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Abstract

A physical model to describe ultrasonic wave propagation in cancellous bone has been
described in this thesis. The theoretical background for this model is based on Biot's
theory. In order to prove the effectiveness and accuracy of this model, a broadband
ultrasonic experimental system to study the ultrasonic properties of porous media was
built as part of this project. The configuration details of this system as well as the
fundamental techniques of measuring the attenuation and propagation velocities in a
medium are presented in this thesis. The results of ultrasonic studies on water-saturated
aluminum foams, which were used extensively as cancellous bone phantoms for studying
basic mechanisms of wave propagation, and a detailed theoretical analysis of these
experimental results are also presented. The experiments agree very well with the physical
model established in this study. To extend this physical model to cancellous bone, several
bovine bone samples and two types of cancellous bone phantoms were tested. The results

of these experiments are also analyzed by the model.
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Chapter One : Introduction

1.1 Clinical Background

Osteoporosis is a common disease among the aged population and is becoming a growing
health problem because of the growing number of elderly persons in our society. The
clinical syndrome of osteoporosis consists of a reduced amount of bone tissue per unit
volume of anatomic bone and can result in fractures of the vertebrae, femoral neck, or the
distal forearm after trauma [17]. In clinical diagnosis, osteoporosis is defined as bone
mass below 2.5% of standard.

Although a number of factors can contribute to osteoporosis, in many cases the
exact cause of this disorder is not known. Long-term calcium deficiency can lead to
osteoporosis, owing to the mobilization of bone mineral to maintain normal calcium
concentrations in blood. Most commonly, osteoporosis is associated with advancing age in
both men and women. At menopause (about age 50), women begin to lose bone mass
more rapidly than men as the result of decreasing estrogen levels.

To diagnose osteoporosis and monitor the process of treatment, it is essential to
develop non-invasive and accurate equipment for bone quality measurement. Bone
consists of a collagen rich organic matrix upon which a crystalline mineral phase (primarily
calcium and phosphate) is deposited. The mineral phase deposited within the organic
matrix contains 99% of the body’s calcium, 80% to 85% of the body’s phosphate, and

most of the magnesium. There are two major forms of bone: compact (or cortical) bone
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and cancellous (or trabecular ) bone. As shown in Figure 1.1, cortical bone forms the
external envelopes of the skeleton; cancellous bone forms plates that transverse the

Endosteal Surface

Periosteum —

| - J

T

Cortical Trabecular

(haversian) (cancellous)
bone bone

Figure 1.1 The Structure of Bone
internal cavities of the skeleton. The proportions of cancellous and cortical bone vary
from one site to another in the skeleton. Vertebral bodies of the spine contain principally
cancellous bone, and the peripheral skeleton (arms and legs) contains predominately
cortical bone. The cancellous bone is distinguished from the cortical bone by its lighter
density and higher porosity (volume percentage of voids). In cancellous bone, the solid
bone material forms a complex solid frame with fatty bone marrow filling among the

voids. Figure 1.2 shows a typical cancellous bone structure.
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Figure 1.2 A Typical Structure of Cancellous Bone

Bone is a living tissue and is continuously remodeling throughout life. Osteoclasts
reasorb bone in microcopic cavities within the bones, whereas osteoblasts rebuild the bone
surfaces and refill the cavities. The remodeling process is influenced by mechanical and
electrical forces, hormones, and other factors. Osteoporosis is the result of loss of balance _
between the resorption and rebuilding processes. Although the reduction of bone mass in
osteoporosis produces equal losses of both bone mineral and organic matrix (the ratio of
the amount of mineral ralative to the amount of matrix in the bone does not change), the
bone structure (especially for cancellous bone) will suffer deformation due to the body
weight and other mechanical influences.

The measurement of bone quality has been the subject of intensive research over
many years. The development of appropriate techniques has been hindered by the

complexities associated with the bone structures. Current techniques for bone quality
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measurements include radiogrammetry([14,21,29,63], radiographic photodensitometry[29],
single-photon absorptiometry (SPA)[29], dual-photon absorptiometry (DPA)[29], dual-x-
ray absorptiometry (DXA)[29], and quantitative computed tomography (QCT)[29]. All of
those methods are based on the application of ionizing radiation and the physical quantity
measured by these techniques is the bone density or bone mineral content (BMO).
Although the density or BMC is a major determinant of bone quality (the strength or the
fragility), it has been noted that the “structure factors” of bone, especially cancellous bone
are important and prevent complete correlation of bone quality with only bone mass
(density).

The requirements for a good diagnostic procedure for bone quality measurement
should include: (1) high precision or reproducibility for longitudinal studies, (2) low cost,
(3) low radiation dose, (4) minimal inconvenience for the patient. It is these requirements
which lead to the development of a new technique, because even though high precision
and accuracy measurements of bone density or BMC can be achieved by some of the
radiological techniques (such as DPA and QCT), but they are only available in some major

medical centers. The cost are high for those techniques.

1.2 Ultrasonic Measurements of Bone

Ultrasound is a mechanical disturbance propagating as a wave at a supra-audible
frequency. A propagation medium, which must have inertia and elasticity, is required for
ultrasound. When an ultrasonic wave propagates in the medium, the characteristics of the

ultrasonic field will be affected in a manner that depends upon the acoustic properties of
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the medium. These changes in the field may produce a unique signature of the medium.
Because it is non-jonizing radiation, ultrasound has been widely used for non-invasive
detection of defects and investigation of the mechanical properties of engineering
materials. In diagnostic medical applications, ultrasound image plays an important role
such as in the case of obstetrical applications where risk to the patient must be minimized.

The first application of ultrasonic techniques in the characterization of bone tissue
can be traced back to 1949. At that time Tesismann and Pfander[60] first reported the
ultrasonic attenuation coefficients and propagation speed in the skull. More recently in
1976 Yoon and Katz[36, 64] reported their experimental results of the elastic constants of

human femur specimens (cortical bone ) using an ultrasonic method. According to Yoon

Broadband Ultrasonie Attenustion
in Cancellous Bone (Og Calcis)

(BUA)

PULSE FREQUENCY
CEAXTRATOR ANALYSER

)

| Temaerature Cantrotied Watertatn {

Trs=illing in vivo Heef

Tnnssuzer 0% Cakis Rectivicg

Transgecer

Schesstic of experimentsl srraangement

Figure 1.3 Schematic Diagram of the BUA Measurement of Bone
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and Katz, the cortical bone has an approximately cylindrical symmetry along the weight
bearing direction, and therefore can be tested by ultrasound in three perpendicular
directions. The elastic constants of cortical bone can be determined by measuring the
propagation velocities in these three directions.

In 1987 and 1988, Ashman reported the results of elastic properties of cancellous
bone measured by an ultrasonic technique[3,4]. Because cancellous bone does not have
the same symmetry as cortical bone does[25,65], Ashman tested the propagation velocity
along the weight bearing axis using both contact pulse transmission and continuous wave
techniques. From the propagation velocities, the Young’s modulus along that direction
can be calculated. The results of ultrasound tests were correlated very well with the results
of mechanical tests.

The application of ultrasonic technique in clinical diagnosis of osteoporosis was
first suggested by Langton in 1984[37]. The method proposed by Langton is called
broadband ultrasonic attenuation (BUA), in which two broadband ultrasonic transducers
(IMHz center frequency) are set in a water bath (Figure 1.3), one serving as transmitter
and the other as receiver. The heel (predominately cancellous bone) is placed in the water
bath between the transducers and the attenuation of the beam through the heel bone is
measured relative to water alone. The attenuation of the ultrasonic wave in the heel bone
is plotted as a function of the ultrasound frequency. According to Langton, there is
approximate linearity from 0.2 to 0.6 MHz in the curve of attenuation against frequency.
The slope is defined as the BUA value. The biggest achievement of Langton’s work is

that he found the BUA value of a young healthy female is significantly higher than the
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BUA value for an osteoporostic female with hip fracture; therefore BUA value is thought
to be a potential diagnostic index of bone quality. Using BUA as a diagnostic index of
osteoporosis has following advantages: (1) no ionizing radiation dose to the patient, (2)
the equipment is easy to operate and convenient for the patient. (3) the cost is low and (4)
BUA has the potential to obtain more information about bone quality. The problem of
using BUA as a diagnostic index lies in the correlation of the measured BUA value and the
physical parameters of bone tissue. Since the cancellous bone is a very complex two phase
porous medium, the correlation depends not only on bone density but also on the
microstructure of the cancellous bone. As pointed out by Langton, the physical meaning of
BUA still remains unclear.

Following Langton’s work, ultrasonic studies of cancellous bone have been
focused on three major directions: (1) direct comparison studies[18,23,35,45,55], (2) in-
vitro comparison studies[41,42,43,53,58,59] (3) phantom studies[13,27,59]. The purpose
of the studies is to find the relation between the ultrasonic parameters (BUA and speed of
sound (SOS)) and the physical quantities of bone (porosity, elasticity). The goal is to
develop a “diagnostic index”. A diagnostic index need not be a physical quantity in nature,
the only requirement is that it can provide a sensitive measure to discriminate a diseased
individual or population from the healthy population. However, it is desirable that a
measured quantity be a physical quantity or at least correlate with a physical quantity,
which may be measured, calculated or calibrated with the true value so that a diagnostic

index can be used to quantitatively evaluate the changes of the bone quality.
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Direct comparison studies attempt to find the correlation between BUA and BMC
using the regular ionizing radiation techniques. The advantage of this approach is it can
provide first hand clinical data. But since the study has to be in-vivo, and the physical
quantities of the bone are very difficult to control, the results of the study can not give a
quantitative description of the behavior of ultrasound through bone. With the
accumulation of clinical data through comparison studies, it has been found that the
correlations between BUA and bone parameters are not very consistent. For instance, the
linear regression between BUA and bone density ranges between 0.55 to 0.82, and
depends on the test objects and test machine.

In-vitro tests of cancellous bone specimens can give more accurate and reliable
information about the physical quantities of the bone and, in a limited range, allow control
of the physical quantities of the bone specimen. Since the study is in-vitro, it is possible to
compare the BUA or SOS with all the physical quantities of the sample. The in-vitro
comparison studies of BUA and SOS with anisotropy, elasticity, thickness and density
(porosity) have been performed by many researchers. The studies show that the BUA and
SOS are influenced by all these physical quantities and the linear correlations are actually
very poor. For some physical quantities such as thickness and density, their relations with
the BUA and SOS are not linear .Since cancellous bone is a very complicated two phase
system, the descriptions of some physical quantities is very difficult. For instance,
cancellous bone is an anisotropic material, but there is not any symmetry found in
cancellous bone specimen, therefore it is very difficult to quantitatively describe the

anisotropic behavior of this type of bone. Furthermore, all the physical quantities in
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cancellous bone are dependent on others, therefore to isolate one single physical quantity
and investigate its influence on BUA or SOS is almost impossible. In order to do the
comparisons, some assumptions have to be made. This is where phantom studies show
promise.

Cancellous bone is a natural biological material, its physical quantities are difficult
to control and describe, and its acoustic properties are usually not stable. Phantom study
is the attempt to develop a cancellous bone mimic (phantom) with controllable physical
quantities to study the behavior of ultrasound through the porous material. An ideal
phantom should be (1) a material with ultrasonic properties that approach those of
cancellous bone; (2) it should be durable and stable and allow controlled variations in at
least some of the physical qualities. Cancellous bone is both heterogeneous and anistropic.
This makes it very difficult to design an ideal cancellous bone phantom. In practice, the
bone phantom or phantoms can be designed to mimic some of the material properties of
cancellous bone tissue, with particular reference to the physical quantity of interest.

From a physics point of view, BUA and SOS are the results of the interactions of
an ultrasonic wave with the medium. The way the ultrasonic wave propagates in the
medium determines the BUA and SOS. In spite of all the previous studies that have been
done to date the physical model of ultrasonic wave propagation in cancellous bone is still

not fully understood.

1.3 Objective of Thesis
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The primary objective of this research is to develop and establish a model for the
description of the ultrasonic wave propagation in the cancellous bone. The ultrasonic
wave propagation in fluid-filled porous media, such as cancellous bone, is a very
complicated physical problem. To understand the acoustic properties of a medium, it is
essential to know how particles move in this medium corresponding to wave propagation.
In a fluid-filled porous material, the particles of the fluid and the particles of the solid will
interact with each other, and as a result, very complicated motion modes will be formed in
the medium. Ultrasonic wave propagation in fluid-filled porous material should be
different from that in a single component material. To fully study this problem, a set of
phantoms with a structured solid frame filled with fluid are needed. Since the interactions
of the structure (solid frame) with the fluid are the major interests of this study, these
phantoms need not to mimic all the properties of cancellous bone. After investigations of
the many possible materials, it was found that water-saturated cellular aluminum foams
are appropriate phantoms. The cellular aluminum foams are newly developed engineering
materials with high strength and low densities. The aluminum foams have an open cell
structure and their cell sizes and porosities can each be designed in a certain variable range
independently. Compared with cancellous bone, the cell structure of the aluminum foam is
simple and uniform. When an aluminum foam is saturated with water, it is a typical fluid-
filled porous solid material. To test the ultrasonic properties of the water-saturated
aluminum foams, a broadband ultrasonic experimental system was designed and built for
this project. This system had to be able to measure all the ultrasonic parameters of the

phantoms. The fundamental theory used to understand acoustic wave propagation in
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fluid-filled porous materials is Biot’s theory. The Biot’s theory was the major theoretical

tool used to analyze the experimental results, and ultimately develop a model.

1.4 Outline of Thesis

This thesis will present the experimental results of broadband ultrasonic studies of water-
saturated aluminum foams and the numerical simulations based on Biot’s theory.
Following the introduction, Chapter 2 describes the broadband ultrasonic experimental
system built for this research and the basic principles of pulse transmission techniques for
measuring the propagation velocity and attenuation of the acoustic waves. In Chapter 3,
dispersion and phase velocity measurements in dissipative materials will be discussed.
Chapter 4 introduces Biot’s theory and discusses mode conversion on open cell surfaces.
In Chapter S, the experimental results of broadband ultrasonic studies of the water-
saturated and the gelatine-water mixture filled cellular aluminum foams are presented.
Chapter 6 presents a simple physical model for description of the ultrasonic transport
properties of water-saturated aluminum foams. The model is based on Biot’s theory and
single scattering theory. The results of numerical simulation using this model are also
presented. In Chapter 7, the broadband ultrasonic experimental results on cancellous bone
samples and two cancellous bone phantoms will be presented. A discussion of the results
as well as possible future research using the physical model to study cancellous bone is

presented in Chapter 8.
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Chapter Two: Broadband Ultrasonic Experimental System

In this chapter, the major specifications of the broadband ultrasonic experimental system
built for this project will be described. This system was designed to measure the
propagation velocity and the attenuation of ultrasonic wave in the test sample.

