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Abstract 

Construction labour productivity (CLP) is a key performance indicator for determining the success 

of construction undertakings, and notably affects the profitability of construction companies. To 

this effect, the construction industry and researchers have pursued better ways of addressing the 

CLP problem. The CLP problem is a very complex problem that includes one or a combination of 

processes of: identifying factors that can influence CLP, modeling construction processes to 

effectively predict CLP, and proposing mitigation measures for improvement of CLP. Despite 

ongoing efforts, properly addressing the CLP problem remains a challenge in both research and 

the construction industry, because the related processes entail simultaneously capturing: 

1) complexity arising from the subjective nature of some variables affecting CLP, owing to the use 

of linguistic terms such as low temperature, or poor safety practices; 2) complexity arising from 

the dynamic nature of variables; 3) complexity arising from the emerging nature of some variables 

affecting CLP, such as crew motivation; 4) complexity arising from the causal relationships 

between factors affecting CLP – hereafter called situational/contextual variables – which are 

context dependent and vary across different situations in which tasks are performed; and 5) the 

inputs of multiple heterogenous experts involved in addressing the CLP problem (i.e., construction 

practitioners), whose inputs vary owing to their backgrounds, experience, and varying areas of 

expertise. This research provides a comprehensive state-of-the-art literature review and content 

analysis on the topic of system dynamics (SD) as a viable tool to capture the dynamic nature of 

system variables and their complex causal relationships for CLP modeling. Moreover, this research 

provides a fuzzy analytic hierarchy process–fuzzy decision making trial and evaluation laboratory 

(FAHP-FDEMATEL) method to capture causal relationships between crew motivation and 
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situational/contextual variables affecting CLP. This research also provides a fuzzy system 

dynamics–fuzzy agent-based modeling (FSD-FABM) method to model CLP. The FAHP-

FDEMATEL, and FSD-FABM methodologies proposed in this study are demonstrated and 

validated using a real industrial construction project in Alberta, Canada. This research also 

provides modeling frameworks that employ FSD-FABM with multi-criteria decision making 

(MCDM) and reinforcement learning (RL), which can be used to formulate CLP improvement 

strategies. These proposed frameworks on decision-making have also been validated using a case 

study on real construction projects.  

The main contributions of this research are: 1) providing a state-of-the-art on SD research; 2) 

providing a systematic and structured model for determining causal relationship mapping between 

factors affecting CLP via the proposed FAHP-FDEMATEL method; 3) proposing a novel hybrid 

FSD-FABM for capturing and assessing complexities arising from non-linear behaviors and 

dynamic causal interactions between multiple factors in modeling and predicting CLP; and 4) 

proposing novel FSD-FABM-MCDM and 5) proposing a RL–FSD-FABM decision making 

frameworks that can be used to propose productivity improvement strategies. The results of this 

study indicate that the FAHP-FDEMATEL model was capable of providing a systematic and 

structured method to map the causal relationship mapping between factors affecting CLP, while 

considering expert weights. Moreover, the proposed FSD-FABM in this study was capable of 

predicting CLP while considering the causal relationships between crews’ motivation and 

situational/contextual factors. In this regard, the proposed models (i.e., FAHP-FDEMATEL and 

FSD-FABM) and frameworks (i.e., RL-FSD-FABM and FSD-FABM-MCDM) can be used to 

provide solutions to the CLP problem.   
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1 

Chapter 1 Introduction1 

1.1  Background 

The construction industry is a multi-billion-dollar sector that contributes to a considerable amount 

of the gross domestic product of Canada. Productivity is an important facet in the construction 

industry, as it usually determines whether endeavors related to construction engineering and 

management (CEM) are successful. Construction productivity is one of the most researched topics 

in the literature because of its influence on the success of construction projects (CII 2013). 

Productivity as a key performance indicator (KPI) is a crucial element in estimating the duration 

and cost of construction operations (Hwang and Liu 2010). Studies related to construction 

productivity have mainly consisted of developing a reliable metric for measuring construction 

productivity, identifying factors that affect productivity, prediction of the productivity measure, 

identifying issues that can contribute to improvement or loss of productivity, and devising of 

strategies for improvement of the productivity. These topics combine to make up a significant 

 
1 Parts of this chapter have been published in Journal of Management in Engineering: Kedir, N. 

S., Raoufi, M., and Fayek, A. R. (2020). "Fuzzy agent-based multicriteria decision-making model 

for analyzing construction crew performance.” Journal of Management in Engineering, 36(5), 

04020053; Parts of this chapter have also been submitted for publication in Automation in 

Construction: Kedir, N. S., and Fayek, A. R. (2022).” Hybrid Fuzzy System Dynamics and Fuzzy 

Agent-Based Modeling of Crew Motivation and Productivity in Construction." Automation in 

Construction, 61 manuscript pages, submitted Oct. 2022. Parts of this chapter have also been 

submitted for publication in Advances in Civil Engineering: Kedir, N., Siraj, N.B., and Fayek, A. 

R. (2022), “Application of System Dynamics in Construction Engineering and Management: 

Content Analysis and Systematic Review.” Advances in Civil Engineering, 49 manuscript pages, 

submitted Oct. 2022. 
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portion of the productivity research in the last 15 years (Dixit et al. 2019) and are usually 

considered as “the productivity problem.” 

In the literature, several definitions of productivity are presented. In its simplest form, productivity 

can be defined as the amount of goods and services produced by a productive factor within a unit 

of time, measured by a productivity index. This index can take any pre-defined form and simply 

be expressed as the ratio of input to output (or vice-versa). In this regard, productivity is most 

commonly measured using the ratio of measured output (completed work) to measured input such 

as labour, material, and equipment (Tsehayae and Fayek 2016; Zhao and Dungan 2019; Johari and 

Jha 2020). This ratio can be applied to capture productivity at the crew, activity, and/or project 

levels, where higher values are desired. There are also higher levels of productivity study, whereby 

factors that affect the measured productivity at the organizational-, provincial-, national, and 

global- level are assessed (CII 2013; Kedir et al. 2022). Labour is the primary input resource that 

is used to produce outputs in labour-intensive activities. Construction labour productivity (CLP) 

can be defined as the ratio of completed work or output, to work effort, often measured in labour 

hours (CII 2013; Zhao and Dungan 2019). In this regard, measuring CLP at the activity level is 

crucial to determining project performance, which in turn affects the profit margins of construction 

companies. 

The problem of modeling CLP – that is, predicting, managing, and consequently improving it –is 

faced by construction organizations, which include contractors, owners, consultants, labour 

groups, and government owners. This is mainly due to the nature of CLP: its behaviour as a 

measurement susceptible to influences from different contributing variables. These variables are 

dynamic, have different natures (i.e., subjective versus objective variables), and representing them 
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can be complex. For example, for a productivity model that takes into account several inputs, the 

change in productivity level during initial, middle, and final stages of construction renders the 

productivity model time-dependent, making the problem dynamic in nature. The challenge of 

quantifying variables that are usually linguistic in nature (weather, crew motivation, crew skills, 

etc.) can also further complicate the modeling process. Furthermore, the productivity problem 

entails predicting and improving the CLP measure, as having the best possible CLP is paramount 

for the success of any construction project undertaking. While studies on conventional methods of 

improving CLP, such as ensuring job security, controlling absenteeism, financial incentives, 

facilitating communication and increasing togetherness between members, have been present, 

innovative approaches that aim to improve productivity by focusing on different levels of detail 

(i.e., activity, crew, and project levels) needs to be studied using approaches that are able to 

measure and capture the construction process, which is often dynamic, subjective, and uncertain 

in nature. 

1.2  Problem Statement 

In productivity modeling, there is a challenge to incorporate a combination of inputs of factors 

affecting productivity, to develop a CLP model at different levels of detail. The problem of 

proposing a comprehensive model of CLP entails simultaneously capturing: i) the complexity 

arising from the subjective nature of some variables affecting CLP, owing to the use of linguistic 

terms such as low temperature, poor safety practices; ii) the complexity arising from the dynamic 

nature of variables, whose values are continuously changing throughout the project duration; iii) 

the complexity arising from the emerging behavior of some variables affecting CLP, such as crew 

motivation; iv) the complexity arising from the causal interrelationships between factors affecting 

CLP, which are context dependent, and vary across different situations in which tasks are 
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performed. Such modeling challenge needs to be approached using hybridization of several 

individual modeling techniques, that are capable of addressing each set of problems. Modeling the 

nature of interdependencies among factors affecting CLP necessitates that some aspects of the 

model be captured as a global system using modeling techniques such as SD, and that other aspects 

of the model captured as a local system using modeling techniques such as ABM, which allow a 

global behavior to emerge from individual interactions. Moreover, the subjective nature of some 

variables affecting CLP also necessitates that some aspects of the model be captured using fuzzy 

set theory. 

SD is appropriate for modeling problems that are “broad in details, holistic in perspective, 

continuous in behaviour, and also featuring qualitative or quantitative data” (Alzraiee et al. 2015). 

SD is widely used to solve problems with a high degree of complexity and dynamism to help 

policy makers and decision makers analyze different strategies, formulate policies, and improve 

the process of decision making (Siraj and Fayek 2019). Hence, SD has been a preferred approach 

in model construction systems, as it can be used to implement and understand the dynamics of 

complex processes that are not understood by other means (Abotaleb and El-adaway 2018). With 

the increased use of computer simulation approaches, the role of SD in capturing complex 

construction systems is becoming ever more pronounced, both as a standalone modeling approach 

and as part of hybrid models. In this regard, researchers need a more focused insight into SD’s 

capabilities for capturing different construction systems, which can be accomplished through a 

comprehensive study of the SD literature as in this state-of-the art study of SD application within 

different CEM research areas. Current works related to an SD literature review and content 

analysis in CEM are not exhaustive in terms of the number of papers covered per journals or range 

of years assessed, and they lack a focused analysis that proposes potential avenues for SD 
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hybridization. Furthermore, the literature lacks a state-of-the-art study on SD that can guide 

researchers by analyzing the SD research performed in recent years. Hence, the first gap that is 

addressed in this dissertation is the lack of state-of-the-art on SD research, which provides 

guidelines for effective SD modeling, and ways for implementing SD hybridization to solve 

various problems in CEM. 

There are several approaches in the literature for capturing the existing complex causal 

relationships for dynamic modeling of productivity. Some of the most commonly used methods 

include literature reviews, modelers’ assumptions, and verifying of model assumptions using focus 

groups, questionnaire surveys, and/or semi-structured interviews. Literature review methods are 

limited because relationships between model variables can only be obtained through literature if 

there is existing knowledge about those relationships. Moreover, methods such as focus groups, 

questionnaires, and surveys entail aggregating the inputs of several experts that take part in the 

assessment process. These experts are usually heterogenous, meaning they have varying level of 

expertise, which makes aggregation of information that is needed for the productivity modeling 

process complex. The second gap that will be addressed in this thesis is the lack of a systematic 

and structured methodology to establish causal relationships in the dynamic CLP modeling 

process, which involves 1) aggregating the inputs of heterogenous experts, 2) assessing the 

importance of, and causalities between the factors affecting CLP and 2) constructing causal loop 

diagrams (CLDs) which illustrate the dynamic relationships. 

To model and predict construction productivity as a performance measure, it is important to 

properly capture the construction environment in which activities are performed. Such a 

construction environment is unpredictable, context dependent, and complex, whereby several 
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parameters influence the productivity measure either directly or indirectly (Tsehaye and Fayek 

2016). This is because construction projects are performed in a dynamic environment that results 

from numerous interactions between contextual/situational factors related to task, resources, 

management, project characteristics, and work setting conditions (Raoufi and Fayek 2018). SD 

can capture interrelationships between variables to model complex and dynamic construction 

systems (Siraj and Fayek 2021). However, SD is unable to capture uncertainties arising from 

subjective or imprecise information in construction systems (Gerami Seresht and Fayek 2020). 

Moreover, SD is not equipped to deal with model parameters that locally model interactions and 

analyze results to capture emerging phenomena. ABM is capable of dealing with problems that 

need to be modeled locally, such as the effect of crew interactions on crew motivation. ABM is 

able to predict the overall behaviour of systems by modeling the behaviour of system agents, 

thereby enabling the capture of complex construction systems, even when there is little information 

about the overall system behaviour (North and Macal 2007; Raoufi and Fayek 2018). However, 

both SD and ABM lack the ability to capture subjective uncertainty between variables and system 

relationships (Kedir et al. 2020), which necessitates the use of fuzzy-hybridized forms of these 

modeling approaches, or FSD and FABM. Furthermore, the CLP problem entails modeling 

subjective variables that affect the productivity measure, such as weather, crew skill, quality of 

supervision, and crew behavioural skills such as co-operation and teamwork (Raoufi and Fayek 

2018; Fayek 2020). These variables interact with other input variables of emerging behaviours 

such as crew motivation, job satisfaction, and congestion. In this regard, using a single modeling 

technique fails to properly represent the inputs and processes of construction projects for a more 

accurate prediction of CLP. Combining different modeling approaches enables the modeler to 

produce a more powerful hybrid model that is capable of a more comprehensive abstraction by 



 

 

7 

capturing the effects of multiple system variables such as subjectivity, dynamism, emerging 

behaviours. Therefore, the third gap that is addressed in this research is the lack of a methodology 

in the literature, to capture different features of the construction environment, which include 

subjective variables, dynamic causal relationships, and complex emerging behaviours, for 

modeling of CLP. 

The other aspect of the productivity problem is a decision-making problem, which involves 

devising strategies to improve the productivity measure. In this regard, decision making is a critical 

aspect of construction-related processes. It usually requires that several criteria be analyzed before 

a decision is made, usually in an environment of differing stakeholder priorities, insufficient 

information, and disagreement among experts. Such endeavor requires that decisions be made 

using techniques that can handle the multi-criteria and uncertain nature of the construction 

environment. For example, policies must be economical, schedule oriented, and compliant with 

safety requirements. In this regard, the fourth gap that is addressed in this research is the need for 

a decision-making framework that captures the dynamic construction environment, and proposes 

productivity improvement strategies subject to multiple criteria.  

Another feature of the decision-making problem is the optimization aspect of finding solutions. In 

devising productivity improvement strategies, the optimal solution is often selected from a set of 

finite solutions. However, the optimization problem is everchanging, because the environment, 

which includes the number of activities and the type and number of allocated resources, changes 

during execution of the project. A review of the literature emphasizes the need for an effective 

decision-making tool that can be easily used by stakeholders in accordance with their preferences 

for improving project performance (i.e., CLP) with respect to constraints such as time, cost, and 
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quality. Hence, the fifth gap that is addressed in this research is the lack of knowledge in the 

construction literature regarding decision-making frameworks with the ability to learn, adapt with 

the dynamically changing construction environments, and propose an optimal set of solutions for 

construction productivity problems. This chapter utilizes the complementary aspects of ABM and 

RL to propose a framework capable of performing dynamic optimization during the decision 

making process. Agents in RL algorithms learn more efficient solutions even as the environment 

changes. ABM is capable of handling very complex real-world systems often containing large 

amounts of autonomous, goal-driven, and adapting agents (Chan et al. 2010). By incorporating 

FSD-FABM in an RL process, necessary features that support environment modeling, such as 

system parameters, system behaviours, and rules, are provided in order to enable an efficient 

representation of the dynamic construction environment and provide the RL platform with the 

necessary features to support environment modeling. 

1.3  Research Objectives 

The hypothesis of this research is as follows: 

Crew motivation and situational/contextual factors in a construction environment affect the 

crew productivity; and this complex and dynamic interrelationship can be effectively modeled 

using a hybrid FSD-FABM approach, to predict CLP and facilitate strategic decision making 

for productivity improvement. 

The main objective of this research is to propose a model that is able to predict CLP while 

accounting for dynamic causal relationships and complex adaptive systems within the construction 

environment. The detailed objectives of this research are grouped under the following five main 

categories. 
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1. To address the lack of a comprehensive systematic review and content analysis in the 

application of SD in CEM research, and to assess the potential for SD hybridization with 

other modeling approaches, thereby addressing the first gap. 

2. To provide a systematic and structured methodology to define causal relationships 

between the most significant factors that affect CLP . This thereby addresses the second 

gap. This objective includes:  

a. To identify a set of criteria to perform expert assessment for assigning importance 

weights of heterogenous experts in the area of productivity research, to enable a proper 

aggregation of expert inputs during modeling. 

b. To determine causal relationship mapping between crew motivation, and 

situational/contextual factors affecting CLP. 

3. To propose a model that is able to capture subjective variables, dynamic relationships, 

and complex adaptive systems for a more comprehensive modeling of the construction 

environment; thereby addressing the third gap. 

4. To propose a decision support system that can allow construction practitioners to 

evaluate economically feasible solutions for improving CLP; which is able to take into 

account criteria such as time, cost, and safety for selecting the best alternatives from 

possible list of solutions.; thereby addressing the fourth gap. 

5. To propose an optimization-based decision support system that has the ability to learn, 

and adapt with the dynamically changing construction environments to propose an 

optimal set of solutions for improving CLP; thereby addressing the fifth gap. 
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1.4 Expected Contributions 

The expected contributions of this research are categorized under academic and industrial 

contributions to best elaborate the relevance to academic researchers and construction industry 

practitioners, respectively. 

1.4.1 Academic contributions 

The expected academic contributions of this research are as follows: 

1. Providing a state-of-the-art on SD research, by presenting a detailed content analysis and 

comprehensive review of SD literature and assessing the potential for SD hybridization 

with other modeling and simulation approaches in order to identify modeling issues related 

to the use of SD in CEM and productivity modeling. 

2. Proposing a novel FAHP-FDEMATEL method in order to provide a systematic and 

structured methodology to define causal relationships between the most significant factors 

that affect productivity and analyze their interrelated impacts. 

3. Proposing a novel hybrid FSD-FABM that is able to capture subjective variables, dynamic 

relationships, and complex adaptive systems for a more comprehensive modeling of the 

construction environment. 

4. Proposing a novel FSD-FABM-MCDM methodology that will help improve decision-

making processes in construction by expanding the scope of MCDM through integration 

with FSD-FABM. 
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5. Proposing a novel RL-FSD-FABM framework that can be used in optimization-based 

decision making, by integrating the computational efficiency of RL with modeling 

capabilities of FSD-FABM. 

1.4.2 Industry contributions 

The expected industry contributions of this research are as follows: 

1. To provide construction practitioners with the state-of-the-art in SD research, and provide 

useful perspective by presenting practical applications of SD in the construction industry, 

which serves as a useful reference in facilitating the effective implementation of SD 

modeling in construction projects. 

2. Providing a hybrid FSD-FABM approach that can help construction practitioners identify 

reasons for CLP loss, and track the causal relationships between factors affecting CLP, to 

facilitate a more proactive planning.  

3. Providing a predictive FSD-FABM that can help construction practitioners during the 

estimation process in the planning stage, by providing valuable insight of crew output (i.e., 

CLP). 

4. Providing construction practitioners with a framework to make informed decisions and 

adopt economically feasible strategies for improving the CLP of their crews. 

1.5  Research Methodology 

The objectives of this research are achieved in five stages, as shown in Figure 1.1 The details of 

the methodology are elaborated in subsequent sections.  
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1.5.1 First Stage 

The research commenced by conducting a comprehensive literature review on productivity in 

general, with a specific focus on crew productivity in construction. Several definitions of 

productivity were assessed, and different levels of productivity measurements were studied. 

Moreover, methods of productivity measurement and productivity modeling approaches were 

investigated. After conducting the literature review, the main theoretical framework and the 

rationale for the study were established. Past studies focusing on productivity and the different 

modeling techniques used to capture construction systems were examined to identify the research 

gaps, as outlined in Section 1.2. Accordingly, the productivity problem was proposed, which 

mainly has two major components: 1) predicting crew productivity and 2) devising effective 

strategies to improve productivity. 

1.5.2 Second Stage 

In the second stage, a comprehensive review of SD research was conducted to examine the 

applicability of SD as an effective modeling technique for capturing dynamic and complex 

construction systems. With the increased use of computer simulation approaches, the role of SD 

in capturing complex CEM systems is becoming ever more pronounced, both as a standalone 

modeling approach and as part of hybrid models. A systematic review and content analysis of 213 

articles obtained from 21 high ranking peer-reviewed journals was performed in order to analyze 

the application of SD in CEM and derive directions for future research. The modeling issues   
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Figure 1.1 Research methodology stages. 
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associated with SD and the need to hybridize it with other modeling approaches were identified, 

and the potential of hybridization of fuzzy logic and ABM with SD was established in order to 

identify the best modeling approach for the predictive component of the productivity problem. 

1.5.3 Third Stage 

In the third stage of this research, a comprehensive investigation of the causal relationships 

between factors affecting crew motivation and situational/contextual factors for dynamic modeling 

of CLP was performed. This stemmed from the need to capture complex causal relationships in 

construction systems for dynamic modeling of CLP, which involves the process of eliciting the 

inputs of heterogenous experts. These heterogenous experts come from different backgrounds and 

have varying level of expertise. FAHP was used to weigh the inputs of the heterogenous experts 

by considering multiple criteria that are specific to the area of construction productivity. 

Consequently, a systematic and structured method for assessing the causal relationships between 

factors affecting CLP, while considering the inputs of heterogenous experts in the process, was 

developed using an integrated FAHP-FDEMATEL method. This FAHP-FDEMATEL method is 

novel in the area of productivity research. In this stage, a systematic method to gather group 

knowledge from individuals with different level of expertise, to capture causal relationships 

between factors, and to visualize these complex cause-and-effect interrelationships for 

productivity research is proposed using the weighted FDEMATEL approach. 

1.5.4 Fourth Stage 

In the fourth stage of this research, a novel FSD-FABM was developed in four phases, namely: 1) 

development of qualitative modeling of FSD to identify model boundary and level of aggregation, 

2) development of quantitative modeling of FSD to quantify the effect of factors affecting 
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productivity, 3) development of the FABM to model the effect of motivation, and 4) development 

of the information exchange interface to hybridize FSD and FABM. In the first phase, the 

qualitative modeling of FSD deals with identifying model boundary and level of aggregation. Once 

the nature of all the variables to be used in the FSD component is identified, the variables are 

categorized further into subjective and objective variables. Subjective variables are those variables 

which are best defined using fuzzy numbers and membership functions. Objective variables such 

as crew size, production rate, and crew composition have quantitative metrics and can therefore 

be expressed with numeric expressions using crisp numbers or probability distributions. Next, the 

causal relationships between the factors are formulated to determine the dynamics between CLP 

and the situational/contextual variables. In the second phase, the quantitative modeling stage 

defines hard variables and soft variables (Gerami Seresht and Fayek 2018). Hard variables are 

variables whose values can be computed through either one of deterministic or probabilistic 

approaches. For example, crew size is measured as number of crew members in the crew, minus 

the number of absentees. Soft variables are best defined by fuzzy sets, which are represented using 

linguistic terms to signify a given concept (e.g., “very low” motivation, or “high” crew morale). 

Next, the causal relationships and the stock and flow variables are determined quantitatively. For 

those variables whose relationships can be described using mathematical equations, the 

relationships are obtained using existing mathematical equations or statistical methods such as 

regression analysis, depending on data availability. For those relationships that are difficult to 

define using mathematical equations, fuzzy set theory is applied. In the third phase, the FABM is 

developed using four steps, namely defining 1) the FABM environment and processes, 2) agent 

attributes and behaviours, 3) interactions between agents, and 4) agent behavioural rules. In the 

first step of FABM, the main environment of the FABM is identified, the agents taking part in the 
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ABM are identified by answering the basic question of “what are the agents?” and the overall 

model architecture is proposed. Next, for each agents and agent group defined in the previous step, 

the corresponding attributes are defined. This can be achieved using either one of the three 

approaches, namely using 1) deterministic variables, 2) probabilistic variables, or 3) subjective 

variables. After the attributes and behaviours of each agent are defined, the next step is to define 

how different agents interact. In this chapter, the interaction of the crew agent is defined, which 

exhibits behavioural changes resulting from observing the behaviours of other crews. In the fourth 

phase, information exchange is defined, and interface variable is selected to hybridize FSD with 

FABM. In this chapter, crew motivation is the output of FABM, which is used in the FSD model. 

The hybridized FSD-FABM of CLP is then validated using a case study. Data collected on an 

industrial project was utilized to formulate a predictive CLP model of construction crews 

performing activities. The FSD-FABM is then verified using different forms of verification tests. 

1.5.5 Fifth Stage 

In the fifth stage, the strategic decision-making aspect of the productivity problem is addressed by 

proposing two decision-making models. The first is a novel FSD-FABM-MCDM, which addresses 

the need for decision support tools for use in construction, where problems exist in a dynamic 

environment with subjective uncertainties. This was achieved by integrating the capacity of FSD-

FABM to address dynamic and subjective problems, with MCDM’s capacity to address multiple 

and sometimes conflicting expert opinions. The model can be adapted to several construction 

problems to help decision makers prioritize and select from several strategies intended to improve 

CLP, and other KPIs. The second model is a novel RL-FSD-FABM, which addresses the need to 

incorporate multiple system variables and multiple constraints during the decision making process 
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in order to improve the CLP measure. A framework to produce an optimal set of solutions by 

simulating complex construction environments using FSD-FABM and optimizing dynamic 

parameters using RL is proposed. 

1.6 Thesis Organization 

Chapter 1 presents a brief background of the research, the problem statement that was established 

in the form of the productivity problem, and the objectives of this research. The expected academic 

and industrial contributions and the research methodology are also provided in this chapter. The 

rest of this dissertation is organized as follows. 

Chapter 2 presents a brief background on construction modeling techniques used in productivity 

research, and focuses on the role of FSD and its applications in construction research. In addition, 

the state-of-the-art in SD modeling was presented by performing a systematic review and content 

analysis of 213 articles, obtained from 21 high-ranking peer-reviewed journals, to analyze the 

application of SD in CEM and derive directions for future research. The foundation for use of 

hybridized FSD-FABM in modeling productivity is also discussed in this chapter. 

Chapter 3 presents a novel FAHP-FDEMATEL model to provide a systematic and structured 

method for determining causal relationship mapping between factors affecting productivity. This 

weighted FDEMATEL model is able address part of the productivity problem by proposing a 

systematic and structured methodology that integrates fuzzy system theory with the modeling 

approaches AHP, and DEMATEL, for use in dynamic modeling of productivity. 

Chapter 4 presents the overall methodology and detailed steps for developing the hybrid FSD-

FABM. This chapter discusses three major components of the modeling process, namely, the FSD, 

FABM, and the hybridized FSD-FABM components.  



 

 

18 

Chapter 5 presents the verification of the FSD-FABM using case study. This chapter also describes 

the how data collected was utilized in the model. Other verification techniques that were applied 

on the FSD-FABM, such as structural verification and behavioral verification, are also discussed 

in this chapter. 

Chapter 6 presents two novel modeling methods for strategic decision making, namely, the FSD-

FABM-MCDM, and the RL-FSD-FABM. The application of each decision-making model and the 

need to propose strategic decision-making solutions using each of the modeling techniques is also 

presented in this chapter. 

Chapter 7 presents the conclusions, contributions, and limitations of this research, and also 

proposes recommendations for future research on construction productivity. 
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Chapter 2 Application of System Dynamics in Construction Engineering and 

Management: Content Analysis and Systematic Literature Review2 

2.1 Introduction 

In construction engineering and management (CEM) research, simulation enables practitioners to 

understand underlying behaviours of construction systems by developing and experimenting with 

their computer-based representations (AbouRizk et al. 2011). Traditional approaches to solving 

construction problems—examples include typical networking techniques such as critical path 

method (CPM), program evaluation and review technique (PERT), time–cost trade-off analysis, 

and resource leveling and allocation—fail to capture the intricate interdependencies between 

construction systems. In contrast, simulation has overarching benefits in CEM research, because 

experimentation with varying scenarios enables managers to obtain reliable results and optimize 

processes for efficiency (AbouRizk et al. 2011). The three major paradigms in construction 

simulation modelling are discrete event simulation (DES), agent-based modelling (ABM), and 

system dynamics (SD). 

DES is a modelling technique used to capture systems, such as construction processes, that occur 

in discrete units of time (Raoufi et al. 2018). DES allows users to interact with the model and 

observe the model’s changes as the simulation clock advances. ABM comprises discrete entities 

called agents, which have their own behaviours, characteristics, and rules of interaction. ABM is 

 
2 This chapter has been submitted for publication in Advances in Civil Engineering: Kedir, N., 

Siraj, N.B., and Fayek, A. R. (2022), Application of System Dynamics in Construction 

Engineering and Management: Content Analysis and Systematic Review." Advances in Civil 

Engineering, 49 manuscript pages, submitted Oct. 2022. 
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a bottom–up simulation technique that uses individual agents’ defined behavioural characteristics 

to produce global behaviour resulting from non-linear agent interactions (Raoufi and Fayek 2018). 

The SD modelling approach focuses on capturing the dynamic nature of systems that usually 

exhibit varying properties in relation to time and through multiple feedback processes, interactions, 

and dependencies  (Nasirzadeh et al. 2008). SD is a top–down modelling approach that initially 

abstracts the system at a higher (macro) level to identify variables that affect the state of the system. 

In terms of level of abstraction, DES is modelled with low to medium abstraction, where more 

details are necessary to represent the system than the other two modelling approaches. ABM can 

incorporate different levels of detail, ranging from low abstraction with more details to high 

abstraction with fewer details. SD is usually modelled at higher abstraction and analyses the system 

at the macro level. 

CEM involves “the development and application of techniques that improve organizations’ 

abilities to plan, structure, forecast, control, and evaluate projects in order to deliver results that 

meet or exceed performance objectives such as time, cost, productivity, quality and safety” (Fayek 

and Lourenzutti 2018). Construction projects exhibit complexity stemming from 

interdependencies between system components, such as human, environmental, technical, and 

organizational factors that affect construction processes (Nasirzadeh et al. 2008). These 

interdependencies also involve non-linear relationships with multiple feedback processes that are 

able to change through time, which makes the overall problem of CEM system abstraction highly 

dynamic (Sterman 2002) SD is appropriate for modelling problems that are “broad in details, 

holistic in perspective, continuous in behaviour, and also featuring qualitative or quantitative data” 

(Alzraiee et al. 2015). SD is widely used to solve problems with a high degree of complexity and 

dynamism to help policy- and decision-makers analyse different strategies, formulate policies, and 
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improve the process of decision making (Siraj and Fayek 2019). Hence, SD has been a preferred 

approach in CEM, as it can be used to implement and understand the dynamics of complex 

processes that are not understood by other means (Abotaleb and El-adaway 2018). 

With the increased use of computer simulation approaches, the role of SD in capturing complex 

CEM systems is becoming ever more pronounced, both as a standalone modelling approach and 

as part of hybrid models. In this regard, researchers need a more focused insight into SD’s 

capabilities for capturing different CEM systems, which can be accomplished through a 

comprehensive study of the SD literature, as in this state-of-the-art study of SD application within 

different CEM research areas. Previous studies related to an SD literature review and content 

analysis in CEM are not exhaustive in terms of the number of papers covered per journal or range 

of years assessed, having only performed reviews of abstracts and studied citation records. They 

also classified areas of SD research within a limited set of published SD literature and lacked 

focused analysis that proposes potential avenues for SD hybridization. Furthermore, the literature 

lacks a state-of-the-art study on SD that can guide researchers by analysing the SD research 

performed in recent years. This paper provides a content analysis and critical review of existing 

literature related to the application of SD in CEM. 

The objectives of this chapter are to: 1) provide a comprehensive review of SD journal articles and 

content analysis to profile the selected articles based on researchers’ affiliations, case study 

projects, and geography; 2) identify CEM research areas and assess past studies and current trends 

in relation to the role of SD in these research areas ; 3) assess the potential for SD hybridization 

with traditional methods, and other modelling and simulation approaches; and 4) identify 

modelling issues related to the use of SD in CEM. 
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2.2 Background  

Productivity is one of the most crucial metrics that is used to assess overall crew performance in 

construction (Nasirzadeh and Nojedehi 2013). Construction crew productivity has been effectively 

defined as the ratio of measured output – completed work, to measured input – work effort, by 

several studies (Zhao and Dungan 2019; Johari and Jha 2020; Yi and Chan 2014). This ratio can 

be applied to capture productivity at the crew, activity, and/or project levels. There are also higher 

levels of productivity study, whereby factors that affect the measured productivity at the 

organizational-, provincial-, national, and global- level are assessed (Kedir et al. 2022a; CII 2006). 

Previous studies have attempted to address the productivity problem in part, or as a whole 

(Nasirzadeh et al. 2020; Rahman et al. 2019; Hasan et al. 2018; Kisi et al. 2017). Focusing on the 

studies that put modelling of crew productivity as a center piece, the implemented models in those 

studies can be summarized as: statistical methods (Ghodrati et al. 2018; Gurmu and Ongkowijoyo 

2020; Hiyassat et al. 2016), artificial neural network (Gutiérrez-Ruiz et al. 2020; Golnaraghi et al. 

2019; Ma et al. 2016), discrete event simulation (Plamenco et al. 2021; Abbasi et al. 2020; Larsson 

et al. 2016), agent based modeling (Wu et al. 2022; Dabirian et al. 2021; Jabri and Zayed 2017; 

Shehwaro et al. 2016), and system dynamics (Al-Kofahi et al. 2020; Javed and Pan 2018; Gerami 

Seresht and Fayek 2018; Khanzadi et al. 2019). These approaches have been used individually or 

in the context of hybrid models. Fuzzy logic concepts have also been incorporated into these 

approaches, some of which include: (Gerami Seresht and Fayek 2018; Nojedehi and Nasirzadeh 

2017; Mirahadi and Zated 2016). In this regard, the modeling dimension in the productivity 

research has mostly emphasized on the need to consider crew productivity as a dynamic problem 

owing to the dynamic nature of construction projects. Moreover, dynamic modeling approaches 

are preferred owing to the need to track project changes that happen over time (Gerami Seresht 



 

23 

 

and Fayek 2018), and need to capture the causal relationships formed from interactions among 

these factors (Kim et al. 2020).  

The concept of SD was first introduced by Jay Forester in the mid-1950s to model complex systems 

(Sterman 2000). Since its inception, SD has been widely applied in different fields including 

agriculture, economics, health care, defense, education, and engineering. Sterman (2000) stated 

that in SD modelling, the initial step is problem articulation (boundary selection), which involves 

identifying key variables and their behaviours. This is followed by formulating the dynamic 

hypothesis, which involves identifying model boundaries, subsystems, causal loop diagrams 

(CLDs), delays, and stock and flow maps. The simulation is then formulated and used to test 

different model scenarios to eventually design and evaluate policies. Figure 2.1 depicts the major 

components of an SD model. In SD modelling, CLDs help to elicit mental models of experts, 

represent causal relationships, and depict important feedback loops within the system. The 

polarities (either positive “+” or negative “–”) denote the causal influences among system 

variables. A positive link implies that variables change in the same direction, while a negative link 

indicates that variables change in opposite directions (Boateng et al. 2012). Stocks are represented 

by accumulation or depletion, which result from differences between inflows and outflows at any 

point in time. Flows are the rates at which a stock varies over a given amount of time (Sterman 

2000). Delays are described by the lag between inputs and outputs and are used to model elapsed 

time between cause and effect, which is indicated by a double line perpendicular to the causal link 

in SD (Boateng et al. 2012). 
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Figure 2.1 Components of system dynamics: A. Causal loop diagram; B. Stock and flow 

diagram. 

Previous SD reviews focused mostly on SD’s application to a specific CEM area, namely strategic 

management (Cosenz and Noto 2016), supply chain management (Rebs et al. 2019), or 

transportation (Shepherd 2014). Some studied the application of SD on limited aspects of project 

management (Lyneis and Ford 2007). Others studied critical review of SD research to a broader 

extent outside the scope of CEM (Kunc et al. 2018). Moreover, previous studies lacked a more 

focused and purposeful investigation of SD’s application in major CEM research areas. This paper 

provides a state-of-the-art content analysis and systematic literature review that covers a wide 

scope of CEM fields and provides researchers with a more focused insight on SD developments 

and trends in CEM research. 

2.3 Methodology 

After reviewing several studies that performed content analysis and literature review related to 

CEM (i.e., Abotaleb and El-adaway 2018; Jang et al. 2019; Kifokeris and Xenidis 2017; Liu et al. 

