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Abstract 

Speeding is the number one road safety problem in many countries around the world. Speeding 

contributes to as many as one third of all fatal crashes, and is considered an aggravating factor in 

crash severity. Because of the adverse consequences of speeding, speed management is 

considered to be the key strategy to reduce traffic fatalities and injuries. Any speed management 

strategy has an immediate effect on drivers speed choice and a long-term effect on crash 

occurrence; these effects can be referred to impact and outcome, respectively. A comprehensive 

evaluation process of any speed management strategy therefore should include impact evaluation 

based on speed data and outcome evaluation based on crash data. This evaluation is an important 

step in the road safety management process because the evaluation results can be used not only 

for economic justification of the strategy but also for future decision-making activities related to 

the allocation of funds and selection of appropriate remedial strategies. While the methodologies 

associated with before-after evaluation of speed and crash data have improved substantially in 

last two decades, there are several areas for improving the before-after evaluation methodologies 

in order to provide more reliable estimates of the safety effect of any speed management strategy. 

Therefore, the research in this thesis focuses on addressing key issues related to the modelling 

and application of before-after evaluation of i) speed data and ii) crash data. Vehicle speed data 

are collected from different sites over a period of time; hence, the speed data exhibit within-site 

and between-site variation. The conventional ordinary least-square regression model fails to 

capture these two variations of the speed data into the modelling framework. Similarly, crash 

data exhibits several specific features, such as correlation among severity levels and spatial 

correlation that need to be addressed into the modelling framework for the unbiased estimation 

of the model parameters. This thesis addressed several key issues by 1) developing appropriate 
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statistical test method to address and account for confounding factors and time trend in non-

model based before-after speed data evaluation, 2) developing a mixed-effect intervention 

modelling approach for modelling and evaluating before-after speed characteristics that 

incorporate the clustering nature of speed data, 3) exploring multilevel heterogeneous model to 

address the heterogeneous site variances of speed data, 4) developing multivariate full Bayesian 

(FB) methodology for before-after evaluation of crash data that can take account for the 

correlation of crash data of different severity levels and comparing the results with univariate 

counterpart, 5) developing FB macroscopic spatial modelling approach for before-after 

evaluation of crash data that can address the limitations of the microscopic evaluation as well as 

incorporate spatial correlation of the crash data and comparing the results with non-spatial 

models, and 6) developing an alternative modelling methodology to address spatial correlation 

into the modelling of before-after evaluation of crash data and compare the results with other 

spatial models. Several advanced statistical models were developed for both speed and crash data 

and the models were compared for their goodness of fits. The applications of the various 

developed models have been demonstrated using both microscopic and macroscopic datasets 

collected for an urban residential posted speed limit reduction pilot program. The results provide 

strong evidence for (i) addressing the effect of confounding factors in non-model based speed 

data evaluation for more reliable estimate of the effect of a safety intervention, ii) considering the 

clustered nature of speed data into models used to conduct before-after evaluation, iii) 

incorporating heterogeneous site variances into multilevel modelling and evaluation of mean 

free-flow speed, iv) developing multivariate models for modelling and evaluation of crash by 

severity, v) incorporating spatial correlation in modelling of before-after crash data, and vi) using 

alternative spatial models to better capture the spatial correlation of crash data. Finally, the 
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multilevel model with heterogeneous variance provided significant improvement in the 

goodness-of-fit over other models for speed data analysis. For crash data, multivariate spatial 

models provided significant improvement in the goodness-of-fit over other univariate or non-

spatial models. Therefore, it is recommended to employ multilevel model with heterogeneous 

variance and multivariate spatial models for more reliable and unbiased estimate of the effect of 

a safety intervention on vehicle speed and crash data, respectively.    
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1.0 Introduction 

This chapter provides a general introduction to the thesis and is divided into four parts. The first 

part presents problem statement that is necessary to understand the significance of the research 

problem. The second part discusses the research motivation by addressing the research gaps. The 

third part states the objectives of this research. The chapter concludes by describing the structure 

of this thesis. 

1.1 Problem Statement  

Speeding, as defined by excessive speed (driving above the speed limit) or inappropriate speed 

(driving too fast for the prevailing road and traffic conditions, but within the speed limit), is the 

number one road safety problem in many countries (OECD/ECMT, 2006). Speeding contributes 

to as many as one third of all fatal crashes, and is considered an aggravating factor in crash 

severity (OECD/ECMT, 2006; WHO, 2008). Speed is related to traffic safety in two ways: i) 

speeding increases the possibility of crash incidence, as high speeds adversely affect the stopping 

sight distance, allowing less time for error correction; and ii) crash severity is directly related to 

vehicle speed because of the physical relationship of mass and speed to energy (Elvik et al., 2004; 

Nilsson, 2004; Aarts and van Schagen, 2006; Hauer, 2009). 

Because of the adverse consequence of speeding, speed management is considered to be 

the key strategy to reduce traffic fatalities and injuries (OECD, 2006). For example, vision zero 

or the safe system approach adopted by different countries around the world have identified 

effective speed management as the cornerstone to achieve the vision zero goal. Few example of 

speed management initiatives include, but not limited to public education or training, 
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intensifying speed enforcement and penalties, improving road infrastructure, lowering speed 

limit, and adopting new technologies, such as intelligent speed adaptation (OECD, 2006).   

Any speed management strategy has an immediate effect on drivers speed choice and a 

long-term effect on crash occurrence; these effects can be referred to impact and outcome, 

respectively. A comprehensive evaluation process of any speed management strategy therefore 

should include impact evaluation based on speed data and outcome evaluation based on crash 

data. This evaluation is an important step in the road safety management process because the 

evaluation results can be used not only for economic justification of a safety intervention but also 

for future decision-making activities related to the allocation of funds and selection of 

intervention. 

While various methodologies are presented in the literature to evaluate safety 

interventions, several limitations still exist and this thesis explores the application of more 

advanced methodologies to reliably estimate the safety impacts and outcomes of these 

evaluations.  For the impact evaluation, both non-model and model based approaches are 

developed while for the outcome evaluation, both macroscopic and microscopic full Bayesian 

approaches are developed. The following section discusses the specific issues related to previous 

research on before-after evaluations of safety interventions.  

1.2 Research Motivations 

A comprehensive review of literature on before-after evaluation of speed and crash data revealed 

several major issues: 

 Numerous studies have performed before-after evaluations with speed data to investigate 

the effectiveness of safety interventions. Most evaluations have adopted a method of non-
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model-based naïve before-after speed data analysis where various speed-related 

performance measures (e.g., mean speed, 85th percentile speed) were compared and 

statistical tests were conducted to check whether the measures were statistically different 

between the before and after periods. These naïve before-after speed data analyses often 

fail to address the effect of various confounding factors and time trend into the evaluation 

and statistical test. Moreover, while non-model-based approach can provide valuable 

insights about the safety effects of an intervention, a model-based approach could be 

more promising and reliable, due to its capability to provide more insight about the 

factors affecting speed choice while taking into account the effects of confounding 

factors. Model-based approach for before-after evaluation of speed data has rarely been 

employed in traffic safety literature.  

 In general, conventional ordinary least square (OLS) regression is the most commonly 

used method for modelling speed data, such as mean speed (TRC, 2011). This single 

level regression modelling method assumes that each observation of speed is independent. 

In reality, the speed data are often multilevel (i.e., at-least two-level) in nature, as the data 

are collected for multiple sites with multiple observations from each sites. The data 

collected from different sites can exhibit different speed characteristics because of the 

dissimilarity in site characteristics, such as geometric design, surrounding environment, 

etc. Similarly, within-site speed data can show variability because of the difference in 

driver characteristics, traffic flow, vehicle type, temporal pattern, etc. Therefore, the 

random variance in speed data can be divided into two categories: between-site and 

within-site (Poe and Mason, 2000). The conventional OLS regression method cannot 
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address these two variances and hence can result in biases in speed prediction (Park et al, 

2010a).  

 The Empirical Bayesian (EB) approach has been extensively used in the before-after 

evaluation of crash data and is considered to be the current state-of-the–art approach to 

before-after evaluation. However, literature suggests the need to explore more 

sophisticated methods to eliminate the weaknesses of the current EB approach.  

 The Full Bayesian (FB) approach has recently been introduced in safety research, which 

is reported to have more flexibility and advantages than the EB approach. It is important 

to perform an FB before-after evaluation and compare the results with an EB evaluation 

to understand the added benefits offered by the FB method. 

 The FB method can address the multivariate nature of the crash data into the modelling 

formulation. However, the application of multivariate FB method for before-after safety 

evaluation was not widely explored in the existing literature.  

 One major advantage of the FB method is its ability to consider spatial correlation in 

model formulation. A significant number of cross-sectional studies have included spatial 

correlation in the FB method and concluded that the inclusion of spatial correlation 

improves model goodness-of-fit and the precision of parameter estimates. However, its 

application in before-after safety evaluation has rarely been documented in the traffic 

safety literature.   

 Microscopic (i.e., intersection or road segment as unit of analysis) before-after 

evaluations have been extensively used to evaluate traffic safety interventions. For 

network-wide interventions, such as neighbourhood speed limit reduction, application of 

the same methodology will require a separate evaluation for intersections and road 
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segments, and then they can be combined to obtain the complete evaluation. This requires 

substantial traffic data, which may not be readily available, especially for low-volume 

road segments and unsignalized intersections. Therefore, a macroscopic (i.e., area-level 

or network level) analysis could be an effective alternative approach to evaluate such 

types of safety interventions.   

1.3 Research Objectives  

Considering the methodological limitations of the previous studies and the potential to improve 

before-after safety evaluation methodology, the general objective of this thesis is to develop a 

robust methodology to perform an observational before-after safety evaluation of any speed 

management strategy. The objective can be broadly divided into two parts with part one focusing 

on speed data analysis and evaluation and part two focusing on crash data analysis and 

evaluation. The specific objectives of this research are highlighted below: 

Objective 1: Develop and recommend a statistical method to address and account for 

confounding factors and time trend in non-model based before-after speed data analysis. To 

accomplish this objective, before-after evaluation with control group is employed and the 

conventional t-test is modified to take into account for the incorporation of the control group 

data. Moreover, a sensitivity analysis of headway is conducted to address the congestion effect. 

(An article is published in Safety Science that accomplishes this research objective). 

Objective 2: Develop a model-based mixed modelling approach for analysis, modelling 

and evaluation of before-after speed characteristics that incorporate the clustering nature of the 

speed data. The traditional OLS regression models consider that the speed observations are 

independent, which is often not a realistic assumption. Therefore, mixed effect normal regression 

intervention model for free-flow speed and mixed effect binomial regression intervention model 
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for speed compliance are introduced to address the clustering nature of speed data. (An article is 

published in Transportation Research Record that accomplishes this research objective). 

Objective 3: Develop a multilevel modelling method to address heterogeneous site 

variance of speed data into the modelling framework for before-after safety evaluation. In the 

conventional mixed-effect model, it is assumed that the within site variances are homogeneous 

and also the model coefficients are fixed. To address these limitations, the multilevel 

intervention model with heterogeneous variance is introduced in this research. 

Objective 4: Develop a multivariate full Bayesian (FB) methodology for before-after 

evaluation of crash data and compare the results with univariate counterpart. The crash data of 

different severity levels are often correlated and the univariate models fail to address these 

correlations. Multivariate models address the correlations between crash severity levels; 

therefore, they better represent the characteristics of the crash data. Multivariate Poisson-

lognormal model for crash severity is developed for the before-after safety evaluation and the 

results are compared with the univariate Poisson-lognormal models. Another sub-objective 

includes comparing before-after safety evaluation results between the empirical and full 

Bayesian approaches. (An article is published in Accident Analysis and Prevention that 

accomplishes this research objective). 

Objective 5: Develop a FB macroscopic (i.e., neighborhood-based) spatial modelling 

methodology for before-after evaluation and compare the results with non-spatial models. The 

macroscopic models eliminate the limitation associated with microscopic models for the 

evaluation of area-wide safety intervention. Both univariate Poisson-lognormal models with 

conditional autoregressive distribution and multivariate Poisson-lognormal model with 
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multivariate conditional autoregressive distribution were developed. The results of these spatial 

models are compared with the univariate and multivariate Poisson-lognormal models.  

Objective 6: Develop an alternative methodology to better address spatial correlation into 

the modelling in the before-after evaluation of crash data and compare the results with other 

spatial models. This methodology is expected to better incorporate the spatial correlation of the 

crash data.  

1.4 Organization of the Thesis 

The remainder of this thesis is organized into chapters:  

Chapter 2 reviews the previous studies related to observational before-after safety 

evaluation methodology related to traffic safety research. This review discusses earlier studies on 

speed and crash data analysis and modelling for the evaluation of various traffic safety 

interventions. An overview of empirical Bayesian vs. full Bayesian approach, macroscopic vs. 

microscopic evaluation, univariate vs. multivariate approach, and spatial vs. non-spatial 

modelling methodology was described. The chapter concludes with the limitations in the 

literature regarding before-after safety evaluation methodologies.  

Chapter 3 presents the developed methodology to model and evaluate speed and crash 

data in an observational before-after setting. The speed data evaluation methods include both 

non-model based and model based mixed-effect and multilevel intervention modelling 

approaches.  The crash data evaluation methods include univariate and multivariate non-spatial 

and spatial modelling approaches. This chapter also presents the processes involved in the 

estimation and assessment of the models. 
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Chapter 4 describes the data sets used in this thesis to apply the developed methodology. 

The methodology was used to evaluate an urban residential speed limit reduction pilot program. 

Two main datasets used were speed survey data and crash data.  Other supplementary data 

includes, but is not limited to, geometry, traffic control, census and weather data. 

Chapter 5 presents the detail results of the speed characteristics analysis and evaluation. 

A comparison of alternative methods was discussed and recommendations were made. 

Chapter 6 presents the results of crash data modelling and analysis. This includes the 

results of moth macroscopic and microscopic modelling and evaluation. A comparison of 

alternative methods was discussed and recommendations were made. 

Chapter 7 concluded the thesis with summary of findings, research contribution and 

future research potential. 
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2.0 Literature Review 

2.1 Introduction 

This chapter presents a review of the literature related to before-after evaluations of speed and 

crash data. After presenting different types of observational before-after studies available for 

crash data analysis and their biases, a comparative description of empirical Bayesian vs. full 

Bayesian approach, macroscopic vs. microscopic evaluation, univariate vs. multivariate 

approach, and spatial vs. non-spatial modelling are presented. The chapter concludes with the 

research gaps in the literature regarding before-after evaluation methodologies.  

 

2.2 Before-After Evaluation of Speed Data 

Most of the earlier before-after safety evaluation studies using speed data employed simple 

before-after evaluations for analyzing speed data with few that used before-after evaluation with 

a comparison group. Most of the studies used non-model based approach and reported a 

quantitative reduction of mean or the 85
th

 percentile speed in the after period, but did not offer 

any statistical tests to check whether or not these speed reductions were statistically significant 

(Webster and Schnening, 1986; Jansson, 1998; RTA, 2000; Hoareau et al. 2002; Hoareau and 

Newstead, 2004; Hoareau et al. 2006; Kloeden et al., 2004; Kamya-Lukoda, 2010; Bristol City 

Council, 2012). Furthermore, many of the confounding factors were not taken into consideration. 

Although some studies used a comparison group, they reported the mean or 85th percentile speed 

reduction for the treated and comparison group separately, except few that used the comparison 

group adjustment factor for quantifying the speed reduction in the treated group (Hoareau and 

Newstead, 2004). One recent study on speed limit reduction from 30 mph (48 km/h) to 25 mph 
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(40 km/h) used a t-test to showcase a statistically significant reduction of mean speed (Rossy et 

al., 2011). However, the study did not use free-flow speed to eliminate the effect of congestion. 

Another study on the evaluation of the effectiveness of gateway intervention in Italy performed a 

t-test for the mean speed and a Fisher test (F test) for speed variance (Dell’Acqua, 2011). 

However, none of the above studies took account of the time trend effect, derived from the 

comparison group, in their statistical analysis. There is a lack of clear guidelines on the 

methodology for evaluating speed data in a before-after setting.  

Congestion is an important confounding factor in speed data analysis and evaluation 

(Vogel, 2002; Walter and Knowles, 2004), especially for any speed management intervention, 

because any speed management intervention has little or no influence during the time of 

congestion. A vehicle led by a slow moving vehicle cannot choose its desired speed. Thus, the 

before-after evaluation of speed data based on the speed of all the vehicles is confounded. While 

most of the earlier studies used mean speed as a measure of effectiveness for before-after 

evaluation; few studies used free-flow speed (Kloeden et al., 2004; Kloeden et al., 2006). A key 

with regard to free-flow speed is that there little agreement in the literature about defining free-

flow vehicles (Giles, 2004). Studies in Australia used a minimum headway of 4 seconds to 

define free-flow speed (Radalj, 2001; Kloeden et al., 2004; 2006; Giles, 2004). Wasielewski 

(1979) showed that for freeways, the interaction between successive vehicles cease to zero for 

headways greater than 2.5 seconds.  Pasenen and Salmivaara (1993) used a minimum headway 

of 3 seconds to distinguish free-flow speed, while Tarko and Figueroa (2004), Allpress and 

Leland (2010) and Dell’Acqua (2011) used a 5-second headway. The effect of assuming 

different headways on the evaluation of speed data has not been extensively explored in the 

literature. Walter and Knowles (2004) used two criteria for speed data sets collected from roads 
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with speed limits of 30 mph, one that excludes speeds below 20 mph and another that both 

excludes speeds below 20 mph and headway less than 2 seconds. It was found that both criteria 

yielded almost the same results. In summary, earlier studies clearly suggest that the issue of 

identifying free-flow speed warrants further investigation.   

In terms of the measure of performances (MOEs) for speed data evaluation, mean speed 

and 85
th

 percentile speed are the most frequently used ones in earlier studies. A review of 

numerous literature shows that the evaluation of speed management interventions was based on 

one or more of the following MOEs related to speed data: 

 Mean Speed (Webster and Schnening, 1986; Bloch, 1998; Road Directoriate, Denmark, 

1999; Blume et al., 2000; Buchholz et al., 2000; RTA, 2000; Dyson et al., 2001; Hoareau 

et al. 2002; Banawiroon and Yue, 2003; Hoareau and Newstead, 2004; Kloeden et al., 

2004; Pasanen et al., 2005; Ragnoy, 2005; Kloeden et al., 2006; Blomberg and Cleven, 

2006; Cottrell et al., 2006; Hoareau et al. 2006; Kamya-Lukoda, 2010; Dell’Acqua, 2011; 

Rossey et al., 2011; Bristol City Council, 2012). 

 Mean Free-Flow Speed (Shin et al., 2009; Kloeden et al., 2004; Kloeden et al., 2006). 

 Standard Deviation of Speed (Dell’Acqua, 2011; Rossey et al., 2011). 

 85
th

 Percentile Speed (Webster and Schnening, 1986; Jansson, 1998; Road Directorate, 

Denmark, 1999; RTA, 2000; Blume et al., 2000; Buchholz et al., 2000; Dyson et al., 

2001; Hoareau et al. 2002; Banawiroon and Yue, 2003; Hoareau and Newstead, 2004; 

Cottrell et al., 2006; Hoareau et al. 2006; Dell’Acqua, 2011; Rossey et al., 2011). 

 Speed Limit Compliance (Road Directoriate, Denmark, 1999; Blomberg and Cleven, 

2006; Blume et al., 2000; Cottrell et al., 2006). 
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 Speeding Above a Threshold Value (RTA, 2000; Buchholz et al., 2000; Hoareau et al. 

2002; Hoareau and Newstead, 2004; Shin et al., 2009; Blomberg and Cleven, 2006). 

 Speed Profile (Jansson, 1998; Road Directorate, Denmark, 1999; Kloeden et al., 2004; 

Kloeden et al., 2006). 

 

2.3 Modelling Speed Characteristics 

While the before-after evaluation with speed data is often limited to non-model based approach, 

recent literature suggests that the model based approaches are a more reliable framework for 

analyzing before-after speed data (Heydari et al., 2014). The conventional ordinary least squares 

(OLS) regression is the most widely used approach to investigate the effect of various factors on 

speed (TRC, 2011). In OLS regression, one assumption is that the observations are independent. 

This assumption does not always hold for data collected in groups or clusters (Poe and Mason, 

2000). Speed data are typically collected from different sites over a period of time, and hence, 

data collected from a particular site are correlated. Modelling these data with a flawed 

assumption of data independence would lead either to an underestimation or to an overestimation 

of a study’s findings (Park and Saccomanno, 2006; Park et al., 2010a; TRC, 2011).  

In order to avoid the limitations of the OLS regression approach, a few studies have 

applied alternative methodologies to model speed data. One of the earliest studies by Tarris et al. 

(1996) used a panel data analysis approach to account for the group and time effect. The general 

expression for the model used by the authors is presented in Eq. 2-1. As seen, three error terms 

were included in the model; however, the parameters remained constant across the group and 

time period.  

tiititit wuXY  
               (2-1) 
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where, itY is the speed for group i at time period t; α is the intercept, X is the explanatory 

variables;   is the regression parameters;   is the pure random error; u is the group disturbance; 

and w  is the time period disturbance. 

Poe and Mason (2000) applied a mixed model approach (Eq. 2-2) to account for the 

random effect of sites. The authors estimated two variants of the mixed model: single intercept, 

and separate intercepts for each sensor; they concluded that the mixed model with separate 

intercepts provided better results.  

ijkiiijijk ZXY  
                      (2-2) 

where, ijkY is the vector of observed speeds for site i, sensor j, and driver/vehicle k; X is 

the matrix of geometric variables;   is the vector of fixed-effect parameters; Z  is the design 

matrix for random-variable;   is the vector of random-effect parameters; and   is the error term. 

Wang et al. (2006) used the random-intercept mixed-effect model approach (Eq. 2-3) to 

model 85
th

 and 95
th

 percentile speed.  

;0 ijjiij XY   ii v000  
                      (2-3)

 

where, ijY is the speed for subject (driver) i at site j; i0 is the intercept for subject i; 0 is 

the mean speed across the population; iv0 is the subject disturbance; X is the road feature;   is 

the regression parameter other than the intercept; and  is the random error term. 
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Cruzado and Donnell (2010) used a multilevel model in their analysis with the model 

form shown in Eq. 2-4. The authors concluded that the multilevel model is preferred over a 

single-level (i.e., conventional OLS) model based on the log-likelihood test ratio.  

jkkjkjk sXY  
                        (2-4)

 

where, jkY is the speed difference between tangent and horizontal curve for driver j at 

site k; X is the vector of explanatory variables;   is the regression parameter; ks is the random 

intercept for site k; and   is the random error term. 

Park et al. (2010a) compared two single-level, a conventional multilevel, and a Bayesian 

multilevel model to analyze the speed differential. Eq. 2-5 to 2-7 present the model forms for the 

single-level model with a generic intercept for the groups, the single-level model with varying 

intercepts for the groups, and the multilevel model, respectively. The authors concluded that the 

multilevel models increased the precision and accuracy of the estimates of speed differential. The 

authors also suggested that the effect of using a more flexible multilevel model form, such as 

varying intercepts and varying slopes, should be investigated in the future. 

 2

21 , yjijij xxNy    for JjNi ,....1;,......,1                                                            
(2-5)

 

where, ijy is the speed differential (in km/h) of the i
th

 vehicle at the j
th

 tangent/curve; 

,, and  are regression parameters; 1x is the vehicle speed at the tangent; 2x is the inverse of 

the curve radius; and y  is the standard deviation for the individual-level errors. 

 2

1 , yijjij xNy    for JjNi ,....1;,......,1                     
(2-6)
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where, j is the varying intercepts term. 

 2

1 , yijjij xNy    for JjNi ,....1;,......,1   and  2

210 ,  jj xN                  
(2-7) 

where,   is the standard deviation for the group-level errors; 0 and 1 are the group-

level regression parameters. 

Eluru et al. (2013) used a random-parameter (which can also be referred as random-slope 

or random-coefficient) mixed effect model for the proportions of vehicles in different speed bins. 

The corresponding model form is presented by Eq. 2-8. The appropriateness of using the mixed 

model was demonstrated by the authors.  

qqpqqp Zy   )(*
                                   

(2-8)
 

where, 
*

qpy is the latent propensity of vehicle speed for site q and data collection period p; 

 qpZ  is the vector of explanatory variables;  is the unknown parameters;  is the intercept; and 

  is the random error term to account for site effects. 

Heydari et al. (2014) used a mixed effect model with a general expression as shown in 

Eq. 2-9 for before-after evaluation of posted speed limit. Very recently, Bassani et al. (2014) 

employed a random effect model for central tendency and deviation of speed by considering 

three different random errors (corresponding to the specific road, section within the road, and 

lane within the section) in addition to the pure random noise, as shown by Eq. 2-10.  

iijijjij uZXy  0              (2-9)   
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 where, ijy is the response variable for site i and observation j; 0 is the intercept term; X is 

the explanatory variables;   is the regression parameter other than the intercept;   is the 

random error term; and Z is the design matrix for random effect u . 

irsllsr

D

ip

DC

i

C

irsl aaaXZXV ,0, )(        
(2-10)

 where, irslV , is the response variable for road r, section s, lane l, and observation i; 0 is 

the general intercept; CX and DX are the explanatory variables influencing the mean speed and 

standard deviation, respectively; 
C and 

D are the regression parameters for the mean speed 

and standard deviation, respectively; ra , sa , and la are the random errors related to road, 

section, and lane, respectively; and    is the error term associated with each observation. 

