

Supercooling in Rivers: Field Measurements and Surface Energy Budget Analysis

by

Sean Ryan Boyd

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Water Resources Engineering

Department of Civil and Environmental Engineering
University of Alberta

© Sean Ryan Boyd, 2022

ii

Abstract

The process of supercooling, where turbulent water is cooled below freezing while remaining a

liquid, is a necessary condition for the formation of frazil and anchor ice in northern rivers

during the late fall and winter. While the phenomenon has been often investigated in laboratory,

relatively few studies report field observations. This thesis reports on 696 supercooling events

recorded on three regulated Alberta rivers from 2015 – 2020. These supercooling events were

analyzed for properties including peak supercooling temperature and duration, and analyzed in

order to increase our understanding of the behaviour of supercooling in rivers. The median peak

supercooling temperature across all events was -0.013oC and a median cooling rate of -2.5x10-4

oC/minute. Though the median event duration was 4.8 hours, events with durations from 2 to 14

days were regularly observed, exceeding the longest events previously reported in literature of

~50 hours. Preliminary analysis of longitudinal gradient of supercooling events in rivers showed

the potential impact of both dam regulation and urbanization on spatial distribution of

supercooling. Comparison between the behaviour of supercooling on left and right bank in one

river showed differences in frequency and duration of supercooling events cross channel, which

may have additional implications for the spatial distribution of frazil ice production.

Since supercooling events are driven by climate factors of the late fall and winter, understanding

the heat fluxes at the water surface and how they drive supercooling is crucial to improving

understanding of supercooling. Supercooling data collected on two rivers for the 2016-2017

season was analyzed along side local weather data to provide insight into the relationship

between supercooling events and the local surface energy budget. From the calculated

shortwave, longwave, sensible, and evaporative heat fluxes, it was found that the shortwave and

iii

longwave were the dominant heat fluxes during supercooling events, with 97.4 % of events

predominantly warmed by shortwave radiation, and 80.0 % of events predominantly cooled by

longwave radiation. Sensible heat flux was found to primarily be a secondary heat flux unless air

temperature dropped significantly colder that the season average (average air temperature -14.8

oC during supercooling compared to the season average of -8.99 oC during supercooling).

Evaporative heat flux tended to be negligible unless air temperature was positive along side high

wind speeds and low magnitude radiative heat fluxes. While no linear correlation was found

between supercooling parameters and event averaged heat flux components, it is clear from the

analysis that the start and end of supercooling events are notably impacted by the diurnal cycling

of shortwave radiation.

iv

Preface

This thesis research is an original work by Sean Boyd under the supervision of Dr. Mark Loewen

from the Department of Civil and Environmental Engineering at the University of Alberta and

Dr. Tadros Ghobrial from the Department of Civil and Water Engineering at Laval University.

Chapter 2 of this thesis was published as:

Boyd, S., Ghobrial, T., Loewen, M., Jasek, M., Evans J., 2022. A study of

supercooling in rivers. Cold Regions Science and Technology, 194(2022), 1034-1055,

doi: https://doi.org/10.1016/j.coldregions.2021.103455

I was responsible for one season of data collection, as well as the development and

implementation of the code used for analysis of the collected data. I was also responsible for the

analysis of the final results as well as the manuscript composition. Loewen, M. was responsible

for the supervision and administrative oversight, and along with Ghobrial, T. oversaw the

concept development of the project, planning of data collection, and manuscript review and edits.

Jasek M. and Evans, J. were instrumental in data collection on the Peace River, as well as

providing additional manuscript edits. Since this study is the cumulation of multiple years of data

collection by the University of Alberta River Ice Research Group, I would like to acknowledge

the work in data collection by Kerry Paslawski, Vincent McFarlane, Hayden Kalke, Chris

Schneck and Rhodri Howley, as well as Perry Fedun for his technical assistance for preparation

for field deployment.

For Chapter 3, I was responsible for developing the methodology and code for analysis of the

collected data and manuscript composition. Ghobrial, T. and Loewen, M. were both supervisory

authors as well as contributing to the planning of data collection, concept development of the

analysis process and manuscript edits. Since this data was collected in 2016-2017, I would like to

again acknowledge the data collection done by Kerry Paslawski, Vincent McFarlane, Hayden

Kalke, Chris Schneck, as well as Perry Fedun for his technical assistance for preparation for field

deployment.

https://doi.org/10.1016/j.coldregions.2021.103455

v

This thesis would not have been possible to pursue to completion without the support of family.

Thank you for all your support in a myriad of ways

vi

Acknowledgements

The author would like to acknowledge and thank both Dr. Mark Loewen and Dr. Tadros Ghobrial

for their assistance and support throughout all aspects of this thesis. Thank you for all your time

and effort in providing insights and feedback.

Thank you as well to Dr. Yutong She for agreeing to be on the examining committee, and to Dr.

Wenming Zhang for chairing the exam

This research was supported by the Natural Sciences and Engineering Research Council of Canada

and is gratefully acknowledged.

vii

Table of Contents

Chapter 1 : Introduction .. 1
1.1 Overview ... 1

1.2 Research objectives and methodology .. 3

Chapter 2 : A study of supercooling in rivers .. 4

2.1 Introduction .. 4
2.2 Study area ... 8

2.3 Methodology .. 9

2.4 Results .. 10

2.5 Discussion .. 16
2.6 Conclusions .. 21

Acknowledgements ... 22

2.7 Chapter 2 Supplementary materials .. 24

Chapter 2 Tables .. 24

Chapter 2 Figures... 27
Chapter 3 : Surface energy budget of 2016-2017 supercooling events 35

3.1 Introduction .. 35

3.2 Study Area .. 38

3.3 Methodology .. 39
3.4 Results .. 46

3.4.1 Graphical analysis of timeseries ... 46

3.4.2 Statistics and distribution of heat fluxes ... 49

3.4.3 Linear correlation and multiple linear regression ... 52
3.5 Discussion .. 53

3.5.1 Heat flux dynamics during supercooling .. 53

3.5.2 Comparison to literature ... 56

3.5.3 Correlating supercooling parameters with heat flux parameters 57
3.5.4 Potential role of ice production in supercooling energy budget 58

3.6 Conclusions ... 60

3.7 Chapter 3 Supplementary materials .. 62

Chapter 3 Tables .. 62

viii

Chapter 3 Figures... 66

Chapter 4 Conclusions .. 75

4.1 Study of supercooling parameters ... 75
4.2 Study of surface energy budget during supercooling .. 76

4.3 Future work ... 77

References .. 78

Appendix A – Summary of linear correlation & multiple linear regression analysis 86
Appendix B – Code documentation ... 96

List of Table

Table 2-1: Summary of the study reach properties for Kananaskis KR, North Saskatchewan

NSR, and Peace PR Rivers (McFarlane et al. (2017); Kellerhals et al. (1972); Buehler, H. (2013))

... 24

Table 2-2: Summary of the number of temperature logger deployment sites during all years of

measurements on each river .. 24

Table 2-3: Synopsis of supercooling events observed on each river during each deployment

season .. 25

Table 2-4: Summary of the statistics of supercooling event parameters including peak

supercooling TP, duration D, principal supercooling duration DP, cumulative degree minutes of

supercooling CDMS and principal supercooling average cooling rate CRP. Minimum and

maximum values refer to magnitudes ... 26

Table 2-5: Summary of the statistics of the supercooling events measured simultaneously by

sensor pairs on the left bank (LB) and right bank (RB) of the PR. Parameters include peak

supercooling TP, duration D, cumulative degree minutes of supercooling CDMS and total

cumulative degree minutes of supercooling ... 27

Table 3-1: Summary of the study reach properties for North Saskatchewan NSR, and Peace PR

Rivers (McFarlane et al. (2017)) ... 62

Table 3-2: Summary of equipment deployed. (Ruskin (2021); Onset (2021)) 62

Table 3-3: Straight-line distances between supercooling observation sites and weather stations 62

Table 3-4: Estimated uncertainty for the heat flux components ... 63

ix

Table 3-5: Average conditions during supercooling events. These conditions include event

averaged water temperature (𝑇𝑇𝑇𝑇), air temperature (𝑇𝑇𝑇𝑇), cloud cover fraction (𝑛𝑛), wind speed

(𝑉𝑉𝑉𝑉), and relative humidity (𝑅𝑅𝑅𝑅) .. 63

Table 3-6: Statistics of the event averaged heat flux components during supercooling events.

Heat flux components include event averaged shortwave (𝑄𝑄𝑠𝑠𝑇𝑇), longwave (𝑄𝑄𝑙𝑙𝑇𝑇),), sensible

(𝑄𝑄𝑠𝑠), and evaporative (𝑄𝑄𝑒𝑒) heat fluxes. These components cumulate into the event averaged net

heat flux (𝑄𝑄𝑛𝑛), and the net energy (Enet) of the event .. 63

Table 3-7: Statistics of peak supercooling (TP), duration (D), principal supercooling duration

(DP), cumulative degree minutes of supercooling (CDMS), and principal supercooling average

cooling rate (CRP) for the events used in the energy budget analysis ... 65

Table 3-8: Net Heat Flux behaviour during events with positive 𝑄𝑄𝑛𝑛 ... 65

List of Figures

Figure 2-1: A water temperature (Tw) time series recorded in a laboratory tank being cooled by a

constant surface heat flux.. 27

Figure 2-2: Maps showing.: (a) Geographical location of the three study reaches in Alberta.

Lower maps are enlarged views of the study reaches, (b) Kananaskis River (KR), (c) North

Saskatchewan River (NSR) within the City of Edmonton limits, and (d) Peace River (PR) 28

Figure 2-3: Equipment used in KR and NSR deployments: (a) RBR Solo T Temperature Logger

along with protective case and anchoring pins and, (b) Case being anchored to the riverbed and

approximately aligned with the river current as shown by the arrow ... 29

Figure 2-4: A time series of a supercooling event observed at the Genesee site on the NSR on

Nov. 25 - 26, 2016. Water temperature Tw plotted as a function of time-of-day t. Graphical

definitions of start time ts, end time te, peak supercooling TP, principal supercooling duration DP,

event duration D, cumulative degree minutes supercooling CDMS, and average principal

supercooling cooling rate CRP .. 30

Figure 2-5: Water temperature time series from the 2016-2017 season: (a) KR, Village site, (b)

NSR, Genesee site and, (c) PR Sta. 293.500 km on the right bank .. 30

Figure 2-6: Water temperature time series showing freeze-up period supercooling events from

2016-2017: (a) KR Village site, (b) NSR Quesnell site, (c) PR Sta. 293.500 km on the right bank.

x

Note: the start and end of each event is marked by black dots at the intersection of the water

temperature time series and 0 °C .. 31

Figure 2-7: Water temperature time series during the break-up period on the NSR from April 22

to April 30th, 2018 showing: (a) the full range of the daily water temperature 31

Figure 2-8: Monthly frequency distribution of supercooling events for (a) KR, (b) NSR, and (c)

PR .. 32

Figure 2-9: Hourly frequency distribution of supercooling events showing: (a) start and (b) end

times of freeze-up period events, and (c) start and (d) end times of break-up period events

calculated from the combined data set from all rivers and all years of measurements 32

Figure 2-10: Histograms of supercooling parameters calculated from the combined data set from

all rivers and all years of measurements showing: (a) peak supercooling TP, (b) duration D, (c)

principal supercooling duration DP, (d) cumulative degree minutes of supercooling CDMS, and

(e) principal supercooling average cooling rate CRP .. 33

Figure 2-11: Empirical cumulative distribution functions (CDFs) of supercooling parameters

(black) compared to a fitted theoretical lognormal distribution (red dotted) for (a) peak

supercooling TP, (b) duration D, (c) principal supercooling duration DP, (d) cumulative degree

minutes of supercooling CDMS, and (e) principal supercooling average cooling rate CRP 34

Figure 2-12: Water temperature (Tw) time series measured near the left (blue) and right (red)

banks at Sta. 305 km on the PR in the 2016-2017 season .. 34

Figure 3-1: Maps showing.: (a) A map showing the geographical location of the two study

reaches in Alberta. Lower maps are enlarged views of the study reaches, (b) North Saskatchewan

River (NSR), and (c) Peace River (PR). Note the direction of flow is indicated by a black arrow

and major roads by grey lines ... 66

Figure 3-2: North Saskatchewan Freeze-up season: (a) Air temperature (Ta) and shortwave

radiation (Qsw), (b) Heat flux components. Water temperature (Tw) with shaded supercooling

events and net heat flux (Qn) for (c) Genesee, (d) River Ridge, (e) Quesnell, and (f) Emily

Murphy. The sensor at Quesnell was removed from the river on December 3rd prior to freeze-up

ending .. 67

Figure 3-3: Genesee Break-up Season (a) Barometric Pressure (Patm), wind speed (Vz) in m/s,

relative humidity (RH) as a fraction, and cloud cover (n) as a fraction (b) Air temperature (Ta)

xi

and shortwave radiation (Qsw), (c) Heat flux components (d) Water temperature (Tw) with

shaded supercooling events and net heat flux (Qn) ... 68

Figure 3-4: Sample time-series of Peace River Sta 293.5 left bank season (a) Barometric Pressure

(Patm), wind speed (Vz) in m/s, relative humidity (RH) as a fraction, and cloud cover (n) as a

fraction (b) Air temperature (Ta) and shortwave radiation (Qsw), (c) Heat flux components (d)

Water temperature (Tw) with shaded supercooling events and net heat flux (Qn) 69

Figure 3-5: Extended event on the Peace River at Sta. 293.5 km on the left bank (a) Barometric

Pressure (Patm), wind speed (Vz) in m/s, relative humidity (RH) as a fraction, and cloud cover (n)

as a fraction (b) Air temperature (Ta) and shortwave radiation (Qsw), (c) Heat flux components

(d) Water temperature (Tw) with shaded supercooling events and net heat flux (Qn) 70

Figure 3-6: Distribution of (a) Start Time and (b) End Time of supercooling events on the NSR

over the course of the day. (c) Average heat fluxes throughout the period of supercooling

observations for the NSR events ... 71

Figure 3-7: Distribution of (a) Start Time and (b) End Time of supercooling events on the PR

over the course of the day. (c) Average heat fluxes throughout the period of supercooling

observations for the PR events .. 71

Figure 3-8: Frequency distributions of event averaged net heat fluxes during supercooling events

on (a) Both Rivers, (b) NSR and (c) PR ... 72

Figure 3-9: Log-log scatter plot of absolute values of the net energy (|𝐸𝐸𝑛𝑛𝑒𝑒𝐸𝐸|) and cumulative

degree minutes supercooling (CDMS) of North Saskatchewan (black) and Peace River (grey)

along with a line of best fit (red) and the 95 % prediction interval for the line of best fit (blue) . 72

Figure 3-10: Dominance of heat flux components during negative (left) and positive (right) heat

fluxes for (a)-(b) Both Rivers, (c)-(d) North Saskatchewan River and (e)-(f) Peace River 73

Figure 3-11: Scatter plot of average net principal supercooling heat flux (𝑄𝑄𝑛𝑛𝑄𝑄) and peak

supercooling (Tp) of North Saskatchewan (black) and Peace River (grey) 73

Figure 3-12: Event with positive 𝑄𝑄𝑛𝑛 observed on the Peace River at the left bank of Sta. 305 km.

This event has the lowest TP value of all events observed with a with positive 𝑄𝑄𝑛𝑛 at TP = -0.086
oC... 74

Figure 3-13: A time series from the left bank of Sta 293.5 km on the Peace River on March 1st,

2017 containing a typical duration supercooling event with a positive 𝑄𝑄𝑛𝑛 (3:00 – 3:35 PM). This

figure also shows the end of a series of supercooling events that have a negative 𝑄𝑄𝑛𝑛 (events prior

xii

to 3 PM), as well as two instances of supercooling with duration < 10 minutes (thus not counted

in the data set) ... 74

1

Chapter 1 : Introduction

1.1 Overview
Rivers are a vital community resource, as they provide a water supply as well as serve as a critical

component of sanitation, power generation, and transportation. For northern communities, the

dynamics of river ice processes heavily impact all these sectors from late fall to early spring. Daly

(1994) described the evolution of a river ice regime, and how supercooling (i.e., water temperatures

cooled below 0oC) is a critical component of the process. Under freezing conditions, water begins

supercooling and entrained seed crystals in the water column act as sites for secondary nucleation

(Daly 1994). The forming of frazil ice increases the available nucleation sites, causing a ‘bloom’

in frazil ice production. Frazil ice crystals in supercooled water are strongly adhesive, freezing to

other ice crystals, as well any submerged surfaces such as the river bed and banks and any

infrastructure (Arden and Wigle 1973). Flocculation of frazil in the water column results in

growing frazil slush balls that eventually become buoyant enough to float to the surface to form

frazil pans or adhere to the bed, resulting in anchor ice (Daly 1994). The anchor ice grows in size

through both accumulation of frazil and in-situ growth until thermal warming or mechanical

release from sufficient buoyancy frees the anchor ice from the bed. The surface ice masses are then

transported downstream, freezing together into larger frazil rafts. Eventually, the leading edge is

halted by grounding on the bed or a constriction from the banks or border ice (Daly 1994). This

forms the starting point for a consolidating ice cover to propagate upstream, insulating the water

from the cooling conditions. Breaks in this cover may still develop from the introduction of warm

water or due to high flows (rapids). Fluctuations in flow such as those from tidal surges and dam

hydropeaking are also known to break up ice covers and maintain open water conditions

throughout the winter (Maheu et al. 2014; Richard and Morse 2008). The break-up of the ice cover

in the spring re-opens the water surface to the air, and can result in a second period of supercooling

under sufficiently cool weather conditions. The formation of suspended frazil during freeze-up

impacts water intakes (Richard and Morse 2008) while anchor ice development can impact power

generation (Arden and Wigle 1973).

Since the formation of ice is exothermic, the water temperature is a balance between ice production

and the net cooling flux. Laboratory experiments (e.g., Carstens 1966) show that under a constant

2

heat flux, the water temperature will drop to a minimum temperature before rising to an

equilibrium temperature. At this stage, the latent heat of frazil ice production matches the cooling

surface heat flux, resulting in a constant water temperature referred to as the residual temperature.

In more dynamic conditions in the field, the net heat flux typically varies and supercooling events

will tend to end when the net heat flux becomes positive (Ashton 1986). The lowest temperatures

observed during field supercooling were reported by Matousek (1992) at -0.18oC at the water

surface shortly before skim ice was observed. McFarlane et al. (2019) described an event that

reached a peak supercooling temperature of -0.145oC. Literature reported duration of supercooling

events to be on average less than 8 hours, though individual events were reported to last around

two days (Richard and Morse 2008; Nafziger et al. 2013). The cooling rates at the start of

supercooling events measured in laboratory studies (-1.29x10-3 to -5.02x10-2 ◦C/minute according

to Daly (1994)) were estimated to be approximately an order of a magnitude larger than the cooling

rates measured in natural streams (Osterkamp (1978)).

Ashton (1986) reported up to eleven modes of heat transfer between the water column and its

boundaries, though most studies only quantify the most significant of these heat fluxes for the

specific analysis. Previous literature have found that surface heat fluxes account for the majority

of the energy budget in most rivers (Evans et al. 1998; Hannah et al. 2004). However, groundwater

sourced streams can have reduced sensitivity to weather variation due to underground water being

isolated from the weather conditions (Brown et al. 2006). At the surface, the shortwave and

longwave heat fluxes were found to be the most important components for a river’s winter energy

budget (Evans et al. 1998; Webb and Zhang 2004; McFarlane and Clark 2021). The balance of

these radiative heat fluxes results in a net loss in the winter due to reduced solar radiation but

continually outgoing longwave radiation. The sensible heat flux is the next most prominent heat

flux, and can be a significant positive or negative heat flux depending on the local weather

conditions (Hannah et al. 2004; Richard et al. 2015). Even through reduced daylight hours, there

is still a significant variability between day and night heat fluxes with Richard et al. (2015) noting

differences of ~200 W/m2.

3

1.2 Research objectives and methodology
The first objective of this research is to investigate the behaviour of supercooling events in

rivers, through analysis of multiple seasons of events across different rivers. Previous studies

have taken field measurements for duration and minimum temperatures of supercooling, but did

not have sufficiently large data sets to determine trends in behaviour of supercooling in rivers.

Chapter 2 presents an analysis of water temperature time series over multiple winters between

2015 and 2020 on three Alberta rivers: the North Saskatchewan River, Peace River and

Kananaskis River. The analysis detailed in Chapter 2 is one of the first to look at large multiple

winter data set and attempt to develop means to determine trends in how supercooling events

occur and behave. This includes the start and end time of day, duration, peak supercooling

temperature, principal supercooling duration, principal supercooling average cooling rate and

cumulative degree minutes of supercooling. The analysis would highlight the differences

between the supercooling behavior in different rivers as well as the spatial variation of

supercooling behavior in the lateral and longitudinal directions in the rivers.

The second objective of this research is to improve our understanding of the relationship between

water temperature and the surface energy budget during supercooling events. Chapter 3 looks at

the 2016-2017 sub-set of supercooling events observed on the North Saskatchewan and Peace

Rivers alongside local weather data to estimate the local energy budget during supercooling

events. A better understanding of how changes in surface heat fluxes impacts supercooling

events will inform modeling and forecasting of the development of a river’s ice regime, and

inform planning and forecasting around supercooling and ice production.

4

Chapter 2 : A study of supercooling in rivers1

2.1 Introduction

Supercooling can occur in rivers when the turbulent water surface is exposed to weather

conditions that exert a strong, persistent negative heat flux. These conditions typically begin in

late fall during freeze-up prior to the formation of a continuous ice cover and early spring as the

cover starts to break-up. In supercooled turbulent water, frazil ice crystals first form near the

water surface and then propagate deeper into the water column through vertical mixing (Arden

and Wigle 1973). Frazil crystals surrounded by supercooled water are called ‘active’ and readily

adhere to each other forming frazil flocs or adhere to the river bed to form anchor ice (Daly

1994). As the frazil ice concentration grows, frazil flocs increase in size and float to the surface

once they are large enough for buoyant forces to overcome turbulence. As the slush formed by

the gathering flocs moves downstream, it freezes together into frazil pans. If the downstream

flow of frazil pans is halted due to grounding or a constriction, a continuous ice cover is formed

and propagates upstream as more pans arrive. The resulting ice cover insulates the water from

any cooling heat fluxes, preventing supercooling from occurring unless there is open water

upstream of the ice cover (e.g., rapids or open leads). Break-up of the ice cover in the early

spring may cause a second period of supercooling to occur depending on the local weather

conditions. Understanding the behavior of supercooling in rivers is of great importance due to

the impact frazil ice and anchor ice formation can have on winter hydraulics (e.g., Jasek et al.

2015), water intakes (e.g., Richard and Morse 2008) and hydropower generation (e.g., Arden and

Wigle 1973). In addition, ice formation processes have a significant impact on river ecosystems

(Prowse 2001). For example, it has been observed that long periods of supercooling may lead to

large mortality rates in benthic organisms buried in the river bed, even without exposure to frazil

ice (Prowse 2001).

1 This chapter has been published in Cold Region and Technologies as:
 Boyd, S., Ghobrial, T., Loewen, M., Jasek, M., Evans J., 2022. A study of supercooling in rivers. Cold Regions Science
and Technology, 194(2022), 1034-1055, doi: https://doi.org/10.1016/j.coldregions.2021.103455

5

Several previous laboratory studies have reported measurements of cooling rates and peak

supercooling temperatures. In these experiments supercooling was typically generated by

exposing the water surface in a stirred tank or open channel flume to a constant sub-zero air

temperature (i.e., a constant heat flux from the water to the air). In a tank or channel exposed to a

constant upward heat flux, the water temperature (Tw) will vary with time as shown in Figure 2-

1. Initially, Tw decreases at a constant rate until frazil ice crystals start to form. The production

and growth of frazil ice releases latent heat into the water, gradually reducing the cooling rate. At

the time when the heat generated by frazil ice production balances with the surface heat flux, the

lowest supercooling temperature, referred to as “peak supercooling”, is reached. After this point,

the heat generated by frazil ice production exceeds the surface heat flux, so Tw increases, then ice

production begins to decrease and when the latent heat release again equals the surface heat flux

a constant residual temperature is reached. The period of time between the start of supercooling

until when the residual temperature is reached is called the principal supercooling stage and this

is followed by the residual supercooling stage (Ye et al. 2004). The shape of the time series for

this type of event shown in Figure 2-1 (i.e., constant heat flux) was defined as a ‘classical’

supercooling event by Kalke et al. (2019).

Carstens (1966) studied the behaviour of supercooling in a laboratory racetrack flume and found

that higher cooling rates lead to lower peak supercooling and residual temperatures. They

observed peak supercooling temperatures that varied from -0.03 to -0.18°C. Michel (1967) used

an experimental flume to establish a threshold for frazil ice nucleation temperature around -

0.05oC. Michel (1971) reported that a cooling rate larger than 0.02 oC/minute is required for a

supercooling event to establish a residual temperature. Matousek (1992) used both laboratory

and field experiments to show that skim ice begins to form at water surface temperatures of -

0.18oC, even when the bulk water temperatures are above freezing. Using a counter rotating

laboratory flume to study frazil ice formation, Ye et al. (2004) reported average cooling rates of -

0.002 to -0.0083 oC/minute and peak supercooling temperatures from -0.028 to -0.052oC.

Ghobrial et al. (2012) and Schneck et al. (2019) measured similar ranges of cooling rates of -

0.006 to -0.012 oC/minute and -0.008 to -0.013 oC/minute, respectively. McFarlane et al. (2015)

measured frazil ice particle sizes in a stirred tank and observed peak supercooling ranging from -

0.072 to -0.093°C.

6

The earliest reported measurements of supercooling in the field go back over a century when

Barnes (1908), wrote that the supercooling water only reached “a few thousandths of a degree”

below freezing. Based on thousands of measurements, Altberg (1936) reported that supercooling

temperatures in rivers could reach -0.05oC. Arden and Wigle (1973) conducted studies on the

upper Niagara River to better understand the conditions that lead to the development of surface

ice and reported supercooling temperatures as low as -0.07oC. This study also observed active

frazil in the upper layers of the flow at water temperatures of approximately -0.02 to -0.03oC.

Osterkamp (1978) reports nucleation temperatures > -0.01oC on small streams, hypothesizing

that the heat and mass exchange at the water surface may be key in the observed nucleation

temperatures. Osterkamp (1978) also observed that the cooling rates observed in laboratory

settings tend to be an order of magnitude greater than those measured in rivers. Daly (1994)

compiled heat loss rates of supercooling events recorded in the literature and found values from

9x10-5 to 3.5x10-3 J/s∙cm3, which translates to cooling rates of -1.29x10-3 to -5.02x10-2 oC/minute.

A field study on the tidal St. Lawrence River near Quebec City, Canada measured peak

supercooling between -0.01oC and -0.06oC (Richard and Morse 2008). While not quantifying the

duration of events, Richard and Morse (2008) state that the majority of active frazil periods

lasted less than 8 hours, with 5 events lasting longer than two tide cycles (>~50 hours). Water

temperature measurements at six sites in five rivers in Newfoundland and New Brunswick were

used by Nafziger et al. (2013) to investigate the behaviour of supercooling during freeze-up and

break-up. They found that freeze-up events tended to reach a residual temperature indicating that

the latent heat released by frazil production was balanced by heat loss due to surface cooling,

while break-up events never reached a residual temperature and ended abruptly. Peak

supercooling did not drop below -0.09oC and the average duration of supercooling events at each

site ranged from 2.2 to 8.5 hours, with a maximum of 42.7 hours. While studying the freeze-up

energy budget on the Dauphin River in Manitoba, McFarlane and Clark (2021) observed six

overnight supercooling events. The maximum peak supercooling temperature observed was -

0.064oC and the durations of events ranged from 1 to 18 hours.

7

McFarlane et al. (2017) collected water temperature data on the Kananaskis and North

Saskatchewan Rivers and reported peak supercooling temperatures from -0.026 to -0.061oC, and

principal supercooling periods of 1 to 2.36 hours. They compared their field observations to

laboratory measurements and found that laboratory supercooling reached lower temperatures (-

0.072 oC to -0.093oC) and established an equilibrium much faster (12 to 15 minutes from the

event start) than in the field. In a subsequent study on the North Saskatchewan River, McFarlane

et al. (2019) observed a supercooling event with a peak supercooling temperature of -0.145oC.

This event was also notable, since no detectable suspended frazil ice was generated but rapid

anchor and skim ice formation was observed. Howley et al. (2019) used River1D to model river

ice processes on the North Saskatchewan River and related a novel parameter, the degree

minutes of supercooling (DMS), to frazil ice concentration. DMS was defined as the integrated

area of a supercooling event temperature time series (i.e., the area between 0oC and the

supercooling curve). Similar to how cumulative degree days of freezing (CDDF) is used to

quantify the severity of periods of freezing air temperatures, Howley et al. (2019) suggested

DMS as a means to quantify the intensity of a supercooling event and relate it to the peak frazil

production. Preliminary tests of this method with a data set with a maximum DMS of ~250
oC∙minutes suggests that it could be viable, but additional field measurements would be required

to confirm its applicability (Howley et al. 2019).

It is evident that previous field studies of supercooling have provided some valuable data

regarding peak supercooling and some measurements of the duration of events. However, the

data is sparse and additional field measurements are needed to increase our knowledge of

supercooling behaviour in rivers and thus improve our understanding of frazil ice formation. To

address this need, high resolution winter water temperature time series measurements were

collected in three Canadian rivers from 2015 to 2020. Preliminary analysis and results based on

these field measurements were presented in Kalke et al. (2019) and Boyd et al. (2020).

8

2.2 Study area
Supercooling measurements were collected in three regulated rivers in Alberta, Canada, namely:

the Kananaskis, North Saskatchewan and Peace Rivers as shown in Figure 2-2. The characteristics

of each study reach are listed in Table 2.1. The Kananaskis River (KR) is the smallest river in the

study, with an annual average flow rate and depth of approximately 10 m3/s and 0.60 m,

respectively (Table 2.1). Three measurement sites were used on the study reach and were located

10, 15, and 20 km downstream of the Pocaterra Dam (see Figure 2-2b). Daily hydropeaking causes

the discharge to vary between 2 – 20 m3/s which typically prevents the formation of a permanent

ice cover at the measurement sites. Previous field studies in this reach have shown that these

conditions allow supercooling events to occur for most of the winter season (McFarlane et al.

2017).

The North Saskatchewan River (NSR) is the intermediate sized river in this study with an annual

average flow rate of 220 m3/s and an average depth of 1.40 m within the study reach (Table 2-1).

Seven measurement sites were used on the NSR over a ~104 km long reach. The most upstream

site at Genesee, Alberta is 48 km upstream of the City of Edmonton limits, and approximately 360

km and 195 km downstream of the Bighorn and Brazeau Dams, respectively. The remainder of

the sites were located within the City of Edmonton limits as shown in Figure 2-2c. Dam regulation

causes daily water level fluctuations between 0.3 and 0.4 m during freeze-up in the city. Freeze-

up in this reach typically starts in early November and ends late November to early December.

The Peace River (PR) is the largest river in this study with an annual average flow rate of ~1,600

m3/s and an average depth of flow of 2.6 m (Table 2.1). As shown in Figure 2-2a the dams

regulating the flow are approximately 300 km upstream of the study reach. Nine measurement

sites were used on this reach and they are labeled in Figure 2-2d based on their distance

downstream of the W.A.C. Bennett Dam. The baseflow regulation from the upstream dams

introduces significant volumes of warm water to the PR, altering the river ice regime downstream.

The ice front is initially formed in early December ~800 km downstream and then slowly advances

upstream and by early March is typically ~100 km downstream of the dams before beginning its

retreat (Jasek et al. 2011). Supercooling events can occur at any given measurement site up until

shortly after the ice front passes that location and a continuous stable ice cover is formed.

9

2.3 Methodology
Water temperature data was sampled at 1-minute intervals (or 5-minute intervals in the case of the

PR sensors deployed from 2018-2020) using RBR Solo T temperature loggers (±0.002ºC) housed

in protective metal casings and anchored to the riverbed using metal pins as shown in Figure 2-3.

These casings were used on the KR and NSR, where the sensors were deployed by wading to a

depth of ~0.75 m. In the PR, the loggers were installed in circular casings, bolted to flat steel bars,

that were deployed from a boat and cabled to an anchoring point (e.g., a large tree) on the

riverbank. Table 2.2 presents a summary of the number of measurements sites during every year

of measurements on each river. The loggers were deployed in the fall prior to freeze-up and were

retrieved the following year after the end of the break-up. One season of measurements was

collected on the KR (2016-2017) and four seasons of measurements (between 2015 and 2020) on

the other two rivers (see Table 2.2). The number of measurement sites varied from 1 to 7 sites due

to logistical constraints and field conditions.

In Figure 2-4, a typical supercooling event is plotted illustrating graphically the parameters that

were used to characterize supercooling events. These parameters include the following: event start

ts and end te times defined as the interpolated times when the temperature reached 0°C; event

duration D, the time between ts and te; peak supercooling temperature TP, the minimum

temperature reached during an event; the principal supercooling duration DP, the time between ts

and TP; the cumulative degree minutes of supercooling CDMS, the intensity of the supercooling

event as introduced by Howley et al. (2019); and the principal supercooling average cooling rate

CRP calculated as the ratio between TP and DP. Also, it should be noted that the use of the term

‘principal supercooling’ for both TP and CRP differs from its definition in previous studies (e.g.,

Ye et al., 2004; McFarlane et al., 2019). In those studies, the principal supercooling period was

defined for a classical supercooling event as the time between the start of an event and the point

when the residual temperature was reached. The change in definition proposed in this study was

motivated by the fact that supercooling events observed in rivers often do not reach an equilibrium

residual temperature (Kalke et al., 2019), which makes DP undefined for those events.

A MATLAB program was developed to identify and catalogue supercooling events in the collected

time series data. A supercooling event was defined as a continuous series of negative water

10

temperatures that lasted for 10 minutes or more. The minimum duration requirement was

implemented to screen out events that would have an insignificant impact on river ice processes.

The accuracy of the RBR Solo T loggers is ± 0.002oC and therefore events that were detected

within this range -0.002oC < TP < 0oC were discarded. In addition, events with peak supercooling

< -0.2oC, as well as events occurring within an hour before or after them, were also discarded

because these events were always associated with anomalous time series behaviour. This cut off

value was established as a relatively conservative threshold that is below the range of observed

peak supercooling temperatures in previous studies (Kalke et al., 2019; McFarlane et al, 2019).

Lastly, to facilitate investigation of supercooling behavior associated with different river ice

processes freeze-up and break-up periods were defined. A freeze-up period is defined as the period

when frazil ice formation processes are dominant. In typical years, this period extends from when

the first supercooling event is observed, to the time when an ice cover forms over the study reach.

Similarly, the break-up period is defined as the period from when the ice cover starts to break-up

in the study reach, to when the last supercooling event was observed. Freeze-up period end dates

and break-up period start dates were estimated depending on the availability of field data on ice

front location. For all NSR sites, images from the University of Alberta Earth and Atmospheric

Sciences (EAS) camera located near the Emily Murphy site were used for defining freeze-up and

break-up periods. For the PR, B.C. Hydro provided ice front location data for all four seasons. It

is important to note that during the 2016-2017 season, the ice cover did not reach the study reach

on the PR due to milder winter air temperatures. Extreme daily hydropeaking prevented the

formation of an ice cover in the KR study reach during the 2016-2017 season. Therefore, for the

2016-2017 season on the KR and PR, the freeze-up period extended throughout the entire winter

since the presence of open water in the two study reaches allowed frazil ice formation processes

to occur throughout the winter.

2.4 Results
A total of 34 continuous winter water temperature time series were successfully collected in the

three rivers between 2015 and 2020 (see Table 2.2). A total of 39 detected supercooling events

were discarded either because they had TP lower than the cut-off threshold of -0.2°C or because

they occurred within one hour of an anomalous event. It is important to note that 39 events is only

~5% of the total number of detected events. Some possible causes of these anomalous events

11

include anchor ice formation on the sensor, lifting of the sensor to the water surface via anchor ice

release, and incorporation of the sensor into thermal ice.

Table 2.3 presents a synopsis of supercooling events per river for each deployment season

including the date of the first and the last supercooling events, the duration of both the freeze-up

and break-up periods, as well as the number of events recorded during each period. Table 2.3 also

presents the seasonal cumulative degree minutes of supercooling (SCDMS) for each freeze-up and

break-up period, defined as the summation of the total CDMS observed on the river during a given

freeze-up and break-up period divided by the number of measurement sites that recorded

supercooling events. During the 2016-2017 season, a stable ice cover did not form at the

measurement sites on the KR and PR, and therefore the freeze-up period lasted for 137 and 133

days, respectively. For the rest of the seasons, the freeze-up period duration ranged between 8 - 46

days and 15 - 42 days on the NSR and the PR, respectively. Similarly, the break-up period ranged

between 5 - 12 days and 0 - 50 days on the NSR and the PR, respectively. Break-up occurred on

the PR in 2019-2020, but because no supercooling events were detected after break-up, the break-

up period duration is defined as zero.

A total of 350 and 264 events were observed on the NSR and PR over the four seasons of

measurements and 82 in the single season on the KR. Freeze-up period events comprised ~90 %

of observed events on both the NSR and PR. Generally, the longer the freeze-up period, the greater

the SCDMS. The exception to this is the single data point from the KR where the longest freeze-

up period of 137 days produced a SCDMS of 151 oC∙minutes which is the fourth smallest value.

The PR 2016-2017 season, in which the freeze-up period also lasted all winter, had a seasonal

CDMS of 698 oC∙minutes, approximately 4.6 times greater than the KR season. Performing a linear

regression using the NSR and PR data from Table 2.3 (i.e., excluding the outlier from the KR)

gives the following equation,

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 5.13 ∗ 𝑑𝑑𝑓𝑓 + 6.58 (2.1)

where df is the freeze-up period duration in days and SCDMS is the seasonal cumulative degree

minutes of supercooling in °C∙minutes and R2 = 0.977. The break-up periods generally have

12

significantly smaller SCDMS values, ranging between 4.52 to 24.1 oC∙minutes. Note that there is

no correlation between break-up period duration and SCDMS (R2 = 0.025).

Examples of water temperature time series from the 2016 – 2017 season from each river are plotted

in Figure 2-5. Daily occurrences of supercooling events can be seen in the 16-day period at the

Village site on the KR plotted in Figure 2-5a. The relatively strong positive temperatures between

events, along with the fairly regular start and end times, is due to the daily hydropeaking from the

Pocaterra Dam. Approximately half of the events have a ‘classical’ supercooling shape similar to

laboratory observations (Figure 2-1). Events during this period ranged in duration between 14.1

minutes to 22.8 hours, with a mean duration of 10.7 hours and a median of 13.5 hours. The gap

between supercooling events ranged between 2.8 minutes and 16.4 hours and TP ranged between

-0.002 oC and -0.031oC, with a mean value of -0.014oC.

The plot in Figure 2-5b shows a freeze-up period observed at the Genesee site on the NSR, which

lasted approximately 12 days and ended on December 6th, 2016. The events during this period are

more irregular in their start and end times, but there still tends to be one event every day. The most

extreme supercooling event measured in this study, with TP of -0.106oC was observed at this site

on November 25, 2016 at 4:25 AM. During the first 6 days (from November 24th to 30th) TP values

tended to be larger and the events closer to the classical shape. After the first two events TW warmed

to above 0.1oC, but quickly cooled to start the following supercooling event. The average CRP, D,

and TP for the first 6 days were -4.14x10-4 oC/minute, 14.0 hours, and -0.058oC, respectively. For

the last 6 days (November 30th to December 6th) TP magnitudes and the intermittent positive water

temperature peaks were both smaller and the average CRP, D, and TP were -9.76x10-5 oC/minute,

21.9 hours, and -0.021 oC, respectively. From November 30th until the completion of the freeze-

up period, the water temperature never rose above freezing for more than 5 hours in a day and

temperatures did not exceed 0.025oC.

In Figure 2-5c a time series spanning 13 weeks from December 7, 2016 to March 8, 2017 recorded

by the sensor near the right bank at Sta. 293.5 km on the PR is plotted. As noted previously, the

ice front never reached this site, so the freeze-up period lasted the entire winter. Supercooling

events occurred during 7 distinct periods that ranged in duration from 2 to 12 days, with

13

intermittent warm periods between these periods reaching peak temperatures from 1 – 2oC. Many

of these events have residual periods lasting for multiple days. Individual event duration ranged

between 27 minutes and 9.74 days with TP varying between -0.011oC and -0.044oC, with a mean

value of -0.025oC.

In Figure 2-6 some shorter duration plots showing freeze-up period events from the 2016-2017

season on each river are presented. Figure 2-6a shows six events (labeled as A1 to A6) recorded

at the Village site on KR over a five-day period. In terms of shape, two events (A1 and A4) display

classical supercooling behaviour, while A2, A3 and A5 have a more rectangular shape with

minimal difference between TP and the residual temperatures. The classical supercooling events

(A1 and A4) have a TP of approximately -0.06oC, while the other events (A2, A3, and A5) have

significantly smaller magnitude TP ranging from -0.004 to -0.011oC. In terms of duration, D ranged

from approximately 1 to 20 hours, with two events (A1 and A4) starting around midnight and the

remainder starting in the afternoon, with most of them ending around mid-day. The residual

temperatures ranged from -0.007 to -0.010oC for all events.

Figure 2-6b shows a series of five events on the NSR at the Quesnell site over a span of 3.5 days.

Event B3 has a shape that is similar to a classical supercooling event with TP of -0.105oC, the

second largest value observed in this study and a residual temperature of approximately -0.007oC.

Event B5 has an approximately symmetric shape, with TP of -0.007oC, comparable to the previous

events’ residual temperature range. The rest of the events (B1, B2, and B4) did not have as clear

of a classical or symmetric shape. The durations of all events ranged between 5 and 19 hours; two

events (B1 and B5) started in early morning, while the other three events started in the afternoon.

All events except B4, ended around noon.

Figure 2-6c shows three supercooling events measured over a 13-day period on the PR. The longest

event C1 had a duration of ~10 days. During the first 2.5 days, this event behaved similar to a

classical constant heat flux event, with the water temperature dropping to a TP of -0.043oC before

rising to a residual of approximately -0.007oC. After this point the water temperature behaved

more erratically, with temperatures fluctuating between -0.003 and -0.014oC until the event ended.

14

The two events that followed, C2 and C3, were significantly shorter, with durations of 19.4 hours

and 8.6 hours and TP of -0.015 and -0.013oC, respectively.

A 9-day time series collected during the break-up period on the NSR at the end of April 2018 is

plotted in Figure 2-7. Supercooling events occurred on 7 of the 9 days and following every event,

the water temperature increased, typically peaking at 0.5 to 1.3oC in the early afternoon (See Figure

2-7a). The expanded vertical scale plot presented in Figure 2-7b shows that none of the events had

a well-defined residual stage. Supercooling events started between midnight and 4 AM and ended

between 5 and 8 AM. Events D1, D5 and D6 have a symmetric shape, falling to TP and then rising

at approximately the same rate. The remainder of the events had shapes that indicate that a residual

temperature was being established just before the events ended. The magnitude of TP was quite

small for these break-up period events compared to freeze-up period events, with the strongest

event reaching only -0.02oC.

Table 2-4 presents results of a statistical analysis of all the supercooling parameters calculated

from for the entire data set and for each river. Peak supercooling temperatures (TP) on the KR

reached -0.059oC with a mean of -0.013oC, while on the NSR and PR Tp peak values reached -

0.106oC and -0.087oC with mean values of -0.020oC and -0.019oC, respectively. The average

event durations (D) on the KR and NSR were comparable, with mean values of 12.3 and 9.02

hours, respectively. However, events on the PR were considerably longer with a mean D of 47.1

hours. The mean principal supercooling duration (DP) only varied from 2.16 to 3.02 hours in the

three rivers with an overall average of 2.50 hours. The mean CDMS for the KR and NSR were

comparable at 5.53 and 5.65°C∙minutes, while on the PR it was significantly larger at 20.1

°C∙minutes. The average principal supercooling cooling rate (CRP) for all rivers was -5.5×10-4
oC/minute, the maximum CRP for the NSR and PR was approximately -1.16x10-2 oC/minute but

on the KR, it was significantly smaller at -2.52x10-3 oC/minute. The five parameters in Table 2.4

have mean to median ratios that vary from approximately 1.5 to 5 indicating that the underlying

distributions are all skewed.

15

Figure 2-8 presents histograms of the percentage of supercooling events that occurred during

each month for each river. On the KR, supercooling events occurred every month from

November to April. Approximately 40 % of the events occurred in December, and 20 % and 25

% occurred in February and March, respectively (See Figure 2-8a). Events occurred in two

distinct time periods on the NSR, October to December during freeze-up periods and March to

April during break-up periods with no events occurring in January and February (see Figure 2-

8b). During freeze-up periods, November was the month with the most events with 57 %

followed by 25 % in December and 7 % in October. The remaining 11 % of NSR supercooling

events occurred in March and April during break-up periods. The PR supercooling events

spanned 6 months from December to May. Unlike the other two rivers, only 10 % of the events

occurred in December, with January, February and March, accounting for 44 %, 18 % and 22 %

of events, respectively. The remaining 6 % of the events occurred mostly in April, with a few in

May.

Figure 2-9 presents histograms of the start and end times, ts and te for both freeze-up and break-

up period events calculated from the entire data set from all three rivers. The data in Figure 2-9a

show the start of freeze-up period events was distributed uniformly throughout the day, with 2 to

5 % of events starting each hour except between 4 and 7 PM, when 23 % of freeze-up period

events started. Figure 2-9b shows that 48 % of freeze-up period events ended between 9 AM and

3 PM. During the rest of the day, between 1 % and 5 % of freeze-up period events ended each

hour. Figure 2-9c shows that 89 % of the break-up period events started between 9 PM and 8

AM. Figure 2-9d indicates that the majority of break-up period events, 54 %, ended shortly after

sunrise between 7 AM and 10 AM.

Histograms of each supercooling parameter calculated for all events are plotted in Figure 2-10.

In Figure 2-10a, it can be seen that TP has a skewed distribution with a peak of 9.6 % of TP

observations between -0.003 and -0.004oC, and with 92.5 % of all observed events having TP ≥ -

0.05oC. The distribution of event duration D in Figure 2-10b is also skewed with 86.4 % of

events having D < 24 hours and 29 % of events having D < 1 hour. The histogram of principal

16

supercooling duration DP in Figure 2-10c has a maximum of 2.4 % at 9-10 min and 33.6 % of

supercooling events take less than 30 min to reach TP. Figure 2-10d shows CDMS also has a

skewed distribution with a peak of 5.6 % of events in the range of 0.017 to 0.033 °C∙minutes, and

34 % of all events having CDMS < 0.30 °C∙minutes. Finally, the distribution in Figure 2-10e

shows that 73.6 % of events have average cooling rates CRP > -5x10-4 oC/minute with a peak of

3.7 % of the events having CRP between -1x10-4 and -1.1x10-4 oC/minute.

Empirical cumulative distribution functions (CDF) were generated from the data set for the five

supercooling parameters and compared to four theoretical CDFs; log-normal, Weibull,

exponential, and normal. However, only the lognormal distribution appeared to be a reasonable fit

to any of the observed distributions. In Figure 2-11 the five empirical CDFs are compared to the

theoretical log-normal distribution of each supercooling parameter. The log-normal distribution

appears to be a good approximation of the empirical CDFs of TP, DP, and CRP in Figures 2-11a, c,

and e and to a lesser extent the empirical CDFs of D and CDMS in Figures 2-11b and d.

2.5 Discussion
In this study, field measurements of peak supercooling temperatures, TP ranged between -0.002

and -0.106oC with median and mean values of -0.013 and -0.019oC, respectively (Table 2-4).

Field measurements of TP reported in the literature range from -0.001 to -0.145oC (e.g.,

Matousek 1992; McFarlane et al. 2019). Laboratory observations of TP reported in previous

studies typically range from -0.03 to -0.09oC (e.g., Ye et al. 2004; McFarlane et al. 2015) with

Carstens (1966) and Altberg (1936) reporting values as low as -0.18 and -0.22oC, respectively.

Therefore, the field measurements of TP reported in this study do fall within the ranges observed

previously in both the field and laboratory. This comparison suggests that turbulent water bodies

with cooling free surfaces supercool in a similar manner in both the laboratory and field.

Altberg (1936) described an extreme supercooling event which reached -0.22oC and noted that

no ice was present in the water until it reached a temperature of -0.18oC. Matousek (1992) states

that ice particles begin to form on the water surface at a temperature of -0.18oC. Also, McFarlane

et al. (2019) observed an extreme event where the supercooling temperature reached -0.145oC.

During this event, the air temperature reached a minimum of -2.3oC, there was no snowfall, and

17

no suspended frazil was observed. Large sheets of skim ice as well as rapid growth of anchor ice

on the bed and submerged equipment was observed. The absence of suspended frazil indicates

that the generation of frazil ice particles, via secondary nucleation, was likely being suppressed

due to a lack of seed particles (McFarlane et al. 2019). There are three conclusions that can

reasonably be drawn from this discussion. First, extreme supercooling events tend to occur when

there is a scarcity of seed particles. Second, when the generation of suspended frazil is

suppressed, skim ice forms and in situ growth of anchor ice starts. Third, the fact that the most

extreme supercooling event out of the ~700 observed in this study only reached a temperature -

0.106oC is evidence that seed particles are ubiquitous, and that the generation of suspended frazil

is the norm.

The duration of supercooling events is a parameter of interest, since longer events should lead to

greater volumes of ice production. Previous studies reported average event durations that ranged

from 2.2 to 23 hours with a maximum of 42.7 hours (Nafziger et al. 2013; McFarlane and Clark

2021). As shown in Table 2.4, there is a significant variation in the duration of events observed

in each river in this study. The NSR has the smallest median and mean durations of 3.17 and

9.02 hours and a maximum duration of 218 hours or 9.1 days. The KR has the next largest

median and mean durations of 6.11 and 12.3 hours, respectively with a maximum duration of

162 hours or 6.8 days. The longest events were observed on the PR with a median duration of

7.80 hours, a mean of 47.1 hours, and maximum duration of 338 hours or 14.1 days. The median

and mean durations observed in this study are largely comparable to previous studies with the

exception being the PR where the mean was 47.1 hours. The maximum durations of

approximately 7 to 14 days observed in this study are considerably larger than previous

measurements.

Extremely long events were routinely observed on the PR but much less often on the other two

rivers. During these extremely long duration events the water temperatures typically remained at

an approximately constant residual temperature. The most likely explanation for this is that the

cooling of the water surface was being balanced by the release of latent heat due to the

generation of ice. As the cooling heat flux at the water surface increased, the rate of ice

production subsequently increased, and vice-versa. Tidal cycles and dam regulation may prevent

18

the occurrence of extremely long supercooling events on some rivers e.g., Richard and Morse

(2008). However, in the absence of these external forcing mechanisms, supercooling events can

persist when the water surface is continuously cooled for long time periods. Also, there may be

additional factors such as the thermal inertia of the water column that play a role in the timing

and duration of events. Deeper water columns will respond more slowly and therefore may take

longer to begin supercooling but may also remain supercooled for longer durations.

Measurements of cooling rates (CRP) from laboratory experiments ranged from -2x10-3 to -

1.3x10-2 oC/minute (Ye et al. 2004; Schneck et al. 2019). The CRP values observed in this field

study ranged from -1.03x10-6 to -1.18x10-2 oC/minute with median and mean values of -2.48x10-

4 oC/minute and -5.51x10-4 oC/minute, respectively (Table 2.4). This shows that cooling rates in

rivers are approximately an order of magnitude less on average than those reported in laboratory

tests. This is consistent with the observation by Osterkamp (1978) that laboratory cooling rates

are an order of magnitude greater than field observations. This large difference may in part be

due to the fact that laboratory experiments are frequently conducted in shallower channels and

tanks with uninsulated sides and bottoms. Under these conditions, cooling of the water column

will occur through the sides and bottom in addition to the water surface. Therefore, the

difference in cooling rates may simply be reflective of the much larger effective cooling surface

area and shallow depths in many laboratory experiments.

The CDMS of a given supercooling event is clearly an integral measure of its “strength” since it

accounts for variations in both the magnitude of supercooling and the duration of an event.

However, it would be much more useful if it could also be used as an indicator or measure of

frazil ice production. Frazil ice production is exothermic, thus the change in water temperature

during a supercooling event is a balance between the latent heat of fusion and the net heat flux at

the water boundaries. Howley et al. (2019) presented an empirical equation relating peak frazil

ice concentration to the square root of the CDMS fitted to their dataset but additional

simultaneous measurements of supercooling and frazil concentrations are needed to validate this

equation. If measurements of CDMS prove to be a viable method for estimating frazil ice

production, real-time temperature sensors deployed upstream of water intakes could be used as

an early warning system for potential blockages by frazil ice.

19

The significant differences in the start and end times of the supercooling events during the

freeze-up and break-up periods evident in Figure 2-9 are likely due to seasonal variations in solar

radiation. During break-up periods, ~85 % of events started between 9 PM and 6 AM when the

heat flux due to solar radiation would be negligible (Figure 2-9c). In addition, 54 % of break-up

period events ended between 7 AM and 10 AM (Figure 2-9d) as the sun was rising or shortly

thereafter. This is evidence that the heat flux due to solar radiation plays a dominant role in the

timing of break-up period events. Freeze-up period events started almost any time of the day

(Figure 2-9a) with a slight peak from 4 PM to 7 PM and they tended to end at mid-day with

approximately half ending between 9 AM and 3 PM. This indicates that solar radiation is also

having an impact on the timing of freeze-up period events but not to the same extent as on break-

up period events.

