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ABSTRACT 

An accurate prediction of the response and strength of concrete elements, which exhibit 

nonlinear behavior even under moderate loading, is essential for evaluating their safety and 

serviceability.  To describe the nonlinear behavior of this material, continuum damage 

mechanics has been demonstrated to be effective at developing damage models that can be 

then implemented in finite element analysis (FEA) platforms. One such platform is the 

open-source, freely available software OpenSees, which is a FEA software framework for 

simulation in earthquake engineering (Fenves, 2001). 

This project studies the performance of simple, yet accurate biaxial concrete materials, 

amenable for FE analysis, with the ability to account for stiffness recovery in reversal 

loading (crack closing), permanent deformations, and low to moderate confinement.  Two 

concrete damage models – the PRM model (Pontiroli, Rouquand, & Mazars, 2010) and the 

“” model (Mazars, Hamon, & Grange, 2015)– were implemented in OpenSees to develop 

new biaxial concrete materials.   

The performance of the 2D new biaxial materials implemented in OpenSees is studied by 

comparing five concrete experimental tests with varying complexity taken from the 

literature with analytical models built in OpenSees.  The experiments consist of 1) plain 

concrete plates tested under biaxial states of stress (Kupfer, Hilsdorf, & Rüsch, 1969), 2) a 

simply-supported beam under monotonic loading tested as part of this project, 3) a simply-

supported beam under reversal-cyclic loading (Ranjbaran, Rezayfar, & Mirzababai, 2018), 

4) a rectangular shear wall under reversal-cyclic loading (Hiotakis, 2004), and 5) a full-

scale four-storey building under dynamic, seismic loading (Nagae, et al., 2015).   The 

advantages and limitations of each model are discussed. 
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1 INTRODUCTION 

1.1 Background 

Reinforced concrete (RC) is one of the most important and widely used materials in 

infrastructure projects worldwide.  The ultimate goal of structural design is to determine the 

forces in structural members to achieve economical and safe structures.  Determining an 

adequate safety margin in RC buildings requires an accurate prediction of the ultimate 

capacity of concrete, which is a complex task because this material exhibits nonlinear 

behavior even under moderate loading.  Furthermore, when subjected to multi-axial loads, 

it displays different strength and stiffness properties from those it exhibited when subjected 

to uniaxial loading. 

In recent decades, the framework of continuum mechanics has been used to create multiple 

models to describe the nonlinear behavior of concrete.  The different models can be 

categorized into three states of stress: uniaxial, biaxial, and triaxial.  Some of the most 

common formulations to simulate the behaviour of the concrete are the plasticity-based 

models (Argyris, Faust, & William, 1981), the fracture-based models (Bazant, 1994), the 

total-strain-based models (Vecchio & Collins, 1986), the damage-based models (Mazars, 

1986), or plastic-damage-based models (Lee & Fenves, 1998).   

Total-strain based models have provided two reliable and accurate models for concrete 

under biaxial stress, the Modified Compression Field Theory (MCFT) (Vecchio & Collins, 

1986) and the Cyclic Softened Membrane Model (CSMM) (Mansour & Hsu, 2005).  These 

models are capable of predicting the behavior of RC structures under different loading 

mechanisms with good accuracy, but they require iterative procedures which may cause 
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convergence problems within the FEA formulations. Most are implemented in proprietary 

finite element software.  

One of the main aspects of concrete analysis is the initiation and propagation of 

microcracks, which defines damage (Kachanov, 1958), represented as strain softening in 

structural analysis.  Mazars was the first to introduce an isotropic scalar damage-based 

model with multiple damage variables (1986), which uses a combination of elastic damage 

mechanics and linear elastic fracture mechanics.  This model can be used to predict the 

nonlinear behavior of concrete elements without requiring complex solution formulations.   

Finite element analysis (FEA) has been widely used in recent decades as a tool for 

analyzing RC structures.  In any finite element calculations for reinforced concrete, the 

basic information required besides loading, geometry, and boundary conditions is the multi-

dimensional stress-strain relationship, known as a constitutive relationship.  These 

incorporate suitable aspects of the response, such as cyclic behaviour, pinching effect, 

residual deformations, that allow the study of reinforced concrete materials subjected to 

monotonic, cyclic, and dynamic loading (ASCE, 1982).  Once the constitutive relationships 

have been defined, the constitutive, equilibrium, and compatibility equations can be solved 

using iterative procedures until an acceptable convergence criterion is reached.  

In order to avoid the complex formulations for 3D finite element analysis, simplifications 

can be made when one or two dimensions of an element are considerably larger than the 

rest.  Elements where the longitudinal dimension dominates (beams and columns) can be 

simplified using uniaxial elements and fiber sections (1D), while elements where two 

dimensions dominate (plates, walls, slabs) can be simplified using biaxial elements such as 

plates, membranes, or shell elements (2D).  
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While it is now relatively straightforward to capture the flexural behaviour of the so-called 

“line” elements in a building, such as beams and columns through 1D uniaxial materials, it 

is still difficult to model the flexural response of “plane” elements such as slabs and walls, 

which require biaxial or triaxial material formulations.   

Different analysis models able to account for material or structural non-linearity of 2D 

concrete-membrane elements are available today.  VecTor is a suite of computer programs 

that has been in continuous development at the University of Toronto over the last two 

decades.  It is capable of performing accurate nonlinear analyses of 2D (VecTor2) and 3D 

(VecTor3 and VecTor4) shell structural elements under monotonic and dynamic loading, 

using the MCTF (Vecchio & Collins, 1986).  General purpose programs, such as DIANA 

FEA (TNO, 2016), Abaqus (Abaqus , 2009), and OpenSees (Fenves, 2001) implement non-

linear analysis for subassemblies and whole structures under both monotonic and dynamic 

loading.  For concrete, DIANA implements the Maekawa-Fukuura model (2016), which is 

a combination of the Total Strain Crack Model (Selby & Vecchio, 1997) and the Elasto-

Plastic Fracture Model (Maekawa, Takemura, Irawan, & Irie, 1993).  Abaqus implements a 

plastic-damage-based formulation for 3D shell elements.  An elastic-damage-based model 

has been implemented in OpenSees (Lu, Xie, Guan, & Lu, 2015) for 2D shell elements.  

Analyzing structures using nonlinear 2D concrete elements with the above programs has 

certain limitations.  Research-oriented program VecTor2 is able to perform accurate 

nonlinear analysis of shell elements but it is limited to the study of subassemblies, with a 

limitation on the number of nodes and elements that can be used.  Therefore, the analysis of 

whole structures is not possible.  In the case of general-purpose program Abaqus, analysis 

of whole structures is possible, but the material models used, in general, require a large 
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number of input material parameters which can only be obtained through specialized 

testing, not usually available to the average analyst.  The complexity of the models for 

concrete in this type of programs often leads to convergence problems that limit their 

applicability.   

The limitations listed above indicate that there is a need of simple, yet reasonably accurate 

biaxial material models for concrete that allow the development of large structural models.  

These can be used to investigate the structures at the system level rather than at the element 

level, leading to an improved understanding of their structural performance under complex 

loading.  

In a previous study, Garcia (2017) implemented a new OpenSees concrete material using 

the scalar damage model (Mazars, 1986) and compared the analytical results with 

experimental data for an RC beam under monotonic loading, an RC shear wall under 

reverse-cyclic loading, and a full-scale RC building subjected to earthquake loading.  This 

software material accurately predicted the failure load of the beam, but it was not capable 

of assessing the failure deflection nor the cracking and yielding moments.  It exhibited 

moderate agreement in the hysteretic analysis of the shear wall but failed to predict the 

energy dissipation capacity and residual displacements.  Some parameters of the overall 

response of the RC building were predicted with reasonable accuracy.  The concrete models 

implemented in this study aim to improve the prediction of these structural parameters. 
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1.2 Problem Statement 

A number of concrete models have been implemented in different software platforms to 

create concrete materials that describe the nonlinear behavior of 2D elements.  Some of 

them are implemented in software unable to analyze large-scale structures under dynamic 

loading, while others use proprietary, advanced concrete models that lead to convergence 

problems when the number of elements is large.  Constitutive models for materials such as 

concrete should have a balance between simplicity and reasonable conformity to the 

experimental results.  

The need for a simple, transparent, open source code concrete material motivated the 

research by García (2017), who implemented a scalar damage-based model for concrete in 

the OpenSees framework.  Although this new material was based on one of the simplest 

damage-based models (Mazars, 1986), it provided a reasonable prediction of structural 

response at the macroscopic level, i.e., force-displacement response.  However, it was not 

capable of accounting for unilateral effects (crack opening and closure), permanent strains, 

or moderate-high confinement.  New materials that can describe these aspects of concrete 

behavior under types of loading different from monotonic loading need to be implemented 

in a freely available, open-source framework able to analyze complete structures and not 

only subassemblies.  

Due to its simplicity for modeling, a damage-based approach was selected as a candidate to 

develop the new materials implemented in this study. Damage-based models allow an 

explicit solution of the material constitutive, equilibrium, and compatibility equations 

without needing an iterative procedure to calculate stresses from a given set of strains.  
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1.3 Objectives, Methods, and Scope 

The general objective of this research is to study the performance of biaxial concrete 

formulations capable of determining stiffness recovery in reversal loading (crack closing), 

permanent deformations, and moderate confinement at the element and system levels, 

studying subassemblies (plates, beams and walls) and systems (a complete reinforced-

concrete building).  Two concrete damage models –PRM model (Pontiroli, Rouquand, & 

Mazars, 2010) and the “” model (Mazars, Hamon, & Grange, 2015)– are used to 

implement two new OpenSees concrete materials.  The performance of these material 

formulations is investigated through the modelling of five structural systems and 

components and the comparison of the analytical response with the experimental data.  The 

main objective can be subcategorized into three specific objectives, which are presented 

below, including their methodology:   

1. Selection of the formulations most suited to describe biaxial concrete behavior under 

monotonic, cyclic, and dynamic loadings for both subassemblies and full-scale 

structures: 

 Chapter 2 provides a literature review of the different approaches used to formulate 

concrete formulations, and discusses some of the most prominent concrete models, 

including their advantages and disadvantages.  It also describes representative FEA 

frameworks that accurately describe the behavior of concrete structures using 2D 

elements, with emphasis on the specialized, object-oriented FE framework used for 

this research: OpenSees.  
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2. Implementation of the Mazars’ “” and PRM concrete damage models as new  

materials in the OpenSees framework, for their use in plane-stress shell elements: 

 Formulate the source code for the new material in C++ language by implementing 

the plain-stress and specific damage model formulations specified in chapters 4 and 

3, specifically. 

 Prepare user-defined subroutines for the material formulations suitable for 

implementation in the OpenSees framework. 

3. Assess the performance of the new materials implemented in OpenSees by comparing 

analytical data with experimental tests: 

 Choose specific RC experimental tests from literature whose overall behavior or 

failure mechanisms can be used to evaluate the proficiency of the new materials to 

describe the concrete characteristics of unilateral effects, permanent strains, and 

moderate confinement. A description of each experiment is provided in chapter 5.   

Focus on both component- and system-level structural systems (i.e., beams, shear 

walls, and full buildings). 

 Develop FE analysis models of the structural systems in the FE platform OpenSees, 

making use of the new materials and shell elements. 

 Compare and discuss the results of the analytical models with the experimental 

tests. 

The scope of this thesis is to study the ability of biaxial materials implemented in OpenSees 

to reproduce the concrete characteristics of lateral effects, permanent deformations, and 

moderate confinement under biaxial loading. The proficiency of these materials to represent 
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the behavior of RC elements dominated by shear or with high confinement due to impact 

loading can be addressed in future work.  The variation of the stress through the thickness 

of the elements was not investigated.  Seismic loading was the only dynamic application 

studied, and nonlinearity under wind loading was not considered. 

1.4 Thesis Outline 

This thesis consists of 6 chapters, for which the content is summarized below: 

● Chapter 1 provides background and states the objectives and scope of this research 

study. 

● Chapter 2 consists of a comprehensive literature review of nonlinear concrete models 

that have been implemented for FEA.  It discusses their advantages and disadvantages 

when compared with the damage-based models used in this study.  

● Chapter 3 introduces the damage-based model's concepts and discusses the Scalar 

Damage Model (Mazars, 1986), the PRM Model (Pontiroli, Rouquand, & Mazars, 

Predicting Concrete Behaviour From Quasi-static Loading to Hypervelocity Impact, 

2010), and the “” Model (Mazars, Hamon, & Grange, 2015) formulations, which were 

used to accomplish objectives (1) and (2). 

● Chapter 4 addresses objective (2) and contains a detailed explanation of the procedure 

needed to implement the new concrete materials in the OpenSees framework. 

● Chapter 5 addresses objective (3) by presenting the comparison between experimental 

tests and analytical models using the new materials.  

● Chapter 6 presents the conclusions based on chapter 5 results and discusses future work 

that could follow this research study. 
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2 LITERATURE REVIEW 

2.1 Introduction 

Concrete behaves either as linear or nonlinear material depending on the magnitude and 

types of stress to which it is subjected.  Concrete has a linear-elastic material compressive 

response under low-stress levels, but for higher levels of stress or for sustained loading it 

exhibits nonlinear behavior, which has a significant influence on the behavior of RC 

structures in terms of increased deformation, development of cracks and stiffness 

degradation (ASCE, 1982).  

As a non-homogeneous material, concrete contains a large number of micro-cracks even 

when subjected to low levels of stress. This is especially noticeable at the interface between 

the cement matrix and aggregate particles.  Micro-cracks propagation, caused by stress, 

segregation, shrinkage, or thermal expansion in the cement paste, contributes to the 

nonlinear behavior of RC (Hsu & Mo, 2010). 

In recent years, FEA has become an important tool for the analysis of RC structures. 

Continuous improvement of finite element nonlinear techniques and software has taken 

place during the last decades, which makes the structural analysis and design of RC 

structures more feasible.  There are several theoretical approaches for creating RC models 

that define the complex stress-strain behavior under different stress states.  The most 

commonly used are nonlinear elasticity, plasticity, fracture mechanics, damage continuum 

mechanics, and total-strain theory. Each approach is better suited for particular types of 

structures or loading mechanisms (Vecchio & Palermo, 2001). 
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2.2 Behavior of Plain Concrete Under Different States of Stress 

2.2.1 Behavior of Plain Concrete Under Uniaxial State of Stress 

Typical stress-strain relationships for plain concrete subjected to monotonical-uniaxial-

compressive loading are shown in Fig. 2.1.  According to Hsu (1963), concrete behaves as 

a linear-elastic material up to about 30% of its maximum compressive strength (f’c).  At this 

point, micro-cracks start developing at the cement-coarse interface and concrete begins to 

soften.   Karsan and Jirsa (1969) stated that for stresses up to about 75% of the f’c, the 

concrete softening phenomenon increases and the stress-strain curve bends more sharply as 

it approaches f’c. Beyond the f’c, the stress-strain curve enters the descending portion until 

concrete crushes; this phase is characterized by the presence of macro-cracks. 

 

Fig. 2.1. Typical compressive stress-strain curve for concrete (Attard & Mendis, 1993) 
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The stress-strain curve for concrete under tension is nearly linear-elastic up to the tensile 

strength (ft).  The magnitude for the tensile strength (ft) varies from 8% to 15% of the f’c.  

The tensile strength is highly sensitive to the type of test, type of aggregate, f’c, and 

presence of compressive stresses transverse to the tensile stresses.  The tensile strength of 

concrete can be measured using three types of test: the direct tension test, the splitting 

tension test, and the modulus of rupture test.  The first one is difficult to accomplish and 

might be subjected to large errors; the second one is the easiest to perform and renders the 

most reliable results; and the third one provides consistent results in various laboratories 

and more suitable values for FEA (Raphael, 1984). Typical tension stress-strain curves for 

concrete are illustrated in Fig. 2.2. 

 

Fig. 2.2. Typical tensile stress-strain curve for concrete (Raphael, 1984) 
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When concrete is subjected to compressive cyclic loading, it exhibits stiffness and strength 

degradation (Karsan & Jirsa, 1969).  Fig. 2.3 shows that the monotonic stress-strain curve 

(dotted line) is a reasonable representation of the envelope for the peak values of the cyclic 

stress-strain curve.  Each cycle of loading and unloading corresponds to a hysteresis curve, 

where the energy dissipated during every cycle is enclosed.  

 

Fig. 2.3. Behavior of concrete under cyclic compressive loading (Sinha, Gerstle, & Tulin, 1964) 

 

High-strength concrete behaves in a more brittle manner than normal strength concrete, 

having less load-carrying capacity once the peak load is reached (Fig. 2.1).  For normal 

strength concretes, the coarse aggregates and cement paste are stronger than the peak force 

of the concrete. Failure initiates at the weak cement-coarse interface zone, and the 

aggregate interlock allows for shear transfer across the cracks, providing the typical post-

peak behavior of normal strength concrete.  For high-strength concrete, the cement paste 

and aggregates have a similar strength to the peak force of the concrete. The cracks start at 

both the cement paste and the coarse aggregates, thus, there is less shear transfer due to 

aggregate interlock (Attard & Mendis, 1993). 
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2.2.2 Behavior of Plain Concrete Under Biaxial State of Stress 

Fig. 2.4 illustrates the biaxial strength envelope of normal-plain concrete.  The ultimate 

strength under biaxial compression exhibits a strength increase of approximately 25% at a 

biaxial-strength ratio of 0.5.  For an equal biaxial stress with a ratio 1.0, the strength 

increase is only about 15% (Kupfer, et al., 1969; Liu, et al., 1972; Tasuji, et al., 1978; and 

Hussein, et al., 2000).   Under biaxial compression-tension stress, concrete exhibits a 

noticeably reduced strength.  Under biaxial tension stress, concrete exhibits a constant 

(Kupfer, et al., 1969; and Hussein, et al., 2000), or a slightly increased (Tasuji, Slate, & 

Nilson, 1978), tensile strength in comparison with the results obtained for uniaxial tension.  

 

Fig. 2.4. Biaxial strength of concrete (Kupfer, Hilsdorf, & Rüsch, 1969) 
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Concrete exhibits a different stress-strain behavior when subjected to uniaxial and biaxial 

states of stress (Fig. 2.5).  For biaxial compression, concrete exhibits increased initial 

stiffness and ductility at the peak stress. The former may be attributed to Poisson’s ratio and 

the latter indicates reduced internal damage as compared to uniaxial loading, because of 

confinement effects (Kupfer, et al., 1969; and Nelissen, 1972).  The failure of concrete 

under any combination of biaxial loading is related to a maximum-tensile-strain criterion.  

The fracture surface is orthogonal to the direction of the maximum-tensile strain (Tasuji, 

Slate, & Nilson, 1978).  

 

Fig. 2.5. Stress-strain relationship of concrete under biaxial compression (Kupfer, Hilsdorf, & Rüsch, 

1969) 

 

2.3 Theoretical Approaches for nonlinear FEA Modelling of Concrete 

The nonlinear behavior of RC structures is a complex phenomenon that includes a 

multiaxial state of stress, strain softening, crack development induced by tensile stress or 

strain, hysteretic behavior and pinching effect (under cyclic loading), aggregate interlock, 



15 

 

bond slip between concrete and steel reinforcement, and time-dependent behavior such as 

shrinkage and creep.  These phenomena make creating reliable RC constitutive models a 

challenging task (Chen, Yamaguchi, Kotsovos, & Pan, 1993). 

 RC models are built using a number of theoretical approaches.  Some of the main 

approaches (Fig. 2.6) are nonlinear elasticity, plasticity, total-strain, and damage continuum 

mechanics (Vecchio & Palermo, 2001).  These approaches are discussed below, including 

some of the most representative RC models. 

 

Fig. 2.6. Theoretical Approaches for Nonlinear FEA Modelling of RC Structures 
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2.3.1 Nonlinear-Elasticity-Based Approach 

The earliest models created to represent RC were based on linear behavior. Later on, 

cracking and compression softening phenomena were incorporated to account for nonlinear 

behavior.  The elastic-based theoretical approach can be divided into two main 

subcategories to determine the constitutive matrix [ ]: secant (Eq. 2.1) and tangential (Eq. 

2.2) stress-strain models (ASCE, 1982), where { } and { } are the stress and strain vectors, 

and {  } and {  } are the stress and strain increment vectors. 

{ }  [ ]{ }                                                                                                                (2.1) 

{  }  [ ]{  }                                                                                                            (2.2) 

The main difference between the two approaches is that for the secant formulation the 

current state of stress { } is exclusively dependant on the current state of strains { } or vice 

versa, not accounting for deformation-path dependency.  Thus, limitations for the secant 

formulation arise, since the deformation state of these models is independent of the loading 

path, which is not true for concrete (Chen, Yamaguchi, Kotsovos, & Pan, 1993).  Bazant 

and Tsubaki (1980) stated that the development of microcracks in concrete varies when a 

different loading path is used.  Imran and Pantazopoulu (1996) conducted experimental 

tests on concrete under triaxial loading, which allowed them to prove that the deformation 

of concrete is loading path dependant, while the strength of concrete is independent to the 

loading path.  Despite the inherent limitations, secant formulations have been widely used 

for their simplicity  

By contrast, the tangential formulation depends on the current state of strains and the path 

of stress followed, depending on the deformation historey of the material. However, for this 
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type of formulation concrete behavior becomes anisotropic in the highly nonlinear range 

near the peak stress, even if the initial behavior was isotropic, which makes the 

formulations of this type of constitutive model more complex. 

For uniaxial models, using one approach over another does not make a substantial 

difference due to their simplicity; the stress is a function of a single strain value. Three 

examples of uniaxial RC elasticity-based models are described in the sections that follow. 

In sections 2.3.1.1 and 2.3.1.2, two of the most commonly used uniaxial compression 

modes for FEA, the Hognestad model (1951) and the Kent and Park model (1971), are 

described. In section 2.3.1.3, a uniaxial tension model, the flexural tension-stiffening 

relationship (Kaklauskas, 1999), is described.  

2.3.1.1 Hognestad Model and Modified Hognestad Model 

The Hognestad model (Hognestad, A study on combined bending and axial load in 

reinforced concrete members, 1951) is one of the simplest elastic-based uniaxial models.  

The model uses a second-order parabola to describe the stress-strain relationship of 

concrete at any given strain (εc). The parabola is defined (Eq. 2.3) using two variables: the 

concrete compressive strength (f’c) and the concrete strain at maximum concrete strength 

(εc0) defined by Eq. (2.4).  