2019; Lyneis and Ford 2007)), this chapter utilized a multi-phase methodology, as shown in Figure 

2.1 and elaborated in the following subsections. 
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Figure 2.2 Research methodology for this chapter. 
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2.3.1 Stage 1: Journal selection 

In the first stage, peer-reviewed journals with important impact and prominence in the field of 

CEM and which hosted published research works in the area of SD between 1995 and 2021 were 

selected. During the selection process, previous studies on journal rankings in CEM (e.g., Wing 

1997) were referenced. Journals that had a CiteScore of ≥2.0 in the 2020 Scopus ranking and 

journals that had a journal impact factor of ≥2.0 in the 2020 Institute for Scientific Information’s 

(ISI) Web of Science journal citation report were considered. Only peer-reviewed journals in the 

area related to SD were selected. Books, book chapters, book reviews, conference papers, 

editorials, forums and discussions, letters to the editor, indexes, introductions, forewords, seminar 

reports, briefing sheets, and comments were excluded. The following 21 journals were thus 

selected: Accident Analysis and Prevention (AAP), Automation in Construction (AC), Building and 

Environment (B&E), Canadian Journal of Civil Engineering (CJCE), Computer-Aided Journal of 

Civil and Infrastructure Engineering (CAJCIE), Construction Innovation (CI), Construction 

Management and Economics (CME), Engineering Construction and Architectural Management 

(ECAM), European Journal of Operational Research (EJOR), International Journal of Civil 

Engineering (IJCE), International Journal of Construction Management (IJCM), International 

Journal of Project Management (IJPM), Journal of Civil Engineering and Management (JCiEM), 

Journal of Computing in Civil Engineering (JCCE), Journal of Construction Engineering and 

Management (JCEM), Journal of Infrastructure Systems (JIS), Journal of Management in 

Engineering (JME), Journal of the Operational Research Society (JORS), Korean Society of Civil 

Engineers-Journal of Civil Engineering (KSCE-JCE), Resources, Conservation and Recycling 

(RCR), and System Dynamics Review (SDR). 
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2.3.2 Stage 2: Article selection and indexing 

In the second stage, relevant articles from the selected journals were selected and indexed. Article 

searches were performed using the major available databases, namely the Web of Science, Scopus, 

Google Scholar, and the American Society of Civil Engineers (ASCE) library. Further article 

search was performed in the Wiley Online Library, Taylor & Francis, Vilnius Tech, Emerald, and 

Science Direct databases. For a more inclusive but focused search, the keyword system dynamics 

was searched in entire articles across each journal. This was done for two reasons First, introducing 

other keywords that have been alternatively used in SD articles would produce search results that 

are not within the context of SD. For example, the keyword dynamic modelling resulted in several 

articles not related to SD (e.g., ABM, fuzzy cognitive mapping, robotics). Second, executing a 

topic/abstract/keyword (T/A/K) search would limit those articles that proposed an SD model but 

do not use the specific words in any one T/A/K search result. 

The online search was performed to include articles from the advent of SD as a tool by Forrester 

in 1956 (Forrester 1968). However, the search did not produce enough relevant articles related to 

CEM prior to 1995, because relevant articles that may have been published within that period were 

not archived in the database. For example, Scopus coverage of CEM-related articles started in 

1995. Therefore, article selection was restricted to include articles published in the English 

language, in the year range between 1995 and 2021 (inclusive), and in-press articles not yet 

published in 2021. After performing the initial search in the major databases (e.g., Web of Science, 

Scopus, Google Scholar), further searches were performed in the database of each journal to find 

any missing articles and ensure completeness. As a result, 1,488 articles were downloaded and 

then indexed in Microsoft Excel. These results were further examined by reviewing the abstract, 

methodology, and summary sections of the texts to filter out articles that did not meet the 
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predetermined inclusion criteria, which were 1) the article should specifically address the issue of 

utilizing SD for modelling, and 2) the article should discuss a topic in the area of CEM. The 

abstract, introduction, and methodology sections of each paper were then examined against these 

criteria. A total of 213 articles met the inclusion criteria and were selected for further analysis.  

2.3.3  Stage 3: Content analysis and critical review 

After journal selection and article identification, further analysis of the selected articles was 

performed by studying articles that carried out a similar analysis in other related areas (Chan et al. 

2010; Olawumi and Chan 2018; Siraj and Fayek 2019; Vaidya and Kumar 2006). This content 

analysis included profiling the articles based on: 1) journal, year of publication, and number of 

authors per article, 2) university affiliation and geography of the authors, 3) project types that were 

considered in the articles, 4) research areas addressed in the articles, and 5) software used to model 

the SD problem in an article. 

2.4 Results and Discussion 

2.4.1 Descriptive and content analysis 

2.4.1.1  Profile of selected articles based on journal types and year of publication 

The 213 articles selected for further analysis were profiled based on the contributing journals and 

year of publication. The percentage contribution of each journal to the total number of articles is 

shown in Figure 2.3. More than 50% of the articles were published in seven journals: JCEM (16%), 

JME (10%), ECAM (8%), IJPM (7%), CME (6%), and IJCM (6%). Figure 2.4 shows the yearly 

contribution of each journal, tallied per a five-year period. Out of all articles, 60% (128 articles) 

were published after 2010. Close to 40% (82 articles) of the total articles were published after 
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2015, of which 53% of these publications were registered in four journals: JME (18%), ECAM 

(16%), JCEM (10%), and JIS (9%). 

 

Figure 2.3 Percentage of total selected articles published in each journal. 

 

 

Figure 2.4 Number of selected articles by journal and year of publication. 



 

30 

 

2.4.1.2  Profile of projects in the selected articles 

In this chapter, the types of projects presented in the selected articles were profiled in accordance 

with the type of construction work involved. This approach is adopted from previous studies that 

performed similar project type classification (Siraj and Fayek 2019). Table 2.1 presents the profile 

of projects in the selected articles. Of the 213 articles, 182 could be categorized under one of the 

following project types: Infrastructure projects, General type, Building projects, Power and 

energy projects, and Heavy industrial projects. A project was characterized as General type when 

no specific project type was given (e.g., design processes, development of qualitative SD models).  

Table 2.1. Profile of project types in the selected articles. 

Project type No. of articles Percentage Rank 

Infrastructure projects (e.g., highways, mass 

transit systems, tunnels, bridges, drainage 

systems, sewage treatment plants) 

74 34.74 1 

General type 57 26.76 2 

Building projects (e.g., residential, office, 

commercial, mixed development, hospitals) 

39 18.31 3 

Power and energy projects (hydroelectric plants, 

solar energy, wind power, nuclear) 

7 3.29 5 

Heavy industrial projects (e.g., chemical, 

refineries, oil sands installation) 

5 2.35 6 

Uncategorized 31 14.55 4 

Total 213 100.00 
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The analysis indicates that SD research is heavily linked with infrastructure projects. This stems 

from the significance of infrastructure projects in a county’s growth, as these projects play a key 

role in spearheading the economic development of several economic sectors(Hong et al. 2010; Yu 

et al. 2018). Infrastructure projects also cover a wide range of construcruction works that are 

usually complex and encompass a diverse nature of project requirements (Chong et al. 2016). 

2.4.1.3  Profile of application areas in the selected articles 

In this chapter, previous works by Lyneis and Ford (2007), Abotaleb and El-adaway (2018), and 

Liu et al. (2019) were used as a reference to examine most common application areas studied by 

researchers. Moreover, major construction management knowledge areas identified by the Project 

Management Institute (PMI 2013) were also used as input. The most frequently occurring 

keywords and phrases were analyzed to assist in identifying the focus of pertinent past, current, 

and future research. Consequently, the major construction application areas identified in this 

chapter are: Decision making and policy analysis; Performance; Rework and change; Scheduling; 

Risk and contingency; Resource management; Productivity; Cost planning, estimation, and 

control; Bidding and procurement; Health and safety; and Claim and contract administration. 

Based on these CEM research areas, 188 of the articles were categorized under one of these 11 

categories.  

It is important to note that intersections exist between the aforementioned application areas (e.g., 

effect of schedule delay on project cost), and some researchers have addressed more than one 

construction application area in a given article. In such cases, the research area given the most 

focus by the researchers was selected.  
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2.4.1.4  Profile of software used in the selected articles 

Analysis of the reviewed literature indicates that seven software packages have been used to 

implement SD: AnyLogic®, Dynamo™, DynaRisk, iThink®, Powersim, Systems Thinking, 

Experimental Learning Laboratory with Animation (STELLA), and Vensim. Profiling was 

performed for 106 articles that either demonstrated or discussed the use of specific software in 

their models, as shown in Figure 2.5. Selection of software depends on several factors, such as 

availability and capability. For instance, Dynamo™ is no longer distributed commercially, so 

fewer and fewer papers are implementing it. Vensim is a relatively earlier software with discrete 

event functionality and simulation capabilities for the Markov chain and Monte Carlo methods. 

AnyLogic® is a newer software that is able to support a combination of SD, DES, and ABM, is 

able to perform hybrid modelling, and offers graphical user interface (GUI) for users to execute 

several types of stand-alone or hybrid simulation. Both STELLA and iThink® offer a GUI to 

simplify user experience and are mainly SD and DES modelling software with limited ABM 

capabilities. 

 

Figure 2.5 Software used in the selected articles. 
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2.4.2  Systematic Review 

This section presents a systematic review of SD research in the main CEM application areas. The 

application areas were selected by: utilizing previous knowledge from the works of Lyneis and 

Ford (2007), Abotaleb and El-adaway (2018), and Liu et al. (2019); referring to the major 

construction management knowledge areas identified in PMI (PMI 2013); and analyzing the most 

frequently occurring keywords and phrases present in the selected articles. Next, the gaps in the 

current research are analyzed to propose potential areas for future research. In this chapter, only 

the relevant research areas are discussed.  

2.4.2.1  Decision making and policy analysis 

Beyond capturing the construction system to study causal relationships between system elements 

and feedback mechanisms, SD can be effectively applied to analyzing scenarios to devise policies 

and support decision making. In this regard, researchers and stakeholders have leaned towards the 

application side of SD and implementation of this modelling approach to devise solutions to 

different problems. In the literature, researchers have utilized SD to facilitate a systems-level 

approach to higher-level decision-making problems. The majority of early research focused on 

industry-level studies and infrastructure projects, including dynamic simulation of different 

maintenance policies for highway projects (e.g., Chasey et al. 1997; de la Garza et al. 1998; Fallah-

Fini et al. 2010). Studies related to decision making and policy analysis have since focused on 

sustainability. Yao et al. (2011) proposed a SD model for evaluating the sustainability of highway 

infrastructure projects and exploring policy scenarios to improve poor sustainability performance 

areas. Xu and Coors (2011) proposed an integrated approach for assessing sustainability of urban 

residential development, in which SD was used to quantitatively investigate and help decision-
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makers identify the developmental tendency of sustainability indicators. Zhang et al. (2014) 

proposed an SD model for assessing sustainability of construction projects. 

Within decision making and policy analysis research, the issue of sustainable infrastructure 

management has been a recurring theme. Related articles focused on studying the dynamics of 

maintenance and rehabilitation of highway projects for policy analysis and decision making 

(Andrijcic and Haimes 2017; Guevara et al. 2020; Zhang et al. 2018), environmental and economic 

impacts of infrastructure-highway projects (Ruiz and Guevara 2021). and financing of 

infrastructure projects (Hou and Wang 2021; Sihombing and Adventus Simanjuntak 2020). 

Furthermore, sustainability studies also used SD to explore the dynamics of causal relationships 

and strategies, and to realize sustainability improvement programs (Hessami et al. 2020; Ruiz and 

Guevara 2021; Thomas et al. 2016). 

Future research may potentially capture more of the complexities and dynamic relationships 

between factors while analysing their impact on strategies. Further research on incorporating 

feedback delay into SD models would allow researchers to account for the delay resulting from 

strategy selection and strategy implementation in decision making. Moreover, producing better SD 

models that consider the effect of different policies on subsystems, detailed at different levels of 

aggregation within the model to support project and organizational-level decisions, should also be 

investigated. Potential to mitigate problems related to policy optimization and scenario analysis 

exists, which can enable decision makers to produce better solutions. Furthermore, more studies 

need to be performed to study the capabilities of hybrid models to capture human and social 

behaviours and analyse the social impacts of policies in decisions modelling. 
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2.4.2.2  Performance 

Defining performance is an extensive research topic. Performance can be assessed using multiple 

metrics for gauging construction processes, practices, and outcomes and analysing their 

measurements based on previous or defined acceptable standards. Hence, performance can be 

defined differently based on the objective of a study (Raoufi and Fayek 2020). For this chapter, 

articles that primarily addressed performance as a topic and/or discussed multiple metrics (which 

are aggregated to indicate performance) were selected to be analysed under this research area 

category. Earlier studies on the applicability of SD for modelling performance focused on strategic 

management to enhance performance in construction organizations. Relevant research was 

conducted at the project and organizational levels, with more research on the latter.  

At the project level, Peña-Mora et al. (2008) used SD for strategic management of an earthmoving 

project. Park et al. (2009) proposed qualitative SD model to explore and test design-build (DB) 

alternatives for enhancing DB performance. Ford and Bhargav (2006) studied the application of 

flexible strategies for project management quality improvement. Ogunlana et al. (2003) used SD 

to explore and enhance overall performance in an organization. Tang and Ogunlana (2003) 

similarly employed SD to study and improve an organization’s performance behaviour using SD 

to suggest organizational performance improvement strategies. 

Recent studies have focused more on forecasting performance of construction projects as part of 

monitoring and control of projects to achieve their objectives. With the concept of strategic 

management as a recurring theme, these studies worked towards mitigating the effects of dynamic 

parameters that affect project performance. Leon et al. (2018) used SD to simulate dynamic 

complexities between system variables and forecast project performance. They simulated 
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intervention scenarios to improve project performance indicators, such as considering the 

interrelated structure and interaction of performance indices including cost, schedule, quality, 

profitability, safety, environment, team satisfaction, and client satisfaction. Nasir and Hadikusumo 

(2019) used SD for performance assessment by modelling the owner–contractor relationships in 

construction projects. Ecem Yildiz et al. (2020) used SD to develop a strategy map to manage 

performance in construction by assessing the impact of different strategies on aggregated 

performance measures. Kim et al. (2020) used an SD modelling approach to assess construction 

project behaviour, by studying the dynamic interrelationship between the causes and effects of 

skilled labour shortage on construction project performance indices. Wu et al. (2019) used SD to 

gain better understanding of labourers’ behavioural diversities and the associated impacts on 

project performance. Vahabi et al. (2020) proposed a dynamic simulation model to evaluate the 

impact of project briefing clarity on the impact of project performance. Soewin and Chinda (2020) 

developed a dynamics model of construction performance indices to examine and improve these 

measures in the long term. Luo et al. (2021) investigated the impact of leadership dynamics on 

project performance by using SD to simulate the variation of leadership on the evolution of project 

performance. Tang et al. (2021) used SD to carry out dynamic performance measurement and 

simulation of a public–private partnership project to construct a unified project performance 

measurement indicator system. 

In future, more studies should be conducted to capture dynamic relationships between key 

performance indicators (KPIs). This can be regarded as a two-part challenge: first, to be able to 

include more KPI parameters within the SD model, which can better assist in representing the 

construction environment; and second, properly capturing the dynamic relationships between these 

parameters to determine overall performance. Furthermore, factors affecting performance that 
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have not investigated in detail, such as out-of-sequence work (Abotaleb and El-adaway 2018), 

should be duly studied. 

2.4.2.3  Productivity 

Several researchers have used SD to study productivity problems. Earlier studies utilized SD to 

capture construction systems and observe the impact of one or multiple factors on productivity. 

Chapman (1998) studied how changing key personnel impacted design productivity. 

Prasertrungruang and Hadikusumo (2009) studied how downtime resulting from equipment failure 

impacted productivity. SD has since been applied to shape management strategies aiming to 

increase productivity. Alvanchi et al. (2012) used SD modelling tool to investigate the effects of 

different working-hour arrangements on productivity. 

Recent studies focused on simulating the construction process in order to observe in-depth 

interrelationships between different factors and the productivity measure. Nasirzadeh and 

Nojedehi (2013) used SD to model the complex relationships between different factors affecting 

labour productivity. Researchers have hybridized SD with other modelling approaches to propose 

predictive models of productivity, which can also be used to improve the productivity measure. 

Gerami Seresht and Fayek (2018) developed a fuzzy SD (FSD) predictive model for productivity 

of equipment-intensive activities using fuzzy logic principles to capture subjective variables within 

the SD model. Khanzadi et al. (2019) used a hybrid SD-ABM approach to predict and improve the 

labour productivity measure. 

Review of the literature on productivity indicates that no unified definition of productivity exists. 

Hence, SD models solving productivity problems are specific to problem context and the definition 

of productivity used in the model. In addition to capturing the impact of factors that contribute to 
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the productivity loss, the objective of productivity improvement at the project or organizational 

level entails also studying the dynamic effect of factors that positively affect productivity. In this 

regard, future research needs to propose informed solutions based on studies of the dynamic impact 

of best practices and their contribution to the overall improvement of productivity measures. 

Furthermore, opportunity exists to further investigate how some dynamic factors affect 

productivity using the increasingly popular approach of integrating SD with other modelling 

techniques. Some research potential includes further investigation into the impact of workplace 

congestion and worker motivation on productivity at the project and organizational levels using 

hybrid modelling methods such as SD-ABM. 

2.4.3  Past and Present Trends of SD Application Based on Research Application Areas 

To analyze research trends, the selected articles were categorized based on the previously defined 

research application areas and were grouped as articles published in five-year intervals between 

1995 and 2019. Publications from 2020 to 2021 were also included in the analysis, and the 

relatively fewer number of publications for this two-year period was taken into consideration. As 

illustrated in Table 2.2 and Figure 2.6, a significant increase in SD application occurred between 

2012 and 2021. Figure 2.6 shows trends in SD-based CEM research areas. Each year range in the 

figure shows the article count for five-year intervals for 1995 to 2019 and a two-year interval for 

2020 to 2021.The top five CEM research areas where SD was used as part of the modelling process 

were: Decision making and policy analysis (27%), Performance (16%), Rework and change 

(11%), Scheduling (8%), and Productivity (7%).The application of SD for the purpose of Decision 

making and policy analysis is the most discussed topic in the literature. The area of Decision 

making and policy analysis also has the most intersection with other research areas, because 
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providing solutions to a problem related to another research area can be phrased as a decision-

making problem (e.g., improving performance, reducing rework, improving project schedule). The 

research area with the second most focus is Performance. This stems from the various ways to 

define performance, which can encompass the discussion of one or multiple construction metrics 

(i.e., performance indicators), mostly at the project or organizational levels. Rework and change 

ranked third, with decreasing interest shown since 2015. 

Analysis of trends in the literature indicates clusters of research areas that researchers have shown 

interest in and those with a decreasing trend in publications. Despite the fewer number of articles, 

Scheduling and Health and safety have garnered more interest relative to previous periods in their 

respective areas. For Scheduling, researchers have capitalized on SD’s potential for modelling 

delays to address delay-related scheduling problems. Performance is another area of CEM research 

that has seen increasing publications since 1999. Conversely, Cost planning, estimation, and 

control and Bidding and procurement have received much less interest since about 2009. 
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Table 2.2 Publications under the identified research areas. 

No. CEM research area 1995–1999 2000–2004 2005–2009 2010–2014 2015–2019 2020–2021 Total 

1 Decision making & policy analysis 3 1 3 15 17 11 50 

2 Performance 1 6 4 4 9 5 29 

3 Rework & change 2 3 5 5 4 2 21 

4 Scheduling 1 6 1 1 5 1 15 

5 Resource management 1 1 4 4 2 2 15 

6 Productivity 1 1 1 3 5 2 13 

7 Health and safety 1 0 0 3 6 2 12 

8 Risk & contingency 0 1 2 4 3 2 12 

9 Claim and contract administration 0 2 3 1 2 0 8 

10 Cost planning, estimation, & control 1 2 2 0 0 2 7 

11 Bidding & procurement 1 1 4 0 0 0 6 

 5-year total 12 24 29 40 53 29 188 

 

 

Figure 2.6 Trends of SD based CEM research areas. 
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2.4.4  Integration of SD Modelling with Other Methods 

This section presents the review of the selected articles, which indicates the use of SD modelling 

with other methods (i.e., traditional methods, and other modelling approaches) to model CEM 

problems. Integration of SD with fuzzy logic is also discussed to elaborate the implementation of 

fuzzy logic principles in SD modelling to capture different problems in CEM. 

2.4.4.1  Integration of SD with Other Modelling and Simulation Techniques 

Hybridization of SD with other modelling techniques has become an increasingly preferred 

practice by researchers, as it enables modelers to use the potential benefits offered by the model 

components. In this regard, researchers have used SD to complement different simulation and 

modelling techniques, such as DES, and ABM. 

In the context of construction research, hybridization of SD with DES was an early form of hybrid 

modelling approach and goes back to the early 2000s (Alvanchi et al. 2011). Although DES is 

suitable to analyzing the stochastic nature of construction parameters at the tactical level, DES is 

not capable of modelling construction systems at the holistic level and also falls short in capturing 

dynamic feedback processes between system variables (Alzraiee et al. 2015). Hybrid SD-DES 

combines the sequential modelling benefits of DES with the dynamic modelling capabilities of 

SD. Xu et al. (2018) used a hybrid SD-DES model in which DES captured construction activities’ 

micro-level variables, such as resource allocation and predecessor–successor relationships, and SD 

represented the construction environment as a macro-level phenomenon and captured feedback 

relationships between different model subsystems (i.e., construction process, resource, project 

scope, schedule target, project performance subsystems). Alzraiee et al. (2015) used SD-DES 

modelling for dynamic planning in which operational-level parameters (i.e., duration, activity 
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sequence) were modelled using DES, and the dynamics arising from interactions between the 

model’s variables were modelled using SD. Similarly, other researchers have used DES to capture 

sequential processes and other operational model parts at the micro level and SD to capture 

feedback relationships and other dynamic aspects of the model at the macro level. Some areas of 

this research include productivity (Alvanchi et al. 2011), performance (Moradi et al. 2015; Peña-

Mora et al. 2008), cost estimation, planning, and control (Peña-Mora et al. 2008), claim and 

contract administration (Menassa and Peña-Mora 2010), and resource management (Alvanchi et 

al. 2011). 

Hybridization of SD with ABM in CEM research is a relatively new topic, following the increasing 

popularity of ABM within the research community. ABM is not best suited to modelling policies, 

investigating which processes dominate in aggregated systems, and investigating aggregated 

system-level dynamics (Martin and Sclüter 2015). Nasirzadeh et al. (2018) highlighted the main 

limitations of SD, which include difficulty in modelling heterogeneous environments, as SD works 

mainly on aggregate variables, and difficulty in modelling systems that evolve through time, as 

the system’s structure is fixed in SD. Thus, hybrid SD-ABM uses SD to capture higher-level 

dynamics, complex feedback relationships, and continuous factors and ABM to model micro-level 

variables, complexities, and emerging behaviours arising from agent interactions as well as the 

spatial nature of agent behaviours (Al Hattab and Hamzeh, 2018). Some examples include the 

hybrid SD-ABM by Khanzadi et el. (2019), in which SD was used to simulate continuous factors 

affecting labour productivity and their dynamic feedback relationships and ABM was used to 

model congestion, which results from interactions between different agents. Nasirzadeh et al. 

(2018) used hybrid SD-ABM to model construction workers’ safety behaviour, where SD was 
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used to capture multiple governing feedback relationships of several continuous variables and 

ABM was used to capture the complexity that emerges from agent interactions. 

2.4.4.2   Integration of SD modelling with fuzzy logic 

The fuzzy logic approach, introduced in 1965 by Zadeh (1965), is an extension of classical Boolean 

logic to handle real-world parameters by enabling mathematical translation of linguistic variables. 

Fuzzy logic theory is applicable in modelling CEM problems whose variables exhibit subjectivity 

or vagueness and require reasoning with ambiguous, incomplete, and/or imprecise data (Zadeh 

1965). 

Researchers have integrated fuzzy logic with SD to produce FSD models. Fayek (2020) discussed 

the importance of incorporating fuzzy logic to model CEM problems and summarized the aspects 

of CEM problems that are best suited for fuzzy logic modelling and fuzzy hybrid techniques. Some 

of these aspects include: when there is a reliance on experts for decision making based on 

subjective information and experience; when variables are imprecise or unstructured and there is 

a need to capture the complex relationship between these variables; and when the need arises to 

facilitate experts’ decision making using linguistic terms instead of strict numerical terms. In this 

regard, FSD models are able to capture real-world systems with non-probabilistic (i.e., systems 

with subjective variables or linguistically expressed information) and probabilistic uncertainties 

(Levary 1990). 

In the CEM literature, fuzzy logic has been used in FSD modelling for two purposes. First, in the 

qualitative stage of SD modelling, FSD is used to define model variables whose nature cannot be 

expressed using crisp values or probabilistic terms and to qualitatively define causal relationships 

between these variables (Gerami Seresht and Fayek 2020), which include factors such as crew 
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motivation, haul road condition, adequacy of maintenance program, and familiarity with new 

techniques. Fuzzy logic can be used with other methods to identify variables and capture causal 

relationships within the FSD model. Siraj and Fayek (2021) and Rostamnezhad et al. (2020) used 

expert inputs in their FSD models, and they used fuzzy decision-making trial and evaluation 

laboratory (FDEMATEL) to capture uncertainty and vagueness arising from human judgements. 

Palikhe et al. (2019) used fuzzy analytical hierarchical process to identify critical factors and 

underlying relationships for their FSD model. Second, fuzzy logic is also used in the quantitative 

stage to quantify fuzzy system variables and quantitatively define causal relationships between 

variables. In this regard, FSD has been implemented to quantify claims (Nasirzadeh et al. 2018), 

model productivity (Gerami Seresht and Fayek 2018; Marzouk and Hamdy 2013; Nojedehi and 

Nasirzadeh 2017), and model quality management Nasirzadeh et al. 2013). FSD models have been 

most common in the area of risk and contingency (Khanzadi et al. 2012; Nasirzadeh et al. 2014; 

Nasirzadeh et al. 2008; Siraj and Fayek 2021), which may be due to fuzzy logic’s ability to capture 

subjective uncertainties and the imprecise nature of risks. 

2.4.5  Modelling Aspects of SD 

In this section, the major steps in SD modelling, that is, qualitative and quantitative modelling, are 

studied in terms of underlying application issues in CEM research to identify potential areas for 

advancements and/or improvements. 

2.4.5.1   Issues in qualitative and quantitative modelling 

The initial SD modelling step of defining the model boundary and level of aggregation is crucial 

to system understanding. Systematically structuring the problem to be modelled can lead to a better 

boundary definition and can be done using model boundary charts (Boateng et al. 2012) or 
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cognitive maps. Siraj and Fayek (2021) identified model boundaries and aggregation level for risk 

analysis using a model boundary chart to define the model scope and define the model subsystem 

at the work package level. Defining model boundaries and system abstraction can also be done at 

higher levels. Mostafavi et al. (2014) studied interdependencies between policy metrics at project, 

regional, and national levels for policy analysis of infrastructure systems. However, a review of 

the selected articles in CEM literature indicates that most studies have not discussed their process 

for defining model boundaries, including defining endogenous and exogenous variables and 

aggregation level. 

Following the system understanding and problem articulation phase, the SD modelling process can 

be summarized as consisting of qualitative and quantitative stages. This chapter found that in the 

qualitative modelling stage, most researchers identified system variables and established the 

qualitative relationships between them using one or a combination of existing knowledge, 

literature review, and expert inputs. However, extracting knowledge from experts (e.g., using 

interviews) alone is insufficient and should be supplemented with other forms of data (Sterman 

2000). Some system variables can also be “soft” (not measurable), making it impossible to always 

use numerical data (Sterman 2002). Moreover, the quantitative stage deals with formulating the 

model by building quantitative relationships between model elements and variables (Gerami 

Seresht and Fayek 2018). This is achieved by using numerical values or probability distribution 

functions for defining system variables and using table functions or mathematical equations to 

define causal relationships between system variables (Sterman 2000). 

Construction systems whose causal relationships involve subjective variables do not have 

numerical metrics and are linguistically expressed. This chapter found that utilizing approaches 
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such as probabilistic and analytical methods to capture these systems can be problematic owing to 

lack of sufficient historical data and that the use of fuzzy logic concepts has been widely utilized 

in these contexts (Nasirzadeh et al. 2008; Nojedehi and Nasirzadeh 2017; Siraj and Fayek 2019). 

An important aspect of fuzzy logic application is fuzzy arithmetic, which replaces classical 

arithmetic to perform algebraic operations involving fuzzy variables. Hence, the type of fuzzy 

arithmetic method selected significantly impacts the accuracy of the results; implementation of 

fuzzy arithmetic in the mathematical equations of FSD models can result in overestimation of 

uncertainty, reducing users’ ability to accurately predict system output (Gerami Seresht and Fayek 

2018). Of the two methods for carrying out fuzzy arithmetic operations, the a-cut method and the 

extension principle, analysis of the published articles in CEM literature shows a lack of research 

in the implementation of the extension principle in fuzzy arithmetic operations. 

There is a lack of a systematic method for qualitatively capturing system variables, developing 

stock-and-flow and causal relationships, and performing quantitative modelling. In the presence 

of data, relationships between system variables can be captured using artificial intelligence-based 

approaches (Pan and Zhang 2021), such as machine learning, such as artificial neural networks 

(ANN) and fuzzy logic, to learn system rules from historical data. When data exhibits subjectivity, 

fuzzy logic–based methods such as neuro-fuzzy inference systems (NFIS) (Gerami Seresht and 

Fayek 2020) and data-driven fuzzy rule base systems (Siraj and Fayek 2021) can be used to 

facilitate SD model development. However, the potential of these methods to capture system 

complexity in SD modelling is not yet fully explored. Very few articles explored the use of other 

methods to elicit relationships between system variables in the absence of data. Procedures in 

methods such as FDEMATEL can be improved by incorporating weights to account for experts’ 

profiles and their disparity in capabilities. The FDEMATEL methods proposed by some 
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researchers (Rostamnezhad et al. 2020; Siraj and Fayek 2021) and the structural equation 

modelling (SEM) proposed by others (Luo et al. 2021; Zhang et al. 2020) involve lengthy and 

more complicated algorithms and may necessitate computer tools or software for a wider audience. 

2.4.5.2   Delays in SD 

Some researchers have incorporated time-delayed response systems in their models. Alvanchi et 

al. (2012) used a feedback delay element in their FSD model to signify the delayed effect of 

increased working hours to signify the adverse effect of set overtime on the productivity ratio, 

which occurs a week later. Prasertrungruang and Hadikusumo (2009) used delay elements in their 

SD model to capture the time-delayed occurrence of severe equipment breakdown when quality 

maintenance and new equipment is provided. Delays are critical sources of dynamics in almost all 

systems (Sterman 2000), and their impacts become more pronounced in dynamic models that 

capture complex construction systems for the purpose of decision making. However, a review of 

the selected articles in CEM literature found that the use of delays in the SD models is 

underutilized, as few studies have incorporated delay concepts in their models. 

2.4.5.3  Validation 

This chapter found that a wide range of validation methods were used in several SD models. These 

methods can be categorized as structural and behavioural validation tests (Sterman 2000), 

performed to assess whether qualitative and quantitative models have contradicted the structure of 

or closely captured the real system. These tests are performed with the understanding that it is 

impossible to prove that a model is right (Sterman 2002) and that efforts are made towards building 

trust in the method followed during modelling  (Guevara et al. 2020). In this regard, most studies 

have used different variations of the structural validation test including boundary adequacy, 
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rationality of qualitative relationships or parameters, dimensional consistency, and extreme 

conditions. Ruiz and Guevara (2021) used dimensional consistency, integration error, and anomaly 

tests. Nojedehi and Nasirzadeh (2017) and Hou and Wang (2021) used structure assessment tests, 

boundary adequacy, dimensional consistency, and extreme conditions. Luo et al. (2021) used 

structural validity and dimensional consistency tests. Very few researchers performed behavioural 

validation tests, which can be attributed to the absence of historical data. Articles that used 

behaviour reproduction to assess the model’s capacity to reproduce historical data include Xu et 

al. (2018), Qayoom and Hadikusumo (2019), Li et al. (2021), Luo et al. (2021), and Ruiz and 

Guevara (2021). 

2.4.6 Future Trends in SD modelling 

Analysis of the selected articles on application of SD for CEM research indicates that SD 

modelling has transformed into different forms of hybrid SD. Such hybridization has been 

performed to either improve modelling capabilities featuring SD itself (i.e., improving the 

qualitative and quantitative modelling stages) or capture more of the problem context in CEM 

research; that is, to better capture CEM problems not effectively captured by SD modelling alone. 

In this regard, there is potential to further explore the application of the fuzzy logic approach in 

SD qualitative and quantitative modelling stages in order to improve fuzzy arithmetic 

implementation in FSD modelling and increase the accuracy of FSD models. This can be 

performed by incorporating different types of fuzzy numbers (i.e., triangular, trapezoidal, 

Gaussian) and experimenting with several t-norms (Yager t-norms, Hamacher t-norms, Schweizer-

Sklar t-norms) (Siraj and Fayek 2021). Moreover, FSD application in CEM is still limited owing 

to its low accuracy in capturing non-linear and highly dimensional relationships among system 
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variables (Gerami Seresht and Fayek 2020). Hence, there is potential to explore integration of FSD 

models with data-driven approaches such as neuro-fuzzy systems (Gerami Seresht and Fayek 

2020), which are able to better define relationships between such system variables. 

Moreover, there is potential for future research to complement the modelling capabilities of SD by 

integrating it with other modelling approaches, which would enable development of more holistic 

hybrid models capable of capturing more complexities of given CEM systems. Further studies 

could focus on hybridizing fuzzy, SD, and ABM paradigms. This can enable modellers to quantify 

different types of uncertainties (i.e., probabilistic, subjective), understand the system’s governing 

dynamic relationships and feedback interactions, and capture complexities arising from the spatial 

nature of agents and the dynamic interactions between agents that give rise to emergent behaviours. 

Despite the capabilities they add to modelling, hybridization approaches can add to model 

complexity, which will also directly impact the model validation phase. Hybrid simulation 

challenges owing to lack of modelling framework and absence of communication architecture 

between individual modelling paradigms (Alvanchi et al. 2011) can also contribute to lagging 

interest of many researchers to implement different types of hybrid modelling approaches within 

different CEM research areas. In this regard, more work should be done to produce hybrid 

modelling frameworks (Swinerd and McNaught 2012) that clearly delineate the exchange of 

information between different modelling approaches. 

SD application in CEM has mostly been confined to research purposes, owing to some underlying 

challenges in SD implementation. Although models are a very important part of communicating 

results and conclusions (Featherston and Doolan 2012), more work can be done in communicating 

the modelling process to end users, because much of the learning comes from such processes. 
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Building large models that are difficult to communicate and too complex to critically evaluate has 

also been a source of criticism of SD models (Forrester 2007). Construction practitioners will not 

implement SD in their projects when they are unaware of the value of SD, which can stem from 

lack of knowledge about the concept, seldom use of SD in their organizations, or the misconception 

that SD is impractical (Rumeser and Emsley 2016). 

2.5 Chapter Summary 

In this paper, systematic review and content analysis of 213 articles obtained from 21 high-ranking 

peer-reviewed journals was performed to analyse the application of SD in CEM and derive 

directions for future research. The novelty of this chapter lies in its approach of covering articles 

spanning more than 25 years to get a comprehensive picture of SD research in CEM. The findings 

of this chapter indicate that the use of SD in the area of CEM research steadily increased from 

1995 to 2021. This chapter used analytical and objective approaches to study research trends, 

contributions of authors and their affiliations, and provide a profile of CEM projects with SD 

applications. The main contributions of this chapter are 1) addressing the lack of a comprehensive 

systematic review and content analysis in the application of SD in CEM and 2) providing 

researchers and construction practitioners with the state-of-the-art in SD research and application 

within the construction industry. Furthermore, this chapter provides researchers and practitioners 

a focused resource on SD research because it incorporates different approaches to structuring the 

systematic review by defining major areas of CEM research areas and analysing the trends of SD 

research within those research areas. For researchers interested in the use of SD modelling in CEM, 

this chapter thus provides a comprehensive review to identify modelling issues related to the use 

of SD in CEM and assesses the potential for SD hybridization with other modelling paradigms. 
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This chapter profiled the available SD literature in the 21 ranked journals, and found that the top 

three contributors to this field were JCEM, JME and ECAM. Analysis of top contributing authors 

and their affiliations was also presented. The top contributing countries to SD research were found 

to be the United States, United Kingdom, and China. Analysis of the profile of projects for SD 

application shows that infrastructure projects were used most in SD model applications, which 

indicates the significance attributed to such types of projects by different countries. The analysis 

also found that a significant number of articles only provided either qualitative SD models or SD 

models without application on real projects. Although SD has had relative success in terms of its 

application to project management compared with other CEM research areas, SD’s practical 

application in construction management was found to be relatively less and confined to individual 

projects, which confirms conclusions by Lyneis and Ford (2007). This highlights the significant 

challenge to use SD modelling for CEM problems, stemming from either lack of historical data or 

reluctance from construction stakeholders to apply SD methods. In this regard, there is a need to 

produce more SD models that can be generalized, particularly at the organizational level. 

This chapter identified eleven major research areas within CEM and assessed the role of SD in 

abstracting and modelling problems in each. SD was mainly used in the research areas of Decision 

making and policy analysis, Performance, and Rework and change between 1995 and 2021. 

Scheduling and Health and safety acquired relatively more interest among researchers between 

2017 and 2021, with the number of publications in these fields increasing relative to previous 

years. This chapter also identified some major potential areas of future research in different CEM 

application areas, which can be used to guide researchers to further SD’s application within these 

eleven research areas. 
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A critical review of the literature also identified the possible areas of improvement regarding SD 

hybridization with traditional methods and other modelling approaches. Analysis of the literature 

indicates that more work needs to be done in integrating SD with more traditional tools, which can 

help facilitate a better understanding of SD among construction practitioners and increase SD’s 

applicability and presence across a vast spectrum of projects. There is also potential for further 

research in SD hybridization with other methods, especially in the areas of 1) SD-ABM modelling 

to capture the spatial natures of construction environments and emerging nature arising from 

individual interactions, and 2) SD-BIM to facilitate a more collaborative decision-making process 

in dynamic construction environments. Moreover, there is a potential to improve the qualitative 

and quantitative modelling processes in SD using modelling approaches such as machine learning, 

ANN, NFIS, FDEMATEL, and SEM. This chapter also identified the added complexity that may 

result from hybrid SD modelling owing to system abstraction, aggregation, and model validation.  