The methodologies mentioned above provided significant improvement over the 

conventional ordinary least square (OLS) regression method in modelling speed characteristics 

(e.g., mean speed). Nevertheless, their application for before-after safety evaluation has rarely 

been reported in the literature. Moreover, as seen from the above model forms, a variety of 

alternative formulations have been used to take into account the hierarchical/multilevel nature of 

speed data. The naming of the models was often not consistent across studies. The literature 

shows that the multilevel model, hierarchical model, mixed-effect model, random-effect model, 

and random-parameter models were used interchangeably. However, according to Gelman and 

Hill (2007), one of the key components of a multilevel model is varying coefficient (i.e., varying 

intercept, varying slope, or both). Based on this definition, not all the models employed in earlier 

speed data analysis can be referred to as multilevel models; rather, they can be regarded as 

special cases of multilevel models. Literature suggests that restricting the coefficients to be 
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constant/fixed when they actually vary across observations/sites can lead to inconsistent and bias 

coefficient estimates (Washington et al., 2003). The varying coefficient can also account for the 

unobserved heterogeneity that is likely to be present in the absence of an exhaustive list of 

explanatory variables (Anastasopoulos and Mannering, 2009). Similar to the concept of varying 

coefficient, it is possible that the within-site variances in speed data can vary across sites due to 

the presence of unobserved heterogeneity. Restricting the within-site variances to be 

constant/fixed across sites can also lead to bias coefficient estimates and consequent speed 

prediction. Existing studies on modelling speed characteristics have hardly investigated the effect 

of considering varying within-site variance on model coefficient estimates and speed prediction. 

 

2.4 Before-After Evaluation of Crash Data 

Among the three basic study designs (i.e., observational before-after; observational cross-

sectional; experimental before-after) for evaluating the effectiveness of any safety measure, 

observational before-after studies are the most common (Highway Safety Manual, 2010). 

Observational before-after studies are subject to different biases (Carter et al., 2012). Based on 

whether a particular method addresses these biases, observational before-after evaluations can be 

one of the following types: 

1. Simple or naïve before-after method 

2. Before-after with comparison group method 

3. Before-after with empirical Bayesian (EB) method 

4. Before-after with EB and comparison group method, and 

5. Before-after with full-Bayesian (FB) method. 
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The earliest method of before-after evaluation was the simple before-after method, where 

the observed crash frequencies between the before and after period were compared, as shown in 

Equation (2-11):  

Time Intervention Sites Crashes Period 

Before 
tiB  bit  

After 
tiA  ait  

 

Change in crashes for site i  1ti ai ti bi ti ai

ti bi ti bi

A t B t A t

B t B t


        (2-11) 

The simple before-after method is subject to various biases, including regression to the 

mean, time trend, and external factors, which lead to inaccurate and potentially misleading 

conclusions. To take account of the time trend and effect of external factors, the before-after with 

comparison group method was developed. In the before-after with comparison group method, 

change in crashes is calculated as shown in Equation (2-12):  

 

Time Intervention t Sites 

Crashes 

Comparison Sites 

Crashes 

Period 

Before 
tiB  ciB  bit  

After 
tiA  ciA  ait  

 

Change in Crashes for site i  1

ci bi

ci ai

ti bi

ti ai

B t
A t

B t
A t

        (2-12) 

The strength of the before-after with comparison group method lies in the proper 

selection of the comparison group to resemble the treated group in terms of traffic volume, 

geographic characteristics, proximity and crash frequency. Among these criteria, compatibility of 
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the crash frequencies between the treated and the comparison group in the before period is key 

for a reliable evaluation result (Hauer, 1997). A compatibility check can be performed by 

calculating the Odds-Ratio (OR) for the crashes during the before period (Fleiss, 1981; Elvik, 

1999; Pauw et al., 2012).  

1

1

t

t

t

t

T
T

OR
C

C





            (2-13) 

Where 

tT =number of crashes in Treated group in year t  

1tT  =number of crashes in Treated group in year t-1  

tC =number of crashes in Comparison group in year t  

1tC  =number of crashes in Comparison group in year t-1  

 

When the OR is close to 1, the comparison group is comparable to the treated group. 

 

Although a carefully designed before-after with comparison group method can take 

account of several biases, it cannot address the regression to the mean bias nor the non-linear 

relationship between crash and exposure (Hauer, 1997). To overcome these two issues, the 

before-after with empirical Bayesian method was developed (Hauer 1997) and is the most 

extensively used method for the evaluation of safety interventions (Persaud and Lyon, 2007).  

Evaluating the effectiveness of safety interventions under the before-after with empirical 

Bayesian method is a two-step process: 1) develop a safety performance function (SPF) from a 
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reference group of sites using historical crash data to predict the number of crashes for the 

treated sites in the before period; 2) combine the predicted crashes with the observed number of 

crashes in the before period to estimate the expected average crash frequency for a treated site in 

the after period had the intervention not been implemented. The comparison of the observed after 

crash frequency to the expected crash frequency estimated with the empirical Bayesian method is 

used for the effectiveness evaluation.  

 

Change in Crashes for site i  1ti ai ti bi ti ai

ti bi ti bi

A t EB t A t

EB t EB t


       (2-14) 

For site i , tiEB is the expected crash frequency (obtained using empirical Bayesia) that 

would have occurred in the after period without intervention. A detailed description of the 

empirical Bayesian method is presented in the methodology chapter.  

The before with empirical Bayesian method takes account of the regression to the mean bias and 

the non-linear relationship between crash and exposure (Shin et al., 2009). Also, if other 

independent variables are considered during the Safety Performance Function (SPF) 

development, this method can also take account of various external factors.  

When the required data is available, the before-after with empirical Bayesian and 

comparison group method can be combined to estimate the change in crashes due to a 

intervention: 

 

Change in crashes for site i  1

ci bi

ci ai

ti bi

ti ai

B t
A t

EB t
A t

        (2-15) 
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Although the before-after with empirical Bayesian and comparison method seems to have 

the capability to take account of all the biases of a before-after observational study, one potential 

limitation is that it assumes crashes have either Poisson or Poisson-gamma (negative binomial) 

distribution. Also, empirical Bayesian cannot take account of spatial correlations and correlation 

of crash of different severity levels. Further, empirical Bayesian requires a greater number of 

reference sites to develop the SPFs. Because of these issues, the full Bayesian (FB) method has 

recently been developed. The details of full Bayesian methodology for before-after safety 

evaluation are presented in the methodology chapter of this thesis. 

 

2.5 Biases in Before-After Crash Data Analysis 

A good summary of all possible biases in an observational before-after study is made by Carter 

et al. (2012). Some of the predominant biases (i.e, regression to the mean, maturity, and external 

factors) are described in this section to better understand the importance of using a robust 

method in the evaluation process.  

 

Regression-to-the Mean (RTM) 

RTM is defined as the tendency of sites with very high or low crash counts to return to the usual 

mean frequency of crashes in the following years. In most cases, transportation 

agencies/authorities select sites for safety intervention based on high crash frequency in the 

year/years immediately preceding the intervention. Selecting sites based on this criterion justifies 

the use of limited resources to improve safety. RTM bias arises if the sites are selected for safety 

intervention based on a short term high crash frequency. An evaluation of a safety intervention 

without addressing the RTM effect is likely to overestimate the safety benefit of the intervention.  
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The RTM phenomenon suggests that the crashes would have decreased even if no safety 

intervention is applied. If the site selection is not based on a high crash history, RTM might not 

bias the evaluation results. Figure 2-1 demonstrates the RTM phenomenon and its impact on the 

evaluation results. This figure clearly suggests that, if not properly addressed, RTM can 

demonstrate an illusion of safety benefit.  
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Figure 2-1: Illustration of the regression to the mean effect. 
 

 

Maturation Effect 
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Crash frequencies on a site often show long-term trends due to temporal changes. This trend can 

be attributed by weather, demography, gas prices, vehicle types, or other unknown factors 

(Carter et al., 2012). These general trends in crash numbers over time are known as ‘maturation’. 

Crash trends before safety intervention can provide some insight on the expected trends during 

the post-intervention period. For example, there may be a steady decrease in crashes during the 

before period, which could be due to a number of factors mentioned above. One might expect the 

trend to continue in the after period regardless of the safety intervention, unless the underlying 

conditions change. Figure 2-2 illustrates the time trend effect where (c) suggests that the safety 

intervention has no effect on the crash frequency. 
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Figure 2-2: Illustration of the effect of maturation. 

 

External Factors 

Some external factors can be easily recognized and measured while others are difficult to do so. 

For instance, change traffic volume can be recognized and measured, and hence can be 

accounted for explicitly in the before-after analysis. A change in traffic volume in the after 
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period can cause an underestimation or overestimation of the safety effect of an intervention, as 

the exposure level changes. Further, the relationship between traffic volume and the number of 

crashes are non-linear which can be taken into account by using robust evaluation methodology. 

In contrary to traffic volume, changes in driver behavior, economic condition, weather, etc. are 

often difficult to measure and incorporate in the simple study design.  

 

2.6 Empirical Bayesian and Full Bayesian Methodology 

It is evident from literature that regression to the mean can substantially influence the 

intervention evaluation results (Persaud and Lyon, 2007). The empirical Bayesian (EB) 

methodology has been developed to account for RTM bias that arises when sites are selected 

based on high crash frequency (Hauer, 1997). Since its inception, EB methodology has been 

used extensively in the before-after safety evaluation (Harkey et al., 2008) and is now considered 

to be the current state-of-the-art for before-after evaluation. However, recently, full Bayesian 

methodology has been introduced in the literature to perform before-after evaluation (Pawlovich 

et al., 2006; El-Basyouny and Sayed, 2010; El-Basyouny and Sayed, 2011; Li et al., 2008; Lan et 

al., 2009; Park et al., 2010b; Persaud and Lyon, 2010). A brief description of the basics of EB 

and FB methodology is presented below: 
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According to Bayesian theory, an inference of parameter   is based on the following 

formula: 

 

( ) ( | )
( | )

( )

p l y
p y

m y

 
           (2-16) 

Here,   is the vector of parameters, y is the set of observed data, ( )p  is the prior 

distribution of , ( | )l y   is the likelihood function, ( )m y is the marginal distribution of data y , 

and ( | )p y is the posterior distribution of  . 

The above formula tells that the Bayesian approach combine prior information with 

current information to estimate the expected crash frequency of an entity. The prior information 

can be obtained from a group of entity with similar characteristics and the current information is 

the observed number of crashes at any specific entity. The empirical Bayesian and full Bayesian 

are two related approach of combing prior information and current information (Persaud et al., 

2010).  

Hauer (1997) developed a standard form of empirical Bayesian statistical technique that 

is now widely applied to the analysis of traffic crash data. In the empirical Bayesian approach, a 

safety performance function (SPF) is developed from a reference group of sites having 

characteristics similar to those of treated sites. The regression parameters of the SPF are 

estimated using the maximum likelihood technique using crash data (Hauer et al., 2002; Miaou 

and Lord, 2003; Miranda-Moreno, 2006). The point estimate of the crashes from SPF is used as 

prior information which is then combined with the observed number of crashes to obtain an 

expected crash frequency (i.e., posterior).  



28 

 

In the full Bayesian approach, the posterior distribution is generated in single step by 

combing prior distribution and the data. One specific advantages of full Bayesian is that it uses 

Markov chain Monte Carlo (MCMC) simulation method to estimate the model parameters (Gilks 

et al., 1996). Hence, full Bayesian approach overcomes the limitations of the empirical Bayesian 

method, where the likelihood function needs to have a closed-form. The full Bayesian method 

thus can accommodate more flexible distributional assumptions such as Poisson- lognormal 

distribution. Further, it can accommodate multivariate model form and spatial correlation. In 

general, the full Bayesian method has many advantages over the widely accepted and extensively 

used empirical Bayesian approach that include, but are not limited to i) the capability of 

accounting for all uncertainties in the data and model parameters, ii) a single-step integrated 

procedure, iii) a small sample site requirement, iv) ability to include prior knowledge on the 

values of the coefficients in the modelling along with the data collected, v) the flexibility of 

choosing different distributional assumptions, vi) ability to consider spatial correlation  in the 

model formulation, and vii) ability to consider correlation of multilevel data (Carriquiry and 

Pawlovich, 2004; El-Basyouny and Sayed, 2011; Gilks et al., 1996; Lan et al., 2009; Persuad et 

al., 2010). 

A number of studies have used the FB method in observational before-after safety 

evaluations (El-Basyouny and Sayed, 2010, 2011, 2012a,b, 2013; Lan et al., 2009; Lan and 

Persaud, 2012; Lan and Srinivasan, 2013; Li et al., 2008; Park et al., 2010b; Pawlovich et al., 

2006; Persaud et al., 2010). Recognizing the fact that the FB method is a relatively new approach 

in before-after safety evaluation, while the EB is a well-established and widely used method, a 

number of studies have compared safety evaluations obtained via these two methods. For 

instance, a study by Lan et al. (2009) evaluated the safety effects of intersection conversion from 
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stop controlled to signalized control using both the EB and the univariate FB methods. The 

safety effects were found comparable; however, the FB method provided higher precision of the 

estimated safety effects. Later, Persaud et al. (2010) compared the univariate FB and EB 

methods in an assessment of the safety effects of the road diet program, with findings similar to 

those of Lan et al. (2009). Based on the above two studies, it was concluded that it may not be 

worth undertaking the complex FB approach, especially when data are available to conduct the 

EB approach (Persaud et al., 2010). 

Meanwhile, Park et al. (2010b) applied the EB and the univariate and multivariate FB 

methods to evaluate the posted speed limit (PSL) reduction on various Korean expressways. 

They found that for the low sample mean, safety effects estimated by the two methods were quite 

different. Moreover, the precision of the EB estimates was found to be greater than that of the FB 

estimates, which is quite opposite to the findings of Lan et al. (2009) and Persaud et al. (2010). 

In terms of the deviance information criterion (DIC), authors found that the multivariate Poisson-

lognormal (MVPLN) model provided a superior fit over the univariate PLN model, which is in 

line with earlier research on multivariate analysis (Aguero-Valverde and Jovanis, 2009; El-

Basyouny and Sayed, 2009a; Park and Lord, 2007). It is worth noting that the model form used 

by Park et al. (2010b) is different from the one used by Lan et al. (2009) and Persaud et al. 

(2010).  

Lan and Persaud (2012) used the univariate and multivariate FB methods to evaluate a 

hypothetical case. It was found that the PLN model was the best-fitted model in terms of the DIC. 

This finding is quite contrary to earlier studies on multivariate analyses, which showed that 

MVPLN models yielded lower DIC values compared to univariate PLN models (Aguero-

Valverde and Jovanis, 2009; El-Basyouny and Sayed, 2009a; Park and Lord, 2007). However, 
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the intervention effects obtained from the multivariate and univariate FB methods were found 

comparable. Referring to earlier studies (Lan et al., 2009; Persaud et al., 2010), it was concluded 

that it is still appropriate to conduct before-after safety evaluations using the EB method rather 

than the univariate and multivariate FB methods.  

Recently, Lan and Srinivasan (2013) evaluated the safety effects of converting late 

nighttime flash (LNF) to normal phasing operation at signalized intersections, using both the 

univariate and multivariate FB and the EB methods. The MVPLN model provided a better fit to 

the data, based on a much lower DIC value. It was also reported that the effect of the intervention 

was estimated higher for the multivariate FB method, indicating that the EB and univariate FB 

methods underestimate the safety effects. 

In summary, previous before-after safety evaluation studies often reported contradictory 

conclusions about the performance of the EB and the univariate and multivariate FB methods, in 

terms of both safety effects and model goodness of fit. In addition, in the earlier comparison of 

the FB and the EB methods, negative binomial (NB) distribution was assumed for the EB 

approach while PLN distribution was mainly assumed for the FB method. It might be more 

appropriate to use the same distributional assumption when comparing alternative approaches. 

 

2.7 Microscopic and Macroscopic Models 

Safety interventions are implemented mostly in microscopic level (either in intersection or road-

segment). Consequently, most of the before-after evaluations of safety interventions are based on 

microscopic analysis. For instances, Sayed et al. (2006) evaluated Stop Sign In-Fill (SSIF) 

program for 380 intersections; El-Basyouny and Sayed (2011) evaluated the effect of certain 

safety intervention on intersection safety; Persaud et al. (2010) evaluated the conversion of road 
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segments from a four-lane to a three-lane cross-section with two-way left-turn lane; Lan et al. 

(2009) evaluated the effect of conversion of rural intersections from stop-controlled to signalized. 

The explanatory variables considered in the microscopic model depend on whether the unit of 

analysis is intersection or road segment. A complete list of geometric design features, traffic 

control features, and site characteristics can be found in Highway Safety Manual (HSM, 2010). 

For network-wide interventions, such as neighbourhood speed limit reduction, application of the 

same methodology will require a separate evaluation for intersections and road segments, and 

then they can be combined to obtain the complete evaluation (HSM, 2010). This requires 

substantial traffic data, which may not be readily available, especially for low-volume road 

segments and unsignalized intersections. Therefore, a macroscopic (i.e., area-level or network 

level) analysis could be an effective alternative approach to evaluate such types of safety 

interventions. The use of macroscopic before-after evaluation is rarely found in the literature. 

However, a number of studies have developed macroscopic models to demonstrate the 

relationship between crash occurrence and numerous socio-demographic, road network, 

transportation demand and exposure variables (Aguero-Valverde, 2013; Amoros et al., 2003; 

Flask and Schneider, 2013; Hadayeghi et al., 2003; Hadayeghi et al., 2007; Hadayeghi et al., 

2010; Huang et al., 2010; Lovegrove and Sayed, 2006; Noland and Quddus, 2004; Quddus, 

2008; van Schalkwyk, 2008; Siddiqui et al., 2012; Song et al., 2006; Wang et al., 2012; Wei and 

Lovegrove, 2013; Wier et al., 2009). Among the studies on macroscopic modelling, unit of 

analysis varied from one study to another. For instance, Hadayeghi et al. (2003; 2007; 2010), 

Wang et al. (2012), and Wei and Lovegrove (2013) developed model for traffic analysis zone 

(TAZ); Lovegrove and Sayed (2006) used neighborhood as unit of analysis; Quddus (2008) used 

census ward as unit of analysis; Wier et al. (2009) used census tracts as unit of analysis; van 



32 

 

Schalkwyk (2008), Amoros et al. (2003), Huang et al., (2010) used county as unit of analysis. 

The above mentioned macroscopic models are developed to provide relevant information to the 

transportation planners so that the safety can be incorporated during the early stage of 

transportation network planning and designing.  

 

2.8 Univariate and Multivariate Models 

 

Crash data at a particular site or entity are usually classified by severity (e.g., fatal, injury, or 

property damage only), by the type of crash (e.g., angle, head-on, rear-end, sideswipe or 

pedestrian-involved), and/or by the number of vehicles involved (e.g., single or multiple), etc.  

Crash data of different types or severities can be modelled either independently, known 

as the univariate approach (Aguero-Valverde and Jovanis, 2006; Ahmed et al., 2011; El-

Basyouny and Sayed, 2010, 2012a,b; Lan et al., 2009; Lan and Persaud, 2012; Lan and 

Srinivasan, 2013; Li et al., 2008; Park et al., 2010b; Pawlovich et al., 2006; Persaud et al., 2010), 

or jointly, known as the multivariate approach (Aguero-Valverde and Jovanis, 2009; Aguero-

Valverde 2013; Chib and Winkelmann, 2001; Deublein et al., 2013; El-Basyouny and Sayed, 

2011, 2013; Lan and Persaud, 2012; Lan and Srinivasan, 2013; Ma et al., 2008; Park et al., 

2010b; Park and Lord, 2007; Song et al., 2006; Tunaru, 2002; Ye et al., 2009). The multivariate 

approach takes into account that crash data of different severities or types are correlated, while 

the univariate approach fails to do so. Empirical evidence showed that the multivariate method of 

modelling crash data improves a model’s goodness of fit (Aguero-Valverde and Jovanis, 2009; 

El-Basyouny and Sayed, 2009a; Ma et al., 2008; Park and Lord, 2007; Tunaru, 2002). However, 

despite the conceptual understanding and empirical evidence supporting the superiority of the 
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multivariate approach over the univariate, its application to before-after safety evaluations has 

not been very common.  

In the few before-after safety evaluation studies using multivariate modelling approach, 

the response variables were overlapping in nature (Lan and Persaud, 2012; Lan and Srinivasan, 

2013; Park et al., 2010b). For instance, Lan and Persaud (2012) used total, right angle, left turn, 

and rear-end crashes; Lan and Srinivasan (2013) used total, injury and fatal, and frontal impact 

crashes for the multivariate FB analysis. In all of these cases, the response variables were not 

mutually exclusive. Total crash and any other particular crash type or severity for a site will be 

correlated, which does not necessarily indicate the multivariate nature of the crash data. These 

ways of classifying crash types or severities as the response variables for multivariate modelling 

are inconsistent with earlier applications of multivariate modelling for exploratory analysis. For 

instance, Song et al. (2006) used intersection, intersection-related, driveway access, and non-

intersection crashes; Park and Lord (2007) used fatal, incapacitating-injury, non-incapacitating 

injury, minor injury, and property-damage-only (PDO) crashes; Ma et al. (2008) used fatal, 

disabling injury, non-disabling injury, possible injury, and PDO crashes; El-Basyouny and Sayed 

(2009a, 2011, 2013) used fatal and injury, and PDO crashes; Aguero-Valverde and Jovanis (2009) 

used fatal, major, moderate, minor, and PDO crashes; Anastasopoulos et al. (2012) used severe 

and non-severe crashes; and Wang and Kockelman (2013) used no-injury, possible injury, and 

injury crashes as the response variables in the multivariate models. In all these cases, the 

response variables were mutually exclusive. Therefore, the conclusions drawn from the previous 

before-after studies that used overlapping response variables for the multivariate method might 

be biased. 
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2.9 Spatial Model and Non-Spatial Models 

Conventional crash prediction model with negative binomial (NB) distribution assumes that sites 

are independent of each other and hence can be regarded as non-spatial model. However, as 

crash data are collected with reference to location measured as points in space (Quddus, 2008), 

spatial correlation exists between observations (LeSage, 1998). A number of studies have shown 

the presence of spatial correlation in crash data (Levine et al., 1995; MacNab, 2004; Aguero-

Valverde and Jovanis, 2006; 2008; 2010; Quddus, 2008; El-Basyouny and Sayed, 2009; Wang 

and Abdel-Aty, 2006; Guo et al., 2010; Ahmed et al, 2011; Aguero-Valverde, 2013). One 

common similarity among most of these spatial models is that the spatial component is 

incorporated mostly for univariate response variable. 

Few studies focused on a multivariate spatial modelling approach in crash data analysis. 

Song et al. (2006) made four different assumptions on spatial correlation for modelling four 

types of crashes (intersection crashes, intersection-related crashes, driveway-related crashes, and 

non-intersection-related crashes). Using data from 254 counties in Texas, the authors found that 

the model with multivariate conditional autoregressive (CAR) and the model with correlated 

CAR outperformed the model with univariate CAR. The deviance information criterion (DIC) 

drop was reported as 13.6 when the multivariate CAR model was compared with the univariate 

CAR model.  

Aguero-Valverde (2013) used univariate and multivariate spatial models to estimate 

excess crash frequency for 81 cantons. A variety of canton-level characteristics were included as 

independent variables in the model. Multivariate spatial models were found to be better fitted to 

the data, with a DIC drop of 10 compared to the univariate spatial models. However, the 

variances of the spatial errors were not significant. The author stated that this might be due to the 
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small number of spatial units, as only 81 cantons were used. The author also ranked sites using 

the models, and found that the ranking of sites was similar for both models, but the spatial 

smoothing due to the multivariate CAR random effects was evident in some extreme values.  

Similarly, Wang and Kockelman (2013) compared multivariate spatial models with 

univariate spatial and multivariate non-spatial models for pedestrian crashes. Using data for 218 

traffic zones, the authors concluded that the multivariate CAR model outperformed the other two 

models a with very large drop in DIC values.  

Narayanamoorthy et al. (2013) also proposed a spatial multivariate count model to jointly 

analyze the traffic crash-related counts of pedestrians and bicyclists by injury severity. Census 

tract was used as a unit of analysis to apply the proposed model. The results suggested that 

ignoring spatial effects can result in substantially biased estimation of the effects of exogenous 

variables. However, no comparison with univariate spatial models was made.  

A recent study by Barua et al. (2015)) used two different datasets to compare the 

performance of multivariate CAR models with univariate CAR models. It was reported that the 

multivariate spatial models provided a superior fit over the univariate spatial models with a 

significant drop in the DIC value (35.3 for one dataset and 116 for another).  

From the methodological standpoint on including spatial correlation in crash modelling, 

various approaches have been used in the literature. However, the most frequently used approach 

by far is CAR distribution for modelling spatial correlation. Moreover, Quddus (21) compared 

several distributions to address spatial correlation, and found that CAR distribution under a 

Bayesian framework can provide more appropriate and better inference over classical spatial 

models. In addition, El-Basyouny and Sayed (22) compared three different spatial models (i.e., 
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CAR, multiple membership (MM), and extended multiple membership (EMM) with non-spatial 

Poisson-lognormal (PLN) model). The authors found that EMM and CAR models provided 

similar goodness-of-fit and outperformed the PLN and MM model.  

 

2.10 Intervention and Conventional Model 

In the full Bayesian before-after safety evaluation, two different modelling approaches are 

typically employed in the literature. In the first approach, before and after period crash data for a 

group of reference sites and only the before period data of treated sites are included to develop 

the model. While in the second approach, before and after period crash data for both treated and 

reference sites are included in the model with indicator variable to distinguish between before 

and after period. The former approach can be regarded as conventional approach as it follows the 

similar procedure used in empirical Bayesian (EB) approach while the later one is often referred 

as intervention model. In the existing literature, Pawlovich et al. (2006), Park et al. (2010b),  El-

Basyouny and Sayed (2010) and El-Basyouny and Sayed (2011) used full Bayesian intervention 

model for various before-after safety evaluation, while Li et al. (2008), Lan et al. (2009), Persaud 

et al. (2010) used conventional full Bayesian approach. 

