and

(St+1, Rt+1, Tt+1) is the value corresponding to the key.

It is important for the KNN-based calibration model to generate real next states

and rewards in order to be stable under several model iterations. Hence, at the start

of each episode (Algorithm 4), the calibration model randomly picks a start state from

the set of real start states in the dataset. If the agent is in state St and decides to

take action At based on its policy, the KNN calibration model finds a real state-action

pair (S̃, Ã) that exists in the dataset and that is nearest to (St, At). The calibration

model then internally undergoes a recorded real transition (S̃, Ã → S ′̃, R′˜ , T̃ ) and

returns the next state S ′̃, reward R′˜ , and termination signal T̃ to the agent. From the

agent’s perspective, it undergoes the transition St, At → S ′̃, R′˜ , T̃ . The intuition here

is that, if (St, At) is close enough to (S̃, Ã), then (St+1, Rt+1, Tt+1) in the deployment

environment would be similar to (S ′̃, R′˜ , T̃ ). The agent undergoes the above transition

if a transition starting from (St, At) is not recorded in the dataset. However, if a

transition from (St, At) is recorded in the dataset, then the KNN calibration model

will undergo the recorded transition since the nearest existing neighbor to the (St, At)

pair is itself. This meets the third criterion in Section 3.2 of effectively handling

actions with low coverage.

The KNN-based approach allows us to find the most plausible transition given

some current state and action. Most importantly, it returns a real combination of the

next state, reward, and termination signal. An iterative rollout of such transitions

would generate a trajectory as follows—a start state S0 is randomly selected from the

dataset of start states. The agent selects A0, and the calibration model finds a real

transition (S̃, Ã→ S ′̃, R′˜ , T̃ ) using the neighbor (S̃, Ã) nearest to (S0, A0). The agent

then observes state S1 = S ′̃ and R1 = R′˜ . The agent then selects action A1, and so on.

This process can go on forever while generating only real states, thus enabling stability
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under model iterations. Since the model is always in the space of real states, it does

not need self-correction. Though simple, this KNN-based non-parametric approach

perfectly satisfies the first criterion from Section 3.2. In contrast, learning stable

parametric non-linear models can be quite complex as they need to jointly learn the

transition dynamics function and a suitable Lyapunov function to ensure stability [34].

In the above explanation, we described searching for the nearest neighboring

transition which is obtained by using k = 1 in the k-nearest neighbors model. However,

it could happen that the agent encounters a particular state multiple times in the

calibration model. If the agent’s policy selects the same series of actions from that

particular state, for k = 1, the agent would see the same trajectory, deterministically,

when interacting with the calibration model and the agent could get stuck in a loop

of transitions. This can be avoided by using k > 1, and thus searching the k nearest

neighbors and selecting any one of them randomly to undergo a transition. The

stochasticity in transitions can be increased by increasing the number of neighbors k.

Each of the k closest neighbors would have a sampling probability proportional to

1− d((sj, aj); (si, ai))
k∑︁

z=1

d((sz, az); (si, ai))

,∀j ∈ [1, k]. Here, the function d((sj, aj); (si, ai)) returns the

distance between the state-action pairs (sj, aj) and (si, ai). We discuss the distance

metric in more detail later. Such a sampling strategy results in higher probability

to sample the closest neighboring state-action pairs and lower probability to the

neighboring state-action pairs that are further away. Thus, controlling for the number

of k neighbors adds stochasticity in the transition dynamics function of the calibration

model. This meets the second criterion from Section 3.2. This criterion induces

domain randomization which has been shown to improve generalization of machine

learning algorithms to new environments [57]. In our case this would lead to selecting

more general hyperparameters that will be effective across different variations of the

transition dynamics. The selected hyperparameter should be more pessimistic and

more reliable than a highly optimistic hyperparameter selected with clean data. The
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Figure 3.2: One-step transition generated by the KNN calibration model.
Plot a) shows how the KNN model searches for k -nearest neighbors to the current
state-action pair. Plot b) shows how the KNN model then samples one of these
neighbors. Plot c) shows how the KNN model undergoes a one-step transition from
the selected neighbor. This transition is also recorded in the offline data logs. Plot d)
shows how the KNN model then returns the next state and reward observed from this
one-step transition back to the agent. From the agent’s perspective, it takes action A
in state S, and observes next state S ′̃ and reward R′˜ .

latter could overfit the offline data log which could be problematic if the data log

is limited or if the underlying environment changes. Figure 3.2 shows how the next

transition is generated using the k -nearest neighbors method. Figure 3.3 illustrates

the internal working of the KNN calibration model. A roll out of these one-step

transitions can lead to a long trajectory of interaction.

Algorithm 7 describes how we construct the k-d tree and Algorithm 8 describes

how we search the k-d tree. We group the transitions in the offline data log in

different ways depending on the action space. If the environment has a discrete action

space, the transitions are grouped into different k-d trees according to the actions.

When searching for the nearest neighbors given some discrete action a that the agent

takes, the calibration model searches only in the k-d tree corresponding to action
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Figure 3.3: Internal working of the KNN calibration model: The figure de-
scribes how one-step transitions are generated inside the KNN calibration model. The
KNN calibration model outputs only real next states and rewards that are actually
recorded in the offline data log. Thus, long trajectories of interaction can be rolled out
using this approach while enabling model stability. The blue thick border represents
the KNN calibration model from Figure 3.1. The red border describes the internal
details of the KNN calibration model.
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a. The model uses the distance between the states to find the nearest neighbors

— d((s, a); (s̃, a)) = d(s; s̃). Whereas in continuous action space environments, only

one tree is constructed. When searching for the nearest neighbors in this case, the

calibration model uses the distance between state-action pairs to find the nearest

neighbors — d((s, a); (s̃, ã)). We discuss more about the distance metric in Section

3.3.2.

Algorithm 6 CalibrationModelTraining

Input: D: the offline dataset

1: Assume the dataset is a list of tuples of the form (S,A, S ′, R, T )
2: ψ ← LaplaceRepTraining(S,A, S ′, T )
3: Φ← ψ(S)
4: Trees← KDTreeConstruction(Φ, A, S ′, R, T )
5: Fit Trees into the calibration model C

Return: C

Algorithm 7 KDTreeConstruction

Input: Φ, A, S ′, R, T : transitions

1: if discrete action space then
2: Construct KD-trees Trees for each action: use Φ as key and S ′, R, T as value.
3: else
4: Construct KD-trees Trees: use (Φ, A) as key and S ′, R, T as value.

Return: Trees

Algorithm 8 KDTreeSearch

Input: ϕ: representation
a: action
Trees: KD-trees
k: number of nearest neighbors

1: if discrete action space then
2: {(ϕ, s′, r, T, d)}k1 ← Search for the k nearest neighbors of ϕ in the tree corre-

sponding to the action a (Trees[a]), where d refers to the distances.
3: else
4: {(ϕ, s′, r, T, d)}k1 ← Search for the k nearest neighbors of (ϕ, a) in a single tree
Trees, where d refers to the distances.

Return: {(ϕ, s′, r, T, d)}k1
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For a calibration model, all knowledge about the true environment comes from the

offline dataset, including the state distribution, reward range, and the terminating

signal. It could happen that the dataset does not have enough coverage of the

underlying environment and thus may have missing data in some parts of the underlying

MDP. Given a dataset, it is hard to imagine whether there are missing states or what

the missing states are. To deal with missing data, KNN model assumes that any

area that is not included in the dataset is dangerous to get into even in the true

environment. It gives a pessimistic prediction in this case and lets the agent learn to

avoid that area. In the discrete action space situation, if the agent picks an action

that does not exist in the dataset or the distance between the current state and its

nearest neighbor is above some threshold, the KNN model sets the termination signal

to be true and returns the lowest return observed in the dataset, to prevent the agent

to be too optimistic about this action. In continuous action space, it is unlikely for the

dataset to include the same real valued action that the agent chooses in the calibration

model. In this case, we set a threshold on the maximum allowed distance between the

state-action pairs. Thus the calibration model terminates the current episode when

the distance between the current state-action pair and its nearest neighbor is beyond

this threshold value. This meets the other half of the third criterion from Section 3.2

where some actions are absent in the dataset.

Thus the KNN based model meets the design criteria as it is stable under model

iterations, is stochastic to induce pessimism, can handle low action coverage scenarios,

and does all of this while generating only real next states and rewards that are recorded

in the data log. This makes it a suitable candidate to be used as a calibration model.

3.3.2 Distance Metric Based on the Laplacian Representa-
tion

The KNN model relies heavily on the distance metric to find the nearest neighbors,

which are then used to generate a transition inside the model. Hence, using the right
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Figure 3.4: L2 distance using (x, y) coordinate representation vs using Lapla-
cian representation: Figure re-used from Wu et al. (2019) [64].

distance metric is important for generating accurate transitions that better resemble

the underlying environment. The default choice of Euclidean distance in the input

space may not always be the appropriate choice for measuring similarity in the states.

For example, if inputs correspond to (x, y), and the environment is a maze, two nearby

points in Euclidean distance may actually be far apart in terms of transition dynamics.

Images are another example where Euclidean distance is not appropriate.

Instead, we learn a distance metric based on the Laplacian representation [31, 64].

The Laplacian representation is trained by pushing the representations of random

states to be far away from each other, while encouraging the representations of nearby

states to be similar. Two states are nearby if it only takes a few steps for the agent to

get to one state from the other. Euclidean distance in this new space is reflective of

similarity in terms of transition dynamics.

Figure 3.4 shows the difference between the distance metrics when using L2 distance

directly on the input state space which uses (x, y) coordinates and when using L2

distance on the Laplacian representation of the input state space. It shows how using

L2 distance directly on the input state space does not care about the walls in the grid.

It shows the states on the other side of the wall to be closer in distance to the red state

despite the fact that it is not easy for the agent to transit to the other side of the wall.
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Whereas, the learned Laplacian representation takes into consideration the transition

dynamics of the grid world and correctly learns that the states on either sides of

the walls are not closer to each other even when their coordinates can misleadingly

tell that they might be similar. Thus, the Laplacian representation shows a better

distance metric to measure similarity of states. Finding the distance between the

Laplacian representations of the red state and some other state can be thought of

as measuring a quantity that is approximately proportional to the total number of

steps needed to reach the red state from the other state. Thus, measuring L2 distance

based on the Laplacian representation instead of the raw states gives a more reliable

nearest neighbor. This makes the transitions within the KNN calibration model better

resemble the underlying environment.

The Laplacian representation ψ is trained in the same way as proposed by Wu

et al. (2018) [64]. Algorithm 9 describes the pseudocode for training the Laplacian

representation. We use a neural network with 2 hidden layers and 128 hidden units

each to train the Laplacian representation on a batch of data. We use the Adam

optimizer, a tanh activation function, and a mini-batch size of 128. The neural network

takes in a state as input and the output vector is its Laplacian representation. In

training the neural network, a state s from the trajectory s, s1, s2, · · · , sn is chosen.

