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Abstract

Evaluating the process performance of mining and petroleum operations requires

numerical geological models of many related rock properties or variables. Taken

together, they provide a characterization of the geologic deposit that forms the ba-

sis for engineering design and decision making. Complex multivariate features such

as compositional constraints and non-linearity often exist between geological vari-

ables and may have a large impact on process performance. This poses a problem

for geostatistical modeling, where popular techniques do not capture complex re-

lations. The data could be transformed to be suitable for modeling before using

back-transformations to reintroduce the original complexity. Unfortunately, no se-

quence of available transforms will consistently remove all complex features from a

large number of variables. The first contribution of this thesis is a transformation for

removing complexity and correlation from data of practical size and dimension. This

facilitates independent geostatistical modeling, before the back-transform restores

the original relations.

Multivariate transformations may only be applied to data observations that

sample all of the variables under consideration. This creates another significant

challenge, as it is common for geological data to sample subsets of the variables.

Practical solutions will exclude the incomplete observations from transformations,

or use basic regression to infer (impute) the missing variables. These approaches

usually have consequences, however, in terms of global bias, local accuracy and the

reproduction of key properties. The second contribution of this thesis is method-

ology for the effective imputation and geostatistical modeling of incomplete data.

Missing data theory is integrated with geostatistical algorithms to develop impu-

tation methods that are suitable for geological data. Uncertainty of the imputed

values is transferred through a modified geostatistical workflow.

These two contributions cumulatively simplify and improve the modeling of po-

tentially complex and unequally sampled geological variables. Their value is demon-

strated using real geometallurgical data and associated mine project decision mak-

ing.
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Chapter 1

Introduction

Background on the problem setting is provided before describing modern challenges

with multivariate geostatistical modeling. These challenges motivate the research

items that are documented in this thesis, which are outlined before being summa-

rized with a thesis statement.

1.1 Background

Subsurface resource characterization is a critical task for mining, petroleum and

environmental projects, as it has an overarching impact on business, technical and

operational decision making. A mining context is used in this thesis, although the

key concepts are applicable to any subsurface resource. Many measurements may

be available for informing ore resource characterization, such as drill core, blast hole

and channel samples. These measurements are used to inform the modeling of key

variables across the entire deposit. These models of the subsurface may then be used

to evaluate process performance. For example, mineral resource and contaminant

grades are often modeled to evaluate: i) the global resource for economic feasibility

studies, ii) local ore and waste contacts for mine planning, iii) blending strategies,

and iv) plant design.

The standard practice for modeling subsurface variables applies a branch of

statistics known as geostatistics. Developed in the pioneering work of Matheron

(1962), geostatistics is defined as “the study of phenomena that fluctuate in space”

(Olea, 1991). Within the current context, geostatistics can be practically described

as an approach and set of tools for the numerical modeling of geological variables

(Deutsch and Journel, 1998). The true nature of a subsurface deposit will reflect

a complex geologic history of physical, biological, and/or chemical processes. Some
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understanding of a deposit may be inferred from geologic concepts and numerical

measurements, but uncertainty will always exist without exhaustive sampling.

To quantify this uncertainty, geostatistics employs stochastic simulation to gen-

erate multiple realizations of the subsurface (Chiles and Delfiner, 2012; Journel and

Huijbregts, 1978). Passing each realization of the variables through a transfer func-

tion yields a distribution of uncertainty for the process performance response (Figure

1.1).
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Figure 1.1: Schematic representation of geostatistical simulation and process per-
formance evaluation.

When interpreting Figure 1.1, consider the example of a mineralization and

uncertainty of the associated resource. One true realization of the mineralization

exists, which an optimal mine plan (transfer function) would exploit to yield a

true resource volume (response). As understanding of the mineralization is limited,

samples are used with geostatistical inference to generate multiple realizations of the

subsurface. Optimal mine plans are generated for each realization (Dimitrakopoulos,

2011; Godoy, 2003), which yield a distribution of uncertainty for the resource.

1.2 Multivariate Modeling

Most mining projects will require the characterization of multiple continuous vari-

ables. Relationships between resource and contaminant variables will have a large
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impact on process performance forecasting. Consequently, geostatisticians aim to

reproduce these relationships in model realizations. Traditional geostatistical model-

ing techniques will assume that the data are multivariate Gaussian (multiGaussian),

so that the multivariate relationships are fully parameterized by the covariance ma-

trix (Chiles and Delfiner, 2012; Isaaks, 1990; Journel and Huijbregts, 1978; Verly,

1983). While this assumption leads to mathematical and computational tractability,

geological variables are rarely multiGaussian in nature. Rather than the character-

istic elliptical contours of a multiGaussian distribution, geological variables often

exhibit complex features such as heteroscedasticity, non-linearity and constraints.

Schematic illustrations of these complexities are compared with a Gaussian distri-

bution in Figure 1.2. Though bivariate distributions are shown in this figure, the

presented complexities extend to additional dimensions.

Heteroscedastic Non-linear Constraint MultiGaussian

Figure 1.2: Schematic representation of multivariate complexities and a compar-
ative multiGaussian distribution.

Faced with this problem, common practice involves transforming each variable

to be univariate Gaussian, before assuming the variables are multiGaussian to apply

conventional geostatistical modeling techniques (Leuangthong and Deutsch, 2003).

Data may be transformed to be univariate Gaussian using the normal score trans-

formation (Chiles and Delfiner, 2012; Journel and Huijbregts, 1978; Verly, 1983),

which is well established in practice and straight forward to execute. MultiGaus-

sian geostatistical model results are returned to the original distributions using the

associated back-transformation.

While practical, the assumption that univariate Gaussian variables are multi-

Gaussian is often unrealistic. Figure 1.3 visualizes a cosimulation approach (Chiles

and Delfiner, 2012; Journel and Huijbregts, 1978), where two variables are simulated

in a manner that considers the data correlation. Two variables are modeled (silica

and magnesia), where the relationship between them is very important for the plant

processing of nickel laterite ore. Observe from the marginal histograms that a nor-
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mal score transform makes the univariate distributions Gaussian, but that bivariate

complexities remain (top right). Cosimulation reproduces the targeted normal score

correlation, but the resulting bivariate realizations do not possess the complex fea-

tures of the normal score data (bottom right). Back-transforming to original space

exacerbates this problem, as neither the correlation nor the complex features are

reproduced (bottom left). This small example illustrates that conventional geosta-

tistical analysis of complex multivariate data may lead to systematic errors.

Figure 1.3: Demonstration of geostatistical cosimulation with complex bivariate
data, where silica is on the x-axes and magnesia is on the y-axes of each plot.

1.3 Multivariate Transformations

To address this issue, a variety of techniques may be considered for transforming

variables to be multiGaussian (Leuangthong, 2003). Conventional modeling meth-

ods may then proceed, before using the associated back-transformations to return

the original complexity to simulated realizations. Many of these transformations

will also decorrelate the variables so that modeling is simplified to independent

simulation. Associated back-transformations are then used to return the original

correlation to simulated realizations. Figure 1.4 illustrates this concept using the

nickel laterite variables.

4



Figure 1.4: Demonstration of multivariate transformation and independent simu-
lation, where SiO2 is on the x-axes and MgO is on the y-axes.

Observe that the complex data is transformed to be bivariate Gaussian and un-

correlated (top right). As a result, independently simulation yields realizations that

match the distribution of the transformed data (bottom right). Back-transformation

of the realizations reintroduces the original complexity and correlation (bottom left).

Recall that this nickel laterite example is being considered within a process perfor-

mance evaluation context (Figure 1.1). Given that plant design is highly dependent

on the relationship between these two variables, it is expected that the cosimulation

approach (Figure 1.3) will lead to inferior evaluation, relative to the multivariate

transform approach (Figure 1.4).

1.4 Problem Definition

Although this multivariate transformation concept may appear simple, practical

problems surround its application. These problems are described to motivate the

primary contributions of this thesis.
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1.4.1 Unequal Sampling

The first problem relates to unequal sampling where data observations possess a

differing number of measured variables. This commonly occurs with legacy data or

when sampling some variables is quite expensive. For example, consider the illustra-

tive schematic in Figure 1.5 where three variables are unequally sampled across six

observations. Incomplete or unequal sampled observations are sometimes referred

to as heterotopic observations. Multivariate transformations may only be applied

to observations that sample all of the variables under consideration (homotopic ob-

servations). Heterotopic observations must be excluded from the workflow or have

their missing values imputed (inferred). Data exclusion is likely to be problematic

for a number of reasons, including the introduction of bias and loss of information

(Enders, 2010; Little and Rubin, 2002). Data imputation is the preferred method,

though suitable methods for geological variables are not present in the literature.

More specifically, available imputation methods do not integrate information from

both spatial and colocated data sources.

1
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Figure 1.5: Schematic illustration of heterotopic data. A trivariate dataset com-
posed of Z1, Z2 and Z3 variables are heterotopically sampled at six locations (left),
leading to a data table where X indicates a sampled value (right).

To address these challenges, a methodology for data imputation in a geostatis-

tical analysis setting has been developed (Barnett and Deutsch, 2015). Imputation

theory is integrated with geostatistical tools so that the resultant methods are suit-

able for geological data. Advancing this methodology into academic and industrial

settings should decrease the problematic practice of data exclusion or ad-hoc impu-

tation, while increasing the applicability of multivariate transformations.

1.4.2 Complex Multivariate Data

The second problem relates to functionality gaps that remain in the current set of

transformation tools. Consider that the normal score transformation will success-
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fully transform any distribution to be univariate Gaussian (disregarding despiking

concerns (Deutsch and Journel, 1998)). It is a general technique that is applicable

to a wide variety of datasets. Available multivariate transforms do not possess this

property, as select transforms will not be successful in the presence of: i) too few

observations, ii) too many variables, or iii) complex features.

To address this, a new technique named the projection pursuit multivariate

transformation (PPMT) (Barnett et al., 2013) has been developed for transforming

potentially complex data to be uncorrelated and multiGaussian. Relative to alter-

native transforms, the PPMT yields transformed data of improved decorrelation

and Gaussianity. More importantly, the PPMT may also be applied to data with

more variables and/or less observations. While providing previously unavailable

functionality, this new methodology simplifies multivariate geostatistical modeling

in practice.

1.5 Thesis Statement and Outline

Improved spatial prediction of geological variables accounting for complex relations

and unequal sampling will lead to improved resource management decisions.

Chapter 2 begins with a brief review of fundamental geostatistical theory, which

is a necessary precursor to the multivariate techniques that follow. Fundamentals

of missing data theory are also reviewed to motivate the methods that are adopted

in this research.

Chapter 3 introduces a framework for integrating imputation within geostatis-

tical modeling workflows. Missing data theory is combined with geostatistical algo-

rithms to develop techniques that are optimal for the imputation of geological data.

Different techniques may be considered based on properties of the data and prior-

ities of the practitioner. As such, the techniques are demonstrated and compared

using two small examples.

Chapter 4 provides a brief overview of transformations that were considered for

removing complex features from multivariate data. This early work influences and

motivates the PPMT, which was ultimately selected as the preferred multiGaussian

transform. Methodology for the PPMT is described in detail in Chapter 5, before

demonstrating the technique with a small example.

The PPMT and imputation methodology is applied to a nickel laterite case study
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in Chapters 6 and 7, respectively. Modeling results of the new methodologies are

compared with that of established techniques. Models are passed through mine

project transfer functions to generate response distributions that form the basis for

resource management decisions. The value of each contribution is evaluated based

on its associated improvement to resource management.

Conclusions and future work are presented in Chapter 8. Methodology that is

developed in this thesis has been implemented as Fortran coded programs. These

programs are constructed as stand-alone executables that use ASCII parameter and

data files. They are used to generate all of the presented results and are available

from the author upon request.
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Chapter 2

Literature Review

The following chapter provides a literature review of material that is relevant to this

thesis. It is divided into three sections: i) conventional multivariate geostatistics,

ii) common multivariate transformations and iii) data imputation.

2.1 Conventional Multivariate Geostatistics

Sample and domain definitions are reviewed first, which introduces notation that is

used throughout this thesis. Stationarity is described next, as it is a critical precursor

to the geostatistical modeling of continuous variables. Univariate modeling funda-

mentals are then extended to multivariate modeling techniques. These conventional

multivariate techniques could be used instead of the multivariate transformations

that are introduced in Section 2.2.

2.1.1 Sample, Population, and Stationarity

Multivariate geological data composed of n observations and K continuous variables

could be represented as a matrix Z : zαi, α = 1, ..., n, i = 1, ...,K. Assume

for now that Z has no missing values. This geological data is sampled at spatial

locations that are represented by the coordinate vectors, uα, α = 1, ..., n, which is

denoted as the set, {uα, α ∈ (n)} (Goovaerts, 1997). We are interested in modeling

these variables across a model domain, A, that may be discretized into some number

of grid locations, u ∈ A. Since A is a subsurface domain, the specific value of each

variable at all locations, {zi(u),u ∈ A, ∀i}, is not known.
Consider each variable as a regionalized random variable, Zi(u), where the po-

tential outcome at each location is represented by its cumulative distribution func-

tion (CDF) Fi(u; zi) = Prob{Zi(u) ≤ zi}∀zi (Chiles and Delfiner, 2012; Matheron,
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1962). The data matrix Z may be thought of as a sample of specific outcomes

from the population A, {zi(uα), α ∈ (n) ⊂ A, ∀i} (Figure 2.1) (Goovaerts, 1997).

Geostatistical modeling will use Z to infer distributions of potential outcomes at

the model grid locations, {Fi(u; zi),u ∈ A, ∀i}. To allow for this inference, practi-

tioners must ensure that the data are pooled into stationary subsets. Stationarity

implies that parameters observed in Z may be extended to the modeling domain A.

Following basic steps such as declustering, Z should be representative of A (Chiles

and Delfiner, 2012; Matheron, 1962).

Figure 2.1: Schematic illustration of data locations (uα), unsampled grid locations
(u), and the domain A.

While strict stationarity entails invariance of all high order distributions and

related moments, geostatisticians are usually only concerned with first and second

order stationarity (Goovaerts, 1997). This relates to stationarity of the first mo-

ment, E{Zi(u)} = µi,u ∈ A, ∀i and the second moment, Cov{Zi(u) · Zj(u+h)} =

Cij(h),h,u ∈ A; ∀i, j. Note that h is a vector that separates two locations, whereas

h will denote the associated distance, h = |h|. As complex multivariate relationships

(Figure 1.2) are not characterized by Cij(h) values, practitioners should ensure that

those relationships are also stationary. Complex relationships should not be con-

fused with non-stationary relationships, where separate populations are erroneously

pooled together. Leuangthong (2003) proposed using techniques such as discrimi-

nant analysis (Gnanadesikan and Kettenring, 1999) and cluster analysis (Chatfield

and Collins, 1960) to aid in the identification of separate multivariate populations.

While any geostatistical modeling workflow and discussion must consider stationar-

ity, the focus of this thesis is the modeling of regionalized variables. The assumption

is made in all subsequent sections that a reasonable decision of stationarity has been
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made, providing a data matrix Z that is representative of A.

2.1.2 Univariate Modeling

Recall that the data, Z, is used to infer CDFs of the potential outcomes for each

Zi at the model grid locations, u ∈ A. Conventional practice would invoke a lin-

ear estimation technique known as kriging for geostatistical inference (Chiles and

Delfiner, 2012; Matheron, 1962). Kriging calculates the estimate, z∗i (u), and estima-

tion variance, σ2i (u), based on the weighted linear combination of nearby spatially

correlated data, as well as estimates of the global mean, µi, and global variance, σ2i .

The notation of z∗i (u), σ
2
i (u), µi, and σ

2
i may cause confusion for some readers,

as statistical convention uses ‘hat’ to distinguish estimated parameters from true

underlying parameters. For example, correct statistical presentation would use µi

for the true underlying global mean, while using µ̂i for the estimated global mean.

Consistent with geostatistical convention, however, the ‘hat’ notation is dropped

from estimated parameters throughout this thesis. Estimated parameters are pre-

sented with far greater frequency, allowing for true underlying parameters to be

explicitly defined when they are referred to.

Returning to kriging, the weights for calculating each z∗i (u) and σ2i (u) are

determined based on the covariance, Cii(h), between u and the data locations,

uα, α = 1, ..., n. While Cii(h), may be calculated for specific h vectors from the

data, kriging will require that it is represented by a continuous function. Doing so

allows for Cii(h) to be determined for all h, which permits calculating Cii(h) be-

tween uα, α = 1, ..., n and every estimate location, u ∈ A. This function is referred

to as a model of regionalization, which fits a positive definite model to the experi-

mental Cii(h) values (Chiles and Delfiner, 2012; Journel and Huijbregts, 1978). It

is worth noting that Cii(h) is frequently referred to as spatial covariance, auto-

covariance, or spatial continuity. Due to historical practice, spatial variability is

frequently calculated according to Equation 2.1.

γ(h) = E(Z(u)− Z(u+ h))2/2 (2.1)

where γ(h) is referred to as a semivariogram (Chiles and Delfiner, 2012; Journel

and Huijbregts, 1978; Matheron, 1962). Respecting this convention, examples and

case studies in this thesis present spatial continuity by plotting γ(h) as a function

of distance (e.g., Figure 3.6). Assuming first and second order stationarity, the
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semivariogram, γ(h), relates to auto-covariance, Cii(h) as:

γ(h) = Cii(0)− Cii(h) (2.2)

Although the empirical global CDF of a random variable, Fi(zi) is often well

informed by pooling the available data, the local CDFs, Fi(u; zi), are not defined

because of few or no replicates of the specific nearby data configuration. This

motivates the widespread use of the multiGaussian model within geostatistics. Any

local or conditional CDF of a multiGaussian distribution is also Gaussian; it is

therefore fully parameterized by the normal equations or simple kriging estimate

and variance, z∗i (u) and σ
2
i (u) (Verly, 1983). To facilitate multiGaussian modeling,

the normal score transform converts a distribution of any form to be univariate

standard Gaussian (Bliss, 1934; Boisvert et al., 2013; Deutsch and Journel, 1998;

Verly, 1983). Defining G−1 as the inverse of the standard univariate Gaussian CDF,

the normal score transform matches probabilities between Fi and G according to

Equation 2.3. This transform is schematically illustrated in Figure 2.2.

yαi = G−1 (Fi(zαi)) , for α = 1, ..., n, i = 1, ...,K (2.3)

Original Distribution Standard Normal

Distribution

Figure 2.2: Schematic illustration of the normal score transformation.

As the resultant transformed data matrix, Y, is univariate normal, independent

modeling of each variable will yield CDFs, {Gi(u),u ∈ A}, that are fully defined

by their mean, y∗i (u), and variance, σ2i (u), values from kriging. Monte Carlo

simulation (MCS) schemes such as sequential Gaussian simulation (SGS) (Deutsch

and Journel, 1998; Isaaks, 1990; Manchuk and Deutsch, 2012; Verly, 1983) may then

be used to stochastically sample from these CDFs, generating L realizations of the

variables within A, {yil(u),u ∈ A, ∀i, l = 1, ..., L}, that reproduce the regionalization
model of each variable. For convenience, denote the values of a Gaussian

realization as yαi, α = 1, ..., N, i = 1, ...,K, where N is the number of grid locations,
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so that a geostatistical model is cumulatively represented by the locations uα, α =

1, ..., N . Gaussian realizations are back-transformed to the original distribution

according to Equation 2.4.

zαi = F−1
i (G(yαi)) , for α = 1, ..., N, i = 1, ...,K (2.4)

Returning to the multivariate context, if the K variables of Z are dependent,

then the CDFs of each location, Fi(u), i = 1, ...,K, should not be determined inde-

pendently. More specifically, if the covariance matrix, Σ(h) : Ci,j(h), i, j = 1, ...,K,

has non-zero off diagonal terms, then a cokriging framework should be applied. This

is the focus of the next section. In the presence of complex multivariate relationships

that are not characterized by Σ(h), alternative transformations could be used to

achieve independence between variables (Section 2.2).

2.1.3 Multivariate Modeling

Kriging considers the auto-covariances, Cii(h); cokriging also considers the cross-

covariances, Cij(h), ∀i 6= j. Consider a primary variable to be predicted from

Zi, i = 1, ...,K. The CDFs of the primary variable should be inferred in a man-

ner that respects Σ(h) with the remaining K − 1 secondary variables. Popular

cokriging schemes are differentiated by the coregionalization model that is used for

characterizing Σ(h). Coregionalization is the multivariate extension of regional-

ization, where experimental values of Σ(h) are described as a continuous function

for all h. With a coregionalization model defined, cokriging establishes the weight

that should be attributed to each observation and variable of Z when calculating

the estimate and estimation variance. These models include the Linear Model of

Coregionalization (LMC), the Markov model, and the intrinsic model.

The LMC assumes that Zi, i = 1, ...,K are the linear combination of a common

underlying pool of random variables (Chiles and Delfiner, 2012; Goovaerts, 1994;

Journel and Huijbregts, 1978). Practically speaking, the LMC requires the auto

and cross-covariance to be fit with a positive semi-definite model. The LMC is

utilized for assigning weights to correlated values of Z in cokriging. More recent

modifications and applications of the LMC may be found in Oman and Vakulenko-

Lagun (2012) and Mueller and Ferreira (2012), respectively. While semi-automated

procedures may be applied for fitting an LMC (Jewbali, 2009; Larrondo et al., 2003;

Neufeld and Deutsch, 2004), it is generally considered impractical for massively
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multivariate settings. Massively multivariate is a general term that while vague,

has very different meaning to different geostatisticians. A number of multivariate

methods that are discussed throughout this thesis become difficult or impossible to

use beyond approximately three to ten variables. Observing this rough threshold,

massively multivariate will refer to K ≥ 5 in this thesis. Although the lower limit

is underwhelming for its name, massively multivariate could refer to a far larger

number of variables, such as the K = 112 that were modeled in Boisvert et al.

(2013).

In settings where the LMC is deemed impractical, the Markov coregionaliza-

tion model may be considered to avoid fitting the cross-covariances (Almeida and

Journel, 1994; Deutsch and Journel, 1998; Xu et al., 1992). The Markov model

simplifies the LMC by assuming that colocated secondary data screen the influence

of secondary data at any h > 0 lag distance. As a result, only the auto-covariance

of the primary variable and Σ(0) is required. Since the Markov model only requires

colocated information about the secondary variables, it lends its name to colocated

cokriging. More recent applications may be found in Babak and Deutsch (2009a)

and Boisvert et al. (2013), respectively. While very practical due to simplicity, the

cross-covariance assumptions of colocated cokriging often lead to a bias in histogram

reproduction (Babak and Deutsch, 2009b; Deutsch and Journel, 1998).

The intrinsic coregionalization model provides a compromise between the con-

venience of the Markov model and the accurate cross-covariance fitting of the LMC

(Babak and Deutsch, 2009b; Wackernagel, 2003). The intrinsic model assumes that

the cross-covariance between the ith primary variable and jth secondary variable is

given by Cij(h) = Cii(h) ·Cij(0), that is, the shape of the auto-covariance, scaled to

the correct magnitude by the covariance at h = 0. This allows for secondary data

at h > 0 to be considered without requiring a fitted cross-covariance.

Regardless of the coregionalization and cokriging framework that is adopted,

no consideration is paid to multivariate relationships that are not characterized by

Σ(h). This is a primary motivation for the multivariate transformations that are

described in the next section.

2.2 Common Multivariate Transformations

The following section provides an overview of popular multivariate transformations.

Some techniques remove the covariance between variables, while others attempt
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to also remove complex features. The consideration of realistic multivariate rela-

tionships in geostatistical models may lead to issues with histogram reproduction.

Another important transform for enforcing histogram reproduction is also reviewed.

2.2.1 Linear Decorrelation Transformations

The first class of transformations are aimed at decorrelating the variables of Z. Con-

sidering the difficulty of fitting a coregionalization model (e.g., LMC), these trans-

formations are applied within geostatistics so that the off diagonal terms of Σ(h)

may be disregarded for all h. This facilitates independent univariate modeling of

each variable (Section 2.1.2), with the associated back-transformation reintroducing

the original correlation to the simulated realizations.

Principal component analysis (PCA) is a dimension reduction and decorrelation

technique that transforms a correlated multivariate distribution into orthogonal lin-

ear combinations of the original variables. This classic technique was developed by

Pearson (1901) and Hotelling (1933), before being adapted to geostatistical model-

ing by Davis and Greenes (1983). More recent applications of PCA in geostatistics

include Barnett and Deutsch (2012b) and Boisvert et al. (2013). The first step of

PCA performs spectral decomposition of Σ(0), yielding the eigenvector matrix, V

and diagonal eigenvalue matrix, D:

Σ(0) = VDVT (2.5)

The PCA transform is then performed by multiplying Z with V:

Y = ZV (2.6)

Equation 2.6 rotates the multivariate data so that the resultant ‘principal com-

ponents’ in Y are uncorrelated. Eigenvalues in D describe the relative variability

that each principal component contributes to the multivariate system, which may

allow for components that provide little information to be discarded from subse-

quent modeling. As a result, PCA may be attractive when a very large number

of K variables must be modeled, for example K > 20. Consider that the k most

important principal components are selected for simulation, where k ≤ K. Let the

k length vectors, yα, α = 1, ..., N , represent a realization of simulated principal

components. The PCA back-transform restores the original dimensionality and

correlation to the simulated realization according to:
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zα = yαV
T, for α = 1, ..., N (2.7)

where zα is a K length vector of the simulated values in original units. As discussed,

geostatisticians often use PCA to facilitate independent geostatistical simulation of

the principal components. While practical, this approach makes two critical as-

sumptions: i) the h = 0 multivariate distribution is fully parameterized by Σ(0)

and ii) setting Σ(0) = 0 will make Σ(h) = 0 for all h. If the first assumption is in-

correct (e.g., complex multivariate data), PCA will yield principal components that

are uncorrelated but not independent at h = 0. Independent simulation and back-

transformation of those components will not reproduce those complex features. If

the second assumption is incorrect, the principal components will remain correlated

at h > 0. Independent simulation and back-transformation of spatially correlated

components is unlikely to reproduce the original cross-covariance.

Due to issues arising from the second assumption of PCA, minimum/maximum

autocorrelation factors (MAF) have become increasingly popular within geostatis-

tics. MAF was first introduced by Switzer and Green (1984) in the field of spatial

remote sensing and was popularized in geostatistics by Desbarats and Dimitrakopou-

los (2000). Recent geostatistical applications and modifications of MAF may be

found in Boucher and Dimitrakopoulos (2012) and Mueller and Ferreira (2012). It

is an extension of PCA that performs a two-step spectral decomposition of Σ(h) at

h = 0 and h > 0 lag distances. If Σ(h) is fully described by a two structure LMC

for all h, then MAF will remove covariance at all lags. This in turn, should lead

to improved cross-covariance reproduction in simulated realizations. Even where

the variables are not fully described by a two structure LMC, MAF has still been

found to yield better cross-covariance reproduction than PCA (Barnett and Deutsch,

2012b).

2.2.2 Stepwise Conditional Transformation

The stepwise conditional transformation (SCT) attempts to remove complex mul-

tivariate features while simultaneously decorrelating the variables at h = 0 to form

an uncorrelated multiGaussian distribution. This facilitates independent geostatis-

tical modeling of the transformed variables, with the back-transform reintroducing

the original correlation and multivariate complexities to simulated realizations. The

SCT was introduced by Rosenblatt (1952) and was popularized in geostatistics by
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Leuangthong and Deutsch (2003). More recent application and discussion of the

SCT may be found in Neufeld et al. (2008) and Pyrcz and Deutsch (2014), respec-

tively.

To apply this technique, the first variable is normal score transformed (Equation

2.3). The second variable is then partitioned according to the probability class of the

first variable, before independently normal score transforming the second variable

in each discretized bin. The third variable is transformed conditional to probability

classes of the first and second variables, and so on. This process is illustrated in

Figure 2.3 and is defined as:

yα1 = G−1 (F1(zα1))

yα2 = G−1
(
F2|1(zα2|yα1)

)

...

yαK = G−1
(
FK|1,...,K−1(zαK |yα1...yαK−1)

)
, for α = 1, ..., n

(2.8)

If the SCT effectively transforms Z to an uncorrelated multiGaussian distri-

bution, Y, then independently simulated realizations are expected to possess those

properties. The SCT back-transform returns the original complexity and correlation

by reversing the forward transformation:

zαK = F−1
K|1,...,K−1 (G(yαK |yα1...yαK−1))

...

zα2 = F−1
2|1 (G(yα2|yα2))

...

zα1 = F−1
1 (G(yα1)) , for α = 1, ..., N

(2.9)

While possessing many attractive features, the binning nature of SCT makes it

heavily restricted to few variables, for example, less than three. The inability to infer

a high dimensional non-parametric distribution is sometimes referred to as the curse

of dimensionality (Bellman, 1957). To perform a normal score transform, each con-

ditional bin must be populated with a minimum of approximately ten observations

(Leuangthong, 2003). Consequently, applying the SCT to K = 2 variables requires

n = 102 observations, K = 3 requires n = 103, and so on. It becomes infeasible to

execute the SCT with more than two to three variables for most geological datasets.
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This binning can also create artifacts in the transformed data and back-transformed

simulation results.

Leuangthong (2003) proposed measures to reduce the SCT data requirement,

such as a nested application on subsets of the variables, the population of additional

data through kernel density estimation (KDE) (Parzen, 1962; Rosenblatt, 1956;

Scott, 1992), and overlapping bins. Focusing on the binning artifacts, Manchuk and

Deutsch (2011) proposed using a computationally efficient variant of KDE, kernel

density networks (Johnston and Kramer, 2011), to execute stepwise in a continuous

fashion. While these practical measures may help, using the SCT for greater than

three variables is generally not considered.

Similar to PCA, independent geostatistical simulation of the SCT transformed

variables assumes that removing complex features and correlation at the h = 0

distance removes those properties for all h. Where this assumption is incorrect,

systematic issues may arise with the reproduction of univariate, multivariate and

spatial properties.

