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Abstract

The common theme of this work was to investigate the relationships between multi-
dimensional experimental data and the physical and chemical properties of certain reacting
systems that have industrial relevance. Three particular systems of increasing complexity in terms
of composition of the reaction mixture were considered, namely: catalytic oligomerization of an
aliphatic olefin (propylene), oxidation of a naphthene-aromatic (tetralin) and thermal conversion
of Canadian oilsands bitumen, which is a mixture of a compound classes. The overall objective of
my thesis was to evaluate the statistical and analytical information obtained from a variety of
chemometric and experimental tools to understand the chemical behavior of each system from a
reaction chemistry viewpoint, with simultaneously validating the potential for online monitoring.
The entire research conducted in four phases and though the first two studies were independent
from those on bitumen, all works were aimed at addressing gaps in related literature.

Propylene, obtained as a by-product of pyrolysis of organic material is usually converted to
heavier hydrocarbons in the gasoline or distillate boiling range. In the first phase of my research,
the ability of nonlinear least squares-support vector regression (LS-SVR) adopting kernel
transformations to predict concentrations of hydrocarbon products at the outlet of a flow reactor
from H-ZSM-5 catalyzed propylene oligomerization was assessed in comparison with linear
partial least squares (PLSR) and its variant, interval-partial least squares regression (i-PLSR). The
classification of product concentrations through dimension reduction and pattern recognition
techniques like principal component analysis (PCA) and hierarchical clustering analysis (HCA)

reflected different elements of the oligomerization chemistry quite well. The possibility of
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eliminating offline concentration measurement and online tracking of product concentration
distribution was the key contribution of this work.

The role of mass transfer was considered to be important in the liquid-phase oxidation of
hydrocarbons to produce essential petrochemicals. In the second phase, the use of simple and
multiple linear regression in identifying the most significant parameter related to oxygen
availability in the tetralin oxidation process was investigated. It was conducted in a microfluidic
reactor under Taylor flow conditions, where the relative importance of mass transfer over
hydrodynamic parameters in controlling product selectivity was established. The challenge was to
tackle the multicollinearity that was detected among the explanatory variables through F-tests, t-
tests, partial and Pearson correlations, changes in regression coefficient estimates and their
standard errors. A pathway to predict product selectivity and tetralin conversion from the only
user-controlled variable (inlet flowrate of tetralin) was developed to potentially eliminate the use
of gas chromatography for offline measurements of the outputs.

Thermal conversion of Athabasca bitumen was studied in detail with the intention of
providing scientific reasoning for the peculiar increases in viscosity observed by certain previous
researchers at less severe reaction conditions than employed in industry. A number of product
characterizations by straightforward and hyphenated experimental techniques including
vibrational and nuclear magnetic resonance spectroscopy, elemental analyses, distillation profiles,
compositional analysis of gaseous products density and refractive indices were conducted. A
comprehensive review and analysis of the plausible factors that could have affected the viscosity
was provided. The third phase of my research was critical in identifying that post-thermal reaction

procedures like solvent extraction and rheological conditions of viscosity measurement had a
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major impact on viscosity. This study highlighted some detrimental effects of the presence of
halogens in bitumen and was important for simulation of partial upgrading at the laboratory-scale.

The final study of my thesis comprised of deriving a credible reaction pathway from the
quantitative statistical results of multivariate curve resolution and Bayesian clustering and learning
methods on infrared spectra of the products from thermal conversion of Athabasca bitumen over
a range of temperatures from 300 — 420 °C. Minimum external chemical knowledge was used for
the chemometric part, while the consistency of the conversion chemistry along with the proposed
reaction mechanisms as indicated from the chemometric results was inspected and compared with
that of Cold Lake bitumen as well. In summary, explanations for chemical changes in each of the
three systems were derived from process data in different forms like spectra and process conditions

by means of chemometric and experimental tools with a potential for online control.

Keywords: Support vector regression, interval-partial least squares, acid-catalyzed olefin
oligomerization, hydrocarbon oxidation, mass transfer parameters, multicollinearity, multiple
linear regression, viscosity trends, solvent extraction, rheological conditions, multivariate curve

resolution, Bayesian structure learning, reaction chemistry.
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FIGURES

Figure 2.1. PC1 vs. PC2 for auto-scaling (top) and range scaling (bottom) applied on oil and
source-rock samples from the Northern Wuerxun Depression, Hailar Basin. !7 Reproduced with
permission from Science Direct.

Figure 3.1. Schematic of the condensation of the products and the online flow cells.

Figure 3.2. The IR spectra after pre-processing (without smoothing). The twenty-five spectra
correspond to the products from each of 25 experimental conditions (Table A.3 in Appendix A).
Figure 3.3. Biplot for PCA done on set (1) with 14 variables (follow blue lines) and 15
observations (red values).

Figure 3.4. Loadings plot with 350 wavenumbers as variables. (a) First principal component
loadings vs. wavenumbers; (b) Second principal component loadings vs. wavenumbers.

Figure 3.5. Scores plot for first two principal components for the case where PCA was applied to
spectral data.

Figure 3.6. Hierarchical cluster tree for product composition based on PCA loadings.

Figure 3.7. Bar graphs depicting RMSECV vs. each wavenumber interval in i-PLS calibration
model for combination 3 with outputs: (a) C3 and (b) Cs. The dotted line is the RMSECYV for the
global PLS model with 10 LV (optimized) for both the outputs.

Figure 3.8. Correlations between experimentally measured and LS-SVM-RBF predicted values
for concentrations of: (a) Cs in Combination 1; (b) Heavy stream in Combination 2; (¢) Cs in
Combination 3; (d) Heavy stream in Combination 4; (¢) Cs in Combination 5; (f) Cs in
Combination 6.

Figure 3.9. Product distribution profile for: (a) Experiment 1 at 346 °C and 172 mL/min; (b)
Experiment 23 at 433 °C and 440 mL/min flowrate of propylene.

Figure 3.10. RMSEP vs. number of samples in used for building the calibration model tested for
PLSR, LS-SVM-Poly and LS-SVM-RBF.

Figure 4.1. P-value plots shown for 2 explanatory variables: (a) gas-liquid interfacial area; (b)
two-phase liquid velocity; and the 2 outcome variables: (c) tetralin conversion rate; (d) ketone-
alcohol selectivity.

Figure 5.1. Experimental procedure and related characterization followed in this work. L — Liquid;

S — Solid.
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Figure 5.2. (a) Product viscosity after thermal conversion at 400 °C for the indicated reaction
times. All viscosities were measured at 40 °C; (b) The same data is shown with a zoomed y-axis
to visualize the graphic details. The shear rates at which all the viscosities were measured are given
in Table 5.8.

Figure 5.3. (a) The rate of change of viscosity with respect to reaction time for the thermally
converted samples; (b) The same data is shown with a zoomed y-axis to visualize the graphic
details.

Figure 5.4. (a) Comparison of the viscosity of straight thermally converted products with the
viscosity of those extracted with methylene chloride (MC products viscosity); (b) The same data
is shown with a zoomed y-axis to visualize the graphic details.

Figure 5.5. (a) Comparison between viscosities of toluene separated thermally converted products
and of those collected without the use of a solvent; (b) The same data is shown with a zoomed y-
axis to visualize the graphic details.

Figure 5.6. Plots of density and refractive index of the straight thermally converted liquid products
(without solids) at different reaction times. All values are measured at 40 °C.

Figure 5.7. EPR spectra of thermally converted bitumen at 400 °C and 15 min acquired without
dissolution in solvent. The parallel (pl) and perpendicular features (pp) of the vanadyl peaks are
indicated along with the organic free radical line.

Figure 5.8. Quantitative EPR data for the thermally converted products (organic free radical)
collected without using a solvent at the indicated reaction times. All reactions were conducted at
400 °C and EPR spectra taken at room temperature. The average g-values of the organic free radical
peak was 2.0025 £+ 0.0005.

Figure 5.9. Comparison of the EPR spectra of methylene chloride-extracted products with the
straight thermally converted products reacted at 400 °C and (a) 75 min; (b) 210 min. The g-value
of the organic free radical line is 2.0027 and 2.0025 at 75 min and 210 min, respectively. The y-
axis is the first derivative of signal intensity and is on the same scale.

Figure 5.10. Comparison of the EPR spectra of toluene-extracted products with the straight
thermally converted products reacted at 400 °C and 75 min (left), 240 min (right). The g-value of
the organic free radical line is 2.0028 and 2.0024 at 75 min and 240 min, respectively. The y-axis

is the first derivative of signal intensity and is on the same scale.

XXVi



Figure 5.11. Comparison of the FTIR spectra of the feed bitumen and the thermally converted
product obtained at 90 min reaction time.

Figure 5.12. FTIR spectra of (a) pure CH2Clz; (b) the solvent-free 15 min thermally converted
product; (c) the methylene chloride-extracted thermally converted product at 15 min showing
absorption bands in the 900 - 600 cm™ region. The bonds responsible for the respective bands are
indicated.

Figure 5.13. FTIR spectra of (a) pure CH2Cly; (b) the solvent-free 30 min thermally converted
product; (c¢) the methylene chloride-extracted thermally converted product at 30 min showing
absorption bands in the 1300 - 1200 cm™' region.

Figure 5.14. '"H-NMR spectra of feed Athabasca bitumen and 90 min solvent-free thermally
converted product.

Figure 5.15. Hydrogen distribution in the aromatics and those attached to benzylic and methyl
carbons in aliphatic groups.

Figure 5.16. 'H-NMR spectra of thermally converted product: (a) At 60 min reaction time
mechanically extracted without the use of solvent compared with that of the same thermally
converted product extracted with (b) methylene chloride and (c) toluene.

Figure 5.17. Comparison of the 'H-NMR spectra of straight and methylene chloride-extracted
thermally converted product at: (a) 120 min; (b) 150 min & (c¢) 360 min reaction times.

Figure 5.18. Comparison of n-pentane insoluble material in the liquid products when the solids
were separated using methylene chloride (black squares) and toluene (blue triangles) as the
solvents.

Figure 5.19. Microcarbon residue content of the bitumen feed and thermally converted products
at different reaction times. The value for the raw bitumen feed corresponds to 0 min.

Figure 5.20. H/C ratio of the straight thermally converted products with reaction time. ‘0’ min
corresponds to the feed bitumen at room temperature (25 °C).

Figure 5.21. Simulated distillation curves for the feed bitumen and the thermally converted
products obtained at 60 min and 1440 min with no solvent.

Figure 5.22. Comparison of the distillation profiles for the thermally converted product at 60 min
obtained with methylene chloride extraction (blue curve), toluene extraction (red curve) and

without any solvent (black curve).
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Figure 5.23. Optical images of the carbonaceous solids formed after thermal cracking and
separated from the liquid products by using toluene.

Figure 5.24. Variation of viscosity with shear rate for the thermally converted products obtained
at 15, 30, 45, 60 and 150 min (left). The figure on the right represents the data for 30, 45, 60 and
150 min with viscosity on the logarithmic scale. All measurements were taken at 40 °C.

Figure 5.25. Variation of viscosity with shear rate for thermally converted products obtained at
15, 60, 120, 150, 180 and 360 min in the 1-10 s! region.

Figure 5.26. Variation of viscosity with measurement time at a constant shear rate of 10 s for the
thermally converted product at 240 min. The instrument was stopped at intervals of 50 s for the
same time and then the process repeated again.

Figure 5.27. Types of hydrogen bonding possible in methylene chloride-extracted products: (a)
Most probable scenario of the hydrogens from CH:Cl, being involved in bonding with
electronegative atoms in a naphthene aromatic compound; (b) orbital overlap in the formed
hydrogen bond; (c¢) depicts the collinear arrangement of atoms participating in a possible N-H---
Cl bond as explained in the preceding paragraph.

Figure 5.28. Plot of spin concentrations vs. viscosity of the thermally converted samples obtained
without the use of any solvent in the reaction time range of 15 — 360 min.

Figure 5.29. (a) Sol and (b) gel representations of bitumen. Reproduced with permission from
reference 33. Copyright 2009 Elsevier. ¥

Figure 5.30. Schematic of the effective volume of a cluster of asphaltenes with the entrapped
solvent.

Figure 6.1. Raw FTIR absorbance spectra of 35 liquid products from thermal conversion of
Athabasca bitumen at five different temperatures and reaction times before pre-processing.
Figure 6.2. Plots of: (a) Baseline corrected and smoothed data; (b) residual after smoothing and
(c) the raw FTIR spectra of the liquid products from thermal conversion of Athabasca bitumen at
350 °C.

Figure 6.3. Sequence of steps followed in this work for chemometric analysis of the FTIR spectra
through curve resolution.

Figure 6.4. Plots for: (a) ROD with respect to each component; (b) SD with respect to each
component; (¢) Residual after performing SVD considering 3 components on the FTIR data set for

all 1738 wavenumbers; (d) Percentage contribution to the variance explained by the eigenvalues
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corresponding to each component in the system. These results correspond to data obtained at 400
°C.

Figure 6.5. Plots of initial estimates of change in concentration of the three pseudo-components
with process flow (reaction time in min) at the following temperatures: (a) 420 °C; (b) 400 °C; (c)
380 °C; (d) 350 °C.

Figure 6.6. Results of SMCR-ALS applied to FTIR spectra of liquid products from thermal
conversion of Athabasca bitumen at 300 °C. The profiles are arranged as: (a) concentration vs.
reaction time for the three pseudo-components; and resolved spectra for each pseudo-component
shown as absorbance vs. wavenumber in the ranges: (b) 3200 — 2750 cm; (¢) 1800 — 1500 cm’';
(d) 1500 — 900 ecm'; (€) 900 — 650 cm™.

Figure 6.7. Methyl transfer from an isopropyl group attached to an aromatic (1) followed by
hydrogen abstraction from the matrix leading to increased CH» content (compound (4)) possible
occurring at 300 °C.

Figure 6.8. Results of SMCR-ALS applied to FTIR spectra of liquid products from thermal
conversion of Athabasca bitumen at 350 °C. The profiles are arranged as: (a) concentration vs.
reaction time for the three pseudo-components; and resolved spectra for each pseudo-component
shown as absorbance vs. wavenumber in the ranges: (b) 3200 — 2750 cm; (c) 1800 — 1500 cm’';
(d) 1500 — 900 cm'; (e) 900 — 650 cm™.

Figure 6.9. Sequence of reactions speculated to be occurring at 350 °C based on SMCR results.
Figure 6.10. Pathway for 350 °C showing the increase in mono-substituted aromatic content from
a naphthene, keeping the di-substituted content constant. The bond dissociation energy (BDE) for
homolytic cleavage of the indicated bonds is also shown in kJ/mol.

Figure 6.11. Results of SMCR-ALS applied to FTIR spectra of liquid products from thermal
conversion of Athabasca bitumen at 380 °C. The profiles are arranged as: (a) concentration vs.
reaction time for the three pseudo-components; and resolved spectra for each pseudo-component
shown as absorbance vs. wavenumber in the ranges: (b) 3200 — 2750 cm!; (c) 1800 — 1500 cm';
(d) 1500 — 900 cm'; (e) 900 — 650 cm™.

Figure 6.12. Proposed mechanism corresponding to the changes in derived quantitative parameters
observed at 380 °C. The energies for homolytic bond cleavage of the C-C bonds in (15) and (16)

are given in kJ/mol.
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Figure 6.13. Results of SMCR-ALS applied to FTIR spectra of liquid products from thermal
conversion of Athabasca bitumen at 400 °C. The profiles are arranged as: (a) concentration vs.
reaction time for the three pseudo-components; and resolved spectra for each pseudo-component
shown as absorbance vs. wavenumber in the ranges: (b) 3200 — 2750 cm; (c) 1800 — 1500 cm’';
(d) 1500 — 900 ecm'; (€) 900 — 650 cm™.

Figure 6.14. Plausible type of reaction happening at 400 °C where cracking of the weaker benzylic
C-tertiary C (in compound (15)) followed by intramolecular hydrogen transfer and hydrogen
abstraction to yield the mono-substituted aromatic (compound (24)) and the conjugated free radical
(23). This can crack further to give lighter aliphatic products. Possibility of free-radical
recombination to form compound (28) is also shown.

Figure 6.15. Plots of: (a) concentration profiles and (b) spectral profiles in the region 900 — 650
cm™! for curve resolution applied on the 400 °C dataset using 4 pseudo-components.

Figure 6.16. Results of SMCR-ALS applied to FTIR spectra of liquid products from thermal
conversion of Athabasca bitumen at 420 °C. The profiles are arranged as: (a) concentration vs.
reaction time for the three pseudo-components; and resolved spectra for each pseudo-component
shown as absorbance vs. wavenumber in the ranges: (b) 3200 — 2750 cm; (c) 1800 — 1500 cm’';
(d) 1500 — 900 cm'; (e) 900 — 650 cm™.

Figure 6.17. Rate of convergence in terms of standard deviation of residual vs. number of
iterations for ALS and ALS-PSO algorithms used in SMCR in this work.

Figure 6.18. Bayesian network structure produced by hill climbing and Tabu search algorithms
describing the causal relationships between different groups clustered by BHC.

Figure 6.18. Bayesian network structure produced by hill climbing and Tabu search algorithms
describing the causal relationships between different groups clustered by BHC.

Figure 6.20. Proposed reaction pathway for the thermal conversion of Athabasca bitumen based
on the results from Bayesian network structure.

Figure 6.21. Proposed reaction pathway in continuation with Figure 6.20 for the thermal
conversion of Athabasca bitumen based on the results from Bayesian network structure.

Figure 6.22. Results of SMCR-ALS applied to FTIR spectra of liquid products from thermal
conversion of Athabasca bitumen at temperatures in the range 300 — 420 °C (global model). The

profiles are arranged as: (a) concentration vs. reaction time for the three pseudo-components; and
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resolved spectra for each pseudo-component shows as absorbance vs. wavenumber in the ranges:
(b) 3200 — 2750 em'; (¢) 1800 — 1500 cm!; (d) 1500 — 900 cm’'; (e) 900 — 650 cm.

Figure A.1. Schematic of the complete experimental setup.

Figure A.2. Separation of training data set points in original feature space (circular curve) as
compared to the transformed feature space (2-D plane).

Figure A.3. Loadings plot of PC-1 vs. PC-2 for PCA applied on FTIR spectra with the 350 spectral
channels as the variables and 15 samples as observations.

Figure B.1. Scatter plots for tetralin conversion rate and oxidation product selectivity versus: (a)
length of gas bubble (L;); (b) length of liquid slug (Ls), (c) tetralin flow rate (Q), (d) two-phase
superficial velocity (Urp), (€) gas-liquid interfacial area (a).

Figure B.2. Residual vs. predicted value plots in standardized forms for SLR of: (a) S on a; (b) S
on UZp; (c) CR on Q and (d) CR on L.

Figure B.3. GC-FID chromatogram of tetralin oxidized at 150 °C in a microfluidic reactor at gas-
liquid interfacial area: (a) 3x10° m?*m?> (Series A: Table 4.2 in Chapter 4) and (b) 510> m?/m?
(Series E: Table 4.2 in Chapter 4).

Figure C.1. Calibration curve for EPR spectra with DPPH in toluene as reference standard. The
g-value for DPPH averaged across all data points is 2.0033 £ 0.0002.

Figure C.2. Calibration curve for estimation of remaining (a) methylene chloride and (b) toluene
in the thermally converted product obtained from thermal cracking at 400 °C and 15 min and 45
min, respectively.

Figure C.3. Concentric cylinders representing the cup and the bob arrangement in a
viscometer/rheometer. The bob has radius ‘a’ rotating with angular velocity w, and the cup has a
radius ‘b’ rotating with angular velocity wy. In our case, w}, = 0.

Figure D.1. Plots of: (a) Baseline corrected and smoothed data; (b) the raw FTIR spectra of the
liquid products from thermal conversion of Athabasca bitumen at 420 °C; (c) residual after
smoothing.

Figure D.2. Plots of: (a) Baseline corrected and smoothed data; (b) the raw FTIR spectra of the
liquid products from thermal conversion of Athabasca bitumen at 400 °C; (c) residual after

smoothing.
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Figure D.3. Plots of: (a) Baseline corrected and smoothed data; (b) the raw FTIR spectra of the
liquid products from thermal conversion of Athabasca bitumen at 380 °C; (c) residual after
smoothing.

Figure D.4. Plots of: (a) Baseline corrected and smoothed data; (b) the raw FTIR spectra of the
liquid products from thermal conversion of Athabasca bitumen at 300 °C; (c) residual after
smoothing.

Figure D.5. Plot of importance index of the selected 1550 wavenumbers.

Figure D.6. Residuals obtained after performing SVD on the 400 °C data set considering: (a) 2
components and (b) 4 components.

Figure D.7. Plots for (a) ROD with respect to each component; (b) SD with respect to each
component; (c) Residual after performing SVD considering 3 components on the FTIR data set for
all 1738 wavenumbers; (d) Percentage contribution to the variance explained by the eigenvalues
corresponding to each component in the system. These results correspond to data obtained at 300
°C.

Figure D.8. Plots for (a) ROD with respect to each component; (b) SD with respect to each
component; (c) Residual after performing SVD considering 3 components on the FTIR data set for
all 1738 wavenumbers; (d) Percentage contribution to the variance explained by the eigenvalues
corresponding to each component in the system. These results correspond to data obtained at 350
°C.

Figure D.9. Plots for (a) ROD with respect to each component; (b) SD with respect to each
component; (c) Residual after performing SVD considering 3 components on the FTIR data set for
all 1738 wavenumbers; (d) Percentage contribution to the variance explained by the eigenvalues
corresponding to each component in the system. These results correspond to data obtained at 380
°C.

Figure D.10. Plots for (a) ROD with respect to each component; (b) SD with respect to each
component; (c¢) Residual after performing SVD considering 3 components on the FTIR data set for
all 1738 wavenumbers; (d) Percentage contribution to the variance explained by the eigenvalues
corresponding to each component in the system. These results correspond to data obtained at 420
°C.

Figure D.11. Initial concentration estimates for Si, S and S3 at 300 °C.
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Figure D.12. ALS residuals for datasets obtained at: (a) 300 °C; (b) 350 °C; (c) 380 °C; (d) 400
°C; (e) 420 °C.

Figure D.13. Results of SMCR-ALS-PSO applied to FTIR spectra of liquid products from thermal
conversion of Athabasca bitumen at 300 °C. The profiles are arranged as: (a) concentration vs.
reaction time for the three pseudo-components; (b) residual plot; and resolved spectra for each
pseudo-component shown as absorbance vs. wavenumber in the ranges: (c) 3200 — 2750 cm™; (d)
1800 — 1500 cm™'; (e) 1500 — 900 cm™'; (f) 900 — 650 cm™'.

Figure D.14. Results of SMCR-ALS-PSO applied to FTIR spectra of liquid products from thermal
conversion of Athabasca bitumen at 350 °C. The profiles are arranged as: (a) concentration vs.
reaction time for the three pseudo-components; (b) residual plot; and resolved spectra for each
pseudo-component shown as absorbance vs. wavenumber in the ranges: (c) 3200 — 2750 cm™; (d)
1800 — 1500 cm™'; (e) 1500 — 900 cm™'; (f) 900 — 650 cm™'.

Figure D.15. Results of SMCR-ALS-PSO applied to FTIR spectra of liquid products from thermal
conversion of Athabasca bitumen at 380 °C. The profiles are arranged as: (a) concentration vs.
reaction time for the three pseudo-components; (b) residual plot; and resolved spectra for each
pseudo-component shown as absorbance vs. wavenumber in the ranges: (c) 3200 — 2750 cm™'; (d)
1800 — 1500 cm™'; (e) 1500 — 900 cm™'; (f) 900 — 650 cm™'.

Figure D.16. Results of SMCR-ALS-PSO applied to FTIR spectra of liquid products from thermal
conversion of Athabasca bitumen at 400 °C. The profiles are arranged as: (a) concentration vs.
reaction time for the three pseudo-components; (b) residual plot; and resolved spectra for each
pseudo-component shows as absorbance vs. wavenumber in the ranges: (c) 3200 — 2750 cm™; (d)
1800 — 1500 cm’; (e) 1500 — 900 cm’!; (f) 900 — 650 cm™'.

Figure D.17. Results of SMCR-ALS-PSO applied to FTIR spectra of liquid products from thermal
conversion of Athabasca bitumen at 420 °C. The profiles are arranged as: (a) concentration vs.
reaction time for the three pseudo-components; (b) residual plot; and resolved spectra for each
pseudo-component shows as absorbance vs. wavenumber in the ranges: (c) 3200 — 2750 cm™; (d)
1800 — 1500 cm’; (e) 1500 — 900 cm’; (f) 900 — 650 cm.

Figure D.18. Effective intensity for each wavenumber in the fifth cluster (Table 6.14 in Chapter

6). Some of the important peaks are indicated.
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Figure D.19. Plots of: (a) ROD vs. number of components and (b) initial estimates of concentration
obtained through EFA for the 35 samples at various process conditions used in the SMCR-ALS
global model.
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1. Introduction

1.1 Background and scope

One of the main challenges in escalating a pilot-scale chemical process to the industrial level
is automation. In other words, eliminating the requirement for any analytical equipment that
requires significant human intervention would be beneficial in a number of ways for the
corresponding industrial process. It cuts human and capital cost, improves overall process time,
and reduces the human component of error. At the same time, the process chemistry needs to be
fathomed and uncovered. This feature would particularly be useful in an industry that involves a
lot of analytical science and focuses on increasing the value of a chemical by conversion to a
higher-value product at minimum cost and lesser time. In addition, synthesis of chemicals
involving a catalyst are more capital-intensive and quite sensitive to external factors like
temperature, pressure and change in other process conditions like flowrate of the reactant.

The backbone of any chemical process in the laboratory setting or in the industry is the data
generated from the constituent analytical instruments. Data can be qualitative or quantitative and
related to the chemical environment apart from the system itself. | Meta-data containing supporting
information like file size, date of performing the experiment, etc. is recommended to accompany
the raw data for assisting the user. The most common sources of data in a pilot-scale process is
from spectroscopy and chromatography, whose elimination can reduce run-times significantly.
However, due to the multidimensional nature of the data, there is a lot of overlapping that needs
to be dealt with in order to obtain useful information that can be interpreted in a chemical sense. >

Chemometric tools that adopt statistical approaches through mathematical methods translate
raw data from analytical instruments into reliable information that can further assist in linking the
measured property and reaction chemistry. > They can substitute for a characterization instrument
and speed up the scale-up operation, also. On the other hand, chemoinformatics consists of a
further step where the information from chemometrics is converted to global knowledge of the
population set of similar systems through building master curves and kinetic models, but is not
within the scope of this work. *

Furthermore, it is important to consider the nature of the chemical reacting system in which

the value of a substance is required to be increased. The world demand for petrochemicals has



been growing tremendously over the years. > Most of the derived products from petrochemicals
are used on a daily-basis as plastics for food packaging, ammonia for fertilizers, synthetic rubber
for tires, detergents/surfactants in households and a number of other commodities. The demand
for plastics has almost doubled since 2000 and one of the major starting materials for their
manufacture is lighter molecular weight olefins like ethylene and propylene, whose production
alone increased by 5 %wt. in the decade from 1990-2000 and their demand is expected to increase
by 3.5 %wt. over the next 15 years. %’

Since these gaseous olefins mostly occur as by-products from thermal processing of organic
material like heavy oil and bitumen, their conversion to higher molecular weight compounds in
the gasoline and distillate boiling range was considered to be worthwhile. Organizations like Mobil
Research Development Corporation developed a catalytic method using shape-selective acidic
zeolite, ZSM-5, to carry out this conversion. ® Since the mechanism involves the formation of a
carbocation which facilitates cracking, isomerization and polymerization reactions, it can lead to
a distribution of carbon numbers in the products and keeping track of them through experimental
means alone is a major challenge. Kinetic models comprising lumped mixtures would seem a
practical solution but the limitation is that this requires a predefined reaction network and an
established link between product properties and oligomerization chemistry. *!° Reactor modeling
was also shown to predict concentration profiles for ethane cracking but the number of parameters
to be estimated was large. '! There was a need to monitor the product composition through a more
versatile method.

Another important reaction involving petroleum-derived feedstocks are oxidation of aromatic
species to produce petrochemicals that are crucial in the polymer and pharmaceutical industry. '>!3
Conversion of p-xylene to dimethyl terephthalate (DMT), that is later copolymerized with a linear
olefin to produce polyethylene terephthalate (PET) was implemented by DuPont and finds
application in fibers, resins and films. '* Though oxidation catalysts are highly selective, not all
feeds are suited for catalytic conversion and moreover, the catalysts deactivate over time and
generate hazardous wastes that can contribute to an increase in costs. '°> Non-catalytic oxidation is
less capital-intensive but the main issue is controlling selectivity since some products are more
reactive than the feed itself. Oxidation of naphthene aromatics like tetralin produce 1-tetralone
which serves as a starting material for pharmaceutical agents and in agriculture as well. But the

reaction needs to be selective to the ketone rather than the corresponding alcohol due as 1-tetralol



is of lesser industrial value than 1-tetralone. It is obvious that oxygen availability should be
maximized but the challenge in oxidation of chemicals like tetralin is that it becomes a two-phase
flow. Thus, determining the relative importance of a single parameter among others in the complex
system that can control the oxygen availability becomes critical in designing an industrial reactor
for this process.

One of the major reasons for the increase in world oil demand can be attributed to the
petrochemical industry. To put things into perspective, the petrochemical industry accounts for a
third of the total oil supply and will continue to do so till 2030, as projected by the International
Energy Agency. '® But with the crude oil demand surging up to 34 billion barrels per year (93
million barrels per day), sources of conventional light oil are fast-depleting and there is a steady
shift towards heavy crude oil and bitumen extraction, transportation and processing. !’ Canada
owns the world’s largest deposit of oilsands of ~2400 billion barrels out of which only ~170 billion
barrels are estimated to be recoverable. '8 Once recovered, transportation through pipelines is an
arduous task due to its low fluidity. The main challenge is the reduction of viscosity by several
orders of magnitude to meet the pipeline specifications, which consist of density and olefin content
specifications as well. '° Due to the higher cost of diluents and issues of compatibility with
bitumen, partial upgrading through thermal conversion is considered a viable alternative with the
intent to achieve sufficient viscosity reduction at the site of extraction without significantly
upgrading bitumen properties not related to transport. Viscosity of a complex mixture is dependent
on a number of factors like composition and molecular structure, phase behavior and external
factors like interaction with solvents and shear rates of measurement.

Keeping in mind the above-mentioned challenges in different sectors of the petrochemical
industry and the usefulness of chemometrics in addressing some of these in analytical science, this
work was carried out in four phases considering three systems of increasing complexity in terms
of composition of the reaction mixture. These systems were: (i) acid-catalyzed oligomerization of
an aliphatic alkene, propylene in the temperature range of 350 — 480 °C in a flow reactor; (ii) non-
catalytic oxidation of a naphthene aromatic, tetralin at 150 °C in a microfluidic reactor; (iii) non-
catalytic thermal conversion of Athabasca bitumen at lower than industrial temperatures of 300 —
420 °C in batch reactors covering both visbreaking and coking regions. The first two phases were
conducted independently and corresponded to propylene oligomerization and tetralin oxidation

systems and utilized chemometric tools involving supervised learning like nonlinear and linear



regression to monitor the reaction online so as to eliminate the use of offline concentration-
measuring chromatography instruments. The final two phases dealt with thermal conversion of
bitumen, where extensive experimental techniques were used in the third phase to identify reasons
for viscosity changes followed by application of advanced quantitative chemometric methods like
multivariate curve resolution (MCR) and Bayesian approaches in the fourth phase to derive a
credible reaction network for the thermal conversion of Athabasca bitumen.

The main objectives and highlights of study for each phase is highlighted. In the first phase,
the goal was to establish spectrum-property relationships for tracking the composition of the
hydrocarbon products from H-ZSM-5 catalyzed propylene oligomerization at the reactor outlet to
alleviate the use of gas chromatography-mass spectrometry (GC-MS) equipment. Least squares-
support vector machine (LS-SVM) adopting kernel transformations and partial least squares
(PLSR) regression were used to predict product concentrations using a variety of inputs including
inlet reaction conditions, raw and dimension reduced Fourier transform infrared (FTIR) spectra of
the products through unsupervised clustering. The predictive power was compared with a variant
of PLSR, interval-PLSR, when infrared spectra were used as the input. The potential for online
tracking of the product composition, learning efficiencies of the regression methods, their ability
to capture the oligomerization chemistry and nonlinearity in the data were also examined.

In the second phase, it was essential to quantitatively determine whether oxygen availability
played a meaningful role in controlling ketone-to-alcohol selectivity in the petrochemical products
obtained from oxidation of tetralin in a micro-fluidic reactor under Taylor-flow conditions. The
calibration data was based on a previous study by Siddiquee et al., 2° where only a qualitative
analysis was performed. Simple and multiple linear regression (SLR and MLR) models were used
to identify the relative importance of each parameter (mass transfer or hydrodynamic) among five
identified from the previous study 2° to predict tetralin conversion and product selectivity. The
ability of significance tests like t-tests, analysis of variance study like F-tests, partial correlations,
standardized coefficients along with multicollinearity diagnostics to identify the most important
parameter and whether it was relates to oxygen availability was evaluated. Since the inlet flow-
rate of tetralin was the only user-manipulated variable, the feasibility of a regression pathway to
predict product selectivity from inlet flow-rate was investigated for potential online monitoring by
eliminating image analysis and GC procedures. The result has possible implications for building a

larger industrial reactor for hydrocarbon oxidation purposes.



In the third phase, it was important to account for the non-monotonic changes in viscosity of
Cold Lake bitumen during its thermal conversion at 400 °C as observed by certain previous studies,
from the partial upgrading perspective. ?!* This study was conducted on Athabasca bitumen at
400 °C since a higher liquid yield could be obtained. A number of factors that could potentially
affect viscosity were evaluated including changes in composition in terms of aromatic and non-
aromatic content, free-radical content, distillation profiles, dependence on post-reaction
procedures like the solvent used for product extraction and its effect on infrared spectra and
viscosity, and rheological conditions of viscosity measurements like shear rates. The hypothesis
was that dominant aggregation forces between the constituent asphaltenes increase viscosity and
vice versa. An extensive review of the literature in each of these fields was also provided. The role
of viscoelasticity during shear and sol-gel transformation during thermal conversion was also
examined and critically analyzed. Only experimental techniques were used in this part of the study.

