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Abstract 

 

Globally, climate change is affecting species in a myriad of ways. Rapid morphological change 

has been proposed to be a consequence of climate change, but evidence is minimal. Furthermore, 

any such rapid morphological change is expected to be a phenotypic response rather than 

evolutionary. Adaptive, neutral, and non-adaptive phenotypic plasticity in the form of reaction 

norms and developmental noise such as fluctuating asymmetry can provide insights into a 

population’s ability to adapt to increased variability and extremes in weather, which are more 

common due to climate change. Using geometric morphometrics, I explored patterns of 

covariation between morphological variation in a population of American marten (Martes 

americana) near Nordegg, Alberta, and variation in weather metrics during periods when young 

are growing during prenatal (February–April) and postnatal (May–July) development. Analysis 

of variation in cranial morphology revealed significant covariation between the symmetric 

component of morphological variation and weather metrics during early postnatal development. I 

did not find significant covariation between the asymmetric component of morphological 

variation (fluctuating asymmetry) and weather during development. My findings are congruent 

with other studies, and point to both direct and indirect effects of “climate-induced” weather 

variation, including the potential of a feeding ecology mechanism as an explanation for the 

covariation. 
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Chapter 1 

Cranial morphometrics of American marten (Martes americana)  

and weather during development 

“Homogeneity is a death sentence” 

- Lulu Miller, Why Fish Don’t Exist 
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Introduction 

The current climate change crisis has led to populations facing environmental changes such as 

increased variability and extremes of weather (Hoffmann et al., 2010; IPCC, 2022) with effects 

on individual fitness and population stability (Sergio et al., 2018). Adaptive norms of reaction 

often are observed in response to fluctuating environments (Lalejini et al., 2021). Migration, 

phenological, genomic and morphological changes due to climate change have all been 

documented across disparate taxa, including flora and fauna (Chen et al., 2011; IPCC, 2022; 

Parmesan et al., 2003). However, evidence of rapid changes in morphological shape in response 

to climate are relatively sparse (Boutin & Lane, 2014). Despite many hypothesizing the potential 

for rapid morphological response to changing climate (Ryding et al., 2021; Tabh & Nord, 2023), 

most studies evaluating the impact of variation in weather variables have observed phenological 

variation, and few have observed morphological variation (Boutin & Lane, 2014; Parmesan, 

2006; Radchuk et al., 2019). Those studies that have documented rapid responses in morphology 

were primarily studying variation in body size (Gardner et al., 2011; Hantak et al., 2021; 

Sheridan & Bickford, 2011; Yom-Tov et al., 2008). Most studies of shape variation generally 

explored variation among species, or on larger temporal or spatial scales (Colella et al., 2018; 

Giannico & Nagorsen, 1989; Law, 2019; McGuire, 2010).  

Alongside selection, variation is one of the foundational pillars of Darwin’s theory of 

evolution (Darwin, 1859). Without variation, selection forces would have nothing to act upon. 

We have understood for over a hundred years that a genotype can produce more than one 

phenotype, because forces other than genetics can influence the expressed phenotype 

(Johannsen, 1911). Despite this, an idea has prevailed that if we map a genome in its entirety, 

and build strong enough computers, we could compute the organism that nature would produce 
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(Brenner, 2010). Many, however, push back on this idea with the claim that this drastically 

underestimates the external forces that influence phenotypic variation (Lewontin, 2000). 

Phenotypic variation is the result of one of three forces: genetic, environment, and 

stochastic forces (Hirsh, 1963). The environmental forces on phenotypic variation occur through 

phenotypic plasticity, defined as the production of different phenotypes from a given genotype in 

response to environmental conditions (Pigliucci, 2001). Phenotypic plasticity is closely related 

to, but distinct from the concept of norms of reaction. A reaction norm is a function that 

describes the shape (or pattern) of variation in phenotypes by a single genotype when exposed to 

a range of environments (Pigliucci, 2001; Schlichting & Pigliucci, 1998; Schmalhausen, 1949). 

Phenotypic plasticity is a property of a reaction norm that informs the degree (or amount) and 

pattern of variation in phenotypes produced by a genotype across different environments 

(Pigliucci, 2001). Although reaction norms and phenotypic plasticity are often confounded, they 

are distinct aspects of a larger picture. Whether plastic or not, a genotype will produce a reaction 

norm; the difference is that a non-plastic trait will produce a flat reaction norm (Figure 1 A, E). It 

is noteworthy that in addition to variation occurring at scales such as intra-species and intra-

population, intra-individual variation also occurs (Pigliucci et al., 2006). Developmental 

variation in skull morphology, however, when compared to other types of variation such as 

behavioural, physiological, and biochemical, is an example of variability that would require 

substantial time to reverse, if reversable at all (Pigliucci et al., 2006). Thus, reaction norms in 

form of skull shape variation in response to whether that occurred during development should 

remain to be seen long after development. A growing body of literature argues reaction norms 

play more of a role in evolution, adaptation, and speciation than has been previously understood 

(Chevin et al., 2010; Ghalambor et al., 2007; Pfennig et al., 2010). Reaction norms are therefore 
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gaining more attention in the context of climate change and predicting whether species will be 

able to survive their rapidly changing environments via phenotypic plasticity. 

Variation in shape morphology can be caused by developmental noise, which includes a 

number of processes that disrupt development at the molecular and biochemical level (Palmer, 

1994). Fluctuating asymmetry (FA) has been promoted as a measurable phenotypic response to 

be used as evidence of developmental stress (Benítez et al., 2020; Palmer & Strobeck, 1986; 

Parsons, 1992). FA defines small, random deviations in bilateral symmetry (Ludwig, 1932), and 

is generally distributed normally around a mean of symmetry (Palmer, 1994). Whether FA is 

related to fitness remains controversial (Clarke, 1995a; Leung & Forbes, 1996; Palmer, 1999), 

however FA as a measure of developmental stress generally has been supported (Leung & 

Forbes, 1996; Møller & Swaddle, 1997). A gap exists in the literature between ecological studies 

of patterns between skeletal FA and weather and the lab experiments studying the underlying 

mechanisms of the relationship; ecological studies should regard developmentally relevant 

weather metrics, not annual values. Whereas most ecological experiments have studied the effect 

of weather using seasonal or annual temperature and precipitation values (Maestri et al., 2015; 

Willmore et al., 2005), exploration of the mechanisms of FA study variation in ambient 

temperature conditions during development (e.g. Benderlioglu & Dow, 2017; Eriksen et al., 

2003; Gest et al., 1986; Gonzalez et al., 2014; Mooney et al., 1985). Ecological studies that 

compared developmental stages when exposed to increased weather variability and extremes 

found more FA during early, rapid developmental periods (Breno et al., 2011; Klingenberg, 

2019; e.g. Romero et al., 2023; Zakharov et al., 2001). 