The pulse transmission technique (PTT) is one of the most fundamental and useful
methods in broadband ultrasonic measurements. The basic idea of PTT is to place an
ultrasonic transmitter probe on one side of the test object, a receiver probe on the other. A
very short acoustic pulse, which is generated by the transmitter, travels through the test
object and is then detected by the receiver. From the detected transmission signal, the
attenuation of the pulse in the object and the time of the pulse traveling through the object
can be obtained, which then allows the acoustic properties of the test object to be
determined. Because the acoustic pulse usually contains a specific range of frequencies,
the acoustic properties of the test object as a function of acoustic wave frequency can
also be obtained by doing Fast Fourier Transformation (FFT) on the transmission signal.
Based on the principle of PTT, a broadband ultrasonic experimental system was designed

and built for this purpose.

2.1 Apparatus
The apparatus of the experimental system is shown in Figure 2.1. The system, which is

immersed in water in a big water tank, consists of two identical broadband P wave
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ultrasonic transducers (centered at 1 MHz frequency), and a sample and transducer holder

which ensure the alignment between the probes and the sample. The broadband ultrasound

Transducers
ample Water Tank
P
1
Pulse Trigger Digital
Generator * Osclliscope EEE-488

:

Computer

Figure 2.1 The Experimental Set-Up For Broadband Ultrasonic Measurements

transducers are water immersible, which will permits good acoustic coupling between the
probes and water. One of the transducers serves as transmitter and the other as receiver.
The transmitter probe is pulsed by a pulse generator. The transmitted signal is received by

the receiver probe and digitized by a digital oscilloscope (LeCroy 400). The digitized
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signal can be displayed on the screen of the oscilloscope or transferred to a personal
computer through an IEEE-488 interface for data analysis.

(1) Pulse Generator

(1]

HV. (400V) R

o
L &
GND
’ E( IRF740

ouTPUT

=
o

Pulse Shaper

GND

3
1 (125 Hzrepitation frequency)

Pulse Generator

Figure 2.2 The Block Diagram of the Pulse Generator

The transmitter is pulsed by a high voltage electrical pulse (usually 125V to 400 V
negative pulse). To effectively excite the transducer, the width of the electrical pulse must
be much shorter than the width of the ultrasound pulse[57]. The bandwidth of the
transducer is about 0.5 MHz (centered at 1MHz frequency). Corresponding to this
bandwidth, the width of the ultrasound pulse is estimated at about 2us. Therefore, the
width of the electrical excitation pulse must be 400 ns(1/5 of the ultrasound pulse) or
shorter. Ideally, the shape of the electrical pulse should be as short as possible to a §

function.
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Figure 2.2 shows the block diagram of the pulse generator built for this research.
The working principle of this pulse generator is based on charge and discharge of the
capacitor C through a fast field effect transistor IRF750. The field effect transistor (FET)
works like a switch, when it is off, the capacitor is charged through a high voltage power
supply, when it is on, the capacitor is discharged through the FET and generating at the
output end a high voltage negative electrical pulse. The FET is controlled by a pulse
applied to its base. The shape and width of the output pulse depend on the control pulse.
The control pulse is generated from a square wave pulse generator circuit, and then
regulated and shaped into a § function spike by a shape circuit. The pulse width of the
control pulse is about 200 ns. The final output pulse has a pulse width of about 300 ns as

shown in Figure 2.3.

100

g

8 o
=

Vqltage V)
8

1 2 3 4
Time (Microseconds)

Figure 2.3 The High Voltage Pulse Generated by The Pulse Generator
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(2) Detection of Ultrasound Signals

The ultrasound pulse generated by the transmitter travels through the coupling medium
(water) and the test sample before arriving at the receiver, which is an identical transducer
to the transmitter. The feceived waveform is sent to a Lecroy 9400 digital oscilloscope.
The Lecroy 9400 digital oscilloscope has a fast 8 bit vertical resolution A/D converter
with a sampling rate of 100MS/s. which digitizes the ultrasound pulse. In order to
improve the signal-to-noise ratio, the recorded waveform is stored in a 32 KB memory
and processed by a built-in function called “continuous average”. Continuous average
consists of repeated addition, with unequal weight, of recurrences of the source
waveform. Each newly acquired waveform is added to the accumulated average according

to the formula:

(~¥-1)

1
S(i, new) = x S(i, old) + =X w(i) @.1)

until the random noise in the screen has reached acceptable minimum. The whole process
usually takes about several seconds to several minutes which depends on the intensity of
the signal. Because the repetition frequency of pulse generator is 125 Hz, the waveform
obtained is therefore the average of several hundred to several thousand waveforms. Here
I is the index over all data points of the waveform, W(i) is newly acquired waveform, S(i,
old) and S(i, new) are the old and new accumulated averages and N is the weighting
factor and may be set as 2, 4, 8, ..., 256. In this experimental system, N is set as 256.

(3) Transferring Data
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The operation and the memory of the oscilloscope can be accessed by a PC through a
IEEE-488 GPIB bus. The manufacturer of the oscilloscope provided all the operation
codes for remote control through an IEEE-488 bus. The I[EEE-488 bus that was used is
NI-488 (1989) (National Instruments). The manufacturer of IEEE-488 bus provided a C
programming language interface, allowing the remote operations of the oscilloscope and
the data transfer between the oscilloscope and the PC to be easily done by simply
programming the procedures.

A C-software was developed for data acquisition and the operation control of the
oscilloscope. The major function of this software includes: (1) initialization of the [EEE-
488 bus, (2) control of the operation states of the [EEE-488 bus, (3) setting operation and
data acquisition modes for the digital oscilloscope, (4) setting ASCII data file format and
(5) transferring the data file from the memory of the oscilloscope to the PC. The
waveform stored in the memory has 32,000 data points and the time interval between two
adjacent data points is 10 ns (100MS/s Sampling rate). In practice, a 32,000 data point file
is too big and not necessary for data processing. For convenience, only 1024 data points,
which cover the major time window (from trigger to main pulse) of the oscilloscope were
chosen. The time interval between two adjacent data points was thus 100ns. Figure 2.4
shows a typical ultrasound pulse and its spectrum detected by this system. It has to be
noted that the ultrasound pulse in Fig 2.4 (a) also includes the sensitivity and frequency

response of the receiver transducer. Since the transmitter and receiver are identical, the



Chapter Two: Broadband Ultrasonic Experimental System 18

real amplitude spectrum emitted from transmitter should be the square root of the received

spectrum profile multiplied by a constant.

(a)r ‘ ' (b)'

Amplitude
s
Amplitude

25 30 35 40 45 0 05 1 15 2
Time (Microseconds) Frequency (MHz)
Figure 2.4 A typical ultrasound pulse received by the experimental system.
(a) Signal, (2) Spectrum . The distance between the two transducers

is 5.5 cm.

2.2 The Measurement of the Propagation Velocity of Ultrasonic Wave

The propagation velocity of an ultrasonic wave in a test sample can be measured by this
experimental system. Two waveforms need to be recorded in the procedure. For the
measurement, the distance between the transmitter and receiver is fixed as L. The
waveform of the ultrasound pulse traveling directly through water is recorded as the
reference, namely the water pulse. Then the test sample is inserted between two

transducers, and the waveform of the ultrasound signal traveling through the test sample is
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recorded as the sample pulse. The propagation velocity of the ultrasonic wave in the test
sample can then be obtained by[58]:

vV .d
Veitva @2

w
where V, is the propagation velocity of ultrasound wave in water, At is the time difference

between the sample pulse and the water pulse and d is the thickness of the sample.

1550 . . -

:

Velocity (rvs)

:

1400 ~ : :
10 15 20 25 30
Temperature (°C )
Figure 2.5 Temperature Calibrations of the Ultrasonic Velocity
in Water
The propagation velocity of the ultrasound wave in water is an important
parameter in this experiment. Because it is temperature dependent, V, as a function of

temperature must be measured as the calibration curve. The propagation velocity of

ultrasonic wave in water was measured first in this experiment. Figure 2.5 shows a
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temperature calibration curve of the propagation velocity of an ultrasonic wave in water.
The temperature range measured in Figure 2.5 is between 10 to 30 C°. The calibration
curve measured in Figure 2.5 agrees very well with the results reported in other
references[9,16].

Table 2.1 The Propagation Velocities of Ultrasonic Wave in Different
Solid Materials. (The Values in the Bracket are Uncertainties)

Materials Brass Aluminum  Nylon Iron

Velocity (m/s) 4289(9) 6391(20)  2594(5) 5877(10)

Reference(m/s) 4300 6350 2620 5850

The propagation velocities of an ultrasonic wave in many different solid materials
were measured by the method described by Equation (2.2). The results of the
measurements  are listed in Table 2.1. As a comparison, the values reported from
reference are also listed in Table 2.1. From Table 2.1, we can see that the experimental
results of this study agree well with the reported values. It is noted that the time
difference At in these measurements was chosen as the time difference between the
“leading edge” of the water pulse and that of the transmission pulse for all tested samples.
The leading edge is defined as the first motion of the ultrasound pulse in the measured

waveform([58]. Figure 2.6 shows a typical leading edge of an ultrasound pulse. Even
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though in many medical and industrial non-invasive detection systems the “leading edge”
method is widely used in the measurement of pulse transmission transit time, it creates a

big problem in the determination of the transit time in dissipative materials. A detailed

discussion will be given in the next chapter.

Amplitude

/|

Leading Edge

Time
Figure 2.6 A typical “leading edge” of an ultrasound pulse

2.3 Measurements of Attenuation

The attenuation of an ultrasonic wave can be roughly defined as the loss of the beam
energy during travel through the medium. Many factors can result in the attenuation of the
ultrasonic wave. They can be classified into two types: (1) redirection of beam energy due

to reflections on the boundaries of the medium and scattering inside the medium, (2)
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absorption, where beam energy is converted into heat. If an ultrasonic wave travels in a
medium, its intensity will be reduced as a function of distance due to the attenuation
process. The expression for the plane wave beam intensity as a function of distance in a

medium can be written as:

I(x)= Ioe-ux (2.3)

where /, is the intensity at x=0 and I(x) is the intensity at a depth x. u is the intensity
attenuation coefficient. For amplitude, the expression can be written:

A(x) = Aoe—ax 2.4)

where A, and A(x) are the amplitude at x=0 and x, and « is the amplitude attenuation
coefficient. The relation between the intensity attenuation coefficient and amplitude
attenuation coefficient is:

u=2a 2.5)

It is frequently convenient to express attenuation coefficients as logarithmic dB units, thus:
(aB) o
a\dB) =101lo VRS (2.6)
glO I (x)

In an experimental system, the attenuation of the ultrasonic wave is measured relative to
the coupling medium, water. The ultrasonic wave generated by the transmitter travels
through the coupling medium (water) and test sample and finally reaches the receiver. The

possible attenuation of the ultrasonic wave includes: beam spreading, reflections from
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water-sample boundaries, attenuation in the water and attenuation in the test sample. What
we are really interested in this experiment is the measurement of the attenuation in the test
sample, therefore the other factors that cause the attenuation of the beam need to be as
small as possible. The beam spreading and the attenuation of the ultrasonic wave in water
were tested by measuring the pulse amplitudes at different transmitter-receiver distances
(from 3cm to 8cm). The results show that the beam spreading and attenuation in water is
less than 1% and therefore can be ignored. There are two reflection surfaces for the test
sample. For non-dissipative materials, the reflections from these two surfaces can be
corrected by simple calculation of the reflection coefficients for each surface.

The attenuation coefficient for the test sample is usually a function of wave
frequency, because absorption and scattering are both frequency-dependent processes.
The ultrasonic pulse contains a specific range of frequencies, therefore it is possible to
measure the attenuation as a function of wave frequency by spectral analysis. In spectral
analysis, the fast Fourier transformation (FFT) is applied to the measured water pulse and
the sample waveforms. The detailed FFT theory and method will be described in Appendix
II. By FFT, the amplitude spectra of the water pulse and sample pulse can be obtained and

the attenuation can be calculated from:

A ion(dB) = 201 4,(1) Q2.7
ttenuation = og .
a(r)

where Ay(f) and A(f) are the amplitude spectra of the water pulse and transmission pulse

respectively. The above equation includes the loss due to the reflections from the two
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surfaces of the sample. In most cases, the reflections can be deduced from equation 2.7 by
calculation of the amplitude reflection coefficient. If the reflection coefficients of two

surfaces are assumed to be f; and t;, the attenuation can be calculated by:

A (£)
Attenuation(dB) = 20 log A:’ oIk 20 log(tltz) (2.8)

t; and 1, are frequency independent in most cases and can be written as:

4z 7
tt = — 12 2.9)

12 )2
(21 M)
where z; and z, are acoustic impedences of the water and sample material and can be

expressed as:

z =p (2.10)
— 2.11
F4 ps Vs (2.11)

where p, and p; are the densities of the water and sample material, and V,, and V; are the
propagation velocities in the water and sample.

In order to test the ability of this system to measure attenuation, S blocks of rubber
phantoms were tested. The rubber phantoms were made of the same material but had
different thicknesses (from 0.876 to 2.375 cm). Rubber is a dissipative material, its

attenuation coefficient (attenuation normalized by thickness) is a linear function of wave
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frequency. Therefore the attenuation in these rubber phantoms should be proportional to
their thickness. Figure 2.7 shows the recorded waveforms of the ultrasonic pulse traveling
through the rubber phantoms as well as the water pulse. The amplitude spectra of the
waveforms were obtained by FFT and the attenuation was calculated by equation 2.5. For
the rubber material, the density is 1.4 kg/m® and the propagation velocity is 1.76 km/s.
The measured attenuation of the ultrasonic wave in the rubber phantoms as a function of
wave frequency is shown in Figure 2.8. From Figure 2.8, we can clearly see that the
attenuation of ultrasonic waves is a linear function of wave frequency (0.2 to 1.2 MHz) in
the effective frequency range (0.15 to 1.4 MHz). Here the effective frquency is determined
from amplitude spectrum of the transmission signal (above 20% of peak value). Linear
least squares fitting was applied on those attenuation curves over the effective frequency
range and the slopes plotted as a function of thickness in Figure 2.9. From Figure 2.9, the
attenuation coefficient of the rubber material is about 18.7 dB/cm-MHz, which is very
close to the reported value of 16.0 dB/cm-MHz for rubber material [16]. Since the
minimum difference in thickness among the rubber phantoms is only about 0.2 ¢cm, this

system demonstrates at least 4 dB resolution for attenuation measurement.
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Figure 2.7 The transmission signals of the ultrasound pulse S rubber phantoms.
(a) water pulse, (b) thickness=0.876cm, (c) thickness=1.092cm,
(d) thickness=1.226cm, (e) thickness=1.407cm, (f) thickness=2.375cm
(The distance between the two transducers is 7.5 cm)
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Chapter Three : Propagation Velocity Measurement in
The Frequency Domain

