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A
_ABSTRACT

The spectral distribu%ion and spectral density of

_electromagnetic modes are perceived to be of value 1in the

design and analysis of rectangular multimode cavities.

<

However, these mode distpibutions have never been determined

. correctly in the .engineering literature. Serious errors

have been discovered in both numerical and . analytical 'mode

distribution calculations which have survived, apparently

{ . _ ; ' ,
undetected, partly due to a lack of experimental

me?éurements. The nature of the errors suggests that

misunderstandings exist regarding the partial 'distr;butions
. . , . . <
of ™ and TE modes. R

&

»

A brief introduction 1is given which corrects a

.deficiency in the engineering literature regarding

"references to fundamental theoretical work. The

introdhction} is fellowed by a review of the essential
physics of ‘electromagnetic boundary value: problems in

rectangular geometry.

14

A numerical algorithm is presented which enumferates TM

and TE modes separately, and thereby yields the corfect}

number of modes in. an empty fectangular cavity ‘for any
finite bandwidth. This algorithm 1is .used to generate
corrected versions of previously published cavity design

tablés which were based on faulty algorithms. Numerical

iv

R

-



mode distribuéions are computed for a number of hypethetical
cavities which illustrate some‘fmportant characteristics of~
these distributions  not previous%y considered. ~ These
‘characteristics affect ithe utility of mode, dﬁstributioﬁ
calculations in the design of microwave heatiﬁé cavities. “

The first experimental measurements of mode
distributions are reported for an empty rectangular
léboratory cévity which are in good agreement with computed
_Aistrﬁbutions obtained using the correct algorithm.
Additional results for the sa&e‘bavity fitted with a mode
sfirer indicaté' that the  mode distributions are

)

substantially perturbed by such loading.

t
-

Certain Qersions of the scalar asymptotic mode
disﬁribution formulae, which-are valid for acoustic 'ﬁodes,
thave been incorrectly épplied to microwave cavity problems
in engineering. The cofrect~ formulae are derived by
considering the number of lattice points in an ellipsoid in
p-space. Approximate eigenfrequency distributions obtained
from these formulae are compared with the‘numerically and
experimentally determined 'd%stributions: The .results o?
these comparisons verify the analytical formulae at
microwave frequencies and, therefore, a%e of 1interest to
both physicists and gngineerél The accuracy of these
formulae are discussed in terms of their role in the design

and analysis of migrowave power applicators.
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CHAPTER 1. INTRODUCTION

The first section of this g&apter is 1intended to
provide a qualitative description of the nature of
eigenvalue spectra, and to introduce functional definitions
of the two types of mode distribution., Proper mathematical
definitions will be given 1in Chapter 2. The next two
sections comprise a brief ovérview of some of the important
existing literature, which is neqeésary in order to
understand the origin of the problems addressed in later
chapters. The final two sections describe the ‘objectives of
the present Qork and define the scope of the thesis.\

A

1.1 Properties of Eigenvalue Spectra

The electromagnetic forms of the wave equafion-,follow
direcfly’ - from Maxwell's equations and are therefore ;

inherently involved in virtually . every problem in

electrodynamics. The classical solution to these eguations

-

in a domain completely bounded by perfectly” conducting

surfaces yields an infinite set of eigenvaIues'representing
- the allowable modes of oscillation. These eigenvalues are
quasi—randoﬁly spaced throuéhout fhé spectrum and exhibit

finite degeneracy at each of the eigenfrequencies. For - any

" .
¥

of the simp%e geometries in- which the wave equation is
. { .

separable, any\arbitrary number of the eig#avalues can be
calculated analytically. However, it " is virtually



impossible to predict, by strittly analytical means, the

exact number of modes that will occur within a given

bandwidth. Yet this spectral density is of considerable
importance in many scientific and engineering applications.
\‘\
The spectral density 1is derived from the more

fundamental spectral distribution of eigenmodes. Simply

Stated, the spectral distribution of the eigenvaleés for - a

particular bounded doméin (e.g. waveguide or cavity) is the
cumﬁlative total number of eigenvalués, or modes, with
eigenfrequencias not -exceeding some upper limit, as' a
"funcggon" of the 1limit. frequency. If 'ﬁ;hg spectral
distribution "function" is evaluated ét two d{fggﬁéﬁt marker
ffequencies, the difference yields the number of modes in
thg banawiq;h defined by these two frequéncies. This result
is equivaient ~ to evaluating - a spectral density
"function";—which describes fhe number of modes per interval
of bandwidth—at the same marker frequengies. If the two
frequencies | are allowed to be arbitrary, but thgir

separation is held constant, then this differential number

"of modes can. be (and wusually is) also presented as a

distribution in the statistical sense,

N

In order to simplify the discussions to follow, the
term "density"” will be wused throughout this thesis in
reference to both the evaluated spectral density (i.e. the-

<

differential number of modes) and the unévaluated or true



spectral density of modésT. It should be clear from the
context which form, if a particular one, is required.

}

‘in many‘contexts, the disqusion applies egually well
to either.the épectral distribution or the spectral density
of modes. It 1is therefore convéqient  to introduce an
ambiguous term "eigenmode distribution”™ or simply "mode
distribution™, which could mean gither of bdth of these
distributions. ' |

S \ " ’

Of course, gi}én " the néture of tﬁe eigenvaiues
descrf%ed above, neither the spectral distribution;nor the
spectral density of modes can, strictly 'speaking, be true
functions. The reason for this phraseology will become
clear when th® exact mode distributions are defined
mathematically in the next chapter. Also it will be helpful
to dispense with the semantic distinction 'when the exact
mode | distributions -are compared graphically to the

asymptotic approximations, which "are true functions .of
~frequency.
1.2 Overview of Physics Literature

There are two methods of determining .the exact

eigenmode a "sutions for a given cavity: numerical
tFor most en. ring applications, the bandwidth must be
specified 1- r to extract useful guantitative

informaticn.



4

<
computation and experimental measurement. It 1is important

to realize that both are ‘relatively modern methodst. But

near the turn of the century, long before the advent of -

programmable computing machinery and electronic measuring
equipment, there was a scientific need fpr‘an understanding
of thé behavior of eigenvalue spectra [1-4]. -~ Calculus and
analytical methods were the most powerful theoretical tools
of the day, and théorigts therefore approached the problem

by studying the asymptotic behavior of eigenvalue spectra in

~

the limit of large wave numbers. That 1s, . the average -

. . . g
cumulative .number of modes, as a function of frequency, in

e

the highyfrequency limit.

The first detailed investigation of this kind was

-undertaken more than seven decades ago by Weyl [5-8] who

considered the mathematical problemi of calculating the-

asymptotic distribution - of the eigenval&s of Laplacian
operators. Weyl obtained the first -term of an asymptotic

expansion of the mode distribution and proyed its

independence ‘of the -~ shape _ of the domain. Later.

investigators, notably Courant [9], Courant and Hilbert

[10], carleman [11], Pleijel [12,13], Brownell [14,15], and

tAlthough a student of H.A. Lorentz, Johanna Reudler,
actually calculated (by hand) portions of the exact mode
distributions for a few simple geometries [Leiden
dissertation, 19121].
tWeyl at = first considered some nonphysical boundary
- conditions which resembled those of the electromagnetic
problem, but this did not detract from the mathematical
importance of the work., v .

o . 1

' 4



Agmon [16,17], extended Weyl's results and improved the
accuracy of the asymptotic éxpansion. Mostxof these authors
considered the special “case of electromagnetic boundary
conditions, bhut the emphasis of this early research was more
on mathematical rigor than physical applications of the
theory. The references given above are representative but
by no means ceonstitute a complete list. An excellent and
thoroug% review of the important (mgthematical) developments
up to the time of its publication in 1967 is given by Clark

i

[18].

Some early work which focused more on ‘the
electromagnetic problem was done by Muller [19], Mﬁl}er and
Niemeyer- [20], Niemeyer [21,22] ana Pathria [23]. It was
not until the early sevenfées, however; that the
elecFromagnetic problem was fully understood theoretically.
Also by this time, numerical and.experimental bmethods were
well-developed, which permitted the fheoreticél work to be
tested. Some'of the important‘results from this era will be
discussed in some detail 1in Chapter 5, but Case and Chiu
" [24], Balian and Blocﬁ [25], Balian and "Duplantier [26],
Baltes and Kneubuhl [27], Baltes 'apd Hilf [28], Balteé
[29,30], and Steinle and Baltes [31,32] were emiéent_
contfibutors. The theoretical results  obtained for fhe
electromagnetic case have been apptied painly to infrared

and optical [30-37] problems in physics. Comprehensive

literature reviews which include -both theoretical and



‘applied research on the electromagnetic (and other) problems
are given in several articles by Baltes, et al.
[27,28,30,38].

The phyéics literature citéd above is all "wéll
connected" in the sense that subsequent papers built on the
results of previous reseé}ch and adequate references were
provided to assist later researéhers. However, two papers
by Bolt [39] and Maa [40], which appeared simultaneously in
1939, were not quite so "well %connected". Bo'lt and Maa
treated the scalar (acoustic) problem and derived asymptotic
formulae for the mode distributions'that were presented as
extensions to those ,inen in thé texts by Courant and
Hilbert [10] and Morse [41]. No other references to prior
research were given. This apparently singular breech of
continuity may have contributed to some of the problems

“which later developed in the engineering literature.

1.3 Overyiew of Engineering Literature
r
The 1interests of (electricai) engineers are®mainly in
the electromagnetic applications df mode distributions. The
most common of which being the inv;stigation of the
characteristics of rectanéular cavities used in microwave -
.

heating systems. - of course, the precise shape of the

(exact) mode distributions 1in a loaded cavity  are



\ A
necessarily different from those in an empty cavityt. Hence

it would seem that, from an engineering point of view, the
empt?—cavity (or intrinsic) mode distributions may or may
. not be important characteristics. But the concensus among
microwave oven designers appears to be that the intrinsic
mode distributions.are indeed heipful in predicting the
performance of the loaded cavity [42-49]. However, it is
interesting to note that these mode distribu;ions have yet
to be determiﬁed correctly—by nﬁmerical, experimental or

analytical means—in the engineering literature.

It was not until the early sixties that mode
distributions were really considered in the context of
microwave applicator des%gn; Philipsy Research Labs
published a set of tables [42] giving the (incorreqt)'number
of modes, within the 1ISM band at 2450 MHz, for séveral
rectangular cavities. These tables were later reprintea in
a book by Puschner [43], accompanied by a.discussién of
exact and approximate mode distributions. Unfortunafely,
the asymptotic ' formulae quoted by Puschner ére also
incorrect. They are actually the acoustic formulae given 1in
tﬁe second edition of the text by Morse [41], which

incorporated the work of Bolt and Maa mentioned .previously;

Puschner simply doubled each of the terms in Maa's formulae

+In nearly all practical applications, cavity loads consist
of inhomogeneous, irregularly shaped, . lossy dielectric
materials and therefore substantially change the boundary
value problem.

%



in order to account for the two different wave types. The
‘errors in both the numerical data (tables) and the
analytical formulae will be explained and corrected in later

chapters.

James, et al. [44,45] also quoted Maa's formulae in
articles on-multimode theory. These articles have been
. cited in several later engineering works, including the
recent text by Metaxas apd Meredith [46].where both [45] and

[40] are cited.

Copson and Decareau [47] avoid the mistake - of quoting
Maa's formulae by gi&ing:instead only the first term (for
'yhich the doubliég is valid). But this too 1is misleading
since the first term is only aEcurate for infinitely high

frequencies. No references are provided.

" The only known attempt (in English) .to point out these
problems is unfortunately buried ;withih an article on
microwave applicétions in China [49], and is itself marred
by a serious typographical error in the "correéted" spectral
distribution formulat. Again, no references are given which
direct the reader to the cépious physics literaturg on the
subject. In fact, ironically, thiﬂonly direct link between

the engineering literature and the physics literature is via

-

tA more explicit account in Chinese [50] gives the correct
asymptotic formulae, but does not contain any references to
the fundamental physics- papers. :

A}
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the papers by Bolt and Maa, which have nothing to do with
the electromagnetic problem, and which do not. provide

adequate references to gain access to the EM work.

A

B

1.4 Objectives

Partly due to the lack of a theoretical literature
base, and partly due to the lack of experimental data,
long—standiag errors abound in the engineering literature on
multimode cavities. ‘nese errors have accumulated for over
two decades without definitive action to <correct them.
Because the errors are of a theoretical nature,
misunderstandings regardihg the ph&sics of ‘mode
distributions ‘have resulted among engiheers working in the
field of microwave power.

1t is a major objective of this thesis to draw
atténtion to these pfoblems,_and to correct the errors by
presenting the proper theoretical arguments alang with the
pertinent (correct).results. Attention 1is given to boch the
aumerical computation of exac: mode distributions, and the
analytical calculation of approximate mode distributions.
Also, the bibliographic references bridge a long-standing
gap between the engineering and physics) literature, aad
should provideb other scholars. and réeearchers with a

sufficient literature base to begin more detailed studies of

this important subject.
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A second 6bjective is to report the results of
experimen£al measurements which sugstantiate the physical
theory at microwave frequencies, and which reveal something
of the nature of mode distributions in the presence of Iight
metallic - structures (e.qg. mode Stirrers). These
mgasurements were performed on rectangular cavities but the
technique is applicable to more complicated geometries.

A third objective 1is to diSéUSS‘ some of the

P
characteristics of exact and approximate mode distributions
which have been discerned from the experimental measurements
aﬁd' é number of numerical case studiés. These
characteristics must be understood in order to evaluate the
roles and the wutility of both exact and approkimate mode
distribution calculations in engineering research and design

“applications.
1.5 Scope

Most of the existing probiems in the engineering
literaturebinvolve mode distributions in empty, rectangular,
ideal microwave- cavities. -” Accordingly,  this thesis
concentratés ~on electromagnetic . modes in perfectly
conducting rectangular cavities which; for theoretical
purposes, enclose a free space mediﬁm and, .fo; practical

el -

(e.g. experimental) purposes, are air-filled. Althobgh much

_ of the physics of these cavities also applies to other

ot 4



geometries, loading conditions and wave phenomena, these
cases will not be studiéd in detail here. Where
appropriate, generalizations will be mentioned, but not
discussed unless there are direct ramifications in the field
of microwave power engineering. . Further limitations to the
scope of certain sections will be given 1in the text

\

pertaining to that material.



CHAPTER 2. THEORETICAL BACKGROUND

It is essential to understand the basic physics
involved in electromagnetic boundary value problems in ofder
to correctly obtéin and interpret eigenmode~ distributions.
It 1is therefore the purpose of this chap}er to review these
principles and to presen:, in a mathematical context, some
important eguations useg.,in subsequent chapters. The two
dimensional eigenvalue problem is introduced in the first
section which leads to the definition and classification of
waveguide modes. The analysis is extended 1in the next
section to include cavity modes. The eigenfunctions which
describe the actual field compoﬁents are presented 1in he
third section. Rigorous (mathehatical) definitions of the
mode distributions are given in the last section, along with
a discussion of how and why the partial distributions of TM
and .TE modes are different.

2.1 Rectangular Waveguide Modes

Consider a three dimensional semi-infinite domain 1in

free space defined, in Cartesian coordinates (x1,%X2,%X3), by

0 < x, <UL, ’ (2.1)
0 < x, < L, ’ -2)
—o < X, < +o : - (2.3)

and bounded by perfectly conducting - plane surfaces.

.

12
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Electromagnetic fields in this domain must satisfy the

appropriate form of Maxwell's equations, viz.

V x E = -0B (2.4)
3t

V xH= 3D (2.5)
3t

V.D=0 . (2.6)

V-B=0 ' (2.7)

Y
where B=u.H and D=¢ E and, since the domain-is enclosed by

perfect conductors, the appropriate boundary conditions are

n xE=0 (2.8)
n x H=J, (2.9)
n D<o, " | (2.10)
n - B=20 (2.11)

where n is the unit normal vector directed inward (toward
" the free-space medium) from the boundaries. It can easily
be shown [51-53] that Egs.(2.4-2.7) are equivalent to the EM

wave equations

VIE - uoeod’E = 0 (2.12)
T

V2H - IioeoazH = 0 (2.13)
T '

o
subject to the same boundary conditions described by
Egs.(2.8-2.11). And if the time dependence is assumed to be

harmonic, then Egs.(2.12,2.13) further reduce to the vector

Helmholtz equations
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(2.14)

il
o

V?E + k3E

V?H + k3H

I
©

(2.15)

where kid=poeow? the infinite-medium, free space wave number.
It is common to view k, as the modulus of a so-called wave
vector k, with components in each of the coordinate

-~

directions, viz.

ke = kya, + kzap + ksas L (2.16)
from which

|ko|? = k3 = ki + k3 + ki3 (2.17)

and the direction of kg is everywhere normal to the electric

and magnetic field vectors.

Due to the infinite extent of the domain in the ~#x;
directions, it is useful (and reasonable) to assume
propagating wave functions of the form

_i(wtik3X3)
E(x,t) = E(x,,xz)e : : (2.18)

"i(&)ti'k3}(3) .
H(x,,x;)e ' (2.19)

A

H(x,t)
&

where the plus/minus signs indicate forward/backward
propagating waves. Furthermore, since the boundary
conditions on E and H are different, the eigenvalues will,
in general, be different. Thus it is natural to divide the
field solutions intd two distinct classes: transverse

magnetic (TM or E-type) for which H3;=0, and transverse
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electric (TE or H-type) for which E;=0t1. For the present
case, these TM and TE wave functions together constitute a
complete orthonormal solution set from which arbitrary EM

disturbancés_in a waveguidé can be fully described.

" Hence, a substantial simplification "of the solution
procedure can be achieved by converting the vector
Eqé.(2.1§,2.15) to eqguivalent scalar equations. This
convefsion is accomplished by separating the x,, x:
dependent parts of the wave functions (2.18,2.39} into‘axial
(E; and Hj) and'tfansverse (E,,. and ‘H,,2) components. It

is then sufficient to solve

- P \

V§E3 + 72E3 =0 (2.20)
ViH, + v?H; = 0 o (2.21)
where y?=kZ-k}, subject to the boundary cénditions
Es|lsy,2 = 0 S (2.22)
dH = 0 o (2.23)
—_— / -
on S) 2
respectively, since the transverse fieldlcomponents can be

obtalned directly from the ax1a1 components according to the

relatlons

TA third species—the transverse electromagnetic (TEM)
wave—should be considered in a general discussion of guided
waves. However, the TEM mode cannot exist inside a single,
hollow duct of infinite conductivity .(i.e. the present tase)
and is therefore neglected here. ,
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H( = il_}_(_o Z(_)' (a3 X VQE3) (2.24)
,72 .
E‘ = ¥ £3 Zo (a3 X H‘) i (2.25)
kO . ~
[X
'@
for TM waves, and
E, = 7iko Zo (a3 X V Hj) | (2.26)
v? »
H, = + k, Z5'(a; x E,) | - (2.27)
-~ L'k() ’ . . |

for TE waves,ﬁwhere Zo = Vio/€o, and the plus/minus signs

again indicate forward/backward propagating waves. -

The Eqgs.(2.20,2.21), together with the - boundary

conditions (2.22,2.23) respectively, specify eigenvalue”
problems in two dimensions. In general, there will be two
doubly infinite  sets of eigenvalues—one for the TM waves
.and one for Ehe TE waveg——that emerge, and the corresponding

(V4
eigenfunctions describe distinct field patterns or

eigenmodes (or simply "modes") which propagate in the guide.
However, due to the mathematical symmetry of the
eigenfunctions with rez?éct to differentiation, the

resulting equation for thé eigenvalues is

vy* = k3 - k3 = pin® + pjn? . (2.28)
- L L} o

where p,,p. are nonnegative integers, regardless of whether

T™ or TE modes are -sought. Although, the particular



L= .
™ : ‘ 17
~—

i_cdmbinations of p,,pg which yield nontrivial solutions may
‘Be different for TH and TE modes. From Eg.(2.28) it is
eagaly ' seen that the wave number ki is real onl; if the
condition |

uoeowz > p%ﬂz + p%‘n’z (2.29)
- L} L} '
1 2

is satisfied. values of p.,p:. that do not satisfy Eg.(2.29)
describe nonpropagating or»evénescent modes. Eqg.(2.29) thus
defines the low-freguency limit or cutoff freguency of
propagating modes. Also notthhaf there is no ‘upper 'limif
imposed on propagating waveqguide modes. Cavity modes do not

share this characteristic.
2.2 Rectangular Cavity Modes

The formulation given above for waveguide modes can be
extended to .cavity modes by considering plané short circuits
placed transverse to the x,; axis at x3=6 and x3=L3.v Then
the domain of interest is completely bounded by perfect
conduq&or and the assumed harmoqic x3 dependence - is né
longer wvalid. The correct form.of the x; dependéncg is in
fact the same as that for a standing wave, as would ' be

expected for the fields ‘in a waveguide between perfectly

reflecting planes. Also; an ‘additional set of Dboundary

[
~,

conditions must now be. appliad ,at x3=0,Ls. These are
essentially the same as Egs.(2.22,2.23), but with E; and H,

interchanged, viz.

-
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BE,| = 0 : (2.30)
n S, ’
H3I53.= 0 . (2.31)

\
1

which are satisfied for all x; only if the wave number 1is
given by
ki = pin’ | o (2.32)

N
A .
which is now discrete rather than gquasi-continuous as in the

waveguide case. Also, the relationships. between the axial

and transverse field components are now given [51] by

H, = ilhg Za‘ cOS 37rx3.(a3 X VQE3) (2.33)
2 L,
E, = iézn sin 0wx5 V.E; (2.34)
Lay? L,

for T™ waves, and

<

E. = fike Zo Sin psmxs (a; X V,Hs)  ~  (2.35)
S A 'Lj
H, = ¥p37m cos psmx; V.H; , (2.36)
2 L, -

L3')’ .

for TE waves. ' : ¢

The cdvity case is thus an eigenvalue problem in three
dimensions and the discrete field patterns (or modes) are
stationary and characterized by triplyé}nfinite sets of line

spectra. Substituting Eg.(2.32) into Eq.(2.28) yields

[RIN = |
»

(2.37)

eV B
~
+
e}
[NIY =]
~
4
o
[l FISEE

Hhown



.or, since k3=eguow?,

Ho€owp = P : -+(2.38)

n? +p
2
1

[NV )
+
o
wal Xy

|aud *INY)

2 2
1 2
L L

which again applied to both TM and TE modes. Note that
Eqg.(2.38) ié an equality (compared with Eqg.(2.29) which s
an 1ineqguality). The subscript p . has Beenladdéd to the
angular frequency in order to emphasize that the spectra are
now discrete. The resonant frgguencies wp are) hence

appropriately called eigenfrequencies.

The foregoing does not change substantially if ﬁhe
cavity is completely filled with a perfect (i.e. linear,
nondispersive) dielectric material. Essentially, the
‘duantiqies e, and uo would have to be replaced by the actual
¢ ard u which characterize the particular dielectric under
consideration. However, if the dielectric is not perfect,
or does not completely fill the cavity, then the boundafy
value problem is changed ;significantly and the analysis

presented here is no longer adeguate.
2.3 Rectangular Cavity Field Components - . ~

The eigenfunctions are given'(for several geométfies)
in mogt;texts but in order to facilitate latér discussions,
it is wuseful to list the rectangular cavity eigenfunctions
in a form consistent with the notation wused here. Hence,

following the - procedure outlined in the two previous
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sections, the actual field components (eiggpfunctions) for a

rectangular cavity are:

E, = ~C p;7 P37 COS D TX, sin TX, Sin X 5 (2.33)
v* L, Ls Ly L, Lj -
E, = -C pz7 D37 sin p;7x, COS TX, 'sin p,mx, - (2.40)
v* L2 Lj L, L. L
E, = C sin p,;7x, sin p;7mX; COS TX 3 (2.41)
L, L. L, '
H, = 1weoC ppm sin TX, COS TX, COS TX 3 (2.42)
v? L. Ly L, L,
H, =.--iweoC pym cos p,;7mx, sin TX, COS TX 3 (2.43)
’ v* Ly Ly L, L; ‘

for T™ waves, and

-« H, = ;Q pim™ P sin pymx, COS TX, COS TX 5 (2.44)
’72 L~| L3 L1 Lz L3
H, = -D p,7 Q3w'cos JTX, Sin TX, COS TX 3 (2.45)
'Yz Lz L3 L" Lz . L3 .
H, = D cos p;mX, coOSs TX, Sin TX 3 ' (2.46)
L1 L2 L3 ’
E, = iwugg PaT cCoS P mX,; Sin TXz Sin P3TX; (2.47)
v* L, L, L, ‘L,
E, = -iwuoD p,7 sin p,mx, coOs TX, Sin TX 3 (2.48)

')‘2 L1 L1 Lz L3

for TE wéves;~where C and D are .arbitrary constants, and

harmonic time dependence is understood.
2.4 Eigenmode Distributions

Any finite number of the eigenfrequencies defined by

\ .
Eg.(2.38) can be calculated and arranged in ascending order,

e
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viz.

(2.49)

IA
£

0<w1§w25w35---$wp

where w is some arbitrary upper-limiting frequency  to be
considered. The total number of -eigenfrequencies not
exceeding w is then

N = Z 1 o ‘ (2.50)

prw

‘where each term in the series represents one eigenfrequéhcy
in the sequence (2.49). And the total number of
eigenfrequencies within the bandwidth 6w is

Déw = Z 1 - Z 1 . | (2.51)

wpsSwtbw  wplw
E a
where éw is a (finite) real constant. Note that
Eqgs.(2.50,2.51) can be viewed asvimplicit "functions" of
frequency since w 1is arbitfary and can rtherefore be a
continuous variable. Iﬂ this sense, Eg.(2.50) serves as a
mathematical definitiont of a spectral distribution of the
eigenfrequencies: And Eg.(2.51) serves as a definition for
the spectrals density of eigenfrequencies, per Sw of

tA slightly different definition is used in some of the
physics literature, viz. ‘

N = ZZ: T+ ZZ: 1/2

wp<w Wp=w

but this work is mostly concerned with the asymptotic value
of N in the high frequency limit, in which <c¢ase the above
definition and Eg.(2.50) are practically equivalent,
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bandwidth. Notice -that Eg.(2.51) closely resembles the

definition of the derivatiQﬁ of the "function™ N, 1In fact,

if 8w20, then D represents a sum of Dirac 'delta functions

6 (w-wp) which would be the result obtained from the

differentiation of the step function described by Eq.(2;50).
;

Since Eq.(2.38) holds egqually well for TM and TE modes,
it would be reasonable to define NTM'NTE and Dyy,Dyg using
Eqs.(2.50,2.51).'respectively, where only[the actual wp are
different. Hence, the total number of electromagnetic modes

not exceeding w would be

and the number of-modes-within the bandwidth 6vaould be
DEMéw = DTMéw +'DIE6w (2.53)

where Np,, and N;p are the partial distribgtions of T™ and TE
modes respectively, and Dty and Dyg are the partial spectral

densities of TM and TE modes respectively.

It is extremely important to realize that Npy and Nqig
are not, 1in general, equal over any given range\‘of
frequencies, and likewise for Dy )y and Dyg. This is due to
the fact that some combinations of p,,p:,pPs uniguely
identify certain modes as either T™M or TE. That 1is, the

solution space of Eg.(2.38) 1is T"partitioned” into three

unequal sets of triplets (p:p.p;) which correspond to TM, TE

J
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|
\

Figure 2.1 Venn diagram representation of the solution
space of Eq.(2.38) for finite bandwidth. The numbers in

" parentheses indicate the multiplicities—with-—which—each- -

member . occurs in  the distributions described by

Eqgs.(2.52,2.53).
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and longitudinal (or forbidden) modes. Although the TM and
TE sets do dveflép, there are members which are unigue to

each set.

Eq.(2.38)his dépig€g5~;Ehemétically in(Figure 2.1..

In order té calculate the mode distributions cérrectly,
the members of each of tﬁe setS'indicaEed in Figure 2.1 mus£
211 be known (or at least knowable), which in turn &requires
.considerationc of‘ the boundary conditions (2.22,é.23) and
(2.30,2.315. These mathematical | expressions can be
translated into restrictions on the guantum numbers that
correspond. to nontriviai solutions: ﬁo _Eqs.(2.20,2ﬁ21).
These restrictions will be. described 'ia detail in the
following chapter where they are formalized into a., cet of
criteria for properly discriminating‘fbetwéen T™ and TE

modes.