      [
   

   
 (

  

   
)
 
]                                                                                   (2.3) 

    
   

  
                                                                                                                       (2.4) 

The compressive stress-strain curve of concrete according to the Hognestad model is shown 

in Fig. 2.7. The stress-strain relationship up to the f’c is accurately represented, but the post-
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peak branch demonstrates symmetry to the ascending branch, which is not true for uniaxial 

concrete behavior. 

 

Fig. 2.7. Stress-strain relationship for concrete in compression (Hognestad, A study on combined 

bending and axial load in reinforced concrete members, 1951) 

 

The modified Hognestad model (Hognestad, 1955) was created to improve the 

representation of the descending branch of the uniaxial stress-strain concrete curve.  The 

ascending curve is represented with the same equation as the original model (Eq. 2.3), the 

descending portion is considered linear until the concrete crushes at 85% of f’c.   Fig. 2.8 

shows the compressive stress-strain curve of concrete according to the modified Hognestad 

model.  

 

Fig. 2.8. Stress-strain relationship for concrete in compression (Hognestad, 1955) 
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2.3.1.2 Kent and Park Model 

Kent and Park (1971) developed a model to describe the stress-strain relationships of 

concrete, both unconfined and confined by rectangular hoops. The ascending branch is 

described by the Eq. (2.3), taken from the Hognestad model, with the difference being that 

it is limited up to the maximum strength strain (εc0), which is given a constant value of 

0.002. The post-peak branch is assumed to be linear, and its slope is defined by Eq. (2.5) 

and (2.6) as a function of the peak strength (f’c), the strain at peak strength (εc0), the strain at 

which concrete crushes (εu) and the stress equals 50% of the maximum concrete strength 

(ε50u). 

     
 
[   (      )]                                                                             (2.5) 

In which, 

  
   

        
                                                                                                                 (2.6) 

Fig. 2.9 shows the compressive stress-strain curve of concrete according to the Park and 

Kent model, which accurately describes the ascending and descending branches. However, 

for the confined case it is conservative because it does not take the strength’s increase at the 

peak of the curve (Mander, Priestly, & Park, 1988) into account.  Because of its simplicity 

and accuracy, this model has been widely used for FEA of concrete structures. 
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Fig. 2.9. Stress-strain relationship for unconfined and confined concrete in compression (Kent & Park, 

1971) 

 

2.3.1.3 Flexural Tension-Stiffening Relationship 

A flexural tension-stiffening relationship has been proposed by Kaklauskas (1999).  It is 

called flexural because it has been derived using flexural experimental data.  The 

descending branch of the stress-strain relationship for tensile concrete is described by Eq. 

(2.7), (2.8), and (2.9), where the tensile stress (σt) is described at any current tensile strain 

(εt) as a function of the maximum tensile stress or cracking stress (σcr), the strain at the 

maximum tensile stress (εcr), and the reinforcement ratio (p).  

             (  
  

 
 

      

   
)                                                                             (2.7) 

In which, 

    
  

   
 ;       

   

  
                                                                               (2.8) 

                                                                                                        (2.9) 
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Fig. 2.10 shows the stress-strain relationship for tensile concrete in flexure. This model was 

derived from a number of fitting curves, with the aim of achieving a balance between 

accuracy and simplicity (Kaklauskas, 1999). 

 

Fig. 2.10. Stress-strain relationship for tensile concrete in flexure (Kaklauskas, 1999) 

 

2.3.2 Plasticity-Based Approach 

The strain-stress relationships of concrete can be separated into elastic and inelastic ranges.  

The recoverable deformation, or elastic range, is well understood and is based on the 

framework of elasticity theory.  The irrecoverable deformation, or inelastic range, is treated 

within the theory of plasticity.  Three basic assumptions exist in the development of the 

classical theory of plasticity: 1) an initial yield surface, 2) a hardening rule, and 3) a flow 

rule.  The first assumption determines the stress threshold for the onset of plastic 

deformation; the second regulates the evolution of the subsequent loading surface, which 

changes its configuration according to the specified hardening rule that describes the plastic 

stress-strain relationships; and the third defines an incremental plastic stress-strain 

relationship (Chen & Han, 1988). 
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Concrete is made of a mortar-aggregate composite that presents voids and microcracks 

even before loading, thus, it may behave more like a fracture or frictional material than a 

plastic material.  However, the well-established theory behind the classical plasticity 

approach allows going beyond the elastic range in a theoretically consistent way, making 

the plasticity-based approach superior to elasticity-based for general concrete behaviors, 

such as permanent deformations (Han & Chen, 1985).   

A number of plasticity-based models have been developed to describe the stress-strain 

relationship of concrete.  An elasto-plastic and fracture model (Maekawa, Takemura, 

Irawan, & Irie, 1993), used by the DIANA FEA software package to predict concrete 

behavior for 2D and 3D elements, is described in Section 2.3.2.1.   

2.3.2.1 Elasto-Plastic and Fracture Model 

A 3D elasto-plastic and fracture model was formulated (Maekawa, Takemura, Irawan, & 

Irie, 1993) by combining the elasticity, fracture, and plasticity of concrete within the 

framework of plasticity and fracture laws. Four material functions are proposed for 

concrete with normal aggregate and strength ranging from 15 MPa to 50 MPa. The fracture 

function (damage parameter, K) (Eq. 2.10) express the degradation of the shear elastic 

strain energy of concrete including defects. The equivalent elastic strain parameter (F)   

(Eq. 2.11) represents the macroscopic intensity of internal stress which advances the 

damage under an arbitrary level of confinement.  The function H (Eq. 2.12) indicates the 

plastic hardening of the internal plastic element in the damaged concrete, with b being the 

user-defined correction factor for plastic evolution, which has a default value of 1.  The 

function D (Eq. 2.13) indicates the plastic dilatancy induced by the shear plastic dislocation 

along the internal defects. 

https://dianafea.com/manuals/d94/MatLib/node324.html#eq:mae:K
https://dianafea.com/manuals/d94/MatLib/node324.html#eq:mae:F
https://dianafea.com/manuals/d94/MatLib/node324.html#eq:mae:H
https://dianafea.com/manuals/d94/MatLib/node324.html#eq:mae:D
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The constant 0  (Eq. 2.14) was adopted with the objective that these material functions 

would be applicable to normal aggregate and strength concrete. 

       (   ) (
   

  
)                                                                                             (2.14) 

The scalars I1e (Eq. 2.15), J2e (Eq. 2.16),  and J3e (Eq. 2.17)  are the first, second, and third 

elastic strain invariants respectively.  
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https://dianafea.com/manuals/d94/MatLib/node324.html#eq:mae:K
https://dianafea.com/manuals/d94/MatLib/node324.html#eq:mae:K
https://dianafea.com/manuals/d94/MatLib/node324.html#eq:mae:K
https://dianafea.com/manuals/d94/MatLib/node324.html#eq:mae:K
https://dianafea.com/manuals/d94/MatLib/node324.html#eq:mae:D
https://dianafea.com/manuals/d94/MatLib/node324.html#eq:mae:K
https://dianafea.com/manuals/d94/MatLib/node324.html#eq:mae:D
https://dianafea.com/manuals/d94/MatLib/node324.html#eq:mae:D
https://dianafea.com/manuals/d94/MatLib/node324.html#eq:mae:D
https://dianafea.com/manuals/d94/MatLib/node324.html#eq:mae:K
https://dianafea.com/manuals/d94/MatLib/node324.html#eq:mae:K
https://dianafea.com/manuals/d94/MatLib/node324.html#eq:mae:K
https://dianafea.com/manuals/d94/MatLib/node324.html#eq:mae:K
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Once the elastic strain vector has been determined, then the so-called fracture 

parameter (K) is calculated as a function of the invariants of the elastic strain tensor and a 

number of elastic parameters.  Due to damage, it is assumed that the shear modulus will be 

reduced by a factor K; i.e. the initial shear modulus G is multiplied by K . 

Function K ranges from 1 to 0, where 0 represents the failure of the material and 1 denotes 

undamaged material (Maekawa, Takemura, Irawan, & Irie, 1993).  

 

2.3.3 Rotating and Fixed Angle Shear Theories Based on Total-Strain Approach 

Total-strain models determine the average element stresses as a function of the average 

strains, using the material constitutive equations.  The input for total-strain models is 

divided into two parts: 1) material properties such as Youngs’ modulus and Poisson’s ratio, 

and 2) the definition of the material behavior in compression, tension, and shear. The 

constitutive relationships and the compatibility strains depend on the behavior of both 

concrete and steel.  RC 2D elements subjected to in-plane shear and normal stresses can be 

separated into concrete elements and steel grid elements (Fig. 2.11) (Hsu & Mo, Unified 

Theory of Concrete Structures, 2010).  

 

Fig. 2.11. Decomposition of an RC element into a concrete element and a steel grid element 
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Before cracking, the steel bars have a negligible effect on the behavior of an RC element, 

thus, the principal stresses in the concrete coincide with the applied principal stresses.  

When the principal tensile stress reaches the concrete tensile strength threshold, cracks will 

form in the direction of compressive stresses, activating the steel bars and modifying the 

principal stresses direction in the RC element (Hsu & Mo, Unified Theory of Concrete 

Structures, 2010).  As a result, the direction of the subsequent cracks deviates from the 

direction of the initial crack, which occurs between the applied principal stresses and the 

RC element principal stresses (Fig. 2.12).  Consequently, two theories have been 

developed: the rotating angle shear theories (Vecchio & Collins, 1982), and the fixed angle 

shear theories (Pang & Hsu, 1996). 

 

Fig. 2.12. Change of direction of the subsequent cracks 

 

The rotating angle theories assume that the direction of the cracks is perpendicular to the 

principal tensile stress of the RC element, which will “rotate” after each subsequent crack.  

The derivations of the equilibrium and compatibility equations are based on the RC element 

principal stresses’ coordinate system.  Conversely, the fixed angle theories assume that the 
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direction of the cracks is perpendicular to the applied principal tensile stress, and the 

derivations of the equilibrium and compatibility equations are based on the applied 

principal stresses’ coordinate system (Hsu & Mo, Unified Theory of Concrete Structures, 

2010).   

Two of the most prominent rotating angle theories and fixed angle shear theories are the 

modified compression field theory (Vecchio & Collins, 1986) and the cyclic softened 

membrane model (Mansour & Hsu, 2005), respectively.  The formulations of these models 

are presented in Sections 2.3.3.1 and 2.3.3.2. 

2.3.3.1 Modified Compression Field Theory 

Vecchio and Collins (1986) formulated the modified compression field theory model based 

on the rotating angle theory.  This model handles cracked concrete as a new material with 

its own stress-strain characteristics.  Equilibrium, compatibility, and stress-strain 

relationships are formulated based on average stresses and strains.  Relationships between 

external loads and internal strains are achieved by an iterative procedure, for example, the 

Newton-Raphson method, using a secant stiffness matrix approach (Vecchio & Collins, 

1986). 

Before cracking, the concrete can be considered a homogenous material, where the 

principal compressive stresses, the principal tensile stresses, and the shear stress are the 

same.  After cracking, the MCFT accounts for tensile stresses in the diagonal concrete 

struts.  This allows for better agreement with experimental results than the original 

compression field theory (CFT) (Vecchio & Collins, 1986), in which it is assumed that the 

struts carry only compressive stresses. 
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The behavior of a reinforced concrete 2D element is described by solving a 15x15 system 

of equations, a brief summary is presented in Fig. 2.13.  Eq. (2.19) to Eq. (2.23) represent 

the equilibrium of forces between the applied stresses and the concrete and steel stresses 

(Fig. 2.13).  The geometric conditions (Fig. 2.13) are considered in Eq. (2.24) to Eq. (2.28), 

where the first three represent the relationships between the horizontal (εx) and vertical (εz) 

strains, and the principal compressive (ε2) and tensile (ε1) strains distributed in the rotated 

concrete element as average strains; the last two determine the crack widths (w), 

considering the principal tensile strain and the spacing between steel reinforcement.  The 

material constitutive relationships (Fig. 2.13) are described by Eq. (2.29) to (2.32), which 

are built in terms of only principal stresses, thus, avoiding the need for a constitutive model 

for shear.  However, Eq. (2.33) is needed to account for shear stress on cracked surfaces.  
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Fig. 2.13. Summary of the MCTF (Vecchio & Collins, 1986) 

 

2.3.3.2 Cyclic Softened Membrane Model 

The cyclic softened membrane model (CSMM) was developed by Mansour and Hsu (2005) 

as an extension of the softened membrane model (SMM) (Hsu & Zhu, 2002). These 

analytical models describe the behavior of 2D-RC elements under cyclic and monotonic 

loading, respectively, and are based on fixed angle theories.  The CSMM is able to predict 

hysteretic loops and their pinched shapes, for which it accounts for the stress-strain 

relationships in the unloading and reloading paths of concrete and steel (Mansour & Hsu, 
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2005).  Like the MCFT, this model is built on stress equilibrium, strain compatibility, and 

constitutive laws of materials.  

A brief summary of this model is presented in Fig. 2.14.  The constitutive model for steel 

accounts for the presence of concrete.  The behavior of an embedded steel bar in concrete 

differs from a bare steel bar due to the transfer of tensile stresses between the bar and the 

concrete.  The constitutive model for steel considers the tension softening after cracking 

and the softening of concrete compressive strength caused by tensile strains in the 

orthogonal direction.  The compressive and tensile constitutive relationships are determined 

using equivalent uniaxial strains, which are calculated from the bi-dimensional tensor of 

strains using the Hsu/Zhu ratios (Mansour & Hsu, 2005).  
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Fig. 2.14. Summary of the CMSS (adapted from Mansour & Hsu, 2005) 

 

2.3.4 Damage-Continuous-Mechanics-Based Approach 

Continuum damage mechanics, based on thermodynamics and fracture mechanics, is used 

to describe the formation and coalescence of microcracks in the concrete, known as damage 

(Kachanov, 1958).  This approach assumes that the concrete stiffness degradation is caused 

by material damage, which can be represented by the damage variable, D.  The damage 

variable (D) ranges from 0 for the undamaged material to 1 for the complete failure of the 
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material.  The damage variable (D) is calculated using material formulations derived within 

the framework of thermodynamics. Fig. 2.15 shows the general principle of damage-based 

models, where the undamaged Young’s modulus (E) of the material is 35 GPa.  For the first 

case (E1) the material is undamaged (D=0), being E1 equal to the initial value of 35 GPa .  

For the second case (E2) the damage (D) has a value of 0.82, causing stiffness degradation 

from an initial Young’s modulus of 35 GPa to an E2 of 6.34 GPa at a strain of 0.004. 

 

Fig. 2.15. Stress-strain response of damage models 

 

Usually, there are two types of damage variables to describe the damage; one is the scalar 

damage variable (isotropic), which is related to the collapse of the micropores of the 

structure; the other is the tensorial damage (anisotropic), which is related to the creation of 

surfaces in the material caused by decohesion (Lemaitre, 1986). 
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Two types of concrete-damage models exist: the elastic-damage model and the plastic-

damage model.  The elastic-damage model describes the inelastic behavior of concrete 

based only on its stiffness degradation.  Most models of this type are unable to account for 

the permanent deformation of the material after a full unloading cycle.  Elastic-damage 

models consider only a pure extension crack, caused by tensile strains, to describe the 

behavior of the material in both tension and compression, where the compression is 

accounted for by tensile strains in the orthogonal direction of the applied load (Mazars, 

Hamon, & Grange, 2015). The same concept for multiaxial loading was extended by the 

“” model (Mazars, Hamon, & Grange, 2015) to describe the behavior of the material 

under low or moderate confinement, where the extension is allowed in at least one 

direction.  

Plastic-damage models account for high confinement, where extension is not permitted, and 

thus generate the collapse of the cement porous matrix and shear cracking. Coupling 

plasticity and damage serves to describe the permanent strain evolution of the material 

(Ortiz & Popov, 1982; Lee, 1998). However, the PRM model, an elastic-damage based 

model created from the work of Pontiroli (1995), Rouquand (2005), and Mazars (1986), is 

able to account for permanent strains. 

Isotropic-elastic-damage-based models are used in this project because of the simplicity 

they exhibit, considering the broad loading mechanism they can be used for.  As Gerstle 

stated (1980), concrete experiment results are significantly scattered, even when identical 

results are intended, thus the simplicity of the constitutive models should be favoured over 

achieving perfect similitude of experimental and analytical data. A full discussion of the 

scalar damage model (Mazars, 1986), the PRM model (Pontiroli, Rouquand, & Mazars, 
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Predicting Concrete Behaviour From Quasi-static Loading to Hypervelocity Impact, 2010) 

and the “” model (Mazars, Hamon, & Grange, 2015) is presented in Chapter 3. 

 

2.4 Structural Analysis Software Using the Finite Element Method (FEM) 

The finite element method (FEM) has become a valuable tool for analyzing reinforced 

concrete structures.  During the last 60 years, it has been under constant improvement 

regarding the constitutive modeling of RC behavior and advanced analysis algorithms 

(Vecchio & Palermo, 2001).  FEM is widely used in professional structural design, for 

analyzing and designing new structures, and investigating existing structures.  As Schlaich 

(1987) stated, “it has allowed us to design structures we would not have dared in the past.”  

The advantages and disadvantages of the following FEA software regarding the analysis of 

a component or a system (full structure) are discussed: VecTor Analysis Group, DIANA 

FEA, Abaqus FEA, and OpenSees.  

2.4.1 VecTor Analysis Group 

VecTor is a suite of computer programs developed at the University of Toronto that has 

been under continuous development over the last two decades.  It is capable of performing 

accurate nonlinear analyses of 2D (VecTor2) and 3D (VecTor3 and VecTor4) shell 

elements under monotonic and dynamic loading, using rotating angle formulations based 

on the modified compression field theory (MCFT) and the disturbed stress field model 

(DSFM).    

VecTor2 performs nonlinear finite element analysis of 2D membrane structures.  The 

element library (Fig. 2.16) consists of the following element types: three-node triangular 
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elements, four-node rectangular elements, four-node quadrilateral elements, two-node 

truss-bar elements for discrete steel reinforcement, two-node link elements for steel bar 

slip, and four-node contact elements for contact interactions (Chak, 2013).  This program 

contains 25 concrete material types and 25 steel material types, allowing up to four smeared 

reinforcement components per material type.  However, the program is limited to 6000 

elements and 5200 nodes plane structures.  

 

Fig. 2.16. VecTor2 element library (Chak, 2013) 

 

VecTor3 was developed in as an analog of VecTor2, but specifically for describing the 

behavior of 3D solid finite elements, to accurately capture out-of-plane behavior.  The 

element library (Fig. 2.17) includes: six-node wedge elements, eight-node rectangular and 

isoparametric hexahedral elements, two-node truss-bar elements, and two-node link 

elements (Chak, 2013).  This program contains 45 concrete material types and 15 steel 

material types, allowing up to four smeared reinforcement components per material type.  

However, the program is limited to 12,000 elements and 15,000 nodes plane structures. It is 

also important to note that the 3D feature is only for solid elements, making it useful for 

modeling solid structures, like dams, but less functional for structures like buildings. 
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Fig. 2.17. VecTor3 element library (Chak, 2013) 

 

VecTor4 is used for the analysis of 3D-RC shell and plate elements, capable of accounting 

for nodal displacements, as well as in-plane rotations.  It employs up to 15 layers in a 

layered element formulation.  VecTor4 shell elements are relatively high-power elements, 

utilizing nine-node layered elements with 42 degrees of freedom.  The element library (Fig. 

2.18) consists of the following element types: nine-node shell elements, and two-node 

truss-bar elements.  This program contains 20 concrete/steel material types and 15 concrete 

layers per material type, allowing up to 6 smeared reinforcement components per material 

type.  However, it is limited to 6000 elements and 5200 nodes plane structures. 

 

Fig. 2.18. VecTor4 element library (Chak, 2013) 
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The VecTor suite also includes a program that specializes in plane frame-related structures 

(VecTor5) and a program that performs analysis of 2D elements in an axisymmetric fashion 

(VecTor6), which are unrelated to this research.  

VecTor2 and VecTor3 have shown feasible to analyse components of a structure, using an 

advanced concrete model based on the Modified Field Compression Theory (Vecchio & 

Collins, 1986).  Defining the material properties is a straightforward process where you can 

obtain them from simple testing.  Some of the most significant research that has been done 

using this software is summarised below.  Quasi-static tests on RC shear walls were 

compared with the FEA model using VecTor2 (Mergos & Beyer, 2013), and showed 

excellent agreement in the load-displacement response.  The punching shear behavior of 

externally prestressed concrete slabs have been studied (Mostafei, Veccio, Gauvreau, & 

Semelawy, 2011), and reasonably accurate correlations were obtained between the VecTor3 

analysis results and the test results.  Comparisons have been made between beam impact 

tests and analysis results (Saatci & Vecchio, 2009), in which VecTor2 performed well at 

predicting displacements, damage levels, and reinforcement strains.  The seismic over-

strength of RC shear walls of parking structures was investigated by inelastic static 

pushover analyses and inelastic dynamic response analyses in VecTor2 (Lee & Kuchma, 

2007).  The shear-flexure interaction response was closely resembled by the analytical 

model. 

However, this computer program suite limits the number of nodes and elements that can be 

used, and it cannot perform the nonlinear analysis of a full-scale structure or at the system 

level.  VecTor Analysis Group programs also do not allow the modification or addition of 

new analysis modules to its source code, unlike open-source code. 
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2.4.2 DIANA FEA 

DIANA FEA is a finite element software package that is dedicated to a wide range of 

problems arising in civil engineering including structural, geotechnical, tunneling, 

earthquake disciplines, and oil & gas engineering (TNO, 2016). Regarding reinforced 

concrete nonlinear analysis, DIANA offers a full range of material models for 1D, 2D, and 

3D elements, such as smeared crack models with fixed and rotating angle theories and 

elasto-plastic models.  DIANA can perform nonlinear analyses of RC subassemblies and 

full-scale structures under monotonic, cyclic, and seismic loading.  

However, the use of advanced models for nonlinear 2D or 3D concrete elements that can 

account for permanent deformations has been restricted for subassemblies.  A full-scale 

five-storey RC building was tested on a shake table at the University of California (Pantoli, 

et al., 2013) to study its performance under seismic loading. A finite element model was 

built on DIANA (Ebrahimian, Astroza, Conte, Restrepo, & Hutchinson, 2014) to simulate 

the performance of the mentioned building. The slabs and shear walls were modeled using 

a simplified version of the MCFT implemented by the user as a built-in subroutine, where 

the unloading and reloading paths always pass through the origin, preventing permanent 

deformation in the material. For high-intensity seismic loading, the FE model 

underestimated the floor displacement and, therefore, the inter-storey drift of the building at 

the lower levels. 