This chapter details a comprehensive study on SD applications in CEM. A systematic literature 

review and content analysis that was performed is used to utilize the strength of SD as a modeling 

approach. This study was used to select the approach to hybridize of the SD modeling methodology 

with fuzzy logic (i.e., FSD). The next chapter discusses FAHP-FDEMATEL modeling approach, 

which will be used to establish a systematic and structured methodology for causal relationship 

mapping, which complements the FSD modeling methodology used in this research.  
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Chapter 3 Hybridization of Fuzzy Analytic Hierarchy Process and Fuzzy 

Decision-Making Trial and Evaluation Laboratory to Determine Causal 

Relationships in Construction Crew Productivity Modeling3 

3.1 Introduction 

Construction productivity has been a major area of study owing to its significance in determining 

the success of a construction undertaking. Construction productivity problems can include various 

aspects, such as assessment of factors that affect productivity, prediction of crew productivity, and 

identification of improvement strategies for crew productivity. Previous studies have attempted to 

identify factors that affect crew productivity and develop modeling approaches to monitor and 

establish productivity improvement strategies. Construction projects are performed in a dynamic 

environment that is a result of various interactions between situational/contextual factors related 

to tasks and resources such as labor and materials, management, project characteristics, and work-

setting conditions (Raoufi and Fayek 2018). Situational or external factors, such as economic, 

social, and technological, have certain impacts to crew productivity and performance while 

contextual factors, such as age, gender, culture, and personal interests, are also included in the 

crew productivity research domain (Raoufi and Fayek 2018). As one of the primary project 

performance indicators, crew productivity can be described as a function of the efficiency of 

utilization of resources (i.e., labor), which is affected by crew motivation. In this regard, it is 

 
3 This chapter has been submitted for publication in submitted for publication in Canadian Journal 

of Civil Engineering: Kedir, N., and Fayek, A. R. (2020), " Integrated FAHP-FDEMATEL for 

Determining Causal Relationships in Construction Crew Productivity Modeling.", Canadian 

Journal of Civil Engineering, 39 manuscript pages, submitted Oct. 2022. 
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imperative to properly assess crew productivity by identifying the relevant factors, such as crew 

motivation as well as situational/contextual factors, that affect productivity of different crews in 

construction projects; and by properly capturing existing complex causal relationships between 

these factors which form the dynamic environment.  

There have been a variety of approaches in the current construction literature for capturing the 

complex causal relationships for dynamic modeling of productivity. Some of the most commonly 

used methods include literature reviews, modelers’ assumptions, and verifying of model 

assumptions using focus groups, questionnaire surveys and/or semi-structured interviews (Gerami 

Seresht and Fayek 2018; Khanzadi et al. 2019; Nasirzadeh and Nojedehi 2013). Literature review 

methods are limited because relationships between model variables can only be obtained through 

literature if there is existing knowledge about those relationships. Moreover, methods such as 

focus-groups, survey questionnaires, and interviews entail aggregating the inputs of several experts 

that take part during the assessment process (Cyr 2016; Paradis et al. 2016). These experts are 

usually heterogenous, with varying level of expertise thus making crew productivity modeling 

process complex.  

Despite the presence of several productivity-related studies in the literature, there is a need to 

consider importance weight of experts in aggregating the opinion of heterogenous experts that take 

part in productivity-related decision making. Moreover, there is a lack of systematic and structured 

methodology to establish causal relationships in the dynamic productivity modeling process, 

which involves: assessing the importance of, and causalities between the situational/contextual 

factors, and constructing the causal loop diagrams which are functions of the dynamic relationships 

between system variables. The FDEMATEL method applies fuzzy set theory to capture subjective 
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uncertainties in the DEMATEL approach; which enables the method to capture complex causal 

relationships that affect the overall system of productivity, while also enabling the modeler to 

assess the influence of each variable using IRM and other metrics (Han and Wang 2018). Even 

though the use of FDEMATEL to identify causal relationships is present in other areas of 

construction research, there is a gap in the literature in the use of FDEMATEL to identify causal 

relationships, and map influence between system elements to complement the dynamic modeling 

of crew productivity.  

This chapter has three objectives: 1) to identify a set of criteria to perform expert assessment for 

assigning importance weights of heterogenous experts in the area of productivity research; 2) to 

propose a systematic and structured methodology to define causal relationships between the most 

significant factors that affect crew productivity, and analyze their interrelated impacts in the form 

of influence relation maps (IRM) using fuzzy AHP - fuzzy DEMATEL method; and 3) to map the 

causal relationships between crew motivation, situational/contextual factors and crew productivity 

from the outputs of the FDEMATEL method, which can be used to perform qualitative system 

dynamics (SD) modeling of crew productivity.  

This chapter is organized as follows. First, the literature review is presented in the next section, 

which discusses current dynamic modelling approaches, and existing methods used to identify and 

assess causal relationships. Next, the methodology section is presented, which discusses in detail 

the proposed model, and how to integrate the different modelling paradigms in fuzzy AHP, and 

weighted fuzzy DEMATEL. The proposed integrated approach is then implemented on a real 

construction project to demonstrate the methodology. Finally, results are presented, and 

conclusions and recommendations for future works are discussed. 
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3.2 Literature Review 

This section provides a background on establishing causal relationships between factors affecting 

crew productivity. In addition, the proposed methods Fuzzy AHP and Fuzzy DEMATEL are also 

described.  

3.2.1 Establishing Causal Relationships between Factors Affecting Crew Productivity  

Crew productivity is usually a factor of several variables that are rarely independent of each other 

and involve some degrees of interrelationship (Nasirzadeh and Nojedehi 2013). Several 

approaches could be considered to analyze these relationships. Interpretive structural method 

(ISM) has an elaborate visual representation, and enables the factors to be grouped into dependent, 

independent, autonomous, and linkage clusters. However, ISM cannot consider the interactions 

between those factors belonging in different categories (Tavakolan and Etemadinia 2017) (e.g., 

crew-level factors versus project-level factors). Analytic network process (ANP) is relatively 

simpler to understand and can capture relationships between different categories. However, 

establishing the relationships between the factors is a lengthy process resulting in computational 

complexity (Li et al. 2019; Valipour 2015). Fuzzy cognitive mapping (FCM) can model complex 

relationships that involve causalities and feedbacks (Case and Stylios 2016). However, FCM is 

unable to capture dynamism arising from time-based change of relationships (Mpelogianni et al. 

2018; Lazzerini and Mkrtchyan 2011) between system elements (i.e., factors affecting 

productivity).  

SD is a modeling approach that is used to capture dynamic behavior of systems where changes in 

the system correspond to variables that make up the system (Shokouh-Abdi et al. 2011). SD is 

appropriate to model problems that feature qualitative or quantitative data, and problems that are 
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“broad in details, holistic in perspective, continuous in behavior” (Alzraiee et al. 2015). Hence, 

SD focuses on capturing the dynamic nature of systems that exhibit varying properties, using 

multiple feedback processes, interactions, and dependencies (Nasirzadeh et al. 2008). Elements 

that make up the SD modeling are causal loop diagrams (CLDs) which are formed by connecting 

variables with causal links, stocks which represent accumulation phenomenon, flows (rates) which 

measure the change of stocks over a given duration, and delays to capture the dynamic behaviour 

of complex systems over time (Sterman 2000). SD modeling can be considered as consisting of 

two stages, namely, qualitative modeling and quantitative modeling (Ecem Yildiz et al. 2020; 

Sterman 2000).  

Qualitative modeling of productivity is the most important phase of the dynamic modeling process. 

It entails constructing a conceptual model that defines stocks and flows and maps the causal 

relationships and influence between system elements (Siraj and Fayek 2021). Establishing of 

causal loop diagrams and feedback relationships is critical to the SD modeling concepts as it allows 

for avoiding the event-oriented, open-loop worldview that leads to an “event-oriented and 

reactionary” approach to problem solving (Sterman 2000). The main advantage of the SD method 

is that it allows for assessing the relationships between system elements in such a way that drivers 

of the system can be identified. The steps in SD involve mapping the causal relationships in terms 

of feedback loops, for use in dynamic simulation process. These feedback loops can either be 

positive, such as reinforcing and amplifying changes, or negative, such as balancing and self 

correcting to seek equilibrium (Boateng et al. 2012). 

Qualitative approaches have been used to identify causal relationships and construct causal loop 

diagrams as part of the SD modeling process in different areas of construction (Siraj and Fayek 
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2021). The majority of studies in the area of construction, and specifically in the area of crew 

productivity obtained causal loop diagrams using expert inputs utilized through one or a combined 

approach of literature reviews, modelers’ assumptions, and experts’ verification through focus 

groups, questionnaire surveys, or semi-structured interviews (Al-Kofahi et al. 2020; Leon et al. 

2018; Gerami Seresht and Fayek 2018; Khanzadi et al. 2019; Moradi et al. 2017). In this regard, a 

systematic method to gather group knowledge from individuals with different level of expertise, 

to capture causal relationships between factors, and to visualize these complex cause-and-effect 

interrelationships is lacking in productivity research. Therefore, a structured and systematic 

approach which utilizes FAHP and FDEMATEL; for use in dynamic productivity modeling is 

proposed to address the aforementioned limitations.  

3.2.2 Fuzzy DEMATEL 

The DEMATEL method was created by the Geneva Research Center of Battelle Memorial Institute 

(Fontela and Gabus 1976), to find integrated solutions for the fragmented and antagonistic 

phenomena of world societies. The DEMATEL method captures the complex causal relationships 

amongst factors that affect a system, and also enables the assessment of the strength of influences 

using directed graphs, and metrics that capture the contextual relationships between several 

elements of the system (Han and Wang 2018; Chien et al. 2014). Fuzzy DEMATEL method 

applies linguistic variables and incorporates fuzzy logic concepts into the DEMATEL approach. 

The use of fuzzy logic is significant owing to the need to process the human way of thinking 

(Samani and Shahbodaghlou 2012) which is evident while processing the inputs of multiple 

experts that give subjective responses. Fuzzy logic enables processing of imprecise data and 

ambiguous human judgement (Seker and Zavadskas 2017; Shokouh-Abdi et al. 2011). 

https://scholar.google.com/citations?user=sANboxgAAAAJ&hl=en&oi=sra
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There are many studies that implement FDEMATEL for different problems (Sangaiah et al. 2017; 

Yeh and Huang, 2014; Lin 2013). In the area of construction, FDEMATEL method has mostly 

been applied to find interrelationships between system elements and identify causal mappings in 

the area of risk identification and assessment (Li and Xu 2021; Hatefi and Tamošaitienė 2019; 

Seker and Zavadskas 2017). In addition to risk, other areas also include sustainability (Li et al. 

2022; Rostamnezhad et al. 2020; Mavi and Standing 2018; Jeong and Gomez 2018), safety (Chai 

et al. 2022; Shakerian et al. 2020; Vosoughi et al. 2019), and planning (Jeong and Ramírez-Gomez 

2018; Jeong et al. 2016). Despite the presence of a comprehensive literature in the application of 

FDEMATEL in other areas of construction, the use of FDEMATEL to identify causal 

relationships, and map influence between system elements to complement the dynamic modeling 

of crew productivity is lacking.  

The input analysis in FDEMATEL entails analyzing the inputs of different experts, who can vary 

in technical or managerial points of view, experience, knowledge, and expertise level (Tavakolan 

and Etemadinia 2017). Hence, incorporating a methodology to capture inputs of heterogenous 

experts with varying expertise level can enable the fuzzy DEMATEL approach to become 

especially applicable and effective method to visualize the structure of interdependent and 

complicated relationships between system elements using matrices and/or digraphs. Consequently, 

the results of this weighted FDEMATEL output can be used to perform a systematic qualitative 

system dynamic modeling that can identify the causal relationships and feedback loops between 

situational/contextual factors and crew motivation affecting crew productivity.  

https://scholar.google.ca/citations?user=DvF9GsoAAAAJ&hl=en&oi=sra
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3.3 Methodology 

The methodology in this chapter can be summarized in two stages, as shown in Figure 3.1. In stage 

1, the expert weight assigning model first identifies the set of criteria to be used for expert 

assessment. FAHP is then applied to weigh the importance of the criteria. The importance weights 

of the criteria will then be used to perform expert weight assignment. In stage 2, crew motivation, 

and situational/contextual factors affecting crew productivity are identified and prioritized. 

FDEMATEL is then applied on the prioritized factors to construct IRM, establish causal 

relationships and feedback loops, for use in dynamic productivity modeling. The following section 

discusses the proposed two stages of the model in further detail. 

 

Figure 3.1 Stages in the FAHP-FDEMATEL model. 
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3.3.1 Expertise Level Assessment Using Fuzzy AHP  

In the fuzzy AHP process, the problem hierarchy is first constructed using the set of criteria and 

sub-criteria to assess the level of expertise. The steps in the fuzzy AHP are shown in Figure 3.2, 

and discussed further in detail.  

Figure 3.2 Fuzzy AHP process for Expert Weight Assigning Model. 

 

3.3.1.1  Developing list of criteria and constructing the problem hierarchy  

In this process, criteria to assess the level of expertise, and their corresponding qualification 

attributes used as sub-criteria in this chapter are identified along with their scales of measure. The 

list of criteria and sub-criteria were first collected from studies in other areas of construction 

management in the literature (Monzer et al. 2019; Siraj and Fayek 2021; Farrington-Darby and 

Wilson 2006) and modified to enable expert assessment in productivity domain. The list of 

identified qualification attributes is shown in Table 3.1, and is organized into 7 criteria and 24 sub-

criteria attributes. For example, the “productivity-related project management practices” is 

comprised of four sub-criteria, namely: average hours of work in productivity related work per 
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week, level of management training related to productivity, experience in conferences related to 

productivity management, and functional skills related to productivity management. 

The list of developed qualification attributes is measured using qualitative or qualitative scales, as 

shown in Table 3.1. For those qualification attributes which cannot be measured using numerical 

scales, a predetermined the Likert scale of 1–5 is adopted from Monzer et al. (2019), which enables 

objective quantification of the qualitative sub-criteria for a more accurate decision making. For 

example, the personal attributes and skills criterion is composed of five sub-criteria, namely, Level 

of communication skills, Level of teamwork skills, Level of leadership skills, Level of analytical 

skills, and Level of ethics. Each of these sub-criterion is measured using a predetermined rating (a 

Likert scale of 1–5).  

 

Table 3.1 Scale of measure and range of data input for sub-criteria. 

Criteria Name Sub-criteria Name 
Scale of 

measure 

Range of 

Data Input 

1. Experience 

1.1 Total years of experience Integer 0-35 

1.2 Relevant experience Integer 0-20 

2. Knowledge 

2.1 Academic knowledge Integer 0-15 

2.2 Education level 1-5 rating 1-5 

2.3 On the job training Integer 0-10 

3. Professional 

performance 

3.1 Current occupation in the 

company 

1-5 rating 1-5 

3.2 Years in current occupation Integer 0-35 
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Criteria Name Sub-criteria Name 
Scale of 

measure 

Range of 

Data Input 

4. Productivity-

related project 

and 

construction 

management 

practices 

4.1 Average hours of work in 

productivity-related work per week 

Integer 0-20 

4.2 Level of management training 

related to productivity 

Integer 0-5 

4.3 Experience in conferences 

related to productivity management 

Integer 0–5 

4.4 Functional skills related to 

productivity management 

1–5 rating 1–5 

5. Project 

specifics 

5.1 Project size limit Integer 1mil –2 bil 

5.2 Commitment to time deadlines Integer 0–100 

5.3 Commitment to cost budget Integer 0–100 

5.4 Safety adherence Integer 0–5 

5.5 Geographic diversity experience Integer 0–20 

6. Reputation 

6.1 Social acclimation 1–5 rating 1–5 

6.2 Willingness to participate in 

survey 

1–5 rating 1–5 

6.3 Professional reputation 1–5 rating 1–5 

7. Personal 

Attributes and 

Skills 

7.1 Level of communication skills 1–5 rating 1–5 

7.2 Level of teamwork skills 1–5 rating 1–5 

7.3 Level of leadership skills 1–5 rating 1–5 

7.4 Level of analytical skills 1–5 rating 1–5 

7.5 Level of ethics 1–5 rating 1–5 
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The list of criteria is then evaluated by experts with extensive knowledge of the construction 

industry and productivity research, using surveys (Appendix A). The experts are also prompted to 

suggest additional criteria that was not found in the list. The survey is prepared based on the final 

list of criteria and sub-criteria, and is used to elicit responses from the experts. For the list of n- 

criteria, each having their respective set of sub-criteria, the expert ranking is performed based on 

the hierarchy shown in Figure 3.3. 

 

Figure 3.3 Hierarchical structure for expert importance weight assignment 

 where the n, p and r in sub-criteria (level-2), are the number of sub-criteria for criteria 1, 

criteria 2, and criteria n, respectively 

3.3.1.2  Establish the fuzzy pairwise matrix 

The next step in the FAHP process is to establish the fuzzy pairwise comparison matrix for 

performing expert weight assessments. To achieve this, the relative importance of each criterion 

for performing expert weight assessment was obtained using a predetermined scale. Because 

FAHP is an extension of the AHP method that uses crisp inputs while assessing the relative 

importance of criteria; the pairwise comparison matrix in FAHP is written in the form of fuzzy 

numbers instead of crisp inputs to represent the linguistic terms used during information synthesis. 
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Each particular linguistic term is associated with its own fuzzy set. A series of such fuzzy sets 

combine to form a fuzzy scale to describe the levels of the linguistic terms, linking the verbal and 

numerical expressions. 

In this regard, the most common fuzzy scales in the literature are the 9-level and the 5-level fuzzy 

scales (Liu et al. 2020). In this chapter, the 5-level fuzzy scale from Zimmer et al. (2017) is adopted 

and modified because of its relative simplicity. This five-scale approach, namely: equally 

important, weakly important, fairly strong important, very strongly important, and absolutely 

important, is adopted and discussed in more detail in later sections. Use of the type of fuzzy sets 

to represent the fuzzy scale also depends on several factors. In this chapter, the tree-diagram 

approach for selecting fuzzy sets proposed by Liu et al. (2020) was used to select triangular fuzzy 

numbers. The fuzzy scale used for comparison is shown in Table 3.2. The sample pairwise 

comparison matrix for the criteria and sub-criteria level is shown in Table 3.3 and Table 3.4 

respectively. 

Table 3.2 Fuzzy scale used for pairwise comparison (Adopted from Zimmer et al. 2017). 

Fuzzy Scale 

Fuzzy 

Number 

Triangular 

fuzzy number 

Reciprocal of 

triangular fuzzy 

number 

Equally important (EI) 1.0̃ (1, 1, 1) (1, 1, 1) 

Weakly important (WI) 1.5̃ (1/2, 3/2 , 5/2) (2/5, 2/3, 2) 

Fairly strong important (FSI) 2.5̃ (3/2, 5/2 , 7/2) (2/7, 2/5 , 2/3) 

Very strongly important (VSI) 3.5̃ (5/2, 7/2 , 9/2) (2/9, 2/7 , 2/5) 

Absolutely important (AMI) 4.5̃ (7/2, 9/2 , 11/2) (2/11, 2/9 , 2/7) 
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Table 3.3 Pairwise comparison matrix for criteria (level-1). 

Criteria Experience Knowledge . . 
Professional 

performance 

Personal 

attributes and 

Skills 

Experience EI  . .   

Knowledge  EI . .   

Professional 

performance 
  EI .   

.    EI   

.     EI  

Personal 

Attributes and 

Skills 

     EI 

 

Table 3.4 Pairwise comparison matrix for sub-criteria (level-2). 

Sub- 

criteria 

ID 

Sub-criteria 

1.1 Total 

years of 

experience 

1.2 Relevant 

years of 

experience 

. . 
7.4 Level of 

analytical skills 

7.5 Level 

of ethics 

1.1 
Total years of 

experience 
EI  . .   

1.2 
Relevant years 

of experience 
 EI . .   

. .   
. 

EI 
.   

. .   . .   
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Sub- 

criteria 

ID 

Sub-criteria 

1.1 Total 

years of 

experience 

1.2 Relevant 

years of 

experience 

. . 
7.4 Level of 

analytical skills 

7.5 Level 

of ethics 

7.4 

Level of 

analytical 

skills 

  . . EI  

7.5 Level of ethics   . .  EI 

 

Designating F to be the pairwise matrix of an expert m, comprised of triangular fuzzy numbers 

that assess the relative importance of criterion i (ci) over criterion j (cj); the fuzzy pairwise 

comparison matrix Fm is shown in Equation (3.1).  

Fm = 
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where: )()( ~1~ m

ji

m

ij cc =         

3.3.1.3  Compute and check for consistency ratio 

Each of the experts’ judgements (Fm) is then checked for consistency by using the equation of 

Saaty’s consistency ratio (Liu et al. 2020; Saaty 2008) as shown in Equation (3.2) and Equation 

(3.3) This is performed by using the principle of crisp consistency, whereby the fuzzy numbers in 

the TRM are first defuzzified before computing the consistency ratio.  

1

max

−

−
=

n

n
CI


   (3.2) 
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where:  

CI = consistency index  

max = the largest eigenvalue of the comparison matrix 

n = dimension of the square matrix  

)(nRI

CI
CR=

   (3.3) 

where:  

n = dimension of the square matrix  

CR = consistency ratio 

RI = random index, obtained from the random index table of different matrix sizes (Zadeh 1965).  

A CR value of not greater than 0.1 is acceptable for a consistent matrix (Saaty 2008). If the matrix 

does not comply with such requirement, the expert is prompted to repeat the pairwise comparisons 

until such criteria. The expert inputs are then aggregated to construct the representative matrix that 

combines the inputs of all involved experts. The following steps (i.e., aggregation of expert inputs; 

obtaining fuzzy weights; obtaining the non-fuzzy values) to obtain the ranking of expert 

assessments were adopted from Monzer et al. (2019).  

3.3.1.4  Obtain weights of criteria for ranking experts 

The final step in the FAHP is to utilize the outputs of the matrix (i.e., relative importance weights 

between criteria), and assign relative importance weights to experts. To achieve this, the result of 

the assessment in the sub-criteria (Table 3.4) are normalized in the range of [0-1], and used to 
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evaluate each expert that is involved in the decision-making process (i.e., experts involved in the 

assessment of the causal relationship between the factors, which is used in the FDEMATEL 

process). In this regard, the weights obtained for criteria and sub-criteria levels are applied to score 

each expert’s expertise level, using Equation (3.4).  

𝑆𝑖 =
= =

=
n

j

nC

k

SSC

j

jkjkj
EiiIww

1 1

...,1),(         (3.4) 

where, )(iI
jkS  is the normalized evaluation of expert j in a total of E experts, based on sub-criterion 

k, and criterion Cj 

jCw is the weight of criterion Cj, and 
jkSw is the weight of sub-criterion Sjk 

n is the total number of criteria Cj and nCj is the total number of sub-criteria k 

The scores in Equation (3.4) are then normalized using Equation (3.5) below, and will be used as 

weights by multiplying each expert’s assessment with the importance weight (IW) of each expert.   

𝐼𝑊𝑖 = Ei

S

S
E

m

m

i ...,1,

1

=


=

          (3.5) 

Consequently, a survey is prepared in order to formulate the application of the FAHP discussed 

above, and also to provide inputs for the FDEMATEL process. In this survey (Appendix B), the 

criteria and sub-criteria identified in the FAHP are formulated in a question format in part -one of 

the survey, to perform profiling of the experts that take part in the survey. The output of part-one 

of the survey is used to determine the importance weight of experts. 
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3.3.2 FDEMATEL Process 

The FDEMATEL process focuses on categorizing the identified factors into cause-and-effect 

groups, establishing the causal relationships, and influence relation maps, and constructing the 

causal relationship diagrams. The FDEMATEL process is shown in   below, and elaborated in the 

subsequent sections. 

Figure 3.4 Steps in the FDEMATEL process. 

3.3.2.1  Factor identification  

Factors that affect crew motivation and productivity are identified and collected from past 

literature (Tsehaye and Fayek 2014; Gerami Seresht and Fayek 2018; Raoufi and Fayek 2018). 

The identified factors are grouped into situational/contextual factors at the crew level and 

situational/contextual factors as well as at the project level. At the crew level, these factors were 

sub-categorized into task-related factors, labor-related factors and foreman-related factors. The 

factors at the project level were sub-categorized into task-related factors, management-related 

factors, work-setting conditions, resources, and safety. Categorization of the list of factors was 

adapted from Raoufi and Fayek (2018). Identification of the most critical factors affecting crew 

productivity are then established using expert inputs. Interview surveys are designed to elicit 
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knowledge from the experts (i.e., project management staff, and project tradespeople staff). In this 

regard, experts will rank the influence of the factors on crew productivity, based on two scores: 

i.e., agreement score (to what extent does expert agree that the factor is present in their project), 

and impact score (to what extent does the factor impacts productivity). In this chapter, Likert scale 

is used to obtain the measurement scale for the agreement and impact scores as it is one of the 

most fundamental and frequently applied tools in research (Joshi et al. 2015). Hence the 7-point 

Likert scale is chosen, as suggested by (Taherdoost 2019; CII 2006). In effect, the agreement score 

was measured using the seven-point scale: Strongly Disagree, Disagree, Slightly Disagree, Neither 

Agree nor Disagree, Slightly Agree, Agree, and Strongly Agree; and the impact score was 

measured using the seven-point scale: Strongly Negative, Negative, Slightly Negative, No Impact, 

Slightly Positive, Positive, Strongly Positive. After expert inputs on these factors are collected, 

statistical analysis is performed to select the factors with the maximum positive or negative impact 

on crew productivity (Gerami Seresht and Fayek 2019). In this regard, Pearson correlation analysis 

is preferred as it is the most common technique for correlation analysis (Pandey 2020), which is 

an indication of relationship between independent variables (i.e., motivational, and 

situational/contextual factors) and dependent variables – crew productivity. It is important to note 

that Pearson’s correlation analysis does not establish causation between the factors (Gogtay and 

Thatte 2017). Once a strong relationship between factors is established, these factors are then used 

in the subsequent steps to define system elements in the FDEMATEL process. 

3.3.2.2 Define system elements, the fuzzy linguistic scale and generate expert assessments 

The next step in the FDEMATEL process is to define system elements which will influence the 

behavior of the system (Rostamnezhad et al. 2020). These system elements consist of the identified 
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list of top-factors that affect crew productivity. In this step, a survey is prepared to provide inputs 

for the FDEMATEL process (Appendix B). This survey uses fuzzy linguistic scales (Mavi and 

Standing 2018; Seker and Zavadskas 2017), to generate expert assessments on the causal 

relationship between the factors using expert inputs, as shown in Table 3.5. This survey also 

establishes the type of causal relationships (i.e., positive or negative polarity between the links). A 

positive link implies a similar change of direction between the factors (e.g., increase/decrease in 

crew size can lead to increase/decrease in congestion); whereas a negative link implies an opposite 

change of direction between the factors (e.g., higher rework volume impacts work progress 

negatively).  

Table 3.5 Fuzzy scale used to assess the degree of causal influence. 

Linguistic terms Triangular fuzzy number 

No influence (0.00 0.00 0.00) 

Very low influence (VL) (0.00 0.00 0.25) 

Low influence (L) (0.00 0.25 0.50) 

Medium influence (M) (0.25 0.50 0.75) 

High influence (H) (0.50 0.75 1.00) 

Very high influence (VH) (0.75 1.00 1.00) 

3.3.2.3  Construct the initial fuzzy matrix and compute the total relation matrix 

The generated expert assessments are used to obtain the initial fuzzy matrix for each expert. In this 

regard, each expert will provide their assessment of the causal relationships between the factors in 

the form of a fuzzy matrix �̃�𝐸, shown in Equation (3.6).  
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   i,j = 1,2,...n, and e =1,2,...E 

where: n = total number of elements in the system and, E = total number of experts assessing the 

causal relationships 

Next, the set of initial fuzzy matrix �̃�𝐸, obtained from a set of experts E, are aggregated to form 

the aggregated direct relation matrix �̃�. Each of the elements in the aggregated matrix is obtained 

by multiplying the weights of the experts (w) obtained from the FAHP process, with the elements 

in the direct matrices of respondents, as shown in Equation (3.7) and Equation (3.8) (Seker and 

Zavadskas 2017). 

�̃� =
=


E

e

ije xw
1

~ , 𝑤ℎ𝑒𝑟𝑒 �̃�𝑖𝑗 = (𝑥𝑖𝑗
𝑙 , 𝑥𝑖𝑗

𝑚, 𝑥𝑖𝑗
𝑢 ), and i , j = 1,2...n                 (3.7) 

Hence,  

�̃� = [ �̃�𝑖𝑗]𝑛𝑥𝑛
, 𝑤ℎ𝑒𝑟𝑒 �̃�𝑖𝑗 = (𝑑𝑖𝑗

𝑙 , 𝑑𝑖𝑗
𝑚, 𝑑𝑖𝑗

𝑢 )          (3.8) 

This direct relation matrix is used to obtain the normalized fuzzy aggregated direct relation matrix 

N, as shown in Equation (3.9) and Equation (3.10): 

    �̃� =  �̃� ∗         (3.9) 

where: 
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The fuzzy total relation matrix T represents the total degree of causal influence of factor i on factor 

j, which is obtained using Equation (3.11), Equation (3.12), and Equation (3.13) (Rostamnezhad 

et al. 2018).  

𝑇 = 𝐷(𝐼 − 𝐷)−1   (3.11) 

where: 

�̃� = 𝐷 + 𝐷2 + 𝐷3 + ⋯ + = 


=1i

iD    (3.12) 

 I is represented by an n x n identity matrix. 

Hence,  

�̃� = [ �̃�𝑖𝑗]𝑛𝑥𝑛
, 𝑤ℎ𝑒𝑟𝑒 �̃�𝑖𝑗 = (𝑡𝑖𝑗

𝑙 , 𝑡𝑖𝑗
𝑚 , 𝑡𝑖𝑗

𝑢), 𝑎𝑛𝑑 𝑖, 𝑗 = 1,2, … 𝑛   (3.13) 

3.3.2.4 Calculate the sum of rows and columns and construct influence relation maps 

Next, the sum of rows (ri) and columns (cj) is computed as shown in Equation (3.14) and Equation 

(3.15); and (Ri + Cj) and (Ri – Cj), using Equation (3.16) and Equation (3.17). These sums are used 

in the construction of the IRM. In the IRM, the defuzzified values of horizontal axis (Ri + Cj) are 

named “prominence” (Zhou et al. 2014) and signify the degree of relationship of each factor with 

the rest of the other factors. With higher values of (Ri + Cj) indicating higher causal relations with 

the other factors. The defuzzified values of the vertical axis (Ri - Cj) is referred to as “relation” 
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(Zhou et al. 2014). Positive values of the relation measure indicates that the factor is in the cause 

group, and negative value indicates that the factor is in the effect group.  

itr
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n…2,1,,)( =−=− jicrCR jii
     (3.17) 

3.3.2.5  Construct the causal loop diagrams 

In the final process, causal loop diagrams which present the causal relationships between crew 

motivation and situational/contextual in affecting crew productivity are established to use in 

dynamic modeling of productivity. To achieve this, the total relation matrix T, obtained in 

Equation (3.13) will be defuzzified using the center-of-area method to achieve the Tdef matrix. This 

defuzzified matrix represents the degree of causal influence between the factors affecting crew 

productivity. In this regard, Tij represents the degree of causal influence of factor i on factor j. The 

direction of the arrows for drawing the CLD is drawn in such a way that factors in each row affect 

the factors of the columns of the matrix. From this matrix, the values of Tij that signify a stronger 

relationship between factors i and j are selected using a threshold value. A threshold value is 

important to filter out negligible effects between factors, which can otherwise make the resulting 

model too complex to comprehend (Si et al. 2018). The threshold value can be obtained using 

expert inputs (Li and Tzeng 2009), brainstorming (Azadeh et al. 2015), based on a given percentile 

(Si et al., 2018), the average of the elements in the matrix (Sumrit and Anuntavoranich 2013), or 
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other approaches. Consequently, values of Tij which comply with the threshold requirement are 

selected to plot the relationship mappings that form the causal loop diagrams.  

3.4 Case study  

The proposed fuzzy hybrid method is demonstrated using data collected from a real-world 

industrial construction project in Alberta, Canada. The case study utilizes the findings on factors 

affecting crew motivation and performance (Raoufi and Fayek 2018), in the context of the 

aforementioned project. Accordingly, this section is discussed to elaborate the data formulated as 

case-study in two-stages, to reflect the proposed modeling approach in the methodology section. 

In the first stage, a survey was prepared to perform expertise level assessment and assign 

importance weight to experts. The pairwise matrix used in the survey is shown in Appendix A. In 

this survey, experts with extensive knowledge in construction, and related productivity research 

were utilized to validate and weigh the criteria identified for expert ranking, as described in the 

methodology section. The experts had an average of over 15 years of experience in the construction 

industry, and participated in productivity research. The responses of these experts were obtained 

in the form of a pairwise comparison matrix as input for the FAHP process. Once the list of criteria 

was identified and validated using expert inputs, the relative importance weights of each criteria 

for assessing level of expertise were obtained by applying FAHP method. The weights were 

computed from the pairwise comparison data obtained using the format shown in Table 3.3 and 

Table 3.4. This obtained data is converted into a fuzzy pairwise comparison matrix using the fuzzy 

scale in Table 3.2, and formulated as Fm, as shown in Equation (3.1). These results were then 

checked for consistency using Equation (3.2) and Equation (3.3). The result of relative importance 

weights for each criteria and sub-criteria is presented in Table 3.6.  
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Table 3.6 Calculated weights of criteria and sub-criteria. 

No. 
Criteria 

Name 
Weight Sub-criteria Name Weight 

1 Experience 0.16 
1.1. Total years of experience 0.60 

1.2. Relevant experience 0.40 

2 Knowledge 0.16 

2.1. Academic knowledge 0.21 

2.2. Education level 0.30 

2.3. On the job training 0.49 

3 
Professional 

performance 
0.15 

3.1. Current occupation in the company 0.40 

3.2. Years in current occupation 0.60 

4 

Productivity-

related 

project 

management 

practices 

0.31 

4.1. Average hours of work in productivity-related work 

per week 
0.35 

4.2. Level of management training related to productivity 0.30 

4.3. Experience in conferences related to prod. mgmnt 0.15 

4.4. Functional skills related to productivity management 0.20 

5 
Project 

Specifics 
0.06 

5.1. Project size limit 0.26 

5.2. Commitment to time deadlines 0.23 

5.3. Commitment to cost budget 0.23 

5.4. Safety adherence 0.16 

5.5. Geographic diversity experience 0.12 

6 Reputation 0.03 

6.1. Social acclimation 0.34 

6.2. Willingness to participate in survey 0.33 

6.3. Professional reputation 0.33 
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No. 
Criteria 

Name 
Weight Sub-criteria Name Weight 

7 

Personal 

Attributes 

and Skills 

0.13 

7.1. Level of communication skills 0.24 

7.2. Level of teamwork skills 0.24 

7.3. Level of leadership skills 0.27 

7.4. Level of analytical skills 0.14 

7.5. Level of ethics 0.11 

 

The final result related to Stage-1 deals with using the previously obtained relative importance of 

the criteria and sub-criteria (Table 3.6) to assign experts’ weights. This is achieved by utilizing 

part-one of the survey shown in Appendix B, which captures the profile of experts that take part 

in the subsequent decision-making processes discussed in Stage-2 of the methodology section. 

Using the survey as input, Equation (3.4) and Equation (3.5) are applied to obtain normalized 

expert weights. In this regard, the result of the expert weight assessment, performed on the six 

experts (E1, E2, E3, E4, E5, E6) is computed as (0.13, 0.17, 0.21, 0.16, 0.19, 0.14). 

In the second stage, factors affecting crew motivation and performance were prioritized using data 

collection on a real construction project (Raoufi and Fayek 2018). The field data (Raoufi and Fayek 

2018) is collected over a period of 3 months from an industrial project located in Alberta, Canada. 

In this regard, data on situational/contextual factors, crew motivation, and several crew 

performance measures were collected using different data collection methods (i.e., interview 

surveys, project documents such as safety logs, and external databases such as weather data). For 

this case-study, data on interview surveys with crew members, supervisors and project managers 

was utilized to rank the factors impacting crew motivation and performance; whereby respondents 



 

 

79 

were prompted to assess the extent to which a factor exists in the project, and also evaluate its 

corresponding degree of importance. Moreover, data collected on situational, contextual, and crew 

motivational factors was analyzed to identify the most important factors that affect crew 

productivity. From the total of 129 situational/contextual factors identified at the crew level 

(Raoufi and Fayek 2018) that affect crew performance, Pearson correlation analysis was performed 

(as described in the methodology) to identify factors that had a relationship with crew productivity. 

Pearson’s correlation coefficient value of greater than 0.5 are chosen (Raoufi and Fayek 2018), to 

select the factors with strong relationship with crew productivity.  

 Next, the identified list of motivational, and situational/contextual factors affecting crew 

productivity were utilized to define system elements. To achieve this, a two-part survey was 

designed (Appendix B), whereby questions to profile the expertise level of the respondents formed 

part-one, and questions to capture the relationships between the identified system variables using 

a pairwise-matrix formed part two of the survey. In the FDEMATEL process, the defined system 

elements are used to construct the IRM, and categorize factors into cause-and-effect groups. To 

achieve this, results from part-two of the survey (Appendix B) are utilized. In this portion of the 

survey, experts’ assessments of the causal relationships between each system element (i.e., 

situational/contextual, and motivational factors), are derived in the form of a pairwise matrix. 