The final phase of this research involved the application of advanced quantitative
chemometric tools like self-modeling multivariate curve resolution (SMCR) and Bayesian
hierarchical clustering (BHC) and structure learning methods on the FTIR spectra of liquid
products obtained from thermal conversion of Athabasca bitumen in the temperature range of 300
— 420 °C. The aim was to propose a conceivable reaction pathway for cracking of Athabasca
bitumen at less severe conditions than employed in the industry. The resolved concentration and
spectral profiles from SMCR serve to provide a hint to the plausible reaction mechanisms
occurring at each temperature. Furthermore, BHC classifies similar compound classes based on
probability density in the same group and the structure learning methods establish causal
relationships between these groups, thus providing a means to building a chemical reaction
network. No prior chemical information was used for the chemometric methods but basic
knowledge of bitumen conversion chemistry and the proposed reaction mechanisms from SMCR
assisted in building a feasible reaction pathway. The derived pathway was compared with that of
Cold Lake bitumen * to explain changes in viscosity by relating to chemical composition and
reactivity as well. The potential of SMCR and Bayesian approaches in monitoring a continuous
thermal cracker was also explored.

The point of analyzing reacting systems of increasing chemical complexity was that the
application of chemometric and experimental tools could be extended to other colloidal systems,

slurries and renewable energy sources like biomass, which are complex mixtures as well.



1.2 Objective

The purpose of this work was to understand the chemical behavior of moderately complex to
complex reacting systems under different process conditions by applying a variety of appropriate
chemometric and experimental tools with exploration of the possibility of potential online

monitoring for each system.

1.3 Chapter-wise highlights

A short description of the work covered in each chapter is given below:

Chapter 2:

A review of important chemometric methods with relevant applications in different fields of
analytical chemistry like petroleum, material science, food science, pharmaceutical science and
medicine is provided in this chapter. It covers most of the statistical methods including
preprocessing, supervised and unsupervised learning techniques like regression and clustering,
respectively, used in different phases of the research conducted as a part of this thesis except for
Bayesian methods, which are covered in Chapter 6. Though the key aspect of each data analytical
technique is described in each study of this thesis, this chapter attempts to compile all methods
together and provide context for their use, without providing too much mathematical detail. The

need for chemometric approaches in analytical science is also discussed.

Chapter 3:

This chapter describes the work in the first phase on propylene oligomerization as given in
the introduction. The usefulness of LSSVM regression adopting kernel transformations in
modeling nonlinear spectrum-property relationships combined with dimension reduction of the
infrared spectral data is studied. The accuracy of prediction of product composition and

implications for oligomerization chemistry with potential for online tracking is also evaluated.



Chapter 4:

The work on investigating the significance of a single parameter in describing oxygen
availability in non-catalytic tetralin oxidation in a micro-fluidic reactor through linear regression
is covered in this chapter. This was the second phase of my research. The potential for online
control by prediction of product selectivity from the only user-controlled variable (inlet flowrate)

1s also discussed.

Chapter 5:

The work in this chapter corresponded to the third phase of this study. A comprehensive study
of the different factors affecting the viscosity of Athabasca bitumen during low-temperature
thermal conversion was conducted using only experimental characterization tools. The assumption
of a colloidal model for bitumen and the role of aggregation/de-aggregation forces along with
hydrodynamic effects of the maltenes with respect to impacting viscosity is also reviewed and

critically elaborated.

Chapter 6:

This chapter explains the work performed in the final phase of this research and deals with
the application of SMCR and Bayesian methods like BHC and structure learning on FTIR spectra
of liquid products from low-temperature thermal conversion of Athabasca bitumen. The objective
was to explore the temperature-specific reaction chemistry and to derive a chemical reaction

network for the thermal conversion at temperatures lower than in industrial practice.
Chapter 7:
In this chapter, the main conclusions and limitations of each phase of the research are

provided. Possible future works that were out of scope for the current works and recommended

improvements in each study are also suggested.



Note. The work presented in Chapters 2 — 6 was either published, accepted or submitted for
publication in different scientific journals or books. No major modifications were made when
including the papers or short communications in the present thesis document. As a result, there

might be some similarities in the introduction of each chapter.
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2. Relevance of chemometrics as a process-systems engineering (PSE) technique with

implications in analytical chemistry

ABSTRACT

The applications of chemometric methods involving classification and regression in different
disciplines of analytical science are manifold. This chapter focuses on key elements of the various
chemometric approaches that are mainly used to decouple overlapping spectra from unknown
components in a mixture and extract key features from redundant data to facilitate further chemical
interpretation. The aim was to present an initial understanding of most of the multivariate
analytical techniques employed in further works of this thesis. The borderline between
chemometrics and chemoinformatics is also highlighted. Qualitative methods that are a means of
unsupervised classification like principal component analysis, hierarchical clustering analysis,
multi-dimensional scaling and parallel factor analysis applicable for linear, nonlinear and tri-
directional data are reviewed. Quantitative supervised classification techniques like linear
discriminant analysis, k-nearest neighbors, and partial least squares-discriminant analysis are also
discussed. Calibration and regression techniques capable of modeling linear and nonlinear
relationships like partial least squares, support vector machines, artificial neural networks along
with variable selection and cross validation techniques are examined. Resolution methods with the
corresponding optimization routines for analyzing complex mixtures, especially with their
applications in environmental science are also discussed. Other applications in the fields of
material science, medicine, petroleum, biological science and biochemistry, and food science are
also provided. Possible future developments in the current chemometric approaches like
modifications to the existing algorithms and combination of more than one method are also

explored.

Keywords: Classification, regression, calibration, resolution, linear and nonlinear relationships,

applications in petroleum, environmental and food science.

! Most parts of this work were published as a section in ‘Sivaramakrishnan, K.; Puliyanda, A.; Tefera, D. T.; Ganesh,
A.; Thirumalaivasan, S.; Prasad, V. Perspective on the Impact of Process Systems Engineering on Reaction
Engineering. Ind. Eng. Chem. Res. Article ASAP, April 41 2019,
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2.1 Introduction

With the increasing amounts of data arising from the continuous evolution of advanced
experimental techniques in the scientific literature, there is a critical need to convert this data to
useful information with the potential of further interpretation. Data are mainly generated in
digitized form from the analytical techniques used for characterization. ' The volume and variety
of data is increased significantly by the development of modern hyphenated techniques that
combine separation and spectroscopy with detection methods. This offers further scope for
qualitative and quantitative analysis to extract embedded and hidden information from the high-
throughput data. >*

In the field of heterogeneous catalysis, Medford et al. # classified data into four major types
namely, relating to the chemical environment, the catalyst material, the active sites involved and
the kinetics of the reaction taking place. However, these must be accompanied by meta-data that
include information on the conditions and assumptions made during the data acquisition process.
Chromatographic and spectroscopic techniques are the most common sources of data in most fields
of analytical science. ° They aid in the compositional analysis of complex mixtures in different
fields of application like petroleum, foods, drugs, environmental and biological samples. Overall,
data from analytical techniques can be qualitative as well as quantitative. ® Qualitative data consists
of nominal (types of categories), dichotomous (data that can be classified as two major branches)
and ordinal (criterion-based classification) variables. On the other hand, data that are measured in
continuous, interval or ratio scales like temperature, pressure, concentration are said to be
quantitative.

For the results from analytical experiments to be accurate, the instrument- and technique-
specific factors like the chemical nature and type of solvent used, detector settings like gain and
integration time, the conditions of measurement including sample, column temperature and pH
need to be optimized and standardized for enabling comparison between different laboratories.
Though modern hyphenated techniques aim to enhance the quality of data obtained by means of
reducing instrument noise, increasing separation strength, providing correction for equipment- and
sample-related factors like retention time and frequency shifts, anisotropy, and using reference
databases for compound identification, the challenge is their interpretation due to the multi-

dimensional nature of the data. 713
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Chemometrics is a scientific discipline that applies statistical tools involving mathematical
methods to enable the conversion of data to valuable information. '®!” This information, in
combination with some prior and intuitive knowledge about the system provides significant
interpretation that was not apparent from the stand-alone experimental data. It has a certain degree
of overlap with the field of chemoinformatics where knowledge is extracted in the form of
advanced models and master equations from the information provided by chemometrics and helps
in system automation and further discovery. '

Analytical chemistry is one of the most common areas that benefits from the use of
chemometric tools. This encompasses a variety of specialized disciplines like material science, 2°

2l environmental science, ** biochemistry, ** and

pharmaceutical science, ' food science,
geochemistry. !” For example, in environmental science, it can used for tracking of impurities and
pollutants in water and air. Perhaps the most important practical application of chemometrics is in
food chemistry where it can be used to validate the authenticity of food products, trace origin of
food classes, detection of adulteration and quality control, monitoring effects of processing on
food components, and detection of food spoilage due to microbial growth. There has been
extensive and critically reviewed research relating to the applications of chemometrics to food
chemistry. 2426

In biochemistry, the anti-bacterial potency of certain drugs can be established quantitatively.
27 Accurate information of source-rocks of certain crude oils and splitting of complex heavy oils
into different pseudo-components and tracking their evolution during thermal reactions render
chemometrics a paramount application in geochemistry and petroleum disciplines. 2 ° Apart from
nullifying the experimental errors, it was also seen that chemometrics was effective in mitigating
human effort by eliminating the need for the use of hyphenated techniques like gas
chromatography-mass spectrometry (GC-MS) by predicting reactor-output concentrations and
product selectivity in processes involving conversion and oxidation of industrially important
petrochemical-derived hydrocarbons like propylene *!' and tetralin, 3? respectively.

The origin of the term chemometrics can be traced back to 1971 when the Swedish scientist
Svante Wold named the groups of methods as ‘kemometri’. ** The purpose of chemometric
approaches are mainly two-fold: classification and regression. Classification also includes pattern

recognition. Furthermore, qualitative chemometric methods can be considered to fall under two

broad categories, namely unsupervised and supervised learning techniques. They differ in the way

12



in which the objects in a dataset are classified, i.e. unsupervised learning techniques perform
function classification without prior knowledge of class memberships of the existing data points
while supervised learning methods aim to classify new samples into their classes based on a
previously trained model. These techniques are generally used as precursors for quantitative
methods, wherein relationships between response and input feed variables are established and used
for prediction purposes. 3¢ Multivariate resolution methods that involve deconvoluting spectra
of complex mixtures into their respective pseudo-components and individual chromatograms also
fall under the class of quantitative methods. Specific qualitative and quantitative techniques are
briefly reviewed in the next section and interesting applications in various important fields will be
examined.

It is not the objective of this chapter to carry out a detailed review of the plethora of
chemometric methods used in different fields. The main aim is to realize the vast analytical
science-application potency of chemometrics and also look into the future of these battery of
techniques and their combinations in better analyzing the huge amount of high dimensional data
along with assisting in their conversion to invaluable information. All methods used in various
phases of this study are covered in this chapter except Bayesian methods of clustering and structure

learning, which have been provided in sufficient detail in Chapter 6.

2.2 Methods

Data handling is the key aspect of any chemometric approach. Every method has a
mathematical basis through which the raw data is dealt with in order to make it meaningful and
interpretable. This section highlights and briefly describes some of the important techniques
commonly used in chemometrics starting from data pre-processing to the various supervised,
unsupervised and curve resolution approaches for both qualitative and quantitative analyses of
experimental data. The focus of this section will be to understand the key aspect of each method
and its effect on the data without diving into too much mathematical details and equations, for
which the relevant references will be cited. At the end of this section, it is anticipated that the
reader would be equipped to visualize and understand the complexity of each technique. It has to

be mentioned that modern computational packages like MATLAB, SPSS, R and languages like
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Python, C, C++ have the respective mathematical models embedded in the system and have made

the application of chemometric tools user-friendly, time-efficient and tractable.

2.2.1 Data Pre-processing

In a typical dataset, for example data from infrared (IR) spectroscopy that measures the
absorbance of each sample at each allocated wavelength channel, the rows generally represent the
samples and the columns depict the variables or features (wavelength channel in the case of IR
data). A variable can be any attribute that can be measured and is characteristic for a sample, like
temperature (T), pressure (P), concentration (C), or molar mass (M), food quality. In multivariate
data analysis (MDA) problems, some variables are considered input/explanatory variables or
regressors and the desired properties that are to be estimated are labeled output or dependent
variables. The inputs can also be correlated with each other so labelling them independent may not
be suitable in all cases.

The first step in data analysis is to pre-treat the data to filter out instrument noise and possible
human error. It should be noted that some error called imbedded error may be present in the data
always and cannot be removed through any pre-processing or factorization method detailed in
Chapter 6 (section 6.3.3.4). All variables might not be measured in the same units and real data
are mostly heteroscedastic and have significant spread. The different methods of data pre-treatment
are aimed to address these issues but care should be taken so as to not lose relevant information as
noise. Some pre-treatment methods with their major aims, specific advantages and calculation
formulas are summarized in Table 2.1.

Further techniques such as curve smoothing by Savitzky-Golay filter which uses a least-
squares polynomial of a lower degree and a particular window-size may also be employed for
spectroscopic datasets for noise removal. 37 Multiplicative signal correction (MSC) and multiple
imputation that substitute missing data by the average of the variables are other techniques that

can be used to quantify extensive chemical and physical variations in the data. *

Table 2.1. Common data pre-processing techniques employed for MDA.
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2.2.2

Method Sub-methods

Major aim

Other remarks

Can be
logarithmic
(log1o xi)),

power
Transformation |  (x{}, a € R),
polynomial

function
(t + x;)%,

ael)

(1) To improve fit of
nonlinear variables and
reduce effect of
heteroscedasticity. *
(i1) Log has a pseudo
scaling effect.
(ii1) Make skewed

distributions symmetric

The problem with log
is that it cannot deal
with 0 values.

Power transformations
are better for data with
0 values but cannot
convert multiplications
to additive effect.

Post-scaling needed.

. Mean centering
Centering

(xij - ximean)

To remove offsets in the
data. Focuses on
differences in the data
while not altering the

variance.

Applied on the
covariance matrix.
Need further
processing for

heteroscedastic data.

Variance-based:
auto, *° pareto,

. *! range ** and
Scaling i
t

vast ™ scaling;

Average-based:

Level scaling *°

(i) Auto: to standardize
data using a scaling
factor to remove effect
of measurement units.
(i1) Pareto decreases
large-fold changes more
(ii1) Vast scaling
emphasizes on samples
having small relative
standard deviation
(iv) Range scaling is
based on maximum and
minimum values of data

points

Since range scaling
uses only two points, it
is sensitive to outliers.
Employing coefficient
of variation as scaling
factor makes variables
dimensionless.
Level scaling used
when relative changes
are more important

than absolute ones.

Qualitative methods: Unsupervised classification
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These class of methods require pre-processing as a step prior to their application on analytical
data. As mentioned in the introduction (section 2.1), unsupervised learning methods search for the
underlying data structure without prior knowledge of class memberships of the objects in the data

set. A brief description of some of these techniques are given below.

2.2.2.1 Principal component analysis (PCA)

This is one of the most common methods used for dimension reduction of multivariate data
in diverse disciplines like engineering, science, meteorology. “*® The data matrix is subjected to
eigenvector decomposition in the case of a diagonalizable square matrix or singular value
decomposition (SVD) in other cases. *"** The main objective is to remove data redundancy in the
original matrix by feature extraction, to generate a bilinear model of loadings and scores. Loadings
indicate the contribution of that variable to the respective principal components and scores are the
projected objects in the lower dimensional space. A comprehensive review is given by Jolliffe. °
In complex systems, PCA is used to determine the number of underlying components that can be
a good representation of the overall system and a scree plot of the eigenvalues vs. the number of
components is used for this purpose. The results of PCA are paramount for further multivariate
calibration methods where transformed uncorrelated variables are used to predict the response
variables with minimal interference. **>! It is to be noted that Barlett’s test can be performed to
check the extent of correlation among the variables. >

Non-iterative partial least squares (NIPALS) algorithm is sometimes used to carry out PCA
where the direction of maximum variance is chosen using a normalized loading vector. 47334

Overlapping between the different elements in scores is checked using sum squared differences to

determine the principal components.
2.2.2.2 Hierarchical clustering analysis (HCA)

Clustering is majorly implemented as a pattern recognition technique in different fields of
application like medical science and engineering. >*°> HCA is agglomerative or divisive in nature

where a condensed hierarchy algorithm is adopted in most cases. !” One of the distance metrics

among Euclidean, Mahalanobis, Chebychev, cityblock, etc. is used to merge individual objects
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into clusters which are then further linked using average, centroid, complete, median or ward
metrics that consider all objects within the clusters. HCA is not generally useful as a stand-alone
method since the final cluster division is determined by human intervention by placement of the
similarity line in the dendrogram though the number of clusters is not predetermined as in kA-means
clustering, which is disadvantageous. °® One more limitation of HCA is that it does not account for

the direction of the data so it is recommended to use PCA before. °

2.2.2.3 Multi-dimensional scaling (MDS)

It is a non-linear dimensional reduction method that has been recently developed as an
improvement over PCA. * It reveals the true data structure in the original space even after
converting to the lower dimensional space and is based on the Shepard-Kruskal algorithm. > In
a particular application, MDS was able to identify the origin of certain Chinese oils better than
PCA and was able to explain 8% more variance for the first two principal components. ° Further
applications are given in the Applications section (section 2.3) of this chapter.

Apart from MDS, self-organizing maps (SOM) that are similar to artificial neural networks

(ANN —section 2.2.4.2) where they map the original data onto set of nodes in the lower dimension

is another nonlinear dimension reduction method belonging to the unsupervised category. !’

2.2.2.4 Parallel factor analysis (PARAFAC)

It is a technique that is borrowed from psychometrics and similar to PCA but applicable to
trilinear data like excitation-emission maps from fluorescence. ¢!~ The data matrix is decomposed
into one score and two loading vectors as opposed to one score and one loading matrix in PCA.
Sum of squared errors is used as the basis for determining the number of components and an
optimization technique like alternating least squares (ALS) (refer section on resolution methods)
can be used to obtain the results of the PARAFAC model. ® Unlike PCA, all component

parameters are calculated together in PARAFAC which reduces computational time.

2.2.3 Quantitative methods: Supervised classification
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Two types of supervised classification are reviewed in this work: discriminant analyses (DA)
and one-class classifiers (OCC). ® Discriminant analyses assigns object to predetermined classes
while OCC methods confirm the right or wrong allocation of objects to their respective classes. In
relation to supervised methods, two terms are of importance, namely class sensitivity and class
specificity. Class sensitivity is the inverse of type one error and is the quantity of samples
accurately assigned to a class, while on the other hand specificity is the percentage of samples that
are recognized as not belonging to the target class and is related to type II error. Both sensitivity
and specificity can be increased by raising the sample size. * Brief descriptions of important

supervised classification methods are given below:

2.2.3.1 Linear discriminant analysis (LDA)

It is quite similar to PCA but hyperplanes of separations are created based on maximum
likelihood estimates. It is more applicable in cases where the variance of classes is asymmetric. ¢’
However, the difference from PCA is that a discriminant function is created for each class and
projected on a lower dimensional space, where confidence ellipsoids are created identifying the
space for each class. If the number of features exceeds the number of samples, PCA is applied first
and overfitting needs to be checked for. ® Some limitations are that it doesn’t apply when data is
not normally distributed, or if the covariance matrix is singular. It is sometimes used in

combination with a confusion matrix to detect the percentage of correctly classified samples.

2.2.3.2 Partial least squares - discriminant analysis (PLS — DA)

As in most classification problems, the response (y) is a categorical variable and the elements
describe membership values of the classes.  Partial least squares regression (PLSR) is applied to
the data set where the inputs and outputs are decomposed into their respective scores and loading
matrices and an inner relation is built relating the scores. Predictions are done based on the PLSR
model and compared with the response matrix that have information of the class memberships of
the objects. ° It can deal with singular covariance matrices but the results can depend on the

number of latent variables chosen in the regression analysis prior to class allocation.
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2.2.3.3 Recursive partitioning

These are classification-regression trees like bagging and boosted trees, random forests where
no new canonical variables are created. ’! Based on inequality or equality conditions on the values
of the original variables, decisions are taken for allocating the objects to the respective classes.

The leaves arising out of the trees point towards the class assignment.

2.2.3.4 Object target rotation (OTR)

A least sum of variance criterion is used to select the central objects in each group in this rare
but effective method. > A particular example of application of this method is given in Christie et
al. 7> Once the central object is selected, the other samples are projected on the selected object and
assigned to the respective classes and the result is given as percentage belonging. OTR is
considered advantageous over other methods like PCA and PLS-DA and efficient in the case of

skewed or bimodal data.

2.2.3.5 Soft independent modeling of class analogies (SIMCA)

It is a soft classification technique where an object can be assigned into more than one classes
or even need not be allocated into any class at all. ’* This can be quantified by calculating an
inconclusive ratio which compares the number of samples that are not assigned to any of the target
classes and those which are assigned to more than one target classes. > It is one of the popular
OCC methods used in chemometrics, where the target classes are specified for each classification
problem, like the chemical compound classes identified in chromatography. This method requires
PCA to be performed initially to represent the samples within the score space and the distance to
the score space. A new sample is determined to be belonging to a particular class depending on its
closeness to a PC space for which defined boundaries are created prior. 7® It is advantageous over
the k-nearest neighbors method as that does not have a defined boundary for classifying unknown
samples. One peculiar disadvantage of SIMCA is that it does not work if the number of samples

is too large and leads to overfitting. ’
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2.2.3.6 k-nearest neighbors (£-NN)

This approach can be used as both classification and regression for categorical and continuous
variables, respectively. ’® For a new sample to be classified into predetermined classes in the
original data matrix, the Euclidean distance is calculated from the new object to all the objects in
the data matrix. Groups of nearest k£ neighbors are created based on minimal distances in the
original data set and a new object is allocated to one of the created classes that it most represents
with. Dimension reduction is necessary prior to application of A&-NN if the number of features is

larger than the observations. A higher value of & is recommended for a lower classification error.
79

2.2.4 Quantitative methods: Calibration and regression

These methods are employed to establish a mathematical relationship between the input and
output variables of the system in order to predict the desired property for new input samples. The
output variable is a continuous variable so that the predicted value from the discriminant function
in the regression model can be compared with the experimental value to calculate the estimation
errors and check the accuracy of the developed model. The samples in the data set are generally
divided into three regions: a set for variable selection, a training set for model construction and a
validation set for prediction. ! It is a common practice to split the data set into only 2 parts with
the variable selection being carried out on the training set itself and validation performed on a
separate data set. ¥ The main task in regression analysis is to calculate estimates of regression
coefficients of the different variables, and to verify their accuracy through their standard errors
and importance through significance (p-values). In the ordinary least squares (OLS) approach,

coefficient estimates are unbiased to enable meaningful statistical inferences.

2.2.4.1 Correlations and variable selection

An important aspect to be taken care in regression is correlations and inter-relationships

between explanatory variables. A particular example related to one of the works performed in the

1' 32

second phase of this thesis was considered relevant to this context. Siddiquee et al. >~ investigated
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a liquid-phase petrochemical oxidation system where multicollinearity among the different
explanatory variables was investigated by applying simple (SLR) and multiple linear regression
(MLR) models. MLR is not useful when collinearity exists between the regressors but in this case,
the goal was to extract information about the relative importance of the input variables in
predicting the product selectivity and was performed by evaluating the effect of an added variable
to the SLR models. Correlations can be detected with one of Pearson’s, Spearman’s, Kendall, or
y correlations. 8!

In the case of multivariate data like spectroscopic datasets, variable selection is done to
improve the robustness of the model, guard against overfitting and significantly reduce
computational time by removing redundant variables. This is achieved by jackknifing where a
variable can be omitted if its contribution is insignificant from the calculated p-values in t-tests.
Variables can also be assigned weights to realize their contribution in the method of variable
importance. Genetic algorithms, that are inspired by natural processes can also perform variable
selection. ¥ Another way of dealing with collinearity is using ridge regression (RR) where an extra
parameter is used while calculating the regression coefficient estimates. 3> However, RR renders
the coefficients biased in order to reduce the inflated standard errors due to multicollinearity. A
better variable selection method is LASSO (least absolute shrinkage and selection operator)
regression which also incorporates an additional parameter in determining the coefficient
estimates. 34

Recently, i-PLS developed by Norgaard and Leardi ®° has been employed as an effective
technique for variable selection for spectroscopic data sets. It splits the range of input values into
a number of segments as given by the user and applied PLSR on each interval to find out the best
prediction segment for the desired response. Optimum number of latent variables are calculated
for each interval before performing regression analysis. In this way, noisy regions of the input

spectrum can be identified and removed.
2.2.4.2 Calibration and regression methods
Linear relationships between inputs and responses in a system can be readily established by

MLR, PLSR and principal component regression (PCR) approaches. In PCR, the data matrix is

decomposed by SVD into scores and loading vectors and used for developing the regression
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function. PLSR can be used when collinearity is detected in the inputs and shows improvement
over PCR as both the input and output data are decomposed by PCA (outer relation) after which
inner relationships are developed between the respective scores to predict the output. * The
number of latent variables are chosen by minimization of error of cross validation and is elaborated
in the next section. A comparison of these linear methods were made by Frank and Friedman %’
where they worked with different data sets that were ill-conditioned and collinear. In some
problems, they found RR to be better than PLSR or PCR and significantly improved over SLR
based on OLS.

Machine learning tools like support vector machine-based regression (SVR) and artificial
neural networks (ANNSs) are quite useful in modeling nonlinear relationships between input and
response variables for the system under consideration. ¥ SVR is based on the principle of support
vector machines as first developed by Vapnik for classification purposes. * Discriminant functions
representing separation hyperplanes are created by transforming the data to a higher dimensional
space using a kernel function. °° Kernel functions can be linear, sigmoid, polynomial or Gaussian
radial basis functions (RBF). RBF and polynomials kernels have been reported to be better for
modeling nonlinear relationships than linear and sigmoid kernels in different studies in literature.
SVR requires two (RBF) and three (polynomial) parameters to be tuned that include the
regularization term to account for the trade-off between margin maximization and estimation error
minimization. 8 The kernel width parameter in RBF gives an indication of the degree of
nonlinearity of the data, i.e. a lower value indicates a more nonlinear relationship between input
and output variables. *! Tikhonov regularization is a common term given to all methods that utilize
a regularization term in the modeling process. % SVMs possess certain advantages over ANN as

they guarantee a definite solution minima and training repeatability. %8

2.2.4.3 Cross-validation

The prediction accuracy of a regression model can be significantly improved by cross-
validation methods. It is commonly conducted within the training set but exclusive from the
prediction set to avoid increase in model bias. °> Some of the common procedures followed for
cross-validation are: Venetian blinds, leave-one-out cross validation (LOOCYV), hold-out cross

validation, contiguous blocks, etc. *>** In each of these types, a certain amount of the samples in
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the training set is reserved for validation during the model building process itself. LOOCV leads
to a lesser bias but more variance and hold-out CV results in the opposite effect. LOOCV was also
shown to be preferable for small sample sized data sets and to guard against model mis-
specification. ?>%

The error of cross validation is calculated for each step during model construction and the
tuning parameters in case of SVMs, number of latent variables in case of PLSR and i-PLSR, etc.
are selected based on the least value of the cross-validation error. Root mean square error (RMSE)
concentrates on the larger errors and is most commonly used in regression analysis also to
investigate the prediction accuracy of the calibration models by comparing with the experimental
output values for new objects. Other types of cross-validation techniques are randomization where
the output data points are shuffled, simulation where input data are scrambled, bootstrap where
one sample can be selected repeatedly but bias is generated in the process. °” To deal with the
selection bias, repeated double cross validation can also be conducted where the samples are split
into two loops with PCA applied on the inner one and prediction done on the outer one. **

An interesting method for larger sized data sets and nonlinear systems is Gaussian process
regression (GPR) that deals with maximizing posterior probability. °° A particular variant of SVMs
employed in recent works is least squares-support vector machine regression (LSSVM) where the
cost function to be minimized becomes linear due to conversion of inequality constraints to a single
equality constraint. 3! Specific differences between LS-SVM and GPR have been outlined in the

work by Cui and Fearn. *°

2.2.5 Quantitative methods: Resolution

This class of methods is mainly applied to complex mixtures and aims to extract information
on the number of components that significantly contribute to the mixture properties, the
concentration of the components and their respective spectra in the case of different hyphenated
analytical techniques employed. The advantage is that they do not require any prior knowledge
about the system. However, with this knowledge, the reaction network, further chemical
interpretation and possible hypotheses can be generated. %

The original data matrix consists of the raw experimental data that can be two way or three

way, 1.e. retention/reaction times vs. wavelength channels vs. intensity of absorbance is an example
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of a three-way data. Almost always, the matrix is decomposed to extract the number of components
contributing to majority of data variance and then one of the following optimization algorithms
employed to calculate the individual concentrations and the spectra of the extracted pseudo-
components: (i) rank annihilation factor analysis (RAFA); '! (ii) Generalized rank annihilation
method (GRAM); ° (iii) Evolving factor analysis (EFA); ! (iv) Alternating least squares (ALS);
103 (v) Orthogonal projection analysis (OPA). ' The rank annihilation methods consist of bilinear
data sets from which the relative concentrations of components in a mixture are derived. GRAM
is a non-iterative method. EFA can provide initial estimates of concentration and spectra of the
pure components in a mixture by an evolutionary process of applying PCA in backward and
forward time directions to the data set. In this way, active concentration regions are detected. Fixed
size moving window EFA (FSMW-EFA) is an improvement over the conventional EFA algorithm
where the backward and forward movement is substituted by a continuous moving window of
fixed size. ' FSMW-EFA was suggested to be more robust against noise and thus employed in
the final phase of this study to find the initial concentration profiles for the pseudo-components in
thermal conversion of Athabasca bitumen (Chapter 6). Another method quite similar to EFA is
eigen structure tracking analysis (ETA) where the window size starting with 2 is increased by a
unit until the number of components is reached. '

In this way, the active and zero concentration regions are revealed for the components over
time and subsequently the spectra are calculated by the above-mentioned algorithms. In certain
cases, inverse least squares (ILS) is used in resolution where the concentration is considered to be
dependent on absorbance. All methods utilize plots of eigen-values of the data matrix covariance
that varies with the time points. The advantage of these optimization algorithms is that the
underlying noise structure is also estimated. The following section will highlight interesting
applications of the various chemometric methods and it has to be noted that most systems require
the use of more than one method in combination to yield fruitful information about system

properties. The source of the data from different analytical equipment was also highlighted.

2.3 Applications of chemometrics in analytical science

2.3.1 Integration of computational processes with analytical instruments
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The association of analytical techniques with computers has increased the scope for control
of experiments and further data processing. Computation aids not only in data analysis but also
with the performance of the experimental techniques in speeding up the process, eliminate the
requirement of constant monitoring and sample feeding. One of the early attempts in this quest
was taken by a number of researchers including Christiansen et al., ' Wu and Malmstadt. '’ The
approach was to try to integrate microcomputers with titrators for photometric and potentiometric
purposes. A particular application was in nylon manufacturing where the titrant could be added at
a user-determined flowrate automatically to find out the equivalence points.

Flow-injection analysis, which enables the study of interaction of a sample with a reagent, the
kinetics of the reaction and the dispersion effects can also be optimized by computer-supported
techniques. '® In a particular experiment, temperature was controlled within 0.02 °C, smoothing
and peak detection was applied to the product peaks, thus permitting better system performance
by the aid of computation. '® Experimental conditions and parameters can also be optimized using
computational software. Early examples of these kinds of studies were done by Stieg and Nieman
119in 1980 and Sly et al. ' in 1982 where they worked on optimizing a chemiluminescent reaction
and a flow-injection system in a tubular reactor. Even in a complex flow-injection system,
automation of the simple processes that are easily enabled by human intervention is challenging.
In older UV-Visible spectrometers, wavelengths needed to be scanned mechanically but modern
manufacturers have replaced the moving parts by fast electronic scanners that obtain the entire
spectrum simultaneously. ' Modern detectors employed in spectrometers are multi-channeled
and constitute a charge-coupled device (CCD) that converts light photons to electric charges for
easy detection. Recent developments have made the use of auto-samplers for sample feeding in
instruments like inductively coupled plasma-optical emission spectroscopy (ICP-OES) for
detection of trace-elements in complex mixtures, gas chromatography-mass spectrometry (GC-
MS) for concentration calculations and other techniques that require repetitive sample doses in the

same procedure.

2.3.2 Chemometric applications in data processing in various disciplines
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As conducive as it seems, digitization of analytical data has further challenges of interpretation
and extracting useful information, for which chemometrics employing computational approaches

was explored.

2.3.2.1 Material science

An interesting usage was in the analysis of signals emitted from stressed materials to detect
their failure. ' Initially, the spectra were checked for correlations but no particular pre-processing
techniques as described in the ‘Methods’ section (section 2.2.1) were applied. Later, HCA was
applied on emissions from materials like polymers to identify spectral groupings, followed by
supervised techniques. They were also later applied to composites like glass fiber and polyester to
identify damaged material. These chemometric approaches saved time and human effort to identify
classes in complex spectra and relate them to damaged material. It has been recorded in the
literature that online pattern recognition techniques had been employed in the development of the
present-day IR spectrometer by matching the spectral groups created with structural units of

compound classes in standard libraries. ''?

2.3.2.2 Medicine

An important application in the medical field is tomography assisted with spectroscopy to
detect cancers and tumors. The advantage is that the technique is non-destructive and the
absorption data of the biological sample is transformed to its cross-sectional image by some
chemometric process. ''* Nuclear magnetic resonance (NMR) is the commonly used
characterization technique in tomography. Malign growth can be revealed by changes in the NMR
frequency or signal strength and the cross-sectional images can provide information about the size

of the tumors. '3

2.3.2.3 Physical chemistry

Nonlinear regression has also been used for estimation of physical properties like the pKa of

a dibasic aromatic compound from its UV absorbance spectra. ''® At a constant wavelength of 304
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nm, numerous spectra were obtained at different pH of the compound in a buffer solution after
which the following equation proposed by Albert and Serjeant ' relating the absorbance to the
concentration of the compound with the two dissociation constants and molar absorptivity of the

ionic and neutral forms being the parameters to be estimated:

crag[HY 2 +cram[HT K, +cranK Ko
[Ht]2+[H*]K 1 +K1 K>

A=

Equation 2.1

where ¢;, a,, an,, a4, K;, K, are the compound concentration, molar absorptivity of the
neutral, mono-cation and di-cation forms of the compound, 1 and 2" acid dissociation constants
of the compound, respectively.

Curve fitting with algebraic manipulation was used to obtain the pKa of the compound with a

high coefficient of determination (R?) of 0.9997.

2.3.2.4 Petroleum

In the field of petroleum, differentiation of crude oils and identification of their sources are
significant areas where chemometric tools play a role. Eide et al. '8 used chemometric curve
resolution methods on GC-MS characterization to identify individual components from diesel
engines exhausts. Eide and Zahlsen '’ utilized electrospray ionization mass spectrometry (ESI-
MS) as an improvement over GC as it ionizes the molecules without fragmentation. Mass spectra
of crude oil mixtures are complex where each line can indicate different compound isomers of the
same molecular weight. Score plots between the first two principal components in PCA was used
to classify four types of oils (two from the North sea near Norway, a South American and a central
Asian). The first principal component (PC) accounted for 53 % while the second PC accounted for
23 % of the variance in the original data.

