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Abstract

In recent years, significant strides in optimal bidirectional heuristic search (Bi-HS)

have deepened our theoretical understanding and boosted performance. Yet, algo-

rithms for Bi-HS in unbounded suboptimal scenarios remains largely unexplored.

Despite leveraging front-to-end (F2E) and front-to-front (F2F) bidirectional search

for optimal algorithms, adapting them for unbounded suboptimal search remains an

open challenge. We introduce a novel framework for suboptimal Bi-HS, called anchor

search, and use it to derive new algorithms. Additionally, we propose using pat-

tern databases (PDBs) as differential heuristics (DHs) to construct F2F heuristics—a

necessity for F2F searches. Our experiments evaluate six anchor search algorithms

across diverse domains, with a subset of them outperforming existing methods.
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Chapter 1

Introduction

Pathfinding is a type of heuristic search (HS) problem involving the task of finding

a path between two states in a given state space. This is often guided by a heuristic

function that estimates distances between states. Pathfinding has a wide variety of

applications [1–5] in the real world, ranging from navigation in robotics and video

games to finding a sequence of actions leading to solving of a puzzle. Although finding

the shortest path rather than a suboptimal solution is often crucial and preferable

in many scenarios, real-time constraints and limited computational resources can

make optimal pathfinding impractical in many applications [6, 7]. For instance, in

video games, a path must be found in a fraction of a second to maintain the target

framerate on computers and gaming consoles. Additionally, pathfinding problems

exist with enormous state spaces for which finding the optimal solution can take days

or weeks, even using high-end computing resources [2]. Hence, suboptimal pathfinding

becomes important as finding a suboptimal path is better than having no solution

due to exhausting the available resources while trying to find the optimal path.

From the optimality lens, pathfinding problems can be divided into three main

classes: optimal HS, unbounded suboptimal HS, and bounded suboptimal HS. Op-

timal HS aims to find the shortest path between the start and goal states, while

unbounded suboptimal HS accepts any arbitrary length path between the ends.

Bounded suboptimal HS strikes a middle ground between optimal and unbounded
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suboptimal HS by imposing an upper bound upon the solution length relative to the

least-cost path. In numerous scenarios, achieving optimal solutions is impractical

due to the extensive computational requirements [8], leading to a preference for using

unbounded suboptimal HS.

Existing HS algorithms typically adopt one of two main approaches to search the

search space: unidirectional HS (Uni-HS), and bidirectional HS (Bi-HS). Uni-HS

algorithms search for a path from start toward goal while being guided by a heuristic

function that estimates the cost of reaching goal from any other states in the graph.

Alternatively, Bi-HS involves simultaneous searching from both start (forward search)

and goal (backward search) until the two frontiers meet.

Based on the heuristic being used, the study of Bi-HS algorithms primarily divides

into two categories: front-to-end (F2E) [9] and front-to-front (F2F) algorithms [10]. In

F2E Bi-HS, heuristic functions estimate the distances from individual states to either

start or goal while F2F algorithms employ heuristics that estimate the distances

between any arbitrary pair of states.

1.1 Brief History of Bidirectional Search

In this section, we will give a short overview of the history of bidirectional search.

We will discuss the advancements that highlight the potential of bidirectional search,

as well as the gaps that reveal areas of current and future research. This historical

background will provide the necessary context for establishing the foundation and

motivation behind our contributions.

The history of bidirectional search dates back to 1966, when Nicholson [11] intro-

duced bidirectional search (BS). BS involves two simultaneous searches, one starting

at the start and the other at the goal. In the absence of heuristics, BS demonstrated

superior performance over Dijkstra’s algorithm (DA) [12], an uninformed unidirec-

tional search algorithm, in terms of expansions and time.

Intuitively, in a 2-dimensional polynomial domain where the number of states at
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Figure 1.1: The area expanded by DA (red circle) and BS (blue circles).

depths smaller than d grows polynomially with d, the expansions performed by DA

can be visualized as a continuously expanding solid circle centered at the start. This

circle keeps growing until it reaches the goal located in distance r of the start (the red

circle in Figure 1.1). In this case, the area covered by DA is πr2. Applying the same

analogy to BS, we can imagine two solid circles centered at the start and the goal

(blue circles in Figure 1.1). These circles grow until they collide. In this scenario,

the combined area covered by both circles would be 2 × π( r
2
)2 = πr2/2 – half of the

area expanded by a single instance of DA. In an exponential domain with a branching

factor of b, the number of states expanded by DA to reach a goal state at depth d

from the start state is approximately bd. On the other hand, employing BS results

in roughly 2 × b(d/2) expansions, which is exponentially fewer than the expansions

performed by DA.

In 1968, coupled with admissible heuristics, A∗ [13] was introduced and later shown

to dominate any admissible best-first search algorithm, including DA [14]. The intro-

duction of the concepts of bidirectional search and heuristic search paved the way for

new possibilities, leading to the question of whether combining these two approaches

would result in a promising option. However, the first algorithm that attempted to
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do so, BHPA [15], did not yield significant gains despite the potential of both ideas

when used independently. Pohl conjectured that BHPA was ineffective because fron-

tiers usually missed each other and met near either the start or goal states [15]. Sint

and De Champeaux [10] proposed BHFFA to address this shortcomings by adopt-

ing F2F heuristics to encourage frontiers to meet in the middle. Although using F2F

heuristics helped address the issue of frontiers missing in BHPA, and resulted in fewer

expansions compared to a generalized version of A∗, the F2F heuristics were compu-

tationally expensive, which made the BHFFA algorithm significantly slower in terms

of runtime when compared to both Uni-HS and F2E Bi-HS algorithms of that time.

For years, researchers have sought to understand why Bi-HS falls short in compar-

ison to Uni-HS. Nilsson [16] highlighted Pohl’s explanation: the frontiers can miss

each other, meaning they might meet close to either the start or goal states. This

occurrence, referred to as the frontiers missing or crossing, implies that the progress

made by one of the frontiers do not contribute to finding the path. In such situations,

employing a unidirectional algorithm could potentially yield a path with less compu-

tational effort. Later, Kaindl and Kainz [9] provided evidence contrary to Nilsson’s

explanation: the frontiers meet, but the substantial effort required to prove optimal-

ity puts Bi-HS at a disadvantage compared to Uni-HS. Finally, Barker and Korf [17]

suggested that in most cases, either Uni-HS or bidirectional brute-force search out-

perform Bi-HS. However, this theory was based on assumptions that are often not

realistic, such as the assumption that solving a problem is equally difficult in both

directions and that the frontiers meet exactly in the middle of the path. At the time,

no algorithm had achieved this.

Inspired by the above theories on the shortcomings of Bi-HS [9, 17], recent years

have witnessed significant advancements in this area of research, challenging con-

ventional understanding. The first advancement was the introduction of MM [18],

a Bi-HS algorithm ensuring that the search frontiers meet at the midpoint of the

optimal path, an assumption from Barker and Korf’s theory. Shaham et al. [19] in-
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Figure 1.2: Timeline of milestones in bidirectional search.

troduced fMM, an extension of MM that allows for parameterizing the fraction of the

path constructed by the forward search. Subsequently, identifying the theory of suffi-

cient conditions for bidirectional search [20] paved the way for a better understanding

of when Bi-HS outperforms Uni-HS [21]. Shaham et al. [19] expanded the theory by

demonstrating that fMM can solve problems only by performing the necessary expan-

sions when prior knowledge guided the choice of its parameter value. Chen et al. [22]

translated the sufficient conditions for bidirectional search into a vertex cover prob-

lem on a bipartite graph, known as a must-expand graph (GMX). Building upon this

insight, two Bi-HS algorithms were proposed: the Near-Optimal Bidirectional Search

(NBS) algorithm [22], which expands at most twice the minimum required nodes to

reach the optimal solution, and DVCBS [23], guided by finding smallest vertex cover

during search.

Figure 1.2 visualizes the chronological progression of bidirectional search. To con-

clude, Barker and Korf’s conjecture [17] sparked a notable interest in optimal Bi-HS

in recent years, resulting in refined theoretical understanding [20, 21, 23, 24] and the

development of efficient algorithms [18, 22, 23]. These advancements include an in-

depth theoretical and empirical comparison between unidirectional and bidirectional

search methodologies [21].
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1.2 Motivation

This thesis addresses the problem of unbounded suboptimal Bi-HS. Despite the ex-

tensive studies conducted on optimal and suboptimal Uni-HS in the past [14, 25–

28] and recent advancements in optimal Bi-HS, suboptimal Bi-HS has not received

the same level of investigation, particularly when it comes to unbounded suboptimal

Bi-HS, which has remained largely unexplored. This lack of exploration raises many

questions about the best algorithms and heuristics to use in this context. There is

no theory that explains the conditions under which suboptimal Bi-HS outperforms

suboptimal Uni-HS. Additionally, we have not identified the heuristic properties that

measure how suitable a given heuristic is for suboptimal or greedy search. This dis-

sertation provides new insights into suboptimal Bi-HS algorithms and how to build

front-to-front heuristics.

1.3 Key Contributions

This thesis introduces the anchor search framework, synthesizing various design

choices for unbounded suboptimal Bi-HS algorithms that utilize both F2F and F2E

heuristics. We show that existing unbounded suboptimal Bi-HS algorithms, such

as D-node retargeting [29] and the bidirectional version of greedy best-first search,

can be viewed as special cases of this framework. Additionally, we introduce new

promising algorithms, such as temporal and randomized anchor search, within this

framework.

