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Abstract

Heuristics based upon ray theory are often used to predict the propagation of

internal gravity waves in non-uniform media. In particular, they predict that

waves reflect from weakly stratified regions where the local buoyancy frequency

is less than the wave frequency. However, if the layer of weak stratification

is sufficiently thin, waves can partially transmit through it in a process called

tunnelling. The first laboratory evidence of internal wave tunnelling through

a weakly stratified region is analysed using the synthetic schlieren technique

and the Hilbert transform is applied to filter the wavefield into upward- and

downward-propagating components. Transmission is calculated as the squared

ratio of transmitted and incident wave amplitude and using an appropriate

superposition of plane waves to reproduce the structure of the incident wave

beam, a corresponding weighted sum of transmissions can be used to predict

the beam transmission. These transmission predictions are compared with

experimental measurements.
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Chapter 1

Introduction

Internal gravity waves exist in fluid media which experience buoyancy restoring

forces due to density stratification. As such, they play an important role in

the oceans and atmosphere, whose environments are stably stratified where the

effective background density, ρ̄(z), decreases with height. (In the atmosphere

stability is appropriately measured by increasing potential temperature with

height.) Able to propagate both vertically and horizontally through these

stratified fluids, internal gravity waves transport energy and momentum away

from their source and deposit them upon breaking.

Within a stratified fluid, internal waves propagate freely with any frequency

at or below the natural vertical oscillation frequency of the fluid, N . This is

called the buoyancy frequency or the Brunt-Väisälä frequency, defined under

the Boussinesq approximation as

N2(z) = − g

ρ0

dρ̄

dz
(1.1)

where g is the gravitational acceleration and ρ0 is the characteristic background

density.

Waves with frequency ω < N propagate freely through the fluid but if the

wave’s frequency exceeds the buoyancy frequency, ω > N , the waves become

‘evanescent disturbances’ whose amplitude decays exponentially. Trajectories

of internal wave propagation are typically calculated using ‘ray tracing’ tech-
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niques, which applies WKB theory (Lighthill, 1978; Broutman et al., 2004).

The WKB approximation assumes that the vertical wavelength of the waves

is small compared to the vertical variations of the background density and

velocity fields. Heuristics based on ray theory predict that small-amplitude

waves will completely reflect from a level zr where ω = N , and will asymp-

totically approach a critical level zc where ω = 0 (Bretherton, 1966). The

current study shows that waves with relatively large vertical wavelength are

still able to transmit through levels where they would typically be predicted

to reflect. This process, called internal wave tunnelling, is analogous to the

quantum mechanical process of electron tunnelling.

Internal wave tunnelling has previously been investigated by Eckart (1961)

who considered the transfer of vertical wave energy between two regions of

locally enhanced stratification in the ocean. The study theoretically examined

the transfer of energy in resonant wave modes between the main and seasonal

thermoclines. A similar study of the atmosphere was presented by Fritts and

Yuan (1989) who looked at resonant energy transfer between the stratosphere

and the ionosphere. These studies cannot, however, be used to describe the

one-way transfer of energy between two regions of locally enhanced stratifica-

tion.

The study done by Sutherland and Yewchuk (2004) presents the first labo-

ratory evidence of internal wave tunnelling. Their primary goal was to derive

a formula for predicting transmission of internal waves, where transmission is

the squared ratio of transmitted to incident wave amplitudes. This formula for

plane waves based was on an idealized continuous piecewise-constant N2(z)

profile termed the ‘N2-barrier’. This profile had a finite-depth middle layer of

well-mixed to weakly stratified fluid bounded on the top and bottom by layers

of uniformly stratified fluid with buoyancy frequency N0. This type of pro-

file was an idealization of the background density profiles of the atmosphere
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and ocean. In the atmosphere internal waves propagate through the strongly

stratified stratosphere and tunnel through the weakly stratified mesosphere to

the strongly stratified ionosphere. In the ocean the tunnelling process takes

place between the seasonal and main thermoclines. The transmission formula

depends on the buoyancy frequency of the fluid, the depth of the well-mixed

or weakly stratified layer and the frequency and horizontal wavenumber of the

plane wave propagating through the fluid.

Brown and Sutherland (2007) extended this work by considering the ad-

dition of a piecewise-linear shear flow to the well-mixed layer. Transmission,

in their case, was defined as the flux of transmitted to incident pseudoenergy

since wave energy is not conserved due to the presence of shear. They found

that for weak shear, maximum transmission occurred for waves propagating

at 45◦ to the vertical. For strong shear, waves could transmit across a critical

layer, where the wave speed matched that of the background flow speed.

A numerical technique that computes transmission for internal waves was

developed by Nault and Sutherland (2007). This technique directly integrates

the Taylor-Goldstein equation for disturbances in a given background stratifi-

cation and horizontal mean flow. In particular, they considered a fluid with no

mean flow and uniform weakly stratified fluid overlaying a uniform strongly

stratified fluid with a transition region between the two. For a plane wave

propagating upward, from strong to weak stratification, they found that the

WKB prediction was accurate if the transition distance between two stratified

regions was larger than one sixth the vertical wavelength of the transmitted

waves. Here we use their numerical technique to determine the theoretical

transmission for tunnelling waves with no background flow.

The current study rigorously explores the experimental work begun by

Sutherland and Yewchuk (2004) on internal wave tunnelling through contin-

uously varying background density profiles by completing a detailed analysis
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of the oscillating cylinder experiments performed in that study. Additional

experiments were conducted using a rotating disk apparatus to generate in-

ternal waves. The processes and techniques that we used and developed to

measure and compute experimental and theoretical transmission coefficients

under nonidealized circumstances are discussed.

1.1 Thesis Overview

In Chapter 2 of this thesis the theoretical background and numerical meth-

ods are discussed. We review the theoretical transmission coefficient formula

derived by Sutherland and Yewchuk (2004) for plane waves and compare its

transmissions to those generated by integrating the Taylor-Goldstein equation.

This is followed by our derivation of the formula for transmission coefficients

of wavepackets.

Chapter 3 describes our experimental set-up and processing techniques.

The experimental set-up sections include how we create a horizontally mixed

layer bounded on the top and bottom by strongly stratified fluid and describes

the two types of wave generators used. The synthetic schlieren technique is

used for visualizing the internal waves in the experiment and is explained in

some detail in Section 3.4. Section 3.5 describes the wave-filtering technique

using Hilbert transforms. Applying the Hilbert transform in this way allows

the separation of rightward from leftward components as well as upward from

downward components of the waves. This means that one can retain waves

with only the desired horizontal and vertical wavenumbers corresponding to

transmitted or reflected waves. This chapter concludes with our derived for-

mula for transmission coefficients as measured directly from the experiments.

Calculations of measured and theoretical transmission coefficients for two

specific experiments are outlined in Chapter 4. Tables of transmission coeffi-
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cients for all performed experiments are given and a discussion of transmission

agreement follows. Conclusions are given in Chapter 5.
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Chapter 2

Theory

2.1 Introduction

This section presents the internal wave equations used in this study with a de-

tailed description of the assumptions and simplifications used in their deriva-

tion. After discussing previous theory done on transmission of internal waves

through tunnelling regions, these ideas will be extended to more geophysically

realizable background profiles through application of a numerical code that

integrates the Taylor-Goldstein equation to find transmission coefficients. The

theory on plane wave tunnelling is then extended to wavepackets, as required

for this study.