There are a total of 38 system elements that form the pairwise-comparison matrix. A similar matrix 

to identify the polarity of the relationships between these elements also forms part-two of the 

FDEMATEL survey; in other words, polarity between two elements is positive if an 

increase/decrease in system element i causes an increase/decrease in element j, respectively, and 

negative vice versa.  
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After obtaining survey data from part-two of the FDEMATEL survey, Table 3.5 was used to 

convert the responses of the experts from a linguistic scale to a triangular fuzzy number. 

Generating the expert assessments in a matrix form was performed using Equation (3.6). The 

responses of each expert, which are now in a triangular fuzzy number format, were multiplied by 

their corresponding expert weights, obtained from the FAHP model of Stage-1. Consequently, the 

normalized fuzzy aggregated direct relation matrix was obtained using Equation (3.7) - Equation 

(3.10). Next, the total relation matrix T, which is the relative influence between the system 

elements, was computed using Equation (3.11), Equation (3.12), and Equation (3.13). The overall 

fuzzy total relation matrix is a 38x38 matrix with 114 rows and 114 columns, which is cumbersome 

to show in the results section. Hence, Table 3.7 is presented, which depicts part of the fuzzy total 

relational matrix �̃�.  

Table 3.7 Fuzzy Total Relation Matrix. 

T T1 T2 … T37 T38 

  Tl Tm Tu Tl Tm Tu    Tl Tm Tu Tl Tm Tu 

 ID 1.1 1.2 … 7.1 7.2 

T1 1.1 0.0 0.00 0.00 0.01 0.02 0.03 . . . 0.01 0.02 0.03 0.00 0.00 0.00 

T2 1.2 0.0 0.01 0.02 0.00 0.00 0.00 . . . 0.00 0.01 0.02 0.00 0.00 0.00 

T3 1.3 0.0 0.00 0.01 0.02 0.03 0.04 . . . 0.00 0.00 0.01 0.00 0.00 0.00 

. . . . . . . . . . . . . . . . . 

T37 7.1 0.0 0.0 0.00 0.00 0.00 0.00 . . . 0.00 0.00 0.00 0.01 0.02 0.03 

T38 7.2 0.0 0.0 0.00 0.00 0.00 0.00 . . . 0.03 0.04 0.04 0.00 0.00 0.01 
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The matrices and diagrams are a representation of the contextual relationship between the factors 

in the system, whereby the numeric value measures the strength of influence (Bavafa et al. 2018). 

The total relation matrix �̃� shown in Table 3.7 is defuzzified using the center-of-area method to 

obtain the corresponding defuzzified matrix Tdef. Table 3.8 depicts part of the defuzzified total 

relation matrix Tdef.  

Table 3.8 Defuzzified total relation matrix. 

 ID T1 T2 T3    T37 T38 

T1 1.1 0.0 0.021 0.031 . . . 0.0 0.021 

T2 1.2 0.01 0.000 0.039 . . . 0.0 0.010 

T3 1.3 0.003 0.031 0.000 . . . 0.0 0.003 

. . . . . . . . . . 

T37 7.1 0.0 0.0 0.0 . . . 0.0 0.021 

T38 7.2 0.0 0.0 0.0 . . . 0.039 0.000 

 

The values of the �̃� matrix are used to obtain the sum of rows (R) and the sum of columns (C), 

using Equation (3.14) and Equation (3.15). The values of (�̃� + �̃�) and (�̃� – �̃�) were also calculated 

using Equation (3.16) and Equation (3.17), and were defuzzified using center of area method to 

obtain the prominence and relation values respectively. The prominence is a measure of the role 

of each factor on the overall system in terms of its causality. Hence higher prominence values 



 

 

82 

indicate higher causal relations with the other factors. The relation values in the vertical axis allow 

for assessment of the factors by categorizing them into cause-and-effect groups. The relation 

values are used to categorize the factors into cause-and-effect group, whereby factors with positive 

relation values are categorized into cause group, and vice versa. In order to facilitate the 

interpretation of the matrices and diagrams that are the results of the FDEMATEL process, the 

prominence and relation values that are in the top 75th percentile are summarized in Table 3.9 and 

Table 3.10, respectively. The values of prominence (R + C) and relation (R – C) are simultaneously 

analyzed by mapping these values to formulate the IRM, as shown in Figure 3.5.   

Table 3.9 Factors with higher degrees of prominence. 

Factor Name Ri + Cj 

Ability to perform 1.297 

Reliability 1.133 

Work progress 1.128 

Visibility of outcome 1.120 

Project scheduling 1.042 

Project time management 1.023 

Performance monitoring 1.021 

Safety management 0.979 

Project safety management 0.969 

Rework 0.958 

Safety facilitation and implementation 0.943 

Crew experience 0.940 
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Factor Name Ri + Cj 

Goal-setting (crew level) 0.924 

Foreman experience 0.914 

 

Table 3.10 Summary of relation values. 

Cause group Effect group 

Factor Ri - Cj Factor Ri - Cj 

Crew motivation 0.60 Work progress -0.56 

Crew experience 0.49 Project time management -0.45 

Foreman experience 0.48 Ability to perform -0.39 

Foreman knowledge 0.43 Material handling -0.33 

Task repetition 0.42 Project scheduling -0.32 

Crew composition 0.34 Hazards identification & mitigation -0.27 

Rework 0.23 Cleanness -0.21 

Safety trainings 0.17 Safety management -0.21 

Visibility of outcome 0.15 Fairness -0.18 

Access points 0.15 In-site transportation -0.18 
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Cause group Effect group 

Factor Ri - Cj Factor Ri - Cj 

Task identity 0.12 
Safety facilitation and 

implementation 
-0.17 

Project environmental 

management 
0.09 Performance monitoring -0.16 

Temperature 0.09 Goal-setting -0.15 

Change in weather conditions 0.09 Reliability -0.13 

Finally, outputs of the FDEMATEL process are used to identify causal interrelationships, and 

construct CLD for dynamic productivity modeling. The defuzzified values of the T matrix shown 

in Table 3.8 were used to map the causal influence relationships between the factors. While 

constructing the CLD, it is imperative to consider the extent to which causal relationships between 

variables are considered. In a matrix of 38 variables, there are potentially 1,444 relationships which 

can be considered. Considering these relationships can become too complex, and unfeasible to 

implement. Therefore, from causal relationships that exist between two variables, a threshold value 

of 75 percentile of the defuzzified total-relation matrix (T) was set by selecting values greater than 

or equal to 0.021. 
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Figure 3.5 Influence relation map. 

Hence, only the stronger relationships are considered to map causal relationships between 

variables. As described in the methodology section, the direction of the arrows for drawing the 

CLD is obtained from the T-matrix, whereby factors in each row affect the factors of the columns 

of the matrix. In this regard, the CLD was progressively constructed hierarchically by first 

considering contextual/situational factors at the crew-level as shown in Figure 3.6. The 

contextual/situational factors at the foreman-level, and project-level were subsequently introduced 
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into the crew-level variables as shown in Figure 3.7 and Figure 3.8 respectively, to demonstrate 

the proposed methodology. 

 

Figure 3.6 Sample CLD between factors affecting productivity at crew level. 
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Figure 3.7 CLD between factors affecting productivity at crew level (Including foreman related factors).
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Figure 3. 8 CLD between factors affecting productivity at crew-level (Including foreman- and project-level factors) 
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3.5 Results 

In this chapter, the proposed methodology is demonstrated using a case study, and the findings 

were discussed in two parts. In the first part, results related to Stage-1 of the methodology are 

discussed, where 1) findings related to the developed list of criteria for expert weight assignment, 

and 2) findings on the relative importance weights of each criteria using the FAHP approach, are 

presented. In the second part, results related to Stage-2 of the methodology are discussed, where 

1) findings on the categorization of motivational, and situational/contextual factors into cause-and-

effect groups, 2) construction of the IRM using the FDEMATEL approach, and 3) findings on the 

established CLD for dynamic modeling of crew productivity are presented.  

First, in the expert weight assigning model (Stage-1), this chapter identifies a list of criteria to 

perform expert weight assignment. Related findings indicate that, productivity-related project and 

construction management practices was identified amongst the list of criteria which can be 

considered unique for assessing decision makers’ inputs in the area of productivity; with sub-

criteria of: average hours of work in productivity-related work per week, level of management 

training related to productivity, experience in conferences related to productivity management, 

and functional skills related to productivity management. Moreover, the criteria with the highest 

relative importance in relation to assignment of expert importance weights is productivity related 

project management practices, with a weight of 0.31. This indicates the need to give relatively 

more consideration for experts’ involvement in productivity-related activities during the decision-

making process. The results also show that both experience and knowledge are ranked second with 

an overall weight of 0.16, while reputation was ranked as the criteria with the lowest importance 

for expert assessment. 
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Second, the output of the FDEMATEL process is used to identify cause and effect groups within 

the factors affecting crew productivity, and draw influence relation maps between the factors. This 

is achieved by first computing the �̃�matrix. These values of the �̃� matrix are used to obtain values 

of (�̃� + �̃�) and (�̃� – �̃�), which were defuzzified to obtain the prominence and relation values 

respectively. As shown in Table 3.9, factors with higher prominence values that indicate higher 

causal relations with the other factors are presented. In this regard, ability to perform, reliability, 

work progress, visibility of outcome, and project scheduling make-up the top-five factors with 

highest prominence, representing the most relationship with the other factors. Hence, the top 

factors have a higher strength of interrelationship with the other factors and strongly influence the 

other factors in terms of their causal relationship. Conversely, location of washrooms, change in 

weather conditions, temperature, access points, and fairness were found to be the factors with the 

minimum prominence values indicating their relatively low influence over the other factors in 

terms of causal relationship.  

Moreover, Table 3.10 shows the relation values, where the factors are categorized into cause- and 

effect- groups based on positive and negative values of the relation measure. In this regard, crew 

motivation, crew experience, foreman experience, foreman knowledge, task repetition, crew 

composition, and rework were found to be among the top factors in the cause- group. These factors 

are shown to impose more impact on the system (R values) than they receive (C values), which 

enables them to have higher causal influence on the other factors and the overall behavior of the 

system. Therefore, improving these factors can result in the improvement of crew productivity 

measurement. Conversely, work progress, project time management, ability to perform, material 

handling, and project scheduling were found to be among the top factors that have high degree of 

being strongly influenced by the other factors. 
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The values of prominence and relation values are also used to plot the IRM. IRM is a very effective 

approach to analyze the cause- and effect- groups in terms of their overall influence on the system’s 

behavior. In this regard, factors that have registered the highest prominence values and were also 

categorized as ranking highest under cause- group are focused on first, for discussion purposes 

related to improving the overall behavior of the system. Hence, crew experience, foreman 

experience, foreman knowledge, crew motivation, crew composition, visibility of outcome, and 

rework were found to be amongst the factors with higher combined prominence and relation values 

relative to the other factors affecting crew productivity. In terms of managerial decision making to 

improve the overall behavior of the system and better crew productivity, these results show that 

focusing on working to improve the factors with a higher measure of both prominence and relation 

values is imperative. Moreover, factors that have registered the highest prominence values and 

were also categorized as ranking highest under the effect- group were found to be work progress, 

project time management, ability to perform, project scheduling, safety management, performance 

monitoring, reliability, and safety facilitation and implementation. The results show that these 

factors are affected most by the other factors, and also have more interaction with the other factors 

in terms of their causal relationship. In effect, improving the factors that have most interactions 

while also having the highest causal- impact on the other situational/contextual factors can have a 

significantly positive impact in improving those group of factors with categorized as ranking 

highest under the effect group-, thereby improving the overall behaviour of the system and crew 

productivity.  

Furthermore, the FDEMATEL output is used to obtain the causal relationship diagrams and 

feedback loops, which is crucial in the qualitative modeling process of SD modeling.  
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3.6 Chapter Summary  

Improving construction crew productivity is a complex process due to a combination of various 

problems, such as identification of factors that can be used as predictors of productivity, 

identification of the issues that can contribute to improvement of productivity, and proposing 

mitigation measures for improvement of the crew productivity. These processes mostly involve 

the inputs of heterogenous experts, who usually come from different backgrounds, experience, and 

varying areas of expertise. Furthermore, capturing the inherent causal interrelationships between 

factors that can contribute to productivity improvement, and between factors that are used as 

predictors for crew productivity is crucial to formulating a comprehensive solution for the 

productivity problem. In this regard, this chapter aims to address the productivity problem by 

proposing a systematic and structured methodology that integrates fuzzy set theory with the 

modelling approaches AHP, and DEMATEL, to use in dynamic modeling of crew productivity.  

This chapter identified a list of criteria to perform expert weight assignment in the context of 

productivity study. The FAHP proposed also enables expert weight assessment to account for 

heterogenous experts involved in productivity studies. Moreover, this chapter proposes 

FDEMATEL method to identify cause and effect groups within the factors affecting crew 

productivity, to capture the influence relationships between the factors, which can be used in 

strategic decision making on productivity improvement. Results of the FDEMATEL output were 

also used to obtain the causal relationship diagrams and feedback loops. 

The contribution of this chapter is threefold. First, the study proposes a method to aggregate inputs 

of heterogenous experts in the area of productivity study. Second, this chapter proposes a 

FDEMATEL methodology to identify cause- and effect- groups from the factors affecting crew 
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productivity using a case study on a real construction project in Alberta, Canada. The identified 

cause- and effect- groups can serve as crucial inputs for strategic decision making in productivity 

improvement. Third, this chapter makes use of FAHP and FDEMATEL, to propose a systematic 

and structured methodology to identify and define causal interrelationships between the factors, 

including situational/contextual factors, motivation, that affect crew productivity, and also to 

identify the feedback loops and formulate IRM. The outputs of FAHP-FDEMATEL form a crucial 

input for a more representative modelling of dynamic construction productivity.  

This chapter details the methodology to perform weighted FDEMATEL modeling. This chapter 

presents 1) identification of criteria and sub criteria to perform expert ranking, 2) performing 

weight assessment using the FAHP methodology, and 3) establishing of causal relationship 

mapping and identification of cause-and-effect groups of factors affecting CLP. The next chapter 

discusses the methodology to utilize the outputs of the FAHP-FDEMATEL model to perform 

FSD-FABM model to predict CLP.   
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Chapter 4 Hybrid Fuzzy System Dynamics and Fuzzy Agent-Based Modeling 

of Crew Motivation and Productivity in Construction4 

4.1 Introduction 

Construction productivity is one of the most researched topics because of its influence on the 

success of construction projects (CII 2013). Productivity as a key performance indicator (KPI) is 

a crucial element in estimating duration and cost of construction operations (Hwang and Liu 2010). 

Studies related to construction productivity have mainly consisted of developing a reliable metric 

for measuring construction productivity, identifying factors that affect productivity, predicting a 

productivity measure, identifying issues that can contribute to productivity improvement or loss, 

and devising strategies for productivity performance improvement (Dixit et al. 2019). These topics 

together comprise a significant portion of productivity research in the last 15 years and are usually 

considered “the productivity problem.” 

Construction productivity can be assessed using several metrics that can vary based on whether 

the measurement is made at the activity, project, or a higher level (Ayele and Fayek 2019). 

Examples of productivity metrics include unit rate (ratio of labor cost to output units) and 

productivity factor (ratio of scheduled work to actual work hours). The most common metric used 

amongst researchers is labor productivity, which the ratio of measured output (completed work) 

to measured input (work effort) (Johari and Jha 2020; Tsehayae and Fayek 2016; Yi and Chan 

 
4 Parts of this chapter has been submitted for publication in Automation in Construction: Kedir, N. 

S., and Fayek, A. R. (2022)." Integrated Fuzzy System Dynamics–Fuzzy Agent-Based Modeling 

of Crew Motivation and Productivity in Construction " Automation in Construction, 61 manuscript 

pages, submitted Oct. 2022. 
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2014; Zhao and Dungan 2019). At higher levels of productivity study, factors that affect measured 

productivity are assessed at the organizational, provincial, national, or global level (CII 2013; 

Kedir et al. 2022). Thus, measuring activity-level labor productivity is crucial to determining 

project performance, which in turn affects construction companies’ profit margins. 

Several approaches in the literature have been developed to predict productivity including: 

regression analysis, machine learning methods, and simulation approaches. These methods have 

inherent limitations. Regression analysis methods are simple to implement but lack data-capturing 

ability and lose accuracy with increasing number of inputs (Heravi and Eslamdoost 2015). 

Machine learning methods, such as artificial neural network (ANN), expert systems, and fuzzy 

systems, rely on the quality and amount of data to produce accurate models, which are difficult to 

obtain in most construction settings (Yi and Chan 2014). ANN also lacks the ability to explain the 

quality of the input-output mapping process (Mirahadi and Zayed 2016), which results in models 

that are not transparent and difficult for construction practitioners to understand, thereby limiting 

their applications to new project contexts (Tsehayae and Fayek 2016). Traditional expert systems 

formulate understanding of the system based on simple IF-THEN rules inferred from expert inputs 

(Sackey and Kim 2018) and cannot capture the subjectivity associated with human thinking and 

linguistic terms (Qiu et al. 2018). Fuzzy systems have consistently been used to capture subjective 

uncertainties arising from the use of linguistic terms and model input-output relationships. 

However, fuzzy systems alone lack the ability to learn from data and optimize their model 

parameters, so cannot capture the dynamic conditions usually associated with construction 

environments (Fayek 2020). Simulation approaches such as discrete event simulation (DES) are 

mostly effective in modeling tasks with repetitions and finding durations of activities, utilization 

of resources, and delays (Raoufi et al. 2016). However, DES cannot to capture dynamic 
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relationships between model elements. Effectively, these methods all lack ability to capture 

complexity and dynamism that arise from the continuous change in values of system variables 

owing to their time-varying nature and causal interactions. 

The construction environment is unpredictable, context dependent, and complex, where factors 

such as crew experience, crew motivation, foreman knowledge, and congestion influence the 

productivity measure either directly or indirectly (Tsehayae and Fayek 2016). Construction 

projects are performed in a dynamic environment that results from numerous interactions between 

contextual/situational factors related to task, resources, management, project characteristics, and 

work-setting conditions (Raoufi and Fayek 2018). Therefore, to model and predict construction 

productivity, dynamism and uncertainty of the construction environment must be properly 

captured. 

The problem of proposing a comprehensive model of construction labor productivity (CLP) entails 

simultaneously capturing: 1) complexity arising from the subjective nature of variables affecting 

CLP, owing to the use of linguistic terms such as low temperature or poor safety practices, 2) 

complexity arising from the dynamic nature of variables, whose values are continuously changing 

throughout project duration, 3) complexity arising from the emerging behavior of some variables 

affecting CLP, such as crew motivation, and 4) complexity arising from the causal 

interrelationships between factors affecting CLP, which are context dependent and vary across 

different situations in which tasks are performed. Therefore, a gap in the literature exists regarding 

methods that can capture dynamic causal relationships between factors affecting CLP and the 

emergent nature of some variables, while addressing subjective uncertainty in modeling and 

predictive processes. Combining different modeling approaches such as FSD and FABM enables 
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modelers to produce a more powerful hybrid model capable of a more comprehensive abstraction, 

by capturing the effects of multiple system variables such as subjectivity, dynamism, and emergent 

behaviors. 

The objective of this chapter is to propose a hybrid FSD-FABM model that can capture causalities 

between crew motivation and situational/contextual factors that impact CLP while addressing 

subjective uncertainties in the predictive modeling process. This chapter also aims to investigate 

predictive accuracies of multiple modeling approaches with FSD-FABM. This chapter is 

organized as follows: first, the topic of productivity is introduced; a brief literature review on 

productivity in construction is then presented, as are simulation approaches used to model 

productivity. Next, the FSD-FABM methodology is presented. 

4.2 Literature Review 

4.2.1 Simulation Methods for Construction Productivity  

4.2.1.1  System Dynamics Modeling  

SD was first introduced by Jay Forester in the mid-1950s for the purpose of modeling complex 

systems (Sterman 2000). Early studies on SD-based productivity investigated the impact of one or 

multiple factors on productivity. These included studies on the impact on productivity of: changing 

key personnel (Chapman 1998); downtime resulting from equipment failure (Prasertrungruang and 

Hadikusumo 2009) and varying arrangements of personnel working-hours (Alvanchi et al. 2012). 

More recent SD studies have better utilized SD’s potential to model dynamic systems, observe 

critical interrelationships between several system elements, and capture their impacts on 

productivity. Nasirzadeh and Nojedehi (2013) developed SD model for construction labor 
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productivity, which was appropriate for capturing interrelationships between the factors affecting 

productivity measure. Li and Taylor (2014) developed SD to model, and evaluate the effect of 

reworks in construction projects. Nojedehi and Nasirzadeh (2017) proposed a FSD model for 

modelling and improving productivity. Gerami Seresht and Fayek (2018) Proposed a fuzzy system 

dynamics model for multi factor productivity of construction activities; that accounted for labor, 

equipment and material.  

When SD models are hybridized with fuzzy logic approaches, the proposed models are able to 

capture the subjective nature of model variables, thereby providing a more comprehensive 

representation of the construction environment. Although hybrid fuzzy SD models offer more 

comprehensive solutions in modeling subjective variables that also exhibit dynamism, fuzzy SD 

models cannot efficiently capture those variables having a spatial nature (e.g., congestion). Fuzzy 

SD models also cannot properly represent heterogeneity of different agents and their interactions 

(Khanzadi et al. 2019) or emerging behavior of model variables such as crew motivation (Kedir et 

al. 2020). Therefore, hybrid SD models must incorporate methods capable of capturing 

heterogeneity and emerging nature of system variables, to be able to propose a more 

comprehensive predictive model of construction productivity. 

4.2.1.2  Agent Based Modeling 

ABM consists of agents that interact with each other and their environment, with the primary goal 

of predicting possible emerging system behavior (Khodabandelu and Park 2021). Agents are 

entities that are discrete, have their own unique set of behavioural rules, and are classified by type 

(e.g., crews, crew members), whereby each type has distinguishing features (e.g., crew member 

years of experience, crew size) (Raoufi and Fayek 2018). Jabri and Zayed (2017) used ABM to 
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simulate, and thus, improve the accuracy and planning of earthmoving operations. Cao et al. (2015) 

used ABM to develop a scheduling framework to improve occupant satisfaction and energy 

efficiency in residential buildings. Ben-Alon and Sacks (2017) proposed a hybrid model of ABM 

and BIM to better study production systems in construction that can capture the motivation and 

behaviour of individual crews and workers, as well as their interaction within a physical and 

process environment. This signifies ABM’s potential when used with other modelling approaches. 

While fuzzy hybrid ABM approaches can capture construction systems containing subjective 

parameters, heterogeneity, and active individual objects defined by behavioural rules, FABM is 

not best suited to investigate processes dominating in aggregated systems nor aggregated system-

level dynamics (Martin and Schlüter 2015). For models that need to be abstracted at a higher scale 

to study feedbacks with cause-and-effect relationships, SD methods are better suited to capture 

complexities associated with these systems. Thus, hybridizing FSD and FABM is imperative, 

because it enables modelers to combine the strength of individual method, while capturing vague 

interdependencies and the subjectivity arising from linguistic approximation and measurement 

imprecision. 

4.2.1.3  Fuzzy Logic in Construction  

Zadeh (1965) first introduced fuzzy set theory. This concept transformed the perception of 

modelling uncertainties, as fuzzy sets extended the notion of classical sets and Boolean logic. 

Hence, fuzzy logic is able to handle natural language and approximate reasoning, by 

mathematically translating linguistic variables into numeric form and allowing users to make 

definite conclusions from ambiguous information and incomplete data (Zadeh, 1965). Fuzzy sets 

are represented using membership functions (MBFs). In fuzzy hybrid models, appropriately 
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representing linguistic variables and fuzzy rules, employing the right fuzzy arithmetic method, and 

selecting the most suitable defuzzification methods are essential (Fayek and Lourenzutti 2018). 

4.2.1.4  Integrating FSD and FABM in Modeling Productivity  

In viewing productivity modeling as a complex system whose inputs continuously interact with 

themselves and the environment, an efficient abstraction necessitates an integrated simulation 

approach that takes advantage of multiple simulation methods. Thus, a hybrid SD-ABM based 

approach uses SD to consider productivity as a dynamic system with complex feedback 

relationships whose behaviour is captured over time, and uses ABM at the micro level to capture 

the individual systems whose individual components interact with each other and the environment 

per a given set of rules. 

Research interest in hybrid SD-ABM approaches is increasing in different construction areas. 

Nasirzadeh et al. (2018) proposed a framework for modeling construction workers’ safety behavior 

using a hybrid SD-ABM modeling approach. Wu et al. (2019) proposed SD-ABM to gain better 

understanding of laborers’ behavioural diversities to improve project management. Hwang et al. 

(2021) proposed an agent-embedded SD model to analyze worker policies and investigate 

construction workers’ social absenteeism. In the area of productivity, a few studies on hybrid SD-

ABM exist. Khanzadi et al. (2019) used a hybrid SD-ABM approach to predict and improve the 

labor productivity measure, where SD was utilized to simulate dynamic feedback relationships 

between factors affecting labor productivity, and ABM was used to model congestion. 

The three major methods of hybridizing SD and ABM in the literature (Swinerd and McNaught 

2012)  are integrated, interfaced, and sequential hybrid designs. In integrated modeling, connection 

between SD and ABM is performed through a feedback mechanism that allows for information 
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interchange. In interfaced modeling, ABM and SD models run individually, and the final output 

has the outputs of the ABM and SD model components. In sequential modeling, either SD or ABM 

runs first, and the resulting information is sent into the subsequent step. These three approaches 

are suitable based on the modeler’s objectives, as the approaches have advantages and 

disadvantages. Hence, selection criteria depend on problem characteristics and model 

requirements (e.g., data availability, following a policy, spatiality, learning members, complex 

interactions) (Nasirzadeh et al. 2018). Integrating fuzzy logic approaches with both ABM and SD 

to produce FSD-FABM will enable individual modeling techniques to model subjective 

uncertainties associated with construction systems, namely the vague interdependencies between 

variables (Nasirzadeh et al. 2018). 

4.3  Research Methodology for Hybridizing FSD and FABM  

The proposed hybrid FSD-FABM methodology comprises four components: 1) factor 

identification and system variable selection, 2) FSD, 3) FABM, and 4) FSD-FABM. The factor 

identification stage identifies the variables necessary to define the system. The FSD component 

captures causal relationships between factors affecting CLP. FABM captures the emerging nature 

of the Crew motivation variable and establishes the model environment by forming the agents for 

crews and project work packages. Fuzzy logic is embedded within the hybrid FSD-FABM 

component to capture subjective uncertainties. The FSD-FABM methodology is shown in Figure 

4.1 and discussed below. 
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Figure 4.1 FSD-FABM methodology. 

4.3.1 Factor Identification and System Variable Selection   

In the process of factor identification and system variable selection, the first step is to identify 

factors that affect productivity. Factors that affect crew motivation and productivity are identified 

and collected from past literature (Raoufi and Fayek 2018; Gerami Seresht and Fayek 2018; 

Khanzadi et al. 2019; Nasirzadeh and Nojedehi 2013; Tsehaye and Fayek 2014). After identifying 
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the list of factors within the literature, these identified factors are categorized into different 

hierarchies of situational/contextual factors. These hierarchies include labor and crew-related, 

materials and consumables, equipment and tools, task related factors, location related factors, 

supervisor related factors, engineering and instructions, safety, project management practices, 

project nature and project conditions. In this regard, 111 factors were identified and categorized 

under these hierarchies (Appendix C). A sample of these factors is shown in Table 4.1. 

Table 4.1 Situational/contextual factors affecting productivity. 

Factor group Factor name 
Factor used as 

measurement 

Labour and crew-related 

Crew is experienced and has the necessary 

technical skills to perform the tasks. 
Crew experience 

Crew has a well-balanced composition 

(Journeymen and Apprentices). 
Crew composition 

Efforts are taken to minimize crew turnover 

(people are not leaving the project 

regularly) 

Crew turnover rate 

Craftspeople trust the skills and judgment 

of their supervisors. 

Craftsperson trust in 

foreman 

Materials and 

consumables 
Material is always delivered on time. 

Availability of task 

materials 

Equipment and tools 
Work tools and equipment are readily 

available. 

Availability of work 

equipment (crane, 

forklift) 
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After these factors are identified, interview surveys are prepared to obtain experts’ responses. The 

surveys are prepared for supervisors and forepersons. These experts will rank each of the factors 

based on the factors’ influence on productivity, using two scores: agreement score and impact 

score. The agreement score represents the extent to which the expert agrees that the factor is 

present in their project while the impact score represents the extent to which the factor affects 

productivity. In this chapter, the five-point scale: Strongly Disagree, Disagree, Neither Agree nor 

Disagree, Agree, and Strongly Agree is used to rate the agreement levels of experts. The impact 

score was measured using the five-point scale: Strongly Negative, Negative, No Impact, Positive, 

and Strongly Positive.  

The responses of these experts are then collected to perform statistical analysis to select the factors 

with the maximum positive or negative impact on crew productivity. As the most common 

technique for correlation analysis (Pandey 2020; Bobko 2001; Gerami Seresht and Fayek 2019); 

Pearson correlation analysis was explored. Pearson correlation analysis indicates relationship 

between independent variables (i.e., motivational, and situational/contextual factors) and 

dependent variables – crew productivity. Pearson’s correlation analysis does not establish 

causation between the factors (Gogtay and Thatte 2017). The data was first checked to satisfy the 

assumptions test, necessary to perform the correlation analysis. The assumptions test carried out 

include randomness, continuity, independence of observations, existence of paired sample for X 

and Y variables, and absence of outliers. Expert selection was randomized to comply with the 

randomness test, and the data are measured on a continuous scale to comply with the continuity 

test. For example, crew experience was measured in years, temperature is measured in degrees. 

Moreover, there is no relationship between the experts who were selected in the data collection 

process to make sure there is independence of observations. The data also contains paired samples 
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of dependent and independent variables, and the selected data was checked not to include outliers. 

Once a strong relationship between factors is identified, the selected factors are then used as system 

variables in the subsequent modeling stages of FSD and FABM.  

4.3.2 FSD Component 

The FSD component captures the causal relationships between situational/contextual factors, and 

crew motivation. The dynamic variables that make-up the construction environment in the form of 

situational/contextual factors are represented in the FSD component by capturing their causal 

interrelationship. There are two major steps in the FSD component, namely, qualitative, and 

quantitative modeling.  

4.3.2.1  Identify Model boundary and level of aggregation 

In the first step, the qualitative modeling of FSD deals with identifying model boundary and level 

of aggregation. The model boundary defines the modeling scope. The factors affecting 

productivity obtained from the previous step of factor identification and system variable selection 

step, are grouped into the 9 categories, namely: labour and crew-related factors, materials and 

consumables, equipment and tools, task-related factors, location-related factors, engineering and 

instructions, safety, project management practices, and project nature and project conditions. 

These factors are used as system variables, and based on the definition of the model boundary, 

they are divided into endogenous, and exogenous variables (Appendix D). Endogenous variables 

such as crew size, crew composition, project scheduling, are influenced by the other variables in 

the system, whereas exogenous variables such as temperature, nature of project owner, humidity, 

are not influenced by other variables. The desired modeling scope, level of complexity, and 

available information can be used to distinguish between endogenous and exogenous variables. 
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After the model boundary is defined, the level of aggregation for the model is identified. The level 

of aggregation defines how system variables are grouped into sub-systems to achieve a realistic 

abstraction. The aggregation level of the FSD component is shown in Figure 4.2.  

 

Figure 4.2 Aggregation level of FSD model  

where: Cij is the productivity of crew j that are working on work package i.  

It is important to note that the crew allocation to the work packages in the project is a planning 

problem and is not addressed in this chapter. In the level of aggregation shown in Figure 4.2, crew 

1 may be allocated to work only on work package 1, or a combination of the m work packages in 

the project (i=1, m). In this regard, the FSD component models the dynamics of the 

situational/contextual factors affecting productivity of the crews, that are performing a given set 

of work packages.  

4.3.2.2  Identify subjective and objective variables 

Once the nature of all the variables to be used in the FSD component is identified, the variables 

are categorized further into subjective and objective variables (as shown in Appendix D). 

Subjective variables are those variables which are best defined using fuzzy numbers and 

membership functions. Variables that show subjective uncertainties arising from imprecision or 
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linguistic expression of information (Zadeh 1978), are best described using the principle of fuzzy 

sets. These variables do not have numeric attributes, and are linguistic in nature, such as high 

temperature, low crew motivation, low crew morale. Objective variables such as crew size, 

production rate, crew composition, have quantitative metrics and can be expressed with numeric 

expressions.   

4.3.2.3  Identify feedbacks, causal loops, stocks and flows 

Next, the causal relationships between these factors are formulated to determine the dynamics 

between crew productivity, and the situational/contextual variables. The causal relationships 

between the variables can be obtained using literature reviews, questionnaire surveys, or semi-

structured interviews, modelers’ assumptions, and experts’ verification through focus groups 

(Leon et al. 2018; Gerami Seresht and Fayek 2018; Khanzadi et al. 2019; Moradi et al. 2015). In 

this chapter, causal loop diagrams and feedback loops were obtained using fuzzy analytical 

hierarchy process–fuzzy decision making trial and evaluation laboratory (FAHP-FDEMATEL) 

method. The FAHP-FDEMATEL method addresses the lack of systematic and structured 

methodology of obtaining causal relationships between system variables in the context of 

productivity modeling. The proposed methodology utilizes expert knowledge using surveys to 

identify causal relationships using the FDEMATEL method. In the FDEMATEL method, experts’ 

assessments on the causal relationships between factors affecting productivity was obtained in the 

form of a fuzzy matrix �̃�𝐸., as shown in Equation (4.1).  
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https://scholar.google.com/citations?user=sANboxgAAAAJ&hl=en&oi=sra
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   i,j = 1,2,...n, and e =1,2,...E 

where: 

n=total number of elements in the system and, 

E= total number of experts assessing the causal relationships 

Next, the set of initial fuzzy matrix �̃�𝐸, obtained from a set of experts E, are aggregated to form 

the aggregated direct relation matrix �̃�, as shown in Equation (4.2).  

�̃� = [ �̃�𝑖𝑗]𝑛𝑥𝑛
, 𝑤ℎ𝑒𝑟𝑒 �̃�𝑖𝑗 = (𝑑𝑖𝑗

𝑙 , 𝑑𝑖𝑗
𝑚, 𝑑𝑖𝑗

𝑢 )           (4.2) 

This direct relation matrix is used to obtain the normalized fuzzy aggregated direct relation matrix 

N, as shown in Equation (4.3) and Equation (4.4) below 

�̃� =  �̃� ∗        (4.3) 

where: 

nji
n

j
ijd

ni

,...2,1,,

1

max

1

1
=











=

=     (4.4) 

The fuzzy total relation matrix T represents the total degree of causal influence of factor i on factor 

j, which is obtained using Equation (4.5), and Equation (4.6) (Rostamnezhad et al., 2018).  

𝑇 = 𝐷(𝐼 − 𝐷)−1    (4.5) 

where I is represented by an n x n identity matrix. 

Hence,  

�̃� = [ �̃�𝑖𝑗]𝑛𝑥𝑛
, 𝑤ℎ𝑒𝑟𝑒 �̃�𝑖𝑗 = (𝑡𝑖𝑗

𝑙 , 𝑡𝑖𝑗
𝑚 , 𝑡𝑖𝑗

𝑢), 𝑎𝑛𝑑 𝑖, 𝑗 = 1,2, … 𝑛    (4.6) 
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In the final process, causal loop diagrams, and causal relationships between crew motivation, and 

situational/contextual in affecting productivity are established for use in dynamic modeling of 

productivity. To achieve this, the total relation matrix T, obtained in Equation (4.6) will be 

defuzzified using the center-of-area method to achieve the Tdef matrix. This defuzzified matrix 

represents the degree of causal influence between the factors affecting productivity. In this regard, 

Tij represents the degree of causal influence of factor i on factor j. The direction of the arrows for 

drawing the CLD is drawn in such a way that factors in each row affect the factors of the columns 

of the matrix. 

In addition to the FDEMATEL approach, pre-existing causal relationships that were already 

established and well-verified in previous models (Ford and Lyneis 2020; Nasirzadeh et al. 2018; 

Gerami Seresht and Fayek 2018; Khanzadi et al. 2019) were also used. Moreover, the stocks, and 

flows of the dynamic model are also identified in the qualitative modeling stage. The stocks 

represent the accumulation, or depletion resulting from the differences between inflows and 

outflows, while flows represent the rate at which stocks change over time (Sterman 2000). In this 

chapter, three stock variables are identified, namely: work to do, work completed, and direct labor 

cost. The flow variables include the daily work rate, and the labor cost rate. In effect, 

interdependencies between model variables are mapped, then causal loop diagrams are developed 

by establishing causality through the use of arrows, assigning polarity to the arrows, indicating 

delays in the causal links, naming the loops, and linking the feedback loops with the model’s stocks 

and flows.  

https://scholar.google.com/citations?user=sANboxgAAAAJ&hl=en&oi=sra
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4.3.2.4  Define model variables  

In this stage, the model variables are defined quantitatively by assigning measurements based on 

the type of variable under consideration. In this regard, there are two types of model variables, 

namely: objective and subjective variables (Gerami Seresht and Fayek 2018). Membership 

functions, which assume values between 0 and 1 are used to characterize the linguistic terms that 

are used to describe the subjective variables. 