This thesis also addresses a previously overlooked question – the construction of

F2F heuristics, especially in domains like the Towers of Hanoi (TOH) where strong

F2F heuristics are not readily available. Along these lines, this thesis studies the

possibility of using pattern database (PDB) heuristics [30] as differential heuristics

(DHs) [31] to establish the state-to-state heuristics required for anchor search.
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1.4 Thesis Outline

The thesis consists of six chapters. In Chapter 2, “Background and Related Work,”

we discuss the relevant literature to provide essential context for unbounded subopti-

mal bidirectional heuristic search, and identify gaps in existing approaches. Chapter

3, “Anchor Search,” provides a comprehensive description of the anchor search frame-

work and discusses how existing algorithms fit into this framework. It also presents

promising design choices used to propose novel anchor search algorithms. In Chap-

ter 4, “Front-to-Front Heuristics,” we provide details of our front-to-front heuristics

approaches, which are required for anchor search. Chapter 5, “Results,” presents

experimental findings across various domains to highlight the effectiveness of anchor

search. Finally, Chapter 6, “Conclusion and Future Work,” synthesizes our key find-

ings, discusses implications, and suggests future research directions.
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Chapter 2

Background and Related Work

There has been notable recent progress in both the theory [20, 32] and algorithms

[22, 23, 33] for optimal Bi-HS. This thesis focuses on unbounded suboptimal search,

an area that has received comparatively less attention. In this chapter, we provide

background information on this topic, encompassing the problem definition and the

algorithms that this thesis builds upon.

2.1 Problem Statement and Definitions

This thesis addresses the problem of finding a path of arbitrary length between two

states (vertices) within a graph, referred to as start and goal. The problem input

consists of a graph G = (V,E), with V and E representing vertices and edges, a

cost function c : E → R+ assigning costs to edges, and a heuristic function h(u, v) :

V × V → R+, estimating distances between state pairs. It is important to note that

in unbounded suboptimal search, admissibility and consistency of heuristics are not

required [34, 35]. The output is a path π = v0, ..., vn with a cost of
∑︁n−1

i=0 c(vi, vi+1),

where vi, vi+1 ∈ E. Paths are evaluated with respect to their length.

All algorithms discussed in this thesis are assumed to be expansion-based [14,

20]. At any given iteration, the process through which a single state is selected and

expanded, the g-cost of an arbitrary state s denotes the cost of the shortest path

found thus far between s and its corresponding frontier’s origin (start/goal). For
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an arbitrary pair of states a and b, d(a, b) represents the cost of the optimal path

between a and b. D and D̄ are used as subscripts to differentiate symbols for the

current and opposite direction of search. Notably, states and nodes are equivalent

notions throughout this dissertation.

2.2 Suboptimal Bidirectional Search

Front-to-end (F2E) and front-to-front (F2F) heuristics are two main types of heuris-

tics that Bi-HS algorithms have used. In a state space V , a F2E heuristic hF2E : V →

R+ estimates the distance from any given state s ∈ V to the start or goal states.

In contrast, a F2F heuristic hF2F : V × V → R+ evaluates any arbitrary state pair

(s1, s2) ∈ V × V . When performing full F2F evaluations, evaluating a given state

s in the forward (or backward) frontier involves taking the minimum of hF2F (s, s
′),

for all states s′ in the backward (or forward) frontier in order to establish a lower

bound on the estimated distance of s to the entire opposite frontier. Although this is

a more informative evaluation compared to what F2E heuristics offer, it comes at the

cost of evaluating many pairs of states. Therefore, despite the fact that, generally,

F2F Bi-HS algorithms expand fewer states, the expensive computational cost of each

expansion makes them impractical in terms of runtime [36].

To address the large time complexity of pure F2F evaluations, Politowski and

Pohl [29] introduced the concept of a d-node: a dynamic representative state in each

frontier, which serves as a temporary goal for the opposite frontier. The primary

purpose of d-nodes was to facilitate frontier convergence while circumventing the

computational burden of performing a complete F2F evaluation for all pairs of frontier

states. However, d-node retargeting (DNR), the Bi-HS algorithm which introduced d-

nodes, requires that the open list of the opposite frontier is re-sorted whenever a new

d-node is chosen. Kuroiwa and Fukunaga [37] proposed top-to-top bidirectional search

(TTBS) as a modification of DNR, seeking to mitigate the considerable overhead

linked with repeatedly sorting the open list.
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Mayer and Krebsbach [38] provided definitions for possible variations of greedy

and optimal unidirectional and bidirectional searches. Their empirical results suggest

that bidirectional search could outperform its unidirectional rivals in terms of state

expansions. However, their comparison lacked the inclusion of state-of-the-art Bi-HS

algorithms of the time and their analysis was restricted to the sliding tile puzzle with

varying sizes, with the number of expansions as the only measure of comparison.

Two recent papers have shown the potential effectiveness of suboptimal Bi-HS

search over unidirectional search in practice. A∗-connect [39] is a bounded suboptimal

bidirectional algorithm that outperforms state-of-the-art unidirectional algorithms in

motion planning. A∗-connect utilizes the notion of pivots, which resemble d-nodes.

Pivots are a set of representative states encapsulating the search frontier. In other

work, Atzmon et al. [40] studied how the ideas behind Weighted A∗ [41] can be

applied to the MM algorithm [18], giving Weighted MM (WMM). This is the first

step in extending the theory of optimal Bi-HS to bounded suboptimal Bi-HS.

2.3 Baselines

In order to conduct a comprehensive evaluation of anchor search’s efficacy, we include

unbounded suboptimal Uni-HS, F2E Bi-HS, and F2F Bi-HS algorithms as the base-

lines of this work. The chosen baselines are described in detail in the remainder of

this section.

2.3.1 Greedy Best-First Search (GBFS)

GBFS [42], also known as pure heuristic search, is a best-first, unidirectional search

algorithm that expands the state with the minimum h-value. GBFS is greedy with

respect to the heuristic, as it does not consider the cost of reaching a state (g-cost)

when evaluating it for expansion. Given its simplicity and wide use in planning [37,

43, 44], GBFS is a clear choice for baseline comparisons.
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2.3.2 Bidirectional GBFS (BGBFS)

GBFS can be utilized bidirectionally, known as BGBFS, providing an additional

potential baseline for this research. BGBFS uses two alternating GBFS searches,

one from the start towards the goal and vice versa. In other words, at each step,

the algorithm expands the state s ∈ OpenD with the smallest heuristic value hD(s)

towards the opposite end and then switches the current direction D. The search is

terminated once one frontier generates a state that belongs to the opposite frontier’s

open list. Despite the simplicity of this algorithm, it has only been briefly discussed

in the literature [38]. The pseudocode of BGBFS is provided in Algorithm 1. Note

that hf and hb are front-to-end heuristics used in forward and backward frontiers,

respectively.

Even though the literature does not contain information about the behavior of BG-

BFS, particularly in practice, we can still borrow some theoretical justifications from

other studies suggesting the potential effectiveness of BGBFS. Running two simul-

taneous GBFS instances can be considered a limited realization of a parallelization

technique called dovetailing [45]. Dovetailing enables us to run several configurations

of a parameterized algorithm in parallel when we have no prior information about

the best problem-specific tuning. Given that we are finding a path between a pair

of states in an undirected graph, we can take either state as the start and the other

as the goal state. Thus, choosing one of the two endpoints as the start would be a

parameter needed to be tuned when we aim to solve a problem unidirectionally. From

this perspective, we can utilize dovetailing by running the search simultaneously in

both directions, as we do not know the best direction in advance. In the worse case,

when the frontiers meet close to the ends, BGBFS with the alternating policy will

expand at most twice the states expanded by unidirectional GBFS in the optimal

direction — the direction that minimizes the expansions performed by GBFS.
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Algorithm 1 BGBFS

Input: G, start, goal, hf , hb

▷ hf and hb are forward and backward heuristics.
Output: a path between start and goal

1: D ← forward
2: add start to OpenD

3: add goal to OpenD̄

4: while OpenD is not empty do
5: next← argmin

n∈OpenD

hD(n)

6: remove next from OpenD

7: add next to ClosedD
8: for s ∈ Successors(next) do
9: if s /∈ ClosedD then
10: add s to OpenD

11: end if
12: if s ∈ OpenD̄ then
13: return ExtractPath(start, goal)
14: end if
15: end for
16: D ← D̄ ▷ Switch the current direction.
17: end while
18: return null
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2.3.3 d-node Retargeting (DNR)

DNR was one of the first F2F Bi-HS algorithms that attempted to guide the frontiers

together. It mitigated the computational overhead of full F2F evaluations by main-

taining a dynamic representative state, known as a d-node, making it a fundamental

baseline in our study. In DNR, as shown in Algorithm 2, each frontier performs k

consecutive expansions prioritized by f(n) = (1 − w)g(n) + wh(n, dnodeD̄) with re-

spect to the d-node in the opposite frontier; we call this a turn. Then, the state with

the largest g-cost in the current frontier becomes the next d-node. Once the d-node is

updated, the opposite frontier must sort its entire open list based on f with respect

to the newly updated d-node before taking its turn. The implementation of DNR

used in our study uses w = 1, with ties being broken in favor of the state with a

higher g-cost.

The optimal value of k in DNR depends on the actual solution length, which is

not known in advance. A larger value of k results in performance similar to unidirec-

tional best-first search algorithms, while a smaller value of k results in more frequent

retargeting and poorer runtime performance.

2.3.4 Top-to-top Bidirectional Search (TTBS)

TTBS (Algorithm 3), the final baseline algorithm, takes a different approach to

the concept of d-nodes. It operates on the assumption that the highest priority

states in the opposite open lists should ideally be close to each other. Unlike DNR,

which involves re-sorting the entire open list every time a d-node changes, TTBS

approximates this process during each expansion through a lazy evaluation of a subset

of the open list. TTBS uses the top (the highest priority state) of each open list as the

d-node for that specific frontier. Algorithm 3 describes TTBS, where topD and topD̄

correspond to the tops of the current and opposite frontiers’ open lists, respectively.