Its nearby state su is sampled from the trajectory s1, s2, · · · , sn with normalized

probability Pκ = [κ, κ2, · · · , κn]. A random state sv is also sampled from the data.

The loss for training the Laplacian representation is calculated using the nearby state

pair (s, su) and a random state pair (s, sv) as follows:

Loss =
1

2
(ϕs − ϕsu)

2 + β((ϕT
s ϕsv)

2 − δ∥ϕs∥2 − δ∥ϕsv∥2) (3.1)

where β and δ can be considered as two regularization coefficients. Here, ϕs is

equivalent to ψ(s). In Equation 3.1, the first term encourages the difference between

the representations of the nearby states to be as small as possible. The second term

pushes the representations of the random states to be orthogonal (as different as
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Algorithm 9 LaplaceRepTraining

Input: D = {(S,A, S ′, R, T )}: dataset
N : dataset size
β, δ: weights in loss function
α: learning rate
b: batch size

1: Converge← False
2: Initialize representation function ψ
3: i← 0
4: LossList = [ ]
5: AverageLossList = [ ]
6: while not Converge and i < 30000 do
7: SampledS ← {sj}, j ∈ [1, N ]
8: NearbyS ← {sj+n}, n ∼ Pκ

9: RandomS ← {sl}, l ∈ [1, N ]
10: ϕs ← ψ(SampledS)
11: ϕc ← ψ(NearbyS)
12: ϕr ← ψ(RandomS)
13: Update Φ with Loss = 1

2
(ϕs − ϕc)

2 + β((ϕT
s ϕr)

2 − δ∥ϕs∥2 − δ∥ϕr∥2)
14: i← i+ 1
15: LossList.append(Loss)
16: if i mod 1000 == 0 then
17: AverageLoss =

∑︁1000
m=0(LossList[m])

18: AverageLossList.append(AverageLoss)
19: LossList← [ ]
20: if AverageLoss has increased 2 times in a row then
21: Converge← True

Return: ψ

possible). Thus the second term will be zero if the representations are orthogonal. The

second term can also be zero if the representations themselves are of zero magnitude.

The last two terms make sure that the representations of the randomly sampled states

are not of zero magnitude. Every 1000 steps, we record the average loss over the last

1000 steps. If the recorded loss increases 2 times in a row, we stop training. The

Laplacian representation is trained for a maximum of 30,000 steps if the early stopping

criterion is not met.

The Laplacian representation has its own parameters to tune, namely κ (sampling

probability constant), β and δ (regularization coefficients), α (learning rate of the
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neural network), and the trajectory length n that is used to pick nearby states. We

sweep over different values of these parameters and conduct the above training scheme

for each combination. Finally we obtain several trained Laplacian representations

corresponding to each parameter setting. We use 5-fold cross validation to pick the best

parameters. The validation set is created by randomly picking 20% of the transitions

in the dataset while the rest of the transitions were used as the training set. The

trained Laplacian representations are then evaluated on a validation set by using the

dynamic awareness score (Equation 3.2), which measures the quality of the learned

representations. In Equation 3.2, N is the number of trajectories in the validation

set, ϕi refers to the representation of the ith state and ϕ′
i is the representation of

the next state that comes after the ith state in the trajectory. These are considered

as nearby states. ϕj∼U(1,N) is the representation of a randomly sampled state from

the validation set. Since the Laplacian representation is supposed to capture the

transition dynamics, the distance between nearby states’ representations should be

smaller than the distance between random states’ representations. On average, when

the L2 distance between the representation of nearby states ϕi and ϕ
′
i is smaller than

the L2 distance between the representations of random states ϕi and ϕj∼U(1,N), the

equation gives a higher score. Thus, a higher dynamic awareness describes that the

learned Laplacian representations are of better quality. We then select the parameter

that has the highest dynamic awareness score averaged across 5-fold cross validation

for its learned Laplacian representation. The selected parameters for each experiment

are specified in Chapter 5.1 and Chapter 5.2.

Dynamics Awareness =

∑︁N
i ||ϕi − ϕj∼U(1,N)||2 −

∑︁N
i ||ϕi − ϕ′

i||2∑︁N
i ||ϕi − ϕj∼U(1,N)||2

(3.2)

After a parameter setting has been selected, its corresponding Laplacian repre-

sentation is trained using a training and validation set split (80:20) and with the
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Figure 3.5: Using the KNN calibration model with the Laplacian represen-
tation: The Laplacian representation is trained using the same offline data log used
to construct the calibration model. The distance metric uses this trained Laplacian
representation to then find the nearest neighbors to generate transitions. The blue
thick border represents the KNN calibration model. The red border represents the
newly added component — Laplacian representation training — to the previous Figure
3.3.

early stopping criterion as above. Once the Laplacian representation of the best

parameter setting is selected, we then need to use it find the distance between state-

action pairs. For discrete actions, we define the distance metric only on state-action

pairs with the same action. So the distance between (s, a) and (s̃, a) is given by

d((s, a); (s̃, a)) = ∥ψ(s)− ψ(s̃)∥2. For continuous actions, the distance between (s, a)

and (s̃, ã) can be defined as d((s, a); (s̃, ã)) =
(︂
(∥a− ã∥)2 + (∥ψ(s)− ψ(s̃)∥2)2

)︂ 1
2
.

Figure 3.5 illustrates how the Laplacian representation is used with the KNN

calibration model. Thus, the whole process is to use the offline data log to train a

KNN calibration model first. Then, we use the same offline data log to train the

Laplacian representation for each state. The Laplacian representation then gives us

a distance metric that can be used with the KNN calibration model to search for

nearest neighbors to generate transitions. We can thus simulate online learning inside
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the KNN calibration model forever while generating only real next states and rewards,

and by using a distance metric that better resembles the transitions dynamics of the

underlying environment.

3.4 Different Variants of the Calibration Model

So far we have looked at the KNN variant of the calibration model. However, we

could also use other models for constructing the calibration model. A commonly used

technique to learn a model is by training a neural network. Neural networks (NN) can

be used to predict the next state, reward, and termination signal, given the current

state and action. Note that the prediction given by the NN may not be a real state

that can be seen in the dataset, while the KNN calibration model always returns a

real state. The synthetic prediction of the NN calibration model brings the risk that

the prediction error accumulates as the rollout length becomes longer, thus the NN

calibration model could be less stable than KNN calibration model. Though an NN

based calibration model does not necessarily meet the design criterion of being a stable

model, we conduct experiments with it to demonstrate its performance just because

NNs are a common choice for modelling the transition dynamics of the environment.

The NN model takes in the current state (or the Laplacian representation of the

current state) and the action (one-hot encoding) as inputs, and it predicts the next

state, reward, and termination signal. The NN model can thus directly generate a

transition by prediction. During the training of the NN model in our experiments,

the predictions of the next state, reward, and termination signal were done separately

by independent neural networks with the same hidden layer structure. We use three

2-hidden layer neural networks with 128 hidden units each to train the NN model to

predict its three outputs. We train the neural networks using the Adam optimizer

(learning rate values specified in Chapter 5), a tanh activation function, and a mini-

batch size of 16. The loss function for each neural network was the mean squared error.

The validation set was created using 20% of the transitions in the dataset selected
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randomly while the rest of transitions were the training set. When measuring the

performance of the NN model, we used the mean squared error on the validation set.

During training, we tested the performance every epoch, if the error increases 2 times

in a row, we cut off training. Otherwise, the NN model is trained for at most 100

epochs.

In Section 5.1.1, we compare the hyperparameter selection results of the KNN

calibration model and the NN calibration model. For both the KNN calibration model

and the NN calibration model, we can either use the real state (raw observation

vector) or the Laplacian representation of the real state as inputs. The Laplacian

representation is specific to the offline data log. So for a given data log, both the KNN-

based and NN-based calibration models use the same Laplacian representation trained

using the data log. In the KNN calibration model with the raw observation vector,

the distance metric to find the nearest neighbors is Euclidean distance between raw

observations, whereas in the KNN calibration model with the Laplacian representation,

the distance metric is Euclidean distance between the Laplacian representations. The

NN based model takes either the raw observation vector or its Laplacian representation

as the input. In both the cases, the NN based model predicts the next state, reward,

and termination signal.

3.5 Summary

This chapter introduced the central idea of the thesis — developing a solution strategy

to the Data2Online problem by using calibration models. This chapter first explained

what calibration models are. The chapter further described how calibration models

can be used to evaluate hyperparameters and then select promising hyperparameters

offline. The chapter then highlighted key criteria to design calibration models and

put some conditions on the types of agents for which Data2Online should be effective.

The chapter then discussed how to use a k-nearest neighbor (KNN) based approach to

construct the calibration model. The chapter further discussed how the KNN model
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meets all the previously highlighted design criteria, making it a suitable choice for

a stable calibration model. The KNN calibration model relies on a good distance

metric to identify the nearest neighbors for a particular state-action pair. The chapter

described the distance metric based on the Laplacian representation, highlighted its

benefits, and described how to train it. Finally, the chapter discussed how we can build

a calibration model using neural networks, though such a model will not necessarily

be a stable model.
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Chapter 4

Experimental Setup

This chapter describes the prerequisites to the experiments discussed in Chapter 5.

This chapter then discusses the environments we use, the agents we compare, the data

collection schemes, details about the hyperparameter sweep, and how we evaluate the

agents in the calibration model and in the deployment environment. All experiments

were conducted on a cluster and a powerful workstation using 8252 cpu hours.

4.1 Environments

We used three environments in our experiments - Puddle World, Acrobot, and Cart-

pole, as shown in Figure 4.1.

Figure 4.1: Environments
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Puddle World

We used the Puddle World environment with the transition dynamics, reward function,

state space, and actions exactly as described by Sutton (1996) [51]. Puddle World is

an episodic task where the agent randomly starts in a non-goal region. The episode

ends when the agent reaches the goal region in the upper right corner. The objective

in Puddle World is to reach the goal region as fast as possible while avoiding the

puddle which gives the agent negative rewards of high magnitude. The deeper the

agent gets into the puddle, lower the reward it gets. Otherwise, the agent gets -1

per step until it gets to the goal. The discount factor γ = 1.0. The state-space is

2-dimensional, containing the x and y coordinates and the state space is [0, 1] along

both dimensions. The agent has 4 actions—left, right, up, down— which move 0.05

units in these directions unless the movement would cause the agent to leave the state

space, in which case the movement is bounded by the state space. A random gaussian

noise with mean = 0 and stddev = 0.01 is added to the motion along both dimensions.