3.1 The difficulty in Determination of the Pulse Transit Time in the
Dissipative Material

In chapter 2, the method of measuring propagation velocity of an ultrasonic wave in
the time domain was described. In the time domain, the transmission transit time was
determined by measuring the time difference between the “leading edges” of the water
pulse and the transmission pulse. There are other ways of defining the transit time of
the pulse in the time domain, such as zero crossing and thresholding[56]. The zero
crossing method measures the time differences between consecutive zero crossing
point pairs of the water pulse and the transmission pulse. As shown in Figure 3.1,
there are 4 zero crossing point pairs that can be used to determine the transmission
transit time for a brass sample. The propagation velocity of the ultrasonic wave in the
medium is an objective quantity that describes the acoustic properties of the medium,
therefore the results of all possible methods must be consistent. Let’s compare the
results of zero crossing and the leading edge in a brass sample. The transmission
transit times obtained from the leading edges and the 4 zero crossing point pairs are
listed in Table 3.1. From Table 3.1, we can see that the results are very consistent.
Generally speaking, using leading edge methods to determine the transmission transit

time in elastic materials such as metals and glasses provides accuracy, because the




Chapter Three: Propagation Velocity Measurement in Fi requency Domain 29

Table 3.1 The Transmission Time in a Brass Sample (2.54cm) Determined
by Leading Edge and Zero Crossing Points

Leading Ist zero 2nd zero 3rd zero 4th zero
Edge crossing crossing crossing crossing
Time Diff. 11.25 11.20 11.23 11.29 11.24
(ps)

transmission pulse is only very slightly modified by the medium. Actually the leading

edge and zero crossing methods are based on the assumption that the shape of the

pulse does not change

water pulse

transmission pulse
4

3

Time

Figure 3.1 The leading edges and zero crossing points for the water pulse
and transmission pulse through a brass sample (2.54cm)
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after traveling through the sample. This assumption is not true for dissipative materials
such as rubber and cancellous bone. Another example is provided. Figure 3.2 shows
the leading edge and 4 zero crossing point pairs between the transmission pulse of a
rubber phantomn and the water pulse. In Table 3.2 the transit times obtained from the
leading edge and 4 zero crossing point pairs are listed . We find that the results from

the leading edge and 4 zero crossing pairs are not consistent, the discrepancy between

Table 3.2 The Transmission Time in Rubber Phantom Determined by the
Leading Edge and Zero Crossing Points

Leading Ist zero 2nd zero 3rd zero 4th zero
Edge crossing crossing crossing crossing
Time Diff. 1.42 1.15 1.08 1.00 0.95

(us)

the leading edge and last zero crossing point pair being 66%. This results in a
considerable variation in the determination of the propagation velocity of the
ultrasonic wave in the rubber phantom. The reason for this inconsistency is possibly
due to the attenuation occurring in the medium, which significantly modifies the shape
of the pulse and correlates with the dispersion effect. In order to determine accurately
the propagation velocity in dissipative material, the physical concept of propagation

velocity of an ultrasonic wave must be understood.
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Figure 3.2 The leading edges and zero crossing points of the water pulse and
the transmission pulse through a rubber phantom (0.986cm)
In physics only two distinct wave velocities are clearly defined for traveling waves:
phase velocity, which is the velocity of a sinusoidal wave at single frequency, and
group velocity, which is the velocity with which the amplitude envelope of a wave
packet travels. A broadband ultrasonic pulse used in this experiment contains many
sinusoidal waves with a frequency range from 0.1 MHz to 1.6 MHz. In a dissipative
medium, these sinusoidal waves may travel with different phase velocities due to the
dispersion caused by medium. Therefore the concept of phase velocity to describe the

wave propagation in a medium has more physical significance.
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There are many possible ways to determine the phase velocity of acoustic
waves in dissipative material. For pulse transmission techniques, phase spectral
analysis provides a more convenient approach to phase velocity measurement. In this
chapter, the phase spectral analysis method of measuring phase velocity distributions in
the broadband ultrasonic pulse will be introduced. As an example of the application of
the phase spectral analysis, a detailed procedure to obtain the phase velocity

distributions in a rubber phantom is presented.

3.2 The Phase Spectral Analysis Method
The phase spectral analysis method used in this study is based on the work of
Wolfgang Sachse[52].

The signals of water and sample pulses detected by the receiver are both the

functions of time and can be expanded as the summations of many plane waves:
f(t) = | Flw)e g0 3.1)

g(t) = [ 6(w)e P 4e (3.2)
where f{1) and g(t) are the water pulse and the sample pulse, F(w) and G(w) are their
Fourier amplitudes, and o is the angular frequency of the wave. In this experimental
system, the water pulse is the pulse generated by the transmitter traveling through the

water between the transducers, therefore F(®) can be written:
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i

al
v
Flo)= A(@)e ¥

(3.3)

where A(w) is the amplitude of @ frequency generated by the transmitter, V,, is the
propagation velocity of the wave in water, which is assumed to be a constant for all
frequencies because we know that the dispersion in water is very small, and L is the
distance between the transducers. By the same method, the Fourier amplitude of the

sample wave can be written:

L—d+ d
vV, V(o)

-l
G(0) = aA(w)e (3.4)
where 4 is the thickness of sample and V(w) is the phase velocity of a sinusoidal wave

at frequency ®in the sample. Comparing Equation 3.3 and Equation 3.4, we have:

1 1

-iod| —F—~ - —
1% ((o) 14
G(w) = Flw)e d o (3.5)
The phase difference between the water pulse and the sample pulse can be defined as:
20(0) = —awd| —— - L (3.6)
V(o) v

From Equation 3.6, the phase velocity can be calculated by:

V(o) = o G.7)

ad
—ACD(CO) + v

w
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The phase difference A®(w) is the key in the calculation of phase velocity and can be
obtained from the Fourier amplitudes of water and sample pulses. The Fourer
amplitudes of water and sample pulses are complex quantities and can generally be
written:

Flo) = F (o) + iF, (o) (3.8)
and

G(w) = Gl (co) + i62 (co) 3.9)

where Fi(®) , G(®) , FA{®) and GA®) are all real quantities. The phase difference

equals:

ad(w) = an”] (Gz (w)GI (w)) —ran” ]! (Fi(w)pz (w)) 3.10)

The Fourier amplitudes of the water pulse and the sample pulse can be obtained by
performing FFT on each of the waveforms. As described in the previous chapter, each
waveform contains 1024 data points with 100ns steps. When using equation 3.10 to
calculate the phase difference, the computation algorithm limits the value of the tan™’
function from - to nt. Thus, discontinuities of & will occur whenever the magnitude of
A®(w) becomes less than zero or greater than 2x. This can be corrected by adding or

subtracting the amount of shift to render the phase shift spectrum continuous[32].
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3.3 An Example:The Phase Velocity Measurement for a Rubber Phantom

The waveforms of a pulse traveling through a rubber phantom (thickness is 0.876 cm)
and the water pulse are shown in Figure 3.2. The phase spectra analysis method was
used to determine the phase velocities in this medium. FFT was performed on both
transmission and water pulses. From equation 3.10, the phase difference spectrum was
calculated by a program written in Matlab. In order to correct the T shift in the phase
difference spectrum, the unwrap function was used. The unwrap function was
designed in Matlab to correct the = shift by adding multiples of +2r when absolute
shifts are greater than 7. Figure 3.3(a) and (b) show the phase difference spectrum
before and after correction. The use of the unwrap function -may cause #2nm

uncertainty at low frequencies because the spectral contents of the ultrasonic
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Figure 3.3 The phase difference spectrum. (a) before unwrap, (b) after unwrap
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pulse do not extend all the way to zero frequency. This error can be eliminated by
using the nearly linear behavior of the phase difference spectrum. First, using the data
points within the usable range of frequencies (0.2 MHz to 1.2 MHz ), the y-axis
intercept is calculated from the least squares fit to the data and compared with £2nx. If
there is a #2nn error, for example, the calculated y-axis intercept is close to 2nr, and
the correct phase difference spectrum is then obtained by subtracting or adding 2nr.
For the rubber phantom, the phase difference spectrum before and after cormection is
shown in Figure 3.4. The corrected phase difference spectrum is then used to calculate
the phase velocities using equation 3.7. The phase velocities in the rubber phantoms
within the bandwidth of the transducer are shown in Figure 3.5. From Figure 3.5, we

can see that the dispersion in the rubber is very small, the variation among the phase

25
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Figure 3.4 The phase difference spectrum in a rubber phantom. (a) before
correction, (b) after correction
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velocities are mainly due to the errors in the FFT. Therefore the ultrasonic waves

contained in the pulse are approximately traveling with the same velocity.

3.4 Discussion about the Dispersion in the Dissipative Medium

The ultrasonic pulse has very small dispersion when it travels through the rubber
phantom. According to the dispersion theory of acoustic waves in a dissipative
material, the phase velocity of the acoustic wave is related to the attenuation by
Kramers-Kronig relation (K-K). In the general K-K relation, it is required that the
attenuation be known over all the frequencies. The simpler form of K-K relation,

known as the local approximation, can be written[22]:

wa(w)
s Vs(“’o) o)

where Vi(w,) and V() are respectively the phase velocities at frequencies ®, and .
The o, (w) is the attenuation coefficient with unit of Np/cm. Where the Np represents
neper which is a unit used for expressing the ratio of two analogous quantities, the
number of nepers is the nature logarithm of this ratio.

From the K-K relations, we know that the phase velocity will increase with the
frequency if the attenuation is not zero. From chapter 2, we know that the attenuation
in the rubber phantom is a linear function of frequency and the attenuation coefficient

can be approximately expressed as:
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a(f)=Axf (3.12)
As mentioned in chapter 2, the A is measured to be 20 dB/cm-MHz. This is equivalent
to 2.3Np/cm-MHz. Using equation 3.12 and equation 3.11, the velocity dispersion can
be calculated over the effective frequency range of the pulse. From 0.2 MHz to 1.1
MHz, the phase velocity increases about 2.5% by K-K relations. This 2.5% phase
velocity increase is very difficult to detect in our experiment because of the unequal
error distributions of the FFT. The relative uncertainties of the signal are subject to
redistribution after FFT. The minumum uncertainty occurs at maximum amplitude.
From the amplitude spectrum, we know that the maximum amplitude is at 0.75 MHz
for the transmission signal, and minumum amplitudes occur at low and high frequency
ends. Therfore, the effective range of frequency is taken as the frequency range
between 0.2 to 1.2 MHz with minimum uncertainty at 0.75 MHz. In Figure 3.5, the
phase velocities obtained experimentally are compared with those obtained by the K-K
relations. From Figure 3.5, we can see that the experimental results are consistent with
the theoretical predictions, even though accurate dispersion can not be determined

experimentally.

3.5 Transmission Delay Time
The transmission transit time for an ultrasonic pulse is defined as the time difference
between transmission and water pulses. Since the dispersion relateded to the

attenuation is very small, the waves contained in the pulse travel with almost the same
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velocity in the medium. When a single frequency sinusoidal wave travels through the
medium, the medium will modify the phase of the wave. As the result of this
modification, the phase of a sinusoidal wave will be “delayed” in the time domain. The

transmission delay time can be defined as:

APl w
At = L (3.13)
(/)]

2500
-
E 2000}
>
§ ________
[} P -
>
2 1500}
g
o

1000 ' : -

0 05 1 15 2

Frequency (MH2)

Figure 3.5 The phase velocity in rubber phantom. solid line: experiment, dashed
line: K-K relation

For a pulse, Equation (3.13) actually defines a time delay spectrum. It is very

interesting to compare the transmission delay time with the pulse transmission transit
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time. In a rubber phantom, the transmission delay time can be obtained by averaging
the transmission delay times over the frequency range of the pulse (0.1 MHz to 1.5
MHz). The transmission delay time is 1.01 ps. The pulse transmission transit time has
not strictly been defined for dissipative material. Table 3.2 lists all the transmission
transit times obtained from the leading edge method and the zero crossing method. By
comparing, we find that the transmission delay time is between the pulse transmission
transit times obtained from second zero crossing and third zero crossing
measurements. No theory has ever proved that there is a relationship between the
transmission delay time and the pulse transit time. However, it was found that the
pulse transit time obtained from maximum convolution between water pulse and

transmission pulse has a significantly correlation with the transmission delay time[44].
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Chapter Four : The Theory of Ultrasonic Wave
Propagation in Fluid Filled
Porous Solid Materials

The fundamental theory that describes the propagation of acoustic waves in fluid-filled
porous materials is known as Biot’s theory[7,8]. Biot’s theory discusses the
interactions of the solid frame with the viscous fluid induced by the acoustic wave as
well as the influences of those interactions on the propagation modes of the acoustic
wave. In this chapter, the basic idea of Biot’s theory and the fundamental wave
equations to describe the propagation of an acoustic wave will be introduced. In
reality, a medium will always have finite size. To describe the behavior of an acoustic
wave on the surface of a medium, the boundary conditions need to be known. In this

chapter, open cell boundary conditions will be discussed.

4.1 Biot’s Theory

Biot’s theory was proposed by M. A. Biot in 1956. It is a theory that describes
acoustic wave propagation in a macroscopically homogeneous and isotropic fluid filled
porous material. The basic assumptions of Biot’s theory are: (1) there exist volumes
in the medium that are large compared to pore sizes but small compared to a

wavelength in the medium, (2) the movements of each volume can be described by the
average displacement of the fluid U (i-’, t) and the solid frame & (F, t). The equations

of motion are[34]:
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pu%+ 12%jg=PV(V-E“)+QV(V-(7)—-1\/(7x(ini)+bF(co %7—32) 4.1)

and

320 3%z _ ) (aﬁ aa) “2)
Py 2 +p, 2 = RV(V-T) + V(v -2) - bF(w) Pl .

For the cases in which the solid skeletal frame is a single component homogenous
material, P, Q, and R are generalized elastic coefficients which can be related to the
bulk modulus of fluid Kj, the bulk modulus of solid K, the bulk modulus of the skeletal

frame K}, and to N which is the shear modulus of the skeletal frame.

( K, K, )
(1-<D) 1—<D—7{— KS+CDK—Kb )
P = A (+3N (4.3)
K, K 3
l-(D—K—+‘D‘K—S
\ s f )
( K
1-b--2 |ox
\ KJ) ¢
= 4.4
(0] Kb ” 4.4)
1-¢-K—+¢K—S
f
(DZKS
R= 4.5
K K (4.3)
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Here ® is the porosity (fluid volume fraction). In the absence of the electrochemical
interfacial effect between fluid and solid, the K, and N become independent of what
fluid is in the pores.
The density terms p,;, p22 and p;; in the equations of motion are related to the

density of solid p; and density of fluid p; by:

PP, =(t-e)p (4.6)
Py Py =0, @.7)
p, =-(A-1)p p 4.8)

Here A > 1 is called the structure factor or tortuosity, which is a purely geometrical
quantity independent of solid and fluid densities. The remaining parameters govern
attenuation. b is related to the viscosity of the fluid 1 and permeability of the solid

frame k:

b=— 4.9)
F(w) is a function that describes the relation between the viscous skin depth and the
effective damping:

x‘T(rc)

Flo) = %[1 - 2T(K)/] (4.10)
jx

where
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1/2
Pr
x=a / (4.11)

ber'(x) + jbei'(x)
ber(K) + jbei(lc)

and

T(x) = (4.12)

where a is the average pore size, and ber() and bei() are zero order and first order

Kevin functions([7,8]. The viscous skin depth is defined as:

2
= u (4.13)

Pr
therefore x is equal to:

K = \/Ex% (4.14)

In the equations of motion (4.2) and (4.3), three basic coupling effects between the
fluid and the solid frame are described. They are: inertial coupling, viscous coupling
and static elastic coupling. The inertial coupling was described by the equations in p,;,
P22, P12 terms. The inertial parameter A is included in those mass coefficients.
Physically, the inertial coupling corresponds to the fact that the saturated fluid does
not flow through straight capillaries in the porous medium but follows a sinuous path
through the porous network. The inertial interaction force is proportional to the
relative acceleration of the fluid and the solid frame. The viscous coupling corresponds

to the viscous force excerted by the fluid on the solid frame when the viscous fluid
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flows within the pores. The viscous force is proportional to the relative velocity of the

fluid and the solid frame. The static elastic coupling corresponds to the elastic moduli

changes when the solid phase and fluid phase are interpenetratable.