This partitioning. of the solution space of ..
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CHAPTER 3. NUMERICAL r.GENMODE DISTRIBUTIONS

Several previous attempts to enumerate .ae eigenmodes
in empty rectangular cavities by numerical computation have
produced incorrect results. The p%fpose of this chapter 1is
to correct t?ese defective algorithms: A brief review of
the physical principles . .volved 1in electromagnetic mode
counting 1is given in‘the first section. A particular mode
counting algorithm which yields the correct number of modes
in a rectangular cavity is presented in the second section.
Three different implementations of the algorithm are briefly
described in the third section, followed in the next two
sections by some important numerical results obtained from
two of these programs. A discussion of the significance of

these results is given in the last section.
3.1 Numerical Mode Counting

The spectral distribution of modes for a particular
cavity may be presénted graphically as a plot of the total
number of modes with resonant frequencies not exceeding some

upper “‘frequency w as a "function" of w. Similarly, the

P
£ “g-.

- .spectral density of modes can be presented as a plot of the

numbegfof modes with resonant freguencies between some lower

frequé%cy Q and w+bw as a "function™ of w. In either case,
.

the cbmputational problem essentially reduces to counting

the number of allowable modes (eigenmodes) within a

”

25
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specified freguency range. For rectangular cavities, these
mode counts can easily be obtained using exhaustive
substitution algofithms of the type described in Athe
follJowing sections. In "fact, the results of similar
computations have been reported 1in the, form of tables
[42,43,48] intended +to aid designers in the choice of
optimum cavity dimensions. However, the algorithms used by
these aufhors do not account for the physical differences
between TM and TE modes, and therefore do not yield the

correct total number of modes.

The 1intrinsic eigenfrequencies of an ideal rectangular
cavity are defined by Eg.{(2.38) which, 1in the -engineering

literature, is usually written

f* = pic? + pic? + pic? ; (3.1)-
4L} 41,2 4.3 &

where f 1is thq more commonly used Hertzian frequency, c¢ 1is
the wvelocity of 1light, and the qguantum numbers p;,p:,pPs
together comprise the so-called mode number (p;,p.ps). If
there were no restrictions on thé mode number (except that
it be nonnegative), then Eq.(3.1)lcould be used to generate
the aforementioned plots by simply counting :all of the
possible mode numbers which défine resonant frequencies

within the appropriate range. This is, in fact, the

approach used to compile the tables in [42,43].
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As explained in the previous chapter, Eq.(3.1) résults
from the solution of the Helmholtz equation regardléss of
whether T™ or TE modes are sought.  Hence, | in the
hypothetical treatment described above, .one might assumet
that the total number of modes is just twice that deterﬁined
for either species alone. Such a treatment presupposes that
T™ and TE modes have identical partial distributions, which
théy do not. That is, the TM wave function satisfies the
Dirichlet condition on those portions of the boundary
surface where the TE wave function .satisfies the Neumann
condition, and vice versa. As a result, if any one of the
quantum numbers is zero, then one or the other wave type can
exist, but not both. Aand if any two or three quantum

numbers are zero, then neither wave type can exist.

Notwithstanding the above, certain mode numbers are
ambigpous in that they can represent both a TM and a TE
mode. Thus, any algorithm which is intended to count
electromagnetic modes must include a facility for assigning
multiplicities in order to acéount for this type of
degeneracy. That is, if none of the quanfum numbers are
zero,‘ then the mode number representi both a TM and a TE

mode, and therefore can be said to have a multiplicity of

two. Whereas, a single zero occuring in any position in the

$The instructions given in [42,43] are not explicit, but it
is obvious from the context and the actual results that only
one type has been considered, and no distinction between
types is made clear in the discussion.
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méde numper will uniquely identify the mode as either TM or
TE, which therefore §%§ a multiplicity of one. The
remaining case of tw%f(or three) zeros“in the mode number
leads to the trivial solution where all of the
eigenfunctions vanish, and so these modes are said to have a

multiplicity of zero. These multiplicities are thus the

same as those indicated in the diagram of Figure 2.1.

— )
Due to the simplicity of the eigenvalue problem in
rectangular geometry, the numerical analysis is

straightforward (perhaps even elementary) once the physics

is understood. Still, 1in order to establish a basis for

comparing theory and experiment, it is worthwhile to examine

a particular algorithm based on the above physical

conditions.

[

‘3.2 A Mode Counting Algorithm

The algorithm consists of a simple "filtering"
procedure for determining which of the possible mode numbers

:yield resonant frequencies in the desired range. And a

"sorting" procedure for determining which of the filtered

mode nuﬁbérs correspond Eo valid cavity modes, and whether
they can be TM, TE or bqth. The filtering procedure is
esseﬁtially just an application of Eg.(3.1) and does not
merit further consideration here. Hence, only the sortiné

procedure will be described in detail.

<



29

A ‘thorough .sortiné prbcedufe (i.e. one which can
discrimiﬁaté‘ between TM and TE modes) requires_a slight
modification to the criteria briefly described in the last
section. The actual criteria ﬁséd in the present algorithm
for sorting modes according. to"mmodel number . are the

following:

(a) If more than one of the p,,p:.,ps; are zero, then the
mode number represents neither a TM nor a TE mode (i.e. a

longitudinal, or forbidden, mode):

o

(bd If only ps is zero, then the mode number represents

a T™™ mode only.

-~

(c) 1f either p, or p. (but not p;) is zero, then the

mode number represents a TE mode only.

(3) 1f none of the p:,pz,ps .are zero, then the mode

number represents both a TM and a TE mode. .
s 3

-

The modification indicated by (b) and (c) follows
directly from the complementarity of the boundaig,

conditions.

. Let P,,P;,Ps be Bpolean (input) variables which are
true if p.,p:,ps respectively are nonzero, and false if they

are zero. Also let E, H, B be Boolean (output) variables
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which are true if a giben set of input variables describes 5
™ (or JE—type) mode, a TE (or H-type mode) or both
respectively, and false otherwise. These definitioﬁs
togeﬁher with the criteria (a)-(d) can then be used to
construct Table 3.1 which comprises all of the possible
combinations of_P1;P2,P3 and the corresponding binar;~values
of E, H, B. ' <
g o
In order fo obtain an efficient algorithm, the minterm

expansions'for E, H and B are derived from the Karnaugh maps

[54] as shown in Table 3.2, viZz.

E = PP, : -~ (3.2)
H = P,P; + P,P; = (P, + P,)P; ’ (3.3)
B =»P1P2P3 : ‘ (3-4)

which can then be used to test and validate (or invalidate)
~theq.mode number (p1p2P3) - Similarly, a test for

nonlongitudinal modes can be derived, viz.

N = PyP; + P,P; + PP, | : ~ (3.5)
. :
where the definition of N is analogous to those given for E,

H, B. Note that N is just E+H as would be expectedf.

. ] -

+Perhaps all of the Egs.(3.2-3.5) could have been written by
inspection but, inasmuch as Karnaugh maps are. a proven
mathematical construct, the procedure described can, given
Table 3.1, serve as a proof of these equations.
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bA slight simplification may seem possible if
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Table 3.1 Truth table for the Boolean ou%put variables E,H,B,N

which are true if the corresponding® input combination describes a

TM’mode, a TE mode, or both, or a non-longitudinal mode

respectively. .The input variables . Pl'Pz'P3 are true if the .

quantum numbers P1/P,P3 respectively are non-zero.

P1 P2 P3 E H B Né
0 0 0 o 0 0 ob
0 0 1 o 0 0 ob
0 1 0 0 0 0 ob
0 1 1 0 1 0 1
1,0 0 0 0 0 ob
1 0 1 ~ 0 1 0 1
1 1 0 10 0 1
1 1 1 1 1 1 1
AN

D)
A7

8rThis. column describes the algorithm used (implicitly) in [48]
which yields different, though still incorrect, results from those
reported in [42,43].

these are designated
as ®don't care" states, but a more complicatea filtering procedure
would then be required in order to eliminate these cases.

r

/"‘v
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3
-

Table 3.2 Karnaugh maps for the Boolean output variables
E,H,B,N. The resulting logic equations are written in minimum

sum-of-product form as described in I54].

u P3 Pz’ . .
/'P1 P2 6] 1 . P1 P2 0 1l

00 0 0 - 00 o | o
J 01 0 0 01 0 /D
11 (r | 1) 11 0 @
10 0 0 ) 10 0 <y
E = Ple H = PlP3 + P2P3
P3 P3
PP 0 1 P, P, 0 1
00 0 0 00 0 0
01 0 0 01 0 (1)
\
Lo | @ Niaic
10 0 0 10 0o |l1
| &,
, B = P1P2P3 o N = P1P3 + P2P3 + PlP2
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4

Eqs.(3.4,3.5) can provide additional information if
required, but Eqs.(3.2,3.3) are the essential core of the
sorting procedure, The actual number of TM and TE modes,
and therefore the totai number of EM modes, can thus be
counted 'during or after sorting. A flow chart which
describes a likely implementation (and one used by' the
author) is presented in Figure 3.1. This algorithm was used
to génerate numerical data for .a particular laboratory
cavity for which experimental data could be obtained for
comparison. These results are compared gréphically in‘ the
next Chapter, for now let it suffice to say that the results

are in close agreement.
3.3 Computer Aided-Cavity Design

As expected, the above algorithm is not very
complicated, and more efficient algorithms no doubt -
at least for’some special casest. But for practical c Y
sizes and bandwidths, used in microwave heating
épplications, the computation time for any one cavi£y is-
reasonable (i.e. less than ~one minute, using interpreted
BASIC on an 8 bit microcompute&; and less than one second,
using Pascal or FdRTRAN on a 32 bit mainframe). This
élgorithm has in fact been implemented, with satisfactory

results, in a trilogy of 1interactive design/analysis

+For cubic <cavities for example, which are inherently the
most mode-dense, a much more efficient algorithm is

described in [27].
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FILTERING PROCEDURE

BQUATION (3.1)

——ta e

EQUATION (3.2)

EQUATION (3.3)

THE TOTAL NUMBER OF |,
MODES IS THE SUM OF
THE T AND TE COUNTERS

SORTING PROCEDURE . y -
STOP .

Figure 3.1 Flow chart representation of a mode counting
algorithm for rectangular cavities. The applicable
equations from the text are indicated beside the

decision-making blocks.
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programs used by the author.

In the program NEWCAV, the algorithm is used to find
the most mode-dense cavities (over a given range of
frequencies) 1in a set of cavities defined by varying, in a
prescribed manner, a set of target dimensions. The program
prints a listing of 'the eigenfrequencies, along with plots
of the TM and TE line spectra, Ebr each of the cavities:

found.

In the program MODIST, the algorithm 1is wused (along
with certain of the analytical formulae presented in Chapter
5) to generate mode distribution data with any required
degree of resolution. The output data 1is: written, in
tabular form, to a file which can be viewed as is, or used

as input to a plotting program.

In the program CARE?@B, the algorithm is ‘used to
produce mode count reference tables for a set of cavities
defined in a similar manner to that wused 1in NEWCAV, The

output of this program is described in Section 3.5.

Complete listings of each of the above programs and
descriptions of the input/output are given in Appendix A.
A distinct limitation of these and similar CAD programs

used in engineering 1is that the presence of the coupling

-
°
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structure(s) and mode stirrer perturb the cavity enough that
Eq.(3.1) 1is nbl longer useful. A considerable advantage
would be gained if a numerical model could be devised which
is sufficiently general to handle multiple antennae and
arbitrary metallic structures within the interior of the
cavity. It is beyond the scope of this thesis to consider
ﬁhis topic in detail, but some further thoughts on a

possible approach are given in Appendix C.
3.4 Numerical Case Studies

The program MODIST described above can be used ih
conjunction with a graphics prog?am to generate actual plots
of the egacF spectral distribution or spectral density of
modes for any hypothetical.cavity, for any finite range of

frequencies. It is interestir~ to examine the results of

such numerical case studies and some particularly

instructive examples are presented here.

The cavity depicted in Figures 3.2,4,6,8 is cubic
(Ly=L,;=L3;=25 cm) and therefore completely symmetric under an
interchange of coordinate axes. This case gives rise to the
maximum number qf- degenerate modes, and hence to the
greatest step heights 1in the exact spéctral distribution
(see Figure 3.2). This in turn 1leads to the largest

—_—

fluctuations 1in the spectral density plots (see Figures

3.4,6,8). The cavity of Figures 3.3,5,7,9 is slightly less
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symmetric (L,=25 cm, L,=35 cm, L;=45 cm)‘ but the step
heighte in the spectral distribution (Figure 3.3) and the
fluctuations in the spectral density (Figures 3.5,7,9) are
. substantially reduced. These figures clearly show the
marked dependence of the mode distributions on the deéree of
symmetry of the cavity wunder consideration. Notice -
particularly the pronouneed difference between Figures 3.4
and 3.6, and between Fiqures 3.5 and 3.7, where the.only

.change in the parameters is that the L, dimension .has been

perturbed by. 1 cm.

Figures 3.8 and 3.9 show another strgng dependence
(that is, on variations in bandwideh) which affects only the’
spectral densities.. A visual comparison*of Figures 3.8 and
3.90 with Figures 3.4 and 3.5 respectively, indicates the
sensitivity of the flUctuations‘in the spectrai density to a

» change in bandwidth (in this case, from 100 to 50 MHz).

3.5 Revised Cavity Design Tables

 For the sake of comparison, example mode count data,
obtained from the program QARETAB, is given in Table B.1 of
Appendix B, in a form similar to the tables given in
[42,43]. All entriesApertaih to the number of eigenvalues
of the specified type within the (Hertzian) frequency range

2425 < f < 2475 MHz. The column titled 'TS 1is the total

number of mathematical solutioﬁe to Eq.(3.1), including
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double-zero (longitudinal) modes. These are the values
given in [42,43]. The column titled NL is the total number
of nonlongitudinal modes (i.e. the same as TS but with the
double-zero modes extracted). This is the method used in‘
‘[48]. ‘The remaining columns titled TE, TM and EM are the
partial and total mode counts as determined by the present -

algorithm.

A similar set of data for the frequency range
300 < f < 930 MHz are given in Table B.2 of Appendix B.
Note that, due to the' nature of the exact ;pectral
distributibn of modes, it 1is not possible:to interpolate

between cavity sizes given in Tables B.1 and B.2.

3.6 Discussion

It is not clear wheéher or not the authors of [4%,43]
intended users to double the values given in the tables. If
they are doubled, then these results consistently
overestimate the total number of modes. But if they are not
doubled, then these tables would consistently underestimate
the total number of modes, which may explain why the
coupling to small cevities is “ten better than expected.
In either case, the ~discrepancies are guite large. Note
however, that these discrepancies méy not have been possible
to detect expe;iméntaily at the time of [42,43]. Since

solid state’ microwave applicators will almost «certainly
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operate at lower frequencies initially (e.g. the 915 MHz ISM
band), and with multiple sources, the coupling problems of

small cavities are becoming increasingly more important.

tt might seem that the existence of quaéi-random
flucﬁuations in the spectral distribution demonstrates the
necessity for designers to have available extensive mode
distribution data (or at least a facility to obtain ‘such
data) in order to optimize cavity dimensions. However, the
sensitivfty of these fluctuations to slight variations in
shape and bandwidth raises some uncertainties regarding the

interpretation of data obtained for ideal empty cavities.

For example, construction tolerances and dynamic magnetron

bandwiaths cause unpredictable changes Iin the spectral

density of modes ini"real" cavities.

Furthermore, the resonances are quite sharp, even in a

(lightly) loaded cavity, and sometimes widely spaced.

Hence, in order to achieve satisfactory _uniformity and

efficiehcy in gicrowave applidators, mode stirrers and/or
tbrn‘tables are usually»employed. These drastically perturb
the shape and symmétry of the cavity, which substantially
changes the actual mode distribution. Thus} even  if

intrinsic mode distributions are accurately obtainable from
numerical computations, one cannot necessarily expect to
improve on empirical cavity designs. Some of these aspects

are examined experimentally 'in the -next chapter.



CHAPTER 4 .  EXPERIMENTAL EIGENMODE DISTRIBUTIONS

The algorithm described in the preceeding chapter 1is
based on principles which are strictly valid only for ideal
empty.cavities. The purpose of this chapter is to present
" the results of experimental .measurements of the spectral
distribution of modes for a "real" cavity at microwave
frequencies. The laboratory cavity, the measurement system
and the procedure are described in the first section.
Experiméntally obtained mode distributions for the empty
cavity are compared in the next section with those obtained
by numerical computation using‘thé algorithm of Chapter 3.
Additional measurements on the same cavity, equipped with a
mode stirrer, are presented in the third section. These

results are discussed in the last section.
4.1 Materials and Methods

The laboratory cavity is constructed of aluminum with
interior dimensions L,;=23 c¢m, L,=50 c¢m, L3=52 cm, and can -
accommodate tunable probe type coupling st;uctures on. three
orthogonal sides. Access to the interior of the cavity is
provided via a securely fitting side door (23 cm x 52 cm),
~or through several small "ports" (1 cm dia.) which can be
used to introduce perturbing instruments or additional
probes. An aluminum mode stirrer, of the type used in

Litton Menumastere microwave ovens, could be 1installed 1in

48
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the top wall and rotated manually from outside of the
cavity. An alusinum bushing was used in order to maintain

electrical contact between the mode stirrer and the cavity

wall,

The distributions were measured by counting the number
of minima in return loss vs. freguency traces obtained using
a coaxial frequency-domain ; reflectometer system. A

swepf—freqhency source (HP 8620C, HP ' 8621A, HP 8632A)

capable _of.. dhwous sweep from 0.1 to 4.0 GHz was used

to-exéiﬁe-»hq Incident and reflected power, signals
. . Sl ;

were ~samp. , ¥20 dB directional couplers, and the

returQ‘;Qséii s “was .@splayed on -a swept amplitude
andlyzer (HP é;§§i3.~ No attempt was made to match the
impedance of the input éircuit to the .cavity in order to
keep the loading effect of the external circuit asvsﬁail as
ﬁossible. A sCHemétic diagram-of the' complete measurement
- system 1s shown in Figure 4.1,

Degenerate modes were résolved using perturbation
methods [55]. In many’cases the perturbing effect 6f the
finite conductivity of the~walls and the presence of ﬁhe

coupling probet were sufficient to split degenerate modes

just enough. to make identification possible. From the case

tAt least two probes (in at least two positions) were used
in any given measurement run in order to excite all possible
modes, but only one probe was excited at a time and the
unused probes were removed from the cavity.

Y
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SWEPT AMPLITUDE ANALYZER . SWEEP OSCILLATOR / RF SECTION

z-axis in
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o (@]
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‘external in sweep out RF out
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ch B - l_v
: ) < DET R
ch R ] MODULATOR
- |
ch A ' ‘
D DUAL DIRECTIONAL
N N ‘] COUPLER
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k I—_-L-—\ .
- TOP VIEW e )
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-\' ~-| DET B
26 cm
front ) ,
’ CAVITY

Figure 4.1 Schematic diagram of the measurement system used
. to obtain experimental mode distribution data. The inset
shows ~the 1location of the mode stirer wused for the

measurements reported in section 4.3.
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studies discussed in the previpous chapter, one would expect
a higher sensitivity to probe perturbations 1in a more
symmetric cavity. Some abbreviated | measurements (not
graphed) on a slightly more sy%metric cavity
(28 cm x 52 cm x 52 cm) did support this, ég extremely short
probes (<5 cm) were required 1in ordef to obser&e degéneréte
modes. However, the coupling from these short probes was
extremely weak which made some degenerate modes very
difficult to discerr  Because the probes coulg be 1longer
(<10 cm), this problem was less serious for the cavity used
in the measurements reported here; although -distinguishing
weakly-coupled degenerate modes was'étill the probable cause

of most of the error due to "missed modes".

Other sources of "miscount™ error include the possible
counging of artifacts in the return 1loss trace‘ and
recounting of modes ” that are excjted by different probes.
The artifactg .could be 1identified in most tases by
repetitive  measurements and perturbation methods.  The
chances of recounting some modes could be lessened by

exciting all pfobes simultaneously. However, cross-coupling

_ between probes then 1introduces another source of error.
N . .

Some (qualitative) observations of these effects are

reported in Appendix C.

Errors 1in determining the resonant frequencies of

nondegenerate modes and degenerate‘ modes that reguired
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L

manual intervention to split, were mainly due to the limited
resolution of the sceie (on the sweeper main-frame) used to
pbtain the frequency . data. However, the resonant
frequencies of modes that were split due to the perturbing
effect of cavity walls and coupllng ‘probes Vcould only be
estlmated. Fortunately, this type of error is small.

“©

4.2>§esults for the Empty Cavity

’The ‘experimentally measureé mode distributions for the
empty cavity are plotted in Figpree 4.2 and 4.3 as the.
curves N™ and D". The abscissae ere all normalized to-the
cutoff frequency'(i.e. the lowest eigenfrequency) w. of . the
cavity. Superlmposed on Figures 4.2 and 4.3 are the
(numericaELy determined) thebretical distributions N and D'

respectlvel obtalned using the algorithm presented 1in
X » 9 .

prev1ous chapter.

-

.LThe( freéuency resoluﬁion of the computed distributions
was} chosen to correspend with the resolution of the
experlmental 1measurements, which was estﬁmated~to be 10 MHz
or approx1mately 0.023 on the normalized scele used in
Figures 4.2 and 4.3. Within this resolution, there is close
aéteement between the computed end_ cOrtespond{ng measured

data. The deviation at 'higher frequencies is attributed to

. “the experimental errors mentioned above. 'Note that the

visual counting of modes beccmes increasingly more difficult

2y
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Figqure 4.3 Comparison of the theoretical (D*) and measured

(D™) s@ectral'density of _modes fn, an empty rectangular

éavity _forfxa bandwidth of 50 MHz. The interior dimensions

of the cavity\are Ly=23 c¢m, . L,=50 cm, L3=52 cm as in

 ‘“Figure 4.2,
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at higher mode densities and therefore the accuracy of. the
measurements deteriorates rapidly at frequencies beyond the

range.shown in the figures.
4.3 Results for the Cavity with a Mode Stirrer

The experimentally obtai“ed spectral distribution of

modes in the cavity fi-ted vwith a mode stirrer is‘plotted,ié;
EERCIPL N
s e

e

. .gure 4.4 as the ¢ labelled NT. The empty-canitys
‘ : Rerat R
distribution N™ is redrawn on this figure for comparison. °

The shaded pqrtions~o£ the curve indicate the range of
resonant freguency shift due to changes in the angular
displacement 6 of the mode stirrer. There is-a substantial
degree of uncertainty in the-determination of thé endpoints
o® these rangfs for some of the higher\frequency modeé.
.That 1is, thehéresonant frequencies of Qadjacent' modes
sometimes shifted to . where théy Jmomentarily co%nc{Hé;
identification of the emerging modes was then difficult
since >vthe freguency shifting “is not neceséapily
si.'le—Qalued with respect to the ang§§ar position of the

mode stirrer. Also, several of the modes exhibited drastic

and abrupt fluctuations in coupling due(taﬁchanges in 6. 1In

-

fact, many modes which were strongly coupled at some values

¥

of 6 could be made tb completely vanish at othefs.fj

)

‘-

T4

-
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mode stirrer. The interior dimensions of the cavity are

L1=23 cm, L,=50 cm, L;=52 cm as in Figure 4.2.

+

4
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Note . that the range bf frequency shift was determined
for each mode (or set of degenerate modes) separately, and
hence the jactual 6 dependence of the ensemblg diStributiop
can not be determined from Figure 4.4. 16 thié sense, NT
does not really depict the spectral disﬁribution curve
per, se, but rathet it depicts the envelope of ‘possible
spectral. distribution curves within the fregquency rangé‘
shown. It is therefore pointless to attempt .to extfact any
mode density information from Figure 4.4 as iqtérprétation

of suchl a "curve" would not be possible;‘ Similar

considerations apply to the experimental determination of

FEm e
o RV

the spectral density.
4.4 Discussion

The good agreement between the curves N™ and N' and
(hence) between | the curves D™ and D' constitutes a
successful test of the algorifhm p;esehted inv the previous
chapfer?1 This result is not surprisfng since the algorithm

was derived from theoretically.sound physical g;inéipfeqa'

‘'What 1is perhaps surprising is that the inclusion of a
mode stirrer seems to have caused a slight negative shift of
"the entire’ spectral distribution curve (i.e. downward in

frequency). Since the mode stirrer 1is located near _the

‘walls fof thg_gavity, one might expect that magnetic fields
would be pertirbed more than electric fields which should
v U

‘;;"; . - ? “‘ ,‘ -

S
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result in a net positive shift in the resonant freguencies
[56]. Howevef, the intégral of the stored magnetic field
ener§y~does not exceed the_integral Qf the stored electric

field .energy over a large enough region of the mode stirrer
volume to result in a net positive frequency sh&ft.
Although, a ;1ight positive shift could be‘obtained for most

modes, for some angular positions of the mode stirrer.

The perturbing effect of the mode stirref also caused a
more thoroﬁgh splitting of degenerate modes, thus reducing
the amount of manual splitting required.’ Furthermore, the
mode stirrer appeared to act somewhat like a short—circuited
. "dummy" antenna which received power from the exciting probe
and reradiated it iﬁto modes normally inaccessible to the
exciting probe.' Thus, all of the modes could be excited
from a single probe position'thch-was‘;dvantageous from a

measurement point of view. However, this effect would

virtually eliminate at least one of the proposed methods

(48] for reducing the cross-couplinft,etweeh multiple source

Ray
antennae—that of cross-polarized anfennae.

An efgecf 5f the mode stirrer .which is not cpnveyediby'
the curve ianigure 4,4 is the markédﬁreducéion in.the Q of
some Qf the mbde; ~even in the absence of other forms of
loading. This effect may be attributed, at least partly, to .

the decrease 1in volume and the increase in surface area of

the"cavity due to the presence of the mode stirrer
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(i.e. since Q is proportional to the ratio of V/S). Also,
from an equivalent circuit point of view, the mode stirrer
contribntesba tapacitance whieh is in series with the .usual
model capacitance, and since the Q is proportional to the

total capacitance, a lower value results. - .

The experimental methods described here are not limited
to measurements on rectangular cavities. In fact, some

interesting ~ effects have been observed in odd shaped

(nonrectandular) acoustic cavities [55] which may be
relevant to ’microwave'. heating ~applications of
electromagnetic cavities. The authors of [55] present

analyses of the statistical dispersion in the excitation
amplltudes of nelghbourlnd modes, which suggest that more

uniform field patterns might be obtained with completely

o n'r

asymmetrac ‘cavities. thﬁort%nately, -experiﬁfntal results‘

\

lfrom these cav1t1es jate dlfflculeato generallze, as very
llttle theoretlcal analysis 1is p0551ble. Presently, the
only analytlcal aid for determining the mode distributions
for these (nonrectangular) asymmetrlc cavities is offered by
the shape 1ndependent volume tefrm in the asymptotic formulae

discussed in the following chapter.
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CHAPTER 5. | ANALYTICAL EIGENMODE DISTRIBUTIONS"

ASymptotic expansions of thé eigenvalue distribution
have been used in physics to approximaté*the exact spectral
distribution of modes in several types of resonant cavities.
Certain versions of these formulae have been incorrectly
applied to microwave cavity probleﬁs in engineering. The
purpose of this chapter is to correct these errors and to
comfjent on the wutility of the approximate formulae 1in
engineering. A bﬁief_introduction describing the errors is
-‘given in the first section, followed in the next two
sections by dérivations of the <correct electromagnetic
formulae. In the fourth section, these -{f}mulae are
‘compared with the numerical and experimental results
presented in the last two chapters. 1In the fifth section,
_.exact formulae for the spectral .density‘.of modes in
rectangular and cubic cavities are given. In the last
secyion[ all of these formulae are discussed in terms of
their role in the design and analysis of microwave heating

N

cavities.

5.1 Asymptotic Eigenmode Distributiouns

Recall that the time independent behavior of
6scillating fields in bounded domains is governed by the

Helmholtz equation, viz,.

Viy + k*y =0 . ) (5.1)

60
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where the wave function  may be either scalar or vector
depending‘ ‘on the Eype_ of wave phenomenon ~ under
consideration. For example, the scaléf form of Eg.(5.1)
applies to{fgas phase) acoustic waves and- the vector form
applies to electromagnetic waves, as discussed in Chapter 2.