The spatial distribution of supercooling events can be investigated since temperature loggers

were deployed along the study reaches and, in a few cases, pairs were deployed close to both

banks. All three rivers are regulated by upstream dams, with the KR study reach being the closest

to the upstream dam, followed by the NSR and PR. The NSR study reach is also notable as the

only study reach to have sites within an urban environment. On the KR, 8, 2, and 72 events were

observed at the Fortress, Opal, and Village sites, respectively. These sites were 13, 21, and 36

km downstream of the dam as shown in Figure 2-2b. During the extreme hydropeaking, water at

4 to 6 oC is released and this warm water must travel a considerable distance downstream before

it starts to supercool. These field observations show that the Pocaterra Dam regulation influences

frazil ice production within the study reach, though the thermal impact of the dam is greatly

reduced by the time the water reaches the Village site.

Comparing the distribution of events at the three sites on the NSR with multiple seasons (3

seasons at Genesee and 4 seasons each at Quesnell and Emily Murphy) can be used to determine

if there is a significant longitudinal gradient in the study reach. The Genesee site is located 46

km outside Edmonton’s urban area while the Quesnell and Emily Murphy sites are 6 and 10 km

inside the city, respectively. There was an average of 38, 26 and 11 events per season with

corresponding SCDMS of 156, 147, and 75.8 °C∙minutes at the Genesee, Quesnell and Emily

20

Murphy sites, respectively. The decrease in both the number and strength of supercooling events

from outside Edmonton’s large urban area to well inside implies that urbanization impacts

supercooling in rivers. The two most likely mechanisms responsible for this are the urban heat

island effect and stormwater outfalls. The warmer air temperatures that occur inside the heat

island and the relatively warm stormwater runoff entering the river both would tend to increase

water temperatures and suppress supercooling.

Calibrated numerical modelling on the PR has shown that the zone of influence of the dams on

the PR ice regime extends 550 km downstream (Jasek and Pryse-Phillips 2015). The PR study

reach is 275 km downstream of Peace Canyon Dam and therefore, the thermal regime of this

reach would still be influenced by convection of warm water from upstream. However, because

the study reach was relatively short, only 16 km in length, no significant longitudinal variations

in the occurrence or properties of supercooling events were observed.

The deployment of five sensor pairs allowed for a preliminary assessment of the differences in

supercooling on each side of the river. A comparison of the event statistics on each side of the

PR (i.e., the left bank and the right bank) is presented in Table 2.5, with Figure 2-12 showing a

temperature time series recorded by a pair of sensors at Sta. 305 km for the 2016-2017 season.

As shown in Table 2.5, the left bank recorded 102 events compared to the 59 events on the right

bank. As shown in Figure 2.12, one of the reasons for the difference in the number of events is

due to multiple events starting and ending on the left bank during a single longer event on the

right bank. Furthermore, the daily peaks in water temperature near the left bank occurred around

mid-day, when incoming solar radiation would be at its peak. This behaviour is quantified in

Table 2-5 with the ratio between the mean and median event duration D on the left and right

bank being 0.57. The events on the left bank were also found to be slightly smaller in magnitude

with average TP of -0.02oC on the left bank compared to -0.023oC on the right bank. The smaller

magnitudes for D and TP on the left bank compared to the right bank resulted in a ratio of 0.59

between the average left and right bank CDMS. However, when the total CDMS of all

supercooling events observed during this time period are compared, the two sides are nearly

identical, with a ratio of 1.02.

21

The most likely explanation for the difference between the two sides of the river is the difference

in exposure to solar radiation. As shown in Figure 2-2d, the PR flows in an easterly direction for

the entirety of the study reach, therefore the left and right banks are the north and south banks,

respectively. At this latitude (55.6°) the inclination of the sun means that the left/north bank

would receive more solar radiation, while the right/south bank would be comparatively shaded

by the river valley. Therefore, near the left bank daily heating by solar radiation may heat the

water sufficiently to end a supercooling event. If the right bank is sufficiently shaded, then this

heating by solar radiation will not occur and supercooling will continue. These differences in

supercooling between the left and right bank could indicate that the concentration of suspended

frazil may also be varying in the cross-stream direction in rivers.

2.6 Conclusions
This study reports on an analysis of 696 supercooling events observed in three Alberta rivers

over multiple winter seasons. The data show that a typical event lasts less than 24 hours with

peak supercooling between -0.01 and -0.02oC. Freeze-up period events were found to start any

time of day but typically ended between 9 AM and 3 PM. In contrast, almost all break-up period

events occurred overnight, starting after 7 PM and ending between 7 and 10 AM. The mean

principal cooling rate was calculated to be -5.51x10-4 oC/minute which is approximately an order

of magnitude smaller than rates observed in laboratory experiments. The cumulative degree

minutes of supercooling (CDMS), a parameter that was proposed by Howley et al. (2019) to

quantify the ‘strength’ of a supercooling event, had median, mean and maximum values of 2.31,

11.1 and 158 °C∙minutes, respectively.

The two most extreme supercooling events observed in this study in terms of peak supercooling

and duration reached a temperature of -0.106oC and lasted ~14 days. By comparison, the most

extreme events observed in previous studies reached approximately -0.2oC and a duration of ~2

days. During these long duration events the water temperature remained at an approximately

constant residual temperature. Another significant finding from this study is that extreme peak

supercooling temperatures below -0.1oC are very rare since only two events out of the 696 events

measured in this study (or 0.3 %), supercooled below this threshold.

22

This study also examined if the frequency of events varied along and across the rivers.

Significant longitudinal variations were observed on both the KR and the NSR and these were

attributed to the impacts of hydropeaking and urbanization. Transverse variations were

investigated on the PR and it was found that on the shaded south bank there were fewer events,

but they were of longer duration compared to the north bank.

Analysis of this large dataset of supercooling parameters has revealed a number of new and

significant results but additional research is clearly still needed. Future work will investigate the

validity of a quantitative relationship between CDMS and frazil ice production as proposed by

Howley et al. (2019). Simultaneous measurements of supercooling and suspended frazil

concentrations are needed to accomplish this goal. If a relationship is found, then relatively

inexpensive and easily deployed precision temperature loggers could be used to monitor frazil

ice production. In addition, further studies that combine comprehensive measurements of the

various heat flux components and supercooling observations are also a priority. The recent study

by McFarlane and Clark (2021) is an excellent example of the type of research needed to more

fully understand the heat fluxes that drive supercooling events.

River ice process models are becoming more widely used for research and by practicing

engineers. As a result, there has been a concerted effort to improve their accuracy and scope

(e.g., Blackburn and She 2019; Wazney et al. 2019). However, the ability of these models to

accurately predict the occurrence and properties of supercooling events has not been thoroughly

investigated. Data from this study and similar future ones could be used to conduct this type of

investigation and lead to model improvements.

23

Acknowledgements
The map developed for this publication was produced with QGIS software (QGIS Development

Team 2021) using the data provided by © OpenStreetMap contributors

(http://www.osm.org/copyright). We thank Perry Fedun for his valuable technical assistance. We

also thank Kerry Paslawski, Vincent McFarlane, Hayden Kalke, Chris Schneck and Rhodri

Howley for their assistance with the deployment and retrieval of field instrumentation. This

research was supported by the Natural Sciences and Engineering Research Council of Canada

(NSERC) (grant nos. RGPIN-2020-04358, RGPIN-2015-04670 and RGPAS 477890-2015).

http://www.osm.org/copyright

24

2.7 Chapter 2 Supplementary materials

Chapter 2 Tables

Table 2-1: Summary of the study reach properties for Kananaskis KR, North Saskatchewan

NSR, and Peace PR Rivers (McFarlane et al. (2017); Kellerhals et al. (1972); Buehler, H. (2013))

River
Drainage Basin Area at study

site [km2]

Average Annual Flow

Rate [m3/s]

Average

Slope

Average

Width [m]

Average

Depth [m]

KR 748 13 0.0034 30 0.60

NSR 5,670 220 0.00035 140 1.40

PR 130,000 1,590 0.00025 230 2.60

Table 2-2: Summary of the number of temperature logger deployment sites during all years of

measurements on each river

River

Year

2015-

2016

2016-

2017

2017-

2018

2018-

2019

2019-

2020

KR - 3 - - -

NSR 2 4 3 - 6

PR - 4 7 4 1

25

Table 2-3: Synopsis of supercooling events observed on each river during each deployment

season

River Year

Date of

first

event

Date of

last

event

Number of

freeze-up

period

events

Number of

break-up

period

events

Freeze-up

period

duration

(days)

Break-up

period

duration

(days)

Seasonal

freeze-up

CDMS

(oC∙minutes)

Seasonal

break-up

CDMS

(oC∙minutes)

KR
2016-

2017

18-

Nov-16

04-

Apr-17
82 0 137 - 151 -

NSR

2015-

2016

18-

Nov-15

03-

Apr-16
30 7 8 5 33.1 4.52

2016-

2017

19-

Nov-16

15-

Apr-17
53 5 17 12 151 2.95

2017-

2018

03-

Nov-17

30-

Apr-18
16 14 8 9 32.5 24.1

2019-

2020

29-Oct-

19

28-

Apr-20
212 13 46 10 189 7.4

PR

2016-

2017

07-

Dec-16

19-

Apr-17
132 0 133 - 698 -

2017-

2018

25-

Dec-17

11-

May-18
80 21 36 50 216 9.87

2018-

2019

23-

Dec-18

08-

Apr-19
24 1 42 0.62 212 9.46

2019-

2020

04-Jan-

20

15-Jan-

20
6 0 15 0 85.5 0

Total 635 61

26

 Table 2-4: Summary of the statistics of supercooling event parameters including peak

supercooling TP, duration D, principal supercooling duration DP, cumulative degree minutes of

supercooling CDMS and principal supercooling average cooling rate CRP. Minimum and

maximum values refer to magnitudes

Set
Statistical

parameter

TP

(oC)

D

(hours)

DP

(hours)

CDMS

(oC∙minutes)

CRP

(oC/minute)

All Rivers

[696 Events]

Min. -0.002 0.169 8.2x10-3 6.77x10-3 -1.03x10-6

Med. -0.013 4.81 1.23 2.31 -2.48x10-4

Mean -0.019 23.8 2.50 11.1 -5.51x10-4

Max. -0.106 338 106 158 -1.18x10-2

Std. Dev. -0.018 56.8 6.34 23.3 -1.22x10-3

KR

[82 Events]

Min. -0.002 0.179 8.67x10-2 2.59x10-2 -5.86x10-6

Med. -0.009 6.11 1.04 2.25 -2.00x10-4

Mean -0.013 12.3 2.16 5.53 -3.54x10-4

Max. -0.059 162 15.6 70.3 -2.52x10-3

Std. Dev. -0.013 20.9 3.27 9.24 -4.81x10-4

NSR

[350 Events]

Min. -0.002 0.169 8.20x10-3 9.87x10-3 -2.67x10-6

Med. -0.012 3.17 1.14 1.49 -2.47x10-4

Mean -0.020 9.02 2.18 5.65 -6.13x10-4

Max. -0.106 218 48.6 158 -1.14x10-2

Std. Dev. -0.020 19.5 4.12 11.9 -1.37x10-3

PR

[264 Events]

Min. -0.002 0.171 0.014 6.77x10-3 -1.03x10-6

Med. -0.015 7.80 1.42 4.76 -2.61x10-4

Mean -0.019 47.1 3.02 20.1 -5.31x10-4

Max. -0.087 338 106 137 -1.18x10-2

Std. Dev. -0.017 83.7 8.95 33.0 -1.17x10-3

27

Table 2-5: Summary of the statistics of the supercooling events measured simultaneously by

sensor pairs on the left bank (LB) and right bank (RB) of the PR. Parameters include peak

supercooling TP, duration D, cumulative degree minutes of supercooling CDMS and total

cumulative degree minutes of supercooling

Parameter LB RB LB/RB

Number of Events 102 59 1.73

Median TP (oC) -0.017 -0.021 0.81

Mean TP (oC) -0.020 -0.023 0.88

Median D (hours) 11.9 21.0 0.57

Mean D (hours) 42.3 73.7 0.57

Mean CDMS (oC∙minutes) 19.4 32.8 0.59

Total CDMS (oC∙minutes) 1,980.26 1,933.20 1.02

Chapter 2 Figures

Figure 2-1: A water temperature (Tw) time series recorded in a laboratory tank being cooled by a

constant surface heat flux

28

Figure 2-2: Maps showing.: (a) Geographical location of the three study reaches in Alberta.

Lower maps are enlarged views of the study reaches, (b) Kananaskis River (KR), (c) North

Saskatchewan River (NSR) within the City of Edmonton limits, and (d) Peace River (PR)

29

Figure 2-3: Equipment used in KR and NSR deployments: (a) RBR Solo T Temperature Logger

along with protective case and anchoring pins and, (b) Case being anchored to the riverbed and

approximately aligned with the river current as shown by the arrow

30

Figure 2-4: A time series of a supercooling event observed at the Genesee site on the NSR on

Nov. 25 - 26, 2016. Water temperature Tw plotted as a function of time-of-day t. Graphical

definitions of start time ts, end time te, peak supercooling TP, principal supercooling duration DP,

event duration D, cumulative degree minutes supercooling CDMS, and average principal

supercooling cooling rate CRP

Figure 2-5: Water temperature time series from the 2016-2017 season: (a) KR, Village site, (b)

NSR, Genesee site and, (c) PR Sta. 293.500 km on the right bank

31

Figure 2-6: Water temperature time series showing freeze-up period supercooling events from

2016-2017: (a) KR Village site, (b) NSR Quesnell site, (c) PR Sta. 293.500 km on the right bank.

Note: the start and end of each event is marked by black dots at the intersection of the water

temperature time series and 0 °C

Figure 2-7: Water temperature time series during the break-up period on the NSR from April 22

to April 30th, 2018 showing: (a) the full range of the daily water temperature

32

Figure 2-8: Monthly frequency distribution of supercooling events for (a) KR, (b) NSR, and (c)

PR

Figure 2-9: Hourly frequency distribution of supercooling events showing: (a) start and (b) end

times of freeze-up period events, and (c) start and (d) end times of break-up period events

calculated from the combined data set from all rivers and all years of measurements

33

Figure 2-10: Histograms of supercooling parameters calculated from the combined data set from

all rivers and all years of measurements showing: (a) peak supercooling TP, (b) duration D, (c)

principal supercooling duration DP, (d) cumulative degree minutes of supercooling CDMS, and

(e) principal supercooling average cooling rate CRP

34

Figure 2-11: Empirical cumulative distribution functions (CDFs) of supercooling parameters

(black) compared to a fitted theoretical lognormal distribution (red dotted) for (a) peak

supercooling TP, (b) duration D, (c) principal supercooling duration DP, (d) cumulative degree

minutes of supercooling CDMS, and (e) principal supercooling average cooling rate CRP

Figure 2-12: Water temperature (Tw) time series measured near the left (blue) and right (red)

banks at Sta. 305 km on the PR in the 2016-2017 season

35

Chapter 3 : Surface energy budget of 2016-2017 supercooling events

3.1 Introduction
From late fall to early spring, northern rivers are exposed to a freezing climate that induces

supercooling in the turbulent water and is a key driver of the river’s ice regime. The frazil ice that

forms in the turbulent water column forms the floating frazil pans which contribute to the

consolidating of an ice cover, or anchor ice on the river bed (Daly 1994). Suspended frazil has

been documented to cause water intake blockages (Richard and Morse 2008), while anchor ice has

been identified as a significant contributor to sediment transportation in northern rivers (Kalke et

al. 2017). As such, a better understanding of the conditions that are conducive to supercooling and

in particular the heat fluxes across the air-water interface may inform future practice regarding

river ice engineering during the freeze-up period.

Ashton (1986, 2013) stated that there are up to eleven modes of heat transfer that can regulate river

water temperatures: shortwave radiation 𝑄𝑄𝑠𝑠𝑠𝑠, longwave radiation 𝑄𝑄𝑙𝑙𝑠𝑠, sensible heat flux 𝑄𝑄𝑠𝑠,

evaporative heat flux 𝑄𝑄𝑒𝑒, precipitation 𝑄𝑄𝑝𝑝, heat exchange with the bed 𝑄𝑄𝑏𝑏𝑒𝑒𝑏𝑏, friction of flow 𝑄𝑄𝑓𝑓,

turbulence 𝑄𝑄𝑡𝑡, heat from groundwater inflow and reservoir releases 𝑄𝑄𝑟𝑟𝑒𝑒𝑠𝑠 and 𝑄𝑄𝑔𝑔𝑠𝑠, and finally the

heat of fusion from the production and melting of ice 𝑄𝑄𝑖𝑖𝑖𝑖𝑒𝑒.

Most previous field studies of the energy budget of rivers tended to focus on ecological impacts

of temperature fluctuations; few studies focused on supercooling specifically. However, these

studies may still provide insights into the dominant factors of a river’s energy budget. The net

radiative heat flux (summation of the incoming and outgoing shortwave and longwave heat fluxes),

was found to be the most significant heat flux in these previous studies (Brown 1969;Evans et al.

1998;Webb and Zhang 2004), with Brown et al. (1969) noting that net radiation was the dominant

heat flux while evaporation and convection had minimal influence. Evans et al. (1998) studied the

heat flux dynamics on the River Blithe in Staffordshire, UK, finding that net shortwave heat flux

contributed to 97.6 % of the total positive heat flux, while the net longwave heat flux accounted

for 54.0 % of the total negative heat flux for the study period. The evaporative heat flux was found

to account for 23.6 % of all heat losses, and found to be comparable to previous studies on UK

rivers (Evans et al. 1998). The sensible heat flux was the smallest of the surface heat fluxes,

accounting for only 1.2 % and 5.3 % of all positive and negative heat fluxes, respectively. Hannah

36

et al. (2004) studied the heat budget of a stream in Scotland and found that all heat loss and 39 %

of heat gains occurred across the air-water surface, while 61 % of gains were through the channel

bed. Similar to previous studies, net radiation was found to be negative (net heat loss from the

water column) due to decreasing daylight until well after the winter solstice. Air temperature was

above freezing for most of the study, ranging from -6.01 to 11.40 oC with a mean of 3.17 oC. Thus,

sensible heat flux was found to be the largest heat source in this study at 38.7 % of all positive heat

fluxes. Evaporative heat flux and net radiation were the largest heat sinks at 73.1 % and 26.9 %,

respectively. Hannah et al. (2004) suggest that the reason for a lower evaporation contribution in

other studies is due to the wind shelter caused by forested studies sites. Groundwater driven

streams are found to be warmer and more thermally stable than glacier run-off (Brown et al. 2006),

though the degree of groundwater influence on downstream water temperature depends on the

strength of the source and distance upstream (O’Driscoll and DeWalle 2006). Multiple studies

found that rivers with higher flowrates and thus deeper water depths are less sensitive to changes

in heat fluxes (Brown 1969; Evans et al. 1998; Clark et al. 1999; Cozzetto et al. 2006; Webb et al.

2008), which is important when considering cross-flow temperature dynamics (Clark et al. 1999).

Studies reporting detailed investigations of heat fluxes during supercooling in rivers are rare. One

study reported supercooling observations made during the 2005-2006 winter on the St. Lawrence

River near Quebec City, QC, Canada (Richard and Morse 2008; Richard et al. 2015). Richard and

Morse (2008) observed ~100 supercooling events while monitoring suspended frazil, surface ice

concentration, and meteorological parameters. Richard and Morse (2008) observed that

supercooling events often occurred at night when the outgoing longwave would exceed the

incoming net radiation. On average, the air temperatures during the events were below -5.4oC and

relative humidity was less than 86 %. However, supercooling was also observed to happen in

warmer air conditions up to -2.3oC, during a clear night, conditions that would lead to a strong

longwave heat loss (Richard and Morse 2008). For 80 % of supercooling events, the precipitation

in the preceding 12 hours was less than 1.8 mm. Richard and Morse (2008) also noted trends of

events starting at night implying that the net negative longwave radiation and zero shortwave

radiation being the predominant cooling effect on the river.

Richard et al. (2015) modelled the frazil ice production during this season and observed that

supercooling is rare when it is snowing due to increased cloud cover reducing the heat loss from

37

longwave radiation. For the 2005-2006 season, the net radiative heat flux (shortwave and

longwave) had an average value of -44 W/m2 at night, with a seasonal average of +25 W/m2.

Sensible and evaporative heat fluxes were also found to be significant with a reported greatest

magnitude of heat loss of -105 and -178 W/m2 for evaporative and sensible heat flux, respectively.

Supercooling events often occurred on nights when the net heat flux dropped below -200 W/m2,

with the greatest magnitude net heat flux <-500 W/m2. Richard et al. (2015) observed significant

variability between the various heat flux components throughout the day, with differences up to

~200 W/m2 between day and night.

McFarlane and Clark (2021) investigated the heat budget of the Dauphin River in Manitoba,

Canada during supercooling from the end of October to mid-November 2019. The study directly

measured incoming and outgoing shortwave and longwave radiation over land to avoid risk to

equipment, as well as water temperatures, air temperature, wind speed and direction, relative

humidity and barometric pressure. For the six supercooling events observed during the study,

McFarlane and Clark (2021) reported that the largest event averaged cooling heat flux component

was the net longwave component that ranged from -78.1 to -30.2 W/m2, followed by the sensible

heat flux that ranged from -42.3 W/m2 to -5.6 W/m2. The evaporative component had the smallest

range, from -31.0 to -9.0 W/m2. The largest positive heat flux was the net shortwave radiation that

varied between 0.8 and 9.8 W/m2, while the heat flux due to friction from the bed and banks varied

from 2.8 to 3.0 W/m2. The resulting event averaged net heat flux varied from -127 to -37.4 W/m2

(McFarlane and Clark 2021). Five of the six observed events started around 6 PM and ended

between 6 AM and noon the following day, with one event occurring in the early morning. The

event durations are estimated to have ranged from 1 to 18 hours. They concluded that the net

longwave was the most significant heat flux during supercooling events. McFarlane and Clark

(2021) estimated that the difference between outgoing radiative heat flux from the land can vary

up to 158 W/m2 on a sub-daily time scale from the water surface, and thus accurate outgoing

radiation measurements should be collected over the water. In cases where such measurements are

not possible, incoming shortwave and longwave radiation can be measured from the bank, while

the outgoing components are calculated.

38

From these previous studies, it is evident that more studies regarding the energy budget during

supercooling are required to improve our understanding of the relationship between the water

temperature and heat flux dynamics. Boyd et al. (2022) observed 696 supercooling events and

analyzed their properties including peak supercooling temperatures, durations, start and end times

and cumulative degree minutes of supercooling. In this study a subset of that dataset, the 2016-

2017 season on the North Saskatchewan and Peace Rivers, was used along with locally deployed

weather station data to calculate the surface heat fluxes and investigate potential relationships

between these heat fluxes and supercooling events. This study aims to improve our understanding

of the interactions between surface heat fluxes and supercooling in rivers.

3.2 Study Area
The supercooling measurements were collected at sites on the North Saskatchewan and Peace

Rivers as shown in Figure 3-1. The North Saskatchewan is the smaller of the two rivers, with an

annual flow rate of 220 m3/s and an average width and depth of 136 m and 1.40 m, respectfully

(Table 3-1). There were four water temperature measurement sites on the North Saskatchewan at

Genesee, River Ridge, Quesnell, and Emily Murphy as shown in Figure 3-1b. Meteorological

measurements were collected by a weather station installed at the Royal Mayfair Golf Club

adjacent to the North Saskatchewan River in Edmonton AB, see Figure 3-1b. Supplemental

meteorological data was acquired from the Environment and Climate Change Canada (ECCC),

EDMONTON INTERNATIONAL CS ALBERTA (I.D. 3012206).

The Peace River is a significantly larger river with an average annual flow rate of 1.59x103 m3/s

and an average width and depth of 227 m and 2.56 m, respectfully (Table 3-1). Two pairs of

sensors were deployed at Sta. 293.5 km and Sta. 305 km (Figure 3-1c). As shown in Figure 3-1c,

meteorological measurements were collected by a weather station installed at Sta. 309.3 km near

the water intake for Fairview AB and the closest ECCC station PEACE RIVER An ALBERTA

(I.D. 3075041).

39

3.3 Methodology

3.3.1 Overview of methodology

The water temperature time series that were analyzed for this study were taken from the 2016-

2017 season on the North Saskatchewan and Peace Rivers collected for the supercooling study

described in Boyd et al. (2021). RBR Solo T data loggers (accuracy + 0.002 oC) were anchored to

the river bed in protective metal casings to measure water temperature in 1-minute intervals. On

the North Saskatchewan, the sensors were deployed at a wading depth of ~0.75 m, while the Peace

River sensors were deployed in deeper water and cabled back to shore (Boyd et al. 2021).

To collect meteorological data for this study, two weather stations were installed: the Royal

Mayfair Golf Club (53°32'7.61"N, 113°32'27.84"W) approximately 100 m south of the North

Saskatchewan River and near the Fairview AB water intake (55°54'34.70"N 118°23'34.63"W).

The make, model and specifications of the data logger and sensors are listed in Table 3-2. These

weather stations sampled air temperature, relative humidity, wind speed, wind direction and

shortwave radiation at 10 minute intervals. In addition, hourly cloud coverage (in tenths) from

human observations were obtained from the ECCC from the EDMONTON INTERNATIONAL

CS ALBERTA (I.D. 3012206) and PEACE RIVER An ALBERTA (I.D. 3075041) stations.

The distances between weather stations and observation sites shown in Figure 3-1 are summarized

in Table 3-3. On the North Saskatchewan, Genesee was the most distant at 47 km and 52 km from

the airport and Mayfair weather stations, respectively. The next farthest observation site from the

weather stations is River Ridge site was 12 km and 16 km from the Mayfair and airport weather

stations respectively. The Quesnell and Emily Murphy sites both are 25 km from the airport station

and 5 km and 1 km respectively from the Mayfair station. On the PR, the measurement site at Sta.

293.5 km were 15 km and 82 km from the Fairview and Peace River weather stations, respectively.

The Sta. 305 km site was 7 km and 73 km from the Fairview and Peace River weather stations,

respectively. It should also be noted that both weather stations are located north of the river, along

with some distance between the weather station and the observation point (the station at the intake

is close to the edge of the river, but Peace River A is several kilometers away).

McFarlane and Clark (2021) used seven modes of heat transfer to describe the river water

temperatures: short – wave radiation 𝑄𝑄𝑠𝑠𝑠𝑠, long – wave radiation 𝑄𝑄𝑙𝑙𝑠𝑠, sensible heat flux 𝑄𝑄𝑠𝑠,

40

evaporative heat flux 𝑄𝑄𝑒𝑒, precipitation 𝑄𝑄𝑝𝑝, heat exchange with the bed 𝑄𝑄𝑏𝑏𝑒𝑒𝑏𝑏. Therefore, the net

heat flux is given by,

 𝑄𝑄𝑛𝑛𝑒𝑒𝑡𝑡 = 𝑄𝑄𝑠𝑠𝑠𝑠 + 𝑄𝑄𝑙𝑙𝑠𝑠 ± 𝑄𝑄𝑠𝑠 ± 𝑄𝑄𝑒𝑒 ± 𝑄𝑄𝑝𝑝 ± 𝑄𝑄𝑏𝑏𝑒𝑒𝑏𝑏 (3.1)

This study is focused on the heat fluxes during supercooling and therefore the heat flux from

snow fall was assumed to be 0 W/m2 as the snow crystals would not melt (Ashton 1986, 2013).

The heat flux due to rainfall was assumed to be negligible because Ashton (2013) showed that a

2 mm/hour rainfall at a 5 oC temperature difference between the air and water resulting in a heat

flux of 11.6 W/m2. This is a relatively small heat flux in addition to the fact that rainfall during

the time periods when supercooling events occur is rare. When analyzing their measurements of

both air-water and ground heat transfer, Hannah et al. (2004) and Evans et al. (1998) concluded

that 71.7 % and 82 % of total heat transfers occur at the air water interface, respectively.

Therefore, the net heat flux can be approximated by,

 𝑄𝑄𝑛𝑛𝑒𝑒𝑡𝑡 ≈ 𝑄𝑄𝑠𝑠𝑠𝑠 ± 𝑄𝑄𝑙𝑙𝑠𝑠 ± 𝑄𝑄𝑠𝑠 ± 𝑄𝑄𝑒𝑒 (3.2)

The heat flux due to short-wave radiation Qsw is given by,

 𝑄𝑄𝑠𝑠𝑠𝑠 = (1− 𝛼𝛼𝑠𝑠𝑠𝑠𝑟𝑟)𝜑𝜑𝑠𝑠 (3.3)

where αsur is the albedo of the water surface and ϕs the incident short-wave solar radiation. Hicks

et al. (2008) found that the albedo of water ranged from 0.05-0.15. Since this study assumes open

water conditions, a constant surface albedo of αsur = 0.1 was assumed, reducing Eq. 3.3 to,

 𝑄𝑄𝑠𝑠𝑠𝑠 = 0.9𝜑𝜑𝑠𝑠 (3.4)

The set of equations developed by König-Langlo and Augstein (1994) and used by Richard et al.

(2015) was used to estimate the net longwave heat flux 𝑄𝑄𝑙𝑙𝑠𝑠 as follows,

41

 𝑄𝑄𝑙𝑙𝑠𝑠 = (1 − 𝛼𝛼𝑊𝑊𝐿𝐿𝑊𝑊)(0.765 + 0.22𝑛𝑛3)𝜎𝜎(𝑇𝑇𝑎𝑎 + 273.15)4− 𝜖𝜖𝑠𝑠𝜎𝜎(𝑇𝑇𝑠𝑠 + 273.15)4 (3.5)

where Tw is the water temperature, Ta is the air temperature, and n is the fraction of cloud cover.

The constants in Eq. 3.5: emissivity of water 𝜖𝜖𝑠𝑠, Stefan-Boltzmann constant 𝜎𝜎, and longwave

albedo of water 𝛼𝛼𝑊𝑊𝐿𝐿𝑊𝑊, were assumed to be 0.97, 5.67x10-8 W/m2K4, and 0.03 respectively (Richard

et al. 2015). The fraction of cloud cover was taken from the hourly observation of cloud tenths

from the associated ECCC weather station. Substituting the constants into Eq. 3.5, gives,

 𝑄𝑄𝑙𝑙𝑠𝑠 = 5.5 ∙ 10−8[(0.765 + 0.22𝑛𝑛3)(𝑇𝑇𝑎𝑎 + 273.15)4 − (𝑇𝑇𝑠𝑠 + 273.15)4] (3.6)

The evaporative and sensible heat fluxes were calculated using a ‘Dalton-type’ equation, which

has been used in multiple previous studies (Aston 2013; McFarlane and Clark 2021). These types

of equations assume a relationship between 𝑄𝑄𝑠𝑠 and 𝑄𝑄𝑒𝑒 as given by,

 𝑄𝑄𝑠𝑠 = 𝐵𝐵𝑄𝑄𝑒𝑒 (3.7)

where B is the Bowen ratio 𝐵𝐵 (Bowen 1926) given by,

 𝐵𝐵 = 𝑆𝑆 �
𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑎𝑎
𝑒𝑒𝑠𝑠 − 𝑒𝑒𝑎𝑎

� ;𝑆𝑆 = 0.46 �
𝑄𝑄𝑎𝑎

760
� (3.8)

where es and ea are the saturated and actual vapour pressures, respectively, and Pa is the barometric

pressure.

The evaporative heat flux Qe was estimated using the empirical equation suggested by Ryan et al.

(1974) given by,

 𝑄𝑄𝑒𝑒 = −[2.70(∆𝑇𝑇𝑣𝑣)
1
3 + 3.20𝑉𝑉𝑧𝑧](𝑒𝑒𝑠𝑠 − 𝑒𝑒𝑧𝑧) (3.9)

42

where ∆Tv is the difference in ‘virtual temperature’ or the effective temperature difference for free

convection, Vz is the wind speed, and ez is the saturated vapour pressure (Ryan et al. 1974)). The

equation for ∆Tv is given by,

 ∆𝑇𝑇𝑣𝑣 = 𝑇𝑇𝑤𝑤+274.15

1−0.378�𝑒𝑒𝑠𝑠𝑃𝑃𝑎𝑎�
 - 𝑇𝑇𝑎𝑎+274.15

1−0.378�𝑒𝑒𝑧𝑧𝑃𝑃𝑎𝑎�
 (3.10)

According to Ashton (1986, 2013), the saturated vapour pressure over open water can be calculated

by,

 𝑒𝑒𝑠𝑠 = 6.11 exp �
17.62 𝑇𝑇𝑎𝑎

243.12 + 𝑇𝑇𝑎𝑎
� (3.11)

Substituting Eqs. 3.8 and 3.9 into Eq. 3.7 results in the following equation for sensible heat flux,

 𝑄𝑄𝑠𝑠 = − 𝑄𝑄𝑎𝑎[1.63𝑥𝑥10−3(∆𝑇𝑇𝑣𝑣)
1
3 + 1.94 × 10−3𝑉𝑉𝑧𝑧](𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑎𝑎) (3.12)

3.3.2 Limitations of methodology

While this study does provide insight into the dynamics of heat fluxes at the water surface during

supercooling, it is important to keep in mind the assumptions and limitations of the methodology

that introduce uncertainty in the results. The uncertainty can be divided into quantitative

uncertainties that can be estimated as a cumulative uncertainty when discussing the results, and

qualitative limitations whose impact can be understood but not estimated.

3.3.2.1 Quantitative uncertainty

The estimated quantitative uncertainty for each heat flux component and the net heat flux is

summarized in Table 3-4. The uncertainty is estimated based on the accuracy of the sensors used

as well as a literature review of the accuracy of the sensors.

Shortwave radiation was measured by using a Silicon Pyranometer Smart Sensor S-LIB-M003,

which is stated by Onset (2021)c to have an accuracy of ±10 W/m2 (Table 3-2). Additional factors

43

that may influence the measurements of shortwave radiation include shading from local

topography and snow piling on the sensors, which may reduce the measurement of incoming solar

radiation, but cannot result in a negative value. During deployment of both weather stations the

measured shortwave radiation consistently reached a minimum of 0.60 W/m2 suggests a potential

bias in the equipment sensor, but without being certain about the actual reason for the non-zero

reading at night, no adjustment was made to the data. In the interest of readability, the minimum

value of any shortwave radiation statistic of 0.54 W/m2 (90 % of the 60 W/m2 minimum) will be

interpreted as zero.

The longwave radiation equation developed by König – Langlo and Augstein (1994) was found to

have a root mean deviation of less than 16 W/m2 when compared to data collected in both Arctic

and Antarctic conditions. Since the equation is based on the Stefan-Boltzmann law for longwave

radiation, there should not be any regional bias inherent to the set of equations. However, König –

Langlo and Augstein (1994) note that similar methods attempt to take into account effects of ice

crystals and other atmospheric conditions that may not be as common in the polar regions.

Ashton (1986, 2013) reviewed four “Dalton type” equations, including Ryan et al. (1974), for

evaporative heat flux, converting the equations to the sensible heat flux equation using the Bowen

Ratio. Ashton (1986, 2013) concluded that Ryan et al. (1974) was the recommended means to

compute evaporative heat flux because it did not assume a constant ‘free convection’ term for still-

air conditions. This meant that the equation predicts a changing heat flux with changing

temperature differences as well as wind speed, rather than assuming a constant value.

The evaporative heat flux developed by Webb and Zhang (1997) and reviewed by McFarlane and

Clark (2021) described by,

 𝑄𝑄𝑒𝑒 =
0.165(0.8 + 0.864𝑉𝑉𝑧𝑧)(𝑒𝑒𝑠𝑠 − 𝑒𝑒𝑎𝑎)𝐿𝐿𝑣𝑣

86.4 × 103
 (3.13)

Where Lv is the latent heat of vaporization of water (~22.6x105 J/kg) can be consolidated to,

 𝑄𝑄𝑒𝑒 = (3.45 + 3.71𝑉𝑉𝑧𝑧)(𝑒𝑒𝑠𝑠 − 𝑒𝑒𝑎𝑎) (3.14)

44

resulting in a constant free convection term of ~3.5. Comparing to the equations reviewed by

Ashton (1986, 2013), it is quite comparable to the ‘Kuzmin’ formula given by,

 𝑄𝑄𝑒𝑒 = (3.4 + 3.62𝑉𝑉𝑧𝑧)(𝑒𝑒𝑠𝑠 − 𝑒𝑒𝑧𝑧) (3.15)

with Eq. 3.14 predicting an effective wind speed (and thus evaporative heat flux) 2 to 3 % larger

than Eq. 3.15 for wind speeds between 0 to 100 km/hr.

Considering the low wind speed measured from both weather stations, Ryan et al. (1974) would

be less likely to over-predict the evaporative heat flux compared to the other evaporative heat

fluxes. However, since there is no means to determine a ‘true’ uncertainty value, the uncertainty

for Eq. 17 as determined by McFarlane and Clark (2021) are used as conservative estimates. This

gives a conservative estimate of the uncertainty of ±20.0 and ±14.7 W/m2 for the sensible and

evaporative heat flux, respectively.

For both sensible and evaporative heat fluxes, the wind speed is assumed to be measured 2 m

above the water surface. For this study, it is assumed that the wind speed measured at the

weather station is representative of the wind speed at 2 m height, with no adjustments made.

The cumulative range of uncertainty in the methods employed is ±31.2 W/m2 (Table 3-4). It should

be noted that these estimates regarding empirical equations assume that the original uncertainty

estimates have comparable equipment uncertainty for parameter measurements.

3.3.2.2 Qualitative uncertainty

The first assumption made in the methodology are that the water surface remains free of ice and

keeps a constant shortwave albedo of 0.1 for the entire season. Since surface ice pans insulates the

water surface from the air, it both dampens the effect of sensible heat flux, and alters the effective

albedo for shortwave and longwave radiation. For shortwave radiation the albedo of frazil pans

could likely be compared to snow ice, giving an albedo range between 0.30 – 0.55 (Hicks et al.

2008). The emissivity of the frazil pans to longwave radiation would also be variable, reducing

both the outgoing and incoming longwave radiation (Richard et al. 2015).

45

The second assumption was that the conditions measured at the relevant weather stations were

accurate for the conditions at the supercooling observation site. Hubbard (1994) noted that for the

High Plains of the United States of America (eastern Nebraska to the Rocky Mountains in

Colorado) a 5 year study concluded that for air temperature, solar radiation, and relative humidity,

a weather station is 90 % accurate for a ~30 km radius. In order to have similarly accurate

measurement of wind speed, a weather station is only accurate for any location less than 10 km

away (Hubbard 1994). Quiñones et al. (2019) analyzed the accuracy of air temperature networks

on the Columbia Plateau, a region where the topography traps cool air in a ‘valley effect’ making

significant difference between two points due to elevation. The study found that the radius of

influence (RI) of weather station in complicated terrain fluctuates over time as well as space with

the mean RI for minimum and maximum air temperature were 20 km and 21 km, respectively

(Quiñones et al. 2019). Quiñones et al. (2019) also noted that winter months may reduce the

variation due to snowfall and lack of green vegetation making the local landscape more

homogenous.

Since both U of A weather stations used in this study were located within the river valley, the

impact of elevation differences on air temperature should be minimal. Comparing these ranges of

acceptable distances to the straight-line distances between observation sites and the weather

stations in Table 3-3, it is apparent that most of the supercooling observation sites are within the

more conservative RI proposed by Quiñones et al. (2019), with the exception of Genesee on the

NSR and all the PR sites regarding cloud cover data. Since the meteorological parameters used for

heat flux calculations were assumed to be the same for all observation sites, and the only

differences in heat flux is due to the local differences in Tw, the difference between the local heat

flux for each site is negligible. the difference between calculated heat flux components at different

sites is minimal (less than 5 W/m2), with a max difference in net heat flux < 10 W/m2

The third assumption made is the applicability of the empirical equations from literature to the

conditions found in this study. While none of the empirical equations specify that they require

adjustment of parameters depending on the location of measurements, it is currently unknown if

the equations carry any significant biases that would translate into additional uncertainty.

46

3.4 Results

3.4.1 Graphical analysis of timeseries

During the 2016-2017 winter season, the freeze-up on the NSR lasted from November 19th to

December 6th. Time-series of air and water temperatures, shortwave radiation and heat fluxes for

the 2016 freeze-up period on the NSR are plotted in Figure 3-2. Air temperatures ranged from -

19.3 to 5.74oC with an average of -4.4oC and shortwave radiation varied from 0 to 286 W/m2 with

an average of 17.0 W/m2 (Figure 3-2a). During the first 14 days of freeze-up, long-wave radiation

was the dominant negative heat flux with Qlw and Qs having mean values of -32.9 and -11.3 W/m2
,

respectively. As the air temperature dropped from approximately -5oC to -19oC over the last three

days of freeze-up, sensible heat flux became the dominant with minimum values of -156 W/m2

and -125 W/m2 for Qs and Qlw, respectively.

In Figures 3-2c to 3-2f the net heat flux is plotted against the water temperatures at the four NSR

sites. It is evident that net heat flux was > -100 W/m2 for most of freeze-up, with a mean between

-28.7 and -30.3 W/m2 for the first 14 days. In the final three days of the freeze-up season, Qn

dropped to a minimum between -253.6 and 254.3 W/m2 with an average value around -94 W/m2.

While supercooling events during this time series tend to reach peak supercooling TP of around -

0.05oC or warmer, on November 25, 2016, at 4:25 AM a TP of -0.106oC (the lowest value measured

in this study), was recorded at Genesee (Fig 2-c) and a Tp of – 0.105oC was recoded at Quesnell at

7:28 PM (Figure 3-2e). Qn was fairly small magnitude preceding and during these principal

supercooling periods, reaching a minimum of -82.7 W/m2 at the time of TP. It is interesting to note

that Tp did not drop to even lower temperatures during times of periods of greater negative Qn in

the time series, such as in the last three days of freeze up. This implies that the local ice conditions

such as surface ice concentration, the rate of seeding particles and frazil production may have a

major role in controlling the degree of supercooling. The daily maximum in Qn is between -37.0

and 248 W/m2 happening around mid-day during the peak in solar radiation. Most supercooling

events ended during or shortly after a daily peak in Qn.

During break-up on the NSR, three supercooling events were observed at Genesee as shown in

Figure 3-3. From Figure 3-3a, it can be seen that wind speed was less than 2 m/s during the

recorded periods of supercooling, and a cloud cover fraction was high during events (average

values of 1, 1, and 0.8 for the three events respectively). The first event was observed on April 15th

47

from 3:53 AM to 7:38 AM, ending 2.2 hours after sunrise (Figure 3-3d). The air temperature is

below freezing during this event, reaching a minimum of -2.7oC (Figure 3-3b). The longwave heat

flux was the greatest negative heat flux reaching a minimum of -16.3 W/m2, followed by sensible

heat flux at -5.71 W/m2 (Figure 3-3c). Even though sunrise started around 5:30 AM, the water

continued to cool to a minimum temperature until after the net heat flux changed sign. The other

two break-up events occurred between evening of April 15th to the morning of April 17th during

the same period of negative net heat flux. The second break-up event started roughly 2 hours after

sunset (Figure 3-3b) lasting from 9:19 PM to 10:20 PM during a period of fairly constant negative

heat flux (-35.2 to -32.5 W/m2). The longwave again dominates this event with an average heat

flux of -21.5 W/m2 while sensible heat had an average value of -9.9 W/m2. It is notable that the

heat flux during this event is strictly negative even as the event ends and rises above 0oC, a sign

of the uncertainty in the heat flux calculations. The final break-up event at Genesee started at

10:48 PM (28 min after the second event ended) and lasted until 8:39 AM on April 16th,

approximately 3 hours after sunrise. Like the other two events, longwave radiation contributed the

majority of the negative heat flux with an average of -48.0 W/m2 (Figure 3-3d). The net heat flux

was relatively constant for the first 3 hours of the event, until a drop in the longwave heat flux to

around -65 W/m2 occurred due to an updated cloud cover estimate (Figure 3-3a). The net heat flux

then follows the air temperature trend dropping to a minimum value of -94.0 W/m2 before being

swiftly warmed and turned positive by the increasing shortwave radiation at sunrise (Figure 3-3c).

It is of interest to note that the following evening, a similar drop in heat flux is observed with the

net heat flux dropping to ~-60 W/m2, but no supercooling was observed.

Time-series of air and water temperatures, shortwave radiation and heat fluxes for the site near the

left bank at Sta. 293.5 km on the PR from December 1st, 2016, to March 14th, 2017 is plotted in

Figure 3-4. In Figure 3-4b, it can be seen that Ta ranged from -28.7 to +10.5 oC and the average Ta

was -9.7oC. The time series of short-wave radiation has a gradually increasing trend in the daily

peaks from 100 to 200 W/m2 in December and from 300 to 400 W/m2 in February and early March.

In Figure 3-4c the time series of the longwave and sensible heat flux components appeared to

follow the same trend and have comparable mean values of -71.4 W/m2 and -52.6 W/m2,

respectively. The sensible heat flux reached a peak value of -233 W/m2 compared to longwave

peak of -158 W/m2. Evaporative heat flux has no significant magnitude (mean -4.96 W/m2 in this

48

period) except for when the air temperature is above 0oC (Figure 3-4b) and the wind speed is

significant (Figure 3-4a). The period of warm air temperature on February 11-12, 2017, coincide

with the period of greatest negative evaporative heat flux, with the average evaporative heat flux

of -23.6 W/m2. During this period, wind speed was significantly higher, with an average of 7.8

m/s, and the greatest average wind speed and lowest average evaporative heat flux during

supercooling is observed during this time period.

The time series in Figure 3-4d shows extended multi-day events or periods of near-continuous

supercooling tended to occur when the air temperature drops below -10oC, with the mean air

temperature during the events that lasted for two days or more being -13.8 oC. For the first two

extended supercooling events (December 7th 18:19 to December 12th 23:50 and December 14th

1:32 to December 19th 6:23), the net heat flux is strictly negative and only going positive near the

end of the event. This period also sees the net heat flux reach its lowest value of -354 W/m2 as the

Ta reached its lowest temperature in the season of – 28.7 oC. The other multi-day events had periods

where the net heat flux rises above zero every day, following the peaks in solar radiation around

mid-day. The longwave and sensible heat fluxes are strongly negative during these extended events

with event averaged longwave and sensible heat fluxes ranging between -69.3 and -107 W/m2 and

between -33. to -123 W/m2, respectively.

Figure 3-5 zooms in on a 10-day long supercooling event from Figure 3-4 which occurred during

the first two weeks of February. The average air temperature during this event was -14.1oC (Figure

3-5b) and the longwave was the dominant heat flux during this event with an average value of -

89.3 W/m2 compared to the average sensible heat flux of -66.4 W/m2. The evaporative heat flux

was insignificant until the air temperature rose above freezing near the end of the event (Figure 3-

5c). This period of significant evaporative heat flux is also a period when wind speed are

significantly greater than the average wind speed of the period (average wind speed from February

11th – February 13th 2017 was 2.54 m/s compared to the preceding wind speed average of 0.34 m/s

from February 1st – 11th). From Figure 3-5d, it can be seen that the event had classical supercooling

behaviour with a TP of -0.044oC. The daily fluctuations in Qn had a gradually decreasing trend

during the first 5 days of the event, then the trend was reversed to increase gradually until the end

of the supercooling event. Approximately 7.5 hours after the start of the event, the water

temperature maintained a residual temperature of around -0.008oC for a week despite large

49

fluctuations in Qn during this period. From Figure 3-5d, cycles between positive peaks from ~30

to 180 W/m2 at mid-day to negative heat fluxes on the order of -100 to -350 W/m2 at night are not

reflected in a significant change in the water temperature.

3.4.2 Statistics and distribution of heat fluxes

Table 3-5 presents the average environmental conditions during supercooling events. The air and

water temperature are the most important of these parameters, as they are used in the longwave,

sensible and evaporative heat fluxes, with wind speed being important for both sensible and

evaporative heat fluxes. The cloud cover fraction has a significant impact of the longwave heat

flux, while relative humidity is only considered for the evaporative heat flux. The event averaged

water temperatures (𝑇𝑇𝑠𝑠) in the two rivers are very similar with both having a mean 𝑇𝑇𝑠𝑠 of -0.010oC

and with medians that only differ by of 0.001oC. There was a significant difference in event

averaged air temperatures, 𝑇𝑇𝑎𝑎, with mean values of -10.9 oC and -4.72 oC on the PR and NSR,

respectively. The event averaged cloud fraction (𝑛𝑛) had means of 0.789 and 0.680 and medians of

0.893 and 0.686 on the NSR and PR, respectively. Event averaged wind speeds (𝑉𝑉𝑧𝑧) were quite

low and skewed on the NSR where they ranged from 0 to 2.13 m/s, and had median and mean

values of 0.010 m/s and 0.237 m/s, respectively. The wind speeds were significantly larger but still

quite low and skewed on the PR where 𝑉𝑉𝑧𝑧 ranged from 0 to 4.93 m/s and had a median and mean

of 0.592 m/s and 0.941 m/s, respectively. The event averaged relative humidity (𝑅𝑅𝑅𝑅), had a mean

of 88.9 % and 77.0 % on the NSR and PR, respectively.

The average of the heat flux components and net heat flux during each supercooling event was

calculated. In addition, the integral of the net heat flux over each event Enet (J/m2) defined as the

total thermal energy transferred out of the river over the duration of a supercooling event was also

calculated. One of the means to estimate the total ice production during supercooling is to

determine the integral of the net heat flux on the water column and divide by the latent heat of

fusion (Osterkamp 1978). Table 3-6 presents the statistical properties of these event averaged heat

fluxes as well as Enet. Comparing the two rivers, longwave is the dominant negative heat flux with

mean of event averaged heat flux of -45.1 and -74.7 W/m2 for the NSR and PR, respectively. The

sensible heat flux serves as a secondary negative heat flux on both rivers with mean event averaged

values of -20.6 and -58.1 W/m2 for the NSR and PR, respectively. Evaporative heat flux is minimal

50

with the event averaged evaporative heat flux averaging -1.19 and -5.98 W/m2 for the NSR and

PR, respectively. The shortwave radiation heat flux tended to be higher on the PR than the NSR,

with a mean event averaged shortwave heat flux of 63.7 W/m2 on the PR compared to 28.9 W/m2

on the NSR. Comparing the mean event averaged heat fluxes of the PR to the NSR, the event

averaged longwave, sensible, and net heat flux are 1.7, 2.8, and 2.0 times larger on the PR than the

NSR. Considering the larger magnitude of net heat flux, it is unsurprising that the mean net energy

on the PR (-1.72x107 J/m2) is 7.4 times larger than on the NSR (-2.34x106 J/m2).

Boyd et al. (2022) analyzed the distribution of the start and end time of events throughout the day,

and suggested that the solar radiation cycling was a driver of supercooling events with freeze-up

events starting more often during the decline of solar radiation in the afternoon and evening, and

ending around mid-day when solar radiation would be at its peak. Figures 3-6 and 3-7 show the

distribution of the distribution of the start and end time of day of supercooling events for the NSR

and PR, respectively, along with the average hourly value of each heat flux component and the

resulting net heat flux. Starting with the NSR start time (Figure 3-6a), there is a peak in

supercooling events starting between 3 PM and 5 PM compared to the rest of the day with 34 %

of events observed on the NSR starting in this 2 hour period. The distribution of end time of

supercooling events (Figure 3-6b) show 67 % of NSR events ending between 10 AM and 4 PM.

Comparing these peaks in start and end times to the distribution of heat fluxes (Figure 3-6c), the

peak in event start frequency aligns with the decline in shortwave radiation an hour after the

average net heat flux drops below zero. Likewise, the uptick in events ending correspond to the

period when shortwave radiation is significant enough to have a positive net heat flux. When the

average net heat flux becomes a negative heat flux at 2 PM, the number of events ending in that

hour is only one more (4 events) then the other maximum value for events ending in the night (ex

between 10 and 11 PM). Figure 3-7 has a smoother but comparable distribution to Figure 3-6 in

terms of start and end times, with 36 % of events starting between 3 PM and 7 PM (Figure 3-7a),

right as the average net heat flux changes to a negative heat flux (Figure 3-7c). Comparing the end

time of events (Figure 3-7b) to the heat flux distribution, 67 % of PR events ended between 9 AM

and 3 PM, in the period where the shortwave radiation increases to a peak and then starts to decline.

Comparing the average heat flux distributions (Figures 3-6c and 3-7c), it is of interest to note that

the average value for the cooling heat fluxes (longwave, sensible, and evaporative) are fairly

51

constant, with the shortwave heat flux changing the shape with the diurnal cycling. On the PR Qn

was positive on average for 10 hours a day, between 8 AM and 6 PM, but only for 7 hours a day,

between 10 AM and 5 PM, on the NSR. This is likely to do with the fact that since the supercooling

occurred all winter, the average shortwave radiation reflects the increasing solar radiation from the

winter solstice onwards, while the NSR distribution only reflects the declining solar radiation prior

to the winter solstice.

Table 3-7 summarizes the statistics of the supercooling parameters of the 190 events used in this

study. The average values of TP and DP are comparable between the two rivers with a difference

less than 30% between the mean values. The durations of supercooling events were significantly

different between the two rivers, with the NSR having a mean duration of 16.8 hours compared to

the PR with a mean duration of 41.0 hours. This ratio of 2.4 is reflected in CDMS values with a

mean value of 10.6 and 21.2 oC∙minutes for the NSR and PR respectively (ratio of 2.0). Comparing

the mean CRP values for each river (-2.08x10-4 and -5.16x10-4 oC/minute respectively for the NSR

and PR), shows that that the PR tends to cool at a faster rate than the NSR. The longer duration of

events on the PR would also contribute to the larger Enet, as these events would have a longer

period to integrate over.