4.3.2.5  Define causal relationships, stocks and flows  

Next, the causal relationships, and the stock and flow variables are determined quantitatively. In 

this step, there are two types of relationships between system variables, namely: 1) hard 

relationships, which are relationships that can be defined by mathematical equations, and 2) soft 

relationships, which are relationships that are difficult to capture using mathematical equations. 

The hard relationships are defined by using existing mathematical equations, or by using statistical 

methods such as regression analysis. For example, crew size is measured as number of crew 

members in the crew, minus the number of absentees; and production rate is measured in amount 

produced per unit of time. Equation (4.7) to Equation (4.16) show some of the hard relationships 

which are defined by mathematical equations.  

Crew size [𝒏𝒖𝒎𝒃𝒆𝒓] = Planned crew size [𝒏𝒖𝒎𝒃𝒆𝒓] - Absenteeism [𝒏𝒖𝒎𝒃𝒆𝒓]      (4.7) 

Daily Work Time [
𝒉𝒓

𝒅𝒂𝒚
] = Planned Work Hour [

ℎ𝑟

𝑑𝑎𝑦
] + Overtime [

ℎ𝑟

𝑑𝑎𝑦
]       (4.8) 

Labor Direct Cost Rate[
$

𝑑𝑎𝑦
]=Daily Work Time[

𝑝𝑒𝑟𝑠𝑜𝑛 ℎ𝑟

𝑑𝑎𝑦
]*Workforce Unit Cost[

$

𝑝𝑒𝑟𝑠𝑜𝑛 ℎ𝑟
] (4.9) 

Productivity [
𝑢𝑛𝑖𝑡𝑠

𝑝𝑒𝑟𝑠𝑜𝑛 ℎ𝑟.
] = Production Rate [

𝑢𝑛𝑖𝑡𝑠

𝑑𝑎𝑦
]  ÷ Daily Work Time [

𝑝𝑒𝑟𝑠𝑜𝑛 ℎ𝑟

𝑑𝑎𝑦
]    (4.10) 

Productivity Loss[
𝑢𝑛𝑖𝑡𝑠

𝑝𝑒𝑟𝑠𝑜𝑛 ℎ𝑟.
]=BenchmarkProductivity[

𝑢𝑛𝑖𝑡𝑠

𝑝𝑒𝑟𝑠𝑜𝑛 ℎ𝑟.
]-Productivity[

𝑢𝑛𝑖𝑡𝑠

𝑝𝑒𝑟𝑠𝑜𝑛 ℎ𝑟.
]   (4.11) 
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Remaining Work [𝑢𝑛𝑖𝑡𝑠] = Work to Do - Work Completed [𝑢𝑛𝑖𝑡𝑠]                                   (4.12) 

Labor Cost Rate [
$

𝑑𝑎𝑦
] = Labor Direct Cost Rate [

$

𝑑𝑎𝑦
]+ Labor Indirect Cost Rate [

$

𝑑𝑎𝑦
]   (4.13) 

Daily Work Rate [
𝑢𝑛𝑖𝑡𝑠

𝑑𝑎𝑦
] = Production Rate [

𝑢𝑛𝑖𝑡𝑠

𝑑𝑎𝑦
]                                                    (4.14) 

Work Completed [units] = ∫𝐷𝑎𝑖𝑙𝑦 𝑊𝑜𝑟𝑘 𝑅𝑎𝑡𝑒  [
𝑢𝑛𝑖𝑡𝑠

𝑑𝑎𝑦
] . 𝑑𝑡 [𝑑𝑎𝑦]                 (4.15) 

Total labor Direct Cost ($) = ∫𝐿𝑎𝑏𝑜𝑟 𝐷𝑖𝑟𝑒𝑐𝑡 𝐶𝑜𝑠𝑡 𝑅𝑎𝑡𝑒  [
$

𝑑𝑎𝑦
] . 𝑑𝑡 [𝑑𝑎𝑦]     (4.16) 

For the mathematical equations that consist of fuzzy variables, fuzzy arithmetic methods 

(extension principle or alpha-cut) can be applied. The second type of relationships includes soft 

relationships, which is performed by connecting the SD with the fuzzy logic component. If there 

is available data, neuro-fuzzy systems or data-driven fuzzy rule base systems are proposed.  

4.3.3 FABM Component 

The FABM component constitutes of three major steps, namely: 1) defining the FABM 

environment and processes, 2) defining agent attributes and behaviors, 3) define interactions 

between agents, and agent behavioral rules. Each of these steps are elaborated in more detail as 

follows.  

4.3.3.1  Define FABM environment and Processes 

In this step, the main environment of the FABM is identified, the agents taking part in the FABM 

are identified by answering the basic question of “what are the agents?” and the overall model 

architecture is proposed. In the FABM component, the primary output of the model is crew 

motivation. In this regard, the main environment is the top-level agent where all the model 

parameters, and immediate lower-level agents are created. The main environment is also where 

the necessary java functions which enable connection with the fuzzy component are placed. In the 
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ABM, there are three types of agents: namely, the project agent, the crew agent, and the work 

package agent. Figure 4.3 shows the FABM environment and processes. 

 

Figure 4.3 FABM environment and processes. 

As shown in Figure 4.3, the simulation main environment of the FABM component includes the 

group agent of crews that can contain embedded agents of crew members, and the group agent of 

Workpackage that can contain the embedded agent of deliverables. During the initial step of 

creating agents, the number of agents, and the connections between these agents are specified. The 

connections between the group agents of crews and Workpackage signify that the crews perform 

tasks designated in the Workpackage environment. After these connections are established, state 

transitions are then specified in the state charts. All agents are created in the simulation main 

environment.   
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4.3.3.2  Define Agent Attributes and Behaviors 

In this step, the basic structure of agents is formulated. For each of the agents and agent groups 

defined in the previous step, the corresponding attributes is defined. This can be achieved using 

either one of deterministic, probabilistic or subjective approaches. The first approach is using 

deterministic variables for those variables with defined values such as crews’ year of experience, 

number of crews. The second approach is using probabilistic variables for the variables that exhibit 

probabilistic nature such as the susceptibility of crews to change their motivation (Raoufi and 

Fayek 2018). The third approach is using subjective variables for those variables that exhibit 

subjective uncertainties such as teamwork, foreman knowledge, and crew knowledge.  

To model subjective variables, a fuzzy set theory approach is used to capture those variables in the 

FABM environment, where membership functions were used to quantify the degree of 

belongingness of the variable to its respective fuzzy set. Depending on the availability of data, 

neuro-fuzzy systems or data-driven fuzzy rule base systems are used. When there is no data 

available, expert based fuzzy rule base systems are proposed to formulate relationships between 

the variables. Implementation of the fuzzy set theory to model the subjective variables is discussed 

in detail in the fuzzy logic component. The basic structure of agent, which establishes the agent 

attributes and behaviors is described in Figure 4.4. 
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Figure 4.4 Agent attributes and behaviors. 

As shown in Figure 4.4, the basic structure of agents is divided into agent attributes, and agent 

behaviors for the three different types of crews, project, and Workpackage agents. The attributes 

of all the three agent types deal with initializing parameters, and variables that will be used to hold 

information. For example, the crew ID, and initial crew motivation are initialized at the start of the 

simulation, while the current crew motivation is the value that is computed at every time step. 

These attributes are set for each agent. Secondly, the agent behaviors are represented by what the 

agent performs. For example, the crew agent updates interactions of each crew to calculate the 

crew motivation at each timestep, and also connects to the FSD component so that the values of 

crew motivation can be used in the FSD component of the model. 
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4.3.3.3  Define Agent Interactions and Agent Behavioral Rules 

After the attributes and behaviors of each agent are defined, the next step is to define how different 

agents interact. ABM is able to capture the dynamism resulting from the dynamic interactions 

between agents by first establishing rules for agent interactions. For example, crews working in a 

congested area have greater reduced outputs than crews that are working in less congested areas 

(Watkins et al. 2009). The reduction of outputs, as a function of congestion is then established 

using mathematical equations. There are several mathematical equations that quantify predefined 

interaction rules in the literature (Dabirian et al. 2021; Al Hattab and Hamzeh 2018; Azar and 

Ansari 2017). Depending on the type of agent, the mathematical equations that define interaction 

rules can be different. In this chapter, the crew agent exhibits behavioral changes resulting from 

observing the behaviors of other crews. The formula used to calculate the interaction between crew 

agents, to simulate the attribute of agent A is adopted from Raoufi and Fayek (2018), as shown in 

Equation (4.17).  

.𝐶𝑀𝑖
𝑡 = (1 − 𝑍 × 𝐶𝑅 ×  𝑆) × 𝐶𝑀𝑖

𝑡−1 + (𝑍 × 𝐶𝑅 × 𝑆) ×
∑ 𝐶𝑀𝑗

𝑡−1𝑁
𝑗=1

𝑁
   (4.17) 

where t = current time step, t–1 = previous simulation time step; i and j are indices of the agent 

type; Z = agent type that observes the attribute of other agents to change its own attribute; CR = 

contact rate, S = susceptibility (the probability that an interaction between the agents leads to a 

change in the attribute of the agent); CM = crew motivation, N = number of crew agents that 

interact with Ai. 

4.3.4  Fuzzy Logic Component 

The method proposed in the fuzzy logic component is intended to expand the scope of SD and 

ABM approaches by introducing fuzzy logic into each of the approaches. In this regard, the fuzzy 
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logic component is an integral aspect of both the ABM and the SD models. By integrating the 

ABM and SD model with the fuzzy logic component, FABM, and FSD can be established, which 

is crucial to capture subjective uncertainties within the model. This integration is shown in in 

Figure 4.5.  

 

Figure 4.5 Integration of Fuzzy Logic Component with SD and ABM. 

 

As shown in Figure 4.5, the fuzzy logic component is utilized for 1) SD in the steps of quantitative 

model variable definition, causal relationship definition, and stock and flow definition, and for 2) 

ABM in the steps of agent attribute and behavior definition, and agent interaction definition. Using 

processes in the fuzzy logic component, the SD and ABM approaches are transformed into FSD 

and FABM components. The interaction of the fuzzy logic component, with the SD and ABM is 

performed by applying either one of the two processes explained in the fuzzy logic component. 

The processes performed in the fuzzy logic component can be summarized in two parts, namely: 

obtaining fuzzy rules and membership functions, and the fuzzy inference system (FIS), as shown 

in Figure 4.6.  
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Figure 4.6 Fuzzy logic component. 

Figure 4.6 shows the two main processes that take place in the fuzzy logic component. The first 

process deals with describing the subjective variables, such as crew knowledge, and crew 

experience using membership functions. The second process deals with formulating relationships 

between the subjective variables using FIS by using the variables in the FABM and FSD 

environment.  

4.3.4.1  Obtaining Fuzzy Rules and Membership Functions 

In the first part, fuzzy rules and membership functions are obtained using inputs from field data 

on situational/contextual factors, such as expert rankings of safety procedures, safety facilitation 

and implementations, the quality of hazard identification and mitigation processes. These fuzzy 

sets are defined by their membership functions, which map the degree of belongingness of an 

element to a set and how the element fits the concept expressed by the linguistic term (Fayek 

2020). There are several types of membership functions, such as, triangular, trapezoidal, and 

gaussian. In this chapter, the Gaussian membership functions (MBFs) have been used to capture 

variables with uncertainties due to the impression, subjectivity, or linguistic expression of 

information (i.e., non-probabilistic uncertainties). This is because Gaussian MBFs are continuous 

and smooth, have non-zero values at all points, are suitable for optimization because they have 
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only two parameters (i.e., the modal value and standard deviation), and are interpretable (Tsehayae 

and Fayek 2016; Pedrycz and Gomide 2007). The Gaussian membership function is defined in 

Equation (4.18) as shown below:  

𝑀(𝑥, 𝜎, 𝜇) = 𝑒
−[

(𝑥−𝜇)2

2𝜎2 ]
  (4.18) 

where x = the value of the variable in the universe of discourse; M=the membership function for 

a linguistic term, µ=the modal value, and 𝜎 = standard deviation. 

The fuzzy rules can be developed using expert inputs, or data-driven approaches. Expert driven 

approaches include vertical, horizontal, pairwise comparison, inference, intuition, and 

exemplification methods (Raoufi and Fayek 2018). Data-driven methods such as clustering 

methods, utilize existing data to identify groups of data, and assigns a degree of belongingness 

(between 0 and 1) of each data to each of the groups within the dataset. In this chapter, fuzzy rules 

are formulated using fuzzy c-means clustering (FCM) technique as it is the most popular and 

established method for data analysis and construction of models (Nayak et al. 2015; Suganya and 

Shanthi 2012). For a given data of N instances, with n input variables and one output variable y, 

the dimensional vector p will have (N+1) dimensions. The kth data instance 𝑥𝑘𝑖, where I represents 

the ith input variable for the kth data instance, is denoted by Equation (4.19) as shown below:  

   𝑝𝑘 = {𝑥𝑘1,  𝑥𝑘2, 𝑥𝑘3, … , 𝑥𝑘𝑛,  𝑦𝑘1}    (4.19) 

The result of the FCM algorithm produces a partition matrix U, by minimizing an objective 

function. This partition matrix U is formulated as shown in Equation (4.20) and Equation (4.21) 

as shown: 

𝑈 = [𝑢𝑠𝑡],    𝑠 = 1, 2, 3… 𝑐, 𝑎𝑛𝑑 𝑡 = 1, 2, 3 …𝑁    (4.20) 
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𝑈𝑠𝑡 =
1

∑ (
‖𝑝𝑡−𝜈𝑡‖

‖𝑝𝑡−𝜈𝑗‖
)

2
𝑚−1

𝑐
𝑗=1

,    𝑠 = 1, 2, 3…𝑐,    𝑎𝑛𝑑   𝑡 = 1, 2, 3 …𝑁  (4.21) 

where 𝑝𝑡 = data instance t;  𝜈𝑡= tth prototype; and m = fuzzification coefficient. 

Moreover, for each cluster center, the optimization algorithm for the FCM returns cluster centers 

(prototypes) V, as shown in Equation (4.22) and Equation (4.23).  

   𝑉 =  [𝑣𝑖𝑗],    𝑖 = 1, 2, 3… 𝑐, 𝑎𝑛𝑑 𝑗 = 1, 2, 3 …𝑁  (4.22) 

   𝜈𝑠𝑡 =
∑ 𝑢𝑖𝑘

𝑚𝑝𝑘𝑡
𝑁
𝑘=1

∑ 𝑢𝑖𝑘
𝑚𝑁

𝑘=1

 𝑖 = 1, 2, 3… 𝑐, 𝑎𝑛𝑑 𝑗 = 1, 2, 3 …𝑁 (4.23) 

The total number of prototypes c determine the number of rules. In this chapter, fuzzy rules are 

utilized in both the FSD component and FABM component.  

The next step is optimization of the FCM parameters to minimize information loss in encoding 

and decoding of data, by ensuring that the optimal number of fuzzification coefficient and number 

of clusters have been selected. The number of clusters impact the detail of the granular 

representation of data, while m values influence the shape of the membership functions (Pedrycz 

and de Oliveira 2008). The following steps detail the decoding process, whereby minimization of 

the decoding error, is calculated.   

For the 𝑈𝑠𝑡 and 𝜈𝑠𝑡 calculated in Equation (4.21) and Equation (4.23), per each iteration:  

Carryout the degranulation procedure of the training data from the calculated partition matrix and 

prototypes of each number of cluster and “m” values, as shown in Equation (4.24).   

�̂� =
∑ 𝑢𝑖

𝑚(𝑥)𝜈𝑖
𝑐
𝑖=1

∑ 𝑢𝑖
𝑚(𝑥)𝑐

𝑖=1

             (4.24) 
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Compute the average reconstruction error for each number of clusters and “m” values considered 

and compute the optimum “m” value for which the reconstruction error is at its lowest, written as 

Equation (4.25). 

𝑉 =
1

𝑁
∑ ‖𝑥𝑘 − 𝜈𝑗‖

2𝑛
𝑖=0      (4.25) 

where V = reconstruction error.  

The FCM algorithm in Equation (4.21) and Equation (4.23), along with the steps in Equation (4.24) 

and Equation (4.25) are performed iteratively for training and testing dataset, until the performance 

evaluation criterion of the minimum reconstruction error is met (Pedrycz and de Oliveira 2008).   

4.3.4.2  Fuzzy Inference System 

The prediction process of FIS involves the following steps (Tehayae and Fayek 2016): fuzzifying 

input variables, input aggregation, fuzzy input-output implication, rule aggregation and output 

decoding. In the second part of the fuzzy logic component, Mamdani FIS and adaptive neuro-fuzzy 

inference system (ANFIS) are applied to capture the soft relationships in model, to process 

computations within the predictive blocks.  

As shown in Figure 4.6, the variables in the FSD and FABM components are used to implement 

FIS in the fuzzy logic component. By using the variables in the FSD and FABM environment, 

inference systems are applied to form relationships between these variables. For example, when 

the soft relationships in the FSD components are formed using FIS, the input to the FIS are the 

dynamic variables in the FSD component. These inputs are processed in the FIS, to give an output 

used in the FSD component.   
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4.3.5 FSD-FABM Component 

The FSD-FABM component combines FSD and FABM using the three applicable hybrid SD-

ABM design classes: interfaced class, sequential class, and integrated class (Swinerd and 

McNaught 2012). In this chapter, both the SD and ABM are integrated with the fuzzy component 

to produce FSD and FABM respectively. Hence, the proposed hybridization approach in this 

chapter is discussed in terms hybridizing FSD and FABM components by extending the existing 

principles of integrating SD and ABM approaches in (Swinerd and McNaught 2012).  

The first criterion to be checked in selecting the hybrid modeling type for this FSD-FABM 

platform is if an exchange of information occurs between FSD and FABM. Figure 4.7 shows the 

method for selecting the hybrid simulation method (Nasirzadeh et al. 2018). If there is no 

interaction between the SD and ABM platforms, but individual results need to be combined, 

interfaced class modeling approach is used. If the information exchange is only one-way, that is 

from SD to ABM or vice versa, sequential class modeling type is used. However, if there is a 

bidirectional exchange of information between SD and ABM, the integrated class of stocked 

agents or agents with internal structure is selected, based on the hierarchy level of the SD and 

ABM.   
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Figure 4. 7 Selection procedure for selecting the hybrid FSD-FABM type. 

In this chapter, crew motivation is the output of the FABM component which will be used in the 

FSD component. Hence, the connect to SD behavior of the crew agent is activated at every time-

step to send the values of daily crew motivation by performing the update crew motivation process. 

Moreover, the daily average situational/contextual variables will be computed in the FSD 

component and be sent to the Workpackage agent. In the FSD-FABM, the inputs from FSD to 

FABM are the daily average values of situational/contextual variables, while the inputs from 

FABM to FSD are daily values of crew motivation. Moreover, the FABM is at the lower hierarchy-

level, and FSD is at a higher hierarchy-level. 

Figure 4.8 illustrates the processes taking place in the proposed FSD-FABM approach, and the 

different types of models that are proposed as part of the FSD-FABM. The expected outcomes of 

the FSD-FABM are the simulation of the construction system, whereby the causal relationships 

between the identified situational/contextual factors and crew motivation are captured in the model 

to produce the daily average values of situational/contextual variables, crew motivation, and the 

CLP of crews that are performing tasks in the work packages of the construction project.  
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Figure 4.8 Simplified Illustration of the FSD-FABM process. 

1The FSD model types are based on the techniques used to capture soft relationships in the FSD 

model, which correspond to the type of resulting FSD-FABM 

4.4 Chapter Summary 

Construction activities are performed in a dynamic environment, whereby different factors such 

as crew motivation, and situational/contextual factors are interacting during the project duration. 

Therefore, modeling of these construction activities to predict a pre-determined performance 

measure such as productivity entails that these factors (i.e., system variables) are captured using 

appropriate modeling techniques.  

The FSD-FABM proposed in this chapter predicts the CLP of multiple work packages that make 

up a construction project. The proposed model is also able to predict the motivation of the crews 

working on the different work packages on the project, and the impact of crews’ motivation states 

on their productivity. Moreover, the proposed model simulates the dynamic interrelationships 

between situational/contextual variables to assess the impact of situational/contextual average on 

daily productivity of crews.  
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In this chapter, the overall methodology for performing the hybrid FSD-FABM has been detailed. 

The steps which need to be performed to 1) perform the FSD modeling, 2) FABM, and 3) 

hybridization of the two modeling approaches have been discussed at length. The next chapter 

demonstrates the proposed FSD-FABM methodology using a case study.  
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Chapter 5 Construction Application and Model Verification: Case Study5 

5.1 Introduction 

In order to demonstrate the methodology, a case study based on a real industrial construction 

project in Alberta, Canada is proposed. The case study utilizes the data collected for the study of 

crew motivation and performance (Raoufi and Fayek 2018). The data collection protocol (Raoufi 

2018) details the procedure followed to collect the necessary data on crew motivation, 

situational/contextual factors and crew performance measurements. Participants in the field data 

collection consisted of crew members, foremen, and the management staff. For data collection 

related to crew motivational factors, the data collector collected data on randomly selected crews, 

where crew members perform self-evaluation on their individual-level motivational factors and 

crew-level motivational factors were obtained from the supervisor evaluation. A similar approach 

was followed for the data collection on situational/contextual factors (Raoufi 2018). For the crew 

performance metrics, project documents such as score cards, time sheets, schedule updates, and 

cost estimates were used. In this regard, data collected on crew productivity, and motivational and 

situational/contextual factors of seven crews were utilized in this case study. The seven crews 

included six excavation/backfilling (EB) crews and one sandblasting/coating (SC). The model 

proposed in this chapter examines the dynamic relationship between crew motivation, and 

situational/contextual factors, in affecting in affecting CLP of the project. The dynamic 

 
5 Parts of this chapter has been submitted for publication in Automation in Construction: Kedir, N. 

S., and Fayek, A. R. (2022)." Integrated Fuzzy System Dynamics–Fuzzy Agent-Based Modeling 

of Crew Motivation and Productivity in Construction." Automation in Construction, 61 manuscript 

pages, submitted Oct. 2022. 



 

 

126 

relationship between crew motivation and situational/contextual variables are modeled to give the 

output CLP of the crews involved in execution of the work packages. In this model, the crew-level 

situation in which crews are performing their tasks is modeled in the Workpackage agent, and the 

project-level situation is an aggregation of the situational factors of all the crews working on the 

project, in addition to project-level situational factors. The steps of the methodology are discussed 

accordingly in the subsequent sections.  

5.2 Factor Identification and System Variable Selection: 

The process of identifying system variables and aggregating those system variables into different 

hierarchies is elaborated in the methodology section. For the purpose of demonstrating the case 

study, this chapter utilizes the data collected on factors affecting crew motivation and performance 

(Raoufi and Fayek 2018), whereby interview surveys were implemented to identify critical factors 

influencing construction crew motivation and performance. For factors affecting crew motivation, 

the four main motivational factors that were adapted from the literature outside of the construction 

domain, were identified (Raoufi and Fayek 2018). These factors include efficacy (Hannah et al. 

2016), commitment/engagement (Cesário and Chambel 2017), identification (Lin et al. 2017), and 

cohesion (Chiniara and Bentein 2018). In the construction context, these four measures are defined 

are as follows (Raoufi and Fayek 2018): efficacy = judgement of an ability to perform a specific 

task; commitment and engagement = emotional attachment to, and involvement in the 

organization; identification = the emotional attachment that members hold to their membership in 

a group; cohesion = the extent to which members want to “stick together” in the group. Individual 

and crew level measures of factors affecting crew motivation were collected using interviews of 

project personnel, which included crew members, field supervisors, foremen, and project 

managers. For the situational/contextual factors, and crew productivity measures, the previously 
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stated methods were extended to include data on actual documents such as such as time sheets, 

score cards, safety logs, change order logs, inspection test plans, and cost estimates. From the total 

of 129 situational/contextual factors identified at the crew and project level (Raoufi and Fayek 

2018) that affect crew performance, a statistical analysis was performed to identify the most critical 

factors. In this regard, Pearson correlation analysis was performed to identify factors that had a 

relationship with crew productivity. Pearson’s correlation coefficient value of greater than 0.5 are 

chosen (Raoufi and Fayek 2018), to select the factors with strong relationship with crew 

productivity. In effect, 38 situational/contextual factors were identified as system variables, in 

addition to the crew motivation variable (Appendix D). A sample of the situational/contextual 

factors is shown in Table 5.1.  

Table 5.1 Sample of the situational/contextual factors selected in the FSD-FABM. 

System variable Description and Scale of Measure Type 

Visibility of 

outcome 

Rating - To what extent does performing the tasks 

provide crew members with visibility of the 

outcomes of the work.  

Subjective 

Rework 
The measure of the total reworked volume in 

relation to the total volume of work. 
Objective 

Crew composition The ratio of journeyman to apprentice Objective 

Crew experience 
Number (average years of experience in current 

position) 
Objective 

Ability to perform Rating - Ability of the crew to perform tasks Subjective 

Material handling 

Rating - Ability of the crew to move, protect, 

and/or store materials throughout the construction 

process. 

Subjective 



 

 

128 

5.3 FSD Component 

The FSD component is discussed simultaneously with the fuzzy logic component for clarity. In 

the FSD component, the two major steps (i.e., qualitative and quantitative modeling) involve 

interactions with the fuzzy logic component, as shown in the previous step in Figure 4.5.   

5.3.1 Qualitative Modeling - Model boundary and level of aggregation 

Identifying the model boundary entails dividing the system variables into endogenous and 

exogenous variables, as described in the methodology section. It is important to have fewer 

exogenous variables in the model (Sterman 2000). A list of endogenous and exogenous variables 

is shown in Appendix D. The identified exogenous variables of the model include weather 

conditions, with sub-categories of temperature, humidity, precipitation, wind speed, and change in 

weather conditions. 

After defining the model boundary, the variables are used to model the system based on the defined 

level of aggregation. In this chapter, there are seven crews each performing tasks according to the 

work packages they are assigned to. The crews have been numbered in such a way that corresponds 

to the work packages which range from one to seven. For example, crew-1 is assigned to work 

package 1.  

5.3.2 Qualitative Modeling - Identify Subjective and Objective Variables 

In this step, the system variables that were considered for use in the FSD modeling were further 

classified into subjective and objective variables, as described in the methodology. For the 

subjective variables, membership functions are developed to represent their numeric scales. Some 

of these variables include level of communication, crew motivation, task identity, noise, visibility 

of outcome, and reliability of crews to perform their tasks. The objective system variables are 
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represented by numeric scales. Some of the objective system variables include foreman experience 

(number of years), crew composition (ratio of journeypersons to apprentice), rework (ratio of total 

reworked volume to total work volume), foreman experience (number of years).  

5.3.3 Qualitative Modeling - Identify feedbacks, causal loops, stocks and flows 

In order to identify feedback relationships between system variables, and formulate causal loop 

diagrams, expert knowledge is utilized by using surveys to identify causal relationships using the 

weighted FDEMATEL method as described in the methodology section. Using the weighted 

FDEMATEL method, causal loop diagrams which capture the causal relationships between 

situational/contextual factors, crew motivation and crew productivity, are established for dynamic 

modeling of productivity, as described in the methodology section.  

5.3.4 Quantitative Modeling - Define model variables 

In this step, the identified variables in the qualitative stage are defined quantitatively. As described 

in the methodology, the objective variables of the model have readily quantifiable scales, while 

the subjective variables are defined by fuzzy sets, using membership functions. In this chapter, the 

gaussian membership functions expressed in Chapter 4, Equation (4.18) are used to define the 

shape of membership functions, as detailed in the methodology section. 

5.3.5 Quantitative Modeling - Define causal relationships, stocks, and flows  

The causal relationships and feedback loops which were identified in the qualitative modeling 

stage are defined quantitatively in this stage. For the hard relationships which can be captured 

using mathematical equations, the mathematical equations are proposed. For the soft relationships 

with no predefined mathematical equations: 1) a statistical approach to determine the mathematical 

equations describing the relationships, and 2) a data-driven FRBS using the FCM clustering 
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approach are investigated to formulate the soft relationships. The error measure of each of the two 

approaches was used as a selection criterion, where the approach with the lower RMSE was 

selected. This was approach was performed for the seven work packages, as the measurements of 

situational/contextual variables vary in the work packages, and there is no standard approach to 

capture these relationships. Accordingly, the soft relationships in the FSD component of the model 

for work package 1 are shown in Table 5.2.  

Table 5.2 Formulation of soft relationships between system variables. 

Output Variable System variables used as input 

Ability to perform 
crew knowledge, crew experience, foreman knowledge, 

foreman experience, teamwork 

Absenteeism crew motivation, fatigue 

Crew knowledge visibility of outcome, crew composition, crew size 

Foreman knowledge visibility of outcome 

Goal setting task repetition, reliability 

Hazard identification and 

mitigation 

safety facilitation and implementation, fatigue, foreman 

experience 

Performance monitoring project cost management, project time management 

Project cost management project scheduling 

Work progress 

ability to perform, crew motivation, hazard identification 

and mitigation, congestion, rework, performance 

monitoring, change in weather conditions, absenteeism 

Project scheduling work progress 
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Output Variable System variables used as input 

Project time management project scheduling 

Reliability work progress 

Safety facilitation and 

implementation 
safety trainings, safety procedures 

Task identity visibility of outcome 

Visibility of outcome goal setting, communication 

 

Table 5.2 shows the soft relationships for each work package. The fuzzy component in the FSD 

model optimizes the fuzzy clustering parameters, namely the fuzzification coefficient (m) and 

number of clusters (c) for use in formulating the Mamdani FIS and the N-FIS. Using the steps 

discussed in the methodology to compute the reconstruction errors for each predictive block, the 

FCM parameters have been optimized. The reconstruction error was performed by writing a 

Python code to execute the steps discussed in the methodology. The optimal number of clusters 

for the work progress predictive block has been demonstrated in Figure 5.1, whereby the python 

code was implemented to compute the optimal parameters for m (m = 2) and number of clusters 

(c = 7).  
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Figure 5.1 Optimization of FCM parameters using minimum reconstruction error. 

 

The hard relationships between the system variables making-up the CLD, and the stock and flow 

diagrams are shown in Chapter 4 of Equation (4.7) to Equation (4.16).   

5.4 FABM Component 

The FABM component constitutes of four major steps, namely: 1) defining the FABM 

environment and processes, 2) defining agent attributes and behaviors, 3) define interactions 

between agents, and 4) define agent behavioral rules. Each of these steps are elaborated in more 

detail as follows.  

5.4.1 Define the FABM environment and Processes 

The simulation main environment for the FABM incorporates the project agent class, the crew 

agent class, and the Workpackage agent class. There is only one project considered in the case 

study, which constitutes of several work packages performed by seven crews (6 EB crews and 1 

SC crew). Moreover, the FABM main environment is defined to incorporate all the processes 
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carried out by agent classes, in addition to the simulation methods that are used to define agent 

interactions, collect statistics, and connect with MATLAB to execute the fuzzy inference system.  

5.4.2 Define Agent Attributes and Behaviors 

The agents, whose attributes are defined are the project agent, the crew agent and the Workpackage 

agent. To define the behaviors of agents, the fuzzy logic component is integrated with the ABM 

to use membership functions and apply fuzzy rules, as described in the methodology.  

5.4.3 Project Agent Class 

The project agent class is created to capture the all the active projects to be considered in the FSD-

FABM methodology. The attributes of the project agent are the Project ID, and current project-

level situation. Because there is only 1 project in the study, the project ID shows no variation in 

the modeling. However, the methodology is capable to model multiple projects. The process taking 

place in the project agent class is updating daily project situation. The daily project level situation 

attribute is calculated as the mean of the normalized situational/contextual variables of existing in 

each work package of the Workpackage environment. The developed project class is shown in 

Figure 5.2.  

 

Figure 5.2 Project agent class. 
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In the project agent class, the daily contextual average is sent from the Workpackage agent for 

each of the work packages. These values are sent from the contextual average state chart to the 

state state chart so that the daily contextual average will be identified as unsatisfied, moderate, and 

satisfied. The timers in each state chart are set to facilitate calculations of the project contextual 

average at a time-step of one day. 

5.4.4 Crew Agent Class 

The crew agent class is created to simulate the construction crews that are active in the construction 

project. The attributes of the crew agent are crewID, initial crew motivation, current crew 

motivation, and current crew-level situation. The behaviors of the crew agent class are described 

using processes executed the agent class, namely: update crew motivation, and update crew-level 

situation. The developed crew agent class is shown in Figure 5.3. The seven construction crews 

(6EB, 1SC) are designated by their crewID’s. The rules for the state charts, state transitions, and 

agent behaviors were adapted from Raoufi (2018). In the crew motivation state chart, the 

calculation of crew motivation for each of the agents is initiated in the interaction state chart. The 

state state-chart is the where the calculated daily motivation of the crews gets sent to any of the 

inner-state charts of high, medium, or low motivation. 
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Figure 5.3 Crew agent class. 

As shown in Figure 5.3, there are three components in the crew-agent class. The first component 

defines the crew agent attributes and process, which were described in the methodology section. 

The variables are used to store the corresponding values at each simulation time-step. The statistics 

store the data that is the output of every simulation time so that time-series graphs of each crew 

can be plotted. The crew motivation state chart performs calculations for the motivation of the 

crews at each simulation timestep in the state state chart. The crew motivation, and average 

motivation of other crews is computed in the ‘calculate_AvgCMandCurrentCM’ rate, which 

executes Equation (4.17) in Chapter 4, at each time step. The icons in between the state charts 
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signify the rate of change of motivation from each motivation state, which varies for each of the 

crews in the project. Therefore, crew motivation gets calculated at each timestep, in the form of 

current crew motivation for each crew according to their motivation state of low, medium or high 

motivation. For each of the crews, crew motivation is computed from the data collected on the 

crew motivational factors, as the mean of the normalized measures of the motivational factors 

(Raoufi and Fayek 2018). Moreover, the crew-level situational/contextual variables for each crew 

are computed as the average of the situational/contextual factors that are existing in the work 

package environments each crew is working at. For this project, each crew is working in a separate 

work package. Therefore, the situational/contextual variables that make-up the environment of 

each work package (e.g., Workpackage=1) corresponds to the measure of the crew-level situation 

a crew (e.g., crewID=1).  

5.4.5 Workpackgage Agent Class 

The Workpackage agent class is created to capture situational/contextual factors that are 

continuously interacting in the construction environment. The population of the Workpackage 

agent is 7, indicating the seven work packages being undertaken in the project. For each of the 

work packages, the crew-level measurements of the situational/contextual factors are different. For 

example, variables such as crew size, absenteeism, crew experience will depend on the specific 

crew allocated for each of the work packages. Moreover, variables such as congestion, task 

repetition, task identity, level of rework will also interact to form the context for the construction 

environment of each work package. This dynamic process is captured by the FSD component of 

the model, which represents the dynamic interrelationships between the situational/contextual 

variables. The Workpackage agent class is shown in Figure 5.4. 
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Figure 5.4 Workpackage agent class. 

As shown in Figure 5.4, there are three main components in the workpackage agent class, namely: 

FSD causal loop, FSD stock and flow diagrams, and state charts. The FSD causal loop and the 

FSD stock and flow diagrams were constructed as the result of the quantitative stage of FSD 

modeling. The FSD model components were elaborated in the methodology section. The work 

package agent state charts are used to compute the daily situational/contextual average for each of 
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the work packages in the project. In this regard, the contextual average state chart calculates the 

daily situational/contextual average of each of the work package, and sends it to the state state 

chart, where the status of the daily situational/contextual average gets transferred to unsatisfied, 

moderate or satisfied project level situation. 

5.4.6 Define Agent Interactions 

In this chapter, crew motivation is modeled as a dynamic variable resulting from interactions 

between individual agents (i.e., crews). The motivation level (CM) of a crew agent i, is computed 

as resulting from interactions between other crew agents in the environment, as shown in the 

Equation (4.17) of the methodology section of Chapter 4.  

5.5 FSD-FABM Component 

The FSD-FABM component performs the hybridization of FSD and FABM components. The steps 

performed in the FSD-FABM component are described as follows.  

5.5.1 Define Information Flow Path 

In this case study, there are two instances of exchange of information between FSD and FABM 

components. The first information flow path is the crew motivation information where the crew 

motivation values for each crew calculated in the FABM component are sent to the FSD 

component, to be used as system variable to predict crew productivity. The second information 

flow path is the crew level situation information, whereby daily averages of situational/contextual 

variables are computed in the FABM component, using the input of daily measures of 

situational/contextual variables form FSD component. The FABM component uses the 

information on daily averages to determine work package agent behavioral rules using state charts. 

The information flow occurs at every time step, with the use of functions to facilitate the one-
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directional exchange of information from FABM to FSD, and vice versa. Modeling for such type 

of exchange of information is demonstrated using Figure 5.5 shown below.  

 

Figure 5.5 Information exchange between FSD and FABM components. 

As shown in Figure 5.5, the information exchange between FABM and FSD components is 

facilitated using inputs and processes. Inputs to the dynamic variables are located in elements such 

as table functions, where the dynamic inputs throughout the simulation time are given. The 

relationships between the dynamic variables can be processed using functions. For example, the 

calculation for dynamicVar6 is performed using function1. The event is used to schedule action in 

the model, to let the model know at what time a specific action is performed, such as sending 

output values from the FABM state charts to the FSD component. Processes that are performed in 

the states are stored in variables such as Variable1 and Variable2, where necessary calculations 

are performed by locating the values in the required variables. 
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5.5.2 Select Hybrid Simulation, Interface Variables, and Define Rules for Model Output 

Exchange 

The selection procedure in Figure 4.7 of Chapter 4, is utilized to select the hybrid simulation type. 