In either caset, the eigenvalues of Eg.(5.1) satisfy

k? = w? - pim? + pim? + pjn?  (5.2)
c* - Lj Li L3
—

where the valid combinations of p;,p:,ps depend on the

)

The previous two. chapters both dealt with methods of

boundary conditions.

determining the exact eigenvalue distributions as defined in

Chapter . 2. Such methods can only give ,qualitative
information about the general behavior of eicenvalue
spectra. However, analytical functions of frequency can be

derived which fit the curves of N,D empirically[ " at léast
for asymptotically large frequencies. These functions have
been used by physicists, for example, to elucidate certain
properties  of blackbody radiation ' in finite cavities

[27,28,30,31,33-37]. _ A S A

From prior - discussions, it should be expected that

several forms of asymptopic formulae must exist in order to

+Note that not all problems involvingv Eg.(5.1) lead to
Eq.(5.2). A case in point is that of acoustic modes in
solid-filled cavities due to a nonisotropic phase velocity.
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handle different sets of boundary conditions, geometries,
etc. For exahple; the leading terms of an asymptotic
expansion- of the eigenvalue distribution wvalid for the

scalar form of Eq.(5.1) 1in a recfanguiar parallelepiped

domain is

N (w) = V w® % S w* + (Li+Lp+Ly) @ # 1 (5.3)
scalar er? c? 161 c? 4m c 8

where V is fhe volume of the cavity and § is the interior
surface area. - The plus signs.in Eq.(5.3) apply to Neumann
problems and the minus signs apply to Dirichlet proslems.
The constant term may be viewed as being necessary to
properlyfwaccount for the 000 mode, but its contribution to
fhe totaimndmber of modes is wusually minor enough to be
omitted. The appropriate form of Eq.(S.B) valid for

acoustic modes (in a gas-filled cavity) is

N(0) = Voo + 8 o+ (Li+1,40;) 0 - 7 (5.4)
acous. 6rnr? c° 1671 c? ~ar 7 ¢ 8

which ~is the form derived in [40]. Since Eq.(5.2) applies
to both the scalar and electromagnetic problems, it was
(apparently) assumed that Eq.(5.4) also applies to the

electromagnetic:probleﬁé? The form suggested in [43-=45], is

N (w) = V 23 + S _ﬁz + (L]+LZ+L§) w (5-5)
372 ¢° 8r c? 2T c - '

where the w dependent terms in Eg.(5.4) have simply been
doubled to account for bﬁtﬁ‘ TM and TE mode types—a

proéedure which 1is «correct only for the volume term. The
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~
\

scalar problems admit
00

solutions which %e-~oscLlI§f"y in one dimension only

problem  being tbeL$ whild{-f e
Ao 0

(i.e. longitudinal), electromagnetic problems do not.
Furthermore, although the solution spaces of TM and, TE modes
do overlap, there are solutions which are unigque to each

set.

Although electromagnetic waves are governed by the
vector form of Eg.(5.1), the (vectqr) wave functions can be
obtained in terms of two scalar wave potentials representing
TM. (E-type) and TE (H-type) modes respectively. This

formulation enables the TM and TE modes to be dealt with in

‘.separate (scalar) problems, each subject to a 'different,

‘albeit complementary, .set of mixed boundary conditions.
: N

This complemehtarity' leads to =-he cancellatig

surface “@?rea dependent term in the eleétjomégnetic
distribution. That is, the terms . proportional tb Q’ for
each mode type have .equal but oppbsite signs; and hencé,
when éhe partial solugions are superimpoéga, the surface
term vanishes. Tﬁe first régoroué treatﬁent where 'TM and TE
modes are considered séparafély was ~given in ([27]. The
important. results"ére' derived here by‘S'metth similar to

that used by Maa. ' - ‘ R
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5.2 Asymptotic Spectral Distribution of EM Modes

éq.(5.2) can be‘interpretéd as describing the boundary
of " an ellipsoid 1in the space of the gquantum numbers
p1,p2,p;T. Hence, aﬁy point in p-space having integral
coordinates that lie interior to .the ellipsoid will
rep{esent'a mode with eigenfrequency less than w.  There
wili@ be, on the average, one of these characteristic points
per unit volume in p-space. The number of TM or TE modes
with resonant fréquencigs ‘ less than )@, to a first

approximation, is then simply the volume in the first octant
.. . /I

enclosed by the ellipsoid, viz.

=
Ellal

= ‘w) (5.6)

W[
ale
2
~N
alE
El
w
ale

]

where th: subscript 0 indicates that-Eq.(5.6) is applicable
to both TM and TE modes. Eq.(5.6} ﬁs the familiar Rayieigh
formula” and it (or a multiple of it) is the dominant term
which. describes all eigenvalue spectra ih‘ the limit of
‘infinitely high frequencies or infinitely large cavities.
Note that the mode numbers comprised only of nonzéro

quantum numbers have been fully counted in Eq.(5.6).

L}
©

+The hypothetical surface described by Eg.(5.2) is
ellipsoidal due to the simple rectangular geometry of
‘Xx-space. Clearly, more complicated surfaces would result
for any other shaped cavity.
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Howevér, only partialt consideration has been given to tgggég
points which lie in the coordinate planes separa&ing gﬂe
first octant from the rest. of .p—space. Obvi§usly, a
significant number of points—those with zeros in their mode
ngmbers——will be miscounted if Eq.(5.6) is not modified.
Since these points represent the "unambiguous” modé‘ numbers
(i.e. those with multiplicities less than two), a

bifurcation of Eg.(5.6) is necessary in order ‘'to properly

count both TM and TE modes.:

kel

.

, By cecnsiidering only the first bctant of p-space, the
“éff—éxes points on the coordiné&é planeé‘have effectively
been cut into halves, and the’points on the coordinate = axes

4 have | been cut into fourths. Following this iine of

”’feasoning, the modified forms of Eg.(5.6) are obtained as

3

follows:

o

The first quadrants of the ellipses formed by the
intersection of the coordinate planes and the ellipsoid

(5.2) have areas

L,L, w?, LyL; w?, LL, w? (5.7)
c? 4’ c? 4nr c?

¥In this volumetric representation of characteristic points,
it is understood that a point has not been fully counted
until an entire equivalent unit wvolume, which can be
associated with it, has been accounted for.:- It is 1n this.
sense that "portions" of a lattice point can be counted

separately. _ : Y



‘described above,

Al
DA

1y !

A

and the line segments formed by the intersection of fﬁé?:‘

coordinate axes and the ellipsoid (5.2) have lengthé

(5.8)

L y L w 3 ]
n T

ale
2

W
c

0lE

in the first octant. The terms (5.7,5.8) can be conve -
to wvolume terms by multiplying by a simple numer:i. !

fraction representing .thee portion of/volume required. Now

the set of TE modes include. thd%g represented 1by

characteristic points in the p,p; and p.ps planes, but
excludes those represented'by characteristic points in the
p:p: plane; and conversely for the set of TM. modes. The

. N .
characteristic “«points on the coordinate axes represent

- longitudinal modés which are excluded from both -T™ and TE

sets. Thus

Nigl@) = Nolw) = (S1,,-83) w?® = (L,+L,~L;) & . (5.9)

) 16w c? 4n - c * '

Nyg(w) = Nolw) + (8,,,-83) w? = (L,#L,#3Ly) o (5.10)
P lén c? AT _C-

e

whére S,,2=2L1L3+2L2L3'ahd'S}=2L,Lz. The plus/minus signs

o the RH sides are required in order to éorreéﬁ;No(w)'fqr

the undercounting/overcounting of the chaiucteristic points

-

]
[ o
-~

One further modification term in;fach of Egs.(5.9,5.10)

is fequired in order to properlyfaccéunt for the .000 mode at

the origin of p-space. That i®, each of the‘perm5fon the RH ™

sides of Egs.(5.9,5.10) 'contribute a positiveAdf negative

66 . -
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Ce k C L . = C &
fraction of the 000 characteristic point to their respective’

@@9 "subtotals". The sums of these contributions in. €ath case ' -
W are _ T
N , |
- + 1+ 1+ 1 -1 -1-1-3=-3 (5.11)
8 8 8 8 8 - 8 8 8
due to, Ny (w), and i .
L e A IR PR | (5.12) %
- B8 '8 8 8 . 8 '8 8 8 ol
- .due to Nig (@), and these. must - be. sub;factgﬁ from’
Eqs.(5.9,5.10;,respectively.thénce the Qartiaf‘ aéymbtétic
Spectrér .distributions of 'TM and TE‘modes.respectively in a
B " o) w ) ' R . . i
rectangular cavity arg .
Nyplw) = Noflw) = (S,,5783) w? ~ (L,+L,-L,) w-+ 3 (5.13)
- ' Z 16T c? i - 8 :
P - - o > f
?NTE(w) = No(w). + (S,zzfsa)‘g? = (L +Lo+ ) o -
. : 1én © c* 4T
o and therefofe _ fhe_ ‘total éé?mptbxicehdi ,
‘i, - N -—-— - RS 'r . .:_
electromagnetic¢  modes is. . Lo T
. : ':;:g . ‘, & N 5 & “ ‘,‘i-“ ‘f" " : ‘f
° L © Ngpylw) = 2No(w) .= (Ly+L,+0;) w. + 1 (5.15)
e R Lemo. g 2 .
A , B . - S - ‘&\:\A i o . .
« ‘whrich . is equivalent to§the”fofm (in terms-of k)-derived:by
4 Baltes ‘et .-al. [27,28]} and» very -close toﬁ %theii form
T anti;ipéted'by Pathriaw[53] in 1966. _ _— ' .
, . A . L : .
N From the partial:distribution functions (5.13,5.14), it. . o

V~is clear that any calculation of N—either analytical or

\\

- S -

e
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. . . \ ) ; v M \ " k) .
numerical-—that presumeS‘QWN/ ané’TE modes to have the same.
. » ' L . N PR '
distrjibutions, will be in error. , : f?

K ot : 9

o

5.3 Asymptotic Spectral Degsity of EM Modes

Applyzng the same, reasonlng which led to Eqg.(2.51), the

numbek* of ,elect{gmagnetlc modes WIth resonant frequendles

PIRS AN .
. ,:15\\ &

<
- \.V

which, L@ %E;gs of the p- space model corresponds te,‘the
. Lot 2
f.c

i)

number o racterlstlc po1nts wlthln an e111p501dal shell

K

which 1S not, }n general :off,-unlform ‘ thlckness.

Substituting Eqs 459, 6 5 5)“ 1ntq Eq‘(S :
; % o TR e e

the sugtractlon ylelds ?;\N

1 6w ', © (5.18)
emsc - <Ry, -
¢

which, as 6w approaches an infinitesimal, reducgg.fo L

'-’ ‘.
) ' g o
DEM(w)éw = 2Do(w)6w h (L1+L2+L ) l éw i (5.19)
27 rC

- Neglwt8w) - Ngylw) (5.16)

,hﬁ) gﬂéﬁpeffbgmingi
K-k A
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)

ey where Do (w)=dN, (w) /dw. The asymptotic spectra

T o 8w i T Ame c.
P “ t‘:«f’;&..‘ 5 ‘ | A ‘{Q‘, , “ﬁ::}b > ' . o
whicbgére the derivatdﬁesﬁpf'Eqs.(S 13, 5 14) respectlvely
o o e -'-\ PR L ‘.":,..j‘. ’ "é‘ ) ) (g{ . .
k. 1;\ ) , A - . . {3 ‘“ » ’v .
5;4§¥$5 jlcatlog of ‘the Asymptotlc Formula%’ A
. - : x ; o B ! * ', ) ’?:‘: ‘ .
< B L 8
B . %) © ) ~— W
» Only the first term in each of g§e asymptotlc' fopmulae
N surgives _ﬁg the 11m1t' WVoe, uh' is to be expected 1f
W REg 5 20) O be con51stent wlth the famlllar black body
radlatlon laws. ‘These laws are well- tested ezpebimenté;ly’

fwnction for .»electromagnetic maqes in rectangula

is therefore

/ .
.\_“‘ 4 ' ’ 1 K 21r v c.
i -

_which, as 'anticipeted in Chapter 2, is just® the

#0f BEQ.(5.15) with respect to w.

p The asymptotlc forms -for the component partla
/‘ N }

den51t1es can be derlved van ,exactly 'the _sqme
Eg.(5.20) above“,Jrhe tesulting}?e:mulae are
- DTM( ) =.Dg (w) _"‘

l' * a({

a

DTE(U) = Do(w) .j,'.b(.S‘i'lz— 3 Q A "' (L +L2+3L ) l

“and as such the asymptotlc formulae are verified 1

| : T .
freguency limit. ‘Howeve?, at lower frequencie

69

1 density

r cavities

(5.20)

derivative

4

1 spectral

manner as

.l

(5;21).

uﬂLSegzgga:

n.thewiféh

s when. the.

contr1but1ons of the second  (and %%hird)Q terms become

important, Eqs (5. 15 5 20) ‘have yet = to.'be

~ .

L

verified

L
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! .frequencies’ was investigated by comparing the numerically.

Gt
R

-

at

3

»

-formulae. T".s comparison is ill

- 70
. £
experimentally. ’

The .accuracy - of  the asymptotic -formulae at lower -

and experimentally determined mode distributions of Chapter

v

4 with the cor‘esponding.re§%lts predicted by the asymptotic

J;Aed‘ip Figure_S for

the spec: ~distribution of'A w-and in Figure. 5 2 for

the spect . density of modes. Also plotted on Figures
a . T 4

5.1,5.2 are the '1ncorrect rStributions predicted by

Eqg. 05 5) and its derivative respectively.

A visual‘inSpection of the curves in Figures 5.1,5.2 is
quite convincing, but in order to provide some quantitetive

W

measure of the accuracy- of the asymptoti approximations, an-

*

average error is quoted for each o% the tasymptotic curvesQf
%

%

-

,distributdons by »

The<.figureA’E is defined for either .N or’D type‘(N,D).

R S b d

D . . Cp , : .
5% . Enp = l“} : (N*,D") Jw:i - N,D(w;)8d - -(5.23) —
ol . P . ’ P

i=1

e , L
. . e B w

whe\e P is the total number of points calculated. ' Thé

’

U
average error is useful for comparing the "fit% of different

qppqoximations, but’ does ‘not “give any'indication of the

amplitude of. fluctations in the exact c¢urve, about .the

x

approxﬁmate,curye., A slightly different figure——the average‘

absolgie~ error—Tis defined either N = or D type

O\
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~

Figure 5.1 Comparison of the éxact *and approximabe\fpectral

. e i i )
distribution of EM modes for a particular rectangular

cavity. 'The interior dimensions of -the cavity are L,=23 cm,

L.=50 c¢m, L;=52_%m. The . dotted curve is_thé erroneoﬁs'

‘distribption predicted by Eg.(5.5) , | \

.
R
t . . N .

. S . ) o
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P
St

Figure 5.2 vComparison of the eXéct and approximate spectral

.

vdensity
a bandwi

forw

e

as

>

of EM modes for a partlcular rectangular cav1ty for

dth of 50 MHz.

Flgure 5.1f

The cav1ty dlmen51ons are

The

dotted

‘curve

the

dlstrlbutlon predlcted by the derivative of Eg. (5 5).

N
I

AT -2
-

o

. ‘4../,,1

8 .

4

&

)
~a

same:

is the“efronequs

or

(W
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dlstrlbutlon N'. - Of course the accuracy‘oquqs.(5.20—5.22)

73

distributions by

%
AND = l1D 'S " |(N*,D" Iw, - N,D(w;)éw] (5.24)

1—1

?

and can be used to provide this extra information.

"

The slngular case presented in Figures 5. 5 2 does not

clearly show the” effects of cavity shape ‘and symmetry on the

L

accuracy of the asymptoflc formulae. wInﬂ order to get an

r;,\

1n&1cat10n of these;ueffects Egs. (5 5 5, 19) were used to

generate the approx1mate mode dastrlbutlonsyfor each of the
< .

hypothetlcal cav1t1es dlscussed im Chapter 3n These results

EEE q g

<,

;were not graphed but the f1gures E;A,_?or, eachl case are

&;

Y ,‘__1‘ - R -0 L vo, R ;

e

Eqs (5. 20-5'22) l'are#“ Smooth vcontinuous, monotonic
functions of frﬁquenQy and as such are ohly approxzmatlons