States in OpenD are primarily prioritized based on their h-cost to topD̄. In the

process of selecting a state to expand, TTBS examines if topD̄ (the opposite d-node)

13



Algorithm 2 DNR

Input: G, start, goal, h, k
Output: a path between start and goal

1: D ← forward
2: add start to OpenD

3: add goal to OpenD̄

4: dnodeD ← start
5: dnodeD̄ ← goal
6: while no path has been found do
7: for i = 1, ..., k do
8: if OpenD is empty then
9: return null
10: end if
11: next← argmin

n∈OpenD

f(n)

12: remove next from OpenD

13: add next to ClosedD
14: for s ∈ Successors(next) do
15: if s /∈ ClosedD then
16: add s to OpenD

17: end if
18: if s ∈ OpenD̄ then
19: return ExtractPath(start, goal)
20: end if
21: end for
22: end for
23: furthest← argmax

n∈OpenD

gD(n)

24: if g(furthest) > g(dnodeD) then
25: dnodeD ← furthest
26: Retarget(OpenD̄, dnodeD)
27: end if
28: D ← D̄ ▷ Switch the current direction.
29: end while
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Optimality Uni-HS
Bi-HS

F2F F2E

Optimal A∗ BHFFA BHPA, MM, NBS, DVCBS

Bounded suboptimal Weighted A∗ A∗-connect WMM

Unbounded suboptimal GBFS DNR, TTBS BGBFS

Table 2.1: Classification of heuristic search algorithms.

is similar to T (topD): the d-node that topD was last prioritized against, where two

states are identified as similar if they are equal or adjacent (in undirected graphs).

If such similarity is identified, topD is expanded. Conversely, if no similarity is found,

topD is reprioritized against the current topD̄. This process continues until a state is

expanded. Note that, while prioritizing a state, if there are multiple states with the

same heuristic value priority, those that have already been reprioritized earlier hold

higher priorities to prevent repeated reprioritization for a given state. Additionally,

FIFO and LIFO strategies can be employed for further tie-breaking.

In the context of unbounded suboptimal heuristic search, we have identified four

noteworthy algorithms, each with their strengths and weaknesses that capture di-

verse heuristic search approaches. GBFS stands as a straightforward representative

of unbounded suboptimal Uni-HS algorithms. Despite its proven robustness, it faces

a limitation in its inability to leverage F2F heuristics when available. BGBFS, a bidi-

rectional variant of GBFS, serves as a test case to explore whether being bidirectional

alone can enhance performance compared to unidirectional greedy search. Finally,

DNR and TTBS embody two realizations of unbounded suboptimal F2F Bi-HS in

our study. While they align more closely with the assumptions of planning prob-

lems, their inclusion allows for a more comprehensive understanding of unbounded

suboptimal Bi-HS in practice, even considering their demanding operations such as

retargeting in DNR and maintaining the lazy priority queue in TTBS.
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Algorithm 3 TTBS

Input: G, start, goal, h, k
Output: a path between start and goal

1: D ← forward ▷ Initialize direction D with forward.
2: push(OpenD, start)
3: push(OpenD̄, goal)
4: T (start)← goal
5: T (goal)← start
6: while no path has been found do
7: for i = 1, ..., k do ▷ Perform k expansions in each direction.
8: if OpenD is empty then
9: return null
10: end if
11: next← pop(OpenD) ▷ Pop the highest priority state from OpenD

12: while T (next) is not similar to topD̄) do
13: push(OpenD, next) ▷ Insert next in OpenD with new priority.
14: T (next)← topD̄
15: next← pop(OpenD)
16: end while
17: add next to ClosedD
18: for s ∈ Successors(next) do
19: if s /∈ ClosedD then
20: push(OpenD, s)
21: end if
22: if s ∈ OpenD̄ then
23: return ExtractPath(start, goal)
24: end if
25: end for
26: end for
27: D ← D̄ ▷ Switch the current direction.
28: end while
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Chapter 3

Anchor Search

In general, F2F heuristics are more informed than F2E ones [36]. However, the

quadratic complexity of assessing all pairs of frontier states required by optimal search

[20] makes full F2F evaluations expensive [36]. F2F Bi-HS algorithms can reduce

this overhead by giving up the requirement of finding optimal solutions. With this

relaxation in mind, we introduce the anchor search framework, which unifies multiple

approaches to suboptimal F2F search into a single framework.

The anchor search framework revolves around two fundamental concepts: the con-

cepts of an anchor and candidates, illustrated in Figure 3.1. An anchor is a rep-

resentative state associated with each frontier, treated as a provisional goal by the

opposite frontier. The anchor notion is broader than the d-node notion in the sense

that anchors are arbitrary states that do not necessarily have to be part of their

corresponding frontier. Anchor search is detailed in Algorithm 4. Each iteration of

the algorithm involves selecting the next state for expansion from a set of candidate

states C, extracted from the current frontier’s open list (OpenD), as depicted in line

2. The best candidate is the state c ∈ C with the lowest heuristic value h(c, anchorD̄),

i.e., the closest candidate to the anchor of the opposite frontier anchorD̄ based on

the heuristic estimation (line 3). Subsequent to expanding a state from the current

frontier, the anchor search may update anchorD and/or alter the current direction D

as guided by the anchor selection and direction selection policies (lines 18 and 19). In
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Figure 3.1: Anchor search illustration; the blue dot represents the backward frontier’s
anchor, the red dot shows the next state to expand, and the yellow dots are other
candidates.

Algorithm 4, the GetAnchor, GetCandidates, and GetDirection procedures

correspond to the anchor selection, candidate selection, and direction selection poli-

cies that are required to be specified for any specific instance of anchor search. In

the next sections, we introduce a variety of distinct anchor and candidate selection

policies.

3.1 Anchor Selection

The anchor selection policy governs the process of selecting the anchor from all the

states generated so far during each iteration. No universal policy exists for choosing an

anchor, as the best selection can be influenced by factors such as the problem domain,

the heuristic, and other selection policies (candidates and direction). Nonetheless, we

introduce a range of anchor selection policies that have demonstrated utility in our

empirical study.

• Temporal: The anchor is the most recently expanded state in each direction.

• Closest to the goal: The anchor is the state s among all the states generated

so far that minimizes h(s, goalD).

• Closest to the opposite anchor: The anchor is updated to the most recently
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Algorithm 4 Anchor Search

Input: G, start, goal, h
Output: a path between start and goal

1: while OpenD is not empty do
2: C ←− GetCandidates(OpenD)
3: next← argmin

n∈C
h(n, anchorD̄)

4: remove next from OpenD

5: add next to ClosedD
6: for s ∈ Successors(G, next) do
7: if s /∈ ClosedD then
8: add s to OpenD

9: parent(s)← next
10: else if g(s) > g(next) + c(next, s) then
11: g(s)← g(next) + c(next, s)
12: parent(s)← next
13: end if
14: if s ∈ OpenD̄ then
15: return ExtractPath(s,start, goal)
16: end if
17: end for
18: anchord ← GetAnchor(OpenD, ClosedD)
19: D ← GetDirection()
20: end while
21: return null

expanded state s if h(s, anchorD̄) is smaller than h(anchorD, anchorD̄).

• Random: The anchor is randomly selected from the open/closed list.

• Fixed to the origin: The anchor is the start/goal state and never changes.

It is important to note that the anchor selection policy can also outline the fre-

quency of anchor updates, either explicitly or implicitly. This flexibility facilitates the

design of both F2E and F2F Bi-HS algorithms. Should the anchor remain unchanged

from the frontier’s origin, the resulting algorithm aligns with F2E search. In scenarios

where the anchor can vary, the algorithm aligns with F2F search.
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3.2 Candidate Selection

Anchor search assembles a set of candidates, among which the next state for expansion

is selected. It prioritizes states according to their h-cost relative to the opposite

anchor. However, unlike optimal search algorithms, it is not necessary to involve the

entire open list in this prioritization. Consequently, for any given instance of anchor

search, it is necessary to define which subset of the open list to consider during each

expansion by defining the candidate selection policy. The candidate-selection policies

we consider are as follows:

• Brute-force: In the most trivial way, candidates are all states on the open list.

• Temporal: Candidates are the set of most recently generated states.

• Random: Candidates are a subset of states selected randomly from the open

list.

3.3 Direction Selection

The direction selection policy determines the expansion direction in each iteration

of the algorithm. In its simplest form, the alternating policy toggles the expansion

direction with every iteration. In contrast, the n-alternating policy switches the

expansion direction every n iterations. This direction change can be contingent on

conditions such as the maximum or minimum h-cost within a frontier. Furthermore, it

is possible to craft Uni-HS algorithms in the anchor search framework by maintaining

the same expansion direction throughout the search. Within the scope of this study,

all novel anchor search algorithms adopt the alternating policy.

3.4 Completeness of Anchor Search

Anchor search expands the best state among the candidates with respect to the

opposite anchor and never re-expands any state. Consequently, it functions as a best-
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first search employing a complex priority function. Chen and Sturtevant [24] showed

that a best-first search utilizing any priority function is always complete in finite state

spaces in the absence of re-expansions. Thus, algorithms within the anchor search

framework are complete, regardless of the specific candidate selection, anchor update,

and direction choice policies employed. It is worth mentioning that anchor search does

not allow evicting any state from the open list unless that state is expanded, ensuring

the framework’s completeness.

