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Abstract

In recent years, mazes have been used to study robot behavior by assessing their

ability to navigate a maze using various methods. The act of finding a path through

a maze from beginning to end is known as maze solving. Some maze-solving methods

are employed for use by an agent with no previous knowledge of the maze, while

others are designed for use by someone or a computer program capable of seeing the

whole maze at once. We consider a situation in which multiple agents are randomly

distributed inside an arbitrary rectangular maze and have no previous knowledge of

the maze. We provide a solution in the form of an algorithm for the agents to cooper-

ate collaboratively to discover and achieve the hidden goal. We divide our algorithm

into two major phases and present rules for each, with each agent is programmed

to follow these rules individually. We explained the algorithm’s implementation by

addressing the challenges we have such that the agents can follow the algorithm in

such a way that all agents may move simultaneously. We evaluate our approach us-

ing a computer simulation of a square-shaped maze with varying sizes and a variable

number of agents. The algorithm performs well in the simulation, is e�cient, and re-

flects the trade-o↵ between utilizing a single agent and multiple agents. We provided

the solution’s results for both phases. We then validate our algorithm on a physical

system consisting of a real maze and many robots. Our solution is primarily based

on cooperating and working parallel with all agents.
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Chapter 1

Introduction

This thesis considers the problem of solving a maze by a group of multiple agents

distributed randomly in an arbitrary rectangular maze, assuming that the agents

have no prior knowledge of the maze. We propose a solution in which the agents,

working cooperatively, find the hidden destination. The solution is first tested using

computer simulation to verify the expected performance of the proposed algorithm.

Finally, the results are validated by implementing our algorithm in real-time using

a team of robots. In this chapter, we provide an overview of the subject along with

some preliminary background.

1.1 Background

A maze is a path or a series of paths that lead from one point to another, usually

from an entrance to a destination. Both branching tour puzzles, in which the solver

must identify a way to a goal, and simpler non-branching (“unicursal”) patterns, that

go through a complicated layout to a destination, are referred to as a “maze”. The

term “labyrinth” is sometimes used interchangeably with “maze” although it can also

refer to a “unicursal” design. A maze’s routes and walls are usually fixed. Labyrinths

and mazes are found all over the world and have long been a source of fascination.

Explorations in various cultures throughout the world, including Egypt, India, and

North America, have added to the labyrinth’s dominance in western civilization [6].

The act of finding a path through a maze from beginning to end is known as maze

solving. Some maze-solving methods are intended for use by an agent who has no

prior knowledge of the maze, while others are intended for use by someone or a com-

puter program that can view the entire maze at once [8].

In recent years, mazes have been used to study the behaviour of robots by examining
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Traquair House Maze
Scotland[7]

Maze at the Missouri Botanical Gar-
den in St. Louis[8]

A hedge maze at Longleat stately
home in England[9]

Figure 1.1: Mazes created by humans from across the globe

their ability to explore a maze using di↵erent algorithms [10] [11].

Many studies have been reported in the literature on the solution of a maze. We

begin by describing what a “maze” refers to in the research studies, which allows us

to discuss the topics around the maze in a common language.

Reference [12] defines a maze as a two-dimensional grid of any size, generally rectan-

gular, that is grid-like. A maze is made up of cells. A cell is the basic maze element.

The maze may include any number of distinct obstacles. The agent is put in the

maze on an empty cell at random. The agent may travel in any direction but must

do so only through unoccupied space. The goal is to figure out a strategy for getting

to the destination, or “goal,” as quickly as possible. When the goal is reached, the

maze is considered solved.

To solve a maze, a variety of methods derived from graph theory and non-graph theory

have been proposed in the literature. [13] clarifies how graph theory can be utilized

to solve a maze and, after a thorough examination, demonstrates how graph theory

outperforms non-graph theoretic algorithms and compares the algorithms’ e�ciency.

Graph theory algorithms used for maze searching in the research include flood fill
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algorithms (FF), modified flood fill algorithms (MFF), depth first search algorithms

(DFS), and breadth-first search algorithms (BFS)[13].

In terms of graph theory solvers, a maze may be mathematically modelled as a graph,

G = (V,E), with each cell in the maze representing a vertex in the set V and the

obstacle-free corridor between two cells being an edge in the set E [14].

DFS, also referred to a Tremaux algorithm by some authors, starts at the root of

the graph as the entrance point and explores the deeper sections of the graph until

reaching a dead-end and then backtracks. The algorithm begins from a vertex, then

branches out adjacent vertices until it reaches the end or goal point. The whole maze

is represented as a graph, with nodes or vertices acting as maze cells. The agent visits

each cell once in each direction before returning to the source or original cell. The

agent will continue to search the cells until finding the desired cell, keeping track of

the cell walls/obstacles[13][15].

Flood Fill (FF) algorithms are inspired by the concept that water always flows from a

higher to a lower height [16][17]. FF algorithms implement this concept by assigning

a number to each cell in the maze that represents the distance between a cell and the

destination cell. The cells with greater values represent higher heights, while those

with lower values represent lower elevations [18]. The destination cell is given a value

of zero, which corresponds to the lowest height. The agent is one cell distant from the

goal if it is standing in a cell with a value of 1. The agent is three cells distant from

the destination if it is standing in a cell with a value of 3, assuming that the robot

is unable to move diagonally. After the maze has been flooded and the cell values

renewed, it is traversed, and the maze map is updated after each traversal. When a

new cell is traversed, the array described above is created, and the adjacent cell with

the lowest value is determined. The agent path always consists of cells from higher

values to cells with lower values [17].

Unlike the flood fill algorithm, the modified flood fill algorithm does not flood the

maze when a new cell is reached. Instead, it uses recursive steps to update adja-

cent cells:

• Push the current cell to the top of the stack.

• Keep repeating this step until the stack is empty: From the stack, pop the

current cell location. If the minimum distance of the adjacent open cells is not

equal to the current cell’s distance - 1, replace the current cell’s distance with the
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minimum distance + 1 and push all adjacent cells locations onto the stack[18].

Reference [18] provides a detailed explanation of the algorithm summarized above.

More research in the literature discusses novel algorithms for maze solving, which are

improvements to the algorithms described above.

[19] improves the flood fill algorithm in maze-solving by omitting the calculations

needed when entering a dead-end channel. There is only one way to proceed in

these channels, and there is no need to renew the maze array values. [20] proposes

the “Partition-central Algorithm,” a maze-exploring algorithm that finds the short-

est path in a micromouse competition maze. This algorithm breaks a maze into 12

divisions and applies various rules to di↵erent sections, making the exploring pro-

cess more flexible and increasing a micromouse intelligence. [21] lookes at how light

beams di↵ract from a source to a target to solve a challenging maze with open re-

gions. With a ray-based approach to maze-solving, it may be feasible to pick a small

number of vertices (reradiation points) and link them with a limited number of path-

ways (those that the light rays would follow) to characterize the maze adequately.

A maze with open regions may be reduced to an abstract form appropriate for typ-

ical maze-solving algorithms using this method. [22] demonstrates how discretely

assigned potential levels may be utilized to determine autonomous route selections

for a mobile robot. It also shows how to assign and manipulate these potentials to

give locally optimum path choices while keeping the potentials’ integrity. [23] pre-

sentes a maze-solving robot system based on image processing and a graph theory

algorithm. While traveling through a real maze, the system selects the optimal route

for a car-like robot from its starting location to its destination position. A camera

captures the whole maze, which is then processed and evaluated by a program based

on the Breadth-First Search algorithm.

The Agent, an autonomous mobile robot that explores the maze, is a key concept

in the solutions above. The agent is a part of the environment who is able to make

decisions regarding the states of the environment and is able to cooperate, communi-

cate and adapt to the environment and other agents [14]. Autonomous mobile robots

play a significant part in our lives and may be the best alternative for various jobs.

They may be used in industries to carry components and products accurately and

quickly from one station to another. They have also been employed to save lives and

reach dangerous locations where humans are unable to go. Mobile robots may also be

used for home automation, such as autonomous vacuum cleaners that must navigate

themselves across the house while cleaning it simultaneously [23][24].

As mentioned earlier, much research has focused on maze solving. Multi-agent meth-
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ods have been introduced as improvements to these solutions, which significantly re-

duce the time-consuming aspect of the solution. Hereafter, we focus on the definition

of multi-agent concepts and summarize what has been done so far.

According to the book “An Introduction to MultiAgent Systems” [25], an agent is an

entity with domain knowledge, objectives, and specific behaviours. Multi-agent sys-

tems are a group of agents that communicate in a shared space. Multi-agent systems

are concerned with the design and coordination of complex systems incorporating

several agents. A multi-agent system is a distributed computer system containing

autonomous interacting intelligent agents that collaborate or compete to accomplish

their objectives. Reference [26] highlights many benefits of multi-agent systems in-

cluding increased e�ciency, a broader work domain, and the ability to move about in

a dispersed manner. Furthermore, a multi-robot coordination mechanism may help

with the problem-solving phase in terms of flexibility and adaptability. A major task

is broken into tiny subtasks and distributed among numerous agents in multi-agent

robotics. Each agent must do their own specific task and communicate with one an-

other, relaying information about their location, activity, direction. Cooperation and

information exchange would aid them in reaching the destination more quickly. Each

agent in a multi-robot system has limited capabilities; nevertheless, by cooperating,

they may benefit from the abilities of others. This results in decreased energy usage

and a faster job completion time[27].

Multi-agent systems is a vast area of study, and many research studies have been

conducted toward deep understanding and connections: For example, the problems

of traditional “agent-centered” multi-agent systems are highlighted in [28]. This ref-

erence argues that an organization-centered multi-agent system, or OCMAS for short,

may be utilized to overcome these problems and proposes a set of fundamental prin-

ciples for designing real OCMAS. This organization-centered multi-agent system is

the main formation that we focused on in this thesis. Also, our interest is in path

planning for multiple robots or agents. More explicitly; we consider a group of agents

who simultaneously search for the maze exit in a cooperative manner. In this sce-

nario, agents share their knowledge of previously explored cells in the maze, helping

other agents to reach the exit. Clearly, the cooperative nature of the problem can

highly reduce the time required by the group of agents to reach the solution.

The task of “multi-agent pathfinding” refers to planning a sequence of moves by a

group of agents to reach a certain goal/location. The agents move in a certain field

to find the goal while avoiding obstacles and collisions among them [29] [30]. MAPF

can be divided into two types: “distributed setting,” in which each agent has its

own processing power and decision-making system [31], and “centralized setting,” in
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which a single decision-maker manages all agents [14]. In previous studies, multi-

agent pathfinding was studied using two main approaches, namely: (i) search-based

solvers, [14], and (ii) artificially intelligent solvers, [32]. Search-based solvers aim to

minimize the time required by all agents to reach their destination. Agent movements

are planned one at a time according to predefined orders [14]. Artificial intelligence

solvers, on the other hand, learn to generate a maze description and find an exit

without having to relearn new rules every time they encounter a new maze. These

solvers mainly discuss the so-called complete information case, consistent of finding

an optimal path over a field, assuming that the graph model is known to the user. In

contrast, we consider the incomplete information case; i.e. we assume that the graph

model of the maze is unknown and agents do not know the geometry and position of

the obstacles and the way to exit. We assume that agents use their sensors to detect

obstacles in the maze. In this case, the solution requires a local online algorithm,

defined as one that operates with limited information at any given moment, [33].

Reference [34], for example, demonstrates an architecture for the design and deploy-

ment of cooperative maze discovery robots (CLDRs), which work together to find

a path out of an undiscovered maze. CLDRs make use of semantic technologies to

describe and retrieve maze data like pathways and obstacles. For future study, this

paper also recommends multithreaded programming in a real-time operating system

for the microcontroller rather than sequential processing with hardware interrupts,

which was the emphasis of our research.

The problem of multi-agent maze solving is presented in reference [35], in which a

group of coordinated agents must go from an entering location to a target position

without previous knowledge of the maze. This reference proposes an algorithm that

improves the depth-fist search maze solving method. This paper’s algorithm spreads

the agents in the maze and provides a valid solution. It also evaluates it in terms

of the average number of steps needed. While the depth-first search algorithm is for

a single agent, the whole group’s actions in this algorithm is a breadth-first search

strategy since the other agents repel each other. As a result, this algorithm combines

these two graph search methods. Moreover, this article proposed an extended version

of its algorithm to be used when the agents do not start in the same location.

The goal of reference [36] is to provide Open-World Assumption-based solutions to

maze challenges. The work demonstrates that the Open-World Assumption might

be used to replace traditional logic programming methodologies. It also presents a

technique for deciding whether to use the Closed-World Assumption or the Open-

World Assumption to drive decision-making and reasoning and used this approach to
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manage collaborative maze exploration robots’ decision-making.

1.2 Summary of Contributions

In this thesis, our interest is in path planning for multiple robots or agents. More

explicitly; we consider a group of agents who simultaneously search for the maze exit

in a cooperative manner. In this scenario, agents share their knowledge of previously

explored cells in the maze, helping other agents reach the exit. Clearly, the coop-

erative nature of the problem can greatly reduce the time required by the group of

agents to reach the solution.

In our case, the field is a maze, defined as a two-dimensional grid of interconnected

cells. The maze can be mathematically modelled as a graph, G = (V,E), such that

each cell in the maze represents a vertex in the set V and the obstacle-free corridor

between two cells represents an edge in the set E. Each agent a1, a2, · · · , ak starts

from a position si 2 V , and all agents seek to reach the goal position g 2 V , [14]. we

assume that the graph model of the maze is unknown and agents do not know the

geometry and position of the obstacles and the way to exit. We assume that agents

use their sensors to detect obstacles in the maze.

We propose a solution in which agents move simultaneously and independently through

the maze following a set of pre-defined rules. After independently exploring a cell in

the maze, each robot shares information with the rest of the agents in the team to help

simultaneously map the maze and search for a solution. Previous solutions involv-

ing multiple agents with incomplete information, [35], assume that agents are only

allowed to move one-at-the-time, and are limited to a one-way maze. We propose

a novel searched-based algorithm using the concept of depth-first search algorithms

[15] [37], and inspired in the algorithm proposed in reference [35]. Our solution is

based on a modification of the algorithm in reference [35], that permits the inde-

pendent and simultaneous maze exploration by the group of agents. This change

is non-trivial, and can have a noticeable impact on the execution time of the maze

exploration. Moreover, unlike previous studies, our algorithm does not require that

agents start exploration at any specific point in the maze. Indeed, our solution is

capable of handling the situation in which agents start exploring from di↵erent lo-

cations in the maze. Furthermore, our algorithm can be implemented either using

computer simulation or a physical maze. Our approach is not confined to theoretical

solvers as it is implemented in continuous time and not sequential or timestep-based

solvers. However, the performance is measured over a predefined timeframe. In this

work, the agent does not wait for other agents to do their tasks and continue their
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exploratory duties. While previous solutions [27][35][36][34] assume the agent’s move-

ment is discrete, we, on the other hand, consider the agents’ thinking and movement

procedures to be part of the process. By pipelining each agent to a thread, we com-

bined the programming idea of “threading” with the concept of multi-agent. As a

result, the agents’ orchestration is such that each thread’s agents will carry out their

responsibilities independently of other threads while contributing to a shared map.

Finally, we emphasize a significant challenge in our approach’s multi-agent maze so-

lution problem, which has been overlooked in prior studies: agent conflicts! More

precisely, how the agents should act and make decisions when interacting with one

another and how they should communicate throughout these encounters.

A brief summary of the algorithm can be stated as follows:

All agents start to search the maze using a depth-first search approach.

Agents share the visited field and obstacles encountered to a global map,

which is shared among all agents. After discovering the hidden destina-

tion, they work together to link the subfields they have investigated, and

then they all proceed to the destination.
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1.3 Thesis Outline

The rest of this thesis is organized as follows:

Chapter 2: This chapter covers the main concepts and terminology underlying the

graph theory and algorithms used in this thesis.

Chapter 3: In this chapter, we define and introduce some baisc definitions regarding

our maze and define the problem to be solved.

Chapter 4: In this chapter, we describe our algorithm.

Chapter 5: We discuss the implementation and explain how possible conflicts are

resolved.

Chapter 6: In this chapter, we explain the testing phase, the hardware used to

simulate our problem, and the solution in a real physical system.

Chapter 7: A summary and conclusion is provided along with research plan for

future work.
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Chapter 2

Graph Theory Preliminaries

In this chapter we present some basic definitions and results from graph theory that

are needed throughout the rest of the thesis, including the fundamental definitions

and algorithms of graph traversal, minimum spanning tree computation, and shortest

path calculation.

2.1 Preliminary Definitions

A graph is a structure consisting of a set of vertices and edges. To define a graph, we

must first specify the members of two sets: vertices and edges [38]. A graph can be

represented as an ordered pair G = (V,E) comprising:

Figure 2.1: representation of a graph

• V : set of vertices (nodes, points).

• E: set of edges, unordered pairs of vertices two distinct vertices [39]. In Figure

2.1, the set V is {V 1, V 2, V 3, V 4, V 5, V 6}.
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The set E is {E1 = (V 1, V 2), E2 = (V 2, V 3), E3 = (V 4, V 6), E4 = (V 9, V 8), E5 =

(V 6, V 7), E6 = (V 7, V 8), E7 = (V 5, V 9)}.

• Adjacent Node: If and only if there is an edge between u and v, a node v is

considered to be an adjacent node of node u.

• Path: A stream of edges that connects a set of vertices that are all distinct (and

since the vertices are distinct, so are the edges) [40].

• Cycle: In a graph, a cycle is a non-empty path with only the start and ending

vertices being equivalent[41].

• Connected graph: When every pair of vertices in a graph has a path between

them, the graph is said to be connected. In a connected graph, no node is

inaccessible [42].

• Degree: The number of vertices that are adjacent to a vertex determines its

degree. A graph’s degree is equal to the maximum of its vertices’ degrees [39].

• Empty Graph: A set of vertices that do not have any edges between them

[38].

• Subgraph: A subgraph G
0 of a graph G is a graph G

0 with vertex and edge sets

that are subsets of the vertex and edge sets of G. G is said to be a supergraph

of G0 if G0 is a subgraph of G [43].

• Tree: A graph that has exactly one path connecting any two vertices [41].

2.2 Graph Traversal

The term “graph traversal” or “graph search” refers to the process of visiting (in-

vestigating or updating) each vertex in a graph. These traversals are categorised

according on the sequence in which they visit the vertices [39].

2.2.1 Depth First Search

The Depth First Search (DFS) algorithm explores a graph in a depth-first manner and

utilizes a stack to record the next vertex to search for when an iteration encounters

a dead end.
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Figure 2.2: Depth-first traversal of a graph

As in Figure 2.2, the DFS algorithm goes from A to C to F to H to G to D, then to

E, and finally to B. The following rules govern this process:

1. Visit a previously unvisited vertex adjacent to the current vertex. Indicate that

it has been visited. Print it. Push it in a stack.

2. If an adjacent vertex is not found, a vertex from the stack is popped up. (It

will pop up all the vertices in the stack that are not adjacent.)

3. Repeat Rules 1 and 2 until the stack is empty [44].

2.2.2 Breadth First Search

The Breadth-First Search (BFS) algorithm traverses a graph in a breadth-first manner

and employs a queue to keep track of the next vertex to search for when an iteration

encounters a dead end.

Figure 2.3: Breadth-first traversal of a graph

As in Figure 2.3, the BFS algorithm proceeds from A to C to D to B, then to F to G

to E, and finally to H. The following rules govern this process:

12



1. Visit an unvisited vertex adjacent to the current vertex. Indicate that it has

been visited. Print it. Add it to a queue.

2. Remove the initial vertex from the queue if no neighbouring vertex is found.

3. Repeat the first and second rules until the queue is empty.

At this point, there are no unmarked (unvisited) nodes remaining. However, the

algorithm requires that we continue dequeuing to reach all unvisited nodes. The

process finishes when the queue is empty [45].

2.3 Spanning Tree Problem

A spanning tree is a subgraph of an undirected graph that is a tree that contains all

of the graph’s vertices. Prim’s algorithm [46] and Kruskal’s algorithm are two main

algorithms to identify the spanning tree in a graph. Now we will describe the Kruskal

algorithm as it is utilized to generate mazes in our simulation.

2.3.1 Union-Find Algorithm and Disjoint Set Data Structure

A disjoint-set data structure manages a set of items partitioned into a number of dis-

tinct (non-overlapping) subsets. Kruskal’s algorithm requires disjoint-set data struc-

tures for determining the graph’s spanning tree. A union-find algorithm is an algo-

rithm utilizing a disjoint-set data structure that conducts two operations on it:

Find: Identity which subset an element belongs to. This function determines if

two items are members of the same subset. The Find operation searches the parent

pointer chain from a given query node x to a root element. This root element denotes

the set x belongs to and may also be x itself. The root element reached by Find is

returned.

Union: Joins two subsets together to form a single subset. First, we must determine

if the two subsets are members of the same set. Otherwise, we will be unable to ex-

ecute union. Union(x, y) replaces the set containing node x with the set containing

node y. Union begins by determining the roots of the trees containing node x and

node y using Find function. If the roots are the same, nothing further has to be done.

Else, the two trees must be combined. This is accomplished by either setting node

x’s root’s parent pointer to node y’s or setting node y’s root’s parent pointer to node

x’s [47].
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Figure 2.4: Creating 8 distinct sets in the beginning

Figure 2.5: Following various Union operations, some sets are grouped together.

2.3.2 Kruskal Algorithm

Kruskal’s algorithm is a minimum spanning tree algorithm that takes an input graph

and determines the subset of its edges that forms a tree that contains every vertex.

The instructions below explain how to compute the minimum spanning tree using

Kruskal’s algorithm:

1. Build G (a disjoint set of trees), with each vertex in the graph representing a

distinct tree.

2. Create a set S that contains all of the graph’s edges. When S is not empty and

G is not spanning yet:

(a) Remove an edge with the smallest weight from S;

(b) If the removed edge links two distinct trees, add it to the set G, so merging

two distinct trees into a single tree using the union function.

At the algorithm’s completion, the set G becomes the graph’s minimum spanning tree.

If the graph is connected, the set G has just one member and so forms a minimum

spanning tree [48].
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(a) (b) (c)

(d) (e) (f)

Figure 2.6: An example of the execution of the Kruskal algorithm [1]

2.4 Shortest Path Problem

The shortest path problem is a graph theory problem that involves finding a path

between two vertices (or nodes) in a graph that minimises the sum of the weights

of its respective edges. The Dijkstra algorithm, which calculates the shortest path

from a particular vertex to all other vertices of the graph, and the A* algorithm,

which calculates the shortest path between two specified vertices, are the two primary

algorithms employed in this thesis to address the shortest path problem.

2.4.1 Dijkstra Algorithm

Dijkstra algorithm calculates the shortest path and distance between a source to all

destinations in a graph given a starting node.

Assume that the node that we begin with is referred to as the starting node. Assume

that the distance of node (A) is equal to the distance between the starting node and

node (A). Dijkstra’s algorithm will begin with infinite distances for each node and

gradually improve them.

1. Declare all nodes to be unvisited. Create a set, named the unvisited set, that

contains all the unvisited nodes.
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2. Assign a Distance value to each node: zero for the starting node, and infinite

for all others. The Distant value between two nodes v and u is the length of

the shortest path identified so far between the nodes v and u. Since no path to

any other vertex other than the starting node is known at the beginning (which

is a path of length zero), all other Distance values are set to infinity. Current

node is set to the starting node.

3. Consider all of the current node’s unvisited neighbors and determine their Dis-

tance values via the current node. Comparing the newly computed Distance

value to the currently assigned value, choose the smaller one. For instance, if

the present node A is marked with a Distance of 7 and the edge connecting it

to a neighbor B is marked with a length of 3, then the Distance to B through A

will be 7 + 3 = 10 If B was previously marked with a Distance greater than

10, it should now be marked with a Distance of 10. Alternatively, the current

value will be remain.

4. When all of the current node’s unvisited neighbors are considered, the current

node is marked as visited and removed from the unvisited set. A node that has

been visited will never be checked again.

5. When all nodes have been marked as visited or in case if the minimum distance

between the starting node and a destination is needed, if the destination node

has been marked as visited, the process will stop and the algorithm is complete.

6. Return to step 3 otherwise, selecting the unvisited node with the shortest Dis-

tance as the new current node [2], [49].
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(a) (b)

(c)
(d)

Figure 2.7: The procedure for running the Dijkstra algorithm on a given graph [2]

2.4.2 A* Algorithm

A* is a search algorithm (pronounced “A-star”) that attempts to identify the fastest

path to a specified target node beginning from a defined starting node in a graph.