In recent decades, the field of morphometrics has evolved dramatically (Adams et al., 

2013). Traditional morphometrics, the multivariate study of morphometrics consisting primarily 
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of linear distances, was the dominant research method in the past (Reyment, 1996), and is still a 

common approach for studying variation in shape (e.g. Faleh et al., 2013; Mori et al., 2019; 

Wereszczuk et al., 2023). Traditional morphometrics provide useful tools for answering 

questions of variation in size, allometry (a change in shape relative to size), or broad questions 

regarding the presence of variation in shape (Rohlf & Marcus, 1993). Rather than using 

traditional measurements (e.g. linear distances, angles, ratios), geometric morphometrics uses a 

set of landmarks in the form of Cartesian coordinates to represent a shape configuration (Corti, 

1993). By capturing the geometry of a form through landmarks, the information present in 

morphological configurations increases exponentially as the number of landmarks increases 

without exponentially increasing the number of measurements required (Slice, 2007). 

Additionally, analysis of a configuration of landmarks retains the geometry of each point relative 

to all the other points, whereas with traditional morphometric analyses the relationships between 

measurements is lost, making it impossible to reconstruct the original form based on the results 

of analyses (Rohlf & Marcus, 1993). Analysis that retains the geometric information of the 

configuration as a whole allows for not only the determination of the presence of significant 

variation in shape, but also the determination of how structures within the configuration change 

relative to others, allowing an entire new set of research questions (Rohlf & Marcus, 1993). An 

additional benefit of an analyses that retain the full shape configuration is that shape differences 

can be visualized, which allows for communication of complex shape changes compared to a 

table of coefficients that would be produced using traditional morphometrics (Klingenberg, 

2013). Retention of shape configuration might open avenues for new questions regarding the 

mechanisms underlying the morphometric variation. 
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American marten (Martes americana) are economically and ecologically important 

species, being trapped for the fur trade and acting as an indicator species for old-growth forest 

condition (Cheveau et al., 2013; Fryxell et al., 2004). As such, marten has been a focus for forest 

management planning (Thompson et al., 2012; Watt et al., 1996). Marten respond behaviorally to 

inclement weather, such as modifying activity patterns and prey selection. Marten can be active 

in both daylight and during the night, shifting seasonally and geographically (Zielinski, 2000), 

depending on many factors. Variable activity patterns could be due to changes in prey abundance 

(More, 1978), to avoid weather extremes (Strickland & Douglas, 1987), or to avoid predation 

(Drew, 1995). In addition to changes in activity timing (Zielinski et al., 1983), marten reduce 

activity during winter (Clark et al., 1987; Mustonen & Nieminen, 2012), and will fast during 

extremely cold temperatures (Strickland & Douglas, 1987) for up to 5 days (Mustonen & 

Nieminen, 2012; Thompson & Colgan, 1994). Fasting to avoid extreme cold is increasingly 

likely when snow depth decreases and marten are not able to use the subnivean environment, a 

common occurrence in areas like the eastern slopes of the Rocky Mountains where chinook 

winds occur (Burrows, 1903). While fasting, cortisol levels increase significantly (Nieminen et 

al., 2007), evidence of the stress such a behavioural decision imposes, and might result in FA 

during in-utero development. At a larger temporal scale, marten also respond to changes in 

climate. As with many other species, there is evidence of marten responding geographically to 

climate change (Baltensperger et al., 2017). Body size of marten increases in conjunction with a 

warmer climate, both temporally and geographically (Wereszczuk et al., 2021; Yom-Tov et al., 

2008, but see Yom-Tov 2010 for opposite effect among pine martens (M. martes) in Europe). 

In this study, I used a multivariate, geometric morphometric approach to explore patterns 

between variation in morphology and weather for a population of American marten in west-
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central Alberta, Canada. I expected to see evidence of a reaction norm in morphometric shape in 

response to the weather during two focal developmental periods (in-utero and early postnatal 

development), as skull morphology responds to temperature (Souto-Lima & Millien, 2014) and 

precipitation (Tseng & Flynn, 2018). Also, I expected to see more FA during colder winters, 

because marten are likely fasting more during these winters (Thompson & Colgan, 1994), which 

should result in higher levels of cortisol (Nieminen et al., 2007). For FA, I expected to see 

stronger covariation when exploring temperature, precipitation, and snow depth during the 

period of in-utero development (Benderlioglu & Dow, 2017; Eriksen et al., 2003). I also 

expected skull size to increase in more temperate years, based on Yom-Tov et al. (2008) that 

reported this pattern. 

 

Study area 

Marten were trapped within 30 km of Nordegg in Clearwater County, Alberta, Canada 

(52.445933, -116.023204, Figure 2), and donated to the Royal Alberta Museum. The 100 km2 

area of foothills/subalpine ecoregion varies between 1,200–1,700 m above sea level. The area is 

characterized as boreal upland, and is predominantly made up of coniferous forest, with densely 

clustered streams, and patches of old growth forest (Rayner et al., 1984). Aspect and forest fires 

primarily determine the vegetation composition, with lodgepole pine (Pinus contorta) and grassy 

understory on the warmer, fire-prone southwest facing slopes, and older patches of white spruce 

(Picea glauca) on the northeast slopes. Recently disturbed south-facing slopes include trembling 

aspen (Populus tremuloides). Depressional areas with high moisture due to seepage accumulate 

organic matter and become bog and fen vegetation-rich areas with black spruce (Picea mariana), 

tamarack (Larix laricina), and dwarf birch (Betula nana). The higher altitude subalpine region of 



 8 

these fluvial areas have forests of white spruce, Engelmann spruce (Picea engelmannii), and 

subalpine fir (Abies lasiocarpa) most commonly occur. Fisher (Martes pennanti) are a 

competitor and occasional predator of the marten (Suffice et al., 2017), and increasingly present 

in the area, likely due in part to lower snow depth (Krohn et al., 2005). 