The DIANA FEA Maekawa-Fukura concrete model has been developed as a combination 

of the elasto-plastic fracture model (Maekawa, Takemura, Irawan, & Irie, 1993), described 

in Section 2.4.2, the cracked concrete curves (Maekawa et al., 2003), and the three-

dimensional extension of the MCFT (Selby & Vecchio, 1997), to make its implementation 
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in DIANA feasible. The validation of DIANA’s material model was performed 

(Schreppers, 2017) by comparing analytical models with experimental tests taken from 

literature, which included a shear wall tested under reversed-cyclic loading (Aoyama et al., 

1982). The analytical and experimental data for the load-displacement curve showed high 

accuracy.  However, this concrete model has not been used for a full-scale structure. 

DIANA FEA shows accurate results when predicting the nonlinear behavior of RC 

elements or structures under different types of loadings.  It provides an excellent user-

interface and access to some subroutines.  However, the source code is proprietary, limiting 

the solution algorithms to the ones contained in the software, which may not be suitable for 

obtaining a solution for complicated models without convergence problems.  DIANA FEA 

is mostly used for structural design, rather than for research purposes. One of the reasons is 

the relatively high cost of the software, which is less appealing to the research community 

in contrast to other specialized free research-oriented software that have been widely used, 

such as VecTor or OpenSees. 

2.4.3 Abaqus FEA 

Abaqus FEA is a suite of general-purpose software applications for finite element analysis 

and computer-aided engineering design, through which users can employ user material 

subroutines to implement their own nonlinear material models (Abaqus , 2009). Abaqus 

includes three constitutive concrete models: the smeared crack concrete model, the brittle 

cracking model, and the concrete damaged plasticity model. 

The smeared crack concrete model is an elasto-plastic model, controlled by a 

“compression” yield surface. Cracking is regarded as the most important material behavior. 
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This material model is best applied when concrete is subjected only to monotonic loading. 

The brittle cracking model works best in situations where tensile cracking induces the 

failure of concrete. When compression occurs, the behavior is assumed to be elastic, and 

thus, dynamic analysis with load reversals is not suitable. The concrete damaged plasticity 

model is a damage-based material model that can be used when concrete undergoes loading 

conditions of any kind, including cyclic loading (Abaqus , 2009). 

Studies on the performance of the FEM of 2D concrete elements using Abaqus have 

focused mainly on subassemblies.  An RC railway bridge was tested under monotonic 

loading until failure occurred (Puurula, Enochsson, Sas, & Elfgren, 2015).  An analytical 

model built on Abaqus showed excellent agreement for the load-carrying capacity of the 

bridge with the experimental data of the pushover performed.  The behavior of an RC beam 

element under the effect of impact vibration was studied using the concrete damage-

plasticity model, the results between experimental and analytical data showed good 

agreement for the midpoint displacements of the beam and the reaction forces on the 

supports (Ahmed, 2014).  The nonlinear cyclic behavior of shear walls with composite 

steel-concrete was studied by Ali (2013), in which concrete damaged plasticity material 

was used in solid 3D elements.  The predicted load-deformation curves, peak loads, and 

ultimate strength values exhibited good agreement with the experimental data.   

The progressive collapse analysis of a high-rise building was studied using Abaqus (Fu, 

2009).  Being a general-purpose program places some limitations on the Abaqus 

preprocessor. For this reason, the model was built on ETABS (CSI, 2018) and then 

imported to Abaqus using a converter program developed by Fu (2009).  The structure 

consisted of a 20-storey building, the lateral and vertical resisting load system consisted of 
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an RC shear-wall core and steel frames, and the floor system consisted of an RC slab.  The 

shear walls and the slab were modeled using four-node shell elements, and the material 

used was the concrete damage plasticity model.  However, for the validation, a 2-storey 

building was used, consisting of two frames in each orthogonal direction, with the ones in 

the longitudinal direction having two spans and the ones in the transverse direction having 

one span.  The frames consisted of steel, and a concrete slab was placed on the intermedium 

level, without shear walls.  The analytical data of the validation presented good agreement 

for the joints moment-rotation relationship with the experimental data. 

Abaqus offers the analyst the opportunity to implement user-defined subroutines.  

However, like DIANA, the source code of most of the solution and analysis modules is 

proprietary, making it challenging for researchers to analyze or verify the underlying code. 

As a result, solution algorithms are constrained to those already present within the software, 

which may cause convergence problems in some situations.  This limitation makes it 

impossible to analyze previously untapped engineering phenomena, or to analyze the 

behavior of newly discovered materials. 

Similar to DIANA and other FEA programs, Abaqus has shown being feasible of 

performing FEA of subassemblies using advanced concrete models. However, some of the 

material parameters are difficult to determine without complex texting, and the theory of 

such models is not transparent, besides having a proprietary source code for the materials 

and solution algorithms.  Regarding the FEA at the system level or full-structures, 

convergence issues may arise when using advanced concrete formulations. 
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2.4.4 OpenSees 

Open System for Earthquake Engineering Simulation (OpenSees) is an object-oriented 

open source-code framework for simulation in earthquake engineering using FEA 

techniques (Fenves, 2001).    

Many advanced finite element techniques appropriate for nonlinear finite element analysis 

of shell elements, have been implemented in OpenSees.  A damage-based concrete material 

model has been implemented (Lu, Xie, Guan, & Lu, 2015) in OpenSees, which can be used 

to simulate the behavior of RC plane-stress elements in multilayer-shell elements.  A 

biaxial concrete material model (based on the CSMM) has also been implemented (Zhong, 

2005) in OpenSees, and has shown accurate prediction for the behavior of shear walls 

under reversed-cyclic loading.   

These material models have shown being feasible for the FEA of both, subassemblies and 

full structures for different loading mechanism such as monotonic and dynamic loading.  

However, these two research groups have made their source code proprietary, so key 

aspects of the model performance are consequently unknown.  After reviewing the main 

biaxial concrete models for different FEA software, the need of a simple, yet accurate 

material model is evident. 

 

 

 

 

 



42 

 

3 CONCRETE DAMAGE MODELS 

3.1 Introduction 

Concrete damaged-based models are formulated using continuum damage mechanics and 

aim to describe the nonlinear behavior of concrete. Many materials, including concrete, can 

exhibit internal failures at the micro- and macro- scale that are produced by effects such as 

creep, fatigue, constant load, and chemical reactions. These internal failures are produced in 

the form of microcracks, and their propagation and coalescence in concrete elements are 

known as “damage” (Kachanov, 1958). 

Concrete is a composite material formed by granulates in a hydrated cement paste or brittle 

matrix. Damage mechanics is able to describe the interface between the aggregate grains 

and the cement matrix when they are subjected to loading. Damage mechanics is a 

simplified strategy for describing the behavior of concrete considering its complex 

microstructure. 

The concrete models used in this research are based on the work done by Mazars through 

the last three decades.  Three models will be discussed: the scalar damage model (Mazars, 

1986), the PRM model (Pontiroli, Rouquand, & Mazars, 2010), and the third is the “” 

model (Mazars, Hamon, & Grange, 2015).  In these concrete damage models it is assumed 

that the material is elastic, isotropic, and has constant stiffness. The stiffness of the material 

is modified using a scalar damage variable (D), which ranges from 0 for the undamaged 

material to 1 for the complete failure of the material.  The damage variable (D) is calculated 

using material formulations derived within the framework of thermodynamics.   The micro 

and macro effects of loading, collapse of micro-voids in the mixture, rearrangement of 
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concrete particles, and interaction of the cement matrix with the aggregates, are all 

accounted for by Mazars’ models.  Fig. 3.1 describes the behavior of stress-strain (s- ) 

curves for concrete elements using damage models, where the parameter E represents the 

Young’s modulus of the material. 

 

Fig. 3.1. Typical stress-strain relationship of concrete using damage models 

 

3.2 Scalar Damage Model  

Mazars (1986) formulated a scalar damage model to predict the triaxial behavior of 

concrete. This model describes the behavior of concrete as isotropic, elastic-damageable. 

The damage parameter (D) is calculated by starting from an equivalent strain (   ), which 

is the average of the tensile principal strains of the element, meaning that all compressive 

strains can be represented as tensile strains in the orthogonal direction. 
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The calculation of the stresses uses elastic theory, reducing the elastic stiffness matrix [ ] 

with a damage parameter (D).  The parameters {s and { are the stress and the strain 

vectors, respectively. 

{ }  (   )[ ] { }                                                                                                        (3.1) 

The total damage of the element is comprised of the weighted sum of the damage caused by 

tensile stresses and compressive stresses. The modification factor ( ) accounts for the 

presence of shear resistance in the interaction of compression (  ) and tension (  ) weights. 

    
       

                                                                                    (3.2) 

The formulation of the damage in tension (  ) and compression (  ) is dependent on the 

tensile and compressive material parameters (Ac, Bc, At, Bt), which are obtained from 

compression and tensile tests. All the calculations are based on the equivalent strain of the 

element (   ), and damage begins only when the strain surpasses the initial damage strain 

threshold (   ). 

     
    (    )

   
       [    (       )]                                                  (3.3)                             

     
    (    )

   
       [    (       )]                                                 (3.4) 

The contribution of the tensile and compressive weights to the total damage are calculated 

by analyzing each of the principal strains obtained from the positive and negative principal 

elastic stresses. The weight is only considered if the total strain is tensile, hence the H 

parameter is used. 

   ∑   
   (       )

   
 

 
                                                                   (3.5)                                                                                             
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   ∑   
   (       )

   
 

 
                                                                                                   (3.6)               

The elastic stiffness matrix [ ], and the positive (  ) and negative (  ) elastic stress 

vectors are used to calculate the positive (tensile) and negative (compressive) strain vectors, 

respectively. 

{  }  [ ]   {  }                                                                                                       (3.7)                       

{  }  [ ]   {  }                                                                                                       (3.8)                  

The equivalent strain is calculated as the average of the tensile principal strains (i) of the 

element. 

    √∑ (〈  〉)
  

                                                                                                         (3.9) 

            〈  〉                   

              〈  〉                  

 

3.3 PRM Model  

The PRM model (2010) is a two scalar damage model formulated from work done by 

Pontiroli (1995), Rouquand (2005), and Mazars (1986). It improves upon previous models 

in that it retains the simplicity of an elastic-damage model but also has the capacity to 

account for crack-closure effects and permanent strains. The variables     and     are the 

crack closure stress and strain vectors, respectively. The PRM formulations are detailed 

below.  

The constitutive equation of the model occurs in Eq. (3.10)  
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{  }  (   )[ ] {  }                                                                                            (3.10) 

{  }  { }  {   }                                                                                                     (3.11) 

{  }  { }   {   }                                                                                                     (3.12) 

Before damage in compression occurs, the crack closure stress and strain are equal to the 

initial material parameters      and     respectively. Once compressive damage (Dc) 

occurs, the crack closure stress (   ) is calculated from Dc as follows: 

{   }  {    }(   )                                                                                              (3.13) 

The PRM model uses the same equivalent strain concept as the scalar damage model, and is 

determined by Eq. (3.14).  Where 〈  〉 depends on the sign of the stress in the direction i, 

being 〈  〉     for compression and 〈  〉  (     )   for tension. 

    √∑ 〈  〉
  

                                                                                                        (3.14) 

The damage evolutions were taken from the original scalar damage model (1984), with the 

main difference being that the PRM model has different thresholds for tensile damage (   ) 

and compressive damage (    ). The damage parameter (D) remains a scalar and is obtained 

from the calculation of Dc and Dt. The activation factor (  ) evolves from 0 to 1 depending 

on the tensor   , where   =1 if   >0 and   =0 if   <0: 

     
    (    )

   
       [    (       )]                                                  (3.15)           

      
    (    )

   
       [    (       )]                                              (3.16) 

   
    (    )

   
                                                                                                           (3.17) 
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        (    )                                                                                             (3.18) 

Fig. 3.2 shows the uniaxial stress-strain response of the PRM model.  The unloading in 

compression follows the focal point (  ,  ), and the damage switches from compression to 

tension at the crack closure point (   ,   ).  

 

Fig. 3.2. Uniaxial stress-strain response of the PRM damage model (Mazars & Grange, 2014) 
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3.4  “” Model  

The “” Model (Mazars, Hamon, & Grange, 2015) was created to include the damage 

effects related to monotonic and cyclic loading that were not incorporated in previous 

models, such as unilateral effects (crack opening and closing). It has proven capable of 

describing a broad range of nonlinear behavior: monotonic, cyclic, and dynamic loading.  It 

entails the following assumptions: 

 Describes the behavior of concrete as the combination of damage and elasticity. 

 The damage behavior is assumed to be isotropic. 

 Two damage modes are assumed:  cracking (tension) and crushing (compression). 

This leads to having two independent equivalent strains: one for tension and another 

for compression. 

 In contrast with the scalar damage model, the effective damage parameter (d) 

describes the damage on the stiffness, activated either by compressive or tensile 

loading. 

 d is able to describe the unilateral effects (crack opening and closure). 

 

The calculations needed to determine the damage parameters are shown below. The stress 

vector is obtained using the same Eq. (3.1) as the Mazars’ scalar damage model (1986).  

 

The equivalent strain for cracking (  ) and crushing (  ) are defined as follows, where   is 

Poisson’s ratio: 

    
  

 (    )
 

√  

 (   )
                                             (3.19)                                                                         
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 (    )
 

 √  

 (   )
 ,    (3.20) 

                (3.21) 

      [(      )
  (      )

  (      )
                                                       (3.22) 

   and    are the maximum values reached during the loading path, while     and     are 

the initial threshold of the cracking and crushing equivalent strains, respectively: 

      [         ]                                                                                 (3.23) 

      [         ]                                                                                               (3.24)  

The damage parameter (d) is directly related to the thermodynamic variables    and    

though the Y variable. The triaxial factor (r) evolves from 0 for pure compressive stress to 1 

for pure tensile stress: 

       (   )                                                                                                   (3.25) 

  
∑  ̅   

∑| ̅ |
 ,     where    { ̅}   

{ }

(   )
 [ ] { }                                                       (3.26) 

The damage evolution is defined in accordance with Mazars’ scalar damage model, where 

   is the initial threshold for Y.  A and B define the shape of the effective damage (d), based 

on the test parameters Ac, Bc, At, and Bt. 

    
   (   )

 
       [   (    )]                                                             (3.27) 

        (   )                                                                                                (3.28) 

     (   (    )   (    ))     (        )                                     (3.29) 

    (       )   (   (       )                                                                     (3.30) 
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                                                                                                                 (3.31) 

Fig. 3.3 shows the evolution of the variables when subjected to a tension-compression 

loading path. It can be observed that the thermodynamic variables Yt and Yc evolve 

independently, and that for the entire loading path they are always increasing. The effective 

damage (d) is activated by local stress through the variable r, where for uniaxial loading it 

has a value of 1 for tensile stresses and 0 for compressive stresses, and for biaxial loading, 

the value ranges from 0 to 1.  It can be observed that the damage is equal to zero during (t0 

– t1), until the tensile threshold is reached and the damage starts evolving proportionally to 

the tensile strain until it reaches its maximum value at t2.   During the unloading (t2 – t3), the 

damage is constant.  The damage is equal to zero when the loading switches to compression 

at t3,  then it is kept as zero until it reaches the compressive threshold  at t4.  The damage 

evolves proportionally to the compressive strain until it reaches its maximum value at t5, 

and again is constant during the unloading.  If there were an extra tensile cycle after t6, the 

damage would switch to the value it reached at t2 and would continue being constant until it 

surpassed the tensile strain at t2, where the damage would start increasing again.  
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Fig. 3.3.  model variables evolution during a tensile-compression loading path (Mazars, Hamon, & 

Grange, 2015) 

 

3.5 Influence of Test Parameters (Ac, Bc, At, and Bt) and Uniaxial Stress-Strain 

Response of the Scalar Damage Model, the PRM Model, and the “” Model 

The characteristics parameters Ac, Bc, At, and Bt affect the magnitude of the scalar damage 

parameter (D) directly.  The variables Ac and Bc are obtained from compressive tests, while 

At and Bt come from flexion tests. The quasi-brittle behavior of concrete under tension is 

reproduced by parameters At and Bt, which are adjusted to accurately represent the uniaxial 

stress-strain curve obtained from a concrete specimen tensile test. The behavior of concrete 

in compression is reproduced by parameters Ac and Bc, which are adjusted to accurately 

represent the uniaxial stress-strain curve obtained from a concrete specimen compressive 

test.  
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To investigate the influence of the response parameters on the constitutive stress-strain 

response of concrete, a numerical investigation is performed. The parameters of the scalar 

damage model, PRM model, and “” model are calibrated (Table 3.1) to obtain a typical 

stress-strain relationship for concrete.  The concrete properties are arbitrarily chosen as f’c = 

35 MPa at a strain value of 0.002, a Young’s modulus of 35 GPa, and a tensile stress-strain 

relationship with a peak tensile strength (ft) of 3.5 MPa at a strain value of 0.0001.   

Table 3.1.Damage models parameters 

Material E(GPa)                    (   )          (   ) 

SD Model 35.0 - 1.0e-4 - - - - 

PRM Model 35.0 1.0e-4 1.0e-4 5.0e-4 18.1 -3.3e-5 -1.1946 

 Model 35.0 3e-4 1.0e-4 - - - - 

 

Material Ac Bc At Bt   

SD Model 1.20 1950.0 0.97 1.0e4 0.18 

PRM Model 1.15 1950.0 0.97 1.0e4 0.18 

 Model 1.25 495.0 0.97 1.0e4 0.18 

 

The test parameters Ac (Fig. 3.4), Bc (Fig. 3.5), At (Fig. 3.6), and Bt (Fig. 3.7) of each model 

are varied to exhibit the influence that each one has in the stress-strain response of the 

material.  The test parameters Ac and Bc are modified to 50%, 75%, 125%, and 150% of the 

original value shown in Table 3.1.  The test parameter At is modified to the values of 0.0, 

0.25, 0.5, 0.8, and 1.0.  The test parameter Bt is modified to the values of 1.0e+03, 3.0e+03, 

7.0e+03, 2.0e+04, and 1.0e+05.  The results show that the parameters have similar effects 

on the compressive and tensile response of the three models. 
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Fig. 3.4 shows that when Ac increases, the maximum compressive stress increases, but the 

material presents a more brittle behavior, and loses its load-carrying capacity at a smaller 

strain.  When Ac decreases, the maximum compressive stress decreases, but the load-

carrying capacity is improved, resulting in more ductile behavior. Fig. 3.5 shows that when 

Bc increases, both the maximum compressive stress and the load-carrying capacity increase. 

Typical values for At ranges from 0.7 to 1.0.  Fig. 3.6 shows that At controls the residual 

tensile strength in the concrete; as the value of At increases the residual tensile strength 

increases. A value of 1.0 At denotes zero residual tensile strength and a value of 0.0 At 

implies that non load-carrying capacity is lost. Typical values for Bt ranges from 8000 to 

21000.  When Bt decreases, both the maximum tensile stress and the strain at which it is 

reached increase (Fig. 3.7). 
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Fig. 3.4. Ac parameter influence in the compressive stress-strain response for the scalar damage model 

(a), the PRM model (b), and the  model (c) 
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Fig. 3.5. Bc parameter influence in the compressive stress-strain response for the scalar damage model 

(a), the PRM model (b), and the  model (c) 
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Fig. 3.6. At parameter influence in the tensile stress-strain response for the scalar damage model (a), 

the PRM model (b), and the  model (c) 
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Fig. 3.7. Bt parameter influence in the tensile stress-strain response for the scalar damage model (a), 

the PRM model (b), and the  model (c) 
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To examine the influence of the loading path on the compressive and tensile response of 

concrete, the uniaxial stress-strain responses for three different loading paths using the 

scalar damage, the PRM, and the “” model are presented.  The first loading path    (Fig. 

3.8) consists of a tension-compression path, where the tension loading reaches a strain of 

0.0002 before the unloading starts.  It is reloaded in compression until a strain of 0.007 is 

reached.   

 

Fig. 3.8. Loading path 1: tension-compression 

 

The second loading path (Fig. 3.9) consists of a compression-tension path, where the 

compression loading reaches a strain of -0.004 before the unloading starts. It is reloaded in 

tension until a strain of 0.0005 is reached.   
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Fig. 3.9. Loading path 2: compression-tension 

 

The third loading path (Fig. 3.10) consists of a tension-compression-tension-compression 

path, where the tension loading reaches a strain of 0.0003 before the unloading starts.  It is 

reloaded in compression until a strain of -0.003 is reached, and then is unloaded and 

reloaded in tension until a strain of 0.0005 is reached. Finally, it is unloaded and reloaded 

in compression until a strain of -0.007 is reached.  

 

Fig. 3.10.  Loading path 3: tension-compression-tension-compression 
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Fig. 3.11. Uniaxial stress-strain response for the scalar damage model (a), the PRM model (b), and the  

model (c) under the loading path 1 
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The model parameters, which are calibrated to have a maximum compression strength (f’c) 

at a strain of -0.002, and a maximum tensile strength (ft) at a strain of -0.0001, are presented 

in Table 3.1. Fig. 3.11 shows the uniaxial stress-strain response of the three models for the 

loading-path 1 (O-A-B-O-C-D).  It can be observed that for the first loading portion of the 

loading O-A-B, the three models present the same stress-strain relationship with a peak 

tensile stress of 3.5 MPa at a strain value of 0.0001 (B).  

However, notable differences can be observed for the loading in compression O-C-D.  The 

scalar damage model (Fig. 3.11a) is unable to separate the evolution of damage into tension 

and compression; this implies that when it transitions the compression domain, the damage 

evolution is unrecoverable and the stiffness is held constant until the compressive strain is 

big enough (U) to continue the evolution of the current damage.  

 In contrast with the scalar damage model, both the PRM model (Fig. 3.11b) and the “” 

model (Fig. 3.11c) are able to account for stiffness recovery when the loading path switches 

from tension to compression. This is possible because the compressive and tensile damage 

evolution are independent for both models. This behavior of concrete is explained by the 

crack-closure phenomenon under loading-unloading cycles. 
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Fig. 3.12. Uniaxial stress-strain response for the scalar damage model (a), the PRM model (b), and the  

model (c) under the loading path 2 
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The stress-strain response of each model for the loading-path 2 is shown in Fig. 3.12, where 

the three models follow a different stress-strain evolution path.  The three models present 

the same stress-strain relationship for the first loading portion of the loading (O-A-B), 

having a peak compressive stress of 35 MPa at a strain value of -0.002 (A).  Notable 

differences can be observed for the loading in tension until point D is reached.  Just as 

when it was subjected to the loading-path 1, the scalar damage model (Fig. 3.12a) (O-A-B-

O-C-D) maintains constant stiffness when the reloading starts.  