1 A,
~~~~~~

- fory™finite (if not “too small) frequenc1es.' However'flf the

£

u.bandw1dth and/ov ‘the cav1ty is very small, then the exact

f

dlstrlbutlon D‘ can exhrbLm large fluctuations about the

asymptote D(w) due to the step discontinuities in the exact

is seriously degraded under these conditions. - The ‘exact.

~

spectral- density of modes is, however, known ahalytieally

for rectangular domains and is given in [31] as
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Table 5.1 Comparison of the flgures E and R for the asymptotlc

‘i“&fdrmulaet applled to the hy@dﬁhetlcal cavitids “discussed in

The flrst figure of each pair is E as deflned“by

Eg. (5.23) and the seqShd figure is A as defined by Eq. (5 24).

B
 VERSION .| E AND A E AND A FOR CURVES OF D vS w/w,
. OF FOR ‘
APPROXIMATE | CURVES OF .
© FORMULA" | N-'vs w/w, | BW=50 MHz | BW=100 MHz | L =L,+lcm’
| CUBIC GAVITY (L,=L,=L,=L=25cm)

CORRECT EM” | 0.00;2.19 | -0.14;2.70 | -0.12;3.14 | =0.03;2.67
ACOUSTICx2 |-34.1;34.1 | -1.66;3.27 | -3.19;4.39 | -3.18;3.66
RAYLEIGHx2® |-4.30;4.43 } -0.27;2.74 —0;37;3.46 ,—0.29;2267

CORRE¢?_EM
Vil

N
{+ACOUSTICx2

2N

(*CﬁVITY (L,=25cm, L,=35cm, L, 45cm)' ‘

RAYLEI GHx2°

0.02;1.63

455.6:55.6.

-5:68;5.68

-2.60;3.18

-0.03;2.50
-5.25;5.38

-0.38;2.53

[

=0.04;2.95

~5.37:5.66

-0.39;2.98

The bandwidth associated w1th thls column of flgures is 100 MHz.

These Jalu

A

were obtalned using data'

generated from the correct

asymptotlc f’rmulae for electromagnetlc modes, Eqs (5.15,5.19)"

These

o

values

were

obtained

incorrect formula, Eq. (5 5), and its derivative.

These values

were obtained

‘first terms of Egs. (5. 15 5. 19) Coe

using data

generated from

using data genergted from the

just the

1
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+
Dey(k) = Vk?2 [ 1+ ZE::' sin(2uk) J
' 7l 2uk
: L fi,f2,f3=-
3 - R +oo .
-1 ZE: L, 1+ ;{:' cos(2mL k) | + 1 &8(k) (5.25)
27 2
i=1 L. m=-c :

where f =p;c/4L,, ‘u?=fiB1+f3Li+fiL3; and the primes on the I

signs indicate that the f,=0 and =0 terms are to be omitted

" from thev sum. If L,=L,= L3 \(1 €. a cube shaped cavity),

\
then Eq.(5.25) reduces [31,32] to

3 e B
Demlk) | ! sin(2fkL) |,
- 2fkL

n
<
A=
~N ~
+

T

fnfz,fa—""’

Njw
S

L ‘M=—c

Z{: cosz;;ﬁ& } (k). (5.26) :

where f?=fi+f3+f3 and the primes have thé same meaning as-

“.above. . ' ' .3

.. Note thrt Egs.(5.25,5.26) describe distributions in the

; {

 mathematical sense, rather than distribution functions

per ‘se, and as such are valid only in integral form. Thus,

the convolution

- : #
J D(k'")W(k-k"')dk' _ o (5.27)
0 ' E i

-

yields the number of modes within the bandwidth -described by

the window finction W. -A thorough and rigorous treatment of

the mode density fluctuations is given in [25].
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5.6 Discussion

The wutility, at least for rec&angular cavity design

purposes, of Ehe‘ asymptotic for*ulae is apparently

7piﬁgfestlonable at best since they*@%ﬁearly do not provide
whet . ‘ o

realistic descripticvns of the exact mode distributions. The
~domain of 'Figuras 5.1,5.2 1is of course far from ‘the

LN

vasymptotic regime, and hence one could only expect: "best
. 9
fit" representations of the exact di§Fributions. This may
- be adeqguate for large cavities or large bandwidths whare the
‘computatlon' of the exact N,D is not }easibie. Hoaever, for &
~a large class of hicrowave. cavity problems, the - lower
?frequencyﬁfande is the most in&eresting [42-49] and accurate
" knowledge of the spectral density of modes iS.*desf}abie,
aspecially if bandwidth is iimiﬁed The' approxitmate
dlstrlbutlon functlons wq%{&d seem t&e of lgmlted value in
these appllcatlons.v Yé%3f¥@e apprdx&mate formulae (albelt

~incorrect versions of themj have been -mentioned seyeral

times” in the engineering literature, without qualifitation,

in the'»"ntexﬁ of microwave cavity design. But quite

results could be obtained if Eq.(5.15), or.

A3

Eq (5. 20) were  Used na;vely in  design .- - 7
. 5 o ¥ “\r . o : N

especi 'y‘

” calculatlons.

) ' L p{
Forf nonrectangular - cavity'v design, - héweyer, the, '

o - 4 ‘
approximate formulae may be very useful, As mentioned in

A ) w o o o ,
the 1last chapte%‘_ there may be advantages to using _

‘ . ‘k_-'- - 4,‘ L,_
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:"-;',3 ‘ L ; . 7 7
, W
odd-shaped nonrectangular cavities for some microwave

heating applications.: .In such cases, it can be extremely
. o , .

@;ﬁﬁigult,-if not'impossible, to cakculate the exact mode
diéﬁ?ibution; and hence the asymptotic formulae yield
valuable - information, even for ., low frequencies.

Furthermore, the accuracy of the approximations wguld be
better for the case of irregular cavity shapes because of

the absence of degeneracies due to geometric symmetry.

" ' .
. -

» ]
e .
L2 . > -
E—
I
v
. s
-
Y
’ o
e, B . P
<« - »
M i
- - a L
./ <« .
” Eel
>
.. .
v »
>
L
.
~ f -
.
,_" . I
. 8 - . t -
. L2 Wy
# o X e &
( o
. -
1.
-
",/

o
pu



- CHAPTER 6. SUMMARY AND CONCLpSiONS

The purpose of this chapter is to briefly summarize the
-

contributions made by this work to the field of Electrical

N :
Engineering.

6.1 Regarding Calculated Mode Distributions

A numerical algorithm has been presented which

correctly ‘enumerates the T™ and TE modes withid a finite

bandwidth for &n empty rectangular 'cavity. Three computer.

| programs which utilize  this , algorithm for ©  the

de51gn/analy51s of microwave heating 'cav1t1es were also |

presented. These programs are usefuliior analy51s phrposes_

and also for obtalnlng’»target cav1ty dlmen51ons (i.e. a’

PR,

‘ tartlng point for . the design : process) wh1ch yleld

.

favourable modé dlstrlbutlons for a- partlcular app 1cation.
- i

. . < 3 {
. . - |

. One of the programs was;pse%§,to generate theoretlcal

‘(efact) ‘mode distribution data for seVeral hypothetlcal

['s

cavities. The results revealed certain characterlstlcs—fln-

particular the marked sensitivity ‘to cavity - shape and |

bandwidth—which ‘sugdest ~ that,. " due‘n to _practiéaL\

')
. -0

considerafions, intrinsic mode ' density.  calculations aré&.

P

potentlally mlsleadlng from a design' poiht - of 'viewﬂ-

However, these’ calq»latlons are still valuable for. reference

'purposes, and addlﬁlonal nUmerlcal.results were compiled in‘

B

]

gt ’ - 78: . R

e o [
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. )
-

reference tables which'are intended to replace (and augment)
_previously published incorrect data [59]. The discrepancies
between the correct andAincorrect mode counts were shown to
be on the order of LQO:]OO% and hence it 1is extremely
important to use the correct. algorlthm especially‘when

small cavities (or low frequenc1es) are belng considered.

Lorrect asymptotic mode distribution functions for

rectangularscavities have been derived in a ‘heuristic manner

.

which' can be undftood . engineers without . a

Qma?& ;,graduatéﬁ}evel background in mathematlcs. TheSe derivations
g
\"‘.‘v"f.“" :
- empha51ze the or1g1n and nature of the phy51cal dlfferences
r?’ ~ .
«Q;Qbetween TM and TE mpdes yhlch must be underStood_/%f’/thesej

fUDCthnS ‘are to be used for research (or ﬁe51gn) purposes.

The formulae quoted here appear for the flrst tlme qan thelr

factors affectlng the utlllty of th=se ,analytlcal

o . R

b
formulaakyereaeV1dent from comparlsons w1th results obtalned
,) xm S

numerlcally and experlmentally These‘were dlscussed.
f Q 0

>
'

Only rectangular cavities, have been"considered*,in
detall here. ﬂHowever, it iS'understood that .the Hhysical

wo

pr1nc1ples whlch apply ~to 'mode counting in rectangular

caV1t1es also carry over to other geometr1es.. For ‘examplé}

v

"the fact that TM and TE.modes have dlfferent dlstrlbutlons

and therefore must be counted separately in order.to obtalnf

~ the. ICOrrect numbep’of modes in a cav1ty, holds true for any
o _ _ k]

TN . A,

forms, ~1n. the m1crowave englneerlng llterature." ‘
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_also observed. -All of -these  effects cap be used to

80

regular geometry (i.e. where the dislinctionfbetween ™ and =

- ¢

TE modes makes sense),:'Also,iconclusionsmregarding“*factors

which affect the mode distributions (e.g. shape, bandwidthk}

in rectangular .cavities ‘can . probably be generalized, at
e . @) , -~

least gualitatively,” to other cavity shapes.

6.2 Regarding Measured Mode Distributions
The low frequency spectral distribution of
electromagnetic modes in an empty, Tectangularf' laboratory

cav1ty has ‘been determined experlmentally These

‘measurement$ ?dggtltuteqthe flrst experlmentsl verlflcatlon

uéf the ele'tromagnetlc mode counting theory [6D]. The.

W o . .
stralghtforward measqrement technlque ‘dgscrlbed here 1s

B

applloable to microwave da§i€ies ofvagbitrary Shape andzisd_

therefore useful in®  irivesti at ons ' of nonrectan ular
, 9 g

cav1t1e§‘and cav1t1esvw1th mode stlrrers, turntables etc.’

o : __:.';
o .
| )

S - : / o : Q;O'_ ‘
. % The effect of the presence of a que .stirrer on - qhe

- spectral d15tr1but1on of modes in: the Iaboratory cav1ty was

in&estigated‘exper1mentally " The results Lndlcate fthat a
mode stirrer causes & more thorough splltting of degenerate

modes, where the actual. resonant frequenc1es depend strongly

on’ the angular 'ppSltlon (&nd, of course, thqueometry'and
location) of the.mode stirrer. Lower Qs and a  yery. stron

dependence of »sthe coupling on angular position. (etc.) were -

I x> T e

o

i
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advantage in the design of microwave applicators. However,
more theoretical and experimental work is required 1in order
N

to exploit these effects optimally.

-

6.3 Some Topics for Further Research

In achieving the objectives set forth in Chapter 1,
several 1interesting research topics have been uncovered
which are unfortunately beyond the scope of this thesis.
For example: ‘ mode distribution and‘ field pattern
measurements on nonrectangular (e.g. trapezoidal) cavities;
experimental (and theoretical) 1investigations of anvity
perturbations ‘due to mode stirrers; more thorough and
rigofdus investigations éf the crbss-coupling between
multiple source antennae; corrections to N(w) to account for
the presence of a mode stirrer; improvements to CAD programs
for cavity design. These are some of the topics which will

soon become "very important in the area of small, low power

applicator design (e.g. solid state microwave ovens).

6.4 Concluding Remarks

At this stage, only a qualitative interpretation can be
given to the intrinsic mode distributions for a given
cavity. Hence, it ~oulF seem that less - (but not zero)
emphasis should == ~laced on mode counting as a design aid,

+at least for cavities intended for use as microwave .power
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applicators. However, as research (or diagnostic?) tools,
mode distribufﬁon measurements and calculations may be very
valuable. Undérsfanding these distributions is an essential
first step 1in the investigation of shape and symmetry
effects, and arbitrary loading in small cavites.
Furthermocre, as electrical " engineers become more
involved in work which Fequjses a knodledge of
thermbdynémics and radiat}on phy. ic g as in the space
program, fusion research, solid sta - elrcironics, etc.), it
will be necessary to understand and apply the baéic laws of
Planck, \wien, Stefan—Bolﬁzmann, Einstein, _etc. The
asymptotic spectrél density Qformulq‘is involved in all of
these laws and the classical texts do ‘not consider the
corrections which become important at lower frequencies
(i.e. <infrared). With a. correct understanding of the
theory of mode counting, it is less diffic@lt to determine
the limitations of the classical theory; and therefore avoid
the kind of errors which\cufrently exist in the microwave

' A
engineering literature. '

.. The ‘lagﬁ _pext on . microwave -power engineé?ing has
certainly not been 'wrigtéh> and evVery new text will
undoubtedly deal with the subject of mode counting in soﬁe
form or another. It is hoped that this work will serve, not
only to correct the current litérature, but also to provide

a

future authors and researchers with adeguate reference
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material to prevent further errors from occuring. It is
also hoped that this thesis will inspire further -search in

this area, especially on the topics given above.

v



[1]
%
[2]
[3]
(4]
[5]
16]

BIBLIOGRAPHY AND REFERENCES

o : : _
F. Pockels, "Uber die pzﬁyielle‘ Differentialgleichung

Au+k?u=0 und deren Auftreten in der mathematischen

Physik™, (B.G. Teubner Verlag, Leipzié), 1891, Cited

¢

.in [10,28].

J.W. Strutt (Lord Rayleigh), "On the -passage of
electric waves through tubes or the vibrations of

o

dielectric cylinders", Phil. Mag., ser. 5, no. 43,

pp. 125-128, 1897.

-
J.W. Strutt (Lord Rayleigh), "The dynamical theory of
gases and of radfation"™, Nature, vol. 72, no. 1855,

pp. 54,55, 1905. (See also "The constant of radiation

-as calculated from molecular data", Ibid., no.- 1863,

pp. 243,244.) ‘ '
J.H. Jeans,  "On the partition of'energy between matter
and. #ther", Phil. Mag., ser. 6, no. 55, pp. 91-98,

M N

1905.

H. Weyl, |, "Uber - die asymptotische Verteilung def,

Ei enwerté",~ Akademie der ~Wissenschaften, Gottingen
g : g

‘Nachr., Beschaftliche Mitteilungen, pp. 110-117, 1911,

L

H. Weyl, "Das asymptotische Verteilungsgesetz der

| FEE]



S ' 85

“Eiggnwertej linearér partieller Differentialgleichuhgen

_[7]

LY

(mit einer Anwendqhg."ade _die theo;}e der

Hoblraumstrahluné)",ﬂ Mathemati§che Annalen, vol. 71,

-

pp. 441-479, 1911,

H. Weyl, "OUber das Spektrﬁm ~der Hohlraumstrahlung®,

J. f. reine u. angewandte Mathematik, wvol. 141,

- pp. 163-181, 1912,

8]

[9]

[10]

[11]

H. Weyl,. "Ubé;'ﬁ> -~ die Randwertaufgabé . der
Stfahluﬁgsthgprfa ‘ﬁnd * asymptotische Spektralgesetze",
J. f.‘ ;eing&’u. ‘éngéwéhdte‘¢Mathematik, Voll © 143,
pp. 177-202, 1913. -

] 5 . .
R. Courant, "Uber die Eigenwerte bei den
Differqntialgleichungen der mathematischen.,Rhysik",a

Math. Z., vol. 7, pp. 1-57, 1920.

R. Couraht and D. Hilbert, Methoden der Mathema®ischen

Physik, vol. 1, Chs. 5,6, Julius Springér (Berlin)/

1924. (See also: Methods of Mathematical Physics, 1st
ed., translated and revised from the GermanA original,
Interscience Publishers (New York), 1953.)

T. Carlemann, "Uber die asymbtotische Verteilung& der
Eigenwerte partieller Differentialgleichungen”, Ber.

der Sachs. Akad. d. Wissenschaften, Leipzig, vol. 88/



[12]

[13]

[14]
[15]

[16]

(17]

pp. 119-132, 1936. . S Lo

[}

, : . . _ :
A. Pleijel, T"Proprietés asymptotique des fbhctioﬁs et

valeurs propres de certaines problémes de vibrations”,

-

Ark. Mat. Astr. Fys., vol. 27, no. 13, pp. 1-101,

1940.

A. Pleijel, "On the prqblem of improving Weyl's law for

v /‘ . N . :
the asymptotic eigenvalue distrigption", Convagno
Internazi&hale sulle Equazioni Lineari alle Derivate

Partiali, Trieste, 1954. Edizibni Cremonese, . Rome,

5. 69-75, 1955. Cited in [18,28].

F.H. Browﬁell, "An extension of Weyl‘s asymptotic law
for eigenvalues", Pacific J. Math., . vol. _ 5,
pp. 483-499, 1955,
>
-~
F.H.*Efownell, "Extended asymptotic, eigenvalue

distributions for bounded domains. in n-space", J. Math.

Mech., vol. 6,'no. 1, pp. 119-166, 1957.

S. Agmon, "On the eigenfunctions and on the eigenvalbés

of general elliptic boundary value problems", Comm.

v

Pure. Appl. Math., vol. 15, pp: 119-147, 1962.

W)
A3

S. Agmon, Lectures on Elliptic Boundary Value Problems,

Van Nostrand (Princeton), 1965. Cited in [18,28].
< . .



b

i

... [18] c. clark, "The asymptotic distribution of eigenvalues

[19]

.[20]

[21]

[22]

[23]

[24]

. , | o - 87

AS

'

and _eigenfunctions .for elliptic boundary value

problems" ,"SIAM Rev., vol. 9, no. 4, pp. 627-646, 1967,

':.;'.;’,_':'«" . .
€. Muller; -Gramdprobleme der Mathematischen Theorie

Elecktromagnetischer SchWingungen, Springer (Berlin,

. \ .
Gottingen, Heidelberg), 1957. -Cited in [20,28].

C. Muller and H. Niemeyer,.‘"Greensche . Tensoren und
asymptotische " Gesetze der elektromagnetischen
Hohlraumschwingungen", Arch. Rat. Mech. Anal.,-vol. 7,

- 7
pp. 305-348, 1961.,

s

te

H. Niemeyer, "On electromagnetic eigenfunctions in
closed cavities", New York University Inst. Math. Sci.,

Div. of Electromag. Res., Research Report BR-34, 1960.

H. Niemeyer, "Eine Verscharfung der 'asymptotischen
7

[ ' . / . .
Gesetze elektromagnetischer Hohlraumschwingungen”,

Arch. Rat. Mech. Anal., vol. 7, pp. 412-433, 1961.

L

R.K. Pathria, "Influence of boundary conditions on "the
distribution of ,quantum states", Supplemento al Nuovo

Cimento, vol. 4, pp. 276~290, 1966.

2

'
4

K.M. Case and S.C. Chiu, "Electromagnetic fluctuations

in a. cavity", Phys. Rev., vol. Al,. no. 4,



[25]

{26].

88

pp. 1170-1174, 1970.

R.  Balian and .C. Bloch, "Distribution of

\

-

eiéenfrequencies fof'tﬁe wave: equation in. a finite
comain—part II11: eigenfrequency density os%illafions",
Ann. Phys. (New York), vol 69, pp. 76-160, {972. (See
also parts I and II, Ibid., vol. 60, pp. 401-447, 1970,

and vol. 64, pp. 271-307, 1971 respectively.)

R. Balian and B. Duplantier, "Electromagnetic waves
near perfect conductorsé—part_I: Multiple scattering

expansions. Distribution of modes”, Ann. Phys. (New’

York), vol. 104, pp. 300-335, 1977. (See also part II,

(27]

[28]

[29]

Ibid., vol. 112, pp. 165-208, 1978.)

H.P. Baltes ‘and F.K. KneubUhl, "Thermal radiation in
finite cavities", Dissertation Nr. 4776, ETH Zurich,

Switzerland, Helv. Phys. Acta, vol. 45, pp. 481-529,

H.P, “Baltes and E.R. Hilf, Spectra of Finite Systems,

- -
p—.

Bibliographisches Institut AG, -Zuriéh, Switzerland,

1972.- (180 refs.) ~

1976.. (217 refs.)
H.P. Baltes, ‘"Aéymptotic eigenvalue distributions for
the wave equation in a «cylinder of arbitrary cross

section", Phys. Rev., vol., A6, pp. 2252-2257, 13972,



[30]

[31]

[32]

[33]

[34]

[35]

89

H.P. Baltes, "Coherence and the radiation laws", Appl.
Phys., vol. 12, “sect. 2, pp. 221-244, 1877. (256

refs.)

B. Steinle and H.P. Baltes, "Oscillatory spectral
density and partial coherence of blackbody radiation in
cuboidal cavities", Infrared Phys., vol. 16, pp. 25 @7,
1976.

. .
H.P. Baltes and B. Steinle, "Eigenfrequcncy density
oscillations and Walfisz }attice sums", J. Math. Phys.,

vol. 18, no. 6, pp. 1275-1276, 1977.

H.P. Baltes, . "Deviations from the Stefan-Boltzmann law

at low témperatures", Appl. Phys., vol. 1, pp. 39-43,

1973.

r_3
W. Eckhardt, "Corrections to the Stefan-Boltzmann
radiation law in cavities with walls . of finite

conductivity", Optics Comm., vol. 14, no. 1, pp. 95-88,

1875.

l

B. Steinle, H.P. Baltes and M. Pabst, "Asymptotic
expansion for the temporal. coherence functions of a
finite blackbody", Phys. Rev., vol. A12, pp. 1519-1524,

1875.



[36]

[37]

80

H.P. Baltes, B. Steinle and M. Pabst, "Poincare cycles

-~

and coherence of bounded thermal radiation . fields",
Phys. Rev., vol. A13, pp..1866<1873, 1976. ’

he

H.P. Baltes, "Planck's radiation 3%lé@g for finite

Vi R

. AW
cavities and related problem5”k Infrared Phys.,

'7') ,\»/, P - ﬁ;)&ﬂ,,&f‘.}‘?\‘ .
vol. 16, pp. 1-8, 1976. -/~ - 4\'\ -

".“ !

oo SO : :
[38]\H.P. Baltes andy_ E. ‘Simanek, "Physics of
microparticles", Topics. in Current Physics: Aerosol

[39]

[40]

[471]

[42]

4

»
micropﬁysfcs 11, wvol. 29, edited by. W.H. -  Marlow,

Springer-vVerlag (Berlin, Heidelberg), pp. 7-53, 1982.
s .

(177 refs.) .
R.H. Bolt, '"Frequency distribution of eigentones in a
three .dimensional continuum”, J. Acoust. Soc. Am.,

vol. 10, pp. 228-234, 1939.
Dah-you Maa, "Distribution of eigentones in a
rectangular chamber at low frequency range”, J. Acoust.

Soc. Am., vol 10, pp. 235-238, 1838.

P.M. Morse, Vibration and Sound, 1st ed., Cch. 8,

McGraw-Hill (New.York), 1936. (See also 2nd ed., 1948)

Philips Electron Tube Division, Philips Continuous-Wave

Magnetrons for the Heating of Food in Microwave Ranges,




g1

Philips Research Laboratories (Eindhoven), 1960.
\ :
. J \
[43) H. Puschner, Heating With Microwaves, %hi}ip5~ Inc.,

Technical Library, pp. 177-179, Springer-verlag (New

York), 1966.

[44] C.R. James, W.R. Tinga and W.A.G. Voss, "Some factors
affecting energy conversion in multimode cavities", J.
Microwave Power, vol. 1, no. 3, pp. 97-107, 1966.

[45] C.R. James, W.R. Tinga and W.A.G.  Voss, "Energy
conversion 1in closed microwave cavities", Microwave

Power Engineering, ed. by E.C. Okress, vol. 2,

pp. 28-37, Academlc Press (New York), 1968.

e

[46] A.C. Metaxas and R.J. Meredith, 1Industrial Microwave

Heating, . IEE Power Engineering Series 4; ch. 6, Peter

Peregrinus (London), 1983.

[47] D.A. Copson and R.V. Decareau, "Ovens", Microwave Power

Engineering, ed. by E.C. Okress, vol. 2, pp. 6-27,

Academic Press (New York), 1968.

[48] .A. Mackay B, "Experimental study on microwave oven
design", Ph.D. Dissertation, University of Alberta,

18977.



92
<

[49] Chen Han-kui, Shen Zhi-yuan, Fu Chen-seng and Wu Ding,
"The development of microwave power applications in
China", J. Microwave Power, vol. 17, no. 1, pp. 1i-15,

1982.
[50] Chen Han-kui, "The calculation of resonant modes in a
rectangular microwave heating cavity", Nature (Ziran

zazhi), vol. 2, no. 3, p. 3, 1979.

[51] J.D. Jackson, Classical Electrodynamics, 2nd ed.,

ch. 8, John Wiley & Sons (New York), 1975,

[52] S. Ramo, J.R. Whinnery and T: Van Duzer, Fields and

waves in Communication Electronics, chs. 7,10, John

Wiley & Sons (New York), 1965.

[53] J.R. Reitz, F.J. Milford and R.W. Christy, Foundations

of Electrémagnetic Theory, 3rd ed., chs. 16,18,

- Addison-Wesley (Massachusetts), 1979,

[54] C.H. Roth Jr., Fundamentals of Logic Design, 2nd ed.,

_ch, 6, West (St. Paul), 1979.