2.2 Internal wave equations

We start with the fully nonlinear Euler equations, which express the conser-

vation of momentum and mass in the absence of viscosity:

ρ
T

D~u

Dt
= −∇p

T
+ ~gρ

T
, (2.1)

∂ρ
T

∂t
+ ∇ · (ρ

T
~u) = 0. (2.2)

Here ρ
T

and p
T

are the total density and pressure, respectively, where p
T

is the

sum of the background, p̄(z), and fluctuation, p(~x, t), pressures and ρ
T

is the

sum of the background, ρ̄(z), and fluctuation, ρ(~x, t), densities. The velocity
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field is denoted by ~u and ~g = −gẑ is the acceleration due to gravity. The fluid

is in background hydrostatic balance, so that the ambient buoyancy forces are

balanced by the background pressure gradient forces: dp̄
dz

= −ρ̄g. By using the

definition of the material derivative restricting ourselves to the x-z plane and

expanding the other terms, we get

ρ
T

Du

Dt
= −∂p

∂x
, (2.3)

ρ
T

Dw

Dt
= −∂p

∂z
− gρ, (2.4)

Dρ
T

Dt
= −ρ

T
∇ · ~u. (2.5)

For our study, we can also assume that the fluid is incompressible:

Dρ
T

Dt
= 0. (2.6)

Combined with (2.5), we get ρ
T
∇ · ~u = 0, or, because ρ

T
is strictly positive,

∂u

∂x
+
∂w

∂z
= 0. (2.7)

For a salt-stratified liquid, ignoring diffusion, the conservation of substance

is again given by (2.6) and this can be written explicitly in terms of its fluctu-

ation and background parts as
Dρ

T

Dt
= Dρ

Dt
+ Dρ̄

Dt
= 0. Since ρ̄ is only a function

of z, this simplifies to

Dρ

Dt
= −wdρ̄

dz
. (2.8)

A Boussinesq fluid is one in which the density varies slowly with height so

that it can be treated as approximately constant except where it is associated

with the buoyancy term. Applying the Boussinesq approximation where ρ0 is

the characteristic background density, equations (2.3) and (2.4) become

Du

Dt
= − 1

ρ0

∂p

∂x
, (2.9)

Dw

Dt
= − 1

ρ0

∂p

∂z
− g

ρ0

ρ. (2.10)
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Likewise, the assumption that the fluid is incompressible is consistent with the

Boussinesq approximation.

Assuming small-amplitude waves means the non-linear advection terms

(~u ·∇) are small so that they can be neglected. These assumptions reduce the

equations to the following coupled set of linear PDEs:

∂u

∂t
= − 1

ρ0

∂p

∂x
, (2.11)

∂w

∂t
= − 1

ρ0

∂p

∂z
− g

ρ0

ρ, (2.12)

∂ρ

∂t
=

ρ0

g
N2w, (2.13)

∂u

∂x
+

∂w

∂z
= 0, (2.14)

where we have defined the squared buoyancy frequency as

N2 = − g

ρ0

dρ̄

dz
. (2.15)

Due to the continuity equation for an incompressible fluid (2.14), the hor-

izontal and vertical velocities can be written in terms of the streamfunction,

ψ(x, z, t):

u = −∂ψ/∂z, (2.16)

w = ∂ψ/∂x. (2.17)

Hence (2.11) and (2.12) become

− ∂2ψ

∂z∂t
= − 1

ρ0

∂p

∂x
, (2.18)

∂2ψ

∂x∂t
= − 1

ρ0

∂p

∂z
− g

ρ0

ρ. (2.19)

We can eliminate p by subtracting the z-derivative of (2.18) from the x-

derivative of (2.19) and taking the time-derivative of both sides:

(

∂2

∂x2
+

∂2

∂z2

)

∂2ψ

∂t2
= − g

ρ0

∂2ρ

∂x∂t
. (2.20)
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Combining this equation with the x-derivative of (2.13) gives

(

∂2

∂x2
+

∂2

∂z2

)

∂2ψ

∂t2
+N2∂

2ψ

∂x2
= 0. (2.21)

This single PDE describes the structure and evolution of internal waves in

stationary stratified fluid with buoyancy frequency N(z).

Since the equation is linear and has coefficients that are independent of x

and t the wave structure can be represented by the real part of the streamfunc-

tion ψ = φ(z) exp[i(kx − ωt)], in which k is the horizontal wavenumber and

ω is the frequency of the wave. Substituting this into (2.21), the streamfunc-

tion amplitude, φ(z), is given by the solution of the Taylor-Goldstein equation

(Drazin and Reid, 1981) with no background flow:

φ′′ + k2

(

N2

ω2
− 1

)

φ = 0. (2.22)

Solutions to (2.22) are oscillatory in z if ω < N and exponential in z if

ω > N .

We will focus on solutions of (2.22) where ω is smaller than N in strong

stratification, and where ω is larger than N in weak stratification. In our

experiments, two regions of strong stratification will be in the upper and lower

extremes of the domain and the region of weak stratification will be in the

middle of the domain. We will see that this results in the partial transmission

and reflection of the waves that are incident upon the weakly stratified fluid

in the middle of the domain.

2.3 Dispersion and polarization relations

We now consider the special case of (2.22) where N = N0, a constant:

φ′′ + k2

(

N2
0

ω2
− 1

)

φ = 0. (2.23)
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The general solution to (2.23) is

φ(z) = Aeimz +Be−imz , (2.24)

where m, if real, is interpreted as the vertical wavenumber and is defined by

m2 = k2

(

N2
0

ω2
− 1

)

. (2.25)

Isolating for ω gives the dispersion relation for internal waves in uniformly

stratified Boussinesq fluid:

ω2 = N2
0

k2

k2 +m2
. (2.26)

The polarization relations, which relate the amplitudes of the basic state

fields, can be determined from the linearized equations of motion given in

(2.11)-(2.14). The following two polarization relations will be useful as refer-

ence in this study:

Aξ = −k

ω
Aψ = − k

N0 cos Θ
Aψ, (2.27)

AN2
t

= kmN2
0Aψ = k2N2

0 tanΘAψ. (2.28)

Here ξ is the vertical displacement of the fluid, ψ is the streamfunction as pre-

viously defined, N2
t = (−g/ρ0)∂

2ρ/∂z∂t is the time-derivative of the squared

buoyancy frequency based upon the total density field and Θ ≡ tan−1(m/k)

where −90◦ ≤ Θ ≤ 90◦.

2.4 Theoretical plane wave transmission

In special circumstances (2.22) can be solved analytically. This was done by

Sutherland and Yewchuk (2004) who considered transmission across an N2-

barrier defined by

N2 =

{

N2
0 , |z| > L/2

0, |z| ≤ L/2
(2.29)
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where the well-mixed region of depth L is centered about z = 0 and N0 is

the buoyancy frequency of the stratified fluid outside the well-mixed region.

The “N2-barrier” is so-termed because it is directly analogous to the quantum

mechanical situation in which a free electron tunnels across a potential barrier.

Solutions of (2.22) above, within and below the barrier are

φ =







AT e
iγz, z > L/2

AUEe
z/δ + ADEe

−z/δ, −L/2 < z < L/2
AIe

iγz + ARe
−iγz, z < −L/2

(2.30)

with δ = 1/k and γ = −k(N2
0 /ω

2 − 1)1/2. Here we have assumed the wave is

incident from below with amplitude AI and transmits with amplitude AT . The

amplitudes of the upward- and downward-propagating exponentially decaying

(evanescent) waves within the well-mixed region are given by AUE and ADE ,

respectively. Since upward-propagating waves have negative vertical wavenum-

ber the complex exponential following AI and AT in (2.30) have γ < 0. The

reflected downward-propagating wave has positive vertical wavenumber and

amplitude, AR.

The boundary conditions at z = ±L/2 require that the vertical velocity

and pressure fields are continuous (Drazin and Reid, 1981). In the Boussinesq

approximation with continuous background density and no background flow,

this amounts to the condition that φ and φ ′ are continuous at z = ±L/2.

With (2.30), this results in four equations in five unknowns. Solving to find

AT in terms of AI gives an explicit formula for the transmission coefficient

given by

T =

∣

∣

∣

∣

AT
AI

∣

∣

∣

∣

2

. (2.31)

This represents the ratio of transmitted to incident energy flux associated

with the waves. In stationary fluid with upper and lower stratification the

same, as is the case under consideration here, T is equivalently the ratio of

transmitted to incident energy. In the same way, the reflection coefficient can
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be represented by

R =

∣

∣

∣

∣

AR
AI

∣

∣

∣

∣

2

. (2.32)

Both T and R will remain unchanged whether AI and AT are both amplitudes

of streamfunction, ψ, vertical displacement, ξ, or N2
t . This is because all three

fields are proportional, as shown in (2.27) and (2.28).