3.5 Variants

Enumerating all possible algorithms that can be devised from the anchor search frame-

work is impractical within the scope of this thesis, as not all variants are viable or

have significant promise. Therefore, we will focus on promising variants and those

that showed reasonable performance in initial, more broad experiments. Our analysis

will involve categorizing algorithms according to their anchor and candidate selection

policies, while also examining the impact of different heuristic types.

Our naming convention in this thesis refers to a specific anchor search algorithm as

AS
α(k)
β , where α denotes the candidate selection policy, k specifies the number of can-

didates, and β indicates the anchor selection policy. Considering that the candidate

selection policy involves important data structure considerations, we will initially di-

vide anchor search algorithms into three primary classes: brute-force anchor search

(ASB), temporal anchor search (AST ), and randomized anchor search (ASR), regard-

less of the chosen anchor selection policy. To denote the anchor selection policy, a

subscript will be employed. For instance, AST
T , AS

T
A, and AST

F correspond to AST with

temporal (T), closest-to-the-opposite-anchor (A), and fixed-to-the-origin (F) anchor

selection policies, respectively. Additionally, an anchor search algorithm may utilize

different anchor selection policies for the forward and backward frontiers, referred

to as hybrid variants. For instance, AST
AF represents an AST algorithm where the

forward frontier adopts the closest-to-the-opposite-anchor policy, while the backward
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start s1 s

s2

goal

Figure 3.2: States highlighted in gray depict the forward frontier’s closed list as well
as the part of the path found in the forward direction by AST without expanding s.

(a) Without reprioritization (b) With reprioritization

Figure 3.3: The impact of reprioritization on solution quality of AST
T

frontier uses the fixed-to-the-goal policy. Table 3.1 classifies the proposed anchor

search algorithms according to the anchor and candidate selection policies they em-

ploy.

3.5.1 Brute-force Anchor Search (ASB)

The most straightforward approach for generating candidates is to consider the whole

open list, that is, evaluating all the states in the open list and expanding the state

s ∈ C with the lowest h(s, anchorD̄). However, maintaining the open list in a sorted

order based on h-cost becomes impractical when anchors change frequently (e.g., ASB
T ,

ASB
R, and ASB

A). Therefore, without further assumptions or optimizations, identifying

the most promising state for expansion would require a linear traversal of the open list.

This relatively high time complexity renders such ASB variants infeasible, particularly

as the problem complexity and, consequently, the size of the open list increases.
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3.5.2 Temporal Anchor Search (AST)

We introduce a subclass of anchor search variants, called temporal anchor search,

where candidate states are selected according to the order in which they were gen-

erated. Specifically, AST focuses solely on the k most recently appended states in

the open list for constructing the candidate set (for some parameter k). During the

expansion phase, the algorithm selects the most promising state among the top k

candidates in the open list and expands it. Notably, all AST algorithms in our study

prioritize states with a higher g-cost for tie-breaking.

We observed that AST algorithms often find circuitous paths, as demonstrated in

Figure 3.3(a). Figure 3.2 pinpoints where this phenomenon happens. As shown in

Figure 3.2, the algorithm would have found a shorter solution if state s had been

expanded during the search. States such as s can be identified once re-generated

with a higher g-cost while already on the open list. The subsequent list of criteria

generalizes the phenomenon depicted in Figure 3.2, describing the relationship among

states s1, s2, and s:

1. State s has been re-generated by s2, while already existing on the open list,

with s1 as its current parent.

2. States s1 and s2 have been expanded in the same direction with g-costs of g1

and g2, respectively.

3. g2 − g1 > c(s1, s) + c(s, s2), where c is the cost function.

4. The search is terminated before expanding s and both s1 and s2 are part of the

final solution.

Thus, to mitigate this phenomenon, if a state on the open list is re-generated during

the search with a higher g-cost, we reprioritize it as a recently generated state. This

is the opposite of A∗ search, where a state is reprioritized when a smaller g-cost is

found. Figure 3.3 (b) shows the impact of reprioritization in grid pathfinding.
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Data structures

AST involves two considerations related to data structures. Firstly, the temporal order

of states added to the open list should be preserved. In our implementation, when

removing a state s from the open list (represented as a vector), we swap s with the top

element of the open list and then perform a pop operation to remove it (this applies

to reprioritization as well). While this approach may not perfectly preserve the exact

temporal order of the open list, it eliminates the need to shift elements after removal,

making the data structure much faster than a heap and approximating the desired

behavior quite closely. Secondly, a hash table can be utilized to efficiently retrieve

the position of any given state in the open list (required for duplicate detection when

states are regenerated).

3.5.3 Randomized Anchor Search (ASR)

In this class of variants, randomized anchor search, the candidate set C consists of

a subset of k states randomly sampled from the open list, either with or without

replacement. Therefore, the open list requires no maintenance before or after expan-

sion, resulting in each expansion taking time proportional to k. If the state s∗ with

the lowest h(s, anchorD̄) is always included as a candidate, then ASR would be equiv-

alent to ASB in terms of expansions. The likelihood of s∗ being sampled increases

proportionally to k.

In an ideal scenario with no local minimum in the heuristic, s∗ in the current

iteration would be among the successors of the state expanded in the previous iteration

of the same frontier [46]. If the problems given to the algorithm are mostly in line

with this ideal scenario, including the generated state with minimum h-cost from the

previous iteration of a frontier in C increases the chance of s∗ being sampled, and ASR

achieves the same performance with smaller values of k. Thus, after this refinement,

C would consist of k − 1 states chosen at random, along with the most promising

generated state from the previous iteration.
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3.6 BGBFS, DNR, and TTBS as Anchor Search

Variants

ASB variants become more viable when the anchors remain fixed or change less often

during the search. Although finding the state with the minimum h-cost with respect

to a constantly changing anchor is less expensive than full F2F evaluations, its linear

time complexity with respect to the frontier’s size makes it impractical as the prob-

lem size grows. By employing the fixed-to-the-goal anchor selection policy in ASB,

the resultant algorithm, named ASB
F , essentially mirrors BGBFS. In this scenario,

the worst-case complexity of maintaining the sorted open list after each insertion or

deletion would be O(log(n)), where n represents the size of the open list.

Similarly, DNR can be considered a variant of ASB where, following every n it-

erations, the direction is switched, and the d-node (anchor) is updated to the state

with the maximum g-cost. When d-nodes change infrequently, a complete re-sorting

(retargeting) of the open list is necessary only upon d-node updates. DNR distributes

the cost of retargeting over subsequent expansions when the anchor remains constant.

TTBS is a special case of anchor search with more sophisticated procedures for

determining the anchors and candidate sets. During the process of finding the next

state to expand, TTBS enumerates the highest priority states in the open list until a

state fulfills a similarity criterion concerning the top state of the opposite open list.

Hence, for each expansion, the set of states evaluated, among which the next state to

expand is chosen, can be viewed as the candidate set, and each open list’s top state

represents the corresponding frontier’s anchor.

In this chapter, we provided a detailed description of the anchor search framework

for designing unbounded suboptimal Bi-HS algorithms. We listed various design

choices for anchor and candidate selection policies offered by anchor search, intro-

ducing three distinct classes: brute-force, temporal, and randomized anchor search.

Additionally, we discussed how some existing unbounded suboptimal Bi-HS algo-
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Anchor Selection Candidate Selection

Temporal (T) Randomized (R) Brute-force (B)

Temporal (T) AST
T ASR

T -

Closest-to-the-opposite-anchor (A) AST
A ASR

A -

Fixed (F) - - BGBFS

Hybrid(AF) AST
AF ASR

AF -

Table 3.1: Anchor search algorithms classified based on their anchor and candidate
selection policies.

rithms, such as BGBFS, DNR, and TTBS, can be viewed as instances of anchor

search. Table 3.1 classifies six proposed anchor search algorithms, alongside BGBFS,

based on their anchor and candidate selection policies.
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Chapter 4

Front-to-front Heuristics

The availability of a F2F heuristic is a crucial consideration for employing the anchor

search framework, or any F2F Bi-HS algorithm effectively. Some domains naturally

provide F2F heuristics (e.g., the octile distance for grid pathfinding or the Manhattan

distance for the sliding tile puzzle). In cases where such heuristics are absent, we have

found that embeddings, such as differential heuristics (DHs) [31] and FastMap [47, 48]

can be used to get F2F heuristics estimates from existing F2E heuristics. We observe

that embeddings can be applied in domains that do not fit in memory, even though

they have traditionally been used in the literature primarily for explicit domains.

4.1 Metric Embeddings and F2F Heuristics

In mathematics, given a set of points V , a metric is defined as a function, denoted as

f : V × V → R+, satisfying the following axioms:

1. f(a, b) = 0⇔ a = b

2. f(a, b) ≥ 0

3. f(a, b) = f(b, a)

4. f(a, b) + f(b, c) ≥ f(a, c), known as the triangle inequality.

Then, pair (V, f) is called a metric space. If all the above axioms hold except 1,

i.e., there exists at least one pair of distinct points (a, b) for which f(a, b) = 0,
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the function f is called a semi-metric. Metric spaces can be extended to metric

embeddings where an injective function ϕ : V1 → V2 maps one metric space (V1, f1) to

another (V2, f2). Although not widely used in the literature, we will adopt the term

semi-metric embedding to refer to embedding of a metric space into a semi-metric

space.

A class of metrics of interest in search problems includes graph metrics. In an

arbitrary undirected graph G(V,E), the pair (V, d) forms a metric space. Here, the

graph metric d, representing the shortest path costs between any pair of states in

V × V , is called the shortest path metric. If d were known in advance, solving the

shortest path problem would be trivial. To obtain d for a given state space, one

can employ A∗ search to compute the all-pairs shortest path data [49] for every pair

of states. However, this approach is computationally demanding. While successful

in polynomial domains, it is not scalable to implicit domains, such as exponential

domains.