The A* algorithm obtains the optimal solution by computing the positions of all

nodes between the beginning and ending nodes. Additionally, thanks to the heuristic

function, it is quicker than Dijkstra’s algorithm [50].

f(n) = g(n) + h(n) (2.1)

• f(n): The cost of moving from the starting node to a particular node on the

grid, following the produced path.
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• g(n): Distance between the current node and the start node.

• h(n): The anticipated cost of travel from that specific node to the end destina-

tion. This is often referred to as the Heuristic, which is just a clever guess. We

really do not know the distance until we find the exact path to the destination,

since a variety of obstacles might stop our progress.

We copied the procedures for A* algorithm from Rachit Belwariar’s Geekforgeeks

article [3]. This is a comprehensive and clear explanation that is preferable rather

than writing it again:

1. Create open List and closed List .

2. Initialize the open list.

3. Initialize the closed list, put the starting node on the open list (you can leave

its f at zero).

4. While the open list is not empty:

(a) Find the node with the least f on the open list, call it q.

(b) Pop q of the open list.

(c) Generate q ’s eight successors and set their parents to q.

(d) For each successor :

i. If successor is the destination: stop search!

ii. successor.g = q.g + distance between successor and q

iii. successor.h = anticipated distance from destination to successor

iv. successor.f = successor.g + successor.h

v. If a node with the same position as successor is in the open list which

has a lower f than successor, skip this successor

vi. If a node with the same position as successor is in the closed list which

has a lower f than successor : skip this successor, otherwise: add the

node to the open list.

(e) push q on the closed list

We may use functions that estimate the distance between the current node and the

destination as the heuristic function. The Manhattan distance and Euclidian distance

are two heuristic functions that have been used in grid-like graphs [51], [3], [52].
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Figure 2.8: Overview of A* algorithm execution on a grid [3]
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Chapter 3

Problem Definition

In this section we first introduce the concepts of agent, maze, and goal and then define

the main problem to be solved.

3.1 Definitions

• An agent is a part of the environment who is able to make decisions regarding

the states of the environment and is able to cooperate, communicate and adapt

to the environment and other agents [14].

We will assume throughout that each agent is equipped with distance sensors

that allow the detection of adjacent obstacles. Moreover, we also assume that

the agent’s location is globally known. A roof-mounted camera is used to detect

the location of each agent.

• Cell: A cell is a bounded elementary compartment in the two-dimensional

space. Two adjacent cells may be connected, thus allowing tra�c flow of agents

between adjacent cells, or may be separated by an obstacle. An obstacle is a wall

between two adjacent cells. Walls are also used to define the maze’s boundary.

Each cell is exclusive, i.e. can only be occupied by a single agent at each time.

• Maze: A maze can be described as a two-dimensional grid of interconnected

cells. A maze can be mathematically modelled as a graph, G = (V,E) (Figure

3.1) such that each cell in the maze represents a vertex in the set V of the

graph. If two adjacent cells are connected and not separated by an obstacle, we

say that the path between two adjacent cells represents the edge in set E in the

graph. Clearly, if there is a path between two adjacent cells, then there is an

edge between the corresponding vertices of these two cells.
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A graph is said to be connected if there is a path connecting each vertex. A

path on a graph such that the only repeated vertices are the first and the last

vertices is called a cycle. Finally, a tree is a connected graph without cycles.

When a graph consists of a single tree then there is a single path between any

two vertices.

Figure 3.1: Graph representation of a maze

• Goal: The goal (or destination) is a specific cell in the maze (respectively, a

vertex in the graph G representing the maze) that all agents have to reach.

We will assume throughout that our maze contains only one goal. At the begin-

ning of the maze exploration, the location of the goal is unknown to all agents.

Theoretically, we assume that the goal contains information representing its

nature. This information can only be identified when an agent visits the goal

for the first time during the exploration process. Furthermore, we assume that

after the first visit, the visitor agent raises a flag, and the row, column, and

location of the goal in the shared map with all other agents. In

3.2 Problem Statement

We can now define the main problem to be solved:

We consider an m ⇥ n grid maze and k agents, distributed around the maze and

occupying di↵erent cells. The graph G = (V,E) represents the maze cells and is

shared between the agents. Before the exploration begins, V is unknown, and E = ;,
i.e. E is the empty set. Our main objective is to implement a hierarchical decision-

making process for each agent, such that the group of agents can collaboratively

construct the graph G by exploring the maze and sharing the information with other

agents until all agents reach the goal cell.
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We assume that the graph G may not be limited to a single tree and may contain

cycles. We also assume that all agents are moving simultaneously and independently

of others and can communicate with others by contributing to the formation of the

graph representation of the maze, information that is shared online between agents.
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Chapter 4

Proposed Solution

We begin by describing the shared map, which contains the information shared by the

robots as they move through the maze. We describe the nature of the shared map as

a graph G = (V,E).

Recall that the graph G = (V,E), is formed by two sets, namely, the set V that

represents the set of vertices and set E that represents the edges of the graph G.

Before beginning the exploration both sets are unknown to the agents and the set E

is initialized as the empty set E = ;. The set E is constructed using information

received from the agents using the algorithm described in the next section. The

information gathered by the agents for each cell consists of the following elements:

row, column, color, and OC flag. We will refer to this information as the attributes of

the elements in the set V in the shared map. Each agent maintains a real-time copy of

the shared map and the number of times it visited each vertex. We now describe the

attributes of the elements in the shared map. Our use of cell colours in this section

is inspired in the Depth-first search in graph theory terminology [15].

• White Cell: A white cell is a cell that has not yet been visited by any agent.

Before the exploration begins, all vertices representing the cells in the shared

map are marked as white cells.

• Gray Cell: A gray cell is a cell that has been visited by an agent at least once.

The color of the corresponding cell in the shared map is changed from white to

gray as an agent enters this cell. Each gray colored cell visited by an agent is

logged in the agent’s memory

• Black Cell: A black cell, or dead-end cell, refers to a cell that is surrounded

by either obstacles or other black cells in three of its boundaries. Thus, a black

cell is a cell with only one way to enter or exit from this cell. The color of

a vertex in the shared map can only be changed to black when an occupying
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agent determines that three of its boundaries are blocked by other black cells

or obstacles. Other agents are not permitted to enter the black cell for the

remainder of the exploration.

• OC flag: An OC flag, or occupation flag, is a flag associated with each vertex

used to represents when vertex in the shared map is occupied by an agent. The

OC Flag is a binary flag with two possible values, either True, which indicates

that the respective cell is occupied, or False, which indicates that the cell is

empty. In the beginning of the exploration, the OC flag for all vertices is set to

False. When an agent move into a cell, the OC flag is changed to True. When

the agent leaves the cell and enters an adjacent cell, the OC flag corresponding to

the vertex of the initial cell is reverted back to False. Agents are not permitted

to enter a cell whose OC flag is labeled True. Figure 4.1 describes the e↵ect of

a robot moving between two cells and the OC Flag.

We will use the term exploration when referring to an agent that is sensing the

adjacent obstacles of a cell with the intention of contributing information to the shared

map. Notice finally that an agent can enter a cell only if the following conditions

are satisfied: (i) the OC flag of the corresponding vertex is set to False, (ii) the

corresponding vertex in the shared map is either white or gray, and (iii) a connecting

edge to the corresponding vertex is an element of the shared map, i.e. such element

has been previously entered into the shared map.

Figure 4.1: Transition from cell A to cell B by an agent and how it a↵ects the value
of OCflag. Transition can take time depending on the moving speed of the agent

4.1 Algorithm Statement

Our algorithm follows the same approach as reference [35]. The algorithm in [35],

however, solves the problem sequentially, assuming that only one agent is allowed to

move at any given time, in order to avoid prossible conflicts between agents. A second

limitation of the algorithm in reference [35] is that it is limited to a one-way maze,

i.e. mazes that can be represented as tree. Our algorithm removes these limitations.
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Our approach is such that all agents can move simultaneously and can also be applied

to rectangular mazes. We divide our solution into two phases:

1. Phase One: The goal cell has to be found by an agent.

2. Phase Two: Moving all of the agents to the goal cell.

4.1.1 Phase One: Finding the goal cell

Each agent goes through the following rules in its exploration process:

1. At any arbitrary state, an agent visiting a cell identifies the obstacles in all four

directions using its own internal distance sensors and contributes their corre-

sponding values to the shared map. This means that the edges are identified

and added to the set E in the graph representation of the shared maze map.

Recall that the graph representation of the maze is G = (V,E) where the set V

is the set of vertices and set E is the set of edges. The agent makes a connection

between all adjacent cells in its subgraph.

2. If the agent identifies an adjacent cell as a white cell, then it moves into the

adjacent cell provided that the OC Flag of the adjacent cell is False. If there is

more than one adjacent cell. The agent stores white cells that are not selected

in its memory for future use.

3. If the agent identifies an adjacent cell as a gray cell, then it moves into the

adjacent cell provided that the OC Flag of the adjacent cell is False. If there is

more than one adjacent cell, then the agent moves into the cell that has been

visited the fewest times by the same agent. If there is more than one cell that

has been visited the same number of times, the agent chooses one arbitrarily.

4. In the next level of priority, if an agent identifies an adjacent cell as a a non-

black cell with and OC Flag set to True, then the agent shall wait at its current

location until the agent occupying the non-black cell, reverts the OC Flag to

False. Once the OC Flag reverts to False the waiting agent will move into the

adjacent cell.

5. If there exists only one way to exit from the current cell and all other directions

are obstacles or black cells, i.e. there is only one edge connected to the vertex

representing the current cell in the shared map, then the agent shall change the

color of the current cell to black.
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6. The agent moves to the chosen cell following the instructions stated in rules 2

-5 and (i) changes the color of the current and next cells and (ii) changes the

OC Flag of both cells according to the the instructions stated in Section 3.1

(see Figure 4.1).

7. Repeat instructions starting in rule 1 until an agent finds the goal cell. Once an

agent finds the goal cell the location of the goal cell is uploaded to the shared

map.

4.1.2 Phase two: Leading all agents through the goal cell

Assume now that an agent has reached the goal cell. Once an agent reaches the goal

cell, the information is shared with other agents using the shared map. The main

problem at this point is that other agents may or may not be able to reach the goal

cell with the information available on the shared may, depending on whether or not

they find a direct path to the goal cell.

This situation can be explained more precisely using graph theory: Recall that visited

cells by an agent form an undirected graph in which each cell represents a vertex in

the shared map (Figure 4.2). Recall also that a Connected Graph is a graph in which

there exists a path through existing edges between each two cells [37]. If the graph

is not connected, then it can be represented as a set of disconnected components

or subgraphs. As an example, Figure 4.2 represents a graph of the visited cells

by 3 agents and the goal cell has been detected by agent 1. At this state, other

agents cannot stop the exploration and proceed to the goal cell through the existing

(i.e. visited) edges, unless they find an edge through the connected component that

contains the goal cell.

As soon as an agent finds a connecting edge, the two connected components merge

and form a single connected component (Figure 4.3). At this state, there exists a

path from the current cell of the agent and the goal cell since the agent and the goal

cell are in the same connected component.

With the explanation of Phase Two provided above, we can now proceed to describe

the algorithm for this phase:

For each agent not in the goal cell ’s connected subgraph:

1. Sort all white cells in the agent’s connected subgraph according to the sum

of the Euclidian distance to the goal cell and the length of the path from the
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Figure 4.2: Graph representation of the traversed cells by each agent

Figure 4.3: Merged connected components
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current cell, and choose the one with minimum distance. If more than one cell

with the same minimum distance exists, arbitrarily select one.

Notice that the sorted white cells are the ones whose connecting edge to the

agent’s connected subgraph has been entered to the shared map, but they have

not yet been visited. Recall that in phase one of the solution, the first rule

states that the agent senses the adjacent obstacles and contributes the adjacent

edges to the shared map. Moreover, the second rule states that if there is more

than one white cell, then the agent chooses one arbitrarily. Hence, some white

cells may remain unvisited, eventhough their connecting edge is available in the

shared map. These cells are primarily border cells of the connected subgraph.

2. Find the shortest path toward the chosen cell using the A* algorihm [51] and

follow the path until reaching the chosen cell. The A* algorihm is an algo-

rithm that optimally finds the shortest path between two arbitrary vertices in

a connected graph [51].

3. After exploring the closest white cell, if the agent’s subgraph has not become

connected to the goal cell ’s subgraph, repeat the instructions from the begin-

ning.

4. Find the shortest path towards the goal cell using the A* algorithm and follow

the path until reaching the goal cell. Disappear when reaching the goal cell.

After execution of the algorithm, all visited cells form a one-component connected

graph. By selecting a heuristic function subject for sorting the white cells in phase

two, we were inspired by the A* algorithm, which we discussed in Chapter 2. The

function is equal to the sum of the Euclidian distance between the selected white cell

and the goal cell and the length of the path between the agent’s current cell and the

chosen white cell. This function may be modified by solving an optimization problem

that minimizes the time spent in phase two over several simulations, which is not

the focus of our study. But our work provides an starting point to this problem.

Algorithm 1 and Algorithm 2 provide the pseudo-code for programming the thread

for both phase one and two.
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Algorithm 1: Thread Function for Phase One
Result: Finding the goal cell by an agent
initialization;
while Goal cell not finded do

white cells, gray not visited cells, gray visited cells  [ ];
obstacle count  0;
for each [left cell, up cell, right cell, down cell] do

if obstacle exist then
increment obstacle count by 1;
disregard cell and continue the while loop;

end

if OCflag is True then

disregard cell and continue the while loop;
end

if Cell.color is white then

append the cell to white cells ;
add the white cell to the agent’s subgraph

else if Cell.color is gray then

if cell is in agent history then

append the cell to gray visited cells;
else

append the cell to gray not visited cells;
end

end

end

if obstacle count is 3 then

change the cell color to black and make all directions dead end
end

if white cells is non-empty then

choose a random cell from white cells as the next cell ;
else if gray not visited cells is non-empty then

choose a random cell from gray not visited cells as the next cell ;
else if gray visited cells is non-empty then

choose a cell from gray visited cells which is visited less times as the
next cell ;

else

stay in your current location;
end

Move to next cell and assign OCflag

end
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Algorithm 2: Thread Function for Phase wo
Result: Finding the goal cell by an agent
initialization;
while the agent’s subgraph is not connected to the goal cell’s subgraph do

choose the white cell with the lowest sum of the euclidian distance to the
goal cell and path length from the agent’s current cell ;
follow the path toward to chosen white cell ;
for each [left cell, up cell, right cell, down cell] do

if obstacle does not exist then
connect the agent’s subgraph to the selected white cell.

end

end

remove the explored white cell from the agent’s memory;
end
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Chapter 5

Implementation

In this chapter, we discuss the implementation of our algorithm on a simulation or a

physical system containing multi-robots.

In general, most path planning algorithms encountered in the literature [10] [11] [35]

[53] use a sequential algorithm, i.e. one in which commands are executed one by one

(Figure 5.1). In this scenario agents cannot move simultaneously, i.e. whenever an

agent is moving all other agents must wait. Although e↵ective, this type of algorithm

results in slow solutions of the maze. Our main goal is to complete the algorithm

Figure 5.1: Linear execution of the algorithm

in a non-sequential manner, i.e. executing the algorithm in such a way that all

agents are allowed to move simultaneously. To accomplish this objective we define a

thread function associated with each agent and execute the algorithm in all threads

in parallel rather than sequentially (Figure 5.2). Each agent executes a script in a

thread, resulting in simultaneous execution of all threads.

Meanwhile, these threads are collecting (i) sensor data published by the agent’s dis-

tance sensors for obstacle detection and (ii) location data published by the global

camera, both in realtime. All threads start to execute at approximately the same

time. A short delay of a few milisecond exists between each threads in order to avoid

conflict at the beginning of the execution. These conflict is discussed in more detail

in Section 5.1.

Figure 5.3 shows the overall simulation concept. For each agent, two processes are run

concurrently, namely, an agent process, and a thread process. Each process consists of
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Figure 5.2: Parallel execution of the algorithm in seperate threads for each agent

a set of instructions executed independently from other processes. For each agent, we

have the following combination: the Agent process publishes the sensor data obtained

using the distance sensors. The Thread process collects sensor data and also the

location of the robots obtained from camera. Then, following the instructions in the

algorithm, the thread process contributes the adjacent edges to the shared map and

chooses the next cell to be accupied. The results are published as a move command

to the agent process. Simultaneously, the shared map collects all contributions from

the thread processes of all agents, combines them into a single map, and feedbacks

the information to all thread processes.

5.1 Agent Conflicts

An agent conflict can occur when two agents decide to move to the same cell concur-

rently. According to the algorithm, as soon as an agent chooses to move into a cell,

it changes the OC flag to True, thus preventing other agents from choosing this cell

as long as this flag remains True. A conflict can, however, occur at the start when

all agents start their threads simultaneously. The situation can avoided by inserting

a small ✏ delay time between each thread start.

Also, our algorithm is free of edge conflict and swapping conflict in the sense of

reference [54].

Notice also that our algorithm is free of Vertex conflict in the sense of the article [54]

as time is continuous in our problem and not sequential, the chance of occurrence of

this conflict is nearly zero. As soon as an agent chooses to move into a cell, it changes

the OC flag to True, hence, another agent cannot choose this cell as long as this flag

is True. There is a chance for this conflict to occur when the algorithm starts as all

agents start their threads simultaneously. We can avoid this situation by inserting
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Figure 5.3: Diagram of control system implementation

a small ✏ delay time between each thread start. Also, our algorithm is free of edge

conflict and swapping conflict in the sense of reference [54].

During phase two of our algorithm, agents’ conflicts can occur. For more enlighten-

ment, in rule 2 of phase two, the shortest path toward the chosen white cell in rule

1 is calculated. In a particular case, any two agents can have an intersection in their

paths toward the (white cell) and may reach the intersection simultaneously. In this

case, agents switch their paths as each agent proceeds toward the mutual white cell ;

hence, both white cells are explored, and conflicts in the intersection is avoided.

For instance, Figure 5.4 illustrates a sample of a hypothetical conflict. Assume that

Figure 5.4a represents an entire maze or a section of a larger maze. Each cell has been

allocated a number to simplify navigation. Assume that agents A and B are in phase

two of the algorithm and are exploring the maze. Agent A has picked cell 22 as the

white cell to explore, whereas agent B has chosen cell 8 as the white cell to explore.

Agent A must follow the blue-colored trajectory shown in Figure 5.4b, whereas agent

B must follow the red-colored trajectory presented in Figure 5.4b. Their trajectories

cross in cells 12, 13, and 18, implying that the agents may collide along these lines.

The nature of our algorithm is not dependent on each agent, and the major interest is
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the collaboration and behavior of the agents operating in teams. Thus, cells 22 and 8

must be explored independently of the agent that investigates them throughout this

procedure. Assume that when agent A reaches cell 13, agent B reaches cell 18, they

cannot continue and collide (Figure 5.4c). In this case, they swap destinations and

decide to continue on their mutual paths. As a result, agent A follows the blue-colored

track, whereas agent B follows the red-colored trajectory 5.4d. In conclusion, agent

A and agent B choose the blue and red colored paths, respectively (Figure 5.4e).

34



(a) An entire maze or a section
of a larger maze. Each cell has
been allocated a number

(b) Agent A and Agent B
choose their trajectories

(c) Two agents may collide if
they proceed

(d) Two agents swap their tra-
jectories

(e) Overall trajectories of the
agents

Figure 5.4: An overview two agents that have overlapping trajectories and how to
avoid collision
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Chapter 6

Testing

To test the proposed solution and monitor its performance, the solution is ran on a

simulation with mazes of di↵erent sizes and varying the number of agents. To verify

the algorithm’s performance in the real world, the results are then tested on a physical

system with three mobile robots as the agents, a maze-like field, and a floor-mounted

camera. We begin by discussing our method for creating random mazes and then test

our algorithm on this generated maze. We begin by describing our maze generating

method, which we will use to evaluate our proposed algorithm.

6.1 Random Maze Generator Algorithm

This section describes the random maze generating algorithm that was utilized to

conduct a simulation of our proposed algorithm. This algorithm is inspired by the

Kruskal algorithm explained in Section 2.3.2. So the process is nearly the same unless

it has been executed on a maze. We covered the disjoint sets data structure and

the union-find algorithm in Section 2.3.1. This data structure stores the generated

maze’s nodes, and the union function is employed throughout the maze generation

procedure. This method takes the maze’s dimensions (i.e., rows and columns) as

input. It produces a maze in which all cells are dead-ends, and each cell’s four

directions lead to an obstacle (Figure 6.1a).

The instructions needed to generate the maze are:

1. Create the maze’s representation graph, assuming that each vertex in the graph

corresponds to a cell in the maze and that each connecting edge between two

vertices corresponds to a path linking the two cells represented by the two

vertices.

2. Define a state variable, Connected Components, which specifies the number of
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connected subgraphs included inside the corresponding graph. This variable’s

initial value equals the maze’s row multiplied by the maze’s column.

3. While the Connected Components is greater than 1:

(a) Choose a cell in the maze and one of its neighbors in four directions at

random. Assuming they are named cell A and cell B.

(b) If there is no obstacle between cells A and B : disregard them and repeat

the while loop.

(c) If cells A and B are connected subgraphs, which means that the results

of the Find function on both of their corresponding graph vertices are the

same: disregard the two cells and repeat the while loop.

(d) Eliminate the obstacle between A and B. Add an edge connecting the

corresponding vertices of cells A and B in the graph.

(e) Execute a Union function using the corresponding vertices of A and B as

input.

(f) Decrease the number of Connected Components by one.

Figure 6.1 showsthe process of generating a 3⇥ 3 maze.

The instructions above enable us to generate a one-way maze with a path connecting

every two cells. Thus, regardless of the agent’s starting point, a path exists between

it and any arbitrary destination. However, this approach produces a maze whose

corresponding graph is a tree. As a result, there is only one path between each node

in this graph, and it does not include any cycles. We may be considering upgrading

the maze to a multi-way maze. This approach might be accomplished by assigning a

probability to any obstacles remaining in the maze after running the maze generator

algorithm, generating a random variable between 0 and 1, and eliminating the obstacle

if the random variable was less than 0.5 (Figure 6.2).
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(a) Plain maze with all dead-end
cells. Connected components: 9

(b) First obstacle removed.
Connected components: 8

(c) Second obstacle is removed.
Connected components: 7

(d) Third obstacle is removed.
Connected components: 6

(e) Fourth obstacle is removed.
Connected components: 5

(f) Fifth obstacle is removed.
Connected components: 4

(g) Sixth obstacle is removed.
Connected components: 3

(h) Seventh obstacle is removed.
Connected components: 2

(i) Eighth obstacle is removed.
Connected components: 1

Figure 6.1: Execution of Section 6.1’s maze generating algorithm on a 3⇥ 3 maze.
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(a)

(b)

(c)

Figure 6.2: A sample of a multi-way maze generation from a one-way generated maze
by assigning the probability of 75% to the remaining obstacles

6.2 Simulation and Results

In this subsection we present our computer simulated results. To verify our algorithm

we consider a computer generated square-shaped maze with the following dimensions:

{5⇥5, 10⇥10, 15⇥15, 17⇥17, 20⇥20, 25⇥25} cells. In each case, we run our algorithm
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assuming {1, 3, 5, 7} agents.

To evaluate the performance of each solution and compare the results, the term

timestep is defined as the time it takes for an agent to move from its current cell to

an adjacent cell. To compare the results for phase one of the solution, our benchmark

is the number of timesteps taken for the first agent to reach the destination cell from

the starting point. The benchmark for the second phase is the number of timesteps

needed by the last robot to reach the destination. To remove the e↵ects associated

with random bias, the simulation is run several times for each case and the average

results are used. Tables 6.1, 6.2, 6.3, 6.4, 6.5 and Figures 6.3, and 6.4 illustrate the

results.

As seen in the test results, the case that involved only one agent took a significantly

longer time than other cases with multiple agents and improved communication ex-

plained in both phase one and phase two of the algorithm. Our results are significantly

better than those of reference 35. For mazes with dimensions of 10⇥ 10, 15⇥ 15, and

20 ⇥ 20, reference [35] values for seven agents are about 70, 125, and 200 timesteps,

respectively, whereas our results for seven agents are 49.6, 99.15, and 166.1 timesteps.