Explicitly, for the N2-barrier, the transmission coefficient is

T =

[

1 +
(γ2δ2 + 1)2

(2γδ)2
sinh2(L/δ)

]−1

. (2.33)

Defining Θ = arccos(ω/N0) as the angle at which lines of constant phase are

oriented from the vertical when ω ≤ N0, and using the definition of δ and γ

below (2.30) to (2.33), the transmission coefficient associated with a prescribed

incident plane wave is given explicitly by

T =

[

1 +

(

sinh(kL)

sin2Θ

)2
]−1

. (2.34)

2.5 Transmission comparison

The numerical solution method of (2.22) for any prescribed N2(z) was devel-

oped by Nault and Sutherland (2007). The incident waves were assumed to

be horizontally periodic with given horizontal wavenumber, k, and with fixed

frequency, ω. In terms of the streamfunction amplitude of the incident waves,

AI , the code finds the amplitudes of the transmitted and reflected waves, AT

and AR, respectively.

In order to justify using the integration of the Taylor-Goldstein equation

as a theoretical transmission coefficient calculation tool, we first compare it

to the analytic transmission formula (2.34) for a range of frequencies and

wavenumbers. More generally, we examine transmission across the following

smooth analytic function for N2(z):

N2(z) = N2
0 +

1

2
(N2

0 −N2
1 )

[

tanh

(

z − zu
σu

)

− tanh

(

z − zl
σl

)]

. (2.35)
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Here the parameters σu and σl represent half the distance over which N2

changes from one stratification to another. N0 is the buoyancy frequency of

the upper and lower strongly stratified regions and for sufficiently small σu

and σl, N1 is the buoyancy frequency of the middle weakly stratified region.

The values zu and zl denote the top and bottom, respectively, of the weakly

stratified region occurring at the inflection points of N2(z).

The N2-barrier profile (2.29) is reproduced in the limits σu, σl → 0. While

we cannot choose σu = σl = 0 for use in the code, we can choose them to be

arbitrarily small to within floating point digit accuracy.

Figure 2.1 compares transmission coefficients for waves in backgroundN2(z)

profiles given by the piecewise-linear function (a) and the smooth analytic

function (b) with zu = L/2, zl = −L/2, N2
1 /N

2
0 = 0 and σu = σl = σ. The

plot for the piecewise-linear profile is generated using σ/L = 0 in (2.34) with

transmission coefficients given as a function of k and ω = N0 cos Θ. The plot

for the smooth analytic profile is generated using σ/L = 0.1 in the numerical

code that computes the transmission coefficients for given k and ω.

The resulting plots are similar both qualitatively and quantitatively. In

both cases, transmission coefficients of the plane waves are greatest, in terms of

frequency, at about ω = N0/
√

2 which corresponds to an angle of propagation

from the vertical Θ ≈ 45◦. This makes intuitive sense: if Θ ≃ 0◦, then the

incident plane wave is nearly evanescent before encountering the mixed region;

if Θ ≃ 90◦, then the incident plane wave is propagating nearly horizontally and

so ‘sees’ an effectively deeper mixed tunnelling region. Looking at the vertical

axis, the transmission increases as the magnitude of kL becomes small. If

we consider the case in which the horizontal wavenumber, k, of the plane

wave is fixed and we vary the depth of the well-mixed region, L, this means

transmission decreases as L becomes large. If L = 0, there is no barrier and

the fluid is uniformly stratified, so that the plane wave is able to propagate
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Figure 2.1: Plots of the transmission coefficient T (k, ω; σ/L,N2
1/N

2
0 ) computed

for (a) the piecewise-linear N2 profile (2.29) using (2.34), and (b) the smooth
analytic N2 curve (2.35) with σ/L = 0.1 using the numerical code. The
difference in transmission coefficients are given in (c).
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freely through the entire fluid. If L is large, the plane wave encountering the

well-mixed region becomes evanescent and decays exponentially to negligibly

small amplitude before encountering the stratified region on the opposite side.

In this case, the transmission coefficient for this plane wave will be close to

zero.

Discrepancies between the two transmission plots can be seen by subtract-

ing the two plots, as shown in Figure 2.1(c). Differences on the order of 10%

are seen for very small values of ω/N0 due to the change in σ/L, otherwise,

the difference in transmission is negligible. Overall, this is confirmation that

integrating the Taylor-Goldstein equation (2.22) gives good agreement with

the N2-barrier analytic formula when N is given by (2.29). Thus, with greater

confidence we can use the Taylor-Goldstein equation to predict theoretical

transmissions for other types of N2 profiles.

One extension of this type of N2(z) profile which occurs in more realistic

circumstances is one where N2
1 /N

2
0 > 0, so that the middle region is weakly

stratified instead of well-mixed. This is the situation in the atmosphere, in

which the weakly stratified mesosphere is bordered by the strongly stratified

stratosphere and ionosphere, or in the ocean, where the seasonal and main

thermoclines straddle relatively weakly stratified saltwater.

Figure 2.2 compares transmission through an approximately piecewise-

linear N2(z) function to transmission through a smooth analytic profile with

zu = L/2, zl = −L/2, N2
1 /N

2
0 = 0.5 and σu = σl = σ. The approximately

piecewise-linear profile is generated using σ/L = 0.001. The smooth analytic

profile is generated using σ/L = 0.1.

There are distinct qualitative and quantitative differences between the

transmission coefficients as N2
1/N

2
0 changes from 0.0 to 0.5. There are now two

distinct transmission regions, one in the more hydrostatic range (0 < ω/N0 <

N1/N0) and one in the more non-hydrostatic range (N1/N0 < ω/N0 < 1).
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Figure 2.2: Plots of transmission coefficient T (k, ω; σ/L,N2
1/N

2
0 ) computed

for tunnelling across a weakly stratified region in which N2
1 /N

2
0 = 0.5 in the

smooth analytic curve (2.35) with (a) σ/L ≃ 0.0, and (b) σ/L = 0.1. Both
transmission plots are found using the numerical code. The difference in trans-
mission coefficients are given in (c).
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When N1/N0 < ω/N0 < 1, the plot exhibits the same behaviour as before

where transmission drops off as kL increases. However, when 0 < ω/N0 <

N1/N0, there is enhanced transmission for all kL. Since the wave frequency

is always smaller than the buoyancy frequency in this regime the waves are

able to propagate freely through the weakly stratified region. The banded

pattern in this range is due to the resonance of certain plane waves within the

weakly stratified region. If the vertical wavenumber of the plane wave in the

weakly stratified region is an integer multiple of π/L, then the plane wave will

resonate within the weakly stratified region, enhancing its transmission.

Between the two regions, where ω/N0 ≃ N1/N0, the transmission changes

rapidly for moderate to large values of L. We will refer to this regime as the

“transition region”. For waves with characteristics in the transition region,

large uncertainties in ω or N1 lead to large uncertainties in the transmission

coefficient.

If σ is non-negligible (Figure 2.2(b)), transmission is enhanced in this

banded region because the depth of the weakly stratified region is not as pre-

cisely given by L, allowing a greater range of plane waves to be resonant. Also

note that the distorted patterns in the very low frequency range of Figure

2.2(a) appear only because of lack of numerical resolution.

2.6 Wavepacket transmission

In previous sections, we have examined the theory for transmission of plane

waves. We will now extend this theory to that for wavepackets because the

wave generators used in this study produce wavepackets. Assuming the waves

are small-amplitude, we can use the fact that wavepackets are a superposition

of plane waves to do this.

By Fourier transforming the vertical displacement field, ξ, of the incident

waves at a horizontal location prior to reaching the mixed region, the vertical
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displacement amplitudes, Aξn, can be extracted. The energy of each plane

wave component of the incident wavepacket can be calculated from 〈EIn〉 =

1
2
N2

0 |Aξn|2. The energy of the corresponding transmitted components of the

wavepacket is 〈ETn〉 = 1
2
N2

0 |Aξn|2Tn, where Tn are the transmission coefficients

associated with each plane wave component of the incident wavepacket. These

transmission coefficients are calculated using the numerical code by Nault and

Sutherland (2007), as described in Section 2.4.

The total transmission compares the energy of the waves having passed

through the mixed region to the energy of the incident waves:

Tthy =

∑

n

1

2
N2

0 |Aξn|2Tn
∑

n

1

2
N2

0 |Aξn|2
=

∑

n

|Aξn|2Tn
∑

n

|Aξn|2
. (2.36)

For the purposes of comparison with experiments, we characterize the wave

structure in terms of the time rate of change of the perturbed squared buoyancy

frequency

N2
t = − g

ρo

∂2ρ

∂t∂z
. (2.37)

By composing a Fourier series of N2
t in the horizontal x-dimension, we have

in terms of the discrete horizontal wavenumber, kn, that

N2
t =

N
∑

n=−N

1

2
AN2

t
ne
iknx. (2.38)

Here kn = n2π
L

is the wavenumber of the n’th mode in a domain of length L.