Metric and semi-metric embeddings have been widely used to embed complex graph

metric spaces, with their computationally expensive shortest path metrics, into metric

spaces with efficient metric functions estimating the shortest path cost between states

[31, 42, 47]. In a state space V , a heuristic h is obtained by embedding the metric

space (V, d) into a latent metric or semi-metric space (V ′, h) using an embedding

function ϕ : V → V ′. Then, h(ϕ(a), ϕ(b)) serves as an estimate of d(a, b). h(ϕ(a), ϕ(b))

is typically either less expensive than d(a, b) to compute on-demand or is tractable to

be fully stored in memory once and then used for solving many problem instances.

The resultant heuristic, although typically not as informed as the respective shortest

path metric, can guide search algorithms to expedite the search process. Many well-

known heuristics applied to specific domains are obtained from metric embeddings

as described above. For instance, the Manhattan distance in the sliding tile puzzle

and the Euclidean and Octile distances in grid pathfinding are popular examples of

metric embedding applications in heuristic search.
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It is important to note that although the analogy between metric embeddings and

heuristic design is prevalent in F2F heuristics, it does not apply to F2E heuristics.

This is because a F2E heuristic does not estimate the distance between all pairs of

states in V × V , but only the pairs that include the start or goal state.

4.2 Differential Heuristic (DH)

A DH is a memory-based F2F heuristic, which in the literature has only been used

in problems where the entire state space can be stored in memory [31]. The DH

construction involves selecting a pivot p and computing the precise distances d(s, p)

from all states s ∈ V to p. This stored information enables the retrieval of heuristic

values between any two states a and b with respect to p. For undirected graphs,

this is formulated as h(a, b) = |d(a, p) − d(b, p)|. In scenarios with multiple pivots

(heuristics), the resulting heuristic is the maximum among all the available heuristics:

h(a, b) = max
p∈pivots

|d(a, p)− d(b, p)|. As the number of pivots increases, the DH gradu-

ally converges toward an all-pairs shortest-path heuristic [49], another memory-based

heuristic that calculates and stores d(a, b) for all pairs (a, b) ∈ V × V .

We can demonstrate the semi-metric nature of DHs. Let’s consider a DH, denoted

as h, with n pivots. It is straightforward to show that h is consistently non-negative,

yielding zero for identical states, and exhibiting symmetry. In fact, h maps all states

into an n-dimensional non-negative real coordinate space, where the triangle inequal-

ity holds for any arbitrary 3-tuple of points. The semi-metric property is due to the

fact that two distinct states could have a heuristic value of zero.

Memory-based F2F heuristics such as DHs are not directly applicable to domains

that do not fit in memory [31]. As a result, the study of implicit domains, lacking

natural F2F heuristics, such as the 4-peg towers of Hanoi (TOH), has been mostly

confined to solving problems with a standard goal [2]. We propose that the concept

of DHs extends beyond domains that can fit in memory. In a large state space V ,

where it is impractical to find and store d(a, p) for all states a ∈ V and a chosen pivot
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p, a pattern database (PDB) can be used to map V to a more compact abstraction

ϕ(V ) = V ′. In this process, distances from ϕ(p) = p′ to all states s′ ∈ ϕ(V ) are

stored in a table. Consequently, when dealing with a state a ∈ V , the DH can

efficiently retrieve d(ϕ(a), ϕ(p)) from the table, using it as an admissible estimate of

d(a, p). This estimate can then be used as a general F2F heuristic formulated as

h(a, b) = |d(ϕ(a), ϕ(p))− d(ϕ(b), ϕ(p))|.

Utilizing PDBs as DHs introduces the challenge of pivot placement [31, 50, 51]. The

quality of a DH heavily relies on the pivots used for building the PDBs. Consider a

given PDB, with p′ denoting its abstracted pivot. Let a′ and b′ constitute an arbitrary

pair of abstracted states. Depending on the specific abstracted state p′, the heuristic

function h(a′, b′) = |d(a′, p′)− d(b′, p′)| can yield values ranging from zero to d(a′, b′).

The ideal scenario occurs when h(a′, b′) equals d(a′, b′), implying that either a′ lies on

the shortest path between b′ and p′, or vice versa. Conversely, the worst-case scenario

emerges when d(a′, p′) equals d(b′, p′), resulting in a heuristic value of zero. Based on

our preliminary experiments, it turned out that a single large PDB for all problems

with random start/goal states is less effective than smaller instance-specific PDBs.

Thus, our experimental approach involves constructing two PDBs at runtime for each

problem instance: one with the start state as the pivot and another with the goal

state as the pivot. The following section provides an in-depth look at the practical

limitations of instance-independent DHs through the use of a statistical model.

4.3 Insufficiency of Instance-independent DHs

Exponential domains typically have exponentially many states equidistant from the

goal state. For instance, in the 4-peg towers of Hanoi (TOH) with 6 disks, over 20% of

states are situated at a depth of 13 from the standard goal state. In our experiments

involving TOH and the 4×4 sliding tile puzzle as two exponential domains, we found

that using a PDB heuristic as a DH for F2F search resulted in a significant degradation

of the heuristic quality (i.e., much smaller heuristic values). In other words, the
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expected heuristic value of a PDB when being used as a DH to obtain heuristics for

randomly sampled pairs of states is typically much lower than the expected heuristic

value of the underlying PDB when used as a F2E heuristic (extracted from the PDB’s

histogram). For instance, when considering the TOH problem with 14 disks, we

observed that a single-look-up PDB of size 7 built on the standard goal state has an

expected heuristic value of 17.05, whereas when the same PDB used as a DH between

arbitrary states it has an expected heuristic value of only 3.67.

This motivated the development of a simplified statistical model to predict the

number of pivots needed to build a DH based on PDBs with the same expected

heuristic value as a single PDB. In this model, we assume that all the possible PDBs

built using arbitrary pivots chosen from V have the same heuristic distribution. We

refer to the PDB heuristic function as hPDB : V → N0 and to its corresponding

differential heuristic function as hDH : V → N0. Note that a PDB heuristic’s range is

constrained solely to non-negative integer values. Let H be the heuristic distribution

of hPDB, or the range distribution of the PDB heuristic function, and X ∼ H be

a random variable representing the heuristic value obtained from hPDB for a state

randomly sampled from V . Using X, we can express the heuristic value acquired

from hDH for a pair of states randomly and independently selected as the random

variable Y = |X1−X2|. By denoting the probability density function (PDF) of H as

fX(x), we can derive fY (y) as follows:

W = X1 −X2, Y = |W | (4.1)

P (W = w) = fW (w) =
+∞∑︂

m=−∞

fX(m+ d)fX(m) (4.2)

P (Y = y) = fY (y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
fW (0) y = 0

2fW (y) y > 0

0 y < 0

(4.3)

The probability that the difference between two heuristic values X1 ∼ H and
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X2 ∼ H, associated with randomly and independently chosen states equals d, as

given by Equation (4.2), is equivalent to computing the auto-correlation of the PDF

of H. In other words, this equation determines the fraction of pairs of states for which

the difference in heuristic values is equal to d, out of all possible pairs of states. This

provides an intuitive explanation for Equation (4.2).

Since the auto-correlation of a function is symmetric about zero, fW (w) is also

symmetric, that is, fW (w) = fW (−w) for all values of w in the support of fW . Thus,

for w > 0, the probability density function f|W |(w) can be expressed as fW (w) +

fW (−w), or equivalently, 2fW (w). Moreover, as the absolute value function does not

affect zero and is always non-negative, f|W |(0) = fW (0) and f|W |(w) = 0 for w < 0.

This is how Equation (4.3) is derived as a piecewise function.

Thus far, we have derived the probability density function of hDH, which is con-

structed based on a single PDB. We now introduce a random variable, Z(n) =

max(Y1, Y2, ..., Yn), which represents the differential heuristic value obtained from n

PDBs with randomly selected pivots. Equations (4.4) to (4.8) show how the PDF

of Z(n) can be calculated using the cumulative distribution function (CDF) of Y ,

referred to as FY (y).

FZ(n)(z) = P (Z(n) ≤ z) (4.4)

= P (Y1 ≤ z, ..., Yn ≤ z) (4.5)

=
n∏︂

i=1

P (Yi ≤ z) = FY (z)
n (4.6)

Using the CDF of Z(n), the PDF of Z(n), fZ(n) can be computed:

fZ(n)(z) = P (Z(n) = z) (4.7)

= P (Z(n) ≤ z)− P (Z(n) ≤ z − 1) (4.8)

= FY (z)
n − FY (z − 1)n (4.9)

After computing the probability density functions of Y and Z(n) with various values
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of n, we can derive their expected heuristics and then determine the minimum number

of look-ups required to construct a DH that is as effective as a single goal-specific PDB.

We applied this theory to predict the potential usefulness of PDBs as DHs in three

domains: the 4-peg Towers of Hanoi (TOH) with 14 disks, the 4-by-4 Sliding Tile

Puzzle (STP) (also known as the 15-puzzle), and Rubik’s Cube (RC). For TOH, we

considered a PDB covering 7 consecutive disks. Note that the heuristic distribution

does not depend on which consecutive disks are chosen. The expected heuristic value

of this PDB is 17.05. According to Equation (4.9), to construct a DH with expected

heuristic value higher than 17.05 would require taking the maximum of at least 625

DH embeddings.