2.2.3 Logratios

Geostatistics is frequently used for modeling natural resources that are geochemical,

geophysical or lithological compositions. Considering that all variables of Z belong

to the same composition, basic physical constraints must be respected. First, in-

dividual variables must have values greater than or equal to zero, zαi ≥ 0, ∀α, i.
Second, the sum of the variables must equal one,

∑K
i=1 zαi = 1, ∀α. Geostatistical

modeling is complicated by the presence of these constraints, as the described linear

estimation and stochastic simulation frameworks do not account for their reproduc-

tion. Geostatistics is intended for variables that exist in real space, while compo-

sitional variables are constrained within simplex space (Aitchison, 1986; Manchuk,

2008).

This motivated the use of logratio transformations where compositional con-

straints are removed so that modeling may proceed in real space that is not con-

strained by the simplex. The associated back-transform returns the original con-

straint to simulated realizations. While many logratio transforms are available, the

most commonly applied technique is the additive logratio transform (ALR) (Aitchi-

son, 1986). The ALR transformation is calculated as the logarithm of the ratio

between each variable, zαi, and a constant divisor variable, zαd:
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yαi = ln

(
zαi
zαd

)
, for α = 1, ..., n, i = 1, ...,K, i 6= d (2.10)

It is important to note that the transformed data, Y, has its dimension reduced

toK−1 variables since zαd is removed. Let theK−1 length vectors, yα, α = 1, ..., N ,

represent a realization of the simulated variables. The logratio back-transform re-

turns the simulated values to simplex space, explicitly reinforcing the compositional

constraint according to:

zαi =
exp (yαi)

K−1∑
j=1

exp (yαj) + 1

, for α = 1, ..., N, i = 1, ...,K − 1 (2.11)

The zαd value is restored as the difference between the compositional constraint

and
∑K−1

i=1 zαi. Additional logratio transforms are available, including the centered

logratio transform (CLR), multiplicative logratio transform (MLR), and isometric

logratio transform (ILR). Aitchison (1986) proposed the ALR, CLR, and MLR in his

original work on compositional analysis, while the ILR is a more recent development

from Egozcue et al. (2003). Selecting from these available transforms requires

practitioners to balance simplicity of the technique against required properties of the

transformed variables. For example, the ALR is very straight forward to apply, but

its transformed variables are correlated. Additional steps must therefore be taken

to account for this correlation, whether that involves the subsequent application of

a decorrelation transforms to facilitate independent simulation, or the use of cosim-

ulation frameworks. Conversely, the ILR transforms the variables to be orthogonal

and constraint free, immediately facilitating independent simulation if the variables

are also independent. This comes at the cost, however, of increased complexity in

the practical application of the transform relative to the ALR.

The commonality between these transformations is the use of the natural log-

arithm (from which they derive their name). Consequently, the largest issue for

logratios is that they do not permit zero values for any variable to be transformed.

Manchuk (2008) outlines many reasons why zero values occur in geological data,

as well as the potential solutions that practitioners may use to apply logratios in

their presence. When the zeros are considered exactly accurate (termed essential

zeros), marginally small numbers are commonly imputed so that logratios may pro-

ceed. When the zeros are attributed to rounding errors or measurement detection

limits (termed rounded zeros), many methods exist to impute them with informed
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non-zero values (Martin-Fernandez et al., 2003). While the imputation of rounded

zeros is a recommended practice, there is a legitimate concern with replacing essen-

tial zeros so that logratios may be applied. As with several other of the described

multivariate techniques, a recent application of logratios may be found in Boisvert

et al. (2013).

2.2.4 Histogram Reproduction Transform

The declustered univariate distributions of the conditioning data, Fi(zi), i = 1, ...,K,

are usually the most important property for geostatistical model realizations to

reproduce. While higher order distributions are certainly important, the univariate

histograms will directly impact both the mean and variance of the modeled variables.

These two statistics are critical to nearly every transfer function and associated

responses, such as resource estimates that are the frequent goal of geostatistical

modeling (Figure 1.1).

The multivariate transforms discussed above often cause the simulated realiza-

tions to not reproduce the declustered Fi(zi), i = 1, ...,K for many reasons (Boisvert

et al., 2009). Some fluctuation is expected and desired, as this reflects the uncer-

tainty that surrounds a global population. A systematic bias is not desired, however,

and could be introduced from many different steps in a modeling workflow. While

practitioners should pursue histogram reproduction through improvements to the

modeling workflow, a final transformation may be required to ensure reproduction

of the original distributions (Deutsch and Journel, 1998; Journel and Xu, 1994).

Working with a single variable for now, let F 0(z0) represent the global CDF of a

simulated realization, z0α, α = 1, ..., N . Consider that F 0(z0) is deemed too different

from the target CDF, F (z), which is associated with the declustered data. Quantile

matching may be applied to transform the simulated values to the targeted CDF:

ztα = F−1(F 0(z0α), for α = 1, ..., N (2.12)

Observe, however, that Equation 2.12 pays no consideration to exactitude at

data locations, ztα 6= z0α = zd, where zd is a data value in close spatial proximity

to uα. Simulated values that coincide with data locations should reproduce the

sampled values. Further, simulated locations that are near to data locations are

relatively certain and should not be heavily influenced by such a global transfor-

mation. Conversely, simulated locations that are far from conditioning data are
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relatively uncertain and adjustment according to Equation 2.12 is more acceptable.

The relative uncertainty of each uα may be represented by the kriging variance, σ2α,

considering the original data only. Consider weighting Equation 2.12 by σ2α so that

it has a large impact on uncertain locations, while not impacting certain locations.

This concept is applied in Equation 2.13, where ωt =
(
σ2α

/
σ2

)ω
and ωo = 1 − ωt

(Journel and Xu, 1994).

zcα = ωt · ztα + ω0 · z0α, for α = 1, ..., N (2.13)

As can be seen, the final corrected value, zcα, is a weighted combination of the

original simulated value, z0α, and the naive transformed, ztα. So long as a reasonable

ω is specified by the user, the histogram correction is more heavily enforced in a

smoothly increasing nature away from the data. A consequence of this approach,

however, is that the target distribution will not be perfectly reproduced. Deutsch

(2005a) proposed the iterative application of Equations 2.12 and 2.13 to reduce this

discrepancy.

Returning to the multivariate context, consider the independent application of

histogram transformations to target the declustered data CDFs, Fi(zi), ∀i. While

doing so may enforce reproduction of the univariate properties, multivariate prop-

erties of the simulated realizations are not considered and could be distorted.
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Figure 2.3: Schematic illustration of the stepwise transform for a bivariate case: a)
normal score the first variable, b) bin the second variable based on the probability
classes of the first variable, c) normal score each bin of the second variable, d)
crossplot of the transformed variables are bivariate Gaussianity have approximately
zero correlation (Leuangthong, 2003).
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2.3 Data Imputation

All of the multivariate transformations that were outlined in the previous section

may only be executed on complete data observations that sample every variable

under consideration (homotopic data). Unfortunately, geological data usually pos-

sess incomplete observations (heterotopic data). When faced with this problem in

practical settings, incomplete observations are often excluded so that multivariate

transformations and geostatistical modeling may proceed. There are several prob-

lems with this approach, including loss of information and data bias. Similarly,

‘ad-hoc’ imputation procedures may also introduce bias and generally yield subop-

timal results.

The following section begins with an overview of techniques that are commonly

used for handling missing data in geostatistics and other fields. There are different

techniques for different circumstances. Considering missing data mechanisms and

other required properties, multiple imputation is selected as the missing data tech-

nique that is most suitable for geostatistical analysis. General multiple imputation

theory is reviewed, before discussing special considerations for geological data.

2.3.1 Missing Data Techniques

Common missing data analysis techniques are enumerated (Enders, 2010), followed

by a discussion of the advocated methods.

i) Listwise deletion: the formal name for excluding heterotopic observations, which

is termed data exclusion in this thesis.

ii) Pairwise deletion: reduces the information loss of listwise deletion by only re-

moving observations that do not have the variables under current analysis.

Consider calculating each element of a covariance matrix based on subsets that

sample each bivariate pair.

iii) Arithmetic mean imputation: replace missing values with the global mean of

that variable.

iv) Regression imputation: determine a regression model for a missing variable

(response) using the remaining sampled variables as predictors. Each missing

value is then estimated based on colocated values.
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v) Stochastic regression imputation: the same as regression imputation, but apply

stochastic methods to add realistic variability to the regression model assuming

normally distributed error.

vi) Hot-deck imputation: randomly replace missing values with data values of other

samples that measure similarly according to colocated secondary values.

vii) Similar response pattern imputation: also known as nearest neighbour hot-deck

imputation. The random selection is more restricted based on additional factors

such as spatial correlation.

viii) Last observation carried forward: the name is derived from its application in

time series analysis. The spatial equivalent would be nearest neighbour impu-

tation, where the nearest sampled value is assigned.

ix) Maximum likelihood estimation (MLE): unknown population parameters (e.g.

mean and variance) are estimated to maximize the log-likelihood of each ob-

servation occurring. In missing data analysis, these parameters are estimated

through iterative optimization using various subsets of the data.

x) Multiple imputation (MI): infer a model of the missing values, before stochasti-

cally sampling from it to generate multiple realizations of complete data (Figure

2.4). Standard statistical analysis proceeds on the complete data, before com-

bining the results to form an estimate .

Despite their age, MLE (Dempster et al., 1977) and MI (Rubin, 1978) are of-

ten referred to as state-of-the-art, whereas the other practical methods are usually

referred to as ad-hoc (Enders, 2010; Shafer and Graham, 2002). The ad-hoc tech-

niques may be further subdivided into data exclusion (DE) and single imputation

(SI) categories. Although the SI techniques facilitate standard statistical analysis

without excluding data, uncertainty of the imputed values cannot be incorporated

into subsequent analysis. Further, many of the SI techniques will not reproduce the

variability of the data. As discussed, only DE and SI (e.g., regression imputation)

are typically used in geostatistical analysis. Methodologists advocate the use of

either MLE or MI because they will reflect uncertainty of the imputed values and

possess realistic variability. Perhaps even more compelling, MLE and MI are less

likely to introduce bias relative to the ad-hoc techniques. Biased analysis relates to

reasons why the data are missing, which is described in the next section.
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Figure 2.4: Illustration of MI, where an incomplete dataset is used to generate
L number of complete data realizations. The sampled values (black) are constant
across the realizations, while the imputed values (gray) vary based on the associated
uncertainty.

2.3.2 Missing Data Mechanisms

The major advances of missing data analysis (Dempster et al., 1977; Rubin, 1978)

coincided with Rubin (1976) proposing a methodology for the mechanisms of missing

data (Enders, 2010). Define M : mαi, α = 1, ..., n, i = 1, ...,K as the missing data

indicator matrix, which corresponds with dimensions of the data matrix Z. Each

mαi element is a binary indicator, where one indicates a missing value for zαi. A

major contribution of Rubin (1976) was recognizing that M may be considered as

a random variable and assigned to a distribution. The missing data mechanism

is given as the conditional distribution of M given Z; this may be generalized as

F (M|Z, ϕ), where ϕ are parameters that describe the relationship between Z and

M (Little and Rubin, 2002). While some conceptual understanding of ϕ may exist,

it is difficult to estimate these parameters so that they may be incorporated within

statistical analysis. Fortunately, ϕ may be disregarded depending on the missing

data mechanism and the applied analysis technique.

The first missing data mechanism is termed missing completely at random

(MCAR) and is represented by Equation 2.14. Observe that the conditional dis-

tribution of M does not depend on the values of Z. MCAR does not imply that the

missing data pattern is completely random, but that it is random with respect to

the values of Z. MCAR is preferred for analysis since all of the described techniques

(including ad-hoc) will not introduce bias when disregarding ϕ.
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F (M|Z, ϕ) = F (M|ϕ)∀Z, ϕ (2.14)

The second missing data mechanism is termed missing at random (MAR) and

is represented by Equation 2.15. Observed values of Z are specified as Zobs, while

the missing values are Zmis. The conditional distribution of M does not depend on

the values of Zmis, but are dependent on the values of Zobs. MAR does not mean

that the missing data pattern is random, but that it is random with respect to Zmis.

MAR is more challenging than MCAR since ad-hoc techniques will introduce bias

unless ϕ is incorporated. Fortunately, MLE and MI will not introduce bias when

disregarding ϕ.

F (M|Z, ϕ) = F (M|Zobs, ϕ)∀Zmis, ϕ (2.15)

The third missing data mechanism is termed missing not at random (MNAR),

which is given as Equation 2.16. Observe that the conditional distribution of M

depends on the values of Zmis and Zobs. MNAR is the most challenging mechanism,

as none of the reviewed techniques may be used without incorporating ϕ. Collins

et al. (2001) demonstrated that the application of MI and MLE to MNAR data may

not introduce substantive bias, but this is dependent on the relationship between

Zmis andM. For MI, Rubin (1996) and Collins et al. (2001) advocate the inclusion of

‘auxiliary’ variables that help to explain M, regardless of whether they are related to

the subsequent analysis. This strategy would effectively shift the data toward a MAR

mechanism. If these measures are inadequate, a variety of specialized techniques may

considered that directly account for ϕ (Enders, 2010; Shafer and Graham, 2002).

F (M|Z, ϕ) = F (M|Zobs,Zmis, ϕ)∀ϕ (2.16)

The only mechanism that may be formally tested is MCAR, which has a large

variety of statistical tests available (Chen and Little, 1988; Rubin, 1988). If the data

is not MCAR, it falls to practitioner understanding of the variables for determining

whether the data is MAR or MNAR.

2.3.3 Multiple Imputation Overview

When choosing a missing data technique for geostatistical analysis, properties that

are outlined in the previous sections suggest that MLE or MI should be selected. As
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this thesis research will center on MI, the conventional procedure is outlined (En-

ders, 2010; Huang and Carriere, 2006) before discussing practical considerations. MI

may be decomposed into three phases: i) imputation, ii) analysis and iii) pooling.

Beginning with the first phase, imputation is performed by constructing a condi-

tional distribution, F (Zmis|Zobs), for the missing values using a prior model and the

observed data. The conditional distribution is then stochastically sampled to pro-

duce a realization of the missing values, Zl
mis. Iterating this procedure, L number

of complete data sets, Zl = (Zobs,Z
l
mis), l = 1, ..., L, are generated by combining the

observed values with the Zl
mis missing value realizations. Many techniques could be

considered for constructing and sampling from the conditional distributions, includ-

ing the Gibbs sampler (Geman and Geman, 1984; Little and Rubin, 2002).

Standard statistical (or geostatistical) analysis may then proceed using each Zl,

before combining the results to determine a repeated-imputation inference. Gener-

alize a parameter of interest as θ (e.g., global population mean), where each Zl is

associated with an estimate, θ̂l. The final estimate, θ̄, is determined according to

the arithmetic average:

θ̄ = 1/L

L∑

l=1

θ̂l (2.17)

The associated uncertainty of θ̄ is given by Equation 2.18, which decomposes the

total variance, σ2T , into the within-imputation variance, σ2W , the between-imputation

variance, σ2B, and the σ2B/L term that accounts for a finite number of realizations.

σ2T = σ2W + σ2W + σ2B/L (2.18)

Let σ2l be the variance that is associated with each θ̂l estimate. The within-

imputation variance averages these variances according to Equation 2.19, which

represents the variability that would occur if there was no missing data.

σ2W = 1/L

L∑

l=1

σ2l (2.19)

In a complimentary fashion, the between-imputation variance quantifies the vari-

ability between data sets according to Equation 2.20, which represents the uncer-

tainty associated with missing values.
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σ2B = 1/(L− 1)

L∑

l=1

(θ̂l − θ)2 (2.20)

The number of L data sets that is required for MI is approximately three to five

according to conventional literature (Little and Rubin, 2002). More recent work,

however, has shown that twenty to one hundred data sets are justified in terms of

information gained for minimal computational expense (Graham et al., 2007).

2.3.4 Considerations for Geological Data

The performance of MI hinges on the accuracy of the conditional distribution,

F (Zmis|Zobs), where the majority of documented techniques assume a multiGaus-

sian form. For example, the Gibbs sampler (Geman and Geman, 1984; Metropolis

et al., 1953) is commonly used for generating missing values that converge on the

correct covariance, Σ(0) (Little and Rubin, 2002). As complex multivariate fea-

tures are often present in geological data, such multiGaussian assumptions may

lead to inaccurate and unrealistic results. To be successfully applied in geostatis-

tics, F (Zmis|Zobs) should honor any observed complex multivariate features and

regionalized correlation, neither of which is captured by Σ(0). This will require

that F (Zmis|Zobs) be constructed in a non-parametric fashion and is conditional to

both colocated and spatially correlated data.

The MI techniques that are applied to geological data are surprisingly absent

from the literature. The nearest work is in the field of compositional data analysis,

where imputation is used for the replacement of zero values to facilitate logratio

transforms (Martin-Fernandez et al., 2003). While suitable for their purpose, these

compositional techniques do not consider Σ(h) for h > 0. Imputation has been

applied within other spatial fields, such as agriculture (Lokupitiya et al., 2006), real

estate (Knight et al., 1998), traffic flow (Yuebiao and Zhiheng, 2013), and wireless

sensor networks (Li and Parker, 2008) and environmental monitoring (Munoz et al.,

2010). Techniques for building F (Zmis|Zobs) in these works include nearest neigh-

bour, universal kriging, KDE, neural networks and regionalized mixed Gaussian

models. In all cases, either spatially correlated data or colocated data are consid-

ered, but never both sources. Complex multivariate features are not considered for

any of the reviewed techniques.
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Chapter 3

Imputation of Geological Data

The following chapter presents methodology, examples and discussion relating to the

imputation of missing geological data. A summary of this methodology has been

published in Barnett and Deutsch (2015) and represents a primary contribution of

this thesis. Building on the missing data theory from Section 2.3, multiple imputa-

tion (MI) is modified from its conventional form to integrate spatial and potentially

complex multivariate data. This improves the imputation of geological data in terms

of global bias, local accuracy and reproduction of key properties.

The chapter begins with a discussion on why MI has been selected from the

available imputation techniques, before placing its application within the context

of geostatistical analysis. After developing the MI simulation framework, a variety

of methods are proposed for calculating conditional distributions of missing values

within that framework. The methods are compared using two bivariate datasets

of varying complexity, providing insight into mechanics of the techniques and the

settings where each may be appropriate. The chapter concludes with a discussion

on practical considerations and implementation details of the algorithms.

3.1 MI and Geostatistical Analysis

Recall from Section 2.3 that MI and maximum likelihood estimation (MLE) are

superior to alternative imputation methods since: i) imputed values match the vari-

ability of the data, ii) no bias is introduced with MAR data, and iii) uncertainty

of the imputed values is measured and transferred to subsequent analysis. When

selecting an imputation method for geostatistical analysis, MI is more immediately

suitable since it imputes the missing data values and generates complete data real-

izations. These data realizations may be used for standard geostatistical analysis,
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allowing for seamless integration into popular simulation frameworks. MLE esti-

mates model parameters without imputing data values, making it comparatively

difficult to adapt. It should be noted that the two techniques are asymptotically

equivalent with a sufficient number of data realizations (Enders, 2010), so the less

convenient MLE will not be developed.

MI is now placed within the context of a geostatistical workflow, although ad-

ditional details are provided in the discussion on practical considerations in Section

3.5. Prior to modeling the subsurface, l = 1, ..., L complete data realizations are

generated, where sampled values are constant and imputed values vary in a manner

that reflects the uncertainty of each missing value. The value of L is chosen to match

the number of geostatistical realizations that is simulated, which usually is one to

two hundred realizations in modern workflows (Pyrcz and Deutsch, 2014). Each

dataset is passed through the modeling workflow to condition a single geostatistical

realization of the subsurface. Following this parallel modeling, results are combined

to form a set of simulated realizations that characterize the joint uncertainty of the

subsurface. The accuracy and precision of the resultant response distributions from

this MI workflow should be superior to that of workflows using data exclusion (DE)

or single imputation (SI). The process is schematically illustrated in Figure 3.1.
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Figure 3.1: Schematic illustration of geostatistical modeling with MI.

The number L is chosen to match the number of geostatistical realizations for

several reasons:

i) Diminishing value is gained by using a larger number of realizations than one

hundred (Graham et al., 2007).

ii) The concept of creating one high resolution geostatistical realization per dataset

follows existent geostatistical methodology. Consider the common practice of
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hierarchal modeling, where a matching number of geological facies and continu-

ous properties are stochastically simulated. One continuous property realization

is simulated with one facies realization, with the process being repeated L times

to explore the joint space of facies and property uncertainty (Pyrcz and Deutsch,

2014). Similarly, the described workflow would simulate one geostatistical re-

alization with one data realization to explore the joint space of subsurface and

missing data uncertainty.

iii) Aligning the number of data realizations with the number of geostatistical re-

alizations simplifies workflow scripting and tracking. So long as reasonable

automation is used, the user effort should be the same for any number of data

realizations.

The motivation for imputation is to facilitate multivariate transformations, which

may only be used with homotopic observations. Within the proposed MI workflow,

the required multivariate transformations are applied to the L data realizations to

generate L transformed data realizations. After using each lth transformed data re-

alization to condition one geostatistical realization, the results are back-transformed

to original units. Following this approach, all sampled values of heterotopic data

may be used in a multivariate transformation workflow. Note that there is no added

practitioner effort when executing multivariate transformations with multiple data

realizations, beyond the initial scripting setup as previously described. None of the

reviewed transformations require variable input parameters and the computational

expense of popular multivariate transformations is not prohibitive.

A potential area of concern is the different modeling parameters for each data

realization. For example, a common question is whether semivariograms have to

be calculated and modeled for each data realization as input to the simulation? In

general, global parameters such as the semivariogram are likely to be quite stable

across the data realizations. A primary goal of the imputation methodology that

follows is to reproduce a target semivariogram. As such, calculating and modeling

the semivariogram of the original data or one transformed dataset is sufficient in

most cases.

It is worth noting, however, that the concept of using one imputed data re-

alization to condition one geostatistical realization may be naturally extended to

input parameters. Consider settings where sparse sampling leads to significant un-
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certainty in parameters such as the global mean and semivariogram. In such cases,

one may consider generating L input parameters that span their respective ranges of

uncertainty. Using L input parameters, along with L input data realizations, would

simultaneously account for parameter and imputation uncertainty in geostatistical

modeling.

3.2 Imputation Framework

The imputation framework for generating realizations of missing data values in a

geological context will now be documented. The methodology assumes that the data

follows either a univariate or multivariate Gaussian distribution, depending on the

chosen methodology from the next section. To facilitate the univariate assumption,

the first step of the imputation process is to normal score transform the hetero-

topic data, Z, to the marginally Gaussian heterotopic data, Y. The normal score

transform was introduced in Section 2.1.2, where it was represented by Equation

2.3. Note, however, that Equation 2.3 infers that Z is homotopically sampled since

the same n values are transformed for the i = 1, ...,K variables. It is modified for

heterotopic data as:

yαi = G−1 (Fi(zαi)) , α = 1, ..., ni, i = 1, ...,K (3.1)

where ni is the number of sampled values for the ith variable. This simple modi-

fication is explicitly defined to emphasize that unlike multivariate transforms, the

normal score transform requires no data to be excluded from heterotopic data. It

may therefore be used as a preprocessor to the described imputation methodology

without loss of information.

Now, working with heterotopic data in standard Gaussian space, MI requires

a simulation algorithm for iteratively constructing and sampling from conditional

distributions of the missing values, F (Ymis|Yobs). Many techniques could be con-

sidered, though the Gibbs sampler (Geman and Geman, 1984; Metropolis et al.,

1953) is one of the most popular in missing data literature and practice (Little and

Rubin, 2002). The Gibbs sampler is used here to avoid issues that would otherwise

be encountered with the curse of dimensionality (as defined in Section 3.3.4). It

allows for the joint distribution, F (Y1, ..., YK), to be sampled, while only requiring

F (Yi|Yj , j 6= i) to be iteratively defined for i = 1, ...,K. Illustrating with a bivariate
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case, the Gibbs sampler is initialized with a random value, y02, before iteratively

drawing from the conditional distributions in Equation 3.2, where the superscript t

denotes an iteration of the Gibbs sequence.

Y t
1 ∼ F

(
y1|Y t−1

2 = yt−1
2

)

Y t
2 ∼ F

(
y2|Y t

1 = yt1
) (3.2)

For imputation, the Gibbs sequence will follow a path across all missing values

for each tth iteration. The distribution of each missing value may be conditional

to both sampled and previously imputed values. MCS is then used for drawing a

sample from the conditional distribution, yielding an iteration of the missing value.

Section 3.5 discusses practical implementation considerations for the Gibbs sampler,

including potential paths of the sequence and methods for extracting values from

the Gibbs sequence (e.g. recording iterations to generate data realizations).

3.3 Imputation Methods

Working within a Gibbs sampler framework in univariate Gaussian space, a method

is required for calculating the conditional distribution of each missing value. Four

related methods have been developed, which vary based on the sources and assump-

tions of information that they consider: i) spatial covariance, ii) multivariate covari-

ance, iii) merged spatial and multivariate covariance from techniques (i) and (ii), and

iv) merged spatial covariance from technique (i) with non-parametric multivariate

information from KDE. Comparing the merged methods, (iii) assumes multivariate

Gaussianity, while (iv) captures potentially complex multivariate relationships.

3.3.1 Primary Method

The primary method constructs the conditional distribution of a missing value based

on the auto-covariance between it and spatially correlated values. It amounts to the

application of simple kriging (Chiles and Delfiner, 2012; Journel and Huijbregts,

1978).

Treat an arbitrary variable that is currently being imputed as the primary vari-

able, Yp. Similarly, let u be an arbitrary location where Yp is currently being im-

puted. To inform the imputation, n− 1 sampled and previously imputed primary

values, yp(uα), α = 1, ..., n− 1, are available at spatially correlated locations. Since

Gibbs sampling is being used, n−1 primary values will always be available for condi-
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tioning, though this may include a combination of sampled and previously imputed

values.

With the conditioning data assembled, the primary mean, ȳp(u), and variance,

σ2p(u), of the missing value are calculated according to Equations 3.3 and 3.4, re-

spectively.

ȳp(u) =
n−1∑

α=1

λα · yp(uα) (3.3)

σ2p(u) = 1−
n−1∑

α=1

λαC(u,uα) (3.4)

Here, C(u,uα) is the auto-covariance between the missing value at u and the

sampled value at uα. The weights in Equations 3.3 and 3.4, λα, are calculated

based on the auto-covariance between u and uα, α = 1, ..., n according to the normal

equations:

n−1∑

β=1

λβC(uα,uβ) = C(u,uα) α = 1, ..., n− 1 (3.5)

As any Gaussian distribution is fully defined by its mean and variance, the con-

ditional distribution is now defined by ȳp(u) and σ
2
p(u). MCS may be used for sam-

pling from the resultant distribution, Y t
p (u) ∼ F

(
yp(u)|yp(uα), α = 1, ..., n− 1

)
,

before proceeding to the next missing value in the Gibbs sequence. Note that

yp(uα), α = 1, ..., n may contain imputed values from the t − 1 and t iterations

(as seen in Equation 3.2), but this will not be specified going forward.

The implemented Fortran program requires semivariogram models to be pro-

vided for the K variables, which defines their respective auto-covariances at all lags.

Increasing n can make the system of equations in Equation 3.5 computationally

prohibitive. The program allows for a Markov screening assumption (Section 2.1.3)

to avoid this issue, where Equations 3.3 to 3.5 are based on a user specified number

of nearest observations.

3.3.2 Secondary Method

The secondary method constructs f(Ymis|Yobs) based on the h = 0 covariance

between missing and colocated variables. It amounts to the application of linear

least squares regression (Johnson and Wichern, 1998). While this approach ignores
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the spatial covariance of geological data, it is tested for benchmarking since it is the

most popular implementation of conventional MI (Shafer and Graham, 2002).

Given that the variable being imputed at location u has been defined as the

primary, Yp, classify the remaining variables as secondary, Yi(u), i = 1, ...,K − 1.

Since Gibbs sampling is being used,K−1 secondary variables will always be available

at u, though this may include a combination of sampled and previously imputed

values.

The covariance between the primary and secondary variables may be used to

inform the conditional distribution of the missing value. Calculate the secondary

mean, ȳs(u), and variance, σ2s(u), of the missing value, according to Equations 3.6

and 3.7, respectively.

ȳs(u) =

K−1∑

i=1

λi · yi(u) (3.6)

σ2s(u) = 1−
K−1∑

i=1

λiCp,i (3.7)

where Cp,i is the covariance between the primary variable and the ith secondary

variable. The weights, λi, are solved using the normal equations:

K−1∑

j=1

λjCi,j = Cp,i, i = 1, ...,K − 1 (3.8)

As with the primary method, the calculated mean and variance fully defines the

Gaussian conditional distribution, Y t
p (u) ∼ F

(
yp(u)|yi(u), i = 1, ...,K − 1

)
. Note

that multivariate Gaussianity is assumed by this method, although the normal score

transform (Equation 3.1) only ensures univariate Gaussianity. Should complex mul-

tivariate features persist through the normal score transform, they will negatively

impact imputation results due to the multiGaussian assumption of the method.

3.3.3 Merged Method

The merged method constructs the conditional distribution of each missing value

through merging the primary, F
(
yp(u)|yp(uα), α = 1, ..., n− 1

)
, and secondary,

F
(
yp(u)|yi(u), i = 1, ...,K − 1

)
, distributions from the previous sections. This is

done using a form of colocated cokriging (Deutsch and Zanon, 2004; Doyen et al.,

1996), which uses Equations 3.9 and 3.10 to yield the merged mean, ȳm(u), and

variance, σ2m(u), respectively.

35



ȳm(u) =
ȳs(u)σ

2
p(u) + ȳp(u)σ

2
s(u)

σ2p(u)− σ2p(u)σ
2
s(u) + σ2s(u)

(3.9)

σ2m(u) =
σ2s(u)σ

2
p(u)

σ2p(u)− σ2p(u)σ
2
s(u) + σ2s(u)

(3.10)

Figure 3.2: Schematic illustration of the merged method.