The maximum modenumber, N , is set so that λN ≡ 2π
kN

= L

N
is much smaller

than the observed characteristic length scale of the wavepacket. The complex

amplitude An has magnitude equal to the half-peak-to-peak amplitude of the

N2
t field corresponding to the n’th mode. The argument of An sets the relative

phase of the mode. To ensure the field is real, A−n = A∗
n, in which the star

denotes complex conjugate.
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From the polarization relations given in Section 2.3, one can relate the

amplitude of the vertical displacement field, Aξ, to the amplitude of the N2
t

field for plane waves by

Aξ = −
AN2

t

kN3
0 sin Θ

. (2.39)

Combining this with (2.36), the transmission coefficient can be defined in terms

of amplitudes of the N2
t field by

Tthy =

∑

n

1

k2
n

|AN2
t
n|2Tn

∑

n

1

k2
n

|AN2
t
n|2

(2.40)

where AN2
t
n is the amplitude of the incident waves of the N2

t field in Fourier

space and we have assumed that the wavepacket components all have the same

frequency, ω = N0 cos Θ.
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Chapter 3

Experimental Methods

3.1 Introduction

This section gives a detailed description of the laboratory experiments per-

formed for this study. The tank set-up for internal wave tunnelling is described,

including how the mixed region was created and how the density profiles were

obtained and fit with a smooth analytic curve. The wavefield was obtained

using the image processing technique called ‘synthetic schlieren’ which is de-

scribed in limited detail. A Hilbert transform was applied to these images

in order to filter out certain waves. This method of using the Hilbert trans-

form as an image filtering tool has been newly implemented for internal waves.

This section concludes with a description of the formula used for measuring

transmission directly from the experiments.

3.2 Experimental set-up

Experiments were performed in a glass tank 197 cm in length, 20 cm in width

and 50 cm in height. The tank was filled to a depth of 30 cm or 45 cm with salt-

stratified fluid using the standard “double bucket” technique (Oster, 1965).

The stratification was made such that the density at the bottom of the tank

was approximately 1.05 g/cm3 and the density at the top of the tank was

approximately 1.00 g/cm3. A front view schematic of the tank is shown in
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Figure 3.1: Front view of the experimental set-up for the oscillating cylinder
experiments. A circular cylinder is vertically oscillated using a motor. A
camera is positioned so that the beam propagating downward and to the right,
the primary beam, is entirely visible (dotted box). The surface-reflected beams
and the beams travelling to the left of the cylinder are not of significance here,
as indicated by the long dashed lines. The solid-lined density profile shown on
the right is of a typical uniformly stratified fluid and the dotted-lined density
profile is of a typical non-uniformly stratified fluid.

Figure 3.1.

A conductivity probe was used to find the background density field, ρ̄(z).

It was calibrated by creating anywhere from three to five sample salt concen-

trations ranging from de-ionized water to the most concentrated solution found

in the tank. Their exact concentrations were found using a density meter that

is accurate to three decimal places. The vertically descending conductivity

probe directly measures the voltage approximately 56 times/cm and, using

the calibration solutions, these voltages were converted to densities.

ωc
N

= cos Θ. (3.1)

To produce internal wave beams, one set of experiments was performed
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using a vertically oscillating circular cylinder where the classic cross-pattern

of internal waves is generated (Mowbray and Rarity, 1967). This involved

vertically oscillating one of two circular cylinders with radii R = 1.0 cm and

R = 2.4 cm. The cylinder was attached to a vertical rod which in turn was

attached to the main arm, as shown in Figure 3.1. The main arm was attached

to the oscillating motor. A pivot was used to steady the main arm and a guide

near the top of the rod was used to keep its oscillations vertical. The cylinder

was positioned near the top left side of the tank so that the beam travelling

rightward and downward, the primary beam, could be viewed clearly by the

camera. The two beams generated by the left side of the cylinder were able to

propagate freely and did not interfere with the primary beam. The angle, Θ,

of the beams in the cross-pattern is set by the cylinder oscillation frequency,

ωc , relative to N by the relation

ωc
N

= cos Θ. (3.2)

A second experiment was performed using a variation of an internal wave

generator developed by Gostiaux et al. (2007). This device is advantageous

because it allows for multiple wavelengths and produces only one arm of the

cross-pattern of waves. Having only one beam eliminates the possibility of

other beams reflecting off the surface and side walls and interacting with the

primary beam. Our apparatus consisted solely of the component of their gen-

erator called the camshaft. It was made up of a stack of 17 plastic cylindrical

plates, each measuring 14 cm in diameter and 4.8mm in thickness. A hole was

drilled through each disk slightly off-center with a central shaft put through

the holes in such a way that the stacked disks formed a helical shape. The

disks were arranged so as to create two full vertical wavelengths, each wave-

length being 3.60 cm and having a horizontal amplitude of 0.33 cm. The stack

of disks extended between the surface of the fluid to 8.1 cm below the sur-
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Figure 3.2: Tank schematic and photograph of the rotating disks apparatus.
The disks are rotated in a counter-clockwise direction producing a beam with
two full vertical wavelengths propagating downward and to the right.

face. The side view profile of the generator had a sinusoidal geometry so that

spinning it on its vertical axis forced the sinusoid to move either upward or

downward, depending on the direction of rotation.

For our purposes, the disks were rotated in a counter-clockwise sense so

that the side profile of the disks moved upwards. Due to the axisymmetric

geometry of the generator, the rotating disks produced a conical pattern of

downward-propagating waves, consistent with the fact that the vertical group

velocity of internal waves is oppositely signed from the vertical phase speed.

Once placed at the left end of the tank, additional walls were put around the

disks on the three sides preventing waves from travelling in the y-direction or

negative x-direction. This ensured that we obtained a single primary beam

propagating in the positive x-direction, which we assume is approximately

uniform in the y-direction.
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3.3 Stratifications and background profiles

In order to study the tunnelling effect, we needed to be able to produce back-

ground density profiles with two outer strongly stratified regions and one mid-

dle mixed or weakly stratified region. This is set up by placing a gate on

the right side of the tank situated 18.5 cm or 14.5 cm from the right wall and

mixing the fluid behind the gate thoroughly (see Figure 3.3(a)). The gate was

then vertically removed as carefully and quickly as possible. The fluid behind

the gate intruded into the stratified fluid at mid-depth, creating a layer of

approximately constant density fluid of about 3 cm in depth for the oscillating

cylinder experiments and 4 cm in depth for the rotating disk experiments (see

Figure 3.3(b)). For successive runs the procedure was repeated, broadening

the depth of the mixed region and decreasing its minimum stratification. The

stratification of the mixed region, N1, ranged from well-mixed to weakly strat-

ified so that 0 ≤ N2
1 < N2

0 . Regardless of its stratification, this region will

hereafter be referred to as the “mixed region”.

Each experiment has four or more runs, each lasting approximately 100 s,

with the first run always being with uniformly stratified fluid. Each run there-

after has an intrusion sent down the middle of the tank so that the depth of

the mixed region increases by approximately 3 cm or 4 cm with each successive

run. The background density profile, ρ̄(z), is obtained before and after each

run of the experiment. Examples of experimental density profiles taken after

successive runs of one specific experiment are shown Figure 3.4.

Each non-uniform density profile is then empirically fit to a smooth analytic

formula of the following form:

ρ̄(z) = ρ0 +

(

ρ0

g

)

N2
0 (zmax − z) −

(

ρ0

2g

)

(N2
0 −N2

1 ) × (3.3)

[

σu ln

(

cosh

(

z − zu
σu

))

− σl ln

(

cosh

(

z − zl
σl

))

+ zu − zl

]
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Figure 3.3: Schematic of creating the non-uniform stratifiation. (a) A gate
spanning the width of the tank is inserted to the full depth of the tank and
the fluid behind the gate is thoroughly mixed. This uniform density fluid
is shown here in dark grey for illustrative purposes. (b) The gate is removed
quickly, releasing an intrusive gravity current that propagates down the length
of the tank at mid-depth, ultimately creating a non-uniform stratification.
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Figure 3.4: Shown are four experimental density profiles. The solid line plots
the uniform stratification created by using the double bucket method. The
long-dashed, short-dashed and dotted lines plot the density profiles created
after repeated intrusions were released at mid-depth so that the depth of the
mixed layer increased.
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The parameters zu and zl indicate the vertical locations of the top and the

bottom of the mixed region. σu and σl are the half-distances over which the

stratifications change from the strong to weak, N1 is the buoyancy frequency

of the mixed region and N0 is the buoyancy frequency of the upper and lower

strongly stratified regions. By symmetry of the way in which the mixed region

was formed, we assume the upper and lower stratifications were the same and

also that σu = σl = σ. The ln(cosh(z)) functions were chosen because their

structure formed a good fit to the experimental profiles. Again, ρ0 is the

characteristic density and g is the acceleration due to gravity.