Frequency distributions of the event averaged net heat flux (𝑄𝑄𝑛𝑛) for all supercooling events as well

for each river are shown in Figure 3-8. Figure 3-8a shows a wide range of values from a minimum

of -264 W/m2 to a maximum of 201 W/m2. On the PR 39 % of the events had 𝑄𝑄𝑛𝑛 below -100

W/m2, while on the NSR only 12.1 % did. Across both rivers, roughly 64 % of all events occurred

during periods when 𝑄𝑄𝑛𝑛 was between -100 W/m2 and 0 W/m2 (Figure 3-8a), with 87 % of NSR

supercooling events (Figure 3-8b) and 53 % of PR supercooling events (Figure 3-8c) falling into

this category. It is interesting to note that ~14 % of supercooling events (6 events and 21 events

on the NSR and PR, respectively) were calculated to have been observed during a period where

the average Qn was positive. These events consequentially also have a positive Enet.

Figure 3-9 presents a log-log scatter plot of the CDMS and Enet for all 163 events where Enet ≤ 0

J/m2 to determine if there any correlation between the parameters. From the figure it can be seen

that there is a roughly linear trend of CDMS increasing in magnitude with increasing magnitude

Enet. The line of best fit has the equation,

52

 𝑙𝑙𝑙𝑙𝑙𝑙10(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) = 0.8815 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙10|𝐸𝐸𝑛𝑛𝑒𝑒𝑡𝑡| − 4.8887 (3.16)

with 11 events (~6.8 % of the data) outside the 95 % prediction interval. The correlation between

the two parameters was calculated to be R2 = 0.86.

An analysis was done to determine the dominant negative and positive event averaged heat fluxes.

Pie charts showing the percentage of events when the different heat flux components were

dominant during supercooling events are plotted in Figure 3-10. From Figure 3-10a, it can be seen

that Qlw, Qs, and Qe were the dominant negative heat flux in 80.0 %, 18.4 % and 1.6 % of the time,

respectively across both rivers. On the NSR Qlw and Qs were the dominant negative heat fluxes

for 91.4 % and 8.6 % of the events, respectively (Figure 3-10c). While on the PR 𝑄𝑄𝑙𝑙𝑠𝑠 was the

dominant negative heat flux for only 75.0 % of the events and Qs was dominant for 22.7 % e events

(Figure 10e). Figures 3-10c and 3-10e also show the only events in which Qe was the dominant

negative heat flux were observed on the PR for 2.3 % of the events observed.

In Figure 3-10b Qsw is shown to be the most dominant positive heat flux during 97.4 % of all

supercooling events on both rivers. On the NSR it was the dominant positive heat flux for 100 %

of events (Figure 10d). Figure 3-10e shows that on the PR the dominant positive heat flux was Qsw,

Qs, and Qe for 96.2 %, 3.0 % and 0.8 % of the events.

3.4.3 Linear correlation and multiple linear regression

To determine if any linear equations could be developed between the calculated heat fluxes and

any supercooling parameters, both linear and multiple correlations were investigated using

MATLAB (2021). The R2 values for the linear correlation are summarized in Appendix A. In all

cases, the correlations were found to be relatively weak with the largest R2 value of the linear

correlation being -0.35 between TP and principal supercooling shortwave heat flux. A scatter plot

of principal supercooling net heat flux and TP is shown in Figure 3-11 visualizes the linear

correlation between the two parameters and emphasizes that there is little correlation between the

net heat flux cooling the water it’s lowest temperature.

53

Multiple linear regression models were developed between the supercooling parameters observed

in this study and the average heat flux components for the supercooling event using MATLAB

fitlm function. The summary for each linear regression model coefficients and the model

assessment are shown in Appendix A. The multiple linear regression model calculated a maximum

R2 value of 0.188 for TP in response to the principal supercooling heat fluxes, meaning that the

most accurate of these models could only explain at ~19 % of variability in supercooling

parameter. In the case DP and CRP, a constant value estimate was deemed to be a more accurate

estimate than the model. Comparing the model intercept values of these parameters gives an

estimated DP of 4.06 hours with a CRP of -2.88x10-4 oC/minute. This is a longer duration and

slower cooling rate than the mean value across both rivers, but predicts a TP of -0.070 oC,

significantly colder than the mean value of -0.022 to -0.023 oC for either river (Table 3-7).

3.5 Discussion

3.5.1 Heat flux dynamics during supercooling

When determining the dominant negative heat fluxes for all events (Figure 3-10), the longwave

heat flux was the primary cooling heat flux for 80.0 % (152 events), with sensible heat flux the

next most dominant heat flux at 17.9 % (35 of 190) of events. For events dominated by longwave,

the mean event averaged longwave and sensible heat fluxes were -64.6 and -35.3 W/m2,

respectively, while sensible dominated events have mean event averaged longwave and sensible

heat fluxes of -75.8 and -102 W/m2, respectively. This is a ~11 W/m2 difference in mean longwave

heat flux between the two sets and a ~67 W/m2 difference in mean sensible heat flux. Looking at

the air temperature between the two sets, longwave dominated events had a mean event averaged

air temperature or -7.93 oC, which is between the mean event averaged air temperature of the two

rivers in Table 3-7. For sensible dominated events, the mean event averaged air temperature was -

14.8 oC, below the mean event averaged air temperature of either river.

Across the NSR and PR in 2016-2017, net heat flux was observed to range between -354 to +548

W/m2 during supercooling events. The event averaged net heat flux on the PR ranged between -

264 and +176 W/m2, with a mean of -75.0 W/m2, while on the NSR it ranged between -197 to 201

W/m2, with a mean of -38.0 W/m2. The PR tended to be exposed to colder air temperatures due to

the higher latitudes. In addition, upstream dam regulation on the PR delayed the ice cover

54

formation and exposed the PR study reach to more severe weather conditions of mid winter

compared to late fall and early winter of freeze-up on the NSR. The differences between the study

reaches reaffirms that the heat flux dynamics of a river is highly site specific, and that site

assessment of study reach is required for any approximation of the energy budget for a specific

study reach.

The uncertainty of the calculated heat flux components was estimated to range from ±10 to ±20

W/m2 for an estimated net heat flux uncertainty of ± 31.2 W/m2 (Table 3-4) as the root sum of

squares of the estimated heat flux components of the individual heat fluxes. The uncertainty in Qn

is primarily due to uncertainty in the sensible and longwave heat fluxes at ± 20 and ± 16 W/m2,

respectively based on the uncertainty of the empirical equations used. Shortwave heat flux is

relatively small at ± 10 W/m2 due to being directly measured, while evaporative heat flux has a

larger uncertainty at ± 14.7 W/m2, but only a significant heat flux when air temperatures are above

zero. The most straightforward way to reduce uncertainty is to perform direct measurements of all

radiative heat fluxes using radiometers deployed over the water surface (away from any shading

and influence from land, trees, or structures). Blonquist (2009) showed that longwave radiometers

can be accurate to within 3.2 % depending on the sensor, though in more varying conditions,

accuracy of 10 to 20 % may be more likely. McFarlane and Clark (2021) emphasize that if such

measurements are not possible, then direct measurements of incoming radiation should be

measured and outgoing radiation should be calculated from field parameters. Direct measurements

of sensible heat fluxes are possible (Buke et al. 2002), but require additional instrumentation that

would be difficult to deploy.

In Figure 3-7 it was shown that ~14 % of events (27 events) had a positive 𝑄𝑄𝑛𝑛����, which would imply

that the weather conditions were warming the water when it was supercooling, an apparent

contradiction. The behaviour of Qn of these 27 events can be divided into two categories as

summarized in Table 3-8. In the first category there was a small negative Qn at the start of the

event followed by a larger magnitude positive Qn, resulting in an overall positive heat flux, as

shown in Figure 3-12. These events had average peak supercooling of -0.021 oC and duration of

6.0 hours compared to -0.023 oC and 33.6 hours for all events. Therefore, they were of relatively

short duration but were approximately average in terms of peak supercooling. The positive net

heat flux was caused by a rapid increase in Qn during the event. The mean event averaged Qn was

55

16.8 W/m2, roughly half of the expected uncertainty, thus many of these events could have actually

had a negative event averaged Qn. For the 13 events in the second category (Table 3-8), the net

heat flux during the entire event generally stayed positive for the whole event. These 13 events on

averaged were short in duration, 0.70 hours and had small peak supercooling magnitudes of -0.005

°C. The most likely explanation for these events is that they are persisting supercooling events that

had advected from upstream and were being gradually warmed rather than an active supercooling

event at the time of observation. This explanation seems supported by Figure 3-13, where a

positive 𝑄𝑄𝑛𝑛���� event follows closely after a series of events with negative 𝑄𝑄𝑛𝑛����, and has two instances

of supercooling occur after it less than 10 minutes in duration.

As mentioned previously, net energy can be used to estimate the scale of ice production in the

water column as the energy removed from the water by a surface heat flux is balanced by frazil ice

produced (Osterkamp 1978). According to Osterkamp (1978), this can be approximated by,

 𝑆𝑆𝑖𝑖𝑖𝑖𝑒𝑒 =
𝑄𝑄𝐸𝐸
ℎ𝑓𝑓

 (3.17)

where Mice is the mass of ice per surface area of water, Q is the constant surface heat flux, t is the

time elapsed and hf is the heat of fusion of water at 3.34x105 J/kg and d is the depth of water.

Equation 17 can be converted to a volumetric fraction of ice to water f by dividing the above

equation by the density of ice ρice = 916 kg/m3. An additional assumption of well mixed water

column assumes that a unit depth d is representative of the entire water column, or that the

concentration of suspended frazil does not change significantly with depth resulting in,

 𝑓𝑓 =
𝑄𝑄𝐸𝐸

𝜌𝜌𝑖𝑖𝑖𝑖𝑒𝑒ℎ𝑓𝑓
𝑑𝑑 (3.18)

The final step to make Enet applicable to the ice production equations as written is to note that Qt

is the same as the time integration of the net heat flux Qn that is not a constant value, enabling the

final form of the equation to be,

 𝑓𝑓 =
−𝐸𝐸𝑛𝑛𝑒𝑒𝑡𝑡
𝜌𝜌𝑖𝑖𝑖𝑖𝑒𝑒ℎ𝑓𝑓

𝑑𝑑 (3.19)

56

where a -Enet term is used to note that a negative net energy leads to ice production, while a positive

net energy leads to melting ice.

Using the median and mean values of Enet of -1.32x106 and -1.27x107 J/m2 (Table 3-6), assuming

a unit, and noting that a negative value would denote ice production, this equates to an ice

concentration range of 4.31x10-3 to 4.15x10-2 m3/m3. Compared to the field measurements of ice

concentration from 1.8x10-5 m3/m3 (McFarlane et al., 2019) to 1x10-4 m3/m3 (Marko et al., 2015),

these values are approximately two to three orders of magnitude larger. One possible reason for

this method does not account for frazil ice flocculating and rising out of suspension to form frazil

pans, as well as the formation of other forms of ice such as anchor ice, border ice, and skim ice. In

addition, the estimated net energy may not account for presence of surface ice, additional shading

from topography, or other heat sources and sinks that would alter the effective net energy lost from

the water during the supercooling event.

3.5.2 Comparison to literature

The results of this study agree with previous observations that the shortwave and longwave heat

fluxes are the most significant surface heat source and sink, respectively (Brown 1969;Evans et

al. 1998;Webb and Zhang 2004; McFarlane and Clark 2021). Hannah et al. (2004) study on

salmon spawning river is Scotland reported that the sensible heat flux was the most significant

heat source due to low shortwave radiation heat fluxes and the positive air temperatures during

the study. This was not the case in the current study because during most supercooling events air

temperatures were below zero and thus the sensible heat flux was negative, i.e., cooling the water

(Table 3-7). However, for the four supercooling events where sensible heat flux was the

dominant positive heat flux (Figure 3-10), the event averaged air temperature ranged from 3.80

to 7.60 oC, which is comparable to or greater than the mean air temperature of 3.17 oC observed

by Hannah et al. (2004). The conditions where sensible heat flux were the dominant positive heat

flux tended to contribute to the evaporative heat flux to become the dominant negative heat flux;

two of the three evaporative cooled supercooling events had sensible heat flux as the dominant

heat source. Therefore, it is possible that when the non-radiative heat fluxes dominate the surface

energy budget (above freezing but cool air temperature, higher wind speeds, etc.) supercooling

57

events can be generated. However, more studies with smaller uncertainty range would be needed

to confirm the significance of these observations.

This study supports previous ones that showed that the net longwave radiation was the dominant

cooling heat flux during supercooling events (Richard and Morse, 2008; Richard et al., 2015;

McFarlane and Clark, 2021). While not quantified for all events, the select time series presented

by Richard et al. (2015) showed the overnight behaviour of the net heat flux to be roughly

parabolic with peak values between -200 and -250 W/m2, matching their conclusion that most

supercooling events occurred on nights where Qn dropped below -200 W/m2. Compared to the

current results, Richard et al. (2015) observed net heat fluxes of order of twice the magnitude of

the event averaged net heat flux observed during supercooling across the NSR and PR (mean

event averaged net heat flux of -63.7 W/m2). Richard et al. (2015) did not report average values

of air temperatures, but Richard and Morse (2008) reported that air temperatures were < -5.4oC

for the majority of observed supercooling events during the same measurements season.

McFarlane and Clark (2021) reported the event averaged heat fluxes for the six events they

observed on the Dauphin River between -37.4 to and -127.9 W/m2 (mean event averaged net heat

flux of -84.9 W/m2), with event averaged air temperatures between -1.7 to -8.8oC. The mean

event averaged heat flux is greater than the -63.7 W/m2 for this study (Table 3-6), though this

would be in part due to the small number of events. It is notable from the two above mentioned

studies and the current study that air temperatures do not need to be significantly below freezing

in order for supercooling to occur. The PR is an outlier from these observation sets (mean event

averaged air temperature of -10.9 oC) in part due to the upstream dam regulation artificially

supressing supercooling immediately downstream of the dam, which requires more severe

weather conditions to induce supercooling in the water column by the time it reaches the study

reach.

3.5.3 Correlating supercooling parameters with heat flux parameters

From the linear correlation and multiple linear regression analysis, it is apparent that no

correlation can be found between the supercooling parameters and the event averaged heat

fluxes. The multiple linear regression showed that the attempted models only explain at best 19

% of the variability observed in the supercooling parameters. From this, it can be concluded that

the relationship between the supercooling parameters and the heat flux components is probably

58

much more complex. Boyd et al. (2022) hypothesized that ice production may play a significant

role in enabling the water column to remain at an essentially constant residual temperature for up

to a week in duration (such as shown in Figure 3-5). Considering the range of heat fluxes

observed during this event (-344 to 336 W/m2), it seems clear that the residual temperature is

maintained through significant variations in the net surface heat flux. While additional studies

are required to confirm the idea of ice production buffering the net heat flux and extending

supercooling events, this study does lend credibility to the idea.

3.5.4 Potential role of ice production in supercooling energy budget

Laboratory observations of supercooling with a constant heat flux result in a ‘classical’

supercooling event where the water cools to a peak temperature before rising to a residual

temperature at which point the cooling heat flux is balanced by the latent heat released from frazil

ice production. While the field observations occur under much more dynamic heat fluxes, it is

reasonable to assume that this balance is still being maintained while the river remains at a constant

residual temperature. In order for ice production to respond at a rate comparable to the net heat

flux, sufficient seed crystals must be present in the water. A low seed crystal concentration would

mean that a cooling heat flux would primarily cool the water temperature, with minimal ice

production. The initially small ice production would provide more seed crystals for accelerated ice

production rate until the water temperature starts rising. A similar hypothesis for the connection

between seed crystal concentration and peak supercooling temperature is proposed by McFarlane

et al. (2019). On November 25, 2016 at 7:20 PM, they recorded a supercooling event on the NSR

that reached a TP of -0.145oC. McFarlane et al. (2019) noted that the previous day would have been

warm enough to have melted all sources of seed crystal in and around the water. Since this event

happened in the same time frame as presented in Figure 3-2 (within a few minutes of a similar

event in Figure 3-2e), it can be seen from Figure 3-2 that the water temperature during the day

reached a peak of 0.05oC, with an air temperature above zero for most of the day, supporting this

theory. As the frazil ice production increases, the available seed crystals increases, which in turn

enables for a greater proportion of the heat flux to be balanced by the heat of fusion. Once the

frazil production outpaces the cooling heat flux (after peak supercooling temperature is reached),

the limiting condition would be the cooling heat flux rather than the seed crystals. Smaller

magnitude of negative heat fluxes during peak supercooling will have sufficient seed crystal to be

59

fully balanced by ice production. Greater magnitude negative heat fluxes will have a high enough

seed crystal concentration that frazil production would rapidly increase, minimizing the resulting

temperature change.

The presence of suspended frazil would also increase the required energy to raise the water

temperature from the residual and end the event (Richard et al. 2015). Using the range of frazil

concentrations from field measurements of 1.8x10-5 to 1x10-4 m3/m3 and assuming the residual

temperature is around -0.01 oC (mean water temperature during supercooling for both rivers), the

required energy to end a typical supercooling event would increase from 13 to 73 %, respectively.

This is comparable with observations by Brown et al. (2006), where the delay in rising water

temperature to rising air temperature was attributed to the presence of ice and meltwater in the

stream dampening the water temperature temporarily before the water temperature mirrored the

air temperature fluctuations. In conditions where the net heat flux is only positive for a few hours

of the day, the melting of ice within the water column (suspended frazil, anchor ice, or surface ice)

could be sufficient to buffer the warming heat flux until the net heat flux goes negative, when frazil

ice production can resume and regenerate the lost ice mass.

A second impact ice production can have on extending supercooling event duration is by the

development of surface ice in the form of frazil pans and border ice to insulate the water column

below. Richard et al. (2015) modelled this impact on the water-air interface as inversely

proportional to the surface ice concentration, directly measured the surface ice concentration from

images collected from an onshore camera. While the presence of an ice cover would dampen the

magnitude of all heat fluxes at the water surface, since winter heat fluxes are positive for only a

few hours each day, insulation has a greater impact on the periods of positive heat flux rather than

negative heat fluxes. Alongside the resumption of ice production of ice production outside the

periods of positive heat fluxes restoring a portion of ice mass, a moving ice mass can dampen small

periods of positive heat fluxes for multiple days. The dampening effect of the surface pans would

also help explain the resilience to drastic changes to negative heat flux, as the pans would dampen

the overall heat flux and regulate the air temperature with in-situ ice growth within the surface ice.

60

3.6 Conclusions
This study presents an analysis of the surface heat flux components estimated during the

supercooling events observed on the NSR and PR for the 2016-2017 season. The shortwave and

longwave radiative heat fluxes, as well as the sensible and evaporative heat flux components at

the water surface were included in the analysis. Due to the significant differences in climatic

conditions between the two study sites, the magnitude of net heat flux during supercooling

events was found to be significantly different between the two rivers with an event averaged net

heat flux of -38.0 and -75.1 W/m2 for the NSR and PR, respectively.

The radiative heat fluxes were found to make the most significant contribution to the energy

budget, with longwave radiation being the dominant negative heat flux and shortwave radiation

being the dominant positive heat flux for 80.0 % and 97.4 % of supercooling events,

respectively. Sensible heat flux was the next most significant heat flux and was the dominant

negative and positive heat flux for 18.4 % and 2.1 % of events, respectively. Sensible heat flux

tended to become the dominant negative heat flux at significantly colder air temperatures since

the event averaged air temperature for sensible dominated events was -14.8 oC compared to the

overall average of -8.96 oC). The evaporative heat flux was rarely a significant heat flux except

when the air temperature was positive and the radiative heat fluxes were small. The daily

distribution of the heat fluxes during supercooling events when compared to the distribution of

supercooling start and end time are in line with the conclusion by Boyd et al. (2022) that the

trend in supercooling start and end time coincide with the diurnal cycling of the shortwave

radiation and the resulting fluctuations in the surface net heat flux.

No linear correlation was found between any of the supercooling event parameters and the event

averaged heat fluxes. However, visual observations of the time series of supercooling events

together with their corresponding surface heat components, do suggest that a change in sign in

the net heat flux for an extended period of time results in a significant change in the frequency of

supercooling events starting and ending. The change in sign from positive to negative heat flux

in the afternoon sees a spike in frequency of supercooling events starting after an hour of a

cooling heat flux, while events tended to end with greater frequency during the period when

strong shortwave radiation heat flux changed the net heat flux to positive. A strong correlation

was found between CDMS and net energy exchange at the water surface during the supercooling

61

event, which may mean that CDMS could be used to estimate ice production. However, studies

directly measuring ice production along side CDMS would be required to confirm this

hypothesis.

Future studies that consider the surface energy budget should consider using instrumentation to

directly measure the heat flux components rather than approximations through empirical

equations. The uncertainties associated with the estimation the different heat flux components

can be reduced with more direct measurements of radiative heat flux components. In addition,

measurements of surface ice concentrations would also improve estimation of the effective

surface heat flux when analyzing the river energy budget.

This study analyzed the surface energy budget during supercooling events, using a significantly

larger data set of events than analyzed previously. This study also confirmed the relationship

between the distribution of the start and end times of supercooling events and the average

behaviour of the surface heat flux to be related to the diurnal cycling of the shortwave heat flux.

This study also emphasized the dominance of radiative heat fluxes for the supercooling events,

with sensible heat flux only becoming the dominant cooling heat flux when the air temperature is

very cold. The non-radiative heat fluxes were primarily found to play a secondary role to the heat

budgets in the events studied, but the few events where they were the dominant positive and

negative heat fluxes suggest that specific sites may need to take them into consideration as well.

This understanding of the impact of the energy budget cycling and the impact of specific site

conditions on supercooling events can inform modeling and forecasting of the evolution of the

local ice regime. Energy budget studies are a necessary component for river ice process models

to improve capabilities to predict the evolution of a river’s ice regime during freeze-up using

local meteorological forecasts. Studies that improve understanding of the river response to

dynamic weather conditions would provide valuable information to improve the accuracy of

these models.

62

3.7 Chapter 3 Supplementary materials

Chapter 3 Tables

Table 3-1: Summary of the study reach properties for North Saskatchewan NSR, and Peace PR

Rivers (McFarlane et al. (2017))

River
Drainage Basin Area at study site

[km2]

Average Annual Flow

Rate

[m3/s]

Average

Slope

Average

Width [m]

Average

Depth [m]

NSR 5.67x103 220 0.00035 136 1.40

PR 1.30x105 1.59x103 0.00025 227 2.56

Table 3-2: Summary of equipment deployed. (Ruskin (2021); Onset (2021))

Parameter Make Model Accuracy Time Step

Water Temperature Ruskin RBR Solo T ±0.002 oC 1 minute

Wind Speed

Onset

Wind Speed and Direction Set

Smart Sensor S-WSET-Ba
±1.1 m/s 10 minutes

Air Temperature

12-bit Temperature/ Relative

Humidity Smart Sensor S-THB-

M002b

±0.21 oC 10 minutes

Relative Humidity
±2.5 % from RH 10 % - 90 %

±5 % outside range
10 minutes

Solar Radiation
Silicon Pyranometer Smart Sensor

S-LIB-M003c

±10 W/m2 10 minutes

Table 3-3: Straight-line distances between supercooling observation sites and weather stations

River Site

U of A

Weather Station – Site

(km)

ECCC

Weather Station – Site

(km)

NSR

Genesee 47 52

River Ridge 12 16

Quesnell 5 25

Emily Murphy 1 25

PR
Sta. 293.5 km (LB, RB) 15 82

Sta. 305.0 km (LB,RB) 7 73

63

Table 3-4: Estimated uncertainty for the heat flux components

Heat Flux Component
Estimated Uncertainty

(W/m2)

Source of Uncertainty

Estimate

Shortwave Heat Flux ±10 (min. Qsw 0) Onset (2021)

Longwave Heat Flux ±16 König – Langlo and Augstein (1994)

Evaporative Heat Flux ±14.7 McFarlane and Clark (2021)

Sensible Heat Flux ±20.0 McFarlane and Clark (2021)

Net Heat Flux ±31.2 Cumulative Uncertainty

Table 3-5: Average conditions during supercooling events. These conditions include event

averaged water temperature (𝑇𝑇𝑠𝑠), air temperature (𝑇𝑇𝑎𝑎), cloud cover fraction (𝑛𝑛), wind speed (𝑉𝑉𝑧𝑧),

and relative humidity (𝑅𝑅𝑅𝑅)

Data Set Statistics
𝑻𝑻𝒘𝒘

(oC)

𝑻𝑻𝒂𝒂

(oC)

𝒏𝒏

(fraction)

𝑽𝑽𝒛𝒛

(m/s)

𝑹𝑹𝑹𝑹

(percent)

Both Rivers

(190 events)

Minimum -0.045 -26.3 0 0 49.5

Median -0.008 -9.27 0.799 0.338 81.9

Mean -0.010 -8.99 0.713 0.726 80.6

Maximum -0.001 7.61 1 4.93 98.2

North

Saskatchewan

River

(58 events)

Minimum -0.039 -17.2 0 0 62.8

Median -0.009 -3.94 0.893 0.010 91.9

Mean -0.010 -4.72 0.789 0.237 88.9

Maximum -0.001 3.13 1 2.13 98.2

Peace River

(132 events)

Minimum -0.045 -26.3 0 0 49.5

Median -0.008 -12.0 0.686 0.592 77.9

Mean -0.010 -10.9 0.680 0.941 77.0

Maximum -0.001 7.61 1 4.93 93.5

64

Table 3-6: Statistics of the event averaged heat flux components during supercooling events.

Heat flux components include event averaged shortwave (𝑄𝑄𝑠𝑠𝑠𝑠), longwave (𝑄𝑄𝑙𝑙𝑠𝑠),), sensible (𝑄𝑄𝑠𝑠),

and evaporative (𝑄𝑄𝑒𝑒) heat fluxes. These components cumulate into the event averaged net heat

flux (𝑄𝑄𝑛𝑛), and the net energy (Enet) of the event

Data Set Statistics
𝑸𝑸𝒔𝒔𝒘𝒘

(W/m2)

𝑸𝑸𝒍𝒍𝒘𝒘

(W/m2)

𝑸𝑸𝒔𝒔

(W/m2)

𝑸𝑸𝒆𝒆

(W/m2)

𝑸𝑸𝒏𝒏

(W/m2)

Enet

(J/m2)

Both Rivers

(190 events)

Minimum 0 -133 -159 -55.8 -264 -1.97x10
8

Median 23.4 -69.4 -43.1 -2.83 -60.4 -1.32x10
6

Mean 53.1 -65.7 -46.6 -4.52 -63.7 -1.27x10
7

Maximum 303 5.32 47.3 9.55 201 1.91x10
6

North

Saskatchewan

River

(58 events)

Minimum 0 -103 -133 -6.61 -197 -1.88x10
7

Median 15.3 -41.4 -11.0 -1.16 -30.8 -1.03x10
6

Mean 28.9 -45.1 -20.6 -1.19 -38.0 -2.34x10
6

Maximum 224 -14.1 -0.289 9.55 201 7.32x10
5

Peace River

(132 events)

Minimum 0 -133 -159 -55.8 -264 -1.97x10
8

Median 34.4 -75.7 -57.1 -4.13 -82.3 -2.79x10
6

Mean 63.7 -74.7 -58.1 -5.98 -75.1 -1.72x10
7

Maximum 303 5.32 47.3 3.80 176 1.91x10
6

65

Table 3-7: Statistics of peak supercooling (TP), duration (D), principal supercooling duration

(DP), cumulative degree minutes of supercooling (CDMS), and principal supercooling average

cooling rate (CRP) for the events used in the energy budget analysis

Data Set Statistics
TP

(oC)

D

(hours)

DP

(hours)

CDMS

(oC∙minutes)

CRP

(oC/minute)

Both Rivers

(190 events)

Minimum -0.002 0.172 0.016 6.77 x10-3 -2.67 x10-6

Median -0.018 11.5 1.97 9.94 -2.13 x10-4

Mean -0.023 33.6 3.19 17.9 -4.22 x10-4

Maximum -0.106 297 79.1 134 -1.12 x10-2

Std. Dev. -0.020 58.8 7.04 27.1 -9.66 x10-4

North

Saskatchewan

River

(58 events)

Minimum -0.002 0.256 0.14 3.27 x10-2 -2.67 x10-6

Median -0.018 9.69 2.30 7.86 -1.10 x10-4

Mean -0.025 16.8 3.75 10.6 -2.08 x10-4

Maximum -0.106 123 48.6 49.7 -7.70 x10-4

Std. Dev. -0.025 22.7 6.64 11.5 -2.06 x10-4

Peace River

(132 events)

Minimum -0.002 0.172 0.016 6.77 x10-3 -3.42 x10-6

Median -0.018 14.4 1.74 10.0 -2.52 x10-4

Mean -0.022 41.0 2.95 21.2 -5.16 x10-4

Maximum -0.086 297 79.1 134 -1.12 x10-2

Std. Dev. -0.018 67.7 7.22 31.1 1.14 x10-3

Table 3-8: Net Heat Flux behaviour during events with positive 𝑄𝑄𝑛𝑛����

Category
Behaviour

Description

Number of

Events 𝑻𝑻𝑷𝑷����

(
o
C)

𝑫𝑫�

(hours)

Min.

𝑸𝑸𝒏𝒏

(W/m2)

Median

𝑸𝑸𝒏𝒏

(W/m2)

Mean

𝑸𝑸𝒏𝒏

(W/m2)

Max.

𝑸𝑸𝒏𝒏

(W/m2) NSR PR

I

Small negative Qn

at event start;

Large positive Qn

during event

3 11 -0.021 6.04 0.648 8.13 16.8 57.9

II

Strictly

positive/Positive

at start Qn

3 10 -0.005 0.698 3.10 90.2 90.7 201

TOTAL 6 21

66

Chapter 3 Figures

Figure 3-1: Maps showing.: (a) A map showing the geographical location of the two study

reaches in Alberta. Lower maps are enlarged views of the study reaches, (b) North Saskatchewan

River (NSR), and (c) Peace River (PR). Note the direction of flow is indicated by a black arrow

and major roads by grey lines

67

Figure 3-2: North Saskatchewan Freeze-up season: (a) Air temperature (Ta) and shortwave

radiation (Qsw), (b) Heat flux components. Water temperature (Tw) with shaded supercooling

events and net heat flux (Qn) for (c) Genesee, (d) River Ridge, (e) Quesnell, and (f) Emily

Murphy. The sensor at Quesnell was removed from the river on December 3rd prior to freeze-up

ending

68

Figure 3-3: Genesee Break-up Season (a) Barometric Pressure (Patm), wind speed (Vz) in m/s,

relative humidity (RH) as a fraction, and cloud cover (n) as a fraction (b) Air temperature (Ta)

and shortwave radiation (Qsw), (c) Heat flux components (d) Water temperature (Tw) with shaded

supercooling events and net heat flux (Qn)

69

Figure 3-4: Sample time-series of Peace River Sta 293.5 left bank season (a) Barometric Pressure

(Patm), wind speed (Vz) in m/s, relative humidity (RH) as a fraction, and cloud cover (n) as a

fraction (b) Air temperature (Ta) and shortwave radiation (Qsw), (c) Heat flux components (d)

Water temperature (Tw) with shaded supercooling events and net heat flux (Qn)

70

Figure 3-5: Extended event on the Peace River at Sta. 293.5 km on the left bank (a) Barometric

Pressure (Patm), wind speed (Vz) in m/s, relative humidity (RH) as a fraction, and cloud cover (n)

as a fraction (b) Air temperature (Ta) and shortwave radiation (Qsw), (c) Heat flux components

(d) Water temperature (Tw) with shaded supercooling events and net heat flux (Qn)

71

Figure 3-6: Distribution of (a) Start Time and (b) End Time of supercooling events on the NSR

over the course of the day. (c) Average heat fluxes throughout the period of supercooling

observations for the NSR events

Figure 3-7: Distribution of (a) Start Time and (b) End Time of supercooling events on the

PR over the course of the day. (c) Average heat fluxes throughout the period of

supercooling observations for the PR events

72

Figure 3-8: Frequency distributions of event averaged net heat fluxes during supercooling events

on (a) Both Rivers, (b) NSR and (c) PR

Figure 3-9: Log-log scatter plot of absolute values of the net energy (|𝐸𝐸𝑛𝑛𝑒𝑒𝑡𝑡|) and cumulative

degree minutes supercooling (CDMS) of North Saskatchewan (black) and Peace River (grey)

along with a line of best fit (red) and the 95 % prediction interval for the line of best fit (blue)

73

Figure 3-10: Dominance of heat flux components during negative (left) and positive (right) heat

fluxes for (a)-(b) Both Rivers, (c)-(d) North Saskatchewan River and (e)-(f) Peace River

Figure 3-11: Scatter plot of average net principal supercooling heat flux (𝑄𝑄𝑛𝑛𝑃𝑃) and peak

supercooling (Tp) of North Saskatchewan (black) and Peace River (grey)

74

Figure 3-12: Event with positive 𝑄𝑄𝑛𝑛���� observed on the Peace River at the left bank of Sta. 305 km.

This event has the lowest TP value of all events observed with a with positive 𝑄𝑄𝑛𝑛���� at TP = -0.086
oC

Figure 3-13: A time series from the left bank of Sta 293.5 km on the Peace River on March 1st,

2017 containing a typical duration supercooling event with a positive 𝑄𝑄𝑛𝑛���� (3:00 – 3:35 PM). This

figure also shows the end of a series of supercooling events that have a negative 𝑄𝑄𝑛𝑛���� (events prior

to 3 PM), as well as two instances of supercooling with duration < 10 minutes (thus not counted

in the data set)

75

Chapter 4 Conclusions

4.1 Study of supercooling parameters
In Chapter 2, 696 supercooling events were observed on three Alberta rivers, and catalogued along

with parameters of supercooling events established by previous literature. These parameters

included the start and end time of events, duration, peak supercooling temperature, time to reach

peak supercooling temperature, resulting principal supercooling cooling rate, and the cumulative

degree minutes of supercooling (CDMS).

Most of supercooling events (approximately 91 %) were observed during the freeze-up season.

The events started any time of day, but primarily ended between 9 AM and 3 PM. Break-up events

made up less that 9 % of total number event with almost all of them starting during the night and

ending by the following morning. The events in this study were primarily less than 24 hours in

duration (86.4 % of events) with a mean duration of 23.8 hours. The peak supercooling typically

reached values between -0.01 and -0.02oC. The principal supercooling cooling rates ranged from

-1.03x10-6 to -1.18x10-2 oC/minute with a mean value of -5.51x10-4 oC/minute; this is roughly an

order of magnitude smaller than reported laboratory studies, which is expected from previous

observations by Osterkamp (1978). The CDMS of the supercooling events had median, mean, and

maximum values of 2.31, 11.1 and 158 ◦C∙minutes, respectively, and is within the range previously

reported by Howley et al. (2019).

The most notable observations regarding supercooling events observed in this study are two events

which measured peak supercooling temperatures of -0.105 and -0.106 oC on the NSR on November

25th, 2016 at 7:28 PM and 4:25 AM, respectively. Events lasting for over 3 days were observed

on all three rivers, exceeding the upper limit of supercooling event durations reported in previous

literature. These long supercooling events tended to establish a constant residual temperature and

maintain the temperature for multiple days at a time. Comparing the distribution of these long

events across the rivers studied, 85 % of these long events were observed on the PR, the largest

river used in the study, while 11 % and 4 % of these longer duration events were observed on the

NSR and KR, respectively.

76

Analysis of the variation of supercooling behaviour between sequential sensors showed significant

longitudinal variation on the KR and NSR that were likely explained by the impact of

hydropeaking and influence of urbanization, respectively. While it is to be expected to observe

this longitudinal variation on the KR, additional studies are required to confirm the behaviour

observed on the NSR. Lateral differences between sensor pairs on the PR was also observed and

is likely due to the impact of shading on the southern bank, which often experienced single longer

duration events during multiple smaller duration events on the north bank.

4.2 Study of surface energy budget during supercooling
In Chapter 3, the 2016-2017 season of supercooling data was re-analyzed alongside the surface

energy budget calculated from local meteorological data. Results from this analysis showed that

the shortwave and longwave radiative heat fluxes were the most significant of the surface heat

fluxes. Shortwave radiation was found to be the dominant positive heat flux for 97.4 % of all

events, while longwave radiation dominated the negative heat flux for 80.0 % of supercooling

events. Sensible heat flux was a strong secondary heat flux, and tended to be the dominant heat

flux when air temperatures were significantly colder at an average air temperature of -14.8 oC

compared to the overall average of -8.99 oC. The evaporative heat flux is only significant when

the air temperature is above freezing, and was found to be the dominant positive and negative heat

flux during a few events.

Linear correlation and multiple linear regression analysis between supercooling parameters and

event averaged heat flux components found no significant results; the greatest magnitude linear

correlation was -0.35 between peak supercooling and average principal shortwave radiation, while

the best multiple linear regression equation (peak supercooling and principal supercooling

averaged heat flux components) could only explain ~19 % of the variability observed in the data

set. However, the visual plotting of the heat fluxes alongside the supercooling events and the start

and end time distribution along side the average hourly heat flux show that some relationship

between when supercooling events tend to end and the surface net heat flux. There appears to be

a strong correlation between CDMS and Enet, (R2 = 0.86), which may indicate a promising

relationship between CDMS and ice production. However, since both of the parameters are related

to the duration of an event, this is not conclusive evidence of the applicability of CDMS for ice

production.

77

4.3 Future work
While in this study a larger data set of supercooling events was analyzed (compared to previously

reported events), a comparison of supercooling behavior across a variety of rivers (unregulated

rivers, more variable sizes, different climatic environment, etc.) would provide insights into how

different properties of each river may impact supercooling events. This can also be extended to

more detailed longitudinal and lateral studies that could give a better sense of the spatial evolution

of supercooling events within a study reach.

The surface energy budget analysis showed that there is some relationship that can be derived

between the start and end of supercooling events. Such relationships should be the focus of a study

dedicated to direct measurements of the different heat components on the water surface. This

research would reduce error in estimating heat fluxes and could improve our understanding of

forecasting the start and end time of supercooling events. More detailed studies to estimate local

ice production could then improve our understanding of how ice production evolves during

supercooling events. This in return would improve the capacity of numerical models to estimate

ice production locally (e.g., water intake structures) and ice transport (e.g., advancement of the ice

front).

While CDMS is a useful shorthand for the scale of a supercooling event, it is still uncertain how

effective the relation between the CDMS and ice production as proposed by Howley et al. (2019).

In order to confirm this relation, more field studies are required to measure simultaneously the

CDMS and frazil ice concentration. If this relation is confirmed, the CDMS would potentially be

used as a surrogate for local ice production without the use of heat models.

78

References

Altberg, W.J., 1936. Twenty years of work in the domain of underwater ice formation,

International Association of Scientific Hydrology Bulletin, 23, 373–407

Arden, R. S., Wigle, T. E., 1973. Dynamics of ice formation in the upper Niagara River.

Int. Symp. Role of Snow and Ice in Hydrol., Banff, Alberta 1972,

2:1296-1313. Geneva: UNESCO-WMO-IAHS. 1483 pp.

Ashton, G. D. (1986). River Lake Ice Engineering. (G. D. Ashton, ed.), Water Resources

Publications, Chelsea, Michigan.

Ashton, G. D. (2013). “Thermal Processes.” River Ice Formation, S. Beltaos, ed.,

Committee on River Ice Processes and the Environment, CGU-HS, Edmonton,

Alberta, 19–76.

Barnes, H. T., 1908. Formation of Ground- or Anchor-Ice, and other Natural Ice, Nature, 78,

102–104, doi: https://doi.org/10.1038/078102c0.

Blackburn, J. and She Y., 2019. A comprehensive public-domain river ice process model and its

application to a complex natural river. Cold Regions Science and Technology, 163, 44-

58. doi: https://doi.org/10.1016/j.coldregions.2019.04.010.

Bowen, I.S. (1926). “The Ratio of Heat Losses by Conduction and by Evaporation from

Any Water Surface.” Phys. Rev. 27(6), 779–787.

Boyd, S., Ghobrial, T., Loewen, M., Jasek, M., Evans J., 2022. A study of

supercooling in rivers. Cold Regions Science and Technology, 194(2022), 1034-1055,

doi: https://doi.org/10.1016/j.coldregions.2021.103455

https://doi.org/10.1038/078102c0
https://doi.org/10.1016/j.coldregions.2019.04.010
https://doi.org/10.1016/j.coldregions.2021.103455

79

Boyd, S., Ghobrial, T., Loewen, M., 2020. Observations of Supercooling in Rivers. IAHR Ice

Symposium Trondheim, Norway. November 23 – 25 2020

Brown, G. W. (1969). “Predicting Temperatures of Small Streams.” Water Resources

Research, 5(1), 68–75.

Brown, L. E., Hannah, D. M., and Milner, A. M. (2006). “Thermal variability and stream

flow permanency in an alpine river system.” River Research and Applications,

22(4), 493–501. doi: 10.1002/rra.915

Buehler, H., 2013. Impact of a hydropeaking dam on the Kananaskis River : changes in

geomorphology, riparian ecology, and physical habitat (T). Electronic Theses and

Dissertations (ETDs) 2008+. University of British Columbia.

doi: http://dx.doi.org/10.14288/1.0073548.

Carstens, T., 1966. Experiments with supercooling and ice formation in supercooled water:

Geofysiske Publikasjoner, v. XXVI, no. 9, p. 1-18.

Clark, E., Webb, B. W., and Ladle, M., 1999. Microthermal gradients and ecological

implications in Dorset rivers. Hydrological Processes, 13(3), 423–438.

Cozzetto, K., McKnight, D., Nylen, T., and Fountain, A., 2006. Experimental

investigations into processes controlling stream and hyporheic temperatures,

Fryxell Basin, Antarctica. Advances in Water Resources, 29(2), 130–153.

Daly, S., 1994. Report on frazil ice. US Army Corp of Engineers, Cold Regions Research &

Engineering Laboratory, Hanover, New Hampshire, Report 94-23, 50 pages.

http://dx.doi.org/10.14288/1.0073548

80

Evans, E. C., McGregor, G. R., and Petts, G. E., 1998. River energy budgets with

special reference to river bed processes. Hydrological Processes, 12(April 1997),

575–595.

ECCC-Environment and Climate Change Canada (2020)a, Edmonton International

Weather Station Cloud Data, Received Jul 31, 2020

ECCC-Environment and Climate Change Canada (2020)b, Peace River Weather Station

Cloud Data, Received May 22, 2020

Ghobrial, T. R., Loewen, M. R., Hicks, F., 2012. Laboratory calibration of upward looking

sonars for measuring suspended frazil ice concentration,

Cold Regions Science and Technology, Volume 70, 2012, Pages 19-31,

doi: https://doi.org/10.1016/j.coldregions.2011.08.010 .

Hannah, D. M., Malcolm, I. A., Soulsby, C., and Youngson, A. F., 2004. Heat

exchanges and temperatures within a salmon spawning stream in the Cairngorms,

Scotland: Seasonal and sub-seasonal dynamics. River Research and Applications,

20(6), 635–652.

Hicks, F., Cui W., and Ashton, G., 2008. Heat Transfer and Ice Decay. River Ice

Breakup, S. Beltaos, ed., Water Resources Publications, LLC, 480 pp.

Howley, R., Ghobrial, T. R., She, Y., 2019. Thermal regime in the North Saskatchewan

River in Edmonton. CGU HS Committee on River Ice Processes and the Environment

20th Workshop on the Hydraulics of Ice Covered Rivers Ottawa, Ontario, Canada,

May 14-16, 2019, 2019.

https://doi.org/10.1016/j.coldregions.2011.08.010

81

Hubbard, K. G. (1994). “Spatial variability of daily weather variables in the

high plains of the USA.” Agricultural and Forest Meteorology, 68(1–2),

29–41. doi: https://doi.org/10.1016/0168-1923(94)90067-1

Jasek, M., Ghobrial, T. R., Loewen, M. R., Hicks, F., 2011. Comparison of CRISSP modeled and

SWIPS measured ice concentrations on the Peace River. CGU HS Committee on River

Ice Processes and the Environment 16th Workshop on River Ice Winnipeg, Manitoba,

September 18 – 22, 2011.

Jasek, M., Pryse-Phillips, A., 2015. Influence of the proposed Site C hydroelectric

project on the ice regime of the Peace River. Canadian Journal of Civil

Engineering. 42(9): 645-655. https://doi.org/10.1139/cjce-2014-0425

Jasek, M., Shen, HT., Pan, J., Paslawski, K., 2015. Anchor Ice Waves and their Impact on

Winter Ice Cover Stability. CGU HS Committee on River Ice Processes and the

Environment 18th Workshop on the Hydraulics of Ice Covered Rivers

Quebec City, QC, Canada, August 18-20, 2015

Kalke H., McFarlane V., Schneck C., Loewen, M., 2017. The transport of sediments

by released anchor ice, Cold Regions Science and Technology, 143(2017) 70-80.

doi: http://dx.doi.org/10.1016/j.coldregions.2017.09.003

Kalke, H., McFarlane, V., Ghobrial, T. R., Loewen, M. R., 2019. Field Measurements of

Supercooling in the North Saskatchewan River. CGU HS Committee on River Ice

Processes and the Environment 20th Workshop on the Hydraulics of Ice Covered Rivers

Ottawa, Ontario, Canada, May 14-16, 2019.

Kellerhals, R. C., C. R. Neil, D. I. Bray., 1972. Hydraulic and geomorphic characteristics

of rivers in Alberta. Cooperative Research Program in Highway and River Engineering

Technical Report. Alberta Environment, Edmonton, 1972.

https://doi.org/10.1016/0168-1923(94)90067-1
https://doi.org/10.1139/cjce-2014-0425
http://dx.doi.org/10.1016/j.coldregions.2017.09.003

82

König-Langlo, G., and Augstein, E., 1994. Parametrization of the downward longwave

radiation at the Earth’s surface in polar regions. Meteorologische Zeitschrift,

3: 343–347. doi:10013/epic.12338.d001.

MATLAB, 2021. version 9.10.0.1710957 (R2021a), Natick, Massachusetts,

The MathWorks Inc.

MathWorks, 2021. MathWorks documentation for Correlation Coefficients-corrcoef,

URL: https://www.mathworks.com/help/matlab/ref/corrcoef.html,

Retrieved: August 30, 2021

MathWorks, 2021. MathWorks documentation for Interpret Linear Regression Results,

URL: https://www.mathworks.com/help/stats/understanding-linear-regression-

outputs.html, Retrieved: August 30, 2021

Matousek, V., 1992. Frazil and skim ice formation in Rivers, IAHR Ice Symposium Banff,

Alberta.

McFarlane, V., Clark, S. P. 2021. A detailed energy budget analysis of river supercooling and the

importance of accurately quantifying net radiation to predict ice formation,

Hydrological Processes, 2021; 35:e14056. doi: https://doi.org/10.1002/hyp.14056.

McFarlane, V., Loewen, M. R., Hicks, F., 2015. Measurements of the evolution of frazil ice

particle size distributions. Cold Regions Science and Technology, 120,

45-55. doi: https://doi.org/10.1016/j.coldregions.2015.09.001

McFarlane, V., Loewen, M. R., Hicks, F., 2017. Measurements of the size distribution of frazil

ice particles in three Alberta rivers. Cold Regions Science and Technology, 142,

100-117. doi: https://doi.org/10.1016/j.coldregions.2017.08.001.

https://www.mathworks.com/help/matlab/ref/corrcoef.html
https://www.mathworks.com/help/stats/understanding-linear-regression-outputs.html
https://www.mathworks.com/help/stats/understanding-linear-regression-outputs.html
https://doi.org/10.1002/hyp.14056
https://doi.org/10.1016/j.coldregions.2015.09.001
https://doi.org/10.1016/j.coldregions.2017.08.001

83

McFarlane, V., Loewen M. R., Hicks, F., 2019. Field measurements of suspended frazil

ice. Part II: Observations and analyses of frazil ice properties during the principal and

residual supercooling phases, Cold Regions Science and Technology,165, 102-796,

doi: https://doi.org/10.1016/j.coldregions.2019.102796.

Michel, B., 1967. Morphology of Frazil Ice. Proceedings of the International Conference on Low

 Temperature Science, Hokkaido University, Sapporo, Japan, pp. 119-128.

Michel, B., 1971. Winter regime of rivers and lakes. Cold Regions Science and Engineering

Monograph III-B1a. U.S. Army Cold Regions Research and Engineering

Laboratory, p. 131.

Nafziger, J., Hicks, F., Thomas, P., McFarlane, V., Banack, J., Cunjak, R.A., 2013. Measuring

supercooling prevalence on small regulated and unregulated streams in New Brunswick

and Newfoundland, Canada, CGU HS Committee on River Ice Processes and the

 Environment. Edmonton, AB., 2013.

Osterkamp, T., 1978. Frazil Ice Formation: A Review. Journal of the Hydraulics Division,

104, pp. 1239-1255. doi: https://doi.org/10.1061/JYCEAJ.0005060

Onset, 2021b. HOBO S-THB-M002 Sensor Datasheet,

URL: https://www.onsetcomp.com/datasheet/S-THB-M002. Received: August 31, 2021

Onset, 2021c. HOBO S-LIB-M003 Sensor Datasheet,

 URL: https://www.onsetcomp.com/datasheet/S-LIB-M003 . Received: August 31, 2021

Prowse, T., 2001. River-Ice Ecology II: Biological Aspects, Journal of Cold Regions

Engineering., 15(1), pp. 17-33.

doi: https://doi.org/10.1061/(ASCE)0887-381X(2001)15:1(17)

https://doi.org/10.1016/j.coldregions.2019.102796
https://doi.org/10.1061/JYCEAJ.0005060
https://www.onsetcomp.com/datasheet/S-THB-M002
https://www.onsetcomp.com/datasheet/S-LIB-M003

84

QGIS Development Team, 2021. QGIS Geographic Information System.

Open Source Geospatial Foundation Project. URL. http://qgis.osgeo.org.

Quiñones, A., Cordoba B., Gutierrez, M., Hoogenboom, M., 2019. Radius of influence

of air temperature from automated weather stations installed in complex terrain,

Theoretical and Applied Climatology, 2019;137:1957–1973,

doi: https://doi.org/10.1007/s00704-018-2717-9

Richard, M., Morse, B., 2008. Multiple frazil ice blockages at a water intake in the St. Lawrence

River. Cold Region Science and Technology 53, 131–149.

doi: https://doi.org/10.1016/j.coldregions.2007.10.003.

Richard, M., Morse, B., Daly, S., 2015. Modeling Frazil Ice Growth in the St. Lawrence

River, Canadian Journal of Civil Engineering, 2015; 42: 592–608

doi: http://dx.doi.org/10.1139/cjce-2014-0082

Ruskin 2021. RBR Solo T Temperature Logger Datasheet,

URL: https://rbr-global.com/products/compact-loggers/rbrsolo-t.

Received: August 31, 2021

Ryan, P., Harleman, D.R., Stolzenbach, K.D. (1974). Surface Heat Loss from Cooling Ponds

Water Resour. Res. 10(5), 930–938. doi: https://doi.org/10.1029/WR010i005p00930

Schneck, C. C., Ghobrial, T. R., and Loewen, M. R., 2019. Laboratory study of the properties of

Frazil ice particles and flocs in water of different salinities, The Cryosphere,

13, 2751–2769, doi: https://doi.org/10.5194/tc-13-2751-2019.

Wazney, L., Clark, S., Malenchak, J., Knack, I. and Shen, H.T., 2019. Numerical simulation of

river ice cover formation and consolidation at freeze-up. Cold Regions Science and

Technology, 168, https://doi.org/10.1016/j.coldregions.2019.102884.

http://qgis.osgeo.org/
https://doi.org/10.1007/s00704-018-2717-9
https://doi.org/10.1016/j.coldregions.2007.10.003
http://dx.doi.org/10.1139/cjce-2014-0082
https://rbr-global.com/products/compact-loggers/rbrsolo-t
https://doi.org/10.1029/WR010i005p00930
https://doi.org/10.5194/tc-13-2751-2019
https://doi.org/10.1016/j.coldregions.2019.102884

85

Webb BW, Zhang Y. (2004). Intra-annual variability in the non-advective heat energy budget of

Devon streams and rivers. Hydrol Process. 2004;18:2117–46.

Webb, B. W., Hannah, D. M., Moore, R. D., Brown, L. E., and Nobilis, F., 2008.

Recent advances in stream and river temperature research. Hydrol Process,

22(7), 902–918.

Ye, S., Doering, J., Shen, H., 2004. A laboratory study of frazil evolution in a

counter-rotating flume. Canadian Journal of Civil Engineering. 31(6): 899-914,

doi: https://doi.org/10.1139/l04-056

https://doi.org/10.1139/l04-056

86

Appendix A – Summary of linear correlation & multiple linear

regression analysis
List of Summary Tables

Table A.1: Summary of R2 values of supercooling event parameters and average heat flux 89

Table A.2: Summary of R2 values of principal supercooling parameters and average principal heat flux

components ... 89

Table A.3: Summary of multiple linear regression model between peak supercooling (TP) and average

heat flux components .. 90

Table A.4: Peak supercooling (TP) and average heat flux components multiple linear regression model

statistics ... 90

Table A.5: Summary of multiple linear regression model between peak supercooling (TP) and average

principal supercooling heat flux components ... 90

Table A.6: Peak supercooling (TP) and average principal supercooling heat flux components multiple

linear regression model statistics .. 90

Table A.7: Summary of multiple linear regression model between duration (D) and average heat flux

components ... 91

Table A.8: Duration (D) and average heat flux components multiple linear regression model statistics .. 91

Table A.9: Principal supercooling duration (DP) and average heat flux components multiple linear

regression model statistics .. 92

Table A.10: Principal supercooling duration (DP) and average hat flux components multiple linear

regression model statistics .. 92

Table A.11: Summary of multiple linear regression model between principal supercooling duration (DP)

and average principal heat flux components ... 92

Table A.12: Principal supercooling duration (DP) and principal supercooling average heat flux

components multiple linear regression model statistics .. 93

Table A.13: Summary of multiple linear regression model between principal supercooling average

cooling rate (CRP) and average heat flux components .. 93

Table A.14: Principal supercooling average cooling rate (CRP) and average heat flux components

multiple linear regression model statistics .. 93

87

Table A.15: Summary of multiple linear regression model between principal supercooling average

cooling rate (CRP) and average principal supercooling heat flux components ... 94

Table A.16: Principal supercooling average cooling rate (CRP) and principal supercooling average heat

flux components multiple linear regression model statistics .. 94

Table A.17: Summary of multiple linear regression model between cumulative degree minutes of

supercooling (CDMS) and average heat flux components .. 94

Table A.18: Cumulative degree minutes of supercooling (CDMS) Supercooling and average heat flux

components multiple linear regression model statistics .. 95

88

A-1 Summary of linear correlation analysis method

Linear correlation was found between all supercooling parameters and all heat flux components

and net heat flux (Table A.1) as well as between principal supercooling parameters and the average

principal supercooling heat fluxes (Table A.2). In both cases, the correlation was calculated using

the MATLAB function corrcoef() documented by MathWorks (2021a).