The process is illustrated in Figure 3.2, where a missing Y2 value is imputed

based on: i) the primary distribution (red curve) of the missing value, which is

conditioned by the spatially correlated values (black locations), ii) the secondary

distribution (blue curve) of the missing value, which is conditioned by the colocated

and correlated Y1 value, and iii) parametric merging, where the primary and sec-

ondary distributions are combined to form the final conditional distribution (purple

curve).

The resultant merged distribution,

Y t
p (u) ∼ F

(
yp(u)|yp(uα), α = 1, ..., n− 1, yi(u), i = 1, ...,K − 1

)
, integrates both

spatial and colocated multivariate information, but contains the strong multiGaus-

sian assumption of the secondary method.

3.3.4 Non-parametric Merged Method

As with its parametric equivalent from the previous section, the non-parametric

merged (NPM) method constructs the conditional distribution of each missing value

through merging the primary and secondary distributions. To handle complex
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multivariate features, however, the secondary distribution is calculated directly from

the multivariate data using KDE. The top right panel of Figure 3.3 illustrates this

concept, where kernels (grey ellipses) are fitted to the data (black dots) to build a

non-parametric distribution of Y2 conditional to the colocated y1 value.

Figure 3.3: Schematic illustration of the NPM method.

A potential concern with this approach is the curse of dimensionality, as calculat-

ing the joint KDE for massively multivariate systems is computationally prohibitive.

Fortunately, there is an attractive synergy between KDE and the Gibbs sampler.

Recall that a Gibbs sequence converges on a joint density through iteratively defin-

ing and sampling from conditional distributions. Observing this, KDE estimates are

only made along one-dimensional (1-D) vectors in K-variate space.

Consider a set of K length coordinate vectors yυ, υ = 1, ..., d as cumulatively

representing the discretized locations where F
(
yp(u)|yi(u), i = 1, ...,K − 1

)
is esti-

mated using KDE. The conditioning variables of each yυ are constant according to

the colocated values, yi(u), i = 1, ...,K − 1, while the variable being imputed yp(u)

varies incrementally across its range. The dashed blue line in Figure 3.3 represents

this series of locations, where Y1 is constant according to the colocated y1 value

and the variable being imputed, Y2, varies across its range. Multivariate KDE is

then performed at each of the d locations using Equation 3.11 (Hong, 2010), where

y(uα), α = 1, ..., nhom are the homotopic data values, H is the symmetric positive

definite KxK bandwidth matrix, and W is a kernel function.
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fKDE(yυ) =
1

nhom

nhom∑

α=1

|H|−1/2
WH−1/2 (yj − y(uα)) (3.11)

The black dots in Figure 3.3 represent y(uα), α = 1, ..., nhom, while the grey

ellipses represent the associated kernels (higher density indicated by darker color).

The ellipses illustrate the density that results from each data point, though the KDE

calculations are only performed at yυ, υ = 1, ..., d. The non-parametric secondary

distribution is constructed after summing the resultant densities
∑d

υ=1 fKDE(yυ)

and insuring that the conditions fKDE(yυ) ≥ 0 and
∑d

υ=1 fKDE(yυ) = 1 are met.

This discretized distribution is represented by the blue dashed curve in Figure 3.3.

The subjective kernel bandwidth parameter has been studied and is not the focus

of this thesis. Nevertheless, the implemented approach is briefly described. The

multiGaussian function is used for W since the normal score transformed data, Y,

is marginally Gaussian. The kernel bandwidth parameter is chosen based on iterative

visual tuning, which follows the recommended approach for multivariate bandwidth

selection from Scott (1992). To streamline this visual tuning, the implemented

Fortran program only requires users to input one scalar value, H. This H is used to

scale the covariance matrix of the normal score data, Σ(0), yielding the bandwidth

matrix H.

The non-parametric secondary distribution may be merged with the primary

distribution using a combined probabilities technique that is described in Neufeld

and Deutsch (2006). Consider discretizing the primary, secondary and global (stan-

dard Gaussian) distributions into a number of values and associated probabilities.

If y is a discretized value of interest, its merged probability of occurrence, P (y|p, s),
is calculated as:

P (y|p, s) = P (y|p) · P (y|s)
P (y)

(3.12)

where P (y|p) is the probability of y given the primary distribution, P (y|s) is the

probability of y given the secondary distribution, and P (y) is the global probability

of y. This process is repeated across all d discretizations to yield a non-parametric

merged distribution (purple curve in lower panel of Figure 3.3). Neufeld and Deutsch

(2006) demonstrate that this method yields an identical result to the parametric

approach (Equations 3.9 and 3.10) when applied with Gaussian distributions. Note

that the dashed curves in Figure 3.3 symbolize that the input and output of Equation

3.12 is discretized distributions.
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3.4 Demonstration

Imputation methods from the previous section will now be compared using two

datasets. Variables in the first are approximately bivariate Gaussian, while variables

in the second exhibit complex bivariate features. This allows for a demonstration

of each method in the presence of these contrasting bivariate forms. Identical im-

putation workflows are applied to both datasets; jackknife validation is used, where

a subset of sampled values are removed so that they may be imputed (Davis, 1987;

Efron, 1994; Pyrcz and Deutsch, 2014). The performance of each method is then

measured through comparing the true (removed) values with the imputed realiza-

tions. The section concludes with a comparison and discussion of the results from

both datasets.

Note that the datasets are relatively simple in terms of the number of variables

(two), spatial dimension (two), and the missing completely at random (MCAR)

missing data mechanism. These simplifications allow for mechanics of the imputa-

tion methods to be clearly presented. In a complimenting manner, the case study in

Chapter 7 uses real nickel laterite data that is comparatively challenging in terms

of the number of variables (four), spatial dimension (three) and missing at random

(MAR) missing data mechanism. This provides a realistic geologic setting for testing

the described methods and demonstrating their value.

3.4.1 Gaussian Data

The synthetic dataset is composed of two variables, Z1 and Z2, which are sampled

homotopically at 2,303 locations. Samples are then randomly removed at 1,000 loca-

tions (500 for each variable), although this is constrained so that at least one variable

must remain for each observation. As a result, 1,803 heterotopic observations and

1,303 homotopic observations remain for informing the imputation. Figure 3.4 dis-

plays a map view of the sampled 2-D locations and values, where the missing values

(heterotopic samples) are indicated by open spaces in the regular grid of data.

Figures 3.5 to 3.7 provide key statistics of the sampled and missing data, includ-

ing their univariate distributions (Figure 3.5), spatial variability (Figure 3.6) and

bivariate distribution (Figure 3.7). Imputed values are validated against the missing

values and statistics from these figures, while the sampled values and statistics are

used for construction of the imputation model. More specifically, the normal score
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Figure 3.4: Mapview of the 2-D locations, which are colored by the Z1 and Z2

values (Gaussian data). Note thatZ1 and Z2 range between zero and one to simplify
presentation.

sampled data, as well as its associated covariance matrix and semivariogram model

are used as input to the imputation.

While the sampled values are generally representative of the missing values,

differences do exist in their underlying statistics. These differences arise despite

the MCAR mechanism and should be kept in mind when evaluating the imputation

results that will follow. The global CDFs in Figure 3.5 are summarized by their

mean, µ, and standard deviation, σ. Although the sampled and missing CDFs

match in terms of µ, differences exist between their respective σ. Note that the

absence of the y-axis label for the Z2 CDF in Figure 3.5 infers that it matches

the y-axis label of the Z1 CDF. This minimal approach to figure labeling is only

necessary for high dimension plots in later sections, although it is applied throughout

this thesis for consistency.

The semivariograms in Figure 3.6 (and every other figure) are omnidirectional,

where γ(h) is calculated at lag distances, h, that are not restricted to specific ori-

entations. To simplify interpretation, each Zi semivariogram is standardized by the

h = 0 variance of Zi, so that ρii(h) = 0 when γii(h) = 1 (referred to as the sill).

Small differences are seen between missing and sampled semivariograms at short

scale lag distances, though they are not thought to be consequential or indicative of

a methodological issue.

The scatterplots in Figure 3.7 are colored according to the bivariate Gaussian KDE
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Figure 3.6: Semivariograms of the missing and sampled values (Gaussian data).

of that location. This format is used for visualizing bivariate densities and is referred

to as a KDE scatterplot. The single color bar in Figure 3.7 confirms that the same

color scaling is applied to both plots in this figure. Again, this minimal approach to

figure labeling is only necessary for high dimension plots in later sections, though it

is applied throughout this thesis for consistency.

Conditional distributions of missing Z1 values are displayed for the NPM method

in Figure 3.8, although insight into the other imputation methods is also revealed.

The grey points are the homotopic data values that are used for KDE. The blue

curves represent the non-parametric secondary distributions. The base of each curve

is set according to the colocated Z2 value, so that one can visualize the KDE that

results from the nearby homotopic data (imagining the associated Gaussian kernels

as in Figure 3.3). The red curves are the primary distributions, all of which exhibit a

similar variance due to the semi-regular grid pattern of the data (Figure 3.4). Non-
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parametric merging combines the primary and secondary distributions to produce

the purple distribution, which would then be drawn using MCS.

Observe that many of the secondary distributions are highly Gaussian, which

is expected since Gaussian kernels are describing approximately bivariate Gaussian

data. The merging results vary based on the variance and corroboration of the

primary and secondary distributions. The locations are somewhat arbitrary, though

they are chosen since they display an interesting range of results:

i) Reduction of uncertainty produces a merged distribution that is convex with

respect to the primary and secondary (locations 1, 3, 5 and 6).

ii) Reduction of uncertainty produces a non-convex merged distribution (location

2). This behavior is due to the primary and secondary corroborating one an-

other relative to the global.

iii) No reduction of uncertainty as the secondary has a negligible impact on the

merged distribution. This occurs since the secondary has non-zero probabilities

across the primary and a much larger variance than the primary (location 4).

iv) Non-Gaussian secondary due to poor conditioning for the KDE near the margin

of the bivariate distribution (location 3). This non-Gaussianity is reflected in

the merged distribution. Given that most of the non-parametric secondary

distributions are approximately Gaussian, similar results could be expected for

the parametric secondary and merged methods.
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Figure 3.8: Demonstration of the NPM method using Gaussian data.

After using the four methods to impute one hundred data realizations, the re-

sults are back-transformed to original units and validated against the true missing

values. Bias and accuracy of the techniques are compared in Figure 3.9, which is

further summarized in Table 3.1. Each e-type estimate (mean of the one hundred

realizations) is plotted against its associated true value to understand the local ac-

curacy and conditional bias. The displayed statistics of root mean square error

(RMSE) and Pearson correlation coefficient (ρ) summarize the local accuracy, while

the linear regression line summarizes the conditional bias. Global bias is calculated

as the error of the displayed global means.

Statistics from Figure 3.9 are standardized in Table 3.1 so that overall per-

formance can be more easily judged. The original statistics are divided by their

associated maximum in this table (across all methods, but by variable), so that zero

would represent a perfect result and one is the worst result. Z1 is imputed more

accurately than Z2 in the primary and merged methods since it has greater spatial

continuity (Figure 3.6) and resultant predictability.

The best overall result for each measurement is bolded in Table 3.1, highlighting
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Table 3.1: Standardized summary statistics that measure the performance of each
imputation method in terms of univariate reproduction. The statistics include abs(µ
Error), RMSE, and 1 - ρ from Figure 3.9, as well as γ RMSE from Figure 3.10.

Variable MI Method µ Error RMSE 1 - ρ γ RMSE

Z1

Primary 0.781 0.934 0.818 0.631
Secondary 1.000 1.000 1.000 1.000
Merged 0.758 0.855 0.676 0.603
NPM 0.793 0.854 0.671 0.594

Z2

Primary 0.868 1.000 1.000 0.922
Secondary 0.371 0.901 0.808 1.000
Merged 1.000 0.904 0.790 0.777
NPM 0.962 0.910 0.798 0.809

Average

Primary 0.825 0.967 0.909 0.777
Secondary 0.686 0.950 0.904 1.000
Merged 0.879 0.879 0.733 0.690

NPM 0.878 0.882 0.734 0.701

that the merged methods outperform the alternatives for every measure other than

global bias. Summary statistics in Figure 3.9 are the same for the merged methods

to two decimals places (they differ at three). This is the anticipated result since

approximately multiGaussian data is being imputed. Discrepancies between the

two techniques occur when the non-parametric secondary distributions are very

non-Gaussian (such as location 3 in Figure 3.9), which is relatively infrequent.

Semivariograms of the true values and imputed realizations are displayed in Fig-

ure 3.10. To summarize the difference between them, the displayed RMSE statistic

is calculated using the semivariogram error at each lag. This RMSE is standardized

and averaged in Table 3.1 to simplify the comparison. As expected, the methods

that integrate spatial information greatly outperform the secondary method.

Reproduction of the bivariate relationship between the two variables is shown

in Figure 3.11. Since the data is approximately bivariate Gaussian, the displayed

correlation may be considered as a reasonable statistic for summarizing performance.

Given the 0.59 correlation of the sampled data (Figure 3.7), it is unsurprising to

see the secondary method yielding a 0.58 correlation. The secondary method is

only concerned with converging on the correct covariance and is expected to yield

the best results with this Gaussian data. Given that the primary method does not

consider h = 0 covariance, it is equally unsurprising that it yields the worst result.

The KDE RMSE appearing in this figure is calculated based on the difference
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between the KDE of the true missing values and the KDE of each imputation result.

In other words, it summarizes the difference between the data and imputation results

in Figure 3.11. Observe that the correlation and KDE RMSE statistics corroborate

the rank order of the imputation performance; aside from the NPM, which yields the

best KDE RMSE result. The KDE RMSE statistic is more useful when evaluating

the reproduction of complex bivariate data (beginning in the next section), though

it is presented here for consistency.
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Figure 3.9: Scatterplots and summary statistics that compare the imputed e-type
with associated true values (Gaussian data).
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Figure 3.10: Semivariograms of the one hundred imputed realizations for each MI
method, with the true semivariograms overlain for comparison (Gaussian data).
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ization), with the true scatter plot displayed for comparison (Gaussian data).
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3.4.2 Complex Data

The following considers the same imputation workflow and performance evaluation.

While the data being imputed is also identical in terms of the configuration and

jackknife removal scheme, the sampled variables exhibit complex bivariate features

instead of the bivariate Gaussian features from the previous section. Readers are

referred to the previous section for explanations of the figure and table layouts.

Figure 3.12 displays a map view of the sampled 2-D locations and values, while

Figures 3.13 to 3.15 provide key statistics of the sampled and missing data. Of

particular note, is the heteroscedastic and non-linear features that are present in

Figure 3.15. As in the previous section, differences exist in the underlying statistics

of the sampled and missing values despite the MCAR missing data mechanism. In

particular, the short scale spatial continuity (Figure 3.14) and bivariate distribution

(Figure 3.15), both in terms of correlation and the KDE scatterplot.
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Figure 3.12: Mapview of the 2-D locations and values, where missing locations in
the regular grid indicate heterotopic samples (complex data).

Conditional distributions of missing Z1 values are displayed for the NPM method

in Figure 3.16. As with the Gaussian equivalent (Figure 3.8), the locations are chosen

since they display an interesting range of results:

i) Reduction of uncertainty produces a merged distribution that is convex with

respect to the primary and secondary distributions (locations 1, 4 and 6).

ii) Reduction of uncertainty produces a non-convex merged distribution (locations

3 and 5).
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Figure 3.14: Semivariograms of the missing and sampled values (complex data).

iii) No reduction of uncertainty as the secondary distribution has a negligible im-

pact on the merged distribution (location 2).

The secondary distributions in Figure 3.16 are far less Gaussian than the results

in Figure 3.8. This is expected given that the underlying bivariate distributions are

complex and Gaussian, respectively. This non-Gaussianity is extended to the merged

distributions in locations 5 and 6 of Figure 3.16, since the variance of the secondary

distributions is sufficiently low relative to the Gaussian primary distributions at

these locations.

After using the four methods to impute one hundred realizations, the results are

back-transformed to original units and validated against the true missing values.

Bias and accuracy of the techniques are compared in Figure 3.17, which is further

summarized in Table 3.2. Observe that Z1 is imputed more accurately than Z2 for

the primary and merged methods since it has greater spatial continuity (Figure 3.14).

The best overall result for each measurement is bolded in Table 3.2, highlighting
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Figure 3.15: KDE scatterplots of the missing and sampled values (complex data).

that the NPM method outperforms the alternatives for every measure. Unlike the

Gaussian dataset results (Figure 3.9), the NPM method outperforms its parametric

equivalent by a significant margin in terms of global bias and local accuracy. While

the obvious advantage of the NPM method is that multivariate complexities should

be reproduced, this result demonstrates that improvements in the reproduction of

univariate statistics may also be expected.

Table 3.2: Standardized summary statistics that measure the performance of each
imputation method in terms of univariate reproduction. The statistics include abs(µ
Error), RMSE, and 1 - ρ from Figure 3.17, as well as γ RMSE from Figure 3.18.

Variable MI Method µ Error RMSE 1 - ρ γ RMSE

Z1

Primary 0.640 0.809 0.530 0.630
Secondary 1.000 1.000 1.000 1.000
Merged 0.152 0.781 0.487 0.590
NPM 0.074 0.745 0.433 0.526

Z2

Primary 0.994 1.000 1.000 0.922
Secondary 0.672 0.899 0.970 1.000
Merged 1.000 0.976 0.942 0.894
NPM 0.840 0.920 0.837 0.842

Average

Primary 0.817 0.904 0.765 0.776
Secondary 0.836 0.950 0.985 1.000
Merged 0.576 0.878 0.714 0.742
NPM 0.457 0.832 0.635 0.684

Semivariograms of the true values and imputed realizations are displayed in

Figure 3.18. The displayed RMSE statistic is standardized and averaged in Table

3.2. As expected, the methods that integrate spatial information greatly outperform
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Figure 3.16: Demonstration of the NPM method using complex data.

the secondary method. Discrepancies in the short scale structure are explained by

comparing semivariograms of the sampled and missing values (Figure 3.14).

Reproduction of the bivariate distribution is examined in Figure 3.19. As with

the Gaussian dataset, the secondary method yields the best reproduction of colo-

cated correlation. Again, this is expected given that the secondary method is only

concerned with converging on the correct correlation. Since the data is not bivariate

Gaussian, however, the displayed correlation is no longer an appropriate statistic for

summarizing performance. The NPM method best reproduces the non-linear and

heteroscedastic features of the data according to the KDE scatterplot. This visual

observation is supported by the KDE RMSE statistic.
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Figure 3.17: Scatterplots and summary statistics that compare the imputed e-type
with associated true values (complex data).
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Figure 3.18: Semivariograms of the one hundred imputed realizations for each MI
method, with the true semivariograms overlain for comparison (complex data).
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Figure 3.19: KDE scatterplots of the imputed values for each method (one real-
ization), with the true scatter plot displayed for comparison (complex data).
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3.4.3 Summary

Synthesizing key findings of the two datasets, the merged methods yield consistently

superior results in terms of local accuracy. As evidenced in Figures 3.9 and 3.17 and

summarized in Tables 3.1 and 3.2, missing values are imputed nearer to their true

values when incorporating information from both spatial and colocated sources. As

expected, the merged methods produced very similar results when applied to the

Gaussian data, though the NPM method produced significantly better results with

the complex data. No consistent benefit was observed for the tested methods in

terms of global and conditional bias.

As shown in Figures 3.10 and 3.18 (summarized in Tables 3.1 and 3.2), the

methods that incorporate spatial information into the imputation model yielded

far better reproduction of spatial variability than the secondary method. Perhaps

more surprising, however, is that the merged methods yield better spatial continu-

ity reproduction than the primary method. Integrating the colocated information

improves the accuracy of local estimates, which in turn leads to better reproduction

of the spatial structure.

The results are more mixed in terms of bivariate reproduction, though this was

expected based on critical differences in the data. The secondary method reproduces

correlation the best for both datasets, but it yields inferior reproduction of the

complex bivariate features (Figures 3.11 and 3.19). The reason for this discrepancy

is the bivariate properties of the two datasets. The Gaussian assumptions of the

secondary method are correctly applied with the Gaussian data, allowing for it to

converge on the correct covariance. In the case of the complex data, however, the

covariance fails to capture the bivariate distribution of the data. Consequently, the

NPM method outperforms the secondary method and parametric merged methods

in non-Gaussian settings.

These examples support the simultaneous inclusion of spatial and colocated

information when constructing conditional distributions for MI. Since the NPM

method takes longer to execute and has additional complexities (due in both cases

to its use of KDE), there is no perceived value in using the method with data that

exhibit bivariate Gaussianity. Of course, such simplicity will rarely be encountered

with geological data in practice. When applied to complex data, the NPM method

produces substantially better results than its parametric equivalent. This conclusion

is supported by the case study results in Chapter 7.
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3.5 Discussion

The following section discusses practical problems and implementation decisions for

the described imputation methods. Note that the described implementations have

been used in the Fortran programs that generated the presented results.

3.5.1 Extraction from the Gibbs Sequence

As summarized in Casella and George (1992), several strategies are available for

extracting values from a Gibbs sequence to record L realizations of each missing

value. A theoretically attractive method executes L independent sequences using

L random starting locations. The Gibbs sampler proceeds until convergence is ob-

served for a property of interest considering values of the current iteration across

the L sequences. Values of the final iteration for the L sequences are then recorded

as the L realizations. This strategy is attractive since it reduces dependence on the

starting random value and virtually insures that the recorded values are indepen-

dent and identically distributed (iid) with respect to each other. It may not be

computationally feasible, however, depending on:

i) The number of missing values that the sequence must proceed through.

ii) The number of iterations that are required for convergence.

iii) The chosen method for constructing the conditional distributions. Note that

the NPM method is computationally expensive in this regard due to its use of

KDE.

Observing these computational challenges, a second option is to execute one

long sequence, extracting the values of every r number of iterations until L real-

izations are recorded (Geyer, 1991). The extracted values are approximately iid for

large enough values of r. While this strategy may be considered for the parametric

methods that are described in the previous sections, it was found to remain too com-

putationally expensive for the NPM method with typical mining datasets (>10,000

data). The third and most computationally attractive option is to extract consecu-

tive L iterations. Although the realizations are dependent, George and McCulloch

(1991) shows that the extractive values will still converge on the underlying joint

distribution.
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Considering the positives and negatives of each approach, a hybrid of the first

and third options has been implemented. User specified b burn-in iterations are

executed before extracting the next L iterations. The burn-in iterations reduce

dependence on the random starting values, while recording the next L iterations

makes the NPM method feasible for large datasets. There is some dependency

between realizations using this method; the consequences that this may have on the

imputation uncertainty is examined in Chapter 7. A sufficient number of b iterations

was found to be critical in terms of increasing the accuracy of the extracted L

iterations. Methodology for determining the value of b is a focus of future work

(Chapter 8), though it is increases with increasing K and decreases with increasing

spatial correlation. Based on jackknife accuracy testing, b = 2 is required for the

examples in this chapter, while b = 8 is required for the case study in Chapter 7.

3.5.2 Path of the Gibbs Sequence

The simulation path is an important consideration for most sequential simulation

schemes; the path that the Gibbs sequence takes through the missing values is

thought to be no exception. No mention of this practical detail was found in the

review of missing data literature; it may be inferred that simulation path is not

considered to be of particular import with MI.

A random path is commonly implemented for geostatistical algorithms (Deutsch

and Journel, 1998), though there is a concern that this may not be appropriate for

imputation. Consider the widely varying uncertainty that could exist for missing val-

ues. Some missing values may have almost no conditioning information in terms of

colocated secondary values and spatially correlated primary values (sampled rather

than previously imputed). A simplified example of this is shown in Figure 1.5, where

the conditional distributions of missing values at location 5 are very uncertain rel-

ative to the single missing value at location 1. If the simulation path were to start

at highly uncertain locations, it is possible that subsequent simulation of the highly

certain locations would become ‘trapped’. That is to say, the conditioning of previ-

ously simulated (but highly uncertain) values could lead to a primary distribution

that fails to corroborate the secondary distribution. In turn, this could negatively

influence the merged distribution and lead to inferior accuracy of the imputed re-

sults. This issue arises due to the Markov model of coregionalization that is implicit

to the methods. An imputation scheme that uses cross-covariance, such as the linear
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model of coregionalization (LMC) would not suffer from this problem. Coregional-

ization models that consider cross-covariance have been avoided for practical reasons

that were discussed in Section 2.1.3.

This issue is likely overcome with a sufficient number of b iterations for the burn-

in sequence. Due to the potential computational expense of each iteration, however,

a simulation path is used that avoids it by construction. Prior to executing the

Gibbs sampler, the merged method is used to calculate the conditional variance, σ2m

(Equations 3.9 and 3.10). Treating σ2m as a proxy of uncertainty, the simulation

path will then be ordered according to increasing σ2m. This approach is analogous

to using simple kriging variance for determining the simulation path of SGS.

Unlike in the Gibbs sampler, only the sampled data is used for determining

this uncertainty. The primary and secondary variances that are input to Equations

3.9 and 3.10 are impacted by this change. Variance of the primary distribution

(Equations 3.4 and 3.5) is calculated using the number of sampled primary values,

ns ≤ n− 1, rather than n− 1 sampled and previously imputed values. Variance of

the secondary distribution (Equations 3.7 and 3.8) is calculated using the number of

colocated sampled variables, Ks ≤ K−1 , rather than K−1 sampled and previously

imputed variables.

The NPM method is not used for this step since unlike its parametric equivalent,

the conditional variance of each missing value cannot be calculated without theK−1

secondary variables present at each colocated location. The simulation path will not

have separate loops for each variable or location, but varies between variables and

locations as each σ2m dictates.

3.5.3 Poorly Informed Bivariate Pairs

The covariance matrix of the normal score data, Σ : Cij , i, j = 1, ...,K, plays a

central role in the described imputation methods. The merged method uses terms

from Σ when calculating the secondary weights in Equation 3.8. The NPM method

uses a kernel bandwidth matrix, H, that is scaled by Σ. Clearly, it is important that

Σ is calculated in a reliable manner. A covariance matrix is traditionally calculated

using only homotopic observations to insure that the result is positive-semidefinite.

This could pose problems in practice, however, since certain variables may rarely be

sampled in colocated locations. In the extreme case, some variables may never be

sampled together, meaning that no samples are available for calculating Σ.
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Despite missing at least one variable, a heterotopic observation may continue to

sample the ith and jth variables; it could therefore be considered in the calculation

of Cij . In circumstances where only using homotopic observations severely impacts

the sample population that is available for calculating Σ, it is advocated that all

sampled bivariate pairs are used for the calculation of their associated Cij term.

While the resulting heterotopic covariance matrix is not guaranteed to be positive

semi-definite, optimal corrections exist for that purpose. A weighted correction

proposed by Kumar and Deutsch (2009) is chosen so that some control is maintained

on the changes. Consider that each Cij will have varying confidence based on the

number of samples that underlies its calculation. The correction is then given by

Equation 3.13, where iterative optimization is used to find the positive semi-definite

matrix Ψ : ψij , i, j = 1, ...,K that minimizes changes to the input covariance matrix.

The Ω : ωij , i, j = 1, ...,K matrix weighs the influence that each component has on

the optimization, so that changes may be reduced for Cij that are relatively certain

(and vice versa).

Minimize :
K−1∑

i=1

K∑

j=i+1

ωij ∗ (ψij − Cij)
2 (3.13)

The confidence of each Cij does not increase in a linear fashion with respect to

the number of sampled data, nij , used in its calculation. Instead, the covariance con-

fidence relates to the number of independent sampled data, n′ij (Niven and Deutsch,

2008). This value is calculated based on the spatial covariance that exists between

the data. Increasing covariance leads to increasing redundancy and decreasing n′ij .

The value of n′ij is calculated as:

ωi,j = n′ij =
n2ij

nij∑
α=1

nij∑
β=1

Cαβ

(3.14)

Here, Cαβ is the auto-covariance that exists been the α and β locations where

both the ith and jth variables are sampled. As shown, each term of Ω in Equation

3.13 is assigned based on the associated number of independent data.

Practically speaking, Cαβ is calculated using the semivariogram model of the ith

variable, which will already be required as input to the imputation program. This

step therefore requires no additional effort from the user. A binary option specifies

whether covariance should be calculated using homotopic or heterotopic data. If

58



the latter option is selected and the result is not positive semi-definite, then the

described correction is applied.

3.5.4 Non-colocated Variables

The previous section presented a methodology for addressing situations where bi-

variate pairs are poorly sampled. A problem remains, however, if two variables are

never colocated, meaning that no information is available for their bivariate pair at

h = 0. If the merged method is being used, then only the covariance, Cij , is required

for informing the relationship between the ith and jth variables. One may consider

estimating Cij based on the cross-covariance of the two variables. As detailed by

Minnitt and Deutsch (2014), this amounts to extrapolating Cij(h) for h > 0 to the

h = 0 lag distance.

Unfortunately, there is no understood solution for applying the NPM method

with non-colocated variables. Only homotopic observations may be considered for

conditioning the multivariate KDE (Equation 3.11). While this is an interesting

topic of future research, the current work is limited to the merged method when

imputing non-colocated variables.
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Chapter 4

Exploratory Multivariate

Transformations

As detailed in Section 2.2, no technique is available for transforming multivariate

data of arbitrary form and dimension to be multiGaussian. Several transforma-

tions were developed to address this issue over the course of this thesis, including

conditional standardization (CS), the multivariate standard normal transformation

(MSNT) and the projection pursuit multivariate transform (PPMT). While the

PPMT has emerged as the preferred technique, it is a reflection of challenges that

were encountered in development of the former transformations. Further, the PPMT

was conceived within the Gaussian mapping transformation framework that was

originally proposed for the MSNT.

The following chapter provides a brief overview of the CS and MSNT techniques.

Background is provided on the challenges that motivate the PPMT. The PPMT is

described and demonstrated in far greater detail in Chapter 5.

