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The effects of a magnetic field on the Raman and two-plasmon decay instabilities are studied in
the region of the quarter-critical density of laser produced plasmas where both are coincident.
Two-plasmon decay of the incident extraordinary wave into two upper-hybrid waves may now
occur in the direction of propagation of the incident radiation driven by the electrostatic
component of the extraordinary mode. Maximum growth rates of both the Raman and two-
plasmon decay instabilities are increased by the magnetic field. For the two-plasmon decay, the
frequency shift from w,/2, where , is the frequency of the incident radiation, is increased by the
magnetic field by amounts which can exceed the thermal shift. This magnetic shift derives from
the electromagnetic correction to the dispersion relation of upper-hybrid waves and,
consequently, is not found in an electrostatic approximation. For the Raman instability at the
reflection point of the scattered extraordinary wave, the red shift of the back-scattered radiation
due to the plasma temperature is reduced by any magnetic field present and can be changed to a

blue shift if the field is large enough.

I. INTRODUCTION

In studies of laser-plasma interactions, considerable at-
tention has been paid to the underdense coronal region in
view of its importance in scattering the incident light or,
through processes such as filamentation, in corrupting the
uniformity of the target irradiation. Within the underdense
plasma one region of special significance is that surrounding
the quarter-critical density since it is here that stimulated
Raman scattering, the decay of the incident radiation into a
longitudinal plasma wave and a scattered electromagnetic
wave, and two-plasmon decay, in which the products are
both longitudinal waves, occur. Although both processes
have already been widely studied there is nevertheless con-
tinued interest in each of them, and in stimulated Brillouin
scattering and filamentation too, in view of the extensive
underdense regions characteristic of the ablative compres-
sion of targets.

Stimulated Raman scattering has been considered
theoretically and in computer experiments by a number of
authors.'~® The frequency matching condition demands that
the frequency of the scattered radiation w,~w, — w,, where
@, is the frequency of the incident radiation and w, is that of
the electron plasma wave. In a cold plasma the scattered
radiation frequency w,>wy/2. Recent computer experi-
ments by Kruer et al.® have shown that in a hot plasma the
high temperature can produce a frequency shift in the spec-
trum of scattered radiation to frequencies below wy/2. The
shifts predicted are high enough to be easily detected and, if
measured, could provide an indication of the plasma tem-
perature in the quarter-critical density zone.

Two-plasmon decay was first examined for homogen-
eous plasmas®’ and in the context of laser plasma interaction
studies was extended to inhomogeneous plasmas by Rosen-
bluth,® Lee and Kaw,’ Liu and Rosenbluth,'® and Schuss.'!
The instability threshold in inhomogeneous plasmas is lower
than that for stimulated Raman scattering. The saturation of
the two-plasmon instability has been examined by Langdon
et al.'? in computer experiments.
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Phenomena at the quarter-critical density are manifest
in radiation emitted from that region at half-integral har-
monics of the laser frequency, although there is also some
limited direct evidence of the occurrence of large amplitude
electron plasma waves near quarter critical and of modifica-
tions to the electron density profile in experiments by Baldis
et al."® There is now widespread evidence of the presence of
plasma waves in this region from observations of emission at
3w,/2 in the backscattered light.'*'8 Typically, 3w,/2 spec-
tra obtained by Carter ez al.'® consisted of a broad feature
with a red and a blue wing. The separation between these two
peaks tended to decrease with time and eventually to co-
alesce. In experiments with a larger prepulse (and conse-
quently, a less steep density gradient during the main pulse)
the spectral separation first increased before decreasing. The
red and blue wings were approximately equally sited with
respect to the line center.