The solutions to equations of motion (4.1) and (4.2) can be approached by two
limited cases according to the wave frequency. The low frequency limit is the case
where the viscous skin depth is much greater than the average pore size, therefore the
fluid is totally locked to the solid frame. The medium behaves like a single system. The
acoustic wave will propagate in two modes (longitudinal and transverse) and suffers
high absorption in the medium. The solutions to the equations of motion in this case
are diffusive. The high frequency limit is the case that the viscous skin depth is much
smaller than average pore size, therefore only a small portion of the fluid is viscously
locked to the solid frame. In this case the acoustic wave will propagate in three modes

(two longitudinal and one transverse), as well be shown in the following section.

4.2 High Frequency Limit Solutions

For the high frequency limit, << a, so we have:
K — oo T(x) - +j (4.15)
’ V2

and

Flw) » f(%) (4.16)
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Because F(w) is multiplied by a first order time derivative in the equations of motion,

and F(©) o< (0)'?, this term becomes very small compared to the other terms in the

equations and can be ignored. The equations (4.1) and (4.2) can therefore be written:

9%z 320

p vp ZY _pu(v-a)+ov(v-0)-nvx(vxz) (417)
11 812 12 3'2
253 2.

o, L T u(v-0)+0v(V.2) (4.18)

22 312 12 a,z
For the shear wave, we have:
V.a=0,V-U=0andVxiz#0 “4.19)

the wave equations (4.17) and (4.18) become:

2 257
pua—u+p OV o _wx(Vxa) (4.20)
n2 12 o2
253 2
°U d“u
- p..—+ —=90 (4.21)
22 n2 12 n2
If we assume i = u(x)}, because
2
Vx(Vxg)=-2%5 (4.22)
W

the wave equations can be reduced to:

52 2U 2
”—"+ I _ N2 (4.23)
&2 12 3[2 ax2

p

and
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2 2
°,, ovu, e, 9%u _ g 4.24)
a2 a2

For a single frequency wave u(x, t) = u(x)e-mx, the equation for the propagation

is:

p P12 32u N 32u 425
11 p22 3[2 &2

The propagation velocity for the shear wave can be obtained:

= N (4.26)

(1- d>)ps + (1 - i)d)pf

shear

Associated with the propagation of the shear wave, the motions of the solid frame and
the fluid are in phase.
For the longitudinal wave,
V-a#£0,V-U#0andVxa =0 (4.27)
assume the solutions for the equations (4.1) and (4.2) are:
a=u(x1)i,U=0(x1) (4.28)

the wave equations become:

2 2 2 2
lla—u+p128U=Pau+QaU (4.29)
X2 2 2 2

p
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2 2 2
3 32U
g4 +Q 9%u (4.30)

?u _
12 n2 x2 o2

22 x2

p +pP

for single frequency waves:

ot - kx \ax — kx
u(x, t) = Ae']( ) and U(x, t) = Bej(ar ) (4.31)
substitute (4.31) into (4.29) and (4.30) we have:
(kzP - wzp“)A + (k2Q -0?p )B =0 (4.32)
12
2 2 2p_ 2 -
(k O-w plz)A + (k R-w pzz)B =0 4.33)

Because A and B should not be equal to zero at the same time, the equations that

determine the propagation modes can be written:

2, 2 2
(" P-o ”11) (" 0-o plZ)

R 5 ) ) =0 (4.34)
(" Q- ”12) (" R-o "22)
Here
2 0] 2

The propagation velocities can be obtained:

. 2(PR-Q2)

12
At \/ A% - 4(“’11“’22 - plzz)(” R- QZ)

(4.36)

and
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—Rp. +Pp -2 437
A=Rp +Ppyy -20p,, (4.37)

The theory predicts two longitudinal waves in the medium. Because V; < V, The wave
propagating with velocity V; is named the slow wave and the other the fast wave. It is
very interesting to see how the fluid and solid frame move corresponding to these two
waves. From equations (4.32) and (4.33), we find that the amplitude of the
displacement for the solid frame A, and the amplitude of the displacement for the fluid

B generally have the relation:

A=rB (4.38)
where
2,_ .2
_kTQ-o%p,
r=————= (4.39)
k2P - a)2p11

Substituting (4.36) into (4.39), it is very easy to prove that for the fast wave r > 0 and
for the slow wave r < 0. This indicates that the motions of the solid frame and the
fluid are in phase for the fast wave mode and out of phase by 180 degrees for the slow
wave. It should be noted that each wave mode is simultaneously present in both the

fluid and solid frame.

4.3 Boundary Conditions
Biot’s theory describes the acoustic wave propagation in fluid filled porous materials.

In most experimental cases, the sample has finite size and the acoustic wave is
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generated from a source outside the sample. In order to understand how the
longitudinal wave converts from a single propagation mode outside the sample into
two propagation modes inside the sample, the boundary conditions must be
established. For elastic porous samples, there are usually two types of boundary
conditions depending on whether the surface is open or sealed. In our experiments, the
surfaces of the sample were open, with same fluid filled outside and inside the sample.
Therefore our discussion is just limited to the open surface situation.

x[=0

- X

p’_’/////%—"’s

v——.— — Pr

= vs
v

Fluid | Fluid+sofid frame
|

Figure 4.1 Cross-section of an open surface

For an open cell surface, as shown in Figure 4.1, the fluid in the sample is
connected to the fluid outside the sample. Let the particles of the solid frame have
velocity vy, the particles of the fluid in the internal field has velocity Vs and the fluid in
the external field have velocity v;. At the surface the normal volume velocity per unit

area must be continuous[10], therefore at x=0, we have:
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(4.40)

I-®)+v &=
v, ( ) vf v,
To disallow infinite accelerations, the pressure in the external field must equal to both

the pressure of the fluid in the pore and the frame normal stress at the surface[10],

therefore at x=0, we get:
(1-@)p, =p_ (4.41)

and

®p =p 4.42)

where p;, p; and py are the pressures on the external field, solid frame and fluid in the
pore. It should be noted that the porous material is assumed to be homogenous so that
the surface porosity is equal to the volume porosity. Equations (4.40), (4.40) and
(4.41) give the boundary conditions of an open surface sample. The acoustic transport

properties of the sample can be studied based on these boundary conditions.

.

Flula tilled porous material

ow wave
ast wave

Fluka

Figure 4.2 The waves generated on an open surface
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Let’s first consider an open surface of a semi-infinite porous medium (Figure
4.2). When a plane longitudinal acoustic wave strikes the surface from the external
fluid (x<0), the external wave field will contain the incident and reflected waves. For
normal incidence, the extemal field can be written as:
\ax — k x) '(coH—k x)
g ( f g f

+L e

5 forx<0 (4.43)

U(x,t) = Le

where U(x,r) is the displacement of the fluid. The internal field (x>0) contains two
wave modes, and each mode will propagate in both the solid frame and the fluid. The

acoustic field can be written as:

i(wt - klx) i(ax - k2x)
= 4.44
u(x, 1) rlBle +r282e (4.44)
for the solid frame and
i(a)t - x) i(cot -k x)
U(x 1) = B e “, B e 2 (4.45)

for the fluid. In (4.44) and (4.45), u(x,t) and U(x,f) are the average displacements of
the solid frame and the fluid, k; and k, are the propagators of the slow wave and fast
wave modes, and r, and r, are defined by Equation (4.39). The acoustic pressure and

the particle velocity of the external field are:

U
p(x.t) = -Kf . (4.46)

and
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oU

v=—" (4.47)

where K; is the bulk modulus of the fluid. In the internal field, the stress and the

velocity of motion of the solid frame are:

3214 32U
p = pLtio2Y (4.48)
_ % (4.49)
Vs = a[ .

The pressure and the velocity of motion of the fluid are:

aUu du
pf = —(R;+Q;) (4.50)
vf = %tg 4.51)

Using boundary conditions (4.40), (4.41) and (4.42), the transmission and reflection
coefficients of the wave on the surface can be obtained. It should be noted that the
wave mode has been converted from a single longitudinal mode in the external field

into two longitudinal modes on the surface.
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Figure 4.3 The acoustic wave transmission
through a finite sample

For the experimental arrangement of pulse transmission technique, there are two
such surfaces on the sample as shown in Figure 4.3. One is the input surface and the
other is the output surface. The input wave has been converted into the fast and slow
wave on the input surface. In the medium, the fast wave and slow wave propagate
independently. On the output surface x=d, the displacment of the solid frame and the

displacement for the fast wave are:

-zklx lklx
ul = rlBle + rlBlRle 4.52)
—zklx iklx
and U1 = Ble + Bl Rle (4.53)

where R; is the amplitude reflection coefficient of the fast wave on the output surface.

The external wave field for the fast wave is:
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—ik .x
U = De f

(4.59)
Using same boundary conditions (4.40), (4.41) and (4.42), the transmission coefficient
of the fast wave on the output surface can be obtained. The transmission coefficient of

the slow wave can be obtained in the same way. The detailed procedure is given in

Appendix I.
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Chapter Five: The Experimental Studies of the Ultrasonic
Transport Properties of Water-Saturated
Aluminum Foams

Biot’s theory described the general behavior of acoustic wave propagation in a fluid filled
solid porous material and predicts two longitudinal propagation modes for the acoustic
wave. A lot of experimental effort has been made to detect these propagation modes in
various fluid filled porous materials such as glass beads[34,46], polyurethane foam([10],
sedimentary rocks and sands[11]and cancellous bone[28]. In most of these cases only
one longitudinal mode has been detected and in a very few cases both the fast and slow
wave modes were observed at the same time. Since porous solid materials behave quite
differently from their solid form, it is impossible to derive their acoustic properties from
the properties of the bulk material. The importance of Biot’s theory is that it not only
predicts two longitudinal waves in the medium, but also provides a useful theory to
understand acoustic wave propagation in the complex two phase system and therefore

enables us to calculate the acoustic properties of the medium.

In this chapter, the experimental results of the ultrasonic study of the water-
saturated aluminum cellular forms will be presented. The original initiative for this study
was not intended to detect two longitudinal propagation modes. The major purpose of the
study was an attempt to establish a simple experimental model to explore the acoustic

transport properties of cancellous bone. The cellular aluminum foam is very similar to
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cancellous bone in that they both have an open cell structure. When the aluminum foam is
saturated with water, the whole composite medium should have a lot of similarities to the
marrow filled cancellous bone. On the other hand, the cell structure of the aluminum foam
is much simpler than the structure of the natural cancellous bone. The bulk material of the
aluminum foam is homogenous elastic metal. Most of the physical parameters of the
aluminum foam are known or easy to estimate, thus the calculations of the acoustic

properties from Biot’s theory is straight forward.

5.1 The Cellular Aluminum Foam Samples

The cellular aluminum foam is a very recently developed engineering material. Its bulk
material is 7010 aluminum alloy which is a homogenous, isotropic and elastic metal. The
major feature of this material is its high strength and low density. The aluminum foam
samples used in this study were provided by the EGR company (USA) in 2"x2"x1” (5.0
cmx5.0 cmx2.5cm) blocks. The porosity and the cell sizes of the samples can be designed
independently over a specific range. The cell sizes of all the samples in this study were
fixed at 40 cells per inch, with the porosities ranging from 88% to 95% (12% to 5%
density). The matrix of the cells and ligaments are completely repeatable, regular and
uniform throughout. Here the cell is defined as a minimum repeatable volume which
includes a solid part ligament and a void part(pore). The porosity is the volume percentage
of the void part in each cell. a typical cellular aluminum foam sample is shown in Figure

5.1.
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5.2 The Experimental Method and Procedure

The broadband pulse transmission technique was used for the test of the aluminum
samples. The detailed experimental arrangement has been described in chapter 2. The dry
samples were cleaned in an ultrasonic bath for about 1 hour and then immersed in

degassed water.

Figure 5.1 The cellular aluminum sample (40 PPI)

Before measurement, the prepared samples were moved from degassed water to the water
tank without exposure to air. Water temperature was measured by a mercury

thermometer. The distance between the two transducers was fixed at 7.5 cm. The samples
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were tested along their length (5.08 cm) direction with surfaces parallel to the surfaces of

the transducers. The distance between the sample and transmitter is 1.5 cm.

5.3 Results

(a) Waveforms

The waveforms of an ultrasonic pulse through samples of 95%, 93%, 90% and 88%
porosities are shown in Figure 5.2 (a) to (d) respectively. For comparison, the water pulse
is also shown in each figure. From Figure 5.2 (d), we can see clearly that two pulses
appear in the received signal for the 88% porosity sample. The first pulse travels faster and
the second pulse travels slower than the water pulse. The two received pulses are very
similar except their amplitudes. The amplitude of the first arrival is smaller than that of the
second arrival. These two pulses can be identified as the fast and the slow waves
respectively . The prediction of Biot’s theory appears to have been proved here. For the
95% porosity sample (Figure 5.2(a)), the received waveform is complex. The amplitude of
the first arrival is very small, and can only be detected by very large gain of the digital
oscilloscope, saturating the main body of the waveform. The second arrival contains two
oscillations. The first oscillation is completely in phase with the water pulse and has
obvious shorter period than that of the second one. From the wave form of the 88%
porosity sample we know that the slow wave pulse has a similar pulse shape with that of
the fast wave, therefore, the observed second arrival in the 95% porosity sample can be

assumed to be the slow wave partially overlapped with another wave pulse. It is not
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difficult to distinguish the slow wave from the “third” unknown wave pulse. This unknown

wave pulse will be discussed in Section 5.4 below. Figure 5.2 (b) and (c) show the

waveforms of the ultrasonic pulse traveling through 95% and 90% porosity samples. The

“third” unknown wave pulse still appears in the waveform of each sample, but the

amplitude decreases with the decrease of the porosity

(b) Measurements of the Propagation Velocities

The propagation velocities of both the fast and the slow waves in the water-saturated
samples can be measured by the phase analysis method which has been described in
Chapter 3. Each received signal contains two pulses as well as the noise due to scattering
and reverberation. In order to do phase analysis, it is necessary to use temporal windows
to isolate the slow wave pulse as well as the fast wave. For clean pulses like in Figure 5.2
(d), the temporal window width was chosen to just cover each pulse and the rest of the
points in the time domain were set to zero. For complex waveforms like in Figure 5.2(a)
to (¢), it is very difficult to chose an appropriate temporal window to separate the slow
wave with the unknown “third” wave pulse, because they are overlapped. For simplicity,
the temporal windows, in these cases, were chosen to cover the second oscillations of the
second arrival. It must be noted that part of the “third” unknown pulse was also included

in the temporal window for each waveform.
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Figure 5.2 The waveforms of the transmission pulses through (a) 95% porosity
sample, (b) 93% porosity sample, (c) 90% porosity sample, (d) 88%
porosity sample. In each waveform, top: water pulse, bottom: (1)
slow wave, (2) fast wave, (3) unknown third wave.
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The phase velocities of each isolated pulse over the frequency range covered by
the amplitude spectrum can be obtained by the phase spectrum method described in
Chapter 3. Figure 5.3 (a) to (d) show the results of the measurements. The results tell us
important information about ultrasonic wave propagation in water-saturated aluminum
foams: the dispersions of both the slow wave and fast wave are very small. The
propagation velocities can be represented by the average value over the covered frequency

range.