4.1 Conditional Standardization

CS (Barnett and Deutsch, 2012b) transforms non-linear and heteroscedastic data to

approach linearity and homoscedasticity. While not specifically targeting a multi-

Gaussian distribution, CS yields distributions that may be more suitable for co-

simulation frameworks or subsequent linear decorrelation transformations. The

original non-linearity and heteroscedasticity is returned to simulated realizations

following back-transformation.
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Figure 4.1: Schematic illustration of conditional standardization. Given a non-
linear and heteroscedastic bivariate distribution (left), the subtraction of its condi-
tional mean and division of its conditional standard deviation yields a linear and
homoscedastic distribution (right).

4.1.1 Forward and Back Transformations

Consider a bivariate distribution consisting of two variables, Z1 and Z2, that con-

stitute an n x 2 data matrix, Z. The relationship between these variables may

be non-linear and heteroscedastic, such as the schematic distribution in Figure 4.1.

Subtracting the Z2 values by a function that describes the mean of Z2 conditional

to the colocated values of Z1, will yield a residual distribution that is approximately

linear. Similarly, dividing Z2 by a function that describes the standard deviation of

Z2 conditional to Z1 will yield a distribution that is approximately homoscedastic.

The bivariate form of CS is given by Equation 4.1, which yields the second

column of the transformed data matrix, Y. The first column of Y is identical to

the first column of Z, as the first conditioning variable is not altered by CS. In

other words, z1(uα) values could be used interchangeably with the y1(uα) values in

Equation 4.1.

y2(uα) =
z2(uα)− E{z2(uα)|y1(uα)}√

V ar{z2(uα)|y1(uα)}
, α = 1, ..., n (4.1)

The conditional mean and standard deviation functions may be derived para-

metrically using forms of regression or non-parametrically through discretizing the

distribution according to probability classes of the conditioning variable. This con-

cept may also be extended to higher dimensions, where a variable is transformed

conditional to two or more variables. The generalized form of the transformation is

given by Equation 4.2, which yields columns 2 to K of the nxK matrix, Y.
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yi(uα) =
zi(uα)− E{zi(uα)|y1(uα), ..., yi−1(uα)}√

V ar{zi(uα)|y1(uα), ..., yi−1(uα)}
, α = 1, ..., n, i = 2, ...,K (4.2)

The conditional mean and standard deviation functions are saved, facilitating

the back-transformation:

zi(uα) = yi(uα) ·
√
V ar{zi(uα)|y1(uα), ..., yi−1(uα)}+

E{zi(uα)|y1(uα), ..., yi−1(uα)}, for α = 1, ..., N, i = 2, ...,K (4.3)

Equation 4.3 restores the heteroscedasticity and non-linearity to the simulated

realizations.

4.1.2 Practical Challenges

The success of this transform is dependent on conditional mean and standard devi-

ation functions that accurately characterize the non-linearity and heteroscedasticity

of the distribution. The non-parametric approach is generally expected to produce

superior results, since no assumptions of the functional form of the distribution

must be made. Parametric application may still be considered, however, in cases

where a low number of n observations, or high number of K variables makes the

non-parametric approach impractical.

Should the non-parametric approach be chosen, there is no strict rule regarding

the number of classes that are required for partitioning the conditioning variable,

or the number of observations that are required in each bin for the subsequent cal-

culations of mean and standard deviation. The fewer the classes, the more likely

that complex features will remain within the partitioned bins following transforma-

tion. Conversely, increasing the number of classes decreases the likelihood of stable

conditional statistics. This relationship between the number of observations and

the number of bins is analogous to the challenges with SCT that were discussed in

Section 2.2.2. As with the SCT, smoothing algorithms where data beyond the class

partitions often help, but based on observation it is unlikely that greater than three

conditioning variables will be viable. In these cases practitioners may choose be-

tween either using a parametric calculation of the conditional functions, or a ‘nested’

application of the non-parametric approach.
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Nested application refers to using only one, two or three conditioning variables

to remove complex features from the higher order conditioned variables. Again, this

approach was originally proposed for the SCT by Leuangthong and Deutsch (2003).

Addressing these selected relationships will often resolve the majority of the com-

plexity between variables that are not transformed conditional to one another. This

is not guaranteed, however, and careful decision making must take place regarding

the ordering of these variables. Considerations may include:

i) Reproduction of the multivariate relationships between the primary resource

variable and secondary variables; this requires that all secondary variables are

transformed conditional to the resource variable.

ii) Reproduction of a multivariate relationship between secondary variables that

are critical to process performance; one secondary variable must condition the

other.

iii) Reproduction of bivariate relationships that exhibit significant complexity; a

well behaved transformed distribution will likely require that one variable con-

ditions the other. As discussed by Friedman (1987), complexities in a bivariate

distribution are shadows of sharper complexities in higher order dimensions. It

follows that bivariate complexities are likely to persist if they are not directly

targeted for removal.

The above considerations often lead to difficult decision making, as all of them

are unlikely to be satisfied with a nested CS application. Such challenges motivate

the parametric approach, which was the original concept when CS was conceived as

a method to avoid the curse of dimensionality. The initial parametric approach used

least squares regression with linear, squared and cubic functions of the conditioning

variables; the specific functions were determined based on the best resulting RMSE

of the regression. Ultimately, however, testing found that it was very difficult to

fit complex geological data with these mathematical functions. If the conditional

functions do not adequately characterize the true relationships, CS will fail to remove

the complexity.
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4.2 Multivariate Standard Normal Transformation

Observing the shortcomings of transformations such as CS and SCT, the MSNT

(Barnett and Deutsch, 2012a; Deutsch, 2011) was proposed for the transformation

of complex multivariate data to an uncorrelated multiGaussian distribution. The

MSNT was the first method to be proposed under what is now called the Gaussian

mapping (GM) transformation framework, which is not sensitive to an increasing

number of variables.

4.2.1 Gaussian Mapping

The objective of GM is to map the sampled data, Z, to an uncorrelated multi-

Gaussian distribution of matching dimensions and observations, Y. This mapping

is recorded as a multivariate transform table, where observations in the original

distribution are associated with multiGaussian values. This concept is presented

in Figure 4.2 where arrows represent the mapping. Following independent geosta-

tistical modeling of each variable, Gaussian realizations may be back-transformed

through interpolating based on the mapped data. This back-transform scheme is

shown in the bottom of Figure 4.2, where a single simulated node (square) is inter-

polated in original space based on its distance to the nearest mapped data (circles)

in transformed space.

Observe that GM amounts to the multivariate extension of a normal score trans-

formation. Unlike the SCT and non-parametric CS, no binning or gridding is per-

formed. The transform is defined using only the original data and their multi-

Gaussian equivalent, meaning that it can be applied to any arbitrary number of K

variables. The specific forward transform that defines a GM and the back-transform

that applies it are left purposefully ambiguous for now. Those details are what char-

acterize specific transformations such as the MSNT and PPMT. Properties that are

required for a successful GM are discussed first.

The forward transform should map the data to an uncorrelated multiGaussian

distribution in a manner that minimizes changes to the relative multivariate config-

uration of the original distribution. Consider quantifying the relative multivariate

configuration using the distance between each observation. It follows that a success-

ful GM should minimize changes to the distances between observations in original

and transformed space. When neighbours are mapped adjacent to one another, the
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Figure 4.2: Schematic illustration of the forward and back GM transform frame-
work.

back-transform in Figure 4.2 will cause nearby simulated values to be mapped back

within their locale. The original variability and declustered joint density of the

data should be closely reproduced by realizations in these cases. On the contrary,

if the mapping is completely randomized, the back-transform results will converge

towards the global mean, dramatically reducing the variability. A poor mapping is

illustrated in Figure 4.3, where data that are far apart in original space (grey cir-

cles) have been mapped near to each other in transformed space. Observe that this

causes the back-transform of a simulated node (square) to be interpolated toward

the global mean. If repeated over all simulated nodes, back-transforming with a

poor mapping will lead to a severe loss of variability.

Another potential consequence of a poor mapping is a loss of spatial continuity.

A systematic increase in the relative multivariate distances will inevitably lead to

a decrease in the spatial structure. A random mapping results in semivariograms

that are pure nugget effect, Cii(h) ≃ 0 ∀h, i.
Shifting focus to the GM back-transformation, the chosen interpolation scheme

should preserve the configuration between a simulated node and the nearby mapped
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Figure 4.3: Schematic illustration of the GM back-transform based on a poor
mapping.

observations. More specifically, the relative distances between a simulated node and

the mapped observations in multiGaussian space should be maintained after back-

transforming to original space. Assuming an effective forward mapping, this should

lead to reproduction of key statistics. It is worth emphasizing that the variability

of the original data should be reproduced by back-transformed realizations. A char-

acteristic of many interpolation schemes is smoothed results, which is a concern for

this application.

4.2.2 Forward Transformation

The following section will outline the forward MSNT transformation, which may

be subdivided into three steps: i) assemble the univariate multivariate Gaussian

distributions, ii) initial mapping through dimension reduction, and iii) final mapping

through simulated annealing.

Step 1: Assemble the Univariate and Multivariate Gaussian Distributions

As subsequent mapping steps will revolve around the Euclidean distance between

observations, the MSNT is very sensitive to drastically different units or outlier

values. To address these issues simultaneously, the normal score transform (Section

2.1.2) is applied to transform theK variables of the original data, Z, to the univariate

standard Gaussian data, X.

The transformed data, X, is the origin of the subsequent Gaussian mapping.

Uncorrelated multiGaussian data, Y, of a matching number of K variables and

n observations is now required as the destination of the Gaussian mapping. This

multiGaussian data is generated according to Equation 4.4, where G is the standard
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Gaussian CDF and p are random probabilities.

Y=G−1






p11 . . . pK,1
... pα,i

...
pn1, · · · pn,K





 ,pα,i ∈ [0, 1] (4.4)

MCS could be considered for generating p, but doing so is likely to generate

distributions that deviate from the multiGaussian model when n is relatively small.

Consider the example in Figure 4.4, where MCS is used to generate data of K = 2

and n = 280. The plots in this figure are output from the scatnscores program

(Deutsch and Deutsch, 2011), which plots the correlated multiGaussian probability

density contours of 0.25, 0.5 and 0.95 for reference. The program also performs a

bivariate standard normal (BVSN) Gaussianity test by comparing the expected and

observed density of data that fall in each of these density contours (by quadrant).

While the absence of red text in Figure 4.4 indicates that the MCS sample has

passed the BVSN test, the observations are not dispersed in a manner that closely

mimics the multiGaussian contours. While expected given the low value of n, this

is a cause for concern given the back-transform scheme that is displayed in Figure

4.2. Simulated nodes are interpolated towards the clustered mapped observations in

a manner that is not representative of the underlying Gaussian model. Further, the

MCS sample is not entirely uncorrelated and will require subsequent decorrelation

to be representative of the independently simulated variables.

MCS LHSMDU 

Figure 4.4: scatnscores plots and Gaussianity tests of random Gaussian distri-
butions that have been generated using MCS and LHSMDU.

Observing these deficiencies with MCS, latin hypercube sampling with multi-

dimensional uniformity (LHSMDU) (Deutsch and Deutsch, 2012b) is applied to

generate uncorrelated distributions of p that are uniformly distributed in multi-
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variate space. Applying the LHSMDU probabilities with Equation 4.4 yields the

results that are displayed in Figure 4.4. While the LHSMDU results continue to ex-

hibit deviations from a perfect bivariate Gaussian cloud, the data are now entirely

uncorrelated and evenly distributed.

Step 2: Initial Mapping Through Dimension Reduction

An nx1 vector of indices, m, will now be used to map the univariate Gaussian

data, X, to the multiGaussian data, Y. While m is heuristically optimized in

the next step, a reasonable initial mapping will significantly reduce the number of

iterations that are required for convergence. This amounts to a dimension reduction

problem, as multivariate observations of two distributions must be described by a

single measurement that allows for the best possible alignment.

Original Distribution Transformed Distribution

Y1

Y2

Z1

Z2 Z1

High

Low

Figure 4.5: Schematic illustration of an initial mapping based on the rank order
of Z1. Also introduces the concept of coloring transformed values by the original
values as means for visualizing changes to the multivariate configuration.

One may be influenced by practical priorities for this dimension reduction. Con-

sider basing the initial mapping on the rank order of an original variable of particular

interest (e.g., resource variable, the most spatially continuous variable, etc.). Figure

4.5 displays a schematic illustration of an initial mapping based on the rank order

of an original variable, Z1. The arrows in this figure represent m; they are colored

by the associated Z1 value to help visualize changes that are incurred to the mul-

tivariate configuration. Observe that while this mapping successfully preserves the

rank order of Z1, large changes are seen in the overall multivariate configuration.

A better option for this dimension reduction is to use PCA (Section 2.2.1), which

yields an eigenvector matrix, V, that is sorted according to the variability that each
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vector explains. The first row provides a vector rotation of the data that maximizes

the variability that one dimension can explain. As a result, multiplying X and Y

by the first row of V yields a single measurement that reasonably approximates how

closely mapped each multivariate observation should be. Relative to using original

variables, this PCA approach to the initial mapping was found to significantly reduce

subsequent convergence time.

Step 3: Final Mapping Through Simulated Annealing

Given a mapping index, m, let dx(α,β) be the Euclidean distance between the α

and β observations in the univariate Gaussian distribution, X, while dy(α,β) is the

distance between those same observations in the multiGaussian distribution, Y. The

final step of the MSNT will minimize changes to dx(α,β) according to the objective

function:.

min


O =

n∑

α=1

n∑

β=1

(
d2x(α,β) − d2y(α,β)

)2


 (4.5)

This optimization may not be solved using global linear or convex solvers. In-

stead, it is accomplished through randomly perturbing m in a pairwise fashion using

a simulated annealing framework (Deutsch, 1992; Metropolis et al., 1953). The deci-

sion to square the distances in Equation 4.5 was made after testing a range of powers

with multiple datasets. It heavily penalizes observations that are far apart in X but

near in Y (and vice versa). After a sufficient number of iterations, m converges

on a mapping that minimizes changes to the relative multivariate configuration.

Practically speaking, m is recorded by constructing a table that places the original

data observations from Z with their associated transformed observations from Y.

This transformation table facilitates the back-transformation that is described in

the next section.

4.2.3 Back-transformation

To simplify presentation of the MSNT back-transformation, consider the original and

transformed data matrices as n vectors of sizeK: zα, α = 1, ..., n and yα, α = 1, ..., n,

respectively. Redefine dy(α,β), α = 1, ..., n as the Euclidean distances between a sim-

ulated node, yβ , and the α = 1, ..., n mapped observations in multiGaussian space.

Three dy(α,β) distances are represented by the distance symbols within the trans-
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formed data in Figure 4.2. As illustrated in this figure, the back-transform aims to

preserve the relative distance between the simulated node and its nearest mapped

neighbours. This is achieved using Equation 4.6, where original values of the sim-

ulated node, zβ , are calculated based on the nearest K + 1 data observations in

multiGaussian space. Here, zα denotes the original values for the nearest yα obser-

vation in transformed space. The associated weight, λα, is shown to be inversely

proportional to dy(α,β).

zβ =
K+1∑

α=1

λαzα, where λα ∝ 1

dy(α,β)
and

K+1∑

α=1

λα = 1 for β = 1, ..., N (4.6)

Any number of nearest mapped observations could be used for this interpolation,

but it is recommended that the number of observations beK+1. Using less than this

does not adequately constrain the multivariate interpolation, but increasing beyond

K +1 will begin to converge the back-transformed results towards the global mean.

Continuing to draw an analogy with the normal score back-transform, observe that

two data observations are used for the linear interpolation of that 1-D transform.

Rather than assigning weights as a linear inverse function of distance (Equation

4.6), consider calculating those weights using more complex systems of equations

such as variants of the normal equations. Doing so would incorporate the covari-

ance between the simulated node and nearby mapped observations, as well as the

covariance between those observations to determine the optimal weight. Given the

small number of observations that are involved in each estimate (K + 1), however,

preliminary testing found that weighting schemes such as ordinary and universal

kriging (Chiles and Delfiner, 2012; Journel and Huijbregts, 1978) offered negligible

improvements to the results.

4.2.4 Practical Challenges

The concept of the MSNT is novel and conceptually simple. A mapping is estab-

lished between the original and multiGaussian data of matching K variables and n

observations. Following independent Gaussian simulation, the original complexity

is restored using a weighted interpolation of the mapped data. The MSNT was con-

ceived as a method that would not be sensitive to increasing K variables. Following

the described implementation details, it was found to be an effective method on

small test cases.
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Unfortunately, however, the MSNT was also found to be very sensitive to in-

creasing n observations. The convergence time for minimizing Equation 4.5 gener-

ally increases as a function of n at beyond a quadratic rate. Results from one test

case are displayed in Figure 4.6 (Barnett and Deutsch, 2012a), where the execution

time becomes prohibitive for n > 500.
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Figure 4.6: MSNT execution time as a function of increasing n observations.

Consequently, the MSNT may not be practical for geological datasets that ex-

ceed 500 to 2,000 observations. A range exists that is dependent on practitioner

patience and particulars of the multivariate data (the amount of optimization that

is required following the initial mapping). As n will frequently exceed 1,000 obser-

vations for geological datasets (even after domaining), the MSNT is not applicable

to a wide range of practical settings. This problem is exacerbated if using a multiple

imputation geostatistical workflow (Section 3.1), since the MSNT will have to be

executed for the l = 1, ..., L data realizations.
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Chapter 5

Projection Pursuit Multivariate

Transformation

The projection pursuit multivariate transformation (PPMT) (Barnett et al., 2014)

is the second primary contribution of this thesis. The PPMT applies a modified

component of the projection pursuit density estimation (PPDE) algorithm to trans-

form potentially complex and high dimensional geological data to be multiGaussian

and uncorrelated. This facilitates independent geostatistical modeling of the vari-

ables, before the back-transform restores the original complexity and correlation to

simulated realizations. The PPMT is easier to apply than competing transforms

and is demonstrated to yield superior modeling results.

Conditional standardization and the multivariate standard normal transforma-

tion (MSNT) (Chapter 4) showed conceptual promise in this context since they may

be applied to data of any form and dimension. As discussed, however, the quality

of their results deteriorate with practical datasets of increasing variables and obser-

vations, respectively. Unlike those methods, the PPMT has effectively transformed

numerous geological datasets of practical size and dimension.

The chapter begins with an overview of the forward transform, where changes

in the conventional PPDE algorithm are highlighted. The PPMT was originally

conceived within the Gaussian mapping (GM) framework that was introduced for

the MSNT in Section 4.2.1. The PPMT provides a better mapping than the MSNT

for large datasets, leading to superior performance with the GM back-transform.

Another option for the PPMT back-transform, however, is simply to reverse the

forward transformation steps.

The PPMT transformations and geostatistical modeling workflow are demon-

strated with a small bivariate example. Alternative modeling workflows are also
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applied to provide a benchmark for judging the PPMT results. The chapter con-

cludes with a discussion on practical PPMT considerations and implementation

details.

5.1 Forward Transformation

First introduced by Friedman and Tukey (1974), PPDE is a non-parametric tech-

nique that is used to determine the PDF of a multivariate distribution. Relative to

other density estimation techniques, PPDE performs particularly well with complex

and/or high dimensional data (Hwang et al., 1994). As the projection of a multi-

Gaussian distribution is also Gaussian, the premise is to detect vectors that yield

the most non-Gaussian projections of the data and correct them (Huber, 1985).

The assumption is made that non-Gaussian structures in higher dimensions are

exhibited in the lower dimensional projection. Friedman (1987) discusses that pro-

jections exhibit a smoothed shadow of what are likely more marked complexities in

the higher dimensions. Once the most interesting projection vector has been de-

termined, the multivariate data may be transformed to normalize their projection

(termed Gaussianize in the literature). Iterating this search and Gaussianize algo-

rithm, the data is gradually transformed to be multiGaussian. The final step of the

PPDE algorithm involves estimating the multivariate density through combining

the univariate projections. This final step is not used in the proposed application.

The forward PPMT very closely resembles the PPDE algorithm that has been

conceptually described. Major PPMT steps will now be outlined, where deviations

from the PPDE algorithm given in Friedman (1987) are highlighted. Though many

transformation steps are involved in the PPMT, they are quickly executed by a

single Fortran program.

5.1.1 Pre-processing

The first steps of the PPMT will transform the n observation and K variable data

matrix, Z : zαi : α = 1, ..., n, i = 1, ...,K, to have properties that are suitable for the

subsequent projection pursuit algorithm.

Normal Score Transformation

The first step of PPDE is data sphereing, which is introduced as the second step

of the PPMT in the next section. Data sphereing is very sensitive to outliers since
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it is based on the h = 0 covariance matrix, ΣZ . Friedman discusses that PPDE

may benefit from transformations that make the marginal variables more Gaussian.

As projection pursuit is mainly concerned with resolving multivariate complexity,

this pre-processing would allow for the algorithm to be less influenced by marginal

features.

The familiar normal score transformation is used as the first step of the PPMT

to simultaneously address these concerns. Each of the K variables are transformed

according to Equation 2.3, yielding the univariate Gaussian nxK data matrix, Y.

Though multivariate outliers may persist to influence ΣY , this normal score trans-

form addresses univariate outliers and was found to reduce the required number of

projection pursuit iterations.

Data Sphereing

The projection pursuit algorithm will benefit from variables that have an identity

covariance matrix, Σ = I, meaning that they are orthogonal with a variance of

one. These properties are achieved by data sphereing, which is the second and

final pre-processor of the PPMT. The conventional data sphereing calculation is

given by Equation 5.1, where S−1/2 is referred to as the sphereing matrix. Spectral

decomposition of ΣY provides the eigenvector matrix, V : vi,j , i, j = 1, ...K, and the

diagonal eigenvalue matrix, D : di,j , i, j = 1, ...K, according to ΣY = VDVT.

X = (Y − E{Y})S−1/2, where S−1/2 = VD−1/2 (5.1)

Equation 5.1 presents the conventional transformation as it appears in Friedman

(1987). Note that the centering portion, Y − E{Y}, is not necessary here since

Y is marginally standard Gaussian (and therefore centered). Observe that the

multiplication of D−1/2 is the only difference between data sphereing and PCA

(Equation 2.6). The multiplication of V rotates the variables to an orthogonal axis

(PCA), before D−1/2 transforms them to have a variance of one. As with PCA,

the descending columns of X will explain a decreasing amount of variability in

the multivariate system. The percentage of variability that is explained by each

variable, Xi, is calculated as di,i/tr(D).

While appropriate for PPDE, this implementation of sphereing will be problem-

atic in the PPMT context for two reasons. First, the GM framework (Section 4.2.1)

does not account for transformed variables that explain widely different variability
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in original space. More specifically, the interpolation back-transformation (Equation

4.6) assumes that the Euclidean distance in each dimension of transformed space

may be considered equally when calculating the weights.

Second, maximizing the multivariate variability that each descending sphere

variable explains will increase mixing of the original variables in transformed space.

This may not be advantantageous from a geostatistical modeling perspective, as the

original variables may have distinct univariate and spatial characteristics that are

better kept separate to the maximum possible extent.

More specifically, attempting to load Yi, i = 1, ...,K onto the first few Xi vari-

ables effectively increases their mixing in transformed space. This decreases the

likelihood that the distinct characteristics of each Yi are recovered following geo-

statistical simulation and back-transformation. Note that a loading, ρ′, is closely

related to the correlation, ρ, between an original, Yi, and transformed, Xj , variable

according to:

ρ′(Yi, Xj) = vi,j · dj,j = ρ(Yi, Xj) ·
√
V ar{Yi} (5.2)

Equation 5.2 shows that a loading is simply the correlation between the original

and transformed variables, scaled by the standard deviation of the original variable.

Applying Equation 5.1 will maximize the absolute value of ρ′(Yi, X1) for i = 1, ...,K.

Observing these potential challenges, an alternative form of data sphereing (Fuku-

naga, 1972; Hwang et al., 1994) has been implemented for the PPMT:

X = YS−1/2, where S−1/2 = VD−1/2VT (5.3)

Aside from the centering portion (dropped for the above noted reasons), the

only difference between Equations 5.1 and 5.3 is the additional multiplication of VT,

which projects the orthogonal variables back onto the basis of the original variables.

The transformed variables still have the required identity covariance matrix, but

the rotation is now performed in a manner that maximizes the absolute value of

ρ′(Yi, Xj) for i = j, while minimizing the absolute value of ρ′(Yi, Xj) for i 6= j.

Compare Equations 5.1 and 5.3 to the underlying spectral decomposition, ΣY =

VDVT. Equation 5.1 drops the VT of spectral decomposition and is referred to as

dimension reduction sphereing (DRS). Conversely, Equation 5.1 is referred to as

spectral decomposition sphereing (SDS).
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5.1.2 Projection Pursuit

The projection pursuit algorithm may now proceed on the pre-processed data, X.

The algorithm is based on the projection index, which is a statistic that tests for

non-Gaussianity. An optimized search finds the projection of X that maximizes

the projection index, meaning that it finds the most non-Gaussian projection. The

Gaussianization transform of the multivariate data makes that projection Gaus-

sian. Iterating this search and Gaussianization procedure, X is transformed to be

multiGaussian.

Projection Index

Consider a Kx1 unit length vector, θ, and the associated projection of the data

upon it, p = Xθ. As discussed, any θ should yield a p that is univariate Gaussian

if X is multiGaussian. With this in mind, define the projection index, I(θ), as a test

statistic that measures univariate non-Gaussianity. For any θ where the associated

p is perfectly Gaussian, I(θ) is zero.

A key decision when implementing projection pursuit is the projection index that

is used to measure the deviation of each projection from the Gaussian distribution.

Friedman’s I(θ) was used for the initial implementation of the PPMT, though this

does not preclude the use of other indexes. It is calculated as:

I(θ) =
d∑

j=1

2j + 1

2
E2

r{ψj(r)} (5.4)

where ψi(r) are Legendre polynomials and d is the number of polynomial expansions.

The Legendre polynomials are calculated recursively as:

ψ0(r) = 1, ψ1(r) = r, and ψj(r) = [(2j − 1) rψj−1(r)− (j − 1)ψj−2(r)]/j

for j ≥ 2 (5.5)

These polynomials are a function of r, which is a transformed version of the

projection, p, according to:

r = 2G(p)− 1, r ∈ [−1, 1] (5.6)

where G is the standard Gaussian CDF. It is important to note that if p is standard

Gaussian distribution, then I(θ) is zero. Friedman chose this form of I(θ) since it
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places greater emphasis on the body of the distribution as opposed to the tails. This

reflected his belief that important complex structures such as multi-modality and

non-linearity will usually occur near the distribution center. Other test statistics

were deemed less suitable since they are more sensitive to the tails of a distribution.

A practical advantage of this projection index is that its derivative may be calcu-

lated, allowing for an gradient based optimization to be used when searching for

the θ that maximizes I(θ). While the equations that are required for the numerical

calculation of I(θ) are provided above, interested readers are referred to Friedman

(1987) for its full conceptual and theoretical development.

Optimized Projection Search

An optimized search is used to find the θ that maximizes I(θ). It begins with a

coarse grid search along combinations of the principal component axes to minimize

the potential of the subsequent gradient based optimization becoming trapped in

a local maxima. Once a maximum I(θ) is determined along one of these major

directions, θ is then fine-tuned using steepest ascent optimization. This requires

the derivative of Equation 5.4, which is given by Equation 5.7 under the constraint

θTθ = 1.

∂I(θ)

∂θ
=

2√
2π

d∑

j=1

rE2
r{ψj(r)}ψ′

j(r)e
−p2

/2 (X− θp) (5.7)

Here, ψ′
i(r) is the derivative of the Legendre polynomials, which is calculated as:

ψ′
1(r) = 1, and ψ′

j(r) = rψ′
j−1(r) + jψj−1(r), for j > 1 (5.8)

This search strategy was found to be very fast, completing in under a second for

all test cases.

Gaussianization

The final step of each iteration is to transform X so that its projection p along θ is

Gaussianized:

p̃ = G−1(F (p)) (5.9)

Note that Equation 5.9 amounts to the normal score transformation of the pro-

jection, p. The objective, however, is to transform X so that its projection along θ
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is p̃. Additional steps will therefore be required to achieve the goal that Equation

5.9 represents. Begin by calculating the orthonormal matrix:

U = [θ,φ1,φ2, ...,φK−1] (5.10)

where the Kx1 unit vectors, φi, are calculated using the Gram-Schmidt algorithm

(Reed and Simon, 1972). The linear combination of X and U, results in a transfor-

mation where the first column is the projection, p = Xθ:

XU = [p,Xφ1,Xφ2, ...,XφK−1] (5.11)

Next, let Θ be a transformation that yields a standard Gaussian projection, p̃,

while leaving the remaining orthogonal directions intact:

Θ(XU) = [p̃,Xφ1,Xφ2, ...,XφK−1] (5.12)

To be clear, Θ amounts to the normal score transformation of the first column

of XU. Multiplying this result by UT returns Θ(XU) to the original basis:

X̃ = Θ(XU)UT (5.13)

The transformed multivariate data, X̃, will now yield a Gaussian projection

along θ and therefore have a projection index of I(θ) = 0. The optimized search

for the maximum projection index may be repeated on X̃ to find other complex

directions. The multivariate data will eventually approach a standard uncorrelated

multiGaussian distribution with iterative application of the search and Gaussianize

steps.

Stopping Criteria

Choosing the target value to which the Gaussian test statistic, I(θ), must descend

is not straightforward. Indeed, no stopping criteria guidelines were found in the

reviewed PPDE literature. Additional variables, K, make the discovery and resolu-

tion of complexity in the data more difficult. A smaller number of n observations

make the projections less reliable for detecting meaningful multivariate structure.