Avrov et al.'® considered two-plasmon decay as a
source for the emission at 3w,/2, either through interaction
with an incident photon or by three-plasmon recombination.
This process has been reconsidered by Barr'® who obtained
an expression for the spectral width of the doublet which
differs in detail from the result of Avrov et al. Both theories
relate the separation to the electron temperature, but to ob-
tain agreement with the widths measured by Carter et al. the
model developed by Avrov et al. requires an unrealistically
high value to be taken for the electron temperature, whereas
in Barr’s result this requirement is relaxed by a factor of
about three.

So far, we have only considered unmagnetized plasma.
However, recent experiments?®->* have established the pres-
ence of very large, if highly localized, magnetic fields in plas-
mas created by the irradiation of solid targets by high inten-
sity lasers. Among the most extensive studies undertaken so
far are those of Raven et al.>* who have examined the effect
of target size and composition on the generation of thermo-
electrically driven magnetic fields, using a single beam of the
neodymium glass laser at the Rutherford and Appleton Lab-
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oratories. A range of target plasmas was observed with Fara-
day rotation measurements using a fourth harmonic probe
beam, allowing magnetic fields to be measured at densities
up to critical.

Strong magnetic fields in the megagauss range were
seen from large plane targets. The experimental results show
that the thermo-electrically generated field at the edge of the
focal spot rises from zero at the refractive cutoff to about 600
kG at the critical density and increases steadily to just over 3
MG at 0.2 N, before dropping steeply to zero around 0.1V,
The main conclusion from this work is that the strongest
fields are to be found in the low-density coronal plasma.

The existence of fields of this magnitude in the neigh-
borhood of the quarter-critical density suggests that there
may be observable effects because of their presence in laser—
plasma interactions in that region. Parametric processes in
laser-produced plasmas in which strong magnetic fields are
present have not been widely studied. There are, of course,
many papers on three wave interactions in magnetized plas-
mas viewed in a wider context.?>** Kaw>® has considered
the decay of a left circularly polarized electromagnetic pump
propagating along a constant uniform magnetic field into a
scattered electromagnetic wave and an ion-acoustic wave.
However, that polarization is not particularly relevant to
laser-produced plasmas in which a self-generated field is
present. Since these fields are generated in the main by the
so-called VN X VT source, and the principal density gradient
is aligned along the laser direction, one should properly con-
sider the geometry in which the incident radiation propa-
gates across the magnetic field.

In two recent papers, Grebogi and Liu*'*? have consid-
ered stimulated Raman scattering and the parametric decay
of an extraordinary electromagnetic wave into two upper-
hybrid plasmons. However, neither is adequate to deal with
the effects of a self-generated magnetic field in a laser-pro-
duced plasma. In the work on stimulated Raman scattering,
for example, it is assumed that the frequency of the upper-
hybrid wave is much less than that of the pump or the scat-
tered extraordinary mode. This has the consequence that
their treatment is valid in the underdense plasma away from
the quarter-critical density. The upper-hybrid wave is treat-
ed electrostatically, i.e., the phase velocity is much less than
the velocity of light.

In this paper we shall examine the effect of a magnetic
field on the decay of an extraordinary pump wave into an
upper-hybrid wave and either a scattered extraordinary
wave (stimulated Raman scattering) or another upper-hy-
brid mode (two-plasmon decay). A general fully electromag-
netic dispersion relation is derived, valid for any plasma den-
sity and temperature, pump power, and magnetic field B..
(Although self-generated fields have a complicated morpho-
logy,**** we shall assume in this work that B, is both con-
stant and uniform.) However, we are interested first and
foremost in the region near quarter critical where stimulated
Raman scattering and two-plasmon decay are coincident
and where a purely electrostatic treatment of upper-hybrid
waves is inadequate. This is a complex region, rich in phys-
ical effects, the details of which are only represented accura-
tely by the electromagnetic dispersion relation. This adds
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considerably to the algebraic complexity, and we have had to
treat the full dispersion relation numerically.

The coupled mode equations are derived in Sec. II to-
gether with a brief discussion of the numerical analysis of the
dispersion relation. The results of the analysis are presented
and discussed in Sec. III and the principal conclusions to-
gether with some limitations of the present work reviewed in
Sec. IV.