[55] J.M. van Nieuwland and C. Weber, "Eigenmodes 1in

non-rectangular ' reverberaticn rooms", paper Cz2,

presented at The 9th International Congress on °

Acoustics, Madrid, July 4-9, 1977,



[56]

[57]

[58]

:[59]

[60]

93

E.L. Giizton, Microwave Measurements, Ch. 10,

McGraw-Hill (New Vork), 1957,

F.K. Richtmyer ~.i E.H. Kennard, Introduction to Modern

thsiés, 4th ed., Ch. 5, McGraw-Hill (New York), 1947,

\ .
J.C. Slater, Mic:wave Electronics, Bell Telephone Lab

Series, ch. 4, D. Van Nostrand (Princeton), 1950.

R.F.B. Turner, W.A.G. Voss, W.R. Tinga and H.P. Baltes,

"On the counting of modes in rectangular cavities”,

J. Microwave I er, vol. 19, no. 3, 1984. In press.

R.F.B. Turner, W.A.G. Voss, W.R. Tinga and H.P. Baltes,
"Eigenfrequency distributions in multimode rectangular

cavities", To be publishgd;

/
l



APPENDIX A. COMPUTER PROGRAM LISTINGS

A.1 NEWCAV

- ea A A 2 A A A '
OO DA WDRI 2 OOM~IMN B WA -

$RUN *WATFIV T=10 P=9Q 5:*MSOURCE= B==MSINk» 7=-0UT(=L) PAR=51ZE=20
/COMPILE T=10 NDWARN NOEAT NOLIST ¢

C

OO0 OO0O0O0O00O0O00n

<

I

Located in MIS frle: NEWCAV

kevised: 26 Sepfember g4 }
I

MLIN PROGRAN 1

AL
AS
AN
BB
BS
BN
DD
DS
DN
F1
F2
RE
LR
SR
LS
RC

base dimension along the X axis {(cm)

step size for the increments of dimension £ i(cm
number of steps taken in the direction of £

base dimension along the Y axis (cmi

step size for the increments of dimension B (cm'
number of steps taken in the direction of B

Hase dimension along the Z axis {(cm’

step size for the increments of dimension D tcm!
number of steps taken in the direction of D
minimum frequency in the band of interest (MHzi
maximum frequency in the band of interest (MHz!
response to indicate whether or not to rerun

last chance to prevent termination of program
response to indicate whether or not to save results
last chance to save results of current run
response to indicate whether or not to change dala

0D
EF
FR
BC
Sw
uc
vC
HCP
ECP
PN
OkE
CL
.
VY
Foi
F' '
P
PTk
LBL

indicates what output device is currently in effect
indicates that input errors have been detected
remains TRUE only until the end of the first run
counts the number-of unsuccessful runs
switch to indicate whether or not to reset BC
counts the number of elements in CAV
counts the total number of TE and TM modes
contains TM mode totals for each element of CLV
contains TE mode totals for each element of CiV'
contains the maximum values of the input parameters
indicates whether or not input! parameters are ok
Atains dimensions of the most mode-dense cavities
c- *ains indices of the TE modes supported by above
co-'ains indices of the TM modes suppor td by above
con’zins resonant frequencies of each moo: in M7t
con zins resonant frequencies of eac~ moc= in MTW
chz acters required to construct TE moar Lpectrum
ch:-acters required to construct TM mode spectrum
~~ains mid-band frequencies for labelling spectra

REALL=4 AL, AS,BB,BS.DD.DS.F1.F2,

+
+

Cavit10,3),FTEi Q.50 , FTNMI 10,500,
PMx'7:/2=1VE3,1E2 1ES, 1EG, 1E3,1E2/

INTEGER*2 E,1,J.K.L.M,N,P,Q.R, S, UV,

+
+

AN.BN,DN,BC,UC,VC . EC,HC . Sw, %I LE . ME/
LBL(1IJ,MTE'10,50,3),MTM110.50.3!.ECP110),HCF1101

INTEGER=4 0D
LOGICAL=1 EF,FR/.TRUE./ ,OKP{B)

«
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NEWCAV Cont'd.

e
61 CHARACTER=1 PTE(10,10,711 ,PTMI10, 10,71}
62 CHARACTER=4 RE.,LR,SR,LS,RC
€3 COMMON /REAL/ A& AS,BB.BS.DD.DS.F1.F2
64 COMMZN /INTGR. AN,BN,DN

5 ON ERROR GOTC 22
Bt C
67 C .

BE& C An introduction to the program is displayed at the start
gc C of every session.

70 C :

71 C

72 WRITE(B.611) ™~

72 C

74 C

75 C BC is set to 0 initially and following a successful run.
76 C .

77 " C :

78 11 BC=0

79 Sw=1

80 C

E1 C )

2 C Current values of LL,BBE.DD are displayed (if not first
g3 C run' and user is asked whether changes are required and
g4 C if so is prompted for the new values.

8% C - :

ge C

g7 12 1F( . NOT.FRITHEN DO . .

BE WRITE(6,621) AL AL

89 WRI1TE(6,621) 'BB' ,BB

30 WRITE(6.6211 *DD" ,DD

Q1 WRITE(E. €24

82 RELD{5,511, END=22 ERR=2Z2' RC

82 ; IFI(RC.EQ."ND" ! OR.(RC.EQ."no" ' .0R . 'RC.EQ."N"

G4 + .LOR.(RC.EQ.'n" }.DR.(RC.EQ."0 11G3 TC 13

ez "END IF )

Q€ WRITE B, E127 PMxr1] .

g7 " RELDtS . » END=2Z ERR=2Z' AL, BE.,DD

Qg C '

Qs C

100 C Current values of A4S, BS.DS are displayed iif not first
101 C run™.and user is ashed whether changes are required and
102 C if so \ﬁ‘pronpted for the new values.

103 C 1

104 C RN

105 13 IF( .NDT.FRITHEN DO

106 WRITE:6.,621) "AS' [ AS

107 WRITE(E B2V "BS" ,BS

108 WR."L-6.-627) 'DS ,DS

109 WRITE(6,624) .

110 READ!5,511 END=22 ERR=C.' RC

111 ! JFI{RC.EQ."NO"'.OR.(RC.EQ."no" ) .OR.*RC.EQ."N" |

112 s .OR.(RC.EQ.'n" ) .OR.IRC.EC."0" 1)GC TO 14

13 END IF

114 WRITE(6.813) PMX12)

115 READIS5, = END=2Z ERR=22' .S BS,DS

116 C

117 C

e C Current values of AN,BN,DN are displayed (if not first
118 C run! and user is asked whether changes are required and
120 C if so is prompted for the new values.

’
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128
125
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127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
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148
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150
c 181
152
152
154
15%
156
157
15&
158
160
161
162
163
164
165
166
167
168
169
170
171
172
173 .
174 -
175
176
177
178
179

180

OO0

OOOOO0OO0O0O0

14 1F(.NOT.FRITHEN DO

WRITE(E.6221 'AN ,AN
WRITE(6,622) 'BN',BN
WRITE(6.6221 ‘DN’ DN
WRITE (€, E24)
READ(5.511,END=22 ERR=22! RC
1F 1 [RC.EQ."NO" ' .OR.(RC.EQ."no’ ' .OR.(RC.EQ."N'

+  .OR.(RC.EQ.'n").OR.(RC.EQ."0" 11GD TD 15

END IF

XI1=PMX{3)

WRITE(6.6141 XI o

READ(S .= END=22 ERR=22} 'AN,B" .DN

Current values of F1.FI are displayed (if not first run’®
and user is asked whether changes are required and 1f so
is prompted for the new values.

15 IF(.NOT.FRITHEN DD

WRITE 16,623 "F1' F1
WRITE(E,623) "F2' ,F2
WRITE (6,624
READ 5,511 END=22 ERR=22! RC -
IF(IRC.EC."ND" '.OR . (RC.EC. "m0  '.OR.(RC.EQ."N"}
+ _OR.(RC.EG.'n’ ) .OR.«RC.EQ.” 0" 1tGC TO 16
END IF
WRITE(B,B615) PMXI(4) PMXI5)
READ(S,» END=22,ERR=221 F1,F2

» =

Input parameters are pass:‘! to subroutine PARCHK which
sets certain elements of OkP=.FALSE. if incompatibilities
are detected. The elements of OKP are then checked and
appropriate error messages are displayed corresponding to
elements of OKP which are .FALSE. The user is allowed :
attempts at a successful run before eéxecution terminates.

16 CALL PARCHK(PMX OKPI
EF=.FALSE.
D0 17 E=1.8
IFL.NOT.OKPIE'IEF=.TRUE.
17 CONTINUE
TF(EFJTHEN DO

BC=BC+1
JF(BC.EQ.3)THEN DO
WRI1TE(6,821)
GO 7O 89
END IF
WRITEIB,B11)
IF(.NOT.OKPt1))WRITE(B,812)
IF( . NDT.OKP: 21 IWRITEIG,813)
JF({.NCT.OKPi3)IWRITEI(G, b B14)
IF(.NDT.OKP(4))WRITE(S,815)
IF( .NOT.OKPI!5)JWRITE(6,81€E)
IF{ . NOT.OKPiB)IWRITE(6,817)
GO TO 21 '
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181
182
183
184
185
186
187
188
189
190
191
19
183
194
195
186
197
198
199
200
201
202
. 203
204
205
208
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
- 224
225
228
227
228
229
230
231
232
233
234
235
- 236
" 237
238
239
240

OOOOOOO0O0O0 OOOO00O0O00O00

OOOO0O0O00OO00000

END IF
o

If input parameters pass the PARCHK tests they are passed
to subroutine DISPRS where the allowable mode numbers

and corresponding resonant frequencies are calculated for
every possible set of dimensions. The sets of dimensions
which describe the most mode-dense cavities are returned
in the array CAV. The mode indices are returned in the -
arrays MTE MTM and the corresponding resonant frequencies
returned in the arrays FTE,FTM. -

3

CaLL DISPRS(CAV MTE MTN FTE,FTM, UC, HCP ECP.VC)
IF(UC.EQ.DJTHEN DO

WRITE(B,818)"

GO 10 21
END IF

Subroutine LINSPM generates a pair of normalized line
spectra (i.e. one for TE and one for TM modes' for each
cavity .described by the elements of CAV. The normalized
magnitudes are returned in the arrays PTE and PTM. The
array LBL contains a list of evenly spaced mid-band
frequencies for labq111ng the spectra.

CALL LINSPM(CAV,MTE,MTM,FTE,FTM.UC.HCP.ECP,PLE:PTM,LEL)

The printed output includes a listing of input parameters
followed by a list of the supported modes and the two.
line spectra for each of the cavities described by the
elements of CAV. A copy of the printed output will be
appended to the bottom of the temporary file -OUT if
degired.

c',.

0D=6 ’
WRITE{OD,71%1r AL ,BB,DD,LS,BS.CS,AN.BN,DN,F1,F2
WRITE(OD.712) _

DC 19 I=7,UC : -
HC=HCP(]] . .
EC=ECP(])

WRITE(OD,713)

IF(HC.NE.O)THEN DO

WRITE(OD,714) (Cavil,d),d=1,3),(MTEI], 1 K (30, FTEN
Lf(HC GT.1)WRITE(QD, 715
((MTECT, L Wi M=1,3) FTE(I.L)9L=2,HC]

IF(HC EQ. SOJWRIT’(OD 819)
WRITE(OD,718) HC, TE’
IF(EC.NE.O)THEN DO

WRITE(DOD.715) TIMTMII.LE ME) ,ME=1,3),FTMII LE) LE=1 ECI

IFIEC.EQ.50!WRITE(DD,819)
END IF
WRITE(OD,716) EC,' T™
ELSE DO

WRITE(OD,714) (CAV(I, J),d=1,3),(MTM(I,1,K) ,K=1,3) FTN(T,

IF(EC.GT.1)WRITE(DD,715)

1)
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241
242
243
24L
245
245
247
248
245
250
251
252

253

254
255
256
257
258
259
260
26M
262
263
264
265
266
267
268
269
270
271
- 272
273
274
275
276
277
. 278
279
280
281
282
283
264
285
286

287 -

288
289
290
291
292
293
294
295
236
297
298
299
300

OO0

000000

i

+ ((MTMOT L M M=1 3 FTMIT, LY, L=2,EC!
IF(EC.EQ.50)wWR;TE(DD,B19)
WRITE(OD,716) EC " TM
WRITE(OD,716) HC,'TE
END IF
IF(HC.NE.O)THEN DO
WRITE(OD, 717!
WRITE(OD,718) ((PTE(I,N.P},P=1,71) N=1,10)
WRITE(OD.719) g :
WRITE(OD,720) .
WRITE(OD,721) (LBL(Q),Q=1,11
END IF .
IF(EC.NE.O}THEN DO - . ©
§ WRITE(OD,722) '
WRITE(OD,718!) ((PTM(I%R,S1,S5=1,71),R=1,10)
WRITE(OD,719) ’ ]
WRITE(OD,720) ‘
WRITE(OD,721) (LBLIV}),Vv=1,11)
END IF
19 CONTINUE
IF(UC.EQ.10IWRITE (DD, 820!

The user is asked whether or not a duplicate copy‘of the
printed output is required and if so the dopy is appended
to the bottom of the temporary file -0UT. ’

IF(OD.EQ.7IWRITE(B,618)
20 IF(CD.EQ.6VIHLN DO
WRITE!6,618) :
v READ(5,511,END=22 ERR=22) SK
N IFC{SR-EQ."YES' ) .OR.(SR.EQ. yes' ) .OR.(SR.EQ." Y}
.OR.(SR.EQ."y" J'OR.(SR.EQ."DK"V.OR.(SR.EQ."0OK" )

&

+ .OR.(SR.EQ." 1" })THEN DO
0D=7
GO TO 18
END IF -

IFi{SR.NE."NO 1. AND.(SR.NE."no’ 1 .AND.{SR.NE."N")
+ LAND.(SR.NE."n" ) _AND. (SR.NE." Q" L)THEN DO
WRITEIE ,B17) SR
RELD(5,511,END=22 ERR=22! LS -
IFILILS.EQ."ND" ).OR.ILS.EQ."no" ) .OR.ILS.EQ."N")

. OR.(LS.EQ.”n").OR.(LS.EQ.” 0" }1GO T0 20 -
END IF ‘
WRITE(6,620).

END IF \

Multiple reruns ;h¥ be requested. The number of reruns
is limited only by {he maximum allotted CPU time.
i

1. Z >

\su-2 /
21 'WRITE(6,616) f
READ (5,511, END=22 ERR=22! RE
If ((RE.EQ.'YES' J.OR.(RE.EQ. yes').OR.(RE.EQ."Y')
+.OR.(RE.EQ#y’ ).OR. (RE.EQ." DK’ ] .OR.(RE.EQ. oK'
+.0R. (RE.EQ." 1’ ) ) THEN DO
FR=.FALSE. _
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301
302
303
304
305
306
307
308
30¢
310
31
312
313
314
315
316
317

.318.

319
320
321
322
323
324
325
326
327
328
329
330
331
332
323
334
325
336
337
338
3369
340
341
342
343
344
345
346
347

348

349
350
351
352
353
354
355
356
357
358
358
360

r
OOOOOO0O0O0

GO TO (12,11),SW
END IF
IF((RE.NE."NO').AND.(RE.NE. no' ™, AND.RE.NE.'N'
+.AND . {RE.NE.'n" ) .AND. (RE.NE." 0" VITHEN DO
WRITE(6.617) RE
READ(5,511 END=22 ,ERR=22) LR
IF{(LR.EQ."ND").OR.{LR.EQ."no’ } .OR.({LR.EQ.'N
+ .OR.{LR.EQ."'n" J.OR.(LR.EQ."0" ) )GD 7O 21

GO 70 99 ' —
. ELSE DO L
GO TO 99
END IF ' .
22 WRITE(6,822) .
FORMAT STATEMENTS ,
500 - 598 formatted input 700 - 799 program output
600 - 698 instructions 800 - BSY error messages
. l 2
511 FORMLT(a4) -
611 FDRMAT(////////// 0, 10X,

‘This program he]ps the user. to des1gn .

‘a rectangular multimode' /' ' ,5X,’cavity with the ',
’h1ghest possible mode dens1ty given a particular set ',
/' ,5X,’of input parameters. These parameters ',

" consist of: a set of starting’ /' ' ,5X,'dimensions ',
“{AA,BB,DD) and corresponding step sizes (AS,BS,DS!',
‘and’' /' ‘' .,5X,'step numbers (AN,BN,DN}; and a pair '
‘of freguencies (F1,F2) to define' /' ' ,5X,' the
"bandwidth of interest. The program then calculates ',
‘all the modes’ /' ' ,5X,' supported by each cavity
' formed by varying the starting dimensions.
/' ".5x,"Line spectra are displayed for the cavities’,
" which yield the highest’' /" ', 5X,’' number of modes.’ )
612 FORMAT(//'O’.]BX,’ENTER BLSE{STARTING! DIMENSIONS IN *,
+ ’CENTlMETERS /' ,24X,"  ALONG X,Y,.Z AXES RESPECTIVELY'/
+ 3%, the a]lowable range (of real numbérs ) '
+ "is: 0 < AA,BB.DD < ' ,F7.2," cm )'//)
613 FORMLT!// 0" ,BX, ENTER STEP SIZE IN“CENTIMETERS IN X, Y. 2 &,
+ ’DIRECTIONS RESPECTIVELY' /’ ’.4X,'[ the alliowable '’
+ ‘range (of real numbers |’ 0 < AS5,BS,DS ¢ ',
+ F7.2," em ]'//)
614 FORM&T(//'O',12X.‘ENTER NUMBER OF STEPS IN .X,Y,Z DIRECTIONS ',
+ "RESPECTIVELY' /" ' ,8X,'[ the allowable range (of '
‘1ntegersi is: 0 < AN. BN,DN < " 14,7 ) //)
615 FORMLT(//" 0" ,8X,  DEFINE BANleDTH BY ENTERING START,STOF ',
’FREOUENCIES RESPECTIVELY' /' , 34X, IN MEGAHERTZ' / -
© ' ,4X,"[ the allowable range {of real numbers' ',
“is: 0 C F1 CF2 < ', F9.2," MHz /' ' 28X,
"and F2-F1 < ' ,FB.2," MHz ]1'//) /
B61€ FORMAT(//'0',26X,'DO YOU REQUIRE ANOTHER RUN?'//)
617 FORMLT{//'0' ,26X,'0OK TO ASSUME ‘ ,A4,’ MEANS NO?'//) .
618 FORMAT(/7°0' ,9X,' DO YDU WISH TO SAVE THE RESULTS OF THIS ',
+ "RUN IN THE FILE =0UT?" //}
619 FORMLT{//' 0’ ,33X,  RESULTS SAVED' )
620 FORMAT(//'0’" ,31X,”RESULTS DISCARDED" )
621 FORMAT(' 0’ ,21X,' THE CURRENT VALUE OF ' ,A2," IS ,F8.2," . cm'
622 FORMAT(' 0’ ,21X,' THE CURRENT VALUE OF ' ,A2," IS’ ,15)

L,

AR N I

+

+ o+ 4+ o+
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© 361

362
363
364
3€5
36€
367
368
369
370
371
372
3%

i
375
376
377
378
379

380 -

381
382
383
‘384
388
386
387
388
389
390
391
392

. 393

394
395
396
337
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
41p
420

¢

L21x,  THE CURRENT VALUE OF ' ,42,' 1S',F12.4," MHz')

623 FORMLT (' D

624 FORMLT!(’'-' ,23X,'DD YOU WISH TO MAKE ANY CHANGES?' //}

711 FORMAT(’ 1’ ,20x,' THE INPUT PARAMETERS USED IN THIS RUN. ARZ:
+ /"0 ,32), Ak = (FB.2,% cm /© ' ,32),'BB =" ,F6.2. cm
+ /' ,32x,'DD =" ,FB.2," cm' /" ' ,32x, AS = ,FB.2," cm’
+ /', 32X, BS =’.F8.2,“ cm' /' ' .32x.'DS = F8.2," cm'
+ /' 32x, AN = 15,/ ¢ 32x, BN = 115/ ,32%.’DN =", 15
+ /ot 32x%,'FY = F12. A,R MHZ’
+ /[ 32x,F2 = F12.4, ' MHZ'

712 FORMAT(' -* 10Xx,' THE MOST MODE DENSE CAVITIES ARE:") .

713 FORMAT (' - Sx 64(' ’)/'O'.Bx,’A {cm'' ,B6X,’B teml)’ ,6X,'D lcm!',

+ 5x,’ 2x ‘m L, 2%,'n" J7X,'F (MHZ)' /' 0 ,5X,64(" ")

714 FORMLT(’ 5) 3(F8 2.4X),313;2X.F12.4| 9

715 FORMLTIY. Q" ,41x.313.2X,F12.4b : )

716 FORMAT ('O’ /5x.641"_"1/'0", ’TOTAL' fL13,1X, 421X,  MODE LS
+ /"0, 5x,641" "))

717 FORMAT (' -' , 10X, 'NORMA'I;!b ELEC’RIC FIELD LU'INE SPECTRUM FOR
+ 'TE MODES VAN

718 FORMLT (' * ,5x,7141)

719 FORMLT ' ‘.Sx,‘ fLo1007 ‘ IR

720 FORMAT " * 5%, [|' ., 101" 7

721 FORMLT (' ', 2x,11015,2x}//7'0 ., '}

722 FORMAT (' -*", 10x,'NDRMAL1ZED ELECTRIC FIELD LINE SPECTRUM FOR
+ *TM MODES:' //°0'," ')
B11 FORMLT(' 0, 15%, ====s ENCOUNTERED IMPROPER OR INVALID
+ "DATA wemms’ /' ' 10X, wwx== MAKE CORRECTIONS 10
+ 'DLTA FILE BEFORE RERUNNING s=e=e’ )
812 FORMAT(' 0, 10x, ===*x ONE OR MORE “STARTING DIMENSIONS
+ ‘OUT OF RANGE w=x=s’ | ]
813 FORMAT('0', 11X, '===xx ONE OR MORE "STEP S1zE" ENTRIES
+ "OUT OF RANGE weww=’ |
814 FORMAT(' 0 BX, ' =====» ONE OR MORE "NUMBER OF STEPS" ',
- "ENTRIES OUT OF RANGE *=s=s’)
815 FORMAT.(' 0’ BX, ===== ONE DR MORE "START STOP FREQUENCIES™ ',
+ “DUT OF RANGE =»m=»')

. 816 FdRMAT(’O' 10X, ===xx TOO MANY COMPUTATIONS REQUIRED T0 ',

OO0

+ "COMFLETE RUN mxm=x’ |
817 FORMLT (" O’ ,’ ====» DIMENSIONS TOO SMLiLL TO ',
+ “SUSTLIN OSCILLATION WITHIN GIVEN BANDWIDTH =»»»=»')
818 FORMAT (' Q' ,10x,  ===== NO MODES WERE FOUND TO EXIST WITHIN *,
- " THE BLNDWIDTH GIVEN =xxx=’ ) ' -
819 ¢0RMA|r 0', 10X,  ====» TDD MANY MODES EXIST WITHIN THE ',
+ "BANDWIDTH GIVEN =xxxx’ et 023X, mwwws QUTPUT LIST
+ "TRUNCALTED mwmux’ )
820 FORMAT (' 0", 13X, xxx=xx Too MANY CAVITIES ARE EQUALLY ',
+ " MODE -DENSE wmxxx’ /' =" 23X’ *xx=s QUTPUT LIST ' .
+ “TRUNCATED =#exs' )
821 FORMAT(//'0Q ,10X;! ====x PLEASE FAMILIARIZE YOURSELF WITH ',
+ "INPUT REQUIREMENTS =mw=xx’/r ¢ 21x ' e=xxxx BEFQORE ',

+ "ATTEMPTING ANOTHER RUN ====e’//)
T FORMATI(//7 002X,  w*==x» UNRECOVERABLE ERROR WILL TERMINEZTE ',
*THIS RUN - PLELSE TRY AGAIN =sxxx'//)
Al

'SUBROUTINE PARCHK

-

bos ~utise PAPCHK pro.ides some rudimentary error
| : 7 by performing a series of simple tests on all



NEWCAV Cont'd.

421
422
423
424
425
42€
427
428
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430
431
432
433
434
435
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439
440
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OO0
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of the parameters (en mass! before allowing them to be
used in any ¢omputation.

s

AAM - max@mum allowable value of parameter A& (cm)
ASM - maximum allowablie value of parameter AS (cm} N

- JANM - maximum allowable value of parameter AN

BBV - maximum allowable vallue of parameter BE icm:
BSM - maximum allowable value of parameter™B5 (cm}
BNM - maximum allowable value of parameter BN

DDM -~ maximum allowable value of parameter DD (cm!
DSM - maximum allowable value of parameter DS (cm)
DN¥ - maximum allowable value of parameter DN

F2M - maximum allowable value of parameter F2 (MHz®
BWM - maximum ahowable value of bandwidth (MHZ®
NCM - maximum allowable number of cavities -
MNM - maximum allowable value of any L,M.N

OK - indicates whether or not input parameters are ok

AL - becomes TRUE if AL is less than one half wavelength
BL - becomes TRUE if BB is less than one half wavelength
DL - becomes TRUE if DD is less than one half wavelength

OKP - elements becobme FALSE if corresponding tests failed

SUBROUTINE PARCHKI{PMX, DKP)

REAL=4 AAM, ASM BBM, BSM DDN ,DSM , F2M BWM, PMX'?I
+ AA AS BB BS,DD.DS.F1,F2 :

INTEGER=2 ANM, BNM, DNN NCM, MNNcyN BN,DN, I
LOGICAL*1 AL ,BL,DL.OKPIE!

COMMON /RELL/ AA,AS BB,BS,DD.DS,F1,F2

COMMON /INTGR/ AN,BN DN

L4

A1) elements of OKP are initialized to .TRUE. and local
maxima are set according to values passed in array PM).

DO 11 1=1.6 .

14+ OKPt1})= TRUE.

AAM=BBM=DDM=PMX (1)
ASM=BSM=DSM=PNxi2)
ANM=BNN=DNM=PNX (3}
F2M=PM> ( 4) :
BWM=PNX(5)

NCM=PNMX 1B}
MNM=PMX 7))

AN input parameters must be equal to or greater than
zero. ’

IF((AALE.O).OR.(BB.LE.O).OR.(DD.LE. O))OKP(1)=.FALSE.-
IF((AS.LT.0). OR (BS.LT.0).0R.(DS.LT.C)IOKP(2])= FALSE.
IF((AN LT.0).OR.{BN.LT.0).0R.(DN.LT.0J)OKP(3]= FALLSE.
IF((F1.LE.O0).O .(F2.LE.O))OKP 4)=.FALSE.

101
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[SARGANALRCLNS ]

481 C

482 C '

483 C A1l input parameters must be equal to or less than - their

484 C respective maximum allowable values and must not combine

485 | C in such a way as to cause an error.

486 C

487 C -

488 IF11TAA GT.AAM) .OR.(BB.GT.BBM.OR.(DD.GT.DDM 1 10KF 1 1) = FALSE,

48¢ IFCEAS.GT.ASM .OR./BS.GT.BSM' . OR.(DS.GT.DSM JDKPi2 = FALSE.

480 \ IF{ (AN.GT . ANM! OR.(BN.GT.BNM) .OR. (DN.GT.DNNM 1 10KP131= FALSE.

491 IFU{F2.GT . F2M) OR.(F1.GT.F2).0R.(F2-F1.GT.BWN JOKP(41=_FALSE.

4392 IF{{AN*BN . GT.NCM: .OR.(BN=DN.GT.NCM).OR.(DN=AN.GT .NCM! OR.

433 + (AN=BN=DN.GT .NCMIJDOKP(5)= FALSE.

494 IF LU AL+ (LS=AN 1 #2=F 2« 1EB/3E10.GT . MNM 1 JOKP(51= FALSE.

485 : IF LT {BB+(BS*BN 1=2«F2%1E6/3E10.GT.MNV ) 1DKP (5= FALSE.

496 IFCCIDD+(DS*DN) 1 =2=F 2= 1E6/3E10.GT.MNM ) 10KP (51 = FALSE.

497 C

488 C ]

488 C The initial dimensions must be large enough to sustain at

500 C least one mode.

501 C

502 C

503 IF(ABS(F2+.LT.1E-10JTHEN DO

504 ' OKP!61=.FALSE.

505 GO 70 98¢ - ’

5086 END IF

507 AL=BL=DL=.FALSE.

508 IFtAL+ i AS=AN LT, 3E10/(2+F2~1E€ 4Ll=.TRUE.

50¢ : IF(BB+(BS=BN:.LT.3E10/(2~F2=1E61})BL=,TRUE.

510 IF(DC+(DS*DN/ . LT.3E10/12~F2*1E6))DL=.TRUE.

511 IF{{AL.AND.BLY.OR.(BL.ANDC.DL).OR. (DL.AND. AL IOKP(B])=.FALSE.

512 C

513 C o

514 C If any elements of OKP become .FALSE. the user will be
15 C instructed Iby MAIN PROGRAN' to examine the data file for
e C improper -entries. i
7 C l
8 C
Q 99 RETURN

520 END

521 C

522 c

523 C SUBROUTINE DISPRS

524 C .

525 C Subroutine DISPRS searches for those modes with resonant

226 C frequencies within the specified bandwidth - all possible
27 C combinations of 1,m.n within a calculated range are

528 C substituted into the dispersion relation for all possible

529 c sets of dimensions.

530 °C

531 C

532 o '

533 C See M4IN PROGRAM for a complete list of input parameters

534 C -

535 C.

536 C

537 (O UC - counts the number of elements in the array CAV

538 £ "VC - counts the total number of valid TE and TN modes

538 c AC - current value of dimension 'A’ used in computations

540 C BC - current value of dimension ’'B’ used in computations

-

22N
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541
542
543
544
545
54¢
547
548
54¢
550
551
552
553
554
585
55¢&
557
558
559
560
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594
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600

OO0OO0OOOO0O0O0O0O0O0

OO0

OO0

OO0

RF - resonant frequency calculated from dispersion rel.
" CAV - contains dimensions of most mode-dense cavities

DC - current value of dimension ‘D’ used in computations

MTE - contains indices of the TE modes supported by above i
MTM - contains indices of the TM modes supported by above ]
FTE - contains resonant frequencies of each TE mode in CaV
FTM - contains resonant frequencies of each TM mode in CaVv
TTE - stores current values of L,M,N RF for valid TE modes
TTM - store€s current values of L. M. N,RF for valid M modesI

SUBROUT INE DISPRSICAV ,MTE MTM FTE,FTM~UC,HCP ECP,VC)
REAL=4 AA,AS BB,BS,DD,DS,F1.F2,AC.BC, Dy .RF. 81,82,

+ TTE(SO,A),TTM(5O‘41,FTE(10,50“.RTM(10.50).CAV<1D.3‘
INTEGER=2 1 ,J.K,L.M,N, P, Q R AN, BN ,DN,&3 AE BE DE RE,PE.QE,

+ UC.HC,EC,VC,VE, VH VT EX EY HX HY,

+ MYET10,50.2),MTM:10,50,3" .ECP( 101 ,HCP 110!

COMMON /REAL/ AL, AS BB .BS.DD.DS.F1,F2