These characteristics are also observed in random samples from a multivariate Gaus-

sian distribution; reducing n and increasing K creates an increasingly non-Gaussian

random sample. This was demonstrated using MCS and LHSMDU in Figure 4.4.
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Drawing on this parallel, the target test statistic for PPMT stopping is deter-

mined by random samples from a multiGaussian distribution. A bootstrapping

algorithm is implemented, where MCS is used to randomly sample M distributions

of matching K and n from the Gaussian CDF (Equation 4.4). A projection index

value, I(θ), is then calculated for all M distributions along K random orthogonal

unit vectors. This process yields an MxK distribution of projection indices that is

referred to as I; this distribution of random Gaussian projection indices provides a

basis for the convergence criterion. A targeted random Gaussian projection index

percentile may be specified when executing the PPMT. If this target percentile is not

reached after a maximum number of iterations, the achieved percentile is reported.

For example, a user may target the 50th percentile of the I distribution. The

projection pursuit algorithm will iterate until the I(θ) of the transformed data is

less than the 50th percentile of I. If this percentile be achieved, then the transformed

data is more Gaussian than 50% of the random Gaussian samples.

5.2 Back-Transformation

Two very different options are available for the PPMT back-transformation; they are

referred to as GM and reverse projection (RP). The following section presents both

back-transforms, before demonstrating and comparing them in the next section.

5.2.1 Gaussian Mapping

As discussed, the PPMT was originally conceived for the GM framework that was

introduced with the MSNT in Section 4.2.1. Within this context, the original mul-

tivariate data, Z, are recorded with the final transformed data, X̃, to establish the

mapping. The intermediate steps of the PPMT are not required (e.g., normal score,

sphereing and projection pursuit); only where each observation starts in original

units and finishes in Gaussian units.

Following independent geostatistical simulation in Gaussian space, realizations

are back-transformed according to Equation 4.6. Although the PPMT is orders of

magnitude faster than the MSNT, it yields similar quality of results for datasets of

relatively few observations (say, n < 500), in terms of minimizing changes to the

original multivariate configuration. For larger datasets, however, the PPMT yields

significantly better results, as the MSNT optimization problem becomes too difficult

with increasing n. As displayed in Figure 4.6, the MSNT takes an impractical length

79



of time to converge for n > 500.

Beyond the issue of convergence time, the MSNT was found to change the mul-

tivariate configuration of the data more than the PPMT for larger test cases. Con-

sequently, the PPMT mapping yields better back-transformation results than the

MSNT mapping in terms of reproducing the variability and spatial continuity of the

original data. It is for these reasons that the PPMT is recommended for the GM

framework over the MSNT.

5.2.2 Reverse Projection

A second option for the PPMT back-transformation is simply to reverse the forward

transformation steps. This approach requires that information from each step is

recorded so that they may be reversed:

i) Normal score transform: record the original data, Z.

ii) Data sphereing: record the sphereing matrix, S−1/2.

iii) Projection pursuit: record the orthogonal basis, U, and the original projection,

p, for each iteration.

Let the N simulated nodes of K independently simulated Gaussian variables

be given as the 1 x K vectors, x̃α, α = 1, ..., N . The back-transformation begins

by applying Equations 5.14 to 5.16 for each projection pursuit iteration (in the

reverse of the forward transform order). First, multiply the Gaussian nodes with

the recorded orthogonal basis, U:

x̃αU = [p̃, x̃αφ1, x̃αφ2, ..., x̃αφK−1], for α = 1, ..., N (5.14)

The first entry of x̃αU is p̃ = x̃αθ, where p̃ is assumed to lie within the Gaus-

sianized projection of the transformed data, p̃ = X̃U. Next, use the recorded

original projection of the data, p, to reconstruct its empirical CDF, F (p). The

Gaussianization transformation of Equation 5.12 may then be inverted:

Θ−1(x̃αU) = [p, x̃αφ1, x̃αφ2, ..., x̃αφK−1], for α = 1, ..., N (5.15)

where Θ−1 normal score back-transforms the first entry of x̃αU as p = F−1(G(p̃)),

while leaving the remaining entries unaltered. Now possessing the back-transformed

projection value, the simulated nodes are returned to the original basis:
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xα = Θ−1(x̃αU)UT, for α = 1, ..., N (5.16)

Repeating the above steps for each projection pursuit iteration back-transforms

the simulated nodes to the data sphereing space. The sphereing is then inverted

using the recorded matrix, S−1/2, to return the simulated nodes to normal score

space:

yα = xαS
1/2, for α = 1, ..., N (5.17)

Finally, the normal score back-transformation is applied to return the simulated

nodes to original space:

zαi = F−1
i (G(yαi)), for α = 1, ..., N and i = 1, ...,K (5.18)

where the empirical CDFs, Fi(zi) for i = 1, ...K, are constructed using the recorded

original data, Z.

5.3 Demonstration

Synthetic data is used for demonstrating the PPMT and its related modeling work-

flow. While this data exhibits bivariate and spatial complexities, it is relatively

simple in terms of its spatial configuration (2-D) and the number of variables (two).

This allows for a clearer demonstration of the PPMT and additional understanding

of its results. In a complimentary manner, the nickel laterite case study in Chapter

6 applies the PPMT to four real and complex geological variables in a 3-D setting.

After performing an inventory of the data, the PPMT is executed to demon-

strate and analyze each transformation step from Section 5.1. Properties of the

transformed data are then studied in detail, before applying and comparing the

back-transformations from Section 5.2. Alternative multivariate transformation and

simulation approaches are then used to provide a benchmark for judging the PPMT

results.

Please note that most of the figure and table formats in this section (and un-

derlying statistics) are consistent with that of Section 3.4. Readers are referred to

Section 3.4 for their explanation, as only formats and statistics that are introduced

in this section are explained here.
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5.3.1 Data Inventory

A map view of the data values appears in Figure 5.1, where 841 observations are

spaced at fifty meter intervals across a regular sampling grid. Univariate and bivari-

ate statistics of the Z1 and Z2 variables appear in Figure 5.2, where heteroscedastic

and non-linear features are apparent in the KDE scatterplot. All of the properties

appearing in Figure 5.2 are considered representative of this domain. Following

geostatistical modeling, the simulated realizations will therefore be checked for the

reproduction these properties.

Omnidirectional semivariograms and cross-semivariograms are shown in Figure

5.3, where Z1 is seen to be more far more continuous than Z2. To simplify in-

terpretation, the semivariograms and cross-semivariogram are standardized by the

appropriate term of Σ(h) so that ρij(h) = 0 when γij(h) = 1. Note that the cross-

semivariograms are standardized by the As noted, issues are more likely to arise

when applying multivariate transformations that mix variables of differing spatial

structure. The concern is that the unique spatial character of each variable cannot

be recovered following simulation and back-transformation. The goal is to reproduce

the spatial continuity that appears in Figure 5.3, which is carefully checked in later

sections.
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Figure 5.1: Mapview of the 2-D locations and values that are used for demonstrat-
ing the PPMT.
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Figure 5.2: CDFs and KDE scatterplot of the variables.
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Figure 5.3: Semivariograms and cross-semivariogram of the variables.

5.3.2 Forward Transformation

All of the forward transformation steps from Section 5.1 will now be demonstrated,

beginning with the normal score transformation of each variable in Figure 5.4. Note

that transformed variables are labeled as Y1 and Y2 within subsequent figures (re-

gardless of the specific transformation), whereas Z1 and Z2 are reserved for labeling

variables in original units. Observe from the CDFs in Figure 5.4 that Y1 and Y2 are

now standard univariate Gaussian. Unfortunately, the transformed variables con-

tinue to exhibit obvious bivariate complexity in the KDE scatterplot. The displayed

features and density do not follow the elliptical contours of a Gaussian distribution

and would not be characterized by the correlation statistic. Additional measures are

required to make these variables bivariate Gaussian, meaning that it is appropriate

to consider the PPMT.

Data sphereing is applied next, where Y1 and Y2 are rotated using Equation 5.3 to

have an identity covariance matrix (Figure 5.5). The variables are now completely

uncorrelated with a variance of one. Despite these properties, however, bivariate

complexity continues to be evident in the KDE scatterplot.
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Figure 5.4: CDFs and KDE scatterplot of the normal score transformed variables.
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Figure 5.5: CDFs and KDE scatterplot of the sphere variables.

84



5 10 15 20 25 30 35 40 45 50

10
−4

10
−3

10
−2

10
−1

10
0

Data

P01
P50
P99

Iteration

P
ro

je
ct

io
n

 I
n

d
ex

Projection Index Progression

−4 −2 0 2 4
0

50

100

Projection Distribution

F
re

q
u

en
cy

Iteration 1 Before Gaussianization

−4 −2 0 2 4
−4

−2

0

2

4

Y1

Y
2

−4 −2 0 2 4
0

50

100

Projection Distribution
F

re
q

u
en

cy

Iteration 1 After Gaussianization

−4 −2 0 2 4
−4

−2

0

2

4

Y1

Y
2

−4 −2 0 2 4
0

50

100

Projection Distribution

F
re

q
u

en
cy

Iteration 2 Before Gaussianization

−4 −2 0 2 4
−4

−2

0

2

4

Y1

Y
2

−4 −2 0 2 4
0

50

100

Projection Distribution

F
re

q
u

en
cy

Iteration 2 After Gaussianization

−4 −2 0 2 4
−4

−2

0

2

4

Y1
Y

2

−4 −2 0 2 4
0

50

100

Projection Distribution

F
re

q
u

en
cy

Iteration 3 Before Gaussianization

−4 −2 0 2 4
−4

−2

0

2

4

Y1

Y
2

−4 −2 0 2 4
0

50

100

Projection Distribution

F
re

q
u

en
cy

Iteration 3 After Gaussianization

−4 −2 0 2 4
−4

−2

0

2

4

Y1

Y
2

−4 −2 0 2 4
0

50

100

Projection Distribution

F
re

q
u

en
cy

Iteration 25 Before Gaussianization

−4 −2 0 2 4
−4

−2

0

2

4

Y1

Y
2

−4 −2 0 2 4
0

50

100

Projection Distribution

F
re

q
u

en
cy

Iteration 25 After Gaussianization

−4 −2 0 2 4
−4

−2

0

2

4

Y1

Y
2

 

 

KDE

6.21e−06

2.78e−04

5.50e−04

6.21e−06

2.78e−04

Figure 5.6: Progression of the data through the projection pursuit algorithm.
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The projection pursuit algorithm from Section 5.1.2 is demonstrated and sum-

marized in Figure 5.6. The arrows within this figure display the orientation of θ that

was found to maximize I(θ) for each iteration. The left side of the figure displays

properties before Gaussianization, including KDE scatterplots of the bivariate data,

X, and histograms of the non-Gaussian projection, p = Xθ. Conversely, the right

side of the figure displays properties after Gaussianization, including KDE scatter-

plots of the bivariate data, X̃, and histograms of the standard Gaussian projection,

p̃ = X̃θ.

Observe that each iteration shifts the bivariate data to make the associated

projection univariate Gaussian. Not surprisingly, projections that maximize I(θ)

in iterations 1 to 3 are far less Gaussian than that of iteration 25. The KDE

scatterplots show the visual progression towards bivariate Gaussianity of the four

displayed iterations, while the plot at the top of the figure shows the value of the

projection index, I(θ), for the fifty executed iterations. Note the logarithmic y-axis

of this plot, meaning that the vast majority of complexity is addressed in the first

few iterations.

The 1st, 50th and 99th percentiles of the I distribution are also displayed in this

plot for reference. Recall that I may be used as stopping criteria for the PPMT,

where I(θ) is calculated for M random nxK Gaussian distributions along K ran-

dom θ orientations. The 99th percentile indicates that I(θ) is a projection from a

distribution that is barely Gaussian, whereas the 1st percentile indicates that I(θ)

is a projection from a distribution that is very Gaussian. In this case, the PPMT

yields a very Gaussian result after approximately ten iterations, though additional

Gaussianity is achieved by additional iterations.

5.3.3 Transformed Properties

Properties of the transformed data following fifty projection pursuit iterations are

analyzed in greater detail within Figure 5.7. As expected, the KDE scatterplot

appears to mimic the circular density contours of an uncorrelated bivariate Gaussian

distribution. Also note that the variables are uncorrelated to the second decimal,

with CDF properties that match that of a univariate Gaussian distribution.

The KDE density of Figure 5.7 and projection index of Figure 5.6 suggest a

high degree of bivariate Gaussianity in the transformed data. Nevertheless, the

bivariate standard normal (BVSN) Gaussianity test of the scatnscores program
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Figure 5.7: CDFs and KDE scatterplot of the PPMT transformed variables.

(Deutsch and Deutsch, 2011) is used as an independent check of this property. Figure

5.8 displays the scatnscores plot and associated BVSN test following the normal

score transformation, sphere transformation, five iterations of projection pursuit,

and fifty iterations of projection pursuit. Refer to the description of Figure 4.4 for

an explanation of the scatnscores plot format. Red text in the normal score and

sphere plots indicate that they have failed the BVSN test.

While the absence of red text in the projection pursuit plots indicate that they

have both passed the BVSN test, the fifty iterations result is visually closer to the

typical ‘Gaussian cloud’. As discussed in Section 4.2.1, the GM back-transformation

will benefit from transformed data that is as close as possible to the uncorrelated

standard multiGaussian model. The GM workflow assumes that subsequent inde-

pendent Gaussian simulation will yield geostatistical realizations that closely ap-

proximate an uncorrelated multiGaussian model. If deviations exist between the

density of simulated realizations and mapped data in transformed space, it is un-

likely that the original properties will be reproduced following back-transformation.

Similarly, the RP back-transformation scheme from Section 5.2.2 will generally

benefit from transformed data that closely approximate the multiGaussian model.

This increases the likelihood that the original data will be representative of the

simulated realizations at every step of the RP, leading to simulated realizations that

reproduce properties of the original data, Z.

Whereas the sphere data is entirely uncorrelated prior to projection pursuit,

minor correlation may be introduced following the Gaussianization transform of

each iteration. Correlation of the two variables is plotted for each iteration in Figure

5.9. While the extremely small scale of the y-axis should be noted in this figure (-

0.01 to 0.01 correlation), the variables are seen to have less absolute correlation
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Figure 5.8: scatnscores plots and Gaussianity tests following various steps of
the PPMT. Red text (>99.9% nonBVSN!) indicates that the test has failed for that
plot.

with increasing iterations. Correlation is generally more stable beyond iteration 25,

where it has an absolute value of less than 0.001 (with the exception of iterations

42 to 44).

The Gaussianity and correlation results in Figures 5.6 to 5.9 cumulatively estab-

lish that there is merit to using a large number of projection pursuit iterations. The

question arises, however, as to whether these additional iterations have a negative

impact on other properties of the transformed data? Perhaps additional iterations

adds significantly to the variable mixing, which should be minimized given the very

different spatial continuity of Z1 and Z2.

As discussed in Section 5.1.1, the implemented data sphereing algorithm was

chosen since it minimizes variable mixing by maximizing the absolute value of the

loadings, ρ′(Yi, Xj) for i = j. Consider using the correlation between the original
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and transformed variables as a metric of mixing, which is simply scaled loadings

according to Equation 5.2. Figure 5.10 displays these correlations (they will be re-

ferred to as loadings) following data sphereing and fifty projection pursuit iterations.

The bars in these plots are scaled according to the absolute value of the displayed

loading, while being colored on a gradient of negative loading (blue), zero loading

(white) and positive loading (red).
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Figure 5.10: Correlation between the original and transformed variables following
DRS (left), SDS (middle), and fifty projection pursuit iterations preceded by SDS
(right).

Although DRS sphereing (Equation 5.1) is not used by the PPMT, its resultant

loadings are shown as a comparative reference in Figure 5.10. As discussed, DRS

is similar to PCA in that it maximizes the variability that is explained by the first

transformed variable. While the first transformed variable has the largest loadings

(as expected), the original variables are heavily mixed across both of the transformed

variables. Consequently, the unique continuity of Z1 and Z2 is mixed by this trans-

formation and may not be recovered following simulation and back-transformation.
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Conversely, the SDS sphereing that is implemented for the PPMT (Equation

5.3) loads the original variables almost entirely on the their transformed equivalent.

Though some significant absolute values of ρ′(Yi, Xj) are seen for i 6= j, variable

mixing is minimized relative to DRS. Applying fifty iterations of projection pursuit

to the SDS data yields the third set of loadings in this plot. Observe that the

loadings are very similar following projection pursuit, suggesting that there is little

consequence to applying a large number of iterations in terms of additional variable

mixing.

A more visual method for inspecting the nature of transformations and their

resultant variable mixing is to color the transformed observations according to the

original values. Doing so provides insight into the relative shift of the multivariate

configuration, as was schematically illustrated in Figure 4.5. The sphere and PPMT

transformed data is colored by the original Z1 and Z2 values in Figure 5.11.
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Figure 5.11: Scatterplots of the sphere and PPMT transformed variables, colored
by the original values.

As expected, coloring of the sphere data shows that it has been rotated very

slightly from the original basis. The PPMT transformed data is colored very similar,
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though non-linear changes are seen when compared to the sphere data. This result

supports the interpretations that were drawn from the loading plots, suggesting that

the PPMT makes relatively ‘gentle’ changes when transforming the sphere data to

be bivariate Gaussian.

Given that the PPMT has transformed the data to be bivariate Gaussian in

a manner that minimizes variable mixing, it is expected that the unique spatial

continuity of Z1 and Z2 will be similar in transformed space. Semivariograms of

the original data, normal score data, sphere data, and PPMT transformed data

confirms this expectation in Figure 5.12. The cross-semivariograms display that

removing correlation at h = 0 lag distance has largely removed correlation at h > 0

lag distances. Some cross-correlation does remain, however, which may be a concern

when considering independent Gaussian simulation of the transformed variables.
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Figure 5.12: Semivariograms and cross-semivariogram of the original and trans-
formed variables.

5.3.4 Back-transformation

With the original data successfully transformed to be uncorrelated and bivariate

Gaussian, independent simulation of the variables may now proceed. The sim-

ulation will require a model of regionalization so that spatial correlation can be

calculated between grid and data locations. To this end, semivariograms of the

PPMT transformed data (Figure 5.12) are closely fit using semivariogram models

that have zero nugget effect and two spherical nested structures. Using the semi-

variogram models and transformed data as input, SGSIM is executed to generate

one hundred realizations of each variable across a 250x250 node grid. The simulated

Gaussian realizations are then returned to original space using both the GM and

RP back-transformations.
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Maps of three arbitrary realizations are displayed in Figure 5.13, where local

conditioning and ergodic fluctuations are evident. The following section will compare

the GM and RP back-transformations, though only the RP result is displayed in

Figure 5.13 since discrepancies between the techniques are not noteworthy in map

view.

Empirical CDFs of the back-transformed realizations are displayed in Figure

5.14, which are summarized with the following statistics:

i) mean µ: the mean of the realization means.

ii) stdev µ: the standard deviation of the realization means.

iii) mean σ: the mean of the realization standard deviations.

iv) stdev σ: the standard deviation of the realization standard deviations.

CDFs of the sampled Z1 and Z2 are overlain so that reproduction of the data

properties may be evaluated. While the standard deviation of the Z1 means are

higher for RP, both back-transformation methods yield virtually identical CDFs

overall. As CDFs of the realizations lie symmetrically about the data CDFs, the

PPMT workflow is shown to successfully reproduce the targeted univariate proper-

ties.

The KDE scatterplot and correlation of the data is compared with the simulated

realizations in Figure 5.15. Differences between the two back-transformations are

more evident in this figure. The GM points lie strictly within the concave hull of

the data, reflecting the underlying interpolation. Also evident is ‘strings’ of points

along the margins of the distribution, which is another artifact of the interpola-

tion. It occurs when the nearest K + 1 mapped observations that are used for

the interpolation (Equation 4.6) lie in a relatively sparsely populated region of the

original distribution. Though not visually appealing, this artifact it is not thought

to be consequential to most applications of geostatistical models (e.g., subsequent

transfer functions).
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Figure 5.13: Mapview of four arbitrary realizations following the RP back-
transform, with the sampled data from Figure 5.1 are shown for comparison.
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Figure 5.14: CDFs of the simulated realizations following the RP and GM back-
transforms. Data CDFs from Figure 5.2 are overlain for comparison.

Figure 5.15: KDE scatterplot of simulated realizations following the RP and GM
back-transforms. The data scatterplot from Figure 5.2 is shown for comparison.

94



The RP results do not lie strictly within the concave hull of the data, although the

nature of the non-linear boundaries are reproduced. A visual artifact is present along

the distribution margins that differs from the described GM artifact. This results

from simulated values that fall in the tails of the standard Gaussian projection,

beyond the minimum/maximum of the associated data projection. When back-

transforming the projection (Equation 5.15), the program constrains these values

to the minimum/maximum of the original data projection. As with the visual GM

artifact, this is not thought to be consequential for most applications of geostatistical

models. One could consider extrapolation schemes, though this may not be straight

forward considering the multivariate orientation of the unit vector, θ, that underlies

each projection, and the iterative application of Equation 5.15. Initial attempts to

implement extrapolation led to simulated points that lie far beyond the multivariate

hull of the data in original space.

Aside from the noted discrepancies, Figure 5.15 shows that both back-transforms

effectively reproduce the bivariate features of the data. Neither method reproduces

the data correlation exactly, although the RP result is slightly better. To summarize

the reproduction of bivariate densities, the displayed RMSE statistic is calculated

using the difference between the bivariate KDE of the data and that of the real-

izations. As with correlation, RP is shown to have slightly better reproduction of

bivariate density.

Reproduction of the spatial continuity is examined in Figure 5.15. The displayed

RMSE statistic in this figure summarizes how well the semivariograms and cross-

semivariograms of the data are reproduced by the realizations. It is calculated

using the difference between data and the mean of the realizations at the data lag

distances.

While it is difficult to visually distinguish the two back-transformation results,

the RMSE statistic shows that RP yields better reproduction for both semivari-

ograms, while the GM is a closer match of the cross-semivariogram. The unique

continuity of Z1 and Z2 has been recovered overall following simulation and back-

transformation, although the realizations are too discontinuous at the first lag dis-

tance for both variables. More concerning, however, is the overall reproduction of

the cross-semivariogram. These concerns are attributed to the cross-correlation that

was noted to remain following transformation (Figure 5.12). Independent simulation

in the presence of cross-correlation appears to have manifested itself in properties

of the back-transformed realizations.
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Figure 5.16: Semivariograms and cross-semivariograms of simulated realizations
following the RP and GM back-transforms. The data semivariogram and cross-
semivariogram from Figure 5.3 overlain for comparison.

5.3.5 Chained MAF Workflow

Given the concern with remnant cross-correlation following the PPMT transforma-

tion (Figure 5.12), one may consider the subsequent application of a chained MAF

transformation. Doing so will rotate the data to remove correlation at a specified

h > 0 lag distance, while insuring that the variables remaining uncorrelated at

h = 0.

Figure 5.17 displays this rotation, where the PPMT and PPMT/MAF (PPMT

followed by MAF) transformed data are colored by Z1 and Z2. Both the PPMT

and PPMT/MAF data are shown to be uncorrelated, though the coloring reveals

the orientation of the MAF rotation.

The effect of the MAF rotation is much more obvious when viewing the resultant

spatial continuity in Figure 5.17. As can be inferred from this figure, an h = 150

lag distance was chosen for the rotation since it displays the largest remnant cross-

correlation in the PPMT transformed data. Noting the very small scale of the

y-axis, the cross-semivariograms show that decorrelating the variables at h = 150

has addressed the majority of cross-correlation at all lags.

The MAF technique orders the rotated variables according to spatial continu-

ity, resulting in large changes to the semivariograms. Note, however, that variable
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mixing is not a large concern in this case since the rotation has loaded Z1 almost

entirely on Y2 (and vice versa). This is evident from the coloring in Figure 5.17 and

the semivariograms in Figure 5.19.
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Figure 5.17: Scatterplots of the PPMT and PPMT/MAF transformed variables
colored by the original values.
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Figure 5.18: Semi-semivariograms and cross-semivariograms of the PPMT and
PPMT/MAF transformed variables.

The simulation scheme described in the previous section is applied using the

PPMT/MAF transformed data. Simulated realizations are returned to PPMT space

using the MAF back-transformation, before using the RP back-transformation to

return the realizations to original space. The MAF transformation was found to alter
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the multivariate and spatial properties of the simulated realizations. Reproduction

of the multivariate density is improved in terms of both correlation and KDE RMSE

(Figure 5.19). The scatter is also better constrained to the visual constraints of the

data distribution, such as the stray points along the top left margin of the bivariate

distribution for the PPMT result.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Z1

Z
2

Data

 

 

    ρ: 0.48

KDE

5.82e−05

4.17e−04

7.76e−04

0 0.5 1

    ρ: 0.51

 RMSE: 9.33e−11

Z1

PPMT

0 0.5 1

    ρ: 0.48

 RMSE: 6.21e−11

Z1

PPMT/MAF

Figure 5.19: KDE scatterplots following the PPMT and PPMT/MAF workflows.

Comparing spatial continuity reproduction in Figure 5.20, the previous concern

with the cross-semivariogram has been resolved by the MAF transformation. Per-

haps more surprising, however, is that the smaller concern with short scale continuity

of the semivariogram has also been improved by the use of MAF.
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Figure 5.20: Semivariograms and cross-semivariograms of simulated realizations
following the PPMT and PPMT/MAF workflows.
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5.3.6 Comparative Results

Though the PPMT results appear very promising, it may be difficult to judge their

quality without a relative comparison. With this in mind, modeling is repeated

using three alternative workflows. These workflows are briefly summarized before

comparing key features of the modeling results.

Alternative Approaches

Abbreviated as Nscore/Cosim, the first modeling approach is composed of three

primary steps:

i) Normal score transformation of each variable.

ii) Colocated cosimulation using SGSIM with the Markov coregionalization model.

More specifically, Z1 is independently simulated before using its gridded real-

ization as a secondary variable that conditions the cosimulation of Z2.

iii) Normal score back-transformation of the realizations.

While very practical, this modeling approach usually requires the use of a reduc-

tion factor to correct for variance inflation (Babak and Deutsch, 2009a; Deutsch and

Journel, 1998). Iterative testing determined that a variance reduction factor of 0.85

corrected for the inflation. Abbreviated as MAF, the second approach is composed

of five primary steps:

i) Normal score transformation as a preprocessor that centers the data and re-

moves outliers.

ii) MAF transformation to decorrelate the variables at 0m and 150m lag distances.

iii) Second normal score to transform the variables to be standard univariate Gaus-

sian.

iv) Independent simulation using SGSIM.

v) Required back-transformations of the realizations in the reverse of the forward

transform order.

The MAF transformed data is displayed in Figure 5.21, where non-Gaussian

bivariate features clearly remain following the rotation. Abbreviated as SCT, the

third approach is composed of three primary steps:
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i) SCT to transform the variables to an approximately uncorrelated and multi-

Gaussian distribution.

ii) Independent simulation using SGSIM.

iii) SCT back-transformation of the realizations.

The SCT transformed data is also displayed in Figure 5.21, where coloring ac-

cording to Z1 and Z2 reveals the mechanics of the transform that were outlined in

Section 2.2.2. The visual artifacts that are present along the margins of the distri-

bution is a standard characteristic of the SCT; they result from aligned tail values

following the normal score transform of Z2 in each bin. While not visually appeal-

ing, they are not considered to be consequential to the overall multivariate density

and SCT back-transformation (Leuangthong and Deutsch, 2003).

All three of the described workflows have enjoyed popular use within geostatis-

tics. While cosimulation and SCT become awkward to apply with an increasing

number of variables, this provides an indication of their properties and performance

in a bivariate setting where they are better suited.
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Figure 5.21: Scatterplots of the MAF and SCT transformed variables colored by
the original values.
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These workflows are compared with the PPMT/MAF workflow from the previous

section. All of the underlying modeling details that have been previously applied

are held constant so that the outlined features of each workflow are the sole source

of discrepancies in their simulation results. This includes semivariogram modeling

methodology, SGSIM parameters and grid dimensions.

Results

The bivariate properties of the four workflows are compared in Figure 5.22, where the

Nscore/Cosim. and MAF workflows yield the worst results. The complex features

of the data are not reproduced since these approaches do not capture and remove

them prior to simulation. Consequently, simulated Gaussian realizations do not

match the density of the transformed data, leading to notable departures from the

density of the original data following back-transformation.

The SCT and PPMT/MAF workflows yield much better results since those

complex features are removed prior to simulation and are restored by the back-

transformation. Though the binning artifacts of the SCT are distracting, the method

achieves good overall reproduction of the bivariate density. Options are available

in the latest SCT program (Deutsch, 2005b) for manually setting constraints on

the tails of each bin, though this becomes cumbersome with additional variables.

The PPMT/MAF workflow yields the best bivariate reproduction according to both

visual inspection, KDE RMSE and correlation.

Spatial continuity of each workflow is compared in Figure 5.23. Given the poor

reproduction of the h = 0 lag correlation in Figure 5.22, it is unsurprising to see

that the Nscore/Cosim and MAF workflows yield the worst cross-semivariogram

reproduction. PPMT/MAF has the best overall reproduction of the semivariograms

and cross-semivariograms according to visual inspection and the RMSE statistic. It

is interesting to note, however, that the PPMT/MAF result is the only one that

is too discontinuous at the first lag distance for the first semivariogram and the

cross-semivariogram (if only slightly).

Summarizing, the PPMT/MAF yields the best overall result for all of the in-

spected bivariate and spatial properties. Note that univariate properties were not re-

viewed since all of the workflows performed similar in this regard. Whereas PPMT/-

MAF greatly outperformed Nscore/Cosim and MAF, the improvements were more

subtle relative to the SCT. It is important to note, however, that the PPMT/MAF
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workflow may be applied to increasing K variables without additional practitioner

effort. The SCT by comparison, cannot be applied to greater than two to four vari-

ables (depending on n observations) without the use of nested workflows. Unlike the

PPMT, a nested SCT workflow is unlikely to remove the correlation and complexity

between all variables.
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Figure 5.22: KDE scatterplots of the various transformation and simulation work-
flows.
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Figure 5.23: Semi-semivariograms and cross-semivariograms of the various trans-
formation and simulation workflows.