Il. THE COUPLED MODE EQUATIONS

We wish to solve the coupled mode equations describ-
ing the decay of an extraordinary wave into an upper-hybrid
wave and either a scattered extraordinary wave or a second
upper-hybrid wave, using the fluid equations

on

L y—— 1

5 (nv) (1)
2

NN_ _eg + VX(VXV _LB) - v(”_) — 3V§_v_'_’_,

or m mc 2 n

(2)

together with Maxwell’s equations. The ions are assumed to
be immobile and the unperturbed plasma homogeneous.
Here E and B are the electric and magnetic fields, respective-
ly, v is the fluid velocity, » is the number density and e, m are
the electron charge and mass. The electron thermal velocity
V, =(T,/m)"'?, where T, is the electron temperature and ¢
is the velocity of light.

Rather than merely quote the familiar expression for
extraordinary waves, we shall derive a dispersion relation
which also describes upper-hybrid waves including electro-
magnetic corrections to the usual electrostatic dispersion re-
lation

0’ =0l +02+3k%W2, (3)
in which 2, = eB_./mec. In what follows we shall see that
this correction can give rise to observable frequency shifts.
~ Letn = N, + np, where N, is the number density of the
unperturbed electrons while n,, is the oscillating density re-
sulting from the electric field in the direction of propagation.
For an extraordinary wave this field arises from the Lorentz
force (ny = 0 when B, = 0). The extraordinary and upper-
hybrid waves are described in the fluid approximation by the
set of equations:

dn,
—2+ NgVev,=0, 4
o oY * Vo (4)
av, e Vn
o _2E,—v,xQ, — 3V 20, 5
ot m oX N, Gl
JB,

= — cVXE,, 6
Ey cVXEy (6)
a(;i" = cVXB, + 4weN,yv,, (7)

in which harmonic terms have been neglected. Assuming
propagation in the x direction, we see at once for extraordin-
ary and upper-hybrid waves (i.e., E,, v, perpendicular to B,
and B, parallel to B,, respectively) that { E; , By, v,,, 1o} are
7/2 out-of-phase with { E,,, v,, }. Consequently, we may set
{EOy’ Bo, vox» o} = {EOy’ Bo, Vox; No} €08 (Kox — @t ),
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{Eoxs oy } = {Eox» Vo, } sin (kox — 0t ). Then, (4)6) give
BO = CkoEoy/Cl)o; ny= — kOEOx/4ﬁe,

3kiV
by, = &/ [ OEOX(I + )+n Eoy], (8)
wP
e/m 3KV
on = a)(z) _ ﬂﬁ [(‘)OEOy +ﬂ6(1 + w; EOx ’ (9)

where w? = 47Nye’/m. Finally, (7) yields
2.0 /w,
E, = ° £ E,,, 10
" - 023k 1o
and the dispersion relation

(@5 —wi — 027 —3kiViwi — 0} —k

A —n 2w} =0.

(11)
The high-frequency branch in (11) represents the extraordin-
ary wave; the lower branch corresponds to the upper-hybrid
mode.

Note that by neglecting the 2 2w’ term we retrieve the
electrostatic upper-hybrid dispersion relatlon (3), although
the dispersion relation for the extraordinary wave is not giv-
en correctly by this approximation.