Conversely, the PRM model (Fig. 3.12b) (O-A-B-P-C-O-D) and the “” model (Fig. 3.12c) 

(O-A-B-O-C-D) present stiffness recovery due to crack closing effects, which is possible 

because the PRM and “” models have independent compressive and tensile damage 

evolution.  The main difference between the PRM model and the other two models, is that 

when the PRM model reaches the plastic range under compressive loading, it can reproduce 

permanent deformations during the unloading-reloading path, which is controlled by the 

crack closure stress and strain (P).  The scalar damage and “” models do not account for 

permanent deformations, which is a drawback but results in simpler formulations.   
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Fig. 3.13. Uniaxial stress-strain response for the scalar damage model (a), the PRM model (b), and the  

model (c) under the loading path 3 
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The stress-strain response of each model for the loading-path 3 is shown in Fig. 3.13, where 

the stress-strain response of each model can be observed under two cycles of tensile-

compressive loading, where the three models follow a different stress-strain evolution path. 

As shown in Fig. 3.13a, the scalar damage model (O-A-B-O-C-D-C-O-B-E-O-F) should not 

be used when an element is subjected to reversal-cyclic loading, because it does not 

separate the damage evolution into tension and compression.  

However, the scalar damage model shows a reliable stress-strain response for monotonic 

loading, and even under cyclic loading when only one of compressive or tensile domains is 

used.  Both the PRM model (Fig. 3.13b) (O-A-B-O-C-D-p-b-E-p-D-F) and the “” model 

(Fig. 3.13c) (O-A-B-O-C-D-O-B-E-O-D-F) have been found to reliably reproduce the 

uniaxial stress-strain response of concrete under reversal-cyclic loading and monotonic 

loading, with the main difference being that the PRM model can account for permanent 

deformations while the “” model cannot. 
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4 IMPLEMENTATION OF TWO BIAXIAL CONCRETE MATERIALS IN THE 

OPENSEES FRAMEWORK  

4.1 Introduction 

The PRM model (Pontiroli, Rouquand, & Mazars, 2010) and the  model (Mazars, Hamon, 

& Grange, 2015) were implemented in the OpenSees framework as 3D plane-stress 

elements.  The OpenSees framework and its main elements and materials used to develop 

analytical models for validating implemented concrete models are discussed.  Additionally, 

the finite element formulation, the coordinate system , and the material constitutive matrix 

are discussed.  Finally, the steps followed to introduce the concrete models as new 

materials in OpenSees are detailed. 

4.2 OpenSees 

The Open System for Earthquake Engineering Simulation (OpenSees), developed within 

the Network for Earthquake Engineering Simulation (NEES) project, serves as an object-

oriented, open source software framework for finite element analysis.  The intended users 

of OpenSees are members of the research community.  By using a modular approach in 

OpenSees, the behaviour of structural and geotechnical systems can be simulated.  These 

modules contain numerical solutions, output recorders, and independently defined model 

configurations.  Because of the flexibility of the modular implementation in OpenSees, 

researchers can implement new components, such as material models, element types, and 

solution algorithms, as they are developed (Mazzoni, McKenna, Michael, & Fenves, 2006). 

Key features of OpenSees include the interchangeability of components and the ability to 

integrate existing libraries and new components into the framework without changing the 
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existing code.  Core components, which are the abstract base classes, define the minimal 

interface. It is simple enough to add new component classes with ease, but complex enough 

to entail all of the essential features. 

OpenSees uses Tcl script language to write an input file, which includes the structural 

model, the analysis type, and the required output recorders.  The OpenSees source code is 

written in C++ language and uses object-oriented programming, which allows users to 

create new classes or modules as parts of the framework (Mazzoni, McKenna, Michael, & 

Fenves, 2006). 

The main features of OpenSees are as follows: 

 The library of materials, elements, and analysis is a powerful tool for numerical 

simulation of nonlinear systems.  

 The OpenSees interface is based on a command that enables the user to create more 

versatile input files. 

 OpenSees is not a black box, which makes it useful for modeling.  

 You can create your own material, element, or algorithm and introduce it into 

OpenSees.  

 It is a freely available software framework. 

 It was developed for simulation applications in earthquake engineering. 

 As open-source software, it has potential as a community code for earthquake 

engineering. 
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4.2.1 Materials 

There are two types of materials currently available in OpenSees: uniaxial and multi-

dimensional (nD materials). The PRM model and the “” model, discussed in chapter 3, 

were implemented as plane-stress biaxial concrete materials and new objects of the nD 

material class.  The uniaxial materials used for this research project are the Giuffre-

Manegotto-Pinto steel model with isotropic strain hardening (Filippou, Popov, & Bertero, 

1983), a hysteretic material for steel, and the Kent-Scott-Park material object for concrete.  

These three materials are detailed below. 

4.2.1.1 Steel Material: Giuffre-Manegotto-Pinto Model with Isotropic Strain Hardening 

The steel material selected to model the steel reinforcement of the experimental tests being 

used to validate this project in the OpenSees framework, was the Steel02 material, which 

uses the Giuffre-Manegotto-Pinto model with isotropic strain hardening.  The input 

parameters for the Steel02 material command (Fig. 4.1) are the  

integer tag identifying material ($matTag), the yield strength ($Fy), the initial elastic 

tangent ($E0), the strain-hardening ratio ($b), and the parameters to control the transition 

from elastic to plastic branches ($R0, $CR1, $CR2), with the following recommended 

values:  $R0 = between 10 and 20, $cR1=0.925, and $cR2=0.15.  Fig. 4.2 shows the 

material parameters of the monotonic envelope, Fig. 4.3 shows the hysteretic behavior 

without isotropic hardening, Fig. 4.4 shows the hysteretic behavior with isotropic hardening 

in compression, and Fig. 4.5 shows the hysteretic behavior with isotropic hardening in 

tension for the Steel02 material (Filippou et al., 1983).  
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Fig. 4.1. Steel 02 material command input parameters 

 

 

Fig. 4.2. Steel02 material: parameters of monotonic envelope (OpenSees) 

uniaxialMaterial Steel02 $matTag $Fy $E0 $b $R0 $cR1 

$cR2 
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Fig. 4.3. Steel02 material: hysteretic behavior without isotropic hardening (OpenSees) 

 

Fig. 4.4. Steel02 material: hysteretic behavior with isotropic hardening in compression (OpenSees) 
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Fig. 4.5. Steel02 material: hysteretic behavior with isotropic hardening in tension (OpenSees) 

 

4.2.1.2 Hysteretic Material 

This material command allows the user to construct a uniaxial bilinear hysteretic material 

object with pinching of force and deformation, degraded unloading stiffness based on 

ductility, and damage due to energy and ductility. This material command is typically used 

to model the bond-slip phenomenon presented in RC structures. The input parameters for 

the Hysteretic Material command (Fig. 4.6) are the integer tag identifying material 

($matTag), the stress and strain at the first point of the envelope in the positive direction 

($s1p $e1p), the stress and strain at the second point of the envelope in the positive 

direction ($s2p $e2p), the stress and strain at the third point of the envelope in the positive 

direction (optional) ($s3p $e3p), the stress and strain at the first point of the envelope in the 

negative direction ($s1n $e1n), the stress and strain at the second point of the envelope in 
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the negative direction ($s2n $e2n), the stress and strain at the third point of the envelope in 

the negative direction (optional) ($s3n $e3n),  the pinching factor for strain during 

reloading ($pinchx), the pinching factor for stress during reloading ($pinchy), the damage 

due to ductility ($damage1), the damage due to energy ($damage2), and the power used to 

determine the degraded unloading stiffness based on ductility (optional, default=0.0) 

($beta).  The typical stress-strain relationship for the material is shown in Fig. 4.7. 

 

 

Fig. 4.6. Hysteric material input parameters 

 

 

Fig. 4.7. Hysteric Material: typical stress-strain relationship 

 

uniaxialMaterial Hysteretic $matTag $s1p $e1p $s2p $e2p <$s3p $e3p> $s1n 

$e1n $s2n $e2n <$s3n $e3n> $pinchX $pinchY $damage1 $damage2 <$beta> 
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4.2.1.3 Concrete material: Kent-Scott-Park 

The Concrete01 material command allows the user to construct a uniaxial Kent-Scott-Park 

concrete material object with degraded linear unloading-reloading stiffness. This material 

command is based on the work of Karsan-Jirsa and does not take tensile strength into 

account. The input parameters for the Concrete01 command (Fig. 4.8) are the integer tag 

identifying material ($matTag), the concrete compressive strength ($fpc), the concrete 

strain at maximum strength ($epsc0), the concrete crushing strength ($fpcu), and the 

concrete strain at crushing strength ($epsU). The Young’s modulus (E) is considered equal 

to 2*$fpc/$epsc0, therefore, the concrete strain at maximum strength should be considered 

equal to 2*$fpc/E. The typical stress-strain relationship for the material is shown in Fig. 4.9 

(OpenSees). 

 

Fig. 4.8. Conrete01 material input parameters 

 

Fig. 4.9. Concrete01 material: typical stress-strain relationship 

 

uniaxialMaterial Concrete01 $matTag $fpc $epsc0 $fpcu 

$epsU 
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4.2.2 Elements 

The OpenSees framework contains a diverse number of element types, including but not 

limited to zero-length elements, truss elements, beam-column elements, and quadrilateral 

elements.  This research focuses on the elements used to build the validation models, which 

are detailed below.  

4.2.2.1 Zero-Length Elements: ZeroLength Element 

A number of zero-length elements are available in the OpenSees framework, including 

uniaxial, multi-axial, and contact elements.  The primary interest of this project is the 

ZeroLength element command, which is a uniaxial zero-length element. It is defined by 

two nodes at the same location, which are connected by multiple UniaxialMaterial objects 

that represent the force-deformation relationship of the element (OpenSees). A typical 

application of this element is the simulation of the bond-slip phenomenon. 

The input parameters of the ZeroLength command (Fig. 4.10) are the unique element object 

tag ($eleTag), the end nodes ($iNode $jNode), the tags associated with previously-defined 

uniaxial materials ($matTag1 $matTag2 ...), the material directions 1,2,3 translation along 

local x,y,z axes, respectively, the 4,5,6 rotation about local x,y,z axes, respectively ($dir1 

$dir2 ...), and the concrete strain at crushing strength ($dir1 $dir2 ...).  

 

 

Fig. 4.10. ZeroLength element input parameters 

 

element zeroLength $eleTag $iNode $jNode -mat $matTag1 $matTag2 ...  

-dir $dir1 $dir2 ... 
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4.2.2.2 Truss Elements 

There are two types of truss elements in the OpenSees framework: the truss element and the 

corotational truss element. For both, specifying an area and a uniaxial material is necessary. 

The only difference is that the corotational truss element considers geometric nonlinearities, 

while the truss element does not. In this research project we are focusing on the truss 

element, which was used to model the steel reinforcement of the validation models. The 

input parameters of the truss element command (Fig. 4.11) are the unique element object 

tag ($eleTag), the end nodes ($iNode $jNode), the cross-sectional area of the element ($A), 

and the tag associated with a previously-defined uniaxial material ($matTag). 

 

Fig. 4.11. Truss element input parameters 

 

4.2.2.3 Beam-Column Elements 

A number of beam-column elements are available in the OpenSees framework, including 

elastic, inelastic, nonlinear, displacement-based, force-based, and beams with hinge 

elements.  This project is primarily interested in the nonlinearBeamColumn element 

command. This command is used for constructing a nonlinear beam column element object 

using the non-iterative or iterative force formulation; it considers the spread of plasticity 

along the element (OpenSees). The input parameters of the truss element command (Fig. 

4.12) are the unique element object tag ($eleTag), the end nodes ($iNode $jNode), the 

number of integration points along the element ($numIntgrPts), the tag associated with a 

element truss $eleTag $iNode $jNode $A  
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previously-defined section object ($secTag), and the tag associated with a previously-

defined coordinate-transformation object ($transfTag).   

 

 

Fig. 4.12. NonlinearBeamColumn element input parameters 

 

Fig. 4.13 shows the interaction of a zero-length element and a beam-column element for 

modelling the bond-slip behavior in RC columns, where both elements are joined by a 

common node j. Node i is also required to construct the zero-length element, and both 

nodes i and j have the same coordinates at the base of the column.  The beam-column 

element is defined from node j to node k.  For both elements, a previously-defined section 

element is assigned. Regarding the materials, a previously-defined uniaxial concrete 

material is assigned to the column-beam element, such as the Concrete01 material 

command. For the zero-length element, a hysteretic material is assigned.   

element nonlinearBeamColumn $eleTag $iNode $jNode $numIntgrPts 

$secTag $transfTag 
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Fig. 4.13. Interaction of a zero-length element and a beam-column element (OpenSees) 

 

4.2.2.4 Cuadridatelar Elements: Quad Element, ShellMITC4 and Multilayered Shell 

Element 

A number of cuadridatelar elements are available in the OpenSees framework.  This project 

is primarily interested in the quad element, the shellMITC4 element, and the multilayered 

shell element commands. The quad element command is used to construct a four-node quad 

element object, which uses a bilinear isoparametric formulation (OpenSees). The input 

parameters of the quad element command (Fig. 4.14) are the unique element object tag 

($eleTag), the four nodes defining element boundaries, input in counter-clockwise order 

around the element ($iNode $jNode $kNode $lNode), the element thickness ($thick), the 

type of material behavior –plane strain or plane stress– ($type), and the tag associated with 

a previously-defined material object ($matTag).   

 

Fig. 4.14. Quad element input parameters 

element quad $eleTag $iNode $jNode $kNode $lNode $thick $type $matTag 
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The ShellMITC4 command is used to construct a shell element object, which uses a 

bilinear isoparametric formulation in combination with a modified shear interpolation to 

improve thin-plate bending performance (OpenSees).  This element is a 3D element with 6 

degrees of freedom and it serves to model plane structures in OpenSees under in- and out-

of-plane loading.  The input parameters of the ShellMITC4 element command (Fig. 4.15) 

are the unique element object tag ($eleTag), the four nodes defining element boundaries, 

input in counter-clockwise order around the element ($iNode $jNode $kNode $lNode), and 

the tag associated with a previously-defined section object ($secTag).   

 

Fig. 4.15. ShelMITC4 element input parameters 

 

In this project, the section object of the shellMITC4 element is built using the multi-layered 

shell element (Lu, Xie, Guan, & Lu, 2015).  The multi-layered shell element performs the 

nonlinear analysis of composite-plane elements. It is comprised of a number of layers with 

different thicknesses and material properties (Fig. 4.16), making it suitable for modelling 

RC structures, such as beams or shear walls, by having concrete layers and reinforcement 

steel layers.  The steel rebars are smeared into one or more layers, where their thickness 

depends on the reinforcement ratio, and the orientation depends on the longitudinal and 

transverse reinforcement steel. 

The multi-layered shell element, in which the stresses acting over the thickness of the 

layers are assumed to be equal to those stresses at the mid-surface of the layer, is built 

based on the plane-stress theory.  Thus, if you subdivide the plane component of an RC 

element ShellMITC4 $eleTag $iNode $jNode $kNode $lNode $secTag 
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concrete structure into enough layers, the multi-layer shell element can simulate the real 

stress distribution over the thickness of the shell to a reasonable degree.  The in-plane and 

the out-of-plane behaviour of a plane structure can be represented with biaxial element 

formulations by using layered shell elements. 

 

Fig. 4.16. Multilayered-shell element (Lu, Xie, Guan, & Lu, 2015) 

 

4.3 Coordinate System 

Two different Cartesian coordinate systems, x-y and 1-2, are defined for plane concrete 

elements.  The local coordinates of the elements are represented by the x-y coordinate 

system, and the principal directions of the applied stresses are represented by the 1-2 

coordinate system.  The angle between both coordinate systems is defined by the angle θ 

(Fig. 4.17).               
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Fig. 4.17. Local (x-y) and principal stresses (1-2) coordinate systems 

 

The stress { } and strain { } vectors in the x-y coordinates (local), and in the 1-2 

coordinates (principal-stress directions) are denoted by Eq. (4.1) and (4.2), respectively.   

{

  

  

   

}   and  {

  

  

 

 
   

}                                                                                                     (4.1) 

{

  

  

     
}   and   {

  
  

 

 
   

}                                                                                             (4.2) 

By using the transformation matrix T(θ) shown in Eq. (4.3), the stresses and strains can be 

transformed between the different coordinates.   

 ( )  [

    ( )     ( )     ( )   ( )

    ( )     ( )      ( )   ( )

    ( )   ( )    ( )   ( )     ( )      ( )

]                             (4.3) 

The stresses and strains are transformed from the local coordinate (x-y) to the principal 

stresses coordinate (1-2) by using the transformation matrix as shown in Eq. (4.4) and (4.5), 

respectively. 
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4.4 Material Constitutive Matrix 

The material constitutive matrix or material stiffness matrix relates the state of stresses and 

strains of an element, and it can be expressed in terms of secant or tangent formulations.  

The secant material constitutive matrix relates the absolute values of strains and stresses of 

the element, and the tangent material constitutive matrix relates the increment of the 

stresses and strains of the element.  The damage theories being evaluated for performance 

in this project use a secant material constitutive matrix approach. 

The secant constitutive matrix (Γ) of an isotropic-linear-elastic 3D material is given by Eq. 

(4.6), and the relationship between the stress and strain components is shown in Eq. (4.7).  

The secant constitutive matrix is a function of the concrete initial Young’s modulus (E) and 

the Poisson’s ratio (ν).  
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The plane-stress or plane-strain assumption can be considered for plane isotropic-linear-

elastic 3D materials.  The first is used for situations where the material can freely expand or 

contract in the thickness direction, and the loads are applied in the plane perpendicular to 

the thickness direction, and thus stress in the thickness direction is equal to zero.  The latter 

of the two is used for situations where the material is restrained from expanding or 

contracting in the thickness direction, and the loads are applied in the plane perpendicular 

to the thickness direction, and thus there is a restraining stress in the thickness direction.  

The plane-stress assumption suits the structures in which this research is interested, such as 

RC shear walls.   

The secant constitutive matrix (Γ) of a plane isotropic-linear-elastic 3D material is given by 

Eq. (4.8). 
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                                                                                             (4.8) 

The relationship between the stress and strain components is given by Eq. (4.9). 
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}                                                                           (4.9) 

In the plane stress assumption, the material can expand and contract freely in the thickness 

direction, and the corresponding value of the axial strain in this direction can be obtained 

by using Eq. (4.10). 

    
 

 
(     )                                                                                                      (4.10)                                                                     

The material constitutive matrix relates the concrete principal stresses σp and strains εp as 

given by Eq. (4.11), where the damage (D) in the material is calculated using each Mazars’s 

concrete model in Eq. (3.1) to (3.31). 

{  }  (   )[  ]{  }                                                                                             (4.11) 

[  ]  (   )[  ]                                                                                                   (4.12) 

 

4.5 Finite Element Analysis Procedure 

After using Eq. 4.12 to determine the damaged-material constitutive matrix [  ]  , the  

basic finite element procedure, which depends on the type of element used and is expressed 

by Eq. (4.13), is used to evaluate the element stiffness matrix. The matrix [B] is dependent 

on the element displacement functions. 

[ ]  ∫[ ] [  ] [ ]                                                                                              (4.13) 

Several solution schemes exist for performing nonlinear analyses of reinforced concrete 

structures.  Two options include the use of static integrators, as in displacement-controlled 
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analysis, or dynamic integrators, like the Newmark method.  There are also several possible 

solution algorithms including the Modified Newton method and the Krylov-Newton 

method.  The flow chart (Fig. 4.18) depicting an iterative analysis solution uses the 

Newton-Raphson method to perform a static analysis using load increment.   

The damaged material stiffness matrix [  ]   is determined in each iteration, using the 

concrete damage models described previously. The element stiffness matrix [K] and the 

element resisting force increment vector {ΔF} are also calculated.  Until the convergence 

criterion is achieved, the element stiffness matrix [K] and the damaged material constitutive 

matrix [  ]  are iteratively refined.   

Fig. 4.18 shows the procedure for establishing the damaged material constitutive matrix 

using the damage-based implemented models, the PRM and “” models. It should be noted 

that an iterative procedure is not required to establish the damaged material constitutive 

matrix, thus these damage models are computationally efficient for finite element analysis.  

The source code developed in this research obtains the input strains of the element and 

from these it calculates the corresponding stresses in the material (procedure depicted in the 

dotted square, Fig. 4.18).  The procedure outside the dotted square is previously defined in 

the OpenSees framework. 
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Fig. 4.18. Nonlinear analysis procedure 

 

 

Input given data 

Initialize element stiffness matrix [K] and determine residual force {ΔR} 

Solve nodal displacement increment {Δu}, using the 

equilibrium equation [K]{Δu} ={ΔR} 

Find nodal displacement {U}={U}+{ΔU} 

Determine strains of element {ε}=[B]{U} 

Obtain principal strain direction θ1, and the principal 

strain vector {εp}  

Calculate equivalent strain εeq 

εeq i > εeq i-1? 

P(((PR 

Obtain the damage Di of the material 

Calculate the damaged stiffness matrix [Γc]D=[Γc](1-Di) 

Calculate the principal stress vector {σp} and the stresses in the 

original direction {σ}  

Establish the element stiffness matrix [K]=∫[ ] [  ] [ ]    and element 

resisting force increment {ΔF}=[K]{ΔU} 

Examine residual force {ΔR’}={ΔR}-{ΔF} 

Convergence check 

No, Di = Di-1 

No, {ΔR}={ΔR’} 

Yes 

Yes 

Plane Stress 

 

Proceed to next step 
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4.6 Introducing a New Multi-dimensional Material –nD Material– to the OpenSees 

Framework 

Two concrete damage models, the PRM model (Pontiroli, Rouquand, & Mazars, Predicting 

Concrete Behaviour From Quasi-static Loading to Hypervelocity Impact, 2010) and the “μ” 

model” (Mazars, Hamon, & Grange, 2015), are used to implement two new material classes 

into the OpenSees framework for the analysis of RC plane structures.  The plane stress 

concrete material parameters for the PRM model and the “” model are shown in Fig. 4.19 

and Fig. 4.20, respectively. 