The fitlm function was used to generate a multiple linear regression equation between supercooling

parameters and the event average of each heat flux component (Table A.3 to A.18). For the

parameters defined in principal supercooling (TP, DP, and CRP), an additional model was

developed between the parameter and the principal supercooling averaged heat flux components.

The function uses a t-test for each estimated coefficient in the linear regression model compared

to ignoring the input parameter, as well as an F-test for the overall model against assuming a

constant value (MathWorks 2021b). For both p-values, if the p-value is less than 0.05, the test is

significant at the 5% level (MathWorks 2021b). The final point of assessment is that the R2 value

can be interpreted as an indicator of what fraction of the variability in the response data is explained

by the linear regression model (MathWorks 2021b).

89

A-2 Summary Tables
Table A.1: Summary of R2 values of supercooling event parameters and average heat flux

Average Heat Flux

component

(W/m2)

TP

(oC)

D

(hours)

DP

(hours)

CDMS

(oC∙minutes)

CRP

(oC/minute)

𝑸𝑸𝒔𝒔𝒘𝒘 -0.15 -0.13 -0.11 -0.15 0.10

𝑸𝑸𝒍𝒍𝒘𝒘 -0.09 -0.23 0.04 -0.23 -0.05

𝑸𝑸𝒔𝒔 0.15 -0.20 0.08 -0.17 -0.14

𝑸𝑸𝒆𝒆 0.10 0.03 0.04 0.03 -0.08

𝑸𝑸𝒏𝒏 -0.08 -0.31 -0.04 -0.31 -0.01

Table A.2: Summary of R2 values of principal supercooling parameters and average principal

heat flux components

Average Principal

Heat Flux Components

(W/m2)

TP

(oC)

DP

(hours)

CRP

(oC/minute)

𝑸𝑸𝒔𝒔𝒘𝒘𝒑𝒑 -0.35 -0.09 0.11

𝑸𝑸𝒍𝒍𝒘𝒘𝒑𝒑 -0.14 0.05 -0.05

𝑸𝑸𝒔𝒔𝒑𝒑 0.15 0.09 -0.17

𝑸𝑸𝒆𝒆𝒑𝒑 0.12 0.03 -0.09

𝑸𝑸𝒏𝒏𝒑𝒑 0.28 -0.01 -0.01

90

Table A.3: Summary of multiple linear regression model between peak supercooling (TP) and

average heat flux components

Parameter Intercept
𝐐𝐐𝐬𝐬𝐬𝐬

(W/m2)

𝐐𝐐𝐥𝐥𝐬𝐬

(W/m2)

𝐐𝐐𝐬𝐬

(W/m2)

𝐐𝐐𝐞𝐞

(W/m2)

Coefficients 1.83x10-2 4.01x10-5 2.35x10-4 -1.76x10-4 -7.28x10-5

Standard Error 3.74x10-3 2.30x10-5 6.51x10-5 5.11x10-5 2.38x10-4

t-statistic -4.88 1.75 3.61 -3.44 -0.31

t-statistic p-value 2.31x10-6 8.26x10-2 3.88x10-4 7.23x10-4 7.68x10-1

Table A.4: Peak supercooling (TP) and average heat flux components multiple linear regression

model statistics

Number of Observations: 190 Degrees of Freedom: 185

R2: 0.103 Adjusted R2: 0.0838

F-statistic vs. constant 5.29 F-statistic p-value: 4.65x10-4

Root Mean Squared Error 1.96x10-2

Table A.5: Summary of multiple linear regression model between peak supercooling (TP) and

average principal supercooling heat flux components

Parameter Intercept
𝐐𝐐𝐬𝐬𝐬𝐬𝒑𝒑

(W/m2)

𝐐𝐐𝐥𝐥𝐬𝐬𝒑𝒑

(W/m2)

𝐐𝐐𝐬𝐬𝒑𝒑

(W/m2)

𝐐𝐐𝐞𝐞𝒑𝒑

(W/m2)

Coefficients -1.91x10-2 9.16x10-5 1.93x10-4 -1.33x10-4 3.90x10-6

Standard Error 3.26x10-3 2.17x10-5 5.15x10-5 5.07x10-5 2.45x10-4

t-statistic -5.83 4.23 3.75 -2.63 1.59x10-2

p-value 2.38x10-8 3.72x10-5 2.39x10-4 9.32x10-3 9.87x10-1

91

Table A.6: Peak supercooling (TP) and average principal supercooling heat flux components

multiple linear regression model statistics

Number of Observations: 190 Degrees of Freedom: 185

R2: 0.188 Adjusted R2: 0.171

F -statistic vs. constant 10.7 F -statistic p-value: 7.7x10-8

Root Mean Squared Error 1.87 x10-2

Table A.7: Summary of multiple linear regression model between duration (D) and average heat

flux components

Parameter Intercept
𝐐𝐐𝐬𝐬𝐬𝐬

(W/m2)

𝐐𝐐𝐥𝐥𝐬𝐬

(W/m2)

𝐐𝐐𝐬𝐬

(W/m2)

𝐐𝐐𝐞𝐞

(W/m2)

Coefficients 9.00 -2.02x10-1 -3.83x10-1 -2.19x10-1 5.75x10-2

Standard Error 10.7 6.59x10-2 1.87x10-1 1.46x10-1 6.81x10-2

t-statistic 8.39x10-1 -3.07 -2.05 -1.49 8.44x10-2

t-statistic p-value 4.02x10-1 2.46x10-3 4.16x10-2 1.37x10-1 9.33x10-1

Table A.8: Duration (D) and average heat flux components multiple linear regression model

statistics

Number of Observations: 190 Degrees of Freedom: 185

R2: 0.105 Adjusted R2: 0.0861

F-statistic vs. constant 5.45 F-statistic p-value: 3.6x10-4

Root Mean Squared Error 56.2

92

Table A.9: Principal supercooling duration (DP) and average heat flux components multiple

linear regression model statistics

Parameter Intercept
𝐐𝐐𝐬𝐬𝐬𝐬

(W/m2)

𝐐𝐐𝐥𝐥𝐬𝐬

(W/m2)

𝐐𝐐𝐬𝐬

(W/m2)

𝐐𝐐𝐞𝐞

(W/m2)

Coefficients 3.97 -9.96x10-3 -5.13x10-3 1.12x10-2 1.43x10-2

Standard Error 1.35 8.27x10-3 2.34x10-2 1.84x10-2 8.56x10-2

t-statistic 2.95 -1.20 -2.19x10-1 6.11x10-1 1.67x10-1

t-statistic p-value 3.63x10-3 2.30x10-1 8.27x10-1 5.42x10-1 8.67x10-1

Table A.10: Principal supercooling duration (DP) and average hat flux components multiple

linear regression model statistics

Number of Observations: 190 Degrees of Freedom: 185

R2: 0.015 Adjusted R2: -6.38x10-3

F -statistic vs. constant 0.701 F -statistic p-value: 0.593

Root Mean Squared Error: 7.06

Table A.11: Summary of multiple linear regression model between principal supercooling

duration (DP) and average principal heat flux components

Parameter Intercept
𝐐𝐐𝐬𝐬𝐬𝐬𝒑𝒑

(W/m2)

𝐐𝐐𝐥𝐥𝐬𝐬𝒑𝒑

(W/m2)

𝐐𝐐𝐬𝐬𝒑𝒑

(W/m2)

𝐐𝐐𝐞𝐞𝒑𝒑

(W/m2)

Coefficients 4.06 -6.98x10-3 7.10x10-4 1.23x10-2 6.44x10-3

Standard Error 1.24 8.21x10-3 1.95x10-2 1.92x10-2 9.28 x10-2

t-statistic 3.29 -8.51x10-1 3.64x10-2 6.45x10-1 6.95x10-2

p-value 1.23x10-3 3.96x10-1 9.71x10-1 5.20x10-1 9.45x10-1

93

Table A.12: Principal supercooling duration (DP) and principal supercooling average heat flux

components multiple linear regression model statistics

Number of Observations: 190 Degrees of Freedom: 185

R2: 0.013 Adjusted R2: -8.79x10-3

F -statistic vs. constant 0.588 F -statistic p-value: 0.677

Root Mean Squared Error 7.07

Table A.13: Summary of multiple linear regression model between principal supercooling

average cooling rate (CRP) and average heat flux components

Parameter Intercept
𝐐𝐐𝐬𝐬𝐬𝐬

(W/m2)

𝐐𝐐𝐥𝐥𝐬𝐬

(W/m2)

𝐐𝐐𝐬𝐬

(W/m2)

𝐐𝐐𝐞𝐞

(W/m2)

Coefficients -3.13x10-4 -8.01x10-7 -2.31x10-6 4.08x10-6 6.65x10-6

Standard Error 1.84x10-4 1.13x10-6 3.19x10-6 2.50x10-6 1.17x10-6

t-statistic -1.68 -7.15 x10-1 -6.87 x10-1 1.58 5.84 x10-1

t-statistic p-value 9.03x10-2 4.78x10-1 4.71x10-1 1.05x10-1 5.69x10-1

Table A.14: Principal supercooling average cooling rate (CRP) and average heat flux

components multiple linear regression model statistics

Number of Observations: 190 Degrees of Freedom: 185

R2: 0.028 Adjusted R2: 7.4x10-3

F -statistic vs. constant 1.35 F -statistic p-value: 2.52x10-1

Root Mean Squared Error 9.62x10-4

94

Table A.15: Summary of multiple linear regression model between principal supercooling

average cooling rate (CRP) and average principal supercooling heat flux components

Parameter Intercept
𝐐𝐐𝐬𝐬𝐬𝐬𝒑𝒑

(W/m2)

𝐐𝐐𝐥𝐥𝐬𝐬𝒑𝒑

(W/m2)

𝐐𝐐𝐬𝐬𝒑𝒑

(W/m2)

𝐐𝐐𝐞𝐞𝒑𝒑

(W/m2)

Coefficients -2.88x10-4 -6.40x10-7 -2.22x10-6 5.18x10-6 6.77x10-6

Standard Error 1.67x10-4 1.11x10-6 2.64x10-6 2.60x10-6 1.26x10-5

t-statistic -1.72 -5.76x10-1 -8.43x10-1 2.00 5.40x10-1

p-value 8.63x10-2 5.65x10-1 4.01x10-1 4.74x10-2 5.90x10-1

Table A.16: Principal supercooling average cooling rate (CRP) and principal supercooling

average heat flux components multiple linear regression model statistics

Number of Observations: 190 Degrees of Freedom: 185

R2: 0.041 Adjusted R2: 1.99x10-2

F -statistic vs. constant 1.96 F -statistic p-value: 1.03x10-1

Root Mean Squared Error 9.56x10-4

Table A.17: Summary of multiple linear regression model between cumulative degree minutes of

supercooling (CDMS) and average heat flux components

Parameter Intercept
𝐐𝐐𝐬𝐬𝐬𝐬

(W/m2)

𝐐𝐐𝐥𝐥𝐬𝐬

(W/m2)

𝐐𝐐𝐬𝐬

(W/m2)

𝐐𝐐𝐞𝐞

(W/m2)

Coefficients 6.67 -9.79x10-2 -1.95x10-1 -7.42x10-2 -1.41x10-3

Standard Error 4.94 3.03x10-2 8.59x10-2 6.74x10-2 3.14x10-1

t-statistic 1.35 -3.23 -2.27 -1.10 -4.49x10-3

t-statistic p-value 1.79x10-1 1.48x10-3 2.42x10-2 2.72x10-1 9.96x10-1

95

Table A.18: Cumulative degree minutes of supercooling (CDMS) Supercooling and average heat

flux components multiple linear regression model statistics

Number of Observations: 190 Degrees of Freedom: 185

R2: 0.104 Adjusted R2: 8.46x10-2

F -statistic vs. constant 5.37 F -statistic p-value: 4.31x10-4

Root Mean Squared Error 25.9

96

Appendix B – Code documentation

B-1: Overview
This appendix provides a brief overview of the core functions/programs developed over the course

of the research and analysis of this thesis. In all cases, the code should be easily adaptable for

future research.

B-2: Supercooling analysis programs

B-2.1 Summary of functions

The programs used for analysis in Chapter 2 are were developed to automate the processing of

data from the raw data files, and should be easily adapted for continued use. The documentation

for a specific function for things to keep in mind when adding additional elements to the analysis.

These functions were developed with the specific work environment of MATLAB in mind. In the

code presented, three specific sub-folders are referenced: Database, Generated Results, and Raw

Data Files. These folders hold: the database structure, any generated results from analysis, and the

raw data files, respectively.

The programs can be divided into two periods of application: entering and processing newly

collected water temperature data files, and data management tools. Table B-1 gives a brief

summary of the programs used to input and process new raw data files, while Table B-2 presents

a summary of the functions developed for analysis of the data or information management.

97

Table B. 1: Summary of programs required to process raw data files, presented in the order of

operation. Page indicates the starting page of the copied MATLAB code.

Period of

Application
Program Summary of Function Page

Entering/Processing

New Data Files

CreateInputFile()

Create an Excel file for user to enter in the required

information for newly collected data files that are not

recorded on the file list

99

NewRawFiles()

Add the information recorded on the Excel file generated

by CreateInputFile() to a .mat table that is less prone to

accidental editing. Tracks which files have been

processed, and the required information for processing the

data file. Can also be used to track changes to the data set

done using AddAlterData()

100

ProcessNewFiles()
Processes the raw data files that are noted on the file list to

have not yet been processed
105

Entering/Processing

New Data Files

or

Information

Management &

Analysis

AddAlterData()

Enables the user to edit the raw file list to correct any

errors from initial entry, make changes to initial

parameters for different conditions, as well as add notes to

the data base regarding specific deployments/data files

136

98

Table B. 2: Summary of Information management and analysis programs. Page indicates the

starting page of the copied MATLAB code.

Period of

Application
Program Summary of Function Page

Information

Management &

Analysis

GetFileList() Get a copy of the raw data file list 155

GetDatabase() Get a copy of the database structure 159

GetObSummary()
Generate a copy of the observation summaries of

deployments. Can print a copy to Excel
159

GetScreenedPeriods()

Get a copy of the summary and time series of the events

that have been manually screened. The summary include

which deployment they were a part of and the reason for

them being screened

165

GetTable()

Get a copy of the summary of the recorded supercooling

events. Can be filtered using inputs to get specific events

(event IDs), or events that meet a specified criterion.

166

GetTimeSeries()

Get a copy of the time series of recorded supercooling

events and deployments. Can be filtered using inputs to get

specific time series (deployment/event IDs), or events that

meet a specified criterion.

177

ClearDatabase()

Clear the database. Gives the user the option to keep the

records of the manually screened events (avoid re-screening

events).

181

SCPlot()

Plotting tool that enables consistent formatting and faster

plotting of specific time series. Integrated with

GetTimeSeries () such that multiple figures can be

generated with a single command (ex. all deployments

period)

183

StatTable()

Outputs a statical summary of the inputted table. Can be

filtered by submitting specific table headings. Can be used

with any table with quantitative data.

207

99

B-3.2 Program code

function [] = CreateInputFile()

%CreateInput: Creates an input file for NewRawFiles function. This enables

%cosistant formatting of inputs so there are minimal errors in formatting.

%Note that this method requires that the user double check spelling of

%rivers and sites, as any mis-spelled errors would be a understood as a new

%site/season. River, Site, and Deployment ID typos will not cause errors,

%but considering their usefulness in data filtering, consistent spelling is

%ideal. the AddAlterData can be used to correct any mistakes detected

%afterwards.

%%%

%Author: Sean R. Boyd January 19th, 2022

%%%

%Get unlogged files

f = GetFileList(4);

%Generate Table

T = table('Size',[length(f) 26],'VariableType',...

{'double','string','double','double','double','double','string','string','string','string',...

 'double','double','double','double','double','double','double','double','double',...

 'double','double','double','double','double','datetime','datetime'},...

'VariableNames',{'File_Number','File_Name','Sensor_Accuracy','Sensor_Offset','Negative_Threshold'

,...

'Minimum_Event_Duration_Minutes','River','River_ID','Site','Site_ID','Deployment_Start_Year',...

'Deployment_End_Year','Month_Fall_Start','Day_Fall_Start','Hour_Fall_Start','Minute_Fall_Start',.

..

 'Month_Winter_Start','Day_Winter_Start','Hour_Winter_Start','Minute_Winter_Start',...

'Month_Spring_Start','Day_Spring_Start','Hour_Spring_Start','Minute_Spring_Start','Freeze_Up_End_

Date','Break_Up_Start_Date'});

%Add unlogged RSK File Names and default values

T.File_Name =f';T.File_Number = (1:height(T))';

T.Sensor_Accuracy(:)=0.002;T.Negative_Threshold(:) = -0.2; %Default negative threshold

T.Minimum_Event_Duration_Minutes(:)=10; %Default minimum duration

T.Month_Fall_Start(:)=9;T.Day_Fall_Start(:) = 1;T.Hour_Fall_Start(:) = 0;T.Minute_Fall_Start(:) =

0; %Default September 1st of the start year of the season

T.Month_Winter_Start(:)=12;T.Day_Winter_Start(:) = 1;T.Hour_Winter_Start(:) =

0;T.Minute_Winter_Start(:) = 0; %Default December 1st of the start year of the season

T.Month_Spring_Start(:)=3;T.Day_Spring_Start(:) = 1;T.Hour_Spring_Start(:) =

0;T.Minute_Spring_Start(:) = 0; %Default March 1st of the end year of the season

T.Freeze_Up_End_Date(:)="NaT";T.Break_Up_Start_Date(:)="NaT";

%Create xlsx file in directory (easy to input back to NewRSKFiles)

tabName =sprintf('Raw File Input %s.xlsx',datestr(now,'dd-mm-yyyy-HHMMSS'));

writetable(T,tabName)

100

%Print statement

fprintf('An Excel file has been created in the main directory.\n')

fprintf('Once you have completed the file, inputting the filename\n')

fprintf('as the input for NewRawFiles will import the file to MATLAB\n')

fprintf('and log the raw data files for processing.\n')

fprintf('\nNote that any spelling error in River and Site Names will\n')

fprintf('be interpreted as unique rivers and sites by the program.\n\n')

fprintf('Suggested date formmatting for importing from Excel to MATLAB.\n')

fprintf("is yyyy-mm-dd. In addition, set the column value to 'Date'\n\n")

fprintf('For ease of file conversion, any deployment notes will need\n')

fprintf('to be added after the files are logged and/or processed with\n')

fprintf('AddAlterData function\n')

end

Published with MATLAB® R2021a

function [err]=NewRawFiles(InputFilename)

%NewRawFiles: Generates/updates CurrentRawFileList for raw data files in

%Raw Data Files folder. The program requests the required information to

%complete the table. If there is a conflict at any stage, the program

%outputs a summary of the incomplete table so that the user can use that

%to determine the error and termininates

%Once the program has updated CurrentRawFileList, the program then

%asks if the user wants to process the new data files, processing and

%updating the database if the user wishes to do so.

%

%INPUT:

% InputFilename: An excel file that contains the requested information.

% If this is not submitted, the program will prompt the user to generate

% one using CreateInputFile function

%OUTPUT

% err: If a conflict causes the program to terminate early (or the user

% terminates the program early), the program outputs the incomplete list

% so that the user can determine where the error occured.

%%%

%Author: Sean R. Boyd January 19th, 2022

%%%

narginchk(0,1);

clc;err=[]; %Assume that the program runs successfully (err will be cleared in the case that the

program runs without any issues)

%2) Set up directory lists

home = pwd; lists = sprintf('%s/Raw Data Files',home);

%3) If RawFileList.mat exists, load it. Otherwise create it

cd(lists)

if exist('CurrentRawFileList.mat','file') == 2

 load('CurrentRawFileList.mat','rawfileList')

 rawfileList.File_Number(:) = (1:height(rawfileList));

 oldList = rawfileList;

https://www.mathworks.com/products/matlab

101

else

 rawfileList = table('Size',[1 20],'VariableType',...

{'double','string','double','double','double','double','string','string','string','string',...

'string','string','datetime','datetime','datetime','datetime','datetime','string','string','strin

g'},'VariableNames',...

{'File_Number','File_Name','Sensor_Accuracy','Sensor_Offset','Negative_Threshold','Minimum_Event_

Duration','River','River_ID',...

'Site','Site_ID','Deployment_Period','Deployment_ID','Fall_Start','Winter_Start','Spring_Start','

Freeze_Up_End_Date',...

 'Break_Up_Start_Date','Deployment_Notes','Review_Notes','Processed'});

 oldList=[];

end

if nargin==0 %No input file to use to log files

 cd(home)

 error("Please generate an input file using 'CreateInputFile' in order to log any new raw data

files.")

else %There is an input file

 %Check that InputFile is an excel file

 cd(home)

 if exist(InputFilename,'file')

 InptFile = readtable(InputFilename);

 else

 error('%s cannot be found in the current directory.',InputFilename)

 end

 %Create a table that will store the new data prior to adding it to the

 %larger table

 newRawFiles = table('Size',[height(InptFile),20],'VariableType',...

{'double','string','double','double','double','double','string','string','string','string',...

'string','string','datetime','datetime','datetime','datetime','datetime','string','string','strin

g'},'VariableNames',...

{'File_Number','File_Name','Sensor_Accuracy','Sensor_Offset','Negative_Threshold','Minimum_Event_

Duration_Minutes','River','River_ID',...

'Site','Site_ID','Deployment_Period','Deployment_ID','Fall_Start','Winter_Start','Spring_Start','

Freeze_Up_End_Date',...

 'Break_Up_Start_Date','Deployment_Notes','Review_Notes','Processed'});

102

%Add the columns that are identical from the file list to the

 %newRawFiles table

 newRawFiles.File_Number = InptFile.File_Number; newRawFiles.File_Name =

string(InptFile.File_Name);

newRawFiles.Sensor_Accuracy = InptFile.Sensor_Accuracy;newRawFiles.Sensor_Offset =

InptFile.Sensor_Offset;

 newRawFiles.Negative_Threshold =

InptFile.Negative_Threshold;newRawFiles.Minimum_Event_Duration_Minutes =

InptFile.Minimum_Event_Duration_Minutes;

 newRawFiles.River = string(InptFile.River); newRawFiles.River_ID = string(InptFile.River_ID);

 newRawFiles.Site = string(InptFile.Site); newRawFiles.Site_ID = string(InptFile.Site_ID);

 %Add in placeholders for the notes and processing status

 newRawFiles{:,[18,19]} = "N/A";newRawFiles{:,20} = "No";

 %For the height of the table, generate the deployment period,

 %check that the date-times convert

 %properly, and generate the Deployment ID

 for k = 1:height(newRawFiles)

 %Check deployment period

 y1 = InptFile.Deployment_Start_Year(k);y2 = InptFile.Deployment_End_Year(k);

 if ~isnumeric(y1) || ~isnumeric(y2)

 error('Deployment Start and End Years must be entered as a numeric value.')

 end

 if (y2-y1) == 1

 deployPeriod=string(sprintf('%s-%s',string(y1),string(y2)));

 %Add the seasons to the table

 %Fall

 [newRawFiles] = addSeason(newRawFiles,InptFile,"Fall_Start",k);

 %Winter

 [newRawFiles] = addSeason(newRawFiles,InptFile,"Winter_Start",k);

 %Spring

 [newRawFiles] = addSeason(newRawFiles,InptFile,"Spring_Start",k);

 else

 error('Issue with Deployment Period. Year 2 must only be 1 year bigger than Year 1.')

 end

 newRawFiles.Deployment_Period(k) = deployPeriod;

 newRawFiles.Deployment_ID(k) =

sprintf('%s%s%s',newRawFiles.Site_ID(k),deployPeriod{:}(3:4),deployPeriod{:}(8:9));

 %Convert Freeze-Up and Break-Up dates into datetime

 try

 newRawFiles.Freeze_Up_End_Date(k) =

datetime(datestr(string(InptFile.Freeze_Up_End_Date(k))));

 catch

 if strcmpi(string(InptFile.Freeze_Up_End_Date(k)),"NaT")

 newRawFiles.Freeze_Up_End_Date(k) = NaT;

 else

 error('NewRawFiles cannot convert %s to a date-time or NaT value for

%s.',string(InptFile.Freeze_Up_End_Date(k)),newRawFiles.File_Name(k))

 end

 end

103

 try

 warning('off','MATLAB:datenum:EmptyDate') %Supress warning that this code is checking

for

 newRawFiles.Break_Up_Start_Date(k) =

datetime(datestr(string(InptFile.Break_Up_Start_Date(k))));

 catch

 if strcmpi(string(InptFile.Break_Up_Start_Date(k)),"NaT")

 newRawFiles.Break_Up_Start_Date(k) = NaT;

 else

 error('NewRawFiles cannot convert %s to a date-time or NaT value for

%s.',string(InptFile.Break_Up_Start_Date(k)),newRawFiles.File_Name(k))

 end

 end

 %Check that years of freeze-up and break up are equal to either y1

 %or y2

 if~isnat(newRawFiles.Freeze_Up_End_Date(k))

 if year(newRawFiles.Freeze_Up_End_Date(k)) ~= y1 &&

year(newRawFiles.Freeze_Up_End_Date(k)) ~= y2

 error('Recorded Freeze-up End Date for %s does not happen in Deployment Period

%s',newRawFiles.File_Name(k),deploymentPeriod)

 end

 end

 if~isnat(newRawFiles.Break_Up_Start_Date(k))

 if year(newRawFiles.Break_Up_Start_Date(k)) ~= y1 &&

year(newRawFiles.Break_Up_Start_Date(k)) ~= y2

 error('Recorded Break-up Start Date for %s does not happen in Deployment Period

%s',newRawFiles.File_Name(k),deploymentPeriod)

 end

 end

 end

 warning('on','MATLAB:datenum:EmptyDate') %Turn supressed warning back on

 %Determine if there are any duplicate Deployment IDs

 if isempty(oldList)

 if ~isequal(sort(newRawFiles.Deployment_ID),unique(newRawFiles.Deployment_ID))

 error('Duplicate Deployment IDs have been found in the submitted new files. Check

River/Site Names and Deployment Start/End Years.')

 end

 else

 allDID = [oldList.Deployment_ID;newRawFiles.Deployment_ID];

 if ~isequal(sort(allDID),unique(allDID))

 error('Duplicate Deployment IDs have been found in the submitted new files with

either themselves or the older files. Check River/Site Names and Deployment Start/End Years.')

 end

 end

 %Determine any potentially missing values in the table

 chk = ismissing(newRawFiles);chkIndex = find(chk == 1);

 for k = 1:length(chkIndex)

 [row,col] = ind2sub(size(newRawFiles),chkIndex(k));

 if col~=16 && col~=17 %These are the date-time columns, which may have NaT values

 error('There appears to be be missing values in %s',InputFilename)

104

elseif col == 16 || col == 17

 if ~isnat(newRawFiles{row,col})

 error('There appears to be be missing (not NaT) value for a date-time in

%s',InputFilename)

 end

 end

 end

 %Print out a table in the command window for the verify the input table

 clc;disp(newRawFiles);chk=1;

 while chk

 fprintf('\n Are there any issues with the current input table for the new raw data

files?: (Y/N)')

 inpt=input(' ','s');

 if strcmpi(inpt,'Y')

 fprintf('\n\n Review %s for errors. Re-run this program after errors have been

corrected',InputFilename);chk=0;

 elseif strcmpi(inpt,'n')

 %If nothing appears to be missing, add the new files to rawfilelist

 if ~isempty(oldList)

 startrow = height(rawfileList)+1;endrow = height(newRawFiles)+startrow-1;

 rawfileList(startrow:endrow,:)=newRawFiles;

 else

 rawfileList = newRawFiles;

 end

 clc;disp('Logging New raw data files Completed');cd(home);clearvars

err;pause(1.5);clc;close()

 %Check if the user wishes to delete the input file

 inpt=input(sprintf('With the new raw data files logged, do you wish to delete %s?

[Y/N]: ',InputFilename),'s');

 if strcmpi(inpt,'Y')

 delete(InputFilename)

 fprintf('%s has been deleted.\n',InputFilename)

 elseif strcmpi(inpt,'N')

 fprintf('%s is not deleted.\n',InputFilename)

 else

 fprintf('Invalid entry. %s is not deleted.\n',InputFilename)

 end

 %Save the new file

 cd(lists)

 rawfileList = sortrows(rawfileList,[6,8,10]); %Orders by River, then by site, then by

deployment period

 rawfileList.File_Number = (1:height(rawfileList))';

 save('CurrentRawFileList.mat','rawfileList')

 %Determine if the user wishes to Process the new files

 chk1=1;

 while chk1

 inpt = input('Do you wish to process the new raw data files? (Y/N)?: ','s');

 if strcmpi(inpt,'y') %Process new files

 chk1=0;clc;cd(home);ProcessNewFiles;

 elseif strcmpi(inpt,'n') %Do not process new files

 chk1=0;clc

 else %Invalid entry

 clc;fprintf('\nInvalid entry. Please type (Y)es/(N)o\n')

105

 end

 end

 else

 fprintf('\nInvalid entry\n')

 end

 end

end

end

%SUBFUNCTION

function [newRawFiles] = addSeason(newRawFiles,InptFile,colName,row)

%Determine Reference columns in InptFile for specified season season

season = colName{1}(1:(find(colName{1} == '_',1))-1); %First part of column name is the season

%Extract the month and day from newFiles

m = InptFile.(strcat("Month_",season,"_Start"))(row);d =

InptFile.(strcat("Day_",season,"_Start"))(row);

h = InptFile.(strcat("Hour_",season,"_Start"))(row);M =

InptFile.(strcat("Minute_",season,"_Start"))(row);

%Determine the correct year

if m>6 %If the month happens after June this is the start of a deployment period

 y = InptFile.Deployment_Start_Year(row);

else %end of a deployment period

 y = InptFile.Deployment_End_Year(row);

end

%Generate datetime and add to newRawFiles

newRawFiles.(colName)(row) = datetime(datestr(sprintf('%d-%d-%d %d:%d',y,m,d,h,M)));

end

Published with MATLAB® R2021a

function ProcessNewFiles

%ProcessNewFiles: Loads CurrentRawFileList, processes the files listed

%within it, and compiles the supercooling events ino a single database.

%After processing these events, it records which of the files have been

%processed. The program flags certain events to be manually screened by

%the user. See NOTES ON MANUAL SCREENING OF EVENTS for more detail.

%This program prints a summary of a data file to the command window

%during processing. The time the text stays on the screen is controled by

%the variable pausedur set by the user at Line 95 of this function.

%Larger values means longer processing time.

%

%The Database is a structure containing three fields:

% i) Observation Summaries - This is a sub structure that stores the

% summary of the number of events identified, catalogued, and discarded

% in each Deployment_Period, as well as other key parameters of the

% Deployment_Period such as those submitted when logging the raw file

% (NewRawFiles) as well other parameters of the overall time series such

% as average time step. This structure can be extracted an more easily

% analysed useing GetObSummary.

%

https://www.mathworks.com/products/matlab

106

% ii) Event Table - This is a summary table of all events observed in

% the processing of the raw files. This can be extracted using

% GetTable function.

%

% iii) Time Series - This sub-structure contains both the full Deployment

% Period time-series (both the filtered time series between end of

% freeze-up and start of break-up and raw data) as well as the time

% series for all catalogued supercooling events.

% The Deployment Period or event time-series can be extracted using

% GetTimeSeries.

%

%DEFINITIONS USED FOR CATALOGING AN EVENT

% Definition of Supercooling Event: A supercooling event is defined as a

% continuous measurement of water temperature below 0C. The event

% starts/ends at the interpolated 0C time. Any event that cannot be

% assigned a definitive start and/or end time is not considered (ex.

% events that run into the freeze-up end date). See steps (i) to (vii) in

% subfunction SupercoolingEvents (or search for START OF DEFINITION and

% END OF DEFINITION) for the lines of code that define an event.

%

% Once defined, supercooling events are screened using the following

% definitions:

% 1) Micro Events: Events that are shorter than the minimum duration in

% minutes (set when logging the raw data files)

% 2) Mild Events: Events that never record water temperatures less than

% the sensor accuracy of the sensor (set when logging the raw data files)

% 3) Extreneous Temperature Events: Events that have a Peak Supercooling

% Temperature below the negative threshold (defined in rawfilelist)

% 4) negTDMF Events: Events that are removed due to having most of the

% temperature above 0 C (may become relevant if definition of a

% supercooling event is changed)

% 5) Manually Screened: Events that fall between -0.1 C and the negative

% threshold are manually screened by the user for anomalies (this process

% can be skipped). It should be noted that if this step is skipped, the

% flagged events are added to the database and not checked again.

%

%I) NOTES ON ADDING ADDITONAL PARAMETERS TO THE SUPERCOOLING EVENTS TABLE

%The Event Table for the Deployment Period is generated in the

%SupercoolingEvents aubfucntion. Search for (I) for the section of code

%where the table generation sub-function outputs to the program and for the

%sub-function in order to make your desired changes. Make sure to test that

%your table formatting and unit assignment is correct.

%

%II) NOTES ON ANALYSIS FROM CALCULATED PARAMETERS

%After the Events are added to the table, additional filtering/analysis

%can be done based on calculated parameters. Search for (II) for the

%section of code where the analysis sub-function outputs to the

%program and for the sub-function in order to make your desired changes.

%In the interest of tracking information, it is good practice to add the

%variable to the Observation Summary Table. Follow the same procedure as

%the other discarded event trackers, by making the variable an output of

%SupercoolingEvents. Remember that you will likely have to adjust

107

%formatting of the Observation Summary Table (search for ****START OF

%FORMATTING OBSERVATION SUMMARY and ****END OF FORMATTING OBSERVATION

%SUMMARY for the relavent sections of code.

%

%III) NOTES ON MANUAL SCREENING OF EVENTS

%During the processing of each file, the program will flag any events that

%fall under the criterion to be manually screened search for (III) for the

%section of code where the analysis sub-function outputs to the

%program and for the sub-function in order to make your desired changes.

%This will add a temporary column to the Supercooling Event Table that will

%be used to denote which events need to be manually reviewed by the user.

%Once the review is completed, the column is removed and the Database is

%reorganized.

%

% If additional criteria for manual screening are to be added, and thus

% the possibility of multiple flags on an event, review the auotomated part

% of the flagging process to improve efficency in perserving the details as

% to why an event was flagged.

%%%

%Author: Sean R. Boyd January 19th, 2022

%%%

clc;

pausedur = 0;%Pause length for readability of printouts in command window

%window (Set for personal preference)

%%%%%%%%%

fprintf('Loading Required Files...')

%Determine current folder (direct) then generate directories

direct=pwd;filesLists=strcat(pwd,'\Raw Data Files');DB=strcat(pwd,'\Databases');

tools=strcat(direct,'/RSKTools');

%Make sure RSKTools is part of your directory path

addpath(genpath(tools));

savepath(strcat(tools,'/pathdef.m'))

%Load required files

try %Load New Site Data Summary Table

 cd (filesLists)

 load('CurrentRawFileList.mat','rawfileList');

catch

 cd (direct)

 error(sprintf("'CurrentRawFileList.mat' cannot be found in current directory.\nPlease create

file and try again."))

end

%Get the list of files to be processed

NewRawFiles = rawfileList(rawfileList.Processed == "No",:);

108

%Load Databases

cd (DB)

if exist('CurrentSupercoolingDatabase.mat','file')~=0 %Load SupercooligDatabase

 load('CurrentSupercoolingDatabase.mat','SupercoolingDatabase');

else

 SupercoolingDatabase =

struct('Observation_Summaries',struct('Rivers',{},'Sites',struct('Site',{},'Deployments',table())

),...

'Event_Table',table(),'Time_Series',struct('Deployments',struct('Deployment_ID',{},'Deployment_Da

taTable',timetable()),...

'Supercooling_Events',struct('Event_ID',{},'Event_DataTable',timetable())),'Screened_Periods',str

uct('Summary',table(),...

'TimeSeries',struct("TimeSeries_ID",[],"TimeSeries",[])),'Archive_Notes',struct('Previous_Databas

e','unknown','Change_List',table()));

end

%Get Screened Periods records

screenedPeriods = SupercoolingDatabase.Screened_Periods;

%Determine if the deployment IDs need to be updated for the screened events

if ~isempty(screenedPeriods.Summary)

 for k = 1:height(screenedPeriods.Summary)

 %Get the file name and deployment id from this row

 f = screenedPeriods.Summary.File_Name(k);

 d = screenedPeriods.Summary.Deployment_ID(k);

 ts = screenedPeriods.Summary.TimeSeries_ID(k);

 des = ts{:}(strfind(ts,'_')+1:end);

 %Find the file in the file list and deployment ID

 r = find(rawfileList.File_Name == f,1);depID = rawfileList.Deployment_ID(r);

 %If it differs from the Screened Event,update the Screened Event Records

 if ~isequal(d,depID)

 screenedPeriods.Summary.Deployment_ID(k) = depID;

 screenedPeriods.Summary.TimeSeries_ID(k) = sprintf('%s_%s',depID,des);

 %Find and update the TIme Series ID

 TS = string({screenedPeriods.TimeSeries.TimeSeries_ID});

 r1 = find(TS == ts,1);screenedPeriods.TimeSeries(r1).TimeSeries_ID =

sprintf('%s_%s',depID,des);

 end

 end

end

%Create a storage array in case files are skipped in the processing due to

%duplication or other issues

skipList=zeros(height(NewRawFiles),1);skipCount=0;cd(direct)

%Process files and add them to the database

if ~isempty(NewRawFiles)

 for k = 1:height(NewRawFiles)

 clc;fprintf('File %d of %d\n\n',k,height(NewRawFiles))

 fileName=NewRawFiles.File_Name{k};

 %Generate and correct the formatting on date-times

 summary=NewRawFiles(k,:);summary.Properties.RowNames=NewRawFiles.Deployment_ID(k);

109

%Create array of seasons and get minimum duration from rawfileList

 Fall= NewRawFiles.Fall_Start(k);

 Winter= NewRawFiles.Winter_Start(k);

 Spring= NewRawFiles.Spring_Start(k);

 seasonStarts = [Fall,Winter,Spring];

 minDurationMinutesEvents = NewRawFiles.Minimum_Event_Duration_Minutes(k);

 %Generate AnalysisSummary structure for the file

 cd (filesLists)

[AnalysisSummary]=SuperCoolingDataProcessing(fileName,summary,minDurationMinutesEvents,seasonStar

ts);

 cd (direct)

 %Add AnalysisSummary to Database

 fprintf('\nAdding supercooling events to Database...')

[SupercoolingDatabase,exitCue]=UpdateSupercoolingDatabase(AnalysisSummary,SupercoolingDatabase);

 if exitCue == 1

 skipCount=skipCount+1;skipList(skipCount,1) = k;fprintf('Skipped');pause(pausedur)

 else

 num = find(rawfileList.File_Number == NewRawFiles.File_Number(k),1);

 rawfileList.Processed(num) = "Yes";fprintf('Complete');pause(pausedur)

 end

 end

 clc;skipList(skipList==0)=[];

 %If Files were skipped, print list of files that were not processed

 if isempty(skipList) == 0

 disp('The following files were not processed due to duplication errors during

processing:')

 disp(NewRawFiles(skipList,:))

 fprintf('Check the raw file list for errors/duplications. If you wish to overwrite

data\ncurrently causing conflict in the database, use AddAlterData to overwrite the required data

and reprocess the files\n')

 cont = input('hit Enter to continue:','s');

 else

 cont=[];

 end

 if isempty(cont)

 cd (direct);clc;fprintf('Processsing of Files Completed & Database

Updated\n');pause(pausedur);clc;

 end

 %Manually check all flagged events

 if ~isequal(skipList',(1:height(NewRawFiles))) %Not all files were skipped

 fprintf('Searching Database for supercooling events to be manually screened...')

 T=SupercoolingDatabase.Event_Table; %Get the full data table

 if ~isempty(find(string(T.Properties.VariableNames) == "Manual_Check",1))

 flags = T.Manual_Check;

 flagchk = flags;flagchk(flagchk~=0)=1; %change flagchk to logic array

 else %No manual checks were flagged

 flagchk=0;

 end

 if sum(flagchk)>0%There are events flagged

 fprintf('\nFlagged events found...')

110

if ~isempty(screenedPeriods.Summary)

 fprintf('\nComparing flagged events to records of screened time periods...')

 end

 %Get all time series in the database

 ts = SupercoolingDatabase.Time_Series.Supercooling_Events;

 %Create an index for every event, and remove all events that were

 %not flagged

 id = (1:length(ts))';

 id=id.*flagchk;id(id==0)=[];

 ts=ts(1,id);

 %Create Event Table summary

 T1 = T(id,[6,9,10]);

 %Get the file name for these ids

 for r = 1:height(T1)

 T1.File_Name(r) = rawfileList.File_Name(find(rawfileList.Deployment_ID ==

T1.Deployment_ID(r),1));

 end

 T1 = T1(:,[4,1:3]);

 %Compare table to the previous records

 if ~isempty(screenedPeriods.Summary)

 fileName = screenedPeriods.Summary.File_Name;addIndex = zeros([height(T1),1]);

%List of deployments already screened and the storage array for the index of events to add

 for r = 1:height(T1)

 rows = find(fileName==T1.File_Name(r));

 if ~isempty(rows) %Is this period potentially already registered

 sTab = screenedPeriods.Summary(rows,:);

 s = sTab.Start_Time;e = sTab.End_Time; %Start and End Times of logged

period

 schk = find(s == T1.Start_Time(r));echk = find(e == T1.End_Time(r),1);

 if ~isempty(schk) && ~isempty(echk)

 for r1 = 1:min(length(schk),length(echk))

 if isequal(schk(r1),echk(r1)) %The start and end times of the T1

pair match an previously screened start and end time pair

 %Check if this event was discarded

 %previously

 if isequal(sTab.Decision(schk),"Keep")

 continue

 else%If it was discarded, automatically flag it for removal

(no query)

 addIndex(r) = -rows(schk(r1));

 end

 else

 addIndex(r)=r;

 end

 end

 else %This is a different period. Add it to the screened periods summary

 addIndex(r)=r;

 end

 else

 addIndex(r)=r;

 end

 end

 %Delete all zero add indicies

 addIndex(addIndex==0)=[];

111

 %Determine if there were previously discarded events

 r = find(addIndex<0);

 if~isempty(r)

 del = -addIndex(r);%Get teh actual index for ts

 [T,SupercoolingDatabase]=removeDiscardedEvts(del,ts,T,SupercoolingDatabase);

 end

 %Delete all negative add indicies

 addIndex(addIndex<0)=[];

 if ~isempty(addIndex) %New events were found

 summary = table('Size',[length(addIndex) width(screenedPeriods.Summary)],...

'VariableType',["string","string","datetime","datetime","string","string","string"],'VariableName

s',...

["File_Name","Deployment_ID","Start_Time","End_Time","Reason_Flagged","Decision","TimeSeries_ID"]

);

 summary=[screenedPeriods.Summary;summary];rsum =

height(screenedPeriods.Summary)+1;

 if ~isempty(addIndex)

 for r = 1:length(addIndex)

 addTab = T1(addIndex(r),:);addTab.Decision="TBD";

 addTab.TimeSeries_ID=strcat(addTab.Deployment_ID,"_TBD");

 %Determine the reason flagged (STORE REASON

 %FLAGGED). Since there is currently only one reason

 %to flagg events, there are no cases to check.

 addTab.Reason_Flagged = "Peak Temperature <-0.1 deg C";

 %Add the new time period to the table

 summary(rsum,:)=addTab;

 %Add Time series to structure

 screenedPeriods.TimeSeries(end+1).TimeSeries_ID =

addTab.TimeSeries_ID;

screenedPeriods.TimeSeries(rsum).TimeSeries=ts(addIndex(r)).Event_DataTable;

 rsum=rsum+1;

 end

 T1 = summary; %Create a single variable so that the two cases use the

same varaibles during later assignments

 T2=T1(T1.Decision == "TBD",:); dispIndex = find(T1.Decision == "TBD");

%Generate display table and the indicies of the events being screened

 else

 fprintf('\nAll events flagged were screened previously.\n');T2=[];

 end

 else

 fprintf('\nAll events flagged were screened previously.\n');T2=[];

 end

 else %No records to compare to. Use T1 as the starting table

 T1.Reason_Flagged(:)="TBD";T1.Decision(:)="TBD";

 %Determine reason flagged

 for r = 1:length(id)

 switch flags(id(3))

 case 1

 T1.Reason_Flagged(r) = "Peak temperature < -0.1 deg C";

 end

 end

112

 for r = 1:height(T1)

 T1.TimeSeries_ID(r)=strcat(T1.Deployment_ID(r),"_TBD");

 end

 T2=T1; %Single table variable to display later on

 dispIndex = (1:height(T1)); %Index of displayed table is the same as the record

table

 addIndex = dispIndex; %addIndex is the same as row index (since the whole table

is added to the record)

 for r = 1:length(ts) %Add all the time series to the record

 screenedPeriods.TimeSeries(r).TimeSeries_ID = T1.TimeSeries_ID(r);

 screenedPeriods.TimeSeries(r).TimeSeries=ts(r).Event_DataTable;

 end

 end

 %If new records were found, add their time series to the

 %screening record

 %Print out summary table of 'TBD' time periods

 str = sprintf('Do you wish to review events that have been flagged for manual

screening?\nNote that any flagged events that are not reviewed will be flagged\nin the future.

(Y/N)?: ');

 if isempty(T2) %No events to be screened

 fprintf('\nNo supercooling events to be manually screened\n\n')

 T.Manual_Check=[];SupercoolingDatabase.Event_Table = T;

 else %Print out each event to make it easy to manually screen

 clc;format short;disp(T2);fprintf('\n');

 inpt = input(str,'s');chk=1;chk1=1;

 while chk

 if strcmpi(inpt,'y') %User wishes to screen events

 chk=0;

 elseif strcmpi(inpt,'n') %User does not wish to screen events

 chk=0;chk1=0;

 else %incorrect input; re-request

 fprintf('Incorrect Input\n')

 inpt = input(str,'s');

 end

 end

 if chk1 %Manually screen events

 del = zeros(length(ts),1);delcount=0;close all %Stores the indicies of events

to be cleared

 for k = 1:height(T2) %Go down list. The table will be in the same order as

the addIndex reference, which can be used when selecting the time series

 clc;disp(T2);r = addIndex(k);

 fprintf('%d of %d: %s\n',k,length(addIndex),ts(r).Event_ID)

 tt = ts(r).Event_DataTable;

 plot(tt.Time,tt.Water_Temperature);grid on;xlabel('Date-

Time');ylabel('Water Temperature ({o}^C)');title(strrep(ts(k).Event_ID,'_'," "))

 inpt=input('Keep Supercooling Event (Y/N)?: ','s');chk=1;

 while chk

 if strcmpi(inpt,'y') %User wishes to keep the event

 chk=0;T2.Decision(k) = "Keep";

 elseif strcmpi(inpt,'n') %User does not wish to keep the event

 inpt1=input('Confirm Clearing Supercooling Event (Y/N)?:

','s');chk3=1;

 while chk3

113

 if strcmpi(inpt1,'y') %User wishes to delete event

 chk3=0;chk=0;T2.Decision(k) = "Discard";

 delcount=delcount+1;del(delcount,1)=k;

 elseif strcmpi(inpt1,'n') %User does not wish to delete event

 chk3=0;chk=0;

 else %incorrect input; rerequest

 fprintf('Incorrect Input\n')

 inpt1 = input('Confirm Clearing Supercooling Event

(Y/N)?: ','s');

 end

 end

 else %incorrect input; rerequest

 fprintf('Incorrect Input\n')

 inpt = input('Keep Supercooling Event (Y/N)?: ','s');

 end

 end

 %Update display table and records

 T2.TimeSeries_ID(k) = strrep(T2.TimeSeries_ID(k),"TBD", T2.Decision(k));

 T1.TimeSeries_ID(dispIndex(k)) = T2.TimeSeries_ID(k);

T1.Decision(dispIndex(k)) = T2.Decision(k);

 screenedPeriods.TimeSeries(dispIndex(k)).TimeSeries_ID =

T2.TimeSeries_ID(k);

 close all

 end

 %Store T1 in screened Periods

 screenedPeriods.Summary = T1;

 %Clear out all zero values in del & keep

 del(del == 0,:)=[];

 %If there are events to be deleted (indicated by del), remove the

 %events from the database and relabel the required

 %events

 if ~isempty(del)

[T,SupercoolingDatabase]=removeDiscardedEvts(del,ts,T,SupercoolingDatabase);

 %Remove Manual Check Column from the Table

 T.Manual_Check=[];

 %Add table back to database

 SupercoolingDatabase.Event_Table = T;

 %After all event labels are adjusted, relabel the event time

 %series

 for k = 1:height(T)

 SupercoolingDatabase.Time_Series.Supercooling_Events(k).Event_ID =

T.Event_ID(k);

 end

 end

 end

 %Update Screened Periods records in the database

 SupercoolingDatabase.Screened_Periods = screenedPeriods;

 clc;fprintf('Screening of Events Completed');pause(pausedur);clc;

 end

 else

 %Remove Manual Check Column from the Table

 T.Manual_Check=[];

114

%Add table back to database

 SupercoolingDatabase.Event_Table = T;

 clc;fprintf('No supercooling events to be manually screened\n')

 end

 %Organise and save SupercoolingDatabase to file

 fprintf('Organising Database Structure')

 fprintf('\n >River Site Summaries...')

 [~,index] = sortrows({SupercoolingDatabase.Observation_Summaries.Rivers}.');

 SupercoolingDatabase.Observation_Summaries =

SupercoolingDatabase.Observation_Summaries(index);

 clear index;

 % Sort by Site (Go through each river)

 for river = 1:length(SupercoolingDatabase.Observation_Summaries)

 numsites = length(SupercoolingDatabase.Observation_Summaries(river).Sites);

 if numsites>1 %Sort the sites

 [~,index] =

sortrows({SupercoolingDatabase.Observation_Summaries(river).Sites.Site}.');

 SupercoolingDatabase.Observation_Summaries(river).Sites =

SupercoolingDatabase.Observation_Summaries(river).Sites(index);clear index;

 end

 %Sort by Deployment_Period

 for site = 1:numsites

 if

height(SupercoolingDatabase.Observation_Summaries(river).Sites(site).Deployments)>1

 SupercoolingDatabase.Observation_Summaries(river).Sites(site).Deployments =

sortrows(SupercoolingDatabase.Observation_Summaries(river).Sites(site).Deployments,'RowNames','as

cend');

 end

 end

 end

 fprintf('Complete')

 % Super_Cooling_Catalogue (Alphabetical by River, Alphabetical by Site

 % Within River, Chronological within Site)

 fprintf('\n >Super Cooling Event Summary...')

 SupercoolingDatabase.Event_Table =

sortrows(SupercoolingDatabase.Event_Table,{'River','Site','Start_Time'});

 fprintf('Complete')

 % Super_Cooling_Time_Series (same order as Catalogue; organised by sorting

 % using the sorted catalogue Event_ID column)

 fprintf('\n >Super Cooling Time Series')

 fprintf('\n >Deployments...')

 rankedOrder =

sort(string({SupercoolingDatabase.Time_Series.Deployments.Deployment_ID}));rawOrder={Supercooling

Database.Time_Series.Deployments.Deployment_ID};

 for row = 1:length(rawOrder)

 chk=1;chkrow=1;current=rawOrder{row};

 while chk && chkrow<=length(rankedOrder)

 if isequal(current,rankedOrder{chkrow})

 chk = 0;SupercoolingDatabase.Time_Series.Deployments(row).Rank = chkrow;

 else

 chkrow=chkrow+1;

 end

 end

 end

115

 [~,index] = sortrows([SupercoolingDatabase.Time_Series.Deployments.Rank].');

 SupercoolingDatabase.Time_Series.Deployments =

SupercoolingDatabase.Time_Series.Deployments(index);clear index

 SupercoolingDatabase.Time_Series.Deployments =

rmfield(SupercoolingDatabase.Time_Series.Deployments,'Rank');

 fprintf('Complete\n')

 fprintf(' >Supercooling Events...')

 rankedOrder =

SupercoolingDatabase.Event_Table.Event_ID;rawOrder={SupercoolingDatabase.Time_Series.Supercooling

_Events.Event_ID};

 for row = 1:length(rawOrder)

 chk=1;chkrow=1;current=rawOrder{row};

 while chk && chkrow<=length(rankedOrder)

 if isequal(current,rankedOrder{chkrow})

 chk = 0;SupercoolingDatabase.Time_Series.Supercooling_Events(row).Rank =

chkrow;

 else

 chkrow=chkrow+1;

 end

 end

 end

 [~,index] = sortrows([SupercoolingDatabase.Time_Series.Supercooling_Events.Rank].');

 SupercoolingDatabase.Time_Series.Supercooling_Events =

SupercoolingDatabase.Time_Series.Supercooling_Events(index);clear index

 SupercoolingDatabase.Time_Series.Supercooling_Events =

rmfield(SupercoolingDatabase.Time_Series.Supercooling_Events,'Rank');

 fprintf('Complete\n')

 fprintf('Organisation Complete\nSaving Database...');cd (DB)

 save ('CurrentSupercoolingDatabase.mat','SupercoolingDatabase');fprintf('Complete\n')

 fprintf('\nSaving Summary of Processed Files...')