For the 15-puzzle PDB, we used the upper half of the standard goal state (when

the puzzle is solved), consisting of the blank tile plus 7 solid tiles. In our model

the DH would requires 560,443 DH embeddings to obtain a higher expected heuristic

value than the PDBs expected value of 38.91. Similarly, in Rubik’s Cube, 11,668,052

DH embeddings would be needed for a DH to outperform its underlying PDB (with

an expected heuristic value of 7.65) that captures 6 out of the 12 edges, in terms of

the expected heuristic value.1 Thus, theoretically, we cannot expect a F2F search (or

anchor search in our case) to perform well when using instance-independent PDBs as

DHs, given our assumptions. However, in practice, we deviate from these assumptions

by constructing instance-dependent DHs. A deeper explanation will be provided in

Chapter 5.

4.4 FastMap

Like DHs, FastMap [47, 48] is a metric embedding algorithm that can obtain met-

ric embeddings for arbitrary undirected graphs in near-linear time. The resulting

embedding enables calculating admissible and consistent F2F heuristics at runtime.

1Although in practice state symmetries can be used for arbitrary heuristic lookups with Rubik’s
Cube, we evaluate DHs in RC because the branching factor is large, meaning that most of the states
are found in a very narrow range of depths [52, 53].
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Initially, for a single dimension, the FastMap algorithm identifies an approximate fur-

thest pair of states a and b in graph G and, for all states s ∈ V , finds true distances

d(s, a) and d(s, b). Then, an arbitrary state s ∈ G will be embedded at location

ℓ(s) = (d(a, s) + d(a, b) − d(s, b))/2. Once all states are embedded, for an arbitrary

pair of states s1 and s2, the resultant 1-dimensional FastMap heuristic is formulated

as hFM(s1, s2) = |ℓ(s1) − ℓ(s2)|. Note that in a single dimension, |ℓ(s1) − ℓ(s2)| is

equivalent to ||ℓ(s1)− ℓ(s2)||1, representing the L1-norm. However, in higher dimen-

sions, the L1-norm notation is more suitable, as ℓ would yield vectors rather than

single values.

This procedure can be repeated to improve the FastMap heuristic at the cost of

extra memory. To do so, after constructing a 1-dimensional FastMap heuristic in the

initial iteration on the original graph G, a residual graph G′ is created and employed

for subsequent iterations. This residual graph shares the same vertices and edges as

G, but it employs a distinct cost function for its edges. Specifically, the cost function

of G′ during the ith iteration is defined as ci(u, v) = ci−1(u, v) − |ℓi−1(u) − ℓi−1(v)|,

where i is greater than 1, and ℓi signifies the embedding function obtained during

the ith iteration. Since throughout each iteration the FastMap algorithm tries to

capture the distances based on the residual graph, the heuristic obtained in different

iterations can be aggregated in an additive manner without losing admissibility, i.e.,

hFM(s1, s2) = ||ℓ(s1) − ℓ(s2)||1 =
∑︁

i |ℓi(s1) − ℓi(s2)| [48]. Note that, unlike DHs,

FastMap heuristics do not converge towards an all-pairs shortest-path heuristic with

an increasing number of iterations.

FastMap heuristics share the same limitation as DHs, namely, their infeasibility

when the domain does not fit in memory. However, the same workaround proposed

in the idea of using PDBs as DHs can be adapted to make FastMap applicable in

implicit state spaces. A FastMap heuristic can be constructed using a compact PDB

abstraction of the original state space. This time, ϕ(G) will be used instead of G, and

the FastMap heuristic will be formulated as hFM(s1, s2) = ||ℓ(ϕ(s1)) − ℓ(ϕ(s2))||1 =
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∑︁
i |ℓi(ϕ(s1))−ℓi(ϕ(s2))|. As the residual cost function in the ith iteration depends on

the one from the previous iteration, it becomes difficult to present a statistical model

for the expected heuristic value of an n-dimensional FastMap heuristic. Therefore,

instead of providing such a theoretical analysis for FastMap, we choose to conduct

an empirical analysis, which is detailed in Chapter 5.
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Chapter 5

Experimental Results

We evaluate the performance of the anchor search algorithms in comparison to the

baseline algorithms: GBFS, BGBFS, DNR with 100 consecutive expansions before

retargeting, and two versions of TTBS with the alternating direction selection policy,

using FIFO and LIFO as the tie-breaking mechanism, referred to as TTBS(F) and

TTBS(L), respectively. The evaluation is done in terms of state expansions, time,

and solution quality (length) on three problem domains: grid pathfinding, the 4× 4

sliding tile puzzle (STP), and the 4-peg towers of Hanoi (TOH). Among AST variants

also, we only chose three specific instances: AS
T (10)
T , AS

T (10)
A , and AS

T (10)
AF , each of

which showed a strong performance in at least one domain. Additionally, we included

their randomized counterparts: AS
R(10)
T , AS

R(10)
A , and AS

R(10)
AF . The TOH and STP

experiments were conducted using an Intel Gold 6148 Skylake CPU operating at

2.4GHz, with 180GB of available memory. Notably, we increased the memory limit to

700GB for a supplementary TOH experiment. Additionally, for grid pathfinding, we

utilized an Intel E5-2683 v4 Broadwell CPU running at 2.1GHz, featuring 250GB of

available memory. These computational resources were provided by Compute Canada.

Before proceeding with the details, it is worth mentioning that the primary strength

of TTBS when evaluated in planning was that it solves problems GBFS cannot,

increasing overall coverage when both are used together [37].
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5.1 Grid Pathfinding

We evaluated the algorithms using four map sets from the MovingAI pathfinding

benchmarks [54]: Dragon Age: Origins (DAO), Starcraft 1 (SC1), Warcraft 3 (WC3),

and mazes, with the octile distance as the heuristic. As the grid map state spaces

are small, we used a pre-allocated table for storing the open/closed lists in GBFS,

BGBFS and the anchor search variants, which is much faster than a general hash

table.

The results, presented in Tables 5.1 and 5.2, underscore the robust performance

of AST
T . It notably outperformed all five baseline algorithms in expansions for the

DAO and mazes benchmarks, while being marginally outperformed by the leading

algorithm, TTBS(L), in SC1 and WC3. Meanwhile, all AST algorithms exhibited

a remarkable improvement in execution time, showcasing an order of magnitude re-

duction compared to the baseline methods due to the constant time complexity of

expansion. Importantly, the solution lengths achieved by AST algorithms also re-

mained on par with those of the baselines. For ASR variants, although they did

not emerge as top performers in terms of expansions in this experiment, they ex-

hibited significantly faster runtime compared to the baselines. This was due to the

same reason as observed in AST variants. Comparing AST and ASR highlights the

superiority of each AST variant over its corresponding ASR variant in terms of ex-

pansions, runtime, and solution quality. Additionally, when comparing GBFS and its

bidirectional counterpart, BGBFS, the results highlight the dominance of GBFS over

BGBFS (except for the WC3 benchmark) in terms of expansion and runtime.

5.2 4-peg Towers of Hanoi (TOH)

We next evaluate the algorithms in TOH. In TOH, algorithms are typically run to

the standard goal state [22]; we take up the more challenging problem of search-

ing between random states. This means solution symmetry and large pre-computed
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Benchmarks
Top Baselines Temporal Anchor Search Randomized Anchor Search

GBFS TTBS(L) AS
T (10)
T AS

T (10)
A AS

T (10)
AF AS

R(10)
T AS

R(10)
A AS

R(10)
AF

Expansions

DAO 4,310 4,177 3,809 6,586 5,893 4,729 7,514 6,950

SC1 11,293 8,952 9,174 16,159 14,525 10,980 18,500 16,890

WC3 1,887 1,252 1,330 2,660 2,045 1,964 3,056 2,591

Mazes 45,694 43,496 41,509 52,827 50,325 41,317 60,093 56,986

Time (ms)

DAO 9.10 20.47 1.91 3.53 2.99 3.80 7.01 5.21

SC1 25.37 44.53 5.53 10.13 8.63 9.23 16.26 14.18

WC3 7.40 5.21 0.75 1.49 1.13 1.84 2.79 2.29

Mazes 40.90 210.01 21.31 30.33 26.48 32.28 48.61 44.93

Solution Length

DAO 473 581 499 481 489 517 490 495

SC1 690 933 746 706 731 871 763 780

WC3 387 470 412 391 416 513 444 444

Mazes 2,270 2,487 2,289 2,248 2,257 2,305 2,259 2,268

Table 5.1: Average expansions, time (milliseconds), path length, and their 95% con-
fidence interval, in grid pathfinding (top baselines compared to the AS variants).

heuristics, which were necessary to scale optimal solutions to 30 disks [2], cannot

be exploited. TOH lacks a natural F2F heuristic, and thus makes a good testbed

for assessing the effectiveness of employing PDBs as DHs. To evaluate performance,

especially with regard to larger instances, we conducted three distinct experiments

for TOH. The initial experiment (Table 5.3) encompassed all studied algorithms, en-

gaging them in solving small TOH instances with 10 disks. In the second experiment

(Table 5.4), we narrowed our attention to the top-performing algorithms from the

first experiment, namely AST
AF , BGBFS, and GBFS, as they were employed to solve

larger TOH problems with 22 and 24 disks. The strong performance of AST
AF in

the second experiment motivated us to conduct a third experiment, aimed at solving

larger TOH problems with 26, 28, 30, and 32 disks.
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Benchmarks
Top AS Variant Baselines

AS
T (10)
T GBFS BGBFS DNR TTBS(L) TTBS(F)

Expansions

DAO 3,809 4,310 5,283 4,266 4,177 4,199

SC1 9,174 11,293 12,205 10,983 8,952 9,006

WC3 1,330 1,887 1,348 1,862 1,252 1,264

Mazes 41,509 45,694 49,327 47,160 43,496 43,520

Time (ms)

DAO 1.91 9.10 19.93 22.35 20.47 20.67

SC1 5.53 25.37 50.09 67.54 44.53 49.39

WC3 0.75 7.40 16.96 8.31 5.21 5.03

Mazes 21.31 40.90 61.38 340.80 210.01 205.67

Solution Length

DAO 499 473 477 486 581 576

SC1 746 690 684 729 933 917

WC3 412 387 381 404 470 463

Mazes 2,289 2,270 2,272 2,217 2,487 2,472

Table 5.2: Average expansions, time (milliseconds), path length, and their 95% con-
fidence interval, in grid pathfinding (the top AS variant compared to the baselines).