 

Fig. 4.19. PRM material input parameters 

 

For the PRM nDMaterial (based on the PRM model) the input parameters are the unique 

material object integer tag ($matTag), the initial Young’s modulus of the concrete ($Ec), 

the initial compressive-damage threshold ($epsD0c), the material parameters that define the 

compressive behaviour of the concrete ($Ac and $Bc), the initial tensile-damage threshold 

($epsD0t), the material parameters that define the tensile behaviour of the concrete ($At 

and $Bt), the focal point followed by the unloading in compression ($epsfc, $sigfc), the 

initial crack closure stress and strain ($epsft0 and $sigft0), and Poisson’s ratio ($nu).   

 

Fig. 4.20. MuMazars material input parameters 

 

nDMaterial PRM $matTag $Ec $epsD0c $Ac $Bc $epsD0t $At $Bt $epsfc 

$sigfc $epsft0 $sigft0 $nu 

 

nDMaterial MuMazars $matTag $Ec $epsD0c $epsD0t $Ac $Bc $At $Bt $nu 
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For the MuMazars nDMaterial (based on the “” model) the input parameters are the 

unique material object integer tag ($matTag), the initial Young’s modulus of the concrete 

($Ec), the initial compressive-damage threshold ($epsD0c), the initial tensile-damage 

threshold ($epsD0t), the material parameters that define the compressive behaviour of the 

concrete ($Ac and $Bc), the material parameters that define the tensile behaviour of the 

concrete ($At and $Bt), and Poisson’s ratio ($nu).   

Because of the modular and hierarchical nature of the OpenSees framework (Fig. 4.21), 

new material models can be added independently from the existing elements and materials 

implementations.  Therefore, a new material model can be assigned to an existing element 

without modifying the element implementation.  Fig. 4.22 shows the OpenSees source code 

solution explorer, wherein all modules are required to produce the executable file 

(OpenSees.exe).  These modules have sub-classes of their own. 



88 

 

 

Fig. 4.21. OpenSees classes hierarchy 

Domain 

Element 

Material 

Uniaxial 

+Elastic 

+Concrete01 

+Concrete02 

+Steel01 

+Steel02 

+etc 

 

nD 

+Elastic 
Isotropic 

+PSUMAT 

+Drucker 
Prager 

+etc 

Section 

+Elastic 

+Fiber 

Node Constraints 

+MP_Constraint 

+SP_Constraint 

LoadPattern 

+Element 
Load 

+Nodal Load 

+TimeSeries 
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Fig. 4.22. OpenSees source code solution explorer 
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The minimum steps needed to add a new multi-dimensional material (nDMaterial) are as 

follows: 

1. Download version 8.5.18 of the Tcl/tk from following link: 

http://OpenSees.berkeley.edu/OpenSees/user/download.php  

2. Download and install the software Tortoise SVN from the link below. It is needed 

to obtain an updated version of the OpenSees source code. 

https://tortoisesvn.net/downloads.html 

3. Obtain Visual Studio Community 2017 and Microsoft NET Framework 4.5.  When 

installing Visual Studio, select the option: “Desktop development with C++” and 

“Windows 10 SDK (10.0.15063.0) for Desktop C++.”  

4. Create a folder in an accessible location with a recognizable name, such as 

“OpenSeesSourceCode.” 

5. Right click on the folder created in step 4 and select “SVN Checkout.”  Type 

“svn://peera.berkeley.edu/usr/local/svn/OpenSees/trunk” in the “URL of repository” 

box.  Make sure you select the option “Fully recursive” for the “Checkout Depth.”  

Write the folder location in the “Checkout directory.”  Select the OpenSees revision 

number for which the source code is desired.  If you select “HEAD” revision, you 

will obtain the latest revision.  For each revision, different existing material classes 

may be modified for the successful compilation of the executable file.   

6. Open OpenSeesSourceCode\Win64\OpenSees.sln using Visual Studio 

Community 2017 to create a 64-bit OpenSees application, or 

OpenSeesSourceCode\Win32\OpenSees.sln to create a 32-bit OpenSees 

application. 

http://opensees.berkeley.edu/OpenSees/user/download.php
https://tortoisesvn.net/downloads.html
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7. Right click on “OpenSees” in the solution explorer and select “Build.” The 

compilation should occur without errors.  The OpenSees.exe application can be 

found in OpenSeesSourceCode\Win32\bin  or OpenSeesSourceCode\Win64\bin 

8. Place the new material header and cpp files in 

OpenSeesSourceCode\SRC\material\nD.  Remember that both files must have the 

same name: newMaterial.cpp and newMaterial.h.  See Section 4.6.1 for details. 

9. Create a new material tag. See 4.6.2 for details. 

10. Modify the class broker, which is responsible for verifying that the class you are 

calling within the application exists. See 4.6.3 for details. 

11. Modify the nD material model builder.  See 4.6.4 for details. 

12. Right click on “OpenSees” in the solution explorer and select “Rebuild.” 

 

4.6.1 New nDMaterial: Header and C++ Files 

The nDMaterial class provides default implementations for the functions used to create a 

new nDMaterial subclass (material).  Classes, functions, and variables of the new material 

can be declared in the Header File (newMaterial.h).  The C++ File (newMaterial.cpp) is 

used to implement these classes, functions, and variables.  It is necessary to include the C 

and C++ libraries in both files.  The C++ source code for the PRM model and the “” 

model can be found in Appendix A and B, respectively.  
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4.6.2 Class Tags 

In order for the new material model to communicate with other classes in the OpenSees 

framework, a new internal class tag needs to be defined in the file 

OpenSeesSourceCode\SRC\classTags.h (Fig. 4.23).   

 

Fig. 4.23. New internal class defined in the file classTags.h 

 

4.6.3 Object Broker 

The file FEM_ObjectBrokerAllClasses.cpp needs to be modified as shown in Fig. 4.24, 

where the class header needs to be included.  This file can be found in 

OpenSeesSourceCode\SRC\actor\objectBroker\FEM_ObjectBrokerAllClasses.cpp.  The 

nDMaterial model undergoes modifications that allow for parallel processing and database 

programming to the new material object.  Two modifications are needed: 1) the inclusion of 

the new material header, 2) the addition of a new case, where if the new material tag is 

invoked, the new material is returned. 

#define ND_TAG_newMaterial  01 
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Fig. 4.24. Modifications needed for the file FEM_ObjectBrokerAllClasses.cpp 

 

4.6.4 Model Builder 

The last file that needs to be modified is the TclModelBuilderNDMaterialCommand.cpp, 

located in 

OpenSeesSourceCode\SRC\actor\material\nD\TclModelBuilderNDMaterialComman

d.cpp.  This command functions by parsing the material parameters in Tcl script input files 

and then transferring them to the new material constructor.  Three modifications are 

needed: 1) the inclusion of the new material header, 2) the declaration of an external 

void/empty function, and 3) the implementation of the void function, which grants access to 

the new material class when it is specified to OpenSees (Fig. 4.25). 

1) 

#include <newMaterial.h> 

. 

. 

. 

 

2) 

NDMaterial* 

FEM_ObjectBrokerAllClasses::getNewNDMaterial(int classTag) 

{ 

  switch(classTag) { 

   

case ND_TAG_newMaterial: 

   return new newMaterial(); 

  } 

} 
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Fig. 4.25. Modifications needed for the file FEM_ObjectBrokerAllClasses.cpp 

 

 

 

 

 

 

 

1) 

#include <newMaterial.h> 

. 

. 

. 

 

2) 

extern void *OPS_newMaterial(void); 

. 

. 

. 

 

3) 

else if (strcmp(argv[1],"newMaterial") == 0) { 

 void *theMat = OPS_newMaterial(); 

 if (theMat != 0) 

 theMaterial = (NDMaterial *)theMat; 

 else 

 return TCL_ERROR; 

} 
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5 VALIDATION & DISCUSSION 

5.1 Introduction 

Two concrete damage models, the PRM model (Pontiroli, Rouquand, & Mazars, 2010) and 

the “μ” model” (Mazars, Hamon, & Grange, 2015), were implemented in OpenSees to 

simulate the biaxial response of concrete materials.  The performance of the new biaxial 

material formulations was studied by comparing five concrete experimental tests of varying 

complexity taken from the literature.  These consist of: 1) plain concrete plates tested under 

biaxial stress (Kupfer, Hilsdorf, & Rüsch, 1969), 2) a simply supported beam under 

monotonic loading tested as part of this project, 3) a simply supported beam under reversal-

cyclic loading (Ranjbaran, Rezayfar, & Mirzababai, 2018), 4) a rectangular shear wall 

under reversal-cyclic loading (Hiotakis, 2004), and 5) a full-scale, four-storey building 

under seismic loading (Nagae, et al., 2015).  The performance of a biaxial model previously 

implemented in OpenSees by Garcia (2017), based on the model proposed by Mazars 

(1986), was also studied.  This model is referred as the “scalar” model.  

The “”and scalar models showed the ability to capture the general response of the 

different types of RC structures subjected to various loading conditions in the study.  The 

“” model was found to be more suited for cyclic loading and better at predicting the initial 

cracking strength than the scalar damage model was.  However, neither model captured the 

energy dissipation capabilities of concrete accurately, nor do they attempt to describe the 

cracking mechanism of concrete. 

The PRM model was able to accurately reproduce permanent deformations for simple 

analytical models, such as concrete membranes, under biaxial or uniaxial loading.  
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However, for complex analytical models under reversal-cyclic loading (e.g. shear wall), 

convergence limitations were observed. These limitations could be addressed in future 

research that improves upon the current algorithm suite for the OpenSees framework.   

The advantages and limitations of each material model are discussed in this chapter through 

the calculated results of the experiments. 

5.2 Plain Concrete Panels Under Biaxial Stress  

Kupfer (1969) conducted a series of experiments to investigate the biaxial behavior of 

concrete.  He tested concrete specimens of 200 x 200 x 50 mm under biaxial stress, for the 

regions of biaxial compression (quadrant III), compression-tension (quadrant II and IV), 

and biaxial tension (quadrant I) (Fig. 5.1).  Within each region of state of stress, different 

horizontal and vertical stress ratios σI/σII were used, and a constant strain rate was 

maintained while loading the specimens. The material properties were: compression 

strength (f’c) = 32.7 MPa, tensile strength (ft) = 3.2 MPa, and Young’s modulus (E) = 30 

GPa. 

       

Fig. 5.1. Plain concrete specimen under different biaxial states of stress 
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5.2.1 Finite Element Model  

The biaxial tests conducted by Kupfer were simulated in OpenSees by defining a single 

quad element with dimensions of 200 x 200 x 50 mm, using the implemented concrete 

materials for the scalar damage (SD) model (Mazars, 1986), the “” model (Mazars, 

Hamon, & Grange, 2015), and the PRM model (Pontiroli, Rouquand, & Mazars, 2010).  A 

displacement-controlled analysis was performed, combining compression and tensile 

displacements for each of the four quadrants shown in Fig. 5.1.  The principal stresses of 

the element were obtained for each combination and normalized with the compressive 

strength (f’c). The model parameters for each material used in the analysis are shown in 

Table 5.1.  For this specific test, the analysis is not mesh-dependant; the same analytical 

results were obtained when using one, four, and sixteen quad elements. 

Table 5.1. Model parameters for biaxial test 

Material E(GPa)                    (   )          (   ) 

SD Model  30.0 - 1.0e-4 - - - - 

PRM Model 30.0 1.0e-4 1.38e-4 5.0e-4 37.2 -3.3e-5 -0.99 

 Model 30.0 3.0e-4 1.1e-4 - - - - 

 

Material Ac Bc At Bt   

SD Model  1.275 1850.0 1.0 1.0e4 0.21 

PRM Model 1.29 1550.0 0.8 1.0e4 0.21 

 Model 1.7 570.5 1.0 1.0e4 0.21 

 

5.2.2 Comparison Between Analytical and Experimental Data 

The experimental biaxial behavior of the concrete panels was compared with the analytical 

biaxial behavior obtained using OpenSees.  The model was analyzed using the 
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implemented concrete materials for the scalar damage (SD) model (Mazars, 1986), the “” 

model (Mazars, Hamon, & Grange, 2015), and the PRM model (Pontiroli, Rouquand, & 

Mazars, 2010).  The comparison between experimental and analytical results are shown in 

Fig. 5.2. It can be observed that the three models are reasonable candidates for describing 

the biaxial behavior of concrete under the uniaxial-compression, compression-tension, and 

biaxial-tension ranges.  However, while the PRM and the scalar damage model do not 

predict the response in the biaxial compression domain accurately, the “” model has a 

superior performance, including the strength increase on the biaxial compression range due 

to confinement effects (Kupfer, 1969).   

 

Fig. 5.2. Biaxial behavior of concrete. Adapted from Kupfer et. al. (1969) 

5.3 RC Beam Under Monotonical Loading 

An under-reinforced RC beam was tested as part of this project.  The simply supported 

beam was subjected to four-point bending loads (monotonic).  The concrete properties were 
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measured as f’c of 40 MPa, and a Young’s modulus (E) of 37.2 GPa. The yield stress (fy) of 

the reinforcement steel was measured as 475 MPa, with an E of 183 GPa. 

The beam had a rectangular cross-section with dimensions of 150 x 300 mm. The top 

longitudinal reinforcement consisted of two 10M bars (Ø 11.3 mm), and the bottom 

longitudinal reinforcement consisted of two 15M bars (Ø 16 mm).  The transverse 

reinforcement consisted of 10M closed stirrups with a spacing of 220 mm. It was placed 

only on the first 980 mm starting at each end of the beam.  The beam supports (R) were 

located at 200 mm from each end, and the load (P) was applied at 1/3 of the free span.  The 

failure of the beam was flexure dominated and was due to the crushing of concrete in 

compression and the buckling of the compressive reinforcement, both of which were 

located at the middle-top of the beam.  The dimensions, loading points, and reinforcement 

specifications are shown in Fig. 5.3.   

 
Fig. 5.3. RC beam geometry and reinforcement details 

 



100 

 

5.3.1 Finite Element Model  

The beam was modeled in OpenSees using 312 four-node multilayer shell elements for the 

concrete. Each element consisted of three layers with a thickness of 50 mm, with a height 

and width of 50 mm (Fig. 5.4).  The concrete materials used were the scalar damage (SD) 

model (Mazars, 1986), the “” model (Mazars, Hamon, & Grange, 2015), and the PRM 

model (Pontiroli, Rouquand, & Mazars, 2010).  The concrete parameters for each material 

are shown in Table 5.2. For the steel reinforcement, 140 truss elements were used. The 

truss elements were modeled using the Steel02 material, which uses the Giuffre-

 Menegotto-Pinto steel model with isotropic strain hardening (Filippou, Popov, & Bertero, 

1983).  The following steel parameters were used: yield strength ($Fy) = 475 MPa, the 

initial elastic tangent ($E0) = 183 GPa, the strain-hardening ratio ($b) = 0.015, and the 

parameters to control the transition from elastic to plastic branches ($R0, $CR1, $CR2) = 

18.5, 0.925, and 0.15, respectively.   The pushover analysis was done using a displacement-

controlled analysis, with descending displacement applied at nodes 337 and 353. Boundary 

conditions were introduced at nodes 5 and 49, restricting the vertical displacement, while 

the middle of the beam was restricted horizontally to allow for symmetry.  

Table 5.2. Model parameters for FEM of beam under monotonic loading 

Material E(GPa)                    (   )          (   ) 

SD Model 37.2 - 5.0e-5 - - - - 

PRM Model 37.2 1.3e-4 1.25e-4 5.0e-4 37.2 -3.3e-5 -1.2276 

 Model 37.2 4e-4 5.0e-5 - - - - 

 

Material Ac Bc At Bt   

SD Model 0.73 1065.0 0.97 1.0e4 0.18 

PRM Model 0.6 1100.0 0.68 1.0e4 0.18 
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 Model 0.645 280.0 0.97 1.0e4 0.18 

 

The analysis was performed in two steps: 1) the gravitational load, which in this case was 

the weight of the beam, was applied at all the top nodes and kept constant; 2) a 

displacement-controlled analysis was conducted by applying a downward displacement to 

nodes 337 and 353.  The Krylov-Newton algorithm, with current tangent for the iterations, 

was selected because it is relative lower cost, computationally, for static and quasi-static 

analyses (Scott & Fenves, 2010).  Nodal displacement and corresponding vertical forces 

were recorded at each converged displacement step. 

The adopted mesh (Fig. 5.4), which consisted of square elements of 50 x 50 mm, allowed 

an adequate modelling of the longitudinal reinforcement steel by placing it in its actual 

position in comparison with the test.  A bigger mesh would not allow for this consistency 

between the analytical model and the experimental test.  A sensitivity analysis showed that 

a second mesh alternative, consisting of square elements measuring 25 x 25 mm, had a high 

time-cost (around 1000% slower) and the difference between the calculated results between 

the first and second mesh options was negligible.  

 

Fig. 5.4. FEM of RC beam under monotonic loading 
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5.3.2 Comparison Between Analytical and Experimental Data 

The comparison between the experimental and analytical results for the load-displacement 

response of the downward pushover is shown in Fig. 5.5.  The model was analyzed using 

the implemented concrete materials for the scalar damage (SD) model (Mazars, 1986), the 

“” model (Mazars, Hamon, & Grange, 2015), and the PRM model (Pontiroli, Rouquand, 

& Mazars, 2010).  The three model materials show an accurate prediction for the load-

displacement response, but the PRM and Mazars’ scalar damage models were unable to 

predict the failure displacement of the beam, whereas the “” model is able to accurately 

predict the displacement at which the beam fails. None of the three materials accurately 

predicted the cracking load, but the “” model provided a better prediction for the 

displacement at which the yielding moment occurs.  For this experiment, the “” model 

performed best, but the three models are all reliable options for predicting the experimental 

pushover of a simple-supported beam. 

 

Fig. 5.5. Load-displacement response of RC beam under monotonic loading 
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5.4 RC Beam Under Reversal-Cyclic Loading 

The experimental test consisted of a four-point bending beam subjected to cyclic loading 

(Ranjbaran, Rezayfar, & Mirzababai, 2018).  The compressive stress (f’c) consisted of 

34.69 MPa.  The yield stress of the steel (fy) was specified as 392 MPa, with Young’s 

modulus (E) of200 GPa. The beam had a rectangular cross-section with dimensions of 250 

x 250 mm (Fig. 5.6).  The longitudinal reinforcement for both the top and bottom of the 

beam consisted of three Ø10 bars, whereas the transverse reinforcement consisted of Ø8 

bars with a spacing of 15 cm along the whole length of the beam.   

 

Fig. 5.6. Geometry and reinforcement details of RC beam under cyclic loading (Ranjbaran, Rezayfar, 

& Mirzababai, 2018) 

 

The displacement-controlled loading was applied at one-quarter of the total length of the 

beam (both ends).  The first two loading cycles were +- 1 mm and +- 2 mm, and the cycles 

that followed increased by +-2 mm until 30 mm were reached (Fig. 5.7).  The failure of the 

beam was flexure dominated and was due to the crushing of the concrete external fibers in 

compression.  The test setup is shown in Fig. 5.8. 
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Fig. 5.7. Imposed loading historey (Ranjbaran, Rezayfar, & Mirzababai, 2018) 

 

 

Fig. 5.8. Test set-up (Ranjbaran, Rezayfar, & Mirzababai, 2018) 

 

5.4.1 Finite Element Model  

The beam final model was built using 322 four-node multilayer-shell elements for the 

concrete (Fig. 5.9).  Each element consisted of five layers with a thickness of 50 mm.  The 

concrete materials used were the scalar damage (SD) model (Mazars, 1986), the PRM 

model (Pontiroli, Rouquand, & Mazars, 2010), and the “” model (Mazars, Hamon, & 
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Grange, 2015).  The concrete parameters for each material are shown in Table 5.3.  For the 

steel reinforcement, 197 truss elements were needed.  The truss elements were modeled 

using the Giuffre- Menegotto-Pinto steel model with isotropic strain hardening (Filippou, 

Popov, & Bertero, 1983). The adopted mesh was able to accommodate the steel 

reinforcement in their actual positions within the beam. The middle of the beam was fixed 

in the horizontal and out of plane direction to account for symmetry. The supports were 

fixed only in the vertical direction; they were assigned to the nodes 4, 333, 44 and 373.  

 

Node#333          Nodes#341&342                               Nodes#364&365    Node#373 

 

Node#4         Nodes#12&13                                        Nodes#35&36           Node#44 

Fig. 5.9. FEM of RC beam under cyclic loading 

 

Table 5.3. Model parameters for FEM of beam under cyclic loading 

Material E(GPa)                    (   )          (   ) 

SD Model 34.69 - 5.0e-5 - - - - 

PRM Model 34.69 1.0e-4 7.5e-5 5.0e-4 17.3 -3.3e-5 -1.145 

 Model 34.69 3.57e-4 1.14e-5 - - - - 

 

Material Ac Bc At Bt   

SD Model 0.9 1200.0 0.97 1.0e4 0.18 

PRM Model 0.9 1850.0 0.8 7.0e3 0.18 

 Model 0.75 302.0 0.97 1.0e4 0.18 
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The analysis was performed in two steps, 1) the gravitational load, in this case the weight of 

the beam, was applied to all the top nodes and kept constant, 2) a displacement-controlled 

analysis was conducted by applying a downwards displacement to nodes 12, 13, 341, 342, 

35, 36, 364 and 365. The deformed shape of the beam is shown in Fig. 5.10, where an 

adequate overall behavior of the beam can be observed for two different cycles.  The 

Krylov-Newton algorithm, with current tangent for the iterations, was selected on the basis 

that it is less computationally expensive for use in static and quasi-static analyses (Scott and 

Fenves, 2003).  At each converged displacement step, nodal displacement and 

corresponding vertical forces were recorded.  The same mesh size selected for the simple-

supported beam under monotonic loading in the previous section was selected for this test 

because of the similarity between the dimensions of the two beams. 

  

Fig. 5.10. FEM deformed shape of a loading cyclic 

 

5.4.2 Comparison Between Analytical and Experimental Data 

The comparison between the experimental and analytical results for the load-displacement 

hysteretic response of the reversal-cyclic loading for the scalar damage model and the “” 

model is shown is Fig. 5.11 and Fig. 5.12, respectively.  The ultimate load and ultimate 

displacement were overestimated by both the scalar damage (SD) model (Fig. 5.11) and the 
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“” model (Fig. 5.12).  Another important feature to consider is the first cycles of the 

analysis, where the “” model shows higher energy dissipation than the scalar damage 

model, because it can account for stiffness recovery when the cracks close under cyclic 

loading. Fig. 5.13 shows a snapshot of the first 7 cycles of the experiment, where the “” 

model (Fig. 5.13a) shows better agreement than the scalar damage model (Fig. 5.13b) for 

the overall load-displacement response, including the initial cracking load and the yielding 

load .  