COMMON /INTGR/ AN,BN,DN
uc=0

VC=0

MAXIND (AT A2 A3)=((A1+ [ LA2#L3 ) |#2=F2=1E6/3E101+1
AE=AN+1 '
BE=BN+1

DE=DN=1

PE=MLXIND{ AL, AS, AN

QE=MLXIND BE.BS.BN)

RE=MLXIND'!DC DS, DN

N

AC BC,DC comprise the current set of dimensioﬁs‘

DO 19 I=1,AF
AC=AA+((]1-1)=4S}

DO 19 Jz1,BE

BC=BB+11y-11=BS,

DO 1§ K=1,DE _

DC=DD~1 (K- 11#25) s

L.MN comprise the current set of mode indices.

VH=0 -

VE=0 '

DC 11 P=1,PE =

L=P-1

DO 11 Q=1,QE o
Mz~ 1 . \
DO 11 R=1,RE

N=R-1

AC,BC.DC,L.M,N are all substituted into the dispersion
rel: n and if the resulting resonant frequency RFf is
wil 1 the specified bandwidth then L .M N ,RF are either
sto. 2d :temporarily) in TTE,TTM or rejected depending on
whether the mode is TE or TM or neither.
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601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
618
620
g21
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
63¢
640
621
642
643
644
645
646
647
648
643
650
651
652
653
654
655
656
657
658
659
660

OOOOOO0OO0O00O0

RF=SORT(((L/AC)**2)*((M/BC)"Q)*((N/DCW**?’)-(3E1O/2‘
IF(RF.LT.(F1=1E611GD TC 1

CIF(RF.GT.{F2«1EB11GC TO 11

IFLCIL.GT.0).0OR. (M. GT.01) AND.IN.GT.0}VITHEN DO
VH=VH=+1 T

TTE(VH, 4
IF{VH.EQ.501GD TO 12
END IF

JFC(L.GT.0).AND. (M. GT.0))THEN DO

VE=VE+1 -
TTMIVE, 11=L
TTM(VE  2)=M
TIMIVE , 31 =N
TTM:VE,8)=RF,1EB
IFIVE.EQ.B01GC TO 12
END IF
CONTINUE

Dimensions of the most mode-dense cavities are saved in
the array CAV and the corresponding mode numbers and
resonant frequengies are saved in the arrays MTE,MTM and
FTE,FTM respectively.

17
18

VT=VH+VE
IFIVTI EQ.GGD TO 19
IFIVT-VvC119,14,13
uc=0
UC=UC+1
VC=VT _
HC=VH 5
EC=VE
HCFiUC)=HC
IF(HC.EQ. O THEN DO
FTe«UuC,11=0
MTEUC, 1, 1)=
GO 10 1€
ENC IF )
DO 15 HY=1,HC
FTECUC, HY 1 =TTE(HY, 4
DO 15 Hx=1,3
MTE(UC,HY HX}=TTEIHY HX)
ECPIUCI=EC
IFIEC.EQ.QO)THEN DO
FTIMIUC,1)=0
MIMIUC,1,1)=0
GO 70 18
END IF
DO 17 EY=1,EC
FTM(UC.EY,;=TTMI(EY, K 4}
DO 17 Ex=1,3
MTMIUC EY EXI=TTMIEY ,EX!
CAVIUC,11=4AC
CaviuC,2)=8C
CAVIUC,3)=DC

0

o
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661
662
663
664
665

666 .

667
668
669
670
671
672
673
674
675
676
677
678
679
680
B8R
682
683
664
B8S
686
687
688
684Q
690
691
692
693
694
695
696
. 6G7
638
gg@
700
701
702
703
704
705
706
707
708
708
710
711
712
713
714
715
716
717
718
718
720

OOOO0O0O0

19
89

IF{UC.EQ.10)GD TO 99
CONTINUE

RETURN

END

SUBROUTINE LINSPM

Subroutine LINSPN¥ generates two (crude' normalized line
specta for each cavity described by the elements of CAV.

- T
A

UC - counts the number of elements in the array CAV .
HCP - contains the TE mode counts for each cavity in CAV
ECP - contains the TM mode counts for each cavity in C4V

.CAV - contains dimensions of the most mode-dense cavities

MTE - contains indices of the Tt modes supported by above
MTM - contains indices of the TM modes supported by above
FTE - contains resonant freguencies of each mode in MTE
FTM - contains resonant frequencies of each mode in MTW¥

T

see MAIN PROGRAM for a complete list of input parameters

wWC - counts number of modes with same X axis position
XTE - contains the X axis positions of each TE mode
XTM - contains the X axis positions of each TM mode
WTE - contains the multiplicities of each TE mode °
WTM - contains the multiplicities of each TM mode
TEU - contains unnormalized E field magnitudes of TE modes:
TMU - contains unnormalized E field magnitudes of TM modes!
TEN - contains normalized E fieid magnitudes of TE modes
TMN - contains normalized E field magnitudes of TM modes
PTE - characters required to construct TE field spectrum
PTM - characters required to construct TM field spectrum

LBL - contains mid-band frequencies for labelling spectra

+

+ 4+ 4+ 4
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SUBROUTINE LINSPM{CAV MTE MYM FTE,FTM,UC HCF . ECP PTE.PTM, LBL:
Q

REAL=4 A4 AS.BB,BS,DD.DS,F1,F2,FF,QA.QB.QD.HF . EF,
CAVI10,3) ,FTE(10,50!,FTM 10,50, TEUIS50i, TMUI50
INTEGER=2 1,11.12,13,JE,JH . KE.KH. M. N. P . W PL, PN, PN,
. AN,BN,DN,Y1,Y2,YF,YP,VE,VH, SE,SH,
HL ,HM,HN,EL,EM EN,UC,WC.EC,HC,

MTE(10.,50,3) . MTM110,50,31,XTE(S50}, XTMi50 ,LBLI 11,

WTE(71) , WTM(71) ECP{ 10} ,HCP( 10} ,TENISO ', TMN(S0D)
CHARACTER=1 PTE(10,10,71),PTM(10,10,71] .
COMMCON /REAL/ AA,L7.BB,BS,DD,DS.F1,F2

COMMON /INTGR/ AN,BN,DN :

The character arrays FTE and PTM are initialized with
blanks throughout. The eAftire bandwidth defined by F1
and F2 is resolved into 71 discrete X axis posi.ions.
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721
722
723
724
725
728
727
728
7’)G
730
731
732
733
734
73%
736
737
738
7389
740
741
742
743
744
745
74¢€
747
748
74¢Q
750
751
752
783
754
755
756

757 -

756
75¢@
760
761
762
7€3
764
765
76€
727
766
769
770
771
772
773
774
775
776

777
778

778
780

OO0

OO0

OOOOO0OO00n

12

15

\\’M n o oouon

1
2
3
!
.
E

CONT;NU

The relative position along the X axis of each TE mode 15
located with respect to its resonant freguency. The
number of modes found to occupy the same X axis position
are cour' ' by W(C and stored in WTE.

DO 21 I=1,UC

HC=HCP (]}

IF{HC.EQ.0)GC TO 14

DC 13 JK=1,HC

XTEIUH = (L CFTE(L  JRI=1tF 1/ F2-F1 =70+
wC=0

DO 12 KH=1,UH

JF(XTE (KK EQ. XTEJb  IWC=WC+1
W=XTE(JH!

WTE (W)=wC )
CONTINUE i v

The magnitudes of the TE modes are calculated for each
mode and stored (temporarilyi in TEU.

HL=MTE (1, UH,
HM=MTE (], JH,
N=MTE (], 6 Jh,
HF=FTE(], UK
QA=CLVI], 1)
QB=Cavi ], 2 )
QD=Cavi] 3 . -
TEULJH: -TEFMNG(HL HM, HF  Q4,QB!

CONTINUE

W AY

The relative positior .'<-g the X axis of each TM mode is
located with respect ir. :is resonant freguency. The
number of modes found to occupy the same X axis position
are counted by WC and stored in WTM.

i

EC=ECPI(1)

1F{EC.EQ.0)GD 10 17

DO 16 JE=1,EC

XTMIJE )= (( (FTMIT JEI-(F1) )1 /(F2-F111«701}+1
wC=0

DO 15 KE=1,JE
IFIXTMI{KE ) .EQ. XTMIUE) )WC=WC~1

W=XTMi JE )

WIMIWI=WC

CONTINUE
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781 C The magnitudes of the TM modes are calculated for each
782 C mode and stored (temporarily) in TMU. TEU,TMJ are then
783 C passed to the subroutine MAGNRM which returns the
;8; C normalized magnitudes in the arrays TEN,TMN respectively.
8 C
786 C ’
787 EL=MTM(] JE, 1) *
788 EM=MTM{ 1 UE. 2)
784 EN=MTMI[] JE 3
790 EF=FTMI(],JE}
7381 QA=CaVI], 1!
782 QB=CLVI(1,2)
793 ¢ QD=CaVI], 3]
7Q4 TMUIUJUE ' =TMFMAG(EL ,EM EN EF,Q4,QB.Q0
795 16 CONTINUE
796 17 IF(HC.NE.Q)CALL MAGNRMI(TEU, HC,TEN
797 IF(EC . NE.DICALL MAGNRM:!TMY EC, TMNI : .
798 C : :
798 C -
800 C The spectra PTE and PTM are formed by writing over the
BC 1 C appropriate blank characters with a plotting symbo! so
802 o that the resulting pattern resembles a plot of magnitude
8C3 C versus frequency.
804 C
805 C
806 IFIHC.EQ.01GD 70 19
807 DO 18 M=1 ,HC \
808 SH=TENIM)
goQa VH=XTE (M)
B10 DO 18 Yi=1, 6 5H
811 YRE=10-Y 1+ $
B12 IFIWTE(VHY EQ . TIPTE(],YF, VHI=" 1" 1 b <
813 JFIWTE(VH) EQ.2)PTELT , YF VH =" 2
814 JFIWTE(VH! EQ.3IPTEII,YF VHi=z" 3"
B15 1FIWTEIVH) EQ.4VPTE ] YF VHI=' &
816 IFIWTE VHI . EQ.5)PTE (1. YF . VH ='5
E17 IFIWTETVH) EQ.BIFTE ], YF VHI=" 6"
18 IF(WTECVH) EQ.7IPTEC] YF VHI=" T’
519 IF(WTthH JEQ.BIPTEC]  YF VHI=' 8B
820 IFIWTEIVH) EQ.QIFTE(],YF VHI=z'\8
821 8 IFthErVH) GT.8!STE(] , YF,VHI=" =
B22 9 CONTINUE
8232 IF(EC.EQ.0'GD TO 21
B24 DO 20 N=1,EC
825 SE=TMNIN) '
B2€ VE=XTMIN} »
827 ‘ . DO 20 Y2=1,SE
828 - YP=10-Y2+1 .
829 - IF(WTM(VE) EQ.1)PTMII YP,VEI=" 1’
830 IFIWTMIVE) EQ.2)PTMII YP VEI='2
831 IF(WTM{VE) . EQ.31PTM(],YP VEI=" 3"
832 IF(WTMI{VE) EQ.4IPTM(I,YP VEI=" 4’ .
833 IF(WTM{VE) EQ.5IPTMI] YP VEl=z'5"
834 IF(WTMIVE) EQ.6IFTMt ], YR VEI=' B
835 IFIWTMIVE) EQ.7IPTN] YP VEY =" 7"
836 IF/WIMIVE) EQ.BIPTMI] , YP VEY=" 8’ .
B37 IF/WIMIVE) EQ.QIPTNMI] YP,VE': g’
838 20 IF(WTMIVE) .GT.Q)PTMiI,YP VE =" »
838 21 CONTINUE
g40 DO 22 P=1,11
. ] —
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841
842
843
844
845
846
B47
848
- B4g
850
851
852
853
854
855
856
857
855
- 856
860
861

866
867
868
Be¢
870
871
872
873
874
875
87¢
877
8786
‘87¢
88C
88+
882
B83
884
885
8886
887
888 -
8889
830
891
832
893
894
gas
gag

898
832
$00
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22 LBL{PI=F1+((P-1)=(F2-F1}/10)
99 RETURN .
END ) "
c )
C
C FUNCTION SUBPROGRAM TEFMAG
C
C Subprogram TEFMAG calculates the magnitude of the total
C electric field (to within an arbitrary constant! for a
C given TE mode. -
C
C
REAL FUNCTION TEFMAG(L,N,F,A,B)
RE4.=4 F A, B.KC,EX EY
INTEGER=2 L M
KC=l1L/a1=»21+((M/B)==2) ~
Ex=(F=M)/(KC=B"!
EY=(FaLi/(KC=L) -
TEFMAG=SQRT i {Ex==2 )+ (EYm™%2 )}
99 RETURN
END
C
C ’ i
C FUNCTION SUBPROGRAM TMFMLG
C
C Subprogram TMFMLG calculates the magnitude of the total
C electric field (to within an arbitrary constant) for a
C given TN mode.
C
C
REAL FUNCTION TMFMAG(L ,M,N,F,L.B,D)
REAL=4 F A B,D.KC,EX, EY
INTEGER=2 L.M.N :
KC=ttL/A)=s2 )+ 1 (M/Bix=Z2)
CEX=(L/AI®(N'DI/KC
EY={M/Bi=(N/D:/KC .
TMFNMAG=SQRT { {EX=»2 i+ 1 EY*=21+1)
99 RETURN
ENC
C
C
C SUBROUTINE MAGNRM
C
C Subroutine MAGNRM normalizes an array YYU to the largest
C element in that array and copies the result to an integer
C array YYN whose elements have a maximum value of 10 and a
C minimum value of 1.
C I
C

SUBROUTINE MAGNRM(YYU,N,YYN)
REAL=4 LV,YYU(50)
INTEGER=2 I,J,N,YYN(50!

LV=0
DO 11 I=1.N
TFOYYUCT . GT.LVILV=YYU(T)
CONTINUE

IF{LV.EQ.0ILV=1

DO 12 J=1,N

YYNIJ = (YYUlJI/LVYI*10 .
IFMOYYN(J) . EQ.OIYYN(U)=1 -
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801 12 CONTINUE

902 938 RETURN .
903 END

804 /EXECUTE

905 /BTCHEND

:nd of file



A.2 MODIST
; ?RUN =Pascalw T=25 P=50 SPRINT=-QUT(=1+1) PAR=NOLIST
3 {
g } Located in MTS file: MODIST.NEW Revised: 09 August B84
6 v
g ?ROGRAM ModeDistribution{input,output); {$ S 1000000}
9 {
10 {| Generates N or D vs. frequency data using the asymptotic mode
" {] distribution functions and compares the result with the exact
1% 1 values obtained from the dispersion relation.
1
14 I
15 CONST pi=3.141592654; {computational value of pi}
16 ~ €c=2.8979256E£8; {speed of light in free space)
1; Tilt=1.0E-20: {smallest allowed denominator)
1
18 VAR Lx,lLy,Lz: reatl; {cavity dimensions}
20 fMin, fMax: real: {range of distribution}
21 StepSize: integer; {resolution of distribution)
22 bandwidth: real:; {determines type of distribution}
23 V.5x,Sy,Sz,L,R: real; {geometric properties of cavity}
24
25 PROCEDURE ComputeVSL
26 {
27 { : .
28 } Assigns values to the (global) variables V,Sx,Sy,S5z,L.
29 .
30
31 BEGIN {ComputeVSL}
32 Vizlx*Ly=Lz; {volume}
33 Sx:z2=Ly=lLz; {surface area of walls normal to x axis}
34 Sy:=2=Lx=Lz; {surface area of walls normal to y axis}
35 Sz:=2+Lx=ly; {surface area of walls normal to z axis}
36 L:=Lx+Ly+Lz: {sum of linear dimensions}
37 END: {ComputeVSL}
38
39 PROCEDURE GenerateData;
40 {
41 {
42 - {| Generates exact and approximate N vs. f or D vs. f data
43 {| (and associated discrepancies! depending on the value of
44 {| bandwidth.
45 {
46
47 VAR fOne,fTwo: real: {definmes valid range for exact formula)
48 fPrime: real: {moveable dummy abscissa}
49 ErrorTE, ErrorTM ErcorEM: real; {signed errors}
50 ErrSumTE ErrSumTMCErr5umEN rea1; ?integrated errors}
51 AbSErrSumTE, AbsErrSumTM, AbsErrSumEM: real: {int abs err}
52 TE.TM.EM: integer; {exact number of modes }
53 i,j.k: integer; {dummy indices}
54
55 PROCEDURE CountModes! fOne, fTwo: reall;
56
57 {
58 {| Determines the number of allowable modes with resonant
59 {| frequencies between fOne and fTwo. :
{

(SN N

e et e

et e St et ot s

[
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61
62
63
64

66
67
68
69
70
71
72
73
74
75
‘76
77
78
79
80
81
82
83
84
85
86
87

88.

90
g1
92
93

94 .

85
96
97
98
98
100
101
102
103
104
105
106
107
108

109

a4 a2
R) % & ot e ea s s
QWO DBWN -~ O

VAR px,py,pz: integer; {test mode numbers}
FUNCTION MaxIndex(dimension, frequency: reall: integer:

{

{| Calculates the maximum value of a mode index.

et et et e

VAR Halfwaves: rea); {dimension in terms of half waves}

BEGIN {MaxIndex}
HalfwWaves:=2+*dimension*frequency/c;
MaxIndex:=ztrunc(HalfWaves)

END; {Maxlndex}

PROCEDURE TestMode(px,py.pz: integer!:

{ ) B
{| Tests whether or not (px,py.pz) specifies an a.llowed
{| mode and if so increments the appropriate counteris).
Y

s e s e

VAR RF: real: {resonant frequency!

BEGIN {TestModel
RF:=sqgrtisgripx/Lxl+sqgripy/Lyl+saripz/Lz})*c/2;
IF ((RF>=f0One AND(RF<=fTwo) L THEN B

BEGIN {IF} .
IF ((px>010R(py>0! AND (pz>0) THEN TE:=TE+1;
IF (px>01ANDIpy>0) THEN TM:=TM+1;
EM:=TE+TM

END: {IF}

END: {TestMode)

BEGIN {CountModes}
FOR px:=0 TO MaxIndex(Lx,fTwo'!+1 DO

BEGIN {FOR #1}
FOR py:=0 T0 Maxlndex(Ly,fTwol+1 DO

BEGIN {FOR #2}
FOR pz:=0 T0 MaxIndexilz,fTwo!+1 DO

BEGIN {FOR #3} .
TestModeipx,py.pz!
END: {FOR #3}
END; {FOR #2}
END; {FOR #1)
END: {CountModes)
FUNCTION NTE(frequency: reall: real;
{
{ : ,,
{| Calculates NTE from the asymptotic (partial) formula.

——r e



[

112

MODIST Cont'd.

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

- 165

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

F
{
A
{
{

"FUNCTION DTM(freqbency.bandwidth: real): real;
{ o

{ ‘ ‘ ' |}
VAR Arg3,arg2,Argl: real; {reduced freguencies} '

BEGIN {NTE}
Arg3:zexp{3*in(frequency/c));
Arg2:=sqgr(frequency/c);
Argt:=frequency/c;
NTE:=(4*pi=VsArg3/3)+(pi=(Sx+Sy-Sz)=Arg2/4)-
T l{Lx+Ly+(3=Lz))=Argt1/2)+(3/8);
END; {NTE} '

UNCTION DTE (frequency,bandwidth: real): real;

E

Calculates DTE+*from the asymptotic (partial) formula.

VAR ddrg3.dArg2, .
daArgt: real’ {derivatives of reduced frequencies}

BEGIN {DTE}
dArg3:=3=sqr (frequency/cl/c;
dArg2::=2= frequency/sqr(c)
dargl:=1/c;
DTE:=((4=pi*V=dArg3/3}+(pi=(Sx+Sy-Szlsgdarg2/4}-
((Lx+Ly+(3=Lz})=dArg1/2})|=*bandwidth;
END; {DTE}

r
UNCTION NTM(frequency: real): real;

o

F
{
{| Calculates NTM from the asymptotic (partial) formula.
{ : .

VAR Arg3.Arg2,Argl: real; {reduced frequency)/

BEGIN {NTM} :
Arg3:zexpl 3*1n(frequency/c)‘-
Arg2:=sqri{frequency/c}; .
Argl:=frequency/c; -
‘NTM: = (4=pi=V=Arg3/3)-(pi*(Sx+Sy-Sz)*Arg2/4)-
S ({Lx+Ly- LZ)*Arg1/2)+(1/8)
END; {NTM}

{ . .
{| Calculates DTM from the asymptotic (partial) formula.

—— e e

VAR dArg3,daArg2,
dArgl' real; {derivatives of reduced frequencies)

BEGIN {DTM}
dArg3: -3'sqr(frequency/c)/c,
dArg2:=2» frequency/sqr(c)
dargt:=1/c;
DTM: —((4*p1‘V*dArg3/3)-(p1'(Sx+Sy Sz)*dArg2/4) -
((Lx+Ly-Lz)=dArg1/2))*bandwidth;
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181
182
183
184

N
[

END;
UNCTION NEM(frequency:

{DTM}

real): real;

186

F
{
185 {
A
187 {

Calculates NEM from the asymptotic formula. )

188
189
190
191
192
193 Cu
194
195
196
197
198

CEND;
UNCTION DEM(frequency.bandwidth:

VAR Arg3,Argi: real; {reduced frequencies}

BEGIN {NEM}

- Arg3: -exp(3'1n(frequency/c))

Arg1:=frequency/c;

NEM: -(8-p1*V'Arg3/3)-(L'Arg1)+(1/2)
{NEM}

real): real;

200

F
{
199 . {
{
T 201 {

Calculates DEM from the asymptotic formula.

202
203
204
205
206
207
- 208
209
210
211
212

VAR dArg3,dArgl: real;

BEGIN {DEM} ' -
dArg3:=3*sqgr( frequency/cl/c;
dArgi:=1/c;
DEM:=({(B*pi=*V=dArg3/3)-(L*dArg!))=bandwidth;

END; {DEM} o

PROCEDURE OutputNvsf;

213
214
215
216
217

P DN R S,

Tabulates the values of N .computed from the approximate
formulae and the dev1at1ons of each from the exact
value of N.

218
219
220
221
222
223
224
225
2286
227
228
229
230
231
232
233
234
235
238
237
238
239
240

PROCEDURE PrintTitles;
{

{ B
{| Prints column headers for table.
{

BEGIN {PrintTitles}
writéeln (' N versus Frequency Data:')
writelm; '
wWriteln {

' ~
'

T 27,1
FREQUENCY ' :

’ 12/'
’ NUMBER OF TE MODES =,

writeln 27T

(
Writeln |

NUMBER .OF TM MODES "
NUMBER OF EM MODES

Writeln |

——— e

{derivative of reduced freguencies}
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241
242
243
244
245
246
- 247
7248
249
250
251
252
253

254

255
256
257
258
258
260
261

262

263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
‘281
282
283
284
285
286
287
288
289
230
281
292
293
294
2385
296
297
298
299
300

. PROCEDURE PrintResults;
{ 3

Writeln (' {HERTZ) ‘. .
+ ;:g'l 1:9'1 !:g.
O N I I~ I I I
U R P RS TR - B I
writeln (' ",
! EXACT APPROX ERRDR ',
| EXACT | APPROX | ERROR ',
3 | EXACT | APPROX | ERROR |'):
‘Writeln (' " :
! M .
writeln (' ’.”l’:12.']::273’ ©L27, 12, '
END; {PrintTitles :

{ K
{| Computes the fdtal number of modes with resonant
{| frequencies less than fTwo.

{

BEGIN {PrintResults} .
ErrorTE:=TE-NTE(fTwo!;
ErrorTM:=TM-NTM( fTwo | ;

ErrorEM:=EM-NEMI fTwo ! : 1

Write ("], fTwo:10," "}, '

write ('}’ TE:5,’ " NTE(fTwo!}:5:2," ",
ErrorTE:7:2," '),

write (|’ ,TM:5," " NTM(fTwo):5:2," ',
ErrorTV:7:2," ' });

. write (']’ ,EM:5,’ " NEM{fTwo):5:2.,° .

ErrorEM:7:2.,’ L)

Writeln;

ErrSumTE:=ErrSumTE+ErrorTE: {integrate errors} )
AbsErrSumTE:=AbsfrrSumTE+abs{ErrorTE); {int abs err}
ErrSumTM: =ErrSumTM+ErrorTM; .
AbsErrSumTM:=AbsErrSumiM+absi(ErrorTMI ;
ErrSumEM:=ErrSumEM+ErrortM;
AbsErrSumEM:=AbsErrSumEM+abs{ErrorEM ;
ji=j+1; {count the number of output lines) °

END; {PrintResults} . :

4 o N
BEGIN {OutputNvsf}
1F (fPrime=fMin) THEN

BEGIN {1F}
PrintTitles;
ErrSumTE:=0; {initialize integrated errors}
ErrSumTM:=0; .
ErrSumEM:=0;
AbsErrSumTE:=0; {initialize absolute int errors}
AbsErrSumTM:=0:.
AbsErrSumEM:=0;
j:=0: {initialize output line counter}

END; {IF}

PrintResults;
1F (fPrime=fMax-StepSize) THEN
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301
302
303
304
305
306
307
308
308
310
311
312
313
314
315
316
317
318
319

320

321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
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121:2,
:27:2,

BEGIN {IF}
wWriteln ('
Writeln;
Writeln (' AVERAGE ERRORS: ',
(ErrSumTE/ 3)
(ErrSumTM/ j)
(ErrSumEM/ j)

Writel

END: {IF)

:27:20;
n ("AVERAGE ABSOLUTE ERRORS:

(AbsErrSumTE/j):12:2,
(AbsErrSumTM/j):27:2,
(AbsErrSumEM/j):27:2);

END; {OutputNvsf}

PROCEDURE QOutputDvsfi{Method: 1..2);

hY

Tabu}ateé the number of modes aluated spectral density
the approximate formulae and from the differential form
of the approximate formulae.

£

N

VAR deltalE , del

PROCEDURE PrintTitles:
{

taTM,deltatM: real;

{values of D}

{
{| Prints column headers for table.-
{ 3

e e s

BEGIN {Print
Writeln |

- wWriteln |
Writeln |

YWriteln |

Writeln ('

Writeln |

Writeln |

Titles) \
\ .
’ - L \ ")
T 2, 2 [ 2r. 27
| FREQUENCY ', \
: NUMBER OF TE MODES, '
' NUMBER OF TM MODES!- '
' NUMBER OF EM MODES [
_ [;):
|rie,)rig, g,
N T R T R
1S T 9 | 9
©| (HERTZ)
'\ EXACT | 4PPROX | ERROR ',
| EXACT | APPROX | ERROR *,
1 EXACT | APPROX | ERROR |’
' ’ ' Ak )




MODIST Cont'd.

361
362
363
364
365
366
367
368
368
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
.385
386
387
388
389
390
391
. 392
393
384
395
396
387
338
389
400
401
T402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420

)

writeln (' |/, ] 12, | 27, (" :27," | :27);

END; {PrintTitles

PROCEDURE PrintDifferences;
{

K
i
{

Uses the difference relations to compute deltaN.

BEGIN {PrintDifferences}
deltaTE:=NTE(fTwo)-NTE(fOne):
deltaTM:=NTM{fTwo ) -NTM( fOne ! ;
deltaEM: =NEM(fTwo)-NEM( fOne,:

' ErrorTE:=TE-deltaTt;
ErrorTM:=TM-deltaTM;
‘ErrorEM:=EM-deltatM,;

write (' |',fOne:10," ' );
Write (' |’ ,TE:5,’ " ,deltaTE:5:2,
- ErrorTE:7:2," '), :

write ('}’ ,TM:5,’ ' ,deltaTm:5:2,
ErrorTM:7:2," '),

wWrite (' |’ EM:5’ ‘,deltaEM:5:2,
ErrorEM:7:2," |’ ); ‘

wWritein;

ErrSumTE:=ErrSumTE+ErrorTE;
AbsErrSumTE:=AbsErrSumTE+abs{ErrorTE}; -
CErrSumTM:=ErrSumTM+ErrorTM;
AbSErrSumTM: =AbsErrSumTM+abs{ErrorTh] ;
ErrSumEM:=ErrSumEM+ErrorkEM;
AbsErrSumEM: =AbsErrSumEM+abs (ErrorEM);
K:=k+1; :

END:; {PrintDifferences}

PROCEDURE PrintDifferentials;

’
'

]

'

Uses the differential relations to compute

BEGIN {PrintDifferentials}
deltaTE:=DTE(fOne,bandwidth!;
"deltaTM:=DTMI(fOne bandwidthi:
deltaEM:=DEM(fOne,bandwidthi

" ErrorTE:=TE-deltaTE; ~
ErrorTM:=TM-deltaTM; .
ErrorEM:=EM-deltaEM;

write (‘| ,fOne:10," ' ).

write (' |",TE:5,’ ' ,deltaTE:5:2,
ErrorTE:7:2," ')

Write (", TM:5,’ ‘. deltaTM:5:2,
ErrorTM:7:2," . ')

write (' |' EM:5,’ ‘,deltaEM:5:2,
ErrorEM:7:2," |’ )

wWriteln;

ErrSumiE:=ErrSumTE+ErrorTE; ’
AbsErrSumTE  =AbsErrSumTt+abs(ErrorTE )
ErrSumTM:=ErrSumTM+ErrorTM; '
AbsErrSumTM:=AbsErrSumTM+abs (ErrorTMi ;
ErrSumEM: =ErrSumEM+ErrortM:

AbsErrSumEM:=AbsErrSumEM+abs (ErrorEM);

’

'

‘

—— e e e



MODIST Cont'd.

“

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
" 420
441
442
443
444
445
446
447
448
4449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480

K:zk+1; . h -
END; {PrintDifferentials} ,

BEGIN {OutputDvsf}
IF {(fPrime=fMin) THEN !

BEGIN {1F}
IF (Method=1) THEN o
BEGIN {IF}
Writeln (' D versus freguency Data

"{Calculated from Differences::’' |:

wWriteln;
END {IF}
ELSE
BEGIN {IF}
wWritein (' D versus frequency Data ',
‘{Calculated from Differentials!:’
. MWriteln;
END: {IF}

PrintTitles:

ErrSumTE.=0: {initialize integrated errors}
ErrSumTM:=0;
ErrSumEM: =0,
AbsErrSumTE : =
AbsErrSumTM: =
AbsErrSumEM: =
-k:=0: {initia

END: {IF}

{initialize absolute int errors}

— OO0

%ze'output line counter)

IF (Method=1L THEN PrintDifferences
ELSE PrintDifferentials;
IF (fPrime=fMax-StepSize) THEN

BEGIN {IF}
Writeln (°

’ '

i ’

! [
Writeln; $
Writeln (' AVERAGE ERRORS: ',
(ErrSumTE/K1:21:2;
(ErrSumTM/K'):27:2,
. {ErrSUmEM/KI) :27:2):
Writeln (' AVERAGE ABSOLUTE ERROJRS:
(AbSErrSumTE/K):12:2, -
" (AbsErrSumTM/K1:27:2,
(AbsErrSumEM/K}:27:2);

Writeln;
1F

1
END: {IF}
END; {OutputDvsf}

BEGINﬁ{GeneraieData} !
IF \bandwidth=0) ‘THEN -

BEGIN {IF}

117



MODIST

481
482
483
484
485
486
487
488
489
" 430
4391
4382
4383
494
485
496
497
488
499
500
501
502
503
504
505
506
507
508
508
510
511
512
513
514
515
516
517
518
518
520
521
522
523
524
525
526
527
528
529
530
531
nd of file

v
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Cont'd.
" fPrime:=fMin; {initialize fPrime)

REPEAT
fOne:=0; {set 1st marker}
flwo:zfPrime+StepSize:. {set 2nd marker}
TE:=0: {initialize TE mode counter}

TM:=0; {initialize TM mode counter}

EM:=0; {initialize tota) mode counter}
CountModes (fOne, fTwo); {find N} N