Acrobot

We used the Acrobot environment with the transition dynamics, reward function,

state space, and actions as described in OpenAI Gym [11]. Acrobot consists of 2

connected links with the top joint fixed and torque applied to the bottom joint. It is

an episodic task where the links start in the rest position, pointing downwards. The

episode ends when the tip of the bottom link reaches a specified height level marked by

the horizontal bar in Figure 4.1. The objective is to raise the tip of the acrobot above

the specified height level as fast as possible. The state space is 6-dimensional. The

first 4 dimensions contain the cos and sin values of the angle between the first link and

the vertical line, and the cos and sin values of angle between 2 links. The range for

the first 4 dimensions is [−1, 1] each. The last 2 dimensions are the angular velocities

of the two joints. The range for the angular velocity of the top joint is [−4π, 4π]s−1,

while the range for the angular velocity of the bottom joint is [−9π, 9π]s−1. At the
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beginning of each episode, each dimension of the state is randomly set to be in range

[−0.1, 0.1]. The reward on each step is -1. The agent is trained to cross the height

level with the least number of steps. The discount factor γ = 1.0. The agent has 3

actions— +1, 0, -1 torque applied on the joint connecting the two links.

Cartpole

We used the Cartpole environment with the transition dynamics, state space, and

actions exactly as described in OpenAI Gym [11]. However, we introduce some random

gaussian noise with mean = 0 and stddev = 0.1 over the effect of actions by adding

noise to the applied force at each timestep. Cartpole consists of a horizontally moving

cart and a pole attached on top of it. The start state has the cart in the centre of the

track, and the pole vertical. We use the continuing version of Cartpole as described

by Sutton & Barto (2018) [52]. In this, the cartpole is transitioned to the start state

when the pole falls below some angle (±12°) or when the cart goes off the track (±2.4

units). Note that in this case, we do not reset the episode but it is instead considered

as a transition back to the start state. The objective is to balance the pole vertically

by moving the cart left or right. The agent gets a reward of -1 whenever the pole falls

below some angle or when the cart goes off the track. Otherwise, it gets a reward of 0.

The state space is 4-dimensional, containing cart position, cart velocity, pole angle,

and pole angular velocity. At the beginning of the episode, each dimension of the

state is randomly set to be in range [−0.05, 0.05] units. The discount factor γ = 0.9.

The agent has 2 actions - left and right, to move the cart.

4.2 Data Collection

Our goal from the experiments is to highlight the performance of our strategy to select

hyperparameters offline from data logs in order to deploy online RL agents in the real

system. Hence in our experiments, we assume access to offline data logs and not the

underlying environment. The above section described the environments that we use in
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our experiments. In this section, we highlight how we collect logs of data from these

environments.

Data collection consists of two important components - a) the data collecting policy,

and b) the amount of data collected. These two components affect the data coverage,

and thus can affect the quality of the calibration model that uses these data logs. To

get the policy for data collection, we train an Expected Sarsa agent in the environment

until some level of performance is reached. We then freeze the policy and allow this

fixed policy to interact with the same environment in order to log the transitions. We

can control how much to train the agent. This gives us the flexibility to obtain policies

with performance ranging between extremely poor to near-optimal. Policies with

different levels of performance typically also have different coverage of the underlying

environment. Once we obtain the data collecting policy, we can also control how long

it gets to interact with the underlying environment and log transitions. Through this

we can control the size of the offline dataset. Thus by varying the data collecting

policy and the amount of collected data, we can test our strategy in different scenarios.

In real-world systems, we usually have only one dataset to choose the hyperparam-

eters and one chance to deploy the agent. This case corresponds to having 1 random

seed in our experiments. To evaluate the calibration model fairly and robustly, we test

it with 30 random seeds and report the performance of the hyperparameters selected

for all random seeds. Thus, we collect 30 offline datasets in total, each collected with

a different seed. Each collected offline dataset can be then used to construct a calibra-

tion model and train a Laplacian representation. For every experiment described in

Chapter 5.1 and Chapter 5.2, we mention the specific details of the policies we use to

collect data and the total number of transitions of data we collect.

4.3 Agents

This section describes the agents we use in our experiments. This section also specifies

the hyperparameters we sweep for each agent in each environment.
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We use four agents: Expected Sarsa, Actor-Critic, Fitted Q Iteration (FQI),

and a random hyperparameter selection baseline agent. We use Expected Sarsa

and Actor-Critic as the two learning agents along with the calibration model to

demonstrate how our strategy works. Our strategy uses the offline data logs to select

promising hyperparameters for Expected Sarsa and Actor-Critic. We then evaluate

the performance of these agents with the selected hyperparameters in the underlying

environment to judge the quality of the selected hyperparameters and the performance

of our strategy. To compare against our strategy, we use two baseline algorithms. The

first baseline is FQI which is a classical offline RL algorithm. We test FQI alongside

our strategy to demonstrate how transferring a fixed policy compares with transferring

hyperparameters. The second baseline that we use is the random hyperparameter

selection baseline agent (discussed further below). This baseline acts as a naive agent

to compare against.

The hyperparameter values that we sweep for the agents were picked such that

some combinations gave good performance, some gave moderate performance, and

some gave poor performance. Designing the hyperparameter sets in such a way was

important to see whether our strategy is able to select the best hyperparameters

among a set of several hyperparameters with mixed performances.

1) Expected Sarsa

Here, we describe the experiment specific details of the Expected Sarsa agent and

mention the hyperparameters that we sweep for the agent. The algorithmic details of

Expected Sarsa are described in Chapter 2. The Expected Sarsa agent uses tile coded

features as its input [52], with 16 tilings and 8 tiles. Each state dimension is tile-coded

individually and pair-wise, and the resulting feature vectors are concatenated to get

a single feature vector. We then use a linear function approximator along with the

tile coded state and the action to estimate the action-values. The agent updates

the action-values using Adam optimizer. In Adam optimizer, the second momentum
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parameter β2 was set as 0.999. The agent uses optimistic initialization of action-values

for early exploration. We kept the policy stochastic by using a softmax function over

the action-values and sampled the action from the induced probability distribution.

We sweep four key hyperparameters for which the performance of the Expected Sarsa

agent is sensitive— the Adam stepsize α, the first momentum parameter β1 of Adam

optimizer, temperature of the softmax policy τ , and optimistic weight initialization w0

of action-values. We chose these hyperparameters because their impact on performance

is somewhat transient and can be overcome by continued learning; this reflects our

desire for the agent to continually learn and adapt in deployment. We describe the

hyperparameter sweep details for Expected Sarsa below.

In the Acrobot experiments in Chapter 5.1, we did grid search over the following

hyperparameters resulting in 54 combinations:

1. Adam optimizer learning rate α: {0.003, 0.03, 0.3}

2. Adam optimizer momentum β1: {0.0, 0.9}

3. Softmax temperature τ : {1.0, 10.0, 100.0}

4. Optimistic weight initialization w0: {0.0, 4.0, 8.0}

5. Eligibility trace parameter λe = 0.8

In the Puddle World experiments in Chapter 5.1, we did grid search over the

following hyperparameters resulting in 54 combinations:

1. Adam optimizer learning rate α: {0.01, 0.03, 0.1}

2. Adam optimizer β1: {0.0, 0.9}

3. Softmax temperature τ : {1.0, 10.0, 100.0}

4. Optimistic weight initialization w0: {0.0, 8.0, 16.0}

5. Eligibility trace parameter λe = 0.1
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In the Cartpole experiments in Chapter 5.1, we did grid search over the following

hyperparameters resulting in 54 combinations:

1. Adam optimizer learning rate α: {0.03, 0.1, 0.3}

2. Adam optimizer β1: {0.0, 0.9}

3. Softmax temperature τ : {0.1, 1.0, 10.0}

4. Optimistic weight initialization w0: {0.0, 6.0, 12.0}

5. Eligibility trace parameter λe = 0.023

2) Actor-Critic

Here, we describe the experiment specific details of the Actor-Critic agent and

mention the hyperparameters that we sweep for the agent. The algorithmic details

of Actor-Critic are described in Chapter 2. The Actor-Critic agent uses the same

tile coding schema as the Expected Sarsa agent (16 tilings and 8 tiles). Each state

dimension is tile-coded individually and pair-wise, and the resulting feature vectors

are concatenated to get a single feature vector. The actor uses one linear function

approximator for each action to obtain a list of scores (action preferences), and the

scores of all the actions are converted to probabilities using a softmax function to get

the agent’s policy. The critic also uses a linear function approximator to predict the

value of a given tile coded state. In our experiments, both the actor and the critic

were zero-initialized and used SGD optimizer.

For Actor-Critic experiments, we vary two key hyperparameters for which the

performance of the Actor-Critic agent is sensitive— the actor’s learning rate and the

critic’s learning rate. To eliminate some hyperparameter combinations that are less

meaningful and to keep compute tractable, we swept the critic’s learning rate and

the ratio between actor’s learning rate and critic’s learning rate. This is because of

the prior knowledge that, in practice, the actor’s learning rate is usually smaller than

the critic’s learning rate. We chose these hyperparameters because their impact on
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performance is somewhat transient and can be overcome by continued learning; this

reflects our desire for the agent to continually learn and adapt in deployment.

In both Acrobot and Puddle World experiments in Chapter 5.1, we did grid search

over the following hyperparameters resulting in 36 combinations:

1. Critic’s learning rate α: {0.001, 0.003, 0.01, 0.03, 0.1, 0.3}

2. Actor’s learning rate: {0.001α, 0.003α, 0.01α, 0.03α, 0.1α, 0.3α}

Here, for example, if the critic’s learning rate α = 0.3, and the ratio between the

actor’s learning rate and critic’s learning rate is 0.1, then the actor’s learning rate

= 0.1α = 0.1× 0.3 = 0.03.

3) FQI

Here, we describe the experiment specific details of the FQI agent and mention

the hyperparameters that we sweep for the agent. The algorithmic details of FQI are

described in Chapter 2. We use a linear function approximator based on tile coding and

use 16 tilings and 2 tiles. Each state dimension is tile-coded individually and pair-wise,

and the resulting feature vectors are concatenated to get a single feature vector. We

use Adam optimizer to perform gradient descent steps. We use a mini-batch size of

128, sync period of 512 steps, and 50,000 training iterations. We train regularized

FQI offline with the same aforementioned 30 datasets that we use with our strategy

(Section 4.2). For each training dataset, we choose one of the other offline datasets as

its validation set and do a grid search on the hyperparameter set as described below.

After offline training, for each dataset we choose the learned action-value function of

the hyperparameter setting with the lowest final MSTDE on the validation dataset

and deploy an ϵ-greedy policy (with ϵ = 0.1) with respect to this action-value function

to the true environment. Typically, FQI is deployed with a fixed extracted policy

that is greedy (ϵ = 0.0) with respect to its action-value function. However, in our

experiments, the policy with ϵ = 0.0 performed worse; so we added some exploration

using a higher ϵ value. In many cases the greedy FQI agent got stuck in a small region
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in the state space for a long time. In practice, ϵ-greedy FQI agent can jump out of

these regions and perform better.