In all experiments, we utilized DHs built upon PDBs using the start and goal states

as the pivots. In the first experiment, the PDBs contained a single lookup capturing

the five largest disks. In the second experiment, in addition to solving larger problems,

we studied the effect of using different combinations of PDBs employed as DHs. More

precisely, we conducted the second experiment in three settings:

1. One strong lookup: using a single lookup capturing the 12 largest disks,

referred to as PDB(0-11),

2. One strong + one weak lookup: using PDB(0-11) in addition to a lookup
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capturing the 4 largest remaining disks, referred to as PDB(12-15),

3. Two strong lookups: using PDB(0-11) as well as a lookup capturing all the

disks not included in PDB(0-11), referred to as PDB(12-∞).

In settings with two lookups, we combined the lookups in a weighted additive man-

ner, multiplying PDB(0-11) by 100 to make it the primary guide for the search. The

purpose of the second lookup (in the second and third settings) was to provide guid-

ance once the algorithm solved the 12 largest disks. By magnifying PDB(0-11), we

aimed to preserve its gradient (at the cost of losing admissibility) and only use the

other lookup when PDB(0-11) does not provide guidance later during the search.

While employing multiple additive lookups in a regular manner (equally weighted)

reduces the work required for optimal planning, our preliminary experimental re-

sults demonstrated the opposite in unbounded suboptimal settings, consistent with

previous findings [34]. We will refer to TOH with n disks as TOH(n).

First TOH Experiment

In the initial experiment (Table 5.3), AST
AF and BGBFS, and GBFS emerged as

standout performers, exhibiting significantly reduced expansion rates and improved

runtimes. Notably, AST
AF and BGBFS were the most performant algorithms in terms

of expansions and runtime, respectively. It is worth highlighting that A∗ yielded an

average of 209,867 expansions in the first experiment—roughly 300 times more than

AST
AF—accompanied by a solution length of 30.

Second TOH Experiment

In the second experiment (Table 5.4), when utilizing single PDB lookups as DHs

(the first setting), AST
AF consistently outperformed both BGBFS and GBFS, with

the performance gap widening as the problem size increased. More precisely, GBFS

expanded approximately 3.3 and 5.9 times as many states as AST
AF on average for

the problem sizes of 22 and 24, respectively. Meanwhile, BGBFS expanded 2.5 and
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Metrics
Top AS Variants Baselines

AS
T (10)
AF AS

R(10)
AF GBFS BGBFS DNR TTBS(L) TTBS(F)

Expansions 707 809 1,150 903 7,462 17,098 12,596

Time (ms) 1.84 2.36 1.77 1.10 924.83 86.82 83.63

Length 483 219 801 604 2,427 1,943 75

(a) Top-AS variants vs. all baselines

Metrics
Top Baselines Temporal AS Randomized AS

GBFS BGBFS AS
T (10)
T AS

T (10)
A AS

T (10)
AF AS

R(10)
T AS

R(10)
A AS

R(10)
AF

Expansions 1,150 903 5,579 7,491 707 15,117 10,929 809

Time (ms) 1.77 1.10 18.46 23.85 1.84 54.73 40.33 2.36

Length 801 604 1,224 844 483 450 348 219

(b) Top baselines vs. all AS variants

Table 5.3: TOH(10) results: average expansions, time, and solution length of 100
randomly selected problem instances.

3.5 times as many states as AST
AF for the same problem sizes. Regarding average

runtime, AST
AF exhibited superiority, being 2 and 1.9 times faster than GBFS and

BGBFS in TOH(22), and 3.6 and 3 times faster in TOH(24). AST
AF also strongly

outperformed GBFS and BGBFS in terms of solution length. Comparing the average

expansions and solution length of AST
AF in this experiment, it can be seen that the

paths found contain more than 70% of the states expanded. Thus, AST
AF tends to

explore two paths greedily in both directions until they collide.

In the second setting, where strong and weak lookups were combined, all three

algorithms exhibited a significant degradation in their expansions and runtime, while

their solution lengths improved. Notably, GBFS emerged as the fastest algorithm in

this setting, in contrast to the previous setting, and AST
AF continued to be the top

performer in terms of expansions and solution length.

In the third setting, employing two strong lookups, although AST
AF still demon-

strated fewer average expansions, the trend shifted in favor of GBFS and BGBFS in
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Metrics
22 disks 24 disks

AS
T (10)
AF GBFS BGBFS AS

T (10)
AF GBFS BGBFS

PDB(1-11)

Expansions 413,828 1,349,162 1,020,929 2,805,473 16,686,368 9,921,693

Time (s) 3.01 5.98 5.84 20.80 74.71 63.17

Length 313,951 943,931 804,050 1,971,953 9,302,241 7,263,891

PDB(1-11)×100 + PDB(12-15)

Expansions 3,861,445 7,612,313 9,403,613 60,908,811 124,683,519 158,240,625

Time (s) 29.12 17.28 26.45 506.49 345.52 509.30

Length 123,742 558,635 540,627 712,199 8,053,873 8,021,651

PDB(1-11)×100 + PDB(12-∞)

Expansions 1,157,303 1,441,166 1,925,652 11,216,110 15,026,181 17,946,659

Time (s) 8.88 4.27 7.11 85.90 56.63 77.88

Length 11,811 1,568 1576 33,943 2,421 2397

Table 5.4: TOH(22) and TOH(24) results: average expansions, time (seconds), and
solution length of 100 randomly selected problem instances.

Metrics
PDB(12) - 180 GB PDB(15) - 700 GB

26 disks 28 disks 30 disks 32 disks

Expansions 12,952,752 57,212,173 47,699,620 209,124,975

Time (s) 82.20 488.61 397.93 2,659.35

Length 9,673,562 42,792,775 36,077,524 162,213,243

Table 5.5: AS
T (10)
AF solving TOH problems with 26, 28, 30, and 32 disks.
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terms of solution length. AST
AF exhibited more than an order of magnitude longer

average solution length than both GBFS and BGBFS in TOH(24). Additionally, note

that both GBFS and BGBFS dominated AST
AF in terms of runtime in this setting, in

both TOH(22) and TOH(24).

It is worth noting that in the first setting with single lookups, once GBFS and

BGBFS solve the 12 largest disks, the heuristic provides no guidance thereafter. These

algorithms then perform a random walk blindly. However, in AST
AF , the backward

frontier expands towards a moving anchor, always being guided during the search by

the DH. If the remaining disks are also captured by another spare lookup (the setting

with two strong lookups), the spare lookup continues guiding GBFS and BGBFS after

solving the bottom disks. One can adjust this guidance by varying the number of

extra disks captured by the spare lookup. Moreover, having an extra lookup results in

stronger heuristics, enhancing solution quality at the cost of distorting the heuristic’s

gradient and leading to more expansions in greedy algorithms.

Third TOH Experiment

In this extended experiment (Table 5.5), we utilized a single lookup capturing the 12

largest disks (one strong PDB lookup) in TOH(26) and TOH(28). For TOH(30) and

TOH(32), we employed larger PDBs with 15 disks and increased the available memory

to 700GB. GBFS and BGBFS failed to solve 14 and one of the TOH(26) problem

instances, respectively, and all the TOH(28) instances due to exceeding the available

memory of 180GB. Similarly, in problems with a larger number of disks, GBFS could

solve 65 out of 100 instances of TOH(30) but none in TOH(32). Since GBFS failed to

solve a significant number of problem instances, we did not try BGBFS in TOH(30)

and TOH(32). However, AS
T (10)
AF successfully solved all the given problem instances

with 26, 28, 30, and 32 disks, with its performance profile detailed in Table 5.5.

In TOH experiments, it can be observed that the expansion rate of anchor search

algorithms is slower than that of GBFS. This is in contrast to the grid pathfinding
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experiments, where anchor search demonstrated a significantly faster expansion rate.

The slower expansion rate in TOH stems from the fact that TOH has a larger state

data structure and, more importantly, more complex heuristics. The efficiency of

heuristic computations has a greater impact on anchor search algorithms than on

GBFS, as the former involves performing more heuristic evaluations.

It is also important to mention that the bidirectional nature of AST
AF is of impor-

tance in solving large TOH instances according to its meet-in-the-middle characteris-

tic. For instance, AST
AF solved 75% of TOH(28) problem instances with paths meeting

closer to the middle than the start/goal states. Moreover, when AS
T (10)
AF only expands

in the forward direction, it only solved 16 out of 100 TOH(28) problems, meaning

the success comes from the bidirectional nature of the search. (The backward search

searches towards the anchor and not the start, so it only makes sense as part of a

bidirectional search.)