Mean winter temperature of the area is -9°C, with minimum and maximum means 

ranging from -17°C to 0°C. The estimated spring mean is ~ 3°C, with minimum and maximum 

means 5°C to 9°C. Annual frost-free days range from 20 to 100. Total precipitation from spring 

and summer range from 190–400 mm, and autumn and winter totals range from 150–250 mm. 

Snow cover in this area is low, likely due to snow redistribution by wind and chinooks. Climate 

variability in the Nordegg region is high for two reasons: variation related to changes in aspect, 

and variation related to the movement of the Arctic front across the region. Southwest facing 

slopes get more sun, and are thus warmer, drying, and have less snow on the ground than 

northeast facing slopes. Secondly, the weather in the study area varies annually due to the effect 

of the northern Arctic oscillation on the location of the Arctic Front between the Boreal and 

Cordilleran climates (Ladd and Gajewski, 2010; Wu et al., 2006). If the front falls to the west of 

the study area, the Boreal climate will likely result in a cold dry winter. If the front falls to the 

east of the study area, Pacific air from the west results in a higher likelihood of more moderate 

temperatures and increased precipitation (Cordilleran climate). Nordegg resides in the north-

western most corner of the Kiska/Willson Public Land Use Zone, and partially within the West 

Country Public Land-Use Zone. 
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Methods 

Animal Data 

A collection of 175 complete, identifiable marten skulls at The Royal Alberta Museum in 

Edmonton, Alberta, were used for the study, collected between 2004 and 2021 in the study area. 

Of those, 120 were identified as young-of-the-year based on the methods and thresholds outlined 

by Flynn and Schumacher (2016). Sex is required to age individuals using these methods. Of the 

young-of-the-year, 98.3% (118/120) of the skulls were sexed when collected. Remaining 

individuals were below the threshold of yearlings regardless of sex. For males, the length of 

coalesced temporal muscles (LTMC) must measure <28 mm to confidently be classified as 

juvenile (age <1 yr). For females, the width between the temporal muscles (WBTM, before 

coalescence) should be >1.0 mm to be classified as juvenile. Ideally, males with LTMC between 

20–30 mm and females with WBTM between 0.1–2.5 mm should be verified using cementum 

aging analysis (Magoun et al., 1988 in Flynn & Schumacher, 2016). I did not use cementum age 

analysis to avoid damaging the museum specimens. However, 6.5% of females and only 5% of 

males were in these intermediary ranges. Additionally, these measurements would have ideally 

been taken before muscle becoming desiccated or removed, because the muscle and thus 

evidence of muscle attachment to the skull might have shrunk during desiccation. 

The mean number of skulls per year was seven (range 2 to 12). While many of the 

sampled years have an insufficient number of skulls for annual analysis, statistical methods allow 

for the entire sample to be analyzed as one group of 121 individuals. Skulls offer a good sample 

for study; skeletal structures allow for greater precision (Lougheed et al., 1991), skull shape 

varies greatly and presents with both asymmetric as well as symmetric variation among groups 

and individuals, and skull size offers a good proxy for body size (Johnson, 1990). 
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Landmark Selection and measurement 

Prudent landmark selection is important for geometric morphometrics, especially when the study 

focuses on subtle asymmetries (Palmer, 1994). Landmarks should be homologous, repeatable, 

and create a configuration that effectively represents the morphology of interest (Zelditch et al., 

2012). Finding homologous landmarks across the individuals is relatively straightforward, 

because all individuals were the same species. Finding landmarks that are highly repeatable 

while adequately capturing the shape of the skull is more difficult. Much of the skull’s shape is 

curved, which can produce more measurement error, because the apex of a long curve can be 

difficult to capture accurately. Such landmarks are suboptimal, but adequate for developmental 

studies (Zelditch et al., 2012), if not relied on excessively. Finding discrete structures means the 

number of usable landmarks is restricted to anatomy with clear endpoints of or joining points 

between structures. I focused on skull shape changes, so the landmarks must adequately capture 

the general shape of the skull to observe variation in shape. Another consideration when 

selecting landmarks is the measurement error during digitization. If the structure is too small or 

requires a high resolution to be observed, the process of digitization might render it unusable. 

Landmarks were a subset from Collela et al. (2018; Figure 3). The subset was 

homologous across all specimens, measurable with a high degree of precision, and maintained 

throughout the scanning process. Landmarks on or related to teeth were retained for analysis that 

pertained to postnatal development, because teeth and skulls develop within the temporal span 

examined (Clark et al., 1987). Teeth were not included for analysis for in-utero development.  

Skulls were scanned and digitized using a NextEngine 3D laser scanner and Scan Studio 

software (NextEngine, United States). Three orientations were taken for each skull, because the 

scanner could not capture the top and bottom of the object for any given orientation. Each 
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orientation included eight scans, rotating the skull 45 degrees between each scan. All orientations 

were then merged and fused into a single, complete 3D object. Landmarks were set digitally 

using Stratovan Checkpoint (Version 2018.08.07; Stratovan Corporation, 2018), and were 

recorded in three-dimensions. To reduce measurement error, landmarks were recorded by one 

observer, with two replicate landmark configurations produced for each skull three to six weeks 

apart (Palmer, 1994), and replicates were averaged for analysis to reduce the effect of remaining 

measurement error (Graham, 2021). Landmarks were placed using digital software as manual 

measurements are less repeatable (Muñoz-Muñoz & Perpiñán, 2010), which was supported in a 

preliminary analysis comparing manual and digital methods of landmarking. 