Because there is no bidirectional exchange of information, the sequential class is selected. The 

interface variables selected depend on what information to send to each of the hybrid model 

components. In the first information flow path (i.e., from FABM to FSD), crew motivation is sent 

to the FSD component at every time step. Therefore, crew motivation is selected as the interface 

variable. In the second information flow path (i.e., from FSD to FABM), the situational/contextual 

variables at every time step are used to compute the daily situational/contextual average, which 

will be used in the state charts of the FABM. Therefore, the daily situational/contextual average 

variable is the interface variable. Moreover, the level of hierarchy is established as described in 

Figure 4.2 of Chapter 4, where FABM component is at a lower hierarchy level than the FSD 

component. Consequently, the rules for model output exchange signify which dynamic variable, 

or process, in the FSD component has access to the FABM, and vice versa. In this chapter, the 

information exchange occurs daily (i.e., at every time step); the crew motivation dynamic variable 

created in the FSD component has access to the FABM output of crew motivation; and the FABM 

process of crew level situation has access to the FSD output of daily situational/contextual average.  

5.6 Results and Discussion 

In this chapter, a novel hybrid FSD-FABM is introduced. First, the initial input parameters of the 

model are first set by the user. The data collected on crew motivation (Raoufi and Fayek 2018) 

was utilized to formulate the initial parameters for the FABM component. These parameters are 

[number of crews, contact rate, zealot percentage, susceptibility, non-interactive motivation 

variability, initial motivation states of crews]. Accordingly, these inputs have been set to [7, 1, 
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0.2857, 0.09419, 0.01098, {0.2857 for low, 0.4286 for high}]. Furthermore, the initial dataset for 

FSD includes those exogenous variables that were considered in the model. Because these 

parameters are dynamic parameters whose values change over time, their values have been entered 

in a table format. The tables are prepared to include daily values of these input parameters, to be 

used by the FSD component during the simulation time. Some of these variables include crew 

experience, foreman experience, planned crew size, and safety trainings.  

After the inputs are identified, the data is normalized by maximum, as shown in Equation (5.1). 

  𝑌𝑖,𝑛𝑜𝑟𝑚 =
𝑌𝑖

max (𝑌)
    (5.1) 

where, 𝑌𝑖,𝑛𝑜𝑟𝑚= the normalized value of system variable Y, and 𝑌𝑚𝑎𝑥 = maximum value of the 

system variable Y. 

In addition to forming part of data pre-processing, normalization of data is also performed as part 

of data confidentiality requirements. After input parameters are entered, the next step is running 

the simulation and obtaining results on different system variables.  

The first set of results that is presented hereafter is to compare the predictive capabilities of the 

three FSD-FABM models that implemented LR, M-FIS, and ANFIS to capture the soft 

relationships in the FSD part of their model. Table 5.3 shows the CLP results of crew-1, that 

performed activities in work package-1 during the 30 days of construction period. Error measures 

used to compare prediction accuracy are RMSE and MAPE, which were computed based on 

Equation (5.2), and Equation (5.3).  

𝑅𝑀𝑆𝐸 = √
∑(𝐴𝑐𝑡𝑢𝑎𝑙−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2

𝑛
 x 100    (5.2) 
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𝑀𝐴𝑃𝐸 = 
∑ 𝐴𝑏𝑠(

𝐴𝑐𝑡𝑢𝑎𝑙−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝐴𝑐𝑡𝑢𝑎𝑙
)𝑛

𝑖=1

𝑛
 x 100     (5.3) 

where n = number of instances, Actual = actual field data, and Predicted = output of the simulation. 

Table 5.3 Actual versus predicted results for CLP of Work package 1. 

Time 

(day) 

Actual Predicted  Abs (error) 

Linear 

regression 

Mamdani 

FIS 

N-FIS  Linear 

regression 

Mamdani 

FIS 

N-FIS 

 

1 0.379 0.326 0.528 0.314  0.053 0.149 0.065 

2 0.284 0.086 0.114 0.182 0.198 0.170 0.102 

3 0.238 0.072 0.126 0.164 0.166 0.112 0.074 

4 0.275 0.063 0.126 0.232 0.212 0.149 0.043 

5 0.275 0.061 0.126 0.257 0.214 0.149 0.018 

6 0.528 0.186 0.582 0.497 0.342 0.054 0.031 

7 1.000 0.601 0.752 0.851 0.399 0.248 0.149 

8 0.261 0.184 0.467 0.181 0.077 0.206 0.080 

9 0.238 0.079 0.116 0.142 0.159 0.122 0.096 

10 0.275 0.193 0.126 0.269 0.082 0.149 0.006 

11 0.275 0.081 0.126 0.254 0.194 0.149 0.021 

12 0.528 0.348 0.681 0.601 0.180 0.153 0.073 

13 0.573 0.168 0.702 0.621 0.405 0.129 0.048 

14 0.550 0.382 0.601 0.576 0.168 0.051 0.026 

15 0.311 0.199 0.261 0.248 0.112 0.050 0.063 

16 0.358 0.315 0.514 0.271 0.043 0.156 0.087 
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Time 

(day) 

Actual Predicted  Abs (error) 

Linear 

regression 

Mamdani 

FIS 

N-FIS  Linear 

regression 

Mamdani 

FIS 

N-FIS 

 

17 0.812 0.340 0.981 0.898 0.472 0.169 0.086 

18 0.247 0.233 0.612 0.516 0.014 0.365 0.269 

19 0.245 0.035 0.114 0.164 0.210 0.131 0.081 

20 0.244 0.252 0.112 0.168 0.008 0.132 0.076 

21 0.266 0.276 0.344 0.301 0.010 0.078 0.035 

22 0.523 0.579 0.825 0.611 0.056 0.302 0.088 

23 0.465 0.510 0.498 0.487 0.045 0.033 0.022 

24 0.465 0.499 0.514 0.491 0.034 0.049 0.026 

25 0.499 0.686 0.814 0.576 0.187 0.315 0.077 

26 0.349 0.472 0.112 0.307 0.123 0.237 0.042 

27 0.797 1.000 0.917 0.905 0.203 0.120 0.108 

28 0.373 0.475 0.521 0.314 0.102 0.148 0.059 

29 0.251 0.326 0.311 0.245 0.075 0.060 0.006 

30 0.211 0.255 0.242 0.231 0.044 0.031 0.020 

 

RMSE    19.4% 16.7% 8.3% 

MAPE    38.44% 41.79% 19.07% 

 

Consequently, the results of the three predictive models were plotted against the actual data, as 

shown in Figure 5.6.  
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Figure 5.6 Actual versus predicted values of CLP of Crew-1. 

In terms of prediction errors, the FSD-FABM that uses N-FIS to capture the soft relationships 

outperformed with a RMSE of 8.3%. The Mamdani FIS and the linear regression methods had 

RMSE of 16.7% and 19.4% respectively. However, the RMSE does not usually reflect the model's 

predictive performance relative to actual data. MAPE is a measure of the predicted values vs the 

actual values, and expresses errors as a percentage of actual data, which makes it ideal to judge 

the differences in capabilities of predictive models (Raoufi and Fayek 2018). In this regard, the 

MAPE showed that the three methods registered higher error measures, with the M-FIS and LR 

methods having the error measure of 41.79% and 38.44%, respectively. The N-FIS method had 

the minimum error and produced better results with a MAPE of 19.07%. Moreover, the FSD-

FABM that uses N-FIS predicted the behavior of the system better than the other methods, by 

predicting the trends of increase and decrease of the predicted CLP value. Trends (an increase or 

decrease in the value between any two consecutive points), and extreme conditions test (the 

minimum, or maximum value of actual value vs predicted value) can be used to determine a 

model’s capacity to predict the behavior of construction systems (Gerami Seresht and Fayek 2020). 
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In this regard, the FSD-FABM that uses N-FIS predicted 27 out of 30 of the trends in actual values 

(90%), while the M-FIS and LR methods predicted 80% and 66.67% respectively. In terms of 

extreme conditions test, the global and local minimum and maximum values of actual CLP data 

were compared with the corresponding predicted values. The results show that the FSD-FABM 

that uses N-FIS predicted correctly, the local minima and local maxima values, including the 

global minimum and global maximum values in all instances. The days in which the values were 

compared are days 3,7, 13, 15, 17, 22, 25, 26, 27, and 30. On the other hand, the Mamdani FIS did 

not accurately predict the local minimum for day 3; while the linear regression approach did not 

predict the local extreme values for day 3, 13, and 17 respectively. Hence, the FSD-FABM that 

uses N-FIS was shown to be more accurate for predicting the CLP of the crews’ performing 

activities in the work packages.  

The next result that is presented is the average values of the daily situational/contextual factors of 

the construction environment. The average of the situational/contextual variables was calculated 

by giving equal weight to each situational/contextual variable under consideration, to avoid bias. 

The result of daily situational/contextual average gives important information about the 

construction environment in the range of 0–1, where 0 = undesired value and 1= desired value. 

Because the situational/contextual variables are dynamic in nature, whose values change over time, 

a comparative investigation of the effect of situational/contextual factors on CLP was performed 

to compare the trends (i.e., increasing or decreasing) by using the three-day moving average of the 

daily normalized values, as shown in Figure 5.7 and Figure 5.8. Using the moving average 

calculation, a general trend can be observed in terms of studying the effect of situational/contextual 

values on CLP. For comparison purposes, the motivation of crew-1 is also presented in Figure 5.9.  
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Figure 5.7 Daily situational/contextual values with 3-day moving average for work package 1. 

 

 

Figure 5.8 Daily actual CLP values with 3-day moving average for work package 1. 

 

 

Figure 5.9 Crew motivation values for crew-1. 
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As can be seen from Figure 5.7 and Figure 5.8, the moving average of situational/contextual and 

CLP values show a similar increasing/decreasing trends. This shows that on the days when 

situational/contextual average registered higher values with increasing trend relative to previous 

days, the CLP was also showing a similar trend. For example, the normalized 

situational/contextual average registered the second highest measurement on day 4 - day 7. The 

corresponding CLP values showed an increasing trend between day 4 - day 7 with the maximum 

CLP value at day 7. The converse was also true on the days of day 7 - day 10, where the 

situational/contextual average was on a steeply decreasing trend. A similar decreasing trend in the 

CLP also occurred between day 7 - day 10. Such trend was consistent throughout the project 

duration. However, another observation can be made, where the situational/contextual average 

consistently increased and registered peak values, while the CLP values had low values. This 

occurred especially after day 19. This can be attributed to the consistently decreasing value of the 

crew’s motivation. Even though the crew’s motivation at the start of the project was high, the 

interaction between other crews that have low motivation, and the random rate in which crews 

change their motivation attributed to the lower motivation values of the crew after project start 

time. As can be seen in Figure 5.9, the minimum value of the crew-1’s motivation was 0.84 during 

the 30-day period. This value was repeatedly observed after day 18, which could contribute to the 

decreasing CLP in those days where higher CLP was to be expected because of higher 

situational/contextual values.  

The results for the two other work packages, which have differing type of work compared to work 

package 1, (i.e., backfilling and sandblasting) have been presented in Table 5.4. 
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Table 5.4 Results for work package 2 (Backfilling), and work package 6 (Sandblasting). 

Time 

(day) 

Workpackage 2 Workpackage 6 

Actual Predicted Error Actual Predicted Error 

1 0.114 0.118 0.004 0.952 0.821 0.131 

2 0.367 0.443 0.076 0.393 0.311 0.082 

3 0.041 0.013 0.028 0.795 0.662 0.133 

4 0.038 0.017 0.021 0.905 0.796 0.109 

5 0.080 0.101 0.021 0.950 0.889 0.061 

6 0.110 0.126 0.016 1.000 0.924 0.076 

7 0.024 0.047 0.023 1.000 0.891 0.109 

8 0.017 0.031 0.014 0.547 0.516 0.031 

9 0.074 0.117 0.043 0.500 0.486 0.014 

10 0.061 0.041 0.020 0.308 0.201 0.107 

11 0.040 0.042 0.002 0.308 0.208 0.100 

12 0.094 0.065 0.029 0.380 0.471 0.091 

13 0.094 0.065 0.029 0.380 0.321 0.059 

14 0.094 0.061 0.033 0.307 0.297 0.010 

15 0.409 0.481 0.072 0.375 0.447 0.072 

16 0.409 0.483 0.074 0.314 0.284 0.030 

17 0.374 0.362 0.012 0.257 0.197 0.060 

18 0.060 0.023 0.037 0.351 0.284 0.067 

19 0.060 0.076 0.016 0.233 0.147 0.086 

20 0.098 0.104 0.006 0.233 0.149 0.084 
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Time 

(day) 

Workpackage 2 Workpackage 6 

Actual Predicted Error Actual Predicted Error 

21 0.098 0.102 0.004 0.233 0.117 0.116 

22 0.111 0.098 0.013 0.397 0.443 0.046 

23 0.060 0.021 0.039 0.397 0.514 0.117 

24 0.370 0.421 0.051 0.645 0.741 0.096 

25 0.217 0.208 0.009 0.424 0.377 0.047 

26 0.137 0.112 0.025 0.230 0.116 0.114 

27 0.105 0.084 0.021 0.293 0.118 0.175 

28 0.344 0.386 0.042 0.615 0.561 0.054 

29 0.619 0.685 0.066 0.975 0.871 0.104 

30 0.160 0.214 0.054 0.975 0.883 0.092 

 
RMSE 0.037   RMSE 0.090 

MAPE 0.297 MAPE 0.202 

 

As can be seen in Table 5.4, the results of predicted CLP values for work package 2 and work 

package 6 registered RMSE values of 3.7% and 9%; and a MAPE values of 29.7% and 20.2% 

respectively. As the FSD-FABM that used N-FIS to capture the soft relationships in the FSD part 

of the hybrid model was demonstrated to produce better results, the FSD-FABM with the N-FIS 

model was used to demonstrate the results of CLP in the other work packages. In this regard, the 

proposed FSD-FABM was capable of predicting the CLP values of the different work packages. 
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5.7 Verification of the FSD-FABM 

Model verification is a very crucial step to ensure the model is produced according to the 

fundamental concepts and enables understanding of the model’s limitations (Al-Kofahi et al. 

2020). In this chapter, four different methods (Sterman 2000) were used to verify the FSD-FABM, 

namely, boundary adequacy, structure verification, dimensional consistency, and sensitivity 

analysis. These tests are discussed briefly hereafter. 

5.7.1 Boundary adequacy 

The boundary adequacy test is performed to check if the essential concepts for addressing the 

problem (i.e., system variables selected) are endogenous to the model (Sterman 2000), and that 

changing the parameters of the model inputs produce variations in the model output. In this regard, 

the model complied with the boundary adequacy test as the model variables that were selected in 

the form of endogenous variables, such as CLP, crew composition, work performed, congestion, 

etc. were selected from the extensive literature that existed on this research area (Raoufi and Fayek 

2018; Ford and Lyneis 2020; Nasirzadeh et al. 2018; Gerami Seresht and Fayek 2018; Khanzadi 

et al. 2019).  

5.7.2 Structure Verification 

Structure verification tests whether the model is congruous with the knowledge of the real system. 

In this regard, the cause-and-effect relationship of the model, which represents the construction 

system explains construction knowledge that is consistent with the real system. In this regard, the 

model complies with the structure verification test. An example is discussed where increased 

schedule compression leads to more overtime work, which can lead to fatigue. Crews’ increased 

fatigue can then have an impact on their ability to adequately perform hazard identification 

https://scholar.google.com/citations?user=sANboxgAAAAJ&hl=en&oi=sra
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mitigation on the construction site. Feedback relationships that make-up the first reinforcing CLD 

(R1) of the system consist of crews’ ability to perform and their motivation (Figure 5.4). In this 

chapter, crews’ ability to perform tasks was modeled as a function of crews’ knowledge of the 

work, their experience, and the experience and knowledge of their direct supervisor, in addition 

the crews’ teamwork. The crews’ tendency to impact the system in terms of progress or work 

performed in the work packages, results from crews’ ability to perform, and crews’ motivation. 

This result aligns with previous studies (Raoufi and Fayek 2018) which stated that crews’ ability 

to perform their tasks, and their motivation directly affects crews’ performance, which can be 

indicated by KPIs such as CLP.  

5.7.3 Dimensional Consistency 

Dimensional consistency is checked for those relationships with defined mathematical equations 

(i.e., hard relationships). A sample of the dimensional consistency test is presented below as 

Equation (5.4) for demonstration purposes, to ensure that the unit measures in each side of the 

mathematical relationships are consistent. 

Productivity [
𝒖𝒏𝒊𝒕𝒔

𝒑𝒆𝒓𝒔𝒐𝒏 𝒉𝒓.
] = Production Rate [

𝑢𝑛𝑖𝑡𝑠

𝑑𝑎𝑦
]  ÷ Daily Work Time [

𝑝𝑒𝑟𝑠𝑜𝑛 ℎ𝑟

𝑑𝑎𝑦
]          (5.4) 

As shown in Equation (5.4), the relationship satisfies dimensional consistency, as the left and right 

sides of the equations equate to give a similar dimension (i.e., units/person hr.). This which is also 

demonstrated for all of the other mathematical relationships expressed in the methodology section. 

Hence, the model is shown to satisfy the dimensional consistency test.   
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5.7.4 Sensitivity Analysis 

Sensitivity analysis is performed to identify those parameters that impact the output of the model. 

AnyLogic® is used to perform the simulation analysis for the FSD-FABM, whereby several 

parameters are varied to investigate their effect on the output of the model. In this regard, the 

parameter chosen to demonstrate the sensitivity analysis performed in this chapter is crew 

motivation. The causal effect of crew motivation on CLP can be visualized using a sensitivity 

analysis, as shown in Figure 5.10. Previous studies have shown that increasing the percentage of 

initially highly motivated crews in a project, results in higher motivation of crews (Raoufi and 

Fayek 2020), especially in instances that the contact rate between crews is higher (Kedir et al. 

2020). After performing a parameter variation test, whereby the initial percentage of highly 

motivated crews was increased to show an increase in the observed crew motivation, a sensitivity 

analysis was performed. This sensitivity analysis investigates the effect of increasing initial 

percentage of highly motivated crews on CLP within the range of 0–1, which can also be 

interpreted as investigating the effect of increase in crew motivation on CLP.  

 

Figure 5.10 Sensitivity analysis for effect of motivation on CLP. 



 

 

153 

As can be seen in Figure 5.10, the general trend of increase in CLP can be observed when 

increasing the crew motivation. Moreover, results of CLP showed varied trends for varying initial 

percentage of highly motivated crews. When the initial percentage of highly motivated crews was 

0.2, the predicted values of CLP was the lowest, indicating the negative effect of lower crew 

motivation on CLP. Moreover, the effect of increasing the percentage of highly motivated crews 

on CLP also diminished for values higher than 0.6. Effects of higher motivation such as CM = 0.8, 

and CM = 1.0 on CLP were extending the days were local maxima of CLP occurred (days 12–14, 

and days 22–25). This effect needs to be investigated further as to why a similar effect did not 

occur on days 7, 17, and 27, which could be because of a local minima values of 

situational/contextual average, which may have precluded a sustained CLP increase.  

5.8 Chapter Summary 

The FSD-FABM methodology has been applied using a case study on an industrial construction 

project. The results of this chapter showed that the FSD-FABM methodology proposed was 

capable of predicting crew motivation, daily contextual average values of the construction 

environment, and CLP of the crews. Moreover, the results showed that the hybrid FSD-FABM 

which utilized N-FIS in the FSD component of the model outperformed the other predictive 

models that used LR, and M-FIS in the FSD component of the model. This indicates the 

capabilities of the ANFIS approach in learning from data while also utilizing information from the 

membership functions in the FIS. Moreover, the results also indicated the impact of crew 

motivation in affecting CLP of crews that are performing their tasks in the work packages. Using 

the predictive model proposed in this chapter, it was possible to attribute the increase and decrease 

of CLP to variations in crew motivation and the daily situational/contextual average during 

different stages of the project.   
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The contribution of this chapter to the body of knowledge is to propose a hybrid FSD-FABM, 

which captures and assesses the impacts of multiple variables exhibiting dynamic causal 

interactions, emergent behavior, and non-linearity in modeling and predicting of CLP. In addition, 

the proposed FSD-FABM technique can capture subjective uncertainty in the predictive modeling 

processes. The FSD-FABM, which incorporated ANFIS was found to have higher predictive 

accuracy compared to other models, including linear regression and M-FIS. In comparison to 

previous models that captured productivity, the FSD-FABM proposed in this chapter is a novel 

approach to capture dynamic construction systems that exhibit multiple types of uncertainties, such 

as subjective uncertainties, and objective uncertainties, in addition to capturing complex adaptive 

systems that exhibit emergent behaviors. In comparison to previous models (Gerami Seresht and 

Fayek 2018; Nojedehi and Nasirzadeh 2017; Nasirzadeh and Nojedehi 2013; Al-Jibouri and 

Mawdesley 2009), that used crew motivation as an input parameter, the proposed FSD-FABM 

offers a better approach by modeling crew motivation as an emergent behavior that is dynamic 

throughout the project. Moreover, the proposed FSD-FABM uses FDEMATEL in the qualitative 

modeling stage of FSD, which allows for a systematic, and structured methodology for obtaining 

causal relationships in comparison to previous models. In this regard, this chapter is an 

advancement to previous research (Jeong et al. 2022 Al-Kofahi et al. 2022; Gerami Seresht and 

Fayek 2020; Gerami Seresht and Fayek 2018; Nojedehi and Nasirzadeh 2017). In comparison to 

previous FABM models that studied the effect of motivation on performance by analyzing the 

overall crew performance (i.e., task performance, contextual performance, and counterproductive 

behavior), and investigated the moderating effect of crew motivation on performance; the proposed 

FSD-FABM presents a better solution. The proposed model presents a single output of CLP rather 

than an aggregated performance measure, which is a preferred approach in cases where higher 
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performance measure of one parameter (e.g., task performance) may mask lower performance 

measures of other categories. In addition to the increased performance in model accuracy; the FSD-

FABM offers a more comprehensive method to understand the effect of specific variables on the 

overall system. In this regard, the proposed model advances previous research (Raoufi and Fayek 

2018; Kedir et al. 2020; Raoufi and Fayek 2021) by assessing performance of dynamic 

construction systems using a specific KPI such as CLP and investigating the causal impact of crew 

motivation on CLP. 

In this chapter, the FSD-FABM methodology presented in Chapter 4 of this thesis is demonstrated 

with a case study and verified. In order to apply the methodology to other projects, data collection 

on factors affecting CLP first needs to be performed. Next, the FAHP-FDEMATEL methodology 

demonstrated in Chapter 3 should be applied. Next the FSD-FABM should be applied where 

membership functions are modified to represent the new context of the project. After identifying 

the factors that affect CLP most, and using those factors as variables to predict CLP, the next step 

is to apply the FSD-FABM for strategic decision-making purposes.  

Using the FSD-FABM in the decision-making process allows the formulation of a decision-

making frameworks which has two components (i.e., the predictive component and the decision-

making component). In this regard, the next chapter discusses how the FSD-FABM can be used in 

the decision-making process by proposing two decision-making frameworks. Accordingly, two 

decision-making frameworks that address the optimization aspect, and the selection aspect of 

decision-making are discussed in the next chapter.  
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Chapter 6 Framework for Strategic Decision Making to Improve 

Productivity6 

6.1 Introduction 

Construction crew performance is assessed using key performance indicators (KPI) that measure 

a given performance metric. In addition to the most common KPIs used in construction (i.e., time, 

cost, quality, safety), crew productivity can be regarded as one of the most important KPIs that has 

an impact on project performance. This is because productivity at the crew level (as a KPI metric) 

has an impact on project performance, and improvement in project performance can lead to 

improvement in organizational performance. The significance of these KPIs varies based on the 

project management policies and strategies (e.g., safety improvement, team satisfaction, client 

satisfaction).  

Current decision-making approaches mostly comprise one of or a combination of the following: 

expert opinion and experience, mathematical and heuristic formulations, intelligent methods, 

evolutionary methods, and simulation techniques. Methods involving expert opinion and 

experience can exhibit potential uncertainty and might not significantly benefit objective problems 

that involve rigorous computation (Alemi-Ardakani et al. 2016). Mathematical methods, such as 

 
6 Parts of this chapter have been published in Journal of Management in Engineering: Kedir, N. 

S., Raoufi, M., and Fayek, A. R. (2020). “Fuzzy agent-based multicriteria decision-making 

model for analyzing construction crew performance.” Journal of Management in Engineering, 

36(5), 04020053. Parts of this chapter have also been published in Automation in Construction: 

Kedir, N. S., Somi, S., Fayek, A. R., and Nguyen, P. H. (2022). “Hybridization of reinforcement 

learning and agent-based modeling to optimize construction planning and scheduling,” 

Automation in Construction, 142, 104498. 
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integer, linear, or dynamic programming, are computationally cumbersome, complex, and easily 

trapped in a local optimum (Hegazy 2001). Heuristic methods are a collection of proposed rules 

that do not use rigorous mathematical formulations (Siu et al. 2016) and offer a much simpler 

approach using rules-of-thumb and experience (Hegazy 2001). Some examples of heuristic and 

meta-heuristic approaches can be found in the work of Yahya and Saka (2014). Heuristic methods 

perform differently in different problem contexts and do not always guarantee optimum solutions, 

as no direct approach exists for selecting the best heuristic approach (Hegazy and Kassab 2003). 

In situations where insufficient data is available for modeling and computing processes, intelligent 

methods could be used to establish WBS and identify the proper sequence of activities. 

Evolutionary methods can become difficult to implement and make the computation process 

extremely intensive and expensive to perform (Slowik and Kwasnicka 2020). Some studies have 

also proposed hybrid simulation approaches that simulate construction problems using a 

simulation approach (such as DES, ABM) and an optimization method. 

Agent-based modeling (ABM), a technique for simulating or modeling systems that considers 

the emergent behaviors and interactions of several “agents” (e.g., crew members, supervisors, etc.) 

with each other and the environment, is a useful tool for exploring the potential outcomes of 

multiple scenarios. In the complex environment of construction decision-making, ABM allows 

practitioners to explore multiple simulations and reach an appropriate “decision space,” which is 

a set of options (i.e., scenarios) that are at the disposal of decision makers (Klein et al. 2009). 

However, ABM does not account for all the challenges decision makers face in the construction 

industry, such as changing contexts and subjective uncertainty. Fuzzy agent-based modeling 

(Raoufi and Fayek 2018) integrates fuzzy logic with agent-based models, and makes it possible to 

address construction-related problems that are highly dynamic and involve subjective 
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uncertainties. After applying FABM, or other equivalent dynamic simulation approaches (i.e., 

FSD-FABM) to capture a problem, the decision maker still has to evaluate the consequences of 

each scenario and make a selection. When a problem involves only one single criterion, the choice 

is straightforward as the decision maker simply needs to choose the scenario with the highest 

preference rating. However, when scenarios with multiple criteria are involved, considerations 

related to the weights of criteria, preference dependence, and conflicts among criteria complicate 

the problem and more sophisticated methods must be used (Tzeng and Huang 2011). One such 

method is multi-criteria decision-making (MCDM), which is capable of evaluating alternative 

scenarios in terms of several criteria (i.e., objectives) while accounting for experts’ preferences. 

Another decision-making approach which falls under the category of optimization is 

Reinforcement learning (RL). RL is very effective for decision-making processes in construction 

problems. RL algorithms are able to solve optimization problems with higher constraints 

(Ratajczak-Ropel 2018) and perform efficiently with increasing complexity and number of 

activities (Soman and Molina-Solana 2022). The RL agent learns to implement better actions, 

including optimal sequencing of activities, through training achieved from exploiting local rewards 

and exploring random actions despite lower rewards. Hence, RL can help fill the aforementioned 

shortcomings of current decision-aid methods in construction planning by developing a local 

decision-making policy for each agent, based on communication channels, and by breaking down 

the problem into sub-problems, all of which contributes to computational efficiency. Using RL 

assists construction practitioners in facilitating generalizations through the learning process, 

because different problems can be broken down into similar sub-problems. Moreover, RL 

facilitates agent communications and enables agents to arrive at a set of decisions involving a set 

of joint actions. This results in a faster convergence to the optimum global policy. However, the 
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dynamic nature of modeling in the construction environment, arising from the complexity caused 

by various interactions between system components (Raoufi and Fayek 2018) is not captured by 

RL. In a construction setting, however, having a model of the construction environment is crucial. 

Simulation techniques have been used to capture the dynamic nature of the construction 

environment as well as uncertainties in the modeling process (Abdelmegid et al. 2020). ABM is 

capable of handling very complex real-world systems often containing large amounts of 

autonomous, goal-driven, and adapting agents (Chan et al. 2010). ABM uses a bottom-up approach 

where the system is described as interacting objects with their behaviors, which allow complex 

emergent behaviors to be captured. ABM enables tracking of agent interactions in their artificial 

environments to understand overall processes that lead to global patterns (Watkins et al. 2009). By 

incorporating FSD-FABM in an RL process, necessary features that support environment 

modelling, such as system parameters, causal relationships, system behaviors, and rules, are 

provided in order to enable an efficient representation of the dynamic construction environment 

and provide the RL platform with the necessary features to support environment modelling.  

In this chapter, the need to develop better decision-making models in construction by helping 

decision makers prioritize and select from several strategies intended to improve productivity is 

addressed. This chapter presents a multi-criteria decision-making modeling framework that uses 

FSD and FABM (i.e., FSD-FABM-MCDM) to address both the dynamic nature of construction 

projects and subjective uncertainties involved in construction variables. The proposed framework 

is an extension of the FABM-MCDM model as part of this study in Kedir et al. (2020). Moreover, 

this chapter also presents an alternative to other methods currently found in the literature (i.e., RL-

FSD-FABM): a simulation engine that provides a scientific method for finding an optimal set of 
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solutions for crew productivity problems by simulating the environment using FSD-FABM, in an 

optimization platform which utilizes RL to take into account the objective function and pre-defined 

constraints. This proposed framework is an extension of the RL-ABM model as part of this study 

in Kedir et al. (2022b).  

This chapter is organized as follows: first, the literature review section, which briefly 

discusses MCDM, simulation, and optimization approaches for strategic decision making is 

presented. Next, a framework of FABM-FSD-MCDM, and RL-FSD-MCDM is proposed to 

discuss the application of strategic decision making in improving crew productivity measurements 

6.2 Literature Review 

In this section, a brief review of decision making in construction is first presented, followed 

by a literature review on performance modeling and management strategies in construction, giving 

emphasis to crew productivity. Next, a literature review of ABM, its applications in construction, 

and its use and limitations in decision-making is presented, followed by a brief literature review 

on the use of RL for decision making.  

6.2.1 Multi-criteria Decision Making  

Decision-making is a critical aspect of construction-related processes (e.g., policy making, 

budgeting, risk and safety, planning and scheduling, bidding and tendering, productivity and 

performance, etc.). These processes usually require that several criteria be analyzed before a 

decision is made, usually in an environment of differing stakeholder priorities, insufficient 

information, and expert disagreements. MCDM is an analytic method that assesses the advantages 

and disadvantages of different alternatives based on a set of multiple criteria.  
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A study by Zardari et al. (2015) classifies MCDM approaches as elementary methods, unique 

synthesis criterion methods, or outranking methods. Elementary methods involve no 

computational requirements; they are simple and best suited for problems involving a single 

decision maker who is choosing between very few alternatives. These methods can also fall under 

the category “non-compensatory decision-making,” which is when the positive attributes of an 

alternative cannot compensate for the negative attributes of another alternative; in such situations, 

the alternatives are quickly evaluated with minimal effort and an acceptable loss of accuracy. For 

example, pros and cons analysis, max-min and min-max methods, the lexicographic method, and 

elimination by aspect belong to this category. The unique synthesis approach entails aggregating 

varying points of view into a single function that will be optimized. This approach is based on the 

use of utility functions that can be applied to transfer the raw performance values of alternatives, 

in terms of diverse criteria, to a common dimensionless scale, usually in the interval [0,1]. Some 

examples include the simple multi-attribute rating technique (SMART), multi-attribute utility 

theory (MAUT), the technique for order of preference by similarity to ideal solution (TOPSIS), 

multi-attribute value theory (MAVT) and the analytic hierarchy process (AHP). The use of utility 

maximization and the selection of the alternative(s) with the highest value can make the unique 

synthesis approach a compensatory method. In compensatory methods, the positive (i.e., equal or 

higher) value of one attribute can compensate for the negative value of another attribute (Lee and 

Anderson 2009). Outranking synthesis methods, the third category, involve developing an 

outranking relationship that represents the preferences of the decision maker using available 

information. When the nature of decision-making does not allow compensatory relationships to be 

established for use as parameters, or if the decision maker has a preference structure of a non-

compensatory nature (Vetschera and Almeida 2012), outranking methods can be effectively used 
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to good effect. Some of the methods in this category introduce discrimination (e.g., indifference 

or preference) thresholds at each criterion level to locally model the decision maker’s preference. 

Examples include ELimination and Choice Expressing REality (ELECTRE) and the preference 

ranking organization method for enrichment evaluation (PROMETHEE).  

Modeling MCDM problems using different techniques is likely to produce different results, 

and ease of applicability and accuracy must be considered when choosing which technique to use 

to solve the problem. The popularity of the AHP in the areas of engineering, management, 

economics, and sociology stems from its ease of use, its flexibility to integrate both qualitative and 

quantitative properties, the extensive literature on the topic, and its ability to deal with tangible 

and intangible criteria (Lee 2014). Sabzi and King (2015) evaluated six popular outranking 

methods using the same decision matrix to simulate the MCDM process for flood management: 

simple additive weights (SAW), comprehensive programming (CP), TOPSIS, AHP, ELECTRE 

and VIKOR. Because of the AHP’s aforementioned qualities, Sabzi and King (2015) chose to use 

this method to process information in the decision matrix and perform multiple pairwise 

comparisons of alternatives in terms of criteria.  

6.2.2 Performance Management Strategies in Construction  

Cost, time, quality, safety, and productivity are the traditional performance measures in 

construction (Kagioglou et al. 2001). Other dimensions of performance may include profitability, 

environment, team satisfaction, and client satisfaction, and are usually governed by the type of 

KPIs used to capture project objectives, preferences, policies, and strategies (Leon et al. 2018). 

When the effort to measure productivity is focused at the crew level, the effect of crew-level 

motivation on performance (i.e., productivity) should also be considered (Raoufi and Fayek 2018). 
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However, the impact of crew motivation on construction crew productivity has been largely 

overlooked in the literature. 

From the studies that focused on improving productivity, Ghodrati et al. (2018) used statistical 

analysis to study the effectiveness of management strategies on improving labor productivity. They 

used a 7-point Likert scale to assess both labor productivity and the level of implementation of 

management practices. The Likert scale approach, however, is limited by its subjectivity. 

Additionally, the relationship between management strategies and labor productivity was 

determined using multiple regression analysis, which does not account for possible 

interrelationships between independent variables. Durdyev et al. (2018) used a structural equation 

model of the factors affecting construction labor productivity, which confirmed the significance 

of management team competency level and workforce quality in enhancing labor productivity.  

Although past research in the construction domain on productivity modeling and management 

strategies has provided valuable results, there is still a need to account for the dynamic nature and 

subjective aspects of most construction processes. Simulation methods can model the dynamic 

nature of construction processes, and fuzzy logic can address subjective uncertainty. In the area of 

decision-making in construction, using modeling approaches that account for the dynamism and 

subjectivity of construction processes is important to assess the impact of applied managerial 

strategies on performance and recommend better practices for improving productivity.  

6.2.3 Agent-Based Modeling for Decision Making 

Since the first construction-related ABM models were developed in the early 2000s, the 

application of ABM in construction has increased significantly in areas such as supply chain 

management, claims management, infrastructure management, equipment management, bidding 
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strategies, procurement, site safety, and workers’ behavior (Jabri and Zayed 2017). Eid and 

El--adaway (2018) presented a decision-making framework that used ABM to capture a host 

community’s ever-changing recovery process in the aftermath of a natural disaster. Some 

researchers have proposed methods of integrating ABM and other models. Ben-Alon and Sacks 

(2017) proposed a hybrid model of ABM and building information modeling (BIM) to better study 

production systems in construction that can capture the motivation and behavior of individual 

crews and workers, as well as their interactions within a physical and process environment; this is 

difficult to accomplish with other simulation methods (e.g., discrete event simulation). Cheng et 

al. (2018) integrated ABM and BIM to simulate accidents on offshore oil and gas platforms to 

evaluate and improve evacuation planning. Xiao et al. (2018) used ABM to study, from economic 

and ecological perspectives, the impact of water demand management on the behaviors of different 

municipal and industrial users. Raoufi and Fayek (2018) advanced the application of FABM 

approaches to handle uncertainties related to construction when measuring crew motivation and 

performance.  