The points of maximum curvature at the edges of the mixed region were

used to find zu and zl. N0 and N1 were found from the slope of the best-fit

lines to their respective regions of the density profile. The slope for N0 was

always calculated from the upper stratified region because certain experiments

had errors in the conductivity probe measurements from over-saturation in

the lower stratified region. Looking at the density profiles for experiments

where the conductivity probe functioned properly throughout the traverse,

the buoyancy frequencies in both strongly stratified regions were very close.

From the definition of the squared buoyancy frequency,

N2(z) = − g

ρ0

dρ̄

dz
, (3.4)

we can make (3.3) into an equation for N2(z), as used in Section 2.5:

N2(z) = N2
0 +

1

2
(N2

0 −N2
1 )

[

tanh

(

z − zu
σu

)

− tanh

(

z − zl
σl

)]

. (3.5)

In ideal circumstances, the density profiles obtained from the conductivity

probe would be smooth and so would be used to calculate N2 directly by taking

its derivative and multiplying by −g/ρ0. Since the density profile measured

in discrete steps by the probe was not smooth their empirical fits to (3.3) are

necessary.
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Fits to (3.3) were performed by eye for each experimental density pro-

file and the resulting parameters, N0, N1, zu, zl, σu and σl, were plugged into

(3.5). The N2 profiles from before and after a given run were averaged and

the resulting N2 profile was used in the numerical code to find transmission

coefficients.

When using a smooth analytic function like (3.5) to find transmission coef-

ficients, it is important to gain a quantitative understanding of its sensitivity

to the parameters involved. For example, when choosing the parameter σ, one

must also consider its relationship to N2
1 . Figure 3.5 shows this relationship.

If σ/L is small, the curve attains the desired N2
1 value at mid-depth. As σ/L

is increased the analytic function is unable to attain the desired N2
1 accurately

while keeping the other parameters fixed. This is illustrated in Figure 3.5(c).

With σ/L & 0.2, (3.5) does not produce an N2(z) profile with a minimum

close to N2
1 . Changing the width σ above 0.2L changes the value of N2

1 signif-

icantly so as to affect plane wave transmission. Henceforth, the attained value

for N2
1 using the smooth analytic function will be referred to as N2

thy. In part,

we will estimate the error in fitting (3.3) to the measured density profile by

the difference in the measured value of N2
1 and N2

thy.
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Figure 3.5: Plots of sensitivity to σ/L. Using the smooth analytic function
(3.5), both profiles (a) and (b) are created using the same parameters except
in (a) where σ/L = 0.05 and (b) where σ/L = 0.3. The ratio of N2

1 to N2
thy

with respect to σ/L is shown in (c).
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3.4 Synthetic schlieren technique

In order to look at the internal waves in the tank, the 2D ‘synthetic schlieren’

method (Sutherland, 2002) was used. This method requires that a sheet of

horizontal black and white lines be placed behind the salt-stratified tank. A

bank of horizontal fluorescent tubes is positioned behind the black and white

lines in order to illuminate them for the camera, as shown in Figure 3.6.

As internal waves propagate through the stratified fluid they cause the

isopycnals to move up and down. From the viewpoint of the camera, this

causes the refractive index of the fluid at a given location to change so that

the black and white lines distort. Based on these distortions, the synthetic

schlieren processing is able to measure changes in the density gradient non-

intrusively.

In both sets of experiments, a camera recording at 30 frames per second

was placed at an approximate distance of 280 cm from the front of the tank.

The camera’s field-of-view was the region to the right and below the cylinder

or rotating disks. This produced an image of approximately 30 cm by 30 cm

for the oscillating cylinder experiments and 40 cm by 50 cm for the rotating

disk experiments, depending on the zoom of the camera. For all experiments

the resolution was approximately 15 pixels/cm in both spatial directions.

The recorded film of the xz-plane was processed using the image processing

software package, Digimage (Dalziel et al., 2000). The synthetic schlieren

technique calculates differences in the black and white lines (Figure 3.7(a))

from the undisturbed fluid to find the ∆z field. The program is then able to

create vertical time series at any desired horizontal location in the camera’s

view (Figure 3.7(b)). A fixed number of equally spaced vertical time series

were taken from each run of the experiment: 28 for the oscillating cylinder

experiments and 42 for the rotating disk experiments. For each run of each
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camera

image analysis tank screen lights

Figure 3.6: Side view of the experimental configuration for the synthetic
schlieren technique. The camera records distortions of the image of horizontal
lines due to density fluctuations within the fluid. These density fluctuations
are the result of internal wave propagation.

experiment, the frequency of the cylinder, ωc, was found from the vertical time

series that intersects the cylinder or edge of the rotating disks. This frequency

was assumed to be the frequency of the waves in the wavefield.

For the purposes of this study, it is useful to cast the field of the verti-

cal time series in terms of the time rate of change of the squared buoyancy

frequency due to waves, N2
t , as shown in Figure 3.7(c). This has the effect

of removing long timescale changes within the tank, such as gradual warming

of the fluid over the course of the experiment. From numerous vertical time

series, a spatial snapshot of the N2
t field can be constructed, as seen in Figure

3.7(d).
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Figure 3.7: (a) A raw image from an oscillating cylinder experiment taken at
time T=50 s. (b) A raw vertical time series at 12 cm to the right of the center
of the cylinder, and (c) its processed N2

t vertical time series. (d) A snapshot
of the processed N2

t field. The vertical line in (d) indicates the location of the
vertical time series.
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3.5 The Hilbert transform

The Hilbert transform is used in mathematics with applications to signal pro-

cessing. Mathematically, this transform takes a function and shifts its phase

by 90◦, thus putting a real function into the imaginary plane. Previous stud-

ies have used the Hilbert transform on roll waves and hydrothermal travelling

waves to demodulate the signal (Croquette and Williams, 1989; Garnier et al.,

2003). The Hilbert transform has recently been applied to internal gravity

waves as a technique for separating the four beams emanating in a cross-

pattern from an oscillating source (Mercier et al., 2008). As in their work,

what we refer to as the “Hilbert transform” is the operation mapping the orig-

inal real-valued field, f , into a complex-valued field, f̃ , from which upward- or

downward-propagating waves can be extracted.

To illustrate the method, we consider the following 2D example of two

added plane waves with the specified amplitudes, A1,2, vertical wavenumbers,

m1,2, and frequencies, ω1,2, given mathematically as

f(z, t) = A1 sin(m1z − ω1t) + A2 cos(m2z − ω2t), (3.6)

and shown pictorally in Figure 3.8 where A1 = 2, A2 = 3, m1 = 1, m2 = −1,

ω1 = ω2 = 0.5.

From this example, we will show how to extract from a wavefield consisting

of superimposed waves only those waves having positive vertical wavenumber

(downward-propagating waves).

The numerical code takes the real field, f(z, t), and Fast Fourier Transforms

it in space and time creating the transformed field, f̂(m,ω), which is in vertical

wavenumber-frequency space. For example (3.6) we find:

f̂(m,ω) =























−(i/2)A1, m = m1, ω = ω1

(i/2)A1, m = m1, ω = −ω1

(1/2)A2, m = m2, ω = ω2

(1/2)A2, m = m2, ω = −ω2

0, otherwise

(3.7)
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Figure 3.8: As a simple example of the 2D Hilbert transform procedure, we add
two plane waves periodic in space and time. For clarity, the plane waves are
given different amplitudes and are travelling in opposite vertical directions.
The resulting image is used as the starting point for the Hilbert transform
procedure.
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Figure 3.9: Plots of Hilbert transform filtering technique. (a) A plot of the
space-time Fourier transform of original image. The red dots denote the imag-
inary parts of the Fourier transform and the blue dots denote the real parts of
the Fourier transform with their respective amplitudes above them. (b) Ap-
plying a filter keeping only waves travelling forward in time and waves with
positive vertical wavenumber.

as illustrated in Figure 3.9(a).