Generally, timing is improved as the number of agents increases. However, for the

smaller mazes, like a 10 ⇥ 10 maze, increasing the number of agents may have an

opposite e↵ect on timing. For better enlightenment, it can a↵ect the timing in phase

two, as more agents need to be guided to the destination. In smaller mazes, overlap-

ping between agents’ subgraphs is more probable. Hence, two agents, who have their

subgraphs overlapped, can spend timesteps through their mutual subgraphs while not

exploring newer white cells, which is critical for exploring the maze and finding the

goal cell as soon as possible. We restate that in rule number 2 of phase one of our

algorithm, choosing a gray cell to move, the gray cell that has been visited fewest

times by the same agent is prioritized. This rule can minimize the time spent for

any two agents with overlapping subgraphs in their mutual subgraphs. The influence

of increasing the number of agents with respect to the increases in the dimension of

the maze is inferred from the results. Nevertheless, increasing the number of agents

is only possible with using more resources. Thus, as illustrated by the results, opti-

mal decision-making considering the resources and timing is suggested here. Figures

6.6 illustrate the test’s timeline of events for a sample simulation ran for the ran-

domly generated maze in Figure 6.5. It can provide us with a detailed report of what

occurred throughout the test.
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Table 6.1: Average number of timesteps needed to reach the goal cell for the first
time (Phase One)

Number of Agents

Maze Dimension 1 3 5 7
10 x 10 cells 88 26.2 27.8 17.27
15 x 15 cells 249 77.6 49 35.64
17 x 17 cells 299.64 98.9 58.1 45.8
20 x 20 cells 325 126.3 88 71.82
25 x 25 cells 514.47 267.7 176.8 135.9

Table 6.2: Average number of timesteps needed for the last agent to reach the desti-
nation (Phase Two)

Number of Agents

Maze Dimension 1 3 5 7
10 x 10 cells 88 42.6 45.4 49.55
15 x 15 cells 249 103.2 107.8 99.15
17 x 17 cells 299.64 177.9 143.16 124.7
20 x 20 cells 325 234.3 188.6 166.1
25 x 25 cells 514.47 311.7 297.1 254

Table 6.3: Minimum and maximum number of timesteps recorded in the test results

Number of Agents

Maze Dimension 1 3 5 7

10 x 10 cells
phase 1 2/130 9/37 11/46 1/43
phase 2 - 19/56 31/58 21/140

15 x 15 cells
phase 1 118/444 3/177 1/157 2/104
phase 2 - 34/185 36/342 23/348

17 x 17 cells
phase 1 8/568 16/285 1/211 5/100
phase 2 - 60/372 49/522 73/320

20 x 20 cells
phase 1 195/417 4/321 21/123 1/186
phase 2 - 23/594 135/225 74/372

25 x 25 cells
phase 1 24/1240 40/396 22/399 14/268
phase 2 - 23/594 116/410 183/368
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Table 6.4: Median of the number of timesteps recorded in the test results

Number of Agents

Maze Dimension 1 3 5 7

10 x 10 cells
phase 1 109 30 22 14
phase 2 - 45 46 47

15 x 15 cells
phase 1 163 43 48 24
phase 2 - 86 99 94

17 x 17 cells
phase 1 327 83 50 46
phase 2 - 145 130 103

20 x 20 cells
phase 1 344 92 104 59
phase 2 - 227 197 156.5

25 x 25 cells
phase 1 565 299.5 154 150
phase 2 - 334.5 325 249

Table 6.5: Standard deviation of the number of timesteps recorded in the test results

Number of Agents

Maze Dimension 1 3 5 7

10 x 10 cells
phase 1 45.78 9.91 14.88 11.53
phase 2 - 13.31 9.13 19.81

15 x 15 cells
phase 1 128.39 68.61 33.08 28.47
phase 2 - 55.8 44.28 45.13

17 x 17 cells
phase 1 172.46 70.9 44.66 31.25
phase 2 - 86.32 67.61 70.75

20 x 20 cells
phase 1 85.57 101.27 39.48 50.75
phase 2 - 119.39 33.69 60.39

25 x 25 cells
phase 1 339.37 115.44 130.37 77.33
phase 2 - 85.43 90.87 53.0
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Figure 6.3: Results of the simulation for Phase One

Figure 6.4: Results of the simulation for Phase Two
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Figure 6.5: A random maze developed for the purpose of running a simulation. The
goal cell was randomly assigned to the sixth row and sixth column.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.6: The timeline of solving the maze in Figure 6.6 for five agents from the
starting point to reaching the goal cell by all agents.(Part A)
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(m) (n) (o)

(p) (q) (r)

Figure 6.6: The timeline of solving the maze in Figure 6.6 for five agents from the
starting point to reaching the goal cell by all agents.(Part B)

6.3 Physical test

To experimentally validate the result our algorithm was implemented using a maze-

like field of {10⇥10} cells, and a group of three mobile robots working cooperatively.

A floor mounted camera was used to monitor the location of each agent (Figure 6.7).

We now describe each system component in more detail.
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Figure 6.7: Our physical test formation

6.3.1 Agent

The mobile robots used as agents are GCtronic E-puck2 (Figure 6.8), a 70mm diam-

eter and 45mm height robot with an 1800mAh rechargeable battery with a highest

speed of 15.4cm/s. Each E-puck2 robot contains the following onboard chips:

1. Main microcontroller, which handles sensors and actuators.

2. Programmer, which allows the user to configure the robot via a USB hub

3. Radio module, which permits communication with the robot via BlueTooth or

WiFi.

Each E-puck2 robot has eight proximity sensors and a ToF sensor distributed as shown

in Figure 6.9 [4]. We use Prox2, Prox5 and the ToF to detect right side walls, left

side walls and front walls respectively. In our case, we use WiFi to communicate with

the robots. All robots connect to a single hotspot and then, via the main system,

commands are being executed (Figure 6.10).
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Figure 6.8: e-puck2 overview [4]

Figure 6.9: epuck2 proximity sensors [4]
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Figure 6.10: Robots in the maze

6.3.2 Maze

We consider a maze-like wooden field with 120 cm width and 120 cm height. The

dimension of each cell is 12cm⇥ 12cm. The architecture consists of a one-way maze

without cycles, i.e. the maze is a single tree, in the terminology of graph theory

(Figure 6.11).

Figure 6.11: Maze used for the test
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6.3.3 Camera

To avoid noisy odometry measurements calculated by each robot, we use an overhead

camera to accurately localize robots in the maze. We use a StereoLabs ZED camera

(Figure 6.12), which has dual 4MP lenses capable of 100FPS streaming and video

recording. [55] The camera is mounted at a distance of 1.2m above the maze in order

to cover the entire field.

Figure 6.12: ZED camera used for localization

To detect each robot in the field, we use specific markers to separate robots and other

components, and use image processing to localize robots. We use ArUco markers [56]

which are binary square fiducial markers used for camera pose estimation as shown

in Figure 6.13. Distinct markers are attached on top of each robot to detect their

position and orientation.

Figure 6.13: Examples for aruco markers used for localization[5]

6.3.4 Platform

ROS Kinetic crame (robot operating system) is used to facilitate communication be-

tween the robots and the camera, get sensor data and implement commands. ROS

is a flexible framework that permits writing robot software while benefiting from a
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collection of tools, libraries, and conventions that aim to simplify the task of creat-

ing complex and robust robot behaviour across a wide variety of robotic platforms,

[57]. Figures 6.14 and 6.15 show a general overview of the ROS environment and an

abstract view of how sensor data and command data are connected.

Two main concepts exist in the ROS environment: ROS nodes and ROS topics.

• Node: A node is a program that interacts with other nodes using the ROS

environment.

• Topic: Nodes may both publish messages to and subscribe to a topic.

• Messages: ROS data type, which are the presented data in topics.[57]

Each oval box in Figure 6.15 represents a Node, whereas each rectangular box rep-

resents a Topic in the ROS environment. The arrows linking the nodes and topics

indicate a message that has been published. The agent’s thread produces a node in

the ROS environment corresponding to the E-puck robot that represents the agent. In

Figure 6.15, the node “/epuck2 robot 0” is an example of a ROS node. Additionally,

all rectangular boxes prefixed with “proximity” are the topics to which the robot’s

node is published.

Figure 6.14: Overview of ROS Rviz environment
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Figure 6.15: Overview of ROS graph of nodes
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6.3.5 Results

Previously, in Section 6.2 we show that for a 10 ⇥ 10 maze, using three agents is

advisable. To verify the results in the experiment, we successfully tested our algorithm

using a single robot and then using three robots working cooperatively. In the first

case, it took 55 minutes for a single robot to complete the task of reaching the goal

cell. Working cooperatively, it took 24 minutes for the three robots to reach the goal

cell. It may raise confusion that it needs one-third time for three robots to explore the

maze compared to one robot. This time margin is caused by the fact that robots may

spend timesteps in their mutual subgraphs with other robots in phases one and two of

the exploration. Figures 1 and 2 illustrate the timeline of the physical assessment for

which we obtained the results. These figures represent images from the whole test and

may help convey the nature of our algorithm’s execution on a physical system. This

physical test result allows us to generalize the simulation results for all sizes of mazes

and a various number of robots in any given physical system. It also satisfies two

main objectives: simultaneous movement of all robots and the ability of all robots

to make decisions in real-time rather than sequentially. Figures 6.16 illustrate the

test’s timeline of events. It can provide us with a detailed report of what occurred

throughout the test.
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(a)

(b)

(c)

(d)

Figure 6.16: The timeline of solving the maze in Figure 6.6 for three agents from the
starting point to reaching the destination by all agents.(Part A)
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(e)

(f)

(g)

(h)

Figure 6.16: The timeline of solving the maze in Figure 6.6 for three agents from the
starting point to reaching the destination by all agents.(Part B)
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Chapter 7

Summary and Conclusions

This thesis considers the problem of cooperatively solving a maze by a group of

multiple agents distributed randomly in an arbitrary rectangular maze without prior

knowledge of the maze. We propose as a solution an algorithm for the agents, work-

ing cooperatively, that finds the hidden destination. We divide our algorithm into

two main phases and presented rules for each one, where each agent is separately

programmed to observe these rules. We tested our algorithm in a simulation using

computer-generated square-shaped mazes with di↵erent sizes and a varying number

of agents. The algorithm works well in the simulation, and it is e↵ective in displaying

the advantage of using multiple agents. We provide the results in terms of average

required timesteps for both phases of the solution. Our solution mainly relies on

working all agents cooperatively and in parallel, which distinguishes our algorithm

from the algorithm of reference [35], in which much of this work was inspired, which

discusses the solution in a way that agents move one at a time. We discusse the

implementation of the algorithm by addressing the challenges we have, so the agents

can follow the algorithm in such a way that all agents are allowed to move simulta-

neously. We introduce a trade-o↵ between the number of agents, resources they take,

and time to solve the maze for better decision-making inquiries. Finally, a physical

system with a maze-like field and a floor-mounted camera were used to validate the

simulation results. We successfully tested our algorithm using a single robot and then

using three robots working cooperatively. This validation method demonstrates that

our algorithm can be expanded to di↵erent maze sizes and varying numbers of robots

as a physical system, hence validating our algorithm’s real-world use by eliminating

the discrete-time barriers associated with this challenge. Chapter 2 discusses the fun-

damental graph theory notations and algorithms that we employed throughout this

thesis. These notions are essential in order to comprehend the solution given for the

described problem. Chapter 3 describes the problem for which this thesis suggested
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a solution by using predefined ideas. Chapter 4 discusses the suggested solution, con-

centrating on the problem’s theoretical aspects. The implementation part has been

excluded since it requires a detailed structure to meet the requirements necessary

for executing the solution. Chapter 5 attempts to address the implementation issues

and the discussion around agent conflicts that our solution encounters. Chapter 6

validates and tests the theoretical solution and implementation structure outlined in

Chapters 4 and 5. The results are presented and analyzed. Additionally, the physical

system was described, which we utilize to conduct a feasibility study on the tested

simulation.

7.1 Directions for Future Work

• For future studies, we may address the remaining issues of this topic by elim-

inating the “discrete field” barrier. To this end we may mesh and grid any

surface to simulate a maze; the smaller the grid dimensions, the more accurate

our maze model will be. This improvement can face some challenges that need

to be solved. For instance, in the present problem definition, we considered

the agent to be a “point” with no dimensions and to occupy an entire cell. In

contrast, when confronted with the “discrete field” challenge, the dimension of

the agent becomes an issue that must be addressed in order to find a suitable

solution.

• While the algorithm used in phase two of our solution accomplishes the ob-

jective, it is unclear whether it is optimal. More research may be conducted

by developing and executing phase two algorithms and further evaluating the

results.

• This thesis discusses rectangular mazes and assigns Cartesian dimensions to

each cell. One may do research on circular mazes using Polar dimensions to

address each cell. Conducting research on other non-square-shaped mazes may

also be challenging.

• The solution proposed in this thesis assumes that all agents are aware of the

shared map’s contents; agents may request access to the shared map’s details

as needed. One may propose solutions to challenges that arise as a result of

constraints in the agents’ communication protocol. Examples of the constraints

that agents may encounter include the following:
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– An agent may keep a subset of the map, or the subset of the map can be

restricted to a certain distance from the agent.

– There is no central system that collects all of the agents’ data from their

explorations. The agents may communicate and exchange information only

when they are next to each other in two neighbouring cells.

– Each agent’s data transmissions and receptions are vulnerable to attack. It

might be a denial of service or incorrect information. The agents’ response

to these circumstances may be examined.
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Appendix A

Simulation Codes

Listing A.1: Main code for simulation and extracting data

1 from Cla s s e s . maze import Maze
2 from Cla s s e s . cam import Detector
3 from Cla s s e s . robot import Robot
4 import math
5 import random
6 import time
7 import thread ing
8 import numpy as np
9 from cv br idge import CvBridge

10 import cv2 as cv
11 import p i c k l e
12
13 def bu i l d g l oba l maze (dim) :
14 g loba l maze = Maze(dim , dim)
15 g loba l maze . bui ld maze ( )
16 F i l e = open( ”mmm. p i c k l e ” , ’wb ’ )
17 F i l e . t runcate ( )
18 p i c k l e . dump( global maze , F i l e )
19 F i l e . c l o s e ( )
20 return g loba l maze
21
22 def bu i l d r obo t s (k , dim) :
23 maze = Maze(dim , dim)
24 maze . bu i ld ( )
25 g o a l c e l l = maze . g ene ra t e random ce l l ( )
26 robots = [ ]
27 for i in range ( k ) :
28 robots . append (Robot (10 + i , c o l o r s [ i ] , maze , g o a l c e l l ) )
29 maze . add robots ( robots )
30 return robots , maze
31
32 def import g loba l maze ( ) :
33 F i l e = open( ”mmm. p i c k l e ” , ” rb” )
34 g loba l maze = p i c k l e . load ( F i l e )
35 F i l e . c l o s e ( )
36 return g loba l maze
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37
38 def bui ld cam ( ) :
39 robot cam = Detector (maze , ” robots ” , lock , robots )
40 global cam = Detector ( global maze , ” g l oba l ” , l o ck )
41 for i in range ( k ) :
42 robots [ i ] . add robot cam ( robot cam )
43 return robot cam , g lobal cam
44
45 def main ( g loba l maze ) :
46 t = [ ]
47 for i in range ( k ) :
48 t . append ( thread ing . Thread ( t a r g e t = robots [ i ] . maze explorat ion ,

args = (maze , g lobal maze , robot cam , lock ) ) )
49 for i in range ( len ( t ) ) :
50 t [ i ] . s t a r t ( )
51 for i in range ( len ( t ) ) :
52 t [ i ] . j o i n ( )
53
54 for i in range ( k ) :
55 robots [ i ] . add global maze ( g loba l maze )
56 robots [ i ] . g o a l c e l l = maze . r e t u r n c e l l ( ( 10 , 1) )
57 t . append ( thread ing . Thread ( t a r g e t = robots [ i ] . f o l l ow path , args =

( paths [ i ] , maze , l o ck ) ) )
58 for i in range ( len ( t ) ) :
59 t [ i ] . s t a r t ( )
60 for i in range ( len ( t ) ) :
61 t [ i ] . j o i n ( )
62
63 i f name == ’ ma in ’ :
64 i n f i l e = open( ” d i c t ” , ” rb” )
65 d i c = p i c k l e . load ( i n f i l e )
66 i n f i l e . c l o s e ( )
67 for dim in [ 1 0 , 15 , 17 , 20 , 2 5 ] :
68 for k in [ 1 , 3 , 5 , 7 ] :
69 g loba l maze = bu i l d g l oba l maze (dim)
70 robots , maze = bu i l d r obo t s (k , dim)
71 lock = thread ing . Lock ( )
72 robot cam , g lobal cam = build cam ( )
73 main ( g loba l maze )
74 max overa l l = 0
75 max phase one = 0
76 for robot in robots :
77 max phase one = max( robot . phase one counter ,

max phase one )
78 max overa l l = max( robot . o v e r a l l c oun t e r , max overa l l )
79 d i c [ k ] [ dim ] . append ( ( max phase one , max overa l l ) )
80 o u t f i l e = open( ” d i c t ” , ”wb” )
81 p i c k l e . dump( dic , o u t f i l e )
82 o u t f i l e . c l o s e ( )
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Listing A.2: Robot object code

1 import random
2 import time
3 from datet ime import datet ime
4 from c o l l e c t i o n s import d e f a u l t d i c t
5 import math
6 import sys
7 from d i j k s t a r import Graph , f i nd path
8
9 def e u c d i s t ( c e l l 1 , c e l l 2 ) :

10 return math . s q r t ( ( c e l l 1 .Row − c e l l 2 .Row) ∗∗2 + ( c e l l 1 . Col − c e l l 2 . Col
) ∗∗2)

11 class Robot :
12 def i n i t ( s e l f , co lo r , rgb , main maze , g o a l c e l l , i n i t i a l p o s =

None ) :
13 s e l f . Xpos = 0
14 s e l f . Ypos = 0
15 s e l f . RowInd = 0 #
16 s e l f . ColInd = 0 #
17 s e l f . Front = 1
18 s e l f . Le f t = 1
19 s e l f . Right = 1
20 s e l f . Back = 1
21 s e l f . d i r e c t i o n = 0 # 0 l e f t # 1 up # 2 r i g h t # 3 down
22 s e l f . v i s i t e d = d e f a u l t d i c t ( int )
23 s e l f . c o l o r = co l o r
24 s e l f . rgb = rgb #
25 s e l f . g o a l c e l l = g o a l c e l l
26 s e l f . i n i t i a l i z e P o s (main maze , i n i t i a l p o s )
27 s e l f .WL = de f a u l t d i c t ( f loat )
28 s e l f . key = ” sum of d i s t ance ”
29 s e l f . d e s t i n a t i on = None
30 s e l f . n ex t Ce l l = None
31 s e l f . changed = ””
32 s e l f . phase one counter = 0
33 s e l f . o v e r a l l c o un t e r = 0
34
35 def CurrentCe l l ( s e l f , maze ) : # done
36 return maze . c e l l [ s e l f . RowInd ] [ s e l f . ColInd ]
37
38 def Le f tCe l l ( s e l f , maze ) : #done
39 i f s e l f . d i r e c t i o n == 0 : #l e f t
40 return maze . down ce l l ( s e l f . CurrentCe l l (maze ) )
41 i f s e l f . d i r e c t i o n == 1 : #up
42 return maze . l e f t c e l l ( s e l f . CurrentCe l l (maze ) )
43 i f s e l f . d i r e c t i o n == 2 : #r i g h t
44 return maze . u p c e l l ( s e l f . CurrentCe l l (maze ) )
45 i f s e l f . d i r e c t i o n == 3 : #down
46 return maze . r i g h t c e l l ( s e l f . CurrentCe l l (maze ) )
47
48 def RightCe l l ( s e l f , maze ) : # done
49 i f s e l f . d i r e c t i o n == 0 : #l e f t
50 return maze . u p c e l l ( s e l f . CurrentCe l l (maze ) )
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51 i f s e l f . d i r e c t i o n == 1 : #up
52 return maze . r i g h t c e l l ( s e l f . CurrentCe l l (maze ) )
53 i f s e l f . d i r e c t i o n == 2 : #r i g h t
54 return maze . down ce l l ( s e l f . CurrentCe l l (maze ) )
55 i f s e l f . d i r e c t i o n == 3 : #down
56 return maze . l e f t c e l l ( s e l f . CurrentCe l l (maze ) )
57
58 def BackCell ( s e l f , maze ) : # done
59 i f s e l f . d i r e c t i o n == 0 : #l e f t
60 return maze . r i g h t c e l l ( s e l f . CurrentCe l l (maze ) )
61 i f s e l f . d i r e c t i o n == 1 : #up
62 return maze . down ce l l ( s e l f . CurrentCe l l (maze ) )
63 i f s e l f . d i r e c t i o n == 2 : #r i g h t
64 return maze . l e f t c e l l ( s e l f . CurrentCe l l (maze ) )
65 i f s e l f . d i r e c t i o n == 3 : #down
66 return maze . u p c e l l ( s e l f . CurrentCe l l (maze ) )
67
68 def FrontCe l l ( s e l f , maze ) : # done
69 i f s e l f . d i r e c t i o n == 0 : #l e f t
70 return maze . l e f t c e l l ( s e l f . CurrentCe l l (maze ) )
71 i f s e l f . d i r e c t i o n == 1 : #up
72 return maze . u p c e l l ( s e l f . CurrentCe l l (maze ) )
73 i f s e l f . d i r e c t i o n == 2 : #r i g h t
74 return maze . r i g h t c e l l ( s e l f . CurrentCe l l (maze ) )
75 i f s e l f . d i r e c t i o n == 3 : #down
76 return maze . down ce l l ( s e l f . CurrentCe l l (maze ) )
77
78 def FrontWall ( s e l f , maze ) : # done
79 i f s e l f . d i r e c t i o n == 0 : # l e f t
80 return s e l f . FrontCe l l (maze ) . r ightWal l
81 i f s e l f . d i r e c t i o n == 1 : # up
82 return s e l f . FrontCe l l (maze ) . downWall
83 i f s e l f . d i r e c t i o n == 2 : # r i g h t
84 return s e l f . CurrentCe l l (maze ) . r ightWal l
85 i f s e l f . d i r e c t i o n == 3 : # down
86 return s e l f . CurrentCe l l (maze ) . downWall
87
88 def BackWall ( s e l f , maze ) : # done
89 i f s e l f . d i r e c t i o n == 0 : # l e f t
90 return s e l f . CurrentCe l l (maze ) . r ightWal l
91 i f s e l f . d i r e c t i o n == 1 : # up
92 return s e l f . CurrentCe l l (maze ) . downWall
93 i f s e l f . d i r e c t i o n == 2 : # r i g h t
94 return s e l f . BackCell (maze ) . r ightWal l
95 i f s e l f . d i r e c t i o n == 3 : # down
96 return s e l f . BackCell (maze ) . downWall
97
98 def LeftWall ( s e l f , maze ) : # done
99 i f s e l f . d i r e c t i o n == 0 : # l e f t

100 return s e l f . CurrentCe l l (maze ) . downWall
101 i f s e l f . d i r e c t i o n == 1 : # up
102 return s e l f . L e f tCe l l (maze ) . r ightWal l
103 i f s e l f . d i r e c t i o n == 2 : # r i g h t
104 return s e l f . L e f tCe l l (maze ) . downWall
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105 i f s e l f . d i r e c t i o n == 3 : # down
106 return s e l f . CurrentCe l l (maze ) . r ightWal l
107
108 def RightWall ( s e l f , maze ) : # done
109 i f s e l f . d i r e c t i o n == 0 : # l e f t
110 return s e l f . R ightCe l l (maze ) . downWall
111 i f s e l f . d i r e c t i o n == 1 : # up
112 return s e l f . CurrentCe l l (maze ) . r ightWal l
113 i f s e l f . d i r e c t i o n == 2 : # r i g h t
114 return s e l f . CurrentCe l l (maze ) . downWall
115 i f s e l f . d i r e c t i o n == 3 : # down
116 return s e l f . R ightCe l l (maze ) . r ightWal l
117
118 def TurnLeft ( s e l f ) : # done
119 s e l f . d i r e c t i o n = ( s e l f . d i r e c t i o n − 1) % 4
120
121 def TurnRight ( s e l f ) : # done
122 s e l f . d i r e c t i o n = ( s e l f . d i r e c t i o n + 1) % 4
123
124 def ForwardOneCell ( s e l f , maze , speed = 2) : # done
125 f r o n t c e l l = s e l f . FrontCe l l (maze )
126 s e l f . change pos to ( f r o n t c e l l )
127
128 def change pos to ( s e l f , c e l l ) : # done
129 s e l f . RowInd = c e l l .Row
130 s e l f . ColInd = c e l l . Col
131 s e l f . Xpos = c e l l . xpos
132 s e l f . Ypos = c e l l . ypos
133
134 def i n i t i a l i z e P o s ( s e l f , maze , i n i t i a l p o s ) : # done
135 random . seed ( datet ime . now( ) )
136 i f i n i t i a l p o s i s None :
137 f i r s t c e l l = maze . g ene ra t e random ce l l ( )
138 while f i r s t c e l l == s e l f . g o a l c e l l :
139 f i r s t c e l l = maze . g ene ra t e random ce l l ( )
140 else : f i r s t c e l l = i n i t i a l p o s
141 i f f i r s t c e l l . c o l o r != 0 :
142 f i r s t c e l l = maze . g ene ra t e random ce l l ( )
143 s e l f . change pos to ( f i r s t c e l l )
144 s e l f . d i r e c t i o n = random . rand int (0 , 3)
145 s e l f . CurrentCe l l (maze ) . s e t c o l o r ( s e l f . c o l o r )
146 s e l f . CurrentCe l l (maze ) . s e t OC f lag (True )
147 s e l f . a d d t o v i s i t e d c e l l ( s e l f . CurrentCe l l (maze ) )
148
149 def a d d t o v i s i t e d c e l l ( s e l f , n ex t Ce l l ) : # done
150 s e l f . v i s i t e d [ n ex t Ce l l . id ] += 1
151
152 def exp lo r e ( s e l f , maze , g lobal maze , robot cam , lock ) : # done
153 s e l f . AssignWall (maze , g lobal maze , robot cam )
154 nex t Ce l l = s e l f . Choose d i r e c t i on (maze )
155 s e l f .Move(maze , n ex t Ce l l )
156
157 def Move( s e l f , maze , n ex t Ce l l ) : # done
158 s e l f . o v e r a l l c o un t e r += 1
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159 i f nex t Ce l l == s e l f . CurrentCe l l (maze ) :
160 return
161 p r ev Ce l l = s e l f . CurrentCe l l (maze )
162 nex t Ce l l . OC flag = True
163 i f nex t Ce l l == s e l f . L e f tCe l l (maze ) :
164 s e l f . TurnLeft ( )
165 i f nex t Ce l l == s e l f . R ightCe l l (maze ) :
166 s e l f . TurnRight ( )
167 i f nex t Ce l l == s e l f . FrontCe l l (maze ) :
168 pass
169 i f nex t Ce l l == s e l f . BackCell (maze ) :
170 s e l f . TurnLeft ( )
171 s e l f . TurnLeft ( )
172 s e l f . c o l o r a s s i g n (maze , n ex t Ce l l )
173 s e l f . ForwardOneCell (maze )
174 p r ev Ce l l . OC flag = False
175 s e l f . a d d t o v i s i t e d c e l l ( n ex t Ce l l )
176
177 def c o l o r a s s i g n ( s e l f , maze , n ex t Ce l l ) : # done
178 i f nex t Ce l l . g e t c o l o r ( ) == 0 :
179 i f s e l f . d i r e c t i on sum (maze ) == 1 :
180 s e l f . dead end (maze )
181 else :
182 s e l f . CurrentCe l l (maze ) . s e t c o l o r (1 )
183 s e l f . robot cam . s e t c o l o r ( s e l f . CurrentCe l l (maze ) , 1)
184 e l i f nex t Ce l l . g e t c o l o r ( ) == 1 :
185 i f s e l f . d i r e c t i on sum (maze ) == 1 :
186 s e l f . dead end (maze )
187 else :
188 s e l f . CurrentCe l l (maze ) . s e t c o l o r (1 )
189 s e l f . robot cam . s e t c o l o r ( s e l f . CurrentCe l l (maze ) , 1)
190 nex t Ce l l . s e t c o l o r ( s e l f . c o l o r )
191 s e l f . robot cam . s e t c o l o r ( next Ce l l , s e l f . co lo r , s e l f )
192
193 def dead end ( s e l f , maze ) : # done
194 s e l f . CurrentCe l l (maze ) . s e t c o l o r (2 )
195 s e l f . robot cam . s e t c o l o r ( s e l f . CurrentCe l l (maze ) , 2)
196 maze . add obs tac l e ( s e l f . CurrentCe l l (maze ) , maze . u p c e l l ( s e l f .