TABLE 5.1 The Velocities of Fast and Slow Waves in the Samples

Density Velocity of Velocity of
(kg/m°) Porosity Fast Wave (km/s)  Slow Wave (km/s)
136 95% 1.79 +0.06 1.4140.05
190 93% 1.82 +0.05 1.3740.04
271 90% 1.98+0.04 1.3440.04

325 88% 2.09+0.03 1.3040.03
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porosity sample, (b) for the 93% porosity sample, (c) for the 90% porosity
sample, (d) for the 88% porosity sample.




Chapter Five: The Experimental Studies of the Ultrasonic Transport properties of 64
Water-Saturated Aluminum Foams

These values are listed in Table S.1.

(c) Amplitude Spectra

FFT can give both the phase and amplitude spectra for each isolated pulse. The phase
spectra were used to calculate phase velocities. For each phase spectrum, the
corresponding amplitude spectrum was used to identify the effective frequency range of
the spectrum. Figure 5.4 (a) to (d) show these amplitude spectra. From Figure 5.4 we can
see that the amplitude distributions of the fast and the slow waves in each sample behave
in a very similar way: they are both restricted in a very narrow low frequency range
(0.1IMHz to 0.3 MHz) and peak values at about 0.15 MHz. The amplitude spectra of
95%, 93% and 90% porosity samples contain high frequency portion, which is due to the
contamination by the unknown “third” wave, because the temporal windows were not able

to separate the slow wave pulse completely.
(d) BUA

From the amplitude spectra, the attenuation of the ultrasonic wave as a function of the
wave frequency can also be obtained. Since the input wave pulse has been converted into a
fast wave pulse and a slow wave pulse, the attenuation have to be redefined. For

convenience, the attenuation for the fast wave and slow wave is defined as:

4(r)

al(f) =20log, Ao(f) (5.1
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A, (r)
10{ 4,(s)

and o, (f) =2010g (5.2)

where A,(f) and Ax(f) are the amplitude spectra of the fast wave and slow wave. Equations
(5.1) and (5.2) include the loss due to reflections. The attenuation as the function of wave
frequency for all test samples is shown in Figure 5.5 (a) to (d). From Figure 5.5, we can
see that the attenuation of the fast and slow waves in the water-saturated aluminum foams
are strongly frequency dependent. Attenuation is not a linear function of the wave

frequency.
5.4 Discussions

The experimental results of the broadband ultrasonic studies of water-saturated aluminum
foams have been presented. The measured waveform of the 88% porosity sample shows a
typical medium response to the input ultrasonic pulse. In the 95%, 93% and 90% porosity
samples, an unknown “third” pulse was observed. This unknown pulse is very likely due to
the “free” fluid (water) in the medium. As analyzed above, the viscous and inertial
couplings between the solid frame and the fluid are very weak, therefore in very high
porosity sample, there is not enough solid material to “hold” the all the fluid if the length
of the sample is limited. The “free” water forms many straight water paths in the

medium. As a result, only part of the fluid is coupled with the solid frame and part of the
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fluid is free. The input pulse can propagate in the free water directly without interacting

with the solid frame but can also propagate through the water which is coupled with
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Figure 5.4 The amplitude spectra for the transmission pulse through (a) 95%
porosity sample, (b) 93% porosity sample, (c) 90% porosity sample
(d) 88% porosity sample.
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the solid frame. This will result in the presence of two overlapped wave pulses in the
observed waveform. The pulse which travels through the free water does not suffer the
same scattering loss as the coupled wave does, therefore it will maintain its high frequency
feature similar to the input pulse. This unknown pulse, which we would call a “leaking
pulse”, is actually just an artifact in a very high porosity sample, but its existence will
change the coupling picture of Biot's theory, because in the theory, the fluid is assumed to

be totally coupled with the solid frame in a medium of infinite length.

The fast and the slow wave pulses are both restricted to a very narrow low
frequency range. Since the viscous interaction in the medium is very small, the attenuation
is therefore mainly due to scattering. The amplitude of the slow wave is larger than that of
the fast wave. This suggests that our experimental arrangement is more favourable to the
excitation of the slow wave mode. Since both inertial and viscous couplings in the medium
are very weak, the fast wave is largely determined by the properties of the solid frame.
Similarly, the slow wave is largely determined by the properties of water. When an input
ultrasonic pulse interacts with the surface of the sample, because the surface of the sample
is open, the solid part and the fluid part on the sample are both excited. If the surface has
the same porosity as the medium, the fluid part occupies about 90 percent of the boundary
surface and the solid part only 10 percent. As a result, the incident wave is converted
primarily into a slow wave mode. The detailed theoretical analysis of the experimental

results will be given in the next chapter.
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5.5 Experiments on the Gelatine-Water Mixture Filled Aluminum Foams

The gelatine-water mixture that is investigated in this section is a material that has been
used as a bone marrow mimic in many bone phantoms[13]. The acoustic properties of a
gelatine-water is very close to bone marrow, but the viscosity is about 10 times less than
that of bone marrow( Viscosity of gelatine-water mixture (1 1g powder in 150 ml water) is
about 0.014 poise)[13]. The major difference between water and gelatine-water is that the
latter is not a simple fluid phase material. It is very interesting to study the ultrasonic
transport properties of the gelatine-water filled aluminum foams. This study can provide
very useful information about the interactions between gelatine-water and the aluminum
frame.

(1) The acoustic properties of gelatine-water mixtures

The gelatine-water materials were obtained by adding different amounts of dry gelatine
powder to water in the temperature of 40 °C. For the ultrasonic test, the concentration of
gelatine power should be chosen as a compromise between the increased mechanical
stiffness at high concentration and maintaining a relatively flexible fluid at low
concentration. After many tests, it was found that adding 10g gelatine powder to 300 ml
water achieved the best result. The ultrasonic test system for the gelatine-water mixture is
shown in Figure 5.6. In this system, two identical P wave ultrasonic transducers were

mounted on two oppose sides of a plastic box ( 3"'x3""x3"). Before the test, water filled
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in the box. The ultrasonic pulse traveling through water only was first recorded as a

reference. Then water was replaced by the gelatine-water mixture in fluid phase, and

Transducers Gelatine-water mixture

Open cell Al foam sample

|
!
|
|

7 %
Yot

Figure 5.6 The Experimental System Designed for Gelatine-Water Filled Aluminum Foams

ultrasonic signals were initially recorded while the mixture was in the fluid phase. After the
mixture formed the gelatinate phase, the ultrasonic signal was recorded again. The
temperatures of the mixture and of the water reference medium were monitored by a
electronic thermometer during the measurement process. Figure 5.7 shows the ultrasonic
waveforms of the gelatine-water mixture in the fluid phase and the gelatinate phase. From
Figure 5.7, we can see there is no difference between the signals of the fluid phase and the

gelatinate phase except a time delay which is due to the temperature difference. The
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temperatures were measured as 36 °C at fluid phase and 21 °C at gelatinate phase. This

temperature difference will cause a 0.3 ps time difference. The amplitudes of two pulses

Fluid Phase

Gelatinate Phase

0 20 40 60 80 100
Time (Microseconds)

Figure 5.7 The ultrasonic signals in gelatine-water mixture. Top: in fluid phase
Bottom: in Gelatinate Phase
are almost same. This means that the attenuation of the ultrasonic wave due to the phase
change is very small and can be ignored. Comparing the ultrasonic signal in the gelatine-
water mixture with the ultrasonic signal in water, we found that they are exactly identical,
which means that the acoustic properties of the gelatine-water mixture are the same as that
of water fluid.

(2) The ultrasonic signal in gelatine-water mixture filled aluminum foams
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A 90% porosity cellular aluminum foam was saturated with the gelatine-water mixture in

the fluid phase in the testing box. The ultrasonic transmission waveforms were recorded as

shown in Figure 5.8. From Figure 5.8, we found that the transmission waveforms in

gelatine-water mixture (for both fluid phase and gelatinate phase) filled aluminum foam are

almost identical to the transmission waveform of water-saturated aluminum foam as

shown in Figure 5.2 (c). Two propagation modes can be identified from the waveforms.

Fluid Phase

()]

g ﬂ

<

[+)]

-% Gelatinate Phase
o

o

0 20 40 60 80 100
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Figure 5.8 The Transmission Waveforms in Gelatine-Water Mixture Filled Cellular
Aluminum Foam (90% Porosity Sample). Top: The Mixture in Fluid
Phase, Bottom: The Mixture in Gelatinate Phase
The fast wave pulses of the two waveforms are identical but there is a very slight shift

between slow wave pulses which is due to the temperature difference. Similar results were

obtained from the ultrasonic tests of gelatine-water filled aluminum foams with 95%, 93%
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and 88% porosity samples. Table 5.2 lists the results. These results show that the acoustic

properties of gelatine-water filled aluminum foams are the same as those of the water -

saturated aluminum foams, even though the gelatine-water is not a perfect fluid. Since the

viscosity of gelatine-water mixture is very close to that of water, the effect of viscous

coupling can not be observed in the experiments.

Table 5.2 The Wave Propagation Velocities in Gelatine-Water Mixture Filled Al Foams

Porosity Propagation Velocities (km/s) Propagation Velocities (km/s)

(mixture in fluid phase) (mixture in gelatinate phase)

fast wave slow wave fast wave slow wave
95% 1.78 1.40 1.78 1.39
93% 1.82 1.37 1.82 1.37
90% 1.96 1.34 1.97 1.34
88% 2.05 1.31 2.05 1.30

Table 5.3 The Wave Propagation Velocities in Gelatine-Water Mixture
Propagation Velocity (km/s)
Fluid Phase 1.51
Gelatinate Phase 1.48

The conclusion drawn from the above experimental results is that the acoustic behavior of
a gelatine-water mixture trapped in the pores of an aluminum foam is exactly the same as

that of water, regardless of whether it is in a fluid phase or gelatinate phase.
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Chapter Six :Theoretical Studies of the Ultrasonic
Transport Properties of Water-Saturated
Aluminum Foams

The experimental results of the broadband ultrasonic studies of water-saturated aluminum
foams show the characteristics of ultrasonic wave propagation in fluid-filled porous
materials. In this chapter, a detailed theoretical study of ultrasonic wave propagation in
the water-saturated aluminum foams will be presented. This study is based on the Biot’s

theory summarized in Chapter four.

6.1 The Mechanical Properties of Cellular Aluminum Foams

In order to understand the acoustic transport properties of the water-saturated aluminum
foam, the mechanical properties of the dry material must be known. The most important
mechanical parameters of the dry material, which influence its acoustic transport
properties, are the elastic moduli of the skeleton (structure). Since the cellular aluminum
foam is an artificial material, its mechanical properties have been studied and tested by the
manufacturer. Ashby[2] summarized a common character of many man-made porous
materials such as metal foams and open cell polyurethane. When a foam is compressed,
the strain response of the foam is characterized by the stress-strain curve as shown in
Figure 6.1. At low strain, the foam deforms in a linear-elastic behavior. With increasing

strain, the stress-strain curve reaches plateau, and the deformation of the foam is almost
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at constant stress. Corresponding to this part of curve, the cells of the foam begin to

collapse. With the further increase of strain, the deformation of the foam reaches a
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Figure 6.1 The relation of stress and strain in a cellular metal foam

region where all the cell walls crush together. Because the stress disturbance of an

acoustic wave usually is very small, the dry foam response to the acoustic wave is in the

linear region of the stress-strain curve.

In the linear-elastic region of the stress-strain curve, the elastic moduli (X, for bulk

and N for shear) of the foam can be expressed as:

6.1)
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and N=NC | — 6.2)

where C; and C; are constants, K, and N; are the bulk and shear moduli of the bulk
material, and p, and p, are the densities of the foam and bulk material. The parameter n is
a constant which depends upon the structure of the foam. For isotropic foam, n=2. The
mechanical tests of many metal foams show that the constants C; and C; are both very

closeto 1.

6.2 The Viscous Coupling in the Water-Saturated Aluminum Foam
Viscous interaction between the solid frame and the fluid is an important factor that
influences the acoustic properties of many fluid filled porous materials. The viscous

coupling between the solid frame and the fluid is described by the viscous penetration

depth, which is defined as:
2
5= —"E 6.3)
Pr

where N and py are, respectively, the viscosity and the density of the water, and  is the
angular frequency of the wave. The viscous penetration depth is a frequency dependent
parameter. For water, the viscosity and density are 0.01 poise and 1000 kg/m’. In an

experiment, the ultrasonic wave frequency covers a range from 0.1 MHz to 1.5 MHz. The




Chapter Six: Theoretical Studies of the Ultrasonic Transport Properties 78
of Water-Saturated Aluminum Foams
viscous penetration depth therefore can be calculated from equation 6.3. The calculated
viscous depth of water is about 2 pm at 0.1 MHz frequency and 0.6 um at 1.5 MHz
frequency. For the aluminum foam used in this experiment, the cell size of each aluminum
foam sample is fixed at 40 cells per inch, corresponding to a dimension of 0.63 mm. The
pore size is abut 0.55mm for the 88% porosity sample and 0.6mm for the 95% porosity
sample. The penetration depth is much smaller than the pore size in each sample, which
means that only a very thin layer of the fluid (water) is locked to the solid frame and most
of the fluid in the pore is viscously free. This analysis shows that the viscous coupling in
the water-saturated aluminum foam is very small, and therefore all the discussions in
Chapter 4 for the high frequency approximation can be used to calculate the phase
velocities in the water-saturated aluminum foams. In Biot's theory, the only wave energy
dissipation process in fluid-filled porous materials is due to the viscous interaction. In
water-saturated aluminum foam, this interaction is very small and can be ignored. The
main influence of viscous interaction on wave propagation is the dispersion of the phase
velocity. In our experiments, the phase velocities for both fast and slow waves in all tested

samples had very small dispersion, and this fact agreed with this analysis.