 %Save List of Rawfiles

 cd (filesLists);

 save('CurrentRawFileList.mat','rawfileList')

 fprintf('Complete\n');

 fprintf('Processing and Screening of new files Complete!');cd(direct);pause(pausedur);clc

 end

else

 clc;fprintf('All Files in CurrentRawFileList.mat have already been processed.')

 cd(direct);pause(pausedur+3);clc

end

end

%SUB FUNCTIONS

%I) Sub-Functions For ProcessNewRawFiles

%1) SuperCoolingDataProcessing

function[AnalysisSummary]=SuperCoolingDataProcessing(file,obsTab,minDurationMinutes,seasonStarts)

%SuperCoolingDataProcessingTables: Extracts and processes water temperature

%data from a raw file. Required parameters are stored in the summary, and are used to

% process data as required.

%Greater detail of steps in the process can be found in the description of the relevant sub-

function

116

%NOTE ABOUT ASSUMPTIONS:

% This script assumes that one has RSKTools folder as part of the MATLAB

% path

INPUTS

% file: raw data file (requests if not supplied)

% obsTab: Summary of observation summmary. Uses the formatting generated

% in NewRawFiles

% minDurationMinutes: The minimum duration of events. This is hardcoded

% as part of the program (see write-up)

% seasonStarts - Dayes of the year that are estimated to be the start of a

% particular Deployment_Period

%OUTPUTS

% AnalysisSummary: Structure summarising the analysis of the raw file

%%

%Written by: Sean Boyd Last Updated October 08, 2021

%%

close all;

format short e

AnalysisSummary=struct();%Initial value until properly assigned.

%Extract variables from site summary table

offset = obsTab.Sensor_Offset;sensorAccuracy=obsTab.Sensor_Accuracy; %Offset of sensor used at

site

negativeThreshold=obsTab.Negative_Threshold;deployID=obsTab.Deployment_ID; %Negative Threshold

used as cut-off for extraneous readings

%Extract Freeze Up Completion and Break Up start from site summary table

% Extract Freeze-Up and Break-Up dates

endFreezeUp = obsTab.Freeze_Up_End_Date;

startBreakUp = obsTab.Break_Up_Start_Date;

%Try to extract file first to determine if file can be accessed (EXT)

ext = find(file(:) =='.',1,'last');ext = file(ext+1:end);

switch ext

 case 'rsk' %.rsk file

try

 [DateTimes,dateNumbers,waterTemp]=rskdataextract(file,offset);

catch

 if exist(file,'file') == 0

 err = 1; %File cannot be found

 else

 err = 2;

 end

 if err == 1

 error('%s cannot be found in Raw Data Files\nPlease change the folder and try

again\n',file)

 elseif err == 2

 error('Cannot access RSKTools. Make sure the folder & subfolders are part of the

directory path.')

 end

end

117

 case 'csv' %.rsk file

 try

 tt = readtimetable(file);

 DateTimes = tt.Time;waterTemp = tt.Water_Temperature-offset;

 dateNumbers = datenum(DateTimes);

 catch

 if exist(file,'file') == 0

 err = 1; %File cannot be found

 else

 err = 2;

 end

 if err == 1

 error('%s cannot be found in Raw Data Files\nPlease change the folder and try

again\n',file)

 else

 error('Cannot correctly read file to MATLAB. Make sure %s presents data as a

Time/ Water_Temperature time table\n',file)

 end

 end

 otherwise %Error

 error('.%s extension is not currently readable by this program.\nSearch for EXT for the

section of code in which\nadjustments can be made to extract data from .%s files',ext,ext)

end

%Determine average time-step

avgTimeStp = mean(minutes(DateTimes(2:end)-DateTimes(1:end-1)));

%Print out Site Summary

fprintf('===\n')

fprintf('SUMMARY FOR %s',obsTab.Row{:})

fprintf('\n >River Name: %s',obsTab.River{1})

fprintf('\n >Location Name: %s',obsTab.Site{1})

fprintf('\n >Deployment Period: %s',obsTab.Deployment_Period{1})

%Print out the dates for the beginning and end of seasons

%based on weather data

fprintf('\n -> Fall: %s - %s',seasonStarts(1),seasonStarts(2)-hours(24))

fprintf('\n -> Winter: %s - %s',seasonStarts(2),seasonStarts(3)-hours(24))

fprintf('\n -> Start of Spring: %s',seasonStarts(3))

fprintf('\n >Freeze-Up End Date: %s',endFreezeUp)

fprintf('\n >Break-Up Start Date: %s',startBreakUp)

if ~isinf(negativeThreshold) %State what the negative threshold for the analysis discarding

events

 fprintf('\n >Negative Temperature Threshold: %.3f C',negativeThreshold)

else

 fprintf('\n >No Negative Temperatue Threshold')

end

fprintf('\n===\n')

fprintf('Data extracted from %s',file)

fprintf('\nInitial Data Processing...')

%Tabulate water temperature data

rawDataTable = RawDataTable(DateTimes,dateNumbers,waterTemp);

%Filter out any data between the end of Freeze up and the start of break up

[filteredDataTable,timestep]=RemoveMidWinter(rawDataTable,endFreezeUp,startBreakUp);

118

%Generate Supercooling Events (I),(II)

[filteredDataTable,EventTab,RawEvents,MicroEvents,SmallTempEvents,ExtTemps,negCDMSEvents] = ...

SupercoolingEvents(filteredDataTable,sensorAccuracy,timestep,negativeThreshold,minDurationMinutes

,endFreezeUp,startBreakUp,seasonStarts);

fprintf('Complete\n')

%Extract the start and end of the supercooling Deployment_Period

if ~isnat(EventTab.Start_Time(1))

 count = height(EventTab);

 startSeason = EventTab.Start_Time(1);

 endSeason = EventTab.End_Time(end);

 fprintf('Start of Supercooling Observations: %s\n',startSeason)

 fprintf('End of Supercooling Observations: %s\n',endSeason)

 if ~isnat(startBreakUp)

 fprintf('Period of Intact Ice cover: %s - %s\n',endFreezeUp,startBreakUp)

 if endSeason>startBreakUp %There are break-up events. Remove the period of intact ice

cover

 Seasdur = days((endSeason-startSeason)-(startBreakUp-endFreezeUp));

 else

 Seasdur = days((endSeason-startSeason));

 end

 else

 fprintf('Period of Intact Ice cover: N/A\n')

 Seasdur = days((endSeason-startSeason));

 end

 fprintf('Effective Supercooling Period Duration: %.1f days\n',Seasdur)

else

 count = 0;

 startSeason = NaT;endSeason = NaT;Seasdur = NaN;

 fprintf('No supercooling events met the filtering protocals.\n')

 fprintf("Placeholder supercooling event marked as 'SC0'.\n")

 fprintf('Time Series and Observation Summary are stored for review.\n')

end

fprintf('%.0f Events Identified.\n',RawEvents)

fprintf(' ->%.0f Events Discarded as Micro Events (duration less than %.0f

minutes)\n',MicroEvents,minDurationMinutes)

fprintf(' ->%.0f Events Discarded as Mild Events (Minimum temperature greater than %.3f

degree C)\n',SmallTempEvents,-sensorAccuracy)

fprintf(' ->%.0f Events Discarded due to Extraneous Temperatures (Minimum Temperature below

%.3f degree C)\n',ExtTemps,negativeThreshold)

fprintf(' ->%.0f Events Discarded due to a negative Total Degree Minutes of Freezing (Water

Temperature is mostly above 0 degree C)\n',negCDMSEvents)

fprintf('%.0f Events Catalogued and Classified.\n',count)

fprintf('===\n')

fprintf('Compiling Deployment Period Analysis...')

%****START OF FORMATTING OBSERVATION SUMMARY

%Add the analysis summary to Event summary table

obsTab.Observations_Start = startSeason;obsTab.Observations_End = endSeason;

obsTab.Effective_Observation_Duration = Seasdur;

obsTab.Number_Events_Identified = RawEvents;

obsTab.Number_Events_Catalogued = count;

obsTab.Number_Micro_Events = MicroEvents;

obsTab.Number_Mild_Events = SmallTempEvents;

obsTab.Number_Extraneous_Temperature_Events = ExtTemps;

obsTab.Number_Negative_CDMS_Events = negCDMSEvents;

119

obsTab.Average_Time_Step_Minutes = avgTimeStp;

obsTab.Number_Manually_Screened_Events = 0;%Default value

%Rearrange for readability. Note that the first 6 columns are for

%information required to store events in the database, and cannot be moved

%out of order.

obsTab = obsTab(:,[7:12,2:6,30,16,17,21:29,31,18,19]);

%Add units

obsTab.Properties.VariableUnits = {'','','','','','','','degree C','degree C','degree

C','minutes','minutes','date-time','date-time',...

'date-time','date-

time','days','events','events','events','events','events','events','events','',''};

%****END OF FORMATTING OBSERVATION SUMMARY

%Full deployment and Event summary and time series for the sensor

Time_Series=struct('Deployments',struct('Deployment_ID',deployID),'Supercooling_Events',struct('E

vent_ID',[])); %Structure to hold all time series

if count>0 %There are events catalogued

 for k = 1:height(EventTab)+1

 if k == 1 %Full Deployment_Period

 Time_Series(1).Deployments(1).Deployment_DataTable=filteredDataTable;

 else %Supercooling Event

 Time_Series(1).Supercooling_Events(k-1).Event_ID =

strcat(deployID{:},'_',EventTab.Properties.RowNames{k-1});

 Time_Series(1).Supercooling_Events(k-

1).Event_DataTable=filteredDataTable(EventTab.Start_Index(k-1):EventTab.End_Index(k-1),:);

 end

 end

else %No events catalogued. Store the full deployment and a placeholder for the time series

(empty)

 Time_Series(1).Deployments(1).Deployment_DataTable=filteredDataTable;

 Time_Series(1).Supercooling_Events(1).Event_ID =

strcat(deployID{:},'_',EventTab.Properties.RowNames{1});

 Time_Series(1).Supercooling_Events(1).Event_DataTable=timetable();

end

%Remove Indicies from Tables (not used in database)

EventTab.Start_Index=[];EventTab.End_Index=[];

%Store analysis in 1 structure

AnalysisSummary.Observation_Summary=obsTab;AnalysisSummary.Event_Table=EventTab;AnalysisSummary.T

ime_Series=Time_Series;fprintf('Complete');

end

%2)UpdateSupercoolingDatabase;

function

[SupercoolingDatabase,exitCue]=UpdateSupercoolingDatabase(AnalysisSummary,SupercoolingDatabase)

%Set exitCue to 0 to allow for database to update

exitCue=0;

%Extract Summary Table from Analysis summary

siteTable = AnalysisSummary.Observation_Summary; %Condense variable name down for readability

summary2=AnalysisSummary.Event_Table;summary2.Properties.RowNames={}; %Extract Event Parameters

from Deployment

summary1=table('Size',[height(summary2),8],'VariableType',...

 {'string','string','string','string','string','string','string','string'},...

'VariableName',{'River','River_ID','Site','Site_ID','Deployment_Period','Deployment_ID','Event','

Event_ID'}); %Build a table for all the ID Tags for the Site/Deployment Period

120

summary1.River(:)=siteTable.River{:}; %Assign River

summary1.River_ID(:)=siteTable.River_ID{:}; %Assign River ID Tag

summary1.Site(:)=siteTable.Site{:}; %Assign Site

summary1.Site_ID(:)=siteTable.Site_ID{:}; %Assign Site ID Tag

summary1.Deployment_Period(:)=siteTable.Deployment_Period{:}; %Assign Year

summary1.Deployment_ID(:)=siteTable.Row{1}; %Assign Site/Deployment_Period ID Tag

if ~isnat(summary2.Start_Time(1))

for row = 1:height(summary1)

 summary1.Event(row)=strcat('SC',num2str(row)); %Assign Event Number for the Deployment_Period

 summary1.Event_ID(row)=strcat(summary1.Deployment_ID(row),'_SC',num2str(row)); %Assign Event

ID Tag

end

else %Placeholder 'null event'

 summary1.Event(1)=strcat('SC','0'); %Assign Event Number for the Deployment_Period

 summary1.Event_ID(1)=strcat(summary1.Deployment_ID(1),'_SC0'); %Assign Event ID Tag

end

SCsummaryTable=[summary1,summary2]; %Consolidate Table

%Time-Series

superCoolingTimeSeries=AnalysisSummary.Time_Series; %Extract Time Series

%Determine if this river is already a part of the database, and add

%it if required

currentRivers = {SupercoolingDatabase.Observation_Summaries.Rivers};k=1;chk=1;

while chk && k<=length(currentRivers) %Find where a River occurs in the current listing of

Rivers, or adds a new river

 if strcmp(currentRivers{k},siteTable.River{1})

 chk=0; %Stop loop; k = River Index

 else

 k = k+1;

 end

end

if chk %If the current river is a new river, add the river to the database list

 SupercoolingDatabase.Observation_Summaries(k).Rivers=siteTable.River{1};

 SupercoolingDatabase.Observation_Summaries(k).Sites(1).Site=siteTable.Site{1}; %Adds a new

site (new river)

 SupercoolingDatabase.Observation_Summaries(k).Sites(1).Deployments=siteTable(:,7:end); %Adds

Deployment_Period to Site Table Listing

else % k is the location of the current river in the structure. Either this is a new site, or a

new Deployment_Period at the same site

 currentSite=siteTable.Site{1}; %Current site being considered

 %Determine if the current site is already in the database

 k1=1;chk=1;allsites={SupercoolingDatabase.Observation_Summaries(k).Sites.Site}; %Run through

the list of all sites on the river to determine if this site already exists

 while k1<=length(allsites) && chk

 if strcmp(allsites{k1},currentSite)

 chk=0; %Stop loop; k1 = site index

 else

 k1=k1+1;

 end

 end

 if chk == 0 %the current site is already in the database

 entryNum=height(SupercoolingDatabase.Observation_Summaries(k).Sites(k1).Deployments)+1;

121

%The row that will be added to the site Deployment_Period summary table

 try

Rows=[SupercoolingDatabase.Observation_Summaries(k).Sites(k1).Deployments.Properties.RowNames;sit

eTable.Row{:}];

SupercoolingDatabase.Observation_Summaries(k).Sites(k1).Deployments(entryNum,:)=siteTable(:,7:end

);

SupercoolingDatabase.Observation_Summaries(k).Sites(k1).Deployments.Properties.RowNames =Rows;

 catch

 SupercoolingDatabase.Observation_Summaries(k).Sites(k1).Deployments(entryNum,:)=[];

 exitCue = 1;return

 end

 else %The current site is a new site to be added to the database

 SupercoolingDatabase.Observation_Summaries(k).Sites(k1).Site=siteTable.Site{1}; %Add Site

Listing

 SupercoolingDatabase.Observation_Summaries(k).Sites(k1).Deployments=siteTable(:,7:end);

%Add Deployment_Period to the Site

 end

end

%Add the Super-Cooling Summary Table to the Super-Cooling Catalogue

if ~isempty(SCsummaryTable) %There are events to add

 if isempty(SupercoolingDatabase.Event_Table) %First Table added to an empty Database

 SupercoolingDatabase.Event_Table=SCsummaryTable;

 else

 %Add a column for manual flagging if it does not exist (set to 0 since they would all

 %have been manually processed previously)

 if isempty(find(string(SupercoolingDatabase.Event_Table.Properties.VariableNames) ==

"Manual_Check",1))

 SupercoolingDatabase.Event_Table.Manual_Check =

zeros([height(SupercoolingDatabase.Event_Table),1]);

 end

 %Determine column sizes for the parameters with variable width

 [rowDB,colDB]=size(SupercoolingDatabase.Event_Table.Time_of_Secondary_Peak_Supercooling);

%Rows and columns in the Minimum Temperature (and related Paramters) of Database

 [rowSC,colSC]=size(SCsummaryTable.Time_of_Secondary_Peak_Supercooling); %Rows and columns

in the Minimum Temperature (and related Paramters) of Deployment_Period being added

 if colSC<colDB %New entery does not have the correct size for Time of Minimum

Temperature. Adjust size by adding sub-columns

 %Build Placeholders for Time of Minimum Temp and related Paramaters. Same number of

rows as the new entry, but number

 %columns equal to the database

 allNaT = NaT(rowSC,colDB);

 %Add the new entry's data to the Placeholder. Now in a matrix of

 %consistant size to the Database

 allNaT(:,1:colSC) = SCsummaryTable.Time_of_Secondary_Peak_Supercooling(:,:);

 %Clear the old columns and add the new placeholders to the new

 %entry

SCsummaryTable.Time_of_Secondary_Peak_Supercooling=[];SCsummaryTable.Time_of_Secondary_Peak_Super

cooling=allNaT;

122

elseif colSC>colDB %Current Database does not have the correct size for

Time_of_Secondary_Peak_Supercooling. Adjust size by adding sub-columns

 %Build Placeholders for Time of Minimum Temp and related Paramaters. Same number of

rows as the Database, but number

 %columns equal to the new entry

 allNaT = NaT(rowDB,colSC);

 %Add the new entry's data to the Placeholder. Now in a matrix of

 %consistant size to the New Entry

 allNaT(:,1:colDB) =

SupercoolingDatabase.Event_Table.Time_of_Secondary_Peak_Supercooling(:,:);

 %Clear the old columns and add in the new columns. Reshape matrix

 %to be the same order as before

 SupercoolingDatabase.Event_Table.Time_of_Secondary_Peak_Supercooling=[];

 SupercoolingDatabase.Event_Table.Time_of_Secondary_Peak_Supercooling=allNaT;

 SupercoolingDatabase.Event_Table=SupercoolingDatabase.Event_Table(:,[1:13,22,14:21]);

%Reshapes the summary table to desied column order

 end

 %Combine the two tables

 SupercoolingDatabase.Event_Table=[SupercoolingDatabase.Event_Table;SCsummaryTable];

 end

end

%Add the Time Series to the Database

%All entries will have the same format as the first, and need to have the data added

Fieldnames = fieldnames(SupercoolingDatabase.Time_Series); %Fieldnames of the overall structure

for f1 = 1:length(Fieldnames) %Enter each sub structure to enter in data

 Fieldnames1 = fieldnames(SupercoolingDatabase.Time_Series.(Fieldnames{f1})); %Fieldnames of

the current sub structure

 startChk = isempty(SupercoolingDatabase.Time_Series.(Fieldnames{f1}));%First set of time

series to be added to the field

 if startChk

 startRow =1;

 else

 startRow=1+length(SupercoolingDatabase.Time_Series.(Fieldnames{f1})); %Start Row for

adding the next set of time series

 end

 for k1 = startRow:startRow+length(superCoolingTimeSeries.(Fieldnames{f1}))-1

 for f2 = 1:length(Fieldnames1) %add data from analysis summary to database structure in

the current row

 try

 if~isempty(superCoolingTimeSeries.(Fieldnames{f1})(k1-

startRow+1).(Fieldnames1{f2}))

 SupercoolingDatabase.Time_Series.(Fieldnames{f1})(k1).(Fieldnames1{f2}) =...

 superCoolingTimeSeries.(Fieldnames{f1})(k1-startRow+1).(Fieldnames1{f2});

 else %Do not add to the database structure

 continue

 end

 catch %Field does not exist. Do not add to the database structure

 continue

 end

 end

 end

end

end

123

%II) Sub-Functions For SuperCoolingDataProcessing

%1).rsk file Extraction

function [DateTimes,dateNumbers,waterTemp]= rskdataextract(file,offset)

narginchk(0,2);

if nargin ==0

 file=input('Enter of name for data to be extracted (or enter x to close function): ');

 offset = 0;

elseif nargin == 1

 offset = 0;

end

checkSize=size(file);

switch checkSize(2)

 case checkSize(2)<=1 %A file is entered (a valid .rsk file name is always greater than 1

char)

 if file=='x' || file=='X'

 return

 else

 disp('Invalid file name.')

 return

 end

 otherwise

 if strcmp(file(length(file)-3:length(file)),'.rsk') == 0

 file=strcat(file,'.rsk');

 end

 try %Try opening files to MATLAB

 rsk=RSKopen(file);

 rsk=RSKreaddata(rsk);

 data=rsk.data;

 dateNumbers=data.tstamp;

 DateTimes = datetime(dateNumbers,'ConvertFrom','datenum','Format','dd-MMM-yyyy HH:mm');

 waterTemp=data.values-offset;

 catch

 error('Cannot access RSKTools')

 end

end

end

%2)Raw Data Processing

function [rawdatatable] = RawDataTable(Time,dateNumber,waterTemp)

%RawDataProcessing Part of the SuperCoolingDataProcessing series, this

%fuction takes the data extracted from a .rsk file and generates a

%timetable of the timeseries, along with the slope of the temperature curve

%NOTE ON ASSUMPTIONS:

% To correct for NaT points in the datetimes, this function uses the

% submitted dateNumber value, or assumes an even time spacing an sets the

% time at the midpoint between the two known time values

%INPUT

% Date_Time: The array of the date times for the water temperature series

% dateNumber: the array of the serial date number for the water

% temperature series

% waterTemp: the array of water temperature fom the .rsk file

%OUTPUT

% rawdatatable: timetable of the raw data from the .rsk file, along with

% the foreword moving slope of the temperature curve

%%%

124

rawdatatable=timetable(Time,(1:length(Time))',dateNumber,waterTemp,...

 'VariableNames',{'Row_Index','Serial_Date_Number','Water_Temperature'});

%Calculated data

% Slope of cooling curve (measure foreward)

changeTemp = rawdatatable.Water_Temperature(2:height(rawdatatable)) -

rawdatatable.Water_Temperature(1:height(rawdatatable)-1);

durationArray=minutes(rawdatatable.Time(2:height(rawdatatable)) -

rawdatatable.Time(1:height(rawdatatable)-1));

rawdatatable.Water_Temperature_Slope=[changeTemp./durationArray;NaN];

%Check for NaT appearing in data

natArray = find(isnat(rawdatatable.Time') == 1); %Find where NaT occurs in data

if isempty(natArray) == 0

 for k = 1:length(natArray)

 prev = rawdatatable.Time(natArray(k)-1,1);next=rawdatatable.Time(natArray(k)+1,1);

%Datapoints on either side of the NaT point

 datenumerr = 0; %Assume that the serial date numbers are correct

 if ~isnan(dateNumber(natArray(k))) %There is a known datenumber for the time

 date=datetime(datestr(rawdatatable.Serial_Date_Number(k,1)));

 %Check that the date number falls between the previous and next

 %datetimes. If it does not, set datenumerr to 1

 if date>=next || date<=prev

 datenumerr=1;

 end

 end

 if isnan(dateNumber(natArray(k))) || datenumerr %If there is no known datenumber, or it

gives an erroneous time

 rawdatatable.Time(k,1)=prev+0.5*(next-prev); %The NaT point is midway between the two

known points

 rawdatatable.Serial_Date_Number(k)=datenum(rawdatatable.Time(k,1));

 end

 end

end

%Add units to raw data table

rawdatatable.Properties.VariableUnits = ["","","degree C","degree C/minute"];

end

%3) Remove Mid Winter

function [filtereDataTable,timestep]=RemoveMidWinter(rawdatatable,endFreezeUp,startBreakUp)

%RemoveMidWinter: Compares the date time of the raw water temperature data,

%and sets all data between the end of freeze-up and the start of break up

%to NaT and Nan

%INPUTS

% rawdatatable: timetable of the extracted data

%OUTPUTS

% filtereddatatable; timetable with all data between Freeze Up and Break Up removed

% timestep: assumed regular timestep for the filtered time table (ignore

% the skip in the data)

%%

%Set the filtered datatable equal to the raw datatable

filtereDataTable=rawdatatable;

filtereDataTable.Raw_Water_Temperature = rawdatatable.Water_Temperature; %Create a column for the

unfiltered water temperature data.

filtereDataTable.Raw_Water_Temperature_Slope = filtereDataTable.Water_Temperature_Slope; %Create

a column for the unfiltered water temperature slope.

125

if ~isnat(endFreezeUp) %Both period boundaries are datetimes

 index=filtereDataTable.Row_Index; %Index of all rows

pastFreezeUp=filtereDataTable.Time>endFreezeUp;beforeBreak=filtereDataTable.Time<startBreakUp;%Lo

gic arrays of the datatable times for times past freeze up and before breakup

 index=index.*pastFreezeUp.*beforeBreak;index(index==0)=[];%Index of datatable rows in

MidWinter

 if ~isempty(index) %There is a Midwinter timeskip in the data

filtereDataTable.Water_Temperature(index)=NaN;filtereDataTable.Water_Temperature_Slope(index)=NaN

;

 %Determine Time Step of the datatable

 if index(end)+2<=length(rawdatatable.Time) %If the index of Midwinter Events does not

reach the end of the time-series

 timesteps=[rawdatatable.Time(2:index(1)-1)-rawdatatable.Time(1:index(1)-

2);rawdatatable.Time(index(end)+2:end)-rawdatatable.Time(index(end)+1:end-1)];

 else %The timeseries ends before Break-up starts at the site, resulting in index

including the end of the time series

 timesteps=rawdatatable.Time(2:index(1)-1)-rawdatatable.Time(1:index(1)-2);

 end

 else %There is no Midwinter Timeskip in the data

 %Determine Time Step of the datatable

 timesteps = rawdatatable.Time(2:end)-rawdatatable.Time(1:end-1);

 end

else %Freeze-up never ends

 %Determine Time Step of the datatable

 timesteps = rawdatatable.Time(2:end)-rawdatatable.Time(1:end-1);

end

%Determine Unique Timesteps. If there are multiple unique timesteps,

%all time steps will be used in classifying events

timestep=unique(timesteps);

if isempty(timestep)

 error('There is an issue with either time indexing of the raw data file or the freeze-

up/break-up dates as no time steps can be calculated.')

end

end

%4)Super-Cooling Events

function [dataTable,EventTab,RawEvents,MicroEvents,SmallTempEvents,ExtTempsEvents,negCDMSEvents]

=

SupercoolingEvents(dataTable,sensorAccuracy,timestep,negativeThreshold,minDurationMinutes,endFree

zeUp,startBreakUp,seasonStarts)

%SupercoolingEvents Part of the SuperCoolingDataProcessing series, this

%fuction takes the time series water temperature data supplied, and divides

%it into Super-Cooling Events. These events are catelogued as tables for further analysis

%CURRENT DEFINITION OF AN EVENT: An Event starts at 0C as the temperature

%drops below 0 degree C, and ends asthe temperature rises above 0 degree C.

%Thus all datapoints measured will be below 0 C. Events are

%then filtered based on end of Freeze-Up, start of Break - Up, Minimum

%Required Duration, sensor accuracy, and the absolute negative threshold of

%expected supercooling temperatures

%

126

%INPUT

% dataTable: the timeseries of water temperature data to be analysed

% sensoAccuracy: The accuracy of the sensor used. Events that do not

% record temperatures below this threshold are discarded.

% timestep: Array of the timesteps in the dataTable (used to account for

% clock drift)

% negativeThreshold: If the minimum temperature of an event gets below

% this value, it is discarded, along with any events within an hour of

% the event to minimise any effect of the influence that caused the

% extraneous reading.

% minDurationMinutes: If the duration of an event in minutes is less than

% this, it is discarded for being too small

% endFreezeUp: Date-time of the end of freeze-up

% startBreak: Date-time of the start of break-up

% seasonStarts: Date-time array of the start of seasons (fall, winter,

% spring) to determine what seasons events occur in

%OUTPUT

% EventTab: Summary of all Super-Cooling Events in the given

% data set

% MicroEvents: Number of Events Eliminated from being too short

% SmallTempEvents: Number of Events Eliminated for having a minimum

% temperature above the sensor accuracy

% ExtTemps: Number of Events Eliminated from having minimum temperatures below

% negative temperature threshold, as well as events that are adjacent to

% these event by 1 hour or less

% negCDMSEvents: Number of Events Eliminated for having a Total Degree

% Minutes of Freezing (cumulative temperature over duration of the event)

% greater than 0. A legacy counter from previous definitions, but if

% events are defined as periods of temperature strictly below 0C, this

% should not register any values

%%%

%START OF DEFINITION

%i) Find the times of all temperatues below 0 degree C

TOI=dataTable.Time(dataTable.Water_Temperature<=0);

TOIIndex=dataTable.Row_Index(dataTable.Water_Temperature<=0);

eventEnds=cell([0,8]); %Stores start and end rows of all periods of sub zero temperature, the

start and end temperatures, start and end slope for interpolating the 0 crossing, and the

duration and minimum temperature,

%ii) Determine if there are multiple time steps to check due to clock drift

if length(timestep)>1 %Set timechk value to trigger a run through all time steps when required

 timechk=1;

else

 timechk=0;

end

%iii) There is at least one event if TOI is not empty

if ~isempty(TOI)

 if TOI(1) == dataTable.Time(1) %Dataset starts below 0 degree C. Since we do not know when

this event starts, we remove it from the data set

 del=zeros(0,1);delCount=0; %Store array for the index of POI to be deleted

 index=1;chk=1; %Start at first point of TOI and continue until chk =0

127

while index<=length(TOI) && chk

 delCount=delCount+1;del(delCount,1)=index; %Within this loop, all TOI considered are

part of the partial event

 if timechk %Multiple timesteps to consider

 chk1=1;step=1;partofEvent=0; %Set up WHILE Loop and assume that the TOI is not

part of the event by default

 while chk1 && step<=length(timestep) %Find the correct time step for this

comparison

 if TOI(index) == TOI(index+1)-timestep(step)% If the current TOI is equal to

the next TOI - a timestep, the next TOI is part of the event

 partofEvent=1;chk1=0;

 else

 step=step+1;

 end

 end

 else %Only one timestep to check

 partofEvent=TOI(index) == TOI(index+1)-timestep;

 end

 if partofEvent %If the current TOI under consideration is adj to the following TOI,

it is part of the first event

 index=index+1; %Move to the next TOI

 else %The current TOI is the end of the starting partial Event

 chk=0; %Stop the loop

 end

 end

 TOI(del)=[]; %Delete partial event. All remaining events are assumed to be full events

until proven later in the analysis

 TOIIndex(del)=[];

 end

else %There are no supercooling events in this data series

 return

end

%iv) Determine if any TOI are either just before or after the midwinter

%filter, and remove series of concecutive supercooling temperatures before

%or after the period (partial events to be removed)

% Set Index of datetimes of mid-winter

midwinterIndex=dataTable.Row_Index(isnan(dataTable.Water_Temperature));

if ~isempty(midwinterIndex)

 startMidWin = midwinterIndex(1);endMidWin = midwinterIndex(end);

else

 startMidWin=0;endMidWin=0; %There is no index for a mid winter season in the time series

end

if ~isempty(midwinterIndex)

 %TOI just before Start of Midwinter

 critTOIrow = find(TOIIndex == startMidWin-1,1);

 if ~isempty(critTOIrow) %There exists a TOI just before midwinter; flag the indicies of all

directly preceding TOIs (partial event)

 prevTOI = TOIIndex(1:critTOIrow);prev1 = prevTOI(1:end-1);prev2=prevTOI(2:end); %Take all

the TOI preceding midwinter, and divide into two sets shifted by 1 row

 TOIcmp = prev2-1 == prev1; %Compare the second set to the first to determine which pairs

are adjacent (part of the same event)

 eventGap = find(TOIcmp == 0); %Determine all cases where the two sets are not adjacent;

128

this is a gap between two events

 del1 = ((eventGap(end)+1):critTOIrow); %The index following the event gap up to

critTOIrow is a partial event adjacent to the start of midwinter

 else

 del1=[]; %Empty place holder

 end

 critTOIrow = find(TOIIndex == endMidWin+1,1);

 if ~isempty(critTOIrow) %There exists a TOI just after midwinter; flag the indicies of all

directly following TOIs (partial event)

 nextTOI = TOIIndex(critTOIrow:end);next1 = nextTOI(1:end-1);next2=nextTOI(2:end); %Take

all the TOI following midwinter, and divide into two sets shifted by 1 row

 TOIcmp = next2 == next1+1; %Compare the second set to the first to determine which pairs

are adjacent (part of the same event)

 eventGap = find(TOIcmp == 0); %Determine all cases where the two sets are not adjacent;

this is a gap between two events

 del2 = (critTOIrow:critTOIrow+(eventGap(1)-1)); %The index following the event gap up to

critTOIrow is a partial event adjacent to the start of midwinter

 else

 del2=[]; %Empty place holder

 end

 del = [del1,del2]; %Combine all indicies to be cleared

 if ~isempty(del)

 TOIIndex(del)=[];TOI(del)=[]; %Delete partial events

 end

end

%v) Find series of concecutive numbers (events) from remaining TOIs

% Set up arrays

TOI1 = TOI(1:end-1);TOI2=TOI(2:end); %The list of TOI and the list of TOI shifted by 1 time step

startTime = zeros([length(TOI), length(timestep)+1]);

endTime = zeros([length(TOI), length(timestep)+1]);

% Determine Logic values for start and end for all TOIs

for k = 1:length(timestep) %For every value in timestep

 %Start of Event

 chk1 = TOI2 - timestep(k) ~= TOI1; %For those that this statement is true, it will be the

start of a supercooling event with this time step

 startTime(:,k) = [NaN;chk1];

 %End of Event

 chk2 = TOI1~=TOI2-timestep(k); %For those that this statement is true, it will be the end of

a supercooling event with this time step

 endTime(:,k) = [chk2;NaN];

end

% Event Start

startTime(:,k+1) = floor(sum(startTime(:,1:k),2)/k); %If the statement is false for any timestep,

set to 0.

startTime(1,k+1) = 1; %The first TOI is always the start of an event

% Convert logic values to TOIIndex values (and then TOI)

index = (1:length(TOI2)+1);index = index'.*startTime(:,end);index(index==0)=[];

startTime = dataTable.Time(TOIIndex(index)); %Start Time

129

startTemp = dataTable.Water_Temperature(TOIIndex(index)); %Start Temperature

startSlope = dataTable.Water_Temperature_Slope(TOIIndex(index)-1); %Start Slope (previous slope

due to foreward facing slope calculation)

% Event End

endTime(:,k+1) = floor(sum(endTime(:,1:k),2)/k); %If the statement is false for any timestep, set

to 0.

endTime(end,k+1) = 1; %The last TOI is always the end of an event

% Convert logic values to TOIIndex values (and then TOI)

index = (1:length(TOI1)+1);index = index'.*endTime(:,end);index(index==0)=[];

endTime = dataTable.Time(TOIIndex(index)); %End Time

endTemp = dataTable.Water_Temperature(TOIIndex(index)); %Start Temperature

endSlope = dataTable.Water_Temperature_Slope(TOIIndex(index)); %Start Slope (previous slope due

to foreward facing slope calculation)

%vi) Add start and ends to eventEnds

eventEnds((1:length(startTime)),(1:6))=num2cell([datenum(startTime),startTemp,startSlope,datenum(

endTime),endTemp,endSlope]);

%vii) Combine events on either side of a zero duration

%period (one data point, or end of one event equals the start of the other)

ends = [eventEnds{1:end-1,4}];starts = [eventEnds{2:end,1}];%Ends and Start dataTable time of the

events that are not the end and start of the entire Deployment_Period

roughadjEvents1 = find(ends == starts); %Find end time that are equal to the start indicies of

the next row

roughadjEvents2=roughadjEvents1+1; %The rows with start indicies that match with end indicies

noted in roughadjEvents1

adjEvents=sort([roughadjEvents1;roughadjEvents2]); %List of event rows which are adjacent to each

other (run of concecutive numbers are multiple rows that are adj.)

repeat1=find(adjEvents(1:end-1) == adjEvents(2:end));%Find rows that repeat themselves in

adjEvents;these events are bordered on both sides by minimal duration gaps

repeat2=repeat1+1;repeats=sort([repeat1;repeat2]); %Compile a list of all the repeating indicies

in adjEvents [Index of the repeating events]

adjEvents(repeats)=[];adjEventsStorage=reshape(zeros(size(adjEvents)),[],2); %Delete the events

that are found with repeats; The remaining indices are paired to represent the old rows of

Eventends

adjEventsStorage(:,1)=adjEvents(1:2:end-

1);adjEventsStorage(:,2)=adjEvents(2:2:end);%adjEventsStorage(a,b) states that the data table row

indicies for a distinct supercooling event is [eventEnds(a,1),eventEnds(b,2)]

adjEvents=adjEventsStorage;dif = diff(adjEvents,1,2);removeCount=sum(dif);

removeRows=zeros(removeCount,1); %The difference between any adjacent Events row pair is the

number of rows to be deleted from eventsEnds between those two indicies

currentRow=1; %the current row in the delete index

for k = 1:size(adjEvents,1)

 eventEnds(adjEvents(k,1),2) = eventEnds(adjEvents(k,2),2); %Move to the row of eventEnds

specified by adjEvents(k,1) [start of an event], and change the index in the second column to

 %the value of in the 2nd column of eventEnds in row = adjEvents(k,2) (the end of the last

roughly adjacent event)

130

%Add the index for which rows are to be deleted

 if k == 1 %For the first group of rows, it adds to the start of the index counter

 removeRows(1:dif(k)) = (adjEvents(k,1)+1:adjEvents(k,2));

 else %after the first group, the starting point for the next group of rows (current row)

varies with the changing length

 removeRows(currentRow:currentRow+dif(k)-1) = (adjEvents(k,1)+1:adjEvents(k,2));

 end

 currentRow=currentRow+dif(k);

end

eventEnds(removeRows,:)=[]; %Clear out all the events that have been merged

RawEvents=size(eventEnds,1); %Number of Events before filtering

%END OF DEFINITION

%Determine Duration and Minimum Temperature of rough events

for k = 1:RawEvents

 %Duration Hours

 %Interpolate the start and end time the temperature is at 0.

 %Start Time adjustment

 T = eventEnds{k,2};s = eventEnds{k,3}; %The start temperature and slope between the start

temperature and 0

 dt = T/s;eventEnds{k,1} = datetime(datestr(eventEnds{k,1}))-minutes(dt); %Approximate Date-

time of the 0 crossing

 %End Time adjustment

 T = eventEnds{k,5};s = eventEnds{k,6}; %The end temperature and slope between the end

temperature and 0

 dt = -T/s;eventEnds{k,4} = datetime(datestr(eventEnds{k,4}))+minutes(dt); %Date-time of the 0

crossing

 %Calculate duration

 eventEnds{k,7} =hours(eventEnds{k,4} - eventEnds{k,1});

 %Minimum Temperature

 % Row of the data table in both start and end case is found as the

 % smallest row index of date times grater or equal to the date time in

 % question. This will be "close enough" since the new start and end

 % points will be above the old ones (at 0C)

 startRows =

dataTable.Time>=eventEnds{k,1};index=dataTable.Row_Index(startRows);startRow=min(index);

%Determines which row of the data table is closest to the event start

 endRows =

dataTable.Time>=eventEnds{k,4};index=dataTable.Row_Index(endRows);endRow=min(index); %Determines

which row of the data table is closest to the event end

 temps=dataTable.Water_Temperature(startRow:endRow);eventEnds{k,8} =min(temps); %Determines

minimum temperature

end

%Remove events that could not have an interpolated start or end time (NaT

%value indicate an error with the data)

del1 = find(isnat([eventEnds{1:end,1}]));del2 = find(isnat([eventEnds{1:end,4}]));

eventEnds([del1;del2],:)=[]; %Clear out all the events that have NaT start or end times

%Add the event ends to the data table

Time = [eventEnds{:,4},eventEnds{:,1}]';z=zeros(size(Time));

tt = timetable(Time,z,z,z,z,z,z,'VariableNames',dataTable.Properties.VariableNames); %Create

storage timetable for the new datapoints

131

dataTable.Time = datetime(dataTable.Time,'Format','dd-MMM-yyyy hh:mm:ss'); %Adjust timetable to

make the difference between interpolated points clear

%Add values to table, then adjust the required rows

dataTable = sortrows([dataTable;tt]);row = find(dataTable.Row_Index == 0);

for k = 1:length(row)

 r = row(k);

 dataTable.Row_Index(r) = r;

 dataTable.Serial_Date_Number(r) = datenum(dataTable.Time(r));

 dataTable.Water_Temperature_Slope(r) = dataTable.Water_Temperature_Slope(r-1);

end

%Eliminate events based on duration and too warm peak supercooling

%temperature

%Eliminate Events with a duration less than minDurationMinutes

del=zeros(0,1);delCount=0;

for k = 1:size(eventEnds,1)

 if 60*eventEnds{k,7}<minDurationMinutes %Mark all events that are less than

minDurationMinutes

 delCount=delCount+1;del(delCount)=k;

 end

end

MicroEvents=length(del); %Number of events cleared because they are too short

eventEnds(del,:)=[]; %Delete events that are either too short

%Eliminate Events with a Minimum temperature above the sensor accuracy

del=zeros(0,1);delCount=0;

for k = 1:size(eventEnds,1)

 if eventEnds{k,8}>=-sensorAccuracy %Mark all events with a Minimum temperature above the

sensor accuracy

 delCount=delCount+1;del(delCount)=k;

 end

end

SmallTempEvents=length(del); %Number of events cleared because of a too small minimum temperature

eventEnds(del,:)=[]; %Delete events that have too small of a minimum temperature

%Create Event Table from the remaining events (I)

[EventTab,tab] = createEventTable(dataTable,eventEnds,endFreezeUp,startBreakUp,seasonStarts);

%Additional Analysis and Filterig from Calculated Parameters (II)

[ExtTempsEvents,negCDMSEvents,EventTab] = analyzeCalParams(EventTab,negativeThreshold);

%Flag Events for Manual Screening (III)

[EventTab] = ManualScreenFlag(EventTab);

132

%Add Row Names to Event Table after all events have been removed

rownames=cell([1,height(EventTab)]);

if ~isempty(EventTab) %There are events to be labeled

 for k = 1:length(rownames)

 rownames{k}=strcat('SC',num2str(k));

 end

else %No events from this deployment, create a placeholder SC0 (add manual check column to enable

entry to the database

 rownames{1}=strcat('SC','0');EventTab = tab;EventTab.Manual_Check = 0;

 %Set all the numbers to NaN

 EventTab.Duration=NaN;EventTab.Peak_Supercooling=NaN;EventTab.Hours_Between_Events=NaN;

EventTab.Principal_Supercooling_Average_Cooling_Rate=NaN;EventTab.Principal_Supercooling_Duration

=NaN;

EventTab.Principal_Supercooling_Percent_of_Duration=NaN;EventTab.Cumulative_Degree_Minutes_Superc

ooling=NaN;

end

EventTab.Properties.RowNames = rownames;

end

% Create Event Table (I)

function[SuperCoolingTable,tab]=createEventTable(dataTable,eventEnds,endFreezeUp,startBreakUp,met

Seasons)

%Create Table for SupercoolingEvents and an empty table (tab) for use to

%generate a placeholder row if no events are recorded for this deployment

SuperCoolingTable=table('Size',[size(eventEnds,1)

15],'VariableTypes',{'double','double','datetime','datetime','double','double','datetime','dateti

me','double','double',...

'double','double','double','string','string'},'VariableNames',{'Start_Index','End_Index','Start_T

ime','End_Time','Duration','Peak_Supercooling',...

'First_Time_of_Peak_Supercooling','Time_of_Secondary_Peak_Supercooling','Hours_Between_Events','P

rincipal_Supercooling_Average_Cooling_Rate',...

'Principal_Supercooling_Duration','Principal_Supercooling_Percent_of_Duration','Cumulative_Degree

_Minutes_Supercooling','Season','River_Ice_Process'});

SuperCoolingTable.Properties.VariableUnits = {'','','date-time','date-time','hours','-degree

C','date-time','date-time','hours','degree C/minute',...

 'hours','percent','-degree C*minutes','',''};tab =

SuperCoolingTable;tab((2:height(tab)),:)=[];

%Add Start and End Times to table

SuperCoolingTable.Start_Time = [eventEnds{1:end,1}]';SuperCoolingTable.End_Time =

[eventEnds{1:end,4}]';

%Add Peak Supercooling

SuperCoolingTable.Peak_Supercooling=[eventEnds{1:end,8}]';

%Process all parameters that need to be considered by every event

133

for k = 1:height(SuperCoolingTable)

 startTime=SuperCoolingTable.Start_Time(k);endTime=SuperCoolingTable.End_Time(k);

 %Index of start, end, and peak supercooling

 startindex = find(dataTable.Time==startTime,1);

 endindex = find(dataTable.Time==endTime,1);

 SuperCoolingTable{k,(1:2)} = [startindex,endindex]; %Add indicies for the anlysis summary

processing (columns are removed before the summary table is added to the database)

 %CDMS

 Timeminutes = minutes(dataTable.Time(startindex:endindex)-dataTable.Time(startindex));

 SuperCoolingTable.Cumulative_Degree_Minutes_Supercooling(k)=-

(trapz(Timeminutes,dataTable.Water_Temperature(startindex:endindex)));

 %Time(s) of Peak Supercooling

 minMatch=find(dataTable.Water_Temperature(startindex:endindex) ==...

 SuperCoolingTable.Peak_Supercooling(k))'; %Determine the Index for the Occurance(s) of

the Minimum Temperature

 for k1 =1:length(minMatch) %Enter Index and Times to array to develop a consistent column

size

 if k1 == 1

 peakindex = minMatch(k1)+startindex-1;

 SuperCoolingTable.First_Time_of_Peak_Supercooling(k)=dataTable.Time(peakindex);

 else

 SuperCoolingTable.Time_of_Secondary_Peak_Supercooling(k,k1-

1)=dataTable.Time(minMatch(k1)+startindex-1);

 end

 end

 %Calculate Hours between events

 if k>1 %Events have occured in the Deployment_Period before this one

 SuperCoolingTable.Hours_Between_Events(k) = hours(startTime -

SuperCoolingTable.End_Time(k-1));

 else %1st event of the Deployment_Period always passes if the preceding cooling rate can be

captured

 SuperCoolingTable.Hours_Between_Events(k) = NaN; %First event of the time series

 end

 %Classify Events by Season

 if startTime>=metSeasons(1) && startTime<metSeasons(2) %Fall Event

 SuperCoolingTable.Season(k) = "Fall";

 elseif startTime>=metSeasons(2) && startTime<metSeasons(3) %Winter Event

 SuperCoolingTable.Season(k) = "Winter";

 else %Spring Event

 SuperCoolingTable.Season(k) = "Spring";

 end

 %Classify Events by Period

 if isnat(endFreezeUp)

 SuperCoolingTable.River_Ice_Process(k) = "Freeze-Up";

 else %Both Periods exist

 if startTime<= endFreezeUp

 SuperCoolingTable.River_Ice_Process(k) = "Freeze-Up";

 elseif startTime>= startBreakUp

 SuperCoolingTable.River_Ice_Process(k) = "Break-Up";

134

else %Event recorded during the period of consolidated/mostly consolidated ice cover

(will only happen if the data is not filtered between freeze-up and break-up

 SuperCoolingTable.River_Ice_Process(k) = "Consolidated Cover";

 end

 end

end

%Duration of Event, Duration of Principal Supercooling, and Principal

%Supercooling Percent of Total Duration

SuperCoolingTable.Duration=hours(SuperCoolingTable.End_Time - SuperCoolingTable.Start_Time);

SuperCoolingTable.Principal_Supercooling_Duration=hours(SuperCoolingTable.First_Time_of_Peak_Supe

rcooling - SuperCoolingTable.Start_Time);

SuperCoolingTable.Principal_Supercooling_Percent_of_Duration=100*SuperCoolingTable.Principal_Supe

rcooling_Duration./SuperCoolingTable.Duration;

SuperCoolingTable.Principal_Supercooling_Average_Cooling_Rate=

SuperCoolingTable.Peak_Supercooling./(60*SuperCoolingTable.Principal_Supercooling_Duration);

%Avg. Cooling Rate is defined as degree C/min

end

%Analysis from Calculated Parameter (II)

function [ExtTempsEvents,negCDMSEvents,SuperCoolingTable] =

analyzeCalParams(SuperCoolingTable,negativeThreshold)

%Eliminate Events with a minimum temperature below the threshold

ExtTempsEvents = 0; %Counter for extreneous events

%Eliminate Events that have a extreneous minimum temperature

extIndex = find(SuperCoolingTable.Peak_Supercooling<negativeThreshold);

%If any events fall within 1 hour of these events, remove them as well

if ~isempty(extIndex)

 extIndex1 = cell([length(extIndex),1]);%placeholder for any adjacent events

 for k1 = 1:length(extIndex)

 row = extIndex(k1); %Row being checked

 if extIndex(k1) == 1 %First event; only check after this event

 extchk =

find(SuperCoolingTable.Start_Time(row+1:end)<=SuperCoolingTable.End_Time(row)+hours(1));%Find any

events directly after an event

 else %Any other event in the Deployment_Period

 extchk1 =

find(SuperCoolingTable.Start_Time(row+1:end)<=SuperCoolingTable.End_Time(row)+hours(1))+row;%Find

any events directly after an event

 etchk2 = find(SuperCoolingTable.End_Time(1:row-1)>=SuperCoolingTable.Start_Time(row)-

hours(1));%Find any events directly before an event

 extchk = [extchk1;etchk2]; %Combine all indicies

 end

 extIndex1{k1} = extchk; %Row indicies of all adjacent events for this index

 end

 %Remove all selected events from table

 rows = unique([cell2mat(extIndex1);extIndex]); %All rows to be removes

 ExtTempsEvents = length(rows); %Updated number of exxtreneous events

 SuperCoolingTable(rows,:)=[];

end

135

%Eliminate Events with a Negative CDMSc value (more time above 0 C than below)

negCDMScindex =

(SuperCoolingTable.Cumulative_Degree_Minutes_Supercooling<=0).*(1:height(SuperCoolingTable))';

negCDMScindex(negCDMScindex==0)=[]; %Create an index of all events with negative CDMSc

negCDMSEvents = length(negCDMScindex); %Number of Negative CDMSc Events

if ~isempty(negCDMScindex)

 SuperCoolingTable(negCDMScindex,:)=[];%Delete Rows

end

end

%Flag Events for Manual Screening (III)

function [SuperCoolingTable] = ManualScreenFlag(SuperCoolingTable)

%Add a column to the table for all flags (Zero is the default for not

%flagged)

SuperCoolingTable.Manual_Check = zeros([height(SuperCoolingTable),1]);

%For each manual check filter, only check the events that have not yet been

%flagged

rows = find(SuperCoolingTable.Manual_Check == 0);

%Manual Check 1: Peak SUpercooling is between -0.1C and Negative Threshold

%(note that all events with TP<negative threshold have already been

%removed)

rows1 = SuperCoolingTable.Peak_Supercooling(rows)<=-0.1;

%If rows1 is not empty, flag the resulting rows

if ~isempty(rows1)

 SuperCoolingTable.Manual_Check(rows1)=1;

end

end

%Remove discarded events

function [T,SupercoolingDatabase]=removeDiscardedEvts(del,ts,T,SupercoolingDatabase)

deploy = strings(size(del)); %Storage of event strings for relabeling

for K = 1:length(del)

 event = ts(del(K)).Event_ID;

 %Find the event in the Event Summary Table and remove it

 row = find(T.Event_ID == event,1);deploy(K) = T.Deployment_ID(row);riv =

T.River(row);site=T.Site(row);

 T(row,:)=[]; %Remove the affected row

 %Find the event in the Time Series structure

 eventList = string({SupercoolingDatabase.Time_Series.Supercooling_Events.Event_ID});

 row = find(eventList == event,1);

 SupercoolingDatabase.Time_Series.Supercooling_Events(row)=[];%Delete time series

 %Deduct the event count from the river summary for the

 %Deployment_Period

 rivs = string({SupercoolingDatabase.Observation_Summaries.Rivers});r = find(rivs==riv,1);

 sites =

string({SupercoolingDatabase.Observation_Summaries(r).Sites.Site});s=find(sites==site,1);

 deploymnt =

string(SupercoolingDatabase.Observation_Summaries(r).Sites(s).Deployments.Properties.RowNames);ro

w = find(deploymnt==deploy{K},1);

SupercoolingDatabase.Observation_Summaries(r).Sites(s).Deployments.Number_Events_Catalogued(row)

=

SupercoolingDatabase.Observation_Summaries(r).Sites(s).Deployments.Number_Events_Catalogued(row)-

1;

136

SupercoolingDatabase.Observation_Summaries(r).Sites(s).Deployments.Number_Manually_Screened_Event

s(row) =

SupercoolingDatabase.Observation_Summaries(r).Sites(s).Deployments.Number_Manually_Screened_Event

s(row)+1;

 %Relabel all affected events

 for k = 1:length(deploy)

 rows = find(T.Deployment_ID == deploy(k));

 if ~isempty(rows) %Not all events were cleared out of a Deployment_Period.

 for k1 = 1:length(rows)

 T.Event(rows(k1)) = strcat('SC',num2str(k1));

 T.Event_ID(rows(k1)) =

sprintf('%s_%s',T.Deployment_ID(rows(k1)),T.Event(rows(k1)));

 end

 end

 end

end

end

Published with MATLAB® R2021a

function [] = AddAlterData()

%AddAlterData Function allows the user to alter any of the parameters for

%an raw data file that has been logged in CurrentRawFiles.mat.

%If any of the parameters other than the notes are changed for any files,

%the program will reprocess the raw data files with an option to archive the

%current fileList and database before re-processing files.

%%

%Author: Sean R. Boyd

%%

%1) Set Directories

home = pwd;dbFold = strcat(home,'\Databases');lists=strcat(home,'\Raw Data Files');

%2) Load Database and RawFileList

clc;fprintf("Loading Required Files...\n")

SupercoolingDatabase=GetDatabase;rawfileList=GetFileList(1,2);

%3) Create a copy of the 'original' files to archive

oldrawfileList = rawfileList;oldSuperCoolingDatabase=SupercoolingDatabase;

%4) Create a change list (document any changes made that required

%reprocessing the data

changeList = table('Size',[1 4],'VariableType',["string","string","string","string"],...