Next consider the first-order equations, assuming that
the pump is an extraordinary wave satisfying (11), and

E, = E, X sin (kox — oot ) + E, § cos (kgx — @yt ). (12)
Let
n=Ny+n, v=v,+V,
E=E,+E, B=B,+B,+B,. (13)
The first-order equations are
6v1 2 Vny
+ v, XQ. + E +3V:
a ! N,
= —V(v,* v,) + v X[V XV, — (e/mc)B,]
+ v, X[VXv, — (e/mc)B,], (14)
a;‘ +c¢VXE, =0, (15)
JE,
E” — cVXB, — 4meN,v, = 4me(ngv, + n,v,), (16)
V-E= —4nyen,. (17)

Fourier analyzing Egs. (14)—(17) and dropping the subscripts
on the first-order Fourier analyzed quantities, we find, using

B=ckXE/w; k+E= —4ren,
that (16) gives
c*k(k * E) — (k *c* — 0*)E — 4meioNyv
= dmeiw F (noV, + n,¥,), (18)

while (14) becomes
— iwv +vXQ, + (e/m)E + 3iV2k(n/N,)
= —kF (Voo vy) + F {voX[VXV, — (e/mc)B,;]
+ v X[V XV, — (e/mc)B,]}, (19)
where F(?) = f drdtexplilwt — k- 7). The coupling

terms become, on settingk , =k +ky, @, = o + v, and
flk,,w,)=f, forany first-order quantity f,
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F (novy + nyvVo) = dno(v_ + v, ) + §(Von_ + VEn_), (20)
F (Voo v))=4Vorv_ +VEev,), (21)
F {voX[VXv, —(e/mc)B,]}
=4{Vo X [k_Xv_ + (ie/mc)B_]
+ VX [k XV, —(ie/mc)B, 1}, (22)
F {viX[VXv,— (e/mc)B,]}
=4v_ + v, )X [ko X Vo — (e/mc)By], (23)
where V, = v, % — ivy, §. To simplify the notation, we nor-

malize all lengths to w,/c, times to 1/w,, velocities to ¢, i.e.,
let

ck/wg—k, w/wy—w, Ve—v, 0,/0,-0,,

n/Ny—n, eE/mwyc—E, eB/moyc—B.

Henceforth, we presuppose this normalization for all quanti-
ties.

Further, assuming that (., k) is nonresonant and
that the pump wave (1, k,) decays into waves (o, k) and
(w_, k_), we obtain the coupled mode equations in the form
required for our analysis, i.e.,

(k? — &’)E — kik* E) + inw}v = — (i/ 2owp(ngv_ + Von_),

(24)
—iov+vXQ, + E+ 3iVkn
= —(i/2kVoV_ + (i/2VoX(k_XV_ +B_)
+ 3¥_ X (Ko X Vo — By), (25)
(k2. —0* JE_ —k_(k_+E_)+io_olv_
= — (i/2w_w(nev + V&n), (26)
—iw_V_+v_XQ +E_+3Vk_n_
= — (i/2k_VE v+ (i/2VEX(kXYV + /B)
+ v X (ko XV, — By), (27)
with
B=kXE/o, k-E= —a)n.

Confining our attention to scattering or decay in the
plane perpendicular to the magnetic field B, = B2, thenk,
k_,E,E_, v, v_ all lie in the ( x, y) plane and B = BZ. An-

other  independent set is (E,v,,B,,B,;E, ,
v,_,B,_,B,_ |} which represent decay into two ordmary

electromagnetic waves, but phase matching precludes this
possibility. Moreover, decay into an upper-hybrid wave and
an ordinary wave is not possible. With this choice, Eqs. (24}~
(27) have been solved numerically, and the results are dis-
cussed in Sec. III.

Recall that the pump wave quantities driving the insta-
bilities are related as follows:

= [R.02/(1 — 0% — Q2 —3k2V?)]E,,
P P y

Vo = — (l/wf,)Eo,‘,
Upy, = [(l—ktz))/w,zz]Eoy’ (28)
no = Kooy
B, = kOEOy’
and
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ki~[(1—-w2} —022)/(1 -0} —27) (29)
The magnetic field-free dispersion relation, describing
the Raman and two-plasmon decay instabilities, emerges in
a straightforward manner. When 2, =0, then E,,
=0=vy, =no=kyXVg—By=kXv+B=k_Xv_
+ /B_ and v,, = E,, giving