6.3 The Inertial Coupling in Water-Saturated-Aluminum Foams
In Biot’s theory, the structure factor A is an important parameter that determines the
inertial coupling between the solid frame and the fluid. As described in Chapter 4, in the

case where the viscous coupling can be ignored, the structure factor A is a real number
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and always greater than 1. The structure factor A only depends on the geometry of the

pores and the porosity. Berryman(6, 48] theoretically derived the relationship between A

and porosity in the case of isolated spherical solid particles in the fluid:

1 1(1
A =E+-(—+l) (5.4)

where @ is the porosity of the medium. This equation can be used to estimate the
structure factor in isotropic porous materials such as consolidated and unconsolidated

glass beads. For anisotropic materials, Williams([61] proposed a general formula:
| 1
A=—+ R(l + —) (6.5)
2 o

where R is a parameter which depends on the geometry of the pores. For the cellular
aluminum foam, the pore structure is not absolutely spherical (R<0.5), but the magnitude

of the structure factor can be estimated by the following formula:
1 1
==+ 0.3(1 + —) (6.6)
2 o

Considering that the porosities of the aluminum foams range from 88% to 95%, the
structure factors for the aluminum foam samples are between 1.15 and 1.09, which are
close to 1. That means the inertial coupling between water and the aluminum frame is not

very strong.
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6.4 The Propagation Velocities of Ultrasonic Wave

The propagation velocity of the ultrasonic wave in the water-saturated aluminum foams
can be calculated from the Biot’s theory. The physical parameters required for the
calculation are listed in Table 6.1. From the analysis above, the structure factor A is the
only unknown parameter. In the calculation, A is determined by fitting the calculated
propagation velocities with the experimental values. The calculated propagation velocities
and fitted A values are listed in Table 6.2. For comparison, the experimental results are
also listed in Table 6.2. From Table 6.2, we can see that results of the theoretical
calculations agree very well with the experimental results except for the 95% sample. The
fitted A values are reasonable. The discrepancy between the calculated values and the
experimental values for the 95% porosity sample is most likely due to the presence of the

“leaking” wave pulse.
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Table 6.1 The Basic Physical Parameters of the Water-Saturated Aluminum Foams

Bulk Modulus of Solid Material K, 83.1 GPa
Shear Modulus of Solid Material N, 259 GPa
Bulk Modulus of Fluid K, 2.19 GPa
Density of Fluid (water) p, 1000 Kg/m®
Density of Solid Material p, 2710 Kg/m®
Viscosity of Fluid (water at 20 °C) 0.01 Poise

Table 6.2 The Velocities of Fast and Slow Waves in the Samples

Density Velocity of Fast Wave Velocity of Slow Wave
o A (m/s) (m/s)

(Kg/m®) Experiment  Theory Experiment  Theory
136 95% 1.02 1.79x10° 1.60x10° 1.41x10°  1.34x10°
190 93% 1.03 1.82x10° 1.75x10° 1.37x10°  1.39x10°
271 90% 1.08 1.98x10° 1.95x10° 1.34x10°  1.34x10°
325 88% 1.14 2.06x10° 2.09x10° 1.30x10°  1.31x10°
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6.5 Ultrasonic Transport Properties and r Values

(1) Transport Properties

An input wave is converted into a slow wave ,a fast wave and a reflection wave on the
input surface of a sample. The fast and slow waves propagate in the medium
independently, therefore the transmission coefficients of the fast wave and slow wave can

be defined as:

Tf = tﬂtf2 (6.7)

T =t 1t 6.8)

s sl s2 (
where f; and 1, are the amplitude transmission coefficients of the fast wave on the input
and output surfaces, and t,; and t,; are the amplitude transmission coefficients of the slow

wave on the input and output surfaces. On the input surface, t;; and 1, are defined as:

A
S
t = (6.9)
fl AO
As
tsl = :1; (6.10)

where A, and A, are the amplitudes of the fast and slow waves created on the input
surface. Ay is the amplitude of the input wave. These transmission coefficients can be
calculated from the boundary conditions discussed in Chapter four. A detailed derivation
can be found in Appendix I. If the medium is dissipative, the transmission coefficients are

usually complex, which means the transmission waves will have a phase shift with respect
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to the input wave on the input surface. Let’s consider a non-dissipative case. The

calculated amplitude transmission coefficients are listed in Table 6.3

Table 6.3 The Calculated Transmission Coefficients for a Non
Dissipative Water-Saturated Al Foams

T T,
95% porosity 0.24 0.70
93% porosity 0.29 0.64
90% porosity 0.32 0.61
88% porosity 0.34 0.59

T; and T, represent the conversion efficiencies of the fast and slow waves in the medium.
The data show that the water-saturated aluminum foams are more inclined to transmit or
convert to the slow wave mode. This agrees with experimental observations.

(2) The Relation Between the Motions of the Solid Frame and the Fluid

Corresponding to the fast and slow waves, the motions of the solid frame and the fluid are
coupled together. The displacements of the solid frame and the fluid have a linear relation
as shown in Equation (4.38). In Equation (4.38), the r coefficient is the ratio of the
displacement amplitudes of the solid frame and the fluid. The calculated r coefficients for
both the fast and the slow waves are listed in Table 6.4. The r coefficients are negative for
the slow wave and positive for the fast wave. This means the motions of the solid frame
and the fluid are in phase for the fast wave and out of phase by 180 degrees for the slow

wave. The absolute values of r for the slow wave are smaller than 1, and greater than 1 for
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the fast wave. This means the slow wave is dominated by the motion of the fluid and the

fast wave is dominated by the motion of the solid. The acoustic properties of the medium

are more like these of the fluid for the slow wave and more like those of the solid frame

for the fast wave.

Table 6.4 The Calculated r Coefficients

Slow Wave Fast Wave
95% porosity -0.712 2.24
93% porosity -0.601 3.67
90% porosity -0.575 3.77
88% porosity -0.462 3.88

6.6 The Acoustic Scattering in the Water-Saturated Aluminum Foam

Biot’s theory appears to be the most generally effective theory for two component
systems where one is a fluid. In the previous discussions in this chapter, the experimental
results of the broadband ultrasonic tests of the water-saturated aluminum foams have been
shown to be well described as a special case of Biot’s theory. One of the fundamental
predictions of the theory: two longitudinal propagation modes, has been observed. The
theoretical calculations agree very well with the experimental observations. Unfortunately,
the attenuation of the acoustic wave, which is an important aspect of the wave

propagation, is not described very well by Biot’s theory. In the theory, the only wave



Chapter Six: Theoretical Studies of the Ultrasonic Transport Properties 85
of Water-Saturated Aluminum Foams
energy dissipation process is the viscous interaction between the solid frame and the fluid
(poroelastic attenuation). Rasolofosaon[49] modified Biot’s theory and introduced
another type of attenuation process: viscoelastic attenuation, which is due to the
viscoelastic properties of the solid frame. In the water-saturated aluminum foams, the solid
frame is totally elastic and the viscous penetration depth of water is much smaller than the
average pore size. Therefore the two attenuation processes in the theory are supposed to
be very small and can be ignored. The most fundamental attenuation process in the
inhomogenous medium; scattering, is not described in the theory at all, because the two
phase components in the medium are assumed coupled together and the wave can travel
across the interface between the solid frame and the fluid in two wave modes without any
redirection. This does not agree very well with the experimental results. In the experiment,
the attenuation of the input pulse in the medium is very high and shows a strong wave
frequency dependence especially in the high frequency range. In order to evaluate the role
of scattering processes in wave propagation, the scattering wave for the 90% porosity
sample was measured by rotating the receiver (detection direction) perpendicular to the
wave propagation direction. The observed scattering waveform is shown in Figure 6.2.
The corresponding amplitude spectrum is shown in Figure 6.3. The frequency range of the
scattering wave is mainly in the high frequency portion. This agrees very well with the
experimental observation that the frequency range of the transmission wave (either fast
wave or slow wave) is restricted in the low frequency portion. Of course the spectrum of

scattering wave (Figure 6.3) does not give the accurate information about scattering wave
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because the amplitudes of the input pulse and the frequency response of the receiver has
the similar spectrum as the profile of the Figure 6.3. But this fact at least suggests that the
scattering process is the major attenuation source in the water-saturated aluminum foam.
Water-saturated aluminum foam is not a perfect medium as described in Biot’s theory.
The theory assumes that the average pore size is much smaller than the wavelength so that
the motions of the solid frame and the fluid can be described by their average
displacements and the wave “sees” the medium as a coupled homogenous medium. If the
acoustic wavelength is smaller than or of the same order of magnitude as the pore size, the
coupling effects of Biot’s theory is broken down, the medium simply behaves like a

random inhomogenous medium, and the wave will suffer high scattering loss when

Amplitude
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Figure 6.2 The scattering wave measured in 90% porosity sample (Rotating
the receiver 90 degree with the propagation direction).
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Figure 6.3 The amplitude spectrum of the scattering wave in 90% porosity
sample

traveling in the medium. The aluminum foams used in this experiment have average pore
size about 0.55mm to 0.6mm. If we assume the propagation velocity of the ultrasonic
waves is 2000 m/s for the fast wave and 1500mvs for the slow wave, then at 1.5 MHz
frequency, the ultrasonic wavelength is 1.3 mm for the fast wave and 1.0 mm for the slow
wave. At 0.15 MHz frequency, the ultrasonic wavelength is 13 mm for the fast wave and
10 mm for the slow wave. Obviously at low frequency , the basic assumptions in Biot’s
theory are barely satisfied and at high frequency, because the wavelength has same order

of magnitude as the pore size, the assumption is not true. In order to use Biot’s theory to
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explain the experimental results of the ultrasonic wave propagation in the water saturated

aluminum foams, an attenuation model must be implemented.

Scattering wave

dl = o HQ
9 &
Incident wave [ @\ «

Scatterer
Figure 6.4 Illustration of the scattering of a wave by a single
scatterer
(1) The Single Scattering Model
The basic physical principles of sound scattering are well known, but their extension to
three dimensional fluid-filled solid porous material is still in its infancy. Although the
situation is certainly complicated, a number of simplified models may approach this
problem. Fry[19] proposed a single scattering model to describe the attenuation of an
ultrasonic wave in the human skull bone. The basic idea of Fry’s proposal is that the
boundaries between the fluid and the solid form many scatterers which are randomly
distributed in the medium, and when a wave strikes one of these, a portion of the incident
power is scattered out. The attenuation coefficient of the ultrasonic wave can be derived
from the scattering cross section of a single scatterer.
The single discrete scatterer model is shown in Figure 6.4. The scattering of a
sound wave by a single discrete scatterer with simple geometry can be calculated by many

methods. In the limit that the bodies of the scatterers are either very small or very large
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with respect to the wavelength, the calculations are exact. In intermediate cases, it is much

more complicated[15]. Since the transmission pulses observed in water saturated

aluminum foam are in the very low frequency range where the wavelength is much larger

than the pore size, the approach where the scatterers are much smaller than the

wavelength is very useful.

Let’s considering a plane acoustic wave propagating in a medium with bulk
modulus K; and density p,. If a scatterer in the medium has bulk modulus K> and density
P2, then when the plane wave is incident upon the scatterer, the power P which is removed
from the wave by the scattering process is related to the total scattering cross section, G,
to the incident intensity 7 by:

P =ol 6.11)
The cross section is defined as:

o=/ a;d.Q (6.12)

where the o’ is the scattering cross section scattered per unit solid angle or differential
scattering cross section. If the scatterer is penetrable sphere, the scattering cross section

per unit solid angle can be derived as[15,30]:

. 1(27r)4 6| X2 — K 3p, -3p
o =5l7) a +

s A K1 2p2 +py

cos 6 (6.13)
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where a is the radius of the scatterer, 0 is the angle between the incident wave and the

scattering direction in which the differential scattering cross section is defined, and A is the

wavelength.

Equation (6.13) is valid only in the limit of the scatterer being small with respect to the
wavelength, and is defined as the Raleigh scattering region. From (6.13), we see that the
scattering is proportional to the fourth power of the wave frequency and is strongly
dependent upon the radius of the scatterer. The scattering wave contains two components:
an isotropic scattering term due to the difference in compressibility (bulk modulus), and a
dipole non-isotropic term due to the difference in densities. Integration of (6.13) all over

space yields the total scattering cross section:
_ 2
o=2ff( ) 2 Kl Kz KYPr-p Py~ Py (6.14)
9 2p2 + p1 2p2 +p;

(2) The Scattering Attenuation Coefficient

Assume the number density of the scatterer in the medium is n. When the wave travels
through the medium by dx, the attenuation loss of the wave intensity is:
dl = noldx (6.15)

The attenuation coefficient of wave intensity is no . Therefore the amplitude attenuation

coefficient is:

o =—no 6.16)
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For the porous solid, the scatterer density can be calculated from the average pore size. If

the average pore size is d, and the geometry of the pore is spherical, the number density of

the scatterer is[19]:

=— (6.17)

1
n=—
|4

(3) Implementation of the Single Scattering Model into Biot’s Theory

In Biot’s theory, scattering is not discussed. Fortunately the scattering model described
above can be implemented into the theory. This can be accomplished by modifying the
elastic moduli of the medium. Before the implementation, however, it is necessary to
discuss the concept of the dynamic elastic moduli of the medium.

(a) The Dynamic Moduli of the Medium

Wave propagation in a medium is actually the result of the elastic response of the medium
to stress. If a static stress is applied to the medium, the medium responds with a
deformation (strain). For an elastic medium, the deformation is a linear function of the
stress. The linear coefficient between the stress and the strain is called the static elastic
modulus of the medium. But for a stress that changes rapidly with time, the deformation
of the medium is not usually in phase with the stress due to attenuation. Therefore the

dynamic elastic modulus of the medium is usually a complex quantity even for a perfect
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elastic medium. This dynamic response of the medium determines how an acoustic wave
propagates.

Suppose the dynamic elastic modulu of a medium is: K'= K (1 + i6) and
N’ = N(l + i5)[12], where K and N are the static elastic moduli and & is a dimensionless

number that represents the attenuating part of the medium. (the complex parts of N’ and
K’ are assumed the same for simplicity). For most media, § << 1. The propagation

velocity of the acoustic wave can be written:

(6.18)

Since §<<1, Equation (6.18) can be written:

4
(K +3 N)(l +i6) 1
V= =Vo\/1+i6=VO(l+5i6) 6.19)

P
where
4
K+ 5 N
V ={|———— (6.20)
0 p

()] )] 1
k=—=——mrnronouou l___-a) 2
ko( 21 6.21)
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and K== (6.22)

0 VO

The amplitude attenuation coefficient can therefore be obtained:

o= 2 é (6.23)

2 V0

(b) The Dynamic Moduli of the Aluminum Foam
There are two types of elastic moduli that determine the static behavior of the solid porous
material: the elastic moduli of the solid material itself K, and N, , the bulk moduli of the
structure (skeleton) K, and N, , which are quantities that depend on the spatial
arrangement of the bulk material as well as on K; and N,. For most porous solids, K
and N, are not equal to zero and their relation with K; and N; are as shown in equation
(6.1) and (6.2). But for some porous solids such as unconsolidated glass beads and sands,
even though their K, and N, are very large, their K, and N, are almost equal to zero
because the particles in the media do not form elastic structures{34]. When an acoustic
wave propagates in a porous solid, the dynamic behavior of the medium is mainly
determined by K}, and N,.