 'VariableNames',["File_Name","Variable_Changed","Old_Value","New_Value"]);

%5) Create UI Window for RawFileList and prepare for the main menu

fprintf("Generating UI window of currently logged files...\n")

cols = string(rawfileList.Properties.VariableNames);

f=uifigure("Name","Currently Logged Raw Files","IntegerHandle","off");

uit=uitable('Parent',f,'Data',rawfileList,'ColumnName',cols,...

 'RowName',rawfileList.Properties.RowNames, 'Units', 'Normalized','ColumnWidth','fit');clc

 changerows = zeros(height(rawfileList),1); %Storage arrays for the files to be reset and

reprocessed

https://www.mathworks.com/products/matlab

137

%Generate options

o1 = "Change Sensor Accuracy";o2="Change Sensor Offset";o3="Change Negative Threshold";

o4 = "Change Minimum Event Duration";o5 = "Change River Name";o6="Change River ID";o7="Change

Site Name";

o8 = "Change Site ID";o9="Change Deployment Period";o10="Change Fall Start Date";o11="Change

Winter Start Date";

o12="Change Spring Start Date";o13="Change Freeze-Up End Date";o14="Change Break-Up Start Date";

oN="Add/Append Deployment or Review Notes";oT="Hit any other key/Enter to Terminate Program";

%Alter column names so index lines up with inputs

cols([1,2,20])=[];

%Print main option menu

chk=1;

%Assume that the changes required will not need to reset the database. Set to 1 if this is not

the case

reproc = 0;

while chk

 %4) Print Prompt screen

 clc;fprintf("MAIN MENU:\n\nWhich of the following options would you like to do?:\n")

 fprintf("\nChanges that will require re-processing all files:\n (01)%s\n (02)%s",o1,o2)

 fprintf("\n (03)%s\n (04)%s\n (05)%s\n (06)%s\n (07)%s\n (08)%s\n

(09)%s",o3,o4,o5,o6,o7,o8,o9)

 fprintf("\n (10)%s\n (11)%s\n (12)%s\n (13)%s\n (14)%s\n\n",o10,o11,o12,o13,o14)

 fprintf("Changes that will not require re-processing all files:\n (N)%s\n\n\n",oN)

 fprintf("(S) to save current changes and end program\n%s\n\n\n",oT)

 inpt = input('Selection: ','s'); %Collect input as a string

 % Switch case depending on input

 chk1 = 1; %Put in a loop in case the user wants to make related changes (River Name & River

ID for example)

 try

 if ~strcmpi(inpt,'N') && ~strcmpi(inpt,'S')

 id = str2double(inpt);

 elseif strcmpi(inpt,'N')

 id = 0;

 elseif strcmpi(inpt,'S')

 id = -1;

 end

 catch

 id = length(cols)+1;

 end

 while chk1

 if id>=10

 id1=id+1; %Correct for the omission of Deplyment ID corrections

 else

 id1=id;

 end

 switch id

 case 1 %Change Sensor Accuracy

 reproc =

1;[uit,rawfileList,changeList,chk1,changerows]=numdataCorrect(uit,rawfileList,cols,id1,changeList

,changerows);

138

 case 2 %Change Sensor Offset

 reproc =

1;[uit,rawfileList,changeList,chk1,changerows]=numdataCorrect(uit,rawfileList,cols,id1,changeList

,changerows);

 case 3 %Change a Negative Threshold

 reproc =

1;[uit,rawfileList,changeList,chk1,changerows]=numdataCorrect(uit,rawfileList,cols,id1,changeList

,changerows);

 case 4 %Change Minimum Event Duration

 reproc =

1;[uit,rawfileList,changeList,chk1,changerows]=numdataCorrect(uit,rawfileList,cols,id1,changeList

,changerows);

 case 5 %Change River Name

 reproc =

1;[uit,rawfileList,changeList,chk1,changerows]=strdataCorrect(uit,rawfileList,cols,id1,changeList

,changerows);

 case 6 %Change River ID

 reproc =

1;[uit,rawfileList,changeList,chk1,changerows]=strdataCorrect(uit,rawfileList,cols,id1,changeList

,changerows);

 case 7 %Change Site Name

 reproc =

1;[uit,rawfileList,changeList,chk1,changerows]=strdataCorrect(uit,rawfileList,cols,id1,changeList

,changerows);

 case 8 %Change Site ID

 reproc =

1;[uit,rawfileList,changeList,chk1,changerows]=strdataCorrect(uit,rawfileList,cols,id1,changeList

,changerows);

 case 9 %Change Deployment Period

 reproc =

1;[uit,rawfileList,changeList,chk1,changerows]=strdataCorrect(uit,rawfileList,cols,id1,changeList

,changerows);

 case 10 %Change Fall Start Date

 reproc =

1;[uit,rawfileList,changeList,chk1,changerows]=datdataCorrect(uit,rawfileList,cols,id1,changeList

,changerows);

 case 11 %Change Winter Start Date

 reproc =

1;[uit,rawfileList,changeList,chk1,changerows]=datdataCorrect(uit,rawfileList,cols,id1,changeList

,changerows);

 case 12 %Change Spring Start Date

 reproc =

1;[uit,rawfileList,changeList,chk1,changerows]=datdataCorrect(uit,rawfileList,cols,id1,changeList

,changerows);

 case 13 %Change End of Freeze-Up

 reproc =

1;[uit,rawfileList,changeList,chk1,changerows]=datdataCorrect(uit,rawfileList,cols,id1,changeList

,changerows);

 case 14 %Change Start of Break-Up

 reproc =

1;[uit,rawfileList,changeList,chk1,changerows]=datdataCorrect(uit,rawfileList,cols,id1,changeList

,changerows);

139

 case 0 %Add/Append Deployment or Review Notes

[uit,rawfileList,SupercoolingDatabase,chk1]=notesCorrect(uit,rawfileList,SupercoolingDatabase);

 case -1 %Save changes to database

 chk1=0;chk=0;endChk=0;

 otherwise %end program without saving

 chk1=0;chk=0;endChk=1;

 end

 end

end

%6) Review if the files need to be reprocessed

changerows(changerows==0)=[]; %Clear all zero values from storage array

if reproc && ~endChk %remove specified files from database, and reprocess the files.

 %Before clearing the database, ask if the user wishes to archive the

 %old rawfileList and Database

 clc;str=sprintf('Do you wish to archive the old RawFileList and Database\nprior to re-

processing the files? (Y/N): ');

 chk=1;

 while chk

 inpt=input(str,'s');

 if strcmpi(inpt,'y')

 %RawFileList

 cd(lists)

 %Determine how many other .mat files are in the database

 d=dir('*.mat');files = string({d.name});%This will include number of archived lists +

currentlist, meaning archiving the oldrawfilelist makes the number of archived lists the same

length

 %Generate a string to save the file list as (these are auto

 %generated to keep the file lists and databases 'matched'.

 listName = sprintf("RawFileList - V%d.mat",length(files));

 save(listName,'oldrawfileList')

 %Database

 cd(dbFold)

 %Determine how many other .mat files are in the database

 d=dir('*.mat');files = string({d.name});files =

files(contains(files,'SupercoolingDatabase'));

 %Generate a string to save the file list as (these are auto

 %generated to keep the file lists and databases 'matched'.

 dbName = sprintf("SuperCoolingDatabase - V%d.mat",length(files)); %Same reasoning as

with the rawfilelists

 %Update the Archive Notes

 oldSuperCoolingDatabase.Archive_Notes.Change_List = changeList;

 save(dbName,'oldSuperCoolingDatabase')

 elseif strcmpi(inpt,'n')

 chk=0;

 else

 fprintf('\nInvalid Entry. Please enter (Y)es or (N)o.\n')

 end

 end

140

%Remove the events & time series for the files that are removed (all

 %files registered in changerows

 rawfileList.Processed(changerows) = "No";

 for k = 1:length(changerows)

 fTab = oldrawfileList(changerows(k),:); %Get the corresponding row from before changes

were made

 %Extract the river, site name and deployment ID from the row

 riv = fTab.River;site=fTab.Site;deploy=fTab.Deployment_ID;

 %Go through database and remove the results from this file analysis

 %from the database

 % 1) Observation Summaries

 %Find where the file registered

 if~isempty(SupercoolingDatabase.Observation_Summaries) %If this is empty, there are no

time series processed in the database

 rivers = string({SupercoolingDatabase.Observation_Summaries.Rivers});r = find(rivers

== riv,1); %Find river

 if ~isempty(r) %If the river is not found, the file is not in the data base

 sites = string({SupercoolingDatabase.Observation_Summaries(r).Sites.Site});s =

find(sites == site,1); %Find site

 deployment =

string(SupercoolingDatabase.Observation_Summaries(r).Sites(s).Deployments.Properties.RowNames);d

= find(deployment == deploy,1); %Find deployment

 %Delete deployment from table

 SupercoolingDatabase.Observation_Summaries(r).Sites(s).Deployments(d,:)=[];

 %If this was the only deployment at the site, remove site from site

 %list

 if isempty(SupercoolingDatabase.Observation_Summaries(r).Sites(s).Deployments)

 SupercoolingDatabase.Observation_Summaries(r).Sites(:,s)=[];

 end

 %If this was the only site on the river, remove river from list

 if isempty(SupercoolingDatabase.Observation_Summaries(r).Sites)

 SupercoolingDatabase.Observation_Summaries(:,r)=[];

 end

 % 2) Event Table

 %Get event IDs

 evtrows = find(SupercoolingDatabase.Event_Table.Deployment_ID == deploy);

 %Remove events

 SupercoolingDatabase.Event_Table(evtrows,:)=[];

 % 3) Time Series

 %Deployment Timeseries

 deployments =

string({SupercoolingDatabase.Time_Series.Deployments.Deployment_ID});

 r = find(deployments ==

deploy,1);SupercoolingDatabase.Time_Series.Deployments(:,r)=[];

 %Event Time Series (organized like the table)

 SupercoolingDatabase.Time_Series.Supercooling_Events(:,evtrows)=[];

 end

 end

 end

 %Reorder list by River, then by site, then by deployment period

 rawfileList = sortrows(rawfileList,[6,8,10]);

 rawfileList.File_Number = (1:height(rawfileList))';

%Save data base and list changes

141

 clc;fprintf('Saving Changes to File...')

 cd(lists)

 save('CurrentRawFileList.mat','rawfileList')

 cd(dbFold)

 save('CurrentSupercoolingDatabase.mat','SupercoolingDatabase')

 cd(home)

elseif ~endChk %Just notes added. If notes and additional changes are made, the new notes will be

added to the database as part of processing.

 %Compare the old rawfilelist to the new rawflieList notes to determine

 %which rows had changes and where.

 oldDepNotes = oldrawfileList.Deployment_Notes;oldRevNotes = oldrawfileList.Review_Notes; %old

(pre changes) notes

 newDepNotes = rawfileList.Deployment_Notes;newRevNotes = rawfileList.Review_Notes; %new notes

 %Determine where changes were made

 depChange = find(oldDepNotes~=newDepNotes);revChange = find(oldRevNotes~=newRevNotes);

 %Distribute any new notes to the appropriate observation summary

 if~isempty(depChange)

 fprintf('\nUpdating Deployment Notes...\n')

 for k = 1:length(depChange)

 %Determine the river site and deployment id of the deployment note

 %to update

 riv =

rawfileList.River(depChange(k));site=rawfileList.Site(depChange(k));deploy=rawfileList.Deployment

_ID(depChange(k));

 %Find the deployment in the observation summary

 allrivs = string({SupercoolingDatabase.Observation_Summaries.Rivers});rivind =

find(allrivs == riv,1);

 allsites =

string({SupercoolingDatabase.Observation_Summaries(rivind).Sites.Site});siteid = find(allsites ==

site,1);

 rows =

string(SupercoolingDatabase.Observation_Summaries(rivind).Sites(siteid).Deployments.Properties.Ro

wNames);row = find(rows == deploy,1);

 %Update the notes

SupercoolingDatabase.Observation_Summaries(rivind).Sites(siteid).Deployments.Deployment_Notes(row

) = newDepNotes(k);

 end

 end

 if~isempty(revChange)

 fprintf('\nUpdating Review Notes...\n')

 for k = 1:length(revChange)

 %Determine the river site and deployment id of the review note

 %to update

 riv =

rawfileList.River(revChange(k));site=rawfileList.Site(revChange(k));deploy=rawfileList.Deployment

_ID(revChange(k));

 %Find the deployment in the observation summary

 allrivs = string({SupercoolingDatabase.Observation_Summaries.Rivers});rivind =

find(allrivs == riv,1);

 allsites =

string({SupercoolingDatabase.Observation_Summaries(rivind).Sites.Site});siteid = find(allsites ==

site,1);

 rows =

142

string(SupercoolingDatabase.Observation_Summaries(rivind).Sites(siteid).Deployments.Properties.Ro

wNames);row = find(rows == deploy,1);

 %Update the notes

SupercoolingDatabase.Observation_Summaries(rivind).Sites(siteid).Deployments.Review_Notes(row) =

newRevNotes(k);

 end

 end

 clc;fprintf('Saving Notes to File...')

 cd(lists)

 save('CurrentRawFileList.mat','rawfileList')

 cd(dbFold)

 save('CurrentSupercoolingDatabase.mat','SupercoolingDatabase')

 cd(home)

end

%End program

clc;close(f)

 %Process all files that need to be processed

 if reproc && ~endChk

 fprintf('Starting the reprocessing of updated files...\n\n');pause(3)

 ProcessNewFiles

 end

end

%SUBFUNCTIONS

function

[uit,rawfileList,changeList,chk1,changerows]=numdataCorrect(uit,rawfileList,cols,id,changeList,ch

angerows)

col = cols(id);vars = strrep(col,"_"," ");

clc;fprintf("Changing %s\n\n",vars) %Print out column title

chk=1;

while chk

 str2 = sprintf('Enter the file(s) you wish to add/edit %s for: ',vars);

 rows = input(str2);

 %Check that the rows are valid

 if (~isnumeric(rows)||~isequal(floor(rows),rows)) && ~isempty(find(rows<=0,1)) &&

max(rows)<=max(rawfileList.File_Number) && chk %Not an integer value or is greater than the

number of files

 disp('Invalid entry');

 else

 chk =0;

 end

end

for k = 1:length(rows)

 chk = 1;

 oldChk = 0; %Use as a check to get the original value from the table

 while chk %Request input for the notes until the user hits enter (auto check writing without

a specific confirmation request)

 fTab = rawfileList(rows(k),:); %row on the overall table (shortens variable reference)

 if ~oldChk %Get the original value prior to any alterations (this loop is potentially

repeating

 old = fTab.(col);oldChk = 1;

 end

 clc;fprintf('File %d of %d: %s\n',k,length(rows),fTab.File_Name)

143

 %Print out the River/Site/Season Data

 %current text associated with the file

 fprintf(' Year: %s\n River: %s (%s)\n Site: %s (%s)\n Deployment ID:

%s\n\n',fTab.Deployment_Period,fTab.River,fTab.River_ID,fTab.Site,fTab.Site_ID,fTab.Deployment_ID

)

 fprintf('Current %s: %g\n\n',vars,fTab.(col))

 %Request the new value (with enter/no value used to continue

 %and keep the old value

 s1=sprintf("Enter the new %s (hit Enter to keep current %s): ",vars,vars);

 %Verify the validity of the new value for the given column

 chk2 = 1;

 while chk2

 try

 new = input(s1);

 catch

 fprintf('\nThere was an issue with that input. Please try again\n')

 end

 switch col

 case 'Sensor_Accuracy'

 if new<=0

 fprintf('\nThe sensor accuracy must be a positive value. Please try

again\n')

 else

 chk2=0;

 end

 case 'Sensor_Offset'

 case 'Negative_Threshold'

 if new>=0

 fprintf('\nThe negative threshold must be a negative value. Please try

again\n')

 else

 chk2=0;

 end

 case 'Minimum_Event_Duration_Minutes'

 if new<=0

 fprintf('\nThe minimum event duration must be a positive value. Please

try again\n')

 else

 chk2=0;

 end

 end

 end

 if ~isempty(new)

 fTab.(col)= new;

 uit.Data(rows(k),:) = fTab;

 rawfileList(rows(k),:) = fTab;

144

%Update the changeList

 if height(changeList) == 1 %Newly generated list, no other values entered

 changeList.File_Name(1) = fTab.File_Name;

 changeList.Variable_Changed(1) = vars;

 changeList.Old_Value(1) = string(old);

 changeList.New_Value(1) = string(new);

 else %Add a new row

 changeList.File_Name(end+1) = fTab.File_Name;

 changeList.Variable_Changed(end+1) = vars;

 changeList.Old_Value(end+1) = string(old);

 changeList.New_Value(end+1) = string(new);

 end

 else

 chk=0;

 end

 end

 %Add row to the changelist

 changerows(rows(k))=rows(k);

end

%After all the files are processed, enable the program to go back to the

%main menu

chk1=0;

end

function[uit,rawfileList,changeList,chk1,changerows]=strdataCorrect(uit,rawfileList,cols,id,chang

eList,changerows)

%After the loop is ended go back to main list

chk1=0;

%Set up subloop

col = cols(id);chk=1;updateType=0;

while chk

 vars = strrep(col,"_"," ");skip=0;

 clc;fprintf("Changing %s strings\n\n",vars) %Print out column title

 %Determine if the user is wanting to change all occurances of a string,

 %or a specific file (only check the first time if a multiple changes

 %are required)

 if updateType == 0

 s0 = sprintf('Select Update Method:\n (1) Update all occurances of a specified string\n

(2) Update specified file(s)\nany other key/Enter to return to Main Menu\n\n>>');

 updateType=input(s0,'s');

 try

 updateType = str2double(updateType); %Convert string to double

 if isnan(updateType)

 updateType=0;

 end

 catch

 updateType=0; %Assume 0 to exit the loop

 end

 else %Rows are already assigned

 skip = 1;

 end

145

switch updateType

 case 1 %Block change - Gett rows from finding the string to change

 clc;

 if ~skip

 s1 = sprintf('Enter the current %s string: %s\n\n',vars);

 oldchk=1;

 while oldchk %Get the value needed to be replaced

 old = input(s1,'s');

 rows = find(rawfileList.(col) == old);

 if isempty(rows)

 fprintf('Invalid entry. Cannot find %s under %s\n',old,vars)

 else

 oldchk=0;

 end

 end

 end

 case 2 %Individual changes - Adjust specified rows

 clc;

 if ~skip

 chk2=1;

 while chk2

 str2 = sprintf('Enter the file(s) you wish to edit %s string: ',vars);

 rows = input(str2);

 %Check that the rows are valid

 if (~isnumeric(rows)||~isequal(floor(rows),rows)) &&

~isempty(find(rows<=0,1)) && max(rows)<=max(rawfileList.File_Number) && chk %Not an integer value

or is greater than the number of files

 disp('Invalid entry');

 else

 chk2 =0;

 end

 end

 %Determine what the old values are

 old = rawfileList.(col)(rows);

 end

 otherwise %Exit subroutine

 chk=0;

 end

 %Request the new value to be inputted

 if chk

 s1=sprintf("Enter the new %s string (hit Enter to keep current %s): ",vars,vars);

 %Verify the validity of the new value for the given column. If

 %there are additional corrections to be made due to changes in

 %strings, make those changes

 try

 new = input(s1,'s');

 catch

 fprintf('\nThere was an issue with that input. Please try again\n')

 end

146

 switch col

 case 'River'

 [new,uit,rawfileList,changeList,chk,changerows] =

strUpdate(new,old,uit,rawfileList,col,vars,changeList,rows,changerows,updateType);

 %Check if the user wishes to update River ID

 %(immediately dependent string category)

 inpt = input('Do you wish to also update River ID for these rows? (Y/N): ','s');

 chk3=1;

 while chk3

 if strcmpi(inpt,'Y')

 col = 'River_ID';chk3=0;chk=1; %Keep in the loop

 elseif strcmpi(inpt,'N')

 chk3=0;

 else

 fprintf('Invalid entry.\n\n')

 end

 end

 case 'River_ID'

 [uit,rawfileList,changeList,chk,changerows] =

strUpdate(new,old,uit,rawfileList,col,vars,changeList,rows,changerows,updateType);

 %Check if the user wishes to update River ID

 %(immediately dependent string category)

 inpt = input('Do you wish to also update Site ID & Deployment ID? (Y/N): ','s');

 chk3=1;

 while chk3

 if strcmpi(inpt,'Y')

 col = 'Site_ID';chk3=0;chk=1; %Keep in the loop

 elseif strcmpi(inpt,'N')

 chk3=0;

 else

 fprintf('Invalid entry.\n\n')

 end

 end

 case 'Site'

 [uit,rawfileList,changeList,chk,changerows] =

strUpdate(new,old,uit,rawfileList,col,vars,changeList,rows,changerows,updateType);

 %Check if the user wishes to update River ID

 %(immediately dependent string category)

 inpt = input('Do you wish to also update Site ID & Deployment ID? (Y/N): ','s');

 chk3=1;

 while chk3

 if strcmpi(inpt,'Y')

 col = 'Site_ID';chk3=0;chk=1; %Keep in the loop

 elseif strcmpi(inpt,'N')

 chk3=0;

 else

 fprintf('Invalid entry.\n\n')

 end

 end

147

case 'Site_ID'

 [uit,rawfileList,changeList,chk,changerows] =

strUpdate(new,old,uit,rawfileList,col,vars,changeList,rows,changerows,updateType);

 %Auto-update Deployment ID (the string is synthesized

 %from the Site ID and Deployment Period)

 [uit,rawfileList,changeList] = updateDepID(uit,rawfileList,rows,changeList);

 case 'Deployment_Period'

 [uit,rawfileList,changeList,chk,changerows] =

strUpdate(new,old,uit,rawfileList,col,vars,changeList,rows,changerows,updateType);

 %Auto-update Deployment ID (the string is synthesized

 %from the Site ID and Deployment Period)

 [uit,rawfileList,changeList] = updateDepID(uit,rawfileList,rows,changeList);

 case 'Deployment_ID'

 fprintf('This parameter is auto-generated from Site ID and Deployment Period.\nPlease

check those two parameters (and the other string paramters)\nto determine the source of your

error.\n')

 pause(5);chk=0;

 end

 end

end

end

function

[uit,rawfileList,changeList,chk1,changerows]=datdataCorrect(uit,rawfileList,cols,id,changeList,ch

angerows)

col = cols(id);vars = strrep(col,"_"," ");

clc;fprintf("Changing %s\n\n",vars) %Print out column title

chk=1;

while chk

 str2 = sprintf('Enter the file(s) you wish to add/edit %s for: ',vars);

 rows = input(str2);

 %Check that the rows are valid

 if (~isnumeric(rows)||~isequal(floor(rows),rows)) && ~isempty(find(rows<=0,1)) &&

max(rows)<=max(rawfileList.File_Number) && chk %Not an integer value or is greater than the

number of files

 disp('Invalid entry');

 else

 chk =0;

 end

end

for k = 1:length(rows)

 chk = 1;

 oldChk = 0; %Use as a check to get the original value from the table

 while chk %Request input for the dates until the user hits enter

 fTab = rawfileList(rows(k),:); %row on the overall table (shortens variable reference)

 if ~oldChk %Get the original value prior to any alterations (this loop is potentially

repeating

 old = fTab.(col);oldChk = 1;

 end

 clc;fprintf('File %d of %d: %s\n',k,length(rows),fTab.File_Name)

148

 %Print out the River/Site/Season Data

 %current text associated with the file

 fprintf(' Year: %s\n River: %s (%s)\n Site: %s (%s)\n Deployment ID:

%s\n\n',fTab.Deployment_Period,fTab.River,fTab.River_ID,fTab.Site,fTab.Site_ID,fTab.Deployment_ID

)

 fprintf('Current %s: %s\n\n',vars,datestr(fTab.(col),'mmm dd yyyy HH:MM:ss'))

 %Request the new value (with enter/no value used to continue

 %and keep the old value

 s1=sprintf("Enter the new %s (hit Enter to keep current %s): ",vars,vars);

 %Verify the validity of the new value for the given column

 chk2 = 1;

 while chk2

 try

 new = input(s1,'s');

 if ~isempty(new)

 new = datetime(datestr(new));

 end

 chk2=0;

 catch

 fprintf('\nThere was an issue with that input. Please try again\n')

 end

 end

 if ~isempty(new)

 fTab.(col)= new;

 uit.Data(rows(k),:) = fTab;

 rawfileList(rows(k),:) = fTab;

 elseif ~isempty(new) && ~isequal(old,new) %The loop is broken and there are changes made.

Update change List

 if height(changeList) == 1 %Newly generated list, no other values entered

 changeList.File_Name(1) = fTab.File_Name;

 changeList.Variable_Changed(1) = vars;

 changeList.Old_Value(1) = string(old);

 changeList.New_Value(1) = string(new);

 else %Add a new row

 changeList.File_Name(end+1) = fTab.File_Name;

 changeList.Variable_Changed(end+1) = vars;

 changeList.Old_Value(end+1) = string(old);

 changeList.New_Value(end+1) = string(new);

 end

 else

 chk=0;

 end

 end

 %Add row to the changelist

 changerows(rows(k))=rows(k);

end

%After all the files are processed, enable the program to go back to the

%main menu

chk1=0;

end

function

149

[uit,rawfileList,SupercoolingDatabase,chk1]=notesCorrect(uit,rawfileList,SupercoolingDatabase)

CHK=1;

while CHK

 clc;fprintf("Adding/Appending Notes\n") %Print out column title

 fprintf("\n\nWhich of the following options would you like to do?:\n")

 fprintf(" (01)Add/Append Deployment Notes\n (02)Add/Append Review Notes\nHit any other

key/Enter to return to the Main Menu\n\n")

 inpt = input('>>','s');

 try

 inpt=str2double(inpt);

 catch

 inpt=0; %Will automatically return to the main menu

 end

 switch inpt %Use to select the note column

 case 1

 noteType = "deployment";col = "Deployment_Notes";colnum = 18;

 case 2

 noteType = "review";col = "Review_Notes";colnum = 19;

 otherwise

 CHK=0;chk1=0;

 end

 %General note writing

 if CHK

 notechk=1;

 else

 notechk=0;

 end

 while notechk

 str1 = sprintf('Do you wish to add/edit any %s notes for any of the files (Y/N)\n[Hit

Enter to return to the previous menu]: ',noteType);

 inpt1 = input(str1,'s');

 if isempty(inpt1) ||strcmpi(inpt1,'n')

 notechk=0;

 elseif strcmpi(inpt1,'y')

 %Request the rows/files that the user wishes to add

 %deployment notes to

 chk=1;

 while chk

 str2 = sprintf('Enter the files you wish to add/edit %s notes for: ',noteType);

 rows = input(str2);

 %Check that the rows are valid

 if (~isnumeric(rows)||~isequal(floor(rows),rows)) && ~isempty(find(rows<=0,1)) &&

max(rows)<=max(rawfileList.File_Number) && chk %Not an integer value or is greater than the

number of files

 disp('Invalid entry');

 else

 chk =0;

 end

 %if Rows are valid check that the user selected all the

 %correct rows

 tab = rawfileList(rows,[1,2,7,9,11,colnum]);

 disp(tab)

 inpt = input("Are these the correct files? (Y/y to confirm, any other key/Enter

150

to correct): ",'s');

 if strcmpi(inpt,'y')

 chk = 0;

 end

 end

 %Run through the array.

 for k = 1:length(rows)

 chk = 1;

 while chk %Request input for the notes until the user hits enter (auto check

writing without a specific confirmation request)

 fTab = rawfileList(rows(k),:); %row on the overall table (shortens variable

reference)

 clc;fprintf('File %d of %d: %s\n',k,length(rows),fTab.File_Name)

 %Print out the River/Site/Season Data

 %current text associated with the file

 str = fTab.(col){:};

 if ~strcmpi(str,'N/A')

 notestrold = strings((length(str))/32,1);

 for ns = 1:length(notestrold)

 nstr = str((ns-1)*32+1:ns*32); %Line of notes

 notestrold(ns) = nstr;

 end

 else

 notestrold = "N/A";

 end

 notestrold = sprintf('%s\n',notestrold);

 fprintf(' Year: %s\n River: %s (%s)\n Site: %s (%s)\n Deployment ID:

%s\n\n',fTab.Deployment_Period,fTab.River,fTab.River_ID,fTab.Site,fTab.Site_ID,fTab.Deployment_ID

)

 fprintf('Current %s Notes:\n\n',noteType);disp(notestrold);fprintf('\n')

 %Check if the user wishes to overwrite or append

 fprintf("What do you wish to do with the current %s notes?\n

(01)Overwrite\n (02)Append\n\nHit any other key/Enter to keep the current %s

notes\n\n",noteType,noteType)

 inpt = input('>>','s');

 %Conver input to double

 try

 inpt=str2double(inpt);

 catch

 inpt=0;

 end

 switch inpt

 case 1

 notestr='>>';skip=0;apndow = "overwrite";

 case 2

 notestr=sprintf('%s\n>>',notestrold);skip=0;apndow = "append";

 otherwise

 skip=1;notes=[];

 end

151

if ~skip

 %Request the new text (with enter/no text used to continue

 %and keep the old text

 s1=sprintf("Enter the new notes you wish to %s the current %s

notes.",apndow,noteType);

 s2="The text is fitted to a field width of 32 characters.";s3="If you

wish to add a newline, add a ";s4="(newline character).";

 s5=sprintf("[hit Enter to keep the current %s notes]",noteType);s6 =

"Note that special symbols (such as";

 s7=char(8320);s8="are complicated to render.";s9="For readability, use

shorthand such as 'deg','min',&'sec' for degree, minutes,";

 s0="& seconds, respectively, for latitude and longitude.";n='\n';

 fprintf('%s\n%s\n%s %s

%s\n\n%s\n\n%s)%s\n%s\n%s\n%s\n\n\n',s1,s2,s3,n,s4,s5,s6,s7,s8,s9,s0)

 notes = input(notestr,'s');

 if inpt == 2 %Append new notes to old notes

 notes = strcat(fTab.(col),notes);

 end

 end

 if ~isempty(notes)

 %Process notes to fit to a 31 width with new lines

 %1)Find all newline characters in the text and replace

 %with spaces to finish the fit width line

 %Determine if newline characters are present

 nid = strfind(notes,'\n');

 if ~isempty(nid)

 nid=nid(1); %Find a newline character

 end

 while ~isempty(nid) %There is a newline character in notes (rechecks at

the end of the loop)

 numspaces = 31-mod(nid,31)+1; %Number of spaces to covert the line of

text the newline character ends into a full width line of text

 spacestr = strings(1,numspaces);spacestr(1,1:end)=' '; %spaces vector

 notes1 = notes(1:nid-1);notes2 = notes(nid+2:end);

 notes=sprintf('%s%s%s',notes1,spacestr,notes2);

 %Check for the next newline character

 nid = strfind(notes,'\n');

 if ~isempty(nid)

 nid=nid(1); %Find a newline character

 end

 end

 %Add the spaces to the lst line to 'round' the line width

 numspaces = 31-mod(length(notes),31); %Number of spaces to 'fill' the

line

 spacestr = strings(1,numspaces);spacestr(1,1:end)=' '; %spaces vector

 notes=sprintf('%s%s',notes,spacestr);

 %3)Adjust text for readability. If a word is split between the end of the

first

 %line and the start of the next, move the word to

 %the next line

152

%Determine spacing

 chk1 = 1;linchk=0; %Start loop

 while chk1

 spaceid=zeros(size(notes)); %Storage array of when to add spaces

 skiplinchk=0; %Enable line counter. Stop counting when partial word

is found

 c = (linchk*31+1);

 while c <=length(notes) && ~skiplinchk %Start at the line after the

line that has been checked (andy adjustments will not affect previous lines)

 nstr1 = notes(c:min(c+30,length(notes))); %Get the current line

of text

 nstr2 = notes(min(c+31,length(notes)):min(c+61,length(notes)));

%Get the next line of text

 rchk = isequal(nstr1(end),' ') || isequal(nstr2(1),' '); %There

is not a partial word across two lines

 if ~rchk %Partial word that requires reformatting (will impact

all future lines)

 s1 = find(nstr1 == ' ',1,'last');chars1 = nstr1(s1+1:end);

%Find the partial word at the end of current line

 spaceid(c+s1:c+s1+length(chars1)-1) =

(c+s1:c+s1+length(chars1)-1);

 skiplinchk=1;

 elseif ~skiplinchk %Signify that the current line has been

checked (meets standards)

 linchk=linchk+1;c = c+31;

 end

 end

 %Determine if all lines have been checked

 numlines = floor(length(notes)/31)+ceil(mod(length(notes),31)/31);

 if linchk == numlines

 chk1=0;

 else %Adjust notes

 spaceid(spaceid==0)=[]; %Clear out zeroes

 if ~isempty(spaceid)

 %For each space id add a space in the notes. Adjust

 %following indicies by one every time

 %Determine sets

 B = unique([spaceid(1:end-1).' spaceid(2:end).'], 'rows');

 S = zeros(size(B)); %Storage array of unique sets

 setcount = 1;

 for sid = 1:size(B,1) %Go through all pairs

 if B(sid,1)~=B(sid,2)-1

 S(setcount,1:2) = B(sid,1);%Set of 1 point

 setcount=setcount+1; %Move to next set

 else %Concecutive set

 if isequal(S(setcount,1:2),[0 0]) %Empty set

 S(setcount,1:2) = B(sid,1:2); %Add concecutive

set

 elseif S(setcount,2) == B(sid,1) %Current concecutive

set continues with the current pair in B;update the end of the run

 S(setcount,2) = B(sid,2);

 else %Completely different set

 setcount=setcount+1;

 S(setcount,1:2) = B(sid,1);

153

 end

 end

 end

 %Remove all zeros from S. Determine the number of

 %spaces added

 S(S(:,1) == 0,:)=[];S(:,3) = S(:,2) - S(:,1) +1;

 %%For each sets add the required spaces for each set.

 %%Adjust any following sets but the added number of

 %%spaces

 for sid = 1:size(S,1)

 spacestr = strings(1,S(sid,3));spacestr(1,1:end)=' ';

%Number of spaces

 notes = sprintf('%s%s%s',notes(1:S(sid,1)-

1),spacestr,notes(S(sid,1):end));%Splice in spaces

 if sid<size(S,1) %Additional sets

 S(sid+1:end,1:2) = S(sid+1:end,1:2)+length(spacestr);

%Adjust numbers by number of spaces

 end

 end

 end

 end

 end

 %Add spaces to end of notes to have a full 31 width

 numspaces = 31-mod(length(notes),31); %Number of spaces to 'fill' the

line

 spacestr = strings(1,numspaces);spacestr(1,1:end)=' '; %spaces vector

 notes=sprintf('%s%s',notes,spacestr);

 %Create string vector to store formatted notes

 notestr = strings(length(notes)/31,1);

 for ns = 1:length(notestr)

 nstr = notes((ns-1)*31+1:ns*31); %Line of notes

 %Add a space to the end of line (makes a 32

 %width line)

 nstr(32)=" ";

 if isequal(nstr(1)," ")%Check if there are left leading spaces to

remove

 char1 = find(nstr ~=' ',1); %Find the first character in the

string

 if ~isempty(char1)

 nstr(1:char1-1)=[];nstr(end+1:end+char1-1) = ' ';%Remove

space and add to the end of the line

 else %Only spaces - empty line

 nstr="";

 end

 end

 notestr(ns) = nstr;

 end

 %Delete any empty rows and recompile into a single

 %string

 notestr(notestr=="")=[];

 notes=strjoin (reshape(notestr,1,[]),''); %Single string

154

%Add row to table

 fTab.(col)= notes;

 uit.Data(rows(k),:) = fTab;

 rawfileList(rows(k),:) = fTab;

 else

 chk=0;

 end

 end

 end

 else

 disp('Invalid entry. Please enter (Y)es/(N)o or hit enter')

 end

 end

end

end

function [uit,rawfileList,changeList,chk,changerows] =

strUpdate(new,old,uit,rawfileList,col,vars,changeList,rows,changerows,updateType)

if ~isempty(new)

 %Update the rawlist and uit

 uit.Data.(col)(rows) = new;

 rawfileList.(col)(rows) = new;

 chk=0;

 %Update the changeList

 switch updateType

 case 1 %Group change - Only note one row change

 if ismissing(changeList.File_Name(1)) %Newly generated list, no other values entered

 changeList.File_Name(1) = 'Group Change';

 changeList.Variable_Changed(1) = vars;

 changeList.Old_Value(1) = string(old);

 changeList.New_Value(1) = string(new);

 else %Add a new row

 r=height(changeList)+1;

 changeList{r,:} = {'Group Change',vars,string(old),string(new)};

 end

 case 2 %Individual change

 for k = 1:length(rows)

 if ismissing(changeList.File_Name(1)) %Newly generated list, no other values entered

 changeList.File_Name(1) = rawfileList.File_Name(rows(k));

 changeList.Variable_Changed(1) = vars;

 changeList.Old_Value(1) = string(old(k));

 changeList.New_Value(1) = string(new);

 else %Add a new row

 r=height(changeList)+1;

 changeList{r,:} =

{rawfileList.File_Name(rows(k)),vars,string(old(k)),string(new)};

 end

 end

 end

 %Update change rows

 for k = 1:length(rows)

 changerows(rows(k)) = rows(k);

 end

155

else

 chk=0;

end

end

function [uit,rawfileList,changeList] = updateDepID(uit,rawfileList,rows,changeList)

for k = 1:length(rows)

 fTab = rawfileList(rows(k),:);

 id = fTab.Site_ID;deploy =

sprintf('%s%s',fTab.Deployment_Period{:}(3:4),fTab.Deployment_Period{:}(8:9));

 old = fTab.Deployment_ID;new=strcat(id,deploy);

 fTab.Deployment_ID =new;

 uit.Data(rows(k),:) = fTab;

 rawfileList(rows(k),:) = fTab;

 %Update the changeList

 if height(changeList) == 1 %Newly generated list, no other values entered

 changeList.File_Name(1) = fTab.File_Name;

 changeList.Variable_Changed(1) = 'Deployment_ID';

 changeList.Old_Value(1) = string(old);

 changeList.New_Value(1) = string(new);

 else %Add a new row

 r = height(changeList);

 changeList{r+1,:} = {fTab.File_Name,'Deployment_ID',string(old),string(new)};

 end

end

end

Published with MATLAB® R2021a

function [T]=GetFileList(inpt1,inpt2)

%GetRSKFiles: Loads RSKFileList (list of all rsk files logged in RSKFileList for view.

%INPUTS

% inpt1 - Number for 1 of 4 options

% 1 - All rsk files logged in RSKFileList.mat

% 2 - All unprocessed, but logged rsk files

% 3 - All processed rsk files

% 4 - All un logged rsk files (not in RSKFileList.mat)

% 5 - Output an archived rskfile List (TBD)

% inpt2 - Number 1 or 2, for cases 1-3 for inpt1

% 1 - Output just the file names.

% 2 - Output the full rows of RSKFileList for the relevant files

%

%Note that for inpt1 = 4, only the rsk. file names can be outputted.

%%%

%Author: Sean R. Boyd January 19th, 2022

%%%

%Create storage variable

T=[];

https://www.mathworks.com/products/matlab

156

%Set directories

direct=pwd;fold=strcat(direct,'\Raw Data Files');

cd (fold);clc

%Check number of inputs

narginchk(0,2);

switch nargin

 case 0

 inpt1=[];inpt2=[];

 case 1

 inpt2=[];

end

try

 load('CurrentRawFileList.mat','rawfileList');

 T=rawfileList; %Most likely output

 %Check if user wants all files,new files, or processed files

 fprintf('Select an option to output:\n (1) All raw files logged\n (2) All unprocessed raw

files\n (3) All processed raw files\n (4) All unlogged raw files\n')

 if isempty(inpt1)

 inpt1=input('[hit Enter terminate the program]: ');fprintf('\n\n')

 else

 if ~isnumeric(inpt1)

 try

 inpt1 = str2double(inpt1);

 catch

 fprintf('\n%s is an invalid value for inpt1',inpt1)

 inpt1=0; %Will end the program

 end

 end

 end

 nofile=0;

catch

 fprintf('RSKFileList.mat cannot be found. All the outputted files are unlogged files.\n')

 inpt1=4;nofile=1;

end

switch inpt1

 case 1 %output all logged files (ask if the user wants just file names or full summary)

 fprintf('Select an option to output:\n (1) Just raw file names\n (2) raw file name &

submitted information\n')

 if isempty(inpt2)

 inpt2=input('[hit Enter/any other key terminate the program]: ');

 else

 if ~isnumeric(inpt2)

 try

 inpt2 = str2double(inpt2);

 catch

 fprintf('\n%s is an invalid value for inpt2',inpt2)

 inpt2=0; %Will end the program

 end

 end

 end

157

switch inpt2

 case 1

 T = T.File_Name;

 case 2 %Nothing, default option

 otherwise

 clearvars T; %clear the output variable.

 disp('Program Terminated.');pause(1);clc

 end

 if isempty(T)

 clc;disp('There are no logged files in the current Raw Data folder');pause(1);clc

 end

 case 2 %output all unprocessed files (ask if the user wants just file names or full summary)

 T=T(T.Processed == "No",:);

 fprintf('Select an option to output:\n (1) Just raw file names\n (2) raw file name &

submitted information\n')

 if isempty(inpt2)

 inpt2=input('[hit Enter/any other key terminate the program]: ');

 else

 if ~isnumeric(inpt2)

 try

 inpt2 = str2double(inpt2);

 catch

 fprintf('\n%s is an invalid value for inpt2',inpt2)

 inpt2=0; %Will end the program

 end

 end

 end

 switch inpt2

 case 1

 T = T.File_Name;

 case 2 %Nothing, default option

 otherwise

 T=[];

 disp('Program Terminated.');pause(1);clc

 end

 if isempty(T)

 clc;disp('There are no unprocessed files in the current Raw Data

folder');pause(1);clc

 end

 case 3 %output all processed files (ask if the user wants just file names or full summary)

 T=T(T.Processed == "Yes",:);

 fprintf('Select an option to output:\n (1) Just raw file names\n (2) raw file name &

submitted information\n')

 if isempty(inpt2)

 inpt2=input('[hit Enter/any other key terminate the program]: ');

 else

 if ~isnumeric(inpt2)

 try

 inpt2 = str2double(inpt2);

 catch

 fprintf('\n%s is an invalid value for inpt2',inpt2)

 inpt2=0; %Will end the program

158

 end

 end

 end

 switch inpt2

 case 1

 T = T.File_Name;

 case 2 %Nothing, default option

 otherwise

 T=[];

 disp('Program Terminated.');pause(1);clc

 end

 if isempty(T)

 T=[];

 clc;disp('There are no processed files in the current Raw Data Folder

folder');pause(1);clc

 end

 case 4 %output all unlogged files (can only be file names)

 if ~nofile

 log = T.File_Name;

 d=[dir('*.rsk');dir('*.csv')];all = string({d.name});del=zeros(size(all));

 for k = 1:length(all)

 if find(log == all(k),1)

 del(k)=k;

 end

 end

 del(del==0)=[];all(del)=[];%Delete all raw files from directory name list that are

not logged

 else

 d=[dir('*.rsk');dir('*.csv')];all = string({d.name});

 end

 if ~isempty(all)

 T=all;

 else

 T=[];

 clc;disp('There are no unlogged raw files in the current RBR raw Files & List

folder.');pause(1);clc

 end

 otherwise

 T=[];

 disp('Program Terminated.');pause(1);clc

end

clc;cd (direct)

end

Published with MATLAB® R2021a

https://www.mathworks.com/products/matlab

159

function [DB]=GetDatabase()

%GetDB: Loads CurrentSupercoolingdatabase from the Database folder

%%%

%Author: Sean R. Boyd January 19th, 2022

%%%

direct=pwd;dbfold=strcat(direct,'\Databases');

cd (dbfold)

load('CurrentSuperCoolingDatabase.mat','SupercoolingDatabase');

 DB=SupercoolingDatabase;

cd (direct)

end

Published with MATLAB® R2021a

function [summary] = GetObSummary(varargin)

%GetRiverSummaries Function extracts a structure of observation summaries

%from the database based on submitted inputs. There are two methods this

%function uses to extract the timeseries data from the database.

%

% i) Enter the string "IDList" followed by a cell or string of

% Deployment IDs.If a cell/string array

% of potential timeseries IDs is submitted, the function verifies that the

% IDs are correct and then output a structure containing these time series.

%

% ii) The user requests timeseries that fit a certain set of parameters

% using name-value pairs following the same procedure as for the GetTable()

% function, and the final Deployment IDs are used

%

% This function also has the "Print" followed by either 'Y'/'y' or 'N'/'n'

% to indicates if you wish to print the summary to Excel.

% If not submitted, the program will prompt the

%question

%OUTPUT

%summary = Structure of the summary tables

%%%

%Author: Sean R. Boyd January 19th, 2022

%%%

%Determine if print is submitted

summary=[];chk = 1;k = 1;printXSLX=[]; %start loop and placeholder

while chk && k < length(varargin) %Last input myst be y or n. Otherwise no input given

 try

 if strcmpi(varargin{k},'Print')

 printXSLX = string(varargin{k+1});

 if ~strcmpi(printXSLX,'n') && ~strcmpi(printXSLX,'y')

 disp('Invalid entry')

 else %printXLSX is either y/n

 chk=0;

 end

 end

 catch %issues with string compare (invalid input)

 continue

 end

https://www.mathworks.com/products/matlab

160

 %Increase count

 if chk

 k = k+1;

 end

end

if isempty(printXSLX)

 chk = 1;

else

 chk=0;

end

%No print submitted, requyest input

 while chk

 printXSLX = input('Do you wish to save the summary to an Excel file? (Y/N): ','s');

 if ~strcmpi(printXSLX,'n') && ~strcmpi(printXSLX,'y')

 disp('Invalid entry')

 else %printXLSX is either y/n

 chk=0;

 end

 end

%Get file name if printXSLX is 'y'

if strcmpi(printXSLX,'y')

 %Get filename for spreadsheet

 chk1 = 1;

 while chk1

 filename = input(sprintf("Enter filename. It will be saved as a string.\n(default: 'River

Site Summaries')[press Enter for default]: "),'s');

 if isempty(filename)

 filename = 'River Site Summaries.xlsx';

 else

 filename=strcat(filename,'.xlsx');

 end

 fprintf('Filename: %s\n',filename);

 inpt=input('Is this the correct filename?(Y/N): ','s');

 if strcmpi(inpt,'y')

 %end loop

 chk1=0;

 end

 end

 printchk=1;%print to excel at the end of the program

else

 printchk=0; %do not print

end

%Print the loading statement

clc;fprintf('Processing Request...')

%Remove 'Print' and value from submitted varargin prior to submission to

%GetTable

vars = varargin;

if ~isempty(vars)

 vars(k:k+1)=[];

end

161

%Get Event Table and extract deployment ids

if isempty(vars)

 T = GetTable();

else

 T = GetTable(vars{:});

end

if ~isempty(T)

 IDs = unique(T.Deployment_ID);%All unique submitted IDs

else

 fprintf('No Deployments have been found that contain events that match the submitted

deployments\n');return

end

%If no issues arise from getting the IDs, proceed with the rest of the

%function

%Get directories

home=pwd;results = strcat(pwd,'/Generated Results');

%1) Get the Database and the full event catalogue

db = GetDatabase();

%2) Default is that the summary is the initial structure

summary = db.Observation_Summaries;

%If there are submitted deployment IDs, verify the input and then modify summary

%to only contain the submitted deployment IDs

if ~isempty(IDs)

 %Check that the list of IDs submitted is valid

 allDep = string({db.Time_Series.Deployments.Deployment_ID}); %All deployment ID

 allEvts = string({db.Time_Series.Supercooling_Events.Event_ID}); %All Event ID

 allIDs = [allDep,allEvts];

 IDs=unique(IDs);

 evts = db.Event_Table; %Full event table for reference

 err = strings(size(IDs));del = zeros(size(IDs));

 for k = 1:length(IDs)

 if isempty(find(allIDs == IDs(k),1))

 err(k) = IDs(k);del(k)=k;

 end

 end

 err(err=="")=[]; %Clear all empty elements

 del(del==0)=[];IDs(del)=[]; %Clear all invalid elements

 if ~isempty(err)

 if isequal(err,IDs)

 error('None of the deploymentIDs submitted were valid.')

 else

 warning('Some of the deploymentIDs submitted were invalid.')

 end

 end

 %Create a reference table of the river and sites for each deployment ID

 T = table('Size',[length(IDs),

3],'VariableTypes',["string","string","string"],'VariableNames',["River","Site","Deployment_ID"])

;

162

 for k = 1:length(IDs)

 T.Deployment_ID(k) = IDs(k);

 r=find(evts.Deployment_ID == IDs(k),1); %Get a row for reference

 if isempty(r) %ID woud be an event ID

 r=find(evts.Event_ID == IDs(k),1);

 T.Deployment_ID(k) = evts.Deployment_ID(r);

 end

 T.River(k) = evts.River(r);T.Site(k) = evts.Site(r);

 end

 %Remove the rivers that are not in the reference table from the summary

 %I) River level - clear out any rivers not in T

 allrivs = string({summary.Rivers});del = zeros(size(allrivs));

 for k = 1:length(allrivs)

 if isempty(find(T.River == allrivs(k),1))

 del(k)=k;

 end

 end

del(del==0)=[];summary(:,del)=[];

 %II) Site Level for each remaining river(s)

 for k = 1:length(string({summary.Rivers}))

 allsites = string({summary(k).Sites.Site});del = zeros(size(allsites));

 for k1 = 1:length(allsites)

 if isempty(find(T.Site == allsites(k1),1))

 del(k1)=k1;

 end

 end

 del(del==0)=[];summary(k).Sites(:,del)=[];

 end

 %III) Deployment Level for all remaining sites

 for k = 1:length(string({summary.Rivers}))

 for k1 = 1:length(string({summary(k).Sites.Site}))

 alldeploys = string(summary(k).Sites(k1).Deployments.Properties.RowNames);

 del = zeros(size(alldeploys));

 for k2 = 1:length(alldeploys)

 if isempty(find(T.Deployment_ID == alldeploys(k2),1))

 del(k2)=k2;

 end

 end

 del(del==0)=[];summary(k).Sites(k1).Deployments(del,:)=[];

 end

 end

end

%Determine the relevant totals for summing events

%Turn off warning to so that MATLAB adds default values without setting off

%a warning

warning('off','all')

rivs = string({summary.Rivers});

rivTabs = cell(1,length(rivs)); %storage array of river summary tables

for r = 1:length(rivs)

 sites = string({summary(r).Sites.Site});

 for s = 1:length(sites)

 sumT = summary(r).Sites(s).Deployments;

 tot = cell([1,width(sumT)]); %Storage array

163

 for c = 1:length(tot)

 if c>=12 && c<=18 %In the columns that need to be totalled

 if height(sumT)>1 %There are multiple deployments at the site, create a site

subtable

 tot{c} = sum(sumT{:,c}); %Array of totals

 else

 tot{c} = sumT{:,c};

 end

 else %Not applicible, put a place holder marker

 unit =sumT{:,c};

 if isequal(class(unit),'cell')

 unit=unit{:};

 end

 if isequal(class(unit),'string') || isequal(class(unit),'char')

 tot{c} = "N/A";

 elseif isequal(class(unit),'double')

 tot{c} = NaN();

 else %date-time

 tot{c} = NaT();

 end

 end

 end

 if height(sumT)>1

 h = height(sumT)+1;

 %Add a row to the table named total

 for c = 1:length(tot)

 sumT{h,c} = tot{c};

 end

 sumT.Properties.RowNames(end) = {'EVENT_TOTALS'};

 end

 %Put current summary Tabe back into the structure

 summary(r).Sites(s).Deployments = sumT;

 %If this is the first site in the river, set r1 to this site last

 %row's totals. Else, add the last row (either the totals row or the

 %sole season's numbers) to the ongoing table

 if s == 1

 r1 = [tot{12:18}];

 else

 r1 = r1+[tot{12:18}];

 end

 %If there are multiple sites, collect the river totals at the end of this section

 if length(sites)>1

 cols=string([sumT.Properties.VariableNames]);

 rivTab =

table('Size',[1,7],'VariableTypes',["double","double","double","double","double","double","double

"],'VariableNames',cols(12:18));

 rivTab{:,:}=r1;rivTabs{r}=rivTab;%Add the event totals to the table,then put it in

the storage array

 end

 end

end

164

%If there are multiple rivers, summarize the full set

if length(rivs)>1

 if isempty(IDs) || isequal(allDep,sort(IDs)) %All Deployments considered

 dbLab = 'Database Overview';

 else

 dbLab = 'Multi-River Set';

 end

 dbTab =

table('Size',[1,7],'VariableTypes',["double","double","double","double","double","double","double

"],'VariableNames',cols(12:18));

 vals = rivTabs{1};

 vals = vals{:,:};

 for k= 2:length(rivTabs)

 vals1 = rivTabs{k};

 vals1 = vals1{:,:};

 vals = vals+vals1;

 end

 dbTab{:,:}=vals;

end

%Request if the user wishes to print summary to an excel file

if printchk

 %Print summary to spreadsheet

 cd(results)

 if length(rivs)>1

 %Write Database summary

 dblabelstartCell='A1';dbtabstartCell='B2';

 writecell({dbLab},filename,'Sheet','Database','Range',dblabelstartCell);

writetable(dbTab,filename,'Sheet','Database','Range',dbtabstartCell,'WriteVariableNames',true,'Wr

iteRowNames',true);

 dbrow = 5;dbtabStartCell = strcat('B',num2str(dbrow));dblabelstartCell =

strcat('A',num2str(dbrow-1));

 end

 %Write each river's summary

 for r = 1:length(rivs)

 sites = string({summary(r).Sites.Site});labelstartCell='A1';tabstartCell

='B2';row=2;%Starting cell and row for the first table

 for s = 1:length(sites)

 writecell({sites(s)},filename,'Sheet',rivs(r),'Range',labelstartCell)

 sumT = summary(r).Sites(s).Deployments;

writetable(sumT,filename,'Sheet',rivs(r),'Range',tabstartCell,'WriteVariableNames',true,'WriteRow

Names',true)

 %Determine the starting cell of the next table

 row = row+height(sumT)+3;tabstartCell = strcat('B',num2str(row));labelstartCell =

strcat('A',num2str(row-1));

 end

165

%Add the river summary at the end

 if length(sites)>1

 writecell({sprintf('%s

Summary',rivs(r))},filename,'Sheet',rivs(r),'Range',labelstartCell)

writetable(rivTabs{r},filename,'Sheet',rivs(r),'Range',tabstartCell,'WriteVariableNames',true,'Wr

iteRowNames',true)

 end

 %Add river summary to the database summary page

 if length(rivs)>1

 writecell({sprintf('%s

Summary',rivs(r))},filename,'Sheet','Database','Range',dblabelstartCell);

writetable(rivTabs{r},filename,'Sheet','Database','Range',dbtabStartCell,'WriteVariableNames',tru

e,'WriteRowNames',true)

 dbrow = dbrow+3;dbtabStartCell = strcat('B',num2str(dbrow));dblabelstartCell =

strcat('A',num2str(dbrow-1));

 end

 end

end

%Turn warning back on

cd(home)

warning('on','all')

%Complete loading statement

fprintf('Complete\n')

if printchk

 fprintf('%s is saved in Generated Results\n\n',filename)

else

 fprintf('\n\n')

end

end

Published with MATLAB® R2021a

function [s] = GetScreenedPeriods(outputType)

%GetScreenedPeriods Loads the records of manually screened events

%INPUT

% outputType = Enter 'Summary' or 'TimeSeries' if you only wish the

% summary table or Time Series outputted. Otherwise the function outputs

% the whole structure.