 

Procrustes Fit and Geometric data cleaning 

Before analysis, landmark data were subjected to a generalized least-squares Procrustes analysis 

(GPA). Data cleaning and analysis was performed using MorphoJ (Klingenberg, 2011) and the 

geomorph package in R (v4.0.6, Baken et al., 2021). The GPA calculates a centroid of each 

individual’s landmark configuration by calculating “the square root of the sum of squared 

distances of all the landmarks to their center of gravity” (Klingenberg, 2015). Individuals were 

then superimposed about their centroids, isometrically scaled to a common centroid size (the sum 

of distances between and landmarks and the centroid), and rotated to the least sum of squared 

distances between homologous landmarks, so that any variation among individuals is purely 

shape variation (Rohlf & Slice, 1990). The symmetric and symmetric components of shape were 

then dissected using the following methods from Klingenberg et al. (2002). To dissect the 

components, first each landmark configuration is reflection about its median axis. After 

reflection, the original and reflected homologous landmarks are averaged. The averaged 
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landmark configuration is used to analyze the symmetric component of shape, and the difference 

between the original and reflected homologous landmarks is used to analyze the asymmetric 

component of shape. Missing landmarks due to damage or lost resolution from the scanning 

process were estimated. The function to estimate missing landmarks aligns the individual’s 

missing landmarks to a reference individual obtained from the complete individuals in the set 

and uses a thin-plate spline method to estimate the missing landmark on the target specimen 

(Gunz et al., 2009). Outliers were assessed and fixed by swapping mis-ordered landmarks. 

 

Preliminary assessment of the relative magnitude of shape variation 

After a GPA is performed, a Procrustes analysis of variance (Procrustes ANOVA) is an 

important next step in any geometric morphometrics study, because it is well suited for analysis 

of shape data that have been configured using a least-squares method and can determine if the 

biological shape variation is significant relative to the measurement error (Palmer, 1994; Palmer 

& Strobeck, 1986). Comparing variation from biological sources to that of measurement error is 

especially important because FA is often evident as small variation, and can be smaller than 

variations due to measurement error (Palmer, 1994). However, the Procrustes ANOVA has 

limitations because it uses a single value to represent ‘shape’ of each individual. Variation 

among individuals is quantified as the mean distance from the consensus shape at each landmark. 

Differences between sides (a signal of directional asymmetry) are calculated as the mean 

distance between the left and right landmarks. The individual x side interaction effect determines 

the influence of fluctuating asymmetry (and antisymmetry if present). Therefore, the Procrustes 

ANOVA cannot distinguish non-isotropic shape variation between landmarks, and effectively 

assumes isotropic variation among landmarks of a single configuration. The Procrustes ANOVA 
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is therefore best suited for analysis of variation in size (represented using a single value, the 

centroid size) and to analyze the relative magnitude of each effect (year, sex, individual) relative 

to measurement error. A multivariate analysis of variance test (MANOVA) is better suited to 

assess the statistical significance of each effect (year, sex, individual, side, individual*side) on 

the variation in shape. The MANOVA test statistic, Pillai’s trace, uses a sum of squares matrix to 

determine variation in shape (Klingenberg, 2015; Klingenberg et al., 2002), and can thus 

determine the significance of shape variation despite it being non-isotropic, which is common in 

biological shape variation. 

   

Assessment of morphological variation 

A principal component analysis (PCA) reduces dimensionality of large datasets without losing 

information within the dataset by creating uncorrelated variables (variates) that sequentially 

maximize variance, making the dataset easier to interpret. A PCA in traditional morphometrics 

(i.e., a set of length measurements of specific structures) generally uses a correlation matrix of 

measurements to compute the variance of each principal component (PC). However, a 

covariance matrix is better suited for a PCA of geometric morphometric data because the 

Procrustes coordinate data are already scaled among configurations (Klingenberg & Zaklan, 

2000). Before to conducting a PCA, covariance matrices are generated for the symmetrical and 

asymmetrical components of shape. Using separate covariance matrices allows us to analyze 

symmetric and asymmetric shape changes independent of each other, which is important because 

these shape changes almost certainly have different causes. PCA in the context of geometric 

morphometrics not only reduces the number of axes of variation to a manageable number, but 

also allows us to clearly visualize where most of the variation is occurring within the 
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configuration by creating a figure identifying the magnitude and direction of change for all 

landmarks associated with a PC (Klingenberg, 2013). 

 

Weather Variables 

Weather data were collected by the Nordegg Climate Station (Nordegg CS), operated by 

Environment and Climate Change Canada. Sampling locations were <15 km of Nordegg CS. 

Gaps in temperature variables were filled using the Adjusted Homogenized Canadian Climate 

Data from Rocky Mountain House (RMH), as they were highly correlated (minimum 

temperature R2 = 0.88, P < 0.001; maximum temperature R2 = 0.92, P < 0.001). RMH is a 

dataset consisting of weather station data, adjusted to account for known measurement error and 

differences in measurement methods over time (Mekis and Vincent, 2011). RMH data also might 

include data from nearby stations to extend the time span of the dataset. A linear regression of 

temporally overlapping Nordegg CS and RMH data was fit and used to supplement missing 

Nordegg CS data with adjusted RMH data using the slope and intercept. Precipitation values 

were obtained from the Alberta Climate Information Services (ACIS) Nordegg CS data set. The 

ACIS Nordegg CS dataset has been quality controlled and missing data replace by interpolation. 

This ACIS Nordegg CS dataset was more complete, with some degradation in accuracy via 

interpolation, but was still significantly correlated with the raw weather station data (R2 = 0.93, P 

< 0.001). The ACIS dataset still had missing data, which I filled in where possible using the 

RMH, and the two datasets were significantly correlated (R2 = 0.57, P < 0.001). Data were once 

again transformed by linear regression, however the intercept was forced to zero, because days 

with no precipitation should be 0 mm once adjusted. Despite interpolating precipitation from 

another dataset, there were still years with significant gaps, making those years unusable for 
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some analyses. Snow depth was missing for a significant number of years, and no other snow 

depth source was found for interpolation of missing data. For this reason, snowfall and snow 

depth were estimated using the snow water equivalence methods of Dawe & Boutin (2012): daily 

snow depth estimates were calculated using mean temperature and precipitation values. If the 

mean temperature the following day was < 0°C, that day’s estimated snowfall is added to the 

accumulated snowpack from the previous day. If the mean temperature was ≥ 0 °C, the estimated 

melt parameter (also calculated using the mean temperature and precipitation) was subtracted 

from the accumulated snowmelt estimate. Compared to the limited snow depth data from 

Nordegg CS, the estimated accumulated snow depth was moderately correlated (R2 = 0.45, P < 

0.001). This correlation level was likely because the snow density estimate was based on the 

density of freshly fallen snow, and because the model failed to consider snow movement by 

wind. 