Furthermore, PLS regression was used to predict the distribution of the two types of
Norwegian oils from ESI-MS spectra and resulted in an excellent prediction accuracy (R? = 0.996).
For calibration purposes, 5 different volume mixtures of the Norwegian oils were used. Thus, they
confirmed that this method could be employed for chemical fingerprinting. However, the single
quadrupole ESI-MS is inferior to high-resolution MS in terms of line resolution and thus, requires
significant assistance of pattern recognition and calibration techniques. '*°

The impact of auto-scaling and range scaling on the PCA output was studied by Wang et al.

121 on biomarker data for matching the crude oils with their respective source rocks located in the
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Northern Wuerxun Depression, Hailar Basin. The plots of the first two principal components for

both types of pre-processing methods employed are given in Figure 2.1.
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Figure 2.1. PC1 vs. PC2 for auto-scaling (top) and range scaling (bottom) applied on oil and
source-rock samples from the Northern Wuerxun Depression, Hailar Basin. !7 Reproduced with

permission from Science Direct.

It can be seen that in the case of range scaling, the first two principal components put together
could explain 30 % more variance than for the case of auto-scaling. In addition, the first component
alone contributes to 76 % of the variance in range scaling while the first component in the case of
auto-scaling could only explain 35 % of the variance. Mudge '** utilized PLSR to identify the
possible sources for the hydrocarbons that constitute the sediment deposits in the Gulf of Alaska.
A clear mapping of the sources to the hydrocarbons could not be identified in this analysis.

Bylund et al. ' suggested the use of PARAFAC to deal with slight shifts in liquid

chromatography-mass spectrometry to align the multidimensional data in the chromatographic
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direction. An interesting application of interval-PLS (i-PLS), which is a variant of PLSR was in

1. 3! where they compared the forecasting ability of LS-SVM

the work by Sivaramakrishnan et a
adopting RBF and polynomial kernels, PLSR, i-PLSR for predicting the concentrations of the
products from acid-catalyzed oligomerization of propylene in the temperature range of 346 — 477
°C at molar flowrates of 172 — 440 mL/min based on FTIR spectra. The products were in the
gasoline boiling range. Four product streams based on PCA and HCA were identified and
regression models were built to establish relationships between inlet operating conditions of
temperature and flowrate as well as the FTIR spectra of the products and the product
concentrations, respectively. HCA was also used to find groups in the infrared spectra which were
later used to predict the output concentrations as well. Among the different chemometric methods
used, LS-SVM with RBF kernel was found to have the best prediction accuracy in most cases with
i-PLSR performing better than PLSR and even LS-SVM based on polynomial kernels in some
situations. The best performing interval identified by i-PLS was in the 1396 — 1535 cm™! range that
corresponded to sp® C-H bending frequencies and also some aromatic C=C stretching. Though this
could not be directly related to the carbon number composition of the products, a rough idea was

obtained through confirmation with HCA classification as well.

2.3.2.5 Archeology

OTR (section 2.2.3.4) was utilized to relate the chemical composition of coins used by
Europeans to track their history. 7 It was found that there was no ambiguity in the historical periods

but a sudden change in the composition was detected during the intermediate period.

2.3.2.6 Environmental science

The application of chemometric resolution methods in environmental chemistry is paramount.
In a study by Comas et al., '?* the aim was to determine the concentration of humic and fulvic acids
in river and wastewater using HPLC as the analytical technique. PARAFAC, as a trilinear
dimension reduction technique, is of immense importance in the analysis of three-directional data
and was used in this study. PARAFAC in combination with GRAM and MCR-ALS was also used

to decompose chromatograms that are highly overlapped and drifted due to mixtures of humic and
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fulvic acids in water. Due to the large quantity of analytes present, GRAM was utilized which
quantifies all components simultaneously. The challenge here was the interference from undesired
material like sulfites in HPLC. MCR-ALS was seen to be robust against a time-shift algorithm
used to align the shifted peaks to make the concentration predictions more reliable.

In order to resolve the overlapping excitation-emission maps from the fluorescence spectra of
a complex poly-nuclear aromatic solution consisting of 6 constituent components, RAFA as a
resolution technique was employed by Ho et al. '>> In another work, impurities were able to be
detected in samples of tetracycline hydrochloride by decomposition of their HPLC-DAD data into
the respective spectra and concentration profiles. 126 FSMW-EFA and OPA were used to obtain
the initial concentration estimates and checking the homogeneity of chromatogram peaks while
the final resolution was performed by MCR-ALS optimization. MCR-ALS has been shown to
solve issues of co-elution in chromatographic techniques in different kinds of compositionally
complex samples.

It was noticed by Salau et al. '?” that the pesticides, carbofuran, propoxur and pirimicarb have
comparable mass spectra but MCR-ALS could deal with the co-elution problem. The suppression
effects on the ion formation of these compounds in the thermospray mass spectra were studied
using the resolution methods. MCR-ALS was also particularly useful to resolve the FTIR spectra
of Canadian oilsands-derived Cold Lake bitumen into 3 pseudo-component spectra and their
change in concentration at temperatures between 150 — 300 °C and reaction times of 1 — 8 h
conducted in batch reactors. ** EFA was used to obtain the initial estimates of concentration and
spectral profiles. Plausible reaction mechanisms at different temperatures were proposed according
to the results from the MCR-ALS routine and a nature-inspired optimization technique like particle
swarm optimization (PSO) was suggested as an improvement to the ALS approach.

Application of calibration methods like PCR based on classical least squares and inverse least
squares (ILS) were used on UV spectrometer data for multi-component resolution to determine

colorants in soft drinks. '*® The results were validated with data from HPLC with good accuracy.

2.3.2.7 Biological science and biochemistry

Chemometrics has a huge role to play in the classification and quantification of micro-

biological samples as shown in the next few examples. Though PLS-DA and SIMCA have
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different goals, both were individually applied to identify the sources of the Ganoderma lucidum
sample. '* Their performance could not be compared as PLS-DA is a hard classification and
SIMCA is a soft classification technique as outlined in section 2.2 of this chapter. FTIR spectra in
combination with PLSR as the calibration method was used successfully to track adulteration of
fish oil by specific vegetable oils in the work by Rohman and Che Man. '3°

Electron spin resonance (ESR) spectroscopy has been an area of increasing interest for
application of chemometric techniques in biological systems. ESR spectra identifies different
kinds of free radicals present in a system, namely those with peaks around the same g-value of
~2.003 for organic free radical on carbon centre, free radicals on nitrogen and oxygen centres and
those with g-values in the range 1.980 — 2.020 for oxo-vanadyl (VO?") spins. !*! The output from
the ESR instrument is in first derivative form of the absorption intensities against the varying
external magnetic field. The multi-dimensional nature of this spectra provides scope for
multivariate data analysis to enable easier interpretation. In the work by Koskinen and Kowalski,
132 the objective was to study model membrane systems replicative of those used in biological
systems by attaching a long chain spin label nitroxide compound with the radical centre on oxygen
to track changes in properties of the system in focus. Particularly, one system used 3-doxyl-5a-
cholestane (I) as the spin label to investigate temperature changes in an inclusion thiourea crystal
through changes in ESR spectrum. Fourier transform, baseline correction and smoothing were
applied on the raw spectra consisting of 980 magnetic field channels to reduce it to 64 variables
that contain most of the initial information. ESR spectra were obtained at sixteen different
temperatures from -82 °C to 59.2 °C. The chemometric tools employed were correlations between
the reduced features and temperature followed by stepwise regression to extract the most important
variable that describes the temperature best. Information about restricted anisotropic motion and
rotation of the molecule were also obtained from the spread of the regression plots.

Another area of application was the use of the same statistical approaches outlined above in
quantifying the concentration of phospholipid spin labels in a protein and extract information about

its mobility as a mimic of biological systems. ¥

2.3.2.8 Food science
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Applications of multivariate data analysis methods in food science are aplenty and reviewed
critically by various researchers. 2426 Specific areas include studying the effect of processing on
food properties, food safety and authenticity in the form of detecting adulterants, spoilage by
microbial growth, etc. °>!33 Simple cases like use of HCA for identifying clusters of peaks in FTIR
spectra of frozen chicken samples were investigated by Grunert et al. 2016. ** It was suggested
that HCA was more commonly used than k-means or kA-median clustering for pattern recognition.
In the work by D’Archivio et al., '* a total of 144 different Italian samples of saffron were
classified according to the concentrations of safranal, picrocrocin, crocin and some of their
derivatives by applying LDA on HPLC data. LDA was shown to be beneficial over PCA and
resulted in 88 % specificity of the unknown samples in this work. Cis-crocetin bis(b-D-glucosyl)
ester and trans-crocetin bis(b-D-glucosyl) ester were identified to be major contributors in the
multivariate data analysis (MDA) process due to their distinct HPLC peaks. Advanced hyphenated
techniques like high resolution magic angle spinning proton nuclear magnetic resonance (HR-
MAS 'H NMR) were used for tracking the source of 60 samples of Forasteiro cocoa beans to their
respective locations. PLS-DA was shown to perform well for this system and the latent variables
explained 65 % of the variance in the data.

Gondim et al. > used SIMCA in association with IR-spectra to identify impurities like water,
sodium hydroxide, chloride, starch, carbonate, etc. in a number of milk samples and it was found
that only 17 % of the samples were incorrectly classified. An interesting work to identify the
origins of Mexican coffees on the basis of the constituent cations of group 1 and group 2 elements
was conducted using ANN by Muniz-Valencia et al. '3® They reported a good prediction accuracy
of 93 %. Moreover, ANN was proved to be a better approach than 4A~-NN in establishing a
calibration relationship between color of cooked food and its quality though computationally more
complex. '¥7 Support vector regression along with regression trees were shown to be more robust
than other multivariate calibration methods in the classification of different types of tequilas based
on UV-Visible spectroscopic data. 7

In order to investigate the effects of plasma treatment and subsequent pasteurization on the
stability chokeberry samples consisting of hydroxycinnamic acids, anthocyanins and flavonols
which are complex polyphenolic compounds, PCA followed by regression techniques was used
for parameter estimation. They reported that hydroxycinnamic acid concentrations increased with

a simultaneous reduction of anthocyanins in the samples treated with plasma while pasteurization
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had the opposite effect. The chemometric methods enabled optimization of the treatment process
for determining the phenolic stability of the chokeberry samples.

Studies have also been conducted on the detection of food spoilage using chemometric
methods. With the help of dimension reduction through PCA and pattern recognition through HCA
in combination with PLSR, compounds responsible for spoilage of foods through promotion of
bacterial growth and volatility were identified to be CH3COOH, (CH3).S, N(CH3)3 by Kuuliala et
al. 138

All these above-mentioned examples show the importance of chemometrics for analysis of
data from basic and advanced hyphenated experimental techniques in different fields of analytical
science. The next section will highlight the future prospects of chemometric approaches so as to

explore avenues to reduce the gap between experimentalists and data scientists.

2.4 Future prospects in chemometrics

Chemometrics offers numerous pathways to progress by building on the existing methods due
to its strong mathematical basis. This can be in the form of improvements and tweaks in current
algorithms, incorporating additional constraints, tactical combinations of different methods and
tests to check their reliability as well. This section will focus on reviewing some of these
advancements in chemometric techniques with an eye on their future applications.

A common technique used for function optimization is simplex, which is based on the Nelder
and Mead algorithm. '3° It essentially fine-tunes the initial values of the function parameters as
provided by coupled simulated annealing (CSA) '° or by a trial and error approach. ' In an m-
dimensional space, m + 1 vectors are taken as the vertices for the search space in simplex, i.e. a
triangle in a 2-D, a pyramid in a 3-D and so on. Some research works suggested an improvement
to this method where in the updating of the search space, the better (n-1) points needed to be
considered rather than replacing one vertex with the new point. '#::14? In addition, if it was found
that the function optimum lay within the present simplex space, a Lagrange interpolative fit could
be employed. Multiple optima and boundary conditions could be treated better in this algorithm.
This updated method could be employed in tuning the hyper-parameters like regularization and
kernel parameters in a machine learning approach like SVM regression adopting the various

kernels mentioned in the previous section.
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In the MCR-ALS algorithm, the deconvoluted spectra of the individual pseudo-components
contain regions that cannot be interpreted directly by assigning to particular compound classes.
Tefera et al. ** recommended the use of Borgen plots that checks the validity of the optimized
solution by restricting the data to be nonnegative and constructing appropriate geometrical regions.

Borgen and Kowalski '

reported that they could be particularly useful for three-component
systems. The other issue in curve resolution techniques is rotational ambiguity, where multiple
combinations of concentration and spectra can reproduce the original data matrix. To deal with
this, additional constraints incorporating chemical knowledge and intuition about the system in
focus can be included in the modeling apart from the commonly used closure and nonnegativity
constraints.

Genetic algorithms (GA) provide a vast window of opportunities for variable selection and
function optimization. They are derived from the motion pattern of living species like the structure
of a flock of birds, ant colony formation, swarm of honey bees locating honey, etc. Koljonen et al.
82 provide a thorough review of the GAs suitable for near infrared spectra in combination with
other chemometric techniques to process the data. They provide insights into the future application
of GAs in the field as well. GAs enable the user to gain good control over the chemometric
techniques they operate on. Two interesting algorithms that are gaining popularity over recent
times are ant colony optimization (ACO) and particle swarm optimization (PSO). ACO takes the
idea from the fact that ants leave traces of chemical compounds called pheromones during the
process of food collection so that other ants can follow. ' It is similar to CSA and an improvement
over gradient descent optimization. Particles resembling real ants are involved in finding the
solution.

PSO is partly based on the motion of a swarm of bees that act as the particles and their number
and the corresponding search-space in which they operate are predetermined. 43 The objective is
to find the best value for the cost function based on the current position of the particle. At each
step, the position and velocity of each particle is updated and the value of the cost function is
calculated and compared with the values determined using the local and global best particle
positions. Both PSO and ACO are metaheuristic in nature as they involve minimum assumptions
but in PSO, an optimal solution is not guaranteed. Instead of ALS, PSO can be incorporated with
curve resolution to analyze complex mixtures like bitumen and heavy oil. PSO is also different

from a classical optimization technique as it is not based on a gradient method that requires
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differentiation of the data. PSO embedded in ALS has been used as an optimization technique to
resolve the concentration and spectral profiles for pseudo-components from the FTIR spectra for
thermally cracked products from Athabasca bitumen in the final phase of this study (Chapter 6).
The results were compared to that of ALS with the objective of proposing logical reaction
pathways for cracking conversion of Athabasca bitumen.

An alternate method to the classical least squares regression (CLS) is least median squares
(LMS) regression that minimizes the median of the squared residuals rather than the sum. ¢ The
disadvantage of this estimator is its slow convergence but can be improved by a least trimmed
squares (LTS) estimator proposed by Rousseuw % but it requires larger computation time. An
interesting study by Shinzawa et al. '*7 showed that LMS along with PSO was more robust and
accurate than the CLS for optical spectra and was able to deal with larger noise and data
contamination. LMS can be considered as a substitute for CLS in further calibration methods for
multidimensional data.

Moving ahead, one important focus of chemometric techniques is the integration of
chemometrics with cheminformatics ultimately deriving chemical knowledge from the developed
statistical models. For example, in the context of catalytic reactions, information deals with
predicting binding energy of the adsorbate on the catalyst material. On the other hand, knowledge
means applying the information on binding energy to reveal the underlying reaction mechanism
and the corresponding structure of the active sites by developing a chemical master equation
describing the entire system including the environmental interaction. * Chemical intuition can also
be incorporated into the chemometric models and one of the methods is facilitated by the software,
rule input network generation (RULE) that is inspired from electric circuits and is based on graph
theory. '8

Artificial intelligence (Al) systems utilizing machine learning algorithms have been leading
the way in sensor building technology over the last few years. Process automation is one of the
most important goals of Al and interestingly, chemometric techniques like pattern recognition,
calibration, regression and machine learning form the building blocks of Al. However, the
advantages are its ability to deal with big data effectively and that they do not require any human
intervention whatsoever. Moreover, they also facilitate reinforcement learning (apart from
supervised and unsupervised learning methods), where feedback is given after each classification

step though class memberships are not defined in the original data matrix.
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Thus, all the current chemometric methods in combination with recent advancements

highlighted in this section (though not comprehensive) make the future of chemometric practices

in analytical chemistry bright.

2.5 Conclusions

The techniques in chemometrics fall under the fundamental categories of classification and

regression and are reviewed in this chapter. The focus was not to explore the mathematical detail

of each method but to know the key aspects of each one and obtain a general insight on their

applications. Specific highlights based on the reviewed literature in this work is given below:

a.

Preprocessing methods like transformation, centering and scaling are applied before
classification or regression to reduce heteroscedastic effects, remove offsets and bring the
data to the same scale irrespective of the units.

PCA and HCA perform unsupervised classification and extract linear models. MDS was
shown to be a development over PCA and is a nonlinear dimension reduction technique.
PARAFAC, which is also an unsupervised method, factorizes three-way data like
fluorescence and chromatograms at different process conditions.

Supervised classification techniques like LDA, PLS-DA and £-NN are hard classification
methods that require the objects to have predetermined class assignments but can model
nonlinear data. On the other hand, SIMCA is a soft-classification technique and in general,
supervised classification methods utilize PCA initially when variables exceed the number
of samples by a large quantity.

Correlation analysis and variable selection increase model robustness and decrease
computational time and possibility of overfitting when performed before calibration and
regression techniques. Cross validation is performed within the training dataset to improve
the generalizability of the model and also to tune any hyper-parameters for the regression
like those for SVM.

The advantage of resolution methods was that no prior chemical knowledge is required
for extracting the spectral and concentration optimized profiles though simple

mathematical constraints like nonnegativity and closure are usually applied. Inverse least
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squares criterion can also be applied for optimization for cases where concentration
depended on absorbance rather than the conventional way.

Integration of experimentation with computational processes were shown to be
advantageous in terms of facilitating optimization of process conditions and enabling the
use of autosamplers in hyphenated techniques like GC-MS and ICP-OES.

Applications of chemometrics in various fields of analytical chemistry were profound.
Pattern recognition methods like HCA in combination with PCA was shown to detect
failure in material science and identify the presence of cancer cells and tumors in
medicine. Dissociation constants for dibasic compounds could be estimated through
nonlinear regression in the field of physical chemistry. Important uses of supervised
classification in petroleum was to differentiate crude oils, identify their source rocks and
also compound identification from exhaust fumes. OTR was also shown to track the
archeological history through analysis of coin colors. MCR techniques were found to be
most useful in environmental chemistry while quantifying ESR spectra through spin
labeling was important in biological samples. LDA and ANN were found to be better than
PCA in various parts of food science including detecting adulterants, tracking rate of food
spoilage and geographical classification of food constituents.

Improvements in current minimization criterions like use of least median squares instead
of classical least squares were suggested. Additions to the existing optimization
techniques like Borgen plots to MCR-ALS, SIMPLEX optimization for tuning in SVM
and embedding PSO along with ALS for resolution methods were also considered to be
useful in improving the respective models. Chemoinformatics and Al were seen to be the

future of chemometric methods.
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3. Least Squares-Support Vector Regression for Determining Product Concentrations

in Acid Catalyzed Propylene Oligomerization >

ABSTRACT

This work is concerned with the development of multivariate calibration models to establish
spectrum-composition relationships for the hydrocarbon products in the H-ZSM-5 catalyzed
oligomerization of propylene. Regression models based on two multivariate methods were
investigated in this work: least squares-support vector machines (LS-SVM) and partial least
squares (PLS) regression. The performance of two nonlinear kernels, radial basis function (RBF)
and polynomial, is compared with PLSR as well as its variant, interval-PLS regression (i-PLSR).
For comparing with i-PLSR, the Fourier Transform Infrared (FTIR) spectra of the products served
as inputs and the respective C1-Cio concentrations, obtained from gas chromatography (GC) were
the outputs. The sensitivity of the product distribution to inlet operating conditions was also
evaluated through the calibration methods. Spectral clusters having distinct chemical character
were identified using principal component analysis (PCA) and hierarchical clustering analysis
(HCA) and also used as inputs to the different regression techniques to compare with the full
spectrum models. It was found that the best performing spectral regions from i-PLSR had chemical
relevance and agreed with findings from HCA, improving the predictive capabilities significantly.
The decreasing order of performance of the chemometric methods evaluated was: LS-SVM-RBF
> LS-SVM-Polynomial > i-PLS > PLS. The prediction accuracy of RBF kernel-based LS-SVM
regression technique was the highest, indicating its suitability for effective online monitoring of

moderately complex processes like acid catalyzed propylene oligomerization.

Keywords: Support vector regression; interval-partial least squares; acid-catalyzed olefin

oligomerization; infrared spectra; online monitoring of product composition

2 This work was published as ‘Sivaramakrishnan, K.; Nie, J.; De Klerk, A.; Prasad, V. Least Squares-Support Vector
Regression for Determining Product Concentrations in Acid-Catalyzed Propylene Oligomerization. Ind. Eng. Chem.
Res. 2018, 57, 13156 — 13176°.
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3.1 Introduction

Gaseous light olefins are generally obtained as one of the by-products from the high
temperature pyrolysis of organic material. These light olefins can be used to produce heavier
hydrocarbons by oligomerization or polymerization processes. Over the years, olefin
oligomerization has been studied in great detail and the use of shape-selective catalysts like the
synthetic zeolite, ZSM-5 has been developed. '* Though a plethora of reaction mechanisms have
been proposed in the literature, the system chemistry is predominantly dependent on temperature,
pressure and residence times in a continuous process. *~°

At mild operating conditions, oligomerization of the feed olefin to distinct oligomers occurs,
followed by isomerization and re-cracking to form a range of light olefins and finally, the olefins
re-polymerize to a distribution of heavier olefins. >* Skeletal and double bond isomerization add
to the product uncertainty and complexity. At more severe operating conditions, increased
cracking rates, disproportionation through carbenium ion intermediates (due to the protonic nature
of the catalyst), hydrogen transfer, cyclization and aromatization reactions become more
pronounced and makes the reaction pathway complicated. Overall, the product molecular weight
distribution depends on which pathway is dominant: cracking or polymerization.

These types of complex reacting mixtures present significant challenges for online monitoring
and control. These challenges arise because it is often not possible to have complete
characterization of the products because of the existence of a large number of species, which pose
difficulties in developing algorithms for tracking their evolution with time. The pragmatic solution
is to employ lumped mixture properties that are readily measurable to describe reaction networks
and its kinetics. But the main drawback of this approach is that there is not always a clear link
between the measured property and the reaction chemistry.

Information on reaction chemistry is provided by spectroscopic methods, but the spectra of
complex mixtures should be interpreted with caution. Vibrational spectroscopy techniques like
Fourier transform infrared spectroscopy (FTIR) and near-infrared spectroscopy (NIR) have been
used in many applications to determine chemical characteristics of reaction products. 7 '°
Ultraviolet-visible (UV-Vis) and nuclear magnetic resonance (NMR) spectroscopy provide insight
into the electronic and atomic/nuclear environment of the constituent molecules in the analyte,

respectively. '!2 The lower cost and easier operational procedures make vibrational spectroscopy-
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based techniques the preferred choice for online application. Separation-based approaches like gas
chromatography (GC) with mass spectroscopy (MS) detectors and thermo-gravimetry analyses
(TGA) provide quantitative information on product composition and yield. '*'* Although the
spectroscopic methods can be used online, the GC-MS and TG methods work offline and are time
consuming.

The purpose of this work, therefore, is to devise a methodology to track the change in
composition of the product stream from propylene conversion over H-ZSM-5 conducted at
different operating conditions. Chemometric tools provide a viable and faster means for achieving
this objective by avoiding the use of offline analytical instruments like GC and deriving product
composition directly from online spectroscopic data.

Multivariate calibration methods applied to analytical chemistry have evolved tremendously
and been the focus of attention in recent years. !> The inherent multivariate nature of the spectral
data combined with overlapping of the spectral bands of multiple components creates challenges
for interpretation. This calls for extracting only the relevant and non-redundant information from
the spectral data in order to improve the calibration model relating the outputs of spectroscopy and
the desired property of the sample. Partial least squares regression (PLSR) does exactly this and is
one of the most widely used techniques in the chemometrics literature. '*!7 PLS is a development
over multiple linear regression (MLR) in that it can deal with strongly correlated explanatory
variables that can predict the response. In other words, it extracts latent variables in the input space
that explain maximum variance in the output. This is done by projecting both the predictors and
the outcome variables to a new space. The major limitation of PLSR is its assumption that the
spectrum-property relationship is linear, which may not be true in majority of the chemical
reactions. Some modifications of the linear PLS exist, namely Poly-PLS and Spline-PLS but they
have not proved to describe the nonlinear reacting systems adequately. '*!° A more recent variant
of the PLS method is the interval PLS (i-PLS), introduced by Norgaard et al. 2° and applied on
NIR data, that aims at selecting only those variables from the spectrum that significantly affect the
response (desired property) by building PLS regression models on user-defined sub-intervals in
the input space. The predictive power increased compared to PLSR, but the linearity assumption
still existed. The i-PLS approach will also be employed in our study.

Artificial Neural Networks (ANN) and Support Vector Machines (SVM) are some of the

alternatives used for regressing nonlinear data. !> SVMs address some of the disadvantages
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posed by ANN methods like the stochastic nature, repeatability of the training process and to an
extent, non-uniqueness of the final solution. ** SVMs are a supervised learning technique, first
developed for statistical classification by Vapnik 2> and later extended to solve regression
problems. 2?7 The only disadvantage is computational complexity because of the requirement to
solve a quadratic optimization problem. To mitigate this issue, the least squares support vector

machine (LS-SVM) was proposed by Suykens 2%

where a linear optimization is solved. The
performance of LS-SVM based techniques was found to be superior as compared to other
regression methods and it was successfully implemented with spectroscopic data in determining
the required sample characteristic in an array of applications. 2> Both SVMs and LS-SVMs use
kernel functions to build nonlinear models by mapping to a higher dimensional space. 2 Gaussian
process regression (GPR) has also been employed recently in describing nonlinear systems and it
has been compared with the performance of LS-SVMs. ** Cui and Fearn * highlighted some of
the differences between LS-SVM and GPR in their work. GPR looks at maximizing posterior
probability, which might not work well with a smaller sized training set, while LS-SVMs minimize
the classical squared error loss function that depends only on the posterior mean and gives
importance to accurate forecasts.

It has to be noted that multivariate data analysis has not been implemented extensively in
olefin oligomerization processes to monitor product composition. Keeping in mind our long-term

interest to develop online monitoring tools for residue and biomass conversion processes, >+

we
decided to investigate LS-SVM regression as a means of multivariate data analysis on a simple,
yet chemically complex propylene oligomerization system that is reasonably well understood. In
this work, the performance of the LS-SVM approach utilizing 2 types of kernels, namely, the
Gaussian RBF and the polynomial kernel, 3¢ is compared with PLSR and i-PLSR calibration
models in terms of prediction accuracy and learning efficiency with varying size of the training set
for predicting the concentrations of the products from propylene conversion. Though other types
of kernels like linear and sigmoid have been explored in literature, the RBF and polynomial kernels
are known to capture nonlinearity in data better (as required in our case). *! Section 3.4.4 provides
a detailed explanation along with the corresponding references, on the reasoning behind the use of
these two kernels for this work.

Three kinds of inputs are fed to the regression models: operating conditions (inlet temperature

and flowrate), the full spectrum of IR absorbance intensities and lastly, clustered spectral
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intensities. The clustered intensities (corresponding to the respective wavelengths) were obtained
through the application of HCA on PCA loadings, to the IR spectral data so as to obtain a reduced
spectral dimension that can describe the system chemistry better than the whole spectrum. 3’
Multivariate data analysis (MDA) techniques have been shown to perform better and faster when
combined with spectra in the reduced dimension. *** The clustered intensities, though
representing the same data have lesser number of variables with each variable corresponding to
specific chemical groups. Hence, they have also been used as inputs to compare with the
performances of the full spectrum inputs, in terms of prediction accuracy and training time. They
also allow for better chemical interpretation since the clustered intensities represent important
groups of specific wavenumbers rather than the full spectrum IR where peaks tend to overlap.
Target product concentrations were also clustered and used as regression outputs combined with
operating conditions and IR spectra as inputs and compared with the performance of their full
concentration counterparts. In summary, we present a comprehensive review of the LS-SVM and

PLS-based regression methods to identify the best approach to monitor similar and more complex

processes online. ¥

3.2 Experimental

3.2.1 Materials

The oligomerization experiments were conducted using pure propylene (= 99.5 %) obtained
as a cylinder gas from Praxair Canada Inc. Nitrogen (99.99 %), also supplied by Praxair Canada
Inc. was employed as purge gas. The ZSM-5 catalyst (MFI zeolite) was acquired from Zeolyst
International Inc. Table A.1 in Appendix A provides the important properties of the catalyst as
reported by the supplier.

The catalyst powder was supplied in its ammonium form and the catalyst was activated by
calcining at 550 °C for 5 hours along with dry air purging at 50 mL/min to obtain the H-ZSM-5
used in the experimental work. Silicon carbide (= 99.0% SiC and 400-mesh), procured from

Karmer Industries Inc., was employed as inert diluent material in the reactor.

3.2.2 Equipment and Procedure
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A flow reactor, 34 cm long and 1.9 cm in diameter, was employed for the oligomerization
experiments. The H-ZSM-5 catalyst (0.15 g) was blended with 400-mesh silicon carbide (SiC) to
dilute the catalyst in a 1:20 ratio by mass. The relatively high dilution ratio for the catalyst to SiC
risked bypassing in the reactor, but this served as a trade-off made to improve heat management.
Other sizes of SiC were also used to pack the reactor to obtain a smooth, continuous tubular axial
flow and restricting radial flow. The length of reactor used was 34 cm and made of %4” stainless
steel tubing (316 grade), purchased from Swagelok. The whole experimental setup is shown in
Figure A.1 in Appendix A. The feed to the reactor was supplied directly from the propylene
cylinder and the flow rate of propylene was controlled using a Brooks Automation, Inc. gas flow
controller. The feed was preheated in the top part of the reactor before reaching the catalyst bed.
The temperature inside the catalyst bed was controlled by adjusting the duty of the tubing furnace.

The system pressure was controlled by a back-pressure regulator in the gas line and all
experiments were conducted at near-atmospheric pressure. The reaction products were cooled
down indirectly using continuous chilled water flow. After cooling and condensation, the products
were separated into gas and liquid. The product gas flow rate was measured through an ADM1000
flowmeter from Agilent Technologies and the temperature of the gas flow after separation at the
outlet was also measured for calculation of the mass flow of the gaseous products. The liquid
products were collected in liquid containers (Fisher Scientific) and the gas products in gas bags
(Saint Gobain Chemware FEP). Online flow cells were also installed on the path of liquid product
flow and gas product flow for online spectroscopy as shown in Figure 3.1. In each flow cell, one
end was connected to a light source and the other end was connected to a sensor for transmission
spectra detection, with a potassium bromide (KBr) window of size 13 X 2 mm, being used for all
the light paths.

The liquid product, after condensation, first was allowed to flow between two windows
through a flow cell with 5 cm optic path length for UV-Vis spectroscopy, followed by a flow cell
with 0.2 cm path length for FTIR spectroscopy. The gaseous products flowed through a 50 cm
long tubing cell for IR and NIR spectroscopy.

The axial temperature profile was measured during reaction and it was found to vary by 3 °C
or less from top to bottom for all test conditions, i.e. acceptable for near-isothermal operation. The

experimental conditions studied in this work covered the temperature range of 346477 °C and
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normal propylene volumetric flow rate range of 172—440 ml/min (refer section 3.2.4). The pressure

used was near-atmospheric, i.e. around 100 kPa absolute.

Reactant stream
flow out from the [
reactor

Cooling tube /

—‘:I‘—Chilied water flow in

Optic path

- Optic cable

Gas flow out to
flowmeter

Y Y Y Y Y YV T w o

<+—>50cm NIR-IR flow cell

Water flowout  «——F
[

Optic cable

Condensed
liquid flow

Liquid flow to container

Figure 3.1. Schematic of the condensation of the products and the online flow cells.

3.2.3 Analyses

An ABB MB-3000 infrared spectrometer with liquid flow cell was employed for the IR
analysis of the liquid samples collected in the experiments. Deuterated triglycine Sulfate (DTGS)
detector, with a gain of 81 dB was employed by the instrument. The spectral parameters employed
were: Resolution: 8 cm™'; Wavenumber range: 3400 — 700 cm™'; Number of scans: 120; Mode:
Transmittance. Air was used as the reference material for each measured spectrum. Since the UV-
Visible and NIR spectroscopic data were not used in this study, the details of the respective
spectrometers are not reported.

Off-line product characterization was done by gas chromatography (GC). The gaseous
product was analyzed using an Agilent 7890A Gas Chromatograph (GC-FID-TCD) equipped with
Flame Ionization Detector (FID) for detecting hydrocarbons, combined with a Thermal

Conductivity Detector (TCD) for detecting gases like CO2, Hz, Na, etc. The liquid products were
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also analyzed using an Agilent chromatograph flame ionization detector (GC-FID). A mass
selective detector (GC-MS) was also utilized to assist in assignment of chromatographic peaks to
different carbon numbers. The details of the gas chromatographic analyses are given in Table A.2
in Appendix A. In order to calculate the mole ratio of a certain carbon number in the product, the
possibility of the carbon number species existing both in the gas and liquid sample is taken into

consideration.

3.2.4 Data available

Twenty-five sets of experiments were conducted in the temperature range of 346-477 °C at
five different volumetric flowrates between 172 and 440 mL/min for propylene conversion over
H-ZSM-5 catalyst. Since the catalyst mass (0.15 g) used was constant for all reactions, the weight
hourly space velocities (WHSV) are directly proportional to the volumetric flowrates and vary
from ~120/h (172 mL/min) to ~300/h (440 mL/min). The reaction conditions along with the
corresponding reactant conversions and the residence times are reported in Table A.3 in Appendix
A. The statistics for the concentrations (in mole percent) of the hydrocarbon products at the reactor
outlet calculated from GC analyses are given in Table 3.1. The full set of hydrocarbon product (C;
to Cio) concentrations is available in Table A.4 of Appendix A for the reader’s reference.

FTIR spectra of the products were obtained in the wavenumber range of 3400 - 700 cm™' (2942
— 14286 nm) as these were adequate to identify the type of functional groups present in the
products. A detailed analysis of the identified groups corresponding to the spectral peaks (after
pre-processing) is given in section 3.4.3.2. The feed volumetric flow rates were converted to molar
flow rates assuming ideal gas properties and in relation to standard conditions. The residence times
in the catalyst bed were calculated from dividing the volume of the catalyst (constant for all
reactions) by the volumetric flowrate of the reactant. Since this occurs at the reaction temperature,
a correction term involving the ratio of room temperature to reaction temperature (in K) was

multiplied to the previously obtained value. Pressure was maintained atmospheric always.
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Table 3.1. Concentration data (in % mol) for the products of propylene conversion obtained

from GC-FID/MS.