104



5.4 Discussion

The following section will discuss major considerations, limitations, and assumptions

of the PPMT.

5.4.1 Back-Transformation Options

As demonstrated in Section 5.3.4, both the GM and RP methods are viable options

for the PPMT back-transformation. They generally yield similar results, although

the RP method tends to outperform GM in terms of univariate, multivariate and spa-

tial reproduction. Taking a closer look at properties of the GM back-transformation,

some other potential disadvantages become apparent:

i) No extrapolation will take place since the interpolation scheme bounds the

back-transformed values to the concave hull of the original data.

ii) The intrinsic averaging nature may lead to mean convergence and resultant

deviations from the original variability of the data. This is more problematic

with increasing K and decreasing n since multivariate space will become poorly

informed with sparsely distributed mapped data.

iii) Computational expense, as the execution time increases with greater n since the

nearestK+1 observations must be found for each simulated node. The distance

to each observations is sorted using a ‘bubble-sort’ (Knuth, 1998), which was

found to yield much faster results than other popular sorting algorithms such

as Quicksort (Hoare, 1962). Search trees such as a kd-tree (Bentley, 1980) may

reduce the execution time further and represent a potential avenue of future

work.

Being strictly bounded to the concave hull of the data may actually be a desired

feature that encourages the use of GM in some settings. Consider data that have very

defined and precise multivariate constraints that are critical to reproduce for subse-

quent transfer functions. As displayed in Figure 5.15, the RP back-transformation

often yields multivariate extrapolation about the concave hull of the data. Con-

sequently, RP is unlikely to reproduce such constraints as precisely as GM. Both

back-transformations have been documented since practitioners may prefer either

depending on their own set of priorities. The RP method is generally advocated,

however, for the listed reasons and demonstrated results.
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5.4.2 Standard Gaussian Geostatistical Realizations

Section 5.3.2 stated that it is important for the PPMT to transform the data to

be as close to an uncorrelated multiGaussian model as possible. This statement

assumes, however, that independent Gaussian simulation will yield an uncorrelated

standard multiGaussian distribution. When this is the case, the back-transformed

realizations should closely match the univariate and multivariate density of the data.

If the simulated realizations are not uncorrelated standard multiGaussian, how-

ever, the back-transformed results may deviate a great deal from the univariate and

multivariate properties. For example, consider that long range spatial continuity

relative to the domain size commonly leads to geostatistical realizations that have a

variance of less than one (in Gaussian space). As the PPMT back-transform is very

non-linear, this reduced variance will potentially lead to a large bias of the mean in

original space.

Practitioners may consider a histogram correction transformation (Section 2.2.4)

in settings where the univariate distributions are not reproduced. Note, however,

that histogram corrections may compromise the reproduction of multivariate fea-

tures. For this reason, the PPMT back-transformation program provides users with

the option to correct the univariate distributions prior to back-transforming (trans-

form them to be standard Gaussian). Doing so increases the likelihood of repro-

ducing both the univariate and multivariate features following back-transformation.

Note, however, that deviations from a multivariate standard Gaussian distribution

may not be corrected by this univariate transformation, allowing issues with uni-

variate reproduction to persist following back-transformation.

5.4.3 Reproduction of Short Scale Continuity

A small but consistent loss of short scale continuity was seen in Section 5.3 for

realizations that were simulated with a workflow involving the PPMT. In partic-

ular, the semivariograms of both variables were less continuous than that of the

data at the first lag distance (h = 50). The issue is not the result of the chosen

back-transformation method (Figure 5.16), and while a chained MAF transforma-

tion helps (Figure 5.20), a small loss of continuity persists. Figure 5.23 shows that

although the PPMT leads to superior semivariogram reproduction overall, the al-

ternative modeling workflows do not lead to this loss of short scale continuity.

This issue has been observed when applying the PPMT with other data sets,
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including the case study in Chapter 6. It is believed to be the result of forcing de-

pendent variables to be entirely independent at h = 0 lag distance, which is usually

associated with a loss of short scale continuity in transformed space. Consider the

semivariograms in Figure 5.12, where the original and PPMT transformed semi-

variograms are virtually identical at the majority of lags. The notable exception,

however, is the loss of short scale continuity, particularly for Z2.

A practical solution to this problem is demonstrated in Chapter 6, where semi-

variogram models of inflated continuity are used as input to the Gaussian simulation.

It uses the following workflow:

i) Fit semivariogram models in transformed space, before simulating and back-

transforming one realization.

ii) Inspect the semivariogram reproduction and repeat step (i) with semivariogram

models of more or less continuity if required.

While not theoretically attractive, this approach has been found to yield reason-

able semivariogram reproduction in challenging settings. As discussed in Chapter

8, understanding and correcting this issue is an item of future work.

5.4.4 Chained MAF Workflow

The PPMT and MAF transformations are suited to differing forms of geological data

and are not viewed as strictly competing techniques. If multivariate relationships are

reasonably linear, MAF is likely to outperform the PPMT since it directly targets

spatial correlation. Conversely, the PPMT is advocated for complex multivariate

data since it will transform the variables to be truly independent at h = 0 lag

distance.

Given their complimentary strengths and weaknesses, PPMT and MAF may be

effectively used together within chained transformation workflows. As demonstrated

in Section 5.3.5, the two techniques have been found to yield consistently superior

results when used in combination rather than isolation.
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Chapter 6

Nickel Laterite Case Study:

Data Transformation

The following chapter uses Anglo American’s Barro Alto nickel (Ni) laterite mine

to study the performance and value of the projection pursuit multivariate trans-

formation (PPMT) in a complex geological setting. The chapter begins with

an overview of the geology, mining, stockpiling, and plant processing of Barro Alto.

This background establishes that the multivariate relationships of several Ni laterite

variables have a large impact on the extraction process. If geostatistical realizations

do not provide realistic multivariate characterization of the deposit, it will have

consequences on resource management decisions and subsequent operations.

The value of the PPMT is measured as a function of the improvement in re-

source management decisions. To facilitate this study, jackknife validation is used

for a large subset of the Ni laterite data. Geostatistical modeling then proceeds

at the removed sample locations using workflows that do and do not incorporate

the PPMT. The resultant realizations are used for technical decisions, which are

validated against the correct decision (informed by the removed true value).

Beyond jackknife performance, many properties of the PPMT and its resultant

geostatistical models are studied in detail. While it is useful to document the tech-

nique in a realistic setting, the dimensionality and geologic complexity will prevent

exhaustive presentation and understanding of the results. The synthetic example in

Chapter 5 compliments this study, where the reduced dimensionality and controlled

setting permits thorough presentation and understanding of the results. The major-

ity of figure and table formats in this chapter, as well as the statistics within them

have been introduced in Chapters 3 and 5. Only new formats and statistics will be

explained in detail.
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6.1 Background

As a critical component in the manufacturing of stainless steel and other non-ferrous

alloys, Ni is an important metal to global industry. The metal occurs within two

distinct geologic mineralizations. The first is referred to as sulphides, which occur

when Ni is precipitated from hydrothermal fluids within ultramafic intrusions. Gen-

erally mined using underground methods, sulphides account for ∼ 30% of the world’s

known Ni, though they yield ∼ 70% of current production (Anglo-American, 2012).

The second type is referred to as laterites, which occur when surficial weathering

leaches Ni from ultramafic rock. Generally mined using shallow open pit methods,

laterites account for ∼ 70% of the world’s known Ni, though they yield ∼ 30%

of current production (Anglo-American, 2012). The mining industry has histori-

cally favored sulphide deposits since less capital intensive extraction processes are

required for Ni recovery. Improving technology has made laterites commercially vi-

able; however, and given their relative abundance, laterites are expected to be more

important than sulphides to the future of the Ni industry (Info-Mine, 2012).

Located in the Brazilian state of Goiás, Anglo American’s Barro Alto Ni mine

exploits a laterite deposit. The mineralization occurs in the Barro Alto mafic-

ultramafic complex and is composed of Ni rich saprolite that is overlain by Ni leached

laterite. Neufeld et al. (2008) detail that the economic ore body is divided into two

geologically distinct zones. West-type-ore (WTO) has relatively high Ni grade, but

also high iron (Fe) and silica (SiO2) to magnesia (MgO) ratio (SMR). As will

be explained, high values of Fe and SMR are problematic for the Barro Alto plant

process. Conversely, East-type-ore (ETO) has relatively low Ni grades, but also has

lower Fe and SMR. As a result, the effective extraction of Ni will require blending

of WTO and ETO to regulate Fe and SMR values in feed to the plant.

Barro Alto began production in 2011 and uses a rotary kiln electric furnace

(RKEF) process to extract ferronickel (FeNi) (Info-Mine, 2012). While every step

that comprises the RKEF process goes beyond the scope of this thesis, the compo-

nent that may be most impacted by geostatistical modeling is the smelting of ore in

electric arc-induction furnaces (Figure 6.1). As described in Neufeld et al. (2008),

the Ni, Fe, SiO2, and MgO content of the furnace feed is critical. First, Ni grade

should be high enough to yield sufficient recovery in the final FeNi product (25-30%

Ni); Ni feed grade should therefore be maintained above 1.5%. High Fe content can
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Figure 6.1: Ni being poured at the Barro Alto plant (Anglo-American, 2011)

lead to poor recoveries due to incomplete separation of the slag (byproduct of smelt-

ing); Fe should therefore be held below 18.5%. Finally, high SMR generates excess

heat that may damage the furnace lining; SMR should therefore be held below 1.75.

To manage these requirements, mined material is stockpiled, crushed and stacked

to homogenize the ore and reduce its variability. Neufeld et al. (2008) present

some stockpiling and stacking options that have been considered for Barro Alto. In

general, geostatistical modeling is the key input to this process. It is critical for Ni,

Fe, SiO2, MgO and the relationships between them to be realistically characterized.

Failure to do so will lead to errors in technical decision making that transfer through

plant processing. Material will be allocated to the wrong stockpiles, variability will

not be sufficiently reduced by stacking, and furnace feed will not possess the required

characteristics. Grade control sampling at each stage may mitigate this issue, but

geostatistical modeling remains critical for long term planning.

6.2 Data Inventory and Preparation

The data that has been made available for this case study is a subset of a dated Barro

Alto database. It consists of 18,352 observations that homotopically sample Ni,

Fe, SiO2, and MgO. The observations have been sampled using bore holes that are

drilled from the surface in vertical and deviated orientations. The spatial coordinates

of the observations are present in the form of Easting, Northing, and elevation above

sea level. A rocktype variable categorizes the observations as one of four geologically
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distinct ore mineralizations. Surface topography was also provided as displayed in

Figure 6.2.
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Figure 6.2: Barro Alto surface topography.

6.2.1 Stratigraphic Transformation

Although it is not a perfect relationship, the continuity and anisotropy of a laterite

tends to align with its topography, reflecting the underlying surface weathering phe-

nomena that yields the mineralization. If modeling were to proceed using elevation

as the vertical coordinate system, the spatial continuity would follow varying orien-

tations of anisotropy across the deposit. This compromises geostatistical modeling

workflows that assume stationary continuity of the regionalized variables.

To avoid this issue, the coordinate system of the data is transformed so that the

z-axis becomes depth below topography (rather than absolute elevation). Geosta-

tistical modeling proceeds in this flattened space where continuity of the variables is

relatively constant, before returning simulated realizations to the original coordinate

system as a final step. This approach follows the standard practice of transforming

absolute coordinates to a stratigraphically flattened system according to specifics

of the geological architecture (Pyrcz and Deutsch, 2014). Figure 6.3 shows vari-

ous perspectives of the flattened data, which have been transformed relative to the

topographic elevation in Figure 6.2.
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6.2.2 Jackknife Removal

The data in Figure 6.3 are colored as ‘model nodes’ or data observations. The

model nodes are the 7,339 observations that have been removed for jackknife vali-

dation (e.g., test data), leaving the remaining 11,013 observations that will inform

geostatistical modeling (e.g., training data). The jackknife removal was performed

in a completely random manner so that global properties of the training data are

representative of the test data. Given the near proximity of vertical conditioning

data, modeling results at these locations are expected to be have greater local ac-

curacy than that of a regular 3-D grid (on average). The comparative geostatistical

modeling workflow enjoys this same benefit, however, revealing the accuracy that is

attributed to the PPMT rather than specifics of the data conditioning.

One could consider alternative jackknife removal schemes, such as eliminating

entire drillholes from the dataset. Such schemes yielded training data that were not

representative of the test data, however, adding unnecessary complication to the

evaluation of results. Declustering tools are available for determining the spatially

representative statistics of a regular domain from irregularly spaced data (Deutsch

and Journel, 1998). No such tools are available, however, for declustering data to

be representative of a set of isolated locations (removed drillholes).

6.2.3 Univariate, Multivariate and Spatial Properties

Univariate and bivariate properties of the training data are presented in Figure 6.4

using a covariance matrix format, where CDFs appear along the diagonal and scat-

terplots are placed in the off-diagonal, or upper triangle locations. All of the multi-

variate complexities that were schematically represented in Figure 1.2 are present,

including non-linearity, heteroscedasticity and constraints. Consequently, this mul-

tivariate distribution is not expected to be reproduced by geostatistical workflows

that fail to remove these complexities prior to the application of Gaussian simulation

algorithms.

Strong bivariate dependencies are observed between all of the variables. It is

interesting to note, however, that only Fe-SiO2 and Fe-MgO have strong absolute

correlation. The remaining bivariate distributions have absolute correlation of less

than 0.16. This is an excellent example of a complex multivariate distribution that

is very poorly characterized by correlation coefficients. Bimodality is also present

within the scatterplots and CDFs of Figure 6.4. These are primarily explained by

the presence of multiple geological rocktypes, which are addressed with stationarity

related subsetting in the next section.
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Figure 6.3: Various perspectives of the observation and model node locations.
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Figure 6.4: CDFs and KDE scatterplots of the data (all rock types).
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Figure 6.5: Semivariograms and cross-semivariograms of the data in the vertical
and horizontal directions (all rocktypes).
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Spatial continuity of the variables is presented in Figure 6.5 using a covariance

matrix-like format. Due to anisotropy of the deposit, the horizontal direction is

more continuous than the vertical and must be presented on a different scale. As

such, horizontal semivariograms are placed in the upper triangle displaying lags

to h = 200m distance; vertical semivariograms are placed in the lower triangle

displaying lags to h = 20m distance. The ‘double-diagonal’ locations display the

semivariograms, while cross-semivariograms are placed in the off-diagonal locations.

A large range of relative continuity is exhibited by the semivariograms: i)Ni

is discontinuous, ii) Fe and SiO2 are moderately continuous, and iii) MgO is very

continuous. These observations apply to both the horizontal and vertical directions.

This may be a cause for concern, since the PPMT is transforming variables of

widely varying continuity. Depending on the degree of mixing that is required to

make them uncorrelated and multiGaussian, it may be difficult to recover the unique

spatial structure of each variable.

The nature of the cross-semivariograms are somewhat expected given the corre-

lations at h = 0 lag distance in Figure 6.4. Consider that Ni has strong bivariate

relationships that are not characterized by the associated correlations. Similarly,

although the Ni cross-correlations are near zero at all lags, it is reasonable to ex-

pect that complex relationships continue to exist with the other variables at h > 0

lag distances. While multivariate relationships at h > 0 are only inspected using

cross-covariances, this is a subject of future work that is reviewed in Chapter 8.

6.2.4 Rocktype Subsetting

Recall from Section 2.1.1 that prior to geostatistical modeling, the data must be

pooled into stationary domains based on geologic factors such as lithology, miner-

alization, structure or alteration. In this case, the data are subset according to the

provided geologic rocktypes. Modeling of the four variables will proceed in parallel

for each rocktype, before combining the results.

The rocktypes are numbered as: 1) Basic ETO, 2) Basic WTO, 3) Acid ETO,

and 4) Acid WTO. The number of observations and average grades of each rocktype

(RT) is provided in Table 6.1. As was described in Section 6.1, the WTO rocktypes

have lower Ni grade than their ETO equivalent, but this comes at the expense of

higher Fe grades and SMR ratios. Table 6.1 also shows that Ni and MgO grades

are higher for the acid rocktypes, while Fe is higher for the basic rocktypes. While
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the rocktypes have varying SMR, the acid WTO (RT4) is notably higher than the

others.

Table 6.1: Rocktype description, number of observations and the mean grade (%)
of each variable.

RT Description n Ni Fe SiO
2

MgO

1 Basic ETO 5,968 1.9 12.6 36.7 27.4
2 Basic WTO 4,016 2.0 12.9 38.8 24.9
3 Acid ETO 1,389 1.0 16.4 36.5 22.9
4 Acid WTO 6,979 1.7 24.0 38.4 8.7

Figure 6.6 displays the rocktype classification of each data observation from var-

ious orientations. If the map view were divided by a line proceeding roughly south-

west to northeast, the majority of ETO rocktypes (dark colors, RTs 1 and 3) would

lie to its southeast. Conversely, the majority of WTO rocktypes (light colors, RTs 2

and 4) would to lie to its northwest. Of course, it is from this distinct geographical

separation that the ETO and WTO rocktypes derive their name. As discussed in

Neufeld and Deutsch (2008), the cross-section view reveals that the WTO rocktype

has a thick laterite profile that regularly extends beyond 50m depth. Consistent

patterns of spatial variability are more difficult to discern when comparing the basic

rocktypes (blue colors, RTs 1 and 2) with the acid rocktypes (red colors, 3 and 4).

CDFs and scatterplots of each rocktype are overlain in Figure 6.7 to summarize

the univariate and bivariate populations that are pooled within each rocktype. The

bimodality that was noted in Figure 6.4 has largely been resolved, although it con-

tinues to exist within MgO for Acid ETO (dark blue, RT 3). Additional subsetting

could be considered to address this, although geologists likely chose not to given the

relatively low sample population that is available for Acid ETO.
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Figure 6.6: Various perspectives of the data locations, colored by rock type.
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Figure 6.7: CDFs and scatterplots of the data, colored by rock type.
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6.3 PPMT Transformation

The following section displays the PPMT transformation of the Ni laterite variables

for one rocktype (RT 1). As previously described, multivariate transformation and

geostatistical modeling will take place in parallel for each rocktype, before combin-

ing the simulated results. Although the different multivariate distributions of the

remaining rocktypes leads to differences in their PPMT transformation, the overall

nature of the results are similar to RT 1.

6.3.1 Visualization of Each Step

The univariate and bivariate distributions of RT 1 are displayed in Figure 6.8, which

show that isolated populations of the full distribution (Figure 6.4) are present within

this rocktype.

The PPMT initializes with the normal score transformation, which is applied

to remove univariate complexity and outliers prior to subsequent data sphereing.

The univariate and bivariate distributions are displayed for the transformed data

in Figure 6.8. While CDFs show that the variables have been made univariate

standard Gaussian, the KDE scatterplots continue to exhibit a great deal of bivariate

complexity. Interestingly, these bivariate relationships appear to be more complex

than their original form in Figure 6.8. Since additional steps are clearly required to

make this data Gaussian, it is appropriate to consider the PPMT.

The second step of the PPMT, data sphereing, is applied next to decorrelate the

normal score data. The univariate and bivariate distributions are displayed for the

sphere data in Figure 6.8. Recall that data sphereing yields an identity covariance

matrix; in addition to being uncorrelated, all of the variables also have a variance of

one. Nevertheless, obvious bivariate complexity remains in the KDE scatterplots.

Finally, one hundred iterations of projection pursuit are used to transform the

sphere data to a multiGaussian distribution. The univariate and bivariate distri-

butions are displayed for the PPMT data in Figure 6.8. CDFs and their summary

statistics display standard univariate Gaussian values, while the KDE scatterplots

mimic the contours of an uncorrelated multiGaussian distribution.
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Figure 6.8: CDFs and scatterplots of the original data (RT 1).
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Figure 6.9: CDFs and scatterplots of the normal score data.
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Figure 6.10: CDFs and scatterplots of the sphere data.
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Figure 6.11: CDFs and scatterplots of the PPMT data.
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6.3.2 Gaussianity and Decorrelation

While KDE scatterplots in Figure 6.11 suggest that the transformed data is very

multiGaussian, this property will now be quantified. The maximum projection

index, I(θ), of each projection pursuit iteration is displayed in Figure 6.12. Recall

that I(θ) is a test statistic that is large when the projection, p = Xθ, is non-

Gaussian, and zero when p is standard Gaussian. The overlain percentiles are

drawn from the distribution of projection indices, I, which is calculated as the basis

for PPMT stopping criteria. The distribution is generated through calculating I

within random Gaussian distributions of matching K variables and n observations.
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Figure 6.12: Projection index across one hundred iterations, with percentiles of I
overlain for comparison.

Noting the logarithmic y-axis of Figure 6.12, the descending maximum projection

index indicates that the majority of complexity is resolved within the first twenty

five to thirty iterations. According to I, however, the distribution is barely multi-

Gaussian after this many iterations. While complexity is resolved at a much slower

rate for iterations 30 to 100, improvements are nevertheless made to the Gaussianity

of the distribution. After one hundred iterations, the 50th percentile of I indicates

that the data matches the Gaussianity of a typical random Gaussian distribution.

The scatnscores BVSN test (Section 4.2.2) is used once again as an independent

check of the PPMT Gaussianity. Figures 6.13 and 6.14 display the scatnscores

plots of the data following ten and twenty projection pursuit iteration, respectively.

For K > 2 variables, scatnscores outputs a correlation table in the bottom left of

its plot. These correlations are colored red if they fail the BVSN. Four of the six

pairs pass the BVSN after ten iterations, while all of the distributions pass after

twenty iterations. This result corroborates the stopping criteria of the PPMT.

The progression of decorrelation across the projection pursuit iterations is dis-

played in Figure 6.15. While bearing the small scale of the y-axis in mind (-.14
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Figure 6.13: scatnscores plot and Gaussianity test of the 10th projection pursuit
iteration .

to 0.15), the variables are not entirely decorrelated in this case until the ∼ 60th

iteration. Summarizing, the PPMT transforms these complex variables to an un-

correlated multiGaussian distribution, although many projection pursuit iterations

are required to so. Some concern may arise in terms of the changes that these iter-

ations could incur to the original multivariate configuration and spatial continuity;

this is examined in the next section.
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Figure 6.14: scatnscores plot and Gaussianity test of the 20th projection pursuit
iteration .
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6.3.3 Mixing and Spatial Structure

The previous section established that the PPMT can effectively transform the Ni

laterite data to an uncorrelated multiGaussian distribution. The nature of the

underlying transformation and its effect on the spatial structure of the data will

now be examined. Plots in Figure 6.16 display how the original variables have been

loaded onto the transformed variables.

Dimension Reduction 

Sphere 

Spectral Decomposition 

Sphere 

Spectral Decomposition Sphere &

100 Projection Pursuit Iterations 

Figure 6.16: Loading plot of the transformed variables following DRS (top left),
SDS (top right), and fifty projection pursuit iterations preceded by SDS (bottom).

As in Section 5.3.3, the dimension reduction sphereing (DRS) result is provided

as a relative comparison to the implemented spectral decomposition sphereing (SDS)

result. DRS maximizes the variability that each descending transformed variable

explains, leading to large absolute loadings for the first transformed variable in

Figure 6.16. Consequently, the original variables are heavily mixed within the first
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transformed variable, potentially complicating the recovery of their distinct spatial

continuity following simulation and back-transformation.

This is the motivation for the SDS sphereing that is applied by the PPMT, which

primarily loads each variable onto the associated transformed variable. While this

effectively minimizes mixing of the variables, Figure 6.16 shows that the decor-

relation of this multivariate system requires the mixing of Fe, SiO2 and MgO in

transformed space. As with the bivariate example in Section 5.3.3, the subsequent

PPMT iterations are seen to shift the loadings, though the overall structure of the

sphereing step is largely preserved.
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Figure 6.17: Scatterplots of the sphere and PPMT data, colored by their original
x-axis value.
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A more visual method for inspecting the nature of transformations and their

resultant variable mixing is to color the transformed observations according to the

original values. Doing so provides insight into the relative shift of the multivariate

configuration, as was schematically illustrated in Figure 4.5. The sphere and PPMT

transformed data are colored by the original values in Figure 6.17. The coloring in

this figure corroborates the loadings in Figure 6.16. For example, Ni is mixed the

least according to its loadings; plots that are colored by Ni show little rotation

and a smooth gradient of color. Conversely, Fe is mixed the most according to its

loadings; plots that are colored by Fe show the largest rotation and a relative mixing

of colors. The overall nature of the PPMT coloring clearly reflects the sphereing

step. Ni continues to exhibit a smooth gradient of color, whereas the mixing that

was noted for Fe appears to be exacerbated by subsequent projection pursuit.

Given the above observations, it is expected that the spatial continuity of Fe is al-

tered the most in transformed space, whereas Ni is altered the least. Semivariograms

of the original, normal score, sphere, and PPMT data confirm this expectation in

Figure 6.18. Fe continuity decreases dramatically in the horizontal and vertical di-

rection, whereas Ni continuity increases only slightly in the horizontal direction. It

is also interesting to note that the SiO2 continuity is largely preserved, despite the

large correlation and cross-correlation that previously existed for Fe-SiO2 . This

suggests that forcing two strongly correlated regionalized random variables to be in-

dependent at h = 0 will lead to destructuring of at least one variable in transformed

space.

The cross-semivariograms display that removing correlation at h = 0 lag distance

has largely removed correlation at h > 0 lag distances. Some cross-correlation does

remain, however, which motivates a min./max. auto-correlation factors (MAF)

transformation that is used for further spatial decorrelation in the applied workflow.

Figure 6.18 also shows that spatial continuity is significantly altered by projec-

tion pursuit in some cases, according to differences that exist between sphere and

PPMT semivariograms. To understand how these changes progress, Figure 6.19

plots the semivariograms of each projection pursuit iteration. With the exception

of horizontal MgO, the large continuity changes are incurred in the first twenty five

projection pursuit iterations. This is not surprising given that the largest changes

to the multivariate system occur in the those iterations according to the projection

index (Figure 6.12). Given that most changes occur in the early states of projec-
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Figure 6.18: Semivariograms and cross-semivariograms for the original and trans-
formed data .

tion pursuit, this result supports the previous conclusion that a large number of

iterations is not overly consequential to spatial continuity.
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Figure 6.19: Semivariograms and cross-semivariograms following each of the one
hundred projection pursuit iterations.

6.4 Simulation Results

Following the PPMT transformation from the previous section, the data have been

made uncorrelated multiGaussian at h = 0. Observing the remnant cross-correlation

at h > 0m distances (Figure 6.18), MAF is applied next to decorrelate the variables

at h = 10m. Simulation then proceeds at the jackknife validation locations that were

displayed in Figure 6.3. Using semivariogram models and the transformed data as

input, SGSIM is executed to independently simulate one hundred realizations of

each variable. The realizations are returned to original space using the MAF and

PPMT reverse projection (RP) back-transformations. The RP method is used rather

than Gaussian mapping (GM) for the back-transformation for the reasons that were

developed and discussed throughout Chapter 5.

After combining rocktypes, properties of the realizations are validated against

the removed jackknife data. A geostatistical workflow that does not incorporate

the PPMT is used to provide a relative benchmark of the results. This includes

a comparison of the resource management decisions that each modeling workflow

provides, which is used as a metric of value in this case study.
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6.4.1 Initial Results

Reproduction of the global univariate distributions is shown in Figure 6.20. Overall

reproduction is confirmed, showing that the multivariate transformation workflow

has successfully restored the univariate distribution of each variable. The largest

mean bias (though small) is observed for the Fe and SiO2variables, which may relate

to the relatively high mixing of those variables in the transformation.
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Figure 6.20: CDFs of the simulated realizations with the true CDFs overlain for
comparison.

Local accuracy of the simulated realizations is examined in Figure 6.21, where the

e-type mean of each location is compared with the true value. The spatial continuity

of each variable is reflected in its local accuracy, as high continuity generally improves

prediction (e.g., MgO). Everything else being equal, effectively characterizing the

multivariate distribution of the variables should lead to increased accuracy, which

is demonstrated in the subsequent comparisons.

Reproduction of the bivariate distributions is examined in Figure 6.22, where

KDE scatterplots of the jackknife data (upper triangle) are compared with a sim-
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Figure 6.21: Scatterplots and summary statistics that compare the simulated e-
type with associated true values.

ulated realization (lower triangle). Excellent reproduction of the complex features

is seen overall. One small concern is the infrequent occurrence of simulated points

in space that appears to lie beyond the concave hull of the data. This is most evi-

dent in the Fe-SiO2, Fe-Mgo and SiO2-MgO plots. This is a potential issue of the

RP back-transformation documented earlier. The GM back-transformation could

be considered as an alternative if strict adherence to multivariate constraints is a

priority.

Spatial continuity is examined in Figure 6.23, where semivariograms and cross-

semivariograms of the simulated realizations are overlain with that of the jackknife

data. Reproduction is excellent in the horizontal direction, as the unique conti-

nuity of each variable has been recovered despite the mixing concerns that were

noted in the previous section. A loss of short scale structure is present in the ver-

tical direction. Following spatial destructuring of the transformation (Figure 6.18),

the back-transformation does not restore the full original vertical continuity to the

simulated realizations.
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Figure 6.23: Semivariograms and cross-semivariograms of the true values and
simulated realizations.
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6.4.2 Practical Measures for Semivariogram Reproduction

Simulated results in the previous section displayed excellent reproduction of the

univariate, bivariate and horizontal continuity properties. A concern, however, is

the vertical continuity. As discussed in Chapter 8, this problem is a primary focus

of future work that is not resolved by this thesis.

In this case, simulated realizations in the more poorly conditioned and aggres-

sively destructured horizontal direction are very well reproduced. In a counter-

intuitive manner, however, simulated realizations in the well conditioned and gently

destructured vertical direction are not well reproduced. The problem is believed

to relate to forcing related variables to be independent at h = 0 lag, which has

a larger impact on the continuity at short scale lag distances. Despite subsetting,

non-stationary vertical trends persist within the rocktypes; this degrades vertical

continuity in a manner that is unrelated to the PPMT.