For FQI, we vary two key hyperparameters for which the performance of FQI

is sensitive— Adam optimizer’s learning rate and the regularization coefficient. In

both Acrobot and Puddle World experiments, with other hyperparameters in the

agent fixed, we did grid search over the following hyperparameters resulting in 15

combinations:

1. Adam optimizer learning rate α: {10−1, 10−2, 10−3, 10−4, 10−5}

2. L2 regularization coefficient λf : {10−1, 10−3, 10−5}

4) Random hyperparameter selection baseline

Finally, we compare our approach against a random hyperparameter selection base-

line. This baseline simulates the case when we do not know the best hyperparameter

setting so we randomly pick one from the list. We still use a base learning agent like

Expected Sarsa (or Actor-Critic) to learn the policy. The baseline randomly selects one

hyperparameter setting from the set of hyperparameters in each run, and we evaluate

Expected Sarsa (or Actor-Critic) with these randomly selected hyperparameters and

report performance. Since this baseline randomly picks a hyperparameter, it does not

use the calibration model.

4.4 Evaluation of the Agents in the Calibration

Model and the Deployment Environment

So far we have discussed how to collect the dataset, construct a calibration model

from the data, test different hyperparameter settings inside the calibration model, and

then select the best performing setting in the calibration model. However, we need

some method to evaluate the efficacy of our strategy, that is, whether the selected

hyperparameter setting indeed does perform well in the deployment environment.

In this section, we discuss how we evaluate the hyperparameters in the calibration
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Figure 4.2: Evaluation of hyperparameters in the calibration model. This
figure illustrates how hyperparameters are evaluated in the calibration model. The
data logs can be used to construct a calibration model of the underlying environment.
The calibration model need not resemble the underlying environment perfectly. Each
hyperparameter setting is denoted by Λ. Each hyperparameter setting can be evaluated
in the calibration model based on some performance criterion. The best performing
hyperparameter is then selected for deployment in the underlying plant.

model specific to our experimental setup. We further discuss how we evaluate our

strategy’s performance, that is, the performance of the selected hyperparameters in

the deployment environment. We also discuss how to evaluate the performance of the

baselines.

Selecting hyperparameters in the calibration model:

For every dataset that is collected, we construct a unique calibration model and

train the Laplacian representation. For every calibration model, we evaluate all

hyperparameters 10 times over 10 random seeds. We then select the hyperparameter

with the highest average online performance (total reward) across these 10 runs.

Thus for every dataset (or calibration model), we select one hyperparameter setting

to deploy. In any real world application, we typically will have one huge dataset

to construct the calibration model and then finally select one hyperparameter to

deploy. In our case, this corresponds to one run of the whole experiment— taking

in a dataset, constructing the calibration model, evaluating the hyperparameters in

the model and then selecting the best one. Figure 4.2 illustrates the evaluation of the

hyperparameters in a single calibration model constructed from a single dataset. In

our experiments, we do this whole process 30 times to understand how our strategy

performs across multiple independent runs. Hence we collect 30 datasets to evaluate
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the performance of our strategy across 30 different seeds. Thus, we select a total of 30

hyperparameters corresponding to these 30 datasets.

Evaluating the selected hyperparameters in the deployment environment:

Our strategy performs the above procedure, that is, to use the dataset to select

a hyperparameter setting. However, we now need to evaluate whether the selected

hyperparameters are good enough in the deployment environment, which is what we

finally care about. To measure how well our strategy performs, we evaluate the online

performance of the selected hyperparameters directly in the deployment environment.

Each selected hyperparameter is evaluated for 30 runs for nsteps timesteps using 30

random seeds (nsteps depends on the experiment). The average of the 30 independent

runs of each hyperparameter gives us the true performance of each hyperparameter

in the deployment environment. This is used as the ground truth performance of

that hyperparameter in the deployment environment. If the true performance of the

selected hyperparameter is high, it means that our strategy has performed well by

selecting a good hyperparameter. The true performance of the selected hyperparameter

will always be lower than or equal to the true performance of the best hyperparameter

in the sweep in the deployment enviroment. Hence, a smaller difference in the true

best performance and the true performance of our selected hyperparameter suggests a

more reliable calibration model. Ideally, we want to select the best hyperparameter

in the sweep for every single run (or dataset). So the best case scenario would be to

select the hyperparameter with the highest true performance each time.

To summarize the procedure - we take a dataset, construct a calibration model,

evaluate each hyperparameter 10 times in the calibration model and select the hyper-

parameter with the highest average performance across these 10 runs, then evaluate

the selected hyperparameter in the deployment environment for 30 times and report

its true performance. We do this whole procedure 30 times for 30 datasets. In the end,

we will be left with performance scores of the 30 selected hyperparameters. We follow
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the above procedure of evaluating the hyperparameters in the calibration model and

the deployment environment for Expected Sarsa and Actor-Critic.

Evaluating the baselines:

The random hyperparameter selection baseline simply selects one hyperparameter

setting randomly for each dataset without constructing a calibration model. Thus

we report the true performance of the 30 randomly selected hyperparameters for 30

datasets. Note that the random hyperparameter selection baseline still uses a base

learning agent like Expected Sarsa or Actor-Critic. The FQI agent uses the offline

datasets to extract a policy corresponding to the best performing hyperparameter.

Thus, FQI extracts 30 policies from the 30 datasets. To evaluate the FQI agent,

we run the extracted policy on the deployment environment for nsteps timesteps.

Each extracted policy is evaluated 30 times with 30 random seeds in the deployment

environment. Thus, all 30 extracted policies are evaluated 30 times. The average

online performance of each deployed policy across the 30 runs is considered as the

true performance of the deployed policy. Thus by following this procedure for our

strategy and the baselines, we can get the true performance of our strategy and the

baselines in the deployment environment. This will be useful to compare our strategy

with the baselines.

Online performance metric:

The metric used to evaluate online performance of the hyperparameters is the same

in the calibration model and the deployment environment. For example, an agent with

a higher average episodic return in puddle world has better performance, so we use the

area under the curve (AUC) of the average episodic return as a measure of performance

in both the deployment environment and the calibration model. Additionally, we

ensure the agent learns from at least 30 episodes in each run inside the calibration

model. Thus, if the experiment is 15,000 timesteps long, we keep the timeout to be

500 so the agent sees at least 30 episodes.
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4.5 Summary

This chapter described the setup for the experiments that follow in the next chapter.

In specific, this chapter listed the environments that are used in the experiments, and

gave a detailed description about their state space, action space, reward function,

and the objective in each environment. The chapter further discussed how offline

data logs are collected from these environments, such that the data logs can then

be used to construct the calibration model and train the Laplacian representation.

The chapter also listed the agents that are tested in our experiments, and gave a

detailed description about the hyperparameters that we sweep for each agent in each

environment. Finally, the chapter ended with describing how the agents are evaluated

in the calibration model to select the hyperparameters, and then evaluated in the

deployment environment in order to measure the performance of our strategy and the

baselines.
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Chapter 5

Experimental Results

In this chapter, we describe in detail the experiments that were conducted and discuss

the results of these experiments. This chapter is divided into two sections. In Section

5.1, we conduct several experiments to investigate the scope of our strategy to select

hyperparameters offline. We subject our solution strategy to several different scenarios

of the Data2Online problem and highlight our findings. Section 5.1 focuses solely on

our strategy’s ability to select hyperparameters from a set of many hyperparameters

using grid search. Section 5.2 of this chapter builds upon this naive idea of selecting

hyperparameters from a set of hyperparameters. This section extends its further to

provide a better way to use the calibration model to fine-tune the hyperparameters

offline.

5.1 Offline Hyperparameter Selection Using Grid

Search

In this section, we conducted a battery of experiments to provide a rounded assessment

of when our approach can or cannot be expected to reliably select hyperparameters

for online learning. We investigate varying the data collection policy and size of the

data logs to mimic a variety of data collection scenarios ranging from a near-optimal

operator to random data. We explore selecting hyperparameters of different types

for different agents, and investigate a non-stationary setting where the environment

58



changes from data collection to deployment. In all experiments discussed in this

section, our approach uses grid search to select good hyperparameters offline from a

set of several possible hyperparameters.

5.1.1 Experiment 1: Comparison With Baselines and Using
Different Calibration Models

We begin with the simplest first question: how does our approach compare to simple

baselines and with different choices of calibration model type?

Experiment Description

First, we investigate the benefits of our approach with different choices of calibration

model in two classic control domains and compare the performance of our strategy

with the baselines. We further provide results with and without the Laplacian based

distance metric. We then also conduct the same experiment with a different agent

and report how our strategy performs in selecting hyperparameters for this different

agent. Following are the experiment specifications:

Environments: We conducted experiments in two continuous state, discrete

action, episodic deployment environments, Acrobot and Puddle World, as described

in Chapter 4.

Data collection: As mentioned in Chapter 4, we used the Expected Sarsa agent

for data collection. We train the agent to achieve some level of performance and then

cut-off training. We then use the saved policy to collect data. We initialized the agent

with a hyperparameter setting that is capable of achieving near-optimal performance.

In this experiment, we used a near-optimal policy for each domain to collect data for

building the calibration models. The near-optimal data collection policy for Acrobot

can solve the task in 100 steps and the near-optimal data collection policy in Puddle

World achieves an average episodic return of -25. We collected 5000 transitions for

each of the 30 datasets with the near-optimal policy. In both cases of Acrobot and
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Puddle World, the policy will provide the system with many examples of successful

trajectories to the goal states in the 5000 transition data log.

Agents and calibration models: We used the FQI agent as a baseline agent to

compare against our approach. FQI learns a policy from the calibration data and then

deploys the learned policy fixed in the deployment environment representing a classical

batch RL fixed-deployment baseline. We also used the random hyperparameter

selection baseline agent as a naive baseline to compare against. Additionally, we used

the linear Softmax-policy Expected Sarsa agent along with two calibration models

- k-nearest neighbor (KNN) model and neural network (NN) model, both with the

learned Laplacian encoding (see Section 3.3.2). The NN model is trained to predict

the next state and reward given the current action and the Laplacian encoding of the

current state as input to provide the network with a better transition-aware input

representation. The FQI agent’s training is described in Chapter 4. All agents are

trained in the calibration model and evaluated in the deployment environment for

15,000 timesteps in Acrobot and for 30,000 timesteps in Puddle World.

Model construction and representation training: The KNN calibration

model was trained as described in Section 3.3. We used k=3 in the k -nearest neighbors

calibration model. The NN calibration model was trained as described in Section 3.4.