CurrentCe l l (maze ) ) , s e l f . robot cam )
197 maze . add obs tac l e ( s e l f . CurrentCe l l (maze ) , maze . l e f t c e l l ( s e l f .

CurrentCe l l (maze ) ) , s e l f . robot cam )
198 maze . add obs tac l e ( s e l f . CurrentCe l l (maze ) , maze . r i g h t c e l l ( s e l f .

CurrentCe l l (maze ) ) , s e l f . robot cam )
199 maze . add obs tac l e ( s e l f . CurrentCe l l (maze ) , maze . down ce l l ( s e l f .

CurrentCe l l (maze ) ) , s e l f . robot cam )
200
201 def d i r e c t i on sum ( s e l f , maze ) : # done
202 return s e l f . FrontWall (maze ) + s e l f . BackWall (maze ) + s e l f .

LeftWall (maze ) + s e l f . RightWall (maze )
203
204 def AssignWall ( s e l f , maze , g lobal maze , robot cam ) : # done
205 i f s e l f . LeftWall ( g loba l maze ) == 0 and s e l f . LeftWall (maze ) == 1 :
206 maze . add obs tac l e ( s e l f . CurrentCe l l (maze ) , s e l f . L e f tCe l l (maze

) , robot cam )

69



207 e l i f s e l f . LeftWall ( g loba l maze ) == 1 :
208 maze . add to graph ( s e l f . CurrentCe l l (maze ) , s e l f . L e f tCe l l (maze

) )
209 i f s e l f . FrontWall ( g loba l maze ) == 0 and s e l f . FrontWall (maze ) ==

1 :
210 maze . add obs tac l e ( s e l f . CurrentCe l l (maze ) , s e l f . FrontCe l l (

maze ) , robot cam )
211 e l i f s e l f . FrontWall ( g loba l maze ) == 1 :
212 maze . add to graph ( s e l f . CurrentCe l l (maze ) , s e l f . FrontCe l l (

maze ) )
213 i f s e l f . RightWall ( g loba l maze ) == 0 and s e l f . RightWall (maze ) ==

1 :
214 maze . add obs tac l e ( s e l f . CurrentCe l l (maze ) , s e l f . R ightCe l l (

maze ) , robot cam )
215 e l i f s e l f . RightWall ( g loba l maze ) == 1 :
216 maze . add to graph ( s e l f . CurrentCe l l (maze ) , s e l f . R ightCe l l (

maze ) )
217 i f s e l f . BackWall ( g loba l maze ) == 0 and s e l f . BackWall (maze ) == 1 :
218 maze . add obs tac l e ( s e l f . CurrentCe l l (maze ) , s e l f . BackCell (maze

) , robot cam )
219 e l i f s e l f . BackWall ( g loba l maze ) == 1 :
220 maze . add to graph ( s e l f . CurrentCe l l (maze ) , s e l f . BackCell (maze

) )
221 robot cam . pre sent ( )
222
223 def Ce l l c a t e g o r i z e ( s e l f , maze , n ex t Ce l l = None ) : # done
224 wh i t e c e l l s = [ ]
225 g r e y c e l l s = [ ]
226 i f s e l f . L e f tCe l l (maze ) and s e l f . LeftWall (maze ) == 1 and s e l f .

L e f tCe l l (maze ) . get OC f lag ( ) == False :
227 i f s e l f . L e f tCe l l (maze ) . g e t c o l o r ( ) == 0 :
228 wh i t e c e l l s . append ( s e l f . L e f tCe l l (maze ) )
229 i f s e l f . L e f tCe l l (maze ) . g e t c o l o r ( ) == 1 :
230 g r e y c e l l s . append ( s e l f . L e f tCe l l (maze ) )
231 i f s e l f . FrontCe l l (maze ) and s e l f . FrontWall (maze ) == 1 and s e l f .

FrontCe l l (maze ) . get OC f lag ( ) == False :
232 i f s e l f . FrontCe l l (maze ) . g e t c o l o r ( ) == 0 :
233 wh i t e c e l l s . append ( s e l f . FrontCe l l (maze ) )
234 i f s e l f . FrontCe l l (maze ) . g e t c o l o r ( ) == 1 :
235 g r e y c e l l s . append ( s e l f . FrontCe l l (maze ) )
236 i f s e l f . R ightCe l l (maze ) and s e l f . RightWall (maze ) == 1 and s e l f .

R ightCe l l (maze ) . get OC f lag ( ) == False :
237 i f s e l f . R ightCe l l (maze ) . g e t c o l o r ( ) == 0 :
238 wh i t e c e l l s . append ( s e l f . R ightCe l l (maze ) )
239 i f s e l f . R ightCe l l (maze ) . g e t c o l o r ( ) == 1 :
240 g r e y c e l l s . append ( s e l f . R ightCe l l (maze ) )
241 i f s e l f . BackCell (maze ) and s e l f . BackWall (maze ) == 1 and s e l f .

BackCell (maze ) . get OC f lag ( ) == False :
242 i f s e l f . BackCell (maze ) . g e t c o l o r ( ) == 0 :
243 wh i t e c e l l s . append ( s e l f . BackCell (maze ) )
244 i f s e l f . BackCell (maze ) . g e t c o l o r ( ) == 1 :
245 g r e y c e l l s . append ( s e l f . BackCell (maze ) )
246
247 for c e l l in wh i t e c e l l s :
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248 i f s e l f . g o a l c e l l . c o l o r == 0 :
249 s e l f .WL[ c e l l ] = f loat ( ’ i n f ’ )
250 else :
251 s e l f .WL[ c e l l ] = s e l f . h e u r i s t i c ( c e l l , maze , key=s e l f . key )
252 print ( s e l f . co lo r , ”wl” , [ c e l l . id for c e l l in s e l f .WL. keys ( ) ] ,

s e l f . CurrentCe l l (maze ) . id , s e l f . changed )
253 return wh i t e c e l l s , g r e y c e l l s
254
255 def h e u r i s t i c ( s e l f , c e l l , maze , key ) :
256 i f key == ” sum of d i s t ance ” :
257 return e u c d i s t ( s e l f . g o a l c e l l , c e l l ) + eu c d i s t ( c e l l , s e l f .

CurrentCe l l (maze ) )
258
259 i f key == ” c l o s e s t wh i t e t o r o b o t ” :
260 return e u c d i s t ( c e l l , s e l f . CurrentCe l l (maze ) )
261 i f key == ” c l o s e s t wh i t e t o g o a l ” :
262 return e u c d i s t ( s e l f . g o a l c e l l , c e l l )
263
264 def Choose d i r e c t i on ( s e l f , maze ) :
265 wh i t e c e l l s , g r e y c e l l s = s e l f . C e l l c a t e g o r i z e (maze )
266 i f len ( w h i t e c e l l s ) :
267 nex t Ce l l = random . cho i c e ( w h i t e c e l l s )
268 del s e l f .WL[ nex t Ce l l ]
269 print ( s e l f . co lo r , ”wl” , [ c e l l . id for c e l l in s e l f .WL. keys ( )

] , s e l f . CurrentCe l l (maze ) . id )
270 return nex t Ce l l
271 i f len ( g r e y c e l l s ) == 0 :
272 return s e l f . CurrentCe l l (maze )
273 n ew g r e y c e l l s = s e l f . s o r t c e l l l i s t ( g r e y c e l l s )
274 nex t Ce l l = n ew g r e y c e l l s [ 0 ]
275 return nex t Ce l l
276
277 def s o r t c e l l l i s t ( s e l f , c e l l l i s t ) :
278 n = len ( c e l l l i s t )
279 for i in range (n) :
280 for j in range (n − i − 1) :
281 i f s e l f . v i s i t e d [ c e l l l i s t [ j ] . id ] > s e l f . v i s i t e d [

c e l l l i s t [ j + 1 ] . id ] :
282 c e l l l i s t [ j ] , c e l l l i s t [ j + 1 ] = c e l l l i s t [ j + 1 ] ,

c e l l l i s t [ j ]
283 n ew l i s t = [ c e l l l i s t [ 0 ] ]
284 va l = s e l f . v i s i t e d [ c e l l l i s t [ 0 ] ]
285 for i in range (1 , n ) :
286 i f s e l f . v i s i t e d [ c e l l l i s t [ i ] ] == va l :
287 n ew l i s t . append ( c e l l l i s t [ i ] )
288 return n ew l i s t
289
290 def maze exp lorat ion ( s e l f , maze , g lobal maze , robot cam , lock ) :
291 print ( ” s t a r t ” )
292 lock . acqu i r e ( )
293 s e l f . g loba l maze = globa l maze
294 lock . r e l e a s e ( )
295 while s e l f . g o a l c e l l . c o l o r == 0 :
296 lock . acqu i r e ( )
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297 s t a r t = time . time ( )
298 s e l f . exp l o r e (maze , g lobal maze , robot cam , lock )
299 s e l f . phase one counter += 1
300 lock . r e l e a s e ( )
301 while time . time ( ) − s t a r t < . 2 5 :
302 pass
303
304 lock . acqu i r e ( )
305 s e l f . AssignWall (maze , g lobal maze , robot cam )
306 s e l f . C e l l c a t e g o r i z e (maze )
307 for c e l l in s e l f .WL:
308 s e l f .WL[ c e l l ] = s e l f . h e u r i s t i c ( c e l l , maze , key=s e l f . key )
309 path = f ind path (maze . graph , s e l f . CurrentCe l l (maze ) , s e l f .

g o a l c e l l )
310 lock . r e l e a s e ( )
311 while not path :
312 lock . acqu i r e ( )
313 print ( s e l f . co lo r , ”no path” , [ c e l l . id for c e l l in s e l f .WL.

keys ( ) ] , s e l f . CurrentCe l l (maze ) . id )
314 i f not len ( s e l f .WL) :
315 print ( s e l f . co lo r , ”empty white ” , s e l f . CurrentCe l l (maze ) .

id )
316 s e l f . exp l o r e (maze , g lobal maze , robot cam , lock )
317 path = f ind path (maze . graph , s e l f . CurrentCe l l (maze ) ,

s e l f . g o a l c e l l )
318 lock . r e l e a s e ( )
319 time . s l e e p ( . 0 1 )
320 continue
321 c l o s e s t wh i t e = min( s e l f .WL, key=s e l f .WL. get )
322 i f c l o s e s t wh i t e . c o l o r != 0 :
323 del s e l f .WL[ c l o s e s t wh i t e ]
324 lock . r e l e a s e ( )
325 continue
326 path = f ind path (maze . graph , s e l f . CurrentCe l l (maze ) ,

c l o s e s t wh i t e )
327 lock . r e l e a s e ( )
328 s e l f . f o l l ow path ( path [ 0 ] , maze , l o ck )
329 lock . acqu i r e ( )
330 s e l f . AssignWall (maze , g lobal maze , robot cam )
331 s e l f . C e l l c a t e g o r i z e (maze )
332 #as s i g n wa l l
333 path = f ind path (maze . graph , s e l f . CurrentCe l l (maze ) , s e l f .

g o a l c e l l )
334 lock . r e l e a s e ( )
335 s e l f . f o l l ow path ( path [ 0 ] , maze , l o ck )
336 s e l f . CurrentCe l l (maze ) . c o l o r = 1
337 s e l f . CurrentCe l l (maze ) . OC flag = Fal se
338
339 def f o l l ow path ( s e l f , path , maze , l o ck ) :
340 lock . acqu i r e ( )
341 s e l f . d e s t i n a t i on = path [−1]
342 print ( s e l f . co lo r , ” heading to ” , s e l f . d e s t i n a t i on . id )
343 lock . r e l e a s e ( )
344 for i in range (1 , len ( path ) ) :

72



345 lock . acqu i r e ( )
346 s t a r t = time . time ( )
347 i f s e l f . d e s t i n a t i o n . c o l o r == 3 :
348 print ( s e l f . co lo r , ” d e s t i n a t i on exp lored be fore , break ! ” )
349 lock . r e l e a s e ( )
350 break
351 s e l f . n ex t Ce l l = path [ i ]
352 s e l f . AssignWall (maze , s e l f . g lobal maze , s e l f . robot cam )
353 s e l f . C e l l c a t e g o r i z e (maze )
354 lock . r e l e a s e ( )
355 counter = 0
356 while s e l f . n ex t Ce l l . OC flag == True :
357 time . s l e e p ( . 1 )
358 lock . acqu i r e ( )
359 i f counter > 3 :
360 f r on t r obo t = maze . r o b o t r e f ( s e l f . n ex t Ce l l )
361 i f f r on t r obo t : print ( s e l f . co lo r , ” f r on t robot c o l o r

i s ” , f r on t r obo t . c o l o r )
362 i f f r on t r obo t . n ex t Ce l l == s e l f . CurrentCe l l (maze ) :
363 lock . r e l e a s e ( )
364 maze . sw i t c h d e s t i n a t i o n ( s e l f , f r on t robo t , l o ck )
365 lock . acqu i r e ( )
366 print ( ” d e s t i n a t i on switched ” , s e l f . co lo r , ”

heading to ” , s e l f . d e s t i n a t i on . id )
367 #b e l l ( )
368 lock . r e l e a s e ( )
369 lock . acqu i r e ( )
370 i f not s e l f . d e s t i n a t i o n :
371 s e l f . exp l o r e (maze , s e l f . g lobal maze , s e l f . robot cam )
372 print ( s e l f . co lo r , ”empty dest , exp lo r e ” )
373 lock . r e l e a s e ( )
374 return
375
376 i f s e l f . d e s t i n a t i o n != path [ −1 ] :
377 print ( s e l f . co lo r , ” heading to new de s t i n a t i on ” , s e l f

. d e s t i n a t i on . id )
378 s e l f . changed = ”changed”
379 #loc k . acqu i r e ( )
380 path = f ind path (maze . graph , s e l f . CurrentCe l l (maze ) ,

s e l f . d e s t i n a t i o n )
381 lock . r e l e a s e ( )
382 s e l f . f o l l ow path ( path [ 0 ] , maze , l o ck )
383 return
384 print ( s e l f . co lo r , ”wait next c e l l i s ” , s e l f . n ex t Ce l l . id

, ” counter i s ” , counter )
385 lock . r e l e a s e ( )
386 time . s l e e p ( . 1 )
387 counter += 1
388 lock . acqu i r e ( )
389 s e l f .Move(maze , s e l f . n ex t Ce l l )
390 i f s e l f . CurrentCe l l (maze ) in s e l f .WL:
391 del s e l f .WL[ s e l f . CurrentCe l l (maze ) ]
392 print ( s e l f . co lo r , ”wl” , [ c e l l . id for c e l l in s e l f .WL.

keys ( ) ] , s e l f . CurrentCe l l (maze ) . id )
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393 lock . r e l e a s e ( )
394 while ( time . time ( ) − s t a r t < . 2 5 ) :
395 pass
396 lock . acqu i r e ( )
397 s e l f . AssignWall (maze , s e l f . g lobal maze , s e l f . robot cam )
398 s e l f . C e l l c a t e g o r i z e (maze )
399 print ( s e l f . co lo r , ” f o l l ow path done , cur r ent i s ” , s e l f .

CurrentCe l l (maze ) . id )
400 s e l f . d e s t i n a t i on = None
401 lock . r e l e a s e ( )
402
403 def ex t ra c t pa th ( s e l f , maze , c e l l a , c e l l b ) :
404 path = f ind path (maze . graph , c e l l a , c e l l b )
405 return path [ 0 ]
406
407 def add robot cam ( s e l f , robot cam ) :
408 s e l f . robot cam = robot cam
409
410 def add global maze ( s e l f , g loba l maze ) :
411 s e l f . g loba l maze = globa l maze
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Listing A.3: Maze object code

1 import random
2 from datet ime import datet ime
3 from c o l l e c t i o n s import d e f a u l t d i c t
4 import c o l l e c t i o n s
5 import marshal
6 import os
7 from copy import copy
8 from d i j k s t a r import Graph , f i nd path
9 class Ce l l :

10 def i n i t ( s e l f , Row, Col , id ) :
11 s e l f .Row = Row
12 s e l f . Col = Col
13 s e l f . id = id
14 s e l f . xpos = 0
15 s e l f . ypos = 0
16 s e l f . downWall = 1 # 1 fo r way
17 s e l f . r ightWal l = 1 # 0 fo r wa l l
18 s e l f . c o l o r = 0
19 s e l f . par = s e l f
20 s e l f . OC flag = Fal se
21 s e l f . graph = Graph ( )
22
23 def s e t c o l o r ( s e l f , c o l o r ) :
24 s e l f . c o l o r = co l o r
25
26 def g e t c o l o r ( s e l f ) :
27 return s e l f . c o l o r
28
29 def s e t OC f lag ( s e l f , f l a g ) :
30 s e l f . OC flag = f l a g
31
32 def get OC f lag ( s e l f ) :
33 return s e l f . OC flag
34 class Maze :
35 def i n i t ( s e l f , Row, Col , StartRow = 0 , StartCol = 0 , FinishRow =

6 , Fin i shCol = 1) :
36 s e l f . StartRow = StartRow
37 s e l f . StartCol = StartCol
38 s e l f . FinishRow = FinishRow
39 s e l f . F in i shCol = Fin i shCol
40 s e l f .Row = Row + 1
41 s e l f . Col = Col + 1
42 s e l f . c e l l = [ [ Ce l l ( row , co l , ( s e l f . Col − 1) ∗ ( row − 1) + co l )

for c o l in range ( s e l f . Col ) ] for row in range ( s e l f .Row) ]
43 s e l f . connected components = ( len ( s e l f . c e l l ) − 1) ∗ ( len ( s e l f .

c e l l [ 0 ] ) − 1)
44 s e l f . graph = Graph ( )
45
46 def add robots ( s e l f , robot s ) :
47 s e l f . robots = robots
48
49 def g e t i d f r om c e l l ( s e l f , c e l l ) :

75



50 return c e l l . id
51
52 def g e t c e l l f r om i d ( s e l f , id ) :
53 row = id // ( s e l f . Col − 1) + 1
54 co l = id − ( s e l f . Col − 1) ∗ ( row − 1) − c o l
55 return s e l f . c e l l [ row ] [ c o l ]
56
57 def up c e l l ( s e l f , c e l l u ) :
58 row u , c o l u = c e l l u .Row, c e l l u . Col
59 i f row u == 0 : return None
60 return s e l f . c e l l [ row u − 1 ] [ c o l u ]
61
62 def up wal l ( s e l f , c e l l u ) :
63 row u , c o l u = c e l l u .Row, c e l l u . Col
64 i f row u == 0 : return None
65 return s e l f . u p c e l l ( c e l l u ) . downWall
66
67 def down ce l l ( s e l f , c e l l u ) :
68 row u , c o l u = c e l l u .Row, c e l l u . Col
69 i f row u == s e l f .Row − 1 : return None
70 return s e l f . c e l l [ row u + 1 ] [ c o l u ]
71
72 def down wall ( s e l f , c e l l u ) :
73 row u , c o l u = c e l l u .Row, c e l l u . Col
74 i f row u == s e l f .Row − 1 : return None
75 return c e l l u . downWall
76
77 def l e f t c e l l ( s e l f , c e l l u ) :
78 row u , c o l u = c e l l u .Row, c e l l u . Col
79 i f c o l u == 0 : return None
80 return s e l f . c e l l [ row u ] [ c o l u − 1 ]
81
82 def l e f t w a l l ( s e l f , c e l l u ) :
83 row u , c o l u = c e l l u .Row, c e l l u . Col
84 i f c o l u == 0 : return None
85 return s e l f . l e f t c e l l ( c e l l u ) . r ightWal l
86
87 def r i g h t c e l l ( s e l f , c e l l u ) :
88 row u , c o l u = c e l l u .Row, c e l l u . Col
89 i f c o l u == s e l f . Col − 1 : return None
90 return s e l f . c e l l [ row u ] [ c o l u + 1 ]
91
92 def r i g h t wa l l ( s e l f , c e l l u ) :
93 row u , c o l u = c e l l u .Row, c e l l u . Col
94 i f c o l u == s e l f . Col − 1 : return None
95 return c e l l u . r ightWal l
96
97 def s e t o b s t a c l e ( s e l f , c e l l u , c e l l v , robot cam , va l ) :
98 i f not c e l l u : return
99 i f not c e l l v : return

100 row u , c o l u = c e l l u .Row, c e l l u . Col
101 row v , c o l v = c e l l v .Row, c e l l v . Col
102 i f row u == row v :
103 i f c o l u < c o l v :
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104 c e l l u . r ightWal l = va l
105 i f not va l : robot cam . add r i gh t wa l l ( c e l l u )
106 else :
107 c e l l v . r ightWal l = va l
108 i f not va l : robot cam . add r i gh t wa l l ( c e l l v )
109 else :
110 i f row u < row v :
111 c e l l u . downWall = va l
112 i f not va l : robot cam . add down wall ( c e l l u )
113 else :
114 c e l l v . downWall = va l
115 i f not va l : robot cam . add down wall ( c e l l v )
116
117 def add obs tac l e ( s e l f , c e l l u , c e l l v , robot cam = None ) :
118 s e l f . s e t o b s t a c l e ( c e l l u , c e l l v , robot cam , 0)
119
120 def r emove obstac l e ( s e l f , c e l l u , c e l l v , robot cam = None ) :
121 s e l f . s e t o b s t a c l e ( c e l l u , c e l l v , robot cam , 1)
122
123 def add to graph ( s e l f , c e l l u , c e l l v ) :
124 s e l f . graph . add edge ( c e l l u , c e l l v , 1)
125 s e l f . graph . add edge ( c e l l v , c e l l u , 1)
126
127 def bu i ld ( s e l f ) :
128 Row = len ( s e l f . c e l l )
129 Col = len ( s e l f . c e l l [ 0 ] )
130 s e l f . c e l l [Row − 1 ] [ Col − 1 ] . xpos = −2.25
131 s e l f . c e l l [Row − 1 ] [ Col − 1 ] . ypos = −2.25
132 s e l f . c e l l [ 1 ] [ 1 ] . xpos = 2.25
133 s e l f . c e l l [ 1 ] [ 1 ] . ypos = 2.25
134 s e l f . c e l l [Row − 1 ] [ 1 ] . xpos = −2.25
135 s e l f . c e l l [Row − 1 ] [ 1 ] . ypos = 2.25
136 s e l f . c e l l [ 1 ] [ Col − 1 ] . xpos = 2 .25
137 s e l f . c e l l [ 1 ] [ Col − 1 ] . ypos = 2 .25
138 for r in range (1 , Row) :
139 for c in range (1 , Col ) :
140 s e l f . c e l l [ r ] [ c ] . xpos = 2.25 − . 5 ∗ ( r − 1)
141 s e l f . c e l l [ r ] [ c ] . ypos = 2.25 − . 5 ∗ ( c − 1)
142 for i in range (1 , Row) :
143 s e l f . c e l l [ i ] [ Col − 1 ] . r ightWal l = 0
144 s e l f . c e l l [ i ] [ 0 ] . r ightWal l = 0
145 for i in range (1 , Col ) :
146 s e l f . c e l l [ 0 ] [ i ] . downWall = 0
147 s e l f . c e l l [Row − 1 ] [ i ] . downWall = 0
148
149 def f i nd ( s e l f , u ) :
150 i f u != u . par :
151 u . par = s e l f . f i nd (u . par )
152 return u . par
153
154 def union ( s e l f , c e l l u , c e l l v ) :
155 i f not c e l l u or c e l l u .Row == 0 or c e l l u . Col == 0 or c e l l u .