It is worth noting that when spatial effect is not considered in the model formulation for 

the before-after evaluation, both modelling approach are equally applicable. However, when the 

spatial effect of the data is addressed in the model formulation, conventional modelling approach 

cannot be used. This is because of the fact that the conventional approach includes only the 

before period data of the treated sites with both before and after period data of reference sites, 

thereby create an imbalance adjacent matrix for modelling spatial effect. Therefore, when spatial 
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effect is included in the model formulated for before-after evaluation, intervention model 

approach was used in the current study.  

2.11 Summary of Literature Review 

Use of both speed and crash data for before-after evaluation of traffic safety intervention is quite 

common in the literature. However, several key issues have been identified that warrant further 

investigation for more reliable and unbiased estimate of the effect of a safety intervention. Most 

evaluations have adopted a method of non-model-based naïve before-after speed data analysis 

where various speed-related performance measures were compared and statistical tests were 

conducted to check whether the measures were statistically different between the before and after 

periods. These naïve before-after speed data analyse often fail to take account for the 

confounding factors and time trend effects, leading to bias in estimation of the effects of safety 

intervention on vehicle speed behavior. Furthermore, there is a lack of the use of appropriate 

statistical methods to verify that the actual speed reduction is significant. While different 

modelling techniques have been employed in the literature for modelling different speed 

characteristics, their application for before-after evaluation of speed data is rarely documented in 

the literature. Although non-model-based approach can provide valuable insights about the safety 

effects of an intervention, a model-based approach could be more promising and reliable, due to 

its capability to provide more insight about the factors affecting speed choice while taking into 

account the effects of confounding factors.  

For modelling mean or 85
th

 percentile speed, conventional ordinary least square (OLS) 

regression is the most commonly used method reported in the literature. This single level 

regression modelling method assumes that each observation of speed is independent. In reality, 

the speed data are often multilevel (at-least two-level) in nature, as the data are collected for 
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multiple sites with multiple observations from each sites. The data collected from different sites 

can exhibits different speed characteristics because of the dissimilarity in site characteristics, 

such as geometric design, surrounding environment, etc. Similarly, within-site speed data can 

show variability because of the difference in driver characteristics, traffic flow, vehicle type, 

temporal pattern, etc. The conventional OLS regression method cannot address these two 

variances and hence can results in biases in speed prediction. While several alternative 

methodologies have been used in the literature to address the limitations of the OSL regression, 

they often fail to address the heterogeneity of the speed data.  

For the before-after evaluation of crash data, the empirical Bayesian (EB) approach has 

been extensively used in the before-after evaluation of crash data and is considered to be the 

current state-of-the–art approach to before-after evaluation. However, recent literature explored 

the application of full Bayesian method to take account for the limitations associated with the 

empirical Bayesian method. The Full Bayesian (FB) approach has been reported to have more 

flexibility and advantages over the EB approach. Specifically, the FB method can address the 

multivariate nature of the crash data into the modelling formulation. However, the application of 

multivariate FB method for before-after safety evaluation was not widely explored in the existing 

literature.  

One major advantage of the FB method is its ability to consider spatial correlation of 

crash data into the model formulation. A significant number of cross-sectional studies have 

included spatial correlation in the FB method and concluded that the inclusion of spatial 

correlation improves model goodness-of-fit and the precision of parameter estimates. However, 

its application in before-after safety evaluation has rarely been documented in the traffic safety 

literature.   
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Finally, microscopic (i.e., intersection or road segment as unit of analysis) before-after 

evaluations have been extensively used to evaluate traffic safety interventions. For network-wide 

interventions, application of the same methodology will require a separate evaluation for 

intersections and road segments, and then they can be combined to obtain the complete 

evaluation. This requires substantial traffic data, which may not be readily available, especially 

for low-volume road segments and unsignalized intersections. Therefore, a macroscopic (i.e., 

area-level or network level) analysis could be an effective alternative approach to evaluate such 

types of safety interventions.  While use of macroscopic models for various exploratory analyses 

has been reported in the literature, their application to before-after safety evaluation was rarely 

found in the literature.  
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3.0 Methodology 

This chapter presents the detail description of the methodology developed to model and evaluate 

speed and crash data in an observational before-after setting. This chapter also presents the 

processes involved in the estimation and assessment of the models 

 

3.1 Before-After Speed Data Evaluation  

This thesis develops both non-model and model based approach to evaluate the before-after 

speed data. For the model-based approach, two alternative modelling techniques were compared: 

one of them is generalized mixed-effect model and another is multilevel model. While the 

model-based approach is more appropriate and reliable, data constraint might limit the evaluation 

to non-model based approach only. The detail description of non-model based approach and the 

generalized mixed-effect model and the multilevel model are presented in next sub-sections. 

 

3.1.1 Non-Model based Approach 

This research used a before-after evaluation with control group to take account of the various 

biases. Several performance indicators are used to evaluate the impact effect:  

i) Mean free-flow speed: Mean speed of vehicles having headway greater than 2 seconds; 

ii) Standard deviation of speed: Measure of dispersion of the vehicle free-flow speeds 

calculated from deviation from the mean free-flow speed; 

iii) Percentile speed plot: The distributions of vehicle speed by before-and-after periods; 

iv) Level of speed limit violation: Calculated as the percentage of vehicles exceeding 50 

km/h and 65 km/h; and 

v) 85th percentile speed: Speed exceeded by 15% of the drivers. 
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Separate investigations were made for time of day, day of week, and vehicle and road 

type. The appropriate method for testing the statistical significance of differences of mean speed 

before ( 1 ) and after ( 2 ) a intervention is a two-sample t test with either pooled variance (in 

case of equal variance) or separate variance (in case of unequal variance). The null hypothesis is 

that there is no difference in the mean speeds 0 1 2( : )H   , while the alternative hypothesis is 

that the post-intervention mean speed is reduced 1 2( : )aH   . For this thesis, failing to reject the 

null hypothesis means that the posted speed limit (PSL) reduction is not effective at the 

confidence level under consideration, while rejecting the null hypothesis indicates that the PSL 

reduction is effective in reducing vehicle speed. The corresponding equations, which were 

modified to account for the time trend effect estimated from the control communities, are: 

*

2 1( ) Speed Reductionx x
t

SE SE


           (3-1) 

*

1 1 Adjustment factorx x           (3-2)  

Mean speed in the after period at control group
Adjustment factor=

Mean speed in the before period at control group
   (3-3) 

For t-test with pooled variance, 
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For t-test with separate variance, 
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where, 

1 2,x x pre- and post-intervention sample means 

2 2

1 2,s s pre- and post-intervention sample variances 

1 2,n n pre- and post-intervention sample sizes 

SE  standard error 

2

pS  pooled variance 

Since this thesis involves a before-and-after evaluation with control group, an adjustment 

to the before period sample mean 1( )x  using the data collected from the control group is required. 

The adjustment is carried out by multiplying 1x  by the ratio of the mean speed in the after to the 

before period of the control group (using Eq. 3-3) to obtain an estimate of the expected mean 

speed in the after period, had no speed limit reduction been implemented (using Eq. 3-2). The 

literature indicates that the standard error be underestimated, because the control group ratio is 

applied without any measurement of uncertainty (Persaud and Lyon, 2009). Although it has been 



   

43 

 

suggested that this lack of precision will not affect the final results, this thesis provides empirical 

evidence to support this suggestion.  

While a particular intervention could result in a mean speed reduction, the standard 

deviation would increase, potentially threatening the safety of road users (Finch et al., 1994). The 

literature suggests statistical tests for speed variance to evaluate the effectiveness of speed 

reducing measures (Dell’Acqua, 2011). Thus, Fisher’s F-test was conducted to check the change 

in speed variance. The null and alternative hypotheses are 
2 2

0 1 2:H   and
2 2

1 2:aH   , 

respectively. In this thesis, if the before period is considered as sample 1 and the after period as 

sample 2, then rejecting the null hypothesis means that the speed variance has been reduced in 

the after intervention period.  

A comparison was made between speed limit violation, and 85
th

 percentile speed. In 

addition, percentile speed plots were created for both the treated and the control groups to 

differentiate the before versus after change in speed. These plots provide a clear visualization of 

the change in speed distribution. 

 

3.1.2 Generalized Mixed Model Approach 

While non-model based approach can provide valuable insights about the safety effects of an 

intervention, a model-based approach could be more promising, reliable and transferable, due to 

its capability to provide more insight about the factors affecting speed choice while taking into 

account the effects of confounding factors. This thesis applied mixed-effect normal intervention 

and mixed-effect binomial logistic intervention model for analysing mean free-flow speed and 

speed below or equal to various thresholds, respectively. 
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Let ijY denote mean free-flow speed at speed survey site i (i=1,2…,N) at hourly observation j (j= 

1, 2, ..., M). Under the mixed-effect modelling framework, ijY can be expressed as the following 

(Ntzoufras, 2009): 

2~ ( , )ij ijY N                  (3-9) 

0 1 2 3 4 4 5 5ij i j i j k k iT t Tt x x x s                                 (3-10) 

2~ (0, )i ss N                                       (3-11) 

where variance component 
2

s  measures the between-site variability, while 
2

 accounts 

for the within-site variability (Ntzoufras, 2009); Ti is the indicator for intervention (equal to one for 

speed measurement at treated sites, zero for comparison sites); tj is the indicator for time (one for 

the after period, zero for the before period); 4 5, , kx x x are a set of variables representing 

different features specific to each site and the speed hour, such as hourly vehicle count, weekday 

versus weekend indicator, day versus night indicator, road class, road width, etc.; and 

0 1, ,... k   are the regression coefficients. The model presented in Eq. (3-10) is referred to as the 

intervention model as it includes indicator variables to estimate the effect of the intervention.  

The total variability of the response variable Yij is the sum of the within-site and between-

site variability (i.e.,
2 2

s    ), while the covariance between two measurements of site i is equal 

to the between-site variability (i.e., 
2

s ) (Ntzoufras, 2009). Thus, the within-site correlation can be 

calculated as such:  
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2
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s

s 




 



             (3-12) 

A value of   close to one suggests high within-site correlation, illustrating the 

importance of using a mixed model, while a value close to zero implies low within-site 

correlation, indicating that random effects do not improve the model 

Let 
ijc denote the number of vehicles at speed survey site i that are below or equal to a 

particular speed threshold for an hourly observation j, and 
ijV denotes the total vehicle count for 

site i at hour j. If ijp is the probability that the speed is below or equal to the speed threshold, 

then according to the mixed-effect binomial logistic modelling framework,  

~ ( , )ij ij ijc Binomial p V
                                                                                                            

(3-13)
 

     (   )                                                                 

(3-14)
 

2~ (0, )ij N   , 
2~ (0, )i ss N              (3-15)

 

The definitions of the parameters and variables in Eq. (3-13) through (3-15) are the same 

as those presented for mixed-effect normal intervention model. 

In full Bayesian approach, it is necessary to specify the prior distributions of the 

parameters in order to estimate the posterior distribution In the current thesis, the following 

priors were used for all models: 
2~ (0,100 )N , 

2 ~ (0.001,0.001)Gamma 
. 
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Now to use the mixed-effect model, let TB and TA  represent the predicted free-flow 

speed for the treated sites in the before and after periods, respectively, and let CB and CA

represent the predicted free-flow speed for the comparison sites in the before and after periods, 

respectively. According to Park et al. (2010b), the ratio CA CBr     can be used to adjust the 

speed prediction for general trends between the before and after periods. The predicted speed in 

the after period for the treated site had the countermeasures not been applied is thus given by

TB r   . Now the change in speed due to the PSL reduction can be given by 

s TA TB TAr         . Under the FB framework, if the 95% credible interval of s does not 

contain zero, then the change in speed due to the change in the PSL is statistically significant. A 

positive value of s indicates that the PSL reduction was able to decrease the average free-flow 

speed, while a negative value indicates an increase in the average free-flow speed.   

Often, the odds ratio (OR), also referred to as the index of effectiveness of the 

countermeasure, is calculated using the following formula: 

TA CB TB CAOR                 (3-16) 

Following similar notations for the subscript mentioned above, the change in the 

probability of speed being below or equal to a particular threshold can be given by 

c TA TBp p r     where CA CBr p p . A positive value of c indicates an increase in the 

probability in the after period. The odds ratio for this case can be expressed as the following: 

TA CB TB CAOR p p p p             (3-17) 
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3.1.3 Multilevel Modelling Approach 

The final modelling attempt made in this thesis for analyzing speed data was multilevel approach 

to model the hourly free-flow speed data. For the current data, a three-level model was formed. 

The multilevel model can be one of three types: varying-intercept, varying-slope, and varying-

intercept with varying slopes (Gelman and Hill, 2007); however, the current thesis employed 

only the varying-intercept model. The other two model types are simply extensions of the 

employed model. The regression model corresponding to each level can be expressed by the 

following equations:  

Level 1:  

),0(~, 2

1

0  NXy ijkijk

L

l
liljkijk  


          

(3-18)
 

Level 2: 
 

),0(~, 2

1

00  NX jj

M

m

jmmkjk  


                       (3-19)
 

Level 3: 

),0(~, 2

1

00 kkk

N

n

knnk NX   


          (3-20)
 

Here, ijky is the hourly mean free-flow speed for observation i , ),......,2,1( Ii  , site j

( ),....,2,1 Jj  , and community  Kkk ,.....,3,2,1 ; 
iX , 

jX , and 
kX  represent the sets of 

explanatory variables related to the observation, site, and community, respectively; l , m , and 

n are the regression parameters related to ),...,2,1( Lll  , ),...,2,1( Mmm   , and ),...,2,1( Nnn   
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explanatory variables; 0 is the intercept term; ijk is the error term; and j and k  are the random 

effects related to site and community, respectively. The above equations can be used to derive 

the equations presented in section 2.3 of the literature review. 

It is worth noting that the constant slopes were considered for all the explanatory 

variables, except for time period. For time period variable, varying slope by site type (i.e., treated 

versus comparison) was considered to account for the fact that the effect of the time period (i.e., 

before versus after) on the free-flow speed is expected to differ from the treated to the 

comparison sites.     

The distribution of the error term in Eq. (3-18) represents homogeneous variance. The 

current thesis also considered an extension of this assumption where the variance was allowed to 

differ across sites, as shown by Eq. (3-21).  

),0(~ 2

][ jijk N 
                                                                                                                       

 (3-21) 

In the current thesis, the following priors were used for all models:
2~ (0,100 )N ,

2 ~ (0.001,0.001)Gamma 
. 

To use the model for the estimation of the effect of a intervention on free-flow speed, the 

same procedure outlined for the mixed-effect model can be used. 

 

3.2 Before-After Crash Data Evaluation 

A conventional way of expressing the overall safety effect of an intervention is to use the odds 

ratio (HSM, 2010). For the conventional EB and the FB methods, the odds ratio, also referred to 

as the crash modification factor (CMF), is expressed as the following:  

          ∑            ∑                                                                                                   

 

(3-22) 
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where   is the observed number of crashes per site in the after period of the intervention, 

and   is the expected number of crashes per site that would have occurred in the after period 

without the safety intervention. The expected number of crashes,  , is estimated using a 

reference group of sites in both the EB and the FB approaches, although the procedure of 

estimation differs. The next sections describe the detailed procedure to obtain  , using the FB 

and the EB methods.  

For the intervention modelling approach, the odds ratio is expressed as the following: 

                                                                                           (3-23)          

Where,     and     represent the predicted crash for the treated sites in the before and 

after periods, respectively, and     and     represent the predicted crash for the comparison 

sites in the before and after periods, respectively. If the eq. (3-22) and (3-23) is compared, 

             and      . 

The overall safety effectiveness as a percentage change in crash frequency across all sites 

can be expressed as 

Safety Effectiveness                                                                                                             (3-24) 

3.2.1 Modelling Crash Data 
 

Crash data exhibits several unique characteristics that need to be addressed in the modelling to 

obtain unbiased prediction. Following are the features of the crash data that needs special 

attention: 

a) Crash data are rare, random, discrete and non-negative event (Poisson variation). 
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b) Crash data are over-dispersed (Poisson extra-variation), meaning that the variance 

exceeds the mean of the crash counts. 

c) Crash data exhibit spatial correlation, meaning that the assumption that the entities are 

independent from each other might be violated for crash data. 

d) When multiple year of crash data are used, a general trend is obtained reveals in the data 

e) Crash data exhibit correlation among different severity level or types.  

Most of the literature related to the development of CPMs (also known safety 

performance functions (SPFs)) accounts for the first two features of crash data (El-Basyouny and 

Sayed, 2009; Lord and Mannering, 2010).  However, CPMs should be able to capture each of the 

above features for reliable and accurate crash prediction. It is important to note here that the EB 

approach relies on the NB distribution, while FB can accommodate other distribution as well as 

the other features of the crash data mentioned above. A summary of the developed modelling 

scenarios for the before-after evaluation is presented in Table 3-1. As seen, different modelling 

formulations were considered that include both non-spatial and spatial models. For the empirical 

Bayesian method, Poisson-lognormal distribution was considered for consistency with the full 

Bayesian method. 

Table 3-1 Modelling scenarios to be developed for before-after evaluation 

1. Full Bayesian (FB) Univariate model with Poisson-lognormal (PLN) distribution  

2 FB Multivariate model with PLN (MVPLN) distribution 

3. FB Univariate model with PLN distribution and conditional autoregressive (CAR) spatial 

effect. 

4. FB MVPLN distribution and multivariate CAR (MVCAR) spatial effect. 

5.  FB shared component model with PLN distribution and (CAR) spatial effect. 

6. Empirical Bayesian model with PLN distribution. 
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3.2.2 Full Bayesian Models 

Let 
k

itY denote the observed crash count at entity i (i= 1, 2, ..., n) during time period t for a 

severity level k (k= 1, 2, ..., K). 

For the research in this thesis, entity i is neighborhood for macroscopic model and road 

segment for microscopic model; Furthermore, t refers a period of three years from October 2006 

to September 2009 or October 2010-Sepetember 2013 for microscopic model, while individual 

year for macroscopic model; and k refers to two severity levels: severe (i.e., fatal and injury) and 

Property-damage-only (PDO) crashes.  

Crash data are count data that is rare, random and non-negative. It is assumed that crashes 

at the n entities are independent and that 

| ~ ( )k k k

it it itY Poisson                                      (3-25) 

Where 
k

it is the Poisson parameter. The probability of
k

ity , k severe crashes occur during 

period t for entity i, is given by 
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                                          (3-26) 

Due to the over-dispersion of crash data, it is common to incorporate an error term in the 

Poisson parameter to capture the unobserved or unmeasured heterogeneity as shown below: 

exp( )k k k

it it iu            (3-27) 
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where 
k

it  is the systematic component of the model, determined by a set of covariates 

representing road segment-specific attributes and a corresponding set of unknown regression 

parameters and the term   
   represents heterogeneous random effects.  

 For microscopic model,    
  can be expressed as 

  (   
 )    

    
          

           
   ∑   

    
 
                                                    (3-28) 

where is the intercept; is the length of road segment ; and is the average 

AADT of road segment  for period . , , and are the regression parameters for 

length, AADT, and time period, respectively. represents the set of covariates, other than 

length, AADT, and time period, while denotes the corresponding regression parameters. In 

Eq. (3-28), for the time period indicator variable, t=0 for the before period, and t=1 for the after 

period. 

For macroscopic model, which is intervention model, the    
  can be expressed as 

  (   
 )     

    
             

   ∑   
     

 
                                                                 (3-29) 

Where    
  is the intercept;      is the vehicle-kilometer travelled for neighbourhood ; 

and T is the indicator variable with T=1 indicate treated neighbourhood and T=0 for reference 

neighbourhood.   
  and    

 are the regression parameters for VKT, and indicator variable, 

respectively.      represents the set of covariates,  while   
 denotes the corresponding regression 

parameters. 

Now, depending on the assumption made for the heterogeneous random effect , 

different Poisson-mixture models can be formulated. The two most commonly used Poisson-

mixture models are PLN and Poisson-gamma (or negative binomial) models. Various empirical 

studies have shown the goodness of fit improves by using Poisson-lognormal (PLN) distribution 
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since its tails are known to be asymptotically heavier than those of the Poisson-gamma 

distribution (Aguero-Valverde and Jovanis, 2008; Kim et al., 2002; Lord and Mannering, 2010; 

Lord and Miranda-Moreno, 2008; Miaou et al., 2003). Hence, PLN models were used in the 

current thesis. Moreover, the assumption made on will define whether the model is univariate 

or multivariate in nature. 

For the univariate PLN models, where each group of crashes is modelled independently, 

ignoring the possible correlations, the following assumption is made: 

          
                

   or      
             

        (3-30) 

Where   
  represents the within-entity (extra) variation and 1.k  For 

2

u 
, following prior was 

used: gamma ( , )   , where  is a small number (e.g., 0.01 or 0.001) (El-Basyouny and Sayed, 

2009; Hadayeghi et al., 2010). 

For multivariate PLN (MVPLN) models, where the crash data of different severity levels 

are modelled jointly,   
 denotes multivariate normal error distribution as shown below: 

   (  
 )               ∑   or   

           ∑                                                              (3-31) 
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                                (3-32) 

The diagonal elements, of the variance-covariance matrix, ∑ represent the variances, and 

the off-diagonal elements,     represent the covariance of   
 and   

 . For model estimation, 

following prior is used: ),(~1 KIWishart , where I is the KK   identity matrix (Chib and 

Winkelmann, 2001; Congdon, 2006). 
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All the modelling formulation described above ignore the fact that the crash data exhibits 

spatial correlation. Spatial correlation can be accounted for in Eq. (3-27) by incorporating a 

spatial random effect (also known as spatial correlation or structured variation or structured error) 

as follows (El-Basyouny and Sayed, 2009): 

exp( )exp( )k k k k

it it i iu s   or   (   
 )    (   

 )    
    

                    (3-33) 

The spatial component 
k

is  suggests that entities that are closer to each other are likely to 

have common features affecting their crash occurrence. Based on literature, the most common 

way of modelling spatial effect is to use first order conditional autoregressive (CAR) model. For 

the univariate model, spatial effect is assumed to have a univariate CAR distribution while for 

the multivariate model, multivariate CAR distribution is assumed. 

The current thesis also developed a special modelling formulation to take account of the 

spatial effect which is known as shared component model. The application of this model was 

reported in the public health research (Knorr-Held and Best, 2001). Under this modelling 

formulation, Poisson parameter is expressed as 

       
     (   

 )    
              (3-34) 

Now, if there are two response variables (i.e.,        , then 

  
        

  and   
         

           (3-35) 

Here,   is response-specific random effect,   is shared random effect, and    is a scaling 

factor to allow the risk gradient associated with the shared component to be different for each 

response variable. 

For response-specific random effect: 

  
       

       
             (3-36) 
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Here,      
  is the unstructured effect and      

  is the spatial effect for the response-specific 

random effect.      
  is assumed to be normal distribution and      

  is assumed to be conditional 

autoregressive (CAR) distribution. 

Similarly, for the shared random effect, 

                          (3-37) 

      is the unstructured effect and       is the spatial effect for the shared random effect.       is 

assumed to be normal distribution and       is assumed to be conditional autoregressive (CAR) 

distribution. 

3.2.3 Gaussian Conditional Autoregressive (CAR) Distribution 

The joint distribution of the spatial effect, s can be expressed as follows 

         ∑           (3-38) 

Where 1 2( , ........, )Ns s s s , N is the number of entity (e.g., road segment), MVN

indicates the N -dimensional multivariate normal distribution,  is the 1 N mean vector, 0v 

controls the overall variability of the is and  is an N N positive definite and symmetric 

matrix presents the between-entity correlation.  

Between-entity covariance matrix can be written in the following form (Thomas et al., 

2004): 

1( )v v I C M              (3-39) 
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Where  

I N N  identity matrix 

M N N  diagonal matrix, with elements iiM  proportional to the conditional variance of 

|i js s  

C N N   weight matrix, with elements ijC denoting spatial association between entities i and j . 

 =controls overall strength of spatial dependence.  =0 implies no spatial dependence. 

For the covariance matrix in equation (3-38) and using standard multivariate normal 

theory (Besag and Kooperberg, 1995) the joint multivariate Gaussian model can be expressed in 

the form of a set of conditional distributions: 

        (   ∑     (     )      )                    (3-40) 

is denotes all the elements of s  except is  

From modelling point of view, it is required to specify C , M  and  . Other constraints 

required ensuring  being a positive definite and symmetric matrix is mentioned by Thomas et 

al. (2004).  

CAR Model for Univariate 

Univariate Gaussian CAR models (Besag et al., 1991) are most commonly used one for 

modelling spatial effects (Quddus 2008; El-Basyouny and Sayed, 2009; Wang et al., 2012; Guo 

et al., 2010). According to Besag et al. (1991), the matrix C can be defined as an adjacency 

matrix where 0iiC  , and 1/ij iC n if entity i and j  are adjacent and 0ijC  otherwise. The 
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diagonal matrix M  is defined as 1/ii iM n . For these particular definition C and M , 1  . Here 

in is the number of neighbours of site i . Under these definitions, the conditional distribution 

equation (3-40) can be expressed as 

        (  ̅ 
  

 

  
⁄ ), 

( )

i j i

j C i

s s n


  , 
2

sv        (3-41) 

where ( )C i denotes the set of neighbors of entity i and 
2

s is the spatial variation.  

In equation (3-41), is  is normally distributed with conditional mean is the mean of 

adjacent spatial effects, while the conditional variance is inversely proportional to the number of 

neighbors. In the model estimation, it is required to specify prior distribution of 
2

s . It is assumed 

that 
2 ~ ( , )s gamma  

, where   is a small number (e.g., 0.01 or 0.001). 