For training the NN model in both the Acrobot and Puddle World experiments, we

used Adam optimizer’s learning rate of 0.0003. The Laplacian representation training

details are described in Section 3.3.2. For the Laplacian representation training in

Acrobot, we chose κ = 0.8, β = 5, δ = 0.5, α = 0.00003, and the length of trajectory

n for picking nearby states was set to 20. In Puddle World, we used κ = 0.8, β = 5,

δ = 0.05, α = 0.0003, and the length of trajectory n for picking nearby states was set

to 10.

Hyperparameters used in the grid search: In this first experiment we selected

the hyperparameters for the Expected Sarsa agent from data generated by a near-

optimal policy that has good coverage of the underlying environments. The agent
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used tile coding to map the continuous state variables to binary feature vectors. This

on-policy Expected Sarsa agent learns quickly but is sensitive to several important

hyperparameters. We investigated several dimensions of hyperparameters including

the step-size and momentum parameters of the Adam optimizer, the temperature

parameter of the policy, and the weight initialization for the action-value function.

We chose these hyperparameters because their impact on performance is somewhat

transient and can be overcome by continued learning; this reflects our desire for the

agent to continually learn and adapt in deployment. For the grid search, we used the

hyperparameter values specified in Section 4.3.

Evaluation pipeline: Our evaluation pipeline involves several steps. First we

evaluate the true performance (steps per episode for Acrobot and return per episode

in Puddle World) of each hyperparameter combination in the deployment environment

running for 15,000 steps in Acrobot and 30,000 steps in Puddle World, averaging

over 30 runs. We used the data collection policy to generate the data log, learn the

calibration model, and train the Laplacian representation. We then evaluate the

hyperparameters inside the calibration model and select the best performing one.

We record the true performance of the selected hyperparameters to summarize the

performance of the calibration model.

This whole process—running the data collection policy to generate a data log,

learning the calibration model, and evaluating the hyperparameters—is repeated 30

times (giving 30 datasets with 30 corresponding hyperparameter selections). The

statistic of interest is the median and the distribution of the true performance for the

hyperparameters selected across runs. In the ideal case, we want the strategy to choose

the best hyperparameter every time and the variance in true performance would then

be zero. For the FQI baseline we simply plot the distribution of performance of each

of the 30 extracted policies on the deployment environment. This whole evaluation

pipeline will be the same for all the following experiments. Figure 5.1 summarizes the

results.
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Figure 5.1: Hyperparameter transfer with calibration model. Each subplot
shows the performance of two calibration models compared against FQI and the
random hyperparameter selection baseline. The dashed horizontal line indicates
the true performance of the Expected Sarsa agent with the best hyperparameter
setting in the sweep in the deployment environment. Each box shows the distribution
summarizing the true performance in deployment of the best hyperparameters selected
in each run of the experiment. In Acrobot lower is better, and in Puddle World
higher is better. If the centre of mass is close to the dashed horizontal line, then
the system is choosing hyperparameters well. Low variance indicates that the system
reliably chooses hyperparameters that perform similarly across runs. We include
the performance of randomly selecting hyperparameters on each run as a baseline.
In each box the bold line represents the median, the boxes represent the 25th and
75th percentiles, the whiskers (extending lines) represent the minimum and maximum
performance, unless there are outliers which are represented by circles. The left side
of each box uses the left y-axis and the right side (separated by the dotted vertical
line) uses the right y-axis.

Results and Discussion

For both the Acrobot and Puddle World plots in Figure 5.1, there are two separate

Y-axes scales. The vertical dotted line separates the box plots, such that the box plots

to the left of the dotted line follow the left Y-axis and the ones to the right follow the

right Y-axis. In Acrobot, since the Y-axis is average steps per episode, lower value on

the Y-axis indicates better performance. Whereas in Puddle World, higher value on

the Y-axis indicates better performance. Each box plot corresponds to the spread in

the performance of the deployed hyperparameters across the 30 runs (30 datasets).
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Each box plot is marked by a bold black line that indicates the median performance

and the edges of the box indicate the quartiles. The whiskers indicate the minimum

and maximum performance and the circles represent outliers. The horizontal dashed

black line indicates the true performance of the Expected Sarsa agent with the best

hyperparameter in the sweep. This line is the best possible attainable performance of

our strategy. In the ideal case, our strategy always selects the best hyperparameter

in the sweep for every run, and thus the box plot would collapse onto the horizontal

dashed line and have zero variance.

Figure 5.1 shows that the KNN model’s box plot has almost collapsed onto the

horizontal dotted line in both Acrobot and Puddle World experiments. Thus, in both

environments the KNN calibration model performed very well, selecting the same

hyperparameters as would a sweep directly in the deployment environment. The NN

calibration model performed poorly overall in comparison to the KNN model. The NN

model performance can be unstable, choosing hyperparameters with good performance

in some runs, but often choosing poor hyperparameters. The poor performance of the

NN calibration model can be explained by model iterations that generate non-real next

states and rewards, causing the prediction error at each transition step to accumulate.

Both the KNN and NN calibration models use the Laplacian encoding. In both

Acrobot and Puddle World, the KNN and NN calibration models outperform random

hyperparameter selection baselie as well as the FQI baseline agent. In constrast, the

FQI baseline performs much worse than even the random hyperparameter selection

baseline. This suggests the data log is too limited to extract a good policy and

deploy it without additional learning, but the same data appear useful for selecting

hyperparameters with our approach.

Additional Results

In the above experiments, we demonstrated how both the KNN as well as the NN

calibration models using Laplacian encoding outperform the two baselines - FQI
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and the random hyperparameter selection baseline. It is also clear from the results

how the KNN based calibration model performs much better than the NN based

calibration model. The KNN calibration model almost always selects near-optimal

hyperparameters in all the runs and thus has high performance and low variance. The

NN calibration model, on the other hand, has quite high variance in its performance.

Thus, for the exact same datasets the KNN model gives more stable results.

We conduct two additional experiments to give more insight into the strategy.

1) Calibration models using raw states (or observation vectors) as input,

that is, without the Laplacian encoding

The above experiments use the calibration models with the Laplacian encoding. We

now see what happens when we do not use the Laplacian encoding with the calibration

model, that is, when we just use the raw states as the input. For training the NN

calibration model with raw states in Acrobot we use the learning rate of 0.0003 in

the Adam optimizer, while in Puddle World we use learning rate of 0.0001. All other

training details of the KNN calibration model, the NN calibration model, and the

Laplacian representation are exactly the same as in the above experiment. Figure 5.2

shows the results.

We observe mixed results when using the NN calibration model with and without

the Laplacian encoding. In Puddle World, the NN model with the Laplacian encoding

performs significantly better than the NN model without the Laplacian encoding.

However in Acrobot, the model without the Laplacian encoding outperforms the model

with the Laplacian encoding, however, the difference in the performance is smaller

than what is seen in Puddle World.

We observe a minuscule difference in the performance of the KNN calibration model

with and without the Laplacian encoding. In Puddle World, the two models perform

nearly the same. Even in Acrobot, the two models perform quite similarly except in

two outlier cases where the KNN model without the Laplacian encoding is not able to
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Figure 5.2: Replacing Laplacian representation with raw state. Each subplot
shows the result of comparing using raw state and Laplacian representation in KNN
based and NN based calibration model. In Acrobot (lhs) lower is better and in
Puddle World (rhs) higher is better.

learn good hyperparameters.

So overall, the calibration models with the Laplacian encoding performed slightly

better than the ones without the Laplacian encoding. The effects of using the Laplacian

representation might be more pronounced in some different kinds of environments

such as a grid world with walls in it. Using Euclidean distance on the Laplacian

representations will have a significant positive effect on the performance in such

environments where we need a transition-aware distance metric. However, throughout

our experiments we note that the KNN model outperforms the NN model with or

without the Laplacian representation.

2) Results when using a different agent

The results in the experiments in the above section use Expected Sarsa as the

learning agent. But can we expect similar results when using a different agent? To

answer this, we repeat the same experiment as above but now using Actor-Critic

instead. For the grid search, we used the hyperparameter values specified in Section 4.3.

We again compare our strategy with FQI and the random hyperparameter selection

baseline. Figure 5.3 shows the results.
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Figure 5.3: Calibration model hyperparameter transfer with Actor-Critic
agent. Each subplot shows the calibration model performance with Actor-Critic
agent, compared against FQI and a random hyperparameter selection baseline. The
dashed horizontal line indicates the performance of Actor-Critic agent with the best
hyperparameter setting in the sweep in the deployment environment. In Acrobot (lhs)
lower is better and in Puddle World (rhs) higher is better.

Again, our strategy significantly outperforms both the baselines - FQI and random

hyperparameter selection. The Actor-Critic results for our strategy are slightly worse

than in the Expected Sarsa experiment, but nevertheless they are still good. This goes

to show that the calibration model works quite well when selecting the hyperparameters

of different types of agents.

5.1.2 Experiment 2: Effect of Varying Data Collection

Hyperparameter selection depends on the quality of the calibration model which, in

turn, depends on the quality of the data logs. The data log quality depends on the

coverage of the underlying environment. Data coverage is influenced by two major

factors - a) the data collecting policy, and b) the total amount of transitions collected.

So the data collecting policy and the dataset size are two important factors that can

affect hyperparameter selection. In this experiment we evaluate the robustness of our

approach to changes in the amount of offline data available, and the quality of the
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policy used to collect the data.

Experiment Description

We conduct two different types of experiments: 1) vary the data collecting policy,

keeping the amount of collected data fixed, and 2) vary the amount of data collected,

keeping the data collecting policy fixed. The experiment specifications are:

Environment: We conducted the experiments in the Puddle World and Acrobot

environments.

Data collection: Here we describe data collection in the two experiments:

1) Varying data collecting policy with fixed dataset size :

In this experiment, we fixed the dataset size to be 5000 transitions. We experimented

with 3 different policies corresponding to near-optimal, medium, and naive performance

for training our KNN Laplace calibration model. The near-optimal policy was identical

to the one used in the previous experiment. The medium policy was designed to

achieve roughly half the visits to goal states compared to the near-optimal policy in the

same budget of 5000 timesteps. The naive policy was designed such that it achieved

significantly fewer visits. In Acrobot, we require there are at least 50, between 20-30,

and between 10-15 episodes in the 5000 transitions dataset, for near-optimal, medium,

and naive policies respectively. In Puddle World, the number of episodes are more

than 200, between 80-100, and between 20-50 respectively.

2) Varying dataset size with a fixed data collecting policy:

In this experiment, we fixed the data collecting policy to be the medium policy from

above. We collected 3 different datasets with sizes of 5000, 1000, and 500 transitions.