ABM can be directly used for decision-making when the decision-making elements have been 

explicitly modeled (Bernhardt 2007) and the mechanisms of the decision-making of agents (i.e., 

individuals) have been properly explained (Lee 2014). For example, Eid and El-adaway (2017) 

proposed a holistic sustainable disaster recovery approach using a decision-making framework 

that employs ABM; Wang (2013) used ABM in the design of a collaborative decision-making 

process to improve congestion and delays in air traffic. However, for some problem contexts (e.g., 

improving crew performance) where proposed strategies for output improvement differ based on 

company objectives and experts’ assessments and where the selection of alternatives has to be 

weighed in terms of multiple, sometimes conflicting criteria, using ABM alone can become 
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computationally demanding. In these cases, focusing on ABM’s ability to carry out simulations 

with different parameters, boundaries, and constraints and combining the model with proven 

decision-making tools can help produce a more applicable model. The work of Marzouk and 

Mohamed (2018) reflects such an approach, as they integrated simulation results from ABM and 

BIM into an MCDM model to evaluate the evacuation performance of buildings under different 

scenarios in case of fire emergency. However, detailed studies on incorporating the subjective 

nature of construction environments into ABM and using those models to evaluate several 

scenarios for use in decision-making are lacking. Incorporating a decision-making tool into ABM, 

specifically FABM, can therefore prove useful as it enables scenario analysis and decision-making 

to improve performance measures for several types of construction problems.  

6.2.4 Reinforcement Learning for Decision Making 

RL settings can be classified as single-agent RL or multi-agent RL (MARL) depending on the 

number of autonomous agents that influence the system’s state and reward (Zhang et al. 2020). RL 

can also be classified as model-based or model-free RL (Sutton and Barto 2018). In terms of its 

applications, RL has been used in various applications in the field of civil engineering owing to its 

capabilities that make it particularly successful in solving complex problems (Shitole et al. 2019). 

Some of these applications include works in the area of design and operations for water structures  

(Bertoni et al. 2020; Bhattacharya et al. 2003), transportation engineering (Genders and Razavi 

2019; Medina and Benekohal 2011; Yin and Menendez 2019), and maintenance (Durango 2002). 

RL has been effectively applied to develop strategic conventional tunneling in construction, which 

provided optimal economic and safe policies with potential to discover new tunneling strategies 

(Erharter et al. 2021). RL is also emerging as a control technique (Wang and Hong 2020), and it 
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is of growing interest in research, with demonstrated potential particularly in enhancing building 

performance (Berlink et al. 2015; Ruelens et al. 2017; Zhiang Zhang et al. 2019). Because RL uses 

an intelligent agent to learn to make a series of optimal decisions (Sutton and Barto 2018), it is a 

suitable approach for performing construction planning where a series of decisions (e.g., activity 

sequencing, resource allocation) are performed at different times throughout a project’s lifecycle. 

In the area of scheduling, the majority of RL-based research has focused on production scheduling. 

Creighton and Nahavandi (2002) proposed an intelligent agent-based scheduling system that uses 

DES as a simulation engine with the goal of minimizing total production costs depending on job 

sequence and batch size. Cao et al. (2003) proposed an RL model using Monte Carlo simulation 

to solve a production planning problem that minimizes inventory and penalty costs. Wei and Zhao 

(2005) used Q-learning algorithm to schedule a dynamic job-shop problem that considers machine 

selection. Zhang et al. (2007) used an RL method coupled with heuristic method and simulation to 

perform parallel machine scheduling that minimizes mean flow time of jobs. Fonseca-Reyna et al. 

(2015) used RL to solve a scheduling problem that finds a permutation of operations that is 

processed sequentially on a set of machines with the objective of minimizing the completion time 

of all jobs. Bouazza et al. (2017) used an RL approach with Q-learning to solve a job-shop 

scheduling problem. 

Unlike supervised and unsupervised learning approaches, RL is a machine learning technique 

that uses the environment for learning and is not dependent on a predefined dataset (Kurinov et al. 

2020). Moreover, RL is particularly advantageous in the area of sequential decision making, which 

is a key challenge in artificial intelligence research (Moerland et al. 2020). When sequential 

decision making is formalized as Markov decision process (MDP) framework optimization 

problem, selecting the sequence of actions that produce optimal results (e.g., path planning) 
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becomes complicated because of inherent key elements of the world (i.e., information about the 

environment and states; influence of actions on the environment; the notion of preferred actions 

now and in the future) (Moerland et al. 2020). In this regard, RL can offer an efficient solution for 

construction operation problems that may be viewed as a collection of recurring activities (Shitole 

et al. 2019) where the objective is to produce an optimal solution (i.e., optimal project performance 

measure such as minimum project duration or minimum cost) in a dynamic environment (i.e., 

changing project conditions) subject to constraints (i.e., limited resources). RL’s capability also 

extends to solving large-scale dynamic optimization problems and complex multi-objective 

sequential decision-making problems (Moerland et al. 2020). 

Even though there is growing research into RL-based optimization approaches that 

demonstrate the benefits of RL method in other fields within construction, most applications of 

RL for scheduling problems with respect to improving production have been limited to the 

manufacturing sector. In construction planning, decision makers analyze various activities to 

ensure optimal use of available resources and achieve required performance to meet project 

objectives with respect to cost, time, and quality. Establishing WBS and activity sequencing 

requires consideration of numerous interacting factors between the activities themselves, such as 

technology constraints, precedence relationships, available resources, conflicting objectives, and 

incomplete information. In this regard, RL enables a model to process optimization approaches 

that provide human-like intuitions and learning capabilities, which can enable decision makers to 

obtain better solutions that can adapt to changing environments. 
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6.2.5 Markov decision process (MDP) 

Markov decision process (MDP) is a framework that describes the process of learning from 

interaction with the environment in order to achieve a goal. MDP has five components (Woo et al. 

2019): 1) the set of possible actions (𝐴𝑡 ∈ A) that can be taken by the agent or the decision-maker; 

2) the set of all possible states (𝑆𝑡 ∈ S) that can be experienced by the agent; 3) the immediate 

reward 𝑟 that is received by the agent corresponding to the given state and action pair, defined in 

Equation (6.1); 4) the discount factor 𝛾 that signifies the relative importance future rewards have 

compared to the current immediate reward, defined in Equation (6.2), which denotes the 

discounted cumulative reward 𝐺𝑡 following time t; and 5) the transition probability 𝑝(𝑠′, 𝑟 | 𝑠, 𝑎) 

of a state corresponding to past state and action, defined in Equation (6.3). The agent-environment 

interaction in MDP is summarized in Figure 6.1. 

𝑅(𝑠, 𝑎) = 𝐸[𝑟𝑡+1| 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]      (6.1) 

𝐺𝑡 = ∑ 𝛾𝑘𝑟𝑡+𝑘
∞
𝑘=0         (6.2) 

𝑝(𝑠′,   𝑟 | 𝑠,   𝑎) =̇ p(𝑆𝑡 = 𝑠′,  𝑅𝑡 = 𝑟 | 𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎)    (6.3) 

 

 

Figure 6.1 Agent-environment interaction in MDP (adopted from Sutton and Barto 2018). 

 



 

 

169 

In MDP, the optimal policy 𝜋∗(𝑎|𝑠) can be the function that maps the current state s to the best 

action 𝑎∗ while maximizing the expected future reward, as shown in Equation (6.4). 

𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝔼[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]     (6.4) 

RL algorithms for solving an MDP problem can be implemented in two ways: through 1) action-

value approximation or 2) policy approximation. Action-value methods directly learn the expected 

return of taking each action 𝑎 in a specific state s (Sutton & Barto, 2018). The action-value function 

𝑞𝜋(𝑠, 𝑎) is defined in Equation (6.5), and the optimal action-value function for the optimal policy 

(𝜋∗) is defined in Equation (6.6) by considering the Bellman optimality equation, Equation (6.5), 

and Equation (6.3): 

𝑞𝜋(𝑠, 𝑎) = 𝔼𝜋[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]      (6.5) 

𝑞𝜋∗(𝑠, 𝑎) = ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)𝑠′,𝑟 [𝑟 +  𝛾 max
𝑎′

𝑞𝜋∗( 𝑠′, 𝑎′)]    (6.6) 

On the other hand, in some MDPs, directly learning action-value functions is challenging in a big 

action space, and as a result, the policy function is used to calculate the preferences for each action 

in each state. The parameterized policy formula is defined in Equation (6.7). 

𝜋(𝑎|𝑠, 𝜃) = 𝑃𝑟[𝐴𝑡 = 𝑎| 𝑆𝑡 = 𝑠, 𝜃𝑡 = 𝜃]    (6.7) 

Equation (6.7) presents the probability of selecting an action as action preference. For example, 

this probability could be a linear function of any complex structure of deep learning, where 𝜃 is 

the weights or parameters of the function. Equation (6.8) and Equation (6.9) express the discrete 

action space for a linear parameterized policy with soft-max distribution (Dai et al. 2017). The 

objective in RL processes is to learn 𝑞∗ or 𝜃∗ by interacting with the environment and receiving 

rewards. This learning is accomplished by updating a policy or set of action-value function 
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parameters, which means learning the best values for each state or sub-problem, which leads to 

solving the MDP. 

   𝜋(𝑎|𝑠, 𝜃) =
𝑒ℎ(𝑠,𝑎,𝜃)

∑ 𝑒ℎ(𝑠,𝑏,𝜃)
𝑏

       (6.8) 

where 

   ℎ(𝑠, 𝑎, 𝜃) =  𝜃𝑇𝑥(𝑠, 𝑎)      (6.9) 

6.3  Proposed Framework to Improve Construction Crew Productivity 

In this section, two frameworks, namely: FSD-FABM-MCDM, and RL-FSD-FABM are 

introduced. The first framework (i.e., FSD-FABM-MCDM) is proposed to present a decision-

making approach where selection of the best solution is made by comparing a given set of 

alternatives. The second framework (i.e., RL-FSD-FABM) is proposed to present a decision-

making approach where selection of the best solution is made by performing optimization of input 

parameters. The input parameters used to demonstrate the proposed frameworks is shown in Table 

6.1. 

Table 6.1 Input parameters used for decision making (adapted from Kedir et al. 2020). 

Alternative Input Range Description 

1 Number of crews Z+ 
Number of crews in the 

project 

2 Contact rate (0-3) 

Number of times there is 

contact between crews 

per simulation time unit 

3 Zealot percentage (0,1) 
Percentage of zealots in 

the project 
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4 Susceptibility (0,1) 

Probability that an 

interaction leads to 

change in motivation 

5 
Initial percentage of low 

motivated crews 
(0,1) 

Percentage of crews with 

initial state of low 

motivation 

6 
Initial percentage of highly 

motivated crews 
(0,1) 

Percentage of crews with 

initial state of high 

motivation 

6.3.1 FSD-FABM-MCDM Framework 

When working to improve construction crew motivation and productivity, practitioners must be 

able to both simulate the subjectivity and dynamism of the problem and select the strategy that 

will best satisfy a given set of objectives. An appropriate tool must therefore be developed that can 

handle subjective variables in simulation with the use of fuzzy logic concepts, capture dynamism 

with the use of dynamic modeling tools such as SD and ABM, and process several simulation 

outputs in order to select solutions targeted to improve chosen criteria with the use of MCDM. 

This section presents a framework for integrating FSD-FABM with MCDM to develop such a 

model. The FSD-FABM-MCDM has two major components, as highlighted in Figure 6.2. The 

first component is the MCDM analysis, in which the AHP is used to rank alternatives, which are 

the inputs to the model. The MCDM component is novel and is also developed based on collected 

field data. The second component is the FSD-FABM technique, in which a parametric study is 

applied to rank scenarios according to their outputs. The outputs are productivity, cost 

performance, and schedule performance. The FSD-FABM component is developed in Chapter 4. 

These two components (i.e., FSD-FABM, and MCDM) are described in the following section.  
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6.3.1.1  Multi-criteria Decision-Making Model Component 

The purpose of the MCDM component in the FABM-MCDM is to rank the inputs of the model 

according to their influence on the outputs. Inputs with a significant influence on crew productivity 

will be ranked and used as parameters for the model’s other component (i.e., FSD-FABM). 

The analytic hierarchy process (AHP) is a widely used MCDM method. AHP decomposes a 

complex MCDM problem into a system of hierarchies. A collection of elements, or inputs, are 

compared using the AHP process. AHP uses pairwise comparisons and matrix algebra to weight 

criteria. The decision is made by using the derived weights of the evaluation criteria (Saaty 1990). 

Importance is measured on an integer-valued scale ranging from +/- 3 to +/- 9, depending on the 

desired consistency.  

The inputs, shown in Table 6.1, are labeled “alternatives” (Alt.). Since the AHP was adopted for 

this chapter, pairwise comparisons are used to rank the alternatives according to their importance 

for three level 1 criteria (i.e., productivity criterion [C1], cost performance criterion [C2], and 

schedule performance criterion [C3]). At the same time, pairwise comparisons will also be used to 

weight the criteria, as the importance of each criterion depends on the project context. The pairwise 

comparisons are computed based on a scale of 1–7 (Saaty 2008). Discrete values between 1 and 7 

are used to score the relative importance of alternatives in terms of each criterion, and the relative 

importance of each criterion to overall crew performance. The scores represent the following 

importance levels: 1 = equal importance, 3 = moderate importance, 5 = strong importance, and 7 

= very strong importance; and values in between (2, 4, and 6) are compromises. [A] is the matrix 

of alternatives. Elements of this matrix correspond to the inputs of the FSD-FABM, which are 

ranked according to their importance in improving the model output. Each alternative is scored in 
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terms of its relative importance in improving each of these performance measures (i.e., criteria) 

using the AHP to produce the alternatives matrix. The alternatives matrix consists of these relative 

scores of the pairwise comparison matrix, in the form of Aij (=Ai/Aj). For example, a score of Aij 

indicates the relative importance of alternative i when it is compared with another alternative j in 

terms of each criterion (C1, C2, or C3). The rest of this section presents the ranking procedure for 

inputs; weights are also given to each criterion based on the same procedure. Each alternative 

matrix is a pairwise comparison of the inputs in terms of a single criterion. Equation. (6.10) shows 

the pairwise comparison matrix, where m alternatives are compared in terms of a criterion. 

A1    A2    .    Am 

𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠 𝑀𝑎𝑡𝑟𝑖𝑥 (𝐴) =  

𝐴1

𝐴2

.
𝐴𝑚

[
 
 
 
 
 
𝐴1

𝐴1

𝐴1

𝐴2
.

𝐴1

𝐴𝑚

𝐴2

𝐴1

𝐴2

𝐴2
.

𝐴2

𝐴𝑚
. . . .

𝐴𝑚

𝐴1

𝐴𝑚

𝐴2
.

𝐴𝑚

𝐴𝑚]
 
 
 
 
 

   (6.10) 

After the pairwise comparison matrix is formed for each criterion, the next step is to calculate 

the reciprocal matrix [R], which satisfies the following three properties (Saaty 1990): reflexivity 

(rii = 1), reciprocity (rij = 1/rji), and transitivity (rik = rij * rjk). This matrix will be used to solve the 

eigenvalue problem shown in Equation (6.11), where E is the eigenvector and λmax is the 

corresponding maximum eigenvalue.   

[R] = 

[
 
 
 
 
 
𝐴1

𝐴1

𝐴1

𝐴2
.

𝐴1

𝐴𝑚
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𝐴2
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.

𝐴2

𝐴𝑚
. . . .

𝐴𝑚
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𝐴𝑚

𝐴2
.

𝐴𝑚

𝐴𝑚]
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𝐴2
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.
𝐴𝑚]

 
 
 
 

 = λmax * E   (6.11) 
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The resulting consistency index must be checked using Equation (6.12), and it must be less 

than 0.1 for the normalized eigenvector values to be used as weights for the criteria and alternatives 

(Saaty 1990). The consistency index is a measurement of the consistency of the performed 

comparisons throughout all alternatives. For example, if alternative A1 is more important than A2, 

and alternative A2 is more important than A3, then alternative A1 needs to be more important than 

A3 in a consistent reciprocal matrix.  

𝜈 =
𝜆𝑚𝑎𝑥−𝑚

𝑚−1
   (6.12) 

where 𝜈 is the consistency index, λmax is the maximum eigenvalue for the reciprocal matrix R, and 

m is the number of alternatives.  

After the consistency index is checked and found to be within the threshold, the resulting 

eigenvector (E1, E2…Em) is normalized for use as the final weight for the corresponding value of 

each alternative. The steps in Equation. (6.11) and Equation (6.12) are performed for all three 

criteria (i.e., C1, C2, and C3). The criteria are also weighted using the same procedure, but instead 

of an alternative matrix, as shown in Equation (6.10), there will be a criteria matrix, where the 

weight of each criterion is obtained by performing a pairwise comparison and applying the AHP 

procedure described in this section. The final ranking for each alternative is produced by using a 

weighted sum to aggregate the scores of each alternative for each criterion. For m alternatives and 

n criteria, the final ranking is obtained by sorting the scores of the m alternatives, which are 

determined using Equation (6.13), in descending order.  

𝐹𝑜𝑟  𝑖 = 1,𝑚: 𝑆𝑐𝑜𝑟𝑒 (𝐴𝑙𝑡𝑖) = ∑ 𝐸𝑖𝑗 ∗𝑛
𝑗=1 𝐶𝑗     𝑤ℎ𝑒𝑟𝑒, 𝑗 = 1, 𝑛      (6.13) 



 

 

175 

where 𝐸𝑖𝑗 is the weight of alternative i with respect to criterion j, and 𝐶𝑗 is the weight of criterion 

j. 

The output of the MCDM model is a ranking of all the alternatives (i.e., inputs) proposed by 

the experts. The ranking is then used to support the formulation of meaningful strategies that aim 

to improve crew productivity. 

6.3.1.2  FSD-FABM Component 

The FSD-FABM component is the integration of FSD, and FABM in MATLAB and AnyLogic®. 

FSD-FABM simulates the effects of a combination of inputs (see Table 6.1) on three criteria (i.e., 

productivity, cost performance, and schedule performance). The main outputs of this model are 

variations in productivity, cost performance, and schedule performance over the lifetime of the 

project.  

Parametric variation is used in the proposed model because it can effectively simulate varying sets 

of input combinations to obtain scenario analysis results. The main objective of the parametric 

study is to reduce the number of experimental analyses that need to be performed to achieve the 

target result, which is the best performance measure. This is done by simulating a combination of 

input intervals for the input variables of the model at every run, rather than using single values of 

inputs. Instead of having to simulate every possible set of input combinations, which may require 

infinite runs, scenarios are built by specifying ranges for each input and then performing analyses 

for all possible combinations within the given range.  

 



 

 

176 

 

Figure 6.2 Proposed FSD-FABM-MCDM framework (adapted from Kedir et al. 2020). 

6.3.2 RL-FSD-FABM Framework 

The proposed framework consists of three steps: 1) development of the RL model, 2) problem 

definition, and 3) RL-FSD-FABM simulation process 

6.3.2.1  Development of RL model 

MDP states and actions 

In the construction environment, formalizing productivity improvement as an MDP is described 

as follows. Possible actions (𝐴𝑡 ∈ A) are alternatives that can be performed as actions, according 

to project state (𝑆𝑡 ∈ S). The project state in this chapter is characterized by project time, the 

progress of each activity in the project, current productivity recorded in the project, and the budget 

spent for increasing the current productivity. Hence, the MDP environment starts by defining 

which actions are to be performed to maximize the objective function. 

The reward is considered as a cost function, described as a function of the monetary value of 

incurred delay due to lower-than-expected productivity, and the budget spent to increase 
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productivity. The objective is to minimize the long-term negative reward. In this sense, minimizing 

over negative value results in minimizing the value of the cost function. The “state” and “action” 

pairs, which are the two major components in the MDP, are described below. 

State: The productivity problem is formulated as an MDP problem with RL algorithms that use an 

MDP framework to derive optimal strategies. Each state in the RL algorithms is represented in a 

structure format as an input to calculate future values according to possible actions in the current 

state. Each state S represents the outcome of a previous action and comprises the following 

information: 

i. Activities states in simulation: These can be obtained from the simulation model at each 

timestep per a corresponding numeric value, as shown in Table 6.2. 

Table 6.2 Description of state. 

State State description 

Project time Number of days (t) elapsed in the project 

Work progress Units of work performed per time t 

Cost Budget spent for increasing productivity at time t 

 

Action: For each state, the agent selects an action from the available inputs shown in Table 6.1, 

which affects the simulation output. Hence, selecting an action results in changing the project state, 

and the agents use updated information to select the next action. In other words, agents select one 

action per state. In the RL component, the RL agents select an environment action (𝐴𝑡 ∈ A) that 

affects the work progress. This production rate is also translated into the time needed to complete 

the activity in the project. Moreover, the action taken by the RL agent is also associated with the 
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cost of taking such action. For example, increasing the contact rate between crews requires that 

working time is taken away to ensure crews have an increased contact using methods such as 

tailgate meetings, briefings, trainings.  

Q- function 

The RL agents learn to make the optimal sequence of decisions that can meet the predefined 

objective by maximizing the received reward for a given action while also exploring the decision 

space to avoid local solutions, as shown in Equation (6.14). 

𝑞𝜋(𝑠, 𝑎) = 𝔼𝜋[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]𝑞𝜋∗(𝑠, 𝑎) = ∑𝑝(𝑠′, 𝑟|𝑠, 𝑎)

𝑠′,𝑟

[𝑟 +  𝛾 𝑚𝑎𝑥
𝑎′

𝑞𝜋∗( 𝑠′, 𝑎′)𝜋(𝑎|𝑠, 𝜃)

= 𝑃𝑟[𝐴𝑡 = 𝑎| 𝑆𝑡 = 𝑠, 𝜃𝑡 = 𝜃] 

𝜋(𝑎|𝑠, 𝜃) =
𝑒ℎ(𝑠,𝑎,𝜃)

∑ 𝑒ℎ(𝑠,𝑏,𝜃)
𝑏

 ℎ(𝑠, 𝑎, 𝜃) =  𝜃𝑇𝑥(𝑠, 𝑎)  (6.14) 

The value function therefore learns to calculate the value of each possible action taken, based on 

receiving rewards and tries to estimate the prioritization of actions to take based on the project 

state.  

Optimizing the value function 

The optimization problem in the RL component can be defined as selecting the optimal 

combination of input parameters in order to complete the activities in the construction project with 

improved productivity, leading to minimal cost. 

minimize 𝐶 = {𝑑𝑖 + 𝑝𝑖 |𝑖 = 1, 2, … , 𝑛} (6.15) 

where C = total cost to be optimized 𝑑𝑖 = cost of delay which is incurred due to unfinished 

activityi, and 𝑝𝑖 = cost incurred due to selecting an action as a strategy. 
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6.3.2.2  FSD-FABM Component 

The FSD-FABM component is the integration of FSD, and FABM in MATLAB and AnyLogic®. 

The FSD-FABM is presented in Chapter 4 of this thesis and is used to capture the construction 

environment while performing the optimization procedure in RL. The RL model uses the 

simulation outputs of FSD-FABM to evaluate the reward of taking a specific action. The results 

of FSD-FABM simulation are daily productivity, and the duration taken to complete an activity 

based on optimized parameters. These values are used by the RL model during optimization, which 

is achieved by maximizing the value function to obtain the best possible reward throughout the 

project duration.  

6.4 Chapter Summary 

In this chapter, two frameworks are presented to propose a decision-making methodology for 

improving crew productivity. These frameworks were proposed to address the need for decision 

support tools for use in construction, where problems exist in a dynamic environment with 

subjective uncertainties. The first framework proposes a decision-making framework by 

integrating the simulation capacity of FSD-FABM to address dynamic and subjective problems, 

with MCDM’s capacity to address multiple, sometimes conflicting, expert opinions. The second 

framework proposes an optimization solution by integrating the simulation capacity of FSD-

FABM to address dynamic and subjective problems, with RL’s computational efficiency and 

adaptability to learn optimal solutions.  

This chapter has three contributions: First, it proposed a methodology to integrate FSD-FABM 

with MCDM to improve decision-making processes in construction. Second, it proposed a 

framework to integrate the simulation of dynamic construction processes using FSD-FABM, with 
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the optimization capabilities of RL, to improve decision-making processes in construction. Third, 

it developed two frameworks, that can individually be used to construction practitioners adopt 

economically feasible strategies by improving the productivity of construction crews. The 

developed frameworks are able to offer an applicable and representative approach to the overall 

process of decision making in construction by solving scenario selection, and optimization 

problems separately. The frameworks proposed in the study can also be adapted to other 

construction problems to help decision makers optimize, prioritize or select from several strategies 

intended to improve different crew performance measures.   



 

 

181 

Chapter 7: Conclusions and Recommendations for Future Work7 

7.1.  Introduction 

This chapter presents a summary of the work conducted in this dissertation and outlines the 

academic and industrial contributions. Furthermore, limitations of this research and 

recommendations for future research are presented. 

7.2 Research Summary 

Viewing productivity as a complex system whose inputs are continuously interacting both with 

themselves and the environment, the approach to simulate it using a FSD approach (that considers 

productivity as a dynamic system, whose behaviour is captured over time) and an FABM approach 

(whose individual components interact with each other and the environment according to a given 

 
7 Parts of this chapter have been published in Journal of Management in Engineering: Kedir, N. 

S., Raoufi, M., and Fayek, A. R. (2020). “Fuzzy agent-based multicriteria decision-making model 

for analyzing construction crew performance.” Journal of Management in Engineering, 36(5), 

04020053; submitted for publication in Automation in Construction: Kedir, N. S., and Fayek, A. 

R. (2022).” Integrated Fuzzy System Dynamics–Fuzzy Agent-Based Modeling of Crew 

Motivation and Productivity in Construction.” Automation in Construction, 61 manuscript pages, 

submitted Oct. 2022; submitted for publication in Advances in Civil Engineering: Kedir, N., Siraj, 

N.B., and Fayek, A. R. (2022), “Application of System Dynamics in Construction Engineering 

and Management: Content Analysis and Systematic Review.” Advances in Civil Engineering, 49 

manuscript pages, submitted Oct. 2022; submitted for publication in Canadian Journal of Civil 

Engineering: Kedir, N., and Fayek, A. R. (2020), “Integrated FAHP-FDEMATEL for Determining 

Causal Relationships in Construction Crew Productivity Modeling.” Canadian Journal of Civil 

Engineering, 39 manuscript pages, submitted Oct. 2022. 

 



 

 

182 

set of rules) is crucial to formulate an efficient abstraction of the productivity problem. However, 

there is a gap in the literature regarding methods that can capture the dynamic causal relationships 

between factors affecting CLP, and also the emergent nature of some variables, while addressing 

subjective uncertainty in the modeling and predictive processes. This research addresses the 

compounded problem of human behaviour modeling (such as crew motivation, using FABM), 

dynamic interactions between inputs (such as CLP, using FSD) in addition to proposing a decision-

making framework that enables feedback mechanisms to improve productivity metrics in an 

environment of subjective and probabilistic uncertainties.  

The research in this dissertation was conducted using five main stages: 1) conducting a literature 

review to identify factors affecting CLP, and modeling techniques used to model CLP, 2) 

conducting a systematic review, and content analysis of SD research to identify hybrid FSD as a 

feasible technique to capture dynamic causal relationships between the variables affecting CLP; 

3) development of a systematic and structured methodology that integrates fuzzy system theory 

with the modeling approaches FAHP, and FDEMATEL, to capture causal relationships in dynamic 

modeling of CLP; 4) development of a novel FSD-FABM to capture subjective variables, dynamic 

relationships, and complex systems for a more comprehensive modeling CLP; 5) development of 

FSD-FABM-MCDM, and RL-FSD-FABM, to address the strategic decision-making aspect of 

productivity improvement 

7.2.1 First Stage 

In the first stage, a comprehensive literature review on productivity was conducted. Several 

definitions of productivity and different levels of productivity measurements were presented. 
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Discussions on techniques used to model productivity were also presented. Moreover, the 

definition of productivity that was used in this research was also presented and discussed. 

7.2.2 Second Stage 

In the second stage, the study of SD as a technique to model complex and dynamic problems in 

the area of construction engineering was performed. The study covered articles spanning more 

than 25 years to get a comprehensive picture of SD research in CEM. peer-reviewed journals with 

important impact and prominence in the field of CEM and which hosted published research works 

in the area of SD between 1995 and 2021. Relevant articles from the selected journals were 

selected and indexed. After the selected articles were profiled, a systematic review of SD research 

in the main CEM application areas was performed to identify strengths, and gaps in the state-of-

the-art.  

The study found that that a significant number of articles only provided either qualitative SD 

models, or SD models without application on real projects. Even though SD has had relative 

success in terms of its application to project management compared with other SD works, SD’s 

practical application in construction management was found to be relatively less and confined to 

individual projects. This highlights the significant challenge to use SD modeling for CEM 

problems, stemming from either the lack of data or the reluctance by construction stakeholders to 

apply SD methods. In this regard, there is a need to produce more SD models that can be 

generalized, and at the organizational level.  

A critical review of the literature also identified the possible areas of improvement regarding SD 

hybridization with traditional methods and with other modeling approaches. Analysis of the 

literature indicates that more work needs to be done in integrating SD with the more traditional 
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tools, which can help facilitate a better understanding of SD among construction practitioners and 

increase SD’s applicability and presence across a vast spectrum of projects. There is also potential 

for further research in SD hybridization with other methods, especially in the areas of: SD-ABM 

modeling to capture the spatial natures of construction environments and emerging nature arising 

from individual interactions; and SD-BIM to facilitate a more collaborative decision making 

process in dynamic construction environments. Moreover, there is a potential to improve the 

qualitative and quantitative modeling process in SD using modeling approaches such as machine 

learning, ANN, neuro-fuzzy inference systems, FDEMATEL, and SEM. This chapter also 

identified the added complexity that may result from hybrid SD modeling owing to system 

abstraction, aggregation, and model verification. Another identified of SD modeling issue was the 

lack of much research on incorporating feedback delay in SD models. 

7.2.3 Third Stage 

In the third stage, the causal relationships between factors affecting productivity were investigated 

for dynamic modeling of CLP by proposing FAHP-FDEMATEL method. Expert weight 

assignment was performed using the FAHP part of the model, while causal relationship mapping 

was performed using the FDEMATEL part of the model. Related findings corresponding to the 

FAHP indicate that, productivity-related project and construction management practices was 

identified amongst the list of criteria which can be considered unique for assessing decision 

makers’ inputs in the area of productivity; with sub-criteria of: average hours of work in 

productivity-related work per week, level of management training related to productivity, 

experience in conferences related to productivity management, and functional skills related to 

productivity management. Moreover, in the stage corresponding to FDEMATEL, results indicate 
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that ability to perform, reliability, work progress, visibility of outcome, and project scheduling 

make-up the top-five factors with highest prominence, representing the most relationship with the 

other factors. Hence, the top factors have a higher strength of interrelationship with the other 

factors and strongly influence the other factors in terms of their causal relationship. 

7.2.4 Fourth Stage 

In the fourth stage of this research, a novel FSD-FABM was developed to capture subjective 

variables, dynamic relationships, and complex systems for a more comprehensive modeling CLP. 

The proposed methodology is then demonstrated using a case study based on a real industrial 

construction project in Alberta, Canada. The FSD-FABM proposed in this chapter predicts the 

CLP of multiple work packages that make up a construction project. The proposed CLP model 

was also able to predict the motivation of the crews working on the different work packages on 

the project, and the impact of crews’ motivation states on their productivity. Moreover, the 

proposed model was able to simulate the dynamic interrelationships between situational/contextual 

variables to assess the impact of situational/contextual average on daily productivity of crews. The 

results indicate that the proposed FSD-FABM expanded the scope of applicability of the individual 

methods of FSD and FABM, and showed more comprehensive modeling capabilities. 

7.2.5 Fifth Stage 

In the fifth stage, two models were presented to address the strategic decision-making aspect of 

productivity improvement. The proposed modeling methods were FSD-FABM-MCDM, and RL-

FSD-FABM respectively.  

In the FSD-FABM-MCDM, the construction environment was captured using FSD-FABM, and 

parametric variation was used in the proposed model to effectively simulate varying sets of input 
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combinations to obtain scenario analysis results. The results indicated that FSD-FABM-MCDM 

can be used to offer applicable and representative approach to the process of decision making in 

construction. In the RL-FSD-FABM, the FSD-FABM was used to simulate the construction 

environment, while the RL was used to facilitate solving of optimization algorithm. The results of 

the RL-FSD-FABM indicate that RL-FSD-FABM is a computationally efficient approach to 

perform optimization process for decision making. 

7.3 Research Contributions 

The academic and industrial contributions of this research relevant to academic researchers and 

construction industry practitioners, respectively are presented in the following subsections. 

7.3.1 Academic Contributions 

The main academic contributions of this research are summarized as follows: 

1. Providing a state-of-the-art on SD research, by presenting a detailed content analysis and 

comprehensive review of SD literature and assessing the potential for SD hybridization 

with other modeling and simulation approaches in order to identify modeling issues related 

to the use of SD in CEM and productivity modeling. This research provides a 

comprehensive state-of-the-art literature review and content analysis on the topic of system 

dynamics (SD), as a viable tool to capture the dynamic nature of system variables and their 

complex causal relationships for CLP modeling. This chapter provides researchers a more 

focused resource in SD research and incorporates different approaches to structure the 

systematic review by defining major areas of CEM research areas, and analyzing the trends 

of SD research in those research areas. For researchers interested in the use of SD 

modeling, this chapter also provides a comprehensive review to identify modeling issues 
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related to the use of SD in CEM, and also assesses the potential for SD hybridization with 

other modeling paradigms. This research identified major potential areas of future research 

in different CEM application areas, which can be used to guide researchers to further SD’s 

application within the proposed research areas. This chapter also presented in detail the 

added complexity that may result from hybrid SD modeling owing to system abstraction, 

aggregation, and model validation. 

2. Proposing a novel FAHP-FDEMATEL method in order to provide a systematic and 

structured methodology to define causal relationships between the most significant factors 

that affect productivity and analyze their interrelated impacts. This research addresses the 

lack of systematic and structured methodology to establish causal relationships in the 

dynamic productivity modeling process, which involves: assessing the importance of, and 

causalities between the situational/contextual factors, and constructing the CLDs, which 

illustrate the dynamic relationships between system variables. The proposed methodology 

expands the scope of current research in the area of dynamic productivity modeling, and 

provides researchers a methodology to better define causal relationships between factors 

affecting productivity and analyze their impacts. 

3. proposing a novel hybrid FSD-FABM technique that can capture and assess complexities 

arising from non-linear behaviors, and dynamic causal interactions between multiple 

factors in modeling and predicting CLP. This research expands the scope of applicability 

of current FABM, by integrating FSD to produce a FSD-FABM, which is able to assess 

causalities between different system variables of the construction environment. This 

research also expands the scope of applicability of current FSD models by integrating 
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FABM to produce FSD-FABM, which allows to capture complex adaptive systems, and 

emerging nature of variables such as crew motivation, congestion, and fatigue. In effect, 

this research provides researchers with a novel FSD-FABM to perform a more 

comprehensive productivity modeling. 

4. Proposing a novel methodology that will help improve decision-making processes in 

construction by expanding the scope of MCDM through integration with FSD-FABM. This 

research provides researchers with a methodology to integrate FSD-FABM with MCDM, 

and expands the scope of applicability of the individual modeling methods for a more 

effective decision-making process. 

5. Proposing a novel RL framework that can be used in support decision making, to propose 

strategic productivity improvement solutions. This research provides researchers with a 

novel framework to hybridize RL and FSD-FABM, that is computationally efficient while 

performing complex optimization problems. 

7.3.2 Industry Contributions 

The expected industry contributions of this research are as follows: 

1. Providing construction practitioners useful perspective by presenting practical 

applications of SD in the construction industry, which serves as a useful reference in 

facilitating the effective implementation of SD modeling in construction projects. 

Construction practitioners will be unable to implement SD in their projects if they are not 

aware of the value of SD, stemming from either the lack of knowledge about the concept, 

seldom use of SD in their organizations, or the misconception that SD is impractical. In 

this regard this research provides construction practitioners with the state-of-the-art in SD 
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research and application within the construction industry, to provide a guideline regarding 

implementation of SD modeling technique in construction projects. 

2. Providing a hybrid FSD-FABM approach that can help construction practitioners identify 

reasons for CLP loss, and track the causal relationships between factors affecting CLP, to 

facilitate a more proactive planning. The proposed model is capable of simulating the 

effect of variables with emerging behaviours (e.g., congestion, fatigue, crew motivation) 

using FABM, and capturing the overall dynamic system of construction environments 

using FSD. Therefore, in addition to the increased performance in model accuracy; the 

FSD-FABM offers a more comprehensive method to understand the effect of specific 

variables on the overall system. Consequently, this research facilitates for a more informed 

and strategic decision making to improve KPIs such as CLP by enabling construction 

practitioners to select various input scenarios, discern system drivers, and select the best 

productivity improvement measures. 

3. Providing construction practitioners with the framework to make informed decisions, and 

adopt economically feasible strategies for improving the motivation and productivity of 

construction crews. This research provides construction practitioners with a framework to 

make informed decisions and adopt economically feasible strategies for improving the CLP 

of their crews. Furthermore, the methodology proposed in the study can be adapted to 

several construction problems to help decision makers prioritize and select from several 

strategies intended to improve different crew performance measures. 
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7.4. Research Limitations and Recommendations for Future Research 

The following subsections discuss the limitations of this research and recommendations for future 

research.  

7.4.1. Content Analysis and Systematic Review of Application of SD in Construction 

Engineering and Management 

The content analysis and systematic review indicated that SD application in CEM has mostly been 

confined to research purposes, owing to some underlying challenges in SD implementation. 

Although models are a very important part of communicating results and conclusions, more work 

should be done in communicating the modelling process to end users, because much of the learning 

comes from such processes. In this regard, future research will investigate methodologies to 

overcome the challenges which contributed to a restricted use of SD method in the construction 

industry. Analysis of the literature indicates that there is a potential to improve the qualitative and 

quantitative modelling processes in SD using modelling approaches such as machine learning, 

ANN, NFIS, FDEMATEL, and SEM. In this regard, future research should investigate state-of-

the-art methodologies that could be integrated with SD, to propose better approaches in the 

qualitative and quantitative modeling stages. 