C C; Cs Cy Cs Cs C; Cs Co Co
Minimum | 0.002 | 0.32 | 8.26 | 14.39 | 14.67 | 20.75 | 6.02 | 5.18 | 0.69 | 0.00
Maximum | 0.025 | 1.38 | 28.67 | 21.74 | 26.73 | 28.15 | 10.18 | 9.86 | 3.47 | 0.51
Average® | 0.010 | 0.78 | 17.16 | 19.47 | 22.50 | 23.19 | 8.30 | 6.81 | 1.56 | 0.14

* Averaged over 25 samples.

3.3 Multivariate data analysis theory

Pertaining to the discussion in section 3.1, the theory behind the different MDA techniques
that are utilized in this work is given in this section. The following are discussed: principal
component analysis (PCA), hierarchical clustering analysis (HCA), least squares-support vector
regression (LS-SVR) and interval-Partial least squares regression (i-PLSR) as a specialized case

of Partial least squares regression (PLSR).

3.3.1 Principal component analysis (PCA)

PCA has been used widely as an exploratory method for multivariate data analysis in diverse
areas of science and engineering for detecting operational changes, as pre-filters for spectral library
matching, pattern recognition for wavelength extraction in vibrational spectroscopy and also in
meteorology. 4°** An exhaustive review of the PCA approach is given by Jolliffe ** and only the
important points are mentioned in this section. Conceptually, PCA is a feature extraction method
rather than a feature selection method. This is because it creates a set of linearly independent
principal components from the existing variables (which may be correlated) by means of singular
value decomposition of the data matrix. It does not select subsets of variables from the original
data, but projects the original data into the principal component space. PCA is also commonly
employed as data pre-processing for subsequent analysis such as clustering analysis, which is also
done in this work. PCA reduces the dimensionality of a data set consisting of a large number of

interrelated variables through an orthogonal transformation to produce a set of uncorrelated
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variables and subsequent truncation of that set. The transformed variables that are retained (the
principal components) are linear combinations of the original variables and represent most of the
variation present in them. The principal components are ordered such that the first component
accounts for the largest fraction of the variance, followed by the second principal component and
SO on.

For choosing the number of components, a scree plot was considered where the variance
explained by each principal component was plotted against the component number. The plot for
each PCA might be different in terms of where the curve flattens out. The ‘elbow’ point after which
further components did not contribute in increasing the variance explained significantly compared
to previous components was chosen as the number of components in all cases investigated in this
work. This was also checked with the plot of cumulative variance explained (sum of the eigen
values of the covariance matrix) against the number of components. Details of how the loadings
and scores are extracted from the data matrix are provided in section A.5 of Appendix A.

In the current study, the chemical nature and composition of the reaction products depend on
many factors such as temperature, propylene flow rate and conversion, residence times, etc. PCA
was applied to examine which of these factors affected the products significantly and also to
visualize product streams of similar nature, subsequently confirmed by HCA. The FTIR spectral
data was also subjected to PCA as a pre-filter to forming clusters through HCA. PCA was
performed using the Statistics and Machine Learning Toolbox in MATLAB R2017b (9.3.0) (refer
section 3.4.3.1).

3.3.2 Hierarchical clustering analysis (HCA)

Clustering is an unsupervised grouping technique that has found application as a pattern
recognition method in vibrational spectroscopy, a machine learning tool in medical science and
other areas. ***** Clustering, unlike statistical classification where new objects are allotted into
categories based on a training set of already categorized instances, assembles objects within a set
based on a similarity measure. This results in objects in the same group or cluster being more
similar to each other than to those in other clusters. The algorithm employed in this study for
clustering was connectivity-based clustering, also called hierarchical clustering. 7 HCA was

preferred over k-means clustering as it was difficult to determine the number of clusters to be
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formed beforehand for the spectral dataset. * It uses a distance metric (Euclidean in our case) in
the high-dimensional space of variables and provides a hierarchy of clusters represented in a
dendrogram. Clusters that are distinct at a lower level in the dendrogram merge at higher levels as
the threshold of distance used for distinction between clusters is changed.

Hierarchical clustering analysis (HCA) can be carried out using an agglomerative or a divisive
algorithm. Agglomerative (bottom-up) HCA takes each object as a separate cluster in the first step,
and merges clusters step by step to form a higher-level hierarchy. Once the distance between
existing observations are calculated, clusters are formed by linking pairs of objects closer to each
other. This process continues till all clusters are merged together, thus forming the cluster tree,
also called the dendrogram. ‘Linkage’ function in MATLAB is used for the purpose of linking
clusters together based on ‘average’ linkage criterion in this work. The other common distance
criteria are ‘single (minimum)’, ‘complete (maximum)’, ‘ward’ and ‘weighted average linkage’.

Finally, the individual clusters are created by either specifying the number of clusters to the
‘cluster’ function or deciding where to cut off visually from the dendrogram. Our current study
utilizes HCA to find groups of similar objects in the spectral data and product streams, in order to
be used as inputs and outputs to the regression models, respectively. HCA was performed
employing the agglomerative approach with built-in functions in the Statistics and Machine

Learning Toolbox in MATLAB R2017b (9.3.0).

3.3.3 Least squares — support vector machine (LS-SVM) regression

It is easier to derive LS-SVM from the basic knowledge of support vector machines (SVM).
The use of SVMs for classification as a supervised learning technique was first introduced by
Vapnik % (in 1995) as a linear method whereas the LS-SVM formulation was proposed by
Suykens *® in 2002. SVM maps a given sample set to a higher dimensional space and further
separates the samples into categories with a clear divide. In simple terms, this process enables new
test samples to be recognized and allocated to their respective categories.

Support Vector Regression (SVR) is an extension to SVM and utilizes the same principle as
SVM. SVR bears a clear advantage over other regression methods like principal component
regression (PCR) and partial least squares regression (PLSR) due to its ability to tackle non-linear

problems, which can model real-world systems better. *® While developed as a linear technique,
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the use of the so-called kernel trick allows it to be applied to nonlinear problems. A kernel function
is used to map the original data onto a higher-dimensional feature space, where the regression can
be treated as a linear problem. This transformation is depicted in Figure A.2 in Appendix A.

For a typical classification problem on a given set of training data with observations X =
{x;eR™,i=1,2,..,n)} (R" is the n-dimensional vector space) and corresponding outcomes y =
{yier,i =1,2,..,n)} (r is a one-dimensional vector space), the discriminant function is given in
equation 3.1 as follows:

y*(x) =wlo(x,)+ b Equation 3.1

where @ is the function used for the nonlinear transformation to the higher dimensional space,

w is the parameterized weight vector that can also be viewed as a normal vector to the decision

hyperplane that facilitates maximum margin between the separated classes, b the model bias or

the offset and y™* is the predicted value. The objective function that needs to be optimized remains

the same in both LS-SVM and SVM except that a classical squared error function (similar to MLR

and PLSR) is used in LS-SVM as compared to Vapnik’s e-insensitive error in SVM. The -

insensitive error determines whether a calibration sample is redundant or a support vector

depending on the residual error. The final prediction of the SVM model is dependent on the support
vectors.

The cost function for the optimization problem in LS-SVM becomes

Minimize G = %WTW + gZ{l:l e?
where e; = wT@(x;) + b — y; is the estimation error
subject to: y; WT@(x;)) +b)=1—¢;i=1,2,..,n

y is the regularization parameter Equation 3.2

LS-SVM replaces inequality constraints in SVM with equality constraints that is reflected in
the error term in equation 3.2. The first term penalizes the weight vector (w) and intends to
maximize the separation margin, while the second term directs the error towards a minimum.

Since it is difficult to classify all training samples in the case of nonlinear data with a linear
boundary, the regularization parameter (y) is introduced to account for the balance between

maximizing the hyperplane margin (characterized by w) and minimizing the error of
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approximation for the training samples (e;) and a higher value can have a direct effect on reducing
the model offset, b. Since the nonlinear feature space has potentially infinite dimensions, the cost
function is combined with the constraints and expressed in Lagrangian dual form as in equation
3.3:

Lw,b,e;a) =G — Y, a;(WTO(x;)) + b+ e; — y;) Equation 3.3

where 0 < a; < y are the Lagrange multipliers learned from the data and describe each x;. A
major advantage of the SVM framework is that there are no issues with local minima. °! Further
details regarding the solution of equation 3.3 is given in section A.6 in Appendix A.

The typical kernel functions reported in literature are linear, polynomial, sigmoid and
Gaussian radial basis function (RBF). However, only polynomial and RBF kernels are utilized in
this work, as given in equation 3.4 and equation 3.5, respectively. The notion behind applying
these two kernels is given in section 3.4.4. A conjugate gradient (CG) algorithm is generally
applied for the case of large data sets to iteratively solve equation 3.3 keeping in mind the
requirement that K is positive definite. The reader is referred to Scholkopf and Smola * for further

details regarding the solution to the above optimization.

K =00)"0(x) = K(x;,x) = (xTx; + t)d Equation 3.4
T ||xi_xi||2 .
K =00x)"0(x;) = K(x;,x;) = exp - Equation 3.5

Hence, the prediction for a new observation, x, becomes:

y(x) =Xk, o K(x;,x) +b Equation 3.6

Equation 3.5 suggests that the RBF kernel function is a measure of similarity between 2
training samples in the nonlinear space with similar samples (x;, x;) resulting in the RBF kernel
moving towards 1 and dissimilar samples making the kernel move towards 0. The hyper-
parameters t,d, y and o are computed from the training dataset by tuning the model for each
output dimension and their optimized values are reported along with the results for each input-
output combination (Table 3.2 in section 3.4.2). The disadvantage with SVM is that an added

parameter, € needs to be estimated in addition to the kernel parameters in all cases. d represents
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the degree of the polynomial, t denotes the constant term and o refers to the width of the RBF
kernel. o (values reported as o2 in this work) is a measure of how sensitive the output (y) is to any
change in the input (X) in the calibration data. A higher kernel width is indicative of a more linear
relationship with a less complex solution, whereas a lower o is a sign of high sensitivity and
nonlinearity between X and y. The training time increases linearly with the number of dimensions
in the dataset, which served as an additional motive to carry out dimension reduction. However,
the computational times observed in this work were well within the scope of realizing a real-time
monitoring protocol for the propylene oligomerization process. The LSSVMIab1.8 toolbox was

used in our study to implement the LS-SVR in MATLAB R2017b (9.3.0). >

3.3.4 Full spectrum partial least squares regression (PLSR) and interval-partial least

squares regression (i-PLSR)

The theory of PLSR is well known and comprehensively documented in the literature and also
shown to be useful for NIR calibration. '*!7 Since this also forms the basis for i-PLSR, only the
main idea of PLSR and subsequently i-PLSR is discussed in this section. In PLSR, the multivariate
output variable or the property of interest (y) is predicted from the multivariate input spectra (for
example) (X = (xj,i =1,2,..,n;k =1,2,..,K)) where K is the number of spectral channels and
n is the number of observations, by means of a simple linear predictor similar to equation A.1:

y = bX Equation 3.7

The central idea of PLS regression is that after implementing PCA on both y and X to obtain
the latent variables, the individual loading axes are rotated to create a situation where maximum
variance in the output is explained by the input. A way to do this is to maximize the covariance
between the respective scores. Representing highly correlated spectral ensembles with redundant
data in the form of orthogonal, independent variables that are linear combinations of their
predecessors reduces model complexity, thereby helping in improving the predictive ability of the
developed models. In the case where < 3 latent variables are able to explain majority of the output
variance, the data can be plotted in a 2-D or 3-D graph to visualize the input-output relationships.

Interval PLS regression is more useful for concentrating on sections of the original spectral
channels that can influence the output or desired characteristic to a greater degree by removing

possible interferences from other variables. The whole spectrum is divided into a pre-decided
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number of intervals of equal width on which PLS regression is applied and the results of each
model on the sub-intervals are compared based on the model performance parameters (described
in section 3.4.5). The comparison would make sense only if the number of underlying components
for the individual sub-models are optimized. Further optimization of the intervals by shifting and
varying the interval width on either side was out of scope for this work but was implemented by
Norgaard et al. 2° Out of all the calibration models inspected in this work, i-PLSR was applied only
with spectral data, both as a means of wavelength selection to reveal carbon number specific
reaction chemistry as well as an improvement in the predictive power as compared to the full
spectrum PLSR. The built-in function, ‘plsregress’ belonging to Statistics and Machine Learning
toolbox in MATLAB R2017b (9.3.0) was used for PLSR. The iToolbox (version 1.1 — April 2005)
developed by Norgaard and Leardi >* was used for building the i-PLSR models in this work.

3.4 Modeling methods

3.4.1 Training and validation sets

The data shown in Table A.3 in Appendix A is split into 2 sets for model building and

performance estimation as follows:

a. Calibration or training dataset: Experiments 6 — 20 were used for constructing all models
in this work. This was not an entirely random selection because care was taken to ensure
that the product compositions in the calibration set spanned a similar range as in the
validation dataset, though the difference was minimal as the concentrations were more
sensitive to temperature change than to flowrate variation and the experiments 6 — 20
comprised of almost the entire temperature range used in this work.

b. Validation dataset: Experiments 1 — 5 and 21 — 25 were used as independent test sets to

investigate the prediction ability of the calibrated model in terms of accuracy and speed.
Though two samples involving the highest and lowest flowrates (0.426 and 1.090 mol/h)
and temperatures (346 °C and 477 °C) are included in this set, the other samples consist of
temperatures within the range of the calibration set. It was seen that temperature had a more
prominent effect on product yield and nature (as discussed in the Results and Discussion

section), so ensuring that the temperature range in the validation set was within the range
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covered by the calibration set was important. Since the number of samples in the training
set and validation set is limited, the learning efficiency of the model is tested with a
growing number of samples in the training set (increased from 15 — 20) as well as a
decreasing number of training set samples (decreased to 10). The results of this procedure

are reported in section 3.5.9.

3.4.2 Types of models: Inputs and outputs

To test the prediction capability and efficiency of the regression techniques utilized in this

study, six different combinations of inputs and outputs are tested, as communicated in Table 3.2.

Table 3.2. Regressor and output combinations for regression models constructed in this work.

Combination
N Input/Regressor Output Regression methods compared
0.
Full C1 — C10
Temperatures & Molar _ PLS, LS-SVM-Poly * &
1 concentrations
flowrates (Table A.3) LS-SVM-RBF °
(Table A.4)
Lumped
Temperatures & Molar PLS, LS-SVM-Poly &
2 concentrations
flowrates LS-SVM-RBF
(Table 3.3)
; Full spectrum FTIR Full C; — Cyo PLS, i-PLS, LS-SVM-Poly &
intensities concentrations LS-SVM-RBF
A Full spectrum FTIR HCA Lumped PLS, i-PLS, LS-SVM-Poly &
intensities concentrations LS-SVM-RBF
s HCA (4 cluster) Full C; — Cyo PLS, LS-SVM-Poly &
intensities (Table 3.4) concentrations LS-SVM-RBF
‘ HCA (6 cluster) Full C; — Cyo PLS, LS-SVM-Poly &
intensities (Table 3.5) concentrations LS-SVM-RBF

* Polynomial kernel-based LS-SVM abbreviated as LS-SVM-Poly; ® RBF kernel-based LS-SVM
abbreviated as LS-SVM-RBF.
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3.4.3 Data pre-processing

3.4.3.1 Software tools and other operations for pre-processing

MATLAB R2017b, Mathwork Inc. (9.3.0) software that utilized the University of Alberta
academic license and run on a MacOS (Version 10.13.3) was employed for all analytical
techniques in this work. Due to the difference in the ways of implementing the preprocessing
techniques for different dimension reduction and regression models, it was deemed essential to
specify how they were carried out in this study.

The transmission spectra collected were converted to absorption spectra, followed by baseline
correction and data smoothing prior to dimension reduction and clustering (PCA, HCA) or
regression (LS-SVM & PLS). Baseline correction was performed using the ‘msbackadj’ function
in the Bioinformatics toolbox in MATLAB. It estimates the baseline points for multiple regions of
the spectra every 200 wavenumber units. The regression method used for baseline fitting was
‘pchip’, which uses a piecewise cubic polynomial. Smoothing of the baseline corrected intensities
was done with ‘mssgolay’ function in Bioinformatics toolbox in MATLAB. It is based on the well-
known Savitzky — Golay filter that eliminates noise using a least-squares lower degree polynomial
(degree 2 in this study). >* Since the wavenumbers in our case were equally spaced, the window-
size sliding frame for smoothing was based on the wavenumber index and 15 samples were used.
It was found that smoothing removed certain troughs in the peaks though it did not have a
significant effect on the data analysis results. Visual inspection did not reveal any significant noise
present in the baseline that warranted the use of a filter. Nevertheless, smoothing was carried out.

Normalization was performed by standardizing the data, which is a combination of mean
centering (variable mean is 0) and auto-scaling (making variable standard deviation as 1). This
was done by using the ‘zscore’ function belonging to Statistics and Machine Learning toolbox in
MATLAB. Before conducting PCA, HCA and PLSR, all input features were standardized so as to
bring the features on the same scale to account for variability in the data. On the other hand,
standardization of the variables in LS-SVM was done during initialization of the object-oriented
structure representing the LS-SVM model by supplying the function argument ‘preprocess’.
Particular details of how the inputs and outputs were supplied to the calibration models are given

in section A.7 of Appendix A.
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3.4.3.2 Identification of spectral features

Initially, it was considered worthwhile to assign the spectral features to potential functional
groups in the products. The absorption spectra after baseline correction and standardization are
presented in Figure 3.2. It should be pointed out that the reaction conditions for propylene
conversion were such that at all conditions hydrogen transfer and aromatization reactions were
anticipated. * This was confirmed by the infrared spectra (Figure 3.2) where all instances contained
aliphatic and aromatic absorption peaks. The main absorption bands were identified based on
literature. > The most prominent features in the infrared spectra were due to the aliphatic sp* C-H
(methyl and methylene groups) stretching vibrations at ~2960, ~2930 and ~2875 cm™', as well as
the sp® C-H bending deformation at ~1465 and ~1380 cm™! respectively. The first overtone of the
aliphatic C-H deformation is seen at ~2735 cm™.

The products produced were mainly olefins with a methylene group (R,C=CH>) and trans-
internal olefins. Methyl branching was proved to be much lesser in a ZSM-5 catalyzed oligomer
product than from a non-shape selective oligomerization. >* The main absorption bands of the
olefins with methylene group can be seen as sp> =C-Ha stretch at ~3008 cm™ and ~2985 cm’! (seen
as unresolved shoulder at ~3000 cm™ in Figure 3.2), alkene -C=C stretch at ~1650 cm™! and -CH»
wag at ~890 cm™'. The presence of the trans di-substituted internal olefins can be seen as sp> =CH
bend at ~990 cm™ and trans -CH wag at ~965 cm™'. There was also evidence of tri-substituted
internal olefins as recognized from the existence of peaks at lower frequencies (~820 cm™).

The absorption peaks of the aromatic products were not as prominent as the absorption peaks
of the aliphatic compounds. This was due to the relative absence of significant peaks in the 800-
690 cm™! that would be typical of substituted benzenes. However, many of the spectral features of
the substituted benzenes were obscured by the substituted olefin bending deformations in the 900-
820 cm™! region and also close proximity of the aromatic -C=C- stretch to the aliphatic -C=C-
stretch in the 1650-1500 cm™ domain. This provided additional justification for the use of PCA

and a wavelength selection method like i-PLS to assist with data analysis.
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Figure 3.2. The IR spectra after pre-processing (without smoothing). The twenty-five spectra

correspond to the products from each of 25 experimental conditions (Table A.3 in Appendix A).

3.4.4 Model tuning and optimization

A comparison between different calibration models for regression makes sense only when
consummate results are achieved by optimizing the respective model tuning parameters
corresponding to each output variable in the training dataset. In every case, the criteria for arriving
at the optimum parameters is assessed through minimization of the root mean square error in cross-
validation (RMSECYV - refer section 3.4.5). Leave-one-out (LOO-CV) or n-fold cross validation
(for n samples/observations in the calibration set) was used for training the models (except in i-
PLS) as it has been shown to be robust against model mis-specification and preferable for smaller
sized training set, as in our case (15 calibration samples). 2%°° The reason for this advantage is
because LOO-CV focuses on point prediction only and no prior knowledge of the observation data
is required. But this can lead to overfitting, which is also evaluated in this study by comparing with
the root mean square error of prediction (RMSEP). However, k-fold CV was also evaluated with
varying k between 2 and 14 for the training set and was found to yield very similar results as LOO-
CV. The parameters to be tuned for each regression method are as follows:

(i) PLSR — The number of latent variables (LV) or factors extracted from the training set is

the only key parameter in the PLS calibration model. A balance needs to be achieved
between the number of components that describe the variance of the regressors and the

prediction ability of the PLS model. Using higher than the required number of factors
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complicates the model and can reduce its generalizability, also leading to increased
computational time. The prediction error is drastically increased when using lower than the
optimum number of components in PLSR. ‘plsregress’ function gave the mean squared
error for each added latent variable for all the 6 combinations investigated in this work
(Table 3.2). The variance explained by the number of components that showed least mean
squared error was also verified to fall in the ‘elbow’ region of the scree plot (as explained
in section 3.3.1). Some chemometricians also prefer to use the predicted residual errors
sum of squares (PRESS) statistic to assess the model performance, but RMSE minimization
of the LOO-CV was chosen for this work. 3%

(11) i-PLS — The 350 wavenumber channels are divided into equidistant subintervals and the
number of latent variables in the PLS model for each interval was optimized in i-PLSR.
This was carried out by ‘ipls’ function in the i-Toolbox. 3 The performance of each spectral
interval, in terms of the minimized RMSECYV, is compared with the global RMSECV to
decide the best performing interval that can be used for independent prediction. The
optimum number of LV for the individual intervals is different (mostly lower) than that for
the global model and they are obtained through a five segmented cross validation (Venetian
blinds) method. 3% Specific details of this method are given in section A.8 of Appendix
A.

(i11) LS-SVM - Irrespective of the type of kernel used, the regularization parameter (y) needs
to be optimised during model training. The kernel parameters necessary to be tuned, along
with y, pertaining to this work are: (a) the square of the kernel width (c2) for the RBF
kernel (equation 3.5); (b) the intercept (t) and degree (d) for the polynomial kernel
(equation 3.4). As in previous methods, the tuning process was based on minimization of
a target squared error cost function with subsequent RMSE determination for the LOO-CV
process. This optimized combination of the hyper-parameters (y & o2 (or) y, t & d) was
obtained by SIMPLEX method, for which the starting values were provided by coupled
simulated annealing (CSA) *° rather than a trial and error approach as adopted in certain
studies. *® The lower and upper bounds over which the search is conducted in CSA are ¢'°
and e'°, respectively. 3 It is superior over a gradient descent optimization, since it avoids
local minima and reduces sensitivity of the algorithm to initialization parameters, while at

the same time carrying the process towards unique and ostensibly optimal values. This
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behavior is seen in our work as the starting and the final optimized values of the hyper-

parameters are of the same order of magnitude. Refer SI for a brief description of the

SIMPLEX method adopted in this work.
Both in this study as well as in previous works in chemometrics involving LS-SVMs, 2438
RBF kernels were found to give lowest prediction errors for majority of the outputs, among the
different kernels used in the literature. They were reported to be suitable in modeling spectral-
concentration relationships quite well. Having said that, there has been evidence in some cases that
the performance of polynomial kernels was equivalent to that of RBF, which motivated us to
inspect them as well. 26%° In addition, since spectrum-property relationships are mostly nonlinear
in nature, *! RBF and polynomial kernels suited our data better than a linear kernel, for example.
An exhaustive comparison with other types of kernels (linear, sigmoid, etc.) was not pursued. The
RBF kernel lies within the limits [0,1] while the polynomial kernel varies between [0, ), which

makes computation involving the polynomial kernel more complex.

3.4.5 Model performance evaluation

Once the parameters for each regression model were estimated based on the above-mentioned
methods (section 3.4.4), the performance of the developed calibration model for the prediction of
the validation dataset samples was evaluated on the basis of the following statistical parameters as
shown in Table A.5 in Appendix A. In addition to the RMSECYV, two other types of RMSE are
compared in this work: RMSEC (error of calibration for the training set) and RMSEP (error of
prediction for the validation dataset). Ideally, for a perfectly optimal model, the three values should
be equal. However, in reality, the RMSEP is mostly greater than RMSEC and the criteria for
determining extent of overfitting is their difference as well as the gap between RMSECV and
RMSEP. If RMSERP is vastly greater than RMSECV or RMSEC, it means that the model is not
able to predict accurately for new, real-time and independent datasets and is suggestive of
overfitting and too much flexibility.

In this work, the accuracy of multivariate regression techniques is investigated with
predictions for the individual carbon number concentrations with the validation set (section

3.5.3.2), in addition to the product composition distribution as a whole for each condition in the
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validation set (section 3.5.3.3). RMSE is particularly useful in these cases as it places a significant
weight on larger errors due to squaring of the absolute error as reflected in the formula (Table A.5
in Appendix A). A fair comparison of model performance can also be made by bringing the errors
on the same scale. RAE, unlike RMSE, not only considers the averaged difference between the
predicted and the target values, but also calculates a normalized absolute error. Obviously, since
RMSE and RAE are negatively oriented scores, a lower value is suggestive of a more accurate
model.

Meanwhile, the coefficient of determination (R?) is purely a measure of the correlation
between the observed and the predicted values, i.e. the higher, the better. From a statistical
perspective, it indicates the fraction of output variance explained by the calibrated model inputs.
According to this definition (Table A.5 in Appendix A), R? can take negative values, which simply
means that the fit is worse than a horizontal line. The regression equation is always indicated in
the correlation plots as it can be extrapolated to give the likelihood of future outcomes falling
within the predicted outcomes as well. R? values are also reported for the calibration data and is

referred to as RZ.

3.5 Results and Discussion

3.5.1 Principal component analysis (PCA)

As a preliminary step, it was important to understand not only the relationship between the
different variables in the process, namely, temperature, flow rates of propylene, residence times,
conversion and product composition but also variance in the spectral dimension. Hence, PCA was
applied to two sets of data: (1) to the 4 columns in Table A.3 in Appendix A along with the 10
product compositions (Table 3.1), all acting as the variables; and (2) to the FTIR spectra,
considering the intensities at the 350 wavenumbers as the variables. In both situations, the 15 sets
of operating conditions in the training set acted as the samples.

Let us consider case (1). The loading vectors possess two attributes, namely, the direction and
the magnitude. The direction is determined by the sign of the loading, i.e., a positive or a negative
loading implies that the contribution of that variable to that principal component is in the positive

or negative direction, respectively. The magnitude indicates the amount of contribution of that
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variable towards the variance of that principal component. The loadings along with the scores for
the first two principal components are shown in a biplot in Figure 3.3. The first two principal
components account for 93 % of the total variance with the first component alone contributing 84
%. According to the scree plot for this PCA, the contribution of more than two components was
deemed insignificant as compared to the first two. For the first component, temperature and feed
molar flow rate have high positive loadings (Figure 3.3), respectively along with the product
concentrations, Ci, C2, C3 and Ce having loadings in the range of 0.21-0.31. This indicates that
increasing the temperature and feed flow rate would increase the concentration of those product

streams.
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Figure 3.3. Biplot for PCA done on set (1) with 14 variables (follow blue lines) and 15

observations (red values).

An increase in flow rate decreases the residence time (opposite signs of loading for t5 .
reaction

and F,.) as well as the conversion of propylene (-0.30 loading). This might suggest that C; and

C; are formed mainly with an increased temperature and a decreased residence time which lowers
the conversion of propylene to C; and C,. Figure 3.3 also shows that C; and C; are quite close to
each other as are C; and Cs. These groupings give an indication of the reaction chemistry. Ci and
C, are mostly by-products formed by cracking of propylene and heavier molecules, which is
explained by correlation with temperature. Ce is mostly formed by dimerization of Cs but further

conversion of Cs 1s limited by decreasing the residence time (present in vicinity of experiments 19
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and 20). This also explains the higher Cs concentrations in the product (Table A.4 in Appendix A).
These observations are in-line with the mechanism proposed by Quann et al. *

The second principal component, which accounted for 9 % of the total variance explained,
gives opposite loading directions for F,,. (0.48) and tg . = (-0.43), which follows the
interpretation from the first PC. Temperature is in the same direction as C; and C», which supports
the fact that cracking is a major cause for their formation. An interesting observation is that an
increase in the residence time is directly correlated with increase in the C7 - C1o concentrations for
both PCs as seen from Figure 3.3. Addition reactions (involving conjunct polymerization, i.e.
cyclization and aromatization) are a possibility at higher residence times and can be a potential
cause for formation of heavier products. > The product streams are, thus, grouped into 4 categories
based on PC loadings as given in Table 3.3. However, this grouping needed to be confirmed with

HCA as described in section 3.5.2.

Table 3.3. Product stream groups based on PCA.

Carbon numbers associated
Description
in a product stream group
Ci, G Light stream
Cs, G Dimer product
Cs, Cs Mid-stream
Cs, Cs, Co, Cio Heavy stream

The presence of any distinct outliers in the experiments conducted was discarded based on the
scores, thus no sample was left out while performing the PCA. Furthermore, they are well
separated on the molar flow rate direction, illustrated by samples in the second and third quadrant
(Figure 3.3), where the experiments conducted at lower flow rates (6, 7, 8) are in the vicinity of
heavier hydrocarbons (C4- Ci0) as compared to the feed (Cz). The experimental points with higher
flow rates are not as close to the lighter products (Ci, C), thus reiterating the claim that
temperature rather than residence time is the major driving force for their formation. It has to be
mentioned that if the loadings and scores are accommodated in the same plot, the scores are scaled

down by a scalar factor as in Figure 3.3.
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The loadings plot for the first two principal components in case (2) with the respective
wavenumbers are given in Figure 3.4. A graph of both PCs plotted against each other is given in

Figure A.3 in Appendix A. The scores plot for case (2) between the first two principal components

is shown in Figure 3.5.
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Figure 3.4. Loadings plot with 350 wavenumbers as variables. (a) First principal component

loadings vs. wavenumbers; (b) Second principal component loadings vs. wavenumbers.

PCA on spectral data clearly showed the need for dimension reduction in the wavenumber
direction. The first principal component accounted for 82 % of the variance, while the second and
third component explain a further 7.5 % and 4.8 % of the variance, respectively. The wavenumbers
corresponding to baseline intensities have very small loadings, i.e. those which are grouped closer
to the origin in Figure A.3 in Appendix A. These can also be seen as near to the x-axis in Figure
3.4a and Figure 3.4b. On the other hand, prominent directions in the spectral data are determined
by certain wavenumber indices that represent the appropriate functional groups quite well.

The first PC shows higher negative loadings for sp* C-H stretches that can be seen as a group
from the index 280 in Figure A.3 with 2962 cm™ (point 294) being the highest contributor in the
second PC as well. These are visible as lines below the x-axis in the 2970-2850 cm™ region in
Figure 3.4. To the right side of the plot (Figure A.3 in Appendix A), indices 296-299 (3005-2977
cm’! in Figure 3.4) have a high positive loading on the first PC and likely represent alkene sp? C-
H stretches. These wavenumbers showed particularly high loadings of 0.13-0.23 on the third PC,

thus providing a meaningful direction to the spectral interpretation and indicating the dominance

74



of olefinic products. The points 23-33 in Figure A.3 in Appendix A (950-870 cm™ in Figure 3.4)
most likely correspond to sp? C-H bend from substituted alkenes along with -CH, wag.

Aromatic C-H stretch can be attributed to the points 309-310 (~3080 cm) that have
significant positive loadings only for the first PC. There is also a group of wavenumber points in
the third quadrant (Figure A.3 in Appendix A) that had equivalent contributions on both first and
second PCs (indices 2-15, i.e. 810-710 cm™ — right end of both the plots in Figure 3.4), indicating
aromatic C-H bend in mono and di-substituted benzenes, which are a result of ring-closure
phenomena. Overall, this plot echoes the discussion in section 3.4.3.2 where the focus was on

assignment of the peaks to possible functional groups that could point toward the chemical nature

of the products.
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Figure 3.5. Scores plot for first two principal components for the case where PCA was applied to

spectral data.

The scores (Figure 3.5) distribution does not warrant the removal of any observation as an
outlier, like in case (1). However, HCA was required to be done on the qualitative information
extracted by PCA to ascribe cluster numbers to the variables that were used as inputs and outputs
for regression analysis in this work.

3.5.2 Hierarchical clustering analysis (HCA)

The next step was to perform HCA for both the cases described in the previous section in

order to quantitatively inspect the hypothesized groupings that resulted from PCA. For case (1),
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HCA was applied on the loadings of the first two principal components (that captured most of the
variance in the variables as detailed in section 3.5.1) with the product composition from C; to Cio
as the objects and clustered into 4 groups. The linkage method used for grouping clusters was
‘average’ since it gave the highest cophenetic correlation coefficient of 0.94, i.e. a measure of how
well the distances between the clusters containing the product composition objects correlate with
the Euclidean distance between those objects. The default ‘single’ linkage method gave the least
cophenetic correlation coefficient of 0.90.

From the dendrogram of this clustering as shown in Figure 3.6, it is clear that the 4 groups of
product streams hypothesized in Table 3.3 are possible when the cut off line is drawn at any
distance value between 0.194 and 0.285. Interestingly, a 5-cluster grouping is also possible if the
line is drawn between 0.137 and 0.194, the difference being the further splitting of the C7-Cio
group into Cio as one and C7-Cy as the other. However, to decrease the complexity of the problem,
only the four-cluster combination is considered for regression in this work. As an aside, clustering
purely based on raw data of product composition (after standardization) also yielded a similar
cluster distribution.

In case (1), where only product compositions were considered, it was straightforward to
visualize the cluster formations from PCA (Figure 3.3) due to the lesser number of variables that
were taken into consideration. In contrast, it was difficult to assign the wavenumbers to particular
groups just from the PCA loadings plot (Figure A.3 in Appendix A or Figure 3.4) for case (2) due
to increased number of features (350 spectral channels) and cluttered nature of the data.

The clustering of the spectral data was important to this work because it was used as one of
the inputs in the regression methods for predicting the product composition as will be discussed in
section 3.5.7. HCA was applied to the loadings of the first three principal components obtained
from PCA of the spectral data (case (2) in section 3.5.1) and divided into 4 and 6 clusters. The
individual division of the 4 and 6 clusters and their chemical resemblance is provided in Table 3.4

and Table 3.5, respectively.
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Figure 3.6. Hierarchical cluster tree for product composition based on PCA loadings.