272
W —o? — wyk k_ xVo|2)
® @t —wk, 4kE
212
slo? —ao2 — @k [kXvo|®
—(kev )z(wa)_k 2 4k owo_k P+ k2 o)
° boo_kk2
J
F (k2 —o? —k .k, iww), 0
—k k, k2 — o?) 0 e
(1+3k222) 3k, kA2 —iw o,
b 3k kAL (1+3k24%) —-n, —iw
o _k, vo, o _k,vo, (i/ 2w _a}ng 0
/20 koo /Do k,u, 0 i/ _a?n,
ko, /20)  likyvo,/20)  (/2)k_-V3 1koEo,
— k00 /20)  (kvoa/20)  Yolvo, — Eoy)  (i/2)kVE
IIl. RESULTS

The numerical solutions of the system (24)-(27) are
shown in Figs. 1-5. These assume that (o, k) is always an
electron plasma wave (upper-hybrid when {2, #0) while
(w_, k_) represents either an electron plasma wave (upper-
hybrid) in the case of the two-plasmon decay (TPD) or an
electromagnetic wave (extraordinary wave) in the case of sti-
mulated Raman scattering (SRS). We shall continue to call
the instabilities SRS and TPD even in the presence of the
magnetic field since we are considering small fields 2, <1,
and as such they may be regarded as a perturbation of the
unmagnetized problem. The results for each instability are
presented differently recognizing their different natures.
SRS exists for all densities below 7, /4 but is highly localized
in k space at any given density. Thus, Figs. 1(a) and (b) show
the maximum growth rate (with respect to k, ) and corre-
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(ke Vo [(k*— k™ )/4kk_]* (when o~w, ).

(30)

Ignoring the right-hand side (or assuming that k is perpen-
dicular to v,) yields the Raman dispersion relation. Ignoring
the coupling terms on the left-hand side yields the two-plas-
mon decay dispersion relation. We may safely decouple the
two branches since, for a given density, the two instabilities
occur in different regions of (w, k) space.

From the set of equations (24)—(27) we may obtain the
full dispersion relation. It is convenient to first eliminate B
and n, so reducing (24)-(27) to a set of equations for
{E.,E,v,v,E.,_,E,_,v,_,v,_}fromwhich we may
write the dispersion relation

|D| =0, (31)
with
*
Jook - v, Yok, Vo, (i/2)wa’n, 0 7]
(i/2)wk - vo, (i/ 2wk, g, 0 (i 2wl n,
kv, 20) (ke /20_) (/2K 1koEo,
(k, V0. /200 _) (ky-vox /20 _)  — Lkolvg, ~ Eo,)  (i/2)k_-V,
k2 —a®) — k- k, io_o} 0
— k.- k, kX —o) 0 —iw_}
(14+3k243) 3k kd} —iw_ Q.
3k 3 (1 +3k243) -0, —iw_

{

sponding frequency of the scattered light wave as a function
of density (@, ). By contrast, the TPD is localized near the
quarter-critical density region but has a wide spectrum of
unstable modes. Figures 2-5 plot the maximum growth rates
(w.r.t.w,) versus k. for a variety of k, values. The results are
shown for £2, = 0 (solid curve), 0.1 (short-dashed curve), 0.2
(long-dashed curve). Note that £2,~0.01BygA,,,, where
B g is in megagauss and A, is the laser wavelength in
microns. In all cases the intensity of the incident radiation is
fixed and corresponds to v, = 0.1 while the electron tem-
perature corresponds to ¥, =0.1.