For the aluminum foam, since the bulk material itself is a homogenous elastic
material, the acoustic attenuation in the material itself is very small and can be ignored.
Therefore K, and N; are considerated to be real quantities. The attenuation of the wave in

the medium comes primarily from the structure, therefore K}, and N, can be written as:

K' =K, (1+i8) (6.24)
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N, =N, (1+i8) (6.25)

For the dry material (voids are considered as vacuum), the propagation velocity of the

longitudinal acoustic wave is:

(6.26)

where p, is the density of the aluminum foam. The attenuation coefficient can be

expressed as:
()]
=——9 6.27
Y .27
0
K, +—N
b b
and Vo= —32 (6.28)
0 pb

By the same way, the attenuation coefficient for a shear wave can also be obtained. Since
shear waves and longitudinal waves are two different kinds of waves, their attenuation in
the dry porous material are different. For convenience, in this simulation, they are treated
as the same ( same & ).

(c) Implementation of the Scattering Model

As mentioned above, the acoustic attenuation in the water-saturated aluminum foam is due
to scattering, therefore the parameter & is mainly determined by this and can be related to

the scattering cross section by Equations (6.16) and (6.27):
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§=—0 (6.29)

For the dry aluminum foam, the propagation velocity of the longitudinal acoustic wave

can be calculated by equation (6.26). K, and pj are given by:

_ )2
K, =K (1-o) (6.30)
and p, = ps(l -0) (6.31)
Therefore :
_ 172
V=V (1-) (6.32)

where V; is the propagation velocity of the acoustic wave in the aluminum bulk material
and @ is the porosity of the foam. The scatterer density n in the aluminum foam can be
calculated by Equation (6.17). The radius of the spherical scatterer in the model is
assumed to be 0.3 mm, therefore n is about 8.8x10° cm™ . Because the pore sizes of the
aluminum foams are very close (from 0.55mm to 0.63mm), the scatterer density n can be
assumed to be the same for all the tested samples. The scattering cross section 6 can be
calculated from Equation(6.14). Equation(6.14) can be written as a frequency dependent

function :

4 2 2
,,_2_“(3) It I STl T D (6.33)
9\ Vv Ks Ks 2pf+ps 2pf+ps

o
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since we have Af = VO (6.34)

The densities and elastic moduli of the aluminum bulk material and water can be found in
Table 6.1. When the aluminum foam is saturated by water, the elastic properties of the
medium are determined by K, , N, as well as other real moduli shown in Equations (4.3),
(4.4) and (4.5). Implementation of complex K, and N, in Biot’s theory will result in
complex propagation velocities for both fast and slow waves. For each complex
propagation velocity, the real part represents the phase velocity of the wave and the

imaginary part represents the attenuation.

6.7 The Numerical Simulations of the Transmission Signals

The transmission signal of the ultrasonic pulse through the water-saturated aluminum
foams can be reproduced from the simulation of the acoustic properties of the medium
using the Biot’s theory and a single scattering model. At the input surface of the sample,
the input pulse is converted into fast and slow wave pulses by boundary conditions
described in Chapter 4. In the medium, both the fast wave and the slow wave travel with
the velocities determined by Biot's theory and lose their wave energy as determined by
the imaginary parts of the complex propagators. At the output surface, both waves
transmit through the surface according to the boundary conditions.

(1) Simulation Strategy

A numerical simulation of the transmission signal for the ultrasonic pulse traveling through

the water-saturated aluminum foams was performed based on the above theory. The
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Figure 6.5 The strategy for the numerical simulation. The input pulse is a water
pulse

simulation strategy is shown in Figure 6.5, in which the boundary conditions described in
chapter 4 are included. A program was developed to perform the numerical simulations. In
this program, the structure factor A and porosity ® are set to be the input parameters,
which represent the characteristics of the samples. The input pulse is the water pulse
shown in Figure 2.6. FFT was performed on the input pulse and the output pulse was
obtained by inverse FFT to the processed data. During simulation, the Fourier component
of the water pulse was corrected by a 2nfL/V, phase shift. The detailed theory is given in
Appendix V.

(2) Results

Simulation of the transmission pulses in the 88% porosity sample without implementation
of scattering model was first performed. The result is shown in Figure 6.6. Without

considering attenuation, the input pulse is split into fast and slow wave pulses. The fast
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and slow wave pulses have the same pulse shape as that of input pulse. The calculated
transmission coefficients in Table 6.3 determine the amplitudes of the fast and slow wave
pulses. Compared with the experimental result, Biot’s theory gives a good prediction of
the output waves in the time domain.

With implementation of the scattering model, three samples with porosities 88%,
90% and 93% were simulated. The results are shown in Figure 6.7 (a) to (c). The
corresponding experimental results are also shown in each figure. It must be noted that the
waveforms of experiments contain noise and reverberation signal after the main pulses, but
in the simulation, these effects were not included. From these results, we can see that the
calculated wave shapes, amplitudes and arrival times for both fast and slow waves in 88%
and 90% porosity samples are almost identical to the experimental results. For the 93%
density sample, the discrepancies between experimental result and theory is obvious. The
reason for this is due to the “leaking” wave pulse. The solid frame and the fluid are not

perfectly coupled in the medium.
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Figure 6.6 The simulated transmission pulses for 88% porosity sample without
considering scattering attenuation. Top: experiment. Bottom: theory
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Figure 6.7 (a) The simulation of the transmission pulses in the88% porosity sample.
Top: Experiment, Bottom: Theory
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Figure 6.7(b) The simulation of the transmission pulses in the 90% porosity sample.
Top: Experiment. Bottom: Theory
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Figure 6.7 (c) The siumlation of the transmission pulses in the 93% porosity sample.
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6.8 Discussions

In the simulation, a single scattering model is used. For the scattering theory, the single

scattering model is only good when the density of scatterer is lower than 5%. When the

density of the scatterer is greater than 5%, the single scattering approximation is not

appropriate because of the influence of multiple scattering. Implementation of a multiple

scattering model in Biot’s theory is ideal, but it would be very difficult. However, the

implementation method used in this research can be extended to any scattering model,

because it is independent on the theoretical model.

By implementation of an attenuation model, the attenuation of both the fast wave
and slow waves can be quantitatively described. During simulation, it is found that the
attenuation of both the fast wave and the slow wave are dependent on the structure factor
A. This indicates that the internal interactions between the solid frame and the fluid play an

important role in wave attenuation.




Chapter Seven: Ultrasonic Studies of Other Cancellous Bone Phantoms 102

Chapter Seven: Ultrasonic Studies of Other Cancellous
Bone Phantoms

The development of cancellous bone phantoms has become, in itself, an intensive research
project in recent years. The propose of this research has been to provide an objective
standard for the commercial machines built for diagnosis of osteoporosis. In the clinical
environment there is a distinction between test objects and phantoms. A test object is
designed to evaluate equipment performance while a phantom is designed to mimic the
material properties of a natural tissue with a particular reference to the parameter to be
measured. The water-saturated or gelatine-water mixture filled aluminum foams are the
phantoms we designed and used to investigate the mechanism of ultrasonic wave
propagation in cancellous bone with particular interest in the two wave propagation
model. From studies of these types of phantoms, the wave propagation properties of fluid
filled porous materials can be fully understood and, most importantly, the physical model
for this study can be extended to explain the acoustic properties of other cancellous bone
phantoms and cancellous bone. However, the water-saturated aluminum foams do not
mimic all the material properties of cancellous bone. For instance, in cancellous bone , the
most interested bone parameter is porosity or bone density. The porosity of cancellous
bone ranges from 65% for a healthy bone to 95% for a osteoporotic bone[42]. Attempts
to find an appropriate bone phantom are still in a development stage. In this chapter, the

ultrasonic tests of several cancellous bone phantoms will be presented
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7.1 Experiments of bovine bone samples

4 pieces of bone samples with different thickness were obtained from bovine femora. After
removal of bone marrow, the specimens were immersed in water for a week. Ultrasonic
tests of those bone specimens were performed on the experimental system which was
described in Chapter two. The waveforms of transmission signals in those bone specimens
are shown in Figure 7.1. BUA and SOS for each bone sample were obtained from the
transmission signal. The results were summarized in Table 7.1.

From Table 7.1 we can see that there is almost no correlation between the
ultrasonic parameters (nBUA and SOS) and the bone density. nBUA is the BUA value
normalized by the thickness. Only one pulse was found in the waveform of the
transmission signal for all 4 tested samples. This pulse, according to the analysis of Biot’s
theory, is the fast wave pulse. The slow wave was not detected in these experiments. In
most of the ultrasonic in-vitro studies of cancellous bone, only one pulse was detected
from a transmission signal except in one special case[28]. To extend the physical model
established in this project to cancellous bone, detailed information about fundamental
parameters of cancellous bone such as the structure factor has to be known. Table 7.2 lists
some bone parameters reported by other researchers and the physical parameters of water-
saturated aluminum foams. It must be noted that the bulk material of cancellous bone is
not readily available in nature, and the values listed in Table 7.2 were obtained from
cortical bone[42]. From Table 7.2, we can see that the viscous coupling in the cancellous

bone is still very small with respect to the average pore size, so the viscous coupling effect
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can be ignored. The structure factor, which determines the inertial coupling, is very
complicated in cancellous bone due to the anisotropy. The observation of two longitudinal
propagation modes in the cancellous bone was reported only in the case that the inertial

coupling effect is very small[28,43].

water pulse o
sample #1 i‘f\/\/
sample #2 f‘
sample #3 “ .
sample #4 M
0 2‘0 410 6‘0 8‘0 100
Frequency (MHz)

Figure 7.1 The ultrasonic transmission signals in cancellous bone sample
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Table 7.1 The Measured Parameters of Bovine Cancellous Bone Sample

Sample#1 Sample#2 Sample#3 Sample#4
Thickness(cm) 0.742 1.58 1.85 2.13
Density(kg/m’) 660 680 703 720
Porosity (%) 63 62 61 59
SOS (km/s) 1.631 1.723 1.649 1.814
nBUA
(dB/cm MHz) 31.8 354 24 .4 40.5

Table 7.2 The Physical Parameters of the Cancellous Bone
and Water-Saturated Al Foams

Cancellous Bone Water-Saturated Al
foam
Density of the bulk
Material 1800kg/m’ 2700kg/m’
Bulk modulus of the
Bulk Material 1.96x10'° Pa 8.31x10" Pa
Shear Modulus of the
Bulk Material 5.83x10° Pa 2.59x10'°Pa
Density of the
Fluid 960kg/m’ 1000kg/m’
Viscosity of the
Fluid 1.459 poise 0.01 poise
Average Pore
Size 0.3-0.6 mm 0.55-0.63 mm
Viscous Penetration
Depth 69um (at IMHz) 5.6um (at IMHz)
7.2 Rubber block model

The simplest cancellous bone phantom can be made by drilling a number of identical

straight holes into a “cortical bone mimic” block. The diameter of the holes determines the
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pore size and porosity of the phantoms. In order to test this type of approach, two
phantoms were made. For each phantom, 36 straight holes were drilled in a 2"x2""x1”
rubber block (hockey puck). The diameter of holes is 1 mm for a 4.3% porosity phantom
and 2.5 mm for a 27.3% porosity phantom. Figure 7.2 shows the diagram of this type of
phantom. The phantoms were saturated by water in the water tank, and then tested along
the axis of the cylindrical holes in the experimental set-up. Figure 7.3 and Figure 7.4 show
the transmission signals of the ultrasound pulse in these two phantoms. For comparison,

the water pulse and the transmission signal through a rubber block (0 porosity) was also

shown in each figure.
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Figure 7.2 A diagrammatic representation of the rubber block
model phantoms in this study
From Figure 7.3 and Figure 7.4, we can see clearly that the transmission signal for each
phantom contains two pulses, one due to ultrasonic wave propagation in the rubber, in

which the wave suffers attenuation and travels with a velocity that is faster than that of
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water, and the other is due to a wave propagating through the water path in the phantom.
The second pulse does not suffer any attenuation. The ratio of the two pulses depends on

the

water puise
in rubber block

V1
in phantom #1 ﬁ \/\

20 30 40 50 60 70 80
Time (Microseconds)
Figure 7.3 The transmission pulse in phantom #1 (2mm hole diameter)
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Figure 7.4 The transmission pulse in phantom #2 (1mm hole diameter)

diameter of the holes.

The experimental results of the rubber block phantoms demonstrate the case that
there is not any coupling in the porous material. In this case, the wave propagates in both
the solid material and the fluid independently. The geometry of the phantom determines

the amplitude of the transmission pulses.

7.3 The Vancouver Phantom
The Vancouver phantoms are cancellous bone mimics built for quality assurance and

cross-calibration of commercial ultrasound machines. The detailed technical information
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about these phantoms is not available because it is the subject of a patent application.
From our knowledge, these phantoms are reticulated vitreous carbon foams filled with a
heavy USP grade oil. The porosity of this type of material is over 99%. Three phantoms
with attenuation characteristics in the range of cancellous bone were tested in this project.
The Vancouver phantoms have been tested on 3 different types of commercial ultrasound
machines. Table 7.3 lists test results of these three phantoms by three different commercial
machines and our experimental system. From Table 7.3, we can see that the results are not
very consistent. Our results are close to those tested on the Sahara and uBUAS75+
machines. The BUA values were all obtained from linear regression between 0.2 to 0.6
MHz.

The ultrasonic transmission waveforms in these phantoms are interesting. Figure
7.5 shows the waveforms. Figure 7.6 shows the curves of attenuation against wave
frequency. From Figure 7.6, we found that the attenuation in the phantom is not a linear
function of wave frequency, therefore the BUA values (slope of the curve) depend on the
frequency range of linear regression. From the waveforms shown in Figure 7.5, we find
that the main pulses in all waveforms arrive almost at the same time. This means the
ultrasonic wave propagation velocities in the reticulated vitreous carbon foams are almost
the same. The time shift between the water pulse and the transmission pulse is believed to
be mainly due to the perspex walls of the phantom and the filling oil. Since the porosities
of the reticulated vitreous carbon foams are over 99% and the thickness of the foams are

about 1 inch, according to the analysis in Chapter 5, the main pulses of the transmission
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waveforms are “leaking wave” pulses. The fast wave and slow wave can not be detected
in these phantoms. It is worthy to note that a similar effect has also been reported by
Nicholson[43] on cancellous bone. Nicholson reported that the main pulse of transmission
signals in some of vertebral bone samples (tested along the weight bearing direction) is
very close to the water pulse and the fast wave (Nicholson called it the “bar wave’) can
only be observed by saturating the main body of the waveform. Since the “leaking wave”
only reflects the acoustic properties of the fluid in the sample, the elastic behavior of the
solid material can not be determined from the transmission signals.