%%%

%Author: Sean R. Boyd January 19th, 2022

%%%

narginchk(0,1)

home = pwd;

%Get Database

db = GetDatabase();

screenedPeriods = db.Screened_Periods;

https://www.mathworks.com/products/matlab

166

%Use input to decide on output

if nargin == 0 %Output everything

 outputType = "both";

elseif nargin == 1 && (~isequal(class(outputType),'string') &&

~isequal(class(outputType),'char')) %The input cannot be processed as either 'Summary' or

'TimeSeries'

 outputType = "both";

end

switch outputType

 case 'Summary'

 s = screenedPeriods.Summary;

 case 'TimeSeries'

 s = screenedPeriods.TimeSeries;

 otherwise

 s = screenedPeriods;

end

cd(home)

end

Published with MATLAB® R2021a

function [T] = GetTable(varargin)

%GetTable: Retrieves the current SupercoolingDatabase Event Table and then

% filters for only events that match the submitted argument.

%

%NOTES ON POSSIBLE FILTERS

%

% I) Qualatative Filter - Qualatative data is data stored as string

% arrays that can only be filtered as a direct match.

%

% Ex. T = GetTable("River_ID","KR") would output all the events with the

% River ID of 'KR', while T = GetTable("River_ID",["KR","NSR"]) will

% output all the events that have either of these River IDs.

%

% II) Quantatative Filter - Quantatative data is data stored as double or

% date-time data types can be filtered through various logical arguments.

% In both cases, the logical argument filter is the same.

%

% i) Double: The valid variable name for a double type variable is

% followed by a string containing a logical operation and then the

% threshold value.

%

% Ex. T = GetTable("Duration","<",10) will output all the events with

% a duration less than 10 hours (keep the units of the variable in

% mind)

%

% ii) Date-time: The valid variable name for a datetime type

% variable is either followed by (a) a logical operation and a

% specific datetime, or (b) a string array indicating the component

% of the datetime object under consideration, the logical operation,

% and the threshold value.

%

https://www.mathworks.com/products/matlab

167

% (a) Ex. T = GetTable("Start_Time","<",Dec 01, 2015 10:00:00)

% will get all events that started prior to 10AM on December 1st,

% 2015.

%

% (b) Ex. T = GetTable("Start_Time","month,"<=","mar")

% will get all events that started in January-March (inclusive) of

% any given year. List of valid string arrays are:

%

% 'year' - year of datetime

% 'month' - month of datetime

% 'doy' - day of the year of datetime

% 'hour' - hour of day of datetime

%

%LIST OF VALID LOGICAL ARGUMENT INPUTS

%For all quantifiable data types, the following character strings indicate

%the noted logical operation.

%

% '==' Equal To.

%

% '~=' Not Equal To.

%

% '<' Strictly Less Than.

%

% '>' Strictly Greater Than.

%

% '<=' Less Than or Equal To.

%

% '>=' Greater Than or Equal To.

%

% '><' Strictly Greater Than the first value,

% Strictly Smaller Than the second value.

%

% '>=<' Greater Than Or Equal to first value,

% Strictly Smaller Than the second value.

%

% '><=' Strictly Greater Than first value,

% Smaller Than Or Equal to the second value.

%

% '>=<=' Greater Than Or Equal to the first value,

% and Smaller Than Or Equal to the second value.

%

% Note that the last 4 options enable comparison between two values. Thus

% the threshold needs to be a double array containing two values

%%%

%Author: Sean R. Boyd January 19th, 2022

%%%

%Create array of valid logical arguments

validLogicInpt = ["==","~=","<",">","<=",">=","><",">=<","><=",">=<="];

%Get the SupercoolingDatabase Event Catalogue

Database = GetDatabase();

T=Database.Event_Table;

168

if ~isempty(varargin) %The table needs to be filtered. varargin is a cell array

 %Determine the cases each variable name falls into (avoid needing to update

 %this code with changes in variables

 vars = string(T.Properties.VariableNames);

 vartype = strings(size(vars));

 for k = 1:length(vars)

 vartype(k) = class(T.(vars(k)));

 end

 %Search through varargin and determine which variables are going to be used

 %as a filter

 headers = varargin; %Fist store all inputs as possible headers

 %If "IDList" is entered, replace with both "Deployment_ID" and

 %"Event_ID" and duplicate lists to check

 chk=1;k=1;i=0;

 while chk && k<=length(headers)

 if isequal(size(headers{k}),[1,1]) && isa(headers{k},'string')%They can be compared

 i = strcmpi(headers{k},"IDList");chk=0;

 else

 k = k+1;

 end

 end

 if i %IDList is an entry, copy the following list and add two copies of it to the header

line.

 if k<length(varargin)

 list = headers{k+1};

 elist=list(contains(list,'_SC'));%List of Event ID

 dlist = list(~contains(list,'_SC'));%List of Deployment

 %Add "Deployment_ID" and "Event_ID" to header followed by the

 %list

 headers(end+1:end+4) = {"Deployment_ID",dlist,"Event_ID",elist};

 varargin(end+1:end+4) = {"Deployment_ID",dlist,"Event_ID",elist};

 else

 error('IDList must be followed by a list of IDs')

 end

 end

 del = 1:length(headers); %Array for the elements to be removed

 index = 1:length(headers); %Index of elements in varargin

 type = cell(size(headers)); %Storage array of data type

 varsindex = zeros(size(headers)); %Storage array of index of valid headers in vars

 for k = 1:length(headers)

 if isequal(size(headers{k}),[1,1]) && isa(headers{k},'string')%They can be compared

 i = find(vars == headers{k},1);

 else

 i=[];

 end

 if ~isempty(i)

 del(k)=0;type{k} = vartype(i);varsindex(k)=i;

 end

 end

 %Remove zero values and all invalid headers

 del(del==0)=[];index(index==0)=[];type(del)=[];index(del)=[];headers(del)=[];varsindex(del)=[];

169

%Create a storage cell array for the valid headers, the data type,logical

 %argument(s), and threshold values

 c = cell([length(headers),6]);

 c(:,1)=num2cell(varsindex);c(:,2) = headers';c(:,3)=type';

 %Going through each row in the cell, determine by type how much of the

 %following varargins need to be considered. Index can be used as an

 %additional limiter

 for k = 1:length(type)

 switch type{k}

 case "string"

 c(k,(4:5)) = {'N/A','N/A'}; %No logical arguments needed

 c(k,6) = varargin(index(k)+1); %Threshold values

 case "double"

 c(k,4) = varargin(index(k)+1); %One logical argument needed

 c(k,5) = {'N/A'};

 c(k,6) = varargin(index(k)+2);%Threshold values

 case "datetime"

 c(k,4) = varargin(index(k)+1); %First logical arguments needed

 if index(k) == 1

 if find(validLogicInpt == varargin{2},1)

 c(k,5) = {'N/A'};

 c(k,6) = varargin(3);%Threshold values

 else

 c(k,5) = varargin(3);

 c(k,6) = varargin(4);%Threshold values

 end

 elseif index(k+1) ~= index(k)+1

 c(k,5) = varargin(index(k)+2);

 c(k,6) = varargin(index(k)+3);%Threshold values

 else

 c(k,5) = {'N/A'};

 c(k,6) = varargin(index(k)+1);%Threshold values

 end

 end

 end

 %Sort rows based on first column

 c=sortrows(c,1);

 %Check that the threshold values are not empty

 del=zeros(size(c,1),1);

 for k = 1:size(c,1)

 if isempty(c{k,6})

 del(k)=k;

 end

 end

 del(del==0)=[];c(del,:)=[];

 if~isempty(c)

 %Filter the table based on this ordering

 %Use while loop to check if the table has

 %been reduced to an empty output

 chk=1;k=1;

170

 while k<=size(c,1) && chk

 %Extract required information from the cell array

 col = c{k,2}; %Column name

 type = c{k,3}; %data type

 L1 = c{k,4}; %logic argument 1

 L2 = c{k,5}; %Logic argument 2

 val = c{k,6};%valid arrays;

 %Use data type as a switch

 switch type

 case 'string'

 [chk,alldat] = emptyChk(T,col); %Check that the table is not empty

 if chk

 %Check that val is a string array

 if isstring(val) || ischar(val)

 valid=1;

 else

 error('%s requies a string array to filter the table',col)

 end

 %If val is a string array (possibly valid) use it to filter

 %out any no compliant rows in the table

 if valid

 keep = zeros([length(alldat),length(val)+1]); %matrix to hold logic

array

 for k1 = 1:length(val)

 keep(:,k1) = alldat == val(k1);

 end

 keep(:,k1+1) = sum(keep,2); %Sum up the coluumn, with positive

indicating a match

 del = find(keep(:,k1+1) == 0); %Array of rows to delete

 end

 end

 logchk=0; %No need to apply a variable logic check

 case 'double'

 [chk,alldat] = emptyChk(T,col); %Check that the table is not empty

 if chk

 %Check that the inputted array is double and in ascending

 %order (and is no more than a length 2 vector

 if isa(val,'double')

 if isequal(size(val),[1,1]) || isequal(size(val),[1,2]) ||

isequal(size(val),[2,1])

 if length(val) == 2

 if val(1)>val(2)

 val = [val(2),val(1)];

 fprintf('Rearranged the submitted array for %s\n',col)

 end

 if ~isempty(find(isnan(val),1))

 error('NaN values can only be used when considering a

parameter == NaT or ~= NaN')

 end

 end

 valid=1;

171

 else

 error('%s requires either a single double value or 2x1 double

vector to filter events',col)

 end

 else

 error('%s requires either a single double value or 2x1 double vector

to filter events',col)

 end

 if valid

 logchk =1; %Applay a variable logic check

 data=alldat;

 end

 end

 case 'datetime'

 [chk,alldat] = emptyChk(T,col); %Check that the table is not empty

 if chk

 if isequal(L2,'N/A') %inputted date time for comparison

 %Check that a valid date time has been entered

 if isdatetime(val) && (isequal(size(val),[1,1]) ||

isequal(size(val),[1,2]) || isequal(size(val),[2,1]))

 if length(val) == 2

 if val(1)>val(2)

 val = [val(2),val(1)];

 fprintf('Rearranged the submitted array for %s\n',col)

 end

 if ~isempty(find(isnat(val),1))

 error('NaT values can only be used when considering a

parameter == NaT or ~= NaT')

 end

 end

 valid = 1;data=alldat;

 else

 error('%s requires either a single datetime value or 2x1 datetime

vector to filter events',col)

 end

 else %compare a component of the date-time value

 %Convert the data to the the required format

 switch L1

 case 'year'

 data = year(alldat);valid=1;

 case 'month'

 if isa(val,'string') %val needs to be converted to month

number

 %Generate a list of short and long

 %format string values to compare to val

 shortf = ["Jan","Feb","Mar","Apr","May","Jun","Jul",...

 "Aug","Sep","Oct","Nov","Dec"];

 longf = ["January","February","March","April",...

 "May","June","July","August","September",...

 "October","November","December"];

 num = zeros(size(val));

172

 for k1 = 1:length(val)

 datchk=1;k2=1;

 while k2<=12 && datchk

 if strcmpi(shortf(k2),val(k1))

 num(k1)=k2;datchk=0;

 elseif strcmpi(longf(k2),val(k1))

 num(k1)=k2;datchk=0;

 else

 k2=k2+1;

 end

 end

 end

 val=sort(num);

 end

 data = month(alldat);valid=1;

 case 'doy'

 data=day(alldat,'doy');valid=1;

 case 'hour'

 data=hour(alldat);valid=1;

 otherwise

 error("%s is not a valid entery for filtering date-time data.

Please enter 'year', 'month','doy', or 'hour' to filter the Event Table.",L1)

 end

 type = 'double';

 end

 if valid

 logchk =1; %Applay a variable logic check

 end

 end

 end

 if logchk && chk

 if isequal(L2,'N/A')

 logarg = L1; %logical argument is in L1

 else

 logarg = L2; %logical argument is in L2

 end

 logindex = find(validLogicInpt == logarg);

 if isempty(logindex)

 error('%s is an invalid logical argument input. Please see documentation for

the valid logical argument inputs.',logarg)

 end

 %Error check

 [logindex1] = errorCheck(val,type,logindex);

 switch logindex1

 case 1 %Keep all data equal to the threshold threshold

 if isequal(type,'double')

 if ~isempty(find(isnan(val),1)) %The code is searching for NaN values

 keep = isnan(data);

 else

 keep = data == val;

 end

 elseif isequal(type,'datetime')

173

 if ~isempty(find(isnat(val),1)) %The code is searching for NaT values

 keep = isnat(data);

 else

 keep = data == val;

 end

 end

 case 2 %Keep all data not equal to the threshold

 if isequal(type,'double') %The code is searching for NaN values

 if ~isempty(find(isnan(val),1)) %The code is searching for NaN values

 keep = ~isnan(data);

 else

 keep = data == val;

 end

 elseif isequal(type,'datetime')

 if ~isempty(find(isnat(val),1)) %The code is searching for NaT values

 keep = ~isnat(data);

 else

 keep = data == val;

 end

 end

 case 3 %Keep all data strictly less than the threshold

 keep=data<val;

 case 4 %Keep all data strictly greater than the threshold

 keep=data>val;

 case 5 %Keep all data less than or equal to the threshold

 keep=data<=val;

 case 6 %Keep all data greater than or equal to the threshold

 keep=data>=val;

 case 7 %Keep all data strictly greater than the lower threshold or strictly

lower than the upper threshold

 keep1 = data>val(1);keep2=data<val(2);keep = and(keep1,keep2);

 case 8 %Keep all data greater than or equal to the lower threshold or

strictly lower than the upper threshold

 keep1 = data>=val(1);keep2=data<val(2);keep = and(keep1,keep2);

 case 9 %Keep all data greater than the lower threshold or lower than or equal

to the upper threshold

 keep1 = data>val(1);keep2=data<=val(2);keep = and(keep1,keep2);

 case 10 %Keep all data greater than or equal to the lower threshold or less

than or equal to the upper threshold

 keep1 = data>=val(1);keep2=data<=val(2);keep = and(keep1,keep2);

 otherwise

 error('%s is not a valid logical argument input. See documentation for a

list of valdid logical argument formatting',logarg)

 end

 if size(keep,2)>1 %There are multiple subcolumns in this keep array

 keep = min(sum(keep,2),1); %If there is one value to keep in the row, keep

the whole row

 end

 del = find(keep==0);

 end

 if chk %Delete all flagged rows if there anything to clear

 if ~isempty(del)

 T(del,:)=[];

 end

174

 k=k+1;

 end

 end

 else

 T=[];fprintf('\nThreshold values were empty.\n')

 fprintf('\nAlways double check program inputs because errors such as\nmistyped column

names would be ignored by the program.\n')

 end

end

end

%SUBFUNCTIONS

function [chk,alldat] = emptyChk(T,col)

alldat = T.(col);

if isempty(alldat)

 chk=0;

else

 chk=1;

end

end

function [logindex] = errorCheck(val,type,logindex)

%Conducts an error check. If no errors arise. Continue processing input

 switch logindex

 case 1 %Keep all data equal to the threshold threshold

 if length(val)>1

 error('Only a single value can be used for an == logical argument')

 end

 case 2 %Keep all data not equal to the threshold

 if length(val)>1

 error('Only a single value can be used for a ~= logical argument')

 end

 case 3 %Keep all data strictly less than the threshold

 if length(val)>1

 error('Only a single value can be used for a < logical argument')

 end

 if isequal(type,'double') %The code is searching for NaN values

 if ~isempty(find(isnan(val),1))

 error('NaN values cannot be used for a < argument')

 end

 elseif isequal(type,'datetime')

 if ~isempty(find(isnat(val),1)) %The code is searching for NaT values

 error('NaT values cannot be used for a < argument')

 end

 end

 case 4 %Keep all data strictly greater than the threshold

 if length(val)>1

 error('Only a single value can be used for a > logical argument')

 end

 if isequal(type,'double')

 if ~isempty(find(isnan(val),1)) %The code is searching for NaN values

 error('NaN values cannot be used for a > argument')

 end

175

 elseif isequal(type,'datetime')

 if ~isempty(find(isnat(val),1)) %The code is searching for NaT values

 error('NaT values cannot be used for a > argument')

 end

 end

 case 5 %Keep all data less than or equal to the threshold

 if length(val)>1

 error('Only a single value can be used for a <= logical argument')

 end

 if isequal(type,'double')

 if ~isempty(find(isnan(val),1)) %The code is searching for NaN values

 error('NaN values cannot be used for a <= argument')

 end

 elseif isequal(type,'datetime')

 if ~isempty(find(isnat(val),1)) %The code is searching for NaT values

 error('NaT values cannot be used for a <= argument')

 end

 end

 case 6 %Keep all data greater than or equal to the threshold

 if length(val)>1

 error('Only a single value can be used for a >= logical argument')

 end

 if isequal(type,'double')

 if ~isempty(find(isnan(val),1)) %The code is searching for NaN values

 error('NaN values cannot be used for a >= argument')

 end

 elseif isequal(type,'datetime')

 if ~isempty(find(isnat(val),1)) %The code is searching for NaT values

 error('NaT values cannot be used for a >= argument')

 end

 end

 case 7 %Keep all data strictly greater than the lower threshold or strictly lower

than the upper threshold

 if length(val)==1

 error('Two values are needed for a >< logical argument')

 end

 if isequal(type,'double')

 if ~isempty(find(isnan(val),1)) %The code is searching for NaN values

 error('NaN values cannot be used for a >< argument')

 end

 elseif isequal(type,'datetime')

 if ~isempty(find(isnat(val),1)) %The code is searching for NaT values

 error('NaT values cannot be used for a >< argument')

 end

 end

 case 8 %Keep all data greater than or equal to the lower threshold or strictly

lower than the upper threshold

 if length(val)==1

 error('Two values are needed for a >=< logical argument')

 end

 if isequal(type,'double')

 if ~isempty(find(isnan(val),1)) %The code is searching for NaN values

 error('NaN values cannot be used for a >=< argument')

176

 end

 elseif isequal(type,'datetime')

 if ~isempty(find(isnat(val),1)) %The code is searching for NaT values

 error('NaT values cannot be used for a >=< argument')

 end

 end

 case 9 %Keep all data greater than the lower threshold or lower than or equal to

the upper threshold

 if length(val)==1

 error('Two values are needed for a ><= logical argument')

 end

 if isequal(type,'double')

 if ~isempty(find(isnan(val),1)) %The code is searching for NaN values

 error('NaN values cannot be used for a ><= argument')

 end

 elseif isequal(type,'datetime')

 if ~isempty(find(isnat(val),1)) %The code is searching for NaT values

 error('NaT values cannot be used for a ><= argument')

 end

 end

 case 10 %Keep all data greater than or equal to the lower threshold or less than

or equal to the upper threshold

 if length(val)==1

 error('Two values are needed for a >=<= logical argument')

 end

 if isequal(type,'double')

 if ~isempty(find(isnan(val),1)) %The code is searching for NaN values

 error('NaN values cannot be used for a >=<= argument')

 end

 elseif isequal(type,'datetime')

 if ~isempty(find(isnat(val),1)) %The code is searching for NaT values

 error('NaT values cannot be used for a >=<= argument')

 end

 end

 otherwise

 error('%s is not a valid logical argument input. See documentation for a list

of valid logical argument formatting',logarg)

 end

end

Published with MATLAB® R2021a

https://www.mathworks.com/products/matlab

177

function [TS,IDs,IDindex,T] = GetTimeSeries(varargin)

%GetTimeSeries Function extracts a timeseries structure from the database

%based on submitted inputs. There are two methods this function uses to

%extract the timeseries data from the database.

%

% i) Enter the string "IDList" followed by a cell or string of

% either Deployment IDs or Event IDs (can be mixed).If a cell/string array

% of potential timeseries IDs is submitted, the function verifies that the

% IDs are correct and then output a structure containing these time series.

% Note that in the case of combining Event time series and Deployment time

% series, there will be two seperate sub structures for the different types

% of time series.

%

% ii) The user requests timeseries that fit a certain set of parameters

% using name-value pairs. The type of time-series can be indicated using

% "Type" followed by either "Event" or "Deployment". If not

% specified, the function will output both types of time series.

%

% All other name value pairs follow the same procedure as for the

% GetTable() function, as it it used to refine the time series list.

%OUTPUT

% TS - structure containing the requested timeseries

% IDs - ID list (useful in plotting time-series in a particular order in

% SCPlot

% IDindex - a 2x1 array that states which sub-structure each time series

% is in, and the index of the time series within the time structure.

% Ex. the 65th time series in Events sub structure when all time-series

% are outputted(second sub structure) will have the index of [2 65].

% If only Events time series are outputted, it would be [1 65].

% T - Event Table;

%%%

%Author: Sean R. Boyd January 19th, 2022

%%%

%Check number of arguments

direct = pwd;

%Load Database

SupercoolingDatabase=GetDatabase();

%Extract structure of timeseries type

TS=SupercoolingDatabase.Time_Series; %Base output of the function

%Extract all IDs

deploy = [TS.Deployments.Deployment_ID];

evts = string({TS.Supercooling_Events.Event_ID});

IDs = [deploy,evts];

%Create a list of ID indicies

IDindex = zeros(length(IDs),2);

for k = 1:length(deploy)

 IDindex(k,1)=1;IDindex(k,2)=k;

end

for k = length(deploy)+1:length(IDs)

 IDindex(k,1)=2;IDindex(k,2)=k-length(deploy);

end

178

%Process based on function inputs

if isempty(varargin)

 cd(direct);

 if nargout == 4

 T=GetTable();

 end

 return

elseif nargin>=2 %name value pairs. Use GetTable to build a list

 %Determine if the Time Series type is specified

 %Search for "IDList" in time series. If found, extract the

 chk=1;k=1;

 while chk && k<=nargin

 if strcmpi(varargin{k},'IDList')

 if k<nargin

 IDs = varargin{k+1};chk=0;idlistchk=1;

 %check that IDs is a cell/string

 if ~isa(IDs,'string')

 try

 IDs = string(IDs);

 catch

 error('List of IDs could not be converted to a string array.')

 end

 end

 else

 error('Time Series List was not submitted. Please submit a list of Deployment or

Event IDs that you want the time series for.')

 end

 %If this is an array, convert to a vector

 if ~isvector(IDs)

 IDs = reshape(IDs,1,[]);

 end

 else

 k=k+1;

 end

 end

 if k>nargin

 IDs=[];idlistchk=0;

 end

 %If IDs is not empty, skip the rest of the function

 if isempty(IDs)

 chk=1;k=1;

 else

 chk=0;k=nargin+1;

 %Check that ID list is valid

 type = string(size(IDs));

 for k1 = 1:length(IDs)

 if find(deploy == IDs(k1),1)

 type(k1) = "Deployment";

 elseif find(evts == IDs(k1),1)

 type(k1) = "Event";

 else

 fprintf('\nInvalid Time Series ID: %s\n',IDs(k1))

 end

179

 end

 %Generate a summary table for valid IDs

 T=GetTable("Deployment_ID",IDs(type == "Deployment"),"Event_ID",IDs(type == "Event"));

 if isempty(T) %No valid inputs from IDlist

 T="No valid Supercooling Events in teh submitted Time Series";

 end

 end

 while chk && k<=nargin %Search for a value pair for 'Type'

 if strcmpi(varargin{k},'Type')

 if k<nargin

 type = varargin{k+1};chk=0;

 else

 error("Time Series type is not specified. Please enter 'Deployment'/'Deployments'

or 'Event'/'Events' to specify the type of timeseries. Otherwise, leave blank to output both

sets")

 end

 else

 k=k+1;

 end

 end

 if k>nargin

 type=[];

 end

 if ~idlistchk

 if ~isempty(type)

 %Determine if the type submitted was valid

 if strcmpi(type,'Deployment') || strcmpi(type,'Deployments')

 TS.Supercooling_Events(:,:)=[];

 elseif strcmpi(type,'Event') || strcmpi(type,'Events')

 TS.Deployments(:,:)=[];

 else

 warning("Time_Series type was invalid (not 'Deployment'/'Deployments' or

'Event'/'Events'). Thus both sets of timeseries will be outputted.")

 end

 %Remove the type indicator from varargin before building your table

 inpts = varargin;inpts(k:k+1)=[];

 else %No type indicator to remove

 inpts = varargin;

 end

 %Generate Table

 T=GetTable(inpts{:});

 if strcmpi(type,'Deployment') || strcmpi(type,'Deployments')

 IDs = unique(T.Deployment_ID);

 elseif strcmpi(type,'Event') || strcmpi(type,'Events')

 IDs = T.Event_ID;

 else

 %Create an IDs list of remaining deployment and event IDs

 IDs = [unique(T.Deployment_ID),;T.Event_ID];

 end

 end

 %Filter for Deployment and Events

 [TS,IDindex] = filterTS(TS,IDs);

180

%After the TS sub structures have been refined, remove any empty

 %substructures.

 if isempty(TS.Deployments)

 TS=rmfield(TS,'Deployments');

 end

 if isempty(TS.Supercooling_Events)

 TS=rmfield(TS,'Supercooling_Events');

 end

else

 warning('Insufficent number of entries to filter time series based on name-value pairs.

Complete Time-series set outputted instead.')

 return

end

end

%SUB-FUNCTIONS

function [TS,IDindex] = filterTS(TS,IDs)

 %Get the list of Deployment IDs

 IDs = string(IDs); %String array of the submitted IDs

 IDindex = zeros(length(IDs),2); %Storage array of index

 deploys=string({TS.Deployments.Deployment_ID});

 %Get the list of Event IDs

 evts=string({TS.Supercooling_Events.Event_ID});

 %For each time series set, determine which of those sets are in the

 %submitted list

 % Deployments

 del=zeros(size(deploys));

 for k = 1:length(deploys)

 rows = find(IDs == deploys(k));

 if isempty(rows)

 del(k)=k;

 else

 IDindex(rows,1)=1;

 end

 end

 del(del==0)=[];TS.Deployments(:,del)=[];deploys(del)=[];

 %Review revised Deployment Substructure to and adjust the secondary index

 if ~isempty(TS.Deployments)

 deploy = [TS.Deployments.Deployment_ID];

 for k = 1:length(IDs)

 r = find(deploy == IDs(k),1);

 if ~isempty(r)

 IDindex(k,2) = r;

 end

 end

 end

181

 %Events

 del=zeros(size(evts));

 for k = 1:length(evts)

 rows = find(IDs == evts(k));

 if isempty(rows)

 del(k)=k;

 else

 IDindex(rows,1)=2;

 end

 end

 del(del==0)=[];TS.Supercooling_Events(:,del)=[];

 %Review revised Event Sustructure to and adjust the secondary index

 if ~isempty(TS.Supercooling_Events)

 evts = string({TS.Supercooling_Events.Event_ID});

 for k = 1:length(IDs)

 r = find(evts == IDs(k),1);

 if ~isempty(r)

 IDindex(k,2) = r;

 end

 end

 end

 %If only the Event Substruture exist, change the 1st index to 1.

 if isempty(deploys) %There is only 1 substructure

 IDindex(:,1) =1;

 end

end

Published with MATLAB® R2021a

function ClearDatabase(clearAll)

%ClearDatabase: Function resets the SupercoolingDatabase, and prompts the

%user if they wish to reset the Screened Periods records (if this section

%is cleared all previously screened periods will be re-flagged.)

%INPUT

% clearAll: Enter 'All' or "Reset' to skip the query menu to confirm that

% you wish to clear the database.

%OUTPUT

% - sets CurrentSuperCoolingDatabase to an empty structure (keeping the

% list of screened events and the change list for the rawfilelist)

%%%

%Author: Sean R. Boyd January 19th, 2022

%%%

%Check number of inputs

narginchk(0,1)

direct=pwd; %Current Directory

DB=strcat(direct,'\Databases'); %Folder that holds the Database

Lists=strcat(direct,'\Raw Data Files'); %Folder that holds the RBR .rsk files and Lists of

Processed and New Files

cd(DB)

if nargin == 0 || strcmpi(clearAll,'All')|| strcmpi(clearAll,'Reset')%Reset the entire database

 if nargin == 0 %Check if call for reset is unintentional

 clearDatabase = input('Do you wish to clear the current Super-Cooling Database? (Y/N):

','s');

https://www.mathworks.com/products/matlab

182

 if strcmpi(clearDatabase,'y')

 %Load old database to extract archive and screened periods list

 load('CurrentSuperCoolingDatabase.mat','SupercoolingDatabase');

 archive = SupercoolingDatabase.Archive_Notes;screen =

SupercoolingDatabase.Screened_Periods;

 SupercoolingDatabase =

struct('Observation_Summaries',struct('Rivers',{},'Sites',struct('Site',{},'Deployments',table())

),...

'Event_Table',table(),'Time_Series',struct('Deployments',struct('Deployment_ID',{},'Deployment_Da

taTable',timetable()),...

'Supercooling_Events',struct('Event_ID',{},'Event_DataTable',timetable())),'Screened_Periods',[],

'Archive_Notes',archive);

 %Reset the 'Processed' column of RSKFileList to "No"

 cd (Lists);

 load('CurrentRawFileList.mat','rawfileList')

 rawfileList.Processed(:) = "No";save('CurrentRawFileList.mat','rawfileList')

 cd (direct)

 else

 cd (direct);disp('ClearDatabase terminated');pause(1);clc;

 return

 end

 else %Deliberate Reset of Database

 load('CurrentSuperCoolingDatabase.mat','SupercoolingDatabase');

 archive = SupercoolingDatabase.Archive_Notes;screen =

SupercoolingDatabase.Screened_Periods;

 SupercoolingDatabase =

struct('Observation_Summaries',struct('Rivers',{},'Sites',struct('Site',{},'Deployments',table())

),...

'Event_Table',table(),'Time_Series',struct('Deployments',struct('Deployment_ID',{},'Deployment_Da

taTable',timetable()),...

'Supercooling_Events',struct('Event_ID',{},'Event_DataTable',timetable())),'Screened_Periods',[],

'Archive_Notes',archive);

 %Reset the 'Processed' column of CurrentRSKFileList to "No"

 cd (Lists);

 load('CurrentRawFileList.mat','rawfileList')

 rawfileList.Processed(:) = "No";save('CurrentRawFileList.mat','rawfileList')

 end

else

 cd (direct)

 error("Invalid input. ClearDatabase runs a confirmation query if no input is given, or

accepts 'All' or 'Reset' as valid inputs to skip the query.")

end

%Check if the user wants to clear screened events

if ~isempty(screen.Summary)

 chk=1;

else

 chk=0;

end

183

while chk

 inpt = input('Do you wish to clear the records of screened periods? (Y/N)?: ','s');

 if strcmpi(inpt,'y')

 screen =

struct('Summary',table(),'TimeSeries',struct("TimeSeries_ID",[],"TimeSeries",[]));

 fprintf('Records of screened periods have been cleared.\n');pause(0.9);clc;chk=0;

 elseif strcmpi(inpt,'n')

 fprintf('Records of screened periods have been kept.\n');pause(0.9);clc;chk=0;

 else

 fprintf('Invalid input.\n')

 end

end

%Assign the correct value for screened periods records

SupercoolingDatabase.Screened_Periods = screen;

%Save the database then return home

cd(DB)

save('CurrentSuperCoolingDatabase.mat','SupercoolingDatabase');

clc;disp('CurrentSuperCoolingDatabase Reset');pause(0.9);clc;cd(direct)

Published with MATLAB® R2021a

function SCPlot(varargin)

%SCPlot: Function plots times series from the database based on submitted

%inputs. Since this program utilises GetTimeSeries, it has a similar

%functionality in terms of two main methods for extracting time series:

%

% i) Enter the string "IDList" followed by a cell or string of

% Either Deployment IDs or Event IDs (can be mixed).If a cell/string array

% of potential timeseries IDs is submitted, the function verifies that the

% IDs are correct and then output a structure containing these time series.

% Note that in the case of combining Event time series and Deployment time

% series, there will be two seperate sub structures for the different types

% of time series.

%

% ii) The user requests timeseries that fit a certain set of parameters

% using name-value pairs. The type of time-series can be indicated using

% "Type" followed by either "Event" or "Deployment". If not

% specified, the function will output both types of time series.

%

% All other name value pairs follow the same procedure as for the GetTable()

% function, as it it used to refine the time series list.

%

%In addition to the above, there are name value pairs to help with plotting

%the timeseres as listed below.

%

%Since this plotting tool can be used to specify exact time series you wish

%to plot ("IDList",[string of time-series IDs]) as well as a query for

%generating figures about deployments and events that fit a certain

%specification, the program makes the following check:

%

https://www.mathworks.com/products/matlab

184

%If you do not submit a list of specific time series (IDList) to print, a

%single value assignment to the plotting value pairs apply to all figures

%generated.

% Ex. If you write SCPlot("Deployment_Period","2015-2016","Shading","off")

% the program would generate a figure for every deployment in 2015-2016,

% and not shade in the recorded supercooling events, as they are all set to

% 'off'.

%

%LIST OF NAME - VALUE PAIRS FOR PLOTTING

%This is a list of the currently enabled Name Value Pairs. If you wish to

%add other name value pairs, please add a description of them to this

%documentation for clarity of use.

%

% 'FolderName' - [foldName] = Name of folder storing figures. Default

% is 'Generated Figures - mmm-dd-yyyy-hhmmss'. All figures generated in the

% same instance of this program will save to the same folder.

%

% 'FigureName' - [fig] = Array of figure names that each ID will be

% plotted to.

% There are 2 possible cases for this parameter:

%

% i) If this is empty as well as Axes, each ID will have a figure

% window generated, with the times series ID as the figure name

%

% ii) If Axes are submitted (and thus time series are assigned to a

% pre-existing figure window), and the parent figure of the axes does

% not have a name, the FigureName will become the new figure name.

% If multiple time series are assigned to a single figure with

% different figure names, a generic figure name will be generated

% instead.

%

% 'Axes'-[ax] = Array of the axes you wish to plot the IDs to.

% These axes will have to be existing axes prior to running the program.

% This enables you to format a figure window, then assign time-series data.

% If this is not submitted, the function will generate the figure window

% and axes for plotting

%

% Ex. SCPlot("IDList",[ID1,ID2,ID3],"Axes",[ax1,ax2,ax3])

% plots ID1 to ax1, ID2 to ax2, and ID3 to ax3.

%

% 'Title' - [ttl] = Array of the plot titles. Default is the times

% series ID. This will enable for the user to tell which time series they

% are looking at on which axes. if multiple time-series are plotted to

% one axes, the program will ask if the user wishes to have multiple time

% series on the axes. If so, the title will be updated to reflect the

% time series on the plot

%

% 'Filter' -[fltr] = Array indicating if you are plotting filtered data.

% The default is 'on', meaning your are filtering the data presented vs.

% 'off' where you are showing the unfiltered data. For deployment time

% series, the filter removes the portion of the time series between end

% of freeze-up and start of break-up. For Event time time series, the

% filter removes all the data before or after the event, leaving you

% with just the timeseries of supercooling temperature.

185

%

% 'MarkFreezeBreak' - [markfrzbrk] = Array indicating if you wish to mark

% the end of freeze-up and start of break-up on the plot. If these

% markers are not in the range of dates, the default is 'off', otherwise

% it is 'on'.

%

% 'CRP' - [slope] = Array indicating if you wish to plot the

% principal supercooling average cooling rate. Default is 'off'.

%

% 'SensorAccuracy' - [acc] - Array indicating if you wish to plot the

% sensor accracy of the sensor used. Default is 'off'.

%

% 'NegativeThreshold' - [thresh] - Array indicating how you wish to handle

% the negative threshold used during analysis. If it is 'on', the lowest

% bound of the data plotted will be the negative theshold. If it is

% 'off', the lowest bound is -1 C at most, and the negative threshold is

% plotted on the figure. Default value is 'on'

%

% 'Shading' - [s] - Array indicating if you want supercooling events to

% be shaded. Default is 'on'.

%

% 'Legend' - [leg] - Either 'on' or 'off' to indicate if you want a

% legend for your figure. Default is 'off'. If legend is on for multiple

% axes in a figure, then one legend is formed incorporating both axes by

% printing a legend that contains all the results printed across all the

% axes

%

% 'Grid' - [grd] - Array indicating if you want the grid on or off.

% Default is 'on'.

%%%

%Author: Sean R. Boyd January 19th, 2022

%%%

%Set Directories

direct=pwd;resultsfold=strcat(direct,'\Generated Results');

%Get Time-Series (this will ignore any plotting inputs)

fprintf("Getting Time-Series data...")

[TS,IDs,IDex,T]=GetTimeSeries(varargin{:});

if isempty(IDs)

 clc;fprintf('\nNo Events were found to meet the submitted requirements.\n')

else

 %Get observation summary for accessing any values

 [summary] = GetObSummary("IDList",IDs,"Print","n");

 fprintf("Complete\nDetermining plot settings...")

 %Create default arrays for the plottig variable, and checks for if the

 %parameter has been assigned

 foldName = sprintf('Supercooling Figures - Generated %s',datestr(now,'mmm dd yyyy HHMMss'));

foldchk=0;

 figNames = IDs; %Default figure name is the ID

 ax = [];%Default assume a new axes is generated for each time series

 ttl = strings(size(IDs));

186

for k=1:length(IDs)

 ttl(k) = sprintf('Time Series: %s',IDs(k));

 end

 fltr = strings(size(IDs));fltr(:,:)='on'; %Default assumption is that the filter is on (do

not show filtered data)

 markfrzbrk = strings(size(IDs));markfrzbrk(:,:)='off';%Default assumption is to not mark

freeze-up and break-up

 slope = strings(size(IDs));slope(:,:)='off';%Default assumption is to not mark the CRP

 acc = strings(size(IDs));acc(:,:)='off';%Default assumption is to not show sensor accuracy

 thresh = strings(size(IDs));thresh(:,:)='on'; %Default assumption is to not show negative

threshold line

 s = strings(size(IDs));s(:,:)='on'; %Default assumption is to shade supercooling events

 leg = strings(size(IDs));leg(:,:)='off'; %Default assumption is to not show the legend for

the plot

 grd = strings(size(IDs));grd(:,:)='on';

 %Determine if a known number of events were submitted (IDList for time

 %series). If so, flag so that single string pairs apply to all figures

 %generated

 idlist=0;

 while ~idlist && k<=nargin

 if isstring(varargin{k})

 if strcmp(varargin{k},'IDList')

 idlist=1;

 end

 end

 k=k+1;

 end

 %Parse varargin for submitted plotting inputs. Verify plotting inputs

 %(output warnings when elements are corrected, and errors when there are

 %incompatible conflicts

 chk=1;k=1;

 while chk && k<=nargin

 if isstring(varargin{k}) ||ischar(varargin{k})

 switch varargin{k}

 case 'FolderName'

 varglength(k,varargin)

 foldName = string(varargin{k+1}); %Select folder name (next input)

 if ~isstring(foldName)

 foldName = string(foldName);

 end

 %Create a folder

 try

 [figFolder] = FolderBuilder(resultsfold,foldName);foldchk=1;

 catch

 error('%s is not a valid folder name',foldName)

 end

 case 'FigureName'

 varglength(k,varargin)

 inpts = string(varargin{k+1});

187

 %Assign input to fig as a string

 for k1 = 1:length(inpts)

 try

 figNames(k1) = inpts(k1);

 if length(inpts)<length(IDs)

 fprintf('Not all time series have a figure name assigned.\nThose

without an assigned figure name will use a default one.')

 end

 catch

 error('%s could not be assigned as a string value for a figure

name.',inpts(k1))

 end

 end

 case 'Axes'

 varglength(k,varargin)

 ax = varargin{k+1};

 if length(ax)<length(IDs)

 fprintf('Not all time series have an axes assigned.\nThose without an

assigned axes will have a\nfigure generated for them')

 end

 case 'Title'

 varglength(k,varargin)

 inpts = string(varargin{k+1});

 %Assign input to ttl as a string

 for k1 = 1:length(inpts)

 try

 ttl(k1) = inpts(k1);

 if length(inpts)<length(IDs)

 fprintf('Not all time series have a title assigned.\nThose

without an assigned title will use a default one.')

 end

 catch

 error('%s could not be assigned as a string value for a

title.',inpts(k1))

 end

 end

 case 'Filter'

 varglength(k,varargin)

 inpts = string(varargin{k+1});

 [fltr] = onoffArray(fltr,inpts,varargin{k},idlist);

 case 'MarkFreezeBreak'

 varglength(k,varargin)

 inpts = string(varargin{k+1});

 [markfrzbrk] = onoffArray(markfrzbrk,inpts,varargin{k},idlist);

 case 'CRP'

 varglength(k,varargin)

 inpts = string(varargin{k+1});

 [slope] = onoffArray(slope,inpts,varargin{k},idlist);

 case 'SensorAccuracy'

 varglength(k,varargin)

 inpts = string(varargin{k+1});

 [acc] = onoffArray(acc,inpts,varargin{k},idlist);

188

 case 'NegativeThreshold'

 varglength(k,varargin)

 inpts = string(varargin{k+1});

 [thresh] = onoffArray(thresh,inpts,varargin{k},idlist);

 case 'Shading'

 varglength(k,varargin)

 inpts = string(varargin{k+1});

 [s] = onoffArray(s,inpts,varargin{k},idlist);

 case 'Legend'

 varglength(k,varargin)

 inpts = string(varargin{k+1});

 [leg] = onoffArray(leg,inpts,varargin{k},idlist);

 case 'Grid'

 inpts = string(varargin{k+1});

 [grd] = onoffArray(grd,inpts,varargin{k},idlist);

 end

 end

 k=k+1;

 end

 %For anything not assigned, set the defaults

 %Folder

 if ~foldchk

 %Create a folder

 try

 [figFolder] = FolderBuilder(resultsfold,foldName);

 catch

 error('%s is not a valid folder name',foldName)

 end

 end

 %Create a reference table to store the time-series with their name value

 %pairs

 tab = table('Size',[length(IDs),

14],'VariableType',["double","double","string","double","string",...

"string","string","string","string","string","string","string","string","string"],'VariableNames'

,...

["Fig_Index","Ax_Index","ID","ID_Index","FigureName","Title","Filter","FreezeBreak","CRP","Acc",.

..

 "Thresh","Shade","Grid","Leg"]);

 for k = 1:length(IDs)

 tab.ID(k) = IDs(k);

 tab.ID_Index(k,1:size(IDex,2)) = IDex(k,:);tab.FigureName(k) = figNames(k);tab.Title(k) =

ttl(k);

 tab.Filter(k)= fltr(k);tab.FreezeBreak(k)=markfrzbrk(k);tab.CRP(k)=slope(k);tab.Acc(k) =

acc(k);

 tab.Thresh(k)=thresh(k);tab.Leg(k)=leg(k);tab.Shade(k)=s(k);tab.Grid(k) = grd(k);

 end

 %Review current titles and replace underscores with spaces

 for k = 1:height(tab)

 tab.Title(k) = strrep(tab.Title(k),"_"," ");

 end

189

 %Use the reference table to organize how time-series are being plotted

 % The hierarchy goes: 1) Figure, 2) Axes withing figure, 3) Alphabetical

 % order of IDs

 %1) Go through all axes and determine if there are any parent figures, and

 %note which time series belong to that parent figure

 if ~isempty(ax) %ax is in the order of the IDs they will be assigned to

 figs = matlab.ui.Figure.empty(length(ax),0); %Array of parent figures for the axes

 for k = 1:length(ax)

 if strcmp(get(ax, 'type'), 'axes')

 figs(k) = ax(k).Parent;

 else

 error("There were non-axes inputs for the 'Axes' parameter")

 end

 end

 else

 figs=[];

 end

 fprintf('Complete.');pause(1.2);clc;fprintf('Generating Figures...\n')

 if isempty(figs) %There are no pre-generated figures/axes. Each time series gets their own

figure/axes

 for k =1:height(tab)

 figname=tab.FigureName(k);

 clc;fprintf('Generating Figures...\nFigure %d of %d: %s',k,height(tab),figname)

 f=figure('Name',figname,'IntegerHandle','off');tsax = gca;box on;

 TSTab = tab(k,:); %Table summarry of the time-series

 %Plot time-series

 [~]=TSPlot(tsax,TSTab,TS,T,summary);

 %save figure

 saveas(f,sprintf('%s/%s.fig',figFolder,figname))

 end

 else %There are pre-generated figures/axes.

 %Determine how many unique figures there are

 uniquefigs=unique(figs);uniqueaxs=unique(ax); %Get the unique figures and axes

 %Currently, figs and ax are ordered according to the time series that

 %is assigned to them (ax(1) if from figs(1) is for the time series of

 %ID(1), etc.), which is reflected in the ordering of IDs in tab. Assign

 %a fig and ax index for each time series

 for k = 1:height(tab)

 tab.Fig_Index(k) = find(uniquefigs == figs(k),1); %Index of the time series figure in

uniquefigs

 tab.Ax_Index(k) = find(uniqueaxs == ax(k),1); %Index of the time series figure in

uniqueaxes

 end

 %Check if any time series share figures and assess the figure names

 %submitted in case of conflicts

 for k = 1:length(uniquefigs)

 figtab = tab(tab.Fig_Index == k,:);

 fignames = unique(figtab.FigureName);

 if length(fignames)>1

 tab.FigureName(tab.Fig_Index == k) = sprintf('Figure %d',k);

 fprintf('\n Conflict has been found in the suggested name for a figure.\nA new

name has been generated.\n');pause(2)

 end

 end

190

 %Check if any time series share the same axes. If so, switch hold on

 %for those time series, and adjust title to reflect the time series on

 %the axes.

 for k = 1:length(uniqueaxs)

 axtab = tab(tab.Ax_Index == k,:);

 %Adjust title as needed

 axttls = unique(axtab.Title);

 if length(axttls)>1

 for k1 = 1:length(axttls)

 if k1 == 1

 newttl = axtab.Title(k1);

 elseif k1==length(axttls)

 newttl = sprintf('%s & %s',newttl,axtab.ID(k1));

 else

 newttl = sprintf('%s, %s',newttl,axtab.ID(k1));

 end

 %Replace anny underscores with a space

 newttl = strrep(newttl,"_"," ");

 end

 tab.Title(tab.Ax_Index == k) = newttl;

 fprintf('\n Multiple time series have been plotted to the same axes\nA new axes

title has been generated.\n');pause(2)

 end

 end

 %Plot all time-series in the following order:

 %1) Figure

 for k = 1:length(uniquefigs)

 figtab = tab(tab.Fig_Index == k,:); %Table of time tables in the specified figure

 figname = unique(figtab.FigureName);

 figaxs = unique(figtab.Ax_Index); %All unique axes in this figure window

 %Print out progress

 clc;fprintf('Generating Figures...\nFigure %d of %d:

%s\n',k,height(tab),tab.FigureName(k));

 uniquefigs(k).Name = figname;

 %2) Axes within figure

 for k1 = 1:length(figaxs)

 axtab = figtab(figtab.Ax_Index == figaxs(k1),:); %All unique time series in a

specific axes

 axttl = unique(axtab.Title);

 fprintf('Axes %d of %d Title: %s\n', k1,length(figaxs),axttl)

 %3) Alphabetical order of IDs

 for k2 = 1:height(axtab)

 if height(axtab)>1

 fprintf('Time-Series %d of %d: %s\n',k2,height(axtab),axtab.ID(k2))

 else

 fprintf('Time-Series: %s\n',axtab.ID(k2))

 end

 TSTab = tab(tab.ID == axtab.ID(k2),:);%Table row containing the information

for the specific time series

 tsax = uniqueaxs(figaxs(k1));[~]=TSPlot(tsax,TSTab,TS,T,summary);

 end

 end

191

 %Save figure

 saveas(uniquefigs(k),sprintf('%s/%s.fig',figFolder,figname))

 end

 %Generate unique figures for time series with no submitted figures

 tab1 = tab(tab.Fig_Index == 0,:);

 if ~isempty(tab1)

 for k =1:height(tab1)

 figname=tab1.figNames;

 clc;fprintf('Generating Figures...\nFigure %d of %d:

%s',k,height(tab1),tab1.FigureName)

 figure('Name',figname,'IntegerHandle','off');tsax = gca;

 [f]=TSPlot(tsax,TSTab,TS,T,summary);

 saveas(f,sprintf('%s/%s.fig',figFolder,figname))

 end

 end

 end

 % After all figures have been generated, display that

 % the program is complete

 fprintf('All Full Season Figures Printed and saved to Generated Results under:

%s',foldName);pause(3);clc;

end

end

%Subfunctions

%Folder Builder

function [mainFolder,subFolders,exitCue] =

FolderBuilder(parentFolder,mainFolderName,subFolderNames,requestOverWrite)

%FolderBuilder This Function generates a folder with any required

%sub-folders as specified by the sub-folder name array. If the folder

%already exists at the destination, this function automatically overwrites

%the pre-existing folder(s) unless requestOverwrite is set to 'on'.

%INPUTS

% parentFolder = the parent folder that this main folder will be sent to

% mainFolderName = the name of the folder that will be generated

% subFolderNames = the name(s) of any sub-folders within the main folder

% that you wish to add. Default: empty cell array

% requestOverWrite = Set to 'On' if you wish for the function to confirm

% that an existing folder with the same name at the destination should be

% over written before proceeding. Default: 'off'

%OUTPUTS

% mainFolder; string array of the file path destinations/saving purposes

% subFolders: String array containing string arrays of the paths for the subfolders

%%

narginchk(2,4)

exitCue = 0;

if nargin == 2

 subFolderNames=[];requestOverWrite = 'off';stopProg = 'off';

elseif nargin == 3

 requestOverWrite = 'off';stopProg = 'off';

elseif nargin == 4

 if strcmp(requestOverWrite,'on')

 stopProg = 'on';

 else

 stopProg = 'off';

192

 end

end

%Generate folder and sub folder names

if isstring(parentFolder)

 parentFolder=parentFolder{:};

end

if isstring(mainFolderName)

 mainFolderName=mainFolderName{:};

end

mainFolder = strcat(parentFolder,'\',mainFolderName); %Create full path for main folder

if ~isempty(subFolderNames)

 %Check size of subfolders to see if it is a character or string vector

 if iscell(subFolderNames) %Convert cell to string

 subFolderNames = string(subFolderNames);

 end

 if ~isvector(subFolderNames) || (~isstring(subFolderNames) && ~ischar(subFolderNames))

 error('SubFolderNames should be a vector array of character or string, or a cell vector

of the same')

 end

 subFolders = cell(size(subFolderNames));

 for k = 1:length(subFolderNames)

 subFolders{k}=strcat(mainFolder,'\',subFolderNames{k});

 end

end

%Assess if file is already in directory and checks if you want to continue

[status,msg]=mkdir(string(parentFolder),mainFolderName);

if status == 0

 error('File failed to write to Directory')

elseif isempty(msg) == 0 && strcmp(requestOverWrite,'on')

 MSG = strcat('Do you wish to overwrite the pe-existing copy of'," ",mainFolderName,"

",'[Y,N]?');

 [request,exitCue] = InputCheck('char',MSG,{'Y','y','N','n'},1,1,stopProg);

 if strcmp(request,'n') || strcmp(request,'N')

 exitCue=1;fprintf('%s is not overwritten\n',mainFolderName)

 end

end

if isempty(msg) == 0 && (strcmp(requestOverWrite,'off') || strcmp(request,'y') ||

strcmp(request,'Y'))

 rmdir(mainFolder, 's'); mkdir(mainFolder)

end

%Generate Sub folders if required

if isempty(subFolderNames) == 0 && exitCue == 0

 for k = 1:length(subFolderNames)

 mkdir(mainFolder,[subFolderNames{k}]);

 end

end

end

%Plotting prep subfunction

function [t,Tw,tsType,evtsTab,sensAcc,negThresh,tRange,frz,brk]=TSPlotPrep(TSTab,TS,T,summary)

%Determine the type of the TS

fldname = string(fieldnames(TS));tsType = fldname(TSTab.ID_Index(1));

%Get Time Series

if strcmp(tsType,"Supercooling_Events") && strcmp(TSTab.Filter,'off')

193

 %Process like a deployment time series for this event but rescale

 %x limits to this event after plotting the data.