 

 The mean value of maximum and minimum daily temperature, total precipitation, and 

adjusted average snow depth were calculated for the in-utero and early development stages. The 

analysis of correspondence, two-block partial least squares (2B-PLS), requires covariates to be 

standardized. 

 

Weather covariates 

Many studies use mean temperature to study the effects of climate change (Thornton et al., 

2014). When studying the influence of a complex, multivariate system like weather on a 

population or ecosystem, multiple, biologically relevant metrics should be considered. The two 

timespans investigated were the approximate in-utero development period (February–April) and 



 16 

the postnatal early development period (May–July) (Clark et al., 1987). Average minimum and 

maximum daily temperatures, standard deviation of minimum and maximum temperature values, 

total precipitation, average accumulated snow depth, and average Pacific Decadal Oscillation 

were considered. Number of days above or below biologically relevant thresholds of these 

weather metrics also were considered. For example, Thompson and Colgan (1994) noted a 

significant decrease in winter activity of marten at ambient temperatures below -15 ℃, so the 

number of days where the mean temperature was below -15 ℃ was considered. A threshold for 

snow depth related to decreased activity or increased stress was not available, but Hiltner (2022) 

noted a steep increase in occupancy probability when snow depth was > 20 cm. Snow depth ≤ 20 

cm would make it difficult for marten to use the subnivean space, so the number of days with 

snow depth > 20 cm also was considered. Snowfall events > 5 cm were considered because these 

larger snowfall events increased activity (Weir & Corbould, 2007), and make the terrain more 

difficult for fishers to traverse due to differences in foot loading between the two species 

(Buskirk & Powell, 1994; Krohn et al., 2005). 

 

Analysis of covariation 

Multiple regression was used to estimate the relationship between size and the weather 

covariates. This analysis uses a single value to represent ‘size’: centroid size. For this reason, it 

was tested separately from the analyses of shape. To test for covariation between variation in 

skull shape and variation in weather, I used a two-block partial least squares analysis (2B-PLS). 

This 2B-PLS method is useful for studies of covariation between shape variables and ecological 

variables (e.g. Corti et al., 1996; Noback et al., 2011; Russo et al., 2022). A 2B-PLS analysis 

compares two matrices (or blocks) of variables, in this case a matrix of Procrustes coordinates of 
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shape variables and a matrix of weather covariates, to find relationships of covariation between 

the two sets of covariates, both within and among the two matrices. Similar to a PCA, this 

process produces new variables, PLS axes, but in this case these new variables account for as 

much covariance as possible between matrices rather than solely accounting for as much total 

variance as possible. Also, similarly to a PCA, each axis correlates only with the corresponding 

axis from the other block, and is uncorrelated with any other axes.  

This analysis was chosen over a canonical correspondence analysis (CCA), a similar 

analysis, for the following reasons, highlighted by Rohlf and Corti (2000) and Zelditch (2004). 

First, a CCA acts like a multiple regression in that it considers the contribution of a single 

independent variable on the correlation coefficients when the effects of the others are held 

constant. The strongest variable in one block will be associated with as much covariance as 

possible, leaving the residual variance to be explained by the following variables. In contrast, the 

2B-PLS treats all of the variables in each block symmetrically, and considers the correlation of 

each variable with a given axis that explains covariation with the other block. Second, 2B-PLS is 

not sensitive to the redundancy of the x, y, and z Procrustes coordinates in the shape matrix. 

Third, 2B-PLS analysis can directly visualize the shape variations of each axis using thin-plate 

splines. The weather covariate can be visualized as eigenvectors that show how correlated each 

weather covariate is with each axis. This test is conducted on the symmetric and asymmetric 

components of shape separately, allowing us to explore patterns of variation of each shape 

component separately. A permutation test was used to test the significance of correlation 

between the blocks. By running 1000 permutations of the test, randomly associating the variables 

between blocks, I can determine if the amount of covariance between blocks, as well as the 
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covariance explained by each PLS axis is greater than expected by chance (Rohlf & Corti, 2000; 

Zelditch, 2004). 

 

Results 

Shape and size variation 

The Procrustes ANOVA of the centroid size showed significant variation in size among 

individuals (F101,120 = 1261.60, P > 0.0001), sexes (F2,120 = 110.28, P < 0.0001), and years (F16,120 

= 3.17, P = 0.0002; Table 1). The Procrustes ANOVA of shape serves to show that all shape 

variation (including symmetric, directional asymmetric, and fluctuating asymmetric) are 

significantly greater than measurement error (Table 2). Using the shape MANOVA test I found 

significant variation in symmetric shape among individuals (Pillai’s trace = 49.88, P < 0.0001) 

and years (Pillai’s tr. = 9.00, P = 0.0002), but not sex (Pillai’s tr. = 1.17, P = 0.38; Table 3). The 

MANOVA test of asymmetric shape variation showed significant variation among years (Pillai’s 

tr. = 9.35, P < 0.0001) but not sex (Pillai’s tr. = 0.99, P = 0.96), and significant levels of variation 

between the left and right side (directional asymmetry) (Pillai’s tr. = 0.97, P > 0.0001), as well as 

the interaction effect between individual and side (fluctuating asymmetry) (Pillai’s tr. = 46.12, P 

< 0.0001; Table 3). There is a significant, but weak correlation between variations in symmetric 

shape and variations in size (percent of variation predicted = 5.06%, P < 0.0001) (Figure 4). 

Larger skulls tend to be narrower, and have a longer rostrum relative to the length of the 

cranium. There was no significant correlation between variations in asymmetric shape and 

variations in size (P = 0.39) (Figure 5). I also did not find a significant relationship between log 

centroid size and early development weather variables (P = 0.63). 
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The PCA results allow us to visualize the nature of the shape variation. PC1 of the 

symmetric component of shape variation consists of a longer rostrum relative to the length of the 

cranium, smaller zygomatic arches and a narrower skull (Figure 6; see figure 3 for landmark 

location). PC1 of the asymmetric component of shape variation consists of a misaligned rostrum 

and cranium, with a crook in the center of the skull, as well as asymmetry of the incisive 

foramen, tympano-occipital fissure, and pterygoid (Figure 7). 