A. Field-free case

Before discussing the effect of the magnetic field on the
instabilities, let us fix our ideas by recalling the unmagne-
tized plasma results which are well understood. Consider
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FIG. 1. A plot of (a} the frequencies and (b) the corresponding maximum
growth rates for stimulated Raman back (SRBS) and forward (SRFS) scat-
tering (k, = 0). Magnetic fields chosen correspond to £2, = 0 (solid line},
12, = 0.1 (short-dashed line), and £2, = 0.2 (long-dashed line).

first SRS. Its growth rate is®
Y =w,ukk, _/2k_, (32)

where k = |k|, k_ = |k_|. Figure 1(a) shows the numerical
solution which is accurately given by (32) for exact back-
scattering and forward scattering (k, = 0). Here, the reflec-
tion point of the scattered light wave occurs when

> — §V 2w, ~0.489) where forward and backscattered

=1
P 4

waves are indistinguishable. As we move to lower densities,
the two branches separate as k varies, for backscatter, from
ko at n./4 to 2k, in the very underdense plasma, while for
forward scattering & varies from &, to w, . Of course, for very
underdense plasmas (n €n_/4), neither result is accurate. For
backscattering, kA, becomes large as , reduces, whence
Landau damping becomes severe and SRS degenerates into
stimulated Compton scattering. Also, Raman forward scat-
tering becomes a four wave process requiring retention of
both Stokes and anti-Stokes components in the dispersion
relation. Both effects are omitted here.

For sidescattered emission (k, #0) polarized in the
plane perpendicular to B, as considered here, the growth
rate reduces as cos & where 8 is the angle between the electric
fields of incident and scattered waves. In fact, when the scat-
tered light wave is at its reflection point it is polarized per-
pendicular to the incident wave whence the waves are decou-
pled [k, #0,k,_ =0, and therefore ¥y =0 from (32)].
(Sidescattering, where incident and scattered light waves are
polarized parallel to one another, will be published later.) As
k, increases, so the maximum resonant density decreases.
This necessarily requires &, to be less than unity.

Next, consider the two-plasmon decay instability. This
is inherently two-dimensional and, of course, does not ap-
pear in unmagnetized plasmas when k, = 0. Its growth rate
ile

Y =w,vokok K/2kk_, k,=ky/2+K. (33)
This maximizes when K> = k? + k3 /4, so that

Y = 0,Ke00/2. (34)
The resonant density is

w, =} —(3Vi/2k?*+ k). (35)

Equations (33)}-(35) agree with the numerical solutions (cf.
Figs. 3-5) of the fully electromagnetic result, Eq. (31). Note
also the expected symmetry about k,/2(=~0.43) of the TPD
which appears in Figs. 3-5.

Ymax k y=0-0
0-02 1 FIG. 2. Maximum growth rates (with re-
spect to density) for two-plasmon decay as
functions of k. ata given k,. Magnetic fields
chosen correspond to 2, =0.1 (short-
i 0-37 dashed line), £2, = 0.2 (long-dashed line);
o — v, =01V, =01k, =00
P
001+ 'A\O'SO P
* \ /
4 \
A 0:41_
- " _ \\\ / . L - -
O, _5 \o l' \ \\\ / , 4
e S 0-50, ,0-50\s, .7
1 P v a1 1 i L .
0-0 0-4 0-8 1-2 1-6 2-0
K x
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Ymax ky =0-2

FIG. 3. Maximum growth rates (with re-
spect to density) for two-plasmon decay as
functions of k, at agiven k, . Magnetic fields
chosen correspond to 2, = 0.0 (solid line),
£2, = 0.1 (short-dashed line), and £2, = 0.2

B. Magnetized case

The magnetic field alters the physics in two ways, both
of which are due to the fact that no waves are purely electro-
static or electromagnetic. First, the two-plasmon decay may
occur in one dimension (k, = 0). Second, at the reflection
point (where absolute instability is expected in an inhomo-
geneous plasma) of the sidescattered (k, #0) extraordinary
wave, the magnetic field now makes the growth qualitatively
and quantitatively similar to the backscattering results. This
is because the incident and scattered extraordinary waves
are no longer polarized perpendicular to one another. Thus,
the magnetic field tends to destroy the characteristic polar-
ization of SRS emission.