CAR Model for Multivariate 

For p -dimensional multivariate response variable, the spatial effect can be expressed as follows: 

1 2( , ........, ), 1,2,...., .i i i pis s s s i N          (3-42) 

Keeping the same definition of C , M , and  , the conditional distribution under 

multivariate assumption can be expressed as (Thomas et al., 2004): 

                      (  ̅ 
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                                (3-43) 
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Similar to univariate CAR, it is required to specify prior distribution of v  for model 

estimation. 

For multivariate CAR model, following priors were used: 

 
1 ~ ( , )v Wishart I K

, where I is the KK   identity matrix (Aguero-Valverde, 2013).  

 

3.2.4 Empirical Bayesian Approach 

 

Within the EB framework, estimating the number of expected after-period crashes, , involves 

two main steps: i) develop the safety performance function (SPF), and ii) combine the number of 

predicted crashes with the observed crashes to estimate . The SPFs are developed 

independently for each crash group. Conventionally, a negative binomial (NB) distribution is 

used for developing the SPF within the EB framework (HSM, 2010). However, in the current 

thesis, PLN distribution was assumed for the EB approach to be consistent with the FB analysis. 

Before using the estimated SPFs of different crash groups in the EB method, they were calibrated 

with the reference group data for both the before and after periods (Hauer, 1997; Persaud and 

Lyon, 2007; Persaud et al., 2010). The purpose of performing the calibration is to account for the 

influence of various external factors that change from the before period to the after period and 

that cannot be accounted for through the available covariates in the model (Hauer, 1997). 

According to the principle of the EB approach, the expected number of crashes at the 

treated sites before the implementation of intervention ( ) is the weighted average of the 

predicted crashes ( ) and observed crashes ( ) as shown below (Hauer, 1997): 
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(3-45)

 

        
 

Here, 

                                                                    

(3-46) 

For the PLN model (El-Basyouny and Sayed, 2009b), 

and 
                    

(3-47) 

In the above equation, is the over-dispersion parameter for crash group , which is 

obtained as a part of the PLN model estimation using the approximate maximum likelihood 

technique.  

To address the change in traffic volume from the before period to the after period, a 

factor  is applied to to obtain the (Hauer, 1997; HSM, 2010). Note that, 

since the current thesis used three years of crash data for both periods, no adjustment is needed 

for the duration of the before and after periods.  

                   
(3-48)

   
 

where,  

                       (3-49) 

Within the EB framework, the overall odds ratio obtained from Eq. 3-22 is biased, and 

hence an unbiased estimation of the overall odds ratio is calculated with the following equation 

(Hauer, 1997; HSM, 2010): 
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                      (3-50)   

where,  

          (3-51) 

Now, to examine the statistical significance of the safety effectiveness, the variance of 

the odds ratio is calculated using the following formula (HSM, 2010): 

                    

(3-52) 

Standard error of safety effectiveness,   

If , the intervention effect is significant 

at the (approximate) 95% confidence level (HSM, 2010).  

 

3.2.5 Parameter Estimation 

The posterior distributions needed in the full Bayesian (FB) approach can be obtained using 

MCMC sampling techniques available in WinBUGS (Lunn et al., 2000). The Wishart 

distribution can be sampled using a Gibbs sampler. Monitoring convergence is important 

because it ensures that the posterior distribution has been found, thereby indicating when 

parameter sampling should begin. To check convergence, two or more parallel chains with 

diverse starting values are tracked to ensure full coverage of the sample space. Convergence of 

multiple chains is assessed using the Brooks-Gelman-Rubin (BGR) statistic (Brooks and Gelman, 
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1998). A value less than 1.2 of the BGR statistic indicates convergence. Convergence is also 

assessed by visual inspection of the MCMC trace plots for the model parameters, as well as by 

monitoring the ratios of the Monte Carlo errors relative to the respective standard deviations of 

the estimates; as a rule, these ratios should be less than 0.05. 

For Empirical Bayesian (EB) approach, the NLMIXED procedure of statistical software, 

SAS version 9.3, was used to estimate the parameters of the PLN model (SAS Institute Inc., 

2011). The Akaike information criterion (AIC) was used to compare alternative models, with a 

smaller AIC representing better fit. For the individual parameters to be significant, t-statistics 

were used at the 95% confidence level (5% level of significance). 

 

3.2.6 Model Assessment 

When different modelling approaches are used, it is important to compare the performance of the 

models and find the best-fitting model. This thesis adopted the Deviance Information Criterion 

(DIC) for model comparison. As a goodness-of-fit measure, DIC is a Bayesian generalization of 

Akaike’s Information Criteria (AIC) that penalizes larger parameter models. Similar to the AIC, 

the model with the smallest DIC is estimated to be the model that would best predict a replicate 

dataset of the same structure as that currently observed (Spiegelhalter et al., 2002). According to 

Spiegelhalter et al. (2005), it is difficult to determine what would constitute an important 

difference in DIC. Very roughly, differences of more than 10 might definitely rule out the model 

with the higher DIC. Differences between 5 and 10 are considered substantial. However, if the 

difference in DIC is less than 5, and the models make very different inferences, then it could be 

misleading to report only the model with the lowest DIC. Basyouny and Sayed (2009a) showed 

that the DIC is additive under independent models. Therefore, DIC values of the univariate 

models were added to compare with the corresponding multivariate models.  For the individual 
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parameters to be significant, the credible interval at 95% confidence level should not contain 

zero. 

For EB method, AIC was used to compare alternative models. For the individual 

parameters to be significant, t-statistics are used at 95% confidence level (5% level of 

significance). 
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4.0 Data Description 

4.1 Background 

Citizen Satisfactory Surveys conducted in 2004, 2007 and 2009 by the Edmonton Police Service 

(EPS) have identified speeding as the top community problem in Edmonton. Moreover, 

Edmonton City Councillors continuously receive speeding complaints, which are often validated 

through subsequent spot speed surveys. Consequently, the City of Edmonton Office of Traffic 

Safety (OTS) led a workshop and survey initiative to obtain community partners’ and key 

stakeholders’ views about the potential of reducing the speed limit on residential roads. Based on 

the recommendations that emerged from the workshop and online survey, a decision was made 

to reduce the speed limit from 50 km/h to 40 km/h on a select number of residential roads in the 

City of Edmonton. 

 The community selection process started in October of 2009 and ended in February 2010. 

The Analytic Hierarchy Process (AHP), a well-known multi-criteria decision analysis tool, was 

used to identify the top 25 neighborhoods, from which six candidate communities (eight 

neighbourhoods) were selected to undergo PSL reduction. Three more communities were 

selected to serve as control groups. Historical data for crashes, speed characteristics, traffic 

volume, vulnerable road users, speeding complaints, impaired driving and community league 

recommendations was used as the criteria in the AHP process (details of the community selection 

process can be found in Tjandra and Shimko, 2011). The installation of the new 40 km/h speed 

limit signs started in early April 2010, but the signs remained covered for the remainder of the 

month until the bylaws came into effect on May 1, 2010. No engineering nor infrastructure 

changes were made in the study area.  
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 To ensure compliance with the new PSL and to reduce speeding, a variety of educational 

and enforcement measures were taken. Educational measures included i) a pre- and post-

communication plan; ii) media campaign (local TV, print, radio, online); iii) speed display 

boards (also known as speed trailers), dynamic messaging signs and school dollies; and iv) 

community speed programs (Speed Watch, Neighborhood Pace Cars). In terms of enforcement, 

two types of mobile photo enforcement were used: safe speed community vans and covert photo-

radar trucks.  Enforcement was performed in three waves: the first wave was in June, where only 

safe speed community vans were used, while the second and third waves were in September and 

October, respectively, and these included both types of enforcement. Each of the six 

communities received approximately 200 hours of enforcement deployment between the time 

periods of May 2010 and October 2010. Enforcement before the speed limit reduction was quite 

random with maximum hours of deployment at approximately 100 hours over the same time 

period in 2009 (details about the enforcement activities can be found in El-Basyouny, 2011). 

Effective May 1, 2010, posted speed limits (PSLs) in eight residential neighbourhoods 

(six residential communities: some communities are made up of multiple neighborhoods) were 

reduced from 50 km/h to 40 km/h.   In this thesis, these neighbourhoods are referred as treated 

neighbourhoods. In addition to the treated neighbourhoods, the pilot program considered another 

three neighbourhoods as a control neighbourhood for speed data collection where the speed 

limits remained at 50 km/h. All the treated and control neighbourhoods belongs to three different 

neighbourhood designs, which are old, grid and new neighbourhood (Table 4-1). Old 

neighbourhoods are characterized by constrained road geometry with more curves and cul-de-

sacs (Figure 4-1). Grid pattern neighbourhoods, as reflected in the name, have a typical grid road 

network system (Figure 4-2). New neighbourhoods have wider road dimensions with long 
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curvilinear roads and loops, and cul-de-sacs oriented along the main collector roads (Figure 4-3). 

Table 4-2 presents other features of the six treated communities, including total population, land 

area and roadway width. To understand the spatial proximity of the selected communities, Figure 

4-4 highlights the six communities on a City of Edmonton map. 

Extensive speed and traffic survey data was collected as part of the project.  In October 

2011, PSL in Beverly Heights, Rundle Height, Twin Brooks, Westridge/Wolf Willow, and 

Oleskiw neighborhoods have reverted back to 50 km/h while the other three neighborhoods 

remained at 40 km/h speed limit.  
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Table 4-1 Neighborhoods Names and Groups 

Neighbourhood Design Group Neighbourhoods Name 

Old (1950’s/1960’s) neighbourhoods 
Treated 

Ottewell 

Woodcroft 

Control Delwood 

Grid-based neighbourhoods 
Treated 

King Edward Park 

Beverly Heights 

Rundle Heights 

Control Forest/Terrace Heights 

New (1970’s/1980’s) neighbourhoods 
 

Treated 

Twin Brooks 

Westridge/Wolf Willow 

Oleskiw 

Control Brintnell 

 

Table 4-2 General Features of each Treated Community 

Community  
Name 

Neighborhood  
Types 

Population 
Land Area 
(Square km) 

Average Width of Road 
(m) 

Collector Local  

Ottewell 
Old 

6,019 2.5 11.5 10.0 

Woodcroft 2,617 1.29 11.5 10.0 

King Edward Park 
Grid 

4,371 1.4 11.0 9.0 

Beverly Heights* 3,375 1.38 11.0 9.0 

Twin Brooks 
New 

6,694 2.14 12.5 11.0 

Westridge/Wolf Willow** 1,415 0.75 12.5 11.0 

*Beverly Heights community is made up of Beverly Heights and Rundle Heights neighbourhoods.  
**Westridge/Wolf Willow community indicates both Westridge/Wolf Willow and Oleskiw neighbourhoods. 
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Figure 4-1: Aerial View of the Treated Old (1950’s/1960’s) Communities: Left: Woodcroft 

Right: Ottewell. 

 

 
 

Figure 4-2: Aerial View of the Treated Grid-based Communities: Left: King Edward Park 

Right: Beverly Heights.  
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Figure 4-3: Aerial View of the Piloted New (1970’s/1980’s) Communities: Left: Westridge/Wolf 

Willow, Right: Twin Brooks 
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Figure 4-4:  Map Showing Six Treated Communities. 

 

For this thesis, numerous datasets were collected and processed to apply the developed 

methodology in an effort to evaluate the safety effects of the posted speed limit reduction pilot 

program. Many of these datasets were processed and linked through geographic information 

system (GIS). A description of the data sets is provided below. 
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4.2 Speed Data 

Spot speed and traffic count data for this thesis were obtained from the City of Edmonton Office 

of Traffic Safety. Speed and traffic surveys were conducted using a Vaisala Nu-Metrics Portable 

Traffic Analyzer NC200. A comprehensive validation of the NC200 devices for their accuracy 

was made before deploying them for large scale data collection. These devices have built-in 

sensors that can detect, count, classify, and measure individual vehicular speeds. Continuous 

speed and traffic data was collected on a 24/7 basis for a period of seven months from April 1
st
 to 

October, 31st, 2010. The data collected during April was used as a baseline representing the 

“before” conditions. Alternatively, the six months of data from May to October was used to 

represent the “after” conditions. 

Surveys were conducted in a total of 65 locations within the eight treated and three 

control neighborhoods. There were a total of 51 and 14 locations surveyed within the treated and 

control neighborhoods, respectively. Among the 65 survey locations, 45 were on collector roads 

and 20 were on local roads. Speed survey locations within the neighbourhoods were randomly 

selected to capture the overall speed behavior in the selected neighborhoods. A detail list of the 

speed survey sites can be found elsewhere (El-Basyouny, 2011). There were two separate 

datasets, one for the treated group and another for the control group, comprising over 19 million 

and 5.1 million individual vehicle data records, respectively. However, this thesis used a subset 

of the data for the evaluation. Thus, the data for the third month (July, representing 3 months 

after the speed reduction implementation) and sixth month (October, representing 6 months after 

the speed reduction implementation) was used to perform two separate waves of evaluations.   

Raw vehicle data was processed and screened before the start of the analysis. Individual 

vehicle data (including speed, vehicle classification, time, and date) was generated using custom 
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software. Erroneous data points, such as vehicles with zero speed, were excluded from the 

analysis.  

The vehicle type classification separated light vehicles from heavy vehicles. The 

operations of light and heavy vehicles are different, and their drivers are likely to respond in a 

different way to a PSL reduction. To be consistent with the city’s classification structure, any 

vehicle with a length not exceeding 8.4 m was classified as a light vehicle (i.e., passenger vehicle, 

van or pickup); otherwise, it was classified as a heavy vehicle (i.e., bus, truck or tractor).  

Data was further divided into time of day (i.e., night-time vs. day-time periods) and day 

of week (i.e., weekday vs. weekend) classifications representing temporal impact. There is a 

significant variation in daylight hours over the year in Canada. Therefore, the sunset/sunrise data 

maintained by the National Research Council of Canada (NRC) was collected. This data was 

merged with the speed data to identify whether the vehicles were travelling during the day-time 

or night-time hours. To account for the changes in speed behavior during the day of week, 

another time classification was used to differentiate between weekdays (Monday-Friday) and 

weekends (Saturday and Sunday). Any moving (i.e., statutory) holiday was included in the 

weekend category.  

A potential confounding factor affecting the choice of driver speed is congestion. A 

driver traveling behind a slow moving vehicle may not be traveling at his or her preferred free-

flow speed; such behaviour might act as a confounding factor in the analysis. Therefore, to 

obtain free-flow speed, we removed data for vehicles that were not traveling under free-flow 

conditions, thereby minimizing the influence of lead vehicles. Vehicles traveling at a headway of 

2 (or less) seconds were deemed to not be traveling under free-flow conditions, and, 

subsequently, their records were removed. The 2-second rule stems from the City of Edmonton 
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advisory that, under normal dry weather conditions, drivers follow a 2-second headway 

(Alberta’s basic driver license handbook also recommends a 2-second headway rule under 

normal dry conditions). Vehicles having 2 seconds (or less) headway are referred to as 

“tailgating vehicles”. Further, the studied roads are part of residential areas; hence, most of the 

traffic was local rather than commuter. Therefore, congestion was not an issue on these roads, 

which was verified through the continuous traffic data available. Additionally, Evans and 

Wasielewski (1983) noted that headway of 2.5-second in a freeway reduces the interaction of 

vehicles to nearly zero. Considering that freeways are typically high speed roads with speed 

limits of 80-110 km/h, while the studied roads are lower speed, urban residential roads with 

speed limits of 50 km/h or 40 km/h, it is reasonable to assume a headway cut-off value of 2-

seconds. Moreover, a headway sensitivity analysis was performed to investigate headway impact 

on mean free-flow speed.  

Speeding behavior on collector roads is sometimes quite different from speeding 

behavior on local roads; because of a comparatively high design standard with generous, wide 

lanes, Edmonton’s collector roads encourage higher speeds. Thus, a separate investigation was 

performed to examine how the PSL reduction affects vehicle speed for these two road types.  

Weather is another confounding factor. The literature indicates that drivers respond to 

poor weather conditions by reducing their speeds (Liang et al., 1998). To negate this issue, 

weather data, which was acquired from the National Climate Data and Information Archive 

maintained by Environment Canada, was matched with speed data to remove from the analysis 

any records of adverse weather, such as rainfall.  

For the purpose of developing mixed-effect and multilevel model, one month of before 

data and one month of after data was used. After removing any records of adverse conditions, the 
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final dataset consisted of 86,586 hourly observations for model development. In addition to the 

speed data obtained from the city, information on roadway width and the presence of bus stops 

was collected from separate databases. Further, the proportion of vans/buses/trucks was 

calculated by dividing the hourly count of these vehicles by the total hourly vehicles. Table 4-3 

shows the summary of the data with the list of variables considered for the mixed effect model. 

As seen, time of day (i.e., daytime versus night-time), day of the week (i.e., weekdays versus 

weekend), and morning (7-9 AM) and evening (4-6 PM) peak hours were considered to take into 

account the temporal effects. Hourly traffic volume and the proportion of particular vehicle 

classes were used to take into account the effects of traffic and its composition on speed 

behaviour. Road width, road class, and the presence of bus stops were considered to represent 

roadway geometry and other road conditions. From the individual vehicle speed data, the number 

of vehicles per hour with speed below or equal to the thresholds of 50 km/h, 60 km/h, 70 km/h, 

and 80 km/h were calculated and often referred to in the thesis as the vehicles in compliance with 

those thresholds. This has been done to investigate the change in the speed profile after the PSL 

reduction.  

The speed dataset clearly had a natural hierarchy with individual observations as Level 1, 

the site as Level 2, and the community as Level 3. Therefore, a multilevel (i.e., three-level) 

modelling approach was adopted. For the multilevel model, the data organization is little 

different from that of mixed-effect model. Table 4-4 presents the data for multilevel model. 
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Table 4-3  Summary Statistics of the Speed Data for Mixed-effect Model 

  
Variable Mean Std. Dev. Min Max 
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Time of day (1 for daytime, 0 otherwise) 0.64 0.48 0 1 
Day of the week (1 for weekdays, 0 otherwise) 0.69 0.46 0 1 
Proportion of vans/buses/trucks 0.13 0.11 0 1 
Morning peak 0.03 0.16 0 1 
Evening peak 0.03 0.16 0 1 
Road width (metres) 10.51 1.95 6.55 14.5 
Road class (1 for collector, 0 for local) 0.72 0.45 0 1 
Presence of bus stop 0.42 0.49 0 1 
Traffic volume (vehicles/hour) 78.04 87.18 1 871 
Vehicles below or equal to 50 km/h (veh/hour) 40.11 46.09 0 472 
Vehicles below or equal to 60 km/h (veh/hour) 65.82 73.65 0 779 
Vehicles below or equal to 70 km/h (veh/hour) 74.69 83.79 0 846 
Vehicles below or equal to 80 km/h (veh/hour) 76.93 86.14 0 859 
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Time of day (1 for daytime, 0 otherwise) 0.49 0.50 0 1 
Day of the week (1 for weekdays, 0 otherwise) 0.61 0.49 0 1 
Proportion of vans/buses/trucks 0.13 0.12 0 1 
Morning peak 0.02 0.14 0 1 
Evening peak 0.03 0.16 0 1 
Road width (metres) 10.52 1.97 6.55 14.5 
Road class (1 for collector, 0 for local) 0.72 0.45 0 1 
Presence of bus stop 0.42 0.49 0 1 
Traffic volume (vehicles/hour) 75.28 85.23 1 533 
Vehicles below or equal to 50 km/h  (veh/hour) 50.82 58.41 0 468 
Vehicles below or equal to 60 km/h (veh/hour) 68.02 77.56 0 522 
Vehicles below or equal to 70 km/h (veh/hour) 72.91 83.03 0 528 
Vehicles below or equal to 80 km/h (veh/hour) 74.38 84.44 0 531 
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Time of day (1 for daytime, 0 otherwise) 0.63 0.48 0 1 
Day of the week (1 for weekdays, 0 otherwise) 0.69 0.46 0 1 
Proportion of vans/buses/trucks 0.13 0.10 0 1 
Morning peak 0.03 0.16 0 1 
Evening peak 0.03 0.16 0 1 
Road width (metres) 11.30 1.32 9 13.5 
Road class (1 for collector, 0 for local) 0.71 0.45 0 1 
Presence of bus stop 0.53 0.50 0 1 
Traffic volume (vehicles/hour) 74.49 70.39 1 361 
Vehicles below or equal to 50 km/h (veh/hour) 38.50 35.18 0 250 
Vehicles below or equal to 60 km/h (veh/hour) 64.04 60.64 0 339 
Vehicles below or equal to 70 km/h (veh/hour) 71.78 68.46 0 358 
Vehicles below or equal to 80 km/h (veh/hour) 73.58 69.88 0 360 
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Time of day (1 for daytime, 0 otherwise) 0.49 0.50 0 1 
Day of the week (1 for weekdays, 0 otherwise) 0.62 0.49 0 1 
Proportion of vans/buses/trucks 0.16 0.11 0 1 
Morning peak 0.02 0.14 0 1 
Evening peak 0.03 0.16 0 1 
Road width (metres) 11.36 1.25 9 13.5 
Road class (1 for collector, 0 for local) 0.70 0.46 0 1 
Presence of bus stop 0.54 0.50 0 1 
Traffic volume (vehicles/hour) 77.84 70.98 1 373 
Vehicles below or equal to 50 km/h (veh/hour) 35.73 32.39 0 226 
Vehicles below or equal to 60 km/h (veh/hour) 63.83 59.76 0 338 
Vehicles below or equal to 70 km/h (veh/hour) 73.77 68.52 0 366 
Vehicles below or equal to 80 km/h (veh/hour) 76.40 70.24 0 370 
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Table 4-4 Summary Statistics of the Speed Data for Multilevel Model 

Variable Mean Std. Dev. Min Max 

Level 1: Individual Observations (86,586) 

    Time-of-day (1 for daytime, 0 nighttime) 0.57 0.49 0 1 

Day-of-the-week (1 for weekdays, 0 otherwise) 0.66 0.47 0 1 

Morning peak* (1 for 7-9 AM, 0 otherwise) 0.02 0.15 0 1 

Evening peak* (1 for 4-6 PM, 0 otherwise) 0.03 0.16 0 1 

Proportion of vans/buses/trucks 0.13 0.11 0 1 

Traffic volume (vehicles/hour) 76.66 83.34 1 871 

Time period (1 for after , 0 for before) 0.44 0.50 0 1 

Level 2: Speed Survey Site (65) 

    Road width (metre) 10.64 1.88 6.55 14.5 

Road class (1 for collector, 0 for local) 0.69 0.47 0 1 

Presence of bus stop (1 for yes, 0 for no) 0.45 0.50 0 1 

Site type (1 for treated, 0 for comparison) 0.78 0.41 0 1 

Level 3: Community (9) 

    Type 1** (1 for old community, 0 otherwise) 0.33 0.5 0 1 

Type 2 (1 for grid community, 0 otherwise) 0.33 0.5 0 1 

Type 3 (1 for new community, 0 otherwise) 0.33 0.5 0 1 

 

4.3 Crash Data 

The Highway Safety Manual (HSM, 2010) recommends using at least three years of crash data 

for both before and after periods to perform before-after evaluation of safety intervention. 

Further, evaluation periods that are even multiples of 12 months in length are used to eliminate 

seasonal bias in the evaluation result. Moreover, it is recommended to exclude the entire year 

during which the safety intervention is implemented (HSM, 2010). Another fact in the pilot 

project of the City of Edmonton is that PSLs in some of the treated neighborhoods reverted back 

to 50 km/h in October 2011.  Keeping these factors in mind, timeline presented in figure 4-5 was 

used in this research to perform before-after evaluation of crash data.  
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Figure 4-5: Before-After Crash Data Evaluation Timeline 

 

Crash data for this research is obtained from the City of Edmonton’s crash database known as 

Motor Vehicle Collision Information System (MVCIS). While the database records crashes by 

typical calendar year (i.e., January to December), this research has defined the calendar year as 

October to September. Based on the severity of crashes, they were divided into two types: severe 

crashes comprising of fatal and injury crashes, and properly-damage-only (PDO) crashes. Geo-

coded crash data were aggregated by road segment for microscopic model and by neighborhood 

for macroscopic model. For data aggregation by road segment, it is required to first define the 

road segment. The City of Edmonton street network database, referred as Linear Referencing 

System (LRS) datum, defines road segments as a links between two nodes where nodes are the 

intersecting points of two roads (Figure 4-6a).  However, in current research, nodes are defined 

as intersecting points of collector-collector or higher level roads (Figure 4-6b). Current research 

only focuses on residential roads, and hence all the residential collector roads in the City of 

Edmonton have been identified and the road network has been segmented as per the definition 

adopted. Once the segment definition is completed, the crash data was processed to differentiate 

road segment-related crashes from intersection-related crashes.  

For the aggregation of crash data by neighborhood level, crashes occurring at the 

boundary of the neighborhoods were excluded for several reasons: i) neighborhood boundaries 

are often arterial and collector with speed limits higher than 50 km/h, while in this research, the 
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reference group should have speed limit of 50 km/h ii) taking neighborhood boundary will cause 

duplicate counting of the boundary crashes, iii) posted speed limit was used to 40 km/h only for 

the roads within the boundary of the neighbourhood, and iv) it is unreasonable to attribute 

crashes occurred at the neighborhood boundary to the neighborhood characteristics (Wang et al., 

2012). 

 

Figure 4-6: Road segment definition a) The City of Edmonton LRS datum, b) adopted in current 

thesis 

4.4 Microscopic Data    

Highway Safety Manual (HSM, 2010) summaries a list of variables related to geometric design 

and traffic control features that are typically used in microscopic crash prediction models 

(CMPs). An attempt was made to collect as many variables as possible from the various 

databases of the City of Edmonton. Two main databases used for geometric information are 

Spatial Land Inventory Management (SLIM) and Geo Engineering Access (GEA). Google map 

street view was used to collect some variables that were not available in the City’s databases. 