Now that the signal is in m-ω space, we can begin filtering out the parts of

the signal we do not want. We will first focus on the frequency part of the signal

where we will keep only the waves travelling forward in time, ω > 0. This step

removes exactly half of the energy of the signal, so the Fourier amplitudes of

the remaining waves must be multiplied by a factor of two in order to preserve

the amplitude of the original signal.

We next focus on the vertical wavenumber part of the signal where we

choose to keep either positive or negative vertical wavenumbers. Since our

goal was to retain downward-propagating waves, we will take out any part

of the signal with negative vertical wavenumbers, keeping m > 0. Having

appropriately modified the frequencies and vertical wavenumbers in Fourier

space, we have now obtained f̂HT,+(m,ω). For our example,

f̂HT,+(m,ω) =

{

−iA1, m = m1, ω = ω1

0, otherwise.
(3.8)

This is illustrated in Figure 3.9(b).
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Figure 3.10: (a) Unfiltered original signal. (b) Taking the real part of the
inverse Fourier transform of f̂HT,+(m,ω), we get back the plane wave from our
original signal whose vertical wavenumber is positive.

By inverse Fourier transforming this modified field, we obtain the complex-

valued field, f̃(z, t). The real part of this complex signal will be the de-

sired filtered wavefield. In our simplified example, the real part of f̃(z, t) is

Re{−2i sin(z − 0.5t)} = 2 sin(z − 0.5t) as expected (see Figure 3.10).

Next we give an example of applying the Hilbert transform to data from

a laboratory experiment in which internal waves generated by rotating disks

partially transmit through a weakly stratified region. Figure 3.11 illustrates

(a) the full wavefield and the field after being separated into waves with (b)

positive vertical wavenumber (downward-propagating beam) and (c) negative

vertical wavenumber (upward-propagating beam).

For the purposes of our study, we will keep only waves with positive vertical

wavenumber, thereby removing upward-propagating beams. This means that

the part of the primary beam that reflects off the mixed region is removed

as well as the transmitted beam after it reflects off the bottom of the tank.

The procedure thus helps us to measure the transmission of the downward-

propagating beams.
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Figure 3.11: Experimental example using the Hilbert transform. (a) The unfil-
tered experimental image of an internal wave beam generated by the rotating
disks tunnelling through a weakly stratified region. The image is filtered to
show only those waves with (b) positive vertical wavenumber and (c) negative
vertical wavenumber.
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3.6 Experimental transmission

In Section 2.6 we derived the theoretical formulae for calculating wavepacket

transmission coefficients from its plane wave components. We would like to

compare these to experimentally measured transmission coefficients.

The measured transmission coefficients in experiments, corresponding to

(2.36), is given by

Texp =

∑

n

1

k2
T,n

|AT,N2
t
n|2

∑

n

1

k2
I,n

|AI,N2
t
n|2

(3.9)

where kI,n and AI,n are the horizontal wavenumbers and amplitudes of the

incident plane wave components of the wavepacket and kT,n and AT,n are the

horizontal wavenumbers and amplitudes of the transmitted plane waves. As in

the theoretical calculations, we have assumed that the wavepacket components

all have the same frequency as the cylinder, ωc = N0 cos Θ.

Snapshots of the filtered N2
t wavefield are taken once the primary beam has

reached steady state. For the oscillating cylinder experiments, steady state is

reached at four buoyancy periods of the cylinder and at ten buoyancy periods

for the rotating disk experiments. Horizontal slices are taken through the

snapshot above and below the mixed region at zu + σ and zl− σ, respectively.

Taking these slices a distance σ away from the mixed region ensures that an

unobstructed signal of the wave structure is captured.

Fourier transforms of these horizontal slices are taken, obtaining kn and

An above and below the mixed region. Since the size and resolution of the

domain in each case is the same, then kI,n = kT,n. The Fourier transform

represents a real signal as the sum of its positive wavenumber parts plus the

complex conjugate. So the positive wavenumber alone has half the amplitude

of the corresponding real signal. Thus we double the amplitude from the FFT

routine before computing |AN2
t
n|2 in (3.9).
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Figure 3.12: (a) A Hilbert filtered snapshot of a beam generated by the rotating
disks, tunnelling through a weakly stratified region. (b) A horizontal slice taken
above the weakly stratified region at zu + σ and its corresponding Fourier
transform, (d). (c) A horizontal slice taken below the weakly stratified region
at zl − σ and its corresponding Fourier transform, (e). For this experiment,
zu = −6.85 cm, zl = −20.55 cm and σ = 1.5 cm.
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Chapter 4

Results

4.1 Introduction

This chapter gives a detailed review of the procedure used in finding experi-

mental and theoretical transmission coefficients for the oscillating cylinder and

rotating disk experiments. The parameters and transmission coefficients for all

experiments are given in Tables. A discussion follows on the origin of the dis-

crepancies between experimental measurements and theoretical calculations.

4.2 Transmissions for oscillating cylinder ex-

periments

We begin by showing the results of an experiment in which a cylinder with

radius R = 2.43 cm is vertically oscillated at a frequency ωc = 0.50 s−1 with

half peak-to-peak amplitude of A = 0.43 cm.

After a single intrusion acts partially to mix the tank at mid-depth, we

measure the density profile and use (3.3) to fit a smooth curve to it. The

resulting parameters for this experiment are found to be N0 = 1.11 s−1, N1 =

0.43 s−1, zu = −8.20 cm, zl = −11.40 cm, σu = σl = σ = 0.90 cm and ρ0 =

1.01 g/cm3. These parameters are put into the squared buoyancy frequency

profile (3.5). The background density and N2 profiles are shown in Figure

4.1. Note that ω2
c ≈ 0.25 & N2

1 . Because σ/(zu − zl) ≈ 0.28 > 0.2, we expect
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Figure 4.1: Background profiles for an oscillating cylinder experiment. (a)
The red curve is the experimental background density profile and the black
curve is its smooth analytic fit. (b) The background N2 profile based on the
parameters found for the smooth analytic density profile fit.

some discrepancy between our measured and theoretical values of N1 and Nthy.

Nonetheless, Figure 4.1(a) shows good agreement.

From the raw images captured by the camera, the synthetic schlieren pro-

cess described in Section 3.4 is used to construct processed vertical time series

of the N2
t field at 28 equally spaced horizontal locations spanning the domain.

An N2
t snapshot taken after four buoyancy periods (time ≃ 50 s) and con-

structed from these vertical time series is shown in Figure 4.2(b), along with

one of its vertical time series in Figure 4.2(a). The Hilbert transform is ap-

plied to each of the vertical time series, (Figure 4.2(c)), so that the filtered N2
t

snapshot shows only the downward-propagating wave (Figure 4.2(d)).

In order to gather information about the horizontal wavenumbers, kn, and

amplitudes, An, of the plane wave components entering and exiting the mixed

region we will use the ideas from Section 3.6. A horizontal slice of the N2
t
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Figure 4.2: A vertical time series taken at x = 12.01 cm from the center of the
cylinder is shown in (a). 28 of these vertical time series are used to reconstruct
at snapshot of the N2

t field, (b), at time=50 s. Using the Hilbert transform
to filter out m < 0 from each vertical time series, (c), a clean view of the
downward travelling beam can be seen in (d). All plots have been smoothed
for ease of viewing.
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snapshot above the mixed region is taken at zu + σ = −8.20 cm +0.90 cm

= −7.30 cm, and a horizontal slice below the mixed region is taken at zl −

σ = −11.40 cm −0.90 cm = −12.30 cm, where z = 0 is the center of the

cylinder. A Fourier transform in the x-direction is performed on both slices

(Figure 4.3(b,c)) resulting in a plot of Fourier amplitudes for plane waves with

discrete horizontal wavenumbers. Typically we find the horizontal wavenumber

spectrum peaks around a characteristic value kc ≈ 2π
4R

cos Θ, consistent with

theory (Hurley and Keady, 1997).