5.3 Sliding Tile Puzzle (STP)

Table 5.6 shows the average expansions, time, and solution length of 100 problems

with ith and i+10th Korf’s instances [55] as the start/goal states and the Manhattan

distance (MD) as the heuristic. While DNR achieved the minimum average expan-

sions in this experiment, the overlapping 95% confidence intervals of the average

expansions for AST
A (1186± 130) and DNR (1003± 123) highlighted the insignificant

difference in their performance in terms of expansions. Moreover, AST
A emerged as the

top performer regarding runtime, while ASR
A achieved the highest solution quality on

average. However, AST
T and TTBS(L) performed poorly in STP, despite their strong

performance in grid pathfinding. These algorithms share a common premise: expand-

ing states based on their distance to recently generated states in the opposite frontier

should lead to fewer expansions. However, the results indicate that such algorithms

are not promising when the mentioned assumption does not hold.

We conducted an additional STP experiment employing PDBs as DHs, utilizing two
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PDBs per problem instance: one associated with the start state and another with the

goal state. Each PDB consists of 8 additive lookups, including 4 rows and 4 columns,

yielding a stronger heuristic than MD, but one that is inadmissible. Interestingly, in

contrast to TOH, GBFS demonstrated a notable advantage over AST
AF (250.18 vs.

430.58 average expansions), indicating that the effectiveness of PDBs as DHs depends

on factors such as the problem domain and the strength of the employed PDBs. While

AST
AF expanded fewer than twice the states of GBFS in this experiment, its average

execution time was approximately 4.42 times longer than GBFS. This contrast in

runtime highlights the greater impact of heuristic function call efficiency on anchor

search, given its requirement to evaluate the entire candidate set for each expansion.

By contrast, unidirectional and F2E algorithms have to evaluate just the successors.

Metrics
Top Baselines Temporal AS Randomized AS

GBFS DNR AS
T (10)
T AS

T (10)
A AS

T (10)
AF AS

R(10)
T AS

R(10)
A AS

R(10)
AF

Expansions 1,945 1,003 92,907 1,186 1,449 45,764 1,882 2,526

Time (ms) 3.43 8.25 181.04 2.13 2.54 143.04 3.79 5.05

Length 463 361 12,907 380 460 344 141 161

(a) Top baselines vs. all AS variants

Metrics
Top AS Variants Baselines

AS
T (10)
A AS

T (10)
AF GBFS BGBFS DNR TTBS(L) TTBS(F)

Expansions 1,186 1,449 1,945 2,317 1,003 56,475 2,156

Time (ms) 2.13 2.54 3.43 5.50 8.25 288.63 9.45

Length 380 460 463 311 361 49,084 269

(b) Top AS variants vs. all baselines

Table 5.6: STP results: average expansions, time, and solution length of 100 problems
instances.
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5.4 F2F Heuristics

We conducted two experiments to gain a deeper understanding of the effectiveness of

PDBs as DHs and FastMap heuristics on the TOH problem. In the first experiment

(Table 5.7), we assessed the efficacy of using FastMap heuristics as F2F heuristics.

This experiment was performed on TOH(10) with the FastMap heuristic constructed

on TOH(5) as the abstract state space, making the results comparable with Table

5.3. The second experiment (Table 5.8) focuses on comparing the performance of

instance-specific PDBs against instance-independent PDBs on TOH(12), with each

PDB containing a single lookup capturing 6 consecutive disks.

Table 5.7, displays the average expansions performed by various algorithms, in-

cluding anchor search variants like AST
AF and ASR

AF , serving as robust representatives

of AST and ASR, along with the baselines. These algorithms were evaluated on 100

random TOH(10) problem instances, employing d-dimensional FastMap heuristics.

The value of d spans from 2 to 6, with a DH as the last dimension [48]. While the

relative performance of the algorithms align with the trends observed in solving TOH

using PDBs as DHs, it is notable that the overall effectiveness of FastMap is relatively

lower than that of PDBs as DHs (Table 5.3).

Table 5.8 underscores the enhanced performance achieved by AST
T and AST

AF , two

anchor search algorithms employing different anchor selection policies, when instance-

specific heuristics are incorporated. This improvement is evident in comparison to

scenarios where only instance-independent PDBs with randomly selected pivots are

used. We evaluated these algorithms in seven different settings: The first setting,

denoted as 2I, indicates that the algorithm is provided with PDBs constructed solely

on the start and goal states (two instance-specific PDBs), without including any

PDBs with randomly selected pivots (no instance-independent PDB). In settings 10I,

20I, and 40I, the two instance-specific heuristics are bolstered by the inclusion of 8,

18, and 38 instance-independent PDBs with randomly selected pivots, respectively.

46



Finally, in settings 10S, 20S, 40S, the algorithms are exclusively provided with 10, 20,

and 40 fully random instance-independent PDBs, in turn.

When comparing the performance of algorithms in settings with an equal number of

total PDBs (e.g., 10I and 10S), it becomes apparent that including instance-specific

PDBs significantly enhances performance in terms of expansions. Note that, this

improvement comes at the expense of slower heuristic evaluations as the number of

PDBs increases.

A specific comparison between AS
T (10)
T in setting 2S and the remaining settings

reveals the crucial role played by instance-independent PDBs in reducing the number

of expansions. Conversely, for AS
T (10)
AF , the inclusion of instance-independent PDBs

has a negligible impact. This suggests that interleaving F2F and F2E searches in op-

posite directions eliminates the need for instance-independent PDBs in AST
AF , leading

to more efficient heuristic evaluations and faster runtime.

Dimensions

(FM+DH)

Top AS Variants Baselines

AS
T (10)
AF AS

R(10)
AF GBFS BGBFS DNR TTBS(L) TTBS(F)

2 18,520 26,892 44,926 18,575 21,277 40,874 51,764

3 12,824 20,051 28,128 15,251 18,264 30,343 36,667

4 11,792 18,376 27,758 15,216 16,329 33,549 35,552

5 13,314 17,599 28,523 15,715 14,319 26,125 31,541

6 13,128 17,139 25,576 13,957 15,388 27,193 31,637

Table 5.7: Average expansions in TOH(10) using FastMap heuristics.

5.5 Summary of Experiments

Overall, our results show that GBFS is a robust algorithm, and it has better perfor-

mance than TTBS and DNR, as shown previously [37]. However, given the anchor

search framework, AST
AF is not only robust, but also consistently outperforms GBFS.

With regard to anchor search variants, we observe that when using PDBs as DHs in
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Algorithms
The number of PDBs

2S 10S 20S 40S 10I 20I 40I

AST
T 51,482 7,179 3,639 2,719 27,369 11,326 7,338

AST
AF 2,073 1,985 1,982 1,899 39,497 18,944 9,291

Table 5.8: Comparison of average expansions with instance-specific and instance-
independent PDBs as DHs in TOH(12). nI denotes n instance-independent PDBs,
while nS denotes n − 2 instance-independent PDBs along with two instance-specific
(start and goal) PDBs.

a pure F2F search, both frontiers will experience the same local minima mutually.

When the search is diversified by adopting different heuristics in each direction (F2F

and F2E), we see the best performance. This aligns with past work on the value of

diversifying search [56], and suggests why AST
AF is the most robust variant explored.
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Chapter 6

Conclusions, Recommendations, &
Future Work

This thesis proposed the anchor search framework that facilitates designing F2F sub-

optimal Bi-HS algorithms. We evaluated the potential of this framework through six

specific anchor search algorithms in three domains of grid pathfinding, 4-peg tow-

ers of Hanoi (TOH), and the 4 × 4 sliding tile puzzle (STP), achieving promising

performance against the baselines.

In grid pathfinding, AST
T emerged as the top performer in expansions and runtime

while maintaining comparable solution quality to the best baselines. In TOH, AST
AF

not only outperformed other algorithms in small problems but also showed synergy

with PDBs when used as DHs, allowing it to solve very large problems, such as

TOH(30) and TOH(32). The promising performance of AST
AF extended beyond the

TOH domain, as it also performed well in STP and grid pathfinding, showcasing

overall robust performance. Finally, in STP, AST
A was the second-best algorithm

studied regarding expansions following DNR, but it stood out as the fastest in terms

of runtime within this domain.

Despite the potential of anchor search in designing more complex algorithms, we

focused on developing a range of simple variants to be able to better grasp and

explain the proposed algorithms’ behaviors. There are numerous design choices whose

analyses were beyond the scope of this thesis. Although we only considered utilizing

49



a single anchor in this thesis, the anchor search framework can be more generalized

by maintaining a set of anchors per frontier. In addition, while we provided insight

into the potential of incorporating different anchor selection policies in the hybrid

variants, namely AST
AF and ASR

AF , one can apply the same idea to candidate selection

policy as well by adopting different candidate selection policies in opposite directions

of the search. Moreover, while not discussed in this thesis, one can switch dynamically

among a set of anchor and candidate selection policies in a single direction during

the search, e.g., alternating between temporal and fixed-to-the-origin anchor selection

policies in one frontier instead of employing them in opposite directions.

We also proposed the idea of using PDBs as DHs, which makes F2F search al-

gorithms applicable in domains without natural F2F heuristics. Empirical analyses

highlighted the significant promise of PDBs as DHs in solving TOH problems of var-

ious sizes, while STP results revealed its limitations when powered by exceptionally

strong PDBs. It is worth noting that most of the heuristics used in this thesis are

admissible, a property that is neither required nor helpful for unbounded suboptimal

search [34]. Future work will consider other heuristic approaches that might have

more potential in unbounded suboptimal search by focusing on relevant heuristic

properties, such as a heuristic’s capacity to rank pairs of states in the same order

as their actual cost-based order [34, 35]. Furthermore, the effectiveness of rebuilding

PDBs on-demand during the search to be used as DHs can be examined to solve even

larger problems. Additionally, a greedy search can be employed instead of a breadth-

first search to construct instance-specific PDBs as DHs, covering only the necessary

portion of the abstract state space for solving the given problem instance. Then, this

approach can be employed recursively in a hierarchical manner [57] to solve very large

problems.
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