To overcome this issue, one could consider the very practical measure of increas-

ing the continuity of the semivariogram models in transformed space. Figure 6.24

displays a slice through the vertical component of the semivariogram models that

are used as input to SGSIM. The models from the previous section are constructed

with 0.01 nugget effect and three spherical nested structures. In general, they are

fit very closely to the vertical variability of the transformed data, though they err

on the side of too-continuous when the exact shape cannot be fit. Also displayed

in this figure are semivariogram models of inflated continuity, which increase the

ranges of the first, second and third nested structures by factors of four, two and

one, respectively. The closely fit semivariogram models and resultant geostatistical

realizations are referred to as Varg0, while the inflated continuity semivariogram

models and resultant geostatistical realizations are referred to as Varg1.

Figure 6.25 displays semivariogram reproduction where the Varg1 models have

been used as input to simulation. Relative to the Varg0 results (Figure 6.23), the

vertical semivariogram and cross-semivariogram reproduction is improved a great

deal. Despite the extremely exaggerated continuity in transformed space, the back-

transformation has yielded realizations where only Ni is too continuous (overall) in

the vertical direction. Further, at the first vertical lag distance, every variable other

than SiO2 remains too discontinuous.

The improved vertical reproduction comes at the expense of horizontal repro-
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Figure 6.24: Vertical semivariograms of the transformed data, with the original
(Varg0) and inflated continuity (Varg1) models.

duction, as the increased continuity in the vertical direction has led to Fe and

SiO2 semivariograms that are slightly too continuous in the horizontal direction

(Figure 6.25). The best result will be judged based on the priorities of the setting

and practitioner; here, the best result is judged based on local accuracy. Comparing

their local accuracy results in Figures 6.21 and 6.26, the increased continuity of

Varg1 is seen to improve local accuracy relative to Varg0 for all modeled variables.
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Figure 6.25: Semivariograms and cross-semivariograms of the true values and
simulated realizations (Varg1 workflow).
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6.4.3 MAF Comparison

To provide a relative benchmark for judging the PPMT results, modeling of the

jackknife locations will now proceed with the following ‘MAF’ workflow:

i) Normal score transformation as a preprocessor that centers the data and re-

moves outliers.

ii) MAF transformation to decorrelate the variables at 0m and 10m lag distances.

iii) Second normal score to transform the variables to be standard univariate Gaus-

sian.

iv) Independent simulation using SGSIM.

v) Back-transformation of the realizations in the reverse order.

Results from this MAF workflow are compared with the PPMT/MAF workflows

that appeared in the previous sections, where the Varg0 and Varg1 semivariogram

model approaches are denoted as PPMT/MAF0 and PPMT/MAF1, respectively.

The MAF workflow is identical to the PPMT/MAF workflows, except that a normal

score transform is used for step (i) rather than the PPMT. The semivariogram

modeling methodology follows the PPMT/MAF0 workflow methodology, where the

models are fit to the transformed data rather than being overly continuous.

Alternative workflows could be considered such as the cosimulation and stepwise

conditional transformation (SCT) approaches that were compared to the PPMT in

Section 5.3.6. The cosimulation approach is not considered since it underperformed

MAF in that bivariate setting and is not expected to offer significant advantage in

this one. The SCT outperformed MAF in the bivariate setting, though it underper-

formed the PPMT. The data requirements of the SCT and dimensionality of this

setting mean that nested workflows must be implemented. The n observations that

are available for some rocktypes (Table 6.1) only permit two conditioning variables,

increasing the likelihood that multivariate complexity will remain following the SCT

transformation.

Univariate results are compared in Table 6.2, summarizing the performance of

each workflow in terms of the global mean error (µ Error), global standard devia-

tion error (σ Error), one minus the cross-validation correlation (1 − ρ), RMSE of

the cross-validation (RMSE), and RMSE of the semivariogram (γ RMSE). To sim-

plify comparison, these statistics have been standardized through dividing by their
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maximum (by variable). Following this standardization, one represents the worst

result for each variable, while zero would represent a perfect result. The underlying

raw values of these statistics may be found and visualized for the PPMT/MAF0

workflow in Figures 6.20(µ and σ), 6.21 (ρ and RMSE) and 6.23 (γ RMSE).

Table 6.2: Standardized univariate performance statistics for the MAF and
PPMT/MAF workflows.

Measure Method Ni Fe SiO2 MgO Avg.

µ Error
PPMT/MAF0 0.97 0.71 0.80 0.23 0.68

PPMT/MAF1 1.00 1.00 1.00 0.41 0.85
MAF 0.96 0.43 0.76 1.00 0.79

σ Error
PPMT/MAF0 0.44 0.58 0.34 0.11 0.37

PPMT/MAF1 1.00 1.00 1.00 0.37 0.84
MAF 0.70 0.24 0.40 1.00 0.59

1− ρ
PPMT/MAF0 1.00 1.00 1.00 1.00 1.00
PPMT/MAF1 0.95 0.94 1.00 0.93 0.95

MAF 0.97 0.94 0.98 0.92 0.96

RMSE
PPMT/MAF0 1.00 1.00 1.00 1.00 1.00
PPMT/MAF1 0.97 0.97 1.00 0.96 0.98

MAF 0.99 0.97 0.99 0.96 0.98

γ RMSE
PPMT/MAF0 1.00 0.97 0.75 0.93 0.91
PPMT/MAF1 0.85 0.72 0.84 0.60 0.75

MAF 0.87 1.00 1.00 1.00 0.97

To further summarize the comparison, each statistic is averaged across the vari-

ables (Avg. column) before bolding the best result. Workflows that incorporate the

PPMT produce the best results for each statistic. PPMT/MAF0 yields the best

reproduction of the global statistics (µ Error and σ Error), while PPMT/MAF1

yields the best local accuracy (1 − ρ and RMSE) and semivariogram reproduction

(γ RMSE).

As spatial variability was the one area of concern for the PPMT results, it may be

surprising to see that it outperforms MAF according to the γ RMSE. Semivariogram

reproduction of the MAF workflow is displayed in Figure 6.27, where an issue with

vertical continuity is present that is similar in nature to the PPMT/MAF0 result.

This supports the claim that this issue relates to stationarity problems that arise

from vertical trends, as well as a general problem with forcing dependent variables

to be independent.
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Figure 6.27: Semivariograms and cross-semivariograms of the true values and
simulated realizations (MAF workflow).
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Bivariate results are compared in Table 6.3, presenting the performance of each

method in terms of correlation error (ρ Error), RMSE of bivariate KDE (KDE

RMSE) and RMSE of the cross-semivariogram (γ RMSE). Following this standard-

ization, one represents the worst result for each bivariate pair, while zero would

represent a perfect result. Note that the pairs are abbreviated by the first letter of

each variable in this table due to space constraints.

The raw values of these statistics may be found and visualized for the PPMT/-

MAF0 workflow in Figures 6.22 (ρ and KDE RMSE) and 6.23 (γ). To further sum-

marize the comparison, each statistic is averaged across the bivariate pairs (Avg.

column) before bolding the best result. As with the univariate performance, the

PPMT workflows yield the best reproduction of these bivariate statistics.

Table 6.3: Standardized bivariate performance statistics for the MAF and PPMT/-
MAF workflows.

Measure Method N-F N-S N-M F-S F-M S-M Avg.

ρ Error
PPMT/MAF0 1.00 0.18 1.00 0.25 0.20 0.68 0.61
PPMT/MAF1 0.62 0.45 0.80 0.26 0.02 0.44 0.53

MAF 0.03 1.00 0.81 1.00 1.00 1.00 0.71

KDE RMSE
PPMT/MAF0 0.54 0.37 0.39 0.32 0.61 0.32 0.41

PPMT/MAF1 0.50 0.44 0.43 0.39 0.73 0.41 0.44
MAF 1.00 1.00 1.00 1.00 1.00 1.00 1.00

γ RMSE
PPMT/MAF0 0.74 0.97 0.88 1.00 1.00 1.00 0.90
PPMT/MAF1 0.72 0.86 0.82 0.93 0.68 0.89 0.83

MAF 1.00 1.00 1.00 0.94 0.85 0.98 0.99

The KDE RMSE statistic in Table 6.3 indicates that the PPMT workflows signifi-

cantly outperform the MAF workflow in terms of reproducing the complex bivariate

density. As displayed in Figure 6.28, however, it should be noted that the MAF

workflow does a reasonable job of reproducing complex features that are present in

the data. Although it is visually worse than the PPMT/MAF reproduction (Figure

6.22), this result emphasizes the importance of stationarity decisions. Rocktype

subsetting has isolated distinct multivariate populations of the data. These popula-

tions account for a substantial portion of the multivariate complexity in the overall

system. Following geostatistical modeling of the properties within each rocktype,

this complexity is restored by the recombination of rocktypes. In other words, the

PPMT improves reproduction of the complex features that are present within each

rocktype. Substantial complexity also exists between rocktypes, however, allowing

for the MAF workflow to exhibit reasonable reproduction of the overall complexity.
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Figure 6.28: KDE scatterplots of a realization, with the true values shown for
comparison (MAF workflow).

6.5 Impact on Process Performance

The previous section establishes that incorporating the PPMT in geostatistical mod-

eling improves characterization of the univariate, bivariate, and spatial properties

of the Ni laterite deposit. The value that this improved characterization offers in

terms of technical decision making and process performance will now be measured.

Unfortunately, information such as the Barro Alto plant recovery functions and

blending methodology are not available to this thesis. As a result, value is mea-

sured in a conceptual manner following methodology that is available in Neufeld

et al. (2008) to be as realistic as possible. Section 6.1 explains that mined ore is

stockpiled and stacked to reduce variability and maintain key properties. Feed to
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the furnace should have an average Ni grade above 1.5%, Fe grade below 18.5%,

and an SMR ratio below 1.75. Observing the critical thresholds of the furnace feed,

consider categorizing each simulated location, uα, as one of NO = 8 classifications,

Oi(uα), i = 1, ..., NO, according to Table 6.4. This classification is used for direct-

ing the material to appropriate stockpiles, and is tracked for directing subsequent

stacking to achieve the correct furnace feed blend.

Table 6.4: Table of ore types that are used for blending and stockpiling.

Oi Group SMR Description

1
Low Fe Ore

High Ni ≥ 1.5%, SMR ≥ 1.75, Fe < 18.5%
2 Low Ni ≥ 1.5%, SMR < 1.75, Fe < 18%

3
High Fe Ore

High Ni ≥ 1.5%, SMR ≥ 1.75, Fe ≥ 18.5%
4 Low Ni ≥1.5%, SMR < 1.75, Fe ≥ 18%

5
Low Fe Waste

High Ni < 1.5%, SMR ≥ 1.75, Fe < 18.5%
6 Low Ni < 1.5%, SMR < 1.75, Fe < 18%

7
High Fe Waste

High Ni < 1.5%, SMR ≥ 1.75, Fe ≥ 18.5%
8 Low Ni < 1.5%, SMR < 1.75, Fe ≥ 18%

Varying economic cost is associated with the misclassification of each ore type.

Table 6.5 presents the economic cost of misclassification, Cij , resulting from a clas-

sification of Oi(u) when the true ore type is Oj(u). Each Cij is calculated as the

summation of:

i) SMR misclassification (0.4), where SMR is predicted to be ≥ 1.75 but the true

value is < 1.75 (or vice versa). SMR is assigned a relatively high cost since

it has a critical impact on the plant process. Furnace feed that is well above

the SMR target will damage the furnace lining. Conversely, furnace feed that

is well below the SMR target effectively wastes low SMR material that could

have been used more effectively for blending high SMR material in the future.

ii) Fe misclassification (0.2), where Fe is predicted to be ≥ 18.5% but the true value

is< 18.5% (or vice versa). Fe is assigned a lower cost than SMRmisclassification

since it has less severe consequences overall. Furnace feed that is well above

the Fe target will lead to poor recoveries. Conversely, furnace feed that is well

below the Fe target effectively wastes low Fe material that could have been used

more effectively for blending high Fe material in the future.

iii) Ni misclassification (0.2), where Ni was predicted to be ≥ 1.5% but the true
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value is < 1.5% (or vice versa). Ni is assigned the same cost as Fe misclassifi-

cation since they both relate to economic recovery.

Table 6.5: Cost associated with misclassification, which differs based on the pre-
dicted and true ore type.

SMR High Low High Low High Low High Low

High 0 0.4 0.2 0.6 0.4 0.8 0.6 1

Low 0.4 0 0.6 0.2 0.8 0.4 1 0.6

High 0.2 0.6 0 0.4 0.6 1 0.4 0.8

Low 0.6 0.2 0.4 0 1 0.6 0.8 0.4

High 0.4 0.8 0.6 1 0 0.4 0.2 0.6

Low 0.8 0.4 1 0.6 0.4 0 0.6 0.2

High 0.6 1 0.4 0.8 0.2 0.6 0 0

Low 1 0.6 0.8 0.4 0.6 0.2 0 0

Predicted Type

Low Fe Ore High Fe Ore Low Fe Waste High Fe Waste

True 

Type

Low Fe 

Ore

High Fe 

Ore

Low Fe 

Waste

High Fe 

Waste

As demonstrated for strategic mine planning in Dimitrakopoulos (2011) and

conceptualized in Figure 1.1, basing resource management decisions on multiple

geostatistical realizations allows for the mitigation of risk that is associated with

geologic uncertainty. With this in mind, the final ore type classification, Oi(uα),

minimizes the total economic loss that is incurred based on the L = 100 realizations

of ore types:

argmin
i∈(1,NO)

[∑L

l=1

∑NO

j=1
Ci j •∆l(uα;Oj)

]
(6.1)

where ∆l(uα;Oj) is the binary indicator:

∆l(uα;Oj) =

{
1, if ore type Oj is present at uα for the lth realization

0, if not
(6.2)

Using this approach, ore is classified in a manner that integrates uncertainty to

mitigate risk. Each classification, Oi(uα), may then be evaluated using the true ore

type, Oj(uα), to determine the economic cost that occurs if uα is misclassified. The

performance of each workflow is summarized based on the total economic loss:

Loss =
∑N

α=1

∑NO

i=1

∑NO

j=1
ci j • ∆̂(uα;Oi) •∆(uα;Oi) (6.3)

where ∆̂(uα;Oi) is the binary indicator of the predicted ore type (Equation 6.4)

and ∆(uα;Oj) is the binary indicator of the true ore type (Equation 6.5).
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∆̂(uα;Oi) =

{
1, if ore type Oi is predicted at uα

0, if not
(6.4)

∆(uα;Oj) =

{
1, if ore type Oj is truly present at uα

0, if not
(6.5)

This economic loss metric is standardized in Table 6.6 so that one represents

the worst result (largest economic loss) and zero represents a perfect result (no

economic loss). Consider that this metric is expected to reduce with increasing

accuracy and precision for the distribution of ore type uncertainty. Given that

PPMT/MAF1 workflow provided the best multivariate and spatial characterization

of the Ni laterite deposit, it is unsurprising to see that it yields the lowest economic

loss.

Table 6.6: Standardized process performance loss, as well as the a and b statistics
from Figure 6.29

.

Method Loss a 1− b

PPMT/MAF0 1.000 1.000 0.999
PPMT/MAF1 0.974 0.716 0.936

MAF 0.999 0.716 1.000

Since the metric rewards an accurate and precise distribution of uncertainty,

these properties are evaluated in a more conventional manner. Figure 6.29 displays

the overall accuracy of the ore type uncertainty, where the predicted probability

of each ore type occurring is plotted against the true fraction of its occurrence

(Deutsch and Deutsch, 2012a). Specifics of the plot construction are described

using an arbitrary probability interval (0.5) and ore type (O1):

i) The simulated locations that have a 0.45 to 0.55 probability of O1 are deter-

mined, before calculating the true fraction of occurrence for O1 across those

locations.

ii) Repeat step (i) for the remaining NO = 8 ore types.

iii) Average the true fraction of occurrence across the NO ore types and plot against

the 0.5 probability interval.

The coloring in Figure 6.29 summarizes how frequently the various certainty

intervals are observed. The fraction of simulated locations that fall into each prob-

ability interval (np/nt) underly the coloring, where the scale is set based on the
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Figure 6.29: Accuracy plots of the ore type distributions resulting from each
workflow.

minimum and maximum of this fraction. Using the Varg0 results as an example,

the average probability of occurrence is 0.1 at 40% of the locations, whereas the

average probability of occurrence is 0.9 at only 2% of the locations.

The displayed a and b statistics in Figure 6.29 summarize the accuracy and pre-

cision of each workflow’s uncertainty. The a statistic is calculated as the average

difference between the predicted probability of occurrence and true frequency of

occurrence. This averaging is weighted by the np/nt that underlies each probabil-

ity interval. The a statistic can be visualized as the average difference between the

points and the forty five degree line in Figure 6.29, weighted by the associated np/nt

color. As described in Deutsch and Deutsch (2012a), the b statistic is calculated

as the average difference between the predicted probability of a category when it

actually occurs and the predicted probability when is does not actually occur. The

a and b statistics are standardized in Table 6.6 in the usual manner to aid in com-

parison. Observe that the PPMT/MAF1 workflow yields the best overall result, in

terms of the conceptual process performance (Loss), the uncertainty accuracy (a)

and uncertainty precision (b).

6.6 Summary

The Barro Alto Ni laterite data was chosen for this case study since it presents a

large challenge for the PPMT and multivariate geostatistical modeling in general.

The variables have widely varying spatial continuity, while exhibiting very complex

multivariate features between them.
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Relative to the bivariate example in Chapter 5, additional iterations (> 50) were

required to transform the variables to an uncorrelated multiGaussian distribution.

This is attributed to the additional dimensions and complexity of the Ni laterite

variables. The multivariate configuration and spatial continuity of the variables was

largely preserved by the transformation. The exception, however, was the mixing

and spatial destructuring of Fe. A strong dependence exists between Fe and SiO2,

meaning that one of those two variables must become destructured to make them

independent.

After applying a subsequent MAF transformation to decorrelate the variables

at h > 0, the resultant data is appropriate for independent Gaussian simulation.

Simulated realizations are back-transformed to original space, where they were found

to effectively characterize the Ni laterite deposit. A conventional MAF workflow

that does not incorporate the PPMT was used as a comparative benchmark of the

results. This comparison established that utilizing the PPMT leads to improved

reproduction of univariate, multivariate and spatial properties. A conceptual loss

function that is based on priorities of the Barro Alto project was used to measure

the value of this improved characterization in terms of improved decision making.

The one concern with the presented results is the loss of continuity that was

observed in the vertical semivariograms of simulated realizations. This problem was

not unique to the PPMT, as the MAF workflow also failed to reproduce the vertical

semivariograms. The issue is primarily attributed to non-stationarity vertical trends

that exist despite stationarity related rocktype subsetting.
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Chapter 7

Nickel Laterite Case Study:

Data Imputation

The following chapter uses Anglo American’s Barro Alto Ni laterite mine to study

the performance and value of data imputation in a complex geologic setting. This

is a direct extension of Chapter 6; all of the previously described information such

the Barro Alto background and data inventory continues to apply and will not be

repeated.

Further, the jackknife locations of the Ni laterite dataset will continue to be

modeled using the described PPMT/MAF1 geostatistical workflow. The previous

chapter established the accuracy that this workflow is best. That data will now be

decimated using a missing at random (MAR) mechanism, resulting in heterotopic

and homotopic observations. Consequently, there are three geostatistical modeling

options:

i) Use data exclusion (DE), where heterotopic observations are excluded from

modeling to facilitate the multivariate transformations.

ii) Use single imputation (SI), where missing values are imputed with a single

value. The resultant homotopic data is used for modeling so that sampled

values are not excluded.

iii) Use multiple imputation (MI), where missing values are imputed with multi-

ple realizations that sample their uncertainty. The resultant homotopic data

realizations are used for modeling so that sampled values are not excluded and

uncertainty of the imputed values is incorporated.

Geostatistical modeling is performed at the jackknife locations to measure the

improvement that MI (option iii) offers over DE and SI (options i and ii) in terms
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of local accuracy and resource characterization. Option (iii) is repeated using the

four imputation methods from Chapter 3 to compare each method’s performance

with real Ni laterite data. This also provides insight into how improved imputation

results translate to improved geostatistical modeling results. The conceptual loss

metric from the previous chapter is used to measure the relative impact that the

missing data schemes (three options) and imputation results (four methods) have

on resource management decisions of the Barro Alto project.

The majority of figure and table formats in this chapter, as well as the statistics

within them have been introduced in Chapters 3, 5 and 6. Only new formats and

statistics will be explained in detail.

7.1 Missing Data Mechanism

The Ni laterite data set is composed of 11,013 homotopic observations, which is dec-

imated with a MAR mechanism to facilitate jackknife validation of the imputation

process. Consider that it is very common for mines to spend additional money on

sampling and lab testing of observations in higher grade areas. With this in mind,

the data removal scheme is described as:

i) Ni is the resource and therefore is not missing from any observations.

ii) Fe is missing in ∼ 2/3 of the observations from low grade regions (Ni less than

the median of its distribution), while only missing in ∼ 1/3 of the observa-

tions from high grade regions (Ni greater than or equal to the median of its

distribution).

iii) MgO and SiO2 are missing in ∼ 1/3 of the observations from low grade regions,

while only missing in ∼ 1/5 of the observations from high grade regions. They

are always missing together as SMR motivates their sampling; both or none

would be missing.

Consequently, the resultant heterotopic data will preferentially sample Fe, SiO2 and

MgO from high grade Ni regions. While no Ni values are missing, the variable is

included in the imputation model for several reasons: i) to prevent a missing not at

random (MNAR) mechanism that would lead to bias results, since the missingness

relates to Ni grade, ii) to insure that the imputed variables reproduce their relation-

ship with Ni, and iii) to increase the imputation accuracy through additional condi-
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tioning information. The number of missing values, Nmis for each variable is shown

in Table 7.1, which leads to 5,098 homotopic observations and 5,915 heterotopic

observations. Figure 7.1 displays the locations of the heterotopic and homotopic

observations, which are shown to be relatively dispersed across the dataset from a

spatial perspective.

Table 7.1: The number of missing values (Nmis) and their associated fraction of
the total 11,013 observations (Nmis/Ntot).

Variable High Grade Low Grade Total

Nmis Nmis/Ntot Nmis Nmis/Ntot Nmis Nmis/Ntot
Ni 0 0.00 0 0.00 0 0.00
Fe 1,694 0.15 2,814 0.26 4,508 0.41

MgO 1,075 0.10 1,712 0.16 2,787 0.25
SiO2 1,075 0.10 1,712 0.16 2,787 0.25

CDFs in Figure 7.2 reveal that the MAR mechanism has yielded differences

between the sampled and missing distributions. The differences are relatively small,

however, meaning that DE or SI is not expected to add significant bias to the dataset

and subsequent geostatistical modeling from a univariate perspective.

Figure 7.3 displays the bivariate relationships of the missing and sampled values

in the upper and lower triangles, respectively. As with the CDFs, significant bias

is not present in the bivariate distributions in spite of the MAR mechanism. As

a result, DE or SI is also not expected to add significant bias from a bivariate

perspective.

The complex features that are present in Figure 7.3 are only expected to be

reproduced by the non-parametric merged (NPM) imputation method. Note, how-

ever, that all of the rocktypes are present in this figure. As with geostatistical

modeling in the previous section, the data is imputed by rocktype. Rocktype sub-

setting and recombination has been shown to remove and reintroduce a significant

proportion of the Ni laterite complexity. This permitted the MAF workflow to rea-

sonably reproduce complex bivariate features (Figure 6.28); it may also allow for the

imputation methods that make multiGaussian assumptions to reasonably reproduce

the bivariate distributions in Figure 7.3.

Figure 7.4 displays spatial continuity of the missing and sampled values in the

upper and lower triangles, respectively. The ‘double-diagonal’ locations display the

semivariograms, while cross-semivariograms appear in the off-diagonal locations.
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Unlike the univariate and bivariate distributions, the missing and sampled data

have very different spatial continuity. In particular, the semivariograms are less

continuous for the sampled data than they are for the missing data in both the

horizontal and vertical directions. Consequently, DE or SI is expected to bias the

continuity of the data and subsequent geostatistical models.
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7.2 Imputation Results

After subsetting the heterotopic data by rocktype, the four MI methods from Sec-

tion 3.3 are used to impute one hundred realizations of the missing values. After

recombining the rocktypes, the performance of each imputation method may be

judged by comparing the realizations against the true removed values.

7.2.1 Univariate Reproduction

Reproduction of the global univariate distributions is shown in Figure 7.5. Overall

reproduction of the missing CDFs is excellent, showing that values can be imputed

by MI without introducing global bias. CDF reproduction is summarized based

on the displayed mean and standard deviation errors in Figure 7.5 to aid in the

comparison of each imputation method. These statistics appear in Table 7.2, where

they are labeled as µ and σ Error, respectively. As in earlier chapters, the statistics

are standardized so that one represents the worst result for each variable; zero would

represent a perfect result. To further summarize the comparison, each statistic is

averaged across the variables (Avg. column) before bolding the best result. Keeping

in mind that each method yielded excellent CDF reproduction, the merged and NPM

methods produce the best overall result in terms of µ and σ, respectively. The

primary method yields the worst result according to these statistics, as is visually

apparent in Figure 7.5. This indicates that incorporating colocated information of

the heterotopic observations reduces global bias in the imputed results.

Local accuracy is examined in Figure 7.6, where the e-type mean of the imputed

realizations is plotted against the associated true value. Performance is summarized

by the correlation (1−ρ) and RMSE statistics in Figure 7.6, which are standardized

in Table 7.2. According to these statistics, a consistent gradient of improvement is

observed when proceeding across the imputation methods. Only considering spa-

tially correlated information (primary) yields worse accuracy than only considering

colocated information (secondary), though methods incorporating both sources of

information perform best (merged and NPM). Looking at the scatter characteristics

in Figure 7.6, observe that the NPM method yields the most normally distributed

error. This reflects that the NPM does not assume that the data is multiGaussian.

Compare this to the complex distribution of error for the secondary method. The

secondary method revolves around a multiGaussian assumption, leading to more
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Figure 7.5: CDFs of the imputed realizations with the true CDFs overlain for
comparison.

frequent occurrences of ‘very bad’ estimates than the other methods.

Reproduction of horizontal and vertical continuity is examined in Figures 7.7

and 7.8, respectively. Semivariograms of the imputed realizations are overlain with

that of the removed true values. The RMSE statistic in these figures are averaged

and standardized in Table 7.2.

Recall from Figure 7.4 that large differences exist between the continuity of

the missing and sampled data. It should be noted that the imputation methods

that incorporate spatial information had semivariogram models that were closely

fit to semivariograms of the sampled data. Although this case study is aware of

the missing properties, this would not occur in reality and was not incorporated
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Table 7.2: Standardized univariate performance statistics for each imputation
method.

Measure Method Fe SiO
2

MgO Avg.

µ Error

Primary 1.00 0.66 1.00 0.89
Secondary 0.75 0.26 0.28 0.43
Merged 0.70 0.20 0.06 0.32

NPM 0.36 1.00 0.75 0.70

σ Error

Primary 1.00 1.00 1.00 1.00
Secondary 0.22 0.40 0.71 0.44
Merged 0.10 0.71 0.53 0.45
NPM 0.23 0.62 0.16 0.34

1− ρ

Primary 1.00 0.83 0.86 0.90
Secondary 0.51 1.00 1.00 0.84
Merged 0.31 0.60 0.59 0.50
NPM 0.26 0.48 0.50 0.41

RMSE

Primary 1.00 0.93 0.94 0.96
Secondary 0.74 1.00 1.00 0.91
Merged 0.59 0.82 0.78 0.73
NPM 0.54 0.76 0.72 0.67

γ RMSE

Primary 0.81 0.45 0.62 0.63
Secondary 1.00 1.00 1.00 1.00
Merged 0.27 0.41 0.47 0.38
NPM 0.19 0.26 0.31 0.25

into the imputation. Despite using these semivariogram models, Figures 7.7 and

7.8 demonstrate that the differing continuity of the missing values is generally well

reproduced. As expected, the secondary method yields the worst reproduction of

continuity since it does not incorporate spatial information.

Figure 7.6 demonstrated that the NPM method yields the greatest local accu-

racy. It is this increased accuracy that is attributed to its superior semivariogram

reproduction, as values that are nearer to their truth will indirectly improve the

spatial variability. Interestingly, the one concern with the semivariogram reproduc-

tion is at short scale vertical lags. This is reminiscent of the issue that was seen

with geostatistical realizations in the previous section.
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Figure 7.6: Scatterplots and summary statistics that compare the imputed e-type
with associated true values.
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Figure 7.7: Horizontal semivariograms of the true values and imputed realizations.
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Figure 7.8: Vertical semivariograms of the true values and imputed realizations.
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7.2.2 Multivariate Reproduction

The reproduction of bivariate densities is examined in Figure 7.9. The performance

of each method is summarized using standardized KDE RMSE and correlation error

(ρ Error) in Table 7.3.

Table 7.3: Standardized multivariate performance statistics for each imputation
method.

Measure Method Fe-SiO
2

Fe-MgO SiO
2
-MgO Avg.

ρ Error

Primary 1.00 1.00 1.00 1.00
Secondary 0.32 0.34 0.64 0.43
Merged 0.22 0.24 0.16 0.21
NPM 0.00 0.02 0.12 0.05

KDE RMSE

Primary 1.00 1.00 1.00 1.00
Secondary 0.78 0.46 0.96 0.73
Merged 0.65 0.41 0.80 0.62
NPM 0.30 0.25 0.28 0.28

γ RMSE

Primary 1.00 1.00 1.00 1.00
Secondary 0.42 0.65 0.87 0.65
Merged 0.42 0.44 0.48 0.45
NPM 0.19 0.29 0.32 0.27

All statistics in Table 7.3 are standardized so that one represents the worst

result for that bivariate pair; zero would represent a perfect result. According to

these metrics and visual inspection, the NPM method yields the best result. The

improved local accuracy and spatial variability of the NPM method is attributed to

its correct integration of multivariate information. As noted, however, imputation

by rocktype subdivision has allowed for some bivariate complexity to be reproduced

by the methods that make Gaussian assumptions.