Most of the variables were collected manually as no automation was available. A total of 287 

urban residential collector road-segments were identified to use as a reference group for 

developing microscopic crash prediction model (CPM). Table 4-5 presents the descriptive 

statistics of these two-lane road segments. Table 4-6 presents the descriptive statistics of the two-
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lane treated road segments. Mean and standard deviation of crash data clearly shows that crash 

data are over-dispersed.  
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Table 4-5 Summary statistics of road-segment related reference data (sample size = 287 two-lane 

road segments) 

Variable Mean SD Minimum Maximum 

Before (Oct 2006–Sep 2009) 
      Total crash 7.06 7.32 0 42 

  Severe (Fatal and Injury) crash 1.00 1.52 0 8 

  Property-damage-only (PDO) crash 6.06 6.24 0 36 

  AADT 2962 2285 97 11300 

After (Oct 2010–Sep 2013)     

  Total crash 6.36 6.39 0 43 

  Severe crash (Fatal and Injury)  0.93 1.45 0 8 

  Property-damage-only (PDO) crash 6.36 6.39 0 43 

  AADT 3037 2269 100 11700 

Length in km  0.631 0.424 0.089 3.436 

Bus stop number 6.64 5.72 0 35 

Presence of bus stop  0.92 0.27 0 1 

Bus stop density 11.42 7.93 0 68 

Licensed premise number  2.62 6.31 0 69 

Presence of licensed premise  0.50 0.50 0 1 

Licensed premise density 6.16 16.12 0 132 

Recreational centre number 1.21 1.46 0 6 

Presence of recreational centre  0.54 0.50 0 1 

Recreational centre density 2.65 4.47 0 40 

Number of School  0.85 1.07 0 5 

Presence of school  0.49 0.50 0 1 

School density 1.72 2.73 0 17 

Senior centre number 0.21 0.54 0 3 

Presence of senior centre  0.15 0.36 0 1 

Senior centre density 0.53 2.08 0 25 

Access point number 4.76 4.28 0 28 

Presence of access point  0.87 0.34 0 1 

Access point density  7.41 4.85 0 25 

Road width in metres 10.86 2.06 6 17 

Presence of bike lane  0.11 0.32 0 1 

Mid-block change 0.17 0.37 0 1 

Presence of horizontal curve  0.49 0.50 0 1 

Presence of street parking  0.67 0.47 0 1 

Stop-controlled intersection density  1.23 2.27 0 12 

Uncontrolled intersection density  6.07 4.75 0 27 

Note: All density calculation is per kilometre. 
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Table 4-6 Summary statistics of road-segment related treated data (sample size = 27 two-lane 

road segments) 

Variable Mean SD Minimum Maximum 

Before (Oct 2006–Sep 2009) 
     Total crash 3.96 2.67 0 10 

  Severe crash 0.74 0.94 0 4 

  PDO crash 3.22 2.17 0 9 

  AADT 2593 1730 700 6425 

After (Oct 2010–Sep 2013) 
     Total crash  3.15 2.67 0 11 

  Severe crash 0.26 0.53 0 2 

  PDO crash 2.89 2.42 0 9 

  AADT 2789 1749 700 6800 

Length in km 0.415 0.215 0.058 0.837 

Bus stop number  5.93 4.18 0 17 

Presence of bus stop  0.99 0.219 0 1 

Bus stop density  18.56 15.66 0 51 

Licensed premise number  2.07 2.60 0 9 

Presence of licensed premise  0.56 0.51 0 1 

Licensed premise density  6.20 8.98 0 35 

Recreational centre number  1.26 1.29 0 4 

Presence of recreational centre  0.67 0.48 0 1 

Recreational centre density  5.40 8.11 0 34 

Number of School  1.41 1.31 0 4 

Presence of school  0.74 0.45 0 1 

School density  3.78 3.54 0 11 

Senior centre number 0.33 0.48 0 1 

Presence of senior centre  0.33 0.48 0 1 

Senior centre density  1.30 2.27 0 8 

Access point number 3.26 3.93 0 13 

Presence of access point 0.67 0.48 0 1 

Access point density  6.15 6.78 0 23 

Road width in metres 10.68 1.57 8 13 

Presence of bike lane  0.11 0.32 0 1 

Mid-block change  0.04 0.19 0 1 

Presence of horizontal curve  0.22 0.43 0 1 

Presence of street parking  0.74 0.45 0 1 

Stop-controlled intersection density  1.19 2.15 0 8 

Uncontrolled intersection density  4.54 4.96 0 17 

Note: All density calculation is per kilometre. 
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4.5 Macroscopic Data  

In this research, the unit of analysis of the macroscopic model was residential neighborhood. 

Therefore, from all three types of neighborhoods (i.e, residential, commercial, and industrial), 

only the residential neighbourhoods are selected. Further, only the mature neighbourhoods that 

are no more under-construction were selected.  Literature suggests the use of various exposures, 

road and traffic characteristic and socio-demographic variables in developing macroscopic crash 

prediction models (CPMs). Similar to the data collection from microscopic CMPs, these data 

was collected from various databases which involves both manual and automatic processes. The 

City of Edmonton Spatial Land Inventory Management (SLIM) database and GIS were used to 

obtain some of the geometric variables such as area of the neighborhood, total lane kilometers, 

etc. Socio-demographic variables were obtained from 2008, 2009, 2012 and 2013 municipal 

census data of the City of Edmonton. A summary statistics of the macroscopic variables related 

to 210 residential neighborhoods selected as reference group and eight selected as treated 

neighborhoods are presented in table 4-7 and table 4-8, respectively. 
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Table 4-7 Summary statistics of neighborhood related reference data (n = 210 residential 

neighborhoods) 

Variable Mean Std. Dev. Minimum Maximum 

Before  
   Total crashes/year 29.15 30.87 0 215 

Severe crashes/year 3.43 5.51 0 37 

PDO crashes/year 25.72 26.03 0 184 

log (VKT) 7.66 0.94 4.09 9.28 

Population/year 3125 1438 385 8923 

Proportion of students/year 0.24 0.06 0.07 0.43 

Proportion of part-time employees/year 0.05 0.01 0.02 0.08 

Proportion of full-time employees/year 0.44 0.06 0.14 0.57 

Proportion of unemployed/year 0.02 0.01 0.00 0.07 

Proportion of retired persons/year 0.12 0.06 0.02 0.38 

Dwelling unit/year 1245 659 118 5162 

Proportion of males/year 0.50 0.02 0.39 0.63 

Proportion of population aged <=15 0.15 0.04 0.00 0.28 

Proportion of population aged <=65 0.11 0.06 0.01 0.40 

Proportion of households with zero cars 0.09 0.08 0.00 0.41 

Proportion of households with >=2 cars 0.49 0.17 0.08 0.86 

After  
   Total crashes/year 24.11 25.95 0 178 

Severe crashes/year 2.47 3.78 0 23 

PDO crashes/year 21.64 22.66 0 158 

log (VKT) 7.68 0.94 4.13 9.29 

Population/year 3279 1654 332 10659 

Proportion of students/year 0.23 0.05 0.07 0.42 

Proportion of part-time employees/year 0.06 0.01 0.01 0.12 

Proportion of full-time employees/year 0.40 0.06 0.14 0.53 

Proportion of unemployed/year 0.02 0.01 0.001 0.07 

Proportion of retired persons/year 0.12 0.05 0.02 0.32 

Dwelling unit/year 1323 716 116 5214 

Proportion of males/year 0.50 0.02 0.40 0.59 

Proportion of population aged <=15 0.14 0.04 0.03 0.26 

Proportion of population aged <=65 0.11 0.05 0.02 0.36 

Proportion of households with zero cars 0.09 0.08 0.00 0.41 

Proportion of household with >=2 cars 0.49 0.17 0.08 0.86 

Number of traffic signals 0.58 1.38 0 8 

Collector road length (km)  2.17 1.39 0 11.05 

Local road length (km) 8.06 4.00 0 21.08 

Total road length (km) 10.23 4.76 1.38 32.14 

Old neighbourhood (1 for Yes, 0 for no) 0.23 0.42 0 1 

Grid neighbourhood (1 for Yes, 0 for no) 0.12 0.32 0 1 

New neighbourhood (1 for Yes, 0 for no) 0.52 0.50 0 1 
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Table 4-8 Summary statistics of neighborhood related treated data (n = 8 residential 

neighborhoods) 

Variable Mean SD Minimum Maximum 

Before  
   Total crashes/year 33.92 23.78 4 93 

Severe crashes/year 4.33 4.23 0 14 

PDO crashes/year 29.58 20.37 4 82 

log (VKT) 7.48 0.97 6.07 8.59 

Population/year 3786 1661 1415 6694 

Proportion of students/year 0.24 0.06 0.14 0.31 

Proportion of part-time employees/year 0.05 0.02 0.03 0.08 

Proportion of full-time employees/year 0.41 0.03 0.37 0.47 

Proportion of unemployed/year 0.02 0.01 0.005 0.04 

Proportion of retired persons/year 0.17 0.08 0.09 0.32 

Dwelling unit/year 1569 672 485 2612 

Proportion of males/year 0.49 0.02 0.44 0.53 

Proportion of population aged <=15 0.14 0.04 0.09 0.22 

Proportion of population aged <=65 0.16 0.08 0.08 0.30 

Proportion of households with zero cars 0.12 0.11 0.006 0.33 

Proportion of households with >=2 cars 0.51 0.22 0.22 0.79 

After  
   Total crashes/year 31.07 22.87 6 82 

Severe crashes/year 2.71 2.70 0 8 

PDO crashes/year 28.36 21.23 6 77 

log (VKT) 7.50 0.97 6.11 8.60 

Population/year 3975 1564 1356 6521 

Proportion of students/year 0.21 0.04 0.15 0.29 

Proportion of part-time employees/year 0.06 0.01 0.04 0.08 

Proportion of full-time employees/year 0.38 0.03 0.35 0.43 

Proportion of unemployed/year 0.02 0.01 0.004 0.05 

Proportion of retired persons/year 0.18 0.07 0.09 0.27 

Dwelling unit/year 1736 646 486 2581 

Proportion of males/year 0.49 0.03 0.45 0.53 

Proportion of population aged <=15 0.13 0.03 0.09 0.20 

Proportion of population aged <=65 0.16 0.07 0.08 0.26 

Proportion of households with zero cars 0.15 0.12 0.006 0.33 

Proportion of households with >=2 cars 0.43 0.20 0.22 0.79 

Number of traffic signals 0.63 0.74 0 2 

Collector road length (km)  3.48 1.86 1.27 6.84 

Local road length (km) 11.98 5.74 5.41 20.78 

Total road length (km) 15.47 7.30 6.68 26.42 

Old neighbourhood (1 for Yes, 0 for no) 0.25 0.46 0 1 

Grid neighbourhood (1 for Yes, 0 for no) 0.25 0.46 0 1 

New neighbourhood (1 for Yes, 0 for no) 0.50 0.53 0 1 
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5.0 Results of Speed Data Analysis and Evaluation 

This chapter presents the results of the before-after speed data analysis performed for both non-

model and model based approach. A comparison of alternative methods was discussed and 

recommendations were made. 

 

5.1 Non-Model Based Approach 

Four levels of evaluations were performed to examine the impact of the reduced posted speed 

limit reduction: 

 Level 1: Analysis of the overall effects of the speed limit reduction;  

 Level 2: Analysis by neighbourhood type (i.e., old, new, and grid); 

 Level 3: Analysis by each community (eight neighborhoods belong to six communities); and 

 Level 4: Analysis by each speed survey location.   

For the first levels of analysis, weekdays versus weekend, day time versus night time, 

collectors versus local streets, and light versus heavy vehicle were analyzed separately. 

 

Level 1: Overall Evaluation 

The first evaluation combines the eight treated neighborhoods into one group and three control 

neighborhoods into another group. Table 5-1 shows the speed reductions for all combinations of 

the day-of-week and the time-of-day periods. All reductions were statistically significant at a 

0.0001 level, irrespective of the pooled variance t-test and separate variance t-test. The results 

indicate that, without engineering intervention nor other changes to the roadway environment, 

drivers reduced their travel speed in response to the PSL reduction. These results are contrary to 
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those in Stuster et al. (1998), which found that speed limit changes on low and moderate speed 

roads had little to no impact on travel speed. As shown in Table 5-1, there were slight speed 

reduction variations across time-of-day and day-of-week classifications. Mean free-flow speed 

for the control group showed a consistent increasing trend, indicating that the mean speed for the 

treated group would have increased without intervention. After accounting for this time trend 

effect of speed behavior (by using an adjustment factor), the overall mean free-flow speed was 

reduced by 3.86 km/h three months after intervention, which is equivalent to a 7.7% reduction. 

After six months, the overall reduction was 4.88 km/h, which is equivalent to a 9.7% reduction. 

This finding suggests that the speed reduction achieved midway through the project was 

sustained to the end of the pilot. Overall, the 10 km/h change in the PSL (from 50 km/h to 40 

km/h) led to an overall speed reduction of 4.88 km/h, which represents 48.8% of the change in 

speed limit. A previous study by Finch et al. (1994) also found that lowering the speed limit 

results in an actual speed reduction of 25%.  

 As shown in Table 5-1, a separate investigation of light versus heavy vehicles revealed 

that the speed of heavy vehicles in the treated group was not noticeably reduced. However, when 

the speeds were adjusted by a control group, statistically significant reductions of 4.88 km/h and 

5.57 km/h were found three months and six months after the PSL reduction, respectively. This 

result clearly demonstrates the necessity of incorporating the control group in the experimental 

design; otherwise, the conclusion drawn from the simple before-and-after analysis leads to an 

underestimation of the effectiveness of speed limit reduction, as clearly demonstrated by this 

thesis.  

 Alternatively, light vehicles in the treated group showed a noticeable reduction in speed, 

while the control group experienced a slight increase. In terms of road class, the average speed 
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was higher on collector roads than on local roads. This result was expected, as collector roads are 

typically associated with a high design standard. Also, many collectors in the City of Edmonton 

have generous roadway widths, which tend to encourage higher speeds. The analysis reveals that 

speeds on both collector and local roads were reduced in the after periods and both reductions 

were statistically significantly. Control group data showed a speed increase for local roads, 

which implies that the speeding problem is drastically rising on local roads. Mean free-flow 

speed on local roads was reduced at a higher rate than that of collector roads when adjusted for 

potential trends. This indicates that the speed limit reduction was more effective in reducing 

vehicle speed on local roads compared to collectors.   

The estimated reduction of mean free-flow speed can be used to estimate the expected 

crash reduction based on the available speed-crash relationship found in the literature. An 

extensively cited power model by Nilsson (2004) describes the relationship between speed and 

road safety in terms of six equations. All the equations have the same functional form with 

varying exponent values reflecting the different crash types.  However, that power model does 

not provide any equation for estimating changes to property-damage-only (PDO) crashes due to 

speed change. Later, Elvik et al. (2004) evaluated the validity of the power model by means of a 

systematic review and meta-analysis. The results provided a strong support for the validity of the 

power model with a few different values of the exponents. Elvik et al (2004) developed an 

additional equation to estimate the change in PDO crashes due to changes in speed. Recently, 

Elvik (2009) has re-analyzed the power model and has developed separate equations for urban 

and rural areas. One earlier study performed a multivariate linear and non-linear analysis to 

investigate the relationship between speed and crashes (Finch et al., 1994). Based on both urban 
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and rural data from Finland, Germany, Switzerland, and the USA, they concluded that for every 

1 mph (1.6 km/h) increase in the mean speed, there is approximately a 5% increase in crashes.  

No specific study was found that developed a relationship between speed and safety for 

urban residential roads with speed limits of 50 km/h.  In the current thesis, overall mean free-

flow speed during the before period was estimated at 50.49 km/h and the speed reduction after 

six months was found to be 4.88 km/h. The Elvik (2009) model would yield a fatal, injury and 

PDO crash reduction of 23.2%, 11.5 % and 7.8%, respectively. Based on a Finch et al. (1994) 

study, the reduction in overall crashes is 15.3%. These estimates indicate considerable reductions, 

given that the speed limit reduction was not supplemented by any costly engineering or 

infrastructure changes. 
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Table 5-1 Expected mean free-flow speed and speed variance reduction 

    Vehicle Type Road Type Night time Day time 
Overall 

    Light Heavy Collector Local Weekend Weekday Weekend Weekday 

Treated Before  50.34 55.07 51.1 43.8 50.61 50.58 50.83 50.34 50.49 

(Speed, km/h) 3-mo After 47.01 53.03 47.71 43.22 46.83 47.06 46.99 47.39 47.23 

  6-mo After 46.91 54.06 47.69 41.77 47.59 47.24 47.64 46.7 47.15 

Control Before  50.13 50.75 50.74 47.22 49.62 49.58 49.97 50.37 50.16 

(Speed, km/h) 3-mo After 50.63 53.37 50.91 50.03 50.06 50.2 50.43 51.04 50.76 

  6-mo After 51.55 54.95 51.46 52.51 51.16 51.66 51.74 51.83 51.69 

Adjustment factor 
3-mo After 1.01 1.052 1.003 1.06 1.009 1.013 1.009 1.013 1.012 

6-mo After 1.028 1.083 1.014 1.112 1.031 1.042 1.035 1.029 1.031 

Speed Reduction 3-mo After -3.83 -4.88 -3.56 -3.19 -4.23 -4.15 -4.31 -3.62 -3.86 

(km/h) 6-mo After -4.86 -5.57 -4.14 -6.94 -4.59 -5.46 -4.99 -5.1 -4.88 

Pooled Variance 
3-mo After 114.86 369.04 119.08 140.97 137.5 134.4 122.01 122.3 124.39 

6-mo After 113.12 377.72 117.8 137.26 131.72 126.58 118.54 122.34 123.1 

Standard Error 
3-mo After 0.01 0.094 0.011 0.043 0.05 0.04 0.02 0.01 0.01 

6-mo After 0.009 0.087 0.009 0.032 0.03 0.02 0.02 0.01 0.01 

t value 
3-mo After -382.94

*
 -51.93

*
 -337.75

*
 -73.71

*
 -87.45* -116.20* -208.82* -279.66* -377.74* 

6-mo After -549.92
*
 -64.35

*
 -445.73

*
 -215.36

*
 -141.08* -242.54* -267.22* -390.51* -538.93* 

F (Critical F-value) 3-mo After 1.07 (1) 0.99 (1.01) 1.04 (1) 1.04 (1.01) 1.02 (1.01) 1.01 (1.01) 1.03 (1) 1.06 (1) 1.05 (1) 

  6-mo After 1.10 (1)  0.94 (1.01)  1.05 (1)  1.09 (1.01)  1.08 (1.01) 1.12 (1.00) 1.1 (1) 1.06 (1) 1.07 (1) 
* 
Significant at the 0.0001 level.  
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Changes in speed variance have important safety implications, as higher speed variances 

tend to be an indicator of more vehicle encounters and overtaking manoeuvres, which increase 

the probability of a crash (Garber and Gadiraju, 1989; Taylor et al., 2000; Aarts and van Schagen, 

2006; SafetyNet, 2009; Dell’Acqua, 2011). Table 5-1 summarizes the results of the F-tests for 

the speed variance analysis three months and six months after reducing the PSL, respectively. 

Speed variances were significantly reduced for all combinations of time of day and day of week, 

as well as road and vehicle types; the only exception was heavy vehicles, which constituted less 

than 4% of the total number of vehicles. Based on the results of this global analysis, it is safe to 

conclude that the speed limit reduction was effective in not only reducing the mean speed, but 

also the speed variances. In addition to the reduction of mean free-flow speed, speed variance 

has decreased after the PSL reduction.  

Table 5-2 presents the standard error and t-statistics for the combination of time of day 

and day of week to illustrate the effect of accounting or not accounting for the measurement of 

uncertainty in the control group. As the table suggests, the standard error was underestimated 

when the uncertainty was not added, though the magnitude of the underestimation was very little. 

In addition, though the values of the t-statistics slightly reduced when the measurement of 

uncertainly was added, t-statistics were not reduced enough to alter the statistical hypothesis test 

results. 
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Table 5-2 Comparison of standard error and t-statistics with and without correction for variance 

from control  

  

Night-time Day-time 

Overall 

  

Weekend Weekday Weekend Weekday 

 

Standard error 

Without correction for 

variance 

3-mo After 0.0484 0.0357 0.0206 0.0129 0.0102 

6-mo After 0.0325 0.0225 0.0187 0.0131 0.0091 

With correction for variance 

3-mo After 0.0495 0.0366 0.0212 0.0135 0.0106 

6-mo After 0.0328 0.0227 0.0190 0.0133 0.0093 

 

t-statistics 

Without correction for 

variance 

3-mo After -87.45 -116.20 -208.82 -279.66 -377.74 

6-mo After -141.08 -242.54 -267.22 -390.51 -538.93 

With correction for variance 

3-mo After -85.50 -113.43 -202.97 -267.93 -364.61 

6-mo After -139.85 -240.09 -262.30 -382.94 -525.42 

 

To confirm the validity of the 2-second headway assumption that separates congested and 

uncongested conditions, a sensitivity analysis was performed.  

Table 5-3 shows the impact of taking different headways on the reduction in mean free-

flow speeds. As shown in the table, reductions in mean free-flow speed did not change 

considerably with the headways. This confirms that taking a 2-second headway is valid for the 

current dataset. 

Table 5-3 Overall Mean free-flow speed and speed reduction for different headways 

 

  

Headway 

  

 >2 second >3 second >4 second 

Mean Speed (km/h) 

Before  50.49 50.56 50.57 

3-mo After 47.23 47.32 47.35 

6-mo After 47.15 47.28 47.30 

Speed Reduction* (km/h)  
3-mo After 3.26 3.24 3.23 

6-mo After 3.34 3.29 3.27 

* Without control group adjustment 
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Level 2: Evaluation by Neighborhood Design 

The eight treated neighborhoods were grouped into three neighborhood types (old, new, grid), 

each with distinct road features and vehicle speed behavior. Thus, another analysis was 

conducted to investigate the change in speed by neighborhood type. Table 5-4 summarizes the 

free-flow speed reductions for each neighborhood type. All reductions were found to be 

statistically significant at the 0.01 level. For the pre-intervention period, the mean free-flow 

speed in the new neighborhoods was always higher than the PSL, whereas the old neighborhoods 

had a mean speed lower than the PSL. Grid neighborhoods had a mean speed almost equal to the 

PSL in the before period. The greatest reduction in speed was observed for the new 

neighborhoods followed by the grid and then the old neighborhoods. Overall, the speed reduction 

for the new neighborhoods after six months of intervention was found to be almost equivalent to 

the change of speed limit (10 km/h). Further investigation showed that the greatest speed 

reduction was observed during night-time weekdays. Speed reduction for heavy vehicles was 

found to be greater than for light vehicles.   

Table 5-4 Mean Free-flow speed reduction by neighborhood type 

 

    Night time Day time 
 Overall 

    Weekend Weekday Weekend Weekday 

Treated(Old), km/h Before  47.41 47.43 47.53 47.33 47.38 

Speed Reduction (Old), 

km/h 

3-mo After -2.88 -2.68 -2.55 -2.43 -2.42 

6-mo After -2.75 -3.40 -3.35 -3.77 -3.47 

Treated(Grid), km/h Before  49.66 49.78 50.23 49.98 49.99 

Speed Reduction 

(Grid), km/h 

3-mo After -2.57 -2.60 -2.88 -2.70 -2.73 

6-mo After -3.09 -3.51 -3.62 -3.74 -3.58 

Treated(New), km/h Before  53.17 53.08 53.3 52.72 52.92 

Speed Reduction 

(New), km/h 

3-mo After -6.47 -6.24 -7.18 -5.58 -6.15 

6-mo After -9.70 -11.20 -10.06 -10.16 -9.86 
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The F-tests for the variances (Table 5-5) showed that in all cases, the speed variance 

reduction was statistically significant in the after period, except for new neighborhoods three 

months after intervention. Note that new neighborhoods, which are typically characterized by 

generous lane width with no on-street parking, had a high mean speed in the before period. This 

finding suggests that it took drivers a longer period of time to adjust their speed choice to the 

lowered PSL, which might be a cause of higher speed variances at the early stage of the 

intervention. 

Table 5-5 F-test results by neighborhood type 

    Night time Day time 
 Overall 

Community    Weekend Weekday Weekend Weekday 

Old  
3-mo After 1.02 (1.02) 1.02 (1.02) 1.04 (1.01) 1.08 (1.01) 1.07 (1.00) 

6-mo After 1.07 (1.02) 1.10 (1.01) 1.09 (1.01) 1.03 (1.01) 1.04 (1.00) 

Grid  
3-mo After 1.05 (1.01) 1.04 (1.01) 1.04 (1.01) 1.06 (1.00) 1.06 (1.00) 

6-mo After 1.10 (1.01) 1.11 (1.01) 1.08 (1.01) 1.05 (1.00) 1.06 (1.00) 

New  
3-mo After 0.92 (1.02) 0.94 (1.02) 0.94 (1.01) 0.97 (1.01) 0.96 (1.00) 

6-mo After 1.04 (1.01) 1.08 (1.01) 1.07 (1.01) 1.03 (1.00) 1.04 (1.00) 

Note: F-critical values are in parentheses 

 

Figure 5-1 illustrates the speed percentiles for the treated and control neighborhoods. The figure 

shows that the cumulative speed distribution during the after period lies above that of the before 

period for the treated neighborhoods. This suggests that the intervention was successful in 

reducing speed, especially when in comparison to the control neighborhoods, which show 

increased speeding trends. 
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Figure 5-1 Percentile speed profile by each neighborhood type. 
  