 

Shape and weather variation 

The 2B-PLS analysis of the symmetric component of shape variation revealed significant 

covariance between the variation in shape and weather covariates during early, postnatal 

development (RV coefficient = 0.142, P < 0.0001). PLS axis 1 of Block 1 and 2 were 

significantly correlated, and represented the majority of covariance of the PLS analysis (% total 

covariance = 59.277, R2 = 0.634, P < 0.0001) (Figure 8). Average daily maximum temperature, 

followed by precipitation and lag year precipitation were strongly associated with the shape 

changes of PLS 1 Block 1 (PLS coefficients = 0.530, 0.468, and 0.459, respectively). Greater 

precipitation and warmer daily temperatures covaried positively with shorter, narrowing of the 

zygomatic arches at each end, narrower mandibular fossae, longer and narrower rostrums and 

shorter cranium. Significant variation of the pterygoid process also was present. Covariance 

between symmetric shape variate and in-utero weather covariates was not significant (P = 0.037, 

PLS 1 P = 0.15). I found no significant covariance between the asymmetric component of shape 

and any weather covariates (in-utero P = 0.88, PLS 1 P = 0.95; early development P = 0.023, 

PLS 1 P = 0.059). Running the 2B-PLS with threshold values replacing the raw weather metrics 

yielded the same results, with slight variation in the percent of total covariance of each covariate. 
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Discussion 

The greatest impacts of climate change have occurred during the past 20 years (IPCC, 2022). I 

studied marten skulls spanning those 20 years and have demonstrated that their morphology 

covaried annually with weather.  

Skull shape covaried among years significantly with weather during May–July, the key 

period for development when young marten grow to full length (Clark et al., 1987). 

Morphological variation covaried most with increasing average maximum daily temperature, 

precipitation, and precipitation during the previous spring (lag year), suggesting both direct and 

indirect relationships between weather variation and shape morphology. Although global climate 

has changed most significantly in the last 20 years (IPCC, 2022), annual weather metrics in 

Nordegg show little trend during those years (Figure 10 A). However, during the early 

developmental periods for marten both temperature and precipitation varied widely (Figure 10 B 

& C).  

The symmetric component of shape variation in the marten skulls covaried significantly 

with weather to which marten were exposed during early, postnatal development. Warmer, 

wetter springs are associated with longer, narrowed rostrum, shorter cranium, shortened 

zygomatic arches, and extended pterygoid processes. This is congruent with other studies of 

carnivores (Lynch, 2019; Tseng & Flynn, 2018). Specifically, covariation between precipitation 

and the same type and direction of skull shape variation has been documented (Tseng & Flynn, 

2018). The early postnatal rapid growth stage appears to be sensitive to ambient temperature (Al-

Hilli & Wright, 1983; Serrat, 2013; Zhou & Lui, 2021). Skull shortening might be a byproduct of 

the biochemical processes in bone development, and the decrease in the cell proliferation during 

bone growth in response to colder temperatures (Serrat et al., 2008). Based on my study alone it 
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is difficult to determine whether this morphological response is adaptive, neutral or a 

maladaptive response to stress (Boutin & Lane, 2014; Eriksson et al., 2023; Merilä & Hendry, 

2014). However, if the reaction norm was adaptive and in the direction of an optimal form for 

that year’s environment, there are a few possible ecologically adaptive explanations for the 

variation in shape. 

As the weather becomes more temperate and more closely resembles the weather in 

western B.C. and Alaska, one might expect the shape of the skull to more closely resemble that 

of the Pacific marten (Martes caurina) that have shorter, wider rostrums (Colella et al., 2018; 

Wright, 1953). Our results indicate, however, the shape change with more temperate weather 

accentuated the differences between American marten and Pacific marten. This might seem 

counterintuitive, but we should consider the effect of weather fluctuation on the marten to be 

through their feeding ecology, because marten physiology and behaviour shift seasonally in 

response to prey availability, including shifting primary prey (Ben-David et al., 1997; Buskirk & 

Macdonald, 1984; Raine, 1987), shifting periods of activity (More, 1978; Zielinski et al., 1983), 

and fasting (Nieminen et al., 2007). Evidence suggests the shorter rostrum is an adaptation to 

increase bite force, which a generalist with variable prey would require (Slater et al., 2009). The 

broader, shorter rostrum to increase bite force is associated with coastal environments, where a 

generalist predator like the pacific marten preys on crustaceans when small rodents are not 

readily available (Ben-David et al., 1997). The rostrum shape I found in conjunction with 

warmer, wetter springs and wetter previous springs might be a response to an abundance of prey, 

specifically small rodents. If small terrestrial prey are abundant, allowing American marten to 

specialize, a faster bite could provide a greater advantage than a strong bite. Shorter, wider 

rostrum (and by association mandible) allows for greater bite forces by increasing the leverage of 
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the jaw musculature, whereas an elongate, narrower rostrum would prioritize bite speed by 

lengthening the jaw-out lever (Slater et al., 2009). A feeding ecology explanation also might 

explain the increased pterygoid process (located behind the palate, landmarks 10 & 11), because 

pterygoid muscles assist with chewing and biting (Osborn, 1995). 

Due to the nature of geometric morphometrics (Parsons et al., 2003), I quantified both 

variation and the nature of that variation. I observed similar variation in symmetric shape from 

the PCA and 2B-PLS. The similarity between tests is relevant because it indicates the 

predominant variation in shape is essentially the same shape variation that covaries with weather 

covariates. Had the first one or two axes of the PCA and 2B-PLS results focused on entirely 

distinct shape variation, it would indicate that although there is significant covariation between 

shape and weather, the shape that covaries significantly with weather is a small portion of the 

shape variation I observed. The ability to visualize how the skull shape is varying also is 

valuable because it can inform future research into the potential mechanisms influencing the 

skull structures by highlighting which structures within a configuration have the highest 

variability. 