The amplitudes and horizontal wavenumbers from the upper (incident) and

lower (transmitted) horizontal slices were then used to calculate the experi-

mental transmission coefficient of the beam from (3.9).

The theoretical wavepacket transmission coefficient was calculated using

(2.40) in which the same incident horizontal wavenumbers and amplitudes of

each plane wave component were put directly into the sum and the corre-

sponding transmission coefficients were calculated using the code described

in Section 2.4. The parameters used in the oscillating cylinder experiments

are recorded in Table 4.1 and their experimental and theoretical transmission

coefficients are compared in Table 4.2. The particular experiment shown in

Figure 4.2 is denoted “1b”.

This analysis was performed on all available oscillating cylinder experi-

ments for which 0.3 < ωc/N0 < 0.5. Any experiment conducted which resulted

in ωc/N0 < 0.3 produced a primary beam whose angle to the vertical was so

large (Θ & 70◦) that the transmitted beam was outside the camera’s field of

view. Any experiment which resulted in ωc/N0 > 0.5 produced an upward-

propagating beam emanating from the cylinder which reflected off the surface

of the water only to be in such close proximity to the primary downward-

propagating beam emanating from the cylinder so as to obscure the structure

of the primary beam.
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Figure 4.3: (a) A Hilbert filtered snapshot of a beam generated by an oscil-
lating cylinder, tunnelling through a weakly stratified region. (b) The Fourier
transform of a horizontal slice taken above the weakly stratified region, and
(c) the Fourier transform of a horizontal slice taken below the weakly stratified
region.
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Table 4.1: Table of parameters and errors for oscillating cylinder experiments.
Typical errors are indicated in the first row except for the value of N1 which
underestimates Nthy as indicated.

Exp ωc [s
−1] N0 [s−1] N1 [s−1] σ [cm] L [cm]

1b 0.50 ± 0.01 1.11 ± 0.01 0.43 + 0.06 0.90 ± 0.05 3.20 ± 0.05

1c 0.50 1.16 0.46 + 0.01 1.00 5.95

1d 0.50 1.20 0.34 + 0.01 1.35 7.75

2b 0.51 1.40 0.42 + 0.07 0.80 3.25

2c 0.51 1.40 0.33 + 0.09 0.75 3.15

2d 0.51 1.51 0.00 + 0.31 1.65 6.30

2e 0.51 1.55 0.06 + 0.14 1.75 8.45

3b 0.47 1.38 0.27 + 0.20 1.10 3.50

3c 0.47 1.41 0.18 + 0.14 1.55 6.20

3d 0.47 1.48 0.00 + 0.31 1.55 8.15

4b 0.52 1.43 0.40 + 0.13 1.40 4.75

4c 0.52 1.52 0.36 + 0.05 1.60 7.55

4d 0.51 1.60 0.00 + 0.19 1.80 8.95

5b 0.52 1.48 0.52 + 0.06 1.30 5.20

5c 0.52 1.53 0.27 + 0.10 1.60 6.95

5d 0.52 1.60 0.18 + 0.10 2.00 9.30

6b 0.52 1.43 0.26 + 0.28 1.35 3.80

6c 0.52 1.52 0.45 + 0.06 1.80 7.55

6d 0.52 1.57 0.14 + 0.08 1.65 8.48
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Table 4.2: Table of nondimensional parameters and theoretical and experi-
mental transmission coefficients for oscillating cylinder experiments.

Exp N1/N0 σ/L kcL ωc/N0 ωc/N1 Texp Tthy

1b 0.38 0.28 0.93 0.45 1.17 0.68 0.52

1c 0.40 0.17 1.66 0.43 1.08 0.28 0.27

1d 0.28 0.17 2.08 0.42 1.49 0.14 0.08

2b 0.30 0.25 0.77 0.36 1.21 0.36 0.53

2c 0.24 0.24 0.74 0.36 1.52 0.39 0.51

2d 0 0.26 1.38 0.34 → ∞ 0.18 0.23

2e 0.04 0.21 1.80 0.33 8.27 0.07 0.09

3b 0.20 0.31 1.88 0.34 1.73 0.09 0.49

3c 0.13 0.25 3.24 0.33 2.64 0.04 0.16

3d 0 0.19 4.08 0.32 → ∞ 0.04 0.06

4b 0.28 0.29 2.71 0.36 1.30 0.21 0.47

4c 0.23 0.21 4.05 0.34 1.46 0.07 0.11

4d 0 0.20 4.47 0.32 → ∞ 0.02 0.02

5b 0.35 0.25 2.86 0.35 1.00 0.22 0.62

5c 0.18 0.23 3.71 0.34 1.92 0.11 0.08

5d 0.11 0.22 4.74 0.32 2.88 0.04 0.04

6b 0.18 0.36 2.17 0.36 2.02 0.18 0.55

6c 0.29 0.24 4.07 0.34 1.17 0.06 0.38

6d 0.09 0.19 4.40 0.33 3.77 0.03 0.02
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4.3 Transmissions for rotating disk experiments

A similar processing method was used for experiments performed with the

rotating disks. We will briefly review this in the context of a particular exper-

iment for which the rotating disks create a horizontal displacement oscillation

amplitude of 0.33 cm and rotate with frequency ωc = 0.91 s−1. A single den-

sity profile taken before running the experiment was empirically fit to the

smooth analytic curve (3.3) and the optimal parameters were found to be

N0 = 1.43 s−1, N1 = 1.02 s−1, zu = −6.85 cm, zl = −20.55 cm, σu = σl =

1.50 cm and ρ0 = 1.01 g/cm3. The fit to the background density fit and the

corresponding N2 profile are shown in Figure 4.4. In this case ω2
c & N2

1 .

The synthetic schlieren process was used to produce snapshots of the N2
t

field. A snapshot at 10 buoyancy periods (time = 69 s) is shown in Figure

4.5(b), along with a sample vertical time series in Figure 4.5(a). The Hilbert

transform is applied to filter out waves reflecting off the mixed region, as shown

in Figure 4.5(c,d).

As before, amplitudes and horizontal wavenumbers for plane wave compo-

nents of the wavepacket were obtained by taking horizontal slices of the steady

state N2
t snapshot above and below the mixed region. The upper slice is taken

at zu + σu = −6.85 cm +1.50 cm = −5.35 cm, and the lower slice is taken at

zl − σl = −20.55 cm −1.50 cm = −22.05 cm, where z = 0 now corresponds

to the bottom of the rotating disks. Plane wave amplitudes and horizontal

wavenumbers found by taking a Fourier transform in the x-direction of both

slices are shown in Figure 4.6(b,c).

In these experiments we found the incident beam to be less quasi-mono-

chromatic, exciting more than one significant peak in |AN2
t
(kn)|2. This was

attributed to turbulent mixing near the disks, which provided an alternate

source for wave excitation. The experimental and theoretical transmission
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Figure 4.4: Background profiles for a rotating disk experiment. (a) The red
curve is the experimental background density profile and the black curve is its
smooth analytic fit. (b) The background N2 profile based on the parameters
found for the smooth analytic density profile fit.

coefficients for the beam were calculated in exactly the same way as with the

oscillating cylinder case. The parameters used in the rotating disk experiments

are recorded in Table 4.3 and their experimental and theoretical transmission

coefficients are compared in Table 4.4. The particular experiment shown in

Figure 4.5 is denoted “7b”.
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Figure 4.5: A vertical time series taken at x = 22.28 cm from the bottom of the
disks is shown in (a). 42 of these vertical time series are used to reconstruct
a snapshot of the N2

t field, (b), at time=69 s. Using the Hilbert transform
to filter out m < 0 from each vertical time series, (c), a clean view of the
downward travelling beam can be seen in (d). All plots are smoothed for ease
of viewing.
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Figure 4.6: (a) A Hilbert filtered snapshot of a beam generated by the rotating
disks, tunnelling through a weakly stratified region. (b) The Fourier transform
of a horizontal slice taken above the weakly stratified region, and (c) the
Fourier transform of a horizontal slice taken below the weakly stratified region.
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Table 4.3: Table of parameters and errors for rotating disk experiments. Typ-
ical errors are indicated in the first rows except for the value of N1 which
underestimates Nthy as indicated.