For Acrobot, we made sure the 5000, 1000, and 500 transitions datasets had 20-30,

4-6, and 2-3 episodes respectively. For Puddle World, we made sure they had 80-100,

16-20, and 8-10 episodes respectively.
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Model construction and representation training: The KNN calibration

model was trained as described in Section 3.3. We used k=3 in the k -nearest neighbors

calibration model. The Laplacian representation training details are described in

Section 3.3.2. For the Laplacian representation training in Acrobot, we chose κ = 0.8,

β = 5, δ = 0.5, α = 0.00001, and the length of trajectory n for picking nearby states

was set to 5. For Puddle World, we used κ = 0.8, β = 5, δ = 0.05, α = 0.00001, and

the length of trajectory n for picking nearby states was set to 5.

Agents: We used the Expected Sarsa agent in both the experiments. In the

Acrobot experiment, we trained and evaluated the agent for 15,000 timesteps in the

calibration model as well as in the deployment environment. Whereas in the Puddle

World experiment, we trained and evaluated the agent for 30,000 timesteps.

Hyperparameters used in the grid search: For the grid search, we used the

hyperparameter values specified in Section 4.3.

Results and Discussion

Figure 5.4 describes the results of the experiment. It shows bar plots as against box

plots shown in the previous experiment. The median performance here is indicated by

the top of the bar plot and the quartiles are shown by the whiskers. Figure 5.4 a) and

Figure 5.4 b) show that in both Acrobot and Puddle World, our strategy performed

almost equally well, even while varying the dataset sizes. Even 500 transitions contains

enough coverage of the state-space and successful terminations to produce a useful

calibration model. This is in stark contrast to the FQI results in Experiment 1 in

section 5.1.1, where a policy trained offline from the same size data log failed to solve

either task despite containing 5000 transitions. Similarly, Figure 5.4 c) and Figure 5.4

d) show that in both Acrobot and Puddle World, our approach performs well despite

significantly varying the data collecting policies. The near-optimal, medium, as well

as the naive policy have different coverage of the underlying environment due to the

nature of their suboptimality. However, all policies captured enough coverage for the
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Figure 5.4: The role of data logs. Plots (a) and (b) show the median calibration
model performance (with 25% and 75% quartiles) when changing the data log size.
Plots (c) and (d) show the median performance when the data collecting policy changes.
In Acrobot (lhs) lower is better, and in Puddle World (rhs) higher is better. Note,
these are barplots: the median is shown by the top of the bar, and the quartiles are
shown by the whiskers (extending lines). Overall our approach is largely insensitive to
the data log size and policy in these two domains.
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datasets to be useful. The results in Figure 5.4 show that our approach is largely

insensitive to data log size and policy in these classic domains. Exploration in both

these domains is not challenging; therefore, the success of the calibration model is not

surprising.

5.1.3 Experiment 3: When the Deployment Environment
Has Changed After Data Collection

Learning online is critical when we expect the environment to change. This can

happen due to wear and tear on physical hardware, un-modelled seasonal changes,

or the environment may appear non-stationary to the agent because the agent’s

state representation does not model all aspects of the true state of the MDP. In our

problem setting, the deployment environment could change significantly between data

collection and the online learning deployment phase. Intuitively we would expect

batch approaches that simply deploy a fixed policy learned from data to do poorly in

such settings. The following experiment simulates such a scenario.

Experiment Description

Following are the experiment specifications:

Environments: We conducted the experiment in the Acrobot environment. How-

ever, this experiment uses two variants of the Acrobot environment. Unlike before,

we evaluate the selected hyperparameters and the FQI policy on a second, changed

Acrobot environment wherein we double the length and mass of the first (top) link.

This changes the dynamics but does not prevent learning reasonably good policies.

Data collection: Though we evaluate the selected hyperparameters on the second

changed Acrobot environment, we use the original Acrobot environment for data

collection. This change in the environment at the time of deployment mimics the

situation when the environment has changed after data collection. We used a near-

optimal policy to collect 5000 transitions from the original Acrobot environment. The
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policy is considered as near-optimal when the averaged length of episode is less than

100. During policy learning, once the performance is above the given threshold, we

cut-off learning and use the saved policy to collect data.

Model construction and representation training: The KNN calibration

model was trained as described in Section 3.3. We used k=3 in the k -nearest neighbors

calibration model. The Laplacian representation training details are described in

Section 3.3.2. For the Laplacian representation training, we chose κ = 0.8, β = 5,

δ = 0.5, α = 0.00003, and the length of trajectory n for picking nearby states was set

to 20.

Agents: The four agents used in this experiment are:

1) As before, we used the Expected Sarsa agent and transferred the hyperparameters

selected by our strategy using the KNN calibration model.

2) We also trained a policy with tile coded FQI and transferred the fixed policy.

3) Our third agent was obtained by transferring the best performing policy learned

by Expected Sarsa in our calibration model to the second environment with no further

learning. This agent differs from the first agent in that it transfers the learned policy

in KNN calibration model as against transferring the hyperparameters.

4) Finally as a sanity check we obtain our fourth agent by training a policy using

Expected Sarsa directly on the first environment and evaluating its performance on

the second environment. We gave the agent enough time (50,000 timesteps) to train

in the original environment for it to learn a good policy before transferring it to the

changed environment. The learned policy is fixed and then transferred to the changed

environment.

Here, only the first agent transferred hyperparameters using our strategy. The other

three agents transferred fixed policies in the second changed environment. We train

the first 3 agents for 15,000 timesteps using the calibration model (or offline dataset

for FQI). We train the fourth agent for 50,000 in the original environment. After

transferring these agents to the changed environment, we measure the performance
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Figure 5.5: When Acrobot changes. Our approach is compared to FQI, a baseline
transferring the policy learned in the original environment, and a baseline transferring
the policy learned in the calibration model. This plot can be interpreted exactly as
Figure 5.1: the median close to the horizontal dashed line represents good performance
and small spread indicates that the system reliably chooses hyperparameters that
perform similarity across runs.

of all the agents for 15,000 timesteps. This whole process was repeated 30 times

(generating 30 datasets) to aggregate the results presented in Figure 5.5.

Hyperparameters used in the grid search: For the grid search, we used the

hyperparameter values specified in Section 4.3.

Results and Discussion

Figure 5.5 shows the results of the four agents that were tested in this experiment. The

Y-axis is plotted using a log scale. Since the Y-axis corresponds to the average number

of steps per episode, lower number on Y-axis corresponds to better performance. The

dashed horizontal line indicates the true performance of the Expected Sarsa agent using

the best hyperparameter from the sweep in the second changed Acrobot environment.

The blue box plot (first agent) indicates the performance of the Expected Sarsa agent

whose hyperparameters are selected using the calibration model. The red box plot

(second agent) is the performance of transferring a fixed policy learned using FQI on
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the offline dataset. The grey box plot (third agent) is the performance of transferring

a fixed policy learned using Expected Sarsa on the calibration model. Finally, the

green box plot (fourth agent) is the performance of transferring a fixed policy learned

using Expected Sarsa on the first Acrobot environment.

The results in Figure 5.5 show that the blue box plot (our strategy) has almost

collapsed completely onto the dashed horizontal line. It indicates that our strategy

is selecting near-best hyperparameters in all 30 runs for the changed environment

despite only using data from the original environment. It highlights that our approach

performs best and appears very robust (almost zero variance) despite the abrupt

non-stationarity tested here. All the other three agents transferred fixed policies in

the second changed environment. Figure 5.5 highlights that transferring static policies

can be problematic when the environment changes. Clearly the difference between

the two environments is significant; even transferring a policy directly learned on the

first environment (green box plot) performs much worse than using our approach and

learning a new policy from scratch. The transfer performance of the policy learned in

the calibration model (grey box plot) is much worse. The only difference between the

blue box plot and the grey box plot is that the former transferred hyperparameters,

whereas the latter transferred a fixed policy while both used the exact same calibration

model. This suggests that our approach of transferring hyperparameters (blue box

plot) is somewhat robust by design to changes in the underlying environment between

data collection and deployment. Even the FQI agent (red box plot) performs poorly

in comparison to our approach. Thus, using the original environment data to select

agent hyperparameters for a changed (but similar) environment is quite effective. This

goes to show that hyperparameters are quite general in their nature and are fairly less

sensitive to changes in the underlying environment than fixed policies. In summary, if

the deployment environment is different than the environment used for data collection,

transferring the agent hyperparameters and learning from scratch clearly seems to be

much better than transferring fixed policies learned using several different techniques.
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5.1.4 Experiment 4: A Failure Case - When the Coverage of
the Collected Data Is Poor

Our approach is not robust to all environments and data collection schemes. In this

section we investigate when it can fail. One obvious way our approach can fail is if

the agent’s performance in the calibration model is always the same: no matter what

hyperparameter we try, the system thinks they all perform similarly. To illustrate this

phenomenon, we conduct the following experiment.

Experiment Description

Following are the experiment specifications:

Environment: We conducted the experiment in the Cartpole environment. In

Cartpole the agent must balance a pole in an unstable equilibrium as long as it can.

If the cart reaches the end of the track or the pole reaches a critical angle, failure

is inevitable. In Cartpole, near-optimal policies can balance the pole for hundreds

of steps rarely experiencing failures or much of the state-space. A data log collected

from the near-optimal policy would likely produce a calibration model where failures

appear impossible and all hyperparameters appear excellent. Figure 5.6 plots the

performance of the best hyperparameters selected according to the calibration model

from three different policies, averaged over 30 runs.

Data collection: For data collection, we used a random policy, a near-optimal

policy, a medium policy that was half as good as near-optimal. We collected 10,000

transitions using each policy for the datasets. Since the data logs with a near-optimal

policy will hardly have any failures, we randomized the initial pole angles and cart

position during data collection for all the three policies. Randomizing the initial pole

angles and cart position and then collecting data also leads to better coverage of the

underlying environment, in turn, giving more failures in the dataset to learn from.

The datasets collected by the near-optimal, medium, and random policies had 40-50,

80-125, and 400-500 failures respectively.
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Figure 5.6: Success and failure in Cartpole. This plot shows performance of
three different calibration models constructed from random, near-optimal and medium
policies. Left: performance of the hyperparameters in deployment as selected by
different calibration models—lower is better. Right: each model’s evaluation of all
hyperparameters across all 30 runs. Ideally the distribution of performance would
match that of the hyperparameter performance in the deployment environment—black
dots far right.

Model construction and representation training: The KNN calibration

model was trained as described in Section 3.3. We used k=3 in the k -nearest neighbors

calibration model. The Laplacian representation training details are described in

Section 3.3.2. For the Laplacian representation training, we used κ = 0.8, β = 5,

δ = 0.05, α = 0.00003, and the length of trajectory n for picking nearby states was

set to 50 steps.

Agents: We used the Expected Sarsa agent in both the experiments. In both the

experiments, we trained and evaluated the agent in the calibration model as well as in

the deployment environment for 50,000 timesteps.

Hyperparameters used in the grid search: For the grid search, we used the

hyperparameter values specified in Section 4.3.
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Results and Discussion

In Figure 5.6, since the Y-axis corresponds to the average number of failures (pole drops

or cart goes off the track), lower number on Y-axis corresponds to better performance.