 %Get the required x-limits

 evtsTab = T(T.Event_ID == TSTab.ID,:);eStart = evtsTab.Start_Time;

 eEnd = evtsTab.End_Time;dur = evtsTab.Duration;

 %Get required deployment information

 tsType='Deployments';evtfiltoff=1;

 [TS,~,~,evtsTab] = GetTimeSeries("IDList",unique(evtsTab.Deployment_ID));

else

 evtfiltoff=0;

end

if strcmp(tsType,"Supercooling_Events")

 %Get the event time series if the filter is on

 tt = TS.Supercooling_Events(TSTab.ID_Index(2)).Event_DataTable;

 if isempty(tt)

 t=NaT();Tw=NaN();

 else

 t=tt.Time;Tw = tt.Water_Temperature;

 end

 %The rest applies to all Event plots

 evtsTab = T(T.Event_ID == TSTab.ID,:);

 eStart = evtsTab.Start_Time;eEnd = evtsTab.End_Time;dur = evtsTab.Duration;

elseif strcmp(tsType,"Deployments")

 if evtfiltoff

 %Get the deployment time series for this event

 tt = TS.Deployments(1).Deployment_DataTable;

 t=tt.Time;Tw = tt.Water_Temperature;

 else %Regular deployment plot

 %The rest applies to all Deployment plots

 evtsTab = GetTable("Deployment_ID",TSTab.ID);

 eStart = evtsTab.Start_Time(1);eEnd = evtsTab.End_Time(end);dur = hours(eEnd-eStart);

 tt = TS.Deployments(TSTab.ID_Index(2)).Deployment_DataTable;

 if strcmp(TSTab.Filter,'off')

 t=tt.Time;Tw = tt.Raw_Water_Temperature;

 %Get End of Freeze-Up and Start of Break-up (plot

 %the period between the two dates as a dashed line

 else

 t=tt.Time;Tw = tt.Water_Temperature;

 end

 end

else

 error("%s is an unexpected Time Series type. Time Series Type should either be Deployments or

Supercooling_Events",tsType)

end

%Get the information from the summary. Status values in TSTab will determine if anything is done

with the information

%Determine teh key values from evtsTab to locate the specific deployment in

%the summary

tsRiv = unique(evtsTab.River);tsSite = unique(evtsTab.Site); tsDeploy =

unique(evtsTab.Deployment_ID);

allrivs = string({summary.Rivers});r = find(allrivs==tsRiv,1); %river index

allsites = string({summary(r).Sites.Site});s = find(allsites==tsSite,1); %site index

siteT = summary(r).Sites(s).Deployments ; %Deployment summary table

alldeploy = string([siteT.Properties.RowNames]);d = find(alldeploy==tsDeploy,1); %deployment

194

index

%Freeze-Up and Break-Up dates

frz=siteT.Freeze_Up_End_Date(d);brk=siteT.Break_Up_Start_Date(d);

%Sensor Accuracy

sensAcc=siteT.Sensor_Accuracy(d);

%Negative Threshold

negThresh=siteT.Negative_Threshold(d);

%Set tRange

if isnan(dur) %There are no supercooling events to scale the season

 dur = days(t(end)-t(1));eStart = t(1);eEnd = t(end);

end

%Sets the time range to make the middle 80% of the plot taken up by the time-series

shift = 0.1*dur;tRange = [eStart-hours(shift) eEnd+hours(shift)];

end

%Plotting subfunction

function [f]=TSPlot(tsax,TSTab,TS,T,summary)

%Prep the inputs from the inputs

[t,Tw,tsType,evtsTab,sensAcc,negThresh,tRange,frz,brk]=TSPlotPrep(TSTab,TS,T,summary);

if ~isnat(t) %There is a time period to plot

%Set the function to plot to the correct axes

f=tsax.Parent;set(f,'CurrentAxes',tsax);g=TSTab.Grid;hold on;

 %Get the Start and End Indicies of supercooling events

 times = unique([evtsTab.Start_Time(:)',evtsTab.End_Time(:)']);

 if~isnat(evtsTab.Start_Time(1))

 indicies = zeros(size(times));

 for k = 1:length(times)

 indicies(k) = find(t == times(k),1);

 end

 else

 indicies = [];

 end

 if strcmp(TSTab.Shade,'on')

 if~isempty(indicies)

 %Mark Super-Cooling Events

 for k = 1:2:length(indicies)-1

shade(t(indicies(k):indicies(k+1)),Tw(indicies(k):indicies(k+1)),'FillType',[0,1],'FillColor',[0.

30,0.75,0.93],'FillAlpha',0.25);

 if find(Tw(indicies(k):indicies(k+1))>0,1)

shade(t(indicies(k):indicies(k+1)),Tw(indicies(k):indicies(k+1)),'FillType',[1,0],'FillColor',[0.

30,0.75,0.93],'FillAlpha',0.25);

 end

 end

 %Make only one shade object visible for legend documentation. Turn off

 %visibility for all other elements of teh shading.

shadePatches=findobj(tsax,'type','patch');shadeLines=findobj(tsax,'type','line');scCount=0;

 for k = 1:length(shadePatches)

 if isequal(shadePatches(k).FaceColor,[0.30,0.75,0.93])

 scCount = scCount+1;

195

 if scCount>1

 shadePatches(k).HandleVisibility='off';

 end

 else

 shadePatches(k).HandleVisibility='off';

 end

 end

 for k = 1:length(shadeLines)

 shadeLines(k).HandleVisibility='off';shadeLines(k).Color='none';

 end

 else

 fprintf('No supercooling events recorded for %s.',TSTab.ID)

 end

 end

%Plot other plot components

%Water Temperature

if strcmp(tsType,'Deployments') && strcmp(TSTab.Filter,'off') && ~isnat(frz) %Show the filtered

out midwinter plot

 %Divide the data into 3 sets: before freeze-up end, between freeze-up end and break up start,

and after break-up

 r1 = find(t<=frz);r1=r1(end);r2 = find(t >= brk,1); %Indicies in the divides

 t1 = t(1:r1);Tw1=Tw(1:r1);t2 = t(r1+1:r2);Tw2=Tw(r1+1:r2);t3 =

t(r2+1:end);Tw3=Tw(r2+1:end);

 %Plot the water temperature from before freeze-up and after break-up as

 %a solid line

 hold on;p1=plot(t1,Tw1,'k-','LineWidth',2);p7=plot(t3,Tw3,'k-

','LineWidth',2,"HandleVisibility",'off');

 %Plot temperature between the two dates as dashed lines

 p6=plot(t2,Tw2,'--','LineWidth',2,'Color',[0.5 0.5 0.5]);

 legFilt = "Filtered Water Temperature";

else %All other cases

 hold on;p1=plot(t,Tw,'k-','LineWidth',2);grid on;

 p6=[];p7=[]; %These variables are not needed

 legFilt='';

end

%Sensor Accuracy

if strcmp(TSTab.Acc,'on')

 a = ones(size(t))*sensAcc;

 p2a = plot(t,a,'k:');p2b=plot(t,-a,'k:','HandleVisibility','off');

 legAcc="Sensor Accuracy";

else

 p2a=[];p2b=[];legAcc="";

end

%0C line

p3 = plot(t,zeros(length(t),1),'k--','HandleVisibility','off');

%Start & End Points

p4 = scatter(t(indicies),Tw(indicies),'ko','filled');

if~isempty(indicies)

legStart="Start/End of Events";

else

 legStart='';

end

196

% Mark end of Freeze-Up and Start of Break-Up

if strcmp(TSTab.FreezeBreak,'on')

 if ~isnat(frz)

 F=plot([frz,frz],[-0.05 0.05],'b--');

 if tRange(1) <=frz && tRange(2)>=frz

 legFreeze = 'End of Freeze-Up/Start of Consolidated Cover';

 elseif xL(1) > frz || xL(2) < frz

 legFreeze='End of Freeze-Up/Start of Consolidated Cover (outside timeframe of Super-

Cooling Observations)';

 end

 else

 plot(NaT,NaN,'HandleVisibility','off')

 legFreeze = '';

 end

 if ~isnat(brk)

 B=plot([brk,brk],[-0.05 0.05],'r--');

 if tRange(2) >= brk && tRange(1) < brk

 legBreak = 'End of Consolidated Cover /Start of Break-Up';

 elseif xL(2) < startBreakUp || xL(1) > startBreakUp

 legBreak='End of Consolidated Cover /Start of Break-Up (outside timeframe of Super-

Cooling Observations)';

 end

 else

 plot(NaT,NaN,'HandleVisibility','off')

 legBreak='';

 end

else

 legFreeze = '';legBreak='';

end

%Negative Threshold

if strcmp(TSTab.Thresh,'on')

 p5=[];legThresh='';

else %Plot full range of negative water temperature (down to -1 C) and mark the negative

threshold on the plot

 p5 = plot(t,ones(length(t),1)*negThresh,'k','LineWidth',3);legThresh = 'Negative Threshold

of Analysis';

end

%CRP

if strcmp(TSTab.CRP,'on')

 %Storage array for the slope lines, primary peak supercooling mark, and

 %mark for data tip for cooling rate

 crpline=cell(height(evtsTab),1);Tp1mark = cell(height(evtsTab),1);

crpmk=cell(height(evtsTab),1);

 m = zeros(height(evtsTab),1);pdur=m;perdur=m; %Starage array for slope, principal

supercooling duration, and percent of total duration

 for k = 1:height(evtsTab)

 if k==1

 vis = 'on';

 else

 vis='off';

 end

197

%Extract values

 sct1 = evtsTab.Start_Time(k);sct2 = evtsTab.First_Time_of_Peak_Supercooling(k);Tw2 =

evtsTab.Peak_Supercooling(k);

m(k)=evtsTab.Principal_Supercooling_Average_Cooling_Rate(k);pdur(k)=evtsTab.Principal_Supercoolin

g_Duration(k);

 perdur(k)=evtsTab.Principal_Supercooling_Percent_of_Duration(k);

 %Create marker value for crp data tipe text

 tm = (sct2-sct1)/2;Twm = m(k)*minutes(tm);

 %Plot Slope Line and mark the peak supercooling tempearature

 crpline{k} = plot([sct1 sct2],[0 Tw2],'b-','HandleVisibility',vis); %slope line

 Tp1mark{k} = scatter(sct2,Tw2,'kd','filled','HandleVisibility',vis); %Marks the first

occurance of peak supercooling

 crpmk{k} = scatter(sct1+tm,Twm,'bo','filled','HandleVisibility','off'); %data tip marker

for slope information

 end

 legCRP='Principal Supercooling Average Cooling Rate';legTP='Peak Supercooling';

else

 m = [];pdur=m;perdur=m; %Empty arrays

 legCRP='';legTP='';

end

%Add data tip texts

%Water Temperature (p1, and potentially p6 & p7 as well)

if strcmp(tsType,'Deployments') && strcmp(TSTab.Filter,'off') && ~isnat(frz) %Additional

presentation required

 p1.DataTipTemplate.DataTipRows(1).Label = 'Date-Time: ';

 p1.DataTipTemplate.DataTipRows(2).Label = 'Water Temperature (deg C): ';

 str = strings(size(t1));str(:)='Freeze-Up';row1 = dataTipTextRow('River Ice Process: ',str);

 str(:)=TSTab.ID;row2=dataTipTextRow('Time-Series ID: ',str);

 p1.DataTipTemplate.DataTipRows(end+1)=row2;

 if~isempty(p6)

 p6.DataTipTemplate.DataTipRows(1).Label = 'Date-Time: ';

 p6.DataTipTemplate.DataTipRows(2).Label = 'Water Temperature (deg C): ';

 str = strings(size(t2));str(:)='Consolidated Cover';row = dataTipTextRow('River Ice

Process: ',str);

 p6.DataTipTemplate.DataTipRows(end+1)=row;

 str(:)=TSTab.ID;row2=dataTipTextRow('Time-Series ID: ',str);

 p6.DataTipTemplate.DataTipRows(end+1)=row2;

 end

 if~isempty(p7)

 p7.DataTipTemplate.DataTipRows(1).Label = 'Date-Time: ';

 p7.DataTipTemplate.DataTipRows(2).Label = 'Water Temperature (deg C): ';

 str = strings(size(t3));str(:)='Break-Up';row = dataTipTextRow('River Ice Process:

',str);

 p7.DataTipTemplate.DataTipRows(end+1)=row;

 str(:)=TSTab.ID;row2=dataTipTextRow('Time-Series ID: ',str);

 p7.DataTipTemplate.DataTipRows(end+1)=row2;

 end

198

else %All other cases

 p1.DataTipTemplate.DataTipRows(1).Label = 'Date-Time: ';

 p1.DataTipTemplate.DataTipRows(2).Label = 'Water Temperature (deg C): ';

 str = strings(size(t));

 if~isnat(frz)

 str(t<=frz)='Freeze-Up';str(t>=brk);

 else

 str(:)='Freeze-Up';

 end

 row = dataTipTextRow('River Ice Process: ',str);

 p1.DataTipTemplate.DataTipRows(end+1)=row;

 str(:)=TSTab.ID;row2=dataTipTextRow('Time-Series ID: ',str);

 p1.DataTipTemplate.DataTipRows(end+1)=row2;

end

%0C line (p3)

p3.DataTipTemplate.DataTipRows(1).Label = 'Date-Time: ';

p3.DataTipTemplate.DataTipRows(2).Label = 'Water Temperature (deg C): ';

%Sensor Accuracy (p2)

if strcmp(TSTab.Acc,'on')

 p2a.DataTipTemplate.DataTipRows(1).Label = 'Date-Time: ';

 p2a.DataTipTemplate.DataTipRows(2).Label = 'Sensor Accuracy (deg C): ';

 p2b.DataTipTemplate.DataTipRows(1).Label = 'Date-Time: ';

 p2b.DataTipTemplate.DataTipRows(2).Label = 'Sensor Accuracy (deg C): ';

end

%Start and End Times of Events

%Create String Array for Start/End Labels and Period Classification

eventLabel=strings([2,height(evtsTab)]);classLabel=eventLabel;seasLabel=eventLabel; %Storage

array of labels

for k = 1:height(evtsTab)

 eventLabel(:,k) = evtsTab.Event_ID(k);

 classLabel(:,k) = evtsTab.River_Ice_Process(k);

 seasLabel(:,k) = evtsTab.Season(k);

end

%Reshape eventLabel and classLabel to be read by the datatiptext, then

%add datatiptext to figures

eventLabel=reshape(eventLabel,1,[]);classLabel=reshape(classLabel,1,[]);seasLabel=reshape(seasLab

el,1,[]);

%Label Start/End of Event Markers

for k = 1:length(p4)

 ddt=p4.DataTipTemplate;

 ddt.DataTipRows(1).Label = 'Date-Time';

 ddt.DataTipRows(2).Label = 'Water Temperature (deg C): ';

 row = dataTipTextRow('Season: ',seasLabel);

 ddt.DataTipRows(end+1) = row;

 row = dataTipTextRow('Event ID: ',eventLabel);

 ddt.DataTipRows(end+1)=row;

 row = dataTipTextRow('River Ice Process: ',classLabel);

 ddt.DataTipRows(end+1) = row;

end

199

%Freeze-Up & Break-Up (F & B)

if strcmp(TSTab.FreezeBreak,'on')

 if ~isnat(frz)

 ddtF=F.DataTipTemplate;ddtF.DataTipRows(1).Label = 'Date-Time';

 periodRow = dataTipTextRow('River Ice Process Boundary:',{'Freeze-Up | Consolidated

Cover','Freeze-Up | Consolidated Cover'},'auto');

 ddtF.DataTipRows(2) = periodRow;

 end

 if ~isnat(brk)

 ddtB=B.DataTipTemplate;ddtB.DataTipRows(1).Label = 'Date-Time';

 periodRow = dataTipTextRow('River Ice Process Boundary:',{'Consolidated Cover | Break-

Up','Consolidated Cover | Break-Up'},'auto');

 ddtB.DataTipRows(2) = periodRow;

 end

end

%Negative Threshold (p5)

if strcmp(TSTab.Thresh,'off')

 p5.DataTipTemplate.DataTipRows(1).Label = 'Date-Time: ';

 p5.DataTipTemplate.DataTipRows(2).Label = 'Negative Threshold (deg C): ';

end

%CRP (crpline & Tp1mark)

if strcmp(TSTab.CRP,'on')

 for k = 1:height(evtsTab)

 crpline{k}.DataTipTemplate.DataTipRows(1).Label='Date-Time: ';

 crpline{k}.DataTipTemplate.DataTipRows(2).Label='Water Temperature (deg C): ';

 Tp1mark{k}.DataTipTemplate.DataTipRows(1).Label = 'End of Principal Supercooling: ';

 Tp1mark{k}.DataTipTemplate.DataTipRows(2).Label = 'Peak Supercooling Temperature (deg C):

';

 ddt=crpmk{k}.DataTipTemplate; %Get the data-tip template for the marker

 ddt.DataTipRows(1).Label = "Principal Supercooling Mid-Point: ";ddt.DataTipRows(2).Label

= "Principal Supercooling Mid-Point Temperature (deg C): ";

 ddt.DataTipRows(end+1).Label = "Principal Supercooling Average Cooling Rate (deg

C/minute): ";ddt.DataTipRows(end+1).Value = m(k);

 ddt.DataTipRows(end+1).Label = "Principal Supercooling Duration (hours):

";ddt.DataTipRows(end+1).Value = pdur(k);

 ddt.DataTipRows(end+1).Label = "Principal Supercooling Percent of Event (%):

";ddt.DataTipRows(end+1).Value = perdur(k);

 end

end

%Set xlimits

xlim(tRange);

%Set ylimits

%Determine the range of water temperatures in the xlimits

range1=t>=tRange(1);range2=t<=tRange(2);

rangeindex=and(range1,range2); %Times that satisfy both range1 and range2 are 1.

range = find(rangeindex == 1); %Only elegible indicies are left

200

%Set Ylimits based on status of Negative Threshold

if strcmp(TSTab.Thresh,'on')

 ylim([max(-0.2,min(Tw(range))*1.5)...

 min(0.2,max(1.5*(Tw(range))))]); %A rough y limits that keeps the minimum above the

negative threshold

else %Plot full range of negative water temperature (down to -1 C) and mark the negative

threshold on the plot

 ylim([max(-1,min(Tw(indicies(1):indicies(end)))*1.5)...

 min(1,max(1.5*(Tw(indicies))))]); %A rough y limits that keeps the minimum above the

negative threshold

end

%Set labels

xlabel('t');ylabel('T_{w} (^{o}C)');

title(TSTab.Title);grid(g);

%Set legend icon if asked for

if strcmp(TSTab.Leg,'on')

 %Create a list of Legend components

 legstr = ["Recorded Supercooling","Water

Temperature",legFilt,legAcc,legStart,legFreeze,legBreak,legThresh,legCRP,legTP];

 %Delete all Empty elements of the string

 legstr(legstr=="")=[];

 %Add legend to axes

 legend(legstr,"Location",'best');

end

else %skip this period

 warning('There is no time series to plot');f=[];

end

end

%Shade

function h = shade(varargin)

%SHADE Filled area linear plot.

%

% SHADE should be called using the same syntax as the built-in PLOT.

%

% SHADE(X,Y) plots vector Y versus vector X, filling the area under the

% curve. If either is a matrix, this function behaves like PLOT.

%

% SHADE(Y) plots the columns of Y versus their index.

%

% SHADE(X,Y,S) plots Y versus X using the line type, marker symbols and

% colors as specified by S. For more information on the line specifier S,

% see PLOT.

%

% SHADE(X1,Y1,X2,Y2,X3,Y3,...) combines the plots defined by

% the (X,Y) pairs.

%

% SHADE(X1,Y1,S1,X2,Y2,S2,X3,Y3,S3,...) combines the plots defined by

% the (X,Y,S) triples.

%

% SHADE(AX,...) plots into the axes with handle AX.

%

% H = SHADE(...) returns a column vector of handles to graphics objects.

%

201

% SHADE(...,Name,Value) specifies additional properties of the lines (see

% help for PLOT) or the filled areas (see below).

%

% Three additional properties are provided to control the filling:

%

% - 'FillType' specifies the filling behaviour. The input should be a

% matrix of size [N,2], such as [A1,B1;A2,B2;...;An,Bn], where Ai and

% Bi indicate the upper and lower limits, respectively, of each of

% the N areas to be filled. Each Ai and Bi is an index pointing to

% one of the lines drawn by PLOT. If, for a particular combination of

% inputs, PLOT draws M lines, then each Ai and Bi should be a number

% between 1 and M. In addition, the special cases 0, -1 and -2 are

% allowed, each representing the x-axis, the bottom of the active

% axes and the top of the active axes, respectively. 'FillType' may

% also be specified using a cell array of size [N,2], in which case

% one may also use the keywords 'axis', 'bottom' and 'top' instead

% of 0, -1 and -2. By default, the areas between each of the curves

% and the x-axis are filled, which corresponds to the input matrix

% [1,0;0,1;2,0;0,2;...;M,0;0,M].

%

% - 'FillColor' specifies the color of the fillings. This should be a

% matrix of size [N,3], where each row is the RGB triplet for the

% corresponding area as specified above. 'FillColor' may also be

% specified as a cell array of length N, in which case each entry may

% be either an RGB triplet or any of the color names commonly used in

% MATLAB. If only one RGB value or color name is provided, all areas

% are treated equally. If this parameter is not specified, colors are

% determined by the corresponding lines.

%

% - 'FillAlpha' specifies the transparency of the fillings. This should

% be a vector of length N, where each entry specifies the alpha value

% for each area. If only one alpha value is provided, all areas are

% treated equally. If this parameter is not specified, an alpha value

% of 0.3 is used for all areas.

%

% See also PLOT.

% Copyright (c) 2018 Javier Montalt Tordera.

% accepted params

names = {'FillType','FillColor','FillAlpha'};

% init fill params

fp = cell(1,3);

% extract filling parameters, if present

for n = 1:length(names)

 for i = 1:length(varargin)

 % if found

 if strcmpi(names{n},varargin{i})

 if i+1 > nargin

 error(["Expected an input value after the name '" names{i} "'."]);

 end

 % save filling info

202

 fp{n} = varargin{i+1};

 % delete from varargin array - otherwise plot will fail as it won't

 % understand the input

 varargin(i:i+1) = [];

 break;

 end

 end

end

% check if an axes object was specified

if isscalar(varargin{1}) && ishandle(varargin{1}(1))

 ax = varargin{1};

else

 ax = gca;

end

% initial hold state

tf = ishold(ax);

% plot lines

ls = plot(varargin{:});

hold(ax,'on');

% provide default filling params

fd = fp{1};

fc = fp{2};

fa = fp{3};

% validate fill type

fd = validatetype(fd,ls);

% number of fillings

nf = size(fd,1);

% validate fill color

fc = validatecolor(fc,fd,ls,nf);

% validate fill alpha

fa = validatealpha(fa,nf);

% array to hold patch objects

ps = gobjects(nf,1);

% for each filling

for i = 1:nf

 x = cell(1,2);

 y = cell(1,2);

 % get data

 for j = 1:2

 switch fd(i,j)

 case {-2,-1}

 y{j} = ylim;

 y{j} = y{j}(abs(fd(i,j)));

 case 0

 y{j} = 0;

 otherwise

 x{j} = ls(fd(i,j)).XData;

 y{j} = ls(fd(i,j)).YData;

 end

 end

 if isequal(x{1},x{2})

203

 x = x{1};

 elseif isempty(x{1})

 x = x{2};

 y{1} = y{1} * ones(size(x));

 elseif isempty(x{2})

 x = x{1};

 y{2} = y{2} * ones(size(x));

 else

 x = sort([x{1} x{2}]);

 y{1} = interp1(x{1},y{1},x,'linear','extrap');

 y{2} = interp1(x{2},y{2},x,'linear','extrap');

 end

 % crossings

 x0 = [x(1) zcross(x,y{1} - y{2}) x(end)];

 y0 = interp1(x,y{1},x0);

 % for each zero-crossing

 for j = 0:length(x0)-2

 % index

 idx = x >= x0(j+1) & x <= x0(j+2) & y{1} >= y{2};

 if all(~idx), continue; end

 % polygon corners

 xv = [x0(j+1) x(idx) x0(j+2) fliplr(x(idx))];

 yv = [y0(j+1) y{1}(idx) y0(j+2) fliplr(y{2}(idx))];

 % fill polygon

 ps(i) = fill(ax,xv,yv,fc(i,:),'LineStyle','none','FaceAlpha',fa(i));

 end

end

% release if the hold state was off when called

if tf == 0

 hold(ax,'off');

end

% set output argument if requested

if nargout == 1

 h = [ls;ps];

end

end

function z = zcross(x,y)

% find zero crossings of line Y versus X

% logical index

c = y > 0;

% find point pairs where there is a sign change

d = abs(diff(c));

p1 = find(d == 1); % before change

p2 = p1 + 1; % after change

% zero-crossing positions

z = x(p1) + abs(y(p1)) ./ (abs(y(p1)) + abs(y(p2))) .* (x(p2) - x(p1));

end

function fd = validatetype(fd,ls)

% if no filling specified, fill to x-axis

204

if isempty(fd)

 fd = [(1:length(ls))' zeros(size(ls))];

 fd = [fd;fliplr(fd)];

 fd = fd([1:2:length(fd) 2:2:length(fd)],:);

end

% if the filling was specified in cell form, convert to matrix

if iscell(fd)

 tmp = zeros(size(fd));

 for i = 1:numel(fd)

 if ischar(fd{i})

 tmp(i) = str2ind(validatestring(fd{i},{'axis','bottom','top'},'shade','FillType'));

 else

 validateattributes(fd{i},{'numeric'},{'scalar'},'shade','FillType');

 tmp(i) = fd{i};

 end

 end

 fd = tmp;

end

validateattributes(fd,{'numeric'},{'integer','size',[nan 2],'>=',-

2,'<=',length(ls)},'shade','FillType');

end

function fc = validatecolor(fc,fd,ls,nf)

% if no color specified, get it from plot lines

if isempty(fc)

 fc = zeros(nf,3);

 for i = 1:nf

 if fd(i,1) <= 0

 fc(i,:) = ls(fd(i,2)).Color;

 elseif fd(i,2) <= 0

 fc(i,:) = ls(fd(i,1)).Color;

 else

 fc(i,:) = mean([ls(fd(i,1)).Color;ls(fd(i,2)).Color],1);

 end

 end

end

% if length 1, repeat

if ischar(fc)

 fc = {fc};

 fc = repmat(fc,nf,1);

elseif (iscell(fc) && numel(fc) == 1) || (~iscell(fc) && size(fc,1) == 1)

 fc = repmat(fc,nf,1);

end

% if color is specified in cell form, convert to matrix

if iscell(fc)

 validateattributes(fc,{'cell'},{'vector','numel',nf},'shade','FillColor');

 tmp = zeros(numel(fc),3);

 for i = 1:numel(fc)

 if ischar(fc{i})

 tmp(i,:) =

str2rgb(validatestring(fc{i},{'y','m','c','r','g','b','w','k','yellow','magenta','cyan','red','gr

een','blue','white','black'},'shade','FillColor'));

 else

205

 validateattributes(fc{i},{'numeric'},{'vector','numel',3},'shade','FillColor');

 if iscolumn(fc{i})

 fc{i} = fc{i}';

 end

 tmp(i,:) = fc{i};

 end

 end

 fc = tmp;

end

validateattributes(fc,{'numeric'},{'real','size',[nf 3],'>=',0,'<=',1},'shade','FillColor');

end

function fa = validatealpha(fa,nf)

% if no alpha specified, choose a value of 0.2

if isempty(fa)

 fa = 0.3 * ones(nf,1);

end

% if length 1, repeat

if length(fa) == 1

 fa = repmat(fa,nf,1);

end

if isrow(fa)

 fa = fa';

end

validateattributes(fa,{'numeric'},{'real','vector','numel',nf,'>=',0,'<=',1},'shade','FillAlpha')

;

end

function n = str2ind(s)

% convert string to index

switch s

 case 'axis'

 n = 0;

 case 'bottom'

 n = -1;

 case 'top'

 n = -2;

end

end

function n = str2rgb(s)

% convert string to RBG triplet

switch s

 case {'y','yellow'}

 n = [1 1 0];

 case {'m','magenta'}

 n = [1 0 1];

 case {'c','cyan'}

 n = [0 1 1];

 case {'r','red'}

 n = [1 0 0];

 case {'g','green'}

206

 n = [0 1 0];

 case {'b','blue'}

 n = [0 0 1];

 case {'w','white'}

 n = [1 1 1];

 case {'k','black'}

 n = [0 0 0];

end

end

function [array] = onoffArray(array,inpts,name,idlist)

%Standard procedure for setting 'on' or 'off' values for the various

%plotting parameters

errchk=0; %Assume no warning needs to be given regarding invalid inputs

default = unique(array); % before inputs are added, only one vaue type in the array in this array

if idlist || (~idlist && length(inpts)>1)

 for k = 1:length(inpts)

 try

 if strcmpi(inpts(k),'on')

 array(k) = 'on';

 elseif strcmpi(inpts(k),'off')

 array(k) = 'off';

 else

 errchk = 1;

 end

 catch

 errchk=1;continue

 end

 end

else %No IDlist, you can convert single length inputs to the full array switch

 if strcmpi(inpts,'on')

 array(:) = 'on';

 elseif strcmpi(inpts,'off')

 array(:) = 'off';

 else

 errchk = 1;

 end

end

if errchk

 warning("The only permissible inputs for %s are 'on' or 'off'. If invalid values were

submitted, the default value of '%s' is assumed.",name,default)

end

end

function varglength(k,inpts)

if k == length(inpts)

 error("'%s' is not followed by a value to assign the parameter",inpts{k})

end

end

Published with MATLAB® R2021a

https://www.mathworks.com/products/matlab

207

function [T]=StatTable(Table,tableColumns)

%StatTable generates a statistics table for a sbmitted table of events

%using the submitted Variable Names (tableColumns). This function checks

%that the inputted table column exists & that the data in the column is

%quantatative (can be statistically analyzed). Inputs that fail this

%criterion are omitted.

%

%INPUT

% Table = sumitted table object

% tableColumns = Column headings of submitted table to be statistically

% summarized

%

%OUTPUT

% T = Statistics summary (min, median, mean, maximum, standard deviation,

% and number of data points) used for each column analyzed.

%

%%%

%Author: Sean R. Boyd January 19th, 2022

%%%

narginchk(1,2);format short

%Verify that a table was submitted

if ~isa(Table,'table')

 error("'Table' must be a table object")

end

if nargin == 1 %Analysis all table columns

 tableColumns = string([Table.Properties.VariableNames]);

else

%Verify column names

 if ~isa(tableColumns,'string')

 try

 tableColumns = string(tableColumns);

 catch

 error("'tableColumns' cannot be converted into a string")

 end

 end

 %Verify that the tablecolumns exist

 colChk = string([Table.Properties.VariableNames]);del = zeros(size(tableColumns));

 for k = 1:length(tableColumns)

 if isempty(find(colChk == tableColumns(k),1))

 del(k)=k;

 end

 end

 del(del == 0)=[];tableColumns(del)=[];%Deleter invalid column names

 if ~isempty(del) && ~isempty(tableColumns) %Some table columns were removed

 fprintf('Invalid column names were ignored.\n')

 elseif isempty(tableColumns)

 error('Submitted column names were invalid.');

 end

end

%Filter out columns with the incorrect data type

del = zeros(size(tableColumns));

208

for k = 1:length(tableColumns)

 if ~isa(Table.(tableColumns(k)),'double')

 del(k)=k;

 end

end

del(del==0)=[];

if~isempty(del)

 tableColumns(del)=[];

 fprintf('Removed qualatative data (cannot be analysed statistically by this function.\n')

 if isempty(tableColumns)

 fprintf('None of the submitted table columns could be statistically analysed by this

function.\n')

 clearvars T;pause(1);clc

 end

end

 vartypes = strings(size(tableColumns));vartypes(:)='double';

 T =

table('Size',[6,length(tableColumns)],'VariableTypes',vartypes,'RowNames',{'Minimum','Median','Me

an','Maximum','Standard_Deviation','Number_of_Events'},...

 'Variablenames',tableColumns);

 units=strings(size(tableColumns));

 for k = 1:length(tableColumns)

 data = Table.(tableColumns(k));

 data(isnan(data))=[]; %Remove NaN values

 units(k) = Table.Properties.VariableUnits(tableColumns(k));

 T{1,k} = min(data); T{3,k} = mean(data);T{2,k} = median(data); T{4,k} = max(data);

 T{5,k} = std(data,'omitnan'); %Standard Deviation (omit NaN values)

 T{6,k}=length(data);%Number of events in set

 end

 T.Properties.VariableUnits = units;

end

Published with MATLAB® R2021a

https://www.mathworks.com/products/matlab

209

B-4 Energy budget analysis

B-4.1 Summary of functions

The program presented for the energy budget analysis, Surfengbudgt(), is a streamlined version of

the energy budget analysis codes used for Chapter 3. The refinement include removal of initial

analysis codes that were ignored as the scope of the study was finalized, as well as streamline and

generalization that makes the code easier to apply to new scenarios. The function takes inputs of a

season data table and a summary table of supercooling events (though only the start, end, and time

of peak supercooling temperature are required) and calculates the surface energy budget using the

same method as used in Chapter 3. The other programs developed for this study,

MassSurfengbudgt() and massTable() automated the application of Surfengbudgt() to all

deployments, and compiled event summary tables for analysis. Table B-3 summarizes the

programs along with reference pages.

Table B. 3: Summary of energy budget analysis programs. Page indicates the starting page of the

copied MATLAB code.

Program Summary of Function Page

Surfengbudgt ()

Calculates the surface energy budget for the given data table, then analyzes the

energy budget during supercooling events specified in the submitted

supercooling event summary table for parameters of interest.

210

MassSurfengbudgt ()
Applies Surfengbudgt () to all data table and supercooling event summary table

pairs in a submitted data structure
216

massTable ()
Compiles all the supercooling event summary tables into a single table. Can

filter for specific river.
216

210

B-4.2 Program code

function [dataTable,supercoolingeventTable] = Surfengbudgt(dataTable,supercoolingeventTable)

%Summary: Surfengbudgt takes the dataTable containing water temperature

%and local weather parameters and calculates the heatfluxes from those

%parameters. If a supercoolingeventTable, the start time, end time, and

%time of first peak supercooling temperature are used to compute average

%and extreme temperatures.

%

%INPUT

% dataTable: The dataTable is a time table that contains the water

% temperature and weather parameters to be used in calculating heat

% fluxes.

% supercoolingeventTable: Summary table of supercooling events that

% occured during the timeframe of the datatable. Note that dataTable must

% have exact timing of the start and end time of supercooling events

% (thus interpolated 0C values already present). Any events whose start

% and end time are not found in the dataTable will not have additional

% parameters computed.

%

%DATATABLE FORMATTING

%In order for the function to read and calculate heat fluxes, the dataTable

%needs a specific formatting:

%HEADINGS

% Actual Vapour Pressure [units: mb]: Act_Vapour_Press

% Air Temperature [units: deg C]: Air_Temperature

% Barometric Pressure [units: mb]: Baro_Pressure

% Cloud Cover Fraction [units decimal fraction]: Cloud_Cover_Fraction

% Ice Concentration [units: decimal fraction]: Surface_Ice_Conc

% Relative Humidity [units: percentage]: Relative_Humidity

% Saturated Vapour Pressure [units: mb]: Sat_Vapour_Press

% Solar Radiation [units: W/m^2]: Solar_Radiation

% Water Temperature [units: deg C]: Water_Temperature

% Wind Speed [units: m/s]: Wind_Speed

%

% All heat Fluxes: [units: W/m^2] - The input table does not need columns

% for the heat fluxes, as they are added during the calculations

%%%

%Author: Sean R. Boyd (2022)

%%%

%Set required unit strings

udT = ["degree C","degree C/minute","degree C","W/m2","fraction","fraction",...

 "mb","%","mb","mb","m/s","W/m^2","W/m^2","W/m^2","W/m^2","W/m^2"];

uEvt = ["","date-time","date-time","hours","degree C","date-time","date-time","hours"...

 "degree C/minute","hours","%","degree C*minute","","","degree C","degree

C","fraction","m/s",...

 "%","mb","W/m^2","W/m^2","W/m^2","W/m^2","W/m^2","W/m^2","W/m^2","W/m^2",...

 "W/m^2","W/m^2","W/m^2","W/m^2","W/m^2","W/m^2","W/m^2","W/m^2","W/m^2","W/m^2",...

 "W/m^2","W/m^2","W/m^2","W/m^2","W/m^2","W/m^2","W/m^2","J/m^2",...

 "","fraction","","fraction","","fraction","","fraction"];

211

%Reference data outside table for convenience

cloud = dataTable.Cloud_Cover_Fraction;

conc = dataTable.Surface_Ice_Conc;

sol=dataTable.Solar_Radiation;

airT = dataTable.Air_Temperature;

watT =dataTable.Water_Temperature;

RelHum = dataTable.Relative_Humidity;

Wind = dataTable.Wind_Speed;

Press = dataTable.Baro_Pressure;

%Calculate Saturated Vapour Pressure and Actual Vapour Pressure

[satvapress, actvapress] = vapourpressure(airT,conc,RelHum);

dataTable.Sat_Vapour_Press=satvapress;

dataTable.Act_Vapour_Press=actvapress;

%Determine Shortwave Radiation Heat Flux

[shortwave] = shortwaveHeatFlux(conc,sol);

dataTable.Shortwave_HeatFlux=shortwave;

%Determine Longwave Heat Flux

[longwave] = longwaveHeatFlux(cloud,airT,watT,conc);

dataTable.Longwave_HeatFlux=longwave;

%Calculate Evaporative Heat Flux

[evaporative, sensible] = evapsenseHeatFlux(airT,watT,Wind,Press,satvapress,actvapress,conc);

dataTable.Evaporative_HeatFlux=evaporative;

dataTable.Sensible_HeatFlux=sensible;

%Determine Net Heat Flux (Sum of all Net heat fluxes)

netFlux = shortwave + longwave + evaporative + sensible;

dataTable.Net_HeatFlux=netFlux;

%Compare the datatable to the supercooling events and compute the heat flux

%behaviour during supercooling

for event = 1: height(supercoolingeventTable) %[START HERE]

 %Get start time, end of principal supercooling, and end time

 startTime = supercoolingeventTable.Start_Time(event);

 princTime = supercoolingeventTable.First_Time_of_Peak_Supercooling(event);

 endTime = supercoolingeventTable.End_Time(event);

 %Determine the rows of the season data table that align with these

 %times in the supercooling event

 startRow = find(dataTable.Time == startTime);

 pricRow = find(dataTable.Time == princTime);

 endRow = find(dataTable.Time == endTime);

 %Add average weather conditions to table

 supercoolingeventTable.Average_Water_Temperature(event) = mean(watT(startRow:endRow));

 supercoolingeventTable.Average_Air_Temperature(event) = mean(airT(startRow:endRow));

 supercoolingeventTable.Average_Cloud_Cover(event) = mean(cloud(startRow:endRow));

 supercoolingeventTable.Average_Wind_Speed(event) = mean(Wind(startRow:endRow));

 supercoolingeventTable.Average_Relative_Humidity(event) = mean(RelHum(startRow:endRow));

 supercoolingeventTable.Average_Baro_Press(event) = mean(Press(startRow:endRow));

212

 %Determine Average value of the Heat Flux component for the

 %event [START HERE}

 flux = ["Shortwave","Longwave","Sensible","Evaporative","Net"];

 for f = 1:length(flux)

 [supercoolingeventTable] =

addFluxStat(supercoolingeventTable,event,dataTable,startRow,endRow,pricRow,flux(f));

 end

 %Determine cumulative Net Heat Flux (net energy)

 Timesecs = seconds(dataTable.Time(startRow:endRow)-dataTable.Time(startRow));

supercoolingeventTable.Net_Energy(event)=trapz(Timesecs,dataTable.Net_HeatFlux(startRow:endRow));

 %Determine the strictly negative and positive event averaged heat flux (ie.

 %the summation outputs the event averaged net heat flux)

 ttevt = dataTable(startRow:endRow,:);ttprincp = dataTable(startRow:pricRow,:);

 %Average of strictly negative heat fluxes

 %Get mean values of the total negative heat flux for event and principal supercooling

 [meantot] = meantotFlux(ttevt,-1);[meanprcp] = meantotFlux(ttprincp,-1);

 %Determine the dominant negative heat flux and the fraction of the total

 %negative component

 [supercoolingeventTable] = dominantFlux(supercoolingeventTable,event,'Principal',meanprcp);

 [supercoolingeventTable] = dominantFlux(supercoolingeventTable,event,'Event',meantot);

 %Average of strictly positive heat fluxes

 %Get mean values of the total positive heat flux for event and principal supercooling

 [meantot] = meantotFlux(ttevt,1);[meanprcp] = meantotFlux(ttprincp,1);

 %Determine the dominant positive heat flux and the fraction of the total

 %positive component

 [supercoolingeventTable] = dominantFlux(supercoolingeventTable,event,'Principal',meanprcp);

 [supercoolingeventTable] = dominantFlux(supercoolingeventTable,event,'Event',meantot);

end

%Assign units

dataTable.Properties.VariableUnits = udT;

supercoolingeventTable.Properties.VariableUnits = uEvt;

end

%SUB-FUNCTIONS

%Saturated and Actual Vapour Pressure

function [satvapress, actvapress] =

vapourpressure(airTemperature,iceConcentration,percentRelHumidity)

%SUMMARY: Determines the weighted average for saturated and actual vapour

%pressure over a water surface based on surface ice concentration.

%%%

%Determine weighting factors for the open water case

openwatFactor = ones(size(iceConcentration)) - iceConcentration;

%Determine the vapour pressure cases

numor = 17.62*airTemperature;denom = (243.12+airTemperature); %numorator and denominator of the

following equation

openwatvap = exp(numor./denom);

numor = 22.46*airTemperature;denom = (272.62+airTemperature); %numorator and denominator of the

following equation

icesurfvap = exp(numor./denom);

213

%Calculate weighted average of vapor pressure (units mb)

satvapress = 6.11*(openwatFactor.*openwatvap + iceConcentration.*icesurfvap);

actvapress = (percentRelHumidity/100).*satvapress;

end

%Shortwave Heat Flux

function [shortwave] = shortwaveHeatFlux(iceConcentration,solarRadiation)

%Determine shortwave heat flux

shortwave = (ones(size(solarRadiation)) - iceConcentration)*0.9.*solarRadiation;

end

%Longwave Heat Flux

function [longwave] =

longwaveHeatFlux(cloudFactor,airTemperature,waterTemperature,iceConcentration)

%Source: Richard, Morse, and Daly (2015)

n3 = cloudFactor.^3; %Square the cloud factor for the emmissivity term

air4 = (airTemperature+273.15).^4;wat4 = (waterTemperature+273.15).^4; %4th power of temperature

in Kelvin

emiss = (0.22*n3+0.765); %Cloud influenced emissivity of air

longwave = 5.5*10^(-8)*(emiss.*air4-wat4).*(1-iceConcentration);

end

%Evaporative and Sensible Heat Flux

function [evaporative, sensible] =

evapsenseHeatFlux(airTemperature,waterTemperature,windSpeed,baroPress,saturatedVapress,actVapress

,iceConcentration)

% Calculates the evaporative and sensible heat fluxes using equations

% originating from Ryan et al. (1974)

%Source: Ashton, G. D. (2013). “Thermal Processes.” River Ice Formation, S. Beltaos, ed.,

%Committee on River Ice Processes and the Environment, CGU-HS, Edmonton, Alberta, 19–76.

%Note that the equation for the sensible heat flux does not use the

%approximation of the 0.46*P/760 ~0.6 for the Bowen ratio between

%evaporative and sensible heat flux that Ashton (2013) does, but instead

%uses the full term to derive the sensible heat flux equation. If one uses

%the value of baroPressure to generate the the coefficent approximation of

%0.6 (~991.304348), the coefficents are the same coefficents as calculated by Ashton (2013)

%%%

%Calculate the difference needed for the equations

tempDiff = waterTemperature - airTemperature; %Difference between water and air temperature

vapdiff = (saturatedVapress - actVapress); %Difference in saturated and actual vapour pressure

%Calculate the Virtual temperatures

Ta = virtualTemp(airTemperature,actVapress,baroPress); %Air virtual temperature

Tw = virtualTemp(waterTemperature,saturatedVapress,baroPress); %Water virtual temperature

dTv = Tw-Ta;rootdTv = nthroot(dTv,3);%The cube root on the difference in virtual temperatures

%Calculate evaporative and sensible heat fluxes

evaporative = -(1-iceConcentration).*(2.70*rootdTv + 3.2*windSpeed).*vapdiff;

sensible = -(1-iceConcentration).*(1.634*rootdTv+1.937*windSpeed).*tempDiff.*baroPress/1000;

214

%Subfunction: Virtual Temperature

 function [Tv] = virtualTemp(actTemp,vapPress,baroPress)

 %Convert input temperature (in degree C) to a virtual temperature

 %(in Kelvin) dependend on the ratio between the vapour and

 %atmospheric pressure.

 %%%

 %Convert temperature to Kelvin

 T = actTemp+274.15;

 %Determine the ratio between vpour pressure and atmospheric

 %pressure

 r = vapPress./baroPress;

 %Calculate denominator and then virtual temperature

 d = -0.378*r+1;Tv = T./d;

 end

end

%Assign Flux Statistics

function [supercoolingeventTable] =

addFluxStat(supercoolingeventTable,event,dataTable,startRow,endRow,princpRow,flux)

ttevt = dataTable(startRow:endRow,:); %subset of time series data

ttpricp = dataTable(startRow:princpRow,:); %subset of time series data

col = sprintf('%s_HeatFlux',flux);%Column header of datatable

%Colums of the supercooling event table

princpCol = sprintf('Average_Principal_%s',col);

minCol = sprintf('Minimum_%s',col);

avgCol = sprintf('Mean_%s',col);

maxCol = sprintf('Maximum_%s',col);

devCol = sprintf('Std_Dev_%s',col);

%Calculate the relavent parameter and add to event row

supercoolingeventTable.(princpCol)(event) = mean(ttpricp.(col));

supercoolingeventTable.(minCol)(event) = min(ttevt.(col));

supercoolingeventTable.(avgCol)(event) = mean(ttevt.(col));

supercoolingeventTable.(maxCol)(event) = max(ttevt.(col));

supercoolingeventTable.(devCol)(event) = std(ttevt.(col));

end

%Calculate Mean Total Flux (the mean value of strictly positive or negative

%fluxes in an event)

function [meanval] = meantotFlux(tt,sign)

%Get heat flux components

short = tt.Shortwave_HeatFlux;long = tt.Longwave_HeatFlux;

sens = tt.Sensible_HeatFlux;evap = tt.Evaporative_HeatFlux;

flux = {short,long,sens,evap}; %Storage array

%Determine the mean value dependent on sign

meanval=0;

for k = 1:length(flux)

 comp = flux{k}; %Get Flux array

 switch sign

 case -1

 f = comp(comp<=0);

 case 1

 f = comp(comp>0);

 end

215

 if ~isempty(f)

 meanval = meanval + mean(f);

 else

 continue

 end

end

end

%Flux Dominance [Move the dominance analysis to this subfunction] [FIGURE

%THIS OUT}

function [supercoolingeventTable] = dominantFlux(supercoolingeventTable,event,col,meanvalue)

%Set up the array of values to be compared

switch col

 case "Principal"

 array = supercoolingeventTable{event,[21,26,31,36]};

 case "Event"

 array = supercoolingeventTable{event,[23,28,33,38]};

end

if meanvalue<0 %Negative heat flux

 col1 = sprintf('Dominant_Negative_%s_Averaged_HeatFlux',col);

 col2 = sprintf('Fraction_Negative_%s_Averaged_HeatFlux',col);

 m = min(array);index = find(array == m,1);

else %Positive heat flux

 col1 = sprintf('Dominant_Positive_%s_Averaged_HeatFlux',col);

 col2 = sprintf('Fraction_Positive_%s_Averaged_HeatFlux',col);

 m = max(array);index = find(array == m,1);

end

switch index

 case 1

 supercoolingeventTable.(col1)(event) = "Shortwave";

 case 2

 supercoolingeventTable.(col1)(event) = "Longwave";

 case 3

 supercoolingeventTable.(col1)(event) = "Sensible";

 case 4

 supercoolingeventTable.(col1)(event) = "Evaporative";

end

supercoolingeventTable.(col2)(event) = m/meanvalue;

end

%REFERENCES

%Ashton, G. 2013, Thermal Processes, in River Ice Formation, Committee on River Ice Processes

%and the Environment Canadian Geophysical Union, Hydrology Section,

%Edmonton, Alberta, Canada, ISBN 978-0-9920022-0-6

%

%Hicks, Faye (2016), An Introduction to River Ice Engineering for Civil Engineers and

%Geoscientists, ISBN 9781927659045

%

%Richard, Martin & Morse, Brian & Daly, Steven. (2015), Modeling Frazil Ice Growth in the St.

%Lawrence River, Canadian Journal of Civil Engineering, 42,

%150106144557001. 10.1139/cjce-2014-0082.

%%%

Published with MATLAB® R2021a

https://www.mathworks.com/products/matlab

216

function [s] = MassSurfengbudgt(s)

%UNTITLED3 %This function loops the Surfengbudgt() function for all Season_DataTable &

%Supercooling_Events pairs for the submitted surfengbudgt structure

%

%INPUT

% s = input surface energy budget structure with the

% time series for a deploymnent along with catalogued supercooling event

% table

%OUTPUT

% - adds calculated heat fluxes and heat flux statistics to the time

% series table and supercooling event summary table, respectively.

%%%

for riv = 1:length(s)

 fprintf('River: %s\n',s(riv).River);

 for seas = 1:length(s(riv).Season_TimeSeries)

 fprintf(' Season ID: %s\n',s(riv).Season_TimeSeries(seas).Season_ID);

 tt = s(riv).Season_TimeSeries(seas).Season_DataTable; %Time Series data

 evtTab = s(riv).Season_TimeSeries(seas).Supercooling_Events ;

 [tt,evtTab] = Surfengbudgt(tt,evtTab);

 s(riv).Season_TimeSeries(seas).Season_DataTable = tt;

 s(riv).Season_TimeSeries(seas).Supercooling_Events = evtTab;

 end

end

fprintf('Complete\n')

end

Published with MATLAB® R2021a

function [T] = massTable(seasonTimeseriesStruct,River)

%MASSTABLE: Compiles all individual season time series in structure into one table

narginchk(1,2)

if nargin == 1 %Nor River is specified; compile all data

chk = 0; %Check if a table variable has been started (may matter if a structure is skipped)

for i = 1:length(seasonTimeseriesStruct)

 s = seasonTimeseriesStruct(i).Season_TimeSeries;

 if ~isempty(s)

 for k = 1:length(s)

 tab = s(k).Supercooling_Events;%Old table

 for k1 = 1:height(tab)

 tab.Time_Series(k1) = string({s(k).Season_ID});%Add timeseries identifier

 end

 tab=tab(:,[end,1:end-1]);

 if ~chk

 T = tab; chk=1;

 else

 T=[T;tab];

 end

 end

 end

end

https://www.mathworks.com/products/matlab

217

else %A river is specified, only consider the specific river

 chk = 0; %Check if a table variable has been started (may matter if a structure is skipped)

 %Determine which row of structure to analyse

 rivs = [seasonTimeseriesStruct.River]; %List of all rivers in structure

 riv = find(rivs == River, 1); %Determine if the specified river is in the structure

 if isempty(riv)

 error('%s is not one of the rivers listed in seasonTimeSeries structure.',River)

 else

 s = seasonTimeseriesStruct(riv).Season_TimeSeries;

 if ~isempty(s)

 for i = 1:length(s)

 tab = s(i).Supercooling_Events;%Old table

 for k = 1:height(tab)

 tab.Time_Series(k) = string({s(i).Season_ID});%Add timeseries identifier

 end

 tab=tab(:,[end,1:end-1]);

 if ~chk

 T = tab;chk=1;

 else

 T=[T;tab];

 end

 end

 end

 end

end

Published with MATLAB® R2021a

https://www.mathworks.com/products/matlab

	Chapter 1 : Introduction
	1.1 Overview
	1.2 Research objectives and methodology

	Chapter 2 : A study of supercooling in rivers0F
	2.1 Introduction
	2.2 Study area
	2.3 Methodology
	2.4 Results
	2.5 Discussion
	2.6 Conclusions
	Acknowledgements
	Chapter 2 Tables
	Chapter 2 Figures

	Chapter 3 : Surface energy budget of 2016-2017 supercooling events
	3.1 Introduction
	3.2 Study Area
	3.3 Methodology
	3.3.1 Overview of methodology
	3.3.2 Limitations of methodology
	3.3.2.1 Quantitative uncertainty
	3.3.2.2 Qualitative uncertainty

	3.4 Results
	3.4.1 Graphical analysis of timeseries
	3.4.2 Statistics and distribution of heat fluxes
	3.4.3 Linear correlation and multiple linear regression

	3.5 Discussion
	3.5.1 Heat flux dynamics during supercooling
	3.5.2 Comparison to literature
	3.5.3 Correlating supercooling parameters with heat flux parameters
	3.5.4 Potential role of ice production in supercooling energy budget

	3.6 Conclusions
	3.7 Chapter 3 Supplementary materials
	Chapter 3 Tables
	Chapter 3 Figures

	Chapter 4 Conclusions
	4.1 Study of supercooling parameters
	4.2 Study of surface energy budget during supercooling
	4.3 Future work

	References
	Appendix A – Summary of linear correlation & multiple linear regression analysis
	Appendix B – Code documentation