Table 3.4. Summary of the 4-cluster division on FTIR spectra given by HCA.

Cluster Wavenumber
Index . Chemical description
number (cm™)
1 288 — 295 2970 — 2916 Methyl sp® C-H stretch
(i) Methylene sp® C-H stretch (2908-2850 cm™)
2 277 —287 2908 — 2831 .
(ii) 1% overtone of sp®> C-H bend (2840-2831 cm™)
a) 1-23 a) 871-702 ) _ )
(i) Aromatic sp* C-H bend (minor)
b) 40-122 b) 1635-1002 )
3 (840—702 cm™' region)
c) 127276 c) 2823-1674
(ii1) Baseline intensities
d) 311-350 d) 3394-3093
(i) Alkene sp* C-H bend (mono and di-substituted
a) 24-39 a) 995-879 olefins) (995-879 cm™)
4 b) 123-126 b) 1666-1643 (i) Alkene C=C stretch (minor) (1666-1643 cm™)
€)296-310 | c)3085-2977 (iii) Alkene sp? C-H stretch (30082977 cm™)
(iv) Aromatic sp? C-H stretch (3085-3008 cm™)
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Table 3.5. Summary of the 6-cluster division on FTIR spectra according to HCA.

Cluster Wavenumber
Index . Chemical description
number (cm™)
1 288-295 2970-2916 Methyl sp® C-H stretch
(i) Methylene sp® C-H stretch (2908-2850 cm™)
2 277287 2908-2831

(ii) 1* overtone of sp’ C-H bend (2840-2831 cm™)

a) 1-23 a) 871-702

b) 40-88 | b) 1373-1002
3 ¢) 104-121 | ¢) 16271486
d) 127-276 | d) 28231674
€) 311350 | ¢) 3394-3093

(i) Aromatic sp” C-H bend (minor)
(840—702 cm™ region)
(ii) Aromatic C=C stretch (1627—1486 cm™' region)

(i1) Baseline intensities (b, d, e)

(i) Alkene sp> C-H bend (mono and di-substituted
2)24-39 | 2)995-879
4 olefins) (995-879 cm™)
b) 300-310 | b) 3085-3008
(ii) Aromatic sp? C-H stretch (3085-3008 cm™)

5 296-299 3001-2977 Alkene sp® C-H stretch (3008-2977 cm™)

a) 122-126 | a) 1666-1635 | (i) Alkene C=C stretch (minor) (1666—1635 cm™)
b) 89-103 | b) 1488-1380 (ii) sp* C-H bend (1465-1380 cm™)

‘Average’ method, with the highest cophenetic correlation coefficient of 0.96 was used for the
linking procedure based on Euclidean distance. Since there were 350 wavenumbers present, the
hierarchical cluster tree output consisted of only 30 base leaf nodes by collapsing the lower level
nodes for easier visualization. The cut off margin in the dendrogram was quite low for the 6-cluster
formation as compared to 4 clusters. It is worthwhile to mention here that there are a small number
of wavenumbers for which no meaningful bonds/functional groups have been identified based on
the knowledge about the products. These points are classified as baseline intensities (3™ cluster).
Furthermore, the assignments were not unambiguous, but were made by identifying the most likely
origin of the absorption band, since some wavenumber regions were crowded and there could be
more than one plausible assignment.

A similar distribution of wavenumbers was obtained when HCA was performed directly on

the spectral data before PCA with a small change that the aromatic C-H stretch wavenumbers
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shifted to the third cluster merging with the baseline intensities for both 4 (Table 3.4) and 6 cluster
(Table 3.5) distributions. The clusters obtained provide a complete picture of the functional groups
present in the products and also seem to connect well with the PCA model. In the case of 4 clusters,
the HCA distinguished between aromatic C-H deformations (cluster 3) and aliphatic alkene sp? C-
H deformations (cluster 4) by grouping them into separate clusters. However, the bend for tri-
substituted olefins overlapped with the aromatic C-H bends in cluster 3. Although sp® stretches
were clearly identified in the first two clusters, the entire sp> C-H stretching for both alkenes and
aromatics were grouped into the same cluster (4™). The stretching vibrations of the carbon-carbon
double bond in the formed alkenes were clearly identified (cluster 4) but the aromatic C=C stretch
merged along with the baseline intensities in cluster 3.

The 6-cluster arrangement addressed some of the shortcomings of the 4-cluster distribution
with more accurate classification of the functional groups. The main improvements were: (i) sp°
C-H bend was separated from the baseline intensities and grouped into the 6™ cluster; (ii) the sp?
C-H stretches for the aromatics and alkenes were split and grouped into 4" and 5" cluster,
respectively; and (iii) the stretch for the C=C bond in aromatics were clearly singled out in the 3™
cluster. Nevertheless, the first cluster in both distributions and the 6™ cluster in the 6-cluster
division represented the highest intensity region in the FTIR spectra (Figure 3.2).

Although each cluster cannot be directly associated with the carbon number groups in the
products as given in Table 3.3, the functional groups can be distributed in the products according
to carbon number. For example, the third and fourth cluster representing the aromatics (Table 3.5)
could correspond to C7-Cjo, the second, fifth and sixth cluster could represent the midstream
hydrocarbons (C3-C¢) as the methylene groups can be present as those inserted in between two
C=C bonds in alkenes and the clusters represent aliphatic and alkene functional groups. The first
cluster does not conform to any particular group as it is most likely possible that all the products
can potentially contain a methyl group. But the first can mostly be associated with C; and C; due
to the presence of methyl groups. Among Ci and Cz, ethylene or ethane is the dominant product
as f-scission in the carbocation-ZSM intermediate is much easier than a-scission in a mono-
molecular cracking mechanism of heavier hydrocarbons. ®' The formation of ethane can occur at
the temperatures used in this work through hydrogen transfer to ethane from a cyclic olefin.
Another important feature of the six-cluster division is the separation of sp® C-H bending

vibrations at 1465 — 1380 cm™ (6™ cluster) as it can be characteristic of the entire product
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distribution (as also shown by i-PLSR in section 3.5.5). The main value additions of clustering to
this work are: (1) identification of key chemical features in the products that was otherwise difficult
to comprehend from direct visualization in Figure 3.2 or from PCA in Figure 3.4; and (2) utilizing
the clustered divisions as regressor inputs to the combinations 5 and 6 (Table 3.2) for assessing

the performance of the calibration models.

3.5.3 Combination 1: Inlet operating conditions as predictors and entire product

composition as outcomes

3.5.3.1 Factor selection for PLSR

The only parameter to be optimized for the prediction of concentration of the carbon numbers
in the product is the number of latent variables. Since the rank of the input matrix was 2, a
maximum of 2 LVs could be extracted that represented the data well. As expected, the first LV
lowered the RMSECV values significantly but the difference in contribution of the second LV
decreased with increase in carbon number. However, the amount of variance explained by the LV
should also be considered jointly. For C7 and Cio, the variance explained by the 2 LVs together
amounted to only 78 % and 40 %, respectively. It is much higher for lower carbon numbers: 97.5
% for Cs, 99.1 % for C3, 95 % for Cs but decreases to 87 % for Ce. Increasing system complexity
due to interference from a mixture of chemical species like aromatics, mono-olefin and higher
substituted isomers is a plausible reason for the drop in the variance explained. * One LV was
chosen for predicting C7 (RMSECYV for 1 LV: 0.5796; for 2" LV: 0.5742), Cs (RMSECV for 1%
LV: 0.3124; for 2™ LV: 0.3104) because of close proximity of the errors of cross-validation but
Cio (RMSECYV for 15 LV: 0.1901; 2™ LV: 0.1932) actually showed a minimum at the 15 LV. ¥
Two LVs were chosen for the remaining 7 outputs in PLSR. All the minimum RMSECYV values
are reported in Table 3.6 together with other model performance parameters. For this model, the
PLS cross validation did not achieve satisfactory results for Cio (RMSECV for Cjo in Table 3.6).
By grouping the concentrations as in combination 2 (section 3.5.4), the performance was improved

to an extent.

3.5.3.2 Analysis of predictive power: Concentration-wise
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Table 3.6 summarizes the results of all the regression techniques used for the calibration
models built with operating conditions as the inputs and entire product composition as the outputs.
Only the model performance measures along with cross-validation errors are given in this table.
Refer to Table A.6 in Appendix A for the tuned hyper parameters of the calibration models.

From the table, we can see that on the whole, the LS-SVM based methods perform better than
PLSR. The average decrease in RMSEP (across all outputs) from PLSR to LS-SVM-Poly was
30.71 £ 22.73% and a much larger decrease of 51.18 + 16.31% from PLSR to LS-SVM-RBEF. It
is clear that among the two kernels used for LS-SVM, the RBF kernel outperformed the polynomial
kernel for all outputs except C7 (the polynomial kernel exhibited 12.5% lower prediction error than
the RBF) and Cio (RMSEP for the polynomial kernel was lower by a meagre 2.97% compared to
the RBF). On an average, the prediction error while using the RBF kernel was 26.37 + 16.54 %
lower than when using the polynomial kernel.

Examining the tuning parameters revealed that the operating condition-concentration
dependence is highly nonlinear. This is conspicuous from the low values of g2, with a maximum
value of 41 for C; (Table A.6 in Appendix A). Chauchard et al. ' reported that similar values for
02 in their LS-SVM regression model used for predicting acidity of grapes from NIR spectra was
suggestive of a high degree of nonlinearity. The optimized degree of the polynomial kernel
increased, indicating a higher extent of nonlinearity of the model (Cs had the highest 6 of 41 and
smallest d of 3; Cio had the lowest 62 of 4 and a high d of 6 common to 5 other outputs). The
superior capacity of the RBF kernel-based LS-SVM technique to model extremely nonlinear
systems was apparent from the fact that the decline in RMSEP from PLSR to LS-SVM-RBF was
high for the heavier hydrocarbons (Cs+) with the largest error decrease being for Cs (74.17% with
a low o2 value of 5). This was true with the polynomial kernel as well.

It was also interesting to see that the calibration error of C; and Cio was greater than the
respective validation set numbers in the PLS model. This can be attributed to the inadequate
variance explained by the first LV. LS-SVM-Poly also displayed similar characteristics for C7 and
Cio, thus decreasing the stability of the polynomial LS-SVM over a range of datasets that are not
linearly correlated. This observation is not new and has been observed by previous researchers 28

who concluded that the model with a lower RMSEC was more robust.
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Table 3.6. Regression results of combination 1 for outlet concentrations of each carbon number.
R2, RMSEP and RAE, are the variance explained in the outputs, the prediction error and the
Relative Absolute Error in the validation set, respectively. R% and RMSEC are the variance

explained in the outputs and root mean square error of the calibration set, respectively. RMSECV

is the error of cross validation calculated for the training set.

CNo | Model* | R2 | RMSEP | RMSECV | RAE,” | R% | RMSEC
PLS 85 | .0026 0012 39 93 .0017
C Poly | .88 | .0024 .0002 27 1.00 | .0001
RBF | .96 | .0013 0010 17 99 .0007
PLS 87 | .1056 .0499 38 97 0775
C> Poly | .82 | .1254 0275 37 99 0.032
RBF | 95 | .0677 0261 23 99 0112
PLS 95 1.27 52 19 99 39
Cs Poly | .98 91 40 1461 99 29
RBF | .98 87 39 1414 99 27
PLS 45 1.66 76 63 85 72
Cs Poly | .78 1.05 19 52 99 11
RBF | .86 83 21 41 99 10
PLS 83 1.51 72 36 95 .69
Cs Poly | .94 91 21 23 97 43
RBF | .99 39 19 10 99 13
PLS 59 1.73 94 61 87 79
Cs Poly | .81 1.16 42 39 98 29
RBF | .89 79 40 32 99 23
PLS 83 38 57 48 68 47
C; Poly | .93 24 49 29 78 39
RBF | 91 27 49 32 93 25
PLS 59 93 31 1 83 34
Cs Poly | .91 44 12 27 99 13
RBF | .97 26 12 18 99 11
Co PLS 82 32 23 36 89 13
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Poly .89 25 A7 27 .99 .08
RBF .95 17 A1 22 .99 .05
PLS .53 17 .19 .86 .39 23
Cio Poly 81 .0605 .0519 49 75 .0728
RBF 79 .0623 .0533 .55 95 .0141

*Polynomial-based LS-SVM methods abbreviated as Poly in table and LS-SVM-Poly in text. RBF-based
LS-SVM methods abbreviated as RBF in table and LS-SVM-RBF in text; ®* RAE values computed on the

validation set.

Finally, the gap between RMSECV and RMSEP as well as RMSEC and RMSEP seemed to
decrease while moving from PLSR to LS-SVM-Poly to LS-SVM-RBF in the majority of the
outputs, showing a curtailed tendency to overfit and increased consistency in the RBF-based LS-
SVM methods. Also, the highest correlations between measured and forecasted values were
obtained for the LS-SVM-RBF calibration model, except for C7 and Cio where the polynomial LS-
SVR achieved slightly better results for R? in the validation dataset.

3.5.3.3 Analysis of predictive power: Validation set experiment-wise

The main objective of this paper was to inspect the prediction ability of the multivariate
calibration techniques not only for individual concentrations but also the product composition
taken as a whole for each experimental condition. Table A.7 in Appendix A shows the results of
all three regression methods organized experiment-wise.

Here again, the improved performance of the LS-SVM-RBF is quite palpable. As compared
to PLSR and LS-SVM-Poly, the averaged RMSEP values for LS-SVM-RBF were reduced by
40.59 + 26.18% and 25.23 + 19.56%, respectively averaged over the entire validation set. The
numbers are also very similar in terms of RAE, where LS-SVM-RBF lowered the averaged RAE,
by 41.43 £ 26.12% and 22.11 £ 18.95% from PLSR and LS-SVM-Poly, respectively. The range
of inlet reaction conditions for the feed (T & Fp,) in the validation set aids in assessing the
performance of the LS-SVM-RBF method. While LS-SVM-RBF outperforms PLS and LS-SVM-
Poly in the entire range, the efficiency of the polynomial kernel decreases at higher temperatures
and flowrates of propylene. For experiments 23, 24 and 25, the polynomial based LS-SVM
performs worse than PLSR by 10, 20 and 16%, respectively. An insight into the reaction chemistry
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might provide the explanation for this behavior. 2 Cg is one of the major products obtained in the
oligomerization process and at increased flowrates (experiments 21-25), the formation of Cs+
hydrocarbons is constrained by the lower residence times in the catalytic zone. Moreover, the
higher temperature can lead to significant cracking rates, leading to the formation of more light
and mid-stream products (Cz to Cs). Table 3.6 indicated that RBF works better than the polynomial
kernel for Ci-Cs predictions (29.07 % lower RMSEP averaged over Ci-C¢). Prediction errors
averaged for the calibration set (experiments 6-20) were very similar for both the polynomial and
RBF kernel-based LS-SVM methods (0.14 + 0.10 for both) while being much larger for PLSR
(0.42 £+ 0.20).

3.5.4 Combination 2: Inlet reaction conditions as predictors and lumped product

composition as outcomes

Variable selection methods combined with SVMs have been employed in the past to improve
the working of the regression models. ** In this section, we have incorporated the product streams,
grouped on the basis of PCA (refer section 3.5.1), as outputs to the developed regression techniques

to look for any improvements over combination 1.

3.5.4.1 Factor selection for PLSR

As discussed in section 3.4.4, the RMSECYV criterion was employed for choosing the number
of LVs for the PLSR calibration model on the training set for this combination as well. Though a
significant decrease in the RMSECYV was observed for the first LV for all 4 product stream groups,
the light product stream (Ci, Cz) showed the largest decrease in RMSECV (58.72%) when the
second LV was added while the heavy stream showed the smallest difference (6.02%) between the
first and second LV. This was similar to what was seen with the full concentration RMSECV
(described in section 3.5.3.1). Interestingly, the variance described by the 2 LVs (Table A.§ in
Appendix A) was greater for this combination as compared to combination 1. For the heavy stream
(C7-C10), 93.5% of the total variance was explained by 2 LVs in PLSR, while only ~40% was
accounted for if the second LV was considered for Cioin combination 1. This showed a benefit in

classifying the products into groups according to their reaction pathways.
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Since the decrease in RMSECV on addition of the 2™ LV for the heavy stream was still
significant (-0.036), 2 factors were chosen for constructing the PLSR model as was the case for
other outputs as well. The minimum RMSECYV values are reported in Table 3.7 along with the

other model performance parameters.

3.5.4.2 Analysis of predictive power: Lumped concentration stream-wise

Table 3.7 comprises the performance features of all three regression techniques. Table A.8 in
Appendix A reports the corresponding tuned hyper parameters.

Complementary to the discussion in the previous section (section 3.5.4.1), a striking
improvement in the performance of PLSR is seen when the output variables are grouped according
to PCA & HCA. This can be attributed to the increased capture of the variability in the grouped
composition when compared to combination 1. The average squared correlations for PLSR
between the predicted and observed samples across all outputs spiked by 14.5% for combination
2 as compared to combination 1. The RMSEP, RMSECV and RMSEC are of the same order of
magnitude for the lighter stream for LS-SVM-Poly, indicating a more stable calibration in
combination 2 than combination 1, where the RMSECV and RMSEC were much lower than
RMSEP (Table 3.6).

Though the polynomial kernel performs better in the case of light and dimer streams, lower
than satisfactory performance was achieved with the heavier streams (streams 3 and 4 - Table 3.7).
A plausible reason for this lies in the optimized hyper-parameter d. The training process tunes the
polynomial to a high degree that the calibration becomes flexible ® to such an extent that it fits the
calibration samples very well but fares badly with the test data (Rz = 0.99 & 0.97; Ry = 0.62 &
0.42 for the mid- and heavy streams, respectively). In combination 1, the polynomial kernel
performed well for the validation set possibly due to the higher y values for C7 (31) and Cio (22)
than for the entire heavy stream (0.23).
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Table 3.7. Regression results for combination 2 for the associated stream-wise outlet
concentrations. R2, RMSEP and RAE, are the variance explained in the outputs, the prediction
error and the Relative Absolute Error in the validation set, respectively. R2 and RMSEC are the
variance explained in the outputs and root mean square error of the calibration set, respectively.

RMSECYV is the error of cross validation calculated for the training set.

S.No* | Model” | R2 | RMSEP | RMSECV | RAE,° | R2 | RMSEC

PLS 87 | .1074 0341 38 | .97 | 0.0388

1 Poly | .91 | .0879 0278 29 | .99 | .0167
RBF | .95 | .0693 0265 23 | .99 | .0099
PLS 91 2.53 1.41 28 | .97 1.06

2 Poly | .99 73 36 09 | .99 21
RBF | .99 49 28 06 | .99 16
PLS 62 3.14 1.81 5492 1.37

3 Poly | .62 3.18 1.74 65 | .99 81
RBF | .73 2.67 1.52 57 ] .99 92
PLS 94 81 56 24 | .94 31

4 Poly | .42 2.45 52 61 97 28
RBF | .96 73 51 22 | .97 31

21 — Light stream, 2 — Dimer stream, 3 — Mid stream, 4 — Heavy stream (Table 3.3);° Polynomial-based
LS-SVM methods abbreviated as Poly in table and LS-SVM-Poly in text; RBF-based LS-SVM methods
abbreviated as RBF in table and LS-SVM-RBF in text; © RAE values computed on the validation set.

It is quite lucid that the LS-SVM-RBF outperforms the other two methods for all 4 output
predictions (35.23 £ 32.22% decrease in RMSEP from PLSR to RBF and 35.07 %+ 24.46% from
polynomial to RBF based LS-SVM). The reason for the large standard deviation for the error
decrease from PLSR to RBF was that the smallest decrease was 9.87% for the heavy stream but
the largest decrease was for the dimer stream (80.63%), also implying an improved efficiency for
the PLSR. RBF was seen to be consistently efficient in not overfitting the calibration samples as
the gap between RMSEP and RMSECYV is the least for LS-SVM-RBF (0.41) among the three
techniques, though PLSR was not far behind (0.69). The nonlinear relationship between inlet

reaction conditions and the lumped concentrations at the outlet is confirmed by the low values of
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02, with the smallest being 1 for the heavy stream (Table A.8 in Appendix A). The largest decline
in prediction error from PLSR to LS-SVM-RBF was 80.63% for the dimer stream with a similarly
sparkling decrease of 70.20% from Polynomial to RBF based LS-SVM for the heavy stream.

The analysis of the regression results for the experiment-wise arrangement showed the best
performance for the RBF kernel-based LS-SVM (RAE, lowered by 60.86 + 36.92% from PLSR
and 52.54 + 8.98% from LS-SVM-Poly). There seemed to be an inherent advantage in
classification of products based on PCA & HCA as is evident from the higher reduction in
prediction errors for LS-SVM-RBF from PLSR and LS-SVM-Poly compared to combination 1
(section 3.5.3.3). Similar to the results of combination 1, LS-SVM-Poly performed worse than
PLSR for experiments 23 and 24, exposing its weakness to capture the changes in the system at
higher temperatures and lower residence times. The difference between the averaged prediction
errors and calibration errors over the 15 training experiments for PLSR, LS-SVM-poly and LS-
SVM-RBF were 0.73, 0.90 and 0.44, respectively. This showed that the least overfitting
characteristics were obtained for RBF-based LS-SVM.

3.5.5 Combination 3: FTIR full spectrum intensities as predictors and full product

composition as outcomes

The precision of LS-SVM-RBF in the previous models is perhaps surprising, but it should be
noted that the operating conditions vary between 650-750 K, where the gasoline-range equilibrium
carbon number distribution does not alter dramatically (compare with Figure 8 in Tabak et al. 2).
Furthermore, the presence of aromatics, though not tracked explicitly, is known to affect the
distribution. It should be kept in mind that the hydrocarbon aromatics contribute only to the Cs and
heavier part of the distribution. An issue with the predictions based on inlet operating conditions
is that any small changes that affect reactor operation (caused, for example, by channels developing
in the reactor, or catalyst deactivation) could negate the validity of the calibration relation built
between the operating conditions at the inlet and the product distribution at the outlet. It would be
preferable to develop a more reliable model based on the spectroscopic information, since that is

gathered online and is an accurate representation of the chemical nature of the products.

3.5.5.1 Optimum factor selection for PLSR and i-PLSR
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The prime purpose of the interval PLS model was to identify whether any particular region of
the IR spectrum captured the variation in the output better than the full spectrum, where the
chances of interference are higher due to absorbance from multiple species. The entire spectral
range was divided into 20 subintervals, each comprising 17 wavenumbers. For each carbon number
concentration output, in addition to optimizing the number of LVs with the RMSECV
minimization for the global/full spectrum PLS model, the best performing interval was also chosen
based on the comparison of the minimum RMSECYV for each divided spectral domain to the global
RMSECV minimum. The cross-validation errors obtained for Cs and Cg are shown in Figure 3.7a
and Figure 3.7b, respectively. The RMSECYV plots revealed that only interval 15 for C3 (from the
left in Figure 3.7a) and intervals 3 and 19 for Cg (from the left in Figure 3.7b) could compete with
the respective 10-component full spectrum models. The optimized LV for the sub-intervals are
indicated at the bottom of the bars in the figures. In a similar way, the details of the best performing
intervals for each carbon number are outlined in Table A.9 in Appendix A.

As can be seen from Table A.9 in Appendix A, there was a decrease in the cross-validation
errors of the i-PLS calibration for all outputs except Co and Cio, where no particular range of
wavenumbers could give better predictions than the full spectrum PLS model. In other words, for
Ci to Cg, the maximum amount of information in the spectrum that correlates with the respective
output concentrations is concentrated within the spectral region indicated by the best performing
regions in Table A.9 in Appendix A. Moreover, as the carbon number of the product increased
(specifically observed for C4 and Cg), more intervals showed improved performance compared to
the global PLS model, which was a sign of a rise in the number of chemical species absorbing due
to isomerization. > It can be argued that in the case of Cy and Cio, every interval in the whole
spectrum was more important than any particular region.

Furthermore, though i-PLS enables the analyst to qualitatively interpret the chemical nature
of the products better than PLS, a direct cause-effect assignment for the spectrum-concentration
dependence is a challenging task. Here, the developed i-PLS model provides a tentative indication
of the predominant functional groups that are representative of the products as illustrated in the
right column of Table A.9 in Appendix A. Products from C; to Cs mainly correlate with the
presence of sp® C-H bonds, though the spectral region of 1535 — 1396 cm™ might also contain

absorbance due to aromatic C=C stretching, which can obviously only start appearing from Cs.
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Figure 3.7. Bar graphs depicting RMSECV vs. each wavenumber interval in i-PLS calibration

model for combination 3 with outputs: (a) C3 and (b) Cs. The dotted line is the RMSECYV for the
global PLS model with 10 LV (optimized) for both the outputs.

However, an additional interval that corresponded to aromatic C-H stretching vibrations
performed equally well for Ce, as with Cg. Expectedly, the presence of mono and di-substituted
olefins and aromatics are also seen for C7 and Cg. On the whole, the benefit of employing interval
PLS methods for regression was seen and the best performing intervals were chosen for
concentration prediction in the validation set for this model. The results seemed to match the
discussion in the section on section 3.5.2 as to why the 6-cluster division explained the product
chemistry better. Combinations 5 and 6 will further emphasize the importance of wavelength

selection and dimension reduction to maximize input-output correlation.
3.5.5.2 Analysis of predictive power: Concentration-wise

The outcomes of the PLS-based and LS-SVM-based calibrated models are compiled in Table
3.8. Refer to Table A.10 in Appendix A for the corresponding tuned hyper parameters.

On the whole, the comparison of the statistical parameters in Table 3.8 for the regression
models re-emphasized that LS-SVM-RBF achieved better results than other MDA techniques. To
put things in perspective, the prediction errors for LS-SVM-RBF, as compared to PLS, i-PLS and
LS-SVM-Poly were smaller by 51.27 + 7.38%, 30.61 *+ 23.98% and 24.41 £ 13.99%,

89



respectively. Furthermore, one can see that the numbers indicate a slightly superior performance
of the techniques in combination 1 (section 3.5.3.2) in terms of the absolute RMSEP and R? values.
The reason for this is that the higher dimensionality of the spectroscopic data that affected the
degree of the fit. % However, the standard deviations tell a marginally different story. For
combination 1, the average RMSEP decrease from PLS to LS-LSVM-RBF was 51.18 + 16.31%
and from Poly to RBF was 26.37 + 16.54%. The lower variability in the improved performance
of RBF indicated that it outperformed PLS and LS-SVM-Poly on a more consistent basis across
all outputs than in combination 1.

Moreover, the performance of the interval PLS model matched the general objective of this
work, i.e. it not only gave a much better performance than the PLSR (RMSEP lowered by 28.61
+ 8.14% averaged over C; to Cg) but the better performing intervals hinted at the possible reaction
chemistry of the system. A more detailed discussion was presented in section 3.5.5.1. It was also
able to compete with the LS-SVM methods (RMSEP for Polynomial and RBF were lower than i-
PLS only by 11.4% & 30.6% on an average respectively) to a higher degree than PLSR (RMSEP
for Polynomial and RBF were lower by 51.3% and 34.2%). In fact, in the case of C; and C, the
RMSEP of the RBF kernel was lower than i-PLS by a mere 0.1% and 1.66%, respectively, while
the difference was larger for higher carbon numbers, signifying better capability of RBF kernels
for modeling nonlinearity. One difference between i-PLS and the clustering approach is that the
spectrum is divided into sub-intervals in a contiguous manner in i-PLS whereas the clusters that
will be used as inputs to combinations 5 and 6 (section 3.5.7) are a counterpoint to this approach
and not contiguous but still chemically meaningful.

Moving ahead to the tuning parameters, the y values in combination 3 (Table A.10 in
Appendix A) are an order of magnitude higher than those in combination 1 (section 3.5.3.2). This
has to be accounted for here. Though the complete spectral data may contain correlated variables
within the different wavenumber channels, there is no guarantee of any level of covariance with
the output concentrations as no latent variables have been extracted prior to application of LS-
SVM-RBF. Consequently, the RBF kernel would have a low value, signifying lower sample-
sample similarity, which is compensated by increase in y. This type of phenomenon has also been

observed previously by Chauchard and coworkers. 3!
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Table 3.8. Regression results of combination 3: Carbon number-wise concentration output. R3,
RMSEP and RAE;, are the variance explained in the outputs, the prediction error and the Relative
Absolute Error in the validation set, respectively. R2 and RMSEC are the variance explained in
the outputs and root mean square error of the calibration set, respectively. Only data for specific

carbon numbers in the products are presented (Ci, C2, Cs, Cs, Cs and Cio).

CNo. | Model® | R2 | RMSEP | RAE,” | R2 | RMSEC
PLS | .66 | .0040 39 | 75| 0035
iPLS | 84 | .0027 38 | .80 | .0028
N Poly | .87 | .0024 30 | 89| .0017
RBE | 93 | .0018 18 | .96 | .0014
PLS | .75 | .1968 46 | 77| 1132
i-PLS | 87 | .1058 36 | 98| .0381
© Poly | .84 | .1165 41 | 96 | 0461
RBE | 91 | .0892 21 | 98| .0303
PLS | 34 | 182 73 | 80| 8
iPLS | 67 | 129 64 | 90| 59
. Poly | 77 | 1.08 49 | 92| 55
RBE | 8 | .95 45 | 94| 48
PLS | 58 | 1.74 63 | 87| 80
iPLS | 74 | 137 45 | 89| 74
Co Poly | 80 | 1.20 38 | 94| 56
RBE | 92 | 76 26 | 97| 39
PLS | 55 | .97 60 | 86| 30
iPLS | 76 | .70 43 | 94| 20
“ Poly | 90 | .47 27 | 96| 16
RBE | 93 | 37 18 | 93| 21
PLS | 38 | .1098 72 | 99| .00
i-PLS | - i i i i
G Poly | 78 | 0646 54 | 90 | 0178
RBE | 75 | .0692 48 | 91| 0170
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* Polynomial-based LS-SVM abbreviated as Poly in the table and as LS-SVM-Poly in the text. RBF-
based LS-SVM abbreviated as RBF in the table and as LS-SVM-RBF in the text; ® RAE values computed

on the validation set.

However, there is no change in the interpretation for a2, whose values are on the lower side,
thus amplifying the nonlinearity in the spectrum-concentration relationship. C7 has the lowest o
of 4 with a corresponding high degree of 6 for the polynomial kernel. The next lowest o2 value of
5 was shared by Cg, Cg and Cio (Table 3.8).

Finally, the quality and applicability of a regression model is judged mainly by its capability
to fit all kinds of datasets equivalently. Alternatively put, the difference between RMSEP and
RMSECV was lowest for LS-SVM-RBF on an average across all outputs (0.16) as opposed to PLS
(0.53), i-PLS (0.32 — averaged from C; to Cg) and LS-SVM-Polynomial (0.21). The gap between
errors of calibration and prediction also showed similar trends - LS-SVM-RBF (0.20) <LS-SVM-
Poly (0.34) <i-PLS (0.35) < PLS (0.45). It should be noted that although the average differences
are reported, one can verify that the individual output-wise gaps between the aforementioned error
values are also least for LS-SVM-RBF. This indicated that a regression model built with LS-SVM-
RBF method demonstrated the least tendency to overfit.

3.5.5.3 Analysis of predictive power: Validation set experiment-wise

Table A.11 in Appendix A provides the results of the experiment-wise performance of the
PLS, LS-SVM-Poly and LS-SVM-RBF-. i-PLS was not included because of its inability to improve
over PLSR for Co and Cjo as detailed in the previous section. The superior performance of LS-
SVM-RBF is established from the results as seen in Table A.11 in Appendix A, since it
outperformed the other 2 models for all the new inlet operating conditions in the test set. The
RMSEP and RAE,, for LS-SVM-RBF were lower than its counterparts: Polynomial kernel-based
LS-SVM by 36.73 £ 15.21% and 34.47 £ 16.06%, respectively; PLS by 55.37 £ 17.56% and
56.81 + 17.19%, respectively. These values were somewhat higher than that for combination 1
although the absolute values of errors and coefficients of determination were better for
combination 1. It shows that the nonlinearity caused by the high dimensional spectroscopic data is

incorporated more effectively by the LS-SVM methods, particularly with the RBF kernel than by
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the PLS based methods. LS-SVM-Poly showed ineffective performance for experiments 4, 24 and
25, exhibiting higher errors than PLSR, emphasizing the effect of higher temperature on the nature
of product distribution. > The LS-SVM techniques had smaller differences between the RMSEP
and RMSEC in combination 3 as compared to combination 1 but this was reversed for PLSR. To
add to this, among the three calibration methods for combination 3, LS-SVM-RBF possessed the
least average gap between RMSEP and RMSEC (0.19 as compared to 0.45 for LS-SVM-Poly and
0.56 for PLSR), which again showed the diminished propensity to overfit the calibration data in
the LS-SVM-RBF approach.

3.5.6 Combination 4: FTIR full spectrum intensities as predictors with lumped product

composition as outcomes

The prediction accuracy of the LS-SVM-RBF was the best for the 4 grouped product streams
among all the MDA methods compared for this input-output combination namely, PLSR, i-PLS
and LS-SVM-Polynomial kernel. The best performing intervals extracted by i-PLS are as follows:
1535 — 1396 cm’! for the light stream and mid-stream; 3139 — 3008 cm™ & 1535 — 1396 cm™' for
the dimer stream and 3139 — 3008 cm™ for the heavy stream. These results complement
combination 3 and the reader is referred to section 3.5.5.1 for the chemical interpretation. For

brevity, further detailed results of this model are not shown in this chapter.

3.5.7 Comparing the results of combinations 5 and 6: HCA clustered intensities as inputs

and full product concentrations (C1-C1o) as outputs

The FTIR spectrum (350 wavenumbers) of the reaction products were grouped into 4 and 6
clusters to investigate the trade-off between input dimensionality and the amount of information
contained in each input variable. In this section, the performances of the combinations 5 and 6 are
compared among themselves as well as with combination 3, where the full spectrum intensities
were considered as inputs. The aim was to see the effect of PCA and HCA on the performance of
the regression models, specifically LS-SVM-RBF. The results of combinations 5 and 6 are

summarized in Table 3.9.
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First of all, one can clearly see that the LS-SVM RBF technique achieved better results than
LS-SVM-Poly and PLSR models for all outputs listed in Table 3.9. Looking at the numbers for
combination 5, RMSEP values for the RBF kernel were lower than PLS and polynomial kernel-
based LS-SVM by 49.61 + 12.17% and 29.66 + 15.34% averaged across all carbon number
outputs, respectively. For combination 6, LS-SVM-RBF outperformed PLSR and LS-SVM-Poly
by 51.74 + 13.51% and 33.09 + 14.81% in terms of prediction errors, respectively. In both cases
where clustered intensities were used as inputs to build the calibration models, it was noticed that
the polynomial kernel performed slightly worse than PLSR for C; (5.59% and 0.89% higher error
for combination 5 and combination 6, respectively) as was also observed in combination 1. On
similar lines, i-PLS not only had a lower RMSECYV but also predicted better than LS-SVM-Poly
in combination 3 for Cz (Table 3.8). This could be attributed to a higher degree fit of the polynomial
for C; (6 for combination 1 and 5 for combination 3) that resulted in overfitting akin to the heavy

stream in combination 2 (read section 3.5.4.2).