Exp ωc [s
−1] N0 [s−1] N1 [s−1] σ [cm] L [cm]

7b 0.91 ± 0.01 1.43 ± 0.01 1.02 + 0.00 1.50 ± 0.05 13.70 ± 0.05

7c 0.91 1.50 0.80 + 0.01 2.70 16.60

Table 4.4: Table of nondimensional parameters and theoretical and experi-
mental transmission coefficients for rotating disk experiments.

Exp N1/N0 σ/L kcL ωc/N0 ωc/N1 Texp Tthy

7b 0.72 0.11 17.77 0.64 0.89 0.77 0.89

7c 0.54 0.16 19.96 0.61 1.13 0.08 0.04

4.4 Discussion of results

Considering any of the sets of experiments where successive intrusions are re-

leased, the trend shows that as the depth of the mixed region, L, increases, the

transmission coefficient decreases. Since the waves generated after each intru-

sion have the same frequency, ωc, and horizontal wavenumber, kc ≡ π
2R

cos Θ,

then the parameter kcL will always increase. This is consistent with the results

shown in Section 2.5 where transmission decreased as kcL increased for a fixed

wave frequency.

The sensitivity analysis of σ/L conducted in Chapter 3 found an upper

limit of σ/L = 0.2 for accurately fitting N1. From Tables 4.2 and 4.4, most of

the values of σ/L are at or above this limit suggesting that the measured ex-

perimental N1 values will not be attained accurately using the smooth analytic
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Figure 4.7: Theoretical transmission coefficient plot for experiment 3b. The
black circle on the transmission plot indicates the theoretical transmission
coefficient for this experiment, where ω = ωc and k = kc. Vertical dashed lines
indicate values where ω = N1 and ω = Nthy. To the right are background
profiles of density and squared buoyancy frequency where the red line is the
experimental data and the black lines are the smooth analytic profiles using
the fitted parameters. Note, the experimental probe data are unreliable below
z ≈ 12 cm due to failure of the conductivity probe electronics for very strong
saline solutions.

N2 formula. The few experiments which have σ/L below this limit, namely 1c,

1d, 3d, 6d, 7b and 7c, have experimental and theoretical transmissions that

generally agree.

Some of the transmission results shown in Tables 4.2 and 4.4 reveal sig-

nificant discrepancies in the comparison of experiments and theory. We will

discuss the general trends in the data and focus on three specific experiments

to help explain the origin of the discrepancies.

Consider experiment 3b, in which the experimental transmission is much

smaller than the theoretical transmission. For this experiment, ωc = 0.47 s−1,

N0 = 1.38 s−1 kc ≈ 0.54 cm−1 and L = 3.50 cm. The measured experimental

value of N1 is 0.27 s−1 while its attained value using the analytic formula,

Nthy, is 0.47 s−1, making a difference of 0.20 s−1. Recall from Section 2.5

that for moderately large kcL the transmission varies rapidly with ω/N0 when
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Figure 4.8: As in Figure 4.7 except showing the theoretical transmission coef-
ficient plot and density and N2 profiles for experiment 5d.

ωc is close to N1, the transition region. This is shown in Figure 4.7, which

plots the theoretical transmission coefficients for a range of ω and k for this

experiment. The theoretical transmission coefficient, Tthy = 0.49, occurs at

ωc/N0 = 0.34 and kcL ≈ 1.88, as indicated in Figure 4.7. Because the wave

frequency occurs within the transition region where N1 . ωc . Nthy and

because N1/N0 = 0.20 is significantly less than Nthy/N0 = 0.34, the error in

predicted transmission is large. Tthy was computed from analytic curves for

which the minimum buoyancy frequency was Nthy. But direct measurements

show that the minimum, N1, is smaller, hence the actual waves pass through

a more weakly stratified region and are more strongly evanescent. Thus the

measured transmission coefficient, Texp = 0.09, is significantly smaller than

the theoretical transmission coefficient.

The second experiment we consider is denoted 5d, whose experimental and

theoretical transmissions are relatively low and in good agreement. For this

experiment, ωc = 0.52 s−1, N0 = 1.60 s−1, kc ≈ 0.51 cm−1 and L = 9.30 cm.

The measured experimental value of N1 is 0.18 s−1 while its attained value

using the analytic formula, Nthy, is 0.28 s−1, making a difference of 0.10 s−1.
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Figure 4.9: As in Figure 4.7 except showing the theoretical transmission coef-
ficient plot and density and N2 profiles for experiment 1c.

Figure 4.8 shows a plot of theoretical transmission coefficients for a range of ω

and k for this experiment. The theoretical transmission coefficient, Tthy = 0.04,

occurs for ωc ≫ N1, Nthy, which is well away from the transition region. Thus

we expect little difference between the experimental transmission coefficient,

Texp = 0.04, and the theoretical transmission coefficient.

The third experiment we consider is denoted 1c, whose experimental and

theoretical transmissions are relatively high and in good agreement. For this

experiment, ωc = 0.50 s−1, N0 = 1.16 s−1, kc ≈ 0.28 cm−1 and L = 5.95 cm.

The measured experimental value of N1 is 0.46 s−1 while its attained value

using the analytic formula, Nthy, is 0.47 s−1, making a difference of 0.01 s−1.

Figure 4.9 shows a plot of theoretical transmission coefficients for a range of ω

and k for this experiment. The theoretical transmission coefficient, Tthy = 0.27,

occurs for N1 . ωc . Nthy which is on the outer right edge of the transition

region. However, sinceN1/N0 ≈ Nthy/N0, the error in predicted transmission is

small. Thus we expect little difference between the experimental transmission,

Texp = 0.28, and the theoretical transmission coefficient.
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Chapter 5

Conclusions

Internal wave tunnelling through mixed and weakly stratified regions was stud-

ied through the analysis of laboratory data. Most experiments were done with

a vertically oscillating cylinder producing a cross-pattern of wave beams. Sev-

eral techniques were applied in order to acquire the clearest images of the

primary beam. Among these was the use of the Hilbert transform which re-

moved the part of the wave beam that reflected off the weakly stratified region.

Additional laboratory experiments were also performed using a rotating stack

of disks formed into a helical shape so as to produce only the single primary

wave beam. Experimental transmission coefficients were measured explicitly

by finding the amplitudes of the plane waves of the beam above and below

the mixed region. Theoretical transmission coefficients were computed using

a numerical code that integrated the Taylor-Goldstein equation to find trans-

mission coefficients for plane waves. This code required a smooth continuous

background squared buoyancy frequency profile. To satisfy these conditions,

a smooth analytic function was fit to the experimental profiles.

After comparing the theoretical transmissions to the experimental trans-

missions, we determined that even with attempts being made to produce a

clean beam signal in some experiments there was poor agreement between the

predicted and measured transmissions.

55



Specifically addressed in this study were the effects of σ/L on the stratifica-

tion of the weakly stratified region, Nthy, used for the theoretical calculations.

This differed significantly from the measured minimum value, N1, if σ/L & 0.2.

It was found that if N1 ≃ Nthy then there was good agreement between the

experimental and theoretical transmission coefficients, regardless of the fre-

quency of the waves, ωc. However, if Nthy was significantly larger than N1 and

N1 . ωc . Nthy, then agreement between transmission coefficients was poor.

Agreement was good if ωc was much smaller or larger than the values of N1

and Nthy.

Based on our experiments, we found that internal wave transmission be-

tween regions of strong stratification separated by weak stratification is very

sensitive to the buoyancy frequency of the weak stratification region as well

as if the wave’s frequency is close to this minimum buoyancy frequency. In

the atmosphere, internal waves are known to tunnel between the stratosphere

and the ionosphere by way of the weakly stratified mesosphere (Yamada et al.,

2001; Walterscheid et al., 2001; Snively and Pasko, 2003). Our study shows

that for accurate transmission predictions measurements of the buoyancy fre-

quency profile taken in the mesosphere would need to be accurate for incident

upward-propagating waves with frequency close to the minimum buoyancy

frequency of the mesosphere. The same is true for tunnelling in the ocean

where internal waves pass between the strongly stratified seasonal and main

thermoclines: the ability to predict accurately the amount of energy trans-

ported by incident downward-propagating waves would be poor if the wave

frequency was comparable to the minimum buoyancy frequency between the

thermoclines. Because measurements are taken infrequently in these regions,

predictions of energy transfer due to internal wave tunnelling are not likely to

be accurate in such circumstances.
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