Row == s e l f .Row or c e l l u . Col == s e l f . Col :
156 return False
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157 i f not c e l l v or c e l l v .Row == 0 or c e l l v . Col == 0 or c e l l v .
Row == s e l f .Row or c e l l v . Col == s e l f . Col :

158 return False
159 par u = s e l f . f i nd ( c e l l u )
160 par v = s e l f . f i nd ( c e l l v )
161 i f par u == par v :
162 return False
163 par u . par = par v
164 s e l f . r emove obstac l e ( c e l l u , c e l l v ) #
165 s e l f . connected components −= 1
166 return True
167
168 def bui ld maze ( s e l f ) :
169 s e l f . bu i ld ( )
170 s e l f . make a l l ob s t a c l e ( )
171 s e l f . g ene ra t e random obstac l e s ( )
172
173 def make a l l ob s t a c l e ( s e l f ) :
174 for i in range (1 , s e l f .Row) :
175 for j in range (1 , s e l f . Col ) :
176 s e l f . c e l l [ i ] [ j ] . r ightWal l = 0
177 s e l f . c e l l [ i ] [ j ] . downWall = 0
178
179 def gene ra t e random ce l l ( s e l f ) :
180 i = random . rand int (1 , s e l f .Row − 1)
181 j = random . rand int (1 , s e l f . Col − 1)
182 return s e l f . c e l l [ i ] [ j ]
183
184 def r e t u r n c e l l ( s e l f , pos ) :
185 return s e l f . c e l l [ pos [ 0 ] ] [ pos [ 1 ] ]
186
187 def genera t e random obstac l e s ( s e l f ) :
188 random . seed ( datet ime . now( ) )
189 while ( s e l f . connected components > 1) :
190 c u r c e l l = s e l f . g ene ra t e random ce l l ( )
191 l s t = [ s e l f . u p c e l l ( c u r c e l l ) , s e l f . down ce l l ( c u r c e l l ) ,

s e l f . l e f t c e l l ( c u r c e l l ) , s e l f . r i g h t c e l l ( c u r c e l l ) ]
192 random ce l l = random . cho i c e ( l s t )
193 i f s e l f . union ( c u r c e l l , random ce l l ) :
194 pass
195
196 def bu i ld graph ( s e l f , g loba l maze ) :
197 for i in range (1 , s e l f .Row) :
198 for j in range (1 , s e l f . Col ) :
199 c u r r c e l l = s e l f . c e l l [ i ] [ j ]
200 g l o b a l c e l l = globa l maze . c e l l [ i ] [ j ]
201 i f s e l f . r i g h t c e l l ( g l o b a l c e l l ) and s e l f . r i g h t wa l l (

g l o b a l c e l l ) :
202 s e l f . add to graph ( c u r r c e l l , s e l f . r i g h t c e l l (

c u r r c e l l ) )
203 i f s e l f . down ce l l ( g l o b a l c e l l ) and s e l f . down wall (

g l o b a l c e l l ) :
204 s e l f . add to graph ( c u r r c e l l , s e l f . down ce l l (

c u r r c e l l ) )
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205
206 def g e t r obo t s po s ( s e l f ) :
207 return [ s e l f . robots [ i ] . CurrentCe l l ( s e l f ) for i in range ( len (

robots ) ) ]
208
209 def r o b o t r e f ( s e l f , c e l l ) :
210 for robot in s e l f . robot s :
211 i f robot . CurrentCe l l ( s e l f ) == c e l l :
212 return robot
213 return None
214
215 def sw i t c h d e s t i n a t i o n ( s e l f , robot1 , robot2 , l o ck ) :
216 print ( ” here ” )
217 lock . acqu i r e ( )
218
219 i f robot1 . c o l o r > robot2 . c o l o r :
220 lock . r e l e a s e ( )
221 return
222 robot1 . de s t i na t i on , robot2 . d e s t i n a t i on = robot2 . d e s t i na t i on ,

robot1 . d e s t i n a t i on
223 print ( ” in switch ” )
224 lock . r e l e a s e ( )
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Listing A.4: Camera object code

1 import cv2 as cv
2 import numpy as np
3 import time
4 class Detector :
5 def i n i t ( s e l f , maze , name , lock , robots = [ ] ) :
6 s e l f . robots = robots
7 s e l f . maze = maze
8 s e l f . name = name
9 s e l f . robot count = 0

10 s e l f . t h i c kne s s = 2
11 s e l f .w = 40
12 s e l f . l o ck = lock
13 for i in robots :
14 i f i :
15 s e l f . robot count += 1
16 s e l f . i n i t i a l i z e ( )
17
18 def i n i t i a l i z e ( s e l f ) :
19 s t a r t = time . time ( )
20 w = 40
21 maze = s e l f . maze
22 Row = len ( s e l f . maze . c e l l )
23 Col = len ( s e l f . maze . c e l l [ 0 ] )
24 s e l f . img = np . z e r o s ( [ (Row + 1) ∗ w, ( Col + 3) ∗ w, 3 ] , dtype =

np . u int8 )
25 s e l f . img . f i l l (255)
26 for i in range (Row) :
27 for j in range ( Col ) :
28 i f s e l f . name == ” g l oba l ” and 0 < i < Row and 0 < j <

Col :
29 font = cv .FONT HERSHEY SIMPLEX
30 xx = int (w ∗ ( j + . 1 ) )
31 yy = int (w ∗ ( i + . 5 ) )
32 cv . putText ( s e l f . img , str (maze . c e l l [ i ] [ j ] . id ) , ( xx ,

yy ) , font , . 4 , (0 , 0 , 0) , s e l f . t h i c kne s s // 10 ,
cv . LINE AA)

33
34 i f s e l f . maze . c e l l [ i ] [ j ] . downWall == 0 :
35 x1 = w ∗ j
36 y1 = w ∗ ( i + 1)
37 x2 = w ∗ ( j + 1)
38 y2 = w ∗ ( i + 1)
39 cv . l i n e ( s e l f . img , ( x1 , y1 ) , ( x2 , y2 ) , (255 , 0 , 0) ,

s e l f . th i cknes s , l ineType = 8)
40 i f s e l f . maze . c e l l [ i ] [ j ] . r i ghtWal l == 0 :
41 x1 = w ∗ ( j + 1)
42 y1 = w ∗ i
43 x2 = w ∗ ( j + 1)
44 y2 = w ∗ ( i + 1)
45 cv . l i n e ( s e l f . img , ( x1 , y1 ) , ( x2 , y2 ) , (255 , 0 , 0) ,

s e l f . th i cknes s , l ineType = 8)
46
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47 for robot in s e l f . robot s :
48 s e l f . s e t c o l o r ( robot . CurrentCe l l ( s e l f . maze ) , robot . co lo r ,

robot )
49 s e l f . p r e s ent ( )
50
51 def pre sent ( s e l f ) :
52 i f s e l f . name == ” g l oba l ” :
53 cv . imshow( s e l f . name , s e l f . img )
54 cv .moveWindow( s e l f . name ,1000 ,60 )
55 cv . waitKey (1 )
56 else :
57
58 cv .moveWindow( s e l f . name , 100 , 60 )
59 cv . imshow( s e l f . name , s e l f . img )
60 cv . waitKey (1 )
61
62 def renew image ( s e l f , key , l a s t c e l l , n e x t c e l l ) :
63 pass
64
65 def add r i gh t wa l l ( s e l f , c e l l ) :
66 i = c e l l .Row
67 j = c e l l . Col
68 w = s e l f .w
69 x1 = w ∗ ( j + 1)
70 y1 = w ∗ i
71 x2 = w ∗ ( j + 1)
72 y2 = w ∗ ( i + 1)
73 cv . l i n e ( s e l f . img , ( x1 , y1 ) , ( x2 , y2 ) , (255 , 0 , 0) , s e l f .

th i cknes s , l ineType = 8)
74
75 def a d d l e f t w a l l ( s e l f , c e l l ) :
76 i = c e l l .Row
77 j = c e l l . Col
78 w = s e l f .w
79 x1 = w ∗ j
80 y1 = w ∗ i
81 x2 = w ∗ j
82 y2 = w ∗ ( i + 1)
83 cv . l i n e ( s e l f . img , ( x1 , y1 ) , ( x2 , y2 ) , (255 , 0 , 0) , s e l f .

th i cknes s , l ineType = 8)
84
85 def add up wal l ( s e l f , c e l l ) :
86 i = c e l l .Row
87 j = c e l l . Col
88 w = s e l f .w
89 x1 = w ∗ j
90 y1 = w ∗ ( i + 1)
91 x2 = w ∗ ( j + 1)
92 y2 = w ∗ ( i + 1)
93 cv . l i n e ( s e l f . img , ( x1 , y1 ) , ( x2 , y2 ) , (255 , 0 , 0) , s e l f .

th i cknes s , l ineType = 8)
94
95 def add down wall ( s e l f , c e l l ) :
96 i = c e l l .Row
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97 j = c e l l . Col
98 w = s e l f .w
99 x1 = w ∗ j
100 y1 = w ∗ ( i + 1)
101 x2 = w ∗ ( j + 1)
102 y2 = w ∗ ( i + 1)
103 cv . l i n e ( s e l f . img , ( x1 , y1 ) , ( x2 , y2 ) , (255 , 0 , 0) , s e l f .

th i cknes s , l ineType = 8)
104
105 def s e t c o l o r ( s e l f , c e l l , co lo r , robot = None ) :
106 i = c e l l .Row
107 j = c e l l . Col
108 w = s e l f .w
109 i f robot == None :
110 i f c o l o r == 1 :
111 r gb c o l o r = (160 , 160 , 160)
112 i f c o l o r == 2 :
113 r gb c o l o r = (0 , 0 , 0)
114 s t a r t p o i n t = (w ∗ j + s e l f . th i cknes s , w ∗ i + s e l f .

t h i c kne s s )
115 end point = (w ∗ ( j + 1) − s e l f . th i cknes s , w ∗ ( i + 1) −

s e l f . t h i c kne s s )
116 cv . r e c t ang l e ( s e l f . img , s t a r t po i n t , end point , r gb co l o r ,

−1)
117 else :
118 c o l o r = robot . rgb
119 d i r r = robot . d i r e c t i o n
120 r = c e l l .Row
121 c = c e l l . Col
122 cent e r = ( int (w ∗ c + w / 2) , int (w ∗ r + w / 2) )
123 i f r :
124 cv . c i r c l e ( s e l f . img , center , int (w / 3) , co lo r , s e l f .

t h i c kne s s )
125 i f d i r r == 0 :
126 rr , cc = −1, 0
127 e l i f d i r r == 1 :
128 rr , cc = 0 , −1
129 e l i f d i r r == 2 :
130 rr , cc = 1 , 0
131 else :
132 rr , cc = 0 , 1
133 cent = ( int ( c en t e r [ 0 ] + r r ∗ w / 7) , int ( c en t e r [ 1 ] + cc

∗ w / 7) )
134 cv . c i r c l e ( s e l f . img , cent , int (w / 8) , co lo r , s e l f .

t h i c kne s s )
135 s e l f . p r e s ent ( )
136
137 def v i s u a l i z e ( s e l f ) :
138 s t a r t = time . time ( )
139 w = s e l f .w
140 th i ckne s s = 2
141 maze = s e l f . maze
142 s e l f . img = np . z e r o s ( [ (Row + robot count + 1) ∗ w, ( Col + 3) ∗ w,

3 ] , dtype = np . u int8 )
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143 s e l f . img . f i l l (255)
144 i f maze :
145 Row = len (maze . c e l l )
146 Col = len (maze . c e l l [ 0 ] )
147 img = np . z e r o s ( [ (Row + s e l f . robot count + 1) ∗ w, ( Col + 3)

∗ w, 3 ] , dtype = np . u int8 )
148 img . f i l l (255)
149 for i in range (Row) :
150 for j in range ( Col ) :
151 i f maze . c e l l [ i ] [ j ] . downWall == 0 :
152 x1 = w ∗ j
153 y1 = w ∗ ( i + 1)
154 x2 = w ∗ ( j + 1)
155 y2 = w ∗ ( i + 1)
156 cv . l i n e ( img , ( x1 , y1 ) , ( x2 , y2 ) , (255 , 0 , 0) ,

th i cknes s , l ineType = 8)
157 i f maze . c e l l [ i ] [ j ] . r i ghtWal l == 0 :
158 x1 = w ∗ ( j + 1)
159 y1 = w ∗ i
160 x2 = w ∗ ( j + 1)
161 y2 = w ∗ ( i + 1)
162 cv . l i n e ( img , ( x1 , y1 ) , ( x2 , y2 ) , (255 , 0 , 0) ,

th i cknes s , l ineType = 8)
163 i f maze . c e l l [ i ] [ j ] . c o l o r == 1 :
164 s t a r t p o i n t = (w ∗ j + th i cknes s , w ∗ i +

th i c kne s s )
165 end point = (w ∗ ( j + 1) − th i cknes s , w ∗ ( i +

1) − t h i c kne s s )
166 cv . r e c t ang l e ( img , s t a r t po i n t , end point , (160 ,

160 , 160) , −1)
167 i f maze . c e l l [ i ] [ j ] . c o l o r == 2 :
168 s t a r t p o i n t = (w ∗ j + th i cknes s , w ∗ i +

th i c kne s s )
169 end point = (w ∗ ( j + 1) − th i cknes s , w ∗ ( i +

1) − t h i c kne s s )
170 cv . r e c t ang l e ( img , s t a r t po i n t , end point , (0 , 0 ,

0) , −1)
171 count = 0
172 for robot in s e l f . robots :
173 i f robot :
174 c o l o r = robot . rgb
175 d i r r = robot . d i r e c t i o n
176 txt = str ( robot . c o l o r ) + ” : cur r ent c e l l : ” + str (

robot . RowInd) + ” ” + str ( robot . ColInd ) + ” ”
177 font = cv .FONT HERSHEY SIMPLEX
178 cv . putText ( img , txt , (w, (Row + 1 + count ) ∗ w) , font ,

. 5 , (0 , 0 , 0) , 1 , cv . LINE AA)
179 r = robot . CurrentCe l l (maze ) .Row
180 c = robot . CurrentCe l l (maze ) . Col
181 cent e r = ( int (w ∗ c + w / 2) , int (w ∗ r + w / 2) )
182 i f r :
183 cv . c i r c l e ( img , center , int (w / 3) , co lo r ,

t h i c kne s s )
184 i f d i r r == 0 :

83



185 rr , cc = −1, 0
186 e l i f d i r r == 1 :
187 rr , cc = 0 , −1
188 e l i f d i r r == 2 :
189 rr , cc = 1 , 0
190 else :
191 rr , cc = 0 , 1
192 cent = ( int ( c en t e r [ 0 ] + r r ∗ w / 7) , int ( c en t e r

[ 1 ] + cc ∗ w / 7) )
193 cv . c i r c l e ( img , cent , int (w / 8) , co lo r ,

t h i c kne s s )
194 count += 1
195 i f s e l f . name == ” g l oba l ” :
196 cv . imshow( s e l f . name , img )
197 cv .moveWindow( s e l f . name ,1000 ,60 )
198 cv . waitKey (1 )
199 else :
200 cv .moveWindow( s e l f . name , 100 , 60 )
201 cv . imshow( s e l f . name , img )
202 cv . waitKey (1 )
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Appendix B

Physical Test Codes

Listing B.1: ROS inputted script

1 #!/ usr / b in /env python
2
3 import rospy
4 import thread ing
5 from std msgs . msg import St r ing
6 from nav msgs . msg import Odometry
7 from sensor msgs . msg import LaserScan
8 from sensor msgs . msg import Range , Image
9 from geometry msgs . msg import Point , Twist
10 from a r t r a ck a l va r msg s . msg import AlvarMarkers
11 from t f . t r ans f o rmat i on s import eu l e r f r om quat e rn i on
12 from d i j k s t a r import Graph , f i nd path
13 import math
14 import random
15 import time
16 import sys
17 import numpy as np
18 from copy import copy
19 from datet ime import datet ime
20 from c o l l e c t i o n s import d e f a u l t d i c t
21 import c o l l e c t i o n s
22 import marshal
23 from cv br idge import CvBridge
24 sys . path . remove ( ’ /opt/ ros /melodic / l i b /python2 .7/ d i s t−packages ’ ) # in

order to import cv2 under python3
25 import cv2 as cv
26 sys . path . append ( ’ /opt/ ros /melodic / l i b /python2 .7/ d i s t−packages ’ ) # append

back in order to import
27
28
29 r i gh t up = 1
30 right down = 0
31 l e f t u p = 8
32 l e f t down = 2
33
34 def SlopeDeg ( z1 , y1 , z2 , y2 ) :
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35 m = ( z2 − z1 ) / ( y2 − y1 )
36 s lopedeg = math . degree s (math . atan (m) )
37 i f s l opedeg < −60:
38 s lopedeg += 180
39 return s l opedeg
40
41 def i n t e r p o l a t i o n ( pos , pos1 , pos2 , m1, m2) :
42 return ( ( pos − pos1 ) / ( pos2 − pos1 ) ) ∗ (m2 − m1) + m1
43
44 def Average ( l s t ) :
45 return sum( l s t ) / len ( l s t )
46
47 class Ce l l :
48 def i n i t ( s e l f , Row, Col ) :
49 s e l f .Row = Row
50 s e l f . Col = Col
51 s e l f . id = Row ∗ 10 + Col
52 s e l f . xpos = 0
53 s e l f . ypos = 0
54 s e l f . downWall = 1 # 1 fo r way
55 s e l f . r ightWal l = 1 # 0 fo r wa l l
56 s e l f . c o l o r = 0
57 s e l f . parent = None
58 s e l f . tag = 1
59 s e l f . changed x = 0
60 s e l f . changed y = 0
61
62 class Maze :
63 def i n i t ( s e l f , Row, Col , StartRow = 0 , StartCol = 0 , FinishRow =

1 , Fin i shCol = 1) :
64 s e l f . StartRow = StartRow
65 s e l f . StartCol = StartCol
66 s e l f . FinishRow = FinishRow
67 s e l f . F in i shCol = Fin i shCol
68 s e l f . c e l l = [ [ Ce l l ( row , c o l ) for c o l in range ( Col ) ] for row in

range (Row) ]
69 s e l f .Row = Row
70 s e l f . Col = Col
71 s e l f . graph = Graph ( )
72
73 def add to graph ( s e l f , c e l l u , c e l l v ) :
74 s e l f . graph . add edge ( c e l l u , c e l l v , 1)
75 s e l f . graph . add edge ( c e l l v , c e l l u , 1)
76
77 def remove from graph ( s e l f , c e l l u , c e l l v ) :
78 s e l f . graph . remove edge ( c e l l u , c e l l v )
79 s e l f . graph . remove edge ( c e l l v , c e l l u )
80
81
82 def c e l l r e f ( s e l f , i , j ) :
83 return s e l f . c e l l [ i ] [ j ]
84
85 def pre sent ( s e l f ) :
86 matrix = [ [ ( s e l f . c e l l [ i ] [ j ] . xpos , s e l f . c e l l [ i ] [ j ] . ypos ) for j in
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range ( s e l f . Col ) ] for i in range ( s e l f .Row) ]
87 rospy . l o g i n f o ( ”maze dimention : ” )
88 rospy . l o g i n f o ( matrix )
89
90 class Robot :
91 def i n i t ( s e l f , id , co lo r , rgb , d i s t t r e s h h o l d = 3 . 8 ) :
92 s e l f . Xpos = 0
93 s e l f . Ypos = 0
94 s e l f . Xor ient = 0
95 s e l f . Yor ient = 0
96 s e l f . Zor i ent = 0
97 s e l f . Worient = 0
98
99 s e l f . r o l l = 0