Figure 5-2 presents a comparison of the percentages of drivers exceeding 50 km/h and 65 km/h 

during the before and after period for both the treated and control neighborhoods. Two 

observations can be made from this figure: 1) while the treated neighborhoods experience a 

declining speeding trend at both 50 km/h and 65 km/h, the control neighborhoods experience an 

increasing trend; and 2) within the treated neighborhoods, the level of speeding is noticeably 

reduced from the before to the after period with a further declining trend between the three-

month and six-month after period. These observations are clear indications of the effectiveness 

of the PSL reduction.  
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Figure 5-2 Speed limit compliance by neighborhood type. 
 

Although not all speeders will get into or cause crashes, speeders are a major safety 

concern: they are statistically more likely to cause a crash than other drivers. This increased risk 

is a major safety problem on low speed roads, especially given the presence of vulnerable road 

users. The 85
th

 percentile value can be seen as an indication of this problem. Error! Reference 

ource not found.Figure 5-3 shows the 85
th

 percentile speed for the treated and control 

neighborhoods. The 85
th

 percentile speed was reduced in the treated neighborhoods, in contrast 

to an increase in the control neighborhood. This figure indicates that more people in the treated 
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neighborhood are driving at a lower speed in the after period compared to that of the before 

period.   

 

  
Figure 5-3 85th percentile speed by neighborhood type. 
 

Level 3: Evaluation by Individual Community 

A separate investigation by each of the six communities (eight neighborhoods belongs to six 

communities) was made to see if there exists any variation in speed reduction among them. Table 

5-6 presents the summary of the results. As the Table shows the speed reduction in the first four 

communities (Old and Grid) are within the same range, while the last two communities (New) 

had higher speed reductions. One important finding here is that the higher speed reduction was 

observed at sixth month of the intervention compared to that of third month for all the 

communities.  This indicates that the effectiveness of the speed limit reduction increased with 

time.  
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Table 5-6 Free-Flow Speed Reduction for each Community 

    Night time Day time 
 Overall 

    Weekend Weekday Weekend Weekday 

Ottewell Before  48.6 48.32 48.19 46.94 47.45 

Speed Reduction, 

km/h 

3
rd

 Month -2.51 -1.94 -2.26 -1.57 -1.78 

6
th
 Month -2.68 -3.83 -3.38 -4.45 -3.67 

Woodcroft Before  46.28 46.59 46.9 47.63 47.33 

Speed Reduction, 

km/h 

3
rd

 Month -3.07 -2.98 -2.71 -2.98 -2.81 

6
th
 Month -2.82 -3.02 -3.31 -3.11 -3.30 

King Edward Before  51.84 52.01 51.98 51.26 51.52 

Speed Reduction, 

km/h 

3
rd

 Month -2.43 -2.64 -2.61 -2.30 -2.41 

6
th
 Month -3.11 -3.69 -3.56 -3.62 -3.40 

Beverly Height Before  48.52 48.57 49.12 49.03 48.96 

Speed Reduction, 

km/h 

3
rd

 Month -2.54 -2.67 -2.96 -3.14 -3.02 

6
th
 Month -3.18 -3.55 -3.81 -3.91 -3.76 

Twin Brooks Before  53.36 53.3 53.45 52.71 53 

Speed Reduction,  

km/h 

3
rd

 Month -9.12 -9.02 -9.93 -7.81 -8.61 

6
th
 Month -10.01 -11.44 -10.25 -10.19 -9.97 

Westridge Before  52.46 52.17 52.78 52.74 52.66 

Speed Reduction, 

km/h 

3
rd

 Month -4.25 -3.86 -5.01 -4.48 -4.60 

6
th
 Month -8.58 -10.19 -9.40 -10.08 -9.50 

 

Level 4: Evaluation by Survey Sites 

Table 5-7 shows the mean free-flow speeds and sample sizes for all three periods (before, 3-

month after and 6-month after) and for all the treated and control sites. Mean free-flow speeds 

for the treated sites were not adjusted by control sites. As shown in the table, all treated sites, 

except for three (Site ID 13, 15 and 23) experienced a reduction in mean free-flow speed while 

all control sites, except two (Site ID 56 and 64) experienced an increase in mean free-flow speed 

for the 6-months after the intervention. When mean free-flow speeds in the intervention sites 

were adjusted by using control group data, speed reductions were statistically significant at the 

0.05 level for all the treated sites, except Site ID 23. After applying the adjustment factor, 

calculated from the control group, speed reductions among treated sites were found to vary from 

0.09-12.56 km/h with a mean value of 4.61 km/h. The F-tests showed that speed variances 
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decreased in 27 of the 51 treated sites. Averaging over all sites, the compliance to the speed limit 

was 61% and 36% before and after the intervention, respectively. When the compliance rate 

within 15 km/h of the PSL was considered, average compliance rates were estimated at 94% and 

86% before and after six months of intervention, respectively. Analysis by survey sites can 

provide useful information to the agencies to further investigate why some sites had high speed 

reduction, while others had little. This approach can help to identify supplementary engineering 

interventions for reducing vehicle speed. 

Table 5-7 Mean free-flow speed (km/h) and sample size for treated (ID: 1-51) and control sites 

ID: 52-64) 

Site ID 
Before 3-mo after 6-mo after 

Sample 
Size Mean Speed Sample Size Mean Speed 

Sample 
Size 

Mean 
Speed 

1 53963 43.91 23315 44.09 36509 43.61 

2 45259 50.89 31003 45.55 33984 47.78 

3 13073 41.35 5841 40.15 9316 40.11 

4 40189 51.76 28032 48.27 38867 49.31 

5 6997 39.74 3026 40.38 6443 37.55 

6 16468 41.97 8937 40.24 13820 40.55 

7 10034 40.94 4078 40.08 9030 38.6 

8 9103 39.15 4526 39.05 9387 38.47 

9 93687 49.86 55774 49.47 75045 45.77 

10 76319 49.88 57671 47.39 54362 47.31 

11 36196 45.56 26260 43.05 26018 43.38 

12 69647 53.09 49145 49.38 46672 52 

13 26359 42.11 21552 41.39 19535 42.51 

14 30163 40.54 23455 39.25 26528 40 

15 21361 42.8 18480 43.5 17170 43.1 

16 40466 44.06 31466 42.71 28898 42.13 

17 38460 50.78 25784 48.95 25739 46 

18 9202 37.3 7431 36.31 9002 36.04 

19 120543 49.35 84785 48.44 88360 44 

20 136626 47.48 91025 47.39 95115 45.6 

21 148378 53.14 87332 50.12 107104 49.88 

22 177473 58.96 122043 55.1 129476 55.93 

23 11457 33.2 8186 33.01 9487 33.26 

24 15650 41.15 10738 40.02 14036 39 

25 10064 36.8 6647 35.06 8712 34.68 
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Site ID 
Before 3-mo after 6-mo after 

Sample 
Size Mean Speed Sample Size Mean Speed 

Sample 
Size 

Mean 
Speed 

26 7731 40.86 5104 39.12 7473 39.77 

27 55266 48.9 38122 45.52 41348 47.46 

28 39774 44.88 29909 45.2 28184 44.62 

29 122066 52.84 67864 51.24 66777 48.71 

30 133451 52.63 71532 48.98 80782 49.49 

31 93832 52.38 57278 48.59 64491 47.2 

32 140427 46.46 95018 43.55 102614 42.95 

33 173623 49.27 105070 47.53 120644 46.72 

34 246750 45.37 165389 42.58 197859 42.38 

35 51414 52.78 31074 49.26 39214 48.71 

36 11849 40.05 7545 41.09 7886 38.94 

37 3570 40.19 2552 39.49 2690 39.74 

38 24320 49.61 --- --- 15784 44.73 

39 26038 47.31 20729 45.94 18056 44.27 

40 48327 50.37 41279 47.62 41181 48.57 

41 208647 53.18 --- --- 171973 49.51 

42 102787 53.95 --- --- 98436 47.33 

43 109264 51.67 --- --- 77383 48.37 

44 147623 56.69 --- --- 109354 51.63 

45 98687 55.08 --- --- 96721 50.66 

46 79104 51.75 --- --- 45241 47.82 

47 53737 47.73 38710 45.59 40623 44.27 

48 43454 52.17 34386 49.49 34502 46.79 

49 62782 54.58 52296 50.21 52267 50.75 

50 47730 49.37 30650 48.01 41626 44 

51 111440 53.17 69014 51.39 86697 51.12 

52 59935 45.18 38177 44.45 57691 49.12 

53 34260 49.59 17177 50.86 37958 53.47 

54 16294 53.61 25043 54.59 46708 57.23 

55 64052 46.57 36023 48.33 62143 50.13 

56 16508 43.53 11957 43.51 9649 43.44 

57 14969 42.72 8380 42.03 12822 44.01 

58 61362 49.19 33038 51.13 47798 50.85 

59 31884 45.77 22362 46.46 30361 46.64 

60 55630 54.28 33544 54.57 45546 55.51 

61 128107 51.04 69034 49.53 99744 51.12 

62 151016 50.69 93107 51.87 116439 51.31 

63 110934 54.37 67005 55.24 85618 55.03 

64 103624 51.43 57684 51.24 68950 50.7 

*Site does not have data for 3-mo after period; One site has before data missing; hence total site reported 

is 64. 
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5.2 Generalized Mixed-Effect Intervention Model 

The posterior estimates of the parameters for all the mixed models were obtained using 

WinBUGS via two parallel chains with 50,000 iterations, 10,000 of which were excluded as a 

burn-in sample. The BGR statistics were less than 1.2; the ratios of the Monte Carlo errors 

relative to the standard deviations of the estimates were less than 0.05; and trace plots for all of 

the model parameters indicated convergence.  

 

Free-Flow Speed Model 

Table 5-8 presents the model estimation results for the linear mixed-effect model. Only variables 

found significant based on the 95% credible intervals were reported in this table. It is worth 

noting that the credible interval for a parameter estimate indicates that there is a 95% probability 

that the value of the parameter estimate will lie within the interval. As seen in the table, the 

correlation between observations was estimated as 0.52, indicating that the between-site 

variation consists of 52% of the total variation. This supports the necessity of taking into account 

the nested nature of the speed data while modelling.  In other words, this finding justifies the use 

of the mixed-effect model for the current data. Moreover, the goodness-of-fit measure using the 

posterior predictive approach showed a p-value of 0.501, which is close to neither zero nor one, 

indicating that the observed pattern of the data is likely to be seen in the model-replicated data 

(Gelman et al., 1996). 
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Table 5-8 Results of Parameter Estimation and Evaluation of Mean Free-Flow Speed using 

Mixed-Effect Model 

Variable 

Parameter 

Estimate 

Standard 

Deviation 

Credible Interval 

Lower Limit Upper Limit 

Intercept 42.970 2.247 40.990 50.920 

Time of day (1 for day time, 0 otherwise) -0.250 0.036 -0.320 -0.181 

Day of the week (1 for weekdays, 0 

otherwise) -0.252 0.031 -0.313 -0.191 

Evening peak (4-6 PM) 1.143 0.092 0.963 1.323 

Proportion of vans/buses/trucks 9.577 0.143 9.297 9.856 

Road class (1 for collector, 0 for local) 7.279 1.368 3.819 9.360 

Traffic volume (vehicles/hour) -0.0057 0.0003 -0.0063 -0.0052 

Time period (1 for after, 0 for before) 1.148 0.066 1.018 1.277 

Site type*time period -3.823 0.074 -3.967 -3.679 

Adjustment ratio, r 1.027 0.002 1.024 1.030 

Odds ratio (OR) 0.923 0.002 0.919 0.930 

Free-flow speed reduction, km/h 3.851 0.077 3.703 4.002 

Within-site correlation 0.519 0.074 0.421 0.768 
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In terms of parameter significance, the results revealed various insights into vehicle speed 

behaviour. The parameter for the time-of-day indicator was found to be negative, indicating that 

night hours were associated with higher free-flow speed compared to day hours by an average 

amount of 0.25 km/h. The day-of-the-week variable showed that weekends were associated with 

higher free-flow speed compared to weekdays by 0.25 km/h. While morning peak hours (7-9 am) 

were found to be statistically insignificant, the evening peak hours (4-6 pm) were associated with 

higher mean free-flow speed by 1.14 km/h compared to off-peak hours.  

The proportion of vans/buses/trucks was found to have a positive correlation with the 

free-flow speed, with a 10% increase in the proportion of these vehicles related to an increase of 

0.96 km/h in the mean free-flow speed. Collector roads were associated with a mean free-flow 

speed 7.28 km/h higher than that of local roads. This might be due to the fact that collector roads 

are of a higher standard than the local roads in terms of their functional class (Gattis and Watts, 

1999). It is worth noting that the credible interval of the parameter estimate for collector roads is 

relatively broad, ranging between 3.82 and 9.36 km/h. An increase in hourly traffic volume was 

associated with a decrease in the mean free-flow speed, demonstrating the fundamental 

relationship between speed and traffic flow. 

 The parameter estimate for the time period (i.e., after period versus before period) was 

positive, indicating that the mean free-flow speed increased in the after period. However, when 

the interaction between the site type (i.e., treated versus comparison) and time period was 

considered, the parameter estimate is negative, indicating that the PSL reduction reduced the 

mean free-flow speed in the treated sites in the after period. The positive parameter estimate of 

the time period basically indicates the trend of increased speeding among the comparison sites.  
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Regarding the before-after evaluation and the results seen in Table 5-8, the adjustment 

ratio was statistically greater than one, indicating that the mean free-flow speed follows an 

increasing trend for the study area. This implies the necessity of factoring the time trend effect 

into the before-after speed data analysis. The odds ratio was statistically less than one, indicating 

that the PSL reduction was effective in reducing the mean free-flow speed. The reduction of 

mean free-flow speed was found to be 3.85 km/h with a credible interval away from zero, 

indicating a statistically significant reduction of the mean free-flow speed in the after period. 

Furthermore, the credible interval for the mean free-flow speed reduction indicates that the PSL 

reduction has a 95% probability of reducing the mean free-flow speed between 3.7 km/h and 4.0 

km/h. 

 

Probability of Speed below or Equal to Thresholds 

Table 5-9 presents the model estimation results for the binomial logistic models for speed below 

or equal to various speed thresholds. As seen in the table, in all cases, the within-site correlations 

were found significant, justifying the need to use mixed-effect models. Moreover, the posterior 

predictive approach of checking the model goodness of fit revealed p-values of 0.446, 0.185, 

0.162, and 0.149 for the model of 50 km/h, 60 km/h, 70 km/h, and 80 km/h thresholds, 

respectively. These values indicate that all the models are adequate in replicating the observed 

patterns of the data. 

 

 

 

 

 



   

103 

 

Table 5-9 Results of Parameter Estimation and Evaluation of Probability of Speed below or 

Equal to Various Thresholds 

Variable 

Speed below or equal to 50 km/h Speed below or equal to 60 km/h 

Parameter 
Estimate 

Credible Interval 
Parameter 
Estimate 

Credible Interval 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Intercept 0.170 -0.956 0.817 -0.263 -0.855 0.385 
Time of day (1 for daytime, 0 
otherwise) 

0.025 0.017 0.033 0.139 0.130 0.148 

Day of the week (1 for weekdays, 0 
otherwise) 

0.070 0.063 0.078 0.074 0.065 0.082 

Evening peak (4-6 PM) -0.128 -0.147 -0.108 -0.053 -0.073 -0.032 

Proportion of vans/buses/trucks -1.743 -1.799 -1.687 -2.385 -2.448 -2.322 

Road width (metres) 0.528 0.238 0.817 0.550 0.220 0.882 

Presence of bus stops 0.836 0.355 1.444 0.295 0.051 0.705 

Time period (1 for after, 0 for before) -0.188 -0.203 -0.172 -0.198 -0.214 -0.181 

Site type*time period 0.871 0.854 0.889 0.768 0.750 0.787 

Adjustment ratio, r 0.878 0.875 0.882 0.949 0.947 0.950 

Odds ratio (OR) 1.376 1.370 1.382 1.112 1.109 1.114 

Probability increase 0.200 0.197 0.202 0.092 0.090 0.093 

Within-site correlation 0.452 0.123 0.799 0.424 0.035 0.846 

Variable 

Speed below or equal to 70 km/h Speed below or equal to 80 km/h 

Parameter 
Estimate 

Credible Interval 
Parameter 
Estimate 

Credible Interval 

 
Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Intercept 0.343 -1.108 1.777 0.096 -6.077 5.457 

Time of day (1 for day time, 0 
otherwise) 

0.235 0.223 0.247 0.257 0.239 0.274 

Day of the week (1 for weekdays, 0 
otherwise) 

0.065 0.054 0.076 0.072 0.056 0.088 

Morning peak (7-9 AM) -0.025 -0.054 0.003 -0.045 -0.086 -0.004 

Proportion of vans/buses/trucks -2.959 -3.041 -2.878 -3.264 -3.380 -3.147 

Road width (metres) 0.509 0.105 0.881 0.522 -0.055 1.044 

Time period(1 for after, 0 for before) -0.188 -0.209 -0.166 -0.181 -0.212 -0.151 

Site type*time period 0.547 0.523 0.572 0.403 0.367 0.438 

Adjustment ratio, r 0.981 0.980 0.982 0.993 0.992 0.993 

Odds ratio (OR) 1.030 1.029 1.031 1.009 1.009 1.010 

Probability increase 0.028 0.027 0.029 0.009 0.009 0.010 

Within-site correlation 0.502 0.078 0.926 0.586 0.191 0.948 

Note: Statistically insignificant variables are marked by italic font with grey background. 
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In terms of the parameter estimation, results for rates of speed below or equal to various 

speed thresholds were found quite consistent. The daytime and weekdays were associated with 

increased probability of speed below or equal to the threshold for all four speed thresholds 

considered. It is interesting to note that the effect of the daytime on the probability augmented 

gradually with increase of the speed thresholds. These results are in line with a recent study by 

Heydari et al. (2014). Evening peak hours were associated with a decrease in the probability of 

speed below or equal to the 50 km/h and 60 km/h speed thresholds, and insignificant effects to 

the 70 km/h and 80 km/h speed thresholds when compared to off-peak hours. This result 

suggests that drivers tend to do minor speeding during the evening peak hours. On the contrary, 

the morning peak hours were associated with a decrease in the probability of speed below or 

equal to the 80 km/h speed threshold with insignificant effects for other thresholds. When these 

results are compared with the finding on mean free-flow speed, it is seen that the models of 

speed probability for various speed thresholds provided more detailed insight into the effect of 

peak hours compared to the model of free-flow speed, which provided an aggregated effect. A 

recent study showed that peak hours were associated with lower probability of speed being 

below or equal to various speed thresholds (Heydari et al., 2014). However, no differentiation 

was made between morning and evening peak hours in that analysis. The current thesis 

demonstrated the need to differentiate between morning and evening peak hours, as the effects of 

these two peak times on speed behaviour were different.   

 The proportion of vans/buses/trucks was associated with decreased probability of speed 

below or equal to various speed thresholds, with a gradually augmented effect as the speed 

threshold increased. This result implies that the vehicle composition has a dominating effect on 
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vehicle speed behaviour. The result from the free-flow speed model was also in line with this 

finding, as presented in Table 5-8. One of the findings that seems quite counter-intuitive was the 

effect of road width on speed probability. It was found that the probability of speed below or 

equal to all speed thresholds except 80 km/h increased as the road width increased. This 

contradicts the common belief that wider roads encourage speeding. One of the reasons for this 

result might be related to the data deficiency. In the current thesis, the road widths among the 

sites did not vary greatly, with many sites having almost similar road widths. For this reason, 

added to the observation that road width was not significant in the free-flow speed model shown 

in Table 5-8, the effect of road width on the probability of speed below or equal to various 

thresholds rate deserves further exploration. The presence of bus stops was associated with an 

increase in speed probability below or equal to 50 km/h and 60 km/h speed thresholds, with no 

significant effect for 70 km/h and 80 km/h speed thresholds. A possible reason for the presence 

of bus stops being significant in increasing the probability of speed below or equal to these 

thresholds is that the presence of a bus at the bus stop acts as a speed-impeding factor. 

 The parameter for the time period was negative, indicating that the probability of speed 

below or equal to various thresholds decreased in the after period. However, when the interaction 

between the time period and site type was considered, it was seen that the probability of speed 

below or equal to various thresholds increased for the treated sites in the after period. The time 

period alone essentially dictates the overall trend of increased speeding in the study area.   

 The evaluation results showed that the adjustment ratios for all four speed thresholds 

were always less than one, indicating the need to take into account the time-trend effect in the 

before-after evaluation of the speed data. Another observation is that the adjustment factors 

neared one as the speed threshold increased, meaning that the time trend is more dominant for 
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lower speed thresholds. All the odds ratios were greater than one, indicating that the PSL 

reduction was effective in increasing the probability of speed below or equal to various speed 

thresholds. Moreover, the value of the odds ratio decreased as the speed threshold increased, 

indicating that the effect of the PSL reduction is higher for low-speeding vehicles. The increases 

in the probability of speed below or equal to various thresholds were estimated as 20.0%, 9.2%, 

2.8%, and 0.9% for the speed thresholds of 50 km/h, 60 km/h, 70 km/h, and 80 km/h, 

respectively. The credible intervals were also found very narrow. Overall, these results indicate 

that the speed distribution shifted to the left in the treated sites during the after period.  

5.3 Multilevel Model 

The posterior estimates of the model parameters were obtained via two chains with 50,000 

iterations, 10,000 of which were excluded as a burn-in sample using WinBUGS. The BGR 

statistics were less than 1.2; the ratios of the Monte Carlo errors relative to the standard 

deviations of the estimates were less than 0.05; and trace plots for all of the model parameters 

indicated convergence.  

Table 5-10 presents the model estimation and before-after evaluation results. As seen, the 

DIC value for the heterogeneous within-site variance model was much lower than for the model 

with homogeneous within-site variance, indicating that the former model fit the data much better 

than the latter one. To further illustrate the result of the heterogeneous variance model, Figure 5-

4 shows the variance by site. This figure clearly shows that the variances changed substantially 

from one site to another. The homogeneous variance model basically considers the pooled 

variance from the variances shown in Figure 1 and the pooled variance was found to be 18.8. 

Evidently, the variance of many sites is substantially different from the pooled variance. In 

summary, the DIC value together with the information illustrated in Figure 5-4 clearly implies 
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that the assumption of homogeneous within-site/group/subject variance might not be the 

appropriate one and could lead to a biased estimation of model parameters. 

 The posterior predictive approach of checking the model’s goodness of fit showed p-

values of 0.499 and 0.573 for the homogeneous and heterogeneous within-site variance models, 

respectively, both of which are close to neither zero nor one, indicating that the observed pattern 

of the data is likely to be seen in the model-replicated data (Gelman et al., 1996). 
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Table 5-10 Results of Multilevel Model Estimation and Before-After Evaluation 

Variable 

Homogeneous Within-Site Variation Heterogeneous Within-Site Variation 

Parameter Std. Dev. 
Credible Interval 

Parameter Std. Dev. 
Credible Interval 

Lower Limit Upper Limit Lower Limit Upper Limit 

DIC 499800 486200 

Level 1         

Time-of-the-Day -0.250 0.036 -0.320 -0.180 -0.115 0.031 -0.176 -0.054 

Day-of-Week -0.256 0.032 -0.314 -0.190 -0.277 0.027 -0.330 -0.225 

Evening Peak 1.143 0.093 0.961 1.324 1.017 0.078 0.865 1.171 

Proportion of Vans/Buses/Trucks 9.577 0.144 9.296 9.861 9.440 0.142 9.162 9.722 

Hourly Traffic Volume -0.0057 0.0003 -0.0063 -0.0052 -0.0059 0.0002 -0.0063 -0.0056 

Time Period (treated) -2.674 0.034 -2.741 -2.608 -2.922 0.029 -2.979 -2.863 

Time Period (Comparison) 1.147 0.067 1.017 1.278 1.109 0.058 0.997 1.223 

Level 2 

        Road Width 0.561 0.257 0.050 1.059 0.626 0.303 0.008 1.212 

Road Class 6.434 1.153 4.156 8.696 6.417 1.162 4.131 8.707 

Level 3 

        Intercept 35.43 2.86 29.78 41.15 34.71 3.36 28.03 41.79 

Type 3 (New Community) 3.73 1.45 0.92 6.57 3.83 1.41 1.07 6.59 

Before-After Evaluation 

        Adjustment Ratio 1.039 0.001 1.037 1.042 1.038 0.001 1.036 1.040 

Odds Ratio 0.911 0.001 0.909 0.914 0.907 0.001 0.905 0.910 

Speed Reduction (km/h) 4.417 0.073 4.273 4.560 4.628 0.064 4.503 4.753 
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Figure 5-4 Within-Site Variances by Speed Survey Site 

 

The different variance components of the model showed that within-site, between-site, 

and between-community variances were 18.8, 16.5, and 0.4, respectively. The within-site 

correlation was calculated to be 46.4% of the total variation. Therefore, it can be concluded that 

for the current data, use of OLS regression could lead to a biased estimation of parameter values, 

as the within-site correlation is substantially high.  

The results of the parameter estimation showed that a significant number of variables in 

each of the three levels was found to be statistically significantly associated with the mean free-

flow speed. A slight difference in the parameter estimates was found between the homogeneous 

and heterogeneous within-site variance models. Moreover, the precision of the parameter 

estimates for the Level 1 variables improved in the heterogeneous variance model. For Level 1, 

nighttime, weekend, evening peak hours (4-6 pm), and the proportion of vanss/buses/trucks were 

associated with an increase in mean free-flow speed. Morning peak hours (7-9 am) were found to 
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have an insignificant effect on mean free-flow speed when compared to off-peak hours. The 

increase in traffic volume was associated with a decrease in the mean free-flow speed, indicating 

the fundamental relationship between speed and traffic flow. The effect of the time period 

showed that in the after period, the mean free-flow speed increased in the comparison sites, 

while it decreased in the treated sites. This finding implies the need to use a comparison group in 

the before-after evaluation to capture the effect of the general trend. For Level 2, road width and 

collector roads were found to be statically significant and positively related to the mean free-flow 

speed, which is quite intuitive. Wider roads encourage speeding, which is one of the main 

governing factors for road-diet programs undertaken by various transportation agencies across 

the world. Collector roads carry more through traffic than local roads and therefore are expected 

to have higher speed (Gattis and Watts, 1999). For level 3, grid communities were found to be 

statistically insignificant, while new communities were found to be significant and positively 

associated with the mean free-flow speed. This finding is also intuitive, as new communities 

have less parking with long curvilinear roads, compared to old communities with more curves 

and on-street parking.  