In addition, the magnetic field induces changes in both
the real part of the frequency and in the growth rate. First,
consider the frequency shifts which are easily deduced from
phase matching arguments. The dispersion relation describ-
ing the extraordinary and upper-hybrid waves, (11), gives

@ =§{0f, +0,) £ [Hoh — 0l + 2707 ],

(long-dashed line); v,=0.1, V,=0.1,
k, =0.2.
where
o=l + 02+ 3kW2, (37)
WL, =@} + k2. (38)

Assuming £, €w, and k*>202,»,, then

o’~w} +3k*V + 0221 —w2/k? (upper hybrid),
(39)

o’ ~w} + k> + 022w2/k* (extraordinary). (40)

For the two-plasmon decay with 1 = @, + w,, ko = k; + k,,
both decay waves are described by (39), i.e.,

1 w002 k
o, =—+k,K|3V? r_- (kx ==0 K).
"2 °K( ME ) N
(41)
The magnetic field, therefore, serves to increase the shift of

both decay products from }, symmetry still being preserved.
These shifts are electromagnetic in origin. The magnetic

FIG. 4. Maximum growth rates (with re-
spect to density) for two-plasmon decay
as functions of &, at a given k. Magnet-
ic fields chosen correspond to £2, = 0.0
(solid line), £2, = 0.1 (short-dashed line),
and {2, =02 (long-dashed line);
U5 =017V, =01k =04

(36)
Y max ky = 0-4
o .
O .
2735 Phys. Fluids, Vol. 27, No. 11, November 1984

Barretal. 2735



max ky = 1-0

0-02}

_—

FIG. 5. Maximum growth rates (with re-

spect to density) for two-plasmon decay as

functions of k, ata given k, . Magnetic fields

chosen correspond to £2. = 0.0 {solid line},

{2, = 0.1 {short-dashed line}, and 2, =0.2

(long-dashed line); v,=0.1, ¥V, =0.1,
L, =1.0.

field induced shift 5w can be of the same order as, or greater
than, the thermal shift §w for sufficiently large fields. For
example, in Fig. 4 (k, = 0.4, w, = 0.48) maximum growth
occurs when k,~1, so that Sw;~0.562.% while
8w~0.015. The numerical results agree with these expres-
sions. The position of the resonance is given by

» 1 (2 2 ké) . o 2
L (rragri 20 )3y %) _ g2

=7 yHRIT TP
{42)

If we assume that maximum growth is still given approxi-
mately when K > = k } + k } /4, then the resonant density is
increased by the magnetic field by an amount given by

(1/8k2 — 1022 (43)

These are small changes unless k, is very small; however,
this behavior is observed in the numerical solutions. As we
shall see, the maximum growth occurs at larger XK.

For stimulated Raman scattering, consider the frequen-
cy shift induced by the magnetic field for backscatter
(k, = 0)at the reflection point (k,, = 0) of the extraordinary
wave. From (36), with &, = 0,

w0} = o) +.()§/2+(.0:/4+.(lfa)§)”2. (44)
Thus, when £2, <w,,

w~w, +12./2, (45)
and

o~ —-w,—2,/2 or w,~1—w,—-2./2, (46
which, in (39) yields
o =1 —w, —2,/27 +3k3V2+ 2Ll —2/k})

(47)
Then
1, I Q@
R (48)
to first order in 2, and using k } ~3; also,
ol e 2 ' (49)
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Thus we have a linear downshift 5wy of the frequency of the
upper-hybrid wave (a shift to the blue in the scattered ex-
traordinary wave) because of the magnetic field, which can
easily reverse the thermal shift dw. For example, with
V, =0.1, 2. =0.1, then 0~0.01 while dwz~ — 0.025.
Thus an expected red shift of the scattered light of the Ra-
man instability can readily turn into a blue shift in the pres-
ence of a large enough self-generated magnetic field. Figure
1(a) shows this behavior near n./4. This frequency shift
arises solely from the electrostatic component in the scat-
tered extraordinary wave. This shift is particularly relevant
when one considers that it occurs at the reflection point,
where absolute instability is expected. Moving to lower den-
sities, the decay waves become more purely electrostatic or
electromagnetic in nature. So, for backscatter, the frequency
shift shown in Fig. 1(a) is entirely caused by the magnetic
field contribution to the upper-hybrid frequency.