100 s e l f . p i t ch = 0
101 s e l f . theta = 0
102 s e l f . a lpha = 0
103 s e l f . RowInd = 0
104 s e l f . ColInd = 0
105
106
107 s e l f . prox0 = 0
108 s e l f . Qprox0 = [ ]
109 s e l f . p r o x 0 f i r s t = 0
110 s e l f . prox0Num = 0
111 s e l f . prox0MaxSize = 3
112
113 s e l f . prox7 = 0
114 s e l f . Qprox7 = [ ]
115 s e l f . p r o x 7 f i r s t = 0
116 s e l f . prox7Num = 0
117 s e l f . prox7MaxSize = 3
118
119 s e l f . d i s t = 0
120 s e l f . Qdist = [ ]
121 s e l f . d i s t f i r s t = 0
122 s e l f . distNum = 0
123 s e l f . d istMaxSize = 2
124
125
126 s e l f . prox2 = 0
127 s e l f . Qprox2 = [ ]
128 s e l f . p r o x 2 f i r s t = 0
129 s e l f . prox2Num = 0
130 s e l f . prox2MaxSize = 6
131
132 s e l f . prox5 = 0
133 s e l f . Qprox5 = [ ]
134 s e l f . p r o x 5 f i r s t = 0
135 s e l f . prox5Num = 0
136 s e l f . prox5MaxSize = 6
137
138 s e l f . S en so r t r e shho ld = 4 .7
139 s e l f . d i s t t r e s h h o l d = d i s t t r e s h h o l d
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140 s e l f . WallMargin = 0.025
141 s e l f . d i r e c t i o n = 0 # 0 l e f t # 1 up # 2 r i g h t # 3 down
142 s e l f . I n i t i a l i z e F l a g = 0
143
144 s e l f .MH = 0
145 s e l f .MV = 90
146
147 s e l f . odom flag = 0 # i f 0 s e t from camera/ i f 1 s e t from odom
148 s e l f . id = str ( id )
149 s e l f . RowInd = 0
150 s e l f . ColInd = 0
151 s e l f . v i s i t e d = d e f a u l t d i c t ( int )
152 s e l f . c o l o r = co l o r
153 s e l f . v e l o c i t y p ub l i s h e r = None
154 s e l f . rgb = rgb
155
156 def CurrentCe l l ( s e l f , maze ) :
157 return maze . c e l l [ s e l f . RowInd ] [ s e l f . ColInd ]
158
159 def Le f tCe l l ( s e l f , maze ) :
160 return maze . c e l l [ s e l f . RowInd ] [ s e l f . ColInd − 1 ]
161
162 def UpCell ( s e l f , maze ) :
163 return maze . c e l l [ s e l f . RowInd − 1 ] [ s e l f . ColInd ]
164
165 def RightCe l l ( s e l f , maze ) :
166 return maze . c e l l [ s e l f . RowInd ] [ s e l f . ColInd + 1 ]
167
168 def RightCe l l r obot ( s e l f , maze ) : # done
169 i f s e l f . d i r e c t i o n == 0 : #l e f t
170 return s e l f . UpCell (maze )
171 i f s e l f . d i r e c t i o n == 1 : #up
172 return s e l f . R ightCe l l (maze )
173 i f s e l f . d i r e c t i o n == 2 : #r i g h t
174 return s e l f . DownCell (maze )
175 i f s e l f . d i r e c t i o n == 3 : #down
176 return s e l f . L e f tCe l l (maze )
177
178 def DownCell ( s e l f , maze ) :
179 return maze . c e l l [ s e l f . RowInd + 1 ] [ s e l f . ColInd ]
180
181 def ParentCe l l ( s e l f , maze ) :
182 return maze . c e l l [ s e l f . RowInd ] [ s e l f . ColInd ] . parent
183
184 def f r o n tC e l l ( s e l f , maze ) :
185 i f s e l f . d i r e c t i o n == 0 :
186 return s e l f . L e f tCe l l (maze )
187 i f s e l f . d i r e c t i o n == 1 :
188 return s e l f . UpCell (maze )
189 i f s e l f . d i r e c t i o n == 2 :
190 return s e l f . R ightCe l l (maze )
191 i f s e l f . d i r e c t i o n == 3 :
192 return s e l f . DownCell (maze )
193
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194 def f r o n t wa l l ( s e l f , maze ) :
195 i f s e l f . d i r e c t i o n == 0 : # l e f t
196 return s e l f . L e f tCe l l (maze ) . r ightWal l
197 i f s e l f . d i r e c t i o n == 1 : # up
198 return s e l f . UpCell (maze ) . downWall
199 i f s e l f . d i r e c t i o n == 2 : # r i g h t
200 return s e l f . CurrentCe l l (maze ) . r ightWal l
201 i f s e l f . d i r e c t i o n == 3 : # down
202 return s e l f . CurrentCe l l (maze ) . downWall
203
204 def l e f t w a l l ( s e l f , maze ) :
205 i f s e l f . d i r e c t i o n == 0 : # l e f t
206 return s e l f . CurrentCe l l (maze ) . downWall
207 i f s e l f . d i r e c t i o n == 1 : # up
208 return s e l f . L e f tCe l l (maze ) . r ightWal l
209 i f s e l f . d i r e c t i o n == 2 : # r i g h t
210 return s e l f . UpCell (maze ) . downWall
211 i f s e l f . d i r e c t i o n == 3 : # down
212 return s e l f . CurrentCe l l (maze ) . r ightWal l
213
214 def r i g h t wa l l ( s e l f , maze ) :
215 i f s e l f . d i r e c t i o n == 0 : # l e f t
216 return s e l f . UpCell (maze ) . downWall
217 i f s e l f . d i r e c t i o n == 1 : # up
218 return s e l f . CurrentCe l l (maze ) . r ightWal l
219 i f s e l f . d i r e c t i o n == 2 : # r i g h t
220 return s e l f . CurrentCe l l (maze ) . downWall
221 i f s e l f . d i r e c t i o n == 3 : # down
222 return s e l f . L e f tCe l l (maze ) . r ightWal l
223
224 def Le f tSensor ( s e l f ) :
225 return s e l f . prox5
226
227 def RightSensor ( s e l f ) :
228 return s e l f . prox2
229
230 def FrontProximity ( s e l f ) :
231 return s e l f . d i s t
232
233 def Le f tAl i gnSensor ( s e l f ) :
234 return s e l f . prox7
235
236 def RightAl ignSensor ( s e l f ) :
237 return s e l f . prox0
238
239 def FrontSensor ( s e l f ) :
240 return s e l f . d i s t
241
242 def v e l a s s i g n ( s e l f , v e l o c i t y p ub l i s h e r ) :
243 s e l f . v e l o c i t y p ub l i s h e r = v e l o c i t y p ub l i s h e r
244
245 def d i s t a n c e c a l l b a c k ( s e l f , data ) :
246 i f s e l f . distNum < s e l f . d istMaxSize :
247 s e l f . Qdist . append ( data . range )
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248 s e l f . distNum += 1
249 else :
250 s e l f . Qdist [ s e l f . d i s t f i r s t ] = data . range
251 s e l f . d i s t f i r s t = ( s e l f . d i s t f i r s t + 1) % s e l f . d istMaxSize
252 s e l f . distNum += 1
253 s e l f . d i s t = (sum( s e l f . Qdist ) / len ( s e l f . Qdist ) ) ∗ 100
254
255 def prox0 ca l l back ( s e l f , data ) :
256 i f s e l f . prox0Num < s e l f . prox0MaxSize :
257 s e l f . Qprox0 . append ( data . range )
258 s e l f . prox0Num += 1
259 else :
260 s e l f . Qprox0 [ s e l f . p r o x 0 f i r s t ] = data . range
261 s e l f . p r o x 0 f i r s t = ( s e l f . p r o x 0 f i r s t + 1) % s e l f . prox0MaxSize
262 s e l f . prox0Num += 1
263 s e l f . prox0 = 100 ∗ sum( s e l f . Qprox0 ) / len ( s e l f . Qprox0 )
264
265 def prox2 ca l l back ( s e l f , data ) :
266 i f s e l f . prox2Num < s e l f . prox2MaxSize :
267 s e l f . Qprox2 . append ( data . range )
268 s e l f . prox2Num += 1
269 else :
270 s e l f . Qprox2 [ s e l f . p r o x 2 f i r s t ] = data . range
271 s e l f . p r o x 2 f i r s t = ( s e l f . p r o x 2 f i r s t + 1) % s e l f . prox2MaxSize
272 s e l f . prox2Num += 1
273 s e l f . prox2 = 100 ∗ sum( s e l f . Qprox2 ) / len ( s e l f . Qprox2 )
274
275 def prox5 ca l l back ( s e l f , data ) :
276 i f s e l f . prox5Num < s e l f . prox5MaxSize :
277 s e l f . Qprox5 . append ( data . range )
278 s e l f . prox5Num += 1
279 else :
280 s e l f . Qprox5 [ s e l f . p r o x 5 f i r s t ] = data . range
281 s e l f . p r o x 5 f i r s t = ( s e l f . p r o x 5 f i r s t + 1) % s e l f . prox5MaxSize
282 s e l f . prox5Num += 1
283 s e l f . prox5 = 100 ∗ sum( s e l f . Qprox5 ) / len ( s e l f . Qprox5 )
284
285 def prox7 ca l l back ( s e l f , data ) :
286 i f s e l f . prox7Num < s e l f . prox7MaxSize :
287 s e l f . Qprox7 . append ( data . range )
288 s e l f . prox7Num += 1
289 else :
290 s e l f . Qprox7 [ s e l f . p r o x 7 f i r s t ] = data . range
291 s e l f . p r o x 7 f i r s t = ( s e l f . p r o x 7 f i r s t + 1) % s e l f . prox7MaxSize
292 s e l f . prox7Num += 1
293 s e l f . prox7 = 100 ∗ sum( s e l f . Qprox7 ) / len ( s e l f . Qprox7 )
294
295 def a l i g n 0 ( s e l f , speed = . 4 ) :
296 s t a r t = time . time ( )
297 while time . time ( ) − s t a r t < 3 :
298 vel msg = Twist ( )
299 vel msg . l i n e a r . x = 0
300 vel msg . l i n e a r . y = 0
301 vel msg . l i n e a r . z = 0
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302 vel msg . angular . x = 0
303 vel msg . angular . y = 0
304 i f s e l f . theta < 0 :
305 vel msg . angular . z = abs ( speed ) / 4
306 else :
307 vel msg . angular . z = − abs ( speed ) / 4
308 s e l f . v e l o c i t y p ub l i s h e r . pub l i sh ( vel msg )
309
310
311 def a l i g n 1 ( s e l f , speed = . 4 ) :
312 s t a r t = time . time ( )
313 while time . time ( ) − s t a r t < 3 :
314 vel msg = Twist ( )
315 vel msg . l i n e a r . x = 0
316 vel msg . l i n e a r . y = 0
317 vel msg . l i n e a r . z = 0
318 vel msg . angular . x = 0
319 vel msg . angular . y = 0
320 i f s e l f . theta < −90:
321 vel msg . angular . z = abs ( speed ) / 4
322 else :
323 vel msg . angular . z = −abs ( speed ) / 4
324 s e l f . v e l o c i t y p ub l i s h e r . pub l i sh ( vel msg )
325
326 def a l i g n 3 ( s e l f , speed = . 4 ) :
327 s t a r t = time . time ( )
328 while time . time ( ) − s t a r t < 3 :
329 vel msg = Twist ( )
330 vel msg . l i n e a r . x = 0
331 vel msg . l i n e a r . y = 0
332 vel msg . l i n e a r . z = 0
333 vel msg . angular . x = 0
334 vel msg . angular . y = 0
335 i f s e l f . theta < 90 :
336 vel msg . angular . z = abs ( speed ) / 4
337 else :
338 vel msg . angular . z = −abs ( speed ) / 4
339 s e l f . v e l o c i t y p ub l i s h e r . pub l i sh ( vel msg )
340
341
342 def a l i g n 2 ( s e l f , speed = . 4 ) :
343 s t a r t = time . time ( )
344 while time . time ( ) − s t a r t < 3 :
345 vel msg = Twist ( )
346 vel msg . l i n e a r . x = 0
347 vel msg . l i n e a r . y = 0
348 vel msg . l i n e a r . z = 0
349 vel msg . angular . x = 0
350 vel msg . angular . y = 0
351 i f s e l f . theta < 0 :
352 vel msg . angular . z = −abs ( speed ) / 4
353 else :
354 vel msg . angular . z = abs ( speed ) / 4
355 s e l f . v e l o c i t y p ub l i s h e r . pub l i sh ( vel msg )
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356
357
358
359 def TurnLeft ( s e l f , speed = . 4 , degree = 180) :
360 i f s e l f . d i r e c t i o n == 0 :
361 f i n a l d i r = 3
362 i f s e l f . d i r e c t i o n == 1 :
363 f i n a l d i r = 0
364 i f s e l f . d i r e c t i o n == 2 :
365 f i n a l d i r = 1
366 i f s e l f . d i r e c t i o n == 3 :
367 f i n a l d i r = 2
368 rospy . l o g i n f o ( str ( s e l f . id ) + ” turn l e f t ” )
369 oldTheta = s e l f . theta
370 AbsDiffDeg = 0
371 while AbsDiffDeg < degree and not rospy . i s shutdown ( ) :
372 middleTheta = s e l f . theta
373 vel msg = Twist ( )
374 vel msg . l i n e a r . x = 0
375 vel msg . l i n e a r . y = 0
376 vel msg . l i n e a r . z = 0
377 vel msg . angular . x = 0
378 vel msg . angular . y = 0
379 vel msg . angular . z = abs ( speed )
380 normDeg = ( oldTheta − s e l f . theta ) % 360
381 AbsDiffDeg = min(normDeg , 360 − normDeg)
382 l e f t = 5 .5
383 r i g h t = 0
384 i f s e l f . a lpha > 76 and s e l f . d i r e c t i o n == f i n a l d i r and

AbsDiffDeg > 45 :
385 s e l f . a l i g n 0 ( speed )
386 rospy . l o g i n f o ( str ( s e l f . id ) + ” b r e akx0 l e f t ” + ”new : ” +

str ( s e l f . theta ) + ” old : ” + str ( oldTheta ) + ” d i f :
” + str ( AbsDiffDeg ) )

387 break
388 i f f i n a l d i r == 1 :
389 i f abs ( s e l f . a lpha ) < 13 and s e l f . d i r e c t i o n == f i n a l d i r

and AbsDiffDeg > 45 :
390 s e l f . a l i g n 1 ( speed )
391 rospy . l o g i n f o ( str ( s e l f . id ) + ” breaky0up ” + ”new : ”

+ str ( s e l f . theta ) + ” old : ” + str ( oldTheta ) +
” d i f : ” + str ( AbsDiffDeg ) )

392 break
393 i f f i n a l d i r == 3 :
394 i f abs ( s e l f . a lpha ) < 13 and s e l f . d i r e c t i o n == f i n a l d i r

and AbsDiffDeg > 45 :
395 s e l f . a l i g n 3 ( speed )
396 rospy . l o g i n f o ( str ( s e l f . id ) + ” breaky0down ” + ”new :

” + str ( s e l f . theta ) + ” old : ” + str ( oldTheta )
+ ” d i f : ” + str ( AbsDiffDeg ) )

397 break
398 i f s e l f . a lpha < −76 and s e l f . d i r e c t i o n == f i n a l d i r and

AbsDiffDeg > 45 :
399 s e l f . a l i g n 2 ( speed )

92



400 rospy . l o g i n f o ( str ( s e l f . id ) + ” breakx0r ight ” + ”new : ”
+ str ( s e l f . theta ) + ” old : ” + str ( oldTheta ) + ” d i f
: ” + str ( AbsDiffDeg ) )

401 break
402 i f ( ( s e l f . a lpha < −71) or (71 < s e l f . a lpha ) or abs ( s e l f .

a lpha ) < 19) and AbsDiffDeg > 45 :
403 i f ( s e l f . a lpha < −87) or (87 < s e l f . a lpha ) or (abs ( s e l f .

a lpha ) < 1 . 5 ) :
404 rospy . l o g i n f o ( str ( s e l f . id ) + ” breakalpha ” + ”new :

” + str ( s e l f . theta ) + ” old : ” + str ( oldTheta ) +
” d i f : ” + str ( AbsDiffDeg ) )

405 break
406 else :
407 vel msg . angular . z = abs ( speed ) / 3
408 rospy . l o g i n f o ( str ( s e l f . id ) + ” f i n e ” + str ( s e l f .

a lpha ) + ” ” + str ( s e l f . theta ) )
409 time . s l e e p ( . 0 3 )
410 s e l f . v e l o c i t y p ub l i s h e r . pub l i sh ( vel msg )
411 s e l f . move stop ( )
412 rospy . l o g i n f o ( str ( s e l f . id ) + ” ” + str ( s e l f . a lpha ) )
413 time . s l e e p ( . 1 )
414
415 def TurnRight ( s e l f , speed = . 4 , degree = 180) :
416 i f s e l f . d i r e c t i o n == 0 :
417 f i n a l d i r = 1
418 i f s e l f . d i r e c t i o n == 1 :
419 f i n a l d i r = 2
420 i f s e l f . d i r e c t i o n == 2 :
421 f i n a l d i r = 3
422 i f s e l f . d i r e c t i o n == 3 :
423 f i n a l d i r = 0
424 rospy . l o g i n f o ( str ( s e l f . id ) + ” turn r i g h t ” )
425 oldTheta = s e l f . theta
426 AbsDiffDeg = 0
427 while AbsDiffDeg < degree and not rospy . i s shutdown ( ) :
428 middleTheta = s e l f . theta
429 vel msg = Twist ( )
430 vel msg . l i n e a r . x = 0
431 vel msg . l i n e a r . y = 0
432 vel msg . l i n e a r . z = 0
433 vel msg . angular . x = 0
434 vel msg . angular . y = 0
435 vel msg . angular . z = −abs ( speed )
436 normDeg = ( oldTheta − s e l f . theta ) % 360
437 AbsDiffDeg = min(normDeg , 360 − normDeg)
438 l e f t = 0
439 r i g h t = 5 .5
440 i f s e l f . a lpha > 76 and s e l f . d i r e c t i o n == f i n a l d i r and

AbsDiffDeg > 45 :
441 s e l f . a l i g n 0 ( speed )
442 rospy . l o g i n f o ( str ( s e l f . id ) + ” b r e akx0 l e f t ” + ”new : ” +

str ( s e l f . theta ) + ” old : ” + str ( oldTheta ) + ” d i f :
” + str ( AbsDiffDeg ) )

443 break
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444 i f f i n a l d i r == 1 :
445 i f abs ( s e l f . a lpha ) < 13 and s e l f . d i r e c t i o n == f i n a l d i r

and AbsDiffDeg > 45 :
446 s e l f . a l i g n 1 ( speed )
447 rospy . l o g i n f o ( str ( s e l f . id ) + ” breaky0up ” + ”new : ”

+ str ( s e l f . theta ) + ” old : ” + str ( oldTheta ) +
” d i f : ” + str ( AbsDiffDeg ) )

448 break
449 i f f i n a l d i r == 3 :
450 i f abs ( s e l f . a lpha ) < 13 and s e l f . d i r e c t i o n == f i n a l d i r

and AbsDiffDeg > 45 :
451 s e l f . a l i g n 3 ( speed )
452 rospy . l o g i n f o ( str ( s e l f . id ) + ” breaky0down ” + ”new :

” + str ( s e l f . theta ) + ” old : ” + str ( oldTheta )
+ ” d i f : ” + str ( AbsDiffDeg ) )

453 break
454 i f s e l f . a lpha < −76 and s e l f . d i r e c t i o n == f i n a l d i r and

AbsDiffDeg > 45 :
455 s e l f . a l i g n 2 ( speed )
456 rospy . l o g i n f o ( str ( s e l f . id ) + ” breakx0r ight ” + ”new : ”

+ str ( s e l f . theta ) + ” old : ” + str ( oldTheta ) + ” d i f
: ” + str ( AbsDiffDeg ) )

457 break
458 i f ( ( s e l f . a lpha < −71) or (71 < s e l f . a lpha ) or abs ( s e l f .

a lpha ) < 19) and AbsDiffDeg > 45 :
459 i f ( s e l f . a lpha < −86) or (86 < s e l f . a lpha ) or (abs ( s e l f .

a lpha ) < 1 . 5 ) :
460 rospy . l o g i n f o ( str ( s e l f . id ) + ” breakalpha ” + ”new :

” + str ( s e l f . theta ) + ” old : ” + str ( oldTheta ) +
” d i f : ” + str ( AbsDiffDeg ) )

461 break
462 else :
463 vel msg . angular . z = −abs ( speed ) / 3
464 rospy . l o g i n f o ( str ( s e l f . id ) + ” f i n e ” + str ( s e l f .

a lpha ) + ” ” + str ( s e l f . theta ) )
465 time . s l e e p ( . 0 1 )
466 s e l f . v e l o c i t y p ub l i s h e r . pub l i sh ( vel msg )
467 s e l f . move stop ( )
468 rospy . l o g i n f o ( str ( s e l f . id ) + ” ” + str ( s e l f . a lpha ) )
469 time . s l e e p ( . 1 )
470
471 def eu c l i d e an d i s t an c e ( s e l f , f r o n t c e l l ) :
472 r = abs ( f r o n t c e l l .Row − s e l f . RowInd)
473 c = abs ( f r o n t c e l l . Col − s e l f . ColInd )
474 return math . s q r t (math .pow( c ∗ ( f r o n t c e l l . xpos − s e l f . Xpos ) , 2)

+ math .pow( r ∗ ( f r o n t c e l l . ypos − s e l f . Ypos ) , 2) )
475
476 def l i n e a r v e l ( s e l f , f r o n t c e l l , speed = . 5 ) :
477 l = speed ∗ s e l f . e u c l i d e an d i s t an c e ( f r o n t c e l l )
478 i f l > 3 : return 2 .3
479 e l i f l < 3 : return 1
480 else : return l
481
482 def s t e e r a n g l e 2 ( s e l f , f r o n t c e l l ) :
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483 i f s e l f . d i r e c t i o n == 0 :
484 return − s e l f . theta
485 i f s e l f . d i r e c t i o n == 1 :
486 return (−90 − s e l f . theta )
487 i f s e l f . d i r e c t i o n == 3 :
488 return (90 − s e l f . theta )
489 i f s e l f . d i r e c t i o n == 2 :
490 i f s e l f . theta > 0 :
491 return (180 − s e l f . theta )
492 else :
493 return −( s e l f . theta + 180)
494
495 def angu l a r v e l 2 ( s e l f , f r o n t c e l l , speed = 1) :
496 return speed ∗ s e l f . s t e e r a n g l e 2 ( f r o n t c e l l ) / 100
497
498 def move to c e l l ( s e l f , f r o n t c e l l , maze , lock , speed ) :
499 d i s t a n c e t o l e r a n c e = .5
500 while s e l f . e u c l i d e an d i s t an c e ( f r o n t c e l l ) >= d i s t a n c e t o l e r a n c e

and not rospy . i s shutdown ( ) and s e l f . d i s t > 4 :
501 vel msg = Twist ( )
502 vel msg . l i n e a r . x = s e l f . l i n e a r v e l ( f r o n t c e l l )
503 vel msg . l i n e a r . y = 0
504 vel msg . l i n e a r . z = 0
505 i f vel msg . l i n e a r . x > 1 : #2
506 m = 1
507 else :
508 m = 0
509 vel msg . angular . x = 0
510 vel msg . angular . y = 0
511 i f s e l f . Le f tA l ignSensor ( ) < 2 or s e l f . Le f tSensor ( ) < 2 . 1 :
512 vel msg . angular . z = −0.1
513 i f s e l f . Le f tA l ignSensor ( ) < . 3 :
514 vel msg . l i n e a r . x = 0
515 e l i f s e l f . RightSensor ( ) < 2 .1 or s e l f . RightAl ignSensor ( ) <

2 :
516 vel msg . angular . z = 0 .1
517 i f s e l f . RightAl ignSensor ( ) < . 3 :
518 vel msg . l i n e a r . x = 0
519 else :
520 vel msg . angular . z = s e l f . angu l a r v e l 2 ( f r o n t c e l l ) ∗ m
521 s e l f . v e l o c i t y p ub l i s h e r . pub l i sh ( vel msg )
522 s e l f . RowInd = f r o n t c e l l .Row
523 s e l f . ColInd = f r o n t c e l l . Col
524 lock . acqu i r e ( )
525 i f maze . c e l l [ s e l f . RowInd ] [ s e l f . ColInd ] . changed x == 0 :
526 maze . c e l l [ s e l f . RowInd ] [ s e l f . ColInd ] . xpos = s e l f . Xpos
527 maze . c e l l [ s e l f . RowInd ] [ s e l f . ColInd ] . changed x = 1
528 i f maze . c e l l [ s e l f . RowInd ] [ s e l f . ColInd ] . changed y == 0 :
529 maze . c e l l [ s e l f . RowInd ] [ s e l f . ColInd ] . ypos = s e l f . Ypos
530 maze . c e l l [ s e l f . RowInd ] [ s e l f . ColInd ] . changed y = 1
531 for i in range (1 , 11) :
532 i f maze . c e l l [ s e l f . RowInd ] [ i ] . changed y == 0 :
533 maze . c e l l [ s e l f . RowInd ] [ i ] . ypos = s e l f . Ypos
534 maze . c e l l [ s e l f . RowInd ] [ i ] . changed y = 1
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535 i f maze . c e l l [ i ] [ s e l f . ColInd ] . changed x == 0 :
536 maze . c e l l [ i ] [ s e l f . ColInd ] . xpos = s e l f . Xpos
537 maze . c e l l [ i ] [ s e l f . ColInd ] . changed x = 1
538 lock . r e l e a s e ( )
539 i f s e l f . d i s t t r e s h h o l d < s e l f . d i s t < 6 and not ( s e l f . f r o n t wa l l (

maze ) == 1 and s e l f . f r o n tC e l l (maze ) . c o l o r >= 10) :
540 #rospy . l o g i n f o ( ’ a l i g n ’ )
541 while s e l f . d i s t > ( s e l f . d i s t t r e s h h o l d + . 0 ) and not rospy .

i s shutdown ( ) :
542 vel msg = Twist ( )
543 vel msg . l i n e a r . x = s e l f . l i n e a r v e l ( f r o n t c e l l )
544 vel msg . l i n e a r . y = 0
545 vel msg . l i n e a r . z = 0
546 vel msg . angular . x = 0
547 vel msg . angular . y = 0
548 vel msg . angular . z = 0
549 s e l f . v e l o c i t y p ub l i s h e r . pub l i sh ( vel msg )
550 rospy . l o g i n f o ( str ( s e l f . id ) + ” d i s t i s : ” + str ( s e l f . d i s t ) )
551
552 def ForwardOneCell ( s e l f , maze , lock , speed = 1) :
553 i f s e l f . d i r e c t i o n == 0 :
554 f i n a l d i r = 0
555 i f s e l f . d i r e c t i o n == 1 :
556 f i n a l d i r = 1
557 i f s e l f . d i r e c t i o n == 2 :
558 f i n a l d i r = 2
559 i f s e l f . d i r e c t i o n == 3 :
560 f i n a l d i r = 3
561 rospy . l o g i n f o ( str ( s e l f . id ) + ’ forward one c e l l , d i r i s ’ + str (

s e l f . d i r e c t i o n ) )
562 f r o n t c e l l = s e l f . f r o n tCe l l (maze )
563 s e l f . move t o c e l l ( f r o n t c e l l , maze , lock , speed )
564 i f f i n a l d i r == 0 :
565 s e l f . a l i g n 0 ( )
566 i f f i n a l d i r == 1 :
567 s e l f . a l i g n 1 ( )
568 i f f i n a l d i r == 2 :
569 s e l f . a l i g n 2 ( )
570 i f s e l f . d i r e c t i o n == 3 :
571 s e l f . a l i g n 3 ( )
572 s e l f . move stop ( )
573 time . s l e e p (1 )
574
575 def i n i t i a l i z e P o s ( s e l f , maze , r , c ) :
576 s e l f . RowInd = r
577 s e l f . ColInd = c
578 s e l f . CurrentCe l l (maze ) . c o l o r = s e l f . c o l o r
579 s e l f . a d d t o v i s i t e d c e l l ( s e l f . CurrentCe l l (maze )
580 rospy . l o g i n f o ( str ( s e l f . id ) + ’ i n i t i a l i z e done ’ )
581
582 def exp lo r e ( s e l f , maze , l o ck ) :
583 lock . acqu i r e ( )
584 s e l f . AssignWall (maze )
585 nex t Ce l l = s e l f . Choose d i r e c t i on (maze )
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586 lock . r e l e a s e ( )
587 rospy . l o g i n f o ( str ( s e l f . id ) + ’ next c e l l i s ’ + str ( n ex t Ce l l .