Table 3.9. RMSEP values for independent test set of combinations 5 and 6, concentration wise.

C. No. PLSR LS-SVM-Poly LS-SVM-RBF
RMSEP | 4 clusters® 6 clusters” | 4 clusters 6 clusters 4 clusters 6 clusters
C: 1016 .1007 1073 1017 .0636 .0614
Cs 1.09 1.03 73 .67 .34 32
Cs 1.28 1.19 .80 7 .70 .62
Cs 1.06 .95 .79 1 .69 .59
Cs 1.35 1.14 1.01 .89 .66 .57
Cs 37 33 21 .20 17 15
Cs 73 .66 .49 44 32 27
Cio .0855 .0782 0551 .0455 .0287 .0253

@ Combination 5; ® Combination 6.

Next, the drawbacks of the RBF model that were seen in combinations 1 and 3 were well
addressed by applying clustering to the spectra. LS-SVM-Poly performed better than RBF for C;
and Cio outputs in combination 1 and for Cio in combination 3. Classifying the outlet carbon

number concentrations on the basis of PCA and HCA and developing a regression model on the
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lumped concentration outputs (combination 2) had alleviated this issue and the RBF fared better
than the polynomial kernel for the higher carbon number stream (Table 3.7). Likewise, in
combination 5, the prediction errors for RBF were lower than the polynomial kernel by 16.96% &
47.77% and in combination 6, by 22.85% & 44.22% for C; and Cio, respectively. In addition to
this, the average gap across all outputs between RMSEP and RMSEC in combination 6 was lowest
for LS-SVM-RBF (0.0685 for RBF < 0.21 for LS-SVM-Poly < 0.41 for PLSR). Conjointly,
RMSEP differed from RMSECV, on an average by the smallest amount for LS-SVM-RBF (0.0612
for RBF < 0.10 for Polynomial < 0.23 for PLSR). These numbers clearly imply that the RBF
kernel-based LS-SVM approach has a minimized risk of overfitting compared to the other two
methods used in this study.

Lastly, the advantage of clustering the wavenumbers into 6 groups was clear from the results
reported in Table 3.9. Though it might seem practical to expect better results from combination 5
with lesser number of input variables (4 clusters), it is thought that the utility of six clusters lies in
its chemical meaning. Table 3.4 and Table 3.5 illustrate that the aromatic stretching vibrations
were better identified in the 6-cluster division than in the 4-cluster division, where it merged with
the baseline intensities. Also, the sp* —C-H bending deformations were also separated from other
overlaps and this frequency band was also identified by i-PLS to be present in a majority of the
products. The 4-cluster arrangement was not able to do this. This perhaps resulted in the improved
prediction ability that was observed for C¢-Cio hydrocarbons on the whole, where the averaged
decrease in RMSEP values in the 6-cluster combination as compared to 4-cluster division for Ce-
Cio and C;-Cs was 17.89 + 11.36% and 7.85 £ 5.01%, respectively. Remarkably, for the entire
Ci-Cio range, the decreasing order of prediction ability for LS-SVM-RBF (averaged RMSEP in
brackets) was also: Combination 6 (0.27) > Combination 5 (0.31) > Combination 1 (0.37) >
Combination 3 (0.43). Similar trends were seen for LS-SVM-Poly as well. There was also a
significant enhancement in the predicting ability of PLSR (increasing averaged RMSEP):
Combination 6 (0.58) > Combination 5 (0.64) > Combination 1 (0.81) > Combination 3 (0.93).
Even on an individual output basis, the regression models with clustered spectra as the inputs had
lower prediction errors than in other combinations. Within the two cluster approaches, a pivotal
factor to which the superior performance of the MDA techniques can be attributed is the separate
formation of a cluster representing sp>-C-H bending vibrations (6™ cluster - Table 3.5). The

enhanced possibility of the presence of this bond in the entire product distribution combined with
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the reduced dimensionality of the 6-cluster division improved the overall predictive power of
combination 6 over other combinations.

On the other hand, when the outputs were organized experiment-wise, the RAE, and RMSEP
values for the RBF kernel-based LS-SVM method were the lowest among PLSR, LS-SVM-Poly
and LS-SVM-RBF, which is suggestive of better forecasting performance of the entire product
composition for LS-SVM-RBF in combinations 5 and 6 also. Thus, it would appear that the
dimensionality of the input can be increased to improve the predictive capability of the regression
model, as long as the input contains groups that are developed in a statistically or chemically
meaningful sense.

Finally, though the tuning parameters of LS-SVM-RBF for combinations 5 and 6 were not
explicitly reported, the a2 values were found to be somewhat lower and in the same order of
magnitude as in combinations 1 and 3. This was indicative of a nonlinear relationship between
clustered intensities and outlet concentrations of the carbon numbers. Cio had the highest y of 794
for combination 6 and the lowest 2 value of 3. The y value was lesser than in combination 3

because of the reduced dimensions and tapered noise levels in the clustered data.

3.5.8 Correlation plots between measured and predicted values for all combinations

The correlation plots for envisioning the relationship between the experimentally observed
values and LS-SVM-RBF forecasted values for each of the 6 combinations are depicted in Figure
3.8.

Since there are multiple outputs, only the plots for Cs hydrocarbons (higher outlet
concentration) in combinations 1, 3, 5, 6 and heavy stream in combinations 2 and 4 are shown. All
values of coefficients of determinations are reported in the respective sections where each
regression model was discussed previously. The only additional comment that can be made from
the correlation plots in Figure 3.8 is that caution needs to be applied while extrapolating the
prediction correlation for lower concentrations of the heavy stream in combination 4. Overall, it
can be stated with confidence that the RBF kernel-based LS-SVM method was able to predict

equally well at all the concentration ranges for the outputs dealt with in this study.
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Figure 3.8. Correlations between experimentally measured and LS-SVM-RBF predicted values

for concentrations of: (a) Cs in Combination 1; (b) Heavy stream in Combination 2; (c¢) Cs in

Combination 3; (d) Heavy stream in Combination 4; (e) Cs in Combination 5; (f) Cs in

Combination 6.

In order to visualize the product distribution profile, Figure 3.9 shows the product

compositions obtained from GC analysis for experiments 1 (346 °C and 172 mL/min) and 23 (433
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°C and 440 mL/min — Table A.3 in Appendix A) along with the corresponding predicted values
from the LS-SVM-RBEF using 6-clustered intensities (combination 6). This distribution is similar
to Figure 8 in Tabak et al. ? for the reaction conditions between 600-700 K. It can be seen that as
the temperature rises, the concentrations of lighter carbon numbers (C1-C3) increases (Figure 3.9b).
Cs is also increased in experiment 23 due to oligomerization with smaller residence time. At higher
residence times (experiment 1), due to lower WHSV, the C7-Cio concentration is higher in the
product (Figure 3.9a). The main purpose of showing these plots is to demonstrate that the
prediction model resulted in slight overestimation of the product concentrations, especially for the
heavier hydrocarbons. The explanation for this can be traced to the work by Tabak et al., > where
they reasoned that it could be difficult for ZSM-5 to accommodate the exponential rise in the
number of isomers as carbon number increases, leading to a slight decrease in the measured

concentration value.
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Figure 3.9. Product distribution profile for: (a) Experiment 1 at 346 °C and 172 mL/min; (b)
Experiment 23 at 433 °C and 440 mL/min flowrate of propylene.

3.5.9 Effect of variation in training set size on model performance
As highlighted in section 3.4.1, all calibration models were built using 15 samples
(experiments 6 — 20 in Table A.3 in Appendix A). Both the validation and training sets were

composed of the entire concentration range of the products and the validation set comprised of the

lowest and highest flowrates of propylene but with similar temperature ranges. This was not a
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problem because the chemistry of the system was such that temperature seemed to have a greater
control on composition of reaction products. > The main limitation of this work is the smaller
number of samples available for training. Even with this constraint, it was important to assess the
rate of model learning by testing the sensitivity of the model performance to the number of training
samples. The benefit of this procedure can be considered as the future work of this study where
the number of training samples that gave the least prediction error can be utilized for calibration.
Also, reactions can be conducted at more operating conditions at lower temperatures, thereby
increasing the number of training samples to more than 25.

A similar study was performed by Cui and Fearn * with NIR spectra where they investigated
up to 420 training samples and found that the RMSEP attained a near constant value after about
250 samples. However, in our case, we increased the number of samples from 10 (where the
remaining 15 samples used for validation) to 20 (where the remaining 5 samples used for
validation) and calculated the RMSEP for C¢ concentration as the output in combination 6. For the
sets that included 16, 17, 18, 19 and 20 samples for calibration, the corresponding validation sets
consisted of samples from experiment numbers 12-20 (9 samples), 13-20 (8 samples), 14-20 (7
samples), 15-20 (6 samples) and 16-20 (5 samples) (refer to Table A.3 in Appendix A for the
respective conditions indicated by the experiment numbers), respectively. This would be a case
where the validation sets included samples that were interpolated in terms of both temperature and
flowrate. The previous analyses included samples where the temperature ranges in the validation
set were within that of the calibration set but the two flow rates were out of range of the values
used for calibration. But since it was seen that the yield of the products was more sensitive to
temperature than to flow rates, the validity of the constructed regression models still hold.

Figure 3.10 shows the effect of the number training samples on the RMSEP. It can be seen
that the prediction errors decay with increasing number of samples in the calibration set for all 3
regression techniques. As expected, LS-SVM-RBF shows lowest error among the three methods
and notably, both the LS-SVM approaches display slightly faster learning rates than PLSR (slight
dip at 12 training samples), before the trends become very similar but did not attain a constant
value. This particular test reiterates the need for a higher number of training samples to further
optimize the LS-SVM model, at the same time giving more confidence for the analysis performed

in the previous sections for the chosen number of samples in the calibration set.
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Figure 3.10. RMSEP vs. number of samples in used for building the calibration model tested for
PLSR, LS-SVM-Poly and LS-SVM-RBF.

3.6 Conclusions

In this work, we have demonstrated the utility of using online spectroscopic information and
inlet reaction conditions for monitoring of the moderately complex propylene oligomerization
process over ZSM-5 catalyst, with the potential for real-time application. On the basis of
evaluating different multivariate calibration techniques to track the product composition
distribution, the following can be concluded:

(a) For the different predictor-output combinations tested, the performance of the RBF kernel-
based LS-SVM method was found to be superior over other regression models employed,
namely polynomial kernel-based LS-SVM, PLSR and i-PLSR (only for the full spectral
input)

(b) In addition to the higher prediction accuracy, the training time (calculated inclusive of
initialization, tuning and training across all outputs together) was smaller for the RBF
kernel as compared to the polynomial kernel in the LS-SVM based methods. For example,
when the full IR spectrum was used as input (combination 3), if the time for training for
RBF kernel is taken as 1 time unit, polynomial kernels took 1.2 time units. In the case of
combination 6 (six-division clustered spectral input), training times were reduced to 0.8

and 0.9 time units for RBF and polynomial kernels, respectively.
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(c) The benefits of dimension reduction by feature extraction and using clustered inputs were

evident from the fact that all regression models provided the most precise forecasted values
for the product concentrations in the order (in terms of inputs to the models as): six-
clustered spectrum > four-clustered spectrum > inlet operating conditions (temperature and
flowrates of propylene) > full IR spectral intensities. The grouping of the product

concentrations resulted in improved performance of PLSR.

(d) i-PLS regression was not only more effective than the simple PLSR for accurate

concentration prediction, but also was able to provide a link between the measured property
and possible reaction chemistry, supplementing the identified spectral groups in PCA and

HCA.

(e) The hyper-parameters for LS-SVM-RBF and LS-SVM-Poly needed to be optimized

()

carefully and in certain cases of higher carbon numbers, the efficiency of the polynomial
kernel fell below PLSR due to a larger tuned degree that led to overfitting. On the other
hand, LS-SVM-RBF exhibited the least tendency to overfit among all the methods
investigated in this work.

An interesting observation was that with increasing product molecular weight, the
concentrations were slightly overestimated more often, though not by a large amount. This
could be attributed to the limited pore-size of ZSM-5 that reduces the ability to

accommodate bulkier isomers of higher carbon number products.

(g) Furthermore, the learning efficiency of LS-SVM based methods were higher than PLSR,

tested for the case of clustered inputs. It implied that a higher number of calibration samples
could improve the prediction accuracy of the models further. It should also be pointed out
that the other shortcoming of this work (apart from limited number of samples) is the
unavailability of a separate dataset (real time data) to test the applicability of the developed

models on a different experimental setup.

To conclude, LS-SVM-RBF calibration was proved to be a versatile and efficient approach

that can satisfactorily be used to monitor the acid-catalyzed propylene conversion process online.
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4. A statistical approach dealing with multicollinearity among predictors in

microfluidic reactor operation to control liquid-phase oxidation selectivity *

ABSTRACT

The current study concerns with applying chemometrics involving regression techniques to
identify a single most important parameter that directly affects oxygen availability and has a key
influence on tetralin conversion (CR) and product selectivity (S) for tetralin oxidation in a
microfluidic reactor at constant temperature and pressure. Five parameters (predictors) identified
previously were gas-liquid interfacial area (a), length of oxygen gas bubble (L), length of liquid
slug (Lg), two-phase superficial velocity (Urp) and liquid flowrate to the reactor (Q), where ‘a’
was suspected to be directly related to oxygen availability. CR and S were regressed on all the
predictors by fitting separate simple linear regression (SLR) models. The decreasing order of
explained variance in the outputs based on the calibration model was: In CR: a?> L;> U2p> Lg>
Q; In S: a> Lg> U2>Q. Multicollinearity issues among predictors were detected through
Pearson’s correlation coefficients and diagnostics like variance inflation factors (VIF) and
eigenvalues of the correlation matrix. This was addressed through multiple linear regression
(MLR) by considering a second input in addition to the best predictor from the SLR (a). Drastic
changes in regression coefficient estimates and inflated standard errors rendered the coefficients
of all other variables (except ‘a’) insignificant in the MLR models. The incremental contribution
of ‘a’ towards improving output variance was also evaluated through F-tests and partial
correlations with the outputs, controlling for other variables as well. The applications of the
findings from this study in industrial reactor design (for example — loop reactors) to control product
selectivity were also highlighted. In addition, through chemometrics, the possibility of monitoring
reaction progress online by predicting reactant conversion and product selectivity, thereby
eliminating the need for offline gas chromatographic (GC) measurements was also examined.

Keywords: Oxygen availability; simple and multiple linear regression; multicollinearity;

relative importance of parameters; significance tests and analysis of variance; online monitoring

3 This work was published as ‘Siddiquee, M. N.; Sivaramakrishnan, K.; Wu, Y.; De Klerk, A.; Nazemifard, N. A
statistical approach dealing with multicollinearity among predictors in microfluidic reactor operation to control
liquid-phase oxidation selectivity. Reaction Chemistry & Engineering 2018, 3, 972 —990°.
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4.1 Introduction

Liquid phase oxidation of hydrocarbons is industrially important to produce petrochemicals.
13 The main challenge of the non-catalytic free radical oxidation is to achieve good product
selectivity. Industrially the non-catalytic liquid phase oxidation is performed at low conversion to
control the product selectivity, for example, oxidation of cyclohexane. * Oxidation product
selectivity depends on conversion, temperature and oxygen availability in the liquid phase. >*

Liquid phase oxidation follows initiation, propagation and termination steps. Once the free
radical (R-) is formed during the initiation step, it reacts with local oxygen or other free radicals
very fast following zero order kinetics. > Oxygen transfer to the liquid phase and oxygen
availability in the liquid phase are critically important in order to control the product selectivity.
Microfluidic reactor, also known as microreactor, is advantageous to ensure higher local oxygen
availability. The main advantages of such a miniaturized reactor are: (i) the higher surface-area-to
volume ratio that facilitate the improved mass and heat transfer in the liquid phase; (ii) the exact
control of the gas to liquid ratio in the reactor that facilitate the manipulation of gas-liquid
interfacial area; and (iii) the well-defined flow properties in the microstructure reactor. >'%!! These
advantages combined with other benefits such as small radial diffusion length leading to good
mixing and enhanced safety for oxygen use caused the microfluidic reactor to receive attention in
the study of liquid phase oxidation. %1218

The flow regime in a microchannel depends on the relative gas and liquid properties, flow
rates and channel geometry. The five main flow regimes are: bubble, slug, churn, slug annular and
annular. >!*%° Slug flow, also known as Taylor flow, has its unique hydrodynamic characteristics,
where two adjacent liquid slugs are separated by the gas bubbles and are connected only via a thin
liquid film. 319111920 This thin liquid film contributes to create a higher gas-liquid interfacial area
and hence improves oxygen availability. Taylor flow also has a Marangoni effect within the liquid
slug that is beneficial not only to ensure local oxygen availability by proper mixing but also to
bring the surface active oxygenates to the liquid phase to prevent over oxidation at the gas-liquid
interface. 31011
Of the parameters that influence oxygen availability, it was not clear which ones affect it the

most in a hydro-dynamically complex Taylor flow system. Oxygen availability at a constant

pressure depended on several parameters such as gas-liquid interfacial area (a) based on unit cell
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volume (volume of gas bubble and liquid slug), the film attached to the wall, length of liquid slug
(Ls), length of gas bubble (L), two-phase superficial velocity (Urp), and liquid flowrate to the
reactor (Q). > Small changes in the design of the microfluidic reactor and its operation could
dramatically affect the relationship between these different parameters.

Mass transfer in Taylor flow can be explained well by the film theory. >!° The gaseous
component, oxygen in our case, is transferred to the liquid phase where it is consumed during the
reaction. Works on mass transport at Taylor flow conditions have been well documented in
literature, but the most cases focused on simulation and/or experiments considering water as the
liquid at ideal conditions (no gas consumption). !1°2* A few liquid phase oxidation studies at
Taylor flow conditions are reported which dealt mainly with conversion enhancement, but mass
transfer characteristics were not discussed. '>!*!¢-!¥ In our previous oxidation study, a qualitative
description of the mass transport effects on oxidative conversion and product selectivity was
provided. °> However, the quantitative dependency of the parameters affecting the mass transport,
oxidative conversion and product selectivity were not deeply analyzed.

Regression is a fast and a cost-effective tool for analyzing the complex dependencies between
the different variables existing in the system. One of the main advantages of using regression
methods is that it can alleviate the requirement of analytical equipment like gas chromatography
(GC) which is used to conduct offline measurements on the reaction products to obtain the
conversion and selectivity. Instead, predicting these outputs for new inputs based on developed
calibration models on previously acquired empirical data can save time for processes on an
industrial scale.

Simple linear regression (SLR) is a very common chemometric method used to examine
relationships between a continuous quantitative outcome and a quantitative explanatory (input)
variable. 2° It enables an analyst to fathom the effect of each explanatory variable one at a time on
the output by looking at the magnitude of the regression coefficient estimates and the overall
variance explained by the model. In most real-life situations, the outcome is influenced by more
than one variable, in which case multiple linear regression (MLR) suits best as it considers all the
input variables simultaneously. 2¢ The solutions of both SLR and MLR are based on ordinary least
squares (OLS) principle where sum of squares of the residuals from the regression equation are

minimized to obtain the intercept and coefficient estimate for each explanatory variable. %’
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However, one critical assumption in linear regression is that the errors are required to be normally
distributed so that the OLS is equivalent to the maximum likelihood estimate. **

An unwanted obstacle to linear regression is the presence of a high degree of linear
dependencies between the input variables, termed as multicollinearity. This is relevant to this study
because some variables have been calculated from others and considered in the regression model.
Particularly, it makes the parameter estimates and the standard errors of the correlated variables
unstable by degrading their significance, thus rendering the regression model unreliable. *° If two
variables are correlated among themselves as well as with the desired outcome variable, there
always exists a portion of shared variance in the output variable that is common to both input
variables. Disentangling the variance purely explained by each variable becomes difficult and this
concept can be understood well by means of Venn diagrams. °

The objective of this work was to determine the most important hydrodynamic/mass-transfer
parameters and the interactions among them that control conversion rate and product selectivity in
the primary oxidation products through a chemometric approach. For this purpose, the
autoxidation of tetralin was selected as a test reaction. SLR models were implemented to detect
the potential predictors with their best fits (linear regression implies linearity only in the coefficient
estimates and not necessarily between the variables involved) based on certain model performance
statistic measures. The additional contribution of a second variable was investigated through MLR
models and inspecting for drastic changes in the coefficient estimates, their standard errors and
significance arising due to collinearity by comparing with the corresponding SLR models.
Statistical tests, namely t-test and F-test were employed to determine the significances of the
regression coefficients and overall models, respectively.

A positive aspect of multicollinearity is that the coefficient estimates remain unbiased (as with
the OLS method) as this was crucial to establish relative importance of the explanatory variables
in impacting the outputs. Though multicollinearity among input variables inflates the variance of
the coefficient estimates and causes the estimates to move away from the true population value
(unknown most of the times), the expected value of the estimates across random samples is not
altered. 3" But the changes in the relatively important variable would be minimal and thus,
recognized. Since the coefficient estimates are unbiased, the statistical inferences would still be
meaningful. However, the variance in the estimates can also depend on the sign of the correlations

between the explanatory variables as shown by Mela and Kopalle, ** where they indicated that
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multicollinearity was not always detrimental (detailed further in section 4.4 of this chapter). Thus,
by the use of conventional statistical techniques, the reaction parameters could be analyzed for

inter-dependencies with the possibility of simultaneous monitoring of progress of the reaction.

4.2 Experimental

4.2.1 Materials

The hydrocarbon that was oxidized to perform experimental calibration and validation of the
regression model was tetralin (99 % purity, Sigma-Aldrich). Hexachlorobenzene (99 % purity,
Supleco) was used as internal standard and chloroform (98 % purity, Fischer Scientific) was used
as a solvent for gas chromatography. Extra dry oxygen (O2 99.6 % molar purity) was used as an
oxidizing agent and nitrogen (N2 99.999 % molar purity) was used as inert to control back-pressure
in the reactor. Praxair supplied both cylinder gases. In addition to the materials used for the
experimental work, some authentic compounds were used to confirm key oxidation products,
namely, 1,2,3,4-tetrahydro-1-naphthol (alcohol of tetralin) and a-tetralone (ketone of tetralin).

These were used as described before. 3

4.2.2 Equipment and Procedure

A glass rectangular microfluidic reactor (Dolomite Microfluidics, Charlestown, MA, USA)
was used in this study to conduct the oxidation studies. The reactor volume was 1000 pl having a
mixing channel of depth = 1240 um, width = 161 um, length = 536 mm and a reaction channel of
depth = 1240 pm, width = 391 pm, length = 1844 mm. It had three inlet ports and one outlet port.
Oxygen and tetralin were injected into the reactor using fluid input port 1 and fluid input port 2,
respectively, and port 3 was blocked. The hydraulic diameter of the reaction channel was dy =
6.0x10* m and aspect ratio of the reaction channel of width/depth was 0.32. Details on the
individual components are given in section B.1 of Appendix B.

Oxidations were performed under Taylor flow conditions at 150 °C and an average pressure

of 90 kPa gauge to control product selectivity. In Taylor flow conditions, tetralin liquid slugs were
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separated by elongated oxygen gas bubbles. The detailed experimental procedure of oxidation in
microfluidic reactor was provided in our previous study. °

Briefly, in a typical experiment, tetralin was loaded into a 5 mL syringe and the system was
pressurized to 90 kPa gauge by introducing oxygen into the setup. Tetralin was then allowed to
flow through the system at a specific volumetric flow rate (1.5, 2, 4, 7 or 12 pL/min for new
experiments in this work) by using a syringe pump. The co-feed of tetralin and oxygen and
application of back-pressure using a back-pressure regulator and nitrogen gas facilitated the gas-
liquid slug formation. A digital camera mounted above the microfluidic reactor was used to
monitor the flow patterns of the gas and liquid during the experiment. The experiments were
conducted for twenty minutes. The system was then depressurized and the oxidized tetralin was

collected from the pressure vessel at the outlet of the reactor for analysis by gas chromatography.

4.2.3 Analyses

Chromatographic analyses were performed using a gas chromatograph equipped with a flame
ionization detector (GC-FID). The separation, response factor corrections used for analyses and
method of product identification were reported before. > A summary of the analytical details is

presented in section B.2 of Appendix B.

4.2.4 Calculations

The parameters that potentially influenced oxidation conversion and product selectivity and
are shown as explanatory/input variables in Table 4.1. Some of them could be obtained directly
from the images captured during experiments. For deriving the other variables, the same image
analysis protocol and calculations that was used in previous work ° was employed for the validation

set of experiments in this study (Table 4.4) and details can be found in section B.3 of Appendix B.
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Table 4.1. Different independent and dependent parameters used in regression analysis.

Variable Type Symbol Unit
Tetralin flow rate to the reactor | Explanatory (input) Q uL/min.
Length of liquid slug Explanatory (input) Lg m
Length of gas bubble Explanatory (input) L¢ m
Two-phase superficial velocity | Explanatory (input) Urp m/s
Gas-liquid interfacial area Explanatory (input) a m?/m’
Conversion rate Dependent (output) CR mol/s
Ketone-to-alcohol Selectivity | Dependent (output) S -

4.3 Regression modelling methods

This section presents the statistical details of the modelling process conducted in this study.
The different assumptions involved in constructing the regression models, the software employed
to carry out the mathematical analyses, the methodical approach followed along with pertaining
equations and certain model performance evaluation measures used in SLR models are given in
this section. The relevant experimental data from our previous study > that served as the calibration

set for building the regression models is also included in this segment.

4.3.1 Assumptions in regression model building

Simple linear regression (SLR) and multiple linear regression (MLR) models were
constructed over the course of this work for quantifying the different relationships between the
input/output parameters and identifying the best predictor for conversion and selectivity. Before
proceeding with the regression analysis, the following set of assumptions were checked for validity

of the model:

(1) Linearity. Figure B.1 in Appendix B shows the scatter plots for variation of CR and S with
each of the explanatory variables. The effect of each input variable can be seen roughly
through these plots and though there are linear regions in between, the data dependencies

are mostly non-linear as expected. A nonlinear relationship was shown to be a better fit in
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some cases (refer to section on SLR results and discussion) by always considering
statistical measures (refer to section 4.3.4). Deviations from linearity is tolerable in real
data since linear regression allows for transformation of the variables and is linear in the
coefficient estimates only.

(i) Normality. This is regarded as a classical regression assumption but it should be noted that
a regression model is quite robust to its violation. *® The errors or residuals from the
regression analysis need to be normally distributed and one way to confirm this assumption
is by looking at the residual plots for the regression models. This is elaborated in the section
4.4.4.4. The only shortcoming in this process was that there were limited points available
to build the model (refer to section 4.3.5 for the calibration dataset (Table 4.2) but the
model was also verified by prediction with a new, independent validation set (Table 4.4)
for choosing the best fits and moving forward. At the end of the paper, a statistical pathway
to predict the outputs directly from the user-controlled parameter (Q) is also derived where
the predicted values are compared with those in the validation set.

(i11) Equal spread. This refers to the residuals having equal variance in the regression model
and can be verified from the residual vs. predicted value plots as shown in Figure B.2 of
Appendix B. Explanation of the plots is provided in the ‘Residual plots’ section under SLR
analyses results (section 4.4.4.4). The other implication of this assumption is that the mean
of the residuals must be close to zero. Any point that violates this condition can be termed
as an outlier and its omission can significantly improve the fit of the regression. Omission
of the intercept term forces the line to pass through 0, in which case there can be a violation
of this assumption. In our case, no point was omitted in the regression calculation and
intercept term was included for further prediction.

(iv) Minimum variation in the measurement of input variables (Fixed X). The scatter plots
do not reflect this property but it depends on the experimental way that the input variables
were measured. The inputs in this analysis are taken from the previous study ° and it can
be asserted with confidence that they were measured and calculated with minimal error,
thus confirming the validity of this assumption. Each experimental sample was done in
triplicate and the reported values were the mean of the observed measurements.

(v) Independent error. Each of the five experimental data points in the calibration and

validation sets were not dependent on each other and were conducted as separate
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experiments by manipulating the flow rate each time and conducting GC analysis to obtain
the outputs. For example, the conversion rate and selectivity at 3 pL/min was not predicted
from the outcome at a previous flowrate (1 pL/min) and was calculated separately (see
‘Calculations’ section B.3 in Appendix B). This confirms that the individual errors are

independent for each experiment.

4.3.2 Software used

IBM SPSS Statistics (Version 25) was utilized to perform all statistical analyses in this work.

The software was run on MacOS (Version 10.13.3).

4.3.3 Regression calculations: Relevant equations and formulae

It is important to note that all correlations and regression models in this work are based on
sample data, which can be approximated for the entire population since the population data is not
known. Here, the population refers to the set of all possible tetralin oxidation studies conducted at
constant temperature (150 °C) and pressure (90 kPa gauge), but at a larger number of flowrates,
simultaneously maintaining Taylor flow conditions in the microfluidic reactor. The parameter
estimates obtained based on the experimental data in the previous ° and from the current study can
be considered an approximation for the population data since the true population parameters are
unknown. 37 The following statistical parameters are used in this work:

(1) Pearson’s product-moment correlation coefficient. As a preliminary step, inter-
relationships between the various variables were inspected by means of sample Pearson’s
correlations (r). *® The mathematical expression for this measure is given in equation B.15
in Appendix B. Always pairwise bivariate correlations are calculated and interpreted in this
study due to the availability of limited number of observations for model construction and
prediction. The correlation coefficients were investigated for two reasons: (1) To gain
knowledge regarding the presence of multicollinearity among the variables for guarding
against redundancy in output estimation; (2) To know which input parameters have a higher
and significant linear correlation with CR and S to provide a basis for building further

regression models. Though it provided only a quantitative estimate of the strength of the
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linear relationship between the variables, other non-linear fits with 2 regression coefficients
(intercept and the non-linear term) were also evaluated to obtain a comprehensive
regression model.

(i1) Significance of a correlation. Since the sample size in our work is small (n = 5), it was
also imperative to check the representativeness of this sample data to model the
relationships in the whole population, i.e. testing the significance of the correlation by
means of a t-test. It should be noted that all tests of significance are two-tailed in this study
to cope with positive as well as negative values of the test statistic. By means of P-value
plots (P-P plots), the variables were checked for the level of adherence to a bivariate normal
distribution. * It is a means of descriptive statistics that consists of a scatter plot between
the cumulative distribution functions of the observed function and the expected function
(normal distribution). Since the number of data points were limited (5 samples in
calibration set), some amount of deviation from a straight line passing through the origin
in the P-P plots was acceptable. P-P plots suited better than Quantile-Quantile (Q-Q) plots
for our study because our focus was more on seeing the agreement between the
distributions and not on estimating location and scale parameters from the plot (for which
Q-Q plot was useful). A quantile-normal plot (Q-N) of the regression residuals can also be
used similarly to detect normality of the errors. *°
The details of hypothesis testing and the formula for calculation of the t-statistic (following
a t-distribution with 3 degrees of freedom (DF)) is given in section B.5 of Appendix B. The
decision rule used for the hypothesis testing based on the p-value is that if it falls below
0.05 (5%), the null hypothesis can be rejected because there is less than 5% chance that the
estimate of population correlation coefficient is near to 0. In other words, the correlation
can be stated to be significant at the 95% confidence level if it is > 0.878 or < -0.878
(critical value from Pearson’s Correlation Table, calculated in turn from the t-table). 4°

(ii1)) SLR and MLR. The main equations for simple and multiple linear regression analyses,
the standard errors and the corresponding t-statistic for evaluating the significance of the
regression coefficient estimates are provided in section B.5 of Appendix B. The explained
variance in the output by all the predictors simultaneously is calculated through coefficient

of determination (R? for MLR and r? for SLR — refer section 4.3.4 in Chapter 4).
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It can be conceptualized that the standard errors of the regression coefficient estimates
(equation B.19 and equation B.20 in Appendix B) increase if the errors of predicting y
increase or if the correlation between the predictors increase or even if the variance of the

predictors decrease. Palpably, 7y, _y, becomes 0 in SLR. The t-statistic for the slope

estimates (equation B.22 in Appendix B) is compared with the t-distribution withn — k —
1 degrees of freedom (3 for SLR and 2 for MLR in this study) to find the range of critical
values between which this statistic value lies. The exact p-value for this statistic is given
by SPSS. Similarly, all regression coefficient estimates (standardized and unstandardized),
their standard errors, t-statistics and the standard error of prediction reported in this study
are given by SPSS. They were also checked by manual calculations using the respective
equations for consistency.

(iv) F-statistic. This is a statistic for testing the significance of analysis of variance (ANOVA)
or the overall model R?. The exact p-value is obtained from SPSS. The value of the statistic
can be computed from equation B.23 in Appendix B and verified against that obtained in
SPSS. It is interesting to note that in SLR, the p-value for the F-statistic is equal to the p-
value of the regression coefficient of the explanatory variable.

A second type of F-statistic is used to test the incremental contribution of an added
predictor in improving the overall model r2. In this study, one variable was added to the
already developed SLR to test for the incremental importance of that predictor in
explaining the output variance. This statistic is calculated manually (using equation B.26
in Appendix B) and compared with the critical value of F (Ferit) from the F-table *!
corresponding to (1, 2) DF in all cases. If the obtained F value is greater than Feit we can
say that the contribution of the second variable in improving the overall model r? of the

SLR is significant.
4.3.4 Model performance evaluation
Once the regression coefficient estimates for the explanatory variables were calculated based

on the calibration set data, they were used to predict the outcomes in the validation set. The

performance of the models was evaluated using two statistical parameters, root mean squared error
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(RMSE) and coefficient of determination (R?), given by equation B.27 and equation B.28 in
Appendix B.

Two types of RMSE expressions are used in this work: RMSEP (error of prediction in the
validation set) and RMSEC (error of calibration in the calibration set). Likewise, R3 (r?) and R2
(r2) refer to explained variance in the outputs for the validation set and the calibration set of the
MLR (SLR) models, respectively. The primary criteria for choosing the best fits in the linear
regression models (section 4.4.4) are lower RMSEP and higher R2 values. Ideally, for a perfectly
optimal model, RMSEP should equal RMSEC. However, in reality, RMSEP tends to be greater
than RMSEC in most cases and in this work, a smaller absolute difference between RMSEP and
RMSEC values is also considered in choosing the best fits. A larger gap between RMSEP and
RMSEC implies that the model doesn’t predict accurately for new and independent datasets and

is suggestive of overfitting and too much flexibility.