The predictions of the scalar damage (SD) model and the “” model failed to represent the 

pinching effect of the concrete, as observed on the first cycles of the hysteretic loops of the 

experiment.  Neither of these concrete models account for permanent strains, which means 

that the unloading and reloading paths after each cycle will always return to the origin of 

the stress-strain relationship.  The plastic deformations observed in the beam calculated 

response, are therefore generated from the residual strains in the steel reinforcement.  

Although unable to account for permanent deformation, the global results were predicted 

with moderate agreement. 
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Fig. 5.11. Measured vs calculated load-displacement hysteretic response using the scalar damage model.  

Adapted from Ranjabaran (2018) 

 

 

Fig. 5.12. Measured vs calculated load-displacement hysteretic response using the “” model. .  

Adapted from Ranjabaran (2018) 
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Fig. 5.13. Measured vs calculated load-displacement hysteretic response for the (a) SD model and       

(b) “” model. First 7 cycles of the calculated response.  Adapted from Ranjabaran (2018) 

 

The comparison between the experimental and analytical results for the load-displacement 

hysteretic response of the reversal-cyclic loading for the PRM model is shown is Fig. 5.14. 

This model shows a better agreement for each unloading and reloading cycle of the 

hysteretic response.  However, due to the complex formulations required to account for 

permanent deformations in two directions, the analysis was unable to achieve convergence 

for the full loading path using the current solver algorithms available in OpenSees.   

(a) (b) 
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Fig. 5.14. Measured vs calculated load-displacement hysteretic response using the PRM model. 

Adapted from Ranjabaran (2018).   

 

 

5.5 RC Shear Wall Under Reversal-Cyclic Loading 

The experimental test consisted of a quad shear wall under reversal-cyclic loading 

(Hiotakis, 2004).  The experimental specimen consisted of a heavily reinforced foundation 

block, a cantilevered shear wall with dimensions of 100 mm thick, 1500 mm wide x 1795 

mm high, and a cap beam at the top to distribute the applied load (Fig. 5.15).   Reversal-

cyclic lateral loading of increasing magnitude was applied to the wall at the cap beam 

through hydraulic actuators.  The vertical reinforcement of the shear wall was composed of 

six pairs of 10M (Ø 11.3 mm) bars uniformly distributed along the wall with a spacing of 

280 mm including the boundary elements, with a corresponding steel reinforcement ratio 

(ρs) of 0.8% .  The horizontal reinforcement of the shear wall consisted of five pairs of 10M 
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(Ø11.3 mm) bars uniformly distributed and spaced at 400 mm, which corresponded to a 

steel reinforcement ratio (ρs) of 0.5%.  The boundary elements had stirrups consisting of 

10M (Ø11.3 mm) with a spacing of 80 mm along the height of the wall boundary elements.  

The concrete compressive cylinder strength (f’c) at the time of test was 36.2 MPa, and the 

yield stress of the reinforcing steel bars was 425 MPa. 

 

Fig. 5.15. Shear wall reinforcement and geometry specifications 

 

5.5.1 Finite Element Model  

The concrete materials used were the scalar damage (SD) model (Mazars, 1986), the PRM 

model (Pontiroli, Rouquand, & Mazars, 2010), and the “” model (Mazars, Hamon, & 

Grange, 2015).  The shear wall model was built using 414 four-node rectangular, 

multilayered shell elements with a size of 80 x 80 mm.  The multilayered shell elements 

were divided into wall boundary elements (shaded area) and wall core elements (Fig. 

5.16a).  The layers of the multilayered shell elements of the wall core were divided into 
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concrete layers and smeared steel layers for the horizontal and vertical reinforcement.  The 

thickness of the steel layers (  ) was calculated using Eq. (5.1), where    was calculated as 

a function of the shear wall thickness (  ), the reinforcement steel area (  ), and the 

concrete area (  ).  The layers of the multilayered shell elements of the wall boundaries 

were divided into concrete layers only.  For the longitudinal steel reinforcement and the 

stirrups of the boundary elements, 696 truss elements were needed.  The steel 

reinforcement for the multilayered shell elements and the truss elements was modeled using 

the Giuffre- Menegotto-Pinto steel model with isotropic strain hardening (Menegotto, 

1978).        

   
  

  
 

  

  
                                                                                                                       (5.1) 

The multilayer-shell elements of the wall core consisted of 10 layers (Fig. 5.16b).  The two 

outer layers composed the concrete cover with a thickness of 12.5 mm each. Two layers 

composed the horizontal reinforcement with a thickness of 0.2778 mm each.  Two layers 

composed the vertical reinforcement with a thickness of 0.2381 mm each.  The four inner 

concrete layers had a thickness of 18.4921 mm each.  The multilayer-shell elements of the 

wall boundaries consisted of 8 concrete layers with a thickness of 12.5 mm each.  These 

added up to a total of 100 mm for both types of multilayer-shell elements, which is the 

same as the thickness of the wall.  The parameters for each concrete model are shown in 

Table 5.4. 



113 

 

                           

 

Fig. 5.16. FEM of RC Shear Wall (a) and multilayered shell element (b).   

Node#447 

x 

Single Multilayered shell element 

FEM of RC Shear Wall 

(414 Multilayered Shell Elements) 
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Table 5.4. Model parameters for FEM of shear wall under cyclic loading 

Material E(GPa)                    (   )          (   ) 

SD Model  36.2 - 1.0e-4 - - - - 

PRM Model 36.2 1.0e-4 1.0e-4 5.0e-4 18.1 -3.3e-5 -1.1946 

 Model 36.2 4.0e-4 1.0e-5 - - - - 

 

Material Ac Bc At Bt   

SD Model  1.25 2250.0 0.97 1.0e4 0.18 

PRM Model 0.9 1850.0 0.8 7.0e3 0.18 

 Model 1.25 650.0 0.97 1.0e4 0.18 

 

The cap-beam and the foundation block were assumed to be stiffer than the shear wall due 

to the high amounts of steel reinforcement and their larger cross-sections compared to that 

of the wall. For simplicity, the bottom and top elements were not modelled and instead 

were accounted for by combining the horizontal degree of freedoms of all the nodes in the 

top of the wall, and fixing all the degrees of freedom of the nodes at the base.  A cyclic 

displacement historey was applied to the centre top node of the wall (node 447) in the 

horizontal direction.  The horizontal reactions and the base of the wall were recorded.   

The load pattern in the finite element model is determined according to the test conditions. 

The cyclic load was applied as a horizontal nodal displacement at node 447 (Fig. 5.16a), 

which varied in relation to the displacement control scheme.  The Krylov-Newton 

algorithm, with current tangent for the iterations, was selected for the analysis.  The nodal 

displacement and corresponding horizontal forces were recorded, and the stress and strain 

of the elements were monitored at each converged displacement step. 

A mesh sensitivity analysis was performed using the “” model to make sure the adopted 

mesh was adequate (Table 5.5).  The eleventh load step in the positive direction was 
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analyzed, which measured results that showed a maximum shear force (Vf) of 155 kN at a 

displacement of 6.2 mm.  Four different mesh sizes (total number of elements) were 

selected: 99, 180, 414, and 1656.  Each mesh size consisted of elements with dimensions of 

160 x 160 mm, 120 x 120 mm, 80 x 80 mm, and 40 x 40 mm, respectively.  As shown in 

Table 5., the mesh size of 414 elements has an acceptable error of 6.45 %, and convergence 

errors were presented when using elements of half the size. 

Table 5.5. Mesh size analysis of the shear wall FEM. 

Mesh Size (# of 

elements) 

Indidual element 

dimensions (mm) 
Vf  (kN) Error % 

99 160 x 160 209 34.8 

180 120 x 120 182 17.4 

 80 x 80 165 6.45 

 40 x 40 Convergence Error - 

Test - 155 - 
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5.5.2 Comparison Between Analytical and Experimental Data 

The calculated vs. measured global base shear-top displacement response of the shear wall 

for the scalar damage (SD) model and the “” model is presented in Fig. 5.17 and Fig. 5.18.  

The maximum strength and displacement calculated at each cycle with both models show a 

reasonable correspondence with the measured results. These analyses could not represent 

the pinching effect of the concrete.  Neither of these models account for permanent strains, 

which means that the unloading and reloading paths after each cycle will always return to 

the origin of the stress-strain relationship. The plastic deformations observed in the shear 

wall calculated response are generated from the residual strains in the steel reinforcement. 

The wall strength after the steel yields is underestimated (Fig. 5.17 and Fig. 5.18), which 

could be explained by the fact that the cyclic hardening of the steel material (steel02) is not 

predicting the experimental results correctly. 

If we take a closer look at the first cycles of the scalar damage (SD) model and the “” 

model, Fig. 5.19 and Fig. 5.20 respectively, the fact that the scalar damage model does not 

separate the damage into tension and compression causes it to overestimate the force at the 

first crack, while the “” model can predict the force that causes the first crack, the overall 

strength, and the loading and unloading paths of the wall with more accuracy.   
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Fig. 5.17. Measured vs calculated load-displacement hysteretic response using the scalar damage model 

 

 

Fig. 5.18. Measured vs calculated load-displacement hysteretic response using the “” model 
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Fig. 5.19. Measured vs calculated first 12 cycles of the load-displacement hysteretic response using the 

scalar damage model 

 

 

Fig. 5.20. Measured vs. calculated first 12 cycles of the load-displacement hysteretic response using the 

“” model 
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Fig. 5.21 shows the calculated vs. measured global base shear-top displacement response of 

the shear wall for the PRM model.  In contrast with the “” and the scalar damage models 

(Fig. 5.17 and Fig. 5.18), the PRM model can account for the permanent displacement of 

the concrete, which makes the model capable of representing the pinching effects of the 

concrete.  This model shows a better agreement for each unloading and reloading cycle of 

the hysteretic response.  Unfortunately, due to the complex formulations required to 

account for permanent deformation in two directions, the analysis was unable to achieve 

convergence for the full loading path using the current solver algorithms available in 

OpenSees.   

 

Fig. 5.21. Measured vs. calculated load-displacement hysteretic response using the PRM model 
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5.6 Full-Scale Four-Storey RC Building Under Seismic Loading 

A full-scale, four-storey, reinforced concrete building was tested using the E-Defense shake 

in 2010 in Japan (Nagae, et al., 2015).  The plan view and the longitudinal and transverse 

elevations can be observed in Fig. 5.22.  The storey height was 3 m, and the footprint 

measured 14.4 m in the longitudinal direction (L) and 7.2 m in the transverse direction (T).  

The lateral-force resisting system consisted of a two-bay RC moment frame system in the 

longitudinal direction on axes 1 and 2.  In the transverse direction, a pair of multi-storey RC 

shear walls was incorporated within a moment-resisting frame in exterior axes A and C, 

and a single-bay moment-resisting frame in the middle axis B.  To the knowledge of the 

author, this is the only full-scale structure tested in the world in which relevant input & 

output data is available. 
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Fig. 5.22. Four-storey building geometry and structural members nomenclature: (a) longitudinal 

elevation; (b) transverse elevation; and (c) plan view (Nagae, et. al., 2011b) 

 

The cross-sections and reinforcement specifications of each structural member are shown in 

Fig. 5.23.  The columns of the structure have a rectangular cross-section with dimensions of 

500 x 500 mm.  The girders G1 in the L-direction have a rectangular cross-section with 

dimensions of 300 x 600 mm.  In the T-direction the girders G2 and G3 dimensions are 300 

x 300 mm and 300 x 400 mm respectively, both with a rectangular cross-section.  The 

(c) 

(a) (b) 
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shear-walls have a rectangular cross-section with dimensions of 250 x 2500 mm.  The 

beams B1 had a rectangular cross-section of 300 x 400 mm. The slab S1 had a thickness of 

120 mm.  The steel reinforcement of each section varies according to the storey level as 

shown in Fig. 5.23. 
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Fig. 5.23. Structural members details (Nagae, et. al., 2011b) 
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The concrete nominal compression strength (f’c) was 27 MPa, the longitudinal 

reinforcement had a nominal yield strength of 345 MPa, and the shear reinforcement had a 

nominal yield strength of 295 MPa.  Table 5.6 shows the actual material properties at the 

time of the test, including the steel yield strength (sy) and rupture strength (st), and the 

concrete compressive strength (sb).  The area of each reinforcement rebar type is shown as 

well. 

The structure was designed using the seismic provisions of the  Japanese Code (AIJ, 1999), 

and the detailing of the frame nodes was carefully adapted to also comply with the 

American ACI code (318-11).  The estimated weight of the structure accounted for the 

structural members, the measuring equipment, and the safety steel frames.  Table 5.6 shows 

the weight per floor and components of the structure considered for the dynamic and 

gravitational analysis.  The floors of the building weighed 867 kN for the second floor, 872 

kN for the third floor, 867 kN for the fourth floor, and 934 kN for the roof, resulting in a 

total estimated weight of 5877 kN for the structure. 
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Table 5.6. RC building actual material properties (Nagae, et al., 2015) 

 

 

The Kobe records for the 1995 Hyogoken-Nanbu earthquake served as the input ground 

motions for the test.  The accelerograms in the North-South, East-West, and up-down 

directions were provided as input motions for the longitudinal direction, transverse 

direction, and vertical direction, respectively.  Fig. 5.24 illustrates the acceleration records 

for the seismic motions.  During the test, the intensity of the motions was gradually 

increased to observe the damage process in the structure.  The intensity increments for the 

Kobe record were 25%, 50%, and 100% of the recorded motions for the earthquake. 
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Fig. 5.24. Ground motion time historey 

 

5.6.1 Finite Element Model  

An analytical model of the full structure was created in OpenSees (Fig. 5.25). The newly 

implemented “” model material was assigned to the 3D multilayered shell elements used 

to model the shear walls.  The “” model was the only concrete material used for 3D 

elements because it showed better prediction of the cyclic behavior of a shear wall than the 

scalar damage model.  Due to the complexity of the full-structure model, the girders, 

beams, and columns were modeled using frame elements composed of uniaxial concrete 

and steel fibers.  The actual material parameters were used to model the structure (Table 

5.6), and the confinement parameters that provided the stirrups were calculated using 
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Mander’s model (Mander et al., 1988).  A rigid diaphragm was assigned at each floor, 

using a number of multi-point constraint objects. The base of the structure was fixed, but 

the bond-slip phenomenon at the base of the columns was evaluated using zero-length 

elements with a hysteretic material that is able to predict this behavior.   

 

Fig. 5.25. FEM of RC building. 

Smeared steel reinforcement was used for the multilayered shell elements of the shear 

walls.  The concrete material used for the frame elements of the girders and columns was 

the Kent-Scott-Park concrete material (Scott et al., 1982).  The steel material used for 

modelling the reinforcement of all elements was the Giuffre-Menegotto-Pinto steel material 

with isotropic strain hardening (Menegotto and Pinto, 1973). 

The loading pattern was divided into two steps: 1) the gravitational load was applied and 

kept constant on the horizontal members and on the upper end of the columns and walls, 2) 

a ground motion displacement loading path was created in each direction and imposed on 

all of the base nodes.  The transient analysis was performed using the Modified Newton 

Longitudinal 

(frame) direction 

Transverse (wall) 

direction 
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algorithm, with the UmfPack integrator to solve the system of equations.  The damping was 

defined using Rayleigh Reitz damping of 5% in the first three modes of vibration.  The 

nodal displacements of each floor were recorded at each converged step. 

5.6.2 Comparison Between Analytical and Experimental Data 

The global base-shear force measured and calculated for the 25%, 50%, and 100% Kobe 

records are presented in Fig. 5.26, Fig. 5.27, and Fig. 5.28, respectively, for both the 

longitudinal and transverse direction (Fig. 5.22).  For the 25% and 50% Kobe records on 

the transverse (shear wall) direction, both the magnitude of the calculated global base shear 

response and the wave shape show a very close prediction of the measured results, Fig. 

5.26(a) and Fig. 5.27(a), respectively.  While the longitudinal or frames direction showed 

reasonable agreement for the magnitude and wave shape of the first half of the response, for 

the second half, the magnitude of the global base shear is overestimated (Fig. 5.26b and 

Fig. 5.27b).  This means that the analytical model is dissipating less energy than the 

experimental test on the longitudinal direction for the 25% and 50% Kobe records.  For the 

100% Kobe record, wave shape couldn’t be predicted for both directions.  One explanation 

for the discrepancy on the energy dissipation between the analytical and experimental 

results is the inability of the concrete materials to reproduce the permanent deformations.  

However, the shear walls in the transverse direction, modelled using the “” model 

concrete material, showed a better prediction of the global base shear response than the 

frames in the longitudinal direction, modelled using the Kent-Scott-Park model concrete 

material.  



129 

 

  

 

Fig. 5.26. RC building global base shear response for the 25% Kobe record in (a) longitudinal direction 

and (b) transverse direction 

 

  

Fig. 5.27. RC building global base shear response for the 50% Kobe record in (a) longitudinal direction 

and (b) transverse direction 

 

  

Fig. 5.28. RC building global base shear response for the 100% Kobe record in (a) longitudinal 

direction and (b) transverse direction 
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The measured and calculated maximum roof displacements are presented in Table 5.7.  For 

the 25%, the 50%, and the 100% records, the roof displacements are underestimated in both 

directions.  The difference percentage in the longitudinal direction is constant for the 

different Kobe magnitude records, whereas in the transverse direction the error % increases 

as the magnitude of the record increases.  This can be explained by the fact that this model 

does not account for bond-slip at the bottom of the shear walls.  Similar to the global base 

shear response, the calculated results had a higher stiffness than the measured results, 

which translates to less energy dissipation. 

Table 5.7. Maximum roof displacements of RC building. 

Magnitude of 

KOBE 

earthquake 

record (%) 

Maximum roof 

displacement measured 

(mm) 

Maximum roof 

displacement  calculated 

(mm) 

 

Difference (%) 

 Longitudinal 

direction 

Transverse 

direction 

Longitudinal 

direction 

Transverse 

direction 

Longitudinal 

direction 

Transverse 

direction 

       

25 16.9 24.2 8.99 15.97 46.8% 34% 

50 122.4 106.9 65.27 62.75 46.7% 41.3% 

 242.7 323.9 129.23 125.22 46.8% 61.3% 

 

The calculated results had greater stiffness than the measured results, as they had smaller 

deformations and higher strength responses.  This can be explained in part by the inability 

of the model to account for bond-slip at the base of the walls, and to predict shear 

deformations for the 1D frame elements.  A better prediction is observed for the base-shear 

in the wall direction (transverse), which means that the “” model is a reliable tool for 

predicting the behavior of 3D elements for full-scale structures. Despite the limitations 

discussed, the calculated results present a reasonable prediction for the 25%, 50%, and 

100% intensity ground motion, resembling the actual behavior of the structure. 
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6 SUMMARY, CONCLUSIONS, AND FUTURE RESEARCH 

6.1 Summary 

The objective of studying the performance of simple biaxial concrete formulations capable 

of determining stiffness recovery in reversal loading (crack closing), permanent 

deformations, and moderate confinement at the element and system levels was achieved by 

the following: 

1. The selection of the formulations most suited to describe biaxial concrete behavior 

under monotonic, cyclic, and dynamic loadings for both subassemblies and full-scale 

structures: 

 An assessment of different theoretical approaches to build nonlinear FEA models 

for RC structures was performed.  The theoretical approaches consisted of: 

elasticity, plasticity, total-strain, and damage-continuous mechanics.  The behavior 

of concrete under uniaxial and biaxial states of stress was presented. 

o Elasticity-based models include secant and tangential formulations.  The 

commonly used nonlinear FEA models that are built using this approach are 

restricted to uniaxial models. 

o Plasticity-based models are able to account for concrete permanent 

deformations.  However, the complexity of these models leads to convergence 

problems when the number of elements is large. 

o  Total-strain based models are reliable and accurate at predicting RC behavior 

under plane loading.  However, they require iterative procedures which may 

cause convergence problems in FE formulations.   
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o Isotropic-elastic-damage based models are a simplified strategy for describing 

the behavior of concrete that account for its complex microstructure.  These 

models describe the inelastic behavior of concrete based only on its stiffness 

degradation and are simple enough to perform FEA of RC structures at the 

system level, while still being reasonably accurate.   

 Two isotropic-elastic-damage based models were selected: the PRM model 

(Pontiroli, Rouquand, & Mazars, 2010) and the “” model (Mazars, Hamon, & 

Grange, 2015).  These two formulations were described and parametric analyses for 

the influence of their parameters were presented.  

o The PRM model was formulated from work done by Pontiroli (1995), 

Rouquand (2005), and Mazars (1986).  It has the capacity to account for crack-

closure effects under reversal-cyclic loading and permanent deformations. 

o The “” model was created to include the effects related to monotonic and 

cyclic loading that were not incorporated in previous models, such as low to 

moderate confinement and crack opening and closure. 

2. The selected concrete models were implemented for their use in plane-stress shell 

elements in a freely available, open-source framework able to perform nonlinear FEA 

of complete structures and subassemblies under non-monotonic types of loading: 

OpenSees. 

3. The performance of the implemented models –the PRM model  and the “” model– was 

studied by comparing five concrete experimental tests with varying complexity taken 

from the literature with analytical models built in OpenSees.  The performance of a 
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biaxial model previously implemented in OpenSees by Garcia (2017), based on the 

scalar damage model (Mazars, 1986), was also studied. 

 The first experiment consisted of plain concrete plates tested under biaxial states of 

stress (Kupfer, Hilsdorf, & Rüsch, 1969).   

 The second experiment consisted of a simply-supported beam under monotonic 

loading tested tested as part of this project.   

 The third experiment consisted of a simply-supported beam under reversal-cyclic 

loading (Ranjbaran, Rezayfar, & Mirzababai, 2018).   

 The fourth experiment consisted of a rectangular shear wall under reversal-cyclic 

loading (Hiotakis, 2004).   

 The fifth experiment consisted of a full-scale four-storey building under dynamic, 

seismic loading (Nagae, et al., 2015).   

6.2 Conclusions 

The results presented in this study capture the general response of RC structures subjected 

to monotonic, cyclic, and dynamic loading in terms of peak displacement and strength. The 

following conclusions were made: 

1. The models currently implemented in FEA are generally unsuitable for analysis at the 

system level of complex RC structures subjected to dynamic loading without 

numerical-convergence problems and, if analysis is possible, their source-code is 

proprietary, preventing scrutiny of the material models implemented on them.    

2. Analyses of structures with several degrees of complexity (from the element level to the 

system level) showed that the simple biaxial concrete material models implemented in 
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this study showed an acceptable ability to predict a number of structural parameters.  