Despite finding significant variation in size among years, I found no significant 

correspondence between size and weather covariates, although studies have shown a correlation 

between body size and climate (Wereszczuk et al., 2023; Yom-Tov et al., 2008). These studies 

might have captured a longer-term trend, rather than individual responses to environmental 

factors. Our analysis found a small but significant correlation between variation in asymmetric 

shape and size. This correlation might be associated with cranial evolutionary allometry, a 

pattern among disparate mammalian orders (Cardini et al., 2015) that describes among-

individual as well as among-species variation wherein larger individuals and species have longer 
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rostrums and relatively smaller brain cases, and smaller individuals and species have relatively 

shorter rostrums and larger braincases (Cardini & Polly, 2013). 

I found significant among-year variation in fluctuating asymmetry (FA), but I was unable 

to detect significant covariation between morphometric asymmetry and weather. Developmental 

instability might be buffered by behavioural adaptation to weather fluctuations. For example, 

increased use of the subnivean environments by the marten during colder weather might buffer 

any effects of cold temperatures on FA. With sufficient snow, they might be able to avoid the 

stress of extreme cold, making the correspondence between weather and FA difficult to detect 

with this analysis. However, these subnivean behavioural adaptations to weather variation are 

possible only with adequate snow depth. If climate change decreases snow depth to the point that 

it is not usable for subnivean movement, we might see a large, abrupt change in marten 

adaptability. Detecting statistically significant levels of FA seems to be more common with the 

advent of more precise measurement and statistical methods, but we still do not have a clear 

understanding of its origins (Klingenberg, 2022). This lack of clarity despite significant FA 

might be why the disagreement regarding the validity of FA as a measure of developmental 

instability, let alone fitness, remains (Clarke, 1995b, 1998; Leung & Forbes, 1996; Palmer, 

2000). Our results also reinforce the difficulty of avoiding false-positive results when studying 

FA (Palmer & Strobeck, 2003). The graphical output of the asymmetry component easily can be 

interpreted as clear patterns of FA covarying with weather covariates (Figure 9). However, with 

the permutation test, this interpretation was not supported and covariation was not statistically 

significant (J. Marugán-Lobón, personal communication, September 14, 2023). This highlights a 

criticism of studying FA within the context of developmental instability and fitness; without (and 
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potentially even with) thoughtful and attentive methodology, seemingly significant results can be 

biologically meaningless (Palmer, 1996; Palmer & Strobeck, 2003). 

As climate change continues to increase weather variability and extremes (IPCC, 2022), 

we will almost certainly continue to see changes in the morphology of organisms. Climate is a 

complex combination of variables, each with direct and indirect effects on ecology. Remarkably, 

however, by focusing on weather data for the spring developmental period for young marten I 

found a strong pattern of symmetric covariation between marten morphology and weather. 

Climate change is a relatively recent phenomenon, therefore in most cases we do not have data 

across a long enough timespan to understand the full extent of its influence. Thus, we should 

continue to monitor populations over a longer timespan. Additionally, based on this research I 

can not say whether these adaptations are adaptive, let alone how such adaptations would be 

advantageous. Therefore, we should explore the mechanisms of these morphological changes to 

understand if and how they might be adaptive, including research regarding biomechanics and 

predator-prey relationships in the context of climate change. 
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Tables 

 

Table 1. Metadata for marten skull specimens, by year. Years with incomplete weather data were 

excluded from analysis pertaining to the developmental period with missing data. 

 Year Males Females Sex unk Feb–Apr May–Jul 

2004 7 3 2 ✓ ✓ 

2005 4 6 - ✓ ✓ 

2006 2 1 - ✓ ✓ 

2007 3 3 - ✓ ✓ 

2008 4 4 - INC ✓ 

2009 5 2 - INC ✓ 

2010 2 - - ✓ ✓ 

2011 3 5 - ✓ ✓ 

2012 2 6 - ✓ ✓ 

2013 3 4 - ✓ ✓ 

2014 4 1 - ✓ ✓ 

2015 7 4 - ✓ ✓ 

2016 9 2 - ✓ ✓ 

2017 4 2 - ✓ ✓ 

2018 3 3 - ✓ ✓ 

2019 2 2 - ✓ ✓ 

2021 2 4 - ✓ ✓ 

Total 66 52 2 = 120 
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Table 2. Procrustes ANOVA of centroid sizes of American marten skull landmark 

configurations. Marten were collected between 2004–2021 near Nordegg, Alberta, Canada. 

 Effect SS MS df F P (param.) 

Year 22.052478 1.378280 16 3.19 0.0002 

Sex 95.015108 95.015108 1 220.16 <.0001 

Individual 43.157886 0.431579 100 1272.83 <.0001 

Error 0.041339 0.000344 120     
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Table 3. Procrustes ANOVA of shape of American marten skull landmark configurations. The 

‘Side’ effect represents variation in directional asymmetry, and the ‘Ind * Side’ interaction effect 

represents fluctuating asymmetry and antisymmetry. 

 Effect SS MS df F P (param.) 

Year 0.02646508            0.0000280350       944 1.66       <.0001 

Sex 0.00868294            0.0000735842       118 4.36       <.0001 

Individual 0.10068276           0.0000168959      5959 5.88       <.0001 

Side 0.00296356           0.0000493927        60 17.19       <.0001 

Ind * Side 0.02051156          0.0000028728      7140   2.83       <.0001 

Error 0.01450457     0.0000010157     14280     
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Table 4. Shape MANOVA test of shape variation of American marten skull landmark 

configurations. The ‘Side’ effect represents variation in directional asymmetry, and the ‘Ind * 

Side’ interaction effect represents fluctuating asymmetry and antisymmetry. 

 

Symmetric component of shape variation Asymmetric component of shape 
variation 

Effect Pillai tr. P (param.) Effect Pillai tr. P (param.) 

Year 9.00 0.0002 Year 9.35 <0.0001 

Sex 1.17 0.3877 Sex 0.99 0.9591 

Individual 49.88 <0.0001 Side 0.97 <0.0001 

  Ind*Side 46.12 <0.0001 
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Figures 

 

Figure 1. A theoretical representation of various reaction norms. A and E represent genotypes 

that produce phenotypes that differ from each other, but are non-plastic. B,C, and D represent 

traits that are all plastic, but illustrate various shapes a plastic reaction norm can take. Adapted 

from Fusco and Minelli (2010). 
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Figure 2. Map of study area, in Registered Fur Management Area 538 in Wildlife Management 

Unit 328. The area is near Nordegg, Alberta, and all specimens were trapped within the study 

area. The Nordegg Climate Station, used for analysis, is immediately north of the study area. 
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Figure 3. Location of cranial landmarks recorded on American marten skulls used in geometric 

morphometric analysis. Points indicate the landmark on one side, but landmarks were recorded 

on both sides and used in analyses. Drawing by Natika Pigeon. 