4.3.5 Data for model building/calibration

The purpose of this investigation was to evaluate the impact of hydrodynamic parameters on
oxidation conversion and selectivity and identify their plausible best predictors. Therefore, only
those data from Siddiquee et al. °> were used where temperature and pressure were controlled and
not varied. As indicated in the ‘Experimental’ section, tetralin was oxidized isothermally at 150
°C and 90 kPa gauge at different flow conditions in a microfluidic reactor. Hydrodynamic and
mass transfer data observed and collected from five different injection flowrates of tetralin were
used for constructing the regression models in this study. These data are provided in Table 4.2 and
served as the calibration set for this work.

From a statistical point of view, it was important to primarily investigate whether oxygen
availability in particular had a superior effect on the outcomes as hinted in the previous work. ° tg
was not considered in model building because it was indirectly a representation of Uzp (as given
in section B.3 in Appendix B). Once the regression models were built based on this calibration set,
an independent validation data set (Table 4.4) that was collected at flowrates different to the
calibration ones) was used to predict the outputs from the SLR models to determine best fits and

to establish a prediction pathway from Q to CR and S. In all experiments total conversion at the
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outlet of the reactor was low (< 1 %), so that it was possible to consider conversion rate and

selectivity as two independent outputs that were not affected by the total conversion.

Table 4.2. Experimental data used for construction of model building. *

b
EXp T Q LS LG UTP tr a kLa CR
ID | (°C) (m) (m) | (m/s) | (min) | (m*m’) | (s7) (mol/s)
min)

150 1 .0016 | .2100 | .0260 1.5 300000 | 1900 | 5.95x 107 | 14.0
150 3 .0027 | .0980 | .0210 1.8 150000 | 960 | 1.40x 107 | 7.00
150 5 .0049 | .0510 | .0200 2 62000 390 | 1.03x 10 | 1.60

C o w P>

150 10 .0043 | .0110 | .0160 24 16000 100 | 6.00x 10 | 1.30
E 150 15 .0049 | .0040 | .0110 3.5 5400 34 514x107% | 1.30

Data obtained from our previous study °; ®Inlet tetralin flowrate into the reactor; ¢ Ketone-to-alcohol

selectivity in primary oxidation products.

4.4 Results and Discussion

4.4.1 Bivariate correlations among input and output variables

Ideally, it would be expected that some independent variables (IV) have higher correlation
with the output (y) so that the proportion of the variability accounted for in y; is distinct for each
x;€ X. With real data, this condition doesn’t occur in most of the cases and there is some amount
of overlap of the explained variance in the output by the IVs, arising due to the presence of
collinearity among them. Table 4.3 reflects this phenomenon. The P-P plots for the explanatory

variables, a and Urp and outcome variables, CR and S are given in Figure 4.1.
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Table 4.3. Bivariate Pearson correlation coefficients between different parameters considered in

this study.

Variable CR S Q a Lg Urp Lg
cr 1 0.947 | -0.683 | 0945 | 0954 | 0.803 | -0.853
(0.014)* | (0.203) | (0.015) | (0.012) | (0.102) | (0.066)
. 1 20759 | 0.988 | 0981 | 0.832 | -0.966
(0.137) | (0.002) | (0.003) | (0.080) | (0.007)
o 1 20.839 | 0.843 | -0.980 | 0.766
0.076) | (0.073) | (0.003)" | (0.131)
. 1 0.998 | 0900 | -0.945
(0.0001) | (0.037) | (0.016)
0.909 | -0.925
Le ! 0.033) | (0.024)
0813
Ure : (0.094)

Ls 1

2 The number in brackets indicates the respective p-values; ® Bold values indicate correlations > 0.9

between explanatory variables.

Although the P-P plots for each of the variables shown in Figure 4.1 do not indicate a straight
line ((b) was the closest to the straight line y = x) passing through the points of the respective
cumulative distribution functions, the closeness of the distributions was determined acceptable

envisaging a five-point system. This implied that the application of t-tests are still valid. 2
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Figure 4.1. P-value plots shown for 2 explanatory variables: (a) gas-liquid interfacial area; (b)
two-phase liquid velocity; and the 2 outcome variables: (c) tetralin conversion rate; (d) ketone-

alcohol selectivity.

Let us consider the outcome-predictor variable relationships first. Conversion rate (CR) of
tetralin was found to have a strong linear relationship with Lg (r¢cgp—p, = 0.954) and a (rcg-q =
0.945) with p-values of 0.012 and 0.015 respectively (Table 4.3), entailing that the relation is
significant at the 5% level. A consensus has not yet been arrived in the literature regarding a cut-
off value that describes the strength of a linear relationship between 2 variables. Values of 0.9, **
0.8, ¥ 0.7 * and even as low as 0.35 % have been suggested as threshold levels for a bivariate
correlation to be considered strong enough to cause collinearity effects in regression results.

However, as mentioned previously, the critical value of 0.878 can be used as an indicator for

a significant relationship. The direction of the correlation between CR with Urp was positive as
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was with a and L; but a p-value of 0.102 labels it insignificant. Negative correlations were
observed with other input variables like Lg and Q, with r¢g_; . being more significant than r¢g_
but still unsubstantial at the 5% level. Similarly, a and L, exhibited very strong correlations with
the other output variable (Table 4.3), selectivity with p < 0.01 for both the explanatory variables.
Interestingly, the relationship between S and Lg came out to be the third strongest with r5_; (3) =
-0.966, p = 0.007, while Urp and Q were not found to be significantly related to the product
selectivity, though they had slightly higher correlation coefficients than with CR.

Having inspected the correlations between the output and input variables alone, it could lead
us to conclude that a and L are potentially good predictors for both CR and S, with Lg as another
possible predictor for S. But the correlation matrix given in Table 4.3 also indicated that the input
variables are significantly correlated among each other (correlations = 0.9 are specified in bold).
Absolute values of 74_; ., Ta_y,, and 74_; are all greater than or equal to 0.900 and p-value
corresponding to 7,_; . stooped as low as 0.0001.

The high correlations between the explanatory variables was a first sign of the existence of
elevated levels of multicollinearity in the data ¢ and had to be dealt with appropriately with further
diagnosis and rectification. Reasons for some of these increased inter-relationships among the
input variables can be traced back to the ‘Calculations’ section (section 4.2.4).

For example, a is indirectly calculated as the ratio of linear combinations of L. and Lg
(equations B.1 — B.4 in Appendix B) and is the origin of the high correlation between them. Urp
depends on the volume fraction of the gas bubble (equation B.6 in Appendix B), which in turn is
related to the ratio of volumes of the oxygen bubble and liquid slug, i.e. ratio of linear combination
of L. in the numerator and Lg in the denominator for ; (equation B.7 in Appendix B), to which
a is also related. L; and Lg have high correlation plausibly due to the Taylor flow conditions in
the microreactor. Also, 79_y,, (DF = 3) =-0.980, p = 0.003 can be understood in terms of the
tetralin flowrate negatively impacting the superficial velocity since Q increases the volume of
liquid present in the reactor at a given time that can decrease the gas bubble volume fraction, thus
lowering Urp.

The other correlations not indicated in bold, though insignificant, tell us that increasing the

only manipulated variable, Q decreases the parameter responsible for mass transfer, a as well as
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the hydrodynamic parameters, L; and Urp but has a positive relation with Lg. Finally, Q is

moderately correlated with the outcomes (CR and S) in the negative direction.
4.4.2 Impact of multicollinearity on regression analysis and its diagnostics: Path forward

Linear dependencies within the predictor variables are a definite cause for concern. Given the
fact that our main aim was to identify the relative importance of each explanatory variable in
predicting the conversion rate and selectivity, evaluating the effect of collinearity between the
input variables on the reliability of the regression models was deemed essential. Multicollinearity
can be defined as a statistical phenomenon where more than one predictor variable in a linear
regression model is associated with the other variables and can lead to an ill-conditioned system.
47 Real data, as in this study, majorly falls in between a situation of perfect collinearity (7, —x, =1
or —1 where x; and x, are two example explanatory variables) and that of no correlation (73, _, =
0).

The different sources responsible for the origin of this problematic phenomenon can be
majorly classified into two types: (i) sampling methodology of the data collected purely due to the
experimental observations and (i1) extraction of new variables that are transformations of existing
variables in the system. In the second type, using the transformed variables along with the existing
variables for construction of regression models can raise issues in interpreting the model estimates.

In this study, Q is manipulated by the user and L; and Lg are observed during the reaction, so
can be labelled as existing variables. On the other hand, a and Uyp were calculated indirectly from
the reactor geometry and the existing variables, which was the cause for multicollinearity in our
system. It was imperative to ensure that this did not affect the conclusions and interpretations of
the regression models employed in this study and thus treat the problem in an effective manner by
considering the potential hazards of regressing with collinear variables and ways to tackle it.
Multicollinearity can affect the regression model in the following ways:

a. Increase sensitivity of the magnitude of regression coefficient or slope estimates
(corresponding to the correlated variables) to addition or removal of explanatory variables
and slight changes in data point values

b. Cause reversal in signs of the regression coefficient estimates of the correlated variables

involved in the regression model
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c. Inflate the standard errors of the regression coefficient estimates resulting in unstable t-
statistics and thus altering the significance of the predictors
d. Expansion in the width of confidence intervals of the intercept and predictor slope

estimates

The disadvantage of multicollinearity relevant to our data is that it becomes quite strenuous
in assessing as to which explanatory variable contributes most in explaining the share of variance
in the response variable (CR and S) due to inaccurate predictor slope estimates and escalated
standard errors as compared to the case of uncorrelated variables. In other words, it does not cause
the coefficients to be biased, but renders them unstable. This was recognized as the inherent
challenge in this work. As highlighted in the previous section, the first step in the detection of
multicollinearity is through analysis of the pairwise product-moment Pearson correlations, which
i1s necessary but not a sufficient condition. Interpreting the strength of a correlation can be
subjective too. Hence, certain other diagnostics suggested in literature are utilized in this work to
confirm the presence of interdependencies among the predictor variables and can be useful when
proper conclusions cannot be made from the correlation matrix alone. These are given in section
B.7 in Appendix B.

At this juncture, it is worthwhile to mention the study by Mela and Kopalle, ** where the
authors note that the standard error associated with regression coefficient estimates of a negatively
correlated variable can contract if the relationship with the outcome is positive and higher. Also,
omitting a negatively correlated variable from a multiple regression model can result in a higher

omission bias for the parameter estimates (a direct function of 75 _,, ), suggesting that the model

was better off having correlations among the explanatory variables. However, it was also observed
that there was no substantial change to the collinearity diagnostics like VIF, CI and the determinant
while omitting a positively and a negatively correlated variable in separate situations.

Hence, an important learning from their study was that it was important to assess the presence
of multicollinearity related problems only if a large change in the diagnostics mentioned above as
well as significant changes in slope estimates and their standard errors was observed. Once
detected, the incremental contribution of adding a correlated variable to the output variance needed
to be established in order to quantify the relative importance of a correlated variable. Increasing

the sample size would increase the reliability of the coefficient estimates but was not feasible in
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our case. Small sample size increases the standard error of the coefficient estimates, but since the
focus in this work was to determine the relative importance of each input variable in predicting
output variance, a change in the standard errors and significance was more significant than the
absolute value itself. Despite the limited sample size, the findings from this study were found to
be consistent with literature that a single parameter (a) could influence oxygen availability
significantly to control product selectivity even in reactors of other sizes as well. !%:12:14.164849 Both
these aspects will be clear under the MLR model analyses in later sections.

Simple regression models were constructed considering each input variable (Table 4.1)
separately. Linear, quadratic, cubic and exponential fits were evaluated along with prediction on
the validation set to identify the best fit for each individual predictor variable. The best predicting
variables were identified based on the performance parameters like RMSEP, R? (equation B.27
and equation B.28 in Appendix B, respectively) and the tendency to overfit was also assessed by
means of the difference between RMSEP and RMSEC. Recognizing that sample size was an
apparent limitation, an elaboration of this drawback is given in the next section on SLR models.

Going forward, multiple regression models with a maximum of 2 explanatory variables were
built, where the incremental contribution of the added variable to the output variance was evaluated
and regression coefficient estimates as well as standard errors were compared between the multiple
and simple regression models. In addition, standardized coefficients and partial correlations were
also evaluated. In this way, harmful effects of multicollinearity were mitigated to an extent so as
to draw meaningful chemometric inferences and tenable interpretations about the relative

importance of the regressors in predicting the output variables.

4.4.3 Independent dataset for validation/prediction

To validate the formulated calibration models on the basis of the training set of experiments
(refer to the experimental data from previous study used as calibration set — Table 4.2), a separate
dataset was collected for tetralin oxidation conducted at five other flowrates but at the same
temperature and pressure as the calibration set.

The data are summarized in Table 4.4. The predictive power of the constructed models is
examined on this validation set with the help of the statistical performance indicators, given

previously. This data set is entirely independent of the calibration set but falls within the range of
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the flowrates used in the calibration set to guard against extrapolation. The other parameters like
Ls, L; and the outputs accordingly change with the user-controlled flow rates to generate this

dataset (compare with Table 4.2).

Table 4.4. Experimental data collected at 150 °C and 90 kPa (gauge) used for prediction.

Exp Q Lg Lg Urp a CR P
ID (uL/min) (m) (m) (m/s) | (m*/m?) (mol/s)

Vi 1.5 0.0013 | 0.1590 | 0.0282 | 280000 | 7.27 x 10" | 13.0
Vs 2 0.0014 | 0.1270 | 0.0254 | 250000 | 5.53x 10 | 10.0
V3 4 0.0014 | 0.0850 | 0.0226 | 170000 | 1.33x 10 | 7.00
Vq 7 0.0022 | 0.0210 | 0.0205 | 56700 | 8.63x 10™® | 1.30
Vs 12 0.0037 | 0.0043 | 0.0153 | 7100 585x10™ | 1.40

4.4.4 Simple Linear Regression analysis (SLR): Model performance parameters

The relationships between the output and explanatory variables were evaluated through linear,
quadratic and cubic fits with the calibration set experiments by considering only the intercept term
and the power of the variable term in the regression calculation. Exponential fits are not shown
due to largely inconsequential results.

The coefficient estimates obtained through the calibration model were used to predict the
validation set outputs obtained at new flowrates of 1.5, 2, 4, 7 and 12 uL/min and the results of the
model performance on both the calibration and validation sets of experiments are shown in Table
4.5 and Table 4.6 for CR and S, respectively.

The first section in ‘Results and Discussion’ not only highlighted the potentially important
predictors for the outcomes purely based on Pearson’s pairwise correlation coefficients, but also
identified significant collinearity between the explanatory variables that could impact the relative
contribution to the output variance. Since the scatter plots (Figure B.1 in Appendix B) indicated
that a nonlinear relationship could be present between output-input variables, it was important to
find out the best fit for each predictor with the outcome before evaluating effects of

multicollinearity.
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4.4.4.1 Model prediction for conversion rate of tetralin (CR)

Table 4.5. Model performance parameters for simple linear regression of conversion rate of

tetralin on the input variables considering each of them separately.

Input Nature | RMSEP 9a p-value | RMSEC ge RMSEP-RMSEC
Variable of fit (mol/s) e b (mol/s) e (mol/s) ¢
Linear 1.78E-7 | 0.75 0.015 8.67E-8 | 0.89 9.17E-8
a Quadratic | 1.53E-7 | 0.82 0.001 3.14E-8 | 0.99 1.21E-7
Cubic 1.69E-7 | 0.77 0.0002 | 2.05E-8 | 0.99 1.49E-7
Linear | 2.34E-7 | 0.56 0.012 7.95E-8 | 0.91 1.55E-7
Lg Quadratic | 2.75E-7 | 0.40 0.0002 | 2.05E-8 | 0.99 2.55E-7
Cubic 3.24E-7 | 0.16 0.0002 | 2.11E-8 | 0.99 3.03E-7
Linear | 2.10E-7 | 0.65 0.102 1.58E-7 | 0.65 5.27E-8
Urp Quadratic | 1.68E-7 | 0.77 0.053 1.31E-7 | 0.76 3.76E-8
Cubic 1.35E-7 | 0.86 0.024 1.00E-7 | 0.86 3.46E-8
Linear | 3.10E-7 | 0.24 0.066 1.38E-7 | 0.73 1.72E-7
Ls Quadratic | 3.17E-7 | 0.20 0.111 1.62E-7 | 0.63 1.55E-7
Cubic 3.38E-7 | 0.11 0.158 1.82E-7 | 0.73 1.56E-7
Linear | 2.79E-7 | 0.38 0.203 1.93E-7 | 0.47 8.57E-8
Q Quadratic | 3.21E-7 | 0.18 0.350 2.23E-7 | 0.29 9.81E-8
Cubic 3.42E-7 | 0.07 0.430 235E-7 | 0.21 1.07E-7

4 Coefficient of determination for the validation set in the SLR; ® Represents the significance of the overall
simple regression model involving the constant and the variable term; ¢ Coefficient of determination for the

calibration set in the SLR; ¢ Always reported as absolute value (positive).

It can be seen from Table 4.5 that RMSEP for a is lowest for quadratic fit with a corresponding
highest 7% (0.82), which tells us that the highest variance in the validation set is explained by a
quadratic relationship between CR and a. Even though the significance of the cubic term is higher,
the p-value for quadratic term is still significant at the 0.1% level which is acceptable. The

quadratic model fits the calibration set quite well and shows a lower tendency to overfit than a
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cubic model since the gap between RMSEP and RMSEC is 18.5% lower for quadratic fit. Linear
fit showed the least propensity to overfit with the difference between RMSEP and RMSEC being
24.4% and 38.4% lower than quadratic and cubic fits, respectively. But since the RMSEP of a?
term is 14.5% and 9.8% lower than linear and cubic fits respectively, it was chosen as the best fit
model for a in predicting CR.

A similar interpretation for the model with L as the predictor showed that the linear fit has
the least RMSEP (2.35 x 107" mol/s), highest 75 (0.56) and minimum tendency to overfit based on
the smallest difference between RMSEP and RMSEC (1.55 X 107" mol/s). The closeness of both
the prediction and calibration error values invariably portray consistency of model performance
over multiple ranges of the data points. The p-value for the linear term was significant (1.2%) and
gave a good fit for the calibration set as well with 72 of 0.91 and an RMSEC of 7.95 X 108 mol/s.
On the other hand, a cubic fit worked best for the regression model with Uzp as the explanatory
variable with the lowest RMSEP and highest # values among other fits. Strikingly, it also had the
lowest p-value (2.4%), smallest RMSEC and largest % and thus simultaneously possessing the
least propensity to overfit (least gap between RMSEP and RMSEC). Regression models with Lg
and Q revealed that a linear fit could be chosen as the best model for their relationship with CR
(Table 4.5).

A comparison of the best fits and not just the linear models for each explanatory variable, in
terms of the statistical performance parameters, provided initial information on their individual
ability to predict the output, which will further be confirmed moving ahead with multicollinearity
analyses. The errors of prediction for the best fits of the 5 variables identified in this section can
be arranged in increasing order as: U3p < a? < L; < Q < Lg. The terms in the decreasing order of
significance for the best fit models were found to be: a? > L; > U3, > Lg > Q. This was also a
measure of the overall significance of explained variance in CR with the calibration set, in terms
of decreasing order of the F-statistic values. Overall, quadratic fit in a contributed to maximum
variation in CR (r¢ = 0.99), followed by L; (r¢ = 0.91) and U3, (rZ = 0.86), whereas L and Q
accounted for the least output variance with r# values of 0.73 and 0.47, respectively.

Similarly, a? and U3, contributed to almost equal explained variance in CR for the validation
set (% = 0.82 and 0.86 respectively) followed by L, with ar# value of 0.56. As with the calibration
set, Q and L accounted for the least variance in CR with values of 0.38 and 0.24 for the coefficient

of determination. On an average across all fits, the prediction error was the least when a was used
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as the explanatory variable in the simple regression model. Compared to a, the averaged RMSEP
values were larger for Uyp, L, Lg and Q by 1.2%, 67%, 81% and 86% respectively. Likewise, in
comparison to a, the averaged calibration errors over all the fits for Urp, Lg and Q were higher by
209%, 257% and 401% respectively while L; showed a lower RMSEC value than a by a paltry
18%. In summary, keeping the aforementioned discussion in mind, it can be partially concluded
that the overall variance in CR is well explained by mass transfer parameter, a and the

hydrodynamic parameters, Urp and L.

4.4.4.2 Model prediction for ketone-to-alcohol selectivity (S)

The results for this section are compiled in Table 4.6. Unlike the model with CR as the
outcome, linear fit had lowest RMSEP of 0.94 with the highest coefficient of determination of 0.98
for a in the validation set. The significance of the linear term was the highest with a p-value of
0.002, but it was to be noted that the quadratic and cubic terms were also significant at the 5%
level. The numbers for RMSEC and 1 further testified the accuracy of the linear model. The
RMSEC of the linear fit was lower than the quadratic and cubic model by 27% and 53%,
respectively. Likewise, the calibration coefficient of determination for the linear fit was higher
than the quadratic and cubic fit by 2% and 9%, respectively. The linear fit also displayed the least
tendency to overfit due to minimum gap between the prediction and calibration errors, followed
closely by the quadratic fit. Although there was not much to differentiate between linear and
quadratic fit based on these prediction errors and explained variance of the output variable in the
validation set, the linear model was chosen as the best fit for the simple regression between a and
S.

For the model with L; as the regressor, a linear fit was found to be the best with lowest
RMSEP and RMSEC values. The linear fit also sported highest coefficient of determination for
the calibration and validation sets with the lowest p-value. Expectedly, it depicted least chance of
overfitting. In the case of Urp as the explanatory variable, a quadratic fit showed least prediction
error and highest 74 though the corresponding numbers for the linear fit were very close. The
difference between RMSEP and RMSEC values were the smallest for quadratic fit and thus was
chosen as the best fit of Urp.
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Table 4.6. Model performance parameters for simple linear regression of selectivity of primary

oxidation products on the input variables considering each of them separately.

Input Nature 2a b 5e RMSEP-
Variable of fit RMSEP | 715 p-value RMSEC e RMSEC ¢
Linear 0.94 0.98 0.002 0.98 0.98 0.04
a Quadratic 1.41 0.95 0.004 1.35 0.96 0.06
Cubic 1.78 0.91 0.015 2.08 0.90 0.30
Linear 1.95 0.89 0.003 1.25 0.96 0.70
Lg Quadratic 3.58 0.64 0.007 1.59 0.94 1.99
Cubic 4.87 0.34 0.018 2.23 0.88 2.64
Linear 3.13 0.73 0.080 3.56 0.69 0.47
Urp Quadratic 3.09 0.73 0.043 293 0.79 0.20
Cubic 3.61 0.64 0.023 2.39 0.86 1.22
Linear 7.05 -0.38 0.007 1.65 0.93 5.40
Ls Quadratic 6.73 -0.26 0.021 2.34 0.87 4.39
Cubic 6.60 -0.21 0.040 2.88 0.80 3.72
Linear 3.22 0.71 0.137 4.19 0.58 0.97
Q Quadratic 4.40 0.46 0.276 5.10 0.37 0.70
Cubic 5.02 0.30 0.366 5.48 0.27 0.46

2 Coefficient of determination for the validation set in the SLR; ® Represents the significance of the overall
simple regression model involving the constant and the variable term; ¢ Coefficient of determination for the

calibration set in the SLR; ¢ Always reported as absolute value.

Next, an intriguing observation was that all polynomial fits displayed negative r4 values when
Lg was used as the input variable, which meant that Lg was not a suitable predictor for selectivity.
The interesting fact was that the fits explained the variance of selectivity in the calibration set quite
well with rZvalues in the range 0.80-0.93. This portrayed a clear case of model overfitting. The
linear term was shown to have highest significance (0.7%) but could not perform well with the
validation set.

Lastly, a linear fit was shown perform best when Q was the explanatory variable in the model

with a lowest prediction error of 3.22 and highest squared correlation coefficient of 0.71 with S in
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the validation set. It was interesting to note that the calibration R? for quadratic and cubic fits were
very low (0.37 and 0.27 respectively) for Q and the rZ value of 0.58 for the linear fit was the lowest
among all the input variables. This was supportive of the discussion in the previous section that Q
bore the lowest correlation with the outputs.

The comparison between fits of input variables for the prediction of selectivity is provided in
section B.8 in Appendix B. Based on the above analysis, it can be stated that the gas-liquid
interfacial area (a) and the length of the gas bubble (L;) can be considered as better potential
predictors than other explanatory variables for selectivity as the output. Nevertheless, their
exclusive contributions to the variance in the output variables remains to be evaluated and will be

examined in the next few sections.

4.4.4.3 Sample size limitation

As already pointed out, it is quite apparent that the limited number of samples in the
calibration and validation sets can be seen as a drawback in this study. Before moving ahead with
further analyses, this point needs to be addressed and clarified. From an experimental viewpoint,
it was difficult to maintain Taylor flow conditions at flowrates lower than 1 pL/min and higher
than 15 pL/min due to practical constraints. The liquid build-up was too high to form liquid slugs
and gas bubbles at higher flowrates. On the other hand, at lower flowrates, the lower amount of
liquid in the microreactor made it difficult to monitor the reaction in the liquid phase. Also, the
maximum conversion attained was 0.74 %wt. at 1 pL/min and there was minimal change
anticipated at further lower flowrates. The selectivity was almost constant at flowrates higher than
7 puL/min (Table 4.2 and Table 4.4). Thus, the minimal variability in the conversion and
selectivities did not warrant more experiments to be conducted.

From a statistical point of view, with the available 10 samples (5 calibration and 5 validation),
a separate study was conducted where the number of samples in the calibration set was increased
to 6 and 7 (4 and 3 samples in validation set, respectively) to check the variation of the prediction
and calibration errors with conversion rate and selectivity as the outputs and a as the input. It was
seen that the best fits highlighted in the previous section remained the same across sample sizes
and considering RMSEP, RMSEC and tendency to overfit all together, the choice of 5 calibration

and 5 validation sets can be justified. Cross validation was not conducted as specific regression
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model parameters were not required to be tuned or optimized as in the work by Sivaramakrishnan
et al. °° The validation dataset given in Table 4.4 can also be used for prediction from the

constructed regression models.

4.4.4.4 Residual Plots

It is always a good practice to inspect the residuals to detect any violation from the equal
variance assumption, as highlighted in the assumptions section previously. The standardized
residuals for the SLR models of CR and S were plotted against the standardized fitted/predicted
values of the explanatory variables and are provided in Figure B.2 of Appendix B. It should be
mentioned that since there are only 5 points, a rigorous interpretation cannot be carried out. The
following can be visualized from the plots:

a. The mean of the residuals is roughly zero.

b. In every case, the residuals represented as scatter points do not appear to follow any known
pattern, which means that the linearity assumption between the output and the input term indicated
in the figure caption (transformed variable for two-phase velocity) is valid.

c. The residual points can be considered distributed equivalently above and below an
imaginary line passing through 0 parallel to the x-axis. This satisfies the assumption of equal
variance of the errors.

Thus, based on these observations, the regression models developed can be considered valid

and we proceed to multiple linear regression with two predictor variables in the following section.

4.4.5 Multiple linear regression (MLR) vs. SLR models: Comparing parameter estimates,

their standard errors and significance

As discussed in the previous section, gas-liquid interfacial area was able to explain maximum
variance in both the outputs for the calibration set with the highest significance among other
explanatory variables. Excellent predictive ability of the model with a® and a as the input for CR
and S as the output variable, respectively have been established. But it was also found that L; and
Urp were close competitors with respect to explaining the variance in the output and moreover,

were highly correlated with a. Thus, some amount of disentangling the combined effects of the
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correlated variables on the output was needed to illustrate the relative importance of each variable

in contributing to the output variance significantly.
4.4.5.1 Analysis of the effect of explanatory variables on CR
Table 4.7 and Table B.1 in Appendix B show the results of MLR and SLR for regression of

CR on the explanatory variables, respectively. Multicollinearity diagnostic measures are also

shown.
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Table 4.7. Parameter estimates and multicollinearity diagnostics from the multiple linear

regression models with 2 explanatory variables and CR as the output. The eigenvalue column has

been omitted due to space constraints. Kindly refer the published article if required.

Mo Var. Pr> | Std. VI Variance
del | involve b, ¢ SE ¢ |terie| | coeff. | RZ F' . CI Proportions
2 d’ ¢ * by | T. | T,
by 6.3E-8 | 2.9E-8 | .165 1.0| .03 | .01 | .0
80
M1 | a?(T)) | 6.9E-18 | 1.9E-18 | .071 1.16 | .988 (01) 17 | 23] 43 ] .02 .0
Le (T2) | -4.7E-7 | 89E-7 | .649 | -.173 17 | 12 | 53] 97| 1
by 4.8E-8 | 4.4E-8 | .382 1.0| .02 | .01 | .0
70
M2 | a?(T)) | 5.8E-18 | 1.4E-18 | .050 | .975 .986 (01) 7 124] .20 .09 .0
U3p (T2) | 7.2E-4 .0084 939 | .019 7 197 .78 | 90| 1
b, 4.0E-8 | 4.8E-8 | .487 1.0 .03 .03 ] .0
72
M3 | a?(T)) | 6.1E-18 | 6.9E-19 | .013 1.01 .986 (01) 2 | 1.5).00 | 26| .1
Q (Ty) 1.2E-9 | 4.7E-9 | .818 | .030 2 | 551977119
by -1.2E-7 | 6.0E-8 | .174 1.0 | .00 | .01 | .0
384
M4 | a?(T,) | 7.3E-18 | 5.1E-19 | .005 1.22 997 6 | 1.7 .00 .12 | .0
(.00)
Ls (T2) | 3.9E-5 1.3E-5 | .097 | .251 6 16 | 1.0 | .87 | 1

* Prefix ‘M’ refers to multiple linear regression models; ® b, represents the constant or intercept term in the
regression equation. T; and T, indicate the respective input variables used to specify the variance
proportions associated with that variable; ¢ Regression coefficient or slope estimates; ¢ Standard errors
associated with the respective coefficient estimate; p-value indicating the probability that the t-statistic for
the term is greater than the critical value which depends on the degrees of freedom (DF) of the model. For
MLR, DF =2 & teii= 4.303; " F-statistic, distributed as F with 2 & 2 DF for MLR (Ferica = 19.00). Statistic
for the test of overall R? of the model. Value in bracket is the p-value for the significance of the overall

model; * Standardized coefficient for the input variable in the MLR model.
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(i) Effect of gas-liquid interfacial area and length of gas bubble

First, it is to be noted that a maximum of 2 variables were considered for the regression
analysis because of the limited number of samples available in the calibration set. Even with only
two variables in the system, three parameters needed to be estimated with 5 data points. Care was
taken to restrain the system from being over-defined, i.e. having more variables than observations.
Consider model M1, S1 and S3 in Table 4.7 and Table B.1 in Appendix B. The sign of the
regression coefficient estimate for L; was changed from positive (S3) to negative (M1), while it
remained same for a?. This reversal for L is an indication that any mutation in this variable would
negatively affect the changes in CR when a? is kept constant and thus, its contribution to the output
variance is diminished compared to a? in the combined model. The standard errors for a® and Ly
when modelled in combination increased by 377% and 88%, respectively which is a direct
consequence of the high correlation between them.

Moreover, despite the overall model (M1) being significant with a p-value of 0.012
corresponding to the F-statistic, the individual coefficient estimates were not significant at the 5%
level. However, the coefficient estimate for L. displayed a much higher p-value (0.649) than that
of a? (0.071), providing a hint that a?® term was relatively more important than L. Critical values
of F-test *! and t-tests °! are obtained from literature.

Since both the predictors are measured in different units, it was useful to look at the
dimensionless standardized coefficients, where a higher value would imply more relative
significance of that variable. In other words, when the input variable changes by one standard
deviation keeping the other variable constant, the outcome changes by ‘standardized weight’
number of standard deviations corresponding to that variable. It can be seen from Table 4.7 that
the standardized weight of a? (1.16) is an order of magnitude higher than L; (-0.173), again
reiterating that the a? has a higher weightage in affecting CR. This was not as apparent in the
individual models S1 and S3 (Table B.1) since the standardized weights were not too different,
though a? had a higher value. In addition, the variables involved had the highest value for VIF
(17) as compared to models M2, M3 and M4, complementing the fact that a? and L; possessed
the highest collinearity among all other combinations with a?. Finally, both the predictors

displayed high variance proportions on the third eigenvalue dimension (Table 4.7).
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Almost all the variance in their regression coefficients is associated with this dimension (97%
and 100%), thus confirming the large dependency between the variables. Attention is to be brought
to the fact that though the CI was below 15 ** or 20, ** the question of multicollinearity still
prevailed. This further exemplifies the notion in the literature that no consensus has yet been
reached regarding the threshold values of any diagnostic measure explaining multicollinearity. It
is obvious that the R? never decreases when a regressor variable is added to the existing model as
can be comprehended from S1, S3 and M1. R? of M1 is higher than that of S1 and S3 by 0.002
and 0.078 units, respectively. The incremental effect of each predictor in increasing the total
variance in CR is investigated through a modified F-statistic (equation B.26 in Appendix B). The
values of the statistic for the different combination of variables analyzed in models M1 - M4 are
given in Table 4.8.

The F-curve in this case is distributed with 1 and 2 degrees of freedom when the null
hypothesis (that there is no incremental effect of the added variable) is true. When L; was added
to a? (S1), the F value was 0.33, while if a? is added to L (S3), F increased to 13.00. Neither
occasion was significant since the critical value for F (1, 2) is 18.51 but it definitely indicated that
the incremental effect of adding a? to L; was much greater than the other way around. Lastly, the
partial correlation between CR and a?, while controlling for L; was 0.929 (a decrease of 6.4%
from the zero-order correlation of 0.993). Contrarily, the partial correlation between CR and L,
while controlling for a? stooped down to -0.351 (a sharp decrease of 137%).

This clearly certified that the relationship between conversion rate of tetralin and gas-liquid
interfacial area was not affected much by the length of the gas bubble, even though they were
highly correlated (second column from the right in Table 4.8). Put differently, in the presence of

a? term in the model M1, the contribution of L, to the variation in CR was negligible.
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Table 4.8. F-statistic values for addition of one explanatory variable to SLR models with CR and

S as outcome.