The left subfigure shows the results of the performance of our strategy for different

data collecting policies. The grey box plot corresponds to the random policy, the

orange box plot corresponds to the medium policy, and the blue box plot corresponds

to the near-optimal policy. The right subfigure shows the performance of every

hyperparameter combination in the grid search for every run inside the calibration

model. The grey, orange, and blue scatter plots show how the hyperparameters

perform inside the calibration model for the random, medium, and the near-optimal

policies respectively. The black scatter plot shows the true performance of every

hyperparameter combination in deployment. A good calibration model should have

a somewhat similar pattern to the black scatter plot. However, it is clear how the

calibration model formed using data from the near-optimal and medium policies causes

the environment to appear easier than it actually is, in many cases leading to zero

failures in the simulated online runs inside the calibration model.

There are two types of failures in Cartpole: one is when the pole drops (angular

failure) and the other is the cart goes too far and out of the range (positional failure).

The near-optimal policy has only positional failures. The medium policy tends to

have both types of failures, though there are more positional failures than angular

failures. On the other hand, the random policy predominantly has angular failures.

The failure that the agent sees most often in the early learning stage is the angular

failure. As a result of this, the calibration model formed using the data collected

by the random policy has more useful information as it mimics what the agent is

more likely to see in the true environment during early learning. This is followed by

the medium policy and then by the near-optimal policy. As per the left subfigure,

the random policy data gave the best performance, followed by the medium policy
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and then the near-optimal policy. In the right subfigure, we see a similar pattern

in the performance of the hyperparameters inside the respective calibration models.

Performance in the calibration model under the random policy was most similar to

the performance in deployment. This was followed by the medium policy and then

the near-optimal policy.

It indeed shows that the dynamics of Cartpole combined with particular data

collection policies can render the calibration model ineffective. Even with random

starting states the calibration model for near-optimal policy rarely simulated dropping

the pole. The random policy produced the best calibration model but it still could

not identify the best hyperparameters. Unsurprisingly, the random policy drops

the pole every few steps and thus the log contained many failures but high state

coverage—explaining why the performance was better than near-optimal. One could

certainly argue that many applications might not exhibit this behavior—especially

since it is largely caused by a task with two modes of operation (failing or balancing).

Additionally, using a random policy to achieve coverage is unrealistic in real-world

applications like water treatment.

5.1.5 Summary

Section 5.1 described the experiments that highlight how our solution strategy performs

in its ability to select good hyperparameters from a set of many hyperparameters. In

specific, Section 5.1.1 described experiments that demonstrate superior performance

of our strategy in comparison to the naive random hyperparameter selection baseline

and the offline RL baseline (FQI). Section 5.1.1 also demonstrated how our solution

strategy worked well across different environments and different learning agents. The

experiments also highlighted how different calibration models compare with each other.

Furthermore in Section 5.1.2, we demonstrated how our strategy is fairly insensitive

to different data collecting policies and different dataset sizes, and performed well

across different data regimes. Next, Section 5.1.3 demonstrated an experiment that
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highlighted how transferring hyperparameters and learning from scratch in a changed

deployment environment outperforms transferring a fixed policy learned from the

offline data logs. Finally, Section 5.1.4 describes an experiment that highlights a

scenario where our strategy fails to perform good. This failure case happens when the

calibration model evaluates all hyperparameters—good or bad— with nearly equal

performance.

5.2 Automated Offline Hyperparameter Fine-Tuning

Using Cross Entropy Method for Optimization

The calibration model is an offline artifact that we can use as we like without impacting

the deployment environment. In the experiments in Section 5.1, we discussed how

to select good hyperparameters from a set of many hyperparameters using grid

search. This involved evaluating each hyperparameter combination independently

in the calibration model and finally selecting the best from a finite set of discrete

hyperparameters. However, this is limiting because grid search scales very poorly as

we increase the total number of dimensions to sweep or add more values to sweep

along each dimension. Often, researchers end up doing several sequential cycles of grid

search trying to find better hyperparameters. As a result, sweeping very fine values of

hyperparameters becomes computationally expensive. Fortunately, we can do better

than grid search. We can use the model in smarter ways to discover and evaluate

good hyperparameters for deployment. We can have a hyperparameter optimization

technique that fine-tunes the hyperparameters, is fully automated, scales well with

more dimensions, and is more resource efficient than grid search.

In this section we discuss and evaluate how to use a simple black-box optimization

strategy based on cross-entropy method for optimization (CEM) to search the model

for high performing hyperparameters. Instead of evaluating a discrete set as in grid

search, we can search a continuous space, exploiting smoothness of the performance

surface, to improve performance in deployment.
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CEM Algorithm:

CEM is a family of algorithms, where the general principle is to (1) maintain a

distribution over plausibly maximal inputs, and (2) sample from that distribution

and progressively concentrate around the maximal input. At a high-level, the CEM

algorithm starts with some initial probability distribution over the hyperparameters.

In each iteration, it samples some points (hyperparameters) using the distribution.

We evaluate the online learning performance of these sampled hyperparameters in

the calibration model. We then sort the hyperparameters based on their performance

in the calibration model in a descending order, and select the top few as the elite

hyperparameters. We then use these elite hyperparameters to nudge the probability

distribution (that is used to sample hyperparameters) in the direction of the elite

(high performing) hyperparameters. This cycle of sampling hyperparameters from the

distribution, evaluating the sampled hyperparameters in the calibration model, creating

the elite set of hyperparameters, and then re-constructing the probability distribution

using the elite hyperparameters can go on forever. With each iteration of this cycle,

the probability distribution moves closer towards the optimal hyperparameter (with

the highest online learning performance in the calibration model). At convergence,

the probability distribution will concentrate at the optimal hyperparameter. Figure

5.7 shows how the CEM algorithm tunes hyperparameters in the calibration model.

We need a blackbox optimizer, because our function—the performance of a hyperpa-

rameter λ in the calibration model—is not differentiable. Our setting has two nuances

compared to the typical setting where CEM is used: 1) our function is expensive

to query, and 2) we only get a stochastic sample. We provide a modified CEM

algorithm, that still reflects the general framework for CEM, but using an incremental

update—similar to stochastic gradient descent—to account for the stochasticity in

our function query. We describe the detailed CEM algorithm in the Algorithm 10.
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Figure 5.7: Using CEM with the calibration model to tune hyperparameters:
The x-axis of the plot represents different hyperparameters and the y-axis represents
the performance distribution of these hyperparameters in the calibration model. The
performance distribution will have several local maxima. Here, the CEM algorithm
maintains a pink colored truncated multivariate normal distribution (TMVN). With
each iteration of the CEM algorithm, the pink TMVN concentrates towards the global
maxima of the underlying performance distribution. At convergence, the mean of the
TMVN is the optimal hyperparameter and the variance of the TMVN is zero.

The CEM algorithm naturally works well with continuous hyperparameters like

the learning rate, eligibility trace parameter λe, ϵ in ϵ-greedy exploration, etc. With

continuous hyperparameters, it can exploit the smoothness of the distribution and

sample real-valued hyperparameters easily. However, discrete hyperparameters like the

number of tiles/tilings, number of hidden units/layers, type of activation function, etc.

need special treatment since the underlying distribution is not continuous. We assume

that the discrete hyperparameters are of two types: ordered and unordered. For

ordered hyperparameters, like the number of tilings, we can treat these like continuous

hyperparameters. For example, the range for the number of tilings having values

{1, 2, 4, 8} could be converted to [0, 4). When we sample h from a continuous interval

[0, 4), we can round down h to the nearest integer and map this continuous real valued

h back to a discrete value, that is, the number of tilings by using 2h. We then query

the performance for that discrete hyperparameter. We can see this as the agent taking

in the hyperparameter h ∈ [0, 4) and itself doing the rounding and exponentiation
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Algorithm 10 CEM Algorithm
Input:
lower and upper ranges for each hyperparameter for a truncated multivariate normal
(TMVN) distribution.

Fixed parameters: max iterations = 100 for running the cross entropy method
α = 0.1 learning rate for mean and covariance
tol = 10−1 tolerance for convergence
N samples = 32 number of samples to draw from the distribution in each iteration for
evaluation
N top = 5 keep the top 15% of the hyperparameters to update the mean

1: µ← mean of ranges
2: C ← diagonal matrix with range width on diagonal
3: µave ← 0, µold-ave ← 2 tol
4: iteration = 1
5: while iteration < max iterations & ∥µave − µold-ave∥ > tol do
6: Sample N samples hyperparameters from the distribution TMVN(µ, C, lower,

upper)
7: Get a noisy performance estimate of these N samples hyperparameters by

running the agent in the calibration model
8: Compute the mean µtop and covariance Ctop of the top N top hyperparameters
9: µ← (1− α)µ+ αµtop

10: C ← (1− α)C + αCtop

11: µold-ave = µave

12: µave = µave +
1

iteration
(µ− µave)

13: iteration← iteration + 1

14: return µ

as part of the agent. This transformation allows us to use generalization to reason

about if the agent prefers a smaller or bigger number of tilings. For unordered

hyperparameters like the types of activation functions in a neural network (tanh,

ReLU, Sigmoid), the hyperparameters should be evaluated separately as in grid search

for each of the unordered discrete settings, with CEM picking amongst the other

ordered hyperparameters. This is because CEM is faster than grid search when there

is the ability to generalize between hyperparameters. Without order, we will not have

generalization. This approach allows for the simplicity of using a truncated Gaussian

distribution, specifically a truncated multivariate normal (TMVN) distribution. This
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multivariate normal allows us to maintain a covariance, which means we can more

quickly discard joint hyperparameter settings that are poor and reduce our search

space.

One other nuance is that we do not get a perfect sample of the performance f(h)

of a hyperparameter. Rather, we get a noisy estimate f̂(h) because we do a limited

number of runs per hyperparameter to save on computation since the function is

expensive to query. Instead, the approach is to reason across CEM iterations about

what region of hyperparameters is effective. To do so, we use an incremental update

to the parameters of the TMVN, similar to a stochastic gradient descent update. For

a sufficiently small learning rate, the distribution will concentrate and will converge

to a set of hyperparameters corresponding to the global maxima. We use a learning

rate of 0.1 since across experiments we found this to be effective.

Finally, we use Polyak averaging [42, 43, 46], as a way to overcome the noise in

iterates in SGD, especially for a fixed learning rate. We maintain a running average

of the SGD iterates. When this average stabilizes, we consider the algorithm to have

converged. CEM should give us hyperparameters that are fine-tuned in the calibration

model, and thus should select near-optimal hyperparameters in the calibration model.