Often, the mixed model was used in the literature with a constant intercept term. To 

illustrate the appropriateness of the multilevel model (i.e., varying coefficient), Figure 5-5 shows 

the intercepts by site. As seen, the intercept term varied substantially from one site to another, 

dictating that the constant intercept assumption might be violated or too restrictive. 
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Figure 5-5 Model Intercepts by Speed Survey Site for Heterogeneous Variance Model. 

 

 The before-after evaluation results presented in Table 5-10 show that the adjustment 

factor was greater than one, implying the necessity of factoring the time trend effect into the 

before-after speed data analysis. Moreover, the odds ratio was statistically less than one, 

indicating that the PSL reduction is effective in reducing the mean free-flow speed. The 

reduction of mean free-flow speed was estimated to be 4.6 km/h using the heterogeneous 

variance model. It was also observed that the homogeneous variance model slightly 

underestimated the speed reduction.  

5.4 Comparison between Mixed-Effect and Multilevel Model 

This thesis employed three different modelling techniques for mean free-flow speed: i) mixed 

effect model, ii) multilevel model with homogeneous variance, and iii) multilevel model with 

heterogeneous model. The comparison of the goodness-of-fit of the three models as well as the 

mean free-flow speed reductions estimated by the three models is presented in Table 5-11. 
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Several conclusions can be drawn from the findings. In terms of the DIC value, mixed-effect 

model and multilevel model with homogeneous variance is comparable, as no change in the DIC 

value is obtained. The multilevel model with heterogeneous variance outperformed the mixed 

effect model and multilevel model with homogeneous variance, as a significant drop in the DIC 

value is observed.  

The before-after evaluation of the mean free-flow speed reduction shows that the 

multilevel model with heterogeneous variance estimated the highest reduction of the speed while 

mixed effect model presents the lowest reduction. The precision of the estimates indicated by the 

standard deviation shows that the multilevel model with heterogeneous variance yielded the 

highest precision. Although the DIC values for mixed effect model and multilevel model with 

homogeneous variance are the same, the precision of the estimate of speed reduction is higher for 

multilevel model with homogeneous variance.  

Based on these findings, it is recommended to use multilevel model for modelling free-

flow speed and evaluating safety effect of countermeasures. The conventional mixed-effect 

model substantially underestimated the effectiveness of the PSL reduction. Therefore, a 

multilevel model with heterogeneous variance is preferred for evaluating the effectiveness of any 

safety intervention using speed data. 

Table 5-11 Comparison of Goodness-of-fit and free-flow speed reduction evaluation by mixed 

effect and multilevel models 

Models DIC Estimated Mean Free-Flow 
Speed Reduction (Standard 
deviation)[credible interval]  

Mixed effect model 499800 3.85 (0.077) [3.7,4.0] 

Multilevel model with homogeneous variance  499800 4.42(0.073) [4.27,4.56] 

Multilevel model with heterogeneous variance 486200 4.63 (0.064) [4.5,4.75] 
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6.0 Crash Data Analysis and Evaluation Results 

This chapter presents the results of crash data modelling and evaluation. The results are divided 

into two parts: microscopic (i.e., road-segment based) modelling results and macroscopic (i.e., 

neighbourhood-based) modelling results. Finally, a comparison of the results among different 

modelling formulations was discussed.   

6.1 Microscopic Models 

For the microscopic crash data modelling and evaluation road segment was used as unit of 

analysis. It is worth noting that for this dataset, no spatial correlation was observed. This is quite 

intuitive as the road segments distribution was random across the city. Therefore, for 

microscopic modelling, no spatial correlation was considered.  

The posterior estimates of the model parameters for the FB methods were obtained via 

two chains with 50,000 iterations, 10,000 of which were excluded as a burn-in sample using 

WinBUGS. The BGR statistics were less than 1.2; the ratios of the Monte Carlo errors relative to 

the standard deviations of the estimates were less than 0.05; and trace plots for all of the model 

parameters indicated convergence.  

Table 6-1 and Table 6-2 present the parameter estimates of the two models that use the 

FB method: i) univariate and ii) multivariate with severe and PDO crashes, respectively. Table 6-

3 presents the parameter estimation results for the PLN models under the EB method.  
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Table 6-1 Summary of model estimation results under univariate FB method 

Variables 

Parameter Estimate Standard Deviation 
 (95% credible interval in parentheses) 

Total Severe PDO 

Intercept 
-3.2750 0.3270 

(-3.9080, -2.6260) 
-5.8880 0.6133 

(-7.1000, -4.7100) 
-2.8080 0.3158 
(-3.4330,-2.1850) 

ln(Length) 
0.7154 0.0530 
(0.6134, 0.8201) 

0.6862 0.0.0921 
(0.5073, 0.8664) 

0.7815 0.0510 
(0.6820,0.8806) 

ln(AADT) 
0.5971 0.0382 
(0.5215, 0.6712) 

0.6874 0.0769 
(0.5390, 0.8386) 

0.5612 0.0400 
(0.4829,0.6407) 

Licensed premise number 
0.0317 0.0041 
(0.0236,0.0400) 

 
0.0302 0.0042 
(0.0219,0.0385) 

Presence of licensed premise  
0.5112 0.1154 
(0.2893, 0.7363) 

 

Presence of access point 
0.3601 0.1067 
(0.1496,0.5690) 

  

Presence of school  
0.2073 0.0598 
(0.0875, 0.3233) 

 
0.2001 0.0619 
(0.0798,0.3211) 

Presence of street parking 
0.2915 0.0638 
(0.1666, 0.4183) 

 
0.3398 0.0630 
(0.2148,0.4640) 

Stop-controlled intersection density  
 

0.0823 0.0196 
(0.0442,0.1211) 

 

Uncontrolled intersection density  
 

0.0296 0.0117 
(0.0068,0.0532) 

 

Time period 
-0.0871 0.0566 
(-0.1969, 0.0234) 

-0.0876 0.1030 
(-0.2921, 0.1188) 

-0.0896 0.0586 
(-0.2031, 0.0261) 

p 0.4619 0.1845 0.4594 

DIC 2908 1399 2796 

DIC (Severe + PDO) 4195 

Note: Insignificance at 95% credible interval is marked by italicized font. 
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Table 6-2 Summary of model estimation results under multivariate FB method 

Variables 

Parameter Estimate Standard Deviation (95% credible 
interval in parentheses) 

Severe PDO 

Intercept 
-6.1480 0.6460 
(-7.4470,-4.8970) 

-2.5450 0.3380 
(-3.2110,-1.8880) 

ln(Length) 
0.7121 0.0966 
(0.5236,0.9033) 

0.7022 0.0525 
(0.6018,0.8055) 

ln(AADT) 
0.7027 0.0795 
(0.5460,0.8606) 

0.5121 0.0428 
(0.4287,0.5963) 

Presence of licensed premise 
0.5106 0.1183 
(0.2798,0.7440) 

0.3384 0.0635 
(0.2173,0.4663) 

Presence of street parking 
0.1346 0.1192 

(-0.0923, 0.3705) 
0.3372 0.0676 
(0.2029, 0.4691) 

Stop-controlled intersection 
density 

0.0861 0.0206 
(0.0451,0.1266) 

0.0430 0.0130 
(0.0169,0.0684) 

Uncontrolled intersection density 
0.0312 0.0121 
(0.0073,0.0552) 

0.0030 0.0070 
(-0.0108,0.0166) 

Time period 
-0.0791 0.1050 
(-0.2863, 0.1258) 

-0.0866 0.0611 
(-0.2029, 0.0342) 

p 0.25 0.58 

Correlation 0.71 

DIC 4145 

Note: Insignificance at 95% credible interval is marked by italicized font. 

Table 6-3 Summary of model estimation results under EB method 

Variables 
Parameter Estimate Standard Error (P-value in parentheses) 

Total Severe PDO 

Intercept 
-3.4089 0.3371 

(<0.0001) 
-6.0512 0.6301 

(<.0001) 
-3.3572 0.3464 

(<0.0001) 

ln(Length) 
0.7153 0.0539 

(<0.0001) 
0.7056 0.0966 

(<.0001) 
0.7126 0.0555 

(<0.0001) 

ln(AADT) 
0.6040 0.0393 

(<0.0001) 
0.6983 0.0790 

(<.0001) 
0.5775 0.0403 

(<0.0001) 

Licensed premise number 
0.0313 0.0042 

(<0.0001) 
 

0.0316 0.0042 
(<0.0001) 

Presence of licensed premise  
0.5143 0.1200 

(<.0001) 
 

Presence of access point 
0.4039 0.1091 

(0.0002) 
 

0.4109 0.1130 
(0.0003) 

Presence of school  
0.2102 .0608 

(0.0006) 
 

0.1831 0.0623 
(0.0034) 

Presence of street parking 
0.2938 0.0650 

(<0.0001) 
 

0.3178 0.0669 
(0.0009) 

Stop-controlled intersection density 
 

0.0837 0.0262 
(<.0001) 

 

Uncontrolled intersection density 
 

0.0322 0.0123 
(0.009) 

 

AIC 2996.2 1362.5 2859.2 
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The result of the posterior predictive approach showed no anomalies in any of the univariate or 

multivariate models. All the p values shown in Table 6-1 and Table 6-2 are close to neither zero 

nor one, indicating the adequacy of the models. 

All the microscopic (e.g., road-segment based) models in the current thesis, irrespective 

of FB or EB, are remarkably consistent in terms of the significant variables, with very few 

exceptions. For instance, the presence of school was statistically significant in the univariate FB 

and the EB models, while they were insignificant in multivariate models. The parameter 

estimates of the models among different approaches differ little.  

The parameter estimates for length and AADT are highly significant with positive signs 

in all of the models, indicating the credibility of the models. Further, total and PDO crash models 

yielded the same variables as statistically significant, demonstrating the dominance of PDO 

crashes in total crashes. In general, licensed premises, access points, and street parking were 

statistically significant and positively related to both total and PDO crashes, while licensed 

premises, stop-controlled intersection density, and uncontrolled intersection density were 

significant and positively related to severe crashes. As the multivariate models with severe and 

PDO crashes appeared to be the best models for the current dataset, further discussion on the 

model parameters is restricted to only the multivariate models with severe and PDO crashes. It is 

worth noting that the correlation between severe and PDO crashes as found from the multivariate 

model is 0.71.  

The presence of licensed liquor premises was associated with 67% and 40% increases of 

severe and PDO crashes, respectively. This result is intuitive, as the percentage of impaired 

driving is expected to be higher near licensed premises. Furthermore, the above percentages 
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show that while the presence of licensed premises increases the risk for both severe and PDO 

crashes, severe crashes have a higher likelihood of occurring. These findings align with previous 

research conclusions (Cotti et al., 2014). 

The presence of street parking was associated with a 40% increase in PDO crashes but 

demonstrated a statistically insignificant association with severe crashes. This might be attributed 

to the fact that street parking leaves less space on the road for driving vehicles, hence the 

increased likelihood of crashes (Edquist et al., 2012). However, as the crashes between driving 

vehicles and parked vehicles typically involve sideswiping, they are more likely to be PDO 

crashes.  

Stop-controlled intersection density was associated with 9% and 4% increases of severe 

and PDO crashes, respectively. Uncontrolled intersection density was associated with a 3% 

increase of severe crashes but had no statistically significant impact on PDO crashes. These 

results might be attributed to the fact that the crashes in these intersections are most likely to be 

right-angle crashes, and consequently, more severe. 

In terms of the time trend of crashes, as expressed by the time period variable, the results 

of both the univariate and multivariate FB models were consistent. Crashes were found to have a 

general declining trend, although statistically insignificant in all cases. However, despite their 

insignificancy, they were kept in the model for the before-after safety evaluation because of their 

practical importance. The time trend is one of the major confounding factors in before-after 

safety evaluation, the exclusion of which would lead to a biased estimation of the safety effects. 

The time trend variable addresses the effects of external factors, such as change in weather, 

economy, etc., that cannot be addressed in the model with appropriate variables. Overall, the 
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time trend variable indicates that the total, severe, and PDO crashes were reduced by 9%, 8%, 

and 9%, respectively.  

 

 

6.2 Microscopic Evaluations 

The models presented in the above section were used to evaluate the safety effects of reducing 

the urban residential PSL. Table 6-4 presents the results of the before-after safety evaluation 

under different approaches. As observed in the table, the EB method underestimated the effects 

on total and PDO crashes, and overestimated for severe crashes. The notable difference between 

the EB and the univariate FB approaches was that the estimates of the effects had much lower 

standard deviations for the FB approach, indicating that the precision of the estimates was much 

higher for the FB approach. This finding aligns with previous research findings by Lan et al. 

(2009) and Persaud et al. (2010), but contradicts the findings of Park et al. (2010b). Moreover, 

while only severe crash reduction in the EB method was statistically significant at a 95% 

confidence level, all the reductions in the univariate FB method were statistically significant. 

This finding indicates that the conclusion drawn from the EB method, regarding the effectiveness 

of a safety intervention, could be misleading.  

 

Table 6-4 Effect of PSL reduction on crash frequency using microscopic data 

Method 
Crash Reduction Percentage (Standard Deviation) 

Total Severe PDO 

EB  17.9 (10.9) 59.5 (16.3)** 10.1 (12.5) 

Univariate FB 26.0 (3.0) 51.36 (4.6) 17.1 (4.3) 

Multivariate FB (Sev & PDO) * 22.0 (3.8) 49.9 (4.8) 17.9 (4.2) 

Note: *total crash frequency is obtained by summing the multivariate severe and PDO crashes; **only 

crash group in EB found statistically significant at 95% confidence level. 
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The multivariate FB approach with severe and PDO crashes estimated safety effects 

similar to the univariate FB method for severe and PDO crashes. However, the multivariate 

approach showed a slightly lower effect for total crashes. Similar to the univariate FB approach, 

all the estimates in the multivariate FB approach were statistically significant, and the precision 

of the safety effects was greater than in the EB method. The precision of the calculated safety 

effects was similar for the univariate and the multivariate FB approaches.  

As the multivariate FB models provided better fit to the data with significantly lower DIC 

values compared to the univariate FB models, the safety effects estimated in the multivariate FB 

approach are favoured over those calculated via other methods. It is worth noting that the 

estimated safety effects for total crashes in the multivariate FB method were found by combining 

the severe and PDO crashes; therefore, the total crash reduction calculated in the multivariate 

approach accumulated the potential uncertainty of the estimates of severe and PDO crashes. 

Hence, the best estimate of safety effects for the total crashes would be the one obtained from the 

univariate FB approach.  

Based on the above results in Table 6-4, the most appropriate estimate of crash reduction 

would be 26%, 50%, and 18% for the total, severe, and PDO crashes, respectively. The highest 

safety benefit was realized for severe crashes, which is quite intuitive and expected, given the 

fact that the effect of speed on crash severity is evident in the literature. Using the speed-crash 

relationship, it was estimated that the expected total crash reduction would be 15%. The current 

finding based on the crash data provided a slightly higher estimate of the total crash reduction. 

This indicates that existing empirical speed-crash relationships might provide a conservative 

estimate of crashes for urban residential areas. 
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The reduction of various crashes is statistically significant and quite substantial, given 

that no costly engineering measures, such as geometry or infrastructure change, were undertaken 

in the program. The PSL reduction was accompanied by only a public education campaign and 

enforcement. These findings suggest that reducing the PSL could be an effective speed 

management strategy to improve the safety of urban residential collector roads. 

 

6.3 Macroscopic Models 

For macroscopic analysis, the unit of analysis was residential neighbourhood. Five different 

models were developed in this thesis to perform before-after safety evaluation: (i) univariate 

Poisson-lognormal (PLN), (ii) multivariate Poisson-lognormal (MVPLN), (iii) univariate 

Poisson-lognormal with CAR distribution (PLN-CAR), (iv) multivariate Poisson-lognormal with 

multivariate CAR distribution (MVPLN-CAR), and (v) Poisson lognormal shared component 

model with CAR distribution.  

For each model, the posterior estimates were obtained via two chains with 50,000 

iterations, 10,000 of which were excluded as a burn-in sample using WinBUGS. The BGR 

statistics were less than 1.2; the ratios of the Monte Carlo errors relative to the standard 

deviations of the estimates were less than 0.05; and trace plots for all of the model parameters 

indicated convergence. 

The model estimation results are presented in Table 6-5 to Table 6-9. The models differ a 

little in terms of the significant variables and their estimates. In general, the variables found to be 

statistically significant and associated with both types of crashes are vehicle kilometres travelled, 

the number of traffic signals, grid network pattern, dwelling units, proportion of population aged 

equal to or below 15 years, proportion of population aged equal to or above 65 years, and 
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proportion of households with two or more cars. For indicator variables related to treated 

neighbourhoods, all are insignificant, except for year 1. Other variables listed in the data 

description section were found to be statistically insignificant. 
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Table 6-5 Results of macroscopic univariate Poisson lognormal model 

 
Total crash Severe crash Property-damage-only crash 

 
mean sd val2.5pc val97.5pc mean sd val2.5pc val97.5pc mean sd val2.5pc val97.5pc 

Intercept1 0.242 0.346 -0.451 0.871 -2.461 0.444 -3.374 -1.601 0.178 0.293 -0.403 0.759 

Intercept 2 0.244 0.346 -0.452 0.872 -2.512 0.444 -3.418 -1.656 0.183 0.293 -0.398 0.766 

Intercept 3 0.275 0.346 -0.420 0.904 -2.596 0.444 -3.510 -1.735 0.226 0.293 -0.352 0.808 

Intercept 4 0.141 0.346 -0.553 0.770 -2.774 0.446 -3.682 -1.919 0.102 0.292 -0.475 0.686 

Intercept 5 -0.104 0.346 -0.796 0.524 -2.909 0.446 -3.828 -2.056 -0.155 0.293 -0.731 0.422 

Intercept 6 0.007 0.346 -0.683 0.636 -2.985 0.445 -3.894 -2.136 -0.021 0.293 -0.599 0.558 

log(VKT) 0.365 0.039 0.292 0.444 0.433 0.052 0.331 0.539 0.348 0.034 0.280 0.414 

Signal No. 0.171 0.023 0.126 0.217 0.258 0.031 0.196 0.318 0.155 0.026 0.108 0.217 

Grid  -0.353 0.116 -0.584 -0.135 
    

-0.329 0.100 -0.535 -0.125 

Dwelling 0.345 0.031 0.280 0.406 0.325 0.062 0.206 0.442 0.362 0.032 0.297 0.427 

Pop<=15 -0.724 0.402 -1.556 0.047 
        Pop>=65 -0.931 0.321 -1.558 -0.289 
    

-1.038 0.315 -1.646 -0.403 

Car>=2 -0.622 0.218 -1.023 -0.186 -1.414 0.273 -1.936 -0.890 -0.685 0.189 -1.031 -0.303 

Treated1 0.287 0.176 -0.053 0.646 0.645 0.244 0.158 1.115 0.231 0.178 -0.112 0.595 

Treated2 0.161 0.177 -0.173 0.526 0.418 0.263 -0.101 0.929 0.124 0.179 -0.222 0.484 

Treated3 0.188 0.177 -0.147 0.541 0.073 0.289 -0.511 0.633 0.194 0.177 -0.150 0.553 

Treated4 0.093 0.179 -0.252 0.454 0.162 0.296 -0.429 0.746 0.079 0.178 -0.260 0.443 

Treated5 -0.062 0.183 -0.411 0.305 -0.275 0.361 -1.025 0.394 -0.046 0.185 -0.398 0.318 

Treated6 0.219 0.178 -0.124 0.574 0.473 0.286 -0.097 1.023 0.189 0.180 -0.160 0.556 
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Table 6-6 Results of macroscopic univariate Poisson lognormal model with CAR distribution 

 
Total crash Severe crash PDO crash 

 
mean sd val2.5pc val97.5pc mean sd val2.5pc val97.5pc mean sd val2.5pc val97.5pc 

Intercept1 0.557 0.399 -0.283 1.295 -2.551 0.487 -3.499 -1.622 -0.518 0.984 -2.123 0.991 

Intercept 2 0.559 0.3999 -0.283 1.297 -2.603 0.488 -3.551 -1.673 -0.509 0.985 -2.117 0.998 

Intercept 3 0.591 0.400 -0.251 1.329 -2.689 0.488 -3.638 -1.761 -0.464 0.984 -2.066 1.045 

Intercept 4 0.457 0.399 -0.383 1.194 -2.868 0.490 -3.824 -1.934 -0.593 0.984 -2.199 0.915 

Intercept 5 0.211 0.399 -0.630 0.948 -3.003 0.490 -3.958 -2.072 -0.852 0.985 -2.458 0.656 

Intercept 6 0.322 0.399 -0.519 1.059 -3.079 0.490 -4.036 -2.148 -0.720 0.985 -2.326 0.790 

log(VKT) 0.272 0.037 0.200 0.345 0.419 0.056 0.310 0.531 0.247 0.035 0.181 0.316 

Signal No. 0.175 0.024 0.125 0.223 0.246 0.031 0.185 0.310 0.169 0.020 0.130 0.209 

Grid  -0.154 0.094 -0.337 0.032 
    

-0.142 0.090 -0.317 0.040 

Dwelling 0.343 0.029 0.285 0.398 0.346 0.067 0.211 0.474 0.364 0.033 0.301 0.428 

Pop<=15 -0.882 0.388 -1.631 -0.101 
    

-0.856 0.397 -1.637 -0.063 

Pop>=65 -1.030 0.310 -1.633 -0.411 
    

-1.112 0.305 -1.721 -0.527 

Car>=2 -0.574 0.244 -1.047 -0.107 -1.327 0.345 -1.991 -0.638 -0.549 0.204 -0.961 -0.156 

Treated1 0.271 0.162 -0.054 0.584 0.504 0.267 -0.018 1.021 0.238 0.156 -0.074 0.538 

Treated2 0.144 0.162 -0.183 0.462 0.282 0.281 -0.279 0.818 0.127 0.157 -0.188 0.431 

Treated3 0.171 0.161 -0.153 0.486 -0.064 0.309 -0.681 0.509 0.199 0.154 -0.099 0.496 

Treated4 0.074 0.163 -0.249 0.393 0.033 0.312 -0.592 0.624 0.085 0.159 -0.233 0.393 

Treated5 -0.081 0.170 -0.422 0.250 -0.413 0.373 -1.182 0.287 -0.043 0.167 -0.380 0.277 

Treated6 0.200 0.164 -0.125 0.519 0.343 0.308 -0.270 0.933 0.192 0.157 -0.118 0.499 
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Table 6-7 Results of macroscopic multivariate Poisson lognormal model 

 
Severe crash PDO crash 

 
mean sd val2.5pc val97.5pc mean sd val2.5pc val97.5pc 

Intercept1 -2.654 0.473 -3.559 -1.697 0.131 0.291 -0.406 0.755 

Intercept 2 -2.695 0.473 -3.598 -1.748 0.138 0.291 -0.406 0.758 

Intercept 3 -2.768 0.475 -3.676 -1.816 0.183 0.292 -0.358 0.801 

Intercept 4 -2.948 0.475 -3.871 -1.991 0.055 0.291 -0.481 0.674 

Intercept 5 -3.086 0.474 -4.001 -2.136 -0.203 0.291 -0.743 0.413 

Intercept 6 -3.161 0.476 -4.070 -2.206 -0.070 0.291 -0.614 0.552 

log(VKT) 0.530 0.056 0.421 0.636 0.361 0.036 0.288 0.430 

Signal No. 0.242 0.042 0.165 0.321 0.151 0.031 0.097 0.208 

Grid  -0.430 0.167 -0.763 -0.117 -0.348 0.111 -0.577 -0.142 

Dwelling 0.202 0.050 0.104 0.300 0.353 0.031 0.291 0.417 

Pop>=65 -1.215 0.560 -2.304 -0.046 -0.875 0.321 -1.526 -0.276 

Car>=2 -1.585 0.319 -2.148 -0.943 -0.626 0.208 -0.999 -0.226 

Treated1 0.745 0.273 0.215 1.297 0.242 0.180 -0.086 0.603 

Treated2 0.510 0.283 -0.025 1.074 0.138 0.182 -0.192 0.504 

Treated3 0.156 0.316 -0.450 0.805 0.210 0.179 -0.117 0.592 

Treated4 0.231 0.318 -0.403 0.862 0.095 0.182 -0.233 0.468 

Treated5 -0.218 0.369 -0.950 0.497 -0.032 0.191 -0.390 0.350 

Treated6 0.514 0.307 -0.093 1.085 0.203 0.182 -0.126 0.592 
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Table 6-8 Results of macroscopic multivariate Poisson lognormal model with multivariate CAR 

  Severe crash PDO crash 

variable mean sd val2.5pc val97.5pc mean sd val2.5pc val97.5pc 

Intercept1 -2.234 0.474 -3.175 -1.326 0.742 0.312 0.109 1.332 

Intercept 2 -2.258 0.473 -3.195 -1.351 0.761 0.311 0.132 1.350 

Intercept 3 -2.361 0.477 -3.305 -1.450 0.790 0.313 0.155 1.381 

Intercept 4 -2.547 0.478 -3.489 -1.633 0.660 0.313 0.026 1.252 

Intercept 5 -2.673 0.476 -3.618 -1.762 0.409 0.312 -0.222 0.999 

Intercept 6 -2.765 0.477 -3.707 -1.849 0.534 0.313 -0.099 1.126 

log(VKT) 0.432 0.055 0.325 0.539 0.264 0.036 0.196 0.337 

Signal No. 0.246 0.032 0.187 0.312 0.170 0.022 0.130 0.213 

Dwelling 0.266 0.048 0.170 0.360 0.350 0.029 0.294 0.407 

Pop<=15 -1.255 0.832 -2.624 0.136 -0.802 0.398 -1.445 -0.128 

Pop>=65 -1.233 0.549 -2.297 -0.152 -0.944 0.305 -1.534 -0.338 

Car>=2 -1.327 0.333 -1.964 -0.659 -0.621 0.208 -0.999 -0.197 

Treated1 0.577 0.261 0.055 1.081 0.251 0.163 -0.068 0.571 

Treated2 0.341 0.273 -0.202 0.867 0.145 0.164 -0.178 0.459 

Treated3 -0.007 0.300 -0.609 0.566 0.218 0.163 -0.103 0.531 

Treated4 0.065 0.308 -0.560 0.652 0.102 0.165 -0.224 0.418 

Treated5 -0.378 0.364 -1.128 0.310 -0.025 0.172 -0.360 0.307 

Treated6 0.364 0.299 -0.236 0.940 0.209 0.166 -0.116 0.532 
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Table 6-9 Results of macroscopic Poisson lognormal shared component model 

 
severe PDO 

 
mean sd val2.5pc val97.5pc mean sd val2.5pc val97.5pc 

Intercept1 -2.587 0.569 -3.748 -1.531 0.387 0.395 -0.494 1.092 

Intercept 2 -2.611 0.568 -3.771 -1.557 0.408 0.394 -0.471 1.111 

Intercept 3 -2.715 0.571 -3.879 -1.653 0.436 0.396 -0.445 1.143 

Intercept 4 -2.901 0.571 -4.068 -1.840 0.305 0.396 -0.576 1.013 

Intercept 5 -3.027 0.570 -4.193 -1.970 0.055 0.395 -0.826 0.760 

Intercept 6 -3.119 0.572 -4.287 -2.054 0.179 0.396 -0.705 0.886 

log(VKT) 0.445 0.054 0.338 0.554 0.279 0.034 0.212 0.346 

Signal No. 0.244 0.031 0.184 0.305 0.168 0.022 0.125 0.214 

Dwelling 0.267 0.053 0.163 0.370 0.348 0.031 0.287 0.410 

Pop<=15 -1.257 0.855 -2.920 0.443 -0.818 0.401 -1.614 -0.037 

Pop>=65 -1.250 0.537 -2.299 -0.194 -0.957 0.304 -1.544 -0.355 

Car>=2 -1.344 0.345 -2.024 -0.681 -0.655 0.224 -1.080 -0.224 

Treated1 0.610 0.264 0.089 1.119 0.279 0.167 -0.049 0.609 

Treated2 0.373 0.277 -0.188 0.906 0.172 0.168 -0.157 0.501 

Treated3 0.020 0.301 -0.589 0.598 0.244 0.166 -0.083 0.573 

Treated4 0.093 0.308 -0.523 0.687 0.128 0.170 -0.208 0.462 

Treated5 -0.352 0.361 -1.083 0.327 0.002 0.176 -0.347 0.350 

Treated6 0.393 0.301 -0.210 0.963 0.237 0.169 -0.100 0.567 
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The parameter estimate for the log transformation of vehicle kilometres travelled was 

highly significant and positively associated with both severe and PDO crashes. This is intuitive 

and logical, as the vehicle kilometre travelled represents the level of exposure. Across the 

different models, the estimates varied from 0.416 to 0.525 for severe crashes and from 0.243 to 

0.358 for PDO crashes. The higher value of the estimate for severe crashes denotes that the effect 

of vehicle kilometres travelled on crash frequency is higher for severe crashes than PDO crashes. 