Although the models failed to capture certain aspects of the response, the scope of the 

study was to show how simple models can have a robust performance (so that full 

structures can be analyzed and modelled) and lead to results with a notable level of 

accuracy.  In particular, to the knowledge of the authors, the prediction of the response 

of a full-scale structure such as the one analyzed in Chapter 5 had not been attempted in 

any published, journal-like study. 

3. This research provides a tool for seismic assessment, rehabilitation assessment, and 

performance-based design of RC buildings.     

4. The biaxial behavior of concrete under uniaxial-compression, compression-tension, and 

biaxial-tension state of stresses –using the scalar damage (SD) model, the “” model, 

and the PRM model– showed a satisfactory agreement with available test data.  While 

the PRM and scalar damage models do not accurately predict the response in the biaxial 

compression domain, the “” model had a superior performance, including the strength 

increase on the biaxial compression range due to confinement effects. 

5. The calculated force-displacement response –using the scalar damage (SD) model, the 

“” model, and the PRM model– of a simple-supported RC beam under monotonic 

loading showed a satisfactory agreement with the measured results.  The “” model had 

a superior performance at predicting the yielding and failure displacements. 

6. The calculated load-displacement hysteretic response –using the scalar damage (SD) 

model, and the “” model– of a quad shear wall and a simple-supported beam under 

reversal-cyclic loading showed a moderate agreement with the measured results. Both 

models failed to capture the pinching effects. The “” model had a superior 
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performance at predicting the initial cracking load, the yielding load, and the energy 

dissipation.   

7. The calculated load-displacement hysteretic response –using PRM model– of a quad 

shear wall and a simple-supported beam under reversal-cyclic loading showed the 

ability to capture the pinching effects of the measured results.  However, the PRM 

model failed to perform the full time-historey analysis of both experiments because of 

convergence problems, which can be attributed to the complexity of calculating 

permanent displacements in a multiaxial fashion. 

8. The calculated global base-shear response and the roof displacements –using the “” 

model– of a full-scale four-storey RC showed a reasonable agreement with the 

measured results.  A better prediction was observed for the walls direction, which were 

the only elements modelled using the implemented biaxial concrete model. 

9. Isotropic-scalar-damage models provide a rational and appropriate approach to predict 

the behaviour of concrete plane-stress elements, as they use simple calculations that do 

not require complex solution algorithms within the element formulations. 

10. The freely available, open-source code framework, OpenSees, is a useful tool for the 

implementation of material models that predict the behavior of concrete under 

monotonic, cyclic, and dynamic loading. 
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6.3 Recommendations & Future Research 

The following are ideas for future studies based on this research: 

1. The development or implementation of new algorithms to solve the FE system of 

equations of the OpenSees framework to improve the performance of the PRM model 

and to ensure better and more efficient analysis of structures at the system level. 

2. The correlation of the parameters that control the compressive and tensile stress-strain 

relationship of the implemented models (Ac, Bc, At, Bt), and the damage thresholds for 

the compression and tension domains (εD0t, εD0t), with the standard parameters of 

concrete compression and tension tests (f’c, ε0, ft). 

3. Make parametric analyses to study the influence that the shape of the descending 

branch of the stress-strain compressive response of the concrete models has on the 

analysis of subassemblies and full structures.  

4. Make parametric analyses to evaluate the best way of modelling full-scale structures in 

OpenSees at the system level.  Investigate the use of link elements, joint elements, and 

bearing elements.  Investigate the influence of using different types of frame elements 

and uniaxial concrete elements.  Investigate the influence of the transient analysis 

selected.  Incorporate the bond-slip phenomenon for the shear walls. 

5. Compare the analytical results of the full-scale building obtained using OpenSees with 

commercial FEA software, such as Abaqus and DIANA, by modelling the same four-

storey building. 

6. Contact OpenSees to evaluate the possibility of incorporating the implemented models 

to the OpenSees User Manual and the latest OpenSees revision, thus making them 

freely available for the research community. 
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APPENDIX A: PRM SOURCE CODE 

A.1. Header File (PRM.h) 

#include <stdio.h>  
#include <stdlib.h>  
#include <math.h>  
 
#include <Vector.h> 
#include <Matrix.h> 
#include <ID.h>  
#include <NDMaterial.h> 
 
 
 
class PRM: public NDMaterial{ 
  public :  
    PRM( ) ; 
 PRM(int tag, double _Ec, double _epsD0c, double _Ac, double _Bc, double 
_epsD0t, double _At, double _Bt, double _epsfc, double _sigfc, double _epsft0, 
double _sigft0, double _nu) ; 
 
    virtual ~PRM( ) ; 
 
 void setInitials( ) ; 
 
    //make a clone of this material 
    NDMaterial *getCopy( ) ; 
    NDMaterial *getCopy( const char *type ) ; 
 
    //send back order of strain in vector form 
    int getOrder( ) const ; 
 
    //send back order of strain in vector form 
    const char *getType( ) const ; 
 
    //swap historey variables 
    int commitState( ) ;  
 
    //revert to last saved state 
    int revertToLastCommit( ) ; 
 
    //revert to start 
    int revertToStart( ) ; 
 
    //get the strain  
    int setTrialStrain( const Vector &strainFromElement ) ; 
 
    //send back the strain 
    const Vector& getStrain( ) ; 
 
    //send back the stress  
    const Vector& getStress( ) ; 
 
    //send back the tangent  
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    const Matrix& getTangent( ) ; 
 
    const Matrix& getInitialTangent( ) ; 
 
    //print out data 
    void Print( OPS_Stream &s, int flag ) ; 
 
    int sendSelf(int commitTag, Channel &theChannel); 
    int recvSelf(int commitTag, Channel &theChannel, FEM_ObjectBroker &theBroker); 
 
private : 
    Matrix tStrain, cStrain, tStress, cStress, tTangent, cTangent, iniTangent; 
    Vector strain, stress, tDamCdist, cDamCdist; 
 double Ec, epsD0c, Ac, Bc, epsD0t, At, Bt, epsfc, sigfc, epsft0, sigft0, nu; 
 double tDamT, cDamT, tDamC, cDamC, tDam, cDam, tepsmin, cepsmin; 
 
} ; 
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A.2. C++ File (PRM.cpp) 

#include <elementAPI.h> 
#include <PRM.h> 
#include <Channel.h> 
#include <FEM_ObjectBroker.h> 
#include <MaterialResponse.h> 
 
#include <OPS_Globals.h> 
#include <Information.h> 
#include <Parameter.h> 
#include <string.h> 
#include <Vector.h> 
#include <math.h> 
#include <float.h> 
#include <Matrix.h> 
 
#include <iostream> 
 
 
  void * 
OPS_PRM(void) 
{ 
  NDMaterial *theMaterial = 0; 
   
  int numArgs = OPS_GetNumRemainingInputArgs(); 
   
  if (numArgs != 13) { 
    opserr << "Want: nDMaterial PRM tag? Ec? epsD0c? Ac? Bc? epsD0t? At? Bt? epsfc? 
sigfc? epsft0? sigft0? nu?" << endln; 
    return 0;  
  } 
   
  int iData[1]; 
  double dData[12]; 
   
  int numData = 1; 
  if (OPS_GetInt(&numData, iData) != 0) { 
    opserr << "WARNING invalid integer tag: nDMaterial PRM \n"; 
    return 0; 
  } 
   
  numData = 12; 
     
  if (OPS_GetDouble(&numData, dData) != 0) { 
    opserr << "WARNING invalid data: nDMaterial PRM : " << iData[0] <<"\n"; 
    return 0; 
  }   
   
  theMaterial = new PRM(iData[0], dData[0], dData[1], dData[2], dData[3], dData[4], 
dData[5], dData[6], dData[7], dData[8], dData[9], dData[10], dData[11]); 
   
  return theMaterial; 
} 
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//null constructor 
PRM::PRM( ) :  
NDMaterial(0, ND_TAG_PRM ),   
tStrain(3, 3), cStrain(3, 3), tStress(3, 3), cStress(3, 3), tTangent(6,6), 
cTangent(6,6), strain(3), stress(3), iniTangent(6, 6), 
tDamCdist(3) 
{ } 
 
 
//full constructor 
PRM::PRM(int tag, double _Ec, double _epsD0c, double _Ac, double _Bc, double 
_epsD0t, double _At, double _Bt, double _epsfc, double _sigfc, double _epsft0, 
double _sigft0, double _nu) : 
NDMaterial( tag, ND_TAG_PRM ), 
tStrain(3, 3), cStrain(3, 3), tStress(3, 3), cStress(3, 3), tTangent(6, 6), 
cTangent(6, 6), strain(3), stress(3), iniTangent(6, 6), tDamCdist(3), 
Ec(_Ec), epsD0c(_epsD0c), Ac(_Ac), Bc(_Bc), epsD0t(_epsD0t), At(_At), Bt(_Bt), 
epsfc(_epsfc), sigfc(_sigfc), epsft0(_epsft0), sigft0(_sigft0), nu(_nu) 
{ 
 
  setInitials(); 
} 
 
 
//destructor 
PRM::~PRM( )  
{  
 
}  
 
void PRM::setInitials() 
{ 
 
 if (Ec < 0.0) 
  Ec = -Ec; 
 
 if (epsD0c < 0.0) 
  epsD0c = -epsD0c; 
  
 if (Ac < 0.0) 
  Ac = -Ac; 
 
 if (Bc < 0.0) 
  Bc = -Bc; 
 
 if (epsD0t < 0.0) 
  epsD0t = -epsD0t; 
 
 if (At < 0.0) 
  At = -At; 
 
 if (Bt < 0.0) 
  Bt = -Bt; 
 
 if (epsfc < 0.0) 
  epsfc = -epsfc; 
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 if (sigfc < 0.0) 
  sigfc = -sigfc; 
 
 if (epsft0 > 0.0) 
  epsft0 = -epsft0; 
 
 if (sigft0 > 0.0) 
  sigft0 = -sigft0; 
 
 if (nu < 0.0) 
  nu = -nu; 
 
  
 tStrain.Zero(); 
 cStrain = tStrain; 
 strain.Zero(); 
 
 tStress.Zero(); 
 cStress = tStress; 
 stress.Zero(); 
 
 
 iniTangent.Zero(); 
 iniTangent(0, 0) = iniTangent(1, 1) = iniTangent(2, 2) = 1.0 - nu; 
 iniTangent(0, 1) = iniTangent(0, 2) = iniTangent(1, 0) = iniTangent(1, 2) = 
iniTangent(2, 0) = iniTangent(2, 1) = nu; 
 iniTangent(3, 3) = iniTangent(4, 4) = iniTangent(5, 5) = (1.0 - 2.0 * nu) / 
2.0; 
 iniTangent *= Ec / ((1.0 + nu) * (1.0 - 2.0 * nu)); 
 
 tTangent = iniTangent; 
 cTangent = tTangent; 
  
 tDam = 0.0; 
 cDam = tDam; 
 tDamT = 0.0; 
 cDamT = tDamT; 
 tDamC = 0.0; 
 cDamC = tDamC; 
 tDamCdist.Zero(); 
 cDamCdist = tDamCdist; 
  
 tepsmin = 0.0; 
 cepsmin = tepsmin; 
 
} 
 
//make a clone of this material 
NDMaterial* 
PRM::getCopy( )  
{ 
  PRM *clone ;   //new instance of this class 
 
  clone = new PRM( this->getTag(), Ec, epsD0c, Ac, Bc, epsD0t, At, Bt, epsfc, sigfc, 
epsft0, sigft0, nu); 
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  return clone ; 
} 
 
 
//make a clone of this material 
NDMaterial*  
PRM::getCopy( const char *type )  
{ 
 
  return this->getCopy( ) ; 
} 
 
 
//send back order of strain in vector form 
int  
PRM::getOrder( ) const 
{ 
 
  return 3 ; 
} 
 
 
const char* 
PRM::getType( ) const  
{ 
 
  return PRM ;  
} 
 
 
 
//swap historey variables 
int  
PRM::commitState( )  
{ 
  cStrain = tStrain; 
  cStress = tStress; 
  cTangent = tTangent; 
  cDam = tDam; 
  cDamT = tDamT; 
  cDamC = tDamC; 
  cDamCdist = tDamCdist; 
  cepsmin = tepsmin; 
   
  return 0; 
} 
 
 
//revert to last saved state 
int  
PRM::revertToLastCommit( ) 
{ 
 
  return 0; 
} 
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//revert to start 
int 
PRM::revertToStart( ) 
{ 
  setInitials(); 
 
  return 0; 
} 
 
//receive the strain 
int  
PRM::setTrialStrain( const Vector &strainFromElement ) 
{ 
 double psi, epseq2, epseq, epseq2M, epseqM, alpha, Trsigd; 
 double dtM, dcM, DamT, DamC; 
 static Vector sigpos(3), signeg(3), epsft(3), sigft(3), epsp(6), epsd(6), 
sigp(6), sigd(6) ; 
 static Matrix T(3, 3), Ttrans(3, 3); 
 
 tStrain(0,0) = strainFromElement(0) ;  
 tStrain(1,1) = strainFromElement(1) ; 
 tStrain(0,1) = strainFromElement(2) ;  
 tStrain(1,0) = strainFromElement(2) ; 
 tStrain(2, 2) = (-nu) * (tStrain(0, 0) + tStrain(1, 1)) / (1.0 - nu); 
 
 
 
 /* ---- Retrieve state variables ---- */ 
 tDam = cDam; 
 tDamT = cDamT; 
 tDamC = cDamC; 
 tepsmin = cepsmin; 
 tTangent = cTangent; 
 
 
 /* ---- Calculate Principal direction angle for the Local Coordinates ---- */ 
 psi = (atan(2.0 * tStrain(0, 1) / (tStrain(0, 0) - tStrain(1, 1) + 1.0e-20))) 
/ 2.0; 
 T.Zero(); 
 Ttrans.Zero(); 
 T(0, 0) = T(1, 1) = Ttrans(0, 0) = Ttrans(1, 1) = cos(psi); 
 T(0, 1) = Ttrans(1, 0) = sin(psi); 
 T(1, 0) = Ttrans(0, 1) = -sin(psi); 
 T(2, 2) = Ttrans(2, 2) = 1.0; 
 
 
 /* ---- Obtain Principal strains ---- */ 
 static Matrix TransfAid(3, 3); 
 TransfAid = T * tStrain * Ttrans; 
 epsp.Zero(); 
 epsp(0) = TransfAid(0, 0); 
 epsp(1) = TransfAid(1, 1); 
 epsp(2) = TransfAid(2, 2); 
 
 TransfAid.Zero(); 
 TransfAid(0, 0) = cDamCdist(0); 
 TransfAid(1, 1) = cDamCdist(1); 
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 TransfAid(0, 1) = TransfAid(1, 0) = cDamCdist(2); 
 TransfAid = T * TransfAid * Ttrans; 
 tDamCdist(0) = TransfAid(0, 0); 
 tDamCdist(1) = TransfAid(1, 1); 
 tDamCdist(2) = TransfAid(0, 1); 
 
 
 /* ---- Permanent strains and stresses----*/ 
 epsft.Zero(); 
 sigft.Zero(); 
 for (int i = 0; i <= 1; i++) 
 { 
  sigft(i) = sigft0; 
  epsft(i) = (epsft0 - epsfc * tDamCdist(i)) / (1.0 - tDamCdist(i)); 
 } 
  
  
 static Matrix Dist(3, 3); 
 Dist.Zero(); 
 Dist(0, 0) = Dist(1, 1) = Dist(2, 2) = 1.0; 
 Dist(0, 1) = Dist(1, 0) = Dist(0, 2) = Dist(1, 2) = Dist(2, 0) = Dist(2, 1) = 
-nu; 
 epsft = Dist * epsft; 
 Dist.Zero(); 
 Dist(0, 0) = Dist(1, 1) = 1.0; 
  
 sigft = Dist * sigft; 
  
  
 /* ---- Distribution of permanent strains and stresses in the element.*/ 
 epsd = epsp; 
 for (int i = 0; i <= 2; i++) 
 { 
  epsd(i) -= epsft(i); 
 } 
 
 /* ---- Equivalent strain for Compression (Mazars) and Tension (PRM) ---- */ 
 epseq2 = 0.0; 
 epseq2M = 0.0; 
 for (int i = 0; i <= 2; i++) 
 { 
  if (epsd(i) > 0) 
   epseq2 += epsd(i) * epsd(i); 
  if (epsp(i) > 0) 
   epseq2M += epsp(i) * epsp(i); 
 } 
 epseq = sqrt(epseq2); 
 epseqM = sqrt(epseq2M); 
 
 
 /* ---- Minimum strain ---- */ 
 for (int i = 0; i <= 2; i++) 
 { 
  if (epsp(i) < tepsmin) 
   tepsmin = epsp(i); 
 } 
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 /* ---- Alpha factor calculation from Rouquand and Pontiroli ---- */ 
 sigd = tTangent * epsd; 
 sigp = sigd; 
 for (int i = 0; i <= 2; i++) 
 { 
  sigp(i) += sigft(i); 
 } 
 Trsigd = sigd(0) + sigd(1) + sigd(2); 
 
 
 if (Trsigd >= 0.0) 
  alpha = 1.0; 
 else 
 { 
  for (int i = 0; i <= 2; i++) 
  { 
   if (sigp(i) > 0) 
   { 
    sigpos(i) = sigp(i); 
    signeg(i) = 0.0; 
   } 
   else 
   { 
    sigpos(i) = 0.0; 
    signeg(i) = sigp(i); 
   } 
  } 
  alpha = abs((sigpos(0) + sigpos(1) + sigpos(2)) / (signeg(0) + 
signeg(1) + signeg(2) + 1e-25)); 
 } 
 
 if (alpha < 0.0) 
  alpha = 0.0; 
 if (alpha > 1.0) 
  alpha = 1.0; 
 
 
 /* ---- Calculation of Damage scalar parameters (Dt and Dc) ---- */ 
 if (tDamT < 1.0) 
 { 
  if (epseq > epsD0t) 
   dtM = 1.0 - (epsD0t * (1.0 - At) / epseq) - At * exp(-Bt * 
(epseq - epsD0t)); 
  else 
   dtM = 0.0; 
 
  DamT = dtM; 
  if (DamT < 0.0) 
   DamT = 0.0; 
  if (DamT > 1.0) 
   DamT = 1.0; 
 
  if (DamT < cDamT) 
   DamT = cDamT; 
 } 
 else 
  DamT = 1.0; 
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 tDamT = alpha * DamT; 
 
 
 if (tDamC < 1.0) 
 { 
  if (epseqM > epsD0c) 
   dcM = 1.0 - (epsD0c * (1.0 - Ac) / epseqM) - Ac * exp(-Bc * 
(epseqM - epsD0c)); 
  else 
   dcM = 0.0; 
 
  DamC = dcM / (1.0 - epsfc / tepsmin); 
 
  if (DamC < 0.0) 
   DamC = 0.0; 
  if (DamC > 1.0) 
   DamC = 1.0; 
 
  if (DamC < cDamC) 
   DamC = cDamC; 
 } 
 else 
  DamC = 1.0; 
 
 tDamC = (1.0 - alpha) * DamC; 
 
 
 tDam = tDamT + tDamC; 
 if (tDam < 0.0) 
  tDam = 0.0; 
 if (tDam > 1.0) 
  tDam = 1.0; 
 
 
 tTangent = (1.0 - tDam) * iniTangent; 
 
 /* ---- Principal stresses ----*/ 
 sigd = tTangent * epsd; 
 sigp = sigd; 
 for (int i = 0; i <= 2; i++) 
 { 
  sigp(i) += sigft(i); 
 } 
 
 
 if (tDamT < cDamT) 
  tDamT = cDamT; 
 if (tDamC < cDamC) 
  tDamC = cDamC; 
 
 static Vector DamCdist(3); 
 DamCdist.Zero(); 
 for (int i = 0; i <= 1; i++) 
 { 
  DamCdist(i) = tDamC * (epsp(i) / tepsmin); 
  if (DamCdist(i) > tDamCdist(i)) 
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   tDamCdist(i) = DamCdist(i); 
 } 
 
 /* ---- Obtain state variables in Global coordinates ---- */ 
 T.Zero(); 
 Ttrans.Zero(); 
 T(0, 0) = T(1, 1) = Ttrans(0, 0) = Ttrans(1, 1) = cos(-psi); 
 T(0, 1) = Ttrans(1, 0) = sin(-psi); 
 T(1, 0) = Ttrans(0, 1) = -sin(-psi); 
 T(2, 2) = Ttrans(2, 2) = 1.0; 
 
 TransfAid.Zero(); 
 TransfAid(0, 0) = sigp(0); 
 TransfAid(1, 1) = sigp(1); 
 TransfAid(2, 2) = sigp(2); 
 tStress = T * TransfAid * Ttrans; 
 
 TransfAid.Zero(); 
 TransfAid(0, 0) = tDamCdist(0); 
 TransfAid(1, 1) = tDamCdist(1); 
 TransfAid(0, 1) = TransfAid(1, 0) = tDamCdist(2); 
 TransfAid = T * TransfAid * Ttrans; 
 tDamCdist(0) = TransfAid(0, 0); 
 tDamCdist(1) = TransfAid(1, 1); 
 tDamCdist(2) = TransfAid(0, 1); 
 
 strain(0) = tStrain(0,0); 
 strain(1) = tStrain(1,1); 
 strain(2) = tStrain(0,1); 
 
 stress(0) = tStress(0,0); 
 stress(1) = tStress(1,1); 
 stress(2) = tStress(0,1);   
   
  return 0; 
} 
 
 
//send back the strain 
const Vector&  
PRM::getStrain( ) 
{ 
 
  return strain ; 
} 
 
 
//send back the stress  
const Vector&   
PRM::getStress( ) 
{ 
 
  return stress ; 
} 
 
 
//send back the tangent  
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const Matrix&   
PRM::getTangent( ) 
{ 
  
 static Matrix theTangent(3, 3); 
 theTangent.Zero(); 
 theTangent(0, 0) = iniTangent(0, 0); 
 theTangent(0, 1) = iniTangent(0, 1); 
 theTangent(1, 0) = iniTangent(1, 0); 
 theTangent(1, 1) = iniTangent(1, 1); 
 theTangent(2, 2) = iniTangent(3, 3); 
  
 theTangent *= (1 - cDam); 
  
 
 return theTangent ; 
} 
 
const Matrix&   
PRM::getInitialTangent 
( ) 
{ 
  
 static Matrix theTangent(3, 3); 
 theTangent.Zero(); 
 theTangent(0, 0) = iniTangent(0, 0); 
 theTangent(0, 1) = iniTangent(0, 1); 
 theTangent(1, 0) = iniTangent(1, 0); 
 theTangent(1, 1) = iniTangent(1, 1); 
 theTangent(2, 2) = iniTangent(3, 3); 
 
 return theTangent; 
} 
 
 
//print out data 
void   
PRM::Print( OPS_Stream &s, int flag ) 
{ 
  s << "PRM Material tag: " << this->getTag() << endln ;  
  s << "  Ec: " << Ec << " "; 
  s << "  epsD0c: " << epsD0c << " "; 
  s << "  Ac: " << Ac << " "; 
  s << "  Bc: " << Bc << " "; 
  s << "  epsD0t: " << epsD0t << " "; 
  s << "  At: " << At << " "; 
  s << "  Bt: " << Bt << " "; 
  s << "  epsfc: " << epsfc << " "; 
  s << "  sigfc: " << sigfc << " "; 
  s << "  epsft0: " << epsft0 << " "; 
  s << "  sigft0: " << sigft0 << " "; 
  s << "  nu: " << nu << " "; 
 