Figure 1({b) shows that the magnetic field increases the
growth rate of both Raman forward and backscattering
while moving the location of the resonance to lower densi-
ties. For sidescattering growth reduces with increasing &, as
in the unmagnetized case except that at the scattered wave
reflection point the growth rate increases from zero when
{2, = 0 to be qualitatively like Fig. 1{b) when £ == 0.1, 0.2.
For a given k,, the magnetic field increases growth rates.

The two-plasmon decay growth rates are unequivocally
increased by the magnetic field when k, is large enough.
Figure 5 shows the increase for k, = 1 for all of a wide range
of wavenumbers, Maximum growth still occurs where
K*=k,? + ky*/4 (k, = ko/2 + K ) as in the unmagnetized
case. For smaller values of k, the behavior is more complex
as shown in Figs. 2—4. For instance, these figures show the
possibility of decay into two forward propagating upper-hy-
brid waves with k_~k,/2. (=~0.43).

IV. CONCLUSIONS

The effects of a magnetic field on the Raman and two-
plasmon decay instabilities have been examined in the neigh-
borhood of the quarter-critical density, where the instabili-
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ties are coincident, by solving the full set of Maxwell’s
equations. We have shown that the Raman growth rates are
increased in a magnetized plasma. The behavior of the two-
plasmon growth rates is more complex in that they are lower
in a magnetized plasma than in the field-free case for small
values of k, (k, <0.7) near wavenumbers k, corresponding
to the maximum field-free growth rate, but are enhanced at
all wavelengths for k, >0.7. These results are in contrast to
those of Grebogi and Liu*'? who treated the upper-hybrid
wave electrostatically and concluded that both Raman and
two-plasmon decay growth rates decreased with magnetic
field. Although we believe their model equations to be cor-
rect, they omitted terms of order £2, in their attempt to de-
rive a simple analytic expression. Our model indicates a
complex k¥ dependence which reverses their conclusions.

From the real part of the dispersion relations we have
determined frequency shifts in the two processes because of
the magnetic field. For the two-plasmon decay the frequency
shift from w,/2 is increased by the magnetic field by amounts
which can exceed the thermal shift. This shift is a conse-
quence of the electromagnetic correction to the dispersion
relation and so does not appear in the electrostatic approxi-
mation used by Grebogi and Liu.3? For the Raman instabil-
ity, the frequency shift of the backscattered wave caused by
the magnetic field can change the expected thermal red shift
into a blue shift. These results are of particular interest in
connection with the generation of radiation at the half-har-
monic frequencies referred to in the introduction, and these
will be discussed in a future publication. The principal con-
sequence for the emission at 3w,/2 is that the separation of
the red and blue wings now depends on both electron tem-
perature and magnetic field intensities. If one could deter-
mine the temperature independently, then this separation
could be used to estimate magnetic field strengths near
quarter-critical.

There are a number of limitations to the analysis pre-
sented in this paper insofar as it relates to laser—plasma inter-
actions. We have taken the plasma to be homogeneous and
have supposed that the magnetic field B, is both constant
and uniform, even though we know that in reality self-gener-
ated magnetic fields have a rather complex morphology.>**?
However, we believe it to be a justifiable first step, particular-
ly since detailed density and magnetic field profiles are not
known experimentally. Moreover, in the theoretical treat-
ment itself we have used a fluid model to describe the plas-
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ma, which would be better described by a kinetic theoretic
treatment. This is in hand.
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