5.2.1 Experiment 5: Using CEM Algorithm with Calibration
Models

In this experiment, we demonstrate how using a smart hyperparameter optimization

technique like CEM compares with grid search when used with the calibration model

in our strategy. This experiment compares the performance of the hyperparameters

obtained by fine-tuning with CEM with the performance of hyperparameters selected

using a sweep with grid search.
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Experiment Description

Environments: We conducted experiments in two environments - 1) Puddle World,

and 2) Acrobot.

Data collection: We used the same medium policy from Experiment 2 to collect

500 transitions of data in both Puddle World and Acrobot. The medium policy

completed 8-10 episodes in Puddle World and 2-3 episodes in Acrobot in each of the

30 datasets.

Model construction and representation training: The KNN calibration

model was trained as described in Section 3.3. We used k=3 in the k -nearest neighbors

calibration model. The Laplacian representation training details are described in

Section 3.3.2. For the Laplacian representation training in Puddle World, we used

κ = 0.8, β = 5, δ = 0.05, α = 0.0003, and the length of trajectory n for picking nearby

states was set to 10. For the Acrobot experiment, we chose κ = 0.8, β = 5, δ = 0.5,

α = 0.00003, and the length of trajectory n for picking nearby states was set to 20.

Agents: We used the Expected Sarsa agent in both the experiments. In both the

experiments, we trained and evaluated the agent in the calibration model as well as in

the deployment environment for 15,000 timesteps.

Hyperparameters used in the grid search and CEM: In the Puddle World

experiment, we optimized the temperature τ of the softmax policy and the Adam

stepsize α as continuous values in the ranges [0.0001, 10.0] and (0.0, 1.0] respectively

using CEM. We ran the CEM experiment for 100 iterations, and each iteration sampling

32 hyperparameters which were all evaluated for 5 runs to get the performance measure

of each hyperparameter within that iteration. We ran the CEM experiment once on

each of the 30 datasets, to finally get 30 hyperparameters tuned by CEM. The CEM

box plot (pink) for Puddle World in Figure 5.8 corresponds to the true performance

of these 30 hyperparameters in the real environment.

To compare against the CEM results for Puddle World, we also report the grid
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search results (blue box plot) in Figure 5.8. We did a grid search over the following

30 hyperparameter combinations:

1. Softmax temperature τ : {1, 2, 4, 6, 8, 10}

2. Adam optimizer learning rate α: {0.001, 0.003, 0.01, 0.03, 0.1}

We kept the following hyperparameters fixed

1. Adam optimizer momentum β1 = 0.0

2. Optimistic weight initialization w0 = 0.0

3. Eligibility trace parameter λe = 0.1

In the Acrobot experiment, we again optimized the temperature τ and stepsize α

as continuous values but in the ranges [0.0001, 5.0] and (0.0, 0.1] respectively using

CEM. The CEM box plot (pink) for Acrobot is shown in Figure 5.9.

To compare against the CEM results for Acrobot, we also report the grid search

results (blue box plot) in Figure 5.9. We did a grid search over the following 30

hyperparameter combinations:

1. Softmax temperature τ : {0.0001, 1, 2, 3, 4, 5}

2. Adam optimizer learning rate α: {0.001, 0.003, 0.01, 0.03, 0.1}

We kept the following hyperparameters fixed

1. Adam optimizer momentum β1 = 0.0

2. Optimistic weight initialization w0 = 0.0

3. Eligibility trace parameter λe = 0.8

All other CEM algorithm details in the Acrobot experiment are the same as in the

Puddle World experiment as described above.
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Figure 5.8: Combining calibration model with CEM in Puddle World. The
performance of hyperparameter chosen by CEM in calibration model compared with
hyperparameter sweeping in the calibration model. The y-axis is same as the one in
Figure 5.1.

Results and Discussion

Figure 5.8 shows the Puddle World experiment results. The Y-axis corresponds

to the average return per episode; higher numbers on Y-axis corresponds to better

performance. The true performance of the best hyperparameter in the grid search is

given by the dashed horizontal line. The blue box plot corresponds to the results when

using the calibration model with grid search. In all the 30 runs of the experiment, our

strategy always selects the best hyperparameter within the grid search. This is evident

as the blue box plot has completely collapsed onto the dashed horizontal line, has

zero variance, and thus consistently selects the best hyperparameter. However, these

are the limits of using the calibration model with the grid search. The grid search

strategy’s performance is only as good as the quality of hyperparameters specified in

the set of hyperparameters to sweep over.

On the other hand, the pink box plot corresponds to the results when using the

calibration model with CEM. The performance improvements are stark when using

CEM as against grid search. CEM can search this continuous space efficiently, because

it uses a truncated multivariate normal that allows for generalization about the utility
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Figure 5.9: Combining calibration model with CEM in Acrobot. The per-
formance of hyperparameter chosen by CEM in calibration model compared with
hyperparameter sweeping in the calibration model. The y-axis is same as the one in
Figure 5.1.

of hyperparameter values. Even when tuning only on the calibration model, the agent

can significantly outperform the best hyperparameters found by a grid search on the

true environment—this is why CEM is outperforming the best hyperparameters shown

by the dashed line in Figure 5.8 for every single of the 30 runs.

Similar results are seen in the Acrobot experiment in Figure 5.9. Since the Y-axis

corresponds to the average number of steps per episode, lower number on Y-axis

corresponds to better performance. CEM outperforms grid search in this experiment

as well.

The benefits of using CEM over a technique like grid search are very compelling.

It is fully automated with no manual intervention as is usually needed when doing

multiple sequential iterations of grid search. CEM gives better tuned hyperparameters

as is demonstrated from the above experiments. Finally, CEM is more resource efficient

than grid search and scales better than grid search when more dimensions are added.
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5.2.2 Summary

Up until Section 5.1, we discussed how to select good hyperparameters from a set of

hyperparameters using grid search. Section 5.2 builds upon that idea and extends it

to fine-tuning the hyperparameters in the calibration model. Section 5.2 describes a

hyperparameter optimization technique called CEM for fine-tuning the hyperparame-

ters. It describes an experiment that demonstrates how CEM can further improve the

performance of our strategy if we use it in place of grid search. This simply shows that

smarter hyperparameter optimization techniques work well with the calibration model

and can further help improve the performance of our strategy. We propose using any

fine-tuning optimization technique like CEM, Bayesian optimization, etc. instead of

grid search to take full advantage of the calibration model to identify near-optimal

hyperparameters.
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Chapter 6

Conclusion & Future Work

In this work, we introduced the Data2Online problem: selecting hyperparameters

from a log of data, for deploying an online learning agent in a real environment. We

then also introduced our solution strategy to tackle the Data2Online problem. The

basic idea is to learn a calibration model from the data log, and then allow the agent

to interact in the calibration model to identify good hyperparameters. Essentially,

the calibration model is treated just like the real environment. We provided a simple

approach, using k-nearest neighbors, to obtain a calibration model that is stable under

many model iterations and only produces real states and rewards. We then conducted

a battery of tests under different data regimes to demonstrate the effectiveness of our

strategy.

As we highlight throughout, this problem should be more feasible than offline RL,

which requires the entire policy to be identified from a log rather than just suitable

hyperparameters for learning. Transferring a fixed learned policy also needs a very

accurate model of the environment as in Sim2Real. Our strategy employing calibration

models does not have the same constraint. Our own experiments highlighted that offline

methods that attempted to learn and deploy a fixed policy performed poorly, whereas

identifying reasonable hyperparameters was a much easier problem with consistently

good performance across different deployment scenarios, many data collecting policies,

and even small datasets. Nonetheless, we did identify one failure case, where the
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data resulted in a calibration model that made the environment appear too easy and

so most hyperparameters looked similar. When applying the calibration model in

practice, we suggest paying attention to the coverage of the data log. The state and

action space coverage in the data logs, in turn, affect how closely the calibration model

resembles the underlying environment. However, as per our experiments, low coverage

was less problematic for transferring hyperparameters than it was for transferring a

fixed policy.

Our complete proposed strategy to solve the Data2Online problem is to create

a stable KNN based calibration model from the offline logs of data, then train a

distance metric based on the Laplacian representation to be used with the calibration

model, and finally use a smarter hyperparameter optimization strategy like CEM for

fine-tuning the hyperparameters in order to deploy them in the real world. However,

all components of our approach —KNN calibration model, CEM algorithm, or the

Laplacian representation based distance metric— can be independently swapped with

better alternatives in the future, making the strategy modular and quite flexible.

Improving our strategy along any of these dimensions should result in improved

performance, that is, better hyperparameter selection. Through our experiments, we

demonstrated improvements in performance through this modularity by replacing 1)

the NN calibration model with the KNN calibration model, 2) distance metric based

on raw input states with the one based on the Laplacian representation, and 3) grid

search with the CEM algorithm.

In this thesis, in all our experiments, we treated the deployment environment as

if our solution strategy did not have access to it, that is, treating it just like a real

world system. However, the environments in our experiments did not capture the

complexity that comes with real world systems, such as, having hundreds of sensors,

several mixed actions (some discrete and some continuous) - all having different action

cycle times, latency in perception and actuation, etc. So the next direction would

be to test whether the strategy we developed works in a complex real world system.
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This thesis research was inspired by a project on optimizing a water treatment plant

using RL [56]. The research direction of this thesis emerged from the need to tackle

the problem of deploying an RL agent to control this water treatment plant, which

is a real world system. So as part of the future work, implementing the strategy we

developed in this thesis to solve the deployment problem of the water treatment plant

would be an important direction.

In this thesis we make the case that transferring hyperparameters and learning

from scratch is a more feasible problem to solve than transferring a fixed policy when

we only have access to offline logs of data. More work needs to be done to see how

transferring hyperparameters compares with transferring a learned policy but now

also allowing this policy to learn online instead of keeping it fixed.

In our proposed strategy, we transfer the hyperparameters in the deployment

environment and learn from scratch. However, some sensitive deployment environments

will not allow learning from scratch due to safety reasons. More work needs to be

done to develop a strategy to deploy good hyperparameters along with a good policy

initialization.

A minor direction would be to test using ensemble models in place of a single

calibration model that we use in this thesis. By obtaining performance across an

ensemble of calibration models, we can make the hyperparameter selection more

robust to error in the calibration model. The hyperparameter performance can

either be averaged across these models, or a more risk-averse criterion like worst-case

performance could be used. We might also want to select hyperparameters more

conservatively, and instead of using average return as the performance measure, we

may want to test with median return. A theoretical direction that could be taken is

to investigate why even with inaccuracies in the calibration model, the performance

of our strategy is good as long as the relative ranking of hyperparameters in the

calibration model is somewhat correct. Another direction could be to see how the

coverage of the dataset affects the performance distribution of the hyperparameters in
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the calibration model.

Naturally, as the first work explicitly tackling this problem, we have only scratched

the surface of options. There is much more to understand about when our solution

strategy will be effective, and when it might fail. Much more work can be done,

theoretically and empirically, to understand the Data2Online problem.
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