OutputNvsf. {print values in.a table}
fPrime:=fPrime+StepSize: {increment fPrime}

UNTIL fPrime>=fMax -

END {IF}
ELSE FOR i:=1 TD 2 DO
BEGIN {FOR}

fPrime;=fMin: {initialize fPrime}

REPEAT "
fOne:=fPrime: {set 1st marker}
fiwo:=fPrime+banawidth; {set 2nd marker}
TE:=0; {initialize TE mode counter}

TM:=0: {initialize THM mode counter}

EM:=0; {initialize N}
CountModes! fOne, fTwo); {find N}
OutputDvsflil: {print values in%a table)
fPrime:=fPrime+StepSize; {increment fPrime}

UNTIL fPrime>=fMax

END; {FOR}
END; {GenerateData}
BEGIN
Readin (Lx,ly,Lz,fMin, fMax, StepSize bandwidth!:
Writeln ('The input parameters used in this run are:’ :70):
wWriteln: ’
Writeln {'Lx. Lly,Lz =':42,Lx:5," m, ', Ly:5,'  m, ' ,Llz:5,' m|;
Writeln (' fMin, fMax =’ :42,fMin:5," Hz, ', fMax:5.” Hz' |:
wWriteln ('StepSize =':42,StepSize:5,’ Hz' );
Writeln -('bandwidth =’ :42 ,bandwidth:5,’ Hz' ):
Writeln:
ComputeVSL;
Generatelata
END. {Modelistribution}

SENTRY

0.23

0.50

0.52

4. 0E8

1.3E9

5000000

50000000



A.3 CARETAB

f

[

REM crxr-==nesrrIXx=FCX T CCER-XC-TCTCE= T CEFX-MCCICCCSSIESSIC=ZSSXSISSTSIRESSIFTII===
REM PROGRAM: CARETAB VERSION: 1.1 REVISED: AUGUST 08, 1984

REM ====r==cx=sr==sxroSc=cCc=x==xIX=S=S=T=®

REM x====z===zx=x==zx=s==z==xz====% =

REM PURPOSE: To calculaU&fthe conceivable number of TE, TM and EM

REM ‘ modes in a%(tomputed) series of rectangular cavities

REM within a given bandwidth.

REM NOTES: The mode count results are sorted into four types:

REM" 1. TS, the total number of (mathematical) solutions

REM to the dispersion relation.

REM 2. NL, the total number of non-longitudinal solutions
REM’ only (as given by MacKay, et.al.).

REM 3. TE, the true number of Transverse Electric modes.

REM 4. TE, the true number of Transverse Magnetic modes.

REM Run with DOS Version 1.1 using the advanced interpreter.
REM Allocate 32 Kbytes of RAM to the flashdisk.

REM =Zzss========-=--=*c-S2cC=EXSSXEErrS IS S SESIS=EISSSISEIIRIISSSSSSS==S

REM =E-==c-c-2s===cs===X=-==S=-= X=X NSSCRISF=S=SS=SSSR=SISS=STIIISIEIZE

REM Definitions and Dimensions (constants, variables, arrays)

R_EM =======================:======x=====:==:=::=====:===:=================

DEFSTR A 'character string (esp. user responsés entered from keyboard)

DEFSNG B,C,D,F,H,U,V,W,X,Y,2
DEFINT E,G,I1,J,K,L,M,N,0,P,Q,R,S,T
CAVS {500,3)
MODS (500,5)
MAXTE (100)
MAXTM (100)
MAXEM (100)

DIM
DIM
DIM
DIM
DIM
HZ=
C=3

'S

"C

OPEN "C

REM

RL=0

1000000!
E+10

'single pre
'inte

'speed of light in free space

cision
ger

(cm/s)

(counters,
'contains dimensions of each cavity tested
'contains results of the various mode counts

'contains indices of CAVS and MODS

'contains indices of CAVS and MODS

'contains indices of CAVS and MODS
'MHz to Hz conversion factor-

(max.
(max.
(max,

(real variables)

integer varilables

no. of TE modes)
no. of T modes)
no. of EM modes)

T™M=0: EMM=0 'reference mode counts used in MAXTE, MAXTM, MAXEM

TMC=0: EMC=0

CRN:"

: TEMP"

OM1:300,N,8" AS #4

FOR OUTPUT AS

FOR INPUT AS

L B

$3

'counters and indices used in MAXTE,
'establish CRT screen as output device
*C:TEMP" FOR APPEND AS $2 'establish -flash disk as output device
'establish flash disk as input device

MAXTM, MAXEM

'establish printer as output device via COM1
ON KEY (1) GOSUB 1380 'interrupts program after completing current cavity

KEY OFF: BEEP: CLS 'erase soft key definitions and clear screen
READ X1,X2,XS,Y1,Y2,Y¥5,21,22,25,F1,F2 'read default data :

DATA 20,23,1,20,23,1,20,23,1,900,930,
DATA 48.5,51.5,0.5,38.5,41.5,0.5,38.5,41.5,0.5,2425,2475,
IF NOT (LEFTS (Al,1)="y")
Large bandwidths and/or ranges for X,Y,2" .

INPUT

"New data? R
PRINT: PRINT TAB (20)
PRINT TAB (28)

Al:

"NOTE:
"will lead to VERY long execution times!":

THEN 700

'short-execution demo data
'Puschner's data
'‘or default data

PRINT: PRINT

REM some rudamentary error trapping is provided to catch likely typos

INPUT "Enter FIRST target value for X|0 in cm...
target value for X|[0 in cm...

INPUT

"Enter LAST

X1:
, X2

IF (X1[X2) THEN PRINT: PRINT "X2 must not be less than

INPUT

INPUT "

IF (Y1l|Y2) THEN PRINT: PRINT "Y2
INPUT "Enter STEPSIZE (|0) for Y §n cm...

"Enter STEPSIZE
INPUT "Enter FIRST target value for Y0 in cm...

({o

Enter LAST target

) for X in cm..

value for Y|O

.", XS: PRINT:
", Yl:
in cm...", Y2:

", ¥YS:

|
a

ust not: be less than
PRINT:

IF X1[=0 THEN 550
IF X2{=C :EN 560
X1t": GOTCG 550

IF XS[=0 THEN 580
IF Y1[=0 THEN 590
IF. Y2([=0 THEN 600
Y1!": GOTO 550

IF YS[=0 THEN 620

)

'output device number and number of lines printed to that file .
'logical variables used to direct program flow
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630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
7390
800
810
820
830
B40
850
860
‘870
880
890
900
910

‘930 |

540

950

960

970

980

990

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150

1160

1170
1180
1190
1200
1210
1220
1230
1240

" REM space 1 line and print column headers every 2S rows

INPUT ®"Enter PIRST target value for z|!0 in cm...", 2Zl: IF 21[=0 THEN 630

INPUT "Enter LAST target value for Z|0 in cm...", 2Z2: IF 22[=0 THEN 640

IF (Zl|Z2) THEN PRINT: PRINT “22 must not be less than Z1!": GOTO 550

INPUT "Enter STEPSIZE (|0) for 2 in cm...", 2S: PRINT: IF ZS[=0 THEN 660

INPUT "Enter LOWEST frequency (=|0) of BW in MHz...", Fl: IF F1{0 THEN 670
INPUT "Enter HIGHEST frequency ([0) of BW in MHz...", F2 i
IF (F1|F2) THEN PRINT: PRINT "Fl must be greater than F2!": GOTO 670 |
CLS: LOCATE 25,10: COLOR 0,7 'position cursor and change to reverse video

PRINT " Press Fl to interrupt program after computing next cavity. ";
COLOR 7,0: PRINT: LOCATE 1,1: BEEP 'reset font and reposition cursor

REM =c==zc=z=xzx=mc=zzz=-=zrc-c=-z=z==czc=zcm=-=z-=--sS=sc====-=z=r--Z-xxz=—rm=-ccszZzmz-—==o=z==ZZ==c-==
REM Storage and Printing of Current Cavity Dimensions
REM ======x==s=-=zz=-=xzxxcc--3xS=c=c=T=SS=S==S=S=-=-cCS=SCT-oCS=TXsZSSSSESSC=-SSS=====

FOR X=X1 TO X2 STEP XS: FOR Y=Y]l TO Y2 STEP YS 'X and Y dimension loops i
PRINT: PRINT TAB(2) "X (cm)" TAB(l10) "Y(cm)" TAB(1l8) "Z(cm)";

PRINT TAB(31) "TS" TAB(37) “"NL" TAB(43) "TE" TAB(49) "TM" TAB(55) "EM"
PRINT: PRINT USING "###.4% "; X;Y; 'print the X and Y dimensions

FOR 2=Z1 TO Z2 STEP 1S 'Z dimension loop _
CAVS (P,1)=X: CAVS(P,2)=Y: CAVS(P,3)=2 'store the current cavity dimensions }
PRINT TAB(17);: PRINT USING “##¢t.4¢ "; Z; 'print the 2 dimension

KEY (1) ON: KREY(l) STOP 'trap Fl and execute before starting next loop

REM =====x===-c=s==-xcx=s==-cz====-==-c=-=SEgS=:t=-=zx=c-=c=-=o=SSC==-==—==z==c-=zS-—zS=-—=Zz===—=====

REM Calculation of Resonant Frequency

REM =T========s==-=====s=zczcfz==-czcc-c=-==c-=-=S==-===-==z=c===--c-==S=c=S=-=Z===s=s=czc-===z=== R

TS=0: NL=0: TE=0: T™=0: TIMES="00" 'reset all mode counters and timer
FOR L=0 TO FIX(X*2*F2*HZ2/C)+1 STEP 1 'first mode index

FOR M=0 TO FIX(Y*2*F2*BZ/C)+1 STEP 1 'second.mode index

FOR N=0 TO FIX(Z*2*F2*HZ/C)+1 STEP 1 'third mode index
F=(C/2)*SQR({{L/X)"2)+((M/Y)T2)+((N/2)72))/HZ 'resonant frequency in MHz

‘REM count the total number of (mathematical) solutions to equation for F.
-IF (F{F1l) OR (F|F2) THEN 1030 ELSE TS=TS+l 'ignore if F is out of range

REM count the non-longitudinal modes (as Mackay, et al.) o
IF (L]0 AND N|0) OR (M|0 AND N[0) OR (L|0 AND M|0) THEN NL=NL+1
REM count TE and TM modes separately and combine them outside tne loop
IF (L|0 AND N|0) OR (M|O AND N!0) THEN TE=TE+l.'count the TE modes
IF (L]0 AND M|0) THEN TM=TM+1 'count the TM modes
NEXT N,M,L
EM=TE+TM 'compute the total number of electromagnetic modes

REM ===c=c-c=s=t=z==z=z=z=z=zz=-==c===c=cz====-==zs====-====zc-c==zC-=S=—==—===--=—====S==S=s—c=z======
REM Identification of Cavities with Maximum Number of TE Modes

IF TE[TEM THEN, 1150 'continue if less than current maximum

IF TE=TEM THEN 1100 ELSE TEC=0 'test for a tie and reset counter if not
TEC=TEC+1: TEM=TE 'increment counter and establish TE as new maximum
MAXTE (TEC)=P 'enter corresponding CAVS and MODS index in array MAXTE

REM ===c=z===zc=x=zcz=s-r-=cz=r=-s ==z T=c=s-Ssc-c--==sc-===-====-===S======S=-=====-zc=c-====2
REM Identification of Cavities with Maximum Number of TM Modes

IF T [TMM THEN 1220 'continue if less than current maximum

IF T=TMM THEN 1170 ELSE TMC=0 'test for a tie and® reset counter if not
TMC=TMC+1: TMM=TM 'increment counter and establish TM as new maximum
MAXTM(THC)=P 'enter corresponding CAVS and MODS index in array MAXTM

REM ===-====z=-=====C-=S==C==CTS=CSC=S=S=S-SSECS=S - RS TSI oSCSSommsSsmSS--SCo-ms-=cCcTsS=zZ===
REM Identification of Cavities with Maximum Total Number of Modes

IF (TE#TM) [EMM THEN 1290 'continue if less than current maximum
IF EM=EMM THEN 1240 ELSE EMC=0 'test for a tie and reset counter if not
EMC=EMC+1: EMM=EM 'increment counter and establish EM as new.  maximum
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1250
1260
1270
1280
1290

1300

1310
1320
1330
1340
1350
1360
1330
1380
1190
1400
1410
1420
1430
1440
1450
14%0
1470
1480
1490
1506
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860

MAXEM (EMC)=PF 'enter corresponding CAVS and MODS index in array MAX:.x

REM Ex=o=zxrraxxrzw=c-cc=xccS=TXrsco=-=S-TSc®*x=T-SELE=SSC-SXSS=2-SSSES==T=S=SE=

REM Storing and Printing of Results to the Screen

MODS (P,1)=TS: MODS (P,2)=NL: MODS(P,3)=TE: MODS (P,4)=TM: MODS (P,5)=EM
PRINT TAB (29);: PRINT USING "¢##¢¢ ": TS, ,NL,TE,TM,EM; 'print mode counts

IF 2=21 THEN PRINT * ";TIMES ELSE PRINT 'print execution time once
P=P+1 'increment array index (cavity counter)

NEXT 2,Y,X

REM srxr=x=zzcs®ssrx-coco-o-S=sCcC-X SIS S S XCCXRECS S =S S=CSSC-SESSSSTSSTSSTTSSSSISTESSS=
REM (Optional) Storage of Mode Count Results in file C:TEMP

REM ==========-=3X=s==S=-c=-z2zx-T=- === cCCs=-S=X=cSST=S=S==STSTSC=SS=SS=SSSSESSXISI-SSCT=Z=Z==o==

REM disable trapping and ask whether or not storage is required

GOSUB, 1960: 1IF PL THEN GOTO 1540 ELSE S=2 'device $2 is file TEMP

FOR I=]1 TO P-1 STEP 1+4PIX((22-21)/2S5) 'intervals for column headers
PRINT$#S, 'blank line

PRINT#S,TAB(12) "X{(cm)"™ TAB(20) "Y(cm)"™ TAB(28) "Z(cm)"; 'column headers
PRINT$#S5,TAB (41) "“TS"™ TAB(47) "NL" TAB(53) "TE" TAB(59) "TM" TAB(65) "EM"
PRINT#S,: PRINT#S,TAB(1ll); 'blank line, position cursor

PRINT$#S,USING "#4¢.#1¢ ": CAVS(Q,1):;CAVS(Q,2); 'print X and Y

FOR J=0 TO FIX((22-21)/2S) STEP 1 'line items per interval
PRINT#S,TAB(27): PRINTH#S,USING "4¢¢.43 . "; CAVS(Q.,3); 'print 2
PRINT#S,TAB(39); 'tab and print mode count results

PRINT#S,USING "#4%¢# "; MODS(Q,1),MODS(Q,2),MODS (Q,3),MODS (Q,4) ,MODS (Q,5)
Q=0+1 'increment array index -

NEXT J,1 e

REM ============z=z==cS==c==c-cz===z===z=css====-=z===c-=====Z=Ss====z===c=-==z=====
REM Printing of Cavities Identified Above

REM ====z=====c==zczc==s==c===s==s==s==z==ssz=z===z=sc=c-=z=-=sszz=csz==ss=s=s=s======

S=1 'reset output device switch § to screen

PRINT$S,"The cavities which support the most TE modes are:": GOSUB 2310
PRINT$#S,: GOSUB 2310 'call PAGEPAUSE to check line count after each line
FOR I=1 TO TEC STEP 1 'print cavities with the most TE modes

PRINT#S, TAB(5); 'tab and print dimensions of TE cavities

PRINT#S," X=";: PRINTH#S,USING "##¢.3¢"; CAVS (MAXTE (I),1);: PRINT#S," cm";
PRINT#S,"” Y=";: PRINTH#S,USING "##4.#1"; CAVS(MAXTE(I),2);: PRINT#S,"” cm";
PRINT#S," 2=";: PRINTH#S,USING "##¢.44"; CAVS (MAXTE (1) ,3);: PRINT#S," cm”
GOSUB 2310: NEXT 1

PRINT$#S,: GOSUB 2310: PRINT#S,” Each cavity supports”;

PRINT#S,USING "##44"; MODS (MAXTE(TEC),3);: PRINT#S," TE modes.”

GOSUB__2310: PRINT#S,: GOSUB 2310: PRINT#S,: GOSUB 2310 'blank lines
PRINT$#S,"The cavities which support the ‘most TM modes ,are:": GOSUB 2310
PRINT#3,: GOSUB 2310
FOR 1I=1 TO T™C STEP 1 'print cavities with the most TM modes
PRINT#S, TAB(5); 'tab and print dimensions.of TM cavities

;:, PRINT$#S,USING "#¢#¢4.8#"; CAVS (MAXTM(I),1);:;: PRINT#S,"” cm";
PRINT$#S," Y=";: PRINT#S,USING "###.44#"; CAVS (MAXTM{1),2);: PRINT#35," cm";
PRINT#S5," Z=";: PRINTH#S,USING "###.44"; CAVS{(MAXTM(I),3);: PRINTsS," cm”
GOSUB 2310: NEXT I o
PRINT#S,: GOSUB 2310: PRINT#S,” Each cavity supports”;
PRINT#S,USING "####"; MODS (MAXTM (TMC),4);: PRINT#S," TM modes."
GOSUB 2310: PRINT#S,: GOSUB 2310: PRINT#S,: GOSUB 2310 'blank lines
PRINT#S,"The cavities which support the most EM modes are:": GOSUB 2310
PRINT#S,: GOSUB 2310 -
FOR I=1 TO EMC STEP 1 'print cavities with the most EM modes
PRINT#S, TAB(5); 'tab and print dimensions of EM cavities

PRINT#S," X="

Pﬁ!ﬂT#S,' X=";: PRINT#S,USING "#%#4.#4"; CAVS (MAXEM(I),1);: PRINT#*S," cm";
PRf T#S," Y=";:;: PRINT#S,USING "###.##"; CAVS(MAXEM(I),2):;: PRINT25," cm";
RRINT$S , " Z=";: PRINT#S,USING "fj.!#“; CAVS (MAXEM'I) ,2) ;¢ PRINT*;," cm”
GOSUB 2310: NEXT 1

PRINT$#S,: GOSUB 2310: PRINT#5,” Each cavity supports”;

PRINT#S,USING "$##4"; MODS (MAXEM (EMC),5);: PRINT#S,” EM modes."
A

¢ v/
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1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070

2080 .

2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2350
2350

2368

GOSUB 2310: PRINT$S,: GOSUB 2310: PRINT#S,: GOSUB 2310 'blank lines

IF S=2 THEN 1900 ELSE GOSUB 1970 'ask if storage in file TEMP is reguired
IF PL THEN 1900 ELSE S=2: GOTO 1550 'rewrite results to file C:TEMP

GOSUB 2100

KEY Qﬁ ‘replace soft key defimitions
END .

REY (1) OFF 'disable Fl trapping on first call

BEEP: LOCATE 25,1: PRINT STRINGS (80,0); 'get attention, clear prompt line
LOCATE 25,14: COLOR 0,7 'position cursor and change to reverse video font:
PRINT " Do you want these results saved in the file C:TEMP? "; 'prompt
COLOR 7,0 'return to normal video font

INPUT " ™, A2: A2=LEFTS(A2,1) 'examine first character of response A2
LOCATE 25,1: PRINT STRINGS(80,0); 'clear prompt line

IF (A2="Y") OR (A2="y") THEN PL=0: RL=1: RETURN 'storage required

IF (A2="N") OR (A2="n") THEN PL=1: RETURN 'storage not required

PRINT "Please answer YES or NO (Y or N).": PRINT: GOTO 1970 'instructions

RETURN

REM ======S=-==2=s=-S==s====S=S==S=SS=SS=SSCSCSES=SCS-SCCTSSSCSSI=FSSCSIZSSSSSSISSSE=ST=S==o=
REM SUBROUTINE HARDCOPY

REM =Z=====z=-=z=-c-z=-=-=-==S==S==CSSS=SSSFS====ST=S=S=SS===SSSSSSEISTESSSSS=SSISSZI=SSS=S=S
IF RL=0 THEN RETURN 'check whether or ndt any results have been stored
BEEP: LOCATE 25,1: PRINT STRINGS(B80,0); 'get attention, clear prompt line

LOCATE 25,14: COLOR 0,7 'position cursor and change to reverse video font
PRINT " Do you want these results sent to the printer? ";

COLOR 7,0 'return to normal video font

INPUT " ", A2: A2=LEFTS(A2,1) 'examine first character of r~cponse A2
LOCATE 25,1: PRINT STRINGS (80,0); 'clear prompt line

IF (A2="Y") OR (A2="y") THEN S5=4: GOTO 2200 'set device swit... to printer
IF (A2="N") OR (A2="n") THEN RETURN 'continue if no printing required
PRINT "Please answer YES or NO (Y or N).": PRINT: GOTO 2110 'instructions
BEEP: LOCATE 25,1: PRINT STRINGS(80,0); 'get attention, clear prompt line
LOCATE 25,14: COLOR 0,7 'position cursor and change to reverse video font
PRINT " Turn the printer on and strike the SPACE BAR to start printing. ";
A3=INKEYS: IF NOT (A3=CHRS (32)) THEN 2230 'pause until space bar is struck

COLOR 7,0: PRINT; 'return to normal video font

LOCATE 25,1: PRINT STRINGS (80,0); 'clear prompt line

WHILE NOT EOF(3): LINE INPUT#3,A4: PRINT#S,A4: GOSU2 2310: WEND

RETURN

REM =========cs=cors==S=s=====S=S===S==S==S=====-==-=S==S==S=S=Z=s=S=S===s=S==I=S=S=-==co=
REM SUBROUTINE PAGEPAUSE

REM =====cc===-=s-==S=s===S=ScCcSo=C-SSCCSS=SSCSS=SICS=SS=EZSSSSS=SSTS=SSSSSSISS===ZS=S==

IF S=1 AND T=|21 THEN 2340 ’'pause when CRT screen is full

IF S=2 OR 5=3 THEN RETURN 'ignore call ,
IF S=4 AND T=153 THEN PRINT#S,STRINGS (11,10): GOTO 2340 ELSE T=T+1l: RETURN
BEEP: LOCATE 25,1: PRINT STRINGS (80,0); 'beep attention, clear prompt line
LOCATE 25,22: COLOR 0,7 'position cursor and change to reverse video font
PRINT *‘Strike the SPACE BAR to continue., "; 'prompt

2370%A5=INKREYS$: IF NOT (A5=CHRS (32)) THEN 2370 'pause until space bar is struck

23B0/COLOR 7,0: PRINT 'return to normal video font

Z%ﬂ
2460
2410

2420
4 .

LOCATE 25,1: PRINT STRINGS (80,0) ~fclear prompt line
T=0 'reset line counter

RETURN .

END



APPENDIX B. CAVITY MODE COUNT REFERENCE TABILES

Table B.1 Numerically determined mode count reference data
for several rectangular cavities excited by freguencies

within the r¢ o 2425 < f "< 2475 MHz. TS is the total

number of mathematical solutions to the dispersion relation;
NL 1s the number of nonlongitudinal modes; TE and TM are the

actual numbers of TE and TM modes respectively; ;EM is the

li

total number of electromagnetic modes.

3

X{cm) Y(am) Z(cm) TS NL TE ™ EM X(cm) Y(cm) Z{(cm) TS NL TE ™ EM

48.50 38.50 38.50 14 13 12 10 22 48.50 39.00 38.50 15 14 12 11 23

39.00 15 14 13 10 23 39.00 18 17 15 11 26
39.50 17 16 15 10 25 39.50 17 16 14 10 24
40.00 21 20 19 14 33 40.00 20 19 17 13 30
40.50 18 17 16 14 30 40.50 17 16 14 14 28
41.00 15 14 13 11 24 41.00 13 12 10 11 21
41.50 14 13 12 10 22 41.50 13 12 10 11 21

X({cm) Y(cm) Z(cm) TS NL TE ™ M X{cm) Y(cm) Z(cm) TS NL TE ™ EM

48.50 39.50 38.50 17 16 13 12 25 . 48.50 40.00 3B.50 21 20 17 16 33

39.00 17 16 13 11 24 39.00 20 19 16 14 30
39.50 16 15 12 10 22 39.50 19 18 15 15 30
40.00 19 18 15 15 30 40.00 19 18 15 15 30
N 40.50 18 17 14 16 30 40.50 17 16 13 15 28
41.00 15 14 11 12 23 41.00 15 14 11 12 23
41.50 16 15 12 14 26 41.50 16 15 12 14 2

X{cm) Y(cm) Z(cm) TS NL TE ™ M X{(cm) Y(cm) Z(cm) TS NL TE ™ EM

48.50 40.50 38.50 18 17 16 14 30 48.50 41.00 38.50 15 14 13 11 24

39.00 17 16 15 13 28 39.00 13 12 11 10 21
39.50 18 17 16 14 30 39.50 15 14 13 10 23
40.00 17 16 15 13 28 40.00 15 14 13 10 23
40.50 13 12 11 11 22 " 40.50 12 11 10 9 19
41.00 12 11 10 9 19 41.00 13 12 11 9 20
41.50 13 12 11 10 21 41.50 13 12 11 10 21

X(cm) Y(cm) Z(cm) TS NL TE ™ EM X(cm) Y(cm) Z(cm) TS NL TE T™ EM

48.50 41.50 38.50 14 13 13 9 22 49.00 38.50 38.50 16 15 14 12 26

39.00 13 1212 9 21 39.00 18 17 16 13 29
39.50 16 15 15 11 26 39.50 18 17 16 11 27
40.00 16 15 15 11 26 40.00 19 18 17 14 31
40.50 13 12 12 9 21 40.50 18 17 16 15 31
41.00 13 12 12 9 21 41.00 14 13 12 11 23
41.50 11 10 10 10 20 41.50 16 15 14 12 26

l 123



Table B.1 Cont'd.

X(cm) Y(cm) Z(cm) - TS NL TE ™ EM X(cm) Y(cm) Z(cm) TS NL TE ™ BEM
49.00 39.00-38.50 18 17 15 14 29 49.00 39.50 38.50 18 17 14 13 27
39.00 18 17 15 11 26 39.00 19 18 15 13 28
39.50 19 18 16 12 28 39.50 19 18 15 13 28
40.00 20 19 17 15 32 40.00 17 16 13 15 28
40.50 15 14 12 13 25 40.50 16 15 12 15 27
41.00 12 11 9 11 20 41.00 13 12 9 11 20
41.50 14 13 11 12 23 41.50 16 15 12 14 26
X(cm) Y(cm) 2(cm) TS NL TE ™ EM X(cm) Y(cm) Z(cm) TS NL TE ™ EM
49.00 40.00 38.50 19 18 17 14 31 45.00 40.50 38.50 18 17 17 14 31
39.00 20 19 18 14 32 39.00 15 14 14 11 25
39.50 17 16 15 13 28 39.50 16 15 15 12 27
40.00 13 12 11 11 22 40.00 12 11 11 10 21
40.50 12 11 10 11 21 40.50 12 11 11 11 22
41.00 13 12 11 11 22 41.00 11 10 10 9 19
41.50 14 13 12 12 24 41.50 14 13 13 11 24
X{(cm) Y(cm) Z{(cm) TS NL TE ™ EM X(cm) Y{am) Z(cm) TS NL TE ™ EM
49.00 41.00 38.50 14°13 13 10 23 49.00 41.50 38.50 16 15 15 11 26
39.00 12 11 11 9 20 39.00 14 13 13 10 23
39.50 13 12 12 8 20 39.50 16 15 15 11 26
40.00 1312 12 10 22 40.00 14 13 13 11 24
40.50 11 10 10 9 19 40.50 14713 13 11 24
41.00 11 10 10 B8 18 41,00 12 11 11 8 20
41.50 12 11 11 9 20 41.50 11 10 10 10 20
X{cm) Y(cm) Z(cm) TS NL TE ™ M X(cm) Y(cm) Z(cm) TS NL TE ™ EM
49.50 38.50 38.50 17 17 15 13 28 49.50 39.00 38.50 16 16 14 12 26
39.00 16 16 14 12 26 . 39.00 1515 13 9 22
39.50 17 17 15 11 26 39.50 17 17 15 11 26
40.00 19 19 17 14 31 40.00 18 18 16 13 29
40.50 17 17-15 14 29 40.50 14 14 12 12 24
41.00 12 12 10 9 19 41.00 9 9 7 815
41.50 15 15 13 11 24 41.50 12 12 10 10 20
X(cm) Y{(cm) Z(cm) TS NL TE ™ M X{cm) Y{(cm) Z(cm) TS NL TE ™ EM
49.50 39.50 38.50 17 17 14 12 26 49.50 40.00 38.50 19 19 17 14 31
39.00 17 17 14 12 26 39,00 18 18 16 13 29
35.50 18 18 15 13 28 39.50 1515 13 12 25
40.00 15 15 12 13 25 40.00 15 15 13 13 26
40.50 13 13 10 12 22 40.50 13 13 11 12 23
41.00 13 13 10 11 21 41.00 13 13 11 11 22
41.50 14 14 11 12 23 41.50 16 16 14 14 28
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Table B.1 Cont'Q.

i
4’23 i
. o
“X(cm) Y(cm) Z(cm) TS NL TE ™ EM | X(am) Y(cm) Z(cm) TS NL TE ™ EM
49.50 40.50 38.50 17 17 16 13 29 49.50 41.00 38.50 12 12 11 8 19
39.00 14 14 13 11 24 39.00 9 9 8 715
39.50 13 13 12 10 22 39.50 13 1312 9 21
40.00 13 13 12 11 23 40.00 13 13 12 10 22
40.50 8 8 7 714 40.50 10 10 9 8 17
41.00 10 10 9 8 17 41.00 10 10 9 7 16
41.50 13 13 12 10 22 41.50 12 12 11 9 20
X(cm) Y(cm) Z(cm) TS NL TE ™ EM X(cm) Y(cm) Z(cm) TS NL TE ™ EM
49.50 41.50 38.50 15 15 14 10 24 50.00 38.50°38.50 16 16 14 12 26
. 39.00 12 1211 9 20 39.00. 16 16 14 12 26
39.50 14 14 13 10 23 39.50 17 17 15 12 27
40.00 16 16 15 13 28 40.00 17 17 15 13 28
40.50 13 13 12 10 22 40.50 16 16 14 13 27
41.00 12 12 11 9 20 41.00 13 13 11 10 21
41.50 12 12 11 11 22 41.50 17 17 15 13 28
X{cm) Y(cm) Z{cm) TS NL TE ™ EM | X(cm) Y(cm) Z{cm) TS NL TE T™™ EM
50.00 39.00 38.50 16 16 14 12 26 50.00 39.50 38.50 17 17 15 12 27
39.00 18 18 16 12 28 : 39.00 17 17 15 12 27
39.50 17 17 15 12 27 35.50 14 14 12 10 22
40.00 18 18 16 14 30 40.00 14 14 12 13 25
40.50 13 13 11 11 22 40.50 12 12 10 11 21
41.00 11 11 9 10 19 * 41.00 13 13 11 11 22
41.50 14 14 12 12 24 41.50 15 15 13 13 26
X(cm) Y{cm) 2(cm) TS NL TE ™ EM | X(cm) Y(cm) Z{cm) TS NL TE ™ EM
50.00 40.00 38.50 17 17 16 12 28 50.00 40.50 38.50 16 16 15 12 27
39.00 18 18 17 13 30 39.00 13 13 12 10 22
39.50 14 14 13 12 25 39.50 12 12 11 10 21
40.00 14 14 13 13 26 40.00 12 12 11 11 22
40.50 12 12 11 11 22 40.50 11 11 10 10 20
41.00 12 12 11 10 21 41.00 11 11 10 9 19
41.50 14 1413 12 25 41.50 11 11 10 8 18
X(cm) Y(cm) Z(cm) TS NL TE ™ EM X(cm) Y(cm) Z(cm) TS NL TE ™ EM
50.00 41.00 38.50 13 13 12 9 21 50.00 41.50 38.50 17 17 16 12 28
39.00 11 11 10 9 19 39.00 14 14 13 1124
39.50 13 13 12 10 22 39.50 15 15 14 12 26
40.00 1212 11 10 21 40.00 14 14 13 12 25