} 
 
 
int  
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PRM::sendSelf(int commitTag, Channel &theChannel)  
{ 
  int res = 0, cnt = 0; 
 
  static Vector data(25); 
 
  data(cnt++) = this->getTag(); 
  data(cnt++) = Ec; 
  data(cnt++) = epsD0c; 
  data(cnt++) = Ac; 
  data(cnt++) = Bc; 
  data(cnt++) = epsD0t; 
  data(cnt++) = At; 
  data(cnt++) = Bt; 
  data(cnt++) = epsfc; 
  data(cnt++) = sigfc; 
  data(cnt++) = epsft0; 
  data(cnt++) = sigft0; 
  data(cnt++) = nu; 
  data(cnt++) = cStrain(0,0); 
  data(cnt++) = cStrain(0,1); 
  data(cnt++) = cStrain(0,2); 
  data(cnt++) = cStrain(1,1); 
  data(cnt++) = cStrain(1,2); 
  data(cnt++) = cStrain(2,2); 
  data(cnt++) = cStress(0,0); 
  data(cnt++) = cStress(0,1); 
  data(cnt++) = cStress(0,2); 
  data(cnt++) = cStress(1,1); 
  data(cnt++) = cStress(1,2); 
  data(cnt++) = cStress(2,2); 
 
   res = theChannel.sendVector(this->getDbTag(), commitTag, data); 
   if (res < 0)  
      opserr << "PRM::sendSelf() - failed to send data" << endln; 
    
   return res; 
} 
 
int  
PRM::recvSelf(int commitTag, Channel &theChannel, FEM_ObjectBroker &theBroker) 
{ 
  int res = 0, cnt = 0; 
 
  static Vector data(25); 
 
  res = theChannel.recvVector(this->getDbTag(), commitTag, data); 
  if (res < 0) { 
   opserr << "PRM::recvSelf -- could not recv Vector" << endln; 
   return res; 
  } 
 
  this->setTag(int(data(cnt++))); 
  Ec = data(cnt++); 
  epsD0c = data(cnt++); 
  Ac = data(cnt++); 
  Bc = data(cnt++); 
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  epsD0t = data(cnt++); 
  At = data(cnt++); 
  Bt = data(cnt++); 
  epsfc = data(cnt++); 
  sigfc = data(cnt++); 
  epsft0 = data(cnt++); 
  sigft0 = data(cnt++); 
  nu = data(cnt++); 
  cStrain(0,0) = data(cnt++); 
  cStrain(0,1) = data(cnt++); 
  cStrain(0,2) = data(cnt++); 
  cStrain(1,1) = data(cnt++); 
  cStrain(1,2) = data(cnt++); 
  cStrain(2,2) = data(cnt++); 
  cStress(0,0) = data(cnt++); 
  cStress(0,1) = data(cnt++); 
  cStress(0,2) = data(cnt++); 
  cStress(1,1) = data(cnt++); 
  cStress(1,2) = data(cnt++); 
  cStress(2,2) = data(cnt++); 
 
  setInitials(); 
 
  return res; 
} 
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APPENDIX B: “MUMAZARS” () SOURCE CODE 

B.1. Header File (MuMazars.h) 

#include <stdio.h>  
#include <stdlib.h>  
#include <math.h>  
 
#include <Vector.h> 
#include <Matrix.h> 
#include <ID.h>  
#include <NDMaterial.h> 
 
 
 
class MuMazars: public NDMaterial{ 
  public :  
    MuMazars( ) ; 
    MuMazars(int tag, double _Ec, double _epsD0c, double _epsD0t, double _Ac, double 
_Bc, double _At, double _Bt, double _nu) ; 
 
    virtual ~MuMazars( ) ; 
 
 void setInitials( ) ; 
 
    //make a clone of this material 
    NDMaterial *getCopy( ) ; 
    NDMaterial *getCopy( const char *type ) ; 
 
    //send back order of strain in vector form 
    int getOrder( ) const ; 
 
    //send back order of strain in vector form 
    const char *getType( ) const ; 
 
    //swap historey variables 
    int commitState( ) ;  
 
    //revert to last saved state 
    int revertToLastCommit( ) ; 
 
    //revert to start 
    int revertToStart( ) ; 
 
    //get the strain  
    int setTrialStrain( const Vector &strainFromElement ) ; 
 
    //send back the strain 
    const Vector& getStrain( ) ; 
 
    //send back the stress  
    const Vector& getStress( ) ; 
 
    //send back the tangent  
    const Matrix& getTangent( ) ; 
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    const Matrix& getInitialTangent( ) ; 
 
    //print out data 
    void Print( OPS_Stream &s, int flag ) ; 
 
    int sendSelf(int commitTag, Channel &theChannel); 
    int recvSelf(int commitTag, Channel &theChannel, FEM_ObjectBroker &theBroker); 
 
private : 
    Matrix iniTangent, tTangent, cTangent, iniSmallTangent, tangent; 
 Matrix iniTangentInv, tTangentInv, cTangentInv; 
    Vector tStrain, cStrain, strain, tStress, cStress, stress; 
    double nu, Ec, epsD0c, epsD0t, Ac, Bc, At, Bt; 
 double fac, tDam, cDam, tepseqC,  cepseqC, tepseqT, cepseqT, tYt, cYt, tYc, 
cYc; 
 
} ; 
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B.2. C++ File (MuMazars.cpp) 

#include <elementAPI.h> 
#include <MuMazars.h> 
#include <Channel.h> 
#include <FEM_ObjectBroker.h> 
#include <MaterialResponse.h> 
 
#include <OPS_Globals.h> 
#include <Information.h> 
#include <Parameter.h> 
#include <string.h> 
#include <Vector.h> 
#include <math.h> 
#include <float.h> 
#include <Matrix.h> 
#include <algorithm> 
#include <minmax.h> 
 
 
#include <iostream> 
 
 
  void * 
OPS_MuMazars(void) 
{ 
  NDMaterial *theMaterial = 0; 
   
  int numArgs = OPS_GetNumRemainingInputArgs(); 
   
  if (numArgs != 9) { 
    opserr << "Want: nDMaterial MuMazars tag? Ec? epsD0c? epsD0t? Ac? Bc? At? Bt? 
nu?" << endln; 
    return 0;  
  } 
   
  int iData[1]; 
  double dData[8]; 
   
  int numData = 1; 
  if (OPS_GetInt(&numData, iData) != 0) { 
    opserr << "WARNING invalid integer tag: nDMaterial MuMazars \n"; 
    return 0; 
  } 
   
  numData = 8; 
     
  if (OPS_GetDouble(&numData, dData) != 0) { 
    opserr << "WARNING invalid data: nDMaterial MuMazars : " << iData[0] <<"\n"; 
    return 0; 
  }   
   
  theMaterial = new MuMazars(iData[0], dData[0], dData[1], dData[2], dData[3], 
dData[4], dData[5], dData[6], dData[7]); 
   
  return theMaterial; 
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} 
 
 
 
//null constructor 
MuMazars::MuMazars( ) :  
NDMaterial(0, ND_TAG_MuMazars ),   
tStrain(6), cStrain(6), tStress(6), cStress(6), strain(3), stress(3), 
tTangent(6,6), cTangent(6,6), tangent(3,3), tTangentInv(6,6), cTangentInv(6,6), 
iniTangent(6,6), iniSmallTangent(3,3), iniTangentInv(6,6) 
 
{ } 
 
 
//full constructor 
MuMazars::MuMazars(int tag, double _Ec, double _epsD0c, double _epsD0t, double _Ac, 
double _Bc, double _At, double _Bt, double _nu) : 
NDMaterial( tag, ND_TAG_MuMazars ), 
tStrain(6), cStrain(6), tStress(6), cStress(6), strain(3), stress(3), 
tTangent(6,6), cTangent(6,6), tangent(3,3), tTangentInv(6,6), cTangentInv(6,6), 
iniTangent(6,6), iniSmallTangent(3,3), iniTangentInv(6,6), 
Ec(_Ec), epsD0c(_epsD0c), epsD0t(_epsD0t), Ac(_Ac), Bc(_Bc), At(_At), Bt(_Bt), 
nu(_nu) 
{ 
 
  setInitials(); 
} 
 
 
//destructor 
MuMazars::~MuMazars( )  
{  
 
}  
 
void MuMazars::setInitials() 
{ 
 
 if (Ec < 0.0) 
  Ec = -Ec; 
 
 if (epsD0c < 0.0) 
  epsD0c = -epsD0c; 
 
 if (epsD0t < 0.0) 
  epsD0t = -epsD0t; 
 
 tStrain.Zero(); 
 cStrain = tStrain; 
 strain.Zero(); 
 
 tStress.Zero(); 
 cStress = tStress; 
 stress.Zero(); 
 
 iniTangent.Zero(); 
 iniTangent(0,0) = 1.0 - nu; 
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    iniTangent(0,1) = nu; 
 iniTangent(0,2) = nu; 
 iniTangent(1,0) = nu; 
    iniTangent(1,1) = 1.0 - nu; 
 iniTangent(1,2) = nu; 
 iniTangent(2,0) = nu; 
    iniTangent(2,1) = nu; 
 iniTangent(2,2) = 1.0 - nu; 
 iniTangent(3,3) = (1.0 - 2.0 * nu) / 2.0; 
 iniTangent(4,4) = (1.0 - 2.0 * nu) / 2.0; 
 iniTangent(5,5) = (1.0 - 2.0 * nu) / 2.0; 
 fac = Ec / ((1.0 + nu) * (1.0 - 2.0 * nu)); 
 iniTangent *= fac; 
  
 iniTangentInv.Zero(); 
 iniTangentInv(0,0) = 1.0 / Ec; 
    iniTangentInv(0,1) = - nu / Ec; 
 iniTangentInv(0,2) = - nu / Ec; 
 iniTangentInv(1,0) = - nu / Ec; 
    iniTangentInv(1,1) = 1.0 / Ec; 
 iniTangentInv(1,2) = - nu / Ec; 
 iniTangentInv(2,0) = - nu / Ec; 
    iniTangentInv(2,1) = - nu / Ec; 
 iniTangentInv(2,2) = 1.0 / Ec; 
 iniTangentInv(3,3) = (2.0 * (1.0 + nu)) / Ec; 
 iniTangentInv(4,4) = (2.0 * (1.0 + nu)) / Ec; 
 iniTangentInv(5,5) = (2.0 * (1.0 + nu)) / Ec; 
 
 iniSmallTangent.Zero(); 
 iniSmallTangent(0,0) = iniTangent(0,0); 
 iniSmallTangent(0,1) = iniTangent(0,1); 
 iniSmallTangent(1,0) = iniTangent(1,0); 
 iniSmallTangent(1,1) = iniTangent(1,1); 
 iniSmallTangent(2,2) = iniTangent(3,3); 
  
 tDam = 0; 
 cDam = 0; 
 tepseqT = 0; 
 cepseqT = 0; 
 tepseqC = 0; 
 cepseqC = 0; 
 tYt = 0; 
 cYt = 0; 
 tYc = 0; 
 cYc = 0; 
 tTangent = iniTangent; 
 cTangent = tTangent; 
 tTangentInv = iniTangentInv; 
 cTangentInv = tTangentInv; 
 tangent = iniSmallTangent; 
 
} 
 
//make a clone of this material 
NDMaterial* 
MuMazars::getCopy( )  
{ 
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  MuMazars *clone ;   //new instance of this class 
 
  clone = new MuMazars( this->getTag(), Ec, epsD0c, epsD0t, Ac, Bc, At, Bt, nu); 
 
  return clone ; 
} 
 
 
//make a clone of this material 
NDMaterial*  
MuMazars::getCopy( const char *type )  
{ 
 
  return this->getCopy( ) ; 
} 
 
 
//send back order of strain in vector form 
int  
MuMazars::getOrder( ) const 
{ 
 
  return 3 ; 
} 
 
 
const char* 
MuMazars::getType( ) const  
{ 
 
  return "MuMazars" ;  
} 
 
 
 
//swap historey variables 
int  
MuMazars::commitState( )  
{ 
  cStress = tStress; 
  cStrain = tStrain; 
  cTangent = tTangent; 
  cTangentInv = tTangentInv; 
  cDam = tDam;  
  cepseqT = tepseqT; 
  cepseqC = tepseqC; 
  cYt = tYt; 
  cYc = tYc; 
 
 
  return 0; 
} 
 
 
//revert to last saved state 
int  
MuMazars::revertToLastCommit( ) 
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{ 
 
  return 0; 
} 
 
 
//revert to start 
int 
MuMazars::revertToStart( ) 
{ 
  cStrain.Zero(); 
  tStrain.Zero(); 
  strain.Zero(); 
  cStress.Zero(); 
  tStress.Zero(); 
  stress.Zero(); 
 
  setInitials(); 
 
  return 0; 
} 
 
//receive the strain 
int  
MuMazars::setTrialStrain( const Vector &strainFromElement ) 
{ 
 
  /*opserr << "setTrialStrain" << endln; 
  getchar();*/ 
 
  double psi, k; 
  double Ieps, Jeps, r, epst, epsc, Ytep, Ycep, Y, Y0, A, B, tYci, tYti; 
  static Vector epsp(6), sigbar(6), sigbarpos(6), sigbarabs(6), sigp(6) ; 
 
 
 
  tStrain(0) = strainFromElement(0) ; 
  tStrain(1) = strainFromElement(1) ; 
  tStrain(3) = strainFromElement(2) ; 
 
  tStrain(2) = (- nu ) * (tStrain(0) + tStrain(1))/(1.0-nu) ;  
   
  /*opserr << "strainFromElement = " << strainFromElement << endln;*/ 
  /*opserr << "tStrain = " << tStrain << endln; 
  /*getchar();*/ 
 
  tTangent = cTangent ; 
  tTangentInv = cTangentInv; 
 
  /*opserr << "tTangent = " << tTangent << " tTangentInv = " << tTangentInv << 
endln; 
  getchar();*/ 
 
  psi = (atan (2.0 * tStrain(3) / (tStrain(0) - tStrain(1) + 1e-20))) / 2.0; 
 
  epsp.Zero(); 
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  epsp(0) = ((tStrain(0) + tStrain(1)) / 2.0) + (((tStrain(0) - tStrain(1)) / 2.0) * 
cos (2.0 * psi)) + (tStrain(3) * sin (2.0 * psi)) ; 
  epsp(1) = ((tStrain(0) + tStrain(1)) / 2.0) - (((tStrain(0) - tStrain(1)) / 2.0) * 
cos (2.0 * psi)) - (tStrain(3) * sin (2.0 * psi)) ; 
  epsp(2) = tStrain(2) ; 
 
 
  Ieps = epsp(0) + epsp(1) + epsp(2); 
  Jeps = 0.5*(pow((epsp(0) - epsp(1)),2) + pow((epsp(1) - epsp(2)),2) + pow((epsp(2) 
- epsp(0)),2)); 
  tepseqT = ((Ieps/(2.0*(1.0 - 2.0*nu))) + ((1.0* sqrt(Jeps))/(2.0*(1.0 + nu)))); 
  tepseqC = ((Ieps/(5.0*(1.0 - 2.0*nu))) + ((6.0* sqrt(Jeps))/(5.0*(1.0 + nu)))); 
 
  sigbar = tTangent * epsp; 
 
 
  sigbarpos.Zero(); 
  sigbarabs.Zero(); 
 
  if (sigbar(0) >= 0) 
  { 
   sigbarpos(0) = sigbar(0); 
  } 
  else 
  { 
   sigbarpos(0) = 0; 
  } 
 
  if (sigbar(1) >= 0) 
  { 
   sigbarpos(1) = sigbar(1); 
  } 
  else 
  { 
   sigbarpos(1) = 0; 
  } 
 
  if (sigbar(2) >= 0) 
  { 
   sigbarpos(2) = sigbar(2); 
  } 
  else 
  { 
   sigbarpos(2) = 0; 
  } 
 
  sigbarabs(0) = abs(sigbar(0)); 
  sigbarabs(1) = abs(sigbar(1)); 
  sigbarabs(2) = abs(sigbar(2)); 
 
  r = ((sigbarpos(0) + sigbarpos(1) + sigbarpos(2)) / (sigbarabs(0) + sigbarabs(1) + 
sigbarabs(2) + 1.0e-20)); 
  
      
  tYti = max(epsD0t,tepseqT); 
  tYci = max(epsD0c,tepseqC); 
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  if (tYti < tYt) 
   tYt = tYt; 
  else 
   tYt = tYti; 
 
  if (tYci < tYc) 
   tYc = tYc; 
 
  else 
   tYc = tYci; 
   
  Y = r * tYt + (1.0-r) * tYc; 
 
  k = 0.7; 
   
  A = At*(2.0*(pow(r,2))*(1.0 - 2.0*k) - r*(1.0 - 4.0*k)) + Ac*(2.0*(pow(r,2)) 
- 3.0*r + 1.0); 
     B = (pow(r,((pow(r,2)) - 2.0*r + 2.0)))*Bt + ((1.0 - (pow(r,((pow(r,2)) - 2.0*r 
+ 2.0))))*Bc); 
 
  Y0 = r * epsD0t + (1.0-r) * epsD0c; 
      
  tDam = 1.0 - (Y0 * (1.0 - A) / Y) - A * exp(-B * (Y - Y0)) ; 
    
 
  if ( tDam < 0.0 ) 
   tDam = 0.0; 
  if ( tDam > 0.9999 ) 
   tDam = 0.9999; 
 
 
  tTangent = (1.0 - tDam) * iniTangent ; 
  tTangentInv = (1.0 / (1.0 - tDam)) * iniTangentInv ;  
  sigp = tTangent * epsp ;  
 
   
  tStress(0) = 0.5 * (sigp(0) + sigp(1)) + 0.5 * (sigp(0) - sigp(1)) * cos(2.0 * (-
psi)) ; 
  tStress(1) = 0.5 * (sigp(0) + sigp(1)) - 0.5 * (sigp(0) - sigp(1)) * cos(2.0 * (-
psi)) ; 
  tStress(3) = -0.5 * (sigp(0) - sigp(1)) * sin(2.0 * (-psi)) ; 
 
   
  tangent(0,0) = tTangent(0,0);  
  tangent(0,1) = tTangent(0,1); 
  tangent(1,0) = tTangent(1,0); 
  tangent(1,1) = tTangent(1,1); 
  tangent(2,2) = tTangent(3,3); 
 
  strain(0) = tStrain(0); 
  strain(1) = tStrain(1); 
  strain(2) = tStrain(3); 
 
  stress(0) = tStress(0); 
  stress(1) = tStress(1); 
  stress(2) = tStress(3);  
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  return 0; 
} 
 
 
//send back the strain 
const Vector&  
MuMazars::getStrain( ) 
{ 
 
  return strain ; 
} 
 
 
//send back the stress  
const Vector&   
MuMazars::getStress( ) 
{ 
 
  return stress ; 
} 
 
 
//send back the tangent  
const Matrix&   
MuMazars::getTangent( ) 
{ 
 
  return tangent ; 
} 
 
const Matrix&   
MuMazars::getInitialTangent 
( ) 
{ 
 
  return iniSmallTangent ; 
} 
 
 
//print out data 
void   
MuMazars::Print( OPS_Stream &s, int flag ) 
{ 
  s << "MuMazars Material tag: " << this->getTag() << endln ;  
  s << "  Ec: " << Ec << " "; 
  s << "  epsD0c: " << epsD0c << " "; 
  s << "  epsD0t: " << epsD0t << " "; 
  s << "  Ac: " << Ac << " "; 
  s << "  Bc: " << Bc << " "; 
  s << "  At: " << At << " "; 
  s << "  Bt: " << Bt << " "; 
  s << "  nu: " << nu << " "; 
 
} 
 
 
int  
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MuMazars::sendSelf(int commitTag, Channel &theChannel)  
{ 
  int res = 0, cnt = 0; 
 
  static Vector data(21); 
 
  data(cnt++) = this->getTag(); 
  data(cnt++) = Ec; 
  data(cnt++) = epsD0c; 
  data(cnt++) = epsD0t; 
  data(cnt++) = Ac; 
  data(cnt++) = Bc; 
  data(cnt++) = At; 
  data(cnt++) = Bt; 
  data(cnt++) = nu; 
  data(cnt++) = cDam; 
 
 
  int i; 
  for (i = 0; i < 6; i++)  
    data(cnt++) = cStrain(i); 
 
  for (i = 0; i < 6; i++)  
    data(cnt++) = cStress(i); 
 
   res = theChannel.sendVector(this->getDbTag(), commitTag, data); 
   if (res < 0)  
      opserr << "MuMazars::sendSelf() - failed to send data" << endln; 
    
   return res; 
} 
 
int  
MuMazars::recvSelf(int commitTag, Channel &theChannel, FEM_ObjectBroker &theBroker) 
{ 
  int res = 0, cnt = 0; 
 
  static Vector data(21); 
 
  res = theChannel.recvVector(this->getDbTag(), commitTag, data); 
  if (res < 0) { 
   opserr << "MuMazars::recvSelf -- could not recv Vector" << endln; 
   return res; 
  } 
 
  this->setTag(int(data(cnt++))); 
  Ec = data(cnt++); 
  epsD0c = data(cnt++); 
  epsD0t = data(cnt++); 
  Ac = data(cnt++); 
  Bc = data(cnt++); 
  At = data(cnt++); 
  Bt = data(cnt++); 
  nu = data(cnt++); 
  cDam = data(cnt++); 
 
  setInitials(); 
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  int i; 
  for (i = 0; i < 6; i++) 
    cStrain(i) = data(cnt++); 
 
  for (i = 0; i < 6; i++) 
    cStress(i) = data(cnt++); 
 
  return res; 
} 
  
 

 