Reproduction of horizontal and vertical cross-correlation is examined in Figures

7.7 and 7.8, respectively. Cross-semivariograms of the imputed realizations are over-

lain with that of the removed true values. The RMSE statistic in these figures are

averaged and standardized in Table 7.3. As with the other properties of interest,

the NPM method is seen to yield the best cross-correlation.

Summarizing, the NPM imputation method yields the best reproduction of the

missing univariate, multivariate and spatial features, while also yielding the best

local accuracy. This method incorporates colocated secondary information in a

manner that accounts for multivariate complexity. The imputed values better re-

produce the multivariate properties of the missing Ni laterite data, which also leads

to improved local accuracy and spatial continuity reproduction.
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Figure 7.9: KDE scatterplots of an imputed realization, with the true values shown
for comparison.
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Figure 7.10: Horizontal cross-semivariograms of the true values and imputed re-
alizations.
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Figure 7.11: Vertical cross-semivariograms of the true values and imputed real-
izations.
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7.3 Impact on Geostatistical Modeling

The previous section establishes that missing Ni laterite data is imputed most ef-

fectively by the NPM method. The focus now shifts to geostatistical modeling with

imputed homotopic data realizations. A comparison with the more primitive DE

and SI methods will also be shown. Performance can be compared using the true

jackknife values that have been left out from the beginning. The PPMT/MAF1

modeling workflow from Section 6.4 is applied with a variety of input data. The

workflows and modeling results are labeled according their input:

i) No Missing: the missing values were never removed, meaning that true values

are used in place of the imputed values. This matches the workflow and re-

sults that were presented in Section 6.4 under the PPMT/MAF1 label. This

modeling result is expected to outperform the remaining workflows, where the

missing values are excluded or imputed. This workflow is included in the sum-

mary tables as a relative comparison.

ii) No Impute: the heterotopic data observations are removed, so that only homo-

topic observations are used for geostatistical modeling. This workflow repre-

sents geostatistical modeling with DE.

iii) Merged Mean: a single homotopic dataset is created by imputing each miss-

ing value with the e-type of one hundred realizations (merged method). This

workflow represents geostatistical modeling with SI.

iv) Primary, Secondary, Merged, NPM: one hundred imputed realizations are used

for geostatistical modeling according to the MI framework from Section 3.1.

Each workflow is labeled according to the imputation method that was used

to generate the applied data realizations. These workflows represent geostatis-

tical modeling with MI when compared to workflows (i), (ii) and (iii). When

compared to each other, they demonstrate how improved imputation quality

translates to improved geostatistical modeling results.

Steps of the PPMT/MAF1 workflow are held constant for the above described

input data. It is used to predict the jackknife locations that are presented and

described in Section 6.2.2. In the case of the MI workflows, the PPMT and MAF

transformations are repeated on the L = 100 data realizations to yield L transformed
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data realizations. Modeling is then performed using the L data realizations for

simulation conditioning, before using the L recorded transformation tables to return

the associated realizations to original space.

Table 7.4 presents the univariate performance of the geostatistical models that

result from each input data. Refer to the description of Table 6.2 for an explanation

of the format and statistics. As discussed, the No Missing workflow uses true values

in place of the missing values. It is expected to yield the best overall result; in cases

where it does, both it and the next best workflow are bolded in the Avg. column.

Similarly, the No Missing result is excluded when describing the best result, though

it is present in the tables for benchmarking the heterotopic data results.

As expected, the NPM MI workflow yields the best univariate and spatial repro-

duction according to almost every statistic. Conversely, the Merged Mean workflow

yields the worst result in terms of global standard deviation and semivariogram re-

production. This is the anticipated consequence of imputing missing values with a

single estimate. Variability has been unrealistically reduced in the data, which is

translated to the geostatistical realizations. The Merged Mean workflow underper-

forms the Merged workflow for every statistic in Table 7.4. Geostatistical modeling

with SI yields worse univariate reproduction than MI. The No Impute workflow

yields the worst local accuracy according to the 1− ρ and RMSE statistics. This is

the expected consequence of DE, where valuable local information that is contained

in heterotopic observations is excluded from geostatistical modeling.

Table 7.5 presents the multivariate performance of geostatistical modeling with

the described input data. Refer to the description of Table 6.3 for an explanation

of the format and statistics. The NPM workflow yields the best reproduction of

the bivariate densities and cross-semivariograms according to the KDE RMSE and

γ RMSE, respectively. The Merged workflow yields the best reproduction of the

bivariate correlation, although it is interesting to note that both it and the NPM

workflow yield better reproduction than the No Missing workflow (if only narrowly).

The SI and DE workflows cumulatively produce the worst multivariate results. The

No Impute workflow (DE) yields the worst bivariate density reproduction and cross-

semivariogram reproduction, while the Merged Mean workflow (SI) has the worst

correlation reproduction.

Finally, Table 7.6 presents the conceptual economic loss that results from each

workflow. As discussed in Section 6.5, this economic loss is based on the misclas-
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sification of ore types. The ore types are classified using the L = 100 realizations

to minimize the expected economic loss. The a and 1 − b statistics in Table 7.6

display the accuracy and precision of the ore type distributions that underly the

economic loss statistic. Figure 7.12 displays the raw value of these statistics in their

associated uncertainty accuracy plots.

The NPM workflow yields the best economic loss, which is expected due to its

superior characterization of the Ni laterite deposit. Interestingly, this characteri-

zation does not lead to the best a and 1 − b statistics, although it yields the best

overall result for both statistics. The Secondary workflow yields the most accurate

distribution of ore type uncertainty, but it also yields the second worst economic

loss due to its lack of precision.

The Merged Mean workflow yields the most precise distribution of ore type un-

certainty, which may be confusing given that it underperformed the NPM workflow

according to every statistic in Tables 7.4 and 7.5. As the Merged Mean method

leads to smoother geostatistical realizations, the results are shifted away from re-

alistic variability and towards a deterministic estimation. While unrealistic, these

deterministic estimates are less likely to have ‘very wrong’ multivariate values, lead-

ing to improved precision according to the b statistic. Given that the Merged Mean

workflow poorly characterized the Ni laterite deposit (Tables 7.4 and 7.5), however,

this does not support the application of the SI approach in geostatistical modeling.

Further, the smoothed realizations lead to the least accurate distribution of uncer-

tainty for the ore types according to the a statistic. In turn, this leads to worse

economic loss than the NPM and Merged MI workflows since risk is not accurately

characterized and integrated into resource management decision making.
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Figure 7.12: Accuracy plots of the ore type distributions resulting from each
workflow.

171



Table 7.4: Standardized univariate performance statistics for geostatistical mod-
eling with various input data.

Measure Method Ni Fe SiO
2

MgO Avg.

µ Error

No Missing 0.20 0.64 1.00 0.16 0.50
No Impute 1.00 0.72 0.35 0.45 0.63

Merged Mean 0.15 0.97 0.76 0.67 0.64
Primary 0.20 0.91 0.82 0.47 0.60
Secondary 0.22 1.00 0.25 0.60 0.52

Merged 0.21 0.97 0.49 0.73 0.60
NPM 0.20 0.73 0.72 1.00 0.66

σ Error

No Missing 0.68 0.41 0.37 0.13 0.40

No Impute 0.56 1.00 0.60 1.00 0.79
Merged Mean 0.90 1.00 1.00 0.91 0.95

Primary 0.92 0.78 0.54 0.37 0.65
Secondary 1.00 0.51 0.63 0.41 0.64
Merged 0.88 0.34 0.51 0.26 0.50
NPM 0.94 0.27 0.31 0.09 0.40

1− ρ

No Missing 0.65 0.66 0.68 0.70 0.67

No Impute 1.00 1.00 1.00 1.00 1.00
Merged Mean 0.66 0.70 0.77 0.73 0.71

Primary 0.65 0.82 0.78 0.75 0.75
Secondary 0.65 0.70 0.80 0.76 0.73
Merged 0.64 0.67 0.75 0.71 0.69
NPM 0.64 0.66 0.73 0.72 0.69

RMSE

No Missing 0.82 0.83 0.86 0.85 0.84

No Impute 1.00 1.00 1.00 1.00 1.00
Merged Mean 0.83 0.86 0.90 0.87 0.86

Primary 0.82 0.92 0.90 0.88 0.88
Secondary 0.82 0.86 0.91 0.88 0.87
Merged 0.82 0.84 0.89 0.85 0.85
NPM 0.82 0.83 0.89 0.86 0.85

γ RMSE

No Missing 0.60 0.55 0.37 0.89 0.60

No Impute 0.71 0.92 0.71 0.96 0.83
Merged Mean 0.87 1.00 1.00 1.00 0.97

Primary 0.92 0.73 0.56 0.74 0.74
Secondary 1.00 0.62 0.48 0.85 0.74
Merged 0.86 0.55 0.52 0.74 0.67
NPM 0.88 0.54 0.36 0.77 0.64
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Table 7.5: Standardized multivariate performance statistics for geostatistical mod-
eling with various input data.

Measure Method N-F N-S N-M F-S F-M S-M Avg.

ρ Error

No Missing 0.54 0.35 0.63 0.09 0.01 0.48 0.40
No Impute 1.00 0.14 0.88 0.08 0.11 0.33 0.53

Merged Mean 0.94 0.43 1.00 0.06 0.10 1.00 0.61
Primary 0.80 0.04 0.42 1.00 1.00 0.22 0.56
Secondary 0.39 1.00 0.55 0.19 0.14 0.28 0.53
Merged 0.19 0.32 0.57 0.18 0.11 0.87 0.32

NPM 0.52 0.55 0.43 0.05 0.05 0.44 0.39

KDE RMSE

No Missing 0.52 0.51 0.49 0.36 0.36 0.52 0.47

No Impute 1.00 1.00 1.00 0.49 0.52 0.78 0.87
Merged Mean 0.73 0.83 0.66 0.79 0.56 1.00 0.75

Primary 0.89 0.82 0.78 1.00 1.00 0.77 0.87
Secondary 0.80 1.00 0.80 0.62 0.38 0.86 0.80
Merged 0.65 0.80 0.73 0.54 0.38 0.77 0.68
NPM 0.69 0.72 0.67 0.45 0.39 0.58 0.63

γ RMSE

No Missing 0.66 0.76 0.58 0.29 0.39 0.89 0.57

No Impute 1.00 0.86 1.00 0.46 0.50 0.93 0.83
Merged Mean 0.80 0.84 0.60 0.47 0.54 0.84 0.68

Primary 0.56 1.00 0.47 1.00 1.00 1.00 0.76
Secondary 0.74 0.94 0.56 0.37 0.47 0.88 0.65
Merged 0.67 0.89 0.56 0.38 0.46 0.79 0.63
NPM 0.64 0.87 0.65 0.31 0.42 0.81 0.62

Table 7.6: Raw and standardized loss function values for each workflow.

Method Loss a 1− b

No Missing 0.845 0.479 0.911
No Impute 1.000 0.792 1.000

Merged Mean 0.827 1.000 0.894

Primary 0.834 0.522 0.930
Secondary 0.843 0.501 0.922
Merged 0.825 0.511 0.909
NPM 0.821 0.588 0.905
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7.4 Summary

The NPM method yields the best imputation of missing Ni laterite data. The resul-

tant data realizations outperformed the other options in terms of reproducing the

univariate, multivariate and spatial features of the data, while also yielding supe-

rior local accuracy. The merged method generally yielded the second best results.

All of the described methods have been implemented in Fortran code that has not

been optimized for speed. Nevertheless, one hundred realizations of the presented

missing Ni laterite data were imputed using the parametric and NPM methods in

6.68 minutes and 208 minutes, respectively. While significant, the execution time

of the NPM method is unlikely to prohibit its use in practice since it must only be

performed once. So long as multivariate complexities exist in the imputed data, the

extra time is likely to be justified by improved results.

Following imputation of the missing values, the data realizations from each

method were applied in identical geostatistical modeling workflows that utilize MI,

DE (heterotopic data excluded) and SI (each missing value imputed with an esti-

mate). In general, the DE and SI workflows yielded the worst results. The reduced

variability of the SI data translated to poor reproduction of univariate and spatial

variability in geostatistical realizations. The excluded information of the DE data

led to poor local accuracy. The MI workflows yielded the best results, where im-

proved imputation results (e.g., NPM method) translated to the anticipated relative

improvement in geostatistical realizations.

174



Chapter 8

Conclusions

The following chapter begins with a brief review of the problems that motivated

this research. The primary and secondary contributions of this thesis are then

summarized. Inevitable limitations remain for these contributions. The limitations

are listed along with items for future work. The thesis statement is then revisited

before making final concluding remarks.

8.1 Review of the Motivation

Almost every resource modeling setting requires the spatial prediction of K geo-

logical variables within the subsurface. Geostatistical modeling tools are the most

popular method of prediction, where L realizations of the subsurface are simulated

to characterize the associated uncertainty. Conventional geostatistical cosimulation

algorithms assume that the K variables follow a multiGaussian distribution. In

settings where this is not the case, the original multivariate distribution will not be

reproduced by simulated realizations. This unrealistic characterization of the ge-

ological variables will negatively impact most resource management decisions that

geostatistical models are used for. Moreover, those cosimulation algorithms become

difficult to apply in massively multivariate settings (K > 5).

The above issues motivated the adaptation of multivariate transformations to

geostatistical modeling. Linear decorrelation techniques such as principal compo-

nent analysis (PCA) and min./max. correlation factors (MAF) are used to remove

correlation from the data prior to simulation. The decorrelated variables are inde-

pendently simulated, before returning correlation to the realizations with the asso-

ciated back-transform. This simplifies geostatistical modeling significantly and is

not sensitive to increasing K. Applying linear decorrelation techniques to complex

175



multivariate data fails to remove the complexity and dependence. Systematic errors

result from simulating complex and dependent variables under an independent multi-

Gaussian assumption. This motivates multiGaussian transforms such the stepwise

conditional transformation (SCT), which transform variables to an approximately

uncorrelated and multiGaussian distribution prior to modeling. While effective in

low dimensional settings, the SCT suffers in massively multivariate settings due to

binning and limited number of data for the transform of high dimensional variables.

Another restriction on every multivariate transformation technique, is that they

may only be applied to homotopic equally sampled observations. Geostatisticians

have typically used one of two options to address this issue. The first option, data

exclusion (DE), excludes heterotopic observations from multivariate transformations

and subsequent geostatistical modeling. DE leads to loss of information, as sampled

values of the heterotopic observations are not available for local conditioning and

global statistics. The second option, single imputation (SI), imputes the missing

values based on regression so that all sampled values may be used for the multivariate

transformation and subsequent modeling. SI leads to unrealistic smoothing in the

resultant data, which compromises numerous properties of resultant geostatistical

models. Both options also introduce bias if the values are not missing completely

at random (MCAR).

8.2 Summary of Contributions

The issues described in the previous section motivate the two primary contribu-

tions of this thesis: i) methods for the multivariate imputation and geostatistical

modeling of heterotopic geological data, and ii) the projection pursuit multivariate

transformation (PPMT) for the transformation and modeling of complex geological

data. Secondary contributions of this thesis include increased understanding and

documentation of alternative multivariate transforms, as well as software for data

imputation and transformation.

8.2.1 Multivariate Imputation of Geological Data

The imputation of missing values is a well-established practice in many scientific

fields where heterotopic data are encountered. Rather than SI, approaches such as

multiple imputation (MI) and maximum likelihood estimation (MLE) are favored

since they allow for: i) uncertainty of the imputed values to be passed through the
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subsequent analysis, ii) imputed values to possess realistic features of the data, and

iii) bias to be avoided when the missing data mechanism is not MCAR.

Consider a typical geostatistical simulation workflow: i) a multivariate transfor-

mation removes complexities from homotopic data, ii) the transformed data condi-

tions L geostatistical realizations, and iii) the L realizations are back-transformed

to original space using the recorded transform table. In the presence of heterotopic

data, the above workflow is modified by this thesis to naturally integrate MI: i)

generate L realizations of homotopic data; sampled values are constant across the

realizations while imputed values vary according to their uncertainty, ii) multivari-

ate transformations remove complexities from the L homotopic data realizations,

iii) the lth transformed data realization conditions the lth geostatistical realization

for l = 1, ..., L, and iv) the lth realization is back-transformed to original space us-

ing the lth recorded transform table. Following this approach, the L realizations

characterize the joint uncertainty of the subsurface and missing data. Using het-

erotopic Ni laterite data, this MI workflow is demonstrated to significantly improve

geostatistical characterization of the subsurface relative to equivalent SI and DE

workflows. This translated to improved resource management decisions according

to a conceptual economic loss statistic.

MI algorithms use iterative simulation techniques such as the Gibbs sampler to

generate realizations of the missing data values. Conventional algorithms typically

assume that the data are multiGaussian and converge on the correct covariance

between colocated values. As a result, these algorithms fail to reproduce the com-

plex multivariate distributions of geological data. Further, they fail to reproduce

the spatial variability of geological data data since only the colocated information

is considered in the imputation model. Spatial information is incorporated in MI

algorithms that have been developed in spatial fields such as environmental moni-

toring and remote sensing. All reviewed algorithms, however, fail to consider both

spatial and colocated information. This prevents accurate reproduction of both colo-

cated and spatial properties of geological data, while also limiting precision since

less information is incorporated.

Observing these issues with available MI algorithms, this thesis developed the

merged and non-parametric merged (NPM) methods for the imputation of geological

data. Working within a Gibbs sampler framework, these techniques incorporate

both spatial and colocated information. The merged method assumes the data are
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multiGaussian and converges on the correct covariance between colocated values.

The NPM method uses KDE to calculate the conditional distribution directly from

the colocated values. In doing so, the NPM method imputes missing values in a

manner that effectively reproduces complex multivariate distributions. Relative to

MI methods that only consider spatial or colocated information, the merged and

NPM methods were demonstrated to significantly improve the realism and accuracy

of imputed values. The merged method may be considered in settings where the

data are reasonably multiGaussian, as it is far faster to execute. The NPM method

should be considered in settings that exhibit complex multivariate features. The

NPM method yielded significantly better imputation results with the Ni laterite

data, which translated to significantly better geostatistical realizations and resource

management decision making.

8.2.2 Exploratory Multivariate Transformations

The goal at the outset of this research, was to develop a technique that would

transform complex geological data of any K variables and n observations to an

uncorrelated multiGaussian distribution. The first attempted transformation was

conditional standardization (CS), which removes non-linearity and heteroscedas-

ticity from a multivariate distribution through fitting conditional functions of the

means and standard deviations. Subtracting the conditional mean and dividing by

the conditional standard deviation yields transformed distributions that are linear

and homoscedastic. Simulated realizations may be back-transformed by adding and

multiplying the recorded conditional means and standard deviations, respectively.

Though conceptually attractive for its simplicity, the effectiveness of CS hinges on

the accuracy of its conditional functions. It yielded the best results with a non-

parametric approach, where the multivariate distribution is binned by the condi-

tioning variables before calculating the requisite statistics. Unfortunately, however,

this binning means that CS suffers from the same dimensionality restrictions as the

SCT technique; it is not feasible for K greater than three to four. For this reason,

CS was originally conceived using parametric conditional functions that may be cal-

culated for any K dimension. Unfortunately, increasing K makes fitting complex

data with mathematical functions increasingly difficult. Initial testing found that

the non-linearity and heteroscedasticity could not be adequately characterized. As

a result, multivariate complexity persisted in the transformed data.
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The second attempted transformation was the multivariate standard normal

transformation (MSNT), which mapped the original complex data to a multiGaus-

sian distribution of matching K and n. The MSNT poses this transformation as an

optimization problem. Observations in the original distribution are mapped to ob-

servations in the multiGaussian distribution in a manner that minimizes changes to

the relative multivariate configuration. The relative configuration is defined based

on the distances between observations in original space. With that in mind, the

MSNT uses simulated annealing to determine the mapping that minimizes changes

to these distances. After converging, the mapping is recorded so that simulated re-

alizations may be back-transformed to original space. The nearest K+1 neighbours

are determined for each simulated node in multiGaussian space. The node is then

back-transformed by interpolating its location in original space using the original

multivariate values of the K + 1 neighbours. The MSNT was a direct response to

the SCT and CS techniques; it was designed to be appropriate for increasing K

variables. While successful in this regard, the MSNT was ultimately abandoned

since it is sensitive instead to increasing n observations. The time that is required

for it to converge on a suitable mapping increases at beyond a quadratic rate with

increasing n, making it infeasible for n > 1000.

8.2.3 Projection Pursuit Multivariate Transformation

The basic idea of the MSNT is conceptually attractive. Determine the mapping

between original multivariate observations and transformed multiGaussian observa-

tions that minimizes changes to the multivariate configuration. Following simulation

in multiGaussian space, back-transform the realizations through a multivariate in-

terpolation that is based on the recorded mapping. Referred to as Gaussian mapping

(GM), this framework amounts the multivariate extension of a normal score back-

transformation. The optimization of the MSNT failed to provide a good mapping

for increasing n. This motivated development of the PPMT for the GM framework,

which provides a mapping that is not sensitive to increasing n.

A component of the projection pursuit density estimation (PPDE) algorithm

transforms high dimensional data to an uncorrelated multiGaussian distribution. Af-

ter orthogonalizing the data with data sphereing, PPDE uses an optimized search to

find non-Gaussian univariate projections of the multivariate data. The multivariate

data are then transformed to make that projection Gaussian. Iterating this search
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and transformation procedure, PPDE transforms complex multivariate data to be

multiGaussian. Given the geostatistical modeling context of the PPMT, changes to

the conventional PPDE algorithm (Friedman, 1987) include:

i) A normal score transformation of the K variables to make the data univariate

Gaussian. Subsequent data sphereing and projection pursuit steps benefit from

this preprocessing, as univariate outliers and complexities are removed.

ii) A modified data sphereing approach that projects the orthogonal data back onto

the original basis. Originally applied to PPDE by Hwang et al. (1994), this ap-

proach avoids the dimension reduction and variable mixing of conventional data

sphereing. Dimension reduction would cause stress to the GM back-transform,

since each dimension in transformed space accounts for widely different vari-

ability in original space.

iii) A stopping criteria for the projection pursuit iterations, which is based on the

Gaussianity of bootstrap random Gaussian distributions of matching n and K.

Following the final projection pursuit iteration, the multiGaussian observations

are recorded with their original values to facilitate the described GM back-transform.

Reverse projection (RP) is a second back-transformation option, however, where

each step of the forward transformation is reversed with the simulated multiGaus-

sian realizations. An advantage of GM is that it explicitly reproduces multivariate

constraints of the original distribution. The RP usually leads to multivariate ex-

trapolation beyond the original distribution, which may or may not be realistic

depending on specifics of the variables. In general, the RP is favored since it usually

yields better overall reproduction of the univariate and multivariate densities, while

also being faster to execute with increasing n. GM must search for the nearest K+1

neighbours to each simulated node; as such, execution time increases as a function

of n. The RP back-transform is not sensitive to increasing n, though its execution

time does increase linearly with increasing projection pursuit iterations.

The PPMT is only concerned with removing covariance between the variables

at h = 0 lag distance. It therefore benefits from a subsequent MAF transformation

to remove cross-covariance at h > 0 lag distance. The PPMT/MAF geostatistical

workflow outperforms popular alternatives such as cosimulation, SCT and MAF in

terms of multivariate and spatial characterization. This is demonstrated using a
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controlled synthetic example, as well as a real Ni laterite case study. In turn, this

characterization is shown to improve resource management decisions according to

conceptual economic loss.

8.2.4 Software

A large amount of software was implemented throughout this research. Not only

for testing new methodologies, but also for conventional methods that were required

for comparison and benchmarking. This software forms a secondary but practical

contribution of this thesis; it is divided into the following categories:

i) Imputation software, including programs for the primary (impute pri), sec-

ondary (impute sec), and merged/NPM (impute) imputation methods.

ii) Conventional transformation software, including programs for PCA (pca and

pca b), MAF (pca and pca b), SCT (stepwise and stepwise b), logratios

(logratio and logratio b), and histogram corrections (histcorrect).

iii) New transformation software, including programs for CS (constd and constd b),

MSNT (msnt and msnt b), and PPMT (ppmt and ppmt b gm and ppmt b rp).

Each program is coded in Fortran and follows a GSLIB-style convention (Deutsch

and Journel, 1998), meaning that they require ASCII parameter and data files as

input. The software is available from the author upon request.

8.3 Limitations and Future Work

Limitations remain for the described contributions, which motivates future work in

the areas of multivariate imputation and transformation.

8.3.1 Multivariate Imputation

Although the NPM method yields the best imputation results in all real test cases,

many implementation details could be improved for the technique. First, the coding

should be reviewed to determine bottlenecks in the algorithm. The current execu-

tion time of the NPM method does not prevent its use, as it usually finishes within a

few hours. That said, faster execution would further encourage its use and allow for

iterative parameter experimentation. Potential improvements include: i) dividing
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independent Gibbs sampler sequences across multiple processors, which is advanta-

geous in terms of both execution speed and accuracy of uncertainty (see below), and

ii) computationally efficient kernel density networks (KDN) rather than conventional

KDE, since KDN does not require the fitting of kernels to every observation.

The current speed challenges motivate the chosen method for extracting re-

alizations from the Gibbs sampler. Following b burn-in iterations, consecutive L

realizations are extracted from L iterations of a single Gibbs sequence. The b itera-

tions mitigate dependency of the extracted values on the random starting location,

which improves resultant accuracy. The extraction of consecutive iterations allows

for a reduction of execution time. Increasing execution time should be weighed

against the shortcoming of this practical extraction method. Dependency exists

between the extracted realizations, which may artificially increase the certainty of

imputed values. Users could be provided with flexibility to execute multiple Gibbs

sequences and/or periodic extraction to mitigate this issue when execution time

allows. Although limited by the number of processors, a number of independent

Gibbs sequences could be executed without incurring additional execution time.

KDE lies at the heart of the NPM method, where it is used to build conditional

distributions of a missing value based on colocated samples. The imputation pro-

gram is implemented to streamline KDE parameterization; the user specifies a single

H parameter, which is scaled by the data correlation to populate the bandwidth ma-

trix H. This thesis relied on the iterative tuning of H to match visual expectation.

Future work will focus on automated procedures for fitting H to further streamline

this process for users and potentially improve the results. The previously described

KDN research precedes this work in priority since it will likely impact the chosen

bandwidth tuning methodology.

Attention will also be paid to additional complexities that are encountered in

geological data, such as building on the work of Martin-Fernandez et al. (2003) and

(Tjelmeland and Lund, 2003) for the reproduction of compositional sum constraints

(Section 2.2.3).

8.3.2 Multivariate Transformations

Although the PPMT is currently advocated over the CS and MSNT techniques, this

does not preclude the applicability of the latter transformations if large advances

are made with key implementation details. Both are attractive in terms of their
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conceptual simplicity. To be viable, however, the CS will require further research

into fitting parametric functions of the conditional mean and standard deviation

functions to high dimension distributions. The current CS algorithm does not ade-

quately characterize non-linearity and heteroscedasticity with increasing K, so that

those features persist following the transformation. The MSNT will require further

research into the optimization that is used for mapping complex multivariate data

to a multiGaussian distribution. The current MSNT algorithm takes too long to

converge for increasing n.

Immediate research, however, will focus on advances to the PPMT. The primary

concern with the PPMT workflow, is a loss of spatial continuity (if only slight) that

is usually observed in geostatistical realizations at short scale h > 0 lag distances.

This is attributed to forcing dependent variables to be entirely independent at h = 0,

which leads to spatial destructuring of at least one variable in transformed space.

Following simulation and back-transformation, the original continuity is not entirely

recovered. One ad-hoc solution is to inflate the continuity of semivariogram models

that are used as input to the Gaussian simulation algorithm. A less ad-hoc solu-

tion, however, may be the use of dimension reduction data sphereing in the PPMT

pre-processing. It makes logical sense that the spatially destructured transformed

variables are likely to contribute less information to the multivariate system. As a

result, attributing less of the original variability to these destructured variables may

mitigate their impact on the back-transformed continuity. Although the GM back-

transform may be complicated by this dimension reduction, the RP back-transform

should remain suitable.

This thesis advocates the use of PPMT and MAF in combination; the former

makes the variables independent at h = 0 while the latter decorrelates the variables

at h > 0. A future modification of the PPMT could integrate spatial decorrelation

and remove the need for a subsequent MAF transformation. Cross-correlation could

be calculated periodically within the projection pursuit iterations at various h lag

distances. Data sphereing could then be used to orthogonalize the data at each lag

distance, where the sphereing matrix is calculated based on the spectral decompo-

sition of the cross-covariance at each h. This approach would simplify the workflow

since only one transformation is required; it may also yield superior removal of

cross-correlation since multiple lag distances would be iteratively decorrelated.

Another interesting avenue would be to consider multivariate mixture models to
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fit complex multivariate distributions. If this were possible, then imputation and

multivariate transformation would be facilitated.

8.4 Final Remarks

Recall the thesis statement: Improved spatial prediction of geological variables ac-

counting for complex relations and unequal sampling will lead to improved resource

management decisions.

To address unequal sampling, this thesis contributes methodology for the impu-

tation and geostatistical modeling of heterotopic geological data. This methodology

is demonstrated to improve the accuracy and realism of imputed values relative to

conventional MI and other ad-hoc missing data schemes. This translates to improved

accuracy and realism of subsequent geostatistical models, which leads to improved

resource management decisions.

To address complex relations, this thesis contributes PPMT methodology for

the transformation and geostatistical modeling of complex geological data. This

methodology outperforms alternatives such as the SCT in terms of decorrelation

and multivariate Gaussianity of the transformed data. This translates to improved

accuracy and realism of subsequent geostatistical models, which leads to improved

resource management decisions.
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