Output Variables F- F-critical b
R?* MLR r2 SLR* r VIF
variable involved statistic (1,2)
L; over a® 988 (M1) 986 (S1) 33
18.51 | .971| 17.29
a? over Lg 988 910 (S3) 13.00
U3p over a? 986 (M2) 986 0.00
18.51 | .929 | 7.32
c a? over U3p 986 856 (S2) 18.57
R
Q over a? 986 (M3) 986 0.00 -
18.51 1.98
a? over Q 986 467 (S4) 74.14 704
Lg over a? 997 (M4) .986 7.33 -
18.51 5.51
a? over Lg 997 727 (S5) 180.00 .905
L overa 986 (SM1) 977 (SS1) 1.29
18.51 | .998 | 250.25
a over Lg 986 962 (SS2) 3.43
U%, over a 995 (SM2) 977 7.20
18.51 | .946 | 9.52
s a over U%, 995 792 (SS3) 81.20
Q overa 993 (SM3) 977 4.57 -
18.51 3.37
a over Q 993 .576 (SS4) 119.14 .839
Lg over a 987 (SM4) 977 1.54 -
18.51 9.35
a over Lg 987 934 (SS5) 8.15 945

& Calibration coefficient of determination of SLR for CR and S on the existing variable. Reference to

the corresponding model in Table B.1 and Table B.2 in Appendix B is given in brackets; ® Pairwise

bivariate correlation between the two variables involved.

(ii) Effect of gas-liquid interfacial area and two-phase velocity

No sign reversal was observed in the regression coefficient estimate of U3, in model M2

(Table 4.7) when compared with model S2 (Table B.1 in Appendix B), but it decreased by 2 orders

of magnitude (by 98%) from S2. On the contrary, the change in the slope estimate for a® was

imperceptible. The interpretation of the estimates would be more meaningful by looking at the
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corresponding standard errors. The standard error for U3p in M2 is an order of magnitude higher
than the coefficient itself, while in S2, it is an order of magnitude smaller.

This indicates that the coefficient estimate of U3, is unstable and not very reliable because
the lower bound for the 95% confidence interval range of values for this estimate was negative (-
0.0354), which means that 0 is also a possible value for U3p. Though the standard error for a?
increased by 231% as compared to S1, the slope estimate obtained in M2 was still significant (p-
value = 0.050). The standardized coefficients for the two predictors signified that changes in a?
affected the output much more than changes in U3p, thus emphasizing the higher importance of
a? in predicting the output.

Since the pairwise correlations between L; & CR (0.954 — Table 4.3) and U3, & CR (0.925 —
Table B.1) are both positive, it is expected that the regression coefficient estimates (standardized
included) should also be positive in the MLR. As already reviewed, this was not the case with L
(previous section), plausibly due to the high correlation with a? (0.971 — Table 4.8). In the case of
U3p, the coefficients are still much lower compared to a? in the MLR, but at least still maintain
the positive effect on the output, unlike L;. The reason for this can be attributed to the lower
correlation between U2, and a? (0.929 - Table 4.8) in comparison with that between Lg; and a?.

The overall model (M2) is significant at the 5% level with a F (2, 2) = 70.85 and a p-value of
0.014. With reference to the discussion on multicollinearity, a change in the VIF is a better
indicator of multicollinearity than the absolute value itself. VIF was 7 between U3p and a?, which
meant that according to Kutner et al., > multicollinearity was not a problem. But as was observed
in Vatcheva et al., 37 VIF increased to 7 as compared to the SLR models S1 and S2, thus implying
that collinearity can be a hindrance to model interpretation. The VIF was lower than that of M1
and it was interesting to note that it followed the order of the pairwise correlations between the
transformed explanatory variables as given in Table 4.8.

On a relative scale, the problem of collinearity between U3p and a? was found to be lesser
than that existing between L and a? and was reflected in the results just elaborated. CI value for
M2 was also lower than that for M1, but still higher than those for S1 and S2, indicating the
presence of collinearity. This was also confirmed by the higher concentration of the variance
proportions of the regression coefficients of both the predictors on the third eigenvalue dimension

in M2 (90% and 100%).
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The results from Table 4.8 for CR were further affirmative of the relative significance of a?
as compared to U3, in explaining output variance. The increment to 72 of S1 provided by U2, was
insignificant (F-statistic = 0.00), while the incremental effect of adding a? to model S2 in
determining CR values proved to be significant with F (1,2) = 18.57 and cleared the critical value
of 18.51. Additionally, the partial correlations between a? & CR, controlling for U3, and that
between U2, and CR, controlling for a? were 0.950 and 0.060, respectively. This reflected that in
the presence of a? term, the incremental contribution of U2, to the output variance is slim. Thus,
it can be stated that the gas-liquid interfacial area was the more important parameter compared

with two-phase velocity as well.

(iii) Effect of gas-liquid interfacial area and injection flow-rate of tetralin

For brevity, details of this section are provided in section B.9.1 in Appendix B. To summarize,
it can be asserted that the gas-liquid interfacial area (transformed quadratic form) was the more

important variable in predicting conversion rate of tetralin, relative to the injection flow rate.

(iv) Effect of gas-liquid interfacial area and length of liquid slug

The reader is referred to section B.9.1 in Appendix B for the detailed analysis of this section.
These results gave a different picture of collinearity, where this phenomenon actually increased
the individual contribution of a predictor in describing the overall variance of the output, that was
previously observed in literature. **

But, the underlying observation in all four MLR models was that the relative importance of

the gas-liquid interfacial area was substantial in explaining the variance in conversion rate.

4.4.5.2 Analysis of the effect of explanatory variables on §

Table 4.9 and Table B.2 in Appendix B show the results of SLR and MLR for regression of S

on the explanatory variables, respectively. Multicollinearity diagnostic measures are also shown.
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Table 4.9. Parameter estimates and multicollinearity diagnostics from the simple and multiple

linear regression models with 2 explanatory variables and S as the output.

Var. Pr> | Std. Variance
Mo VI | EV
del? involve | b,® | SE® | [t | coeff | R% F' . , | CI| Proportions
e
d’ ¢ L * by | Ti | T,
by 376 | 1.05 | .590 26 | 1 .05 | .00 | .0
71
SMI1 | a(T:) | 1E-4 | 6E-5 | .203 | 2.63 | .986 250 | 4 3 92 | .00 | .0
(014)
Ls (T2) | -108 92 364 | -1.64 250 | .0 | 54| .03 | 1.0 1
by 2.55 .89 103 27 | 1 .01 | .01 ] .0
211
a(T)) | 6E-5 | 7E-6 | .011 | 1.39 | .995 95| 3 3 A3 | .08 | .0
SM2 (.005)
Utp
-1E4 | 3982 | .107 | -.42 95| 0 | 14| 86 | 91 | 1
(T2)
by -2.30 | 1.22 | .200 22 1 .01 | .02 ] .0
146
a (T, | 5E-5 | SE-6 | .008 | 1.19 | .993 34| 8 2 .00 | .11 | 1
SM3 (.007)
232
Q (Ty) 0 105 | 158 24 341 .0 8 99 | 87| 9
by 5.89 | 4.64 | 332 24 | 1 .00 | .01 | .0
74
a (T, | 3E-5 | 1E-5 | .106 70 | 987 93 | .6 2 .00 | .06 | .0
SM4 (.013)
Le(T) | | 942 | 345 | -31 93 .0 |23 1.00 93 1
1154

@ «SM” refers to multiple linear regression models for selectivity as the output; ® b, represents the constant
or intercept term in the regression equation. T and T, indicate the respective input variables used to specify
the variance proportions associated with that variable; © Regression coefficient or slope estimates; ¢
Standard errors associated with the respective coefficient estimate; ©p-value indicating the probability that
the t-statistic for the term is greater than the critical value of t-stat, that depends on the degrees of freedom
(DF) of the model. For MLR, DF =2 & tei=4.303; { F-statistic, distributed as F with 2 and 2 DF for MLR
(Feriict = 19.00). Statistic for the test of overall R? of the model. Value in bracket is the p-value for the

significance of the overall model; & Eigenvalue for the respective dimension; * Standardized coefficient.
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(i) Effect of gas-liquid interfacial area and length of gas bubble

Best fits for a and L based on predictive performance on selectivity were already identified
as linear for both the predictors in the results of SLR as discussed previously. One observation that
was very apparent in this case was the very high simple correlation between a and L; (0.998 —
Table 4.8). It was supported by the highest VIF (250.25) for SM1 among all MLR models with a
correspondingly large CI value of 54.12 (Table 4.9). Almost 100% of the proportion of variances
of the regression coefficient estimates of both the predictors belonged to the third eigenvalue
dimension, indicating exorbitant collinearity.

The steep change in the magnitude as well as the sign reversal (positive to negative) of the
regression coefficient estimate of L; from model SS2 to SMI1 can be attributed to its high
correlation with a. This was accompanied by an acute upsurge of 1250% in the standard error of
L. Concurrently, both the regression coefficient estimate and the standard error of a increased by
an order of magnitude from model SS1 to SM1, rendering the coefficient insignificant in the
process (p-value = 0.203). But, the L term was relatively less significant than a, having a p-value
of 0.364. The standardized coefficients clearly point towards the higher relative importance of a
(2.63) as compared with L (-1.64). Nevertheless, the overall model was significant with a p-value
(two-tailed) of 0.014 for the probability of a new F-statistic being more extreme than the observed
value of 70.92 for SM1.

The F-statistic for the test of incremental effect of adding a to L, (3.43) for improving the
overall 72 from the SLR to MLR, was greater than the adding L; to a (1.29) by a small margin
(Table 4.8). The collinearity between the explanatory variables involved in model SM1 resulted in
a downturn of 19.3% from the zero-order correlation to the partial correlation between a and S,
while controlling for L;. a had a more dramatic effect on the relationship between L; and S as a
zero-order correlation of 0.981 dropped down to a partial correlation of -0.636, thus amplifying

the relative importance of a over L in influencing selectivity of the products in tetralin oxidation.

(ii) Effect of gas-liquid interfacial area and two-phase velocity
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A quadratic model was determined as best fit for the prediction of S with Uyp (refer SLR
results). When regressed along with a in predicting S as in model SM2, the overall significance of
the model was very high (p-value = 0.005 for the F-statistic of 210.90), with a corresponding R?
value of 0.995 (Table 4.9). The VIF and CI numbers stood at 9.52 and 14.34, respectively, which
were both near the respective threshold values highlighted by Kutner et al. > and Midi et al. > The
CI value for a did not change by much but compared to SS3, it increased 3-fold for UZ%,. Major
proportion of the variances (91% and 100%) of the regression coefficients of the predictors were
found to be concentrated on the 3™ eigenvalue dimension. A high correlation coefficient of 0.946
(Table 4.8 for S) between the predictors, along with the collinearity diagnostic statistics indicated
that the collinearity could be a problem in regression.

Conceivably, the regression coefficient estimate of UZ%, moved from positive (23740.8) to
negative (-11194.0) in model SM2 from SS3, revealing the negative impact of collinearity on UZp.
This drastic difference made the term insignificant (p-value =.107), even though the standard error
reduced approximately by half. On the other hand, the slope estimate and the corresponding
standard error of a in model SM2 increased by 1.4 times and 1.75 times from SS1 respectively,
but the coefficient was still significant (p-value = 0.011). Additionally, the increased standardized
coefficient of a (1.39) in comparison with that of L; (-0.42) elucidated the higher influence of the
effect of a change in a causing a change in S.

The incremental contribution in elevating the overall variance of the model SM2 by appending
a to U2, (in model SS3) was significant, as indicated by a F-statistic value of 81.20. Adding U%p
to a did not prove significant since the F-value was lower than the critical value of 18.51. The
partial correlation between a and S (0.989) signified that their relationship was not affected by
UZp at all since it was 0.001 units higher than the zero-order correlation between them. On the
other hand, the presence of a had a negative impact on the relationship between UZ, and S as the
partial correlation was -0.893 while the zero-order correlation was 0.890. These results tell us that

gas-liquid interfacial area was the more important predictor for selectivity.

(iii) Effect of gas-liquid interfacial area and injection flow-rate of tetralin

Detailed discussion for this section is provided in section B.9.2 in Appendix B. The analysis

suggested that a was the more relevant variable than Q in predicting the selectivity.
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(iv) Effect of gas-liquid interfacial area and length of liquid slug

Section B.9.2 in Appendix B provides the analysis for this section as well. On the whole, it
can be stated with confidence that gas-liquid interfacial area was the most significant contributor

to overall variance in the outcomes, conversion rate and selectivity based on the above analyses.

4.4.6 Predicting the outputs from Q: Identification of the best regression pathway

Since Q was the only manipulated variable in the tetralin oxidation system, it was considered
lucrative to trace out the best possible statistical path to predict the output variables. The outcomes
of this new path were compared with the SLR models, S4 and SS4 which directly predicted CR
and S respectively from Q to look for improvements in model performance parameters (RMSE
and R?). This is a faster way to monitor the reaction’s progress without the use of offline GC
measurements, which was another aim of this study.

The results of this section are compiled in Table 4.10. Based on Table 4.3, it can be seen that
Q had maximum correlation with Urp (rg_y,, = -0.980). A simple linear regression model was
built with Urp as the outcome and Q as the explanatory variable based on the calibration set and a
linear model was determined the best fit based on least RMSEP and highest 2 for the validation
set.

Next, a regression relationship was established between Upp and a, since the gas-liquid
interfacial area was proved to be the best predictor for both the outputs as discussed before. With
the help of data points in the calibration set, a linear model was chosen as the best fit between these
two variables. Afterwards, the predicted U;p values in model P1 (Table 4.10) with the validation
set were used as input to the regression relation built in model P2 in order to predict a. Lastly,
these new a values were utilized to predict CR and S using the already determined best fit quadratic
and linear regression relationships (SLR models for CR and S). The variance explained in CR
through this process was higher (15 = 0.46) than model S4 (r5 = 0.38) for the validation set (Table
4.10). Also, the prediction error in model P3 was lower than model S4 by 7%, indicating a clear

advantage of this pathway. Likewise, the prediction error and the coefficient of determination for
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the validation set in model P4 was lower by 8% and higher by 7% than the corresponding values
in model SS4, respectively.

The previous discussions on SLR and MLR models proved that the outputs can be predicted
with acceptable accuracy from the gas-liquid interfacial area, which needed to be derived from
analysis of the images captured during the tetralin oxidation experiments. > It discarded the need
for GC analysis to calculate conversion rate and selectivity. The new pathway discussed in this
section proved beneficial and showed potential to predict conversion rate and selectivity from inlet
flowrate of tetralin by eliminating the need for calculating the hydrodynamic parameters through

image analysis, in addition to avoiding GC measurements. This also saves time for the researcher.

Table 4.10. Results for prediction of CR and S from Q through the best regression pathway.

Input | Output | Model | RMSEP p- RMSEP -
variable | variable ID : rp | RMSEC™ e value > | RMSEC"
Q Urp P1 .0031 0.70 .0013 0.96 | 0.003 0.0018
Urp a P2 584124 | 0.82 61427.0 | 0.81 | 0.037 3014.6
a CR P3 2.60E-7 | 0.46 3.14E-8 | 0.99 | 0.001 2.29E-7
a S P4 2.95 0.76 0.98 0.98 | 0.002 1.97
Q CR S4 2.79E-7 | 0.38 1.93E07 | 0.47 | 0.203 8.57E-8
Q S SS4 3.22 0.71 4.19 0.58 | 0.137 0.97

* The values are in the respective units of the output variable; * p-value relates to the significance of
both the coefficient of the predictor as well as the overall model in SLR; ® Always reported as absolute

values.

4.4.7 Implications of the current work

This study proved that the oxidation process of an important naphthene-aromatic
petrochemical, tetralin conducted at 150 °C and near-atmospheric pressure could be monitored
(tracking of reactant conversion and product selectivity) using conventional chemometric tools.
The statistical analyses performed in this work signify that the most important parameter that

controlled product selectivity is the gas-liquid interfacial area (a). The two-phase velocity (Urp)
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that is closely related to the Marangoni effects, comparatively constitutes a lesser weightage in
influencing the system outputs.

A key implication is that a reactor could be designed to create a higher interfacial area, for
example, a loop reactor, 433 for industrial applications on a larger scale. However, small-scale

1454 can be produced

productions of high value products, valuable pharmaceuticals or chemicals
by using the microfluidic reactor due to its capability to maintain higher interfacial area. There
was a definite value addition to our previous work > in employing mathematical tools to study the
dependencies between the different parameters that affected oxygen availability and deducing the

most significant parameter.

4.5 Conclusions

Application of statistical regression models to monitor tetralin oxidation reaction in a
microfluidic reactor by identifying the parameters of paramount importance that affect the outputs
(conversion rate and selectivity) was the central focus of this work. IBM SPSS (Statistical Package
for the Social Sciences) software was used for all statistical analysis conducted in this work. Some
key findings were as follows:

a) The magnitude and direction of the relationships between the explanatory variables and the
outcomes (CR and S) were investigated by means of Pearson’s correlation coefficients. It
was found that L; and a showed maximum positive correlation with CR and S
respectively. Q and Lg displayed a negative correlation with both the outputs, whereas Urp
had a moderate positive correlation. There were also indications on the presence of strong
multicollinearity between the predictors as evident from values of correlations > 0.9. This
was confirmed further by diagnostic measures like elevated VIF and CI values.

b) Best fits for each predictor were determined by examining separate SLR models and
evaluating the results through model performance parameters, i.e. chosen based on lower
RMSEP, higher 74 and lesser propensity to overfit. Specifically, the order of best-fitting
predictors based on SLR models and considering the statistical performance parameters
were: a2 > Lg > U3p > Lg > Q for CR as the output; a > L > U2, > Q for S as the output.
The model with Lg as the explanatory variable gave poor results with the validation set,

indicating overfitting. A major limitation in this study was the small number of calibration
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d)

samples due to experimental and practical constraints but as elaborated in the discussion,
it did not hinder the consensus on a meaningful interpretation.

In order to identify the relative importance of the predictors in explaining output variance,
it was essential to resolve the issue of multicollinearity among the explanatory variables.
For each output, four MLR models were explored by adding one input variable to the best
predictor from SLR (gas-liquid interfacial area — a). Sign reversals and inflated standard
errors were observed for the added variable, thus rendering it insignificant due to
collinearity effects. The standardized regression coefficients from MLR models further
gave evidence that a influenced the outputs the most.

Partial correlations between a and CR and S, controlling for other predictors further
indicated that even in the presence of other variables, a shared maximum variance with the
outputs. Incremental contribution of a in improving the overall model 72 by adding to the
SLR models with other predictors was proved to be significant through F-tests distributed
with (1, 2) degrees of freedom.

A faster way to monitor the reaction by eliminating the need for image analysis, in addition
to the GC measurements, was attempted. The best pathway to predict system deliverables
from the lone manipulated variable in the system (Q) was identified to be: Q > Urp > a -
> CR and S. This pathway gave lower RMSEP and higher 1% as compared to model S5 and

SS5, where the outputs were directly predicted from tetralin injection flowrate.

Thus, by means of the chemometric approach undertaken in this study, it can be concluded

that oxygen availability in terms of gas-liquid interfacial area is one of the major factors affecting

conversion and selectivity in tetralin oxidation. It also indicated potential application of the same

principles to larger reactors (loop reactors for example) for industrial applications.
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5. Viscosity of Canadian oilsands bitumen and its modification by thermal conversion *

ABSTRACT

The dependence of Canadian oilsands-derived bitumen viscosity on different factors like the
microstructure, chemical composition, compatibility and interactions between the different
constituent components has been documented in literature but a comprehensive review is missing.
The goal of this chapter is to explore the sensitivity of bitumen viscosity on some of these
parameters in depth and to provide scientific explanation for the observed changes. Non-catalytic-
thermal conversion is used as tool for realizing this objective. Previous studies on thermal
treatment of bitumen reported contrasting trends in viscosity with reaction time, but a substantial
explanation was not provided and served as motivation for the experimental investigations in this
chapter. Specifically, post-reaction procedures like nature of solvent used to extract the products
from the reactor and rheological conditions of viscosity measurement like shear rate had a
significant impact on viscosity. Methylene chloride introduced hydrogen bonding interactions due
to some solvent remaining after evaporation, which plausibly increased viscosity of thermally
converted bitumen significantly. This was not observed with toluene as the extraction solvent.
Tracking changes in other properties like free radical content, boiling point distribution, aromatic
and aliphatic content during thermal conversion as well as before and after solvent addition and
removal assisted in accounting for the viscosity changes. Chemical composition of the feed and its
geological origin also seemed to have an effect on its viscosity. Assuming a colloidal
representation for bitumen, a theory was proposed on the effect of the nature of asphaltene
aggregation on viscosity in terms of changes in the effective volume of the aggregate clusters

during thermal conversion. The onset of elastic nature on application of shear is also explored.

Keywords: Thermal conversion; Athabasca bitumen viscosity; solvent extraction; effect of shear

rates; product characterization; asphaltene aggregation.

4 This work was published as a book chapter in the ACS Symposium Series as “Sivaramakrishnan, K.; De Klerk, A.;
Prasad, V. Viscosity of Canadian Oilsands Bitumen and Its Modification by Thermal Conversion. In Chemistry
Solutions to Challenges in the Petroleum Industry; Rahimi, P., Ovalles, C., Zhang, Y., Adams, J. J., Eds.; ACS
Symposium Series; American Chemical Society: Washington, DC, 2019; Vol. 1320, pp 115-199”.
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5.1 Introduction

The extraction and transportation of Canadian oilsands bitumen has posed a long-standing
challenge due to the low fluidity of bitumen. ' In addition to the high viscosity of bitumen, it is
also fouling in nature, like some heavy crude oils. What are the problems associated with high
viscosity fluids, especially in pipeline transport? The quandary lies in the fact that high viscosity
leads to elevated pressure drop compared to less viscous fluids in pipelines during transportation
that escalates the pumping loads which in turn increases the cost of transportation and reduces
capacity. *

Part of the problem is due to the presence of ‘heavy’ compounds called asphaltenes that
constitute between 15 — 20 % (expressed as n-pentane insoluble material) of bitumen extracted
from Canadian oilsands. * Asphaltenes are a solubility class of material that are precipitated from
solution on addition and mixing with lighter paraffinic compounds like n-pentane or n-heptane.
Though there has been no particular acceptance regarding a generalized representation of their
structure in the literature, ° they are prone to aggregation and there is a risk of subsequent
precipitation under conditions that exist in pipelines due to de-pressurization and incompatibility
with the some oils that make up the surrounding medium. Precipitation of asphaltenes leads to
clogging due to the formation of solid deposits and is detrimental to transportation.

The aggregation susceptibility of asphaltenes can also be a significant cause for viscosity
increase of bitumen. > All asphaltenes may not be in the aggregated state and the converse need
not be true either. Any cluster of molecules existing in the nanometer to micrometer size range can
be considered as an aggregate. ® An obvious strategy to decrease the risk of precipitation is to
reduce or remove the heavy asphaltene-type material through deasphalting, which has also shown
to be beneficial in reducing viscosity. ’

Pipeline specifications in North America require viscosity of the liquid to be a maximum of
0.33 Pa.s or 350 cSt at a minimum pipeline temperature of 7.5 °C (winter temperature) and density
less than 940 kg/m> (or > 19 °API) at 15.6 °C. ® It also poses restriction on the total olefin content
to be < 1 %wt. as 1-decene equivalent. This meant that a viscosity reduction of several orders of
magnitude is required from a feed bitumen viscosity in the range 10 — 100 Pa.s measured at 25 °C

along with a significant decrease in density from > 1000 kg/m*® for the bitumen feed.
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Current methods to decrease viscosity after extraction include upgrading and the use of
diluents. Natural gas condensate, which is a mixture of Cs+ liquids is a common diluent, as is light
naphtha, but employing diluent has certain disadvantages. Due to their paraffinic nature, they
increase the risk of agglomeration and precipitation of asphaltenes. Their usage is also limited by
their insufficient availability of diluents at oilsands production sites and higher cost due to the
installation requirement of additional pipelines for their transport and recovery. °

A full upgrader at the extraction site converts the bitumen to synthetic crude oil (SCO) which
is quite low in sulfur and other heavy metals and is suitable for feeding into downstream refineries.
But installation and operation of a full-scale upgrader is much more expensive than using diluents
to make dilbit or a partial upgrader. To put things into perspective, the cost of full upgrading
(including capital) would be much higher than a partial upgrader and also slightly more than dilbit
production. '° Field or partial upgrading aims to find the middle ground between bitumen dilution
and full-scale upgrading. Here, the intent is to achieve sufficient viscosity reduction at the site of
extraction with minimum focus on changing associated chemical properties.

Visbreaking is the lowest cost per capacity residue conversion technology !!' and therefore of
interest as a potential field upgrading technology. Visbreaking, as one of the forms of thermal
conversion processes apart from coking and gasification was found to be more successful than
catalytic conversion due to the risk of catalyst deactivation by coke deposition and metal
contamination as the thermal cracking progresses. '* Industrially, visbreaking is conducted at
temperatures of 430 — 490 °C and residence times depending on the type of visbreaker employed.
Coil visbreakers operate for shorter residence times while soaker visbreakers employ longer times.
13 The pressures are generally less than 2 MPa, with a minimum of 0.3 MPa. '* However, the
conversion based on the decrease in vacuum residue material in the feed is limited by coke
formation in the industrial visbreaker. !° Viscosity reduction rather than conversion increase is of
primary importance in visbreaking for partial upgrading and it is to be noted that viscosity of
complex mixtures like bitumen is not dependent on a single dominant parameter like that of
molecular weight for polymers.

The severity of the reaction conditions in coking is much higher than that of visbreaking. A
higher temperature of 480 — 510 °C combined with residence times up to 24 hours and a pressure
of ~0.6 MPa are typical conditions for delayed coking. Delayed coking is the most common type

where the advantage is the rejection of metal content along with the carbon is highly efficient. '°
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However, the main disadvantage compared to a hydroconversion process is that the liquid yield
decreases. An alternative to delayed coking is flexicoking (temperature of 870 °C) where a
fluidized bed is used to convert the heavy feed to lighter products with higher yields and the formed
coke is converted to flexigas, which can be further used to product useful gases like H», N> and
CO>. '7 Fluid coking is quit similar to flexicoking but employs lower temperatures in the range
490 — 560 °C but shorter residence times and much lower pressures (~0.1 MPa) than delayed
coking.

However, the reactions as a part of this chapter were conducted over longer range of reaction
times, 1.e. between 15 min and 24 h and at much higher pressures of 4 MPa but at a significantly
lower temperature of 400 °C than those used in the industry. This range of reaction times comprised
of both the visbreaking region where minimum coke was formed and the coking region from where
the liquid yield decreased with coke formation occurring in significant amounts. Further
implications of the effect of the higher pressure used is elaborated in the discussion section.

A combination of factors like its microstructure and chemical composition, molecular weight
(also a consequence of chemical composition), physical and chemical interactions and phase
compatibility between the different components all are known to affect viscosity. When subjected
to thermal treatment, the reaction temperature and time of exposure are key parameters that control
physical properties like viscosity and density. As a part of this chapter’s investigation, it was also
seen that procedures carried out after reaction like the type of solvent used to dissolve and extract
the products from the reactor impacted viscosity significantly. Rheological conditions of viscosity
measurements like shear rate and temperature used in the rheometer/viscometer also influenced
viscosity of the sample in different ways.

These observations were based on certain results reported by previous researchers while
conducting thermal conversion on bitumen obtained from two major geological deposits in Alberta
— Cold Lake and Athabasca. Wang et al., '8 Zachariah & De Klerk ! and Yafiez & De Klerk
conducted thermal cracking reactions on Cold Lake bitumen in the range 150 — 400 °C for 8 h
maximum and observed a non-monotonic trend in viscosity with an initial decline and an increase
at later times. The solids, that included the originally present mineral matter and the coke formed
during reaction, were separated out by dissolving the products in a di-halogenated solvent,
methylene chloride (CH2Cl) and the liquid and solid products were separately characterized. On

the contrary, Shu and Venkatesan 2! reported that viscosity decreased monotonically when Cold
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Lake bitumen was thermally cracked at 300 °C even times at excess of 24 h, but no solvent was
used to extract the products. A monotonic decline in the viscosity of Athabasca bitumen was seen
by Henderson and Weber ?* when subjected to thermal conversion at 371 °C, where they did not
employ a solvent for product recovery. Work by Castillo & De Klerk ** also reported continuous
decrease in viscosity wherein no solvent was used in product recovery. A comparison of some of

these data are compiled in Table 5.1.

Table 5.1. Comparison of reported viscosity data in select previous thermal cracking studies on

bitumen.
Henderson & Weber Shu & Venkatesan Yafiez & De Klerk
(Athabasca) * (Cold Lake) *' (Cold Lake) %
T" | t® H T t # T t “
co|m | T Teolm| T Teo | w | T
at 65.5°C at35°C at 30°C

371 | 0.00 5.242 Feed 13.8 Feed 353
371 | 2.85 0.33 300 6 10.9 300 1 19.64
371 | 9.75 0.089 300 24 7.12 300 2 1.344
371 | 4.00 0.536* 300 72 4.82 300 3 2.37
371 10.0 0.067* 300 120 2.22 300 4 0.37
371 | 24.0 0.04* 300 | 480 0.646 300 6 9.28

. . . . * . .
* temperature; ° reaction time; © viscosity; = reaction conducted on bitumen not separated from sand and

water.

All of these reactions were conducted in batch reactors, which explains the need for the use
of an external solvent for product recovery in some of the studies. Toluene was also used as a
common solvent for product recovery after thermal conversion by some researchers where other
reactors such as autoclaves and column flow reactors were employed in a pilot-scale as well. 242
Even when advanced catalysts such as natural zeolites were employed for upgrading and viscosity
reduction of Athabasca bitumen by Junaid et al., *” toluene was employed for product extraction.
A higher polyhalogenated compound, chloroform, was used to extract the liquid products from

thermal cracking of a Russian bitumen.
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Industrially, steam stripping is commonly used to extract the different product fractions out
of the fractionator after the soaker drum. ?® A combination of high-conversion soaker cracking
(HSC) with the traditional residuum oil supercritical extraction (ROSE) to enhance liquid product
recovery together with deasphalted oil was suggested by Washimi and Limmer. %

Another notable difference (apart from reaction conditions) in the post-reaction procedure was
the viscosity measurement parameters. The works that separated the solids from the liquid products
used shear rates of 10 s and reported viscosity at different temperatures in the range of 20 — 60
°C but no information on shear rates were available in the other works where a continuous viscosity
decrease was observed. 21> Though the reasons for initial viscosity decrease and increase at later
reaction times were speculated to be related to de-aggregation of the aggregated material and
addition reactions in bitumen, the fundamental cause of viscosity change was not established.

The lingering question from these observations was whether the viscosity change depended
just on the reaction conditions during thermal conversion or did the procedures after the reaction
have an effect? Two points of concern that caught the eye were (a) the chemical nature of the
solvent used to extract the products after reaction; (b) the shear rate and temperature used for
viscosity measurement. Though bitumen dissolves in a number of solvents, the choice of solvent,
be it polar (methylene chloride) or aromatic non-polar (toluene) becomes important. It was also
shown previously through a test experiment on raw Cold Lake bitumen that the process of
methylene chloride addition, mixing and subsequent removal resulted in a viscosity increase and
the reason was attributed to loss of lighter boiling material during evaporation of the solvent. '8
Whether this holds true for the products in the case of Athabasca bitumen as well remained to be
seen.

Differences in chemical nature and molecular weight of the solvents employed for product
removal could also cause physical and chemical changes in the liquid products due to < 100 %
efficiency of the evaporation process. Some solvent could still remain in the samples that can be
responsible for these changes. Physical attractions like hydrogen bonding do not exist at high
temperature ** but they may be introduced or strengthened at room temperature by the presence of
halogenated solvents like methylene chloride. Evidence of such type of interactions was shown by
Smith *! and similar changes were noted by Prado & De Klerk. ** With the hypothesis that
attractive forces increase viscosity, these associations can potentially affect viscosity and will be

investigated in this chapter. Nevertheless, it should be recognized that when multiple forces are
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active in a system, it is difficult for all of them to be disengaged in a concerted fashion even at
high temperature.

Non-Newtonian behavior combined with viscoelastic effects have been shown to exist in
bitumen and depend on the shear rate and temperature range of operation. 2%*3-% This can have
implications during viscosity measurements and impact the resulting viscosity. The shear rate and
time-dependence of viscosity of the thermally converted products will also be discussed in this
chapter.

Moreover, bitumen and its thermally treated products have been shown to possess persistent
free radicals that are quite stable. ¢ Since thermal conversion of bitumen is generally accepted
to follow a free radical mechanism, *” Electron Paramagnetic Resonance (EPR) studies provides
valuable insights into the reaction chemistry and was used in our study. Apart from detecting free
radicals on carbon centres, EPR also gives information about paramagnetic oxo-vanadyl species,
whether it is associated with porphyrin ring ligands or exists in relatively free states. 3%
Quantification of organic radical spin concentration and a qualitative analysis of vanadyl EPR
spectra can be used to determine the chemical environment and also related to the local viscosity
changes occurring during thermal treatment. >°

Other spectroscopic techniques like Fourier Transform infrared (FTIR) and proton nuclear
magnetic resonance ('H-NMR) spectra are not only regarded as useful tools for detection of
hydrogen bonding *° but also proved inevitable to be able to track the chemical changes occurring
during thermal conversion. Furthermore, the chemical composition of the feed bitumen, the
variation of viscosity from sample-to-sample and among different feed types will also be inspected
in this work.

The primary objective of this chapter is to identify and investigate the possible factors that
bitumen viscosity depends on and to develop the understanding necessary to account for the
observed trends in viscosity with conversion time during thermal conversion of oilsands bitumen.
Though it is recognized that both attractive and repulsive-type interactions are present at all times,
their relative amounts with respect to each other are hypothesized to affect viscosity. If attractive
forces overweight the repulsive interactions, it can be said that it could lead to a viscosity increase
and vice versa. To realize this, most of the results provided in this chapter are related to
characterization of the feed and thermally cracked products obtained from thermal conversion of

Athabasca bitumen at 400 °C and upto 24 h reaction time in a batch reactor. More importantly, the
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effect of post-reaction procedures like nature of extraction solvent used and the rheological
conditions of viscosity measurement like shear rate and temperature on viscosity are inspected and
discussed. Comparison between changes in physical and chemical properties for the solvent-free
mechanically extracted products and solvent-extracted products reveal interesting results and
provide avenues for discussion.

Other aspects like solute-solvent interaction forces under the assumption that bitumen can be
represented in the colloidal form, changes in the effective volume of the asphaltene clusters with
progress of thermal conversion and how this could potentially affect the aggregation process of
the dispersed phase were considered to have a significant impact on viscosity of a compositionally
complex bitumen and are elaborated on in the discussion section, though no additional
experimental data are not provided. It is the global aim of this chapter to explore and highlight the
different facets of viscosity and its complicated relationship with the various parameters that can

influence it.

5.2 Experimental

5.2.1 Materials

All the experiments in this study were performed on Athabasca bitumen supplied by Suncor
Energy. Specific properties of the feed are provided in Table 5.2. Nitrogen (99.99%), provided by
Praxair was used to press