Row) + ’ ’ + str ( n ex t Ce l l . Col ) )
588 time . s l e e p (1 )
589 s e l f .Move(maze , next Ce l l , l o ck )
590
591 def double Check ( s e l f ) :
592 i f s e l f . FrontSensor ( ) < s e l f . S en so r t r e shho ld ∗ 2 :
593 rospy . l o g i n f o ( str ( s e l f . id ) + ” so r ry ” )
594 return False
595 else :
596 return True
597
598 def a d d t o v i s i t e d c e l l ( s e l f , n ex t Ce l l ) :
599 s e l f . v i s i t e d [ n ex t Ce l l . id ] += 1
600
601 def Move( s e l f , maze , next Ce l l , l o ck ) :
602 s t a r t c e l l = s e l f . CurrentCe l l (maze )
603 f i n i s h c e l l = nex t Ce l l
604 i f nex t Ce l l == s e l f . CurrentCe l l (maze ) :
605 rospy . l o g i n f o ( str ( s e l f . id ) + ” don ’ t move” )
606 return
607 nex t d i r = s e l f . n e x t c e l l d i r e c t i o n (maze , n ex t Ce l l )
608 rospy . l o g i n f o ( str ( s e l f . id ) + ’ next d i r i s ’ + nex t d i r )
609 lock . acqu i r e ( )
610 s t a r t c e l l . tag = 0
611 f i n i s h c e l l . tag = 0
612 lock . r e l e a s e ( )
613 i f nex t d i r == ’ l e f t ’ :
614 s e l f . TurnLeft ( )
615 i f s e l f . double Check ( ) :
616 lock . acqu i r e ( )
617 s e l f . c o l o r a s s i g n (maze , n ex t Ce l l )
618 maze . add to graph ( s e l f . CurrentCe l l (maze ) , n ex t Ce l l )
619 lock . r e l e a s e ( )
620 s e l f . ForwardOneCell (maze , l o ck )
621 s e l f . a d d t o v i s i t e d c e l l ( n ex t Ce l l )
622 else :
623 lock . acqu i r e ( )
624 f i n i s h c e l l . tag = 1
625 s e l f . AssignWall (maze )
626 lock . r e l e a s e ( )
627 s e l f . TurnRight ( )
628 s e l f .Move(maze , s e l f . Choos e d i r e c t i on (maze ) , l o ck )
629 i f nex t d i r == ’ r i g h t ’ :
630 s e l f . TurnRight ( )
631 i f s e l f . double Check ( ) :
632 lock . acqu i r e ( )
633 s e l f . c o l o r a s s i g n (maze , n ex t Ce l l )
634 maze . add to graph ( s e l f . CurrentCe l l (maze ) , n ex t Ce l l )
635 lock . r e l e a s e ( )
636 s e l f . ForwardOneCell (maze , l o ck )
637 s e l f . a d d t o v i s i t e d c e l l ( n ex t Ce l l )
638 else :
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639 lock . acqu i r e ( )
640 f i n i s h c e l l . tag = 1
641 s e l f . AssignWall (maze )
642 lock . r e l e a s e ( )
643 s e l f . TurnLeft ( )
644 s e l f .Move(maze , s e l f . Choos e d i r e c t i on (maze ) , l o ck )
645 i f nex t d i r == ’ forward ’ :
646 lock . acqu i r e ( )
647 s e l f . c o l o r a s s i g n (maze , n ex t Ce l l )
648 maze . add to graph ( s e l f . CurrentCe l l (maze ) , n ex t Ce l l )
649 lock . r e l e a s e ( )
650 s e l f . ForwardOneCell (maze , l o ck )
651 s e l f . a d d t o v i s i t e d c e l l ( n ex t Ce l l )
652 i f nex t d i r == ’ backward ’ :
653 s e l f . TurnLeft ( )
654 s e l f . TurnLeft ( )
655 i f s e l f . double Check ( ) :
656 lock . acqu i r e ( )
657 s e l f . c o l o r a s s i g n (maze , n ex t Ce l l )
658 lock . r e l e a s e ( )
659 s e l f . ForwardOneCell (maze , l o ck )
660 s e l f . a d d t o v i s i t e d c e l l ( n ex t Ce l l )
661 else :
662 lock . acqu i r e ( )
663 f i n i s h c e l l . tag = 1
664 s e l f . AssignWall (maze )
665 lock . r e l e a s e ( )
666 s e l f . TurnLeft ( )
667 s e l f . TurnLeft ( )
668 s e l f .Move(maze , s e l f . Choos e d i r e c t i on (maze ) , l o ck )
669 lock . acqu i r e ( )
670 s t a r t c e l l . tag = 1
671 lock . r e l e a s e ( )
672 s e l f . move stop ( )
673
674 def move stop ( s e l f , xx = 0) :
675 vel msg = Twist ( )
676 vel msg . l i n e a r . x = xx
677 vel msg . l i n e a r . y = 0
678 vel msg . l i n e a r . z = 0
679 vel msg . angular . x = 0
680 vel msg . angular . y = 0
681 vel msg . angular . z = 0
682 s e l f . v e l o c i t y p ub l i s h e r . pub l i sh ( vel msg )
683 rospy . l o g i n f o ( str ( s e l f . id ) + ” f i n i s h ” + str ( s e l f . Xpos ) + ” ” +

str ( s e l f . Ypos ) )
684
685 def c o l o r a s s i g n ( s e l f , maze , n ex t Ce l l ) :
686 i f nex t Ce l l . c o l o r == 0 :
687 nex t Ce l l . parent = s e l f . CurrentCe l l (maze )
688 i f s e l f . dir sum (maze ) == 1 :
689 s e l f . dead end (maze )
690 nex t Ce l l . c o l o r = s e l f . c o l o r
691 else :
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692 s e l f . CurrentCe l l (maze ) . c o l o r = 1
693 nex t Ce l l . c o l o r = s e l f . c o l o r
694
695 def dead end ( s e l f , maze ) :
696 s e l f . CurrentCe l l (maze ) . c o l o r = 2
697 s e l f . CurrentCe l l (maze ) . downWall = 0
698 s e l f . CurrentCe l l (maze ) . r ightWal l = 0
699 s e l f . UpCell (maze ) . downWall = 0
700 s e l f . L e f tCe l l (maze ) . r ightWal l = 0
701 rospy . l o g i n f o ( str ( s e l f . id ) + ’ dead end reached : re turn to

parent ’ )
702
703 def dir sum ( s e l f , maze ) :
704 return s e l f . CurrentCe l l (maze ) . downWall + s e l f . CurrentCe l l (maze ) .

r ightWal l + s e l f . UpCell (maze ) . downWall + s e l f . L e f tCe l l (maze )
. r ightWal l

705
706 def n e x t c e l l d i r e c t i o n ( s e l f , maze , n ex t Ce l l ) :
707 i f s e l f . d i r e c t i o n == 0 : # l e f t
708 i f nex t Ce l l .Row == s e l f . RowInd and nex t Ce l l . Col == s e l f .

ColInd − 1 :
709 return ’ forward ’
710 i f nex t Ce l l .Row == s e l f . RowInd and nex t Ce l l . Col == s e l f .

ColInd + 1 :
711 return ’ backward ’
712 i f nex t Ce l l .Row == s e l f . RowInd + 1 and nex t Ce l l . Col ==

s e l f . ColInd :
713 return ’ l e f t ’
714 i f nex t Ce l l .Row == s e l f . RowInd − 1 and nex t Ce l l . Col ==

s e l f . ColInd :
715 return ’ r i g h t ’
716 i f s e l f . d i r e c t i o n == 1 : # up
717 i f nex t Ce l l .Row == s e l f . RowInd − 1 and nex t Ce l l . Col ==

s e l f . ColInd :
718 return ’ forward ’
719 i f nex t Ce l l .Row == s e l f . RowInd + 1 and nex t Ce l l . Col ==

s e l f . ColInd :
720 return ’ backward ’
721 i f nex t Ce l l .Row == s e l f . RowInd and nex t Ce l l . Col == s e l f .

ColInd − 1 :
722 return ’ l e f t ’
723 i f nex t Ce l l .Row == s e l f . RowInd and nex t Ce l l . Col == s e l f .

ColInd + 1 :
724 return ’ r i g h t ’
725 i f s e l f . d i r e c t i o n == 2 : # r i g h t
726 i f nex t Ce l l .Row == s e l f . RowInd and nex t Ce l l . Col == s e l f .

ColInd + 1 :
727 return ’ forward ’
728 i f nex t Ce l l .Row == s e l f . RowInd and nex t Ce l l . Col == s e l f .

ColInd − 1 :
729 return ’ backward ’
730 i f nex t Ce l l .Row == s e l f . RowInd − 1 and nex t Ce l l . Col ==

s e l f . ColInd :
731 return ’ l e f t ’
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732 i f nex t Ce l l .Row == s e l f . RowInd + 1 and nex t Ce l l . Col ==
s e l f . ColInd :

733 return ’ r i g h t ’
734 i f s e l f . d i r e c t i o n == 3 : # down
735 i f nex t Ce l l .Row == s e l f . RowInd + 1 and nex t Ce l l . Col ==

s e l f . ColInd :
736 return ’ forward ’
737 i f nex t Ce l l .Row == s e l f . RowInd − 1 and nex t Ce l l . Col ==

s e l f . ColInd :
738 return ’ backward ’
739 i f nex t Ce l l .Row == s e l f . RowInd and nex t Ce l l . Col == s e l f .

ColInd + 1 :
740 return ’ l e f t ’
741 i f nex t Ce l l .Row == s e l f . RowInd and nex t Ce l l . Col == s e l f .

ColInd − 1 :
742 return ’ r i g h t ’
743
744 def Ass ign Lef tWal l ( s e l f , maze ) :
745 i f s e l f . L e f tCe l l (maze ) . r ightWal l and s e l f . L e f tCe l l (maze ) . tag ==

1 :
746 s e l f . L e f tCe l l (maze ) . r ightWal l = 0
747 rospy . l o g i n f o ( str ( s e l f . id ) + ” a s s i gn l e f t w a l l ” + str ( s e l f .

FrontSensor ( ) ) )
748
749 def Assign UpWall ( s e l f , maze ) :
750 i f s e l f . UpCell (maze ) . downWall and s e l f . UpCell (maze ) . tag == 1 :
751 s e l f . UpCell (maze ) . downWall = 0
752 rospy . l o g i n f o ( str ( s e l f . id ) + ” a s s i gn upwall ” + str ( s e l f .

RightSensor ( ) ) )
753
754 def Assign RightWall ( s e l f , maze ) :
755 i f s e l f . CurrentCe l l (maze ) . r ightWal l and s e l f . R ightCe l l (maze ) . tag

== 1 :
756 s e l f . CurrentCe l l (maze ) . r ightWal l = 0
757 rospy . l o g i n f o ( str ( s e l f . id ) + ” a s s i gn r i g h twa l l ” + str ( s e l f

. RightSensor ( ) ) )
758
759 def Assign DownWall ( s e l f , maze ) :
760 i f s e l f . CurrentCe l l (maze ) . downWall and s e l f . DownCell (maze ) . tag

== 1 :
761 s e l f . CurrentCe l l (maze ) . downWall = 0
762 rospy . l o g i n f o ( str ( s e l f . id ) + ” a s s i gn downwall ” + str ( s e l f .

Le f tSensor ( ) ) )
763
764 def AssignWall ( s e l f , maze ) :
765 i f s e l f . d i r e c t i o n == 0 : # l e f t
766 i f s e l f . Le f tSensor ( ) < s e l f . S en so r t r e shho ld : # downwall
767 s e l f . Assign DownWall (maze )
768 i f s e l f . RightSensor ( ) < s e l f . S en so r t r e shho ld : # upwal l
769 s e l f . Assign UpWall (maze )
770 i f s e l f . FrontSensor ( ) < s e l f . S en so r t r e shho ld ∗ 2 : #

l e f t w a l l
771 s e l f . Ass ign Lef tWal l (maze )
772 i f s e l f . d i r e c t i o n == 1 : # up
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773 i f s e l f . Le f tSensor ( ) < s e l f . S en so r t r e shho ld : # l e f t w a l l
774 s e l f . Ass ign Lef tWal l (maze )
775 i f s e l f . RightSensor ( ) < s e l f . S en so r t r e shho ld : # r i g h t w a l l
776 s e l f . Ass ign RightWall (maze )
777 i f s e l f . FrontSensor ( ) < s e l f . S en so r t r e shho ld ∗ 2 : # upwal l
778 s e l f . Assign UpWall (maze )
779 i f s e l f . d i r e c t i o n == 2 : # r i g h t
780 i f s e l f . Le f tSensor ( ) < s e l f . S en so r t r e shho ld : # upwal l
781 s e l f . Assign UpWall (maze )
782 i f s e l f . RightSensor ( ) < s e l f . S en so r t r e shho ld : # downwall
783 s e l f . Assign DownWall (maze )
784 i f s e l f . FrontSensor ( ) < s e l f . S en so r t r e shho ld ∗ 2 : #

r i g h t w a l l
785 s e l f . Ass ign RightWall (maze )
786 i f s e l f . d i r e c t i o n == 3 : # down
787 i f s e l f . Le f tSensor ( ) < s e l f . S en so r t r e shho ld : # r i g h t w a l l
788 s e l f . Ass ign RightWall (maze )
789 i f s e l f . RightSensor ( ) < s e l f . S en so r t r e shho ld : # l e f t w a l l
790 s e l f . Ass ign Lef tWal l (maze )
791 i f s e l f . FrontSensor ( ) < s e l f . S en so r t r e shho ld ∗ 2 : #

downwall
792 s e l f . Assign DownWall (maze )
793
794 def s o r t c e l l l i s t ( s e l f , c e l l l i s t ) : #done
795 n = len ( c e l l l i s t )
796 for i in range (n) :
797 for j in range (n − i − 1) :
798 i f s e l f . v i s i t e d [ c e l l l i s t [ j ] . id ] > s e l f . v i s i t e d [

c e l l l i s t [ j + 1 ] . id ] :
799 c e l l l i s t [ j ] , c e l l l i s t [ j + 1 ] = c e l l l i s t [ j + 1 ] ,

c e l l l i s t [ j ]
800 n ew l i s t = [ c e l l l i s t [ 0 ] ]
801 va l = s e l f . v i s i t e d [ c e l l l i s t [ 0 ] ]
802 for i in range (1 , n ) :
803 i f s e l f . v i s i t e d [ c e l l l i s t [ i ] ] == va l :
804 n ew l i s t . append ( c e l l l i s t [ i ] )
805 return n ew l i s t
806
807 def Choose d i r e c t i on ( s e l f , maze ) :
808 wh i t e c e l l s = [ ]
809 g r e y c e l l s v i s i t e d = [ ]
810 g r e y c e l l s n o t v i s i t e d = [ ]
811 rospy . l o g i n f o ( str ( s e l f . id ) + ’ choos ing d i r e c t i o n : cur row ’+

str ( s e l f . CurrentCe l l (maze ) .Row) + ’ cur c o l ’+ str ( s e l f .
CurrentCe l l (maze ) . Col ) )

812 i f s e l f . L e f tCe l l (maze ) . r ightWal l == 1 and s e l f . L e f tCe l l (maze ) .
tag :

813 i f s e l f . L e f tCe l l (maze ) . c o l o r == 0 : # l e f t
814 wh i t e c e l l s . append ( s e l f . L e f tCe l l (maze ) )
815 i f s e l f . L e f tCe l l (maze ) . c o l o r == 1 : #
816 i f s e l f . L e f tCe l l (maze ) . id in s e l f . v i s i t e d :
817 g r e y c e l l s v i s i t e d . append ( s e l f . L e f tCe l l (maze ) )
818 else :
819 g r e y c e l l s n o t v i s i t e d . append ( s e l f . L e f tCe l l (maze ) )
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820 i f s e l f . CurrentCe l l (maze ) . r ightWal l == 1 and s e l f . R ightCe l l (maze
) . tag :

821 i f s e l f . R ightCe l l (maze ) . c o l o r == 0 : # r i g h t
822 wh i t e c e l l s . append ( s e l f . R ightCe l l (maze ) )
823 i f s e l f . R ightCe l l (maze ) . c o l o r == 1 : # r i g h t
824 i f s e l f . R ightCe l l (maze ) . id in s e l f . v i s i t e d :
825 g r e y c e l l s v i s i t e d . append ( s e l f . R ightCe l l (maze ) )
826 else :
827 g r e y c e l l s n o t v i s i t e d . append ( s e l f . R ightCe l l (maze ) )
828 i f s e l f . CurrentCe l l (maze ) . downWall == 1 and s e l f . DownCell (maze ) .

tag :
829 i f s e l f . DownCell (maze ) . c o l o r == 0 : # down
830 wh i t e c e l l s . append ( s e l f . DownCell (maze ) )
831 i f s e l f . DownCell (maze ) . c o l o r == 1 : # down
832 i f s e l f . DownCell (maze ) . id in s e l f . v i s i t e d :
833 g r e y c e l l s v i s i t e d . append ( s e l f . DownCell (maze ) )
834 else :
835 g r e y c e l l s n o t v i s i t e d . append ( s e l f . DownCell (maze ) )
836 i f s e l f . UpCell (maze ) . downWall == 1 and s e l f . UpCell (maze ) . tag :
837 i f s e l f . UpCell (maze ) . c o l o r == 0 : # up
838 wh i t e c e l l s . append ( s e l f . UpCell (maze ) )
839 i f s e l f . UpCell (maze ) . c o l o r == 1 : # up
840 i f s e l f . UpCell (maze ) . id in s e l f . v i s i t e d :
841 g r e y c e l l s v i s i t e d . append ( s e l f . UpCell (maze ) )
842 else :
843 g r e y c e l l s n o t v i s i t e d . append ( s e l f . UpCell (maze ) )
844 i f s e l f . L e f tCe l l (maze ) . r ightWal l == 1 and s e l f . L e f tCe l l (maze ) .

tag :
845 i f s e l f . L e f tCe l l (maze ) . c o l o r == 0 : # l e f t
846 wh i t e c e l l s . append ( s e l f . L e f tCe l l (maze ) )
847 i f s e l f . L e f tCe l l (maze ) . c o l o r == 1 : #
848 i f s e l f . L e f tCe l l (maze ) . id in s e l f . v i s i t e d :
849 g r e y c e l l s v i s i t e d . append ( s e l f . L e f tCe l l (maze ) )
850 else :
851 g r e y c e l l s n o t v i s i t e d . append ( s e l f . L e f tCe l l (maze ) )
852 i f s e l f . CurrentCe l l (maze ) . r ightWal l == 1 and s e l f . R ightCe l l (maze

) . tag :
853 i f s e l f . R ightCe l l (maze ) . c o l o r == 0 : # r i g h t
854 wh i t e c e l l s . append ( s e l f . R ightCe l l (maze ) )
855 i f s e l f . R ightCe l l (maze ) . c o l o r == 1 : # r i g h t
856 i f s e l f . R ightCe l l (maze ) . id in s e l f . v i s i t e d :
857 g r e y c e l l s v i s i t e d . append ( s e l f . R ightCe l l (maze ) )
858 else :
859 g r e y c e l l s n o t v i s i t e d . append ( s e l f . R ightCe l l (maze ) )
860 i f s e l f . CurrentCe l l (maze ) . downWall == 1 and s e l f . DownCell (maze ) .

tag :
861 i f s e l f . DownCell (maze ) . c o l o r == 0 : # down
862 wh i t e c e l l s . append ( s e l f . DownCell (maze ) )
863 i f s e l f . DownCell (maze ) . c o l o r == 1 : # down
864 i f s e l f . DownCell (maze ) . id in s e l f . v i s i t e d :
865 g r e y c e l l s v i s i t e d . append ( s e l f . DownCell (maze ) )
866 else :
867 g r e y c e l l s n o t v i s i t e d . append ( s e l f . DownCell (maze ) )
868 i f s e l f . UpCell (maze ) . downWall == 1 and s e l f . UpCell (maze ) . tag :
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869 i f s e l f . UpCell (maze ) . c o l o r == 0 : # up
870 wh i t e c e l l s . append ( s e l f . UpCell (maze ) )
871 i f s e l f . UpCell (maze ) . c o l o r == 1 : # up
872 i f s e l f . UpCell (maze ) . id in s e l f . v i s i t e d :
873 g r e y c e l l s v i s i t e d . append ( s e l f . UpCell (maze ) )
874 else :
875 g r e y c e l l s n o t v i s i t e d . append ( s e l f . UpCell (maze ) )
876 i f len ( w h i t e c e l l s ) :
877 rospy . l o g i n f o ( str ( s e l f . id ) + ” whites : ” )
878 for c e l l l in wh i t e c e l l s :
879 rospy . l o g i n f o ( str ( c e l l l .Row) + ” ” + str ( c e l l l . Col ) )
880 rospy . l o g i n f o ( str ( s e l f . id ) + ” white done ” )
881 rospy . l o g i n f o ( str ( s e l f . id ) + ” g not v i s : ” + str ( [ x . id for x in

g r e y c e l l s n o t v i s i t e d ] ) + ” ” + str ( len (
g r e y c e l l s n o t v i s i t e d ) ) )

882 rospy . l o g i n f o ( str ( s e l f . id ) + ” g v i s : ” + str ( [ ( x . id , s e l f .
v i s i t e d [ x . id ] ) for x in g r e y c e l l s v i s i t e d ] ) + ” ” + str ( len
( g r e y c e l l s v i s i t e d ) ) )

883 i f len ( w h i t e c e l l s ) > 0 :
884 nex t Ce l l = random . cho i c e ( w h i t e c e l l s )
885 i f s e l f . id == ”5” :
886 i f s e l f . R ightCe l l r obot (maze ) in wh i t e c e l l s :
887 rospy . l o g i n f o ( ” eee ” )
888 nex t Ce l l = s e l f . R ightCe l l r obot (maze )
889 i f maze . c e l l r e f (5 , 7) in wh i t e c e l l s : n ex t Ce l l = maze .

c e l l r e f (5 , 7)
890 i f maze . c e l l r e f (10 , 5) in wh i t e c e l l s : n ex t Ce l l = maze .

c e l l r e f (10 , 5)
891 i f maze . c e l l r e f (6 , 5) in wh i t e c e l l s : n ex t Ce l l = maze .

c e l l r e f (6 , 5)
892 i f maze . c e l l r e f (3 , 3) in wh i t e c e l l s : n ex t Ce l l = maze .

c e l l r e f (3 , 3)
893 i f maze . c e l l r e f (1 , 3) in wh i t e c e l l s : n ex t Ce l l = maze .

c e l l r e f (1 , 3)
894 rospy . l o g i n f o ( str ( s e l f . id ) + ’ white c e l l cho i c e ’ )
895 return nex t Ce l l
896 i f len ( g r e y c e l l s v i s i t e d ) + len ( g r e y c e l l s n o t v i s i t e d ) == 0 :
897 rospy . l o g i n f o ( str ( s e l f . id ) + ’ ha l t ’ )
898 return s e l f . CurrentCe l l (maze )
899 i f len ( g r e y c e l l s n o t v i s i t e d ) > 0 :
900 nex t Ce l l = random . cho i c e ( g r e y c e l l s n o t v i s i t e d )
901 rospy . l o g i n f o ( str ( s e l f . id ) + ’ gray not v i s i t e d cho i c e ’ )
902 return nex t Ce l l
903 i f len ( g r e y c e l l s v i s i t e d ) > 0 :
904 n ew g r e y c e l l s = s e l f . s o r t c e l l l i s t ( g r e y c e l l s v i s i t e d )
905 nex t Ce l l = n ew g r e y c e l l s [ 0 ]
906 i f s e l f . id == ”5” :
907 i f maze . c e l l r e f (5 , 4) in g r e y c e l l s v i s i t e d : n ex t Ce l l