40.50 11 11 10 9 19 40.50 11 11 10 8 lBg
41.00 11 11 10 8 18 41.00 14 14 13 11 24
41.50 14 14 13 11 24 41.50 I3 13 12 12 24
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Table B.1 Cont'd.

X(cm) Y(cm) 2(cm) TS NL TE ™ EM | X(cm) Y(cm) Z(eam) TS NL TE ™ EM
50.50 38.50 38.50 12 12 11 9 20 | 50.50 39.00 38.50 12 12 10 9 19
39.00 12 12 11 8 19 39.00 15 15 13 9 22

39.50 13 13 12 9 21 39.50 15 15 13 11 24

40.00 13 13 12 10 22 40.00 15 15 13 12 25

40.50 12 12 11 10 21 40.50 © 12 12 10 11 21

41.00 1010 9 8 17 41.00 12 12 10 12 22

41.50 15 15 14 11 25 41.50 14 14 12 12 24

v

X(cm) Y(cm) Z(cm) TS NL TE ™ EM | X(cm) Y(cm) 2(cm) TS NL TE ™ EM
50.50 39.50 38.50 j13 13 12 9 21 | 50.50 40.00 38.50 13 13 13 9 22
"7 39,00 15 15 14 10 24 N 39.00 15 15 15 10 25

39.50 14°14 13 11 24 39.50 11 11 11 10 21

.40.00 11 11 10 11 21 40.00 10 10 10 10 20

40.50 10 107 9 10 19 40.50 9 9 9 9 18

41.00 12 12 11 11 22 41.00 11 11 11 10 21

41.50 15 15 14 13 27 41.50 14 14 14 12 26

X(cm) Y(cm) Z(cm) TS NL TE ™ EM | X(cm) Y(cm) Z(cm) TS NL TE ™ EM
50.50 40.5C 38.50 12 12 12 9 21 | 50.50 41.00 38.50 10 10 10 7 17
39.00 12 12 12 9 21 39.00 12 12 12 10 22

39.50 10 10 10 9 19 39.50 12 12 12 10 22

40.00 9 9 9 9 18 40.00 11 11 11 10 21

40.50 9 9 9 9 18 40.50 10 10 10 9 19

- 41.00 10 10 10 9 19 41.00 11 11 11 9 20

41.50 12 1212 9 21 41.50 13 13 13 10 23

X(cm) Y(cp) Z(cm) TS NL TE ™ EM | X(cm) Y(cm) Z(cmys TS NL TE T™ EM
50.50 41.50 38.50 15 15 14 11 25 | 51.00 38.50 38.50 12 12 11 9 20
39.00 14 14 13 11 24 39.00 12 12 11 9 20

39.50 15 15 14 13 27 39.50 16 16 15 11 ..«
40.00 14 14 13 13 26 40.00 15 15 14 11 “Kas

40.50 12 12 11 10 21 40.50 14 14 13 11 24

41.00 13 13 12 11 23 41.00 14 14 13 11 24

41.50 11 11 10 1o 20 41.50 17 17 16 12 28

X(cm) Y(cm) Z(cm) TS NL TE ™ EM | X(cm) Y(cm) 2(cm) TS NL TE T™ EM
51.00 39.00 38.50 12 12 11 9 20 | 51.00 39.50 38.50 16 16 14 12 26
39.00 13 13 12 8 20 39.00 15 15 13 11 24

y 39.50 15 15 14 10 24 39.50 19 19 17 15 32

40.00 15 15 14 11 25 40.00 15 15 13°14 27

40.50 . 12 12 11 10 21 40.50 14 14 12 13 25

41.00 12 12 11 11 22. 41.00 14 14 12 12 24

41.50 14 14 13 11 24 41.50 17 17 15 14 29
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Table B.1 Cont'd.
'r“‘h
B3
; -
v «(’.
X{cm) Y(cm) Z(cm) TS NL TE ™ EM | X{cm) Y(cm) z(cm) TS NL TE ™ EM
51.00‘§P;oo 38.50 15 15 14 11 25 | 51.00 40.50 38.50 14 14 13 11 24
39.00 15 15 1% 11 25 39.00 12 12 11 10 21
39.50 15 15 14 13 27 39.50 14 1413 12 25
40.00 13 13 12 12 24 40.00 1010 9 9 18
40.50 10 10 9 9 18 40.50 8 8 7 7 14
41,00 13 13 12 11 23 41.00 10 10 9 B8 17
41.50 15 15 14 12 26 41.50 13 13 12 9 21
X(cm) Y(cm) Z{(cm) TS NL TE ™ EM | X(cm) Y(cm) Z{(cm) TS NL TE T™™ EM
51.00 41.00 38.50 14 14 13 11 24 -| 51.00 41.50 38.50 17 17 15 13 28
39.00 12 12 11 11 22 39.00 14 14 12 12 24
39.50 14 ‘14 13 1 24 39.50 17 17 15 14 29
40.00 13 13 12 11 23 40.00 15 15 13 13 26
40.50 10 10 9 8 17 40.50- 13 13 11 1021
41.00 121211 9 20 41.00 14 14 12 11 23
41.50 14 14 13 10 23 . 41.50 12 12 10 10 20
X(cm) Y(cm) Z(cm) TS NL'TE T™ EM | X(cm) Y{cm) Z(cm) TS NL TE T™ BEM
51.50 38.50 38.50 16 16 14 12 26 | 51.50 39.00 38.50 .16 16 14 12 26
39.00 16 16 14 12 26 39.00 17 17 15 11 26
39.50 17 17 15 12 27 39.50 18 18 16 13 29
——48.00 17717 15 13 28 40.00 17 17 15 13 28
40.50 15 15 13 12 25 40.50 13 13 11 11 22
41.00 17 17 15 14 29 41.00 13 13 11 12 23
. 41.50 19 19 17 14 31 41.50 16 16 14 13 27
X(cm) Y(cm) Z(chw TS NL TE ™ EM | X(cm) Y(cm) Z(cm) TS NL TE ™ EM
51.50 39.50 38.50 17 17 15 12 27 | 51.50 40.00 38.50 17 17 16 1228
39.00 18 18 16 13 29 39.00 17 17 16 12 28
39.50 17 17 15 13 28 39.50 14 14 13 12 25
40.00 14 14 12 13 25° 40.00 10 10 9 9 18
© 40.50 12 12 10 11 21 40.50° 12 12 11 11 22
: 41.00 14 14 12712 24 - 41.00 13 13 12 11 23
41.50 17 17 15 14 29 41.50 16 16 15 13 28
X (cm) Y(cm), Z(cm) TS NL TE ™ EM | X(cm) Y(cm) Z(cm) TS NL TE ™ M
51.50 40.50 38.50 15 15 14 11 25 | 51.50 41.00 38.50 17 17 16 13 29
39.00 13 13 12 10 22 39.00 13 1317 11 23
39.50 12 12 11 10 21 39.50 12 12 11 10 21
40.00 12 12 11 11 22 40.00 13 13 12 11 23
40.50 12 12 11 11 22 40.50 12 12 11 10 21
41.00 12 12 11 10 21 £1.00 16 16 15 13 28
41.50 14 14 13 10 23 41.50 14 14 13 10 23
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Table B.2 Numericéily determinéd mode count reference data
for several rectangulgr cavities excited by frequencies
within the range 900 S.f £.930 Mﬁz. TS is the total number
of mathematical solutions to the dispersion relation: NL is
the number of nonlongitudinal modes; TE and TM are - the

actual numbers of TE and TM modes respectively; EM is the

total number of electromagnetic modes. : ?
AN
£
X(cm) Y(cm) Z(cm) TS NL TE ™ BM | X(chm) Y(cm) Z(cm) TS NL TE ™ EM
48.50 38.50 38.50 + 3 2 2 2 4 | 48.50 39.00 38.50 3 2 2 2 4
39.00 3 2 2 2 4 39,00 3 2 2 2 4
39.50 3 2 2-2 4 39.50 3 2 2 2 4
. , 40.00 2 11 1 2 40.00 2 1 1 1 2
L 40.50 2 1 1 1 2 40.50 2 1 1 1 2
' 41.00 2'1 1 1 2 41,00 2 1 1 1 2
41.50 2 1 1 1 2 41.50 2 1 1 1 2
X(cm) Y(cm) 2(cm) TS NL TE ™ EM | X(am) Y(cm) Z(cm) TS NL TE ™ EM \
48.50 39.50 38.50 3 2 2 2 4 | 48.50 40.00 38.50 2 1 1 1 2
v 39.00 3 2 2 2 4 . 39.00 2 1 1.1 2
39.50 3 2 2 2 4 39.50 2 1 1,1 2
40,00 2 1 1 1 2 40,00 1 0 0 0 O
. 40.50 1 0 0 0 © 40,50 1 0 0 0 O
41.00 1 0 0 0 O 41,00 1 0 0 0 O
41,50 10 0 0 O 41.50 .1-0 0 0 O -
g
X(cm) Y(am) Z(cm) TS NL TE ™ EM | X(cm) Y(cm) 2(cm) TS NL TE ™ EM
48.50 40.50 38.50 2 1 1 1 2 | 48.50.41.00 38.50 2 1 1 1 2
: 39.00 2 1 1 1 2 39.00 2 1 1 1 2
39.50 1 0 0 0 O 39.50 1 0 0 0 0 |
40.00 1 0 0 0 O 40,00 1 0 0 0.0
40.50 1 0 0 0 O 40.50 1 0 0 0 O
41,00 1 0 0 0 O 41.00 1 0 0 0 O
41.50 1 0 0 0 © 41.50 1 0 0 0 O
X(cm) Y(cm) Z(cm) TS NL TE T™ EM | X(cm) Y(cm) Z(cm) TS NL TE ™ EM
48.50 41.50 38.50 2 1 1 1 2 | 49.00 38.50 38.50 3 2 2 2 4
39.00 2 1 1 1-2 39.00 3 2 2 2 4
39.50 1 0 0 0 0 39.50 3 2 2 2 4
40.00 1 0 0 0 O 40.00 2 1 1 1 2
40.50 1 0 0 0 O 40,50 2 1 1 1 2
41.00 1 0 0 0 0| 41,00 2 1 1 1 2
41.50 1 0 0 0 0| 41.50 2 1 1 1 2
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Table B.? Cont'd.

. X(cm) Y(cm) Z(cm) TS NL TE'T™M EM | X{cm) ¥(cm) 2Z(cm) TS NL TE ™ EM
49.00 39.00 38.50 3 2 2 2 4 | 49,00 39.50 38.50 3 2 2 2 4
’ 39.00 3 2.2 2 4 33,00 3 2 2 2 4
39.50 .3 2 2 2 4 39.50 3 2 2 2 4

40.00 2 1 1 1 2 40.00 2 1 1 1 2

40.50 2 1 1 1 2 40.50 1 0 O 0 O©

41.00 2 1 1 1 2 41.00 1 0°'0 0 O

41.50 2 1 1 1 2 41.50 1 0 0 0 O

X(cm) Y(cm) Z(cm) TS NL TE ™ EM | X(cm) Y(cm) Z{cm) TS NL TE ™ EM
49.00 40.00 38.50 2 1 1 1 2 | 49.00 40.50 38.50 2 1 1 1 2
39.00 2 ‘1 1 1 2 39.00° "2 1 1-1 2

39.50 2 1 1 1 2 39.50 1 0 0 0 O

40.00 1 0O 0 O O 40.00 1 0 0 0 O

40.50 1 0 0 0 O 40.50 1 0 O 0 0

41.00 1 0 0 0 O. 41.00 1 0 0 0 O

41.50 1 0 0 0 O 41.50° 1 0 0 0 O

X(cm) Y(cm) Z(cm) TS NL TE ™ EM | X(cm) Y(cm) Z(cm) TS NL TE T EM
49.00 41.00 38.50 2 1 1 1 2 | 49.00 41.50 38.50 2 1 1 1 2
39,00 2 1 1 1 2 39,00 2 1 1 1 2

39.50 1 0 0 0 © 38.50 1 0 0 0 ©

40.00 1 0 00 O « 40.00 1 0 0 0 O

40.50 1 0 0 0 O . 40.50 1 0 O 0 ©

41.00 1 0 0 0 O 41.00 1 0 0 0 O

41.50 1 0 0 0 © 41.50 1 0 0 0 O

X{(cm) Y(cm) Z(cm) TS NL TE T™ EM | X(cm) Y(cm) Z{cm) TS NL TE ™ EM
49.50 38,50 38.50 3 2 2 2 4 | 49.50 39.00 38.50 3 2 2 2 4
39.00 3 2 2 2 4 39.00 3 2 - 2 4

39.50 3 2 2 2 4 39.50 3 2 2 2 4

40,00 2 1 1 1 2 40.00 2 1 1 1 2

40.50 2 1 1 1. 2 40.50 2 1 1 1 2

41.00 2 1 1 1 2 41.00 2 1 1 1 2

41.50 2 1 1 1 2 41.50 2 1 .1 1 2

X(cm) Y(cm) Z(cm) TS NL TE ™ EM | X(cm) Y(cm) Z(cm) TS NL TE T™ BEM
'49.50 39.50 38.50 3 2 2 2 4 | 49.50 40.00 38.50 2 1 1 1 2
33.00 3 2 2.2 4 39.00 2 1 1 1 2

39.50 3 2 2 2 4 39.50 1 0 0 0 ©

, 40.00 1 0 0 O O 40.00 1 0 0 0 O
40,50 1 0 0 0 0 40.50 -1 0 0 0 O

41.00 1 °0 0 0 O 41.00 1 0 0 0 O

41.50 1 0 0 0 O 41.50 1 0 0 0 O

129



Table B.2 .Cont'd.

X(cm) Y(cm) Z(cm) TS NL TE ™ EM | X(cm) Y(cm) Z(cm) TS NL TE ™ EM
'/ 49.50 40.50 38.50 2 1 1 1 2 | 49.50 41.00 38.50 2 1 1 1 2
' 39.00 2 1 1 1 2 39.00 2 1 1 1 2
39.50 1 0 0 0 O 39.50 1 0 0 0 O
40.00 1 00 O0 O 40.00 1 0 0O 0 O
40.50 1 0 0 0 O 40.50 1 0 0 0 O
41.00 1 0 0 0 O 41.00 1 0 0 0 O
41.50 1 0 0 0 O© 41.50 1 0 0 0 O
X(cm) Y(cm) Z(cm) TS NL. TE ™ EM | X(am) Y(cm} Z(cm) TS NL TE ™ EM
49.50 41.50.38.50 2 1 1 1 2 | 50.00 38.50 38.50 3 2 2 2 4
39.00 2 1 1 1 2 39.00 3 2 2 2 4
39.50 1 0 0 0 © 39,50 3 2 2 2 4
40.00 1 0 0 0 O 40,00 2 1 1 1 2
40.50 1 0 0 0 O 40.50 21 1 1 2
41.00 1 0 0 00 41.00 2 1 1 1 2
41.50* 1 0 0 O O 41.50 2 1 1 1 2
X(cm) Y(cm) Z(cm) TS NL TE ™ M | X{(cm) Y(cm) Z(cm) TS NL TE ™ EM
50.00 39.00 38.50 3 2 2 2 4 | 50.00 39.50°38.50 3 2
39.000 3 2 2 2 4 39.00 3 2 .
39.50 3 2 2 2 4 39.50 3 2
40.00 2 1 1 1 2 40.00 1 0 U - O
40.50 2 1 1 1 2 40.50 1 0 ® 0 O
41.00 2 1 1 1 2 41.00 1 0 0 0 ©
41.50 2 1 1 1 2 41.50 1 0 0 0 O
X(cm) Y(cm) Z{(cm) TS NL TE ™ EM | X(cm) Y(cm) Z(cm) TS NL TE T EM
50.00 40.060 38.50 2 1 1 1 2 | 50.00 40.50 38.50 2 1 1 1 2
33.00 -2 1 1 1 2 39.00 2 1 1 1 2
39.50 1 0 0 0 O 39.50 1 0 0 0 ©
40.00 1, 0 0 O O 40,00 1 0 0 0 O
40.50 10 0 0 O 40.50 1 0 0 0 O
41.00 .1' 0 ©0 O 0 41.00 1 0 0 0 O
41.50 1 0 0 0 O 41.50 1 0 0 0 O
X(cm) Y(cm) Z(cm) TS NL TE ™ EM | X(cm) Y(cm) Z{cm) TS NL TE T EM
50.00 41.00 38.50 2 1 1 1 2 | 50.00 41.50 38.50 2 1 1 1 2
. 39,00 2 1 1 1 2 39.00 2 1 1 1 2
39.50 1 0 0 0 O 39.50 1 0 0 0 O
40.00 1 0 0 0 © 40,00 1 0 0 0 O
40.50 1 0 0 0 0O 40.50 1 0 0 0 O
41.00 1 0 0 0 O 41.00 1 0 0 0 ©
41.50 1.0 0 0 O 41.50 1 0 0 0 ©
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Table B.2 Cont'd.

X(cm) Y(cm) Z(cm) TS NL TE ™ EM | X(cm) Y(cm) Z(cm) TS NL TE T™ EM
50.50 38.50 38.50 2 2 2 2 4 | 50.50 39.00 38.50 2 2 2 2 4
33.00 2 2 2 2 4 39.00 22 2 2 4
36.50 2 2 2 2 4 39,50 2 2 2 2 4
40.00 1 1 1 1 2 40.00 1 1 11 2
40.50 1 1 1 1 2 40,50 1 1 1 °1 2
41,00 1 1 1 1 2 I 41,00 1 1 1 1 2
) 41.50 1 1 1 1 2 41.50 1 1 1 1 2
o
X(cm) Y(cm) Z(cm) TS NL TE ™ EM | X(cm) Y(am) Z(cm) TS NL TE ™ EM
50.50 39.50 38.50 2 2 2 2 4 | 50.00 40.00 38.)50 1 1 1 1 2:
39.00 2 2 2 2 4 39.00 1 1 1 1 2
39,50 0 0 0 0 O 39.50 0 0 0 Q0 O
40.00 0 0 0 0 O 40.00 0 0 b 0 0O
40.50 0 0 0 0 O 40.50 0 0 0 O O
41.00 0 0 0 0 O 41.00 0 0 0 0 0
41.50 0 0 ©0 0 O 41.5¢ 0 0 0 © O
X(cm) Y(cm) Z(cm) TS NLTE ™ PEM | X(cm) Y(cm) Z(cm) TS NL TE ™ EM
50.50 40.50 38.50 1 1 1 1 2 | 50.50 41.00 38.50 1 1 1 1 2
36,00 1 1 1 1 2 39.00 1 1 1 1 2
39.50 0 0 0 0 O 39.50 0 0 0 0 O
40.00 0 0 0 0 O 40,00 0 0O 0 0 ©
40.50 0 0 0 0 O 40.50 0 0 0 O O
41.00 0 0 0 O 0 41.00 0 0 0 0 O
41,50 0 0 0 0 O 41.50 0 0 0 0 O
X(cm) Y(cm) Z(cm) TS NL TE ™ EM | X(cm) Y(cm) Z{cm) TS NL TE T M
50.50 41.50 38.50 1 1 1.1 2 | 51.00 38.50 38.50 2 2 2 2 4
39,00 1 1 1 1 2 39.00 2 2 2 2 4
39.50 0 0 0 0 0 39.50 2 2 2 2 4
40,00 0 0 0 0 O 40,00 1 1 1 1 2
40.50 0 0 0 0 O 40.50 1 1 1 1 2
41.00 0 0 0 O O 41.00 1 1 1 1 2
41.50 0 0 0 0 O 41.50 1 1 1 1 2
X{(cm) Y(cm) Z(cm) TS NL TE ™ EM X(cm) Y(cm) Z(cm) TS NL TE ™ EM
51.00 39.00 38.50 2 2 2 2 4 | 51.00 39.50 38.50 2 2 2 2/ 4
39.00 2 2 2 2 4 39.00 2 2 2 2 4
39.50 2 2 2 2 4 39.50 0 0 0 0 O
40,00 1 1 1 1 2 40.00 0 0 0 O ©
40.50 1 1 1 1 2 40.50 0 0 0 0 O
41.00 1 1 1 1 2 41.00 0 0 0 O O
41,50 0 0 0 0 O 41.50 0 0 0 0 ©
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Table B.2 Cont'd.

X(cm) Y(cm) Z(cm) TS NL TE ™ EM | X(cm) Y(cm) Z(cm) TS NL TE ™ EM
51.00 40.00 38.50 1 1 1 1 2 | 51.00 40.50 38.50 1 1 1 1 2
39.00 1 1,1 1 2 39,00 1 1 1 1 2
39.50 0 0 0 0 O 39.50 0 0 0 0 O
40.00 0 0 O 0 O 40.00 0 0 0t 0 O
40.50 0 0 0 0 O 40.50 0 0 0 0 O
41.00 0.0 0 0 O 41.00 0 0 0 0 O
41.50 0 0 0 0 O 41.50 0 0 0 0 O
X(cm) Y(cm) Z(cm) TS NL TE ™ EM X(cm) Y(cm) Z(cm) TS NL TE ™ EM
51.00 41.00 38.50 1 1 1 1 2 | 51.00 41.50 38.50 1 1 1 1 2
39.00 1 1 1 1 2 39.00 0.0 0 0 O
39.50 0 0 0 0 O 39.50 0 0 0 0 0O
40.00 0 0 0 0 O 40.00 0 0 0 0 O
40.50 0 0 0 0 © 40.50 0 0 0 0 O
41.00 0 0 0 0 O 41.008 0 0 O 0 O
41.50 0 0 0 0 O 41.50 0 0 0 0 ©
X(cm) Y{(cm) Z(cm) TS NL TE ™ EM X(cm) Y(cm),Z{cm) TS NL TE ™ EM
51.50 38.50 38.50 2 2 2 2 4 | 51.50 39.00 38.50 2 2 2 2 4
39.00 2 2 2 2 4 39.00 2 2 2 2 4
39.50 2 2 2 2 4 39.50 1 1 1 1 2
40,000 1 1 1 1 2 4000 1 1 1 1 2
40.50 1 1 1 1 2 40.50 1 1 1 1 2
4100 1 1 1 1 2 4100 1 1 1 1 2
41.50 2 2 2 1 3 41.50 1 1 1 0 1
X(cm) Y(cm) Z(cm) TS NL TE ™ Dﬂ/ X(cm) Y{(cm) Z(cm) TS NL TE ™ EM
51.50 39.50 38.50 2 2 2 2 4 | 51.50 40.00 38.50 1 1 1 1 2
39.00 1.1 11 2 39,00 1 1 1 1 2
39.50 0 0 0 0 0O 39.50 0 0 0 0 O
40.00 0 0 0 0 O 40.00 0 0 0 0 O
40.50 0 0 0 0 O 40.50 0 0 0 0 O
41.00 0 0 0 0 O 41.00 0 0 O O O
41.50 1 1 1 0 1 41.50 1 1 1 0 1
X(cm) Y(cm) Z(cm) TS NL TE ™ EM | X(cm) Y(cm) Z(cm) TS NL TE ™ EM
51.50 40.50 38.50 1 1 1 1 2 | 51.50 41.0038.50 1 1 1 1 2
39.00 1 1 1 1 2 39,00 1 1 1 1 2
39.50 0 0 0.0 O 39.50 0 0 0°0 O
40.00 0 0 0 0 © 40,00 0 0 0 0 .0
40.50 0 0 0 0 O 40.50 0 0 O 0 O
41.00 0 0 0 0 O 41.00 0 0 0 0 O
41.50 1 1 1 0 1 41.50 1 1 1 0 1
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Table.B.3 A comparison of mode count reference

-

I3

133

data for
G..

several cavities of typical sizes used in domestic microwave

ovens.
31
CAVITY DIMENSIONS 2400 < f < 2500 MHz 902 < f < 928 MHz
X(cm) Y(cm) Z(cm) TS NL TE ™ ™M TS NL TE ™ M
28.00 36.00 38.00 11 11 10 8 18 1 1 1 o0 1
39.00 9 9 8 7 15 1 1 1 0o 1
40.00 12 12 11 9 20 2 2 2 0 2
41.00 15 15 14 11 25 2 2 2 o0 2
£142.00 14 14 13 11 24 1 1 1 0 1
28.00 38.00 38.00 14 14 12 8 20 0 0 0 0 o©
3%.00 14 14 12 10 22 0 0 0 0 o0
40.00 16 16 14 10 24 1 1 1 0 1
41.00 19 349 17 12 29 1 1 1 o 1
42.00 16 16 14 12 26 0o 0 o0 0 o0
, 28.00 40.00° 38.00 16 16 13 11 24 . 1 1 o0 171
39.00 19 19 16 15 31 1 1.0 1 1
e 40.00 20 20 17 15 32 2 2 1, 1 2
41.00 18 18 15 14 29 2 2 1 1 2
) 42.00 17 17 14 14 28 1 1 0o 1 1
il
! 30.00 36.00 38.00 8 8 8 5 13 1 1 1 o0 1
39.00 9 9 9 7 16 2 2 2 0 2
40.00 13 13 13 10 23 11 1 0 1
41.00 14 14 14 11 25 1 1 1 o0 1
42.00 12 3 13 10 23 1 1 1 o 1
30.00 38.00 38.00 15 15 13 9 22 0 0 0 0 ©
39.00 16 16 14 12 26 1 1 1 o 1
40.00 18 18 16 12 28 0 0 0 0 ©
. 41.00 17 17 15 11 26 6 0 0 0 ©
42.00 17 17 15 13 28 0 -0 0 0 O
30.00 40.00 38.00 18 18 15 13 28 c o 0 0 0
39.00 20 20 17 16 33 1 1 ¥ o 1
40.00 22 22 19 17 36 0.0 0 0 O
41.00 15 15 12 12 24 0 0 0 o0 O
42.00 15 15 12 12 24 0 0 0 0 o0
32.00 36.00 38.00 15 15 14 10 24 2 2 2 0 2
39.00 <15 15 14 11 25, 1 1 1 0 1
40.00 16 16 15 13 28 1 1 1 0 1
41.00 12 12 11 16 21 1 1 1 o0 1
42.00 11 11 10 8 18 1 1 1 0 1
32.00 38.00 38.00 24 24 20 16 36 2 2 1 1 2
39.00 22 22 18 16 34 1 1 0o 1 1
40.00 23 23 19 17 36 1 1 o0 1 1
41.00 20 20 16 15 31 1 1 0 1 1
42.00 22 22 18 18 36 11 ¢ 1 1
32.00 40.00 38.00 23 23 20 16 36 1 1 1 0 1
39.00 24 24 21 18 39 0 0 0 ©0 o0
40.00 22 22 19 17 36 6 0 0 0 o0
41.00 13 19 16 17 33 0 0 0 0 o0
42.00 18 18 15 15 30 0 0 0 0 o
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Table B.4 Variations in the mode count data presented 1n

Tables'B.1,2,3.

BANDWI DTH RANGE OF CAVITY DIMENSIONS [ RANGE OF MODE COUNTS
MHz) X {cm) Y (cm) 2 (cm) TS NL- TE ™ M
2425 < 2475 48.50-52.00 38.50-41.50 38.50—'41150 8-21 8-20 7-19 8-16 14-33
900 < 930 . 48.50~52.00 38.50-41.50 38.50-41.50 0-3 02 0-2 0-2 0-4
2400 < 2500° | 2B8.00-32.00 36.00-40.00 38.00-42.00 8-24 B8-24 B-21 5-18 '13-39
9502 < 928 28.00-32.00 36.00-40.00 38.00-42.00 0-2 0-2 0-2 0-1 0-2




APPENDIX C. ON THE CROSS—COUPL’ING PROBLEM

Solid state microwvave _power applicato;s have been
technologically feasible for ovér a decade. However, in
oraér to make them economically féasible i ven the present
or slightly advanced staté of the art), efficient means must
be devised for combining the outputs of several medium powér

microwave sources. The simplest method is to use the cavity

itselfﬁ as the power combining network, by separately

coupling each source to the cavity through an independent
feed structure.. The "cross—coupl}ng problem™ is thus

defined as achieving this independence.

SeQerél methods have been hypothgsized which should,
theoretically, reduce the cross-toupling between ﬁurtiple
sources. For example, operating »each’ source at widely,
different freguencies (e.g. 915 wvs. 2450 MHz) or using
cross-polarized antennae are commonly cited [48]. However,
to the author's kno;lédge, no one has examined the problem
experimentally to determine the severity (or nonséverity) of
this p;oble& qualitatively. Part of the reagon for this
lack of information may be the difficulty in generalizing
" any experimental data. And for this reason, the ¥emainder
of the discussion which follows is primarily conjecture, but
is based og observations made while conducting the

- <
measurements of Chapter 4.
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The measurement syst?m described in Chapter 4 is easily
modified to observe the cross-coupling between any two
antennae. Basically, a transmission loss measurement can be
performed by connecting the output of a receiving antenna to
channel B of the swept amplitude analyzer through a second
detector as indicated in Figure 4.1.

It was found that when the receiving probe was very
short, and the cavity waé empty, only c}oss—coupling through
normal cavity eigenmodes 'can oOccur. In this case, the
transmission spectrum is discrete and differs mainly in
magnitude from the 1input spectrum. . The éegree of
cross-coupling for some of the modes within the domain of
Figure 4.2 were classified as stropé (s), medium (M) or weak
(w5 as indicated in Eigure c.1. The actual level of

transmission loss was small.

When the - receiving probe was a‘~realistic length
(=10 cm), and a mode stirrer was included, the transmission
spectrqm .waé - observed to be girtually continuoﬁs, and the
transmission loss was much higher than in the above case.
The continuous ' spectrum can probably be explained as a
result of the length and proximity of the two antennae which
allowed cross-coupling th£ou§h neaf fields or evanescent
modes (which 1is “enhanced by the méde stirrer). This
observation would seem to indicate that the cross-coupling

problem is indeed severe in a practical case. However, many

"~ ~



B rrad d

137

]
?
[=] -
o [~
2
g .
wE
b =i 4
(o
o
F-,os,,
(8 ]
3
~
3
N
- w
™
! > .
[8) »'
£ som Zz
K y-'f%
e
w
a
.
[am] .
o 1 [
[i§] r. M u ¥
H L ad
a non i
s z
Y]
O = o
o ] =,
g 5 5 I 2
O s L4 QJ E -
— o} 3] o = -
+ (%} Q o
n = T D
| | | i
w = B ° " K
| - 2
— T T T T Y -
© o - ) ~ © o
[ 4] [ 4] o~ -~ o
S300U 30 ¥38UNN

.

Fiqure C.1 Measured spectrgi distribution of modes (N™),

for the experimental ‘cavity discussed in Chapters 4 and 5,
s...wing the relative cross-coupling between top and side

-~ ~ted antennae. ~The receiving antenna is less than 1 cm

1 lengtt



138

new power transistors can withstand infinite VSWR in a class
C mode (at least temporarily).‘ And when the cav. . is
heavily loaded with lossy dielectric, the actual level of
" received power due to the cross-coupling effect would
presumably be much less than.the output capability of the
source. In any case, the output spectrum of solid state
power- amplifiers is broad enough that much power is
reflected from an émpty cavity even when the input is
perfectly matched to the cavity (at the eigenfrequencies).

Hence, although the cross-coupling per se can be serious, it

‘may not necessarily be detrimental to the operation .of a

solid state applicator. More thorough experimental studies

with transistor sources are required in order to determine

the true extent of this problem.

“Numerical Models-

y L
\

Since general results are difficult to obtain, either
gxpefimentally or analytically, it would be extremely useful
if a numerical algorithm were available that could

"parametrically model the cross-coupling between two (or

more) antennae. Again, a completely general model could. n{it.

be obtained with a finite number of parameters, but perhaps

certain classes of antennae could be modeled.

It may be poss.:ble to base such a model on . a. v

perturbation-type analysié, where the perturbed
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eigenfunctions are numerically integrated over the receiving
antenna. However, some philosophical problems regarding the
appiicability of 'perturbation . theory to a cavi{y which 1is
not a closed thermogynamic system, may exist. A more
complicated approach, "~ but one which is (probably) free of
phiiosophical questions, is to employ the image theory of
Kelvin. That * is, once all of the image antanaé are
determined, the theory of antennae arrays could. perhaps be
used to compute the image currents on the receiving antennae
due to the exciting antennae. If this method 1is feasible,
it may be the most general 'since free sﬁéce radiation
pattergs for arbitrarily shaped antennae can be determined

empirically.

g
N



APPENDIX D. ASYMPTOTIC FORMULAE FOR WAVEGUIDES
Recall that the two dimensional EM boundary value
problem leads to an Aeigénvalue equation for the cutoff
fregquencies of waveguide modes. Asymptotic formulae for the
sbectral distribution and density of these gigenfrequencies
can be derived in exactly the same manner as that used in
Chapter 5 to obtain the asymptotic formulae for cavity

4
modes.

The number of characteristic points in a two
dimensional p-space, to first order, 1is just the area
enclosed in the first guadrant by the ellipse described by

Eg.(2.29), viz.

where A is the cross-sectional area of the quide (normal to

‘the x5, axis). N%(w) is thus the two dimensional counterpart

of No(w), the ambivalent first term of the asymptotic

expansion for cavity modes. S ‘ |
\
Correcting for the undercounting/overcountﬁag of

characteristic points on the coordinate axes of p—space\ one

A\
obtains !

i

(D.2)
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for the TM modes, and

(D.3)

Nyg(w) = NJ(w) + (L,+L;)

3
27 4

w
c

for the TE modes. Thus the total number of EM modes with

cutoff frequencies not greater than w is approximately

Nem(w) = 2N (w) - 1 (D.4)
2

and the total number of EM modes with cutoff fregquencies

between w and w+dw is approximately

Demlw) bw = Sw = 2DW(w)dw - (D.5)

3>

w
Ez

where D¢ (w) is| the two dimensional counterpart to Do(w) as
defined 1in Chapter 5. Hence, the spectral density function

for waveguide modes\is
Dpmlw) = 2D (w) (D.6)

which is just the derivative of Npylw) with respect to w.