 The number of traffic signals within the neighbourhood was significant and positively 

associated with both severe and PDO crashes, indicating that as the number of traffic signals 

increases, the probability of crash occurrence for both severity levels increases. Moreover, the 

effect of the number of traffic signals is higher for severe crashes when compared to PDO 

crashes.  

 The road network pattern was found to be significant only in non-spatial models. The 

results show that neighbourhoods with grid pattern road networks are associated with fewer 

crashes compared to other road network patterns.   

 The dwelling unit number for the neighbourhood was significant and positively 

associated with both severe and PDO crashes, irrespective of the models. The parameter 

estimates varied from 0.206 to 0.352 for severe crashes and from 0.348 to 0.367 for PDO crashes. 

The current thesis also attempted to include neighbourhood population in the model. However, 

because of the high correlation between population and dwelling units, both variables could not 

be included in the same model. When only population was included, the resulting models had a 

higher DIC value than the models with dwelling unit. Therefore, in the final models, dwelling 

unit was used.  
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 In terms of population age distribution, the proportion of the population aged 15 years or 

below was found to be significant and negatively associated with PDO crashes in the spatial 

model. This finding might be expected, as the higher proportion of this age group indirectly 

represents fewer drivers and therefore less exposure in the neighbourhood. The proportion of the 

population aged 65 years or above was also significant and negatively associated with both 

severe and PDO crashes. This finding is consistent with previous research (Quddus, 2008; Huang 

et al., 24).  

Table 6-10 presents the variance-covariance estimates for different models.  Irrespective 

of the model type, variances for heterogeneous error were always statistically significant. This 

indicates the need to incorporate a heterogeneous error term in the model. Moreover, the value of 

heterogeneous variance was higher for severe crashes than PDO crashes, which denotes that 

severe crashes exhibit more randomness than PDO crashes. Furthermore, for the multivariate 

PLN and multivariate PLN CAR models, the covariance between severe and PDO crashes for 

heterogeneous error was statistically significant, indicating the appropriateness of using 

multivariate models for crash severity. In the univariate model, this covariance between the 

severity levels is ignored.   

The correlation between severe and PDO crashes for the heterogeneous error was 

statistically significant and very high. The multivariate PLN model estimated the correlation as 

91%, while the multivariate PLN CAR model estimated it as 0.93%.  This high correlation 

indicates that a higher number of PDO crashes is associated with a higher number of severe 

crashes, as the numbers of both types are likely to rise due to the same deficiencies in 

neighbourhood design or other unobserved factors, or both (El-Basyouny and Sayed, 2009b). 
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 For the univariate spatial model, the variance of the spatial error was statistically 

significant for PDO crashes, but insignificant for severe crashes. This indicates that the 

proximate neighbourhoods are more closely related to PDO crashes than severe crashes for the 

current data. Therefore, including spatial error is more likely to improve model prediction 

significantly only for the PDO crashes, rather than severe crashes. 

For spatial error, the correlation between severe and PDO crashes, as found for the 

multivariate CAR model, was estimated as 65%; however, it was not statistically significant. One 

of the potential reasons for the spatial correlation not being significant is that the boundary 

crashes were excluded from the analysis. With boundary crashes being distributed among the 

adjacent neighbourhoods, higher spatial correlation could have been expected. Another reason 

could be the fact that the model has two random error components, with the heterogeneous 

component accounting for a substantial portion of the random effect (Aguero-Valverde, 2013).  
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Table 6-10 Variance Estimate for Error Components 

Variance for univariate PLN model Variance for multivariate PLN model 

Total 0.20 (0.02) Severe PDO 

Severe 0.27(0.04) 0.34 (0.05) 0.91 (0.02) 

PDO 0.19 (0.02) 0.23 (0.03) 0.19 (0.02) 

Variance for univariate PLN CAR model 

 

For heterogeneous error For spatial error 

Total 0.08 (0.04) 0.19 (0.11) 

Severe 0.23 (0.04) 0.05 (0.06) 

PDO 0.06 (0.03) 0.21 (0.09) 

Variance-covariance matrix for multivariate PLN with multivariate CAR model 

 

For heterogeneous error  For spatial error  

 

Severe PDO Severe PDO 

Severe 0.19(0.06) 0.93 (0.12) 0.15 (0.16) 0.65 (0.53) 

PDO 0.12 (0.05) 0.08 (0.04) 0.14 (0.14) 0.15 (0.12) 

Gray colour indicates correlation; parentheses indicate standard deviation. 

 

Table 6-11 indicates that for severe crash, about 74% of the total between-neighbourhood 

variation is captured by the shared component, while for PDO crash about 64% of the total 

between-neighbourhood variation is captured by the shared component. Delta is greater than 1, 

indicating that the shared component has a slightly stronger association with severe crash than 

with PDO crash. 

Table 6-11 Variation explained by shared component in Shared Component PLN model 

 
mean sd val2.5pc val97.5pc 

Severe 0.739 0.190 0.404 0.962 

PDO 0.636 0.275 0.221 0.967 

Delta (association) 1.167 0.048 1.088 1.269 
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6.4 Macroscopic Evaluation 

The macroscopic models were used to evaluate the safety effects of reducing the urban 

residential PSL. Table 6-12 presents the results of the before-after safety evaluation under 

different models. As observed in the table, the estimated crash reductions and the precision are 

almost the same across different models. The crash reduction estimates are 13%, 24% and 12% 

for total, severe and PDO crashes, respectively. While the total and PDO crash reductions are 

statistically significant at the 95% credible interval, the severe crash reduction is significant at 

the 90% credible interval.  

 Although the model parameter estimates differ a little among various models, the crash 

reduction estimates show no noticeable differences. One potential reason for this could be related 

to the data used in the current thesis. As seen from Table 4-7, the changes in different 

explanatory variables between the before and after period for the treated group are quite minimal. 

Therefore, differences in model parameter estimates provided little impact on the before-after 

evaluation results. However, this might not be the case for all safety interventions. If an 

intervention affects other factors (e.g., traffic volume) in addition to the number of crashes, it 

may be possible that different models estimate significantly different crash reductions. Moreover, 

there were only eight treated neighbourhoods in the current thesis; analysis with more treated 

sites could yield different results.   

 The PSL was reduced for all roads within the boundaries (excluding boundary roads) of 

the treated residential neighbourhoods. This includes collector and local road segments and the 

associated intersections. To conduct a model-based microscopic (i.e., intersection and road 

segment level) safety evaluation for the entire study area, it is necessary to collect exposure data 
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(i.e., traffic volume) for all road segments and intersections. However, the data were not 

available, as road agencies often do not collect traffic volume data for low-volume residential 

collector and local road segments and intersections. Based on the microscopic evaluation using 

road segment data, the total, severe and PDO crash reductions were estimated as 26%, 50% and 

18%, respectively. These crash reduction estimates are substantially different from the 

macroscopic findings, especially for severe crashes.  

 The differences in results between the microscopic (i.e., collector road segments) and the 

macroscopic (i.e., neighbourhoods) safety evaluation of the same PSL reduction are intuitive and 

reasonable. This PSL reduction resulted in a mean free-flow speed change from 51.1 to 47.7 

km/h (3.4 km/h reduction) for collector roads and from 43.8 to 41.8 km/h (2.0 km/h reduction) 

for local roads. Given the higher impact of PSL reduction on speed for collector roads, it is 

expected that the overall reduction of crashes, and specifically severe crashes, will be higher for 

collector roads than local roads. Therefore, when both collector and local roads are combined in 

the safety evaluation, which is the case for macroscopic evaluation, the resulting crash reduction 

will be less than that for only collector roads.   

 Finally, the estimated crash reductions are quite high, given the fact that the current PSL 

reduction program did not include any costly infrastructure/geometrical changes. Rather, the 

program included only changes in posted speed limit signs, together with a brief educational and 

enforcement campaign. Therefore, based on the current results, it is fair to conclude that the PSL 

reduction integrated with education and enforcement could be an effective countermeasure to 

improve safety on urban residential roads. 
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Table 6-12 Effect of PSL Reduction on Crash Frequency 

Model 
Crash Reduction in Percentage (Std. dev. in parentheses) 

Total Severe  Property-damage-only 

PLN 12.95 (4.91) 24.9 (13.05) 11.28 (5.28) 

PLN with CAR 13.39 (4.93) 24.50 (13.17) 11.72 (5.27) 

MVPLN 

 

24.05 (13.13) 12.00 (5.24) 

MVPLN with MVCAR 

 

23.97(13.27) 11.88 (5.25) 

Shared component PLN  23.90 (13.07) 11.27 (5.33) 

All are significant at 95%, except those with the gray colour that are significant at 90% credible interval. 

 

6.5 Comparison of Models  

As several model formulations are considered in this research, a comparison of the models is 

presented in this section. For microscopic safety evaluation, univariate and multivariate Poisson-

lognormal models are considered. The model selection criteria for microscopic models are 

presented in Table 6-13. The differences in DIC values are significant between the two models. 

As observed, the sum of the DICs of the univariate severe and PDO crash model is 4195; 

whereas, for the multivariate model with the same response variables, the DIC value is 4145. The 

drop in the DIC value for the multivariate model is 50. Because the difference between the DIC 

values is greater than 10, it can be concluded that the multivariate model is preferred over the 

univariate model for severe and PDO crashes, for the current dataset (Spiegelhalter et al., 2005). 

 The before-after evaluation results showed no noticeable differences in the estimates of 

crash reductions between the univariate and multivariate models. This could be related to the 

small differences in various characteristics of the treated sites between the before and after 

periods. Therefore, further application of the models with different dataset could be conducted to 

verify the current findings.   
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Table 6-13 Microscopic Models Comparison using Deviance Information Criteria (DIC) 

Model DIC 

Poisson-lognormal  4195 

Multivariate Poisson-lognormal 4145 

 

For safety evaluation using macroscopic data, five different modelling formulations are 

considered. The model selection criteria for macroscopic models is presented in Table 6-14. The 

differences in DIC values are significant among the five models (Spiegelhalter et al., 2005). 

Among the traditional models (First four), the best-performing model is the multivariate Poisson-

lognormal with multivariate conditional autoregressive (MVPLN CAR) model, while the worst 

one is the Poisson-lognormal (PLN) model. This finding is intuitive, as the former model 

accounts for the correlation between crash severity levels as well as spatial correlation, while the 

latter ignores them. Between the Poisson-lognormal with conditional autoregressive (PLN CAR) 

and the multivariate Poisson-lognormal (MVPLN) model, the latter is better fitted. This denotes 

that for the current dataset, the effect of correlation between the crash severity levels is more 

influential than spatial correlation. However, the developed new spatial model (i.e., shared 

component model) yielded the lowest DIC value, indicating the best performing model among 

the five models for the current dataset.  

 One of the reasons for having weaker spatial correlations for the current dataset is that the 

boundary crashes are excluded from the analysis. The current research uses the developed 

methodology to evaluate an urban residential posted speed limit (PSL) reduction pilot program. 

The PSL reduction was implemented only for roads within the boundary of the neighborhoods. 

Therefore, for both treated and reference neighbourhoods, boundary crashes were excluded.  
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 The macroscopic before-after safety evaluation results show hardly any differences 

among different models. One potential reason for this could be related to the data used in the 

current research. The changes in different explanatory variables between the before and after 

period for the treated neighbourhoods are very little. Therefore, differences in model parameter 

estimates provided little impact on the before-after evaluation results. Moreover, there were only 

eight treated neighbourhoods in the current thesis; analysis with more treated sites could yield 

different results.   

Table 6-14 Macroscopic Model Comparison using Deviance Information Criteria (DIC) 

Model DIC 

Poisson-lognormal  12349 

Poisson-lognormal with conditional autoregressive 12297 

Multivariate Poisson-lognormal 12270 

Multivariate Poisson-lognormal with multivariate conditional autoregressive 12230 

Shared component Poisson-lognormal model 12210 
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7.0 Conclusions, Contributions and Future Research  

This chapter summarizes the main conclusions, contributions of the thesis and finally the areas 

for future research. 

 

7.1 Summary and Conclusions 

The research in this thesis aimed at applying new modelling techniques to perform observational 

before-after safety evaluations. It is recommended that the comprehensive safety evaluation of 

any speed management strategy should include the evaluation of both speed data (i.e., impact 

evaluation) and crash data (i.e., outcome evaluation). 

The first objective of this research was to develop a non-model based methodology for 

before-after evaluation of speed data that can address the effect of confounding factors and time 

trend. This method can be specifically beneficial if limited data doesn’t allow using a model-

based approach in the before-after evaluation of speed data. A before-and-after study design with 

a control group was recommended and the conventional t-test was modified to account for the 

confounding factors and time trend. Furthermore, effect of accounting or not accounting for the 

measurement of uncertainty in the control group on the t-test results was illustrated. Results 

showed that the standard error was underestimated when the uncertainty was not added, although 

the magnitude of the underestimation was small for the current dataset. Moreover, a sensitivity 

analysis of the vehicle headways was conducted to define the free-flow speed and to address the 

confounding effect of congestion.  It was found that for the current dataset, a headway of greater 

than 2 seconds was sufficient to separates congested and uncongested condition. 
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The second objective of this research was to develop a model-based methodology to 

conduct before-after evaluation of the speed data. The full Bayesian mixed-effect normal 

regression and binomial logistic regression models were developed for mean free-flow speed and 

speed compliance, respectively. The results revealed that the between-site variation represented a 

substantial portion of the total variation, indicating the necessity of using a mixed model for 

analyzing speed data. The ordinary least square regression model failed to address this within-

site variation in the speed data. Moreover, the evaluation results showed that the time trend effect 

was significant, indicating the need to account for it in the before-after evaluation of speed data. 

The third objective was to develop a methodology to take account for the multilevel 

nature of the speed data as well as the heterogeneous within-site variances. To accomplish this 

objective, multilevel model with heterogeneous within-site variances was developed to analyze 

the hourly free-flow speed data. Another multilevel model with homogeneous within-site 

variances was developed to compare the results. The results showed that the deviance 

information criteria value for the heterogeneous within-site variance model was much lower than 

for the model with homogeneous within-site variance, indicating that the former model fit the 

data much better than the latter one. Moreover, the variances changed substantially from one site 

to another, implied that the assumption of homogeneous within-site/group/subject variance might 

not be the appropriate one and could lead to a biased estimation of model parameters. The 

before-after evaluation results showed that the adjustment factor was greater than one, implying 

the necessity of factoring the time trend effect into the before-after speed data analysis. In 

addition, it was observed that the homogeneous variance model slightly underestimated the 

speed reduction. Furthermore, the standard deviations of the mean free-flow speed reductions 
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showed that the precision of the estimate improved when heterogeneous variance model was 

used. 

The fourth objective of this research was to develop and apply the full Bayesian 

multivariate model in the before-after safety evaluation and compare the results with the 

univariate counterpart. For the univariate models, both the empirical and full Bayesian approach 

were adopted. The multivariate Poisson-lognormal and the univariate Poisson-lognormal models 

were developed to accomplish this objective. According to the lower DIC value, the multivariate 

model of crash severities was preferred over the univariate models for the current data. The 

before-after safety evaluation results showed that the full Bayesian approach provides more 

precise estimates of safety effects. Moreover, for severe crashes, where the safety effects are 

relatively large, both the empirical Bayesian and full Bayesian approaches draw the same 

conclusion, while for total and PDO crashes, where the safety effects are relatively small, the 

conclusions drawn from these two approaches are quite opposite in terms of the statistical 

significance of crash reduction. Hence, caution should be taken in drawing conclusions from the 

EB approach, especially when the effect on safety is relatively small compared to the standard 

deviation. The multivariate full Bayesian approach estimated safety effects similar to the 

univariate full Bayesian method for both severe and PDO crashes. In addition, the precisions of 

the calculated safety effects were similar for the univariate and the multivariate FB approaches. 

The fifth objective was to incorporate spatial correlation in the full Bayesian macroscopic 

before-after safety evaluation using crash data and compare the results with non-spatial models. 

For the spatial models, univariate Poisson-lognormal with conditional autoregressive and 

multivariate Poisson-lognormal with multivariate conditional autoregressive models were 

developed. For the non-spatial models, univariate Poisson-lognormal and multivariate Poisson-
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lognormal models were developed. It was found that the multivariate Poisson-lognormal with 

multivariate conditional autoregressive model outperformed the other models based on the 

deviance information criteria. The before-after safety evaluation results showed that the 

differences in crash reduction estimated under different models were negligible. This could be 

due to the small number of treated sites present in the current thesis, or a result of excluding 

boundary crashes from the analysis. Moreover, the comparison between microscopic and 

macroscopic safety evaluation showed intuitive findings.  

Finally the sixth objective of this research was to explore alternative modelling 

methodology to better capture the spatial correlations of the crash data in the before-after safety 

evaluation. A novel shared component spatial model was developed for jointly modelling crash 

severities. The model considered that the random error is divided into shared error and individual 

response specific error. Each of these error components was assumed to be composed of 

heterogeneous error and spatial error. Results showed that the developed new spatial model 

yielded the lowest DIC value, indicating the best performing model among the all spatial and 

non-spatial model developed in this research. The before-after safety evaluation results provided 

similar estimation of crash reduction as found in other spatial models. Again, this could be could 

be due to the small number of treated sites present in the current data. 

7.2 Contributions to the State-of-the-Art 

This research provides methodological alternatives for the comprehensive evaluation of any 

speed management strategy. The specific contributions to the state-of-the-art are highlighted 

below: 
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 The development of a systematic framework and appropriate statistical method for non-

model based analysis of speed data that can take account the effect of confounding factors 

and time trend.  

 The development of full Bayesian mixed-effect intervention model for the before-after 

evaluation of speed data that can eliminate the limitation of the ordinary least square 

regression method. 

 The development of full Bayesian multilevel models with homogeneous and heterogeneous 

site variances to better address the randomness in the speed data.  

 The demonstration of the fact that by applying advanced statistical methods for analyzing 

speed data, safety effect can be estimated more precisely.  

 The introduction of macroscopic crash modelling for the before-after safety evaluation of 

area-wide safety intervention.  

  The introduction of conventional full Bayesian multivariate models for the before-after 

safety evaluation using crash data. 

 The demonstration of the fact the empirical Bayesian safety evaluation can lead to 

misleading conclusion about the statistical significance of the safety effects when the the 

safety effects are relatively small. 

 The development of full Bayesian macroscopic spatial models for the before-after safety 

evaluation using crash data. 

 The introduction of a new methodology to incorporate spatial correlation in crash modelling 

for the before-after safety evaluation. 
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7.3 Limitations and Future Research 

A small number of treated sites for the macroscopic crash analysis might be a determinant factor 

why the evaluation results showed similar findings despite the fact that various developed crash 

models differs in terms of goodness-of-fits. Therefore, further investigation of the developed 

methodology for different dataset with higher number of treated sites is needed to realize the 

benefits of using these advanced models for the before-after safety evaluation. Moreover, the 

traffic exposure and other characteristics didn’t change considerably between the before and after 

period for the current application. Therefore, a change in the parameter values across different 

models didn’t contribute to the substantial differences in the before-after evaluation results.  

 The current thesis excluded the boundary crashes when developed the macroscopic 

models. This is due to the fact that the posted speed limit reductions program, evaluated using 

the developed methodology, was restricted to the roadways within the neighbourhood boundaries 

(excluding the boundary roadways).   It is expected that when the boundary collisions are 

included, there will be more strong spatial correlation among the adjacent spatial units. This 

might explain why the spatial correlations in different models were sometimes found very small.  

 The current research suggests that a comprehensive evaluation of a speed management 

strategy should include both speed and crash data analysis and evaluation. One important 

component in traffic safety is how road users’ perception and behavior change in response to any 

traffic safety intervention. The change in speed and crash after the implementation of any safety 

intervention can be assumed as the outcome of the fundamental changes in road users’ behaviors. 

Therefore, the safety evaluation can be extended to evaluate the fundamental changes in road 

users’ behaviors in response to safety intervention. Obviously, the main challenge with this is the 

collection of reliable data.  
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 The use of crash data for the safety evaluation requires waiting for a long time after the 

implementation of the safety intervention to have any statistically valid investigation. One 

alternative approach to conduct before-after safety evaluation is to use surrogate safety measures. 

Recently, video-based conflict analysis technique has been developed that can automatically 

quantify the conflicts based on the video captured (Autey, 2012).  In this technique, time-to-

collision is used to define the conflict and its severity. However, one of the issues with conflict 

based before-after safety evaluation is that the relationship between conflict and crash is not 

well-established. Rigorous studies are required to understand the conflict and crash relationship 

to justify the validity of drawing conclusion about safety impact of any intervention based on 

conflict based before-after safety analysis.  

 For incorporating spatial correlation into crash modelling, conditional autoregressive 

assumption is the most commonly used technique. However, Geographic Weighted Poisson 

Regression (GWPR) (Hadayeghi et al., 2010), and Generalized Estimating Equations (GEE) 

(Abdel-Aty and Wang, 2006) have been advocated by other researchers to address spatial 

correlation into crash modelling. Each of this approach has its own advantages and disadvantages. 

Future studies could investigate these approaches in the before-after safety evaluation context. 

The current thesis demonstrated the need to address heterogeneity in the speed data for 

unbiased parameter estimates and more precise inference. In the future, other advanced statistical 

methods, such as latent class model (Behnood et al., 2014), Markov switching approaches 

(Malyshkina and Mannering, 2009; Xiong et al., 2014) could be explored for addressing the 

unobserved heterogeneity present in speed data. Moreover, speed data often demonstrates 

bimodality, skewness, or kurtosis (Park et al., 2010c). Future studies on before-after evaluation 

of speed data should address these issues into the modelling.   
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The spot speed data used in the current thesis provides speed characteristics at a 

particular point on a roadway segment. While for the free-flow traffic condition or roadway with 

lower traffic volume, spot speed data can reasonably be used to represent the speed 

characteristics for the entire road segment, for congested roadway, space mean speed is a better 

performance measures than the spot speed. With the advances in technology, space mean speed 

data can be estimated more reliably and hence can be used in future studies for the before-after 

safety evaluation.  
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