= maze . c e l l r e f (5 , 4)
908 rospy . l o g i n f o ( str ( s e l f . id ) + ’ gray v i s i t e d cho i c e ’ )
909 return nex t Ce l l
910 rospy . l o g i n f o ( ’ e r r o r cho i c e ’ )
911 return s e l f . CurrentCe l l (maze )
912
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913 def maze exp lorat ion ( s e l f , maze , l o ck ) :
914 while maze . c e l l [ 6 ] [ 1 ] . c o l o r == 0 and not rospy . i s shutdown ( ) :
915 s e l f . exp l o r e (maze , l o ck )
916 time . s l e e p (1 )
917 lock . acqu i r e ( )
918 path = f ind path (maze . graph , s e l f . CurrentCe l l (maze ) , maze . c e l l

[ 6 ] [ 1 ] )
919 lock . r e l e a s e ( )
920 while not path :
921 s e l f . exp l o r e (maze , l o ck )
922 lock . acqu i r e ( )
923 path = f ind path (maze . graph , s e l f . CurrentCe l l (maze ) , maze .

c e l l [ 6 ] [ 1 ] )
924 lock . r e l e a s e ( )
925 s e l f . f o l l ow path ( path [ 0 ] , maze , l o ck )
926 s e l f . TurnRight ( )
927 s e l f . move stop (2 )
928 time . s l e e p (4 )
929 s e l f . move stop ( )
930 s e l f . CurrentCe l l (maze ) . tag = 1
931
932 def f o l l ow path ( s e l f , path , maze , l o ck ) :
933 rospy . l o g i n f o ( str ( s e l f . id ) + ” path f o l l ow i n g ” )
934 for i in range (1 , len ( path ) ) :
935 s e l f . n ex t Ce l l = path [ i ]
936 while not s e l f . n ex t Ce l l . tag :
937 time . s l e e p ( . 1 )
938 s e l f .Move(maze , s e l f . next Ce l l , l o ck )
939
940 class de t e c t o r :
941 def i n i t ( s e l f , robots ) :
942 s e l f . marker in fo = {
943 ”cam” : None ,
944 ”14” : None ,
945 ”10” : None ,
946 ”1” : None ,
947 ”9” : None ,
948 ”5” : None
949 }
950 s e l f . r o b o t i n f o = {
951 ”0” : None ,
952 ”1” : None ,
953 ”2” : None ,
954 ”3” : None ,
955 ”4” : robot s [ 0 ] ,
956 ”5” : robot s [ 2 ] ,
957 ”6” : robot s [ 3 ] ,
958 ”7” : robot s [ 1 ] ,
959 ”8” : None ,
960 ”14” : None ,
961 ”10” : None ,
962 ”11” : None , #
963 ”12” : None , #
964 ”9” : None ,
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965 }
966
967 s e l f . Left Down Q Y = [ ]
968 s e l f . Left Down Y = 0
969 s e l f . Left Down Q Z = [ ]
970 s e l f . Left Down Z = 0
971 s e l f . Left Up Q Y = [ ]
972 s e l f . Left Up Y = 0
973 s e l f . Left Up Q Z = [ ]
974 s e l f . Left Up Z = 0
975 s e l f . Right Down Q Y = [ ]
976 s e l f . Right Down Y = 0
977 s e l f . Right Down Q Z = [ ]
978 s e l f . Right Down Z = 0
979 s e l f . Right Up Q Y = [ ]
980 s e l f . Right Up Y = 0
981 s e l f . Right Up Q Z = [ ]
982 s e l f . Right Up Z = 0
983 s e l f . robot Q Y = [ ]
984 s e l f . robot Y = 0
985 s e l f . robot Q Z = [ ]
986 s e l f . robot Z = 0
987
988 s e l f . Mle ft = 90
989 s e l f . Mright = 90
990 s e l f .Mup = 0
991 s e l f .Mdown = 0
992
993 s e l f . I n i t i a l i z e F l a g = 0
994 s e l f . maze = None
995 s e l f . robot count = 0
996 for i in robots :
997 i f i :
998 s e l f . robot count += 1
999

1000 def i n i t i a l ( s e l f , maze ) :
1001 while len ( s e l f . Right Down Q Y) < 50000 and not rospy . i s shutdown

( ) :
1002 s e l f . Right Down Q Y . append ( s e l f . g e t p o s i t i o n ( r ight down ) . y )
1003 s e l f . Right Down Q Z . append ( s e l f . g e t p o s i t i o n ( r ight down ) . z )
1004 s e l f . Left Up Q Y . append ( s e l f . g e t p o s i t i o n ( l e f t u p ) . y )
1005 s e l f . Left Up Q Z . append ( s e l f . g e t p o s i t i o n ( l e f t u p ) . z )
1006 s e l f . Left Down Q Y . append ( s e l f . g e t p o s i t i o n ( l e f t down ) . y )
1007 s e l f . Left Down Q Z . append ( s e l f . g e t p o s i t i o n ( l e f t down ) . z )
1008 s e l f . robot Q Y . append ( s e l f . g e t p o s i t i o n (0 ) . y )
1009 s e l f . robot Q Z . append ( s e l f . g e t p o s i t i o n (0 ) . z )
1010 s e l f . Right Down Y = Average ( s e l f . Right Down Q Y) ∗ 100
1011 s e l f . Right Down Z = Average ( s e l f . Right Down Q Z ) ∗ 100
1012 s e l f . Left Down Y = Average ( s e l f . Left Down Q Y ) ∗ 100 − s e l f .

Right Down Y
1013 s e l f . Left Down Z = Average ( s e l f . Left Down Q Z ) ∗ 100 − s e l f .

Right Down Z
1014 s e l f . Left Up Y = Average ( s e l f . Left Up Q Y ) ∗ 100 − s e l f .

Right Down Y
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1015 s e l f . Left Up Z = Average ( s e l f . Left Up Q Z ) ∗ 100 − s e l f .
Right Down Z

1016 s e l f . robot Y = Average ( s e l f . robot Q Y ) ∗ 100 − s e l f . Right Down Y
1017 s e l f . robot Z = Average ( s e l f . robot Q Z ) ∗ 100 − s e l f . Right Down Z
1018 s e l f . Mright = 0
1019 s e l f . Mle ft = SlopeDeg ( s e l f . Left Down Z , s e l f . Left Down Y , s e l f .

Left Up Z , s e l f . Left Up Y )
1020 s e l f .Mup = 0
1021 s e l f .Mdown = SlopeDeg (0 , 0 , s e l f . Left Down Z , s e l f . Left Down Y )
1022 rospy . l o g i n f o ( ”RD: y : ” + str ( s e l f . Right Down Y ) + ” z : ” + str (

s e l f . Right Down Z ) )
1023 rospy . l o g i n f o ( ”LU: y : ” + str ( s e l f . Left Up Y ) + ” z : ” + str (

s e l f . Left Up Z ) )
1024 rospy . l o g i n f o ( ”LD: y : ” + str ( s e l f . Left Down Y ) + ” z : ” + str (

s e l f . Left Down Z ) )
1025 rospy . l o g i n f o ( ”R : y : ” + str ( s e l f . robot Y ) + ” z : ” + str ( s e l f .

robot Z ) )
1026 rospy . l o g i n f o ( ” Mdown: ” + str ( s e l f .Mdown) )
1027 rospy . l o g i n f o ( ”Mleft : ” + str ( s e l f . Mleft ) )
1028 s e l f . make maze (maze )
1029 s e l f . maze = maze
1030 s e l f . I n i t i a l i z e F l a g = 1
1031
1032
1033 def make maze ( s e l f , maze ) :
1034 Row = len (maze . c e l l )
1035 Col = len (maze . c e l l [ 0 ] )
1036 maze . c e l l [Row − 1 ] [ Col − 1 ] . xpos = s e l f . Left Up Y / (2 ∗ ( Col −

1) )
1037 maze . c e l l [Row − 1 ] [ Col − 1 ] . ypos = s e l f . Left Up Z / (2 ∗ (Row −

1) )
1038 maze . c e l l [ 1 ] [ 1 ] . xpos = s e l f . Left Up Y − s e l f . Left Up Y / (2 ∗ (

Col − 1) )
1039 maze . c e l l [ 1 ] [ 1 ] . ypos = s e l f . Left Up Z − s e l f . Left Up Z / (2 ∗ (

Row − 1) )
1040 maze . c e l l [Row − 1 ] [ 1 ] . xpos = s e l f . Left Up Y − s e l f . Left Up Y /

(2 ∗ ( Col − 1) )
1041 maze . c e l l [Row − 1 ] [ 1 ] . ypos = s e l f . Left Up Z / (2 ∗ (Row − 1) )
1042 maze . c e l l [ 1 ] [ Col − 1 ] . xpos = s e l f . Left Up Y / (2 ∗ ( Col − 1) )
1043 maze . c e l l [ 1 ] [ Col − 1 ] . ypos = s e l f . Left Up Z − s e l f . Left Up Z /

(2 ∗ (Row − 1) )
1044 for r in range (1 , Row) :
1045 for c in range (1 , Col ) :
1046 maze . c e l l [ r ] [ c ] . xpos = maze . c e l l [Row − 1 ] [ Col − 1 ] . xpos

+ (Col − 1 − c ) ∗ (maze . c e l l [Row − 1 ] [ 1 ] . xpos − maze
. c e l l [Row − 1 ] [ Col − 1 ] . xpos ) / ( Col − 2)

1047 maze . c e l l [ r ] [ c ] . ypos = maze . c e l l [Row − 1 ] [ Col − 1 ] . ypos
+ (Row − 1 − r ) ∗ (maze . c e l l [ 1 ] [ Col − 1 ] . ypos − maze
. c e l l [Row − 1 ] [ Col − 1 ] . ypos ) / (Row − 2)

1048 for i in range (1 , Row) :
1049 maze . c e l l [ i ] [ Col − 1 ] . r ightWal l = 0
1050 maze . c e l l [ i ] [ 0 ] . r ightWal l = 0
1051 for i in range (1 , Col ) :
1052 maze . c e l l [ 0 ] [ i ] . downWall = 0
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1053 maze . c e l l [Row − 1 ] [ i ] . downWall = 0
1054 maze . c e l l [ 5 ] [ 1 0 ] . downWall = 0
1055 maze . c e l l [ 4 ] [ 1 0 ] . downWall = 0
1056
1057 def r e n ew po s i t i o n c a l l b a c k ( s e l f , data ) :
1058 for marker in data . markers :
1059 s e l f . marker in fo [ s e l f . g e t i d (marker ) ] = marker
1060 i f s e l f . r o b o t i n f o [ s e l f . g e t i d (marker ) ] != None :
1061 s e l f . s e t po s ( s e l f . r o b o t i n f o [ s e l f . g e t i d (marker ) ] )
1062 s e l f . v i s u a l i z e ( )
1063
1064 def g e t i d ( s e l f , marker ) :
1065 return str (marker . id )
1066
1067 def ge t po s e ( s e l f , id ) :
1068 return s e l f . marker in fo [ str ( id ) ] . pose . pose
1069
1070 def g e t p o s i t i o n ( s e l f , id ) :
1071 return s e l f . marker in fo [ str ( id ) ] . pose . pose . p o s i t i o n
1072
1073 def g e t o r i e n t a t i o n ( s e l f , id ) :
1074 return s e l f . marker in fo [ str ( id ) ] . pose . pose . o r i e n t a t i o n
1075
1076 def s e t po s ( s e l f , robot ) :
1077 marker data = s e l f . marker in fo [ robot . id ]
1078 robot . Xpos = marker data . pose . pose . p o s i t i o n . y ∗ 100 − s e l f .

I n i t i a l i z e F l a g ∗ s e l f . Right Down Y
1079 robot . Ypos = marker data . pose . pose . p o s i t i o n . z ∗ 100 − s e l f .

I n i t i a l i z e F l a g ∗ s e l f . Right Down Z
1080 robot . Xor ient = marker data . pose . pose . o r i e n t a t i o n . x
1081 robot . Yor ient = marker data . pose . pose . o r i e n t a t i o n . y
1082 robot . Zor i ent = marker data . pose . pose . o r i e n t a t i o n . z
1083 robot . Worient = marker data . pose . pose . o r i e n t a t i o n .w
1084 r o l l , p i tch , yaw = eu l e r f r om quat e rn i on ( [ robot . Xorient , robot .

Yorient , robot . Zor ient , robot . Worient ] )
1085 robot . alpha = math . degree s ( p i t ch )
1086 i f yaw < 0 :
1087 yawSign = − 1
1088 else :
1089 yawSign = 1
1090 robot . theta = ( robot . alpha − 90) ∗ yawSign
1091 i f −135 < robot . theta < −45:
1092 robot . d i r e c t i o n = 1
1093 i f −45 < robot . theta < 45 :
1094 robot . d i r e c t i o n = 0
1095 i f 45 < robot . theta < 135 :
1096 robot . d i r e c t i o n = 3
1097 i f robot . theta > 135 or robot . theta < −135:
1098 robot . d i r e c t i o n = 2
1099 robot . alpha = math . degree s ( p i t ch )
1100 i f s e l f . I n i t i a l i z e F l a g == 1 :
1101 pass
1102
1103
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1104 def v i s u a l i z e ( s e l f ) :
1105 w = 40
1106 th i ckne s s = 2
1107 maze = s e l f . maze
1108 i f maze :
1109 Row = len (maze . c e l l )
1110 Col = len (maze . c e l l [ 0 ] )
1111 img = np . z e r o s ( [ (Row + s e l f . robot count + 1) ∗ w, ( Col + 3)

∗ w, 3 ] , dtype = np . u int8 )
1112 img . f i l l (255)
1113 for i in range (Row) :
1114 for j in range ( Col ) :
1115 i f maze . c e l l [ i ] [ j ] . downWall == 0 :
1116 x1 = w ∗ j
1117 y1 = w ∗ ( i + 1)
1118 x2 = w ∗ ( j + 1)
1119 y2 = w ∗ ( i + 1)
1120 cv . l i n e ( img , ( x1 , y1 ) , ( x2 , y2 ) , (255 , 0 , 0) ,

th i cknes s , l ineType = 8)
1121 i f maze . c e l l [ i ] [ j ] . r i ghtWal l == 0 :
1122 x1 = w ∗ ( j + 1)
1123 y1 = w ∗ i
1124 x2 = w ∗ ( j + 1)
1125 y2 = w ∗ ( i + 1)
1126 cv . l i n e ( img , ( x1 , y1 ) , ( x2 , y2 ) , (255 , 0 , 0) ,

th i cknes s , l ineType = 8)
1127 i f maze . c e l l [ i ] [ j ] . c o l o r == 1 :
1128 s t a r t p o i n t = (w ∗ j + th i cknes s , w ∗ i +

th i c kne s s )
1129 end point = (w ∗ ( j + 1) − th i cknes s , w ∗ ( i +

1) − t h i c kne s s )
1130 cv . r e c t ang l e ( img , s t a r t po i n t , end point , (160 ,

160 , 160) , −1)
1131 i f maze . c e l l [ i ] [ j ] . c o l o r == 2 :
1132 s t a r t p o i n t = (w ∗ j + th i cknes s , w ∗ i +

th i c kne s s )
1133 end point = (w ∗ ( j + 1) − th i cknes s , w ∗ ( i +

1) − t h i c kne s s )
1134 cv . r e c t ang l e ( img , s t a r t po i n t , end point , (0 , 0 ,

0) , −1)
1135 i f i != 0 and j != 0 :
1136 cv . putText ( img , str (maze . c e l l [ i ] [ j ] . tag ) , ( int ( ( j

+ . 5 ) ∗ w) , int ( ( i + . 5 ) ∗ w) ) , cv .
FONT HERSHEY SIMPLEX, . 3 , (0 , 0 , 0) , 1 , cv .
LINE AA)

1137 count = 0
1138 for tag in s e l f . r o b o t i n f o :
1139 i f s e l f . r o b o t i n f o [ tag ] :
1140 robot = s e l f . r o b o t i n f o [ tag ]
1141 c o l o r = robot . rgb
1142 d i r r = robot . d i r e c t i o n
1143 r = robot . CurrentCe l l (maze ) .Row
1144 c = robot . CurrentCe l l (maze ) . Col
1145 cent e r = (w ∗ c + w / 2 , w ∗ r + w / 2)

108



1146 i f r :
1147 cv . c i r c l e ( img , center , w / 3 , co lo r , t h i c kne s s )
1148 i f d i r r == 0 :
1149 rr , cc = −1, 0
1150 e l i f d i r r == 1 :
1151 rr , cc = 0 , −1
1152 e l i f d i r r == 2 :
1153 rr , cc = 1 , 0
1154 else :
1155 rr , cc = 0 , 1
1156 cent = ( cent e r [ 0 ] + r r ∗ w / 7 , c en t e r [ 1 ] + cc ∗

w / 7)
1157 cv . c i r c l e ( img , cent , w / 8 , co lo r , t h i c kne s s )
1158 count += 1
1159 cv . imshow( ” h e l l o ” , img )
1160 cv . waitKey (3 )
1161
1162 def main ( ) :
1163 Row = 11
1164 Col = 11
1165
1166 maze = Maze(Row, Col ) # de f i n e our maze o b j e c t
1167 robot0 = Robot (4 , 11 , (0 , 0 , 255) , 3 . 5 ) #tag4
1168 robot1 = None #Robot (7 , 12 , (200 , 200 , 0) , 3) #tag7
1169 robot2 = Robot (5 , 13 , (0 , 200 , 200) , 3 . 3 ) #tag5
1170 robot3 = Robot (6 , 14 , (255 , 0 , 255) , 3 . 5 ) #tag6
1171 robots = [ robot0 , robot1 , robot2 , robot3 ]
1172 camera = de t e c t o r ( robot s )
1173 rospy . i n i t n od e ( ’ l i s t e n e r ’ , anonymous=True )
1174 rospy . Subsc r ibe r ( ’ / zed/ ar pose marker ’ , AlvarMarkers , camera .

r e n ew po s i t i o n c a l l b a c k )
1175 i f robot0 : #tag4
1176 rospy . Subsc r ibe r ( ”/ epuck robot 0 / d i s t s e n s ” , Range , robot0 .

d i s t a n c e c a l l b a c k )
1177 rospy . Subsc r ibe r ( ”/ epuck robot 0 / proximity1 ” , Range , robot0 .

p rox0 ca l l back )
1178 rospy . Subsc r ibe r ( ”/ epuck robot 0 / proximity2 ” , Range , robot0 .

p rox2 ca l l back )
1179 rospy . Subsc r ibe r ( ”/ epuck robot 0 / proximity5 ” , Range , robot0 .

p rox5 ca l l back )
1180 rospy . Subsc r ibe r ( ”/ epuck robot 0 / proximity6 ” , Range , robot0 .

p rox7 ca l l back )
1181 v e l o c i t y pub l i s h e r 0 = rospy . Pub l i she r ( ’ / epuck robot 0 /

mobi l e base / cmd vel ’ , Twist , qu eue s i z e =10)
1182 robot0 . v e l a s s i g n ( v e l o c i t y pub l i s h e r 0 )
1183 i f robot1 : #tag7
1184 rospy . Subsc r ibe r ( ”/ epuck robot 1 / d i s t s e n s ” , Range , robot1 .

d i s t a n c e c a l l b a c k )
1185 rospy . Subsc r ibe r ( ”/ epuck robot 1 / proximity1 ” , Range , robot1 .

p rox0 ca l l back )
1186 rospy . Subsc r ibe r ( ”/ epuck robot 1 / proximity2 ” , Range , robot1 .

p rox2 ca l l back )
1187 rospy . Subsc r ibe r ( ”/ epuck robot 1 /proxiRobotmity5” , Range , robot1

. p rox5 ca l l back )
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1188 rospy . Subsc r ibe r ( ”/ epuck robot 1 / proximity6 ” , Range , robot1 .
p rox7 ca l l back )

1189 v e l o c i t y pub l i s h e r 1 = rospy . Pub l i she r ( ’ / epuck robot 1 /
mobi l e base / cmd vel ’ , Twist , qu eue s i z e =10)

1190 robot1 . v e l a s s i g n ( v e l o c i t y pub l i s h e r 1 )
1191 i f robot2 : #tag5
1192 rospy . Subsc r ibe r ( ”/ epuck robot 2 / d i s t s e n s ” , Range , robot2 .

d i s t a n c e c a l l b a c k )
1193 rospy . Subsc r ibe r ( ”/ epuck robot 2 / proximity1 ” , Range , robot2 .

p rox0 ca l l back )
1194 rospy . Subsc r ibe r ( ”/ epuck robot 2 / proximity2 ” , Range , robot2 .

p rox2 ca l l back )
1195 rospy . Subsc r ibe r ( ”/ epuck robot 2 / proximity5 ” , Range , robot2 .

p rox5 ca l l back )
1196 rospy . Subsc r ibe r ( ”/ epuck robot 2 / proximity6 ” , Range , robot2 .

p rox7 ca l l back )
1197 v e l o c i t y pub l i s h e r 2 = rospy . Pub l i she r ( ’ / epuck robot 2 /

mobi l e base / cmd vel ’ , Twist , qu eue s i z e =10)
1198 robot2 . v e l a s s i g n ( v e l o c i t y pub l i s h e r 2 )
1199 i f robot3 : #tag6
1200 rospy . Subsc r ibe r ( ”/ epuck robot 3 / d i s t s e n s ” , Range , robot3 .

d i s t a n c e c a l l b a c k )
1201 rospy . Subsc r ibe r ( ”/ epuck robot 3 / proximity1 ” , Range , robot3 .

p rox0 ca l l back )
1202 rospy . Subsc r ibe r ( ”/ epuck robot 3 / proximity2 ” , Range , robot3 .

p rox2 ca l l back )
1203 rospy . Subsc r ibe r ( ”/ epuck robot 3 / proximity5 ” , Range , robot3 .

p rox5 ca l l back )
1204 rospy . Subsc r ibe r ( ”/ epuck robot 3 / proximity6 ” , Range , robot3 .

p rox7 ca l l back )
1205 v e l o c i t y pub l i s h e r 3 = rospy . Pub l i she r ( ’ / epuck robot 3 /

mobi l e base / cmd vel ’ , Twist , qu eue s i z e =10)
1206 robot3 . v e l a s s i g n ( v e l o c i t y pub l i s h e r 3 )
1207
1208 # al l ow the robo t f o r a second to i n i t i a l i z e the sensors :
1209 time . s l e e p ( . 5 )
1210 camera . i n i t i a l (maze )
1211 #maze . pre sen t ( )
1212 time . s l e e p (1 )
1213 #robot2 . TurnRight ( )
1214 # po s i t i o n i n i t i a l i z a t i o n in the f i r s t
1215 comment = 1
1216 i f comment == 1 :
1217 i f robot0 :
1218 robot0 . i n i t i a l i z e P o s (maze , 5 , 10)
1219 i f robot1 :
1220 robot1 . i n i t i a l i z e P o s (maze , 8 , 5)
1221 i f robot2 :
1222 robot2 . i n i t i a l i z e P o s (maze , 2 , 6)
1223 i f robot3 :
1224 robot3 . i n i t i a l i z e P o s (maze , 3 , 4)
1225 lock = thread ing . Lock ( )
1226 t0 = thread ing . Thread ( t a r g e t=robot0 . maze explorat ion , args=(maze

, l o ck ) )
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1227 #t1 = thread ing . Thread ( t a r g e t=robot1 . maze exp lora t ion , args=(
maze , l o c k ) )

1228 t2 = thread ing . Thread ( t a r g e t=robot2 . maze explorat ion , args=(maze
, l o ck ) )

1229 t3 = thread ing . Thread ( t a r g e t=robot3 . maze explorat ion , args=(maze
, l o ck ) )

1230 time . s l e e p (1 )
1231 t0 . s t a r t ( )
1232 time . s l e e p (1 )
1233 #t1 . s t a r t ( )
1234 t2 . s t a r t ( )
1235 time . s l e e p (1 )
1236 t3 . s t a r t ( )
1237 t0 . j o i n ( )
1238 #t1 . j o i n ( )
1239 t2 . j o i n ( )
1240 t3 . j o i n ( )
1241
1242
1243 i f name == ’ ma in ’ :
1244
1245 try :
1246 #Test ing our func t i on
1247 main ( )
1248 except rospy . ROSInterruptException : pass
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