7.4.2. Integration of FAHP and FDEMATEL for Establishing Causal Relationships in 

Dynamic Modeling of CLP 

This research proposed a systematic and structured methodology that integrates FAHP and 

FDEMATEL, for use in dynamic modeling of productivity. Future works in this chapter can be 

summarized in two parts. Firstly, the FAHP method that is developed in this research to perform 

expertise level assessment considers no dependency between the elements in the hierarchy (i.e., 
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criteria and sub-criteria). For example, there is evident dependence between experience (criteria 

1) and knowledge (criteria 2), as explored in behavioral studies (Duerden and Witt 2010). Hence, 

the FAHP method should be improved to consider the dependence between multiple criteria and/or 

sub-criteria using other approaches (e.g., fuzzy analytic network process). Secondly, the effect of 

varying threshold selection approaches (i.e., higher percentile thresholds, average of the elements 

in the matrix, expert inputs) while developing the CLD from the defuzzified values of the TRM, 

will also be explored in future studies.  

7.4.3. Integration of FSD and FABM for Modeling of CLP 

This research proposed a hybridization of FSD-FABM, which can capture the causalities between 

crew motivation, and situational/contextual factors that impact CLP and address subjective 

uncertainties in the predictive modeling process. The proposed model is capable of simulating the 

effect of variables with emerging behaviors (e.g., congestion, fatigue, crew motivation) using 

FABM, and capturing the overall dynamic system of construction environments using FSD. 

However, only crew motivation is studied in this research due to data availability constraints. In 

this regard, future studies will investigate the effect of congestion and crew movements on CLP to 

further demonstrate the potential of the proposed FSD-FABM. Future studies will also investigate 

the effect of fatigue on CLP of crews. The proposed FSD-FABM methodology is able to predict 

productivity at the project level by aggregating the productivity values obtained at the work 

package level. However, system variables at the higher level (i.e., project level 

situational/contextual factors, organization related factors) must first be assessed, and their 

feedback relationships must be incorporated in the current CLD. In this regard, future studies will 

define system variable relationships at the project level to provide a project-level prediction of 
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productivity. Future studies will define system variable relationships at the project level to provide 

a project-level prediction of productivity. Moreover, the proposed model is capable to incorporate 

abstraction at lower levels by defining agents within the Workpackage and Crew agents to define 

smaller tasks, and individual crew members respectively. In this regard, the model should be 

extended to model individual crew members’ behavior while performing their tasks, to propose a 

more accurate model. In the area of decision making, the proposed FSD-FABM should be used to 

propose strategies to improve the CLP measure. This can be achieved by combining the features 

of decision making approaches, such as MCDM with the FSD-FABM. Moreover, the proposed 

FSD-FABM should be hybridized with RL approach to propose a strategic, and automated 

decision-making scheme, that is capable of performing dynamic optimization to align with the 

dynamic nature of construction systems. 

7.4.4. FSD-FABM-MCDM to Propose Productivity Improvement Strategies 

This research proposed a methodology for the development of an FSD-FABM-MCDM, to address 

the need for decision support tools in construction, where decision making problems exist in a 

dynamic environment with subjective uncertainties. However, the model may not perform in 

different contexts. In the future, sensitivity analysis of the MCDM model component should be 

performed to analyze which alternatives have the most influence on the decision-making process. 

When AHP is used in decision-making, the effect of minor variations in the data (i.e., changes in 

an individual data point or minor variations in the weights of criteria) can have an influence on the 

ranking of inputs, and thereby on the strategies that are adopted at the company level. This should 

be studied in more detail by performing sensitivity analysis of the model, to variations in the input-

data. The high sensitivity of AHP results to minor variations in data can cause problems, such as 
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producing multiple interpretations in the way alternatives have been selected. Therefore, it is 

important to determine how sensitive the selected criteria be to the expert inputs, and to what extent 

the selected criteria are important. Furthermore, the applicability of the developed decision support 

model, to propose CLP improvement strategies should be validated with data from real 

construction project in other contexts (e.g., building construction) to ensure the model can be 

applied to develop strategies for CLP improvement in other sectors of the construction industry. 

In this research, the proposed FSD-FABM-MCDM was demonstrated to provide improvement 

strategies for overall crew performance. However, this is a general approach, and would not enable 

identification of improvement strategies specific to CLP. In the future, the developed model should 

be applied on a real construction project to assess the model’s capabilities to propose CLP 

improvement solutions. 

7.4.5. Reinforcement Learning to Propose Optimal Productivity Improvement Strategies 

This research proposed a framework to which can provide optimization and dynamic simulation 

using RL-FSD-FABM technique. The proposed framework is capable of providing optimal 

productivity improvement solutions by performing optimization using RL, while the FSD-FABM 

simulates the construction environment. However, the proposed approach has some limitations. 

First, system variables affecting CLP were not incorporated to demonstrate the methodology, as 

more focus was given to presenting how the model works compared with other previous studies. 

Future research will implement the proposed framework on a real construction project, intended 

to optimize the predicted CLP. Second, the research is limited to addressing single-objective 

optimization problems, subject to single or multiple constraints. Optimization of multiple 

objectives using multiple RL-agents was not performed in this chapter. In future work, the 
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proposed model should also be extended to perform multi-objective optimizations with more 

constraints which have direct relations with CLP, such as time, cost, and quality, by incorporating 

multi agent RL.   
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Appendices 

Appendix A. Survey to perform expert weight assessment 

Instruction: Please assess the degree of importance of criterion I (row) over criterion j (column), using the linguistic terms provided. 

 

Degree of Causal  

Relationship 
Degree of importance between criteria for ranking of expertise Acronym 

Equally important Criterion i and criterion j are equally important. EI 

Weakly important Criterion i is weakly important than criterion j. WI 

Fairly strong important Criterion i is fairly strong important than criterion j. FSI 

Very strongly important Criterion i is very strongly important than criterion j. VSI 

Absolutely important Criterion i is absolutely important than criterion j. AI 
 

 

PART 1: PAIRWISE COMPARISON FOR CRITERIA 

No. Criteria Experience Knowledge 
Professional 

performance  

Productivity-

related project 

management 

practices 

Project 

Specifics 

Reputati

on 

Personal 

Attribut

es and 

Skills  

1 Experience EI             

2 Knowledge   EI           

3 Professional performance      EI         

4 
Productivity-related project 

management practices 
      EI       

5 Project Specifics         EI     

6 Reputation           EI   
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7 
Personal Attributes and 

Skills  
            EI 

PART 2: PAIRWISE COMPARISON FOR SUB-CRITERIA 

Criteria Sub-criteria 

1.1 

Total 

years 

of 

experie

nce 

1.2 

Relevant 

experienc

e 

2.1 

Academic 

knowledge 

2.2 

Education 

level 

2.3 On 

the job 

training 

.. 

7.1 

Level of 

commun

ication 

skills 

7.2 

Level of 

teamwor

k skills 

7.3 

Level 

of 

leade

rship 

skills 

7.4 

Level 

of 

analyti

cal 

skills 

7.5 

Level 

of 

ethics 

Experience 

1.1 Total years 

of experience 
EI           

1.2 Relevant of 

experience 
 EI          

Knowledge 

2.1 Academic 

knowledge 
  EI         

2.2 Education 

level 
   EI        

2.3 On the job 

training 
    EI       
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Criteria Sub-criteria 

1.1 

Total 

years 

of 

experie

nce 

1.2 

Relevant 

experienc

e 

2.1 

Academic 

knowledge 

2.2 

Education 

level 

2.3 On 

the job 

training 

.. 

7.1 

Level of 

commun

ication 

skills 

7.2 

Level of 

teamwor

k skills 

7.3 

Level 

of 

leade

rship 

skills 

7.4 

Level 

of 

analyti

cal 

skills 

7.5 

Level 

of 

ethics 

..              

Personal 

Attributes 

and Skills 

7.1 Level of 

communication 

skills 

      EI     

7.2 Level of 

teamwork skills 
       EI    

7.3 Level of 

leadership skills 
        EI   

7.4 Level of 

analytical skills 
         EI  

7.5 Level of 

ethics 
          EI 
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Appendix B. Survey to perform expert profiling, and assessment of causal 

interrelationships between crew motivation, and contextual/situational factors  

 

PART 1: PROFILING OF EXPERTS 

1) BACKGROUND  

1.1. Please indicate your position: 

□ Construction Manager  □ Project Manager □ Technical Coordinator 

□ Contracts Administrator  □ Project Control □ Other (please specify): 

□ Field Engineer  □ Superintendent ______________________ 

1.4. How long have you worked in the stated occupation? ____ Year(s) ____ Month(s) 

1.5. Current employer: __________________________________________________________ 

1.6. How long have you been employed by your current employer?  

________ Year(s) _________ Month(s)  

1.7. How long have you been employed by your current employer on this project?  

________ Year(s) _________ Month(s) 

1.9. Your demographic information: 

Age: □ 20−30 □ 31−40 □ 41−50 □ 51−60  □ Over 60  

Education (please select ALL categories that apply to you): 

□ High school  □ Master’s degree  

□ Vocational or technical or trade school □ Other (please specify): ____________ 

□ College diploma ________________________________ 
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□ Bachelor’s degree  

1.9. Please indicate the number of courses/trainings taken in your current discipline: _________ 

2. Productivity related project management practices: 

□ How many hours per week are you engaged in productivity-related work? ______________ 

□ Please indicate the number of certificates obtained from training sessions or workshops that can 

be applied to productivity management (e.g., lean construction, trainings, etc.) _________ 

□ Please indicate the number of conferences you attended that focused on productivity 

management practices (e.g., productivity tracking, productivity improvement, best practices in the 

industry etc.) _______________ 

 □ Please rate your experience with developing and executing policies, procedures and practices 

related to productivity management; identification of factors affecting productivity, planning 

activities to manage productivity, mitigating problems contributing to productivity loss. 

Scale Rating 

1 

NO development and execution of policies, procedures and practices related to 

productivity management, VERY POOR identification of factors affecting 

productivity, VERY POOR planning of activities to manage productivity and mitigate 

problems contributing to productivity loss.  

2 

NO development and execution of policies, procedures and practices related to 

productivity management, POOR identification of factors affecting productivity, 

POOR planning of activities to manage productivity and mitigate problems contributing 

to productivity loss.  

3 

SOME development and execution of policies, procedures and practices related to 

productivity management, FAIR identification of factors affecting productivity, FAIR 

planning of activities to manage productivity and mitigate problems contributing to 

productivity loss.  
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Scale Rating 

4 

SOME development and execution of policies, procedures and practices related to 

productivity management, GOOD identification of factors affecting productivity, 

GOOD planning of activities to manage productivity and mitigate problems 

contributing to productivity loss.  

5 

DETAILED development and execution of policies, procedures and practices related to 

productivity management, VERY GOOD identification of factors affecting 

productivity, VERY GOOD planning of activities to manage productivity and mitigate 

problems contributing to productivity loss. 

3. Project Specifics: 

□ Please indicate monetary value of the largest project you have worked on in current company__  

□ Please indicate the percentage of projects finished on time by all projects you involved  in____ 

□ Please indicate the percentage of projects finished on budget by all projects you have been 

 involved in ___________________ 

□ Please indicate the number of projects you have worked in with zero incident rates __________ 

□ Please indicate number of different project locations that you have worked on _____________ 

4. Reputation:  

□ Please indicate your perceived level of social acclimation by others based on the scale indicated 

below 

1 VERY LOW social acclimation 

2 LOW social acclimation 

3 AVERAGE social acclimation  

4 HIGH social acclimation 

5 VERY HIGH social acclimation 
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□ Please indicate your attitude and willingness towards participating in research survey based on 

the scale indicated below 

1 COMPLETELY Unwilling 

2 SOMEWHAT NOT Willing 

3 SOMEWHAT Willing 

4 Willing 

5 COMPLETELY Willing 

□ Please indicate your perceived level of credibility of expert based on consistency and 

reasonableness (use of engineering judgement) of previous decisions based on the scale indicated 

below 

1 VERY INCONSISTENT professional decisions and VERY UNRESONABLE 

professional decisions 

2 INCONSISTENT professional decisions and UNRESONABLE professional 

decisions 

3 SOMEWHAT CONSISTENT professional decisions and SOMEWHAT 

RESONABLE professional decisions 

4 CONSISTENT professional decisions and RESONABLE professional decisions 

5 VERY CONSISTENT professional decisions and VERY RESONABLE 

professional decisions 

5. Personal Attributes and Skills 

□ Please indicate your perceived level of communication skills based on the scale indicated below 

1 VERY POOR interpersonal skills, NO eloquence, and VERY POOR vertical 

communication 

2 POOR interpersonal skills, NO eloquence and POOR vertical communication 
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3 AVERAGE interpersonal skills, SOME eloquence, and AVERAGE vertical 

communication 

4 . GOOD interpersonal skills, CLEAR eloquence, and GOOD vertical 

communication 

5 VERY GOOD interpersonal skills, CLEAR eloquence, and VERY GOOD 

vertical communication 

□ Please indicate your perceived level of teamwork skills based on the scale indicated below 

1 VERY INACTIVE team member and NO contribution to team's goals 

2 INACTIVE team member and NO contribution to team's goals 

3 AVERAGE ACTIVE team member and SOME contribution to team's 

goals 

4 ACTIVE team member and FAIR contribution to team's goals 

5 VERY ACTIVE team member and FAIR contribution to team's goals 

□ Please indicate your perceived level of leadership skills based on the scale indicated below 

1 VERY POOR training, NO support tools to team members, VERY POOR 

communication of objectives and progress, COMPLETELY Unwilling to 

mentor 

2 POOR training, NO support tools to team members, POOR communication of 

objectives and progress, SOMEWHAT NOT Willing to mentor 

3 AVERAGE training, SOME support tools to team members, AVERAGE 

communication of objectives and progress, SOMEWHAT Willing to mentor 

4 GOOD trainings, FAIR support tools to team members, GOOD 

communication of objectives and progress, Willing to mentor 

5 VERY GOOD training, FAIR support tools to team members, VERY GOOD 

communication of objectives and progress, COMPLETELY Willing to mentor 

□ Please indicate your perceived level of analytical skills based on the scale indicated below 

1 VERY POOR anticipation and VERY POOR identification of problems 

2 POOR anticipation and POOR identification of problems 
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3 AVERAGE anticipation and AVERAGE identification of problems 

4 GOOD anticipation and GOOD identification of problems 

5 VERY GOOD anticipation and VERY GOOD identification of problem 

□ Please indicate your perceived level of ethics based on the scale indicated below 

1 VERY POOR compliance to legal and regulatory framework, and VERY 

POOR level of morality 

2 POOR compliance to legal and regulatory framework, and POOR level of 

morality 

3 AVERAGE compliance to legal and regulatory framework, and 

AVERAGE level of morality 

4 GOOD compliance to legal and regulatory framework, and GOOD level of 

morality 

5 VERY GOOD compliance to legal and regulatory framework, and VERY 

GOOD level of morality 

 

PART 2: CAUSAL INTERRELATIONSHIP ASSESSMENT OF THE FACTORS 

 

Instruction: Please assess the degree of causal influence of factor i (row) over factor j (column), 

using the linguistic terms provided. 

 

 

Degree of 

Causal  

Relationship 

Degree of Causal Relationship between factors affecting  

Crew Performance 

No No causal influence 

Very Low The degree of causal influence of factor i over factor j is Very Low 

Low The degree of causal influence of factor i over factor j is Low 

Medium The degree of causal influence of factor i over factor j is Medium 

High The degree of causal influence of factor i over factor j is High 

Very High The degree of causal influence of factor i over factor j is Very High 
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FACTOR 

ID 

Factors 

affecting Crew 

Performance 

1.1 Task 

repetition 

1.2 Task 

identity 

1.3 Visibility 

of outcome 
. . .  6.8 Temperature 

7.1 Safety 

procedures 

7.2 Safety 

trainings 

1.1 Task repetition No                 

1.2 Task identity   No               

1.3 
Visibility of 

outcome     No             

1.4 Rework                   

2.1 
Crew 

composition                   

2.2 Crew experience                   

2.3 
Ability to 

perform                   

2.4 
Material 

handling                   

2.5 

Hazards 

identification & 

mitigation                   

2.6 Teamwork                   

2.7 Reliability                   

2.8 Crew motivation          

3.1 
Foreman 

knowledge                   

3.2 
Foreman 

experience                   

3.3 

Safety 

facilitation and 

implementation                   
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FACTOR 

ID 

Factors 

affecting Crew 

Performance 

1.1 Task 

repetition 

1.2 Task 

identity 

1.3 Visibility 

of outcome 
. . .  6.8 Temperature 

7.1 Safety 

procedures 

7.2 Safety 

trainings 

3.4 
Performance 

monitoring                   

3.5 Communication                   

3.6 
Goal-setting 

(crew level)                   

3.7 

Change in 

weather 

conditions                   

4.1 Work progress                   

5.1 
Project 

scheduling                   

5.2 
Safety 

management                   

5.3 Fairness                   

5.4 
Goal-setting 

(project level)                   

5.5 
Project time 

management                   

5.6 
Project cost 

management                   

5.7 
Project safety 

management                   

5.8 

Project 

environmental 

management                   
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FACTOR 

ID 

Factors 

affecting Crew 

Performance 

1.1 Task 

repetition 

1.2 Task 

identity 

1.3 Visibility 

of outcome 
. . .  6.8 Temperature 

7.1 Safety 

procedures 

7.2 Safety 

trainings 

6.1 
Location of 

washrooms                   

6.2 
In-site 

transportation                   

6.3 Cleanness                   

6.4 Congestion                   

6.5 Noise                   

6.6 Pollution                   

6.7 Access points                   

6.8 Temperature             No     

7.1 
Safety 

procedures               No   

7.2 Safety trainings                 No 
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Appendix C. List of Identified Factors for Survey Administration 

1) LABOUR AND CREW-RELATED: 

No. Factor N/A 

Agreement Impact on Productivity 

Strong

ly 

Disagr

ee 

Disagr

ee 

Neithe

r 

Agree 

nor 

Disagr

ee 

Agre

e 

Stro

ngly 

Agre

e 

Strong

ly 

Negati

ve 

Negati

ve 

No 

Imp

act 

Positi

ve 

Stron

gly 

Posit

ive 

2.1 Crew size is adequate for the task at hand.             

2.2 
Crew is given adequate training before project 

or work package start 

 

          

2.3 
Crew is experienced and has the necessary 

technical skills to perform the tasks. 

 

          

2.4 
Crew has a well-balanced composition 

(Journeymen and Apprentices). 

 

          

2.5 Work is fairly assigned between crews.            

2.6 Crew team spirit is high.            

2.7 Efforts are taken to minimize crew turnover.            

2.8 Craftspeople’s skills are fully utilized.            

2.9 
Craftspeople trust the skills and judgment of 

their supervisors. 

 

          

2.10 
Craftspeople are always involved in decision-

making process. 

 

          

2.11 
Performance of craftspeople is regularly 

evaluated. 

 

          

2.12 Clear goals are given to crafts.            

2.13 
There is a good cooperation between 

craftspeople. 
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No. Factor N/A 

Agreement Impact on Productivity 

Strong

ly 

Disagr

ee 

Disagr

ee 

Neithe

r 

Agree 

nor 

Disagr

ee 

Agre

e 

Stro

ngly 

Agre

e 

Strong

ly 

Negati

ve 

Negati

ve 

No 

Imp

act 

Positi

ve 

Stron

gly 

Posit

ive 

2.14 
Craftspeople are flexible in accommodating task 

changes. 

 

          

2.15 
This crew has experience working in project 

conditions similar to the current project. 

 
          

2.16 
Changes are effectively communicated to 

craftspeople. 

 

          

2.17 
Crew members are highly motivated to complete 

their tasks. 

 

          

2.18 
There are few unscheduled breaks during work 

hours. 

 

          

2.19 
The high crew size is well-managed to avoid 

crowding. 

 

          

2.20 
Craftspeople have shown acceptable learning 

speed. 

 

          

2.21 
For new craftspeople, job site orientation 

program is carried out. 

 

          

2.22 
In this project, craftspeople have acceptable job 

security. 

 

          

2.23 This crew is a close one.            

2.24 
The members of this crew feel confident that 

they can successfully perform difficult tasks. 

 

          

2.25 
The members of this crew can usually 

concentrate on performing the tasks. 

 

          



 

245 

 

No. Factor N/A 

Agreement Impact on Productivity 

Strong

ly 

Disagr

ee 

Disagr

ee 

Neithe

r 

Agree 

nor 

Disagr

ee 

Agre

e 

Stro

ngly 

Agre

e 

Strong

ly 

Negati

ve 

Negati

ve 

No 

Imp

act 

Positi

ve 

Stron

gly 

Posit

ive 

2.26 
The members of this crew strongly identify with 

the other members of the crew. 

 

          

2.27 
The members of this crew feel a strong sense of 

“belonging” to this company. 

 

          

2.28 
The members of this crew are efficient in using 

materials to perform their tasks. 

 

          

2.29 
I feel confident that I can successfully perform 

difficult tasks. 

 

          

2.30 
I strongly identify with the other members of my 

crew. 

 

          

2.31 
I feel a strong sense of “belonging” to my 

company. 

 

          

List other labour and crew related factors that affect productivity and evaluate each of them on the same scales. 
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2) MATERIALS AND CONSUMABLES:  

No. Factor N/A 

Agreement Impact on Productivity 

Strongly 

Disagree 
Disagree 

Neither 

Agree 

nor 

Disagree 

Agree 
Strongly 

Agree 

Strongly 

Negative 
Negative 

No 

Impact 
Positive 

Strongly 

Positive 

3.1 
Material is always delivered on 

time. 

 

          

3.2 
Delivered materials are always of 

high quality. 

 

          

3.3 
Temporary material storage areas 

are properly planned. 

 

          

3.4 
There is a reporting system for 

tracking material shortages 

 

          

3.5 

Consumables (e.g., nails, duct 

tape, drill bits, blades) are 

adequately provided 

 

          

3.6 

A clear process is laid out for 

crewmembers whereby they can 

easily and timely get 

consumables. 

 

          

3.7 
Work package documents 

include the material list. 

 

          

3.8 
Material unloading practices are 

effective. 

 

          

3.9 
Material movement practices are 

well planned 

 

          

List other materials and consumables factors that affect productivity and evaluate each of them on the same scales. 

3) EQUIPMENT AND TOOLS: 
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No. Factor N/A 

Agreement Impact on Productivity 

Strongly 

Disagree 
Disagree 

Neither 

Agree 

nor 

Disagree 

Agree 
Strongly 

Agree 

Strongly 

Negative 
Negative 

No 

Impact 
Positive 

Strongly 

Positive 

4.1 
Work equipment is readily 

available. 

 

          

4.2 
Transport equipment is 

readily available. 

 

          

4.3 
The frequency of equipment 

breakdown is low. 

 

          

4.4 

Delays that occur in 

obtaining equipment after it 

breaks down are low. 

 

          

4.5 

There is sufficient supply of 

critical work-tools (e.g., 

pipe cutters, welding 

machines). 

 

          

4.6 
The work (powered) tools 

are of desired quality. 

 

          

4.7 

The tool room attendant is 

efficient in delivering tools 

in timely fashion. 

 

          

4.8 

Tools are seldom 

misplaced, avoiding wasted 

time in locating them. 

 

          

4.9 
There are no interruptions 

due to power outage. 

 

          

4.10 
Extension cords are readily 

available. 

 

          

4.11 
Quality maintenance of 

tools is performed. 
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No. Factor N/A 

Agreement Impact on Productivity 

Strongly 

Disagree 
Disagree 

Neither 

Agree 

nor 

Disagree 

Agree 
Strongly 

Agree 

Strongly 

Negative 
Negative 

No 

Impact 
Positive 

Strongly 

Positive 

4.12 

Equipment operators have 

the necessary experience 

and skills for the job 

 

          

4.13 

Equipment operators get the 

necessary training where 

and when required 

 

          

 

List other equipment and tools factors that affect productivity and evaluate each of them on the same scales. 

4) TASK-RELATED: 

No. Factor N/A 

Agreement Impact on Productivity 

Strongly 

Disagree 
Disagree 

Neither 

Agree 

nor 

Disagree 

Agree 
Strongly 

Agree 

Strongly 

Negative 
Negative 

No 

Impact 
Positive 

Strongly 

Positive 

5.1 

The scope of the tasks (i.e., 

total work volume) is 

appropriate.             

5.2 
In this project, the tasks are 

repetitive.            

5.3 

The construction methods used 

for the different project tasks 

are appropriately selected for 

the project conditions.            
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No. Factor N/A 

Agreement Impact on Productivity 

Strongly 

Disagree 
Disagree 

Neither 

Agree 

nor 

Disagree 

Agree 
Strongly 

Agree 

Strongly 

Negative 
Negative 

No 

Impact 
Positive 

Strongly 

Positive 

5.4 

Frequency of requests for 

information (RFIs) in this 

project is low.            

5.5 
Rework usually requires less 

time and effort.            

5.6 

There is a good balance 

between the crew size and 

available equipment for the 

current task.            

5.7 

Tasks that this crew is 

performing have a significant 

impact on the work of others 

(i.e., task significance is high).            

5.8 
The level of interruption while 

performing tasks is low.            

5.9 

Members of this crew have a 

high degree of freedom in 

scheduling their tasks.            

5.10 

The members of this crew have 

a high degree of freedom in 

selecting the procedures to be 

used in carrying out their tasks.            

5.11 

The waste-disposal process has 

little/no impact on 

productivity.            

5.12 
The frequency of reworks due 

to contractor's fault is low 
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No. Factor N/A 

Agreement Impact on Productivity 

Strongly 

Disagree 
Disagree 

Neither 

Agree 

nor 

Disagree 

Agree 
Strongly 

Agree 

Strongly 

Negative 
Negative 

No 

Impact 
Positive 

Strongly 

Positive 

5.13 
In this project, the types of 

reworks are very similar. 

 

          

5.14 
In this project, the types of 

tasks are very labour intensive. 

 

          

5.15 
In this project, performing the 

tasks requires various skills  

 

          

List other task-related factors that affect productivity and evaluate each of them on the same scales.  

5) LOCATION-RELATED: 

No. Factor N/A 

Agreement Impact on Productivity 

Strong

ly 

Disag

ree 

Disag

ree 

Neithe

r 

Agree 

nor 

Disag

ree 

Agr

ee 

Stron

gly 

Agree 

Stron

gly 

Negat

ive 

Negat

ive 

No 

Impa

ct 

Positi

ve 

Stron

gly 

Positi

ve 

6.1 

The project site has the necessary space for completing 

tasks without limiting crew size or type of equipment 

that may be used. 

 

          

6.2 Site restrictions do not affect the project progress            

6.3 
Measures are taken to minimize weather (temperature, 

wind, humidity, precipitation) effects. 

 

          

6.4 
Noise level of equipment and activities is at the 

appropriate level  
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No. Factor N/A 

Agreement Impact on Productivity 

Strong

ly 

Disag

ree 

Disag

ree 

Neithe

r 

Agree 

nor 

Disag

ree 

Agr

ee 

Stron

gly 

Agree 

Stron

gly 

Negat

ive 

Negat

ive 

No 

Impa

ct 

Positi

ve 

Stron

gly 

Positi

ve 

6.5 
The level of air pollution (e.g. dust and fumes) is at an 

appropriate level in the work area. 

 

          

6.6 Work area is usually not congested.            

 6.7 Work area is usually clean.            

6.8 
Conditions of site facilities (e.g. lunchrooms) are 

appropriate. 

 

          

6.9 
Facilities (e.g., offices, recreation places) are provided 

for crew members to rest during shift breaks 

 

          

List other location related factors that affect productivity and evaluate each of them on the same scales. 
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6) ENGINEERING AND INSTRUCTIONS:  

No. Factor N/A 

Agreement Impact on Productivity 

Strongly 

Disagree 
Disagree 

Neither 

Agree 

nor 

Disagre

e 

Agree 
Strongly 

Agree 

Strongly 

Negative 

Negat

ive 

No 

Imp

act 

Positive 

Strongl

y 

Positive 

7.1 
Drawings and specifications are 

made available well ahead 

 

          

7.2 

Drawings and specifications are 

often complete, and the 

frequency of revisions is low 

 

          

7.3 

Engineering department 

responds in a timely manner to 

inquiries. 

 

          

7.4 

The information required to 

perform tasks can be easily 

derived from drawings and 

specifications. 

 

          

7.5 
The waiting time for inspections 

is acceptable. 

 

          

List other engineering and instructions factors that affect productivity and evaluate each of them on the same scales. 
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7) SAFETY:  

No. Factor 
N/

A 

Agreement Impact on Productivity 

Strongly 

Disagree 
Disagree 

Neither 

Agree 

nor 

Disagree 

Agree 
Strongly 

Agree 

Strongly 

Negative 
Negative 

No 

Impact 
Positive 

Strongly 

Positive 

8.1 
The project working 

conditions are safe. 

 

          

8.2 

Proper Personal Protective 

Equipment (PPE) is used 

on site 

 

          

8.3 
Project safety plans are 

properly executed. 

 

          

8.4 
Safety incidents are rare on 

this project. 

 

          

8.5 

Safety procedures are 

uniform among different 

crews.  

 

          

8.6 

There is a good culture of 

project safety planning, 

administration and 

reporting in the project. 

 

          

8.7 
The crew is provided with 

the appropriate PPE. 

 

          

8.8 

The project team is 

provided with appropriate 

safety training. 

 

          

8.9 

Daily job hazard 

assessment forms are 

filled-in properly. 

 

          



 

254 

 

List other safety factors that affect productivity and evaluate each of them on the same scales. 

 

8) PROJECT MANAGEMENT PRACTICES:  

No. Factor N/A 

Agreement Impact on Productivity 

Strong

ly 

Disagr

ee 

Disa

gree 

Neither 

Agree 

nor 

Disagre

e 

Agre

e 

Strong

ly 

Agree 

Stron

gly 

Nega

tive 

Negati

ve 

No 

Imp

act 

Pos

itive 

Strong

ly 

Positiv

e 

9.1 

Initial project planning practices (e.g., 

detailed front-end planning, 

constructability review, etc.) have led to 

increased productivity  

 

          

9.2 

Time management: Work packages in this 

project are properly defined, planned, 

scheduled, and assigned to workers. 

 

          

9.3 
Quality management: Quality requirements 

are identified and planned. 

 

          

9.4 
Quality management: Quality control is 

practiced properly. 

 

          

9.5 

Communications management: There is 

good communication among the 

supervisory team members. 

 

          

9.6 

Communications management: There is 

appropriate communication among the 

different crews and trades at the project site. 
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List other project management practices factors that affect productivity and evaluate each of them on the same scales. 

9) PROJECT NATURE AND PROJECT CONDITIONS: 

No. Factor N/A 

Agreement Impact on Productivity 

Strongly 

Disagree 
Disagree 

Neither 

Agree nor 

Disagree 

Agree 
Strongly 

Agree 

Strongly 

Negative 
Negative 

No 

Impact 
Positive 

Stron

gly 

Positi

ve 

10.1 Project complexity is low.            

10.2 

There is adequate support and 

administrative staff for the 

project. 

 

          

10.3 

The level of paperwork needed 

for work approval in the project 

is low. 

 

          

10.4 
The project camp (if available) 

is in good condition. 

 

          

10.5 

There are an adequate number 

of parking spots within close 

distance to the project site.  

 

          

10.6 

Proper project site access 

planning contributed to 

increased project productivity. 

 

          

9.7 
Scope management: Project scope is 

properly defined and verified. 

 

          

9.8 

Scope management: Project scope is 

properly updated and captures project 

changes. 
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No. Factor N/A 

Agreement Impact on Productivity 

Strongly 

Disagree 
Disagree 

Neither 

Agree nor 

Disagree 

Agree 
Strongly 

Agree 

Strongly 

Negative 
Negative 

No 

Impact 
Positive 

Stron

gly 

Positi

ve 

10.7 
The project site is located far 

from urban areas. 

 

          

10.9 
Congestion in the project site is 

low. 

 

          

10.10 

Daily working hours are long 

and cause physical/mental 

fatigue for the workers. 

 

          

10.11 

The working cycle (number of 

consecutive days on the job) is 

long and causes 

physical/mental fatigue for the 

workers. 

 

          

10.12 
Project level rework frequency 

is low on this project.  

 

          

 

List other safety factors that affect productivity and evaluate each of them on the same scales.
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Appendix D. System Variables for the FSD-FABM 

System variable Description 

Type 

(Endo vs 

Exo) 

Type 

(Subjective 

vs 

Objective) 

Task repetition 
Percentage (% No. of identical tasks in work package 

to total No. of tasks in work package) 
Endogenous Objective 

Task identity 
Rating - To what extent do crews identify with the 

tasks at hand 
Endogenous Subjective 

Visibility of 

outcome 

Rating - To what extent does performing the tasks 

provide crew members with visibility of the outcomes 

of the work.  

Endogenous Subjective 

Rework 
The measure of the total reworked volume in relation 

to the total volume of work. 
Endogenous Objective 

Crew composition The ratio of journeyman to apprentice Endogenous Objective 

Crew experience 
Number (Average years of experience in current 

position) 
Endogenous Objective 

Crew motivation Motivation of the crews performing the task at hand. Endogenous Objective 

Baseline 

productivity 

Best productivity observed while performing similar 

tasks. 
Exogenous Objective 

Ability to perform Rating - Ability of the crew to perform tasks Endogenous Subjective 

Material handling 
Rating - Ability of the crew to move, protect, and/or 

store materials throughout the construction process. 
Endogenous Subjective 

Hazards 

identification & 

mitigation 

Rating - Using daily job Hazard assessment forms, and 

mitigation of identified hazard. 
Endogenous Subjective 

Teamwork 
Rating - Putting team objectives over own personal 

interests. 
Endogenous Subjective 

Reliability 
Rating - The crew member can be relied on to perform 

tasks. 
Endogenous Subjective 

Foreman 

knowledge 

Rating - Knowledge of work methods, procedures, and 

requirements 
Endogenous Subjective 
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System variable Description 

Type 

(Endo vs 

Exo) 

Type 

(Subjective 

vs 

Objective) 

Foreman 

experience 
Number (years of experience in current position) Endogenous Objective 

Safety facilitation 

and 

implementation 

Rating - Knowing, understanding, communicating and 

ensuring compliance with safety regulation; Providing 

answers to safety related questions; Participating and 

completing safety incident reports. 

Endogenous Subjective 

Performance 

monitoring 

Rating - Assessing competency and capability of crew 

members to meet quality requirements. 
Endogenous Subjective 

Communication Rating - Forman's communicating to and with crew. Endogenous Subjective 

Goal-setting 
Rating - Clarity in and specificity in assignment of 

goals. 
Endogenous Subjective 

Change in weather 

conditions 

Rating - changes in weather conditions during daily 

work. 
Endogenous Subjective 

Work progress Amount of work performed per unit time. Endogenous Objective 

Project scheduling Rating - Scheduling of work packages. Endogenous Subjective 

Safety management 

Rating - Knowing, understanding, communicating and 

ensuring compliance with safety regulation; Providing 

answers to safety related questions 

Endogenous Subjective 

Fairness 
Rating - Consistency (same policy), Reasonableness 

(use of common sense) 
Endogenous Subjective 

Project time 

management 

Rating - Development execution, and monitoring of 

Project Schedule 
Endogenous Subjective 

Project cost 

management 

Rating - Development and monitoring of project cost 

estimates; identifying project budget; and development 

and monitoring of Project Cash Flow 

Endogenous Subjective 

Project safety 

management 

Rating - Development, execution, and monitoring of 

safety plan; identifying safety requirements; and 

conducting safety trainings 

Endogenous Subjective 
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System variable Description 

Type 

(Endo vs 

Exo) 

Type 

(Subjective 

vs 

Objective) 

Project 

environmental 

management 

Rating - development, execution, and monitoring of 

environmental management system; providing 

required legal permits; and performing of 

Environmental Impact Assessment 

Endogenous Subjective 

Location of 

washrooms 
Real number (average distance, m)  Endogenous Objective 

In-site 

transportation 
Integer (Number of transportation vehicle on site) Endogenous Subjective 

Cleanness Integer (Number of cleaning operations per week) Endogenous Subjective 

Congestion 
Real Number (number of people per 100 square meter 

in working area) 
Endogenous Subjective 

Noise 
Rating - Noise sources (equipment's); Intrusiveness of 

noise; Voice levels in normal conversation 
Endogenous Subjective 

Pollution 
Rating - Dust and fume source; Level of exposure; 

Length of exposure 
Endogenous Subjective 

Access points Integer (number of access points to working area) Endogenous Objective 

Temperature Real number (˚C) Exogenous Objective 

Safety procedures 
Rating - Development and implementation of safety 

procedures 
Endogenous Subjective 

Safety trainings Rating - Conduction of safety trainings Endogenous Subjective 

Work to do 
Number- Measurement of Work planned to be 

executed by the crews 
Exogenous Objective 

Crew productivity 
Number-Ratio of work performed (units) per worked 

hours (person hours) 
Endogenous Objective 

Fatigue 
Rating- Exhaustion of crew members resulting from 

mental or physical exertion 
Endogenous Subjective 

Daily work hours 
Number - Planned hours allocated for crews to 

perform their activities. 
Exogenous Objective 

 