1/2: The anterior-most point of the incisive foramen 

3/4: The posterior-most point of the incisive foramen 

5/6: Anterior point of base of canine 

7/8: Posterior point of base of canine 

9/10: Anterior point of base of second premolar 

11/12: Anterior point of base of third premolar 

13/14: Posterior point of base of third premolar 

15/16: Anterior point of base of molar 

17/18: Posterior crest of molar 

19/20: Posterior-most point of pterygoid process 

21/22: Anterior-most point of the retroarticular process 

23/24: Anterior point of styliform process of the auditory bullae 

25/26: Lateral end point of auditory meatus 

27/28: Medial end point of tympano-occipital fissure 

29/30: Posterior-most point of the jugular process 

31/32: Anterior lateral tip of occipital condyle 

33/34: Lateral point of base of canine 

35/36: Apex of the canine 

37/38: Infraorbital foramen 

39/40: Zygomatic process of frontal bone 

41/42: Frontal process of zygomatic bone 
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Figure 4. Linear regression of log centroid size as a factor of the symmetric shape component 

regression score of American marten skull landmark configurations, corrected for sex 

differences. American marten were collected near Nordegg, Alberta during 2004–2021. Green = 

females, blue = males, and red = individuals of unknown sex. % predicted = 5.1%. Significance 

for the permutation test against the null hypothesis of independence was evaluated at P <0.0001. 

The regression score represents variation of shape, as depicted in the wireframe drawings, that 

was most strongly associated with the log centroid size after Procrustes alignment (Drake and 

Klingenberg, 2008). The light blue wireframe is the average ‘consensus’ shape. The dark blue 

wireframes are the shape changes associated with positive (above) and negative (below) 

regression scores. The scale factor for the wireframes is 1.0, indicating an increase of the long 

centroid size by a unit of one. 
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Figure 5. Linear regression of log centroid size as a factor of asymmetric shape component 

regression. score of American marten skull landmark configurations. Asymmetric shape scores 

are determined by comparing the differences in distance between left and right landmark pairs to 

the centroid. The regression score represents the variation of shape that is most strongly 

associated with log centroid size (Drake and Klingenberg, 2008). American marten were trapped 

near Nordegg, Alberta during 2004–2021. P-Value from permutation test against the null 

hypothesis of independence = 0.39. 
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Figure 6. Covariation between two symmetric components of variation of American marten skull 

landmark configurations. Principal Component 1 (PC1) represents the shape changes that 

account for the greatest amount of variation among individuals (16.6%, D). The light blue 

wireframe is the average ‘consensus’ shape. The dark blue wireframes are the shape changes 

associated with the negative (B) and positive (C) PC values for PC1, with a scale factor of 0.1 

Procrustes distance units. Panel D indicates the percent of total covariance attributed to each PC. 

American marten were collected near Nordegg, Alberta during 2004–2021. 

B C 

D 

A 
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Figure 7. PC1 variation from the PCA of the asymmetric component of American marten skull 

landmark configurations (A). The light blue wireframe is the average ‘consensus’ shape. The 

dark blue wireframes are the shape changes associated with positive PC1 values, with a scale 

factor of 0.1 Procrustes distance units. Two replicates of each individual were included 

separately to assess the amount of variation in asymmetric shape due to measurement error. 

Panel B indicates the PC scores of each individual for PC1 and PC2, coloured by replicate. 

American marten were collected near Nordegg, Alberta during 2004–2021. 

Replicate 1 

Replicate 2 

A 

B 
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Block 1 PLS 1 

 

 

 

 

 

 

Figure 8. PLS1 from the 2B-PLS of the 

symmetric component of shape variation and 

early development weather covariates (May–

July). The light blue wireframe is the average 

‘consensus’ shape (A). The dark blue wireframes 

are the shape changes associated with positive 

PLS axis value, with a scale factor of 0.1 

Procrustes distance units. Panel B indicates the 

percent total squared covariance attributed to 

each PLS axis. The Biplot (C) visualizes the PLS 

coefficients of the weather covariates. Precip = 

Precipitation, MinTmp = Average minimum daily 

temperature, MaxTmp = Average maximum daily 

temperature, MaxTmpSD = Standard deviation of 

maximum daily temperature, MinTmpSD = 

Standard deviation of minimum daily 

temperature, LYPrecip = Lag year precipitation, 

LYMaxTmp = Lag year average maximum daily 

temperature, LYMinTmp = Lag year average 

minimum daily temperature. American marten 

were collected near Nordegg, Alberta during 

2004–2021. 
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Figure 9. PLS 1 from the 2B-PLS of the 

asymmetric component of shape variation 

and in utero weather covariates (February–

April). The light blue wireframe is the 

average ‘consensus’ shape (A). The dark 

blue wireframes are the shape changes 

associated with positive PLS axis value, with 

a scale factor of 0.1 Procrustes distance 

units. Panel B indicates the percent total 

squared covariance attributed to each PLS 

axis. The Biplot (C) visualizes the PLS 

coefficients of the weather covariates. IU 

indicates the in-utero period of development. 

P = Precipitation, MNM = Average 

minimum daily temperature, MXM = 

Average maximum daily temperature, ASD 

= average snow depth, MXMSD = Standard 

deviation of maximum daily temperature, 

MNMSD = Standard deviation of minimum 

daily temperature. American marten were 

collected near Nordegg, Alberta during 

2004–2021. 
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Figure 10. Average maximum temperature values in Nordegg, AB, from different timespans of the year. Panel A indicates the average 

daily maximum for the year, panel B is the average daily maximum during the in-utero developmental period (February–April), and 

panel C is the average daily maximum during the early postnatal developmental period (May–July). Figures were scaled to allow for 

visual comparison of the magnitude and pattern of variation among years.
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