7.4 Rubber Test Objects

Three rubber test objects with different densities and elastic properties built for the
calibration of ultrasound machines were tested using our experimental system. Table 7.4

lists the test results . These results can be used to compare with other ultrasound systems.
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Table 7.3 The Comparison of the BUA Test Results of Vancouver Phantoms on
Different Systems. The Unit of BUA : dB/MHz (fitting from 0.2 to 0.6 MHz)

Vancouver Phantom VP132 VP316 VP350
uBUA 575+ 38.25 53.75 67
Achilles+ 80 91.5 103
Sahara 26.7 44 35 60.375

This System 24.1 37.8 S1.1
80 -
Black

__60}
@
o
Y Green
K=}
540 .
§ White
<
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Frequency(MH2)
Figure 7.8 The attenuation in three rubber test objects.
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Table 7.4 The test results of three rubber test objects
BUA (dB/MHz) BUA(dB/MHz)
Test Object (0.2t0o 0.8 MHz) (0.2 to 0.6 MHz)

Black 76.5 70.1
Green 51.8 46.7
White 41.7 38.1

7.5 Discussions

Developing a cancellous bone phantom is very difficult work. From the experimental
results presented in this chapter, we can see that the ultrasonic transport properties of
tested bone phantoms are not very close to those of cancellous bone samples. Fortunately,
the detected waveforms can be explained by the theoretical model established in this study.
The inconsistency in the results of the BUA test on Vancouver Phantoms highlights the

problem of different operating performance among commercial ultrasound machines.
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Chapter Eight : Conclusion

8.1 Further Work

The diagnosis of osteoporosis using broadband ultrasound is still very much in a
development stage. The major difficulty is to establish robust quantitative correlation
between the ultrasonic parameters and the bone parameters. Since measured ultrasonic
parameters are related to wave propagation, the physical model of wave propagation in
cancellous bone is very important. This work established a physical model based on Biot’s
theory. The experimental results on ultrasonic studies of water-saturated alurminum foams
agree very well with this model. In future experiment, this physical model needs to be
further tested in the low porosity range(50% to 80%). To describe the attenuation
behaviour of the water-saturated aluminum foams, the multiple-scattering model should be
implemented. To extend this model to cancellous bone, which has more complicated
microstructure than that of the aluminum foam, further work has to be done on
investigating cancellous bone parameters. From the analysis of the coupling effects in
cancellous bone, we know that the viscous coupling between the solid bone frame and
bone marrow is very small. Therefore the major coupling effects are static elastic and
inertial couplings. The structure factor, which is an important bone parameter proposed by
Biot’s theory, determines the inertial coupling in the bone. Since the pore structure of
cancellous bone is anisotropic, the structure factor depends on both porosity and the

wave propagation direction. From the results of ultrasonic studies on the Vancouver
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phantoms we can predict that in the highly osteoporostic bone (over 95% porosity), the
ultrasound signal detected is most likely a “leaking wave”, because the structure factor in
the highly osteoporostic bone is almost 1, no matter the complexity of the pore structure.
In the range of medium porosity, the inertial coupling effect is usually strong. However,
because of the anisotropy of the microstructure, the structure factor depends on the
orientation of the trabeculea. There are still some cases where the inertial coupling is very
weak. For instance, the trabeculea of vertebral bone is more anisotropic than other
cancellous bone (heel bone for example)[44]. Its trabeculea roughly align along the weight
bearing direction. It is therefore easy to understand that the structure factor along this
direction is very small with respect to other directions. The inertial coupling along this
direction is very weak. As a result, it is very possible to observe two propagation modes
in the transmission waveform. For these two propagation modes, they could be either
uncoupled modes(similar to the rubber block model) or coupled modes (like in the water-
saturated aluminum foams), which depend on the spatial arrangement of trabeculea. In the
isotropic cancellous bone, the spatial arrangement of trabeculea is random, therefore the
structure factor depends on porosity only. In the case of strong inertial coupling, the slow
wave mode has been “pushed” to a very low propagation velocity and is very difficult to
detect. So the main pulse observed in the transmission waveform is expected to be the fast
wave. This agrees with most of the observations. A linear correlation between the
ultrasonic parameters and porosity is likely in this situation. The predictions from the

above analysis need to be experimentally proven. However, it is obvious that the structure
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factor plays an important role in the determination of ultrasonic properties of cancellous
bone. Even though the structure factor is not a new parameter, it has been ignored in most
of the previous cancellous bone studies. Further work needs to be done on the
experimental measurements of the structure factor in cancellous bone. The experimental
methods of measuring the structure factor in porous materials have been proposed by
many researchers(10,48], but have never been used in cancellous bone. Using the
measured structure factor to correct the correlation between the measured ultrasonic
parameters and the porosity can give more accurate information about the mechanical

properties of cancellous bone.

8.2 Conclusions

This thesis demonstrates that the propagation of an ultrasonic wave in the water-saturated
aluminum foams obeys the theory proposed by Biot. The two longitudinal wave modes
predicted by the theory were successfully detected experimentally. In addition to the two
propagation modes, another wave, which is due to the decoupling of the water with the
aluminum frame was also detected in the high porosity samples. Except for the high
porosity samples, the experimental results agree very well with the theoretical analysis
based on the Biot’s theory. In addition to the experimental observations, this project has
provided a detailed description of ultrasonic wave propagation in fluid-filled porous
material. The physical description of the conversion of the modes at the input surface, the

propagation of two wave modes in the medium, and transportation of the waves through
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the output surface, have been established in this study. From the analysis of this study, the
major attenuation source of ultrasonic waves in the medium is scattering. By
implementation of a scattering model into Biot’s theory, the transmission pulses can be

reproduced by numerical simulation.

Although this study has established a physical model to describe the ultrasonic
transport properties of water-saturated aluminum foams, there is more to be done in the

application of this physical model to the cancellous bones.
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Appendix I: The Transmission Coefficients on An
Open Cell Surface

Boundary conditions for an open cell surface have been given in Chapter Four. A water-
saturated aluminum foam sample in this experimental set-up has two surfaces, one is the
input surface on which the input wave has been converted into two forward propagation
modes and a backward reflection wave. The other is the output surface, from which both
the fast and the slow wave travel through the boundary. A portion of the wave energy will
be reflected back into the medium. In this appendix, a detailed calculation of the
transmission coefficients will be given.

(1) Input surface

x=0

Incident wave
—_ g ———» fastwave

reflected wave
- —® siowwave

Fluid ‘Medium
Figure A1l.1 The input surface of sample

The surface is assumed to be at x=0. For x<0, the wave field in the external field is:

i(wt—k x) i(ax+k x)
s +L e f ¢))

U(x, t) = Lle 5
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The external velocity field and pressure field can be written as:

oU i(wt -k x) i(wt + k x)
P, (x,1) = K, o=k K | Le 7 Lye f @

and

ifot -k x) '(a1t+k x)
v(xt)——-za) Lle( f +L2el f 3)

For x>0, the displacements of the solid frame and the fluid can be written as:

i(wt - klx) i(at - k2x)
u(x,t) = rlBle + r282e 4
and
i(ax - klx) i(ax - kzx)
U(xt) = Be +Be (5)
The internal pressure field and velocity field for solid frame can be written:
'(“” - klx)
P (x,) = ( —+0Q ) 1(rP+Q)
i(ax - kzx)
zk2 (rzP + Q)Bze (6)
and
u i(ax - klx) i(ax - k2x)
v = 5 =@ r,B,e +r,Be )
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The internal pressure field and velocity field of the fluid are:

(x () = —(R—+Q ) 1(’1Q+ R)Blei(wt— klx) .

ik (r2Q + R)Bzei(ax B kzx) ®)
and
Vo= %U = iw Blei(” - klx) + Bzei(wt - ka) )

120

At x=0, using the boundary conditions given by equations (4.40), (4.41) and (4.42), the

following equations can be obtained:

L+L, = [(1 - (D)rl + (D]Bl + [(1 - <b)r2 + <1>]32 (10)
kaf(l - <D)(Ll - L2) =k (rlP + Q)B1 +k, (r2P + Q)82 (11)
k K <1>(Ll L ) (R+r1Q)Bl +k2(R+r Q) (12)

From equations (10), (11) and (12), the amplitude transmission coefficients for the fast

and slow waves can be obtained:

1=%=CC2C1CC 13
f 1 14~ 3

B, -2C3
t =—== (14)
sl c.Cc, -C.C

2 174 23
where:

c, = ‘ [r1P+R+(1+rl)Q]+[rl(l—<b)+<D] (15)
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c, = ! [r2P+R+(l+r2)Q]+[r2(l-<D)+<b] (16)

k K
fr
k k
“ =1-<p('1P*Q)'$(R+’1Q) an
ky ky
4 =1-¢>('2P+Q)'3(R“2Q) ®
(2) Output Surface
x=0
fast wave » transmitted fast wave
reflected fastwave g
slow wave o transmitted slow wave
reflected slowwave -a
Medium Fiuid

Figure A1.2 The waves on output surface

Figure A1.2 shows the waves on the output surface. Since the fast and slow waves
propagate independently in the medium, the transmission problem for each wave can be

treated separately. For the fast wave, the internal wave field can be written:
i(a)t - klx)
U=Be

+r Ee
1
i(a)t—klx)
1 " + Ee

Therefore the pressure and velocity fields for the solid frame are:

i(al B klx) - ik (rlP + Q)Blei(wt * klx) 21

1

i((ot + klx) 19

i(ax + klx) 20)

ps = zkl (rlP + Q)Ble
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i(cot - klx) i(ax + klx)
vV = ia)r1 Ble + iwrlEe (22)

The pressure and velocity fields for the fluid are:

i(a)t - klx) i(a)t + klx)
pf = Ikl (R + rlQ)Ble - lkl (R + rlQ)Ble (23)
i((ot - klx) i(ax + klx)
v_=ioBe + iwEe (24)
f 1
In the external field, the wave can be written as:
i(ax -k fx)
U = De 25)
and the pressure and velocity fields can therefore be written:
i((ot -k fx)
p=ik K De (26)
frf
and
i(at -k fx)
v = iwDe 27
Using the boundary conditions, the following equations can be obtained:
D= [rl(l -®)+ <1>](B +E) (28)
(1- tb)kafD =k (rlP + Q)(B1 -~ E) (29)
<DkafD = Ic1 (R + rIQ)(Bl - E) 30)
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From equations (28), (29) and (30) the transmission coefficient can be obtained:

D 2
1, =—

_ 31)
2f B
1 1 Keks

+
’1(1"4’)*"!’ kl(r1P+R+r1Q+Q)

In the same way, the transmission coefficient of the slow wave can also be obtained:

t —2—' (32)
2s B,
TR 1 Kpke

+
n\1-®)+® ( )
2( ) k2 r2P+R+r2Q+Q
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Appendix II: Fast Fourier Transformation

(1) Algorithm
The Fourier transformation of a finite discrete vector can be performed by application Fast
Fourier transformation algorithm. If x is a vector with N data points, the Fast Fourier

transformation of x is:

N .
@)= I )ayl-E-D) M
j =
where
27
o, =e N )

The inverse fast Fourier transformation is:
N1 ¥ (- 1)k -1)
x(j) =~ ki 1 x(Ko 3)

(2) Applications

A common use of Fast Fourier transformation is to find the frequency components of a
signal measured in the time domain. For example, an ultrasonic signal is measured in a
time domain as shown in Figure 2A.1. This waveform contains 1024 data points. The time
interval between two adjacent data points is 0.1 pus. After fast Fourier transformation,

1024 data points in frequency domain are obtained, but only the first half of those data
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points (512) are meaningful frequency components, the other half are only symmetric. The

frequency range covered by those 512 components is:

1 1
24t 2x0.lus

Af = = SMHz 4)

and the frequency interval of two adjacent frequency components can be determined by:

- 0.0097656 MHz (5

Ts12
The Fourier component of a waveform in the time domain is usually a complex number,
which contains the information for amplitude and phase. The amplitude distribution of the

waveform in Figure 2A.1in the frequency domain is shown in Figure 2A.2.

A

0 20 40 60 80 100

Time (Microsecond)
Figure 2A.1 The Ultrasound Signal Measured in Time Domain (1024 data

points, time interval between two adjacent points is 0. 1us)
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P

0 200 400 600 800 1000 1200
Data Point
Figure 2A 2 The Amplitude Distribution After FFT, Only First 512 Data
Points are Meaningful.
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Appendix IIT : The Waveforms in Various Solid Materials

(1) In Copper Block (1.78 cm). The distance between transducers: 7.0 cm
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Time (Microseconds)
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(2) In Steel Block (1.78 cm). The distance between transducers: 7.0 cm

' L

0 20 40 60 80 100
Time (Microseconds)
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(3) In Nylon Block (1.5 cm). The distance between transducers: 7.5 cm

0 20 40 60 80 100
Time (Microseconds)
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Appendix I'V: The Schematics of Pulse Generator (Main
Circuit)
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Appendix V: The Detailed Discussion about Numerical
Simulation

The numerical simulation of a received output signal from water-saturated aluminum foam
was performed by the following method.

The input pulse was the received water pulse, which is denoted as f(t). By fast
Fourier transformation, the Fourier component F() is obtained, which represents the
amplitude of a sinusoidal wave with angular frequency  contained in a water pulse. The
attenuation of the ultrasound wave in water is assumed to be zero. If a water-saturated
aluminum sample is inserted between the transducers, the input wave pulse is converted
into the fast and slow wave pulses on the input surface. The fast and slow wave pulses of
output waveform are assumed as g,(f) and g,(¢) with corresponding Fourier components
Gi(w) and G,(w). Since the propagation velocities of the fast and slow waves in the

sample are different from the propagation velocity in water, we have following relations:

ol
—i| k,L —| —
1 14
w
(w) = tfl 2F(w)e (D
y k L a_t.
w

G, (w) = U F(w)e @)
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Where k; and k; are the complex propagators calculated from Biot’s theory, L is the
thickness of the sample, #; and f,; are the transmission coefficients of the fast and slow
waves on the input surface, f,; and ;; are the transmission coefficients of the fast and slow
waves on the output surface and o is the angular frequency of the ultrasound wave. The
propagators k; and k; can be calculated from Biot’s theory by the equations 4.35 and
4.36. If attenuation is ignored, the k1 and k2 are real values which just contain the
information of propagation velocities of the fast and slow waves. The transmission
coefficients tq, t,1, tp and te, can be calculated from equations given in Appendix I. If the
scattering model is implemented in Biot’s theory, k; and k, become complex values,
which contain the information for both propagation velocities and attenuation of the fast
and slow waves. The complex transmission coefficients cause a constant phase shift of the
fast and slow waves, but do not influence the amplitudes. The output fast and slow wave

pulses can be obtained by inverse Fourier transformations:
g, (1) = iFF1(G, () 3)

g, (1) = iFF1(G, (o)) @
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