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" ABSTRACT.

The analysis of progressjy: failute regquires the
modelling of a material with gérain softening behaviour. The
finite element plasticity formulation with various strain
\softening models is developed to,model s0i1l oeformation
undet fully undrained conditions. The first modei( which is
Paeed on‘the analytical work by Prevéet‘and Hoeg, is 1i@ited
to specific stress sttain‘relationships.rThereforé, there is '
a need'to develop more general numerical models for |
ahalyzing a variety of strain soﬁteaihg materials. The
“Elastic Brittle Plastic modél and the Hyperbolic ‘Strain
Softeningmmodel are subsequently developed-in‘this research.
Numerous simplified and comp%icated probleﬁs have been
.analfzeé to illustrate the.effeCtiveness’and‘ pplicability
of these models. The develppment of the yielding zone and
the propagation of a shear band have been studieo in detail
in several cases. It ie fouao(that.iﬁ the gradual
development of the yielding aoee in soil under '
non-homogeneous deformationﬂ.the pltimategeollapse load iS:.'
depehdeﬁtIUpon the rate of the post peak softening behaviour;
~.of the mater1al For exaQPle, in the study of the bear1ng

.‘f

‘capac1ty of a str1p footlﬂﬁ on straln soften1ng soil, the

‘_maxlmum footlng pressure,ls not only a functlon of the peak’

and the~re51dua1 strength but is also hlghly dependent upon
the rate of post peak softenlng of the.soil.'Therefote,;it
is not poss1ble t6 deduce the materlal stress strain
1behaviour based on the response“of the>sy$tem. The /

T o

~a
-



.

:'progagatlon of. thesshear band

'Tg'apﬁ?oach the Skempton pore pressure parameters, A and B,'

h”of the behavroUr of the excavat1on for the Edmonton

u7Convent1on Center. It 1s demonstrated that shear band

o
conclusion rs extended to the testrng of‘strain:sottenino
soil using conventional apparatus in which progressive‘
deeelopment of the -yielding zone has most likely occurred.
The simulation of a plane strain test of a brittle'plastic

soil reveals a load dlsplacement response of a perfectly

" plastic soil and the dlfference between the peak and

residual strength is not observed as‘a result -of progréssive,

'failure.

kY

f Th&»y1eld1ng of a straln softening material often leads

to the formatlon of a shear zone and the deformatlon

behav1our of the 5011 mass is locallzed in thls,regnona it

- has been.Shown that the elasto-plastic finite element -

' formulation presented‘here satisfies the“requirément for‘

shear band blfurcatlon in capturxng localzzed deformatlon A

Lplane straln test has been351mu1ated to 1llustrate the

T
.

a

'ante 5011 bahav10ur 1s dependent on effectlve stress,-

s L

there is a. need tp analyze so*l structure u51ng effect1ve

v ¢

vstress. A fully undra1ned or fully dralned effect1ve sttess

‘

f1n1te element formulatlon has been presented In thlsn

.

are used xn the formulat1on. ,'”

3

Flnally the numer1cal model 1s appl1ed 1n an analys1s

k3

,.

1n1t1at1on and propagat1on can be modellgd;wath reasonable

1

accuracy usrng the numerical models presented However, 1t e

Vi o



&s'aISO'ﬁound that. the results are»Sensitive to the in-situ

'a

'stress fleld and the materlal parameters used ‘in the model.

Accurate determxnat:on of mater1aL parameters is’ essential.

¥

in predxct1ng the deﬁcrmatlon ‘fesponse in 5011 structure

2

1nteract1on problems.\

-

"In the course of thezdevelopment of -the finiteAelement'7

"model. d1ff1cult1es have been encountered concernirng

.

‘solutlon convergence. Varlous techn1ques of stress

calculatlon have been developed to stablllze convergence

character1st1cs of non Llnear models espec1ally for strain -

softenlng materlal Other ‘numer ical technlques such as the

. extended skyl;ne method are developed to obtaln solut1ons

for non- symmetrxcal matrices.

R
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1. INTRODUCTION

1.1 Problems of Progressive Failure

-

The analysis“of soil structures has/traditional;y‘been
diviéeé‘inte two main classes of problem. In the first class
of probIem,'the common objective-is to determine the
pressure or forces'appliedlon”the soil mass in order to
reach a statie of 1nc1p1ent fallure.‘To solve.this class of
jproblem, it is sufflcxent to Know the strength of the 5011
and the'stresseshlns;de the soxl at the\state of failure. .

\

The deformation of the soil is not considered and therefore,
only ‘the overall equilibriu9 is satisf%e;vin the analysis,
.The solution to this elass of problem will provide limit
loeds Tor the design of soil structures. Examples of this
class ef prpblem are the calculation of the bearing capacity
of a footing, the factor of safety of a slope and the
passive and active pressure on a retainiﬂg wall.

~In the second class of problem, the amount of
deformation in the soil under some.externaily ‘applied load
is.the main concern Usually the state of stress at every
point in the 5011 ‘mass is below the peak strength of the.
‘-materlal and l}near elastlc.mater1al behaviour is often
as5umea.-Therefore; the shear strquth properties of the
soil are not requxred in this. type of analys1s. Examples of
'tﬂls class of problem are the settlement‘calculatlon of a

shallow footing and bulldlng foundat1on.< r

~
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These two classes of_problems are idealized situations
of two extremes where—faiiure either occurs at all points
under consideration or does not occur at all. There is} in
fact,\z third class of problem which may be considered as an
intermediate case between the preceeding two classes. In ah
+this class of problem, some externally applied load causes

plastic deformation'or'failure in only part of the sorl mass
which may or may not result in the development of a totally
collapse mechanism. The assumption of limiting equilibrium
is not valid becanse partfof,the soil mass.is still
‘experiencing stresses below the peak strength of the.
material. On the other hand, the assumption of linear
elastic behaviour cannot be made becanse<of failure in
localized regions. Therefore, both the deformation and
strength properties of the 5011 must be con51dered in this
typé of analysis. -« l
There are basically two conditions which must be
satisfied for progressive failure to.occur. The first
condition is that the soil must have 3 stress-strain
relationship with a post peak straindsoftening behariour. A
strain softening naterial,here refers'to a‘aecrease'in
strength after some ' peak shear strength has been reached.
“Figure 1.1 1llustrates two main types of geotechnical
kmaterial The’ first type 1s a strain hardening material in
which the strength of. the material is: always 1ncrea51ng as a
result of plastic deformation..ésamples of this type of
material are loose sand and soft clay which do not possess

Vo
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3 well qefxned Qeak strengths and failure is normally deflned
) ¥y i
\

b exces51ve deformatlon ‘The mode of . fallure for thls type
of mater1al is generally by bulglng of the sides of the. .

Vi

iﬁg pec1men. The second - type of materlal hgs a distinct peak in

. -
g;the stress-strain. curve and: deformatlon beyond the peak

Py

esults rn a loss of strength and hence the material has

m

,",u
‘é%en softened by plastlc defﬁrmatlon thus tradltlonally been

called a(stra1n softenlng materlal Dense sand and heav1ly
¢ ¢
over- consolldated clay are examples of this type and failure

normally gesults in the formation of a localized shear \

o

i
plane. The ‘term stra1n softening”here does not refer to

‘material whlch%loses strength’ with time. Time, which will be
v , _ o e . . .
‘ discussed later,‘is not' a hecessary‘factorvin pfoqressive T
failureff‘5 B ;u - uy . " "
L The‘secondrdondition necessary for-progressive failure o
to occur is that the soil mass must be subjected to
l‘gnon unzform straining. Non unlform straining can be caused
by materlal heterogenlty and/or geometry of thegsoil mass
. wh;ch may result in)the development of a locallzed fallUre.'

zone and eventually lead to an unstable me'ﬂgggsm Most

." ._.

slope fallures 1nev1tably have some. degree of non-yMtform

stralnine. These are the two necesSary conditions for
: progresslve failure to occur. If the soil has no strain
— soften1ng behav1our, the mob1llzed shear strength at failure
must be unlform as shown in F1gure 1.2. On the other hand
/,’ if stra1n on the fazlure surfacefls unlform, then the

- mob1l1zed strength on the sllp surface must be uniform even
oz . W{ s S e . o N
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if the soil has a strain softening behaviour. Progressive
failure will not odcur in either case. Under the condition
of non—uniform straining of a s$oil mass with.étraiﬁ
softening behaviour, a portion‘ok the falluce surfaée.ma be
subjected to peak Strength at tHe’mOmenE oﬁjfailure whil
have élready-experienced a Iarge strain

another portion ma

y
and the shear streLgth may have been reduced to. residual
v‘;ue. The remainng portion of the failure surface may $e
in the tranpsition Lrom peak to re51dual ‘'strength as
illustrated in Figure 1.2.

There have been several studles on the mechanism and
causes of progressive failure. Skempton (1964) in his fbur£h
Rankine lecture discussed the problém of progressive
failure; He realized the importance qf non-uniform
mobilization of shear strength along the slip surface at
failure -based on the study of mahy actual landslides. He
introduced the re;idual tactor as the proportion of the
total slip surface along which strength has falleq to the
residual value. However the reéidual factor neglects the
portioh of the slip surface where the mobilized shear
Stréngth is deéreasing from beak to residual strength as
shown in Figure 1.2, Nﬁvertheless, the resxdual factor gives
an 1nd1catlon on the type of soil and 5011 condltzon where
progressive failure is most prominant. | ’

| Bjerrum (1967) outlined the bésic mechanjism of‘
progressive:failure in his Tefzaghi lecture in_whﬁch he
defines clearly the necessary éonditions for prdg;éssive

Y
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failure. He emphasizes the importance of recoverable strain

energ ;due to unloading of the sqjl\ﬁéss and degradatién of

thg d’égentic bonds‘as,tﬁe main causeg of man§ slope

failu!es by progressive failufg. TpéRéJQS.qo‘dogEEhFhat the
' conce two£~recoyefablé'étfafp énergy %%d diagentic bonds are

usefull in under%;abding the‘mééhqgism\éf‘slope failure, but

it is

ot necess;ry to have~e}£h%r of fbese to initiate
progrés ive faﬁlﬂre. The ﬁeéeésary coﬁdf%ions for
progressjive failure to occur will be di$d?ésed later. In'his
discugsi ane also derivés the_cfitefiaAfér the propagatioﬁ
of the: shéar ban@ in a one dimensionél model based on the

|

concept of eneriy balance.
B%;hop (19 7) recognized the importance‘éé strain

softening material in progressive fa@iure and he defined the
:brit;leness inde as a measure of thé amount of strain
sofﬁening. The brittleness index, which will be used létef,
is_gefined asﬁ : | : )

_ ' - Tp - 1r
Brittleness Index I "= ———— x 100% . _ (1.1)
: .. -+ B . . 1P ‘ , §
where ‘ ' S ;
rp and 7r are the peak and residual strengths

.~ respectively.

It is noted that the degree of brittleness of a soil under
‘fully drained conditions is usually dependent upon the
con;}piﬂgstresses. It may therefore belmore"meaningful to

discuss the brittleness of soil in relation to the'stress



condition. Bishop (1967) also poixgged out that failure of
the strain softening material ofren results in localized
deformation. Christian and-Whitman (1969) srudied a one
dimensional progressive failure model for an infinite slope
and related the factor of safety to the lateral stress and
- the amount of.strain softening of tne mateﬁlal. HOwever;
they only considered the equilibrium‘of the‘slope and
localized stralnlng was neglected. |

The advance of modern eleotronlc computer. and numerical
technigues has greatly enhanced_the solurion of complicated
engineering problems. The invention of the finite element_‘
‘method enables oné\to.depart from the closed. form aoluéion
ofhvery_siﬁple problems to the solurion of realistig
‘problems. Lo (1972) applied'the finite element method to,
ootaln a solution'for'progressive failure of slopes; Since
1t:was fnecessary to have a strain softenlng materlal ne
adopted a- pseudo elastlc plastlc approach w1tn a decrease in
strength after peak An interesting- hyperbollc elasgﬁo model
was used to approx1mate the post peak deformatron of strain
softening material. Lo also predlcteg the time to failure by
.assuming,the sérength of the soil to deErease with time in a
logar1thm1c manner. Although there 'is. often a tlme delay in
the failure of many slopes due to pore pressure o
redxstrxbutxon, local- changes in ground water cond1t1ons and
degradat1on ef bonds may lead to swell1ng and softenlng of
the material. The tlme factor is not a necessary conditlon

) for progre551ve fallure. It is 1mportant to d1fferent1ate
; 2



between progress{ve failure anﬁ.delayed failure. In the
latter case, failure joccurs some time after thef soil mass
has reached the configuration just’ before failure. The
reason for the delay can‘bé anonne of the causes listed
aone. Failure'ﬁay or may not bé of the progressive type
because the mobilized shear Strengthlcan be uniform along
the failure surface as in & normglly consolidaped soil with
fairiy-ductile behaviour. Therefore the time effec¢t may be
~considered as a change in soil con@i;ion or’@aterial -
beﬂavigur.which results in ar'situation in favof of
progressive-failure. It is obsetved that the progressive
failure of many slopes often involved some ;ime deléy.
Lo,(3972).élso realized that failure’in a strain
lsoftening material‘of£en leads to localizea,deformatioh, but
he concluded that the'effect of the thickness of this
localized zone is not an important factor in the overall
deformation of thewsoil-mass. The use of elastic model~in
simulating shéar band bifurcation is inapp:opiaté since
‘shear band bifurcation can only occur in un;tapie materiél;b
* 'The aspects of‘shéar band déformaiion Qiil befdiséuSséd in
chapfef 3. SubseQUently,'Gatés (f972) attempted‘to,ébtain
.the soiutioh of progressf?e failure using'é'pseudé elastic

finite element approach.

~ Palmer and Rice (1973)‘extended the deVélopﬁgnt byv'
Bjet;um,(1967)*on the criterion for'shear_band’propagation~v'
in a Onefdiménsional\infinite slope prob;ém;'They”ul$ilizeq

thefconcept:of J-integral.and stress intensity factor. from
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fracture meohanlcs to obtain a consistent formulation for
'shear band propagation. The shear band was treated as a
stress and strain discontinuity which has zero thickness. In
reality‘the thickness of the shear band in a soil mass is
usually finite although it can be very thin (Morgenstern and‘
Tchalenkoﬁ1967). |

Butland (1976) obtained a well documented case study of
progressive failure. The careful'monitoring‘of the>
deformation of a clay pit enabled one to observe the
; propagation of‘the shear band(ahd the developmeht of
localized failure. Simmons (1981) analyzed this.case using
an elasto-plastic'finite element,model. Some numerical . ,
difficulties had.been’encountered,bot‘it was concluded from
the flnite element results‘that only residualvstrength was
mobilized in the field. o

‘Law and Lumb (1978) proposed an inte;;sting approach to
- analyze progressive failure us}ng'the‘limit equilihfiuh
analysxs. However, s1hce only the equ1l1br1um of the slope
was cons1dered the method does got include non uniforin
‘stra1n1ng Moreover, a, postulated sllp curface must be
‘prov1ded pr1or to the analys1s whlch 11m1ts the reglon for
possible stress redxstrlbutzon dur1ng the failure process.

It is clear from the above d1scu551on that progre551ve.

’fa11ute must 1nvolve a stra1n softenlng materlal and the

‘degree of . séftenlng 1s related to the oss1b111ty of slope

fallure by progressave failure. Also

, non-un}form‘stralnlng and locallzed failure;'TherEfore, the



"

follcwing conditions must be satisfied for progressive

failure to occur (Bjerrum 19675:

1. There must be local different}al straining sufficaent to
strain the soil beyond failure. . <

2. The soil must exhibit large and rapid decrease in
strength after straining beyond the peak strength.

3. The development of a continuous failure surface is
poSsihle providedithat shear stresses exceed the peak
strength of the soil.

Once again the time effect ls not ccnsidered as a
necessary condltlon for progre551ve failure. Progressive \
‘fallure must involve locallzed stra&nlng and often develops
1nto a shear band type.of deformation. It has been observed
from the failure of heavily over;consolidated clay that a
distinct failurevplane or shear plane is formed and the
deformation of this shear zone subseqnently'governsﬁthe
overall behav1our of the 5011 mass. Althougn shear bandu
deformation is not a necessary condition in progressive
fallure, it is de‘lnltely an- important aspect.

The Stddy of hear bands can be d1v1ded ba51cally into
h.two main classes. The first class Jis that the locatlon and
the d1rect10n of ‘the propagatlon of the shear band 1s
vﬂpredetermlned by ex1st1ng geolog1cal condltlons such as the'
acase of a one d1mensxonal 1nf1n1te slope (Palmer and R1ce'

1976) or a weak layer embedded in more competent strata

‘:wh1ch 1s common in Albertaﬂand the rest of Western Canada.

slnce-the lpcatlon of the;shear hand-ls predef;ned; the

»
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objective is to calculate the extent of the softening zone
along the shea% band due to some external disturbance. This
is a relatively simpler case compared to the Ease where the
" location and direction of the shear band are unknown. In the
second case, it is necessafy to first detect the initiation
of localized failure and the formation of the shear band and
then search for the direction and extent of shear.band
propagation. From an analyical- point of View,vthis is a more
di&kficult task.

‘ The analysis of progressive failure is so far limited

-, tg 51mple one . dlmen51onal models or pseudo elastic- plastlc
models. Very often progress1ve fallure may not result in
immediate slope instability but the gradual d opment of a
contlnuous sllp surface can cause excessive deformatlon and
eventually leads to slope fallure.‘In this case the
deformatlon hlstory of the soil is of ﬁein concern such as
the case studied by Burland {1976) In order to model a

‘a

progreSSive failure where on# is also interested in the

ra
«

amount df deformatlon of the’ SOll mass, it 1s necessary to
use analytical and numerlcal models whlcqi?losely represent .

the behav1our of 5011 and 1nclude -:all the necessary

g

”condltlons for progre551ve fa1lure. This is basically the

aim of this research o
b -

- Progre551ve fallure is not only a fa501nat1ng subject

o

in 5011 mechan1cs but it 1nvolves many major slope failures -
: wh1ch deserve serlous attentlon A ratlonallapproach to
progressive fallure is yet to be deVeloped but a consistent

-
.

.q’
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picture in understandihg £he mechanics and in "obtaining ‘
solutions to. problems seems to be émefging. The developmént
of one dimensional models \Wfovidés in depth understanding of
the mechanism and effect of various factors causing
progrossive failure. However, simple one dimensional models
canno% beioked to obtain solutions to real life engineering'
problems. Numerical methods are definitely‘one of the most
effective ways to obtain soiutions for complicated problems.
The construction of simple models to understand the basics
of progressive failure,>the development of numerical models
in obtaining solutions to real life problems and the
documentation of‘case histories to Qerify’the theories must

be well balanced to obtain technologlcal advances in solving

the problem of progressive failure.

Ti;Z-PurpOSe of the Research’

The bosic purpose of this research is to develop.thé
analytlcal capability teo- analyze strain softenlng behav1our
and progre551ve fazlure. The moaelllng of shear band :
‘initiation and propagatlon in both prescr1bed and
unprescrlbed manners using the finite element method is also
of 1ntecest. In addition, the ab111ty of 'the numerlcal model
'.to ’apture locallzed ‘deformation will be studaed.

In order to achleve these goals, ‘the follow1ng steps
are necessarY' S »

1. Formulate a. numer4c31 model which will 1nc1ude straln

-softenlng behavlou;.

o
. V
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2. Develop a computer program which is eapable of analyzing
general geoteéhnical problems.
. 3. Assess the validitg of the numerical models by comparing
results with closed form solutionsl
4. Apply the method to real case histories in which the
mpdel can be evaluated gy actual field observations.
Chapter_2 presents a general finite element, formulation
to analyz® strain softening material with a special
‘ discussion of one straln softenlnq model for fully undralned
ana ysis. Numerical examples are given. The modelling of
shear band initiation and propagation using the finite
element method will be given in Chapter 3. .A secondrstrain-
'softenlng model will be’introduced in this Chapter and the
theory of shear band formatlon and some numerlcal aspects
will be also be discussed. Another strain softening model is
intrdduced in Chapter 4 WTth'a higher degree of ‘
sophi_sti_.c_:a'tion than the p‘revious two models. A stripzfooting
'will be analyzed to Study the effect of tne rate of post
peak softening on the development of the yleld zones and the
limit loads. Chapter 5 introduces a f1n1te element
formulatlon for effectlve stress analy51s in whlch pore
pressure can be calcplated glven_the soil properties in-
terms of effective stresses. This enables one to depart frdm
the total stress analys1s which is often assumed in
analyzing undrained deformation of,so1l. S1nce soil
benaviour depends dn effective stressesdand_not total

e -

_stresses, it is therefore more appropriate to use the soil
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parameters in terms of effective stresses in the analysis.
Only the fully drained condition and fully undrained
qondition will be considered here and no,pofe pressure

diffusion or consolidation will be studied. It is hoped that

¥

this will initiate some interest in using effective stresses
in the analysis of soil structures éﬁd serve'as'a starting
péintvfor further study in progressive failure using
efﬁeétive stresses. The development of the numerical model
and éomputér program is then applied to a real engineerfng
problem. In Chépter‘e, the behaviour of an excavatioﬁ during
the construction of the Edmonton Conventi&n Center will be
studied and cémpared with the results obtained by the finite’
element analysis. Conciusions and recommendations for

further research are given in Chapter 7.
Q T )

1.3 Notations : - com

Both matrix and tensor notations will be used

-

_throughout the text and the appendices of this thesis. It is

qonvenient to use matrix notation in/éhe finite element

formulation, however tensor notation sometimes provide more
compact and concise expressions. In matrix notation, the
following conventions are addpted:

.o [) dgﬁotes a matrix, not necessafily squdfe. o
2% [']T dénétes the transﬁose of é mafrix. o

3. {-} dghéfes a Qectqr with‘elémenférplaced.Qerticaily;f )
4.-"€'> déﬁoées the tfanspose of aééctér,'i,e,,*§,>T = { 1.

Matrices and, vectors placed side by side ;epreSenp matrix

1 R "
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/

multiplication. In tensor n&tation, the usual summation
cohvention over repeated indices is assumed unless otherwise
stated. In most cases the three dimensionaL Eu¢lidéan space
1s used and the indices are summed fromv1 t0v3; Also a comma
in the subscripts representé differentiation with respect

represents

»

to the’spatial coordinates and a dot
differentiagion witb respect to time. However, since.the
formulation is-independent of time, the differentiation is
taken with respect to strains or external ioads or simply
represents incrementai quantitiés. Additionai subscripts and.

' >,
superscripts will be explained in due course.

~



\H“:M 2.1 Theory of Strain Softeniug Material

e
\

2. FINITE ELEMENT/ FORMULATION FOR STRAIN SOFTENING MATERIAL

/0
The discuséion in Chapter 1 concludes that a finite
element formu}ation with sttain softening is a necessary
fngredient 1 obtainlng a;solution to progressive failure\
problems.‘I this chapter a finite elemeht formulatioh for
strain hardening and’softening material is‘presented. Thel
formulatiyon is based on the theory of‘plasticityﬁand
therefore the basio assumption of ‘the theory of plasticity
applied. It is not possible to review the theoty of

4

plasticity but excellent books on this subject are available

(Hi)1 1953). However,:a brief.discussion‘of the theory éf

pl sticity pertinent to strain softening materials will be-
‘g,ven. A straln softenlng model for fully undrained analy51s
sing total stresé)ﬁormulatlon will be dﬁscussed and results -
from the f1n1te element analy51s will be. compared to the

analytlcal solutlon.

\“xm Many attempts have been made to analyze the straln

: soften1ng behav1our of 5011 us1ng the f1n1te element method.

v

The methods of ana1y51s can: be d1v1ded‘bas1cally 1nto two -
main types The flrst type assumes that the mater1al behavesu
"helastxcally‘%p to a peak value and remalns elast1c after S
‘ ‘peak w1th¢a decrease 1n elastlg modulus or w1th a- negat1ve-

‘elastlc modulus followed by a reductlon 1n strength The
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.

post peak softening part is often modelled using a positive’

\

elastic modulus with the application of an unbalanced forces

to bfing the stress state to the post peak strength value.
Several authors (Hoeg 1972, Lo 1973) hgve used this pseudo

.elastic approach to obtain solutions for bearing capacity

-l‘problems and progressive failure of slopes. As is pointed

- out by Hoeg (1972; the pseudoielastie approach does not

differentiate between elastic deformation and plastic
deformatioh,and leads to an incorrect prediction of volume
change. For eXampTe if the material is assumed to be under

«

fully undrained conditions;, which can be simulated by using

..a Poisson's ratio close to 0.5, the decrease in elastic

smodulus in post peak deformation results in an equal amount

of reduction in ppth the shear modulus and bulk modulus
which leads to a.deerease in volume when ;he material is - |
supposed to be incompressible. The pseudo'eiastic approaqh
‘may be useful in obtaining limit lpads for certain pfobiems,
hopevet it doesﬁnot provide a consisﬁent ﬁormulafion in-
accdunt}ng for‘the plastic deforwetion of the mat%§i§% after

i,

yielding.

A second approach is based.on theotheory of plasticity

wﬁerelthe:materiai;fs eommonly’assumed to behave elastically
'up to a peak strength and deform plast1ca11y thereafter.‘
zlenk1ew1cz (1972) and others (Pletruszczak 1981 Terzi

1982) have used th1s approach to obtaln solutgons to several

- engdd eer1ng problems. The theory of plasticity

fferent1ates between elast1c and plastlc stralﬁ!and thus

£
Y

L"‘

)
-



allows the modelling of complicated stress ‘paths which
involve loading and unloading situations. This approach will
be used in this research. The material model which will be
B : . '
discussed here will have a strain hardening behaviour prior
to the peak strength and a gradual reduction of strength
after peak.
TN . . . . 0
The ba51é\problem associated with the analysis of

&

strain softening material is the inherenﬁ unstable nature of
the material. Druckér (1956) discucsed the criteria for
stable material where he considered stability as stability

in the large and stability in the small. Stability“in thé .

large is defined as:

A )

P
(O.J _a?j)de|] >O; . - . (2.1)

and*stability in the small is defined as:

p i
'd0,|]d€|j >0 ’ ’ ‘ (2.2)

where

Y]

0,; is the current state of stress;

03, is the stress state on the yield surface,

1)
p :
and de,; is the increment of plastic strain tensor.
If a material satisfies both inequalities (2.1) and (2.2),
then it can be shown that the solution for a well posed
bbundary value problem exists and that the solution is
unique (Drucker 1956). Within the context of the theory of
° . 0 [.] ’ .
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plasticity, inequality (2.1) reéuires tha? the yield surface
must be convex with ;;;pect to the“origin and ineguality
(2.2) requires that the material must have a strain
hardeging behaviour. It-has been shown (Bland 1957) that for
stable materials as defined by Drucker, the plastic
potential must be identical to the yiéld,function which is
sometimes referred to as the normality principle. Aithough
there'are many materials which/satisfy both ihequalities
(2.1) and (2.2), there are many which may violate either one
o;‘bqth conditions. The material model that is of interest
in this research may not violate inequality (2.1) but-
certainly will violate inequality (2.2). ®

From a phfsiéal point of view, thére are‘materials‘in

nature which violate Drucker's postulate but they exist in

stable conditions in their natural environment. An example

is a slope made of sehrsitive clay. Strictly speaking,

Drucker's postulate is too restrictive. Consider for example

the deformation of a body of strain softening soil, if the -

T @

| existing loading on the soil can do sufficient work for

further'plastic deforﬁat;on Ehd\against some increment of
load, then no law§ of thermo-dynamics will.bé violated.
Drucker's postulate seéms'to,be,overconstréining the
possible constitutive.relatiénship of a materiai'ahd*fhey .
are in fact sufflc1ent but not necessary condltlons to ;
ensure ex1stence and uﬁ1queness of solutlons.

ﬁ‘Prevost and Hoeg (1975) studied the problem of strain

softening material and they_haVé shown that material

3
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violating inequality (2.2) can have a unique solution. A
mass of soil with a strain softening behaviour can be stable
under certain stress conditlons. The deformation of this
_mass of soil is always stable_if tne displacements on the
surface are prescribed or controlled as opposed to when
constant surface tractions are applied. Experience in
testing strain softening materials indicates that a stress
controlled test cannot be used to obtain the post-peak
stress strain behaviour of an over-consolidated clay because
the decrease in strength with constant externally applied
load leads to a completely collapse mechanism:-Therefore
such cases-will not have a stable solution. A strain
controlled test must be- used and solutions to thrs problem
ldo exist regardless of whether the mater{ai itself is stable
or not. Therefore, unigue and stable solution can be
obtained for a meterialpwhrch mayfnot satiS£y Drucker's
postulate. .;
Concerning the uniqueness problem in the theory of
plasticity, sometimes there can be no unique solution if -
there are corners on the plastic‘potentiai when the stress
state is at a corner. For example, ‘the Tresca and .
Mohr Coulomb yleld crlterla whlch have been used extens1vely
1n metal and sozls ha;e corners. Corners in yleld surfaces
Aand plastlc potentlals\are really mathemat1cal artifacts but
prov1de leeway 1n obta1n1ng.solutlons for some problems -

without v1olat1ng some b 51c pr1nc1ples. At the corner of a

y1eld surface or plastlc potentlal the plastic strain
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incremenﬁ és undefined and gives the analyst some freedom to
select from the possible solutions for the problem the one
which best agrees'with experimental observations |
(Christoffersen and Hutchinson 1979). The study of these
aépeéts‘in plasticity }s prafound and is beyond the scope of
this research. For a y{eld furction with corners, it is,
assumed that the plastic strain increment is the average of

the plastic strain increment from either side of a corner.

Z;Z'Elasto-Plastic‘%inite Element Formulation

| The féllowing‘finfte element formulation assumes small
strains and small deformations and no distinction isAmade
between the deformed state and tﬁe‘undefofméd state. Cauchy
sﬁ;ess andiengﬁneeringﬁstrain are used as basic‘quangitigs
of meaéurement. Also the time effecg is neglected and the
differential quantities of stress ahé‘strainlrefer to the
differentiation with respect to‘changeskih‘externally
applied loads. |

'The_incremental finité\elément'equilibrium eguation

. based dn virtual displacement is @iven by (Bathe 1982):
I [B) {Ao} dv. = {AR} , ‘ ’ - (2.3a)

vhere

. [B] = strain displacement matrix;

(o)

increment of total stress vector;
e | o
<Aa'xx:‘ Aayyr Aaxyl AQ'zZI _Aoyzz onz? H

*
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{AR} = increment of external applied load;

v = entire volume of the body.

The‘incremental load vector {AR} includes the load due_;o

the body force and surface traction.

The load vector {AR} is given by: N
: T ’ T
{arR} = [N] {y}av + J [N] [N]{Plas . (2.3b)
) V. a S, .

where
[N] = interpolaéion‘functionvmatrix;
. - : !
A} = body'force vector;
{p} = nodal surféce traction vector;.
-s;‘=Lij§%£ze4subjected to exté;nal traction.
5 oo

i

The standard technique for modifying the stiffness matrix
énd'léig vector is used to incorporate Any prescribed
displacéﬁen;s which can be found in most finite element"
texgg (Ziebgicﬁicz 1977, BAthe, 1982). thatidn (2.3) can be 
réyriften_as? | | |
e T ‘e

- ' e e - . : - -
J [B] {a0 }av = {AR } , , S (2.4)
1" v : ) ' ‘ ‘

LU oo ]

e

"ﬁwhere'f b\\\¥1 o | - v°°

the supgrscripﬁ“e_denotes’elemental guantities and n'is

the total number.of4eleménts, o
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The summations are performed to ensure nodal equilibrium and
* Y
» compatibility. Introducing the incremental constitutive

relationship [C] of the materjal:

{8a} = [Cl{ae} ,

(2.5)
»
and the strain displacement relationship [B] using an
isoparametric finite element formulation:
{ae} = [B1{as} , (2.6)
- /
‘one arrives at the following matrix equation:
[k1{4s} = {aR} , (2.7a) .
where
. T N
(K] = J [B] [clIBlav ; s (2.7b)
\ v L . ; P
<Qb> =

increments‘df displacement.

* - »To obtain an expression forvthe elas£0fp1astic

.conéfitutivévﬁatrii [Cj; the‘foll§wihg‘3556mptions are made:
) e k

‘1‘.

The total 'strain increment is the”Sum of the elastic ‘
strain increment and plastic-strain’incfeméht. That is:f

. B P , ; -
{de} = {de } + {de } ; » S . (2.8)



The change in stresses is due to change in elastic

strains only:

' E - E
{do} = [C 1de } ;

whére
B

There exists a yield function in which:

fér plastic deformation and strain hardehing:-'

P

-

A

[C ] is the eldstic constitutive matrix.

P

P .

P

. P * . :‘.
F(O;,} €|})'<0‘7 F(O;j*'AOiJ, f.,*A€|J)
for elastic deformation;
P » |
Flo,, flj) =0, Flo,,+80,;, €, ;*0e; ;)
‘ / B
oF ! o
_and <—>{do,;;} < 0
’ - 00 L
for elastic unloading;
’ P o .
F(a‘vl! ell)' =0, ‘ F(olpj*hAb‘ljl €_|j+Af'|j)
g 3F
and ’  _< ‘>{d0|j}">’0
. ao,j .

F(U;j', .€|»j) =.0 ’ ’ -F(0|-,+AQ'1j,‘Eij"'A.e‘J') = 0

A

A

25

(2.9)

(2.1Qa)

(2.10b)

(2.10¢c)
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oF , :
and <——>{do,;} < 0 o
90, |
for plastic deformation and strain softening. (2.104)

4. There Sxists a plastic potential such that:

P aQ , '
{de } = N {—} ; _ (2.11)
do : i :

5. The consistency condition in which:

~5

P
F(o,;, e€,;) > 0 is not permissible;

~ . ¢

p
F(o,,, e€,;) = 0 for plastic deformation, (2.12)

The above 5 aSSumEtibns are commonly made in plasficity
analyses. ‘The only d1fference here is assumption (3) for
géraln softenlng materlals ,in which a portion of the body or
the entlre body is actually under901ng nl adlng but the
stress state remains on the yleld surfase, ThlS is dlfferent‘
from elastlc unloadlng whlch is also posszble for strain
softenlng when the f1na1 state of stress llES W1th1n the
: y1eld surface. | . o .

Subst1tut1ng Equatxons (2 8) and (2 11) into (2. 9) ‘one

obta1ns"
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{do} = [C 1l{de} - M—}), .

dol -

From Equation (2.12),

. oF oF P
dF = <—>{de} + <—P>{de } = 0.
do de

Substituting Equations (2.11) and (2.13) into (2.14)

*

3F E . 3F E 230

o0 o0 o0

thefefore,

oF E
<—>[C ]
do
A = - {de}
L oF E 9Q oF oQ
‘ <—>[C J{—} - <—P>{—]}
do do de a0

Finally substituting Equation (2.15) into (2.13), one

" derives the following elasto-plastic matrix:

(do} = [cl{ae) ,

.Wwhere

oF

de

~E 09Q OF E
Ic H{—}<—>[cC ]
. E o ' do 00 _
[c] = [Cc1-— - , .
S oF E 3Q ~ oF 9aQ
o K> [C J{—} - <—P><—1}
R - do dc = e

&

00

9Q
<—>[C 1{de] - A<—>[C J{—} + A <—P>{—]}

3o

= 0 ,

’

(2.

(2.

(2.
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13)

14)

15)

(2.16a)

(2.16b) .

Note that the,fi:st'term in the denominator represents
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perfectly plastic deformation and the second term represents
strain hardening and softening deformation. The following

three conditions may occur:

oF 10]

1. <—P>{—} < 0 for strain softening deformation;
de do
oF aQ ;

2, <—P>{—} = 0 for perfectly plastic deformation;
oF aQ : _ '

3. <—P>{—} > 0 for strain hardening deformation.
Oe 00

Due to strain softening deformation, the elasto-plastic

matrix may not be positive definite. An eigenvalue analysis

of the'elastOff%gggic matrix given in Chapter 3 will reveal

e i3 5N
this fact. Also 1f the non-associated flow rule is used the
(C] matrix may not, in general, be symmetric.
- Traditionally, the hardening behaviour of a material is

divided into kinematic hardening and isotropic'hArdening"

-

That is:

F = F(0|],l € s K) r ., S (2.17)
where

P P

e;; = Idé,, the cuMdlative plastic strain;
.and k is a hardening parameter which can be dependent. upon
- P -

C. P}

t
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oF 0Q
The. term <—P>{—1} can be written as:
de do ’
oF 30 T dF 2Q dF 3k 2Q
<—P>{—} = <—P>{—} + —<—P>{—} , (2.18)

de 7 do de da Ok Jde d0

where the first term represent kinematic hardening and the

second term represent isotropic hardening.

Although the first term in the right side of Equation (2.18)
- has the same fofm as the left side, they actually have |
different meanings. The differentiatién of the yield’fv
function with repect to the plastic strain on the right side
1s performed by keeping the hardening céefficient K
constant. Qraphicélly, this is equivalent to’keeping the
size of the yield sufface constant while moving fhe'yie}d
‘surface in the stress space as~shown.in Figure. 2.1, which is
" kinematic hardening. The second term on the right side of
Equation (2.18) répresents equal expansioﬁ‘of the yield
surface in all directions afid the rate“Qf'expansion;is 1}_

" dependent upon thé amount ofvpléstic étraining,'which is:
isqtrobic hardening. Therefore, the term_on theJléft side is
the combined eﬁﬁeét of the kinematic hardening and isotropic

e

hardening.
/2.3 Yield Criteria and Constitutive Matrix
Various material models and yield criteria will bé’ﬁsedI

in this thesis. EXpressions for the the Von.Mises,-TreSCa;  ,

Drucker and Prager, and Mohr Coulomb yield criterion and

i
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A Shifting of Yield Surface

Kinematic Hardening (
' .4 -
\ Ny

o f N |
: Expansion or o

Contrattion of, Yield Surface

| Octahedr.al‘géghe" B

o Isétropic‘ Hardjegiynk

Figure 2.1: Kinematic and Isotropic Hardening of
- Plasticity Model |

30
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their gradients efe summarized in Table 2.1. The von Mises
_ ) . g o
yield'criterioﬁwcan be considered as

1j§@ec1al case of the

Drucker- Prager yield crxter1on with a zéro friction- angle.

‘S1m11agly, the Tresca criteria can be considered, as a

special'cese ef the Mohr Codloghtcriteria: Note that the
Trescs and Mohr Coulomb critemie have corners in the yield
surface and their gtadients are undefined at these%points.
The corners are smeothed in this study by.fittiné a von -
Mises criterion on therTreSCe critetion and the-Drucker and
Prager criterion on the Mehr Coulomb criterion when the
stress state approaches the corner of the.yield'shrface.

., With the yieia functions and their gradients given in
Table 2.1, the elasto-plastic constitutive matrix of
Equation (2;16) can be partially determined. To specify"a
material model completely, it is necessary to know the |
stress strain relatlonshlp of the materlal Elastlc

kY
deformat1on 1s assumed here to be llnear elastlc although a

non-linear elastlc model such as the hyperbollc model can be

used. Unloadlng and reload1ng modul11 are con51déred to be

the same. The elastlc constltutlve relat1onsh1p from Hooke s

law is glveh by:’

‘_E: L _t_ugy;.‘~' Y E . ST .
CH""“':' - : Asllamn + 6m|61n roo (12;.-'19')
. (1+p)(1-2v») : (1+v) L

[id

. E and » are the elastlc modulus and Poxsson s ratlo

respectlvely,

~
N/ . .
C . R v
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Table 2.1 Yield Functions and Gradients

. F | dF /30, |

von - '
Mises V3o - Y

. ' } ,
" Tresca 20cos6, —;i | 0¢,cos6o/0 - 0A,,;siné, .

‘ ‘ Ry .
Drucker é//’i , .

Prager | 3a0m, + 0 - « ad;; + 07,/(V20)

Mohr OmSing + acosé,| sings,,/3 +

| Coulomb |- ¢singsinf,/v3| of,(cosb, - sineosin¢/V§)/(/§6)

|- Ccosep - - 0(sinf, + cosfosing/V3)A, )
<
Om = 04i/3; 0%, = 0,y - 8,,0x/3; '&,; = kronecker delta;
J: =0f,08,/2; o = V3 ©Jsy = 0t,0%.08,/3;
6o = 1/3 sin-'[(-3v33,)/(233/%)],  -1/6 < 6o < 1/6; |
] . / 3 . ’ ' ) . .
Avy =./—————(0ofoly - 28,,3,/3 - 33,33'0%,/2); ‘

=, f— _
.V 433-273%

'-:."' Ay

Y - Uniaxial yield strength;

4
.,k - Dfucker and Prader's cohesion & frictional parameters;

C.¢ ~ Mohr Coulomb cohesion and frictional parameters.-

ki
- ]
.
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and &,; 1s the Kronecker delta.

For an elastic perfectly plastic material model, the
hardening term in the denominator of Equation (2.16) is zero
and therefore the yield function given in Table 2.1 together

with Equation (2.19) are sufficient to define the model by

assuming an associated flow rule. The elastic deformation is

isotropic but some degree of anisotropy is introduced

o

through plastic deformation which will be seen later in the
discussion of eigenvalues given in Chapter 3.
2.4 Finite Element Model for Strain Softening Material

An elasto-plastic strain softéning model has been

introduced by Prevost and Hoeg (1975) to simulafé

deformation under undrained conditions. The stress strain

relationshig, or more precisely, the loading function (i.e.

yield function) for this model is given by:

A

F=gq-k=0 Y (2020
where o | - - ) P
q=V3:J2;
' . »
P P

| Ble )* + ¢ I
K =:A[ - TP ] H S . ’
b+ (e )t 4 - .

A and B are material parameters;
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p P

e = J de = equivalent plastic strain ;
b J »

P 2 p P ‘

df = ( _de|’dE|‘ )'/z ’
3
&

P P P
de|‘ = d€\|j - dekkﬁ.,'/:i; .

P

de increment of plastic strain.

A plot of this loading function versus the equivalent
plastic strain (stress strainhrelationship)_is shown in
Figure 2.2. It is noted that there are at least 3 essential
parameters in describing a strain softening model. They are
the peak strength k(peak), residual strength k(res), and the
'equivalent plastic strain at peak strength Ep(peak).
However, there are only 2 parameters, A and B, in this
model, therefore these 3 quantities are inter—reléted.

The parameter B is dependent only upon the amount of
post peak softening: Using the brittleness index introduced
by Bjshob (1967) which can be expressed as:

I = 1 - «k(res)/x(peak) , o (2.21)

B o ' .

then the ‘parameter B is given by:
o

—B . ” | ; (2.22)
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P‘igure 2.2; Stress Strain C'ur.vevv'of Strain Softening Model
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P. :
The peak plastic strain ¢ (peak) is a function of B only

which cen be calculated from:

P

e (peak) = B + y1 + B? , (2.23)
kS R . ad A p
The parameter A can be determined by letting ¢ = o in
"Equation (2:20) and « = k(res), then: o .
. AN .

A = k(res)/B . . (2.24)

'The parameter B has no units and the parameter A Qill havev
the same stress units as x(res). The plasStic— ain"ép must
be expressed in percentage in the above equations.

The finite element formulation for this model requiree
the evaluatlon of the hardenlng terms in the elasto- plastlc
matrix which will not be zero as in the case of elastic
prefectly plastic material. That is:

OF - 3Q  @F ax  3Q ‘ - .

<—=P>{—} + —<—P>{—} # 0 . ‘ : © (2.25)

8em 90 . 9k de = do0 :
It is assumed that the material is strain ﬁardened and
softened 1sotrop1cally, therefore the first term in Equatlon
(2 25) is zero. Since the hardenlng parameter k of the y1eld;
funct1on is in terms of - the equ1va1ent plastlc streln eP, it
is. more convenlent to express the second term in Equatlon
P

(2 25) in terms of - ¢ . Rewriting the con51Stency-cond1t10n

'ofanuatIon (2.14) as:
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\ oF oF d«k P >
" @F = <—>{do} + — —P di =0 . 9(2.26)
i‘ d0 ak de '
where
P )
de = ,)‘Q;
ey /2 30 2Q 1" 30  aQ
Q= /A —-— - - )t
“\ B ‘/ 3 60|J aaij 3 aomm aonn
\\‘ .
! Q = plastic potential

F for associated flow rule.

From\Fquatipn (2.26), it can be easily shown that the -

hardening term in the elasto-plastic matrix can be -replaced

A

by:

aF 230 3F Bk .
ae\ do Ok de ’ @ ) :

‘\\

From Equaﬂion'(z;zo)i

oF : : ‘ C o
—_= - : L . - (2.28a)
ok : , ' ‘
o p P :
al& \1 + ZBG - (E ) L e o
- and —P = ] : ‘ o -(2.28b)
T Y(H(e)w o B

Equatlons (2. 22\ and (2 27) are substituted into. thation‘
(2, 26) to evaluaRs the elasto plastlc const1tut1ve matr1x
_41ven by Equat1on (2 16) “The current y1eld stress k can- ‘be .

"found from Equatzon (2. 20)
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It is noted that this model neglects elastic
deformation and the material will yield immediately-under
infinitestimal shear stresses. However in the f1n1te ‘element
formulation the elastlc deformation cannot be neglected and
a finite initial yleld strength is required because the
'.gradient of the loading function is undefined whenvthe yield
stress is zero. Therefore, to simylate'the rigid plastic
deformarien’using the finite element method, a small initial
’yield stress and a high elastic modulns with P&isson's ratio
ctlose to 0.50. are used. In other.words; the stress strain

law of Equation (2.20) should be rewritten as: _ 7 ‘

F=q- (k+ ko) =0 o (2.29)
where ko is_an initial yield strength which can be very
small. : : : -

f
-2, S'Expansxon of a Thxckwalled Cyllnder

In thls section a thackwalled cyllnder subjected to

e

1nternal pressufe will be analyzed as shown in F1gure 2 3.
The external pressure of the cyllnder is assumed to be zero
- for all cases berng~c9n51dered. The\problem.can be reduced
to a one dimensional'problemvby considering a plane strain
:cond1t1on aleng the axis and axlsymmetrlc condltlons about
the axis of the cyl1nder. The f1n1te element 1deal1zat1on of
- the cyllnder is also shown 1n F:gure 2.3, The materlal of

the cyllnder 1s assumed to have a stress stra1n relathpshlp
{ ' .
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according to Equation (2.29). The closed form.solution for
the thickwalled cylinder pkoblem.ﬁging the stress strain
relationsﬁip'given by Equation (2.20) has been obtained by
Prevost and Hoeg (1975) where the ‘internal pressure and

inner wall displacement relationship is given by:

P 1 B 1+ ¢3 fo - &1 v, .
' — == [~ In(———) + tan" ' (————)] : (2.30)
A V3 2 1+ €} 1 + €g€,
’
where
_ 2 Uo
€0 = — — 3
V3 b
) 2 a
€1 = — — U ; £
V3 b? -
uo - inner wall displacement ; .
P - internal pressure. .
The hoop stress inside the cylinder is §iven’by:
I R '
A V3 2 T+el 1.4 €€, o )
o ‘ . /
o o, 4 Be/2 + 1/2 \B I -
- = — - (————)e o - (2.30b)

~ where
0, - major principal stress; ’ Lo 1\
o - hoop étreSs;_

6
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2 a

/3 r?

The following values for the material parameters are used in
\ .
the analysis: ’ -

10000. kPa

E =
v = 0.49
A = 40/3 kPa

—
.
L]

0.25, 0.50, 0.75

Ko = 0.0l.fer the finite elementisolution.

The result of the‘finite element analyéis using the
finite element formulati@n’preéented in this ehapter 1s
shown in Figure 2.4. It is seen in Figute 2.4 that excellent
agreement between the analytical and the finite element
solution 15 obtained espec1ally in the region of post peak
deformat1on In'all cases being con51dered the displacement
at the inner wall of the cylinder is preacrfbed-and the
iﬁternal pressure is back calculated. It is not.pessible to
obtain the postheak behaviour of the CYIiﬁder lf the.
intérnal pressufe is prescribed. Slnce erastic deformatlon
although very small .15 1ncluded 1n the f1n1te element

model, this results in larger dlsplacements than that

—— P

obtained from the analytical soiutlon for any given 1nternal
pressure. The portlon of the elastlc stralu becomes smaller

'in comparison to tHe plaSt1C strain with an 1ncreased amount -

\
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. Is shown in Flgure 2 9 The cyl1nder is- loaded close to peak

43

of deformation, this results in a better‘agreement between
the analytical and finite element solutions. Also there is a
finite initial yield strength of 0.01 kPa being used in the
finite element model which may eccount for some of the
éiscrepancy.

The effecc of the number of integration points is shown
in Figure‘2.5. It is noted that the use of the 3x3
integfation scheme results in a stiffer element in the post
peak'region becaﬁSe of the_aaditicnal constraints imposed by
’this integration scheme over the 2x2 integracionrscheme.
Since‘the problem itself is highly constrained due to plane.
strain and axisymmetrical conditions -combined with the
incompressible behaviour*of the material, the use of the 2x2
1ntegrat1on scheme will 1ntroduce a spurlous zero energy
mode and will help in reducing the element locking
behavicur. Therefore, a highe; order integration scheme does
not always lead to better results.

The hoop stfess‘distributjon-at various internal
pressures ere shown-in'Figufe.Z.s'to 2.8. -1t is seen tnatl
the discrepency in stresses’between the analycical and |
‘f1n1te element solutions becomes smaller for hlgher 1nterna1

pressures. Again, th1s is due to the presence of - elastlc

»deformat1on in the f1n1te element.model>

~}6*The unloadlng and reloadlng behaviour of the cyllnder
R

strength~and then elast1c unloading and reloadlng occurred

&’

Iy

In order to det7ct elast;c un}cadlng in the f1n1;e;element

.
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1.6 uo/a = 0.01, Pa/A = 0.500 (Analytical)

uo/a = 0.02, Po/A = 0.706 (Analytical
1.5 uo/a = 0.04, Po/A = 0.778 (Analytical

uo/a = 0.10, Po/A = 0.720 (Analytical
.y P=.—xuo/a = 0.01, Po/A = 0.454 (FEM)._ -/

o~ —+uo/a = 0.02, Po/A = 0.679 (FEM) | /

1.3 |7 —*uo/a = 0.04, Po/A = 0.775 (FEM)
"7 [» —xuo/a = 0.10, Po/A = 0.723 (FEM) | v
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Hoop Stress/ A (q/A)
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——— uo/a = 0.02, Po/A = 0.434 (Analytical)
|—— uo/a = 0.04, Po/A = 0.383 (Analytical
_ uo/a = 0.10, Po/A = 0.254 (Analyticai
~ —xuo/a = 0.01, Po/A = 0.332 (FEM) |
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Figure 2.7: Hoop Stress Diétribu,tioh‘-I‘(B) = 0,50
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FN

analysis in deneral, and be able nor to differentiate
between this and the reduction of load due to strain
softening deﬁormation, an elastic analysis is first
performed. A determination of-which of the conditions in
Equations (2.10) is being satisfied must be made in order: to
decide whether the material is undergoing plastic or elastic
deformation. Further discussion of the numerical aspect of
the analysis will be given later. The hoop stress for the
unloadind and reloading cases are shown in Figure 2.10.
Complete unloadlng to almost zero internal pressure after
some plast1c deformatlon results in non-zero stresses inside
the cylinder (P/A = 0.0043 in Figure 2.10 ). This is
expected of a plasticelly deformed material.
2.6 Computer Implementation of the Finite nlememg Method

- The 1mplementat1on of the f1n1te element method
Vrequires the development of a computer program. A program
called SAFE (Soil AnalySis by Finlte Element) has beenf
'developed for thlS research The program is 1ntended for use
in other applxcatlons in solv1ng geotechnical problems.
Spec1al»techn1ques employed in the program, such as .
convergency scheme, matrix solutlon technlque and stress

calculatlon procedure, w1ll be dlscussed briefly below.

2.6.1 Convergence Scheme and Convergence Criteria
The matrix f1n1te element equat1on given by Equation

(2.7) is a set of non- llnear algebralc equat1ons because the
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HogﬁarStress/Pgak Strength (0./A)

 Figure 2.10: Unloading Hoop Stress Distribution

Elasto~-Plastic Strain-Softening Model

LEGEND
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u - Inner Wall Displacement
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stiffness matrix [K] is dependent upon on the current state
of stress. Therefore an iterative procedufe is required to
obtain a solution. The Newton-Raphson method is used to
obtain an approximate solution té this equation. However, to
update the stiffness matrix at every iteration for the full
Newton—Raphson method can sometimes be very expensive.
Combining the Newton-Raphson and the modified Neﬁton—Raphson
to update the stiffness at selected intervals can give a
more effective sélution scheme. The freguenéy of updating
the.stiffness maérix can be changed easiiy by the analyst in
the SAFE program to suit the convergence charécteristics.of
individual problems. Experience in this research indicates?
that updating the stiffness at every 3 to 5 iterat}oﬁs for
strain hafdening materials provideﬁia godd rate of
convergenée. Usually updating the stiffness matrix at every
iteration is necessary for strain softening materials to
obtain: stable convergence.

In elasto-plastic and non—linéar glas;icﬂanélysis,'
unloading éan occur in part o£ the structure during the
analysis. Using the loading moduld§ for inoading can leadf

.to sudden divergence. Therefore, it is important to detect -

b“' unloading and‘Qse the appropriate modulus in the analyéis;

In this pfogram,'elastié_loadihglor unloading is assumea in
the first iteration'df‘everyﬁléad‘increment; and if tﬁe o
assumption is in¢oxrect; the stiffness mater will be
~~updated in the‘sgcond'iteration. Since the7elastié loéding
,'médulus is usually higher than the élés;q;bléstic modulusl

e
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for most materiais, this ‘approach will result in a more
stable solution scheme than that using the elasto-plastic
modulus in the first iteration. Mcfeover, experience has
indicated that updatiqg the stiffness matrix in the second
iteration results in a faster converéence race due‘to better
stress apprcximation in formulating the stiffness matrix. .
Furthermore the cost of the elastic analysis in the first
iteration i% relatively low. .

Since the equations of equilibrium will not be

satisfied exactly in numerical analyses, it is important to

° Y

ensure the error is small and will not be accumulated in
subsequent steps of the analysis. The error in convergence

in this program is defined as:

< tol , - - (2.31)

'where
|as'| is the Euclldean norm of the change in incremental
nodal displacements of the whole structure at iteration

i) |
and' |§'| is the Euclidean norm of the totai“nddal“ ‘
'displacements of the whole structure at iteretiOn i; 
The tolerance in Equatlon (2.31) is usually set to be less B
' then 0.01%. It is- 1mportant to ensure the error is small in

order to obtain stable convergence although this.accuracy in'
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displacements and stresses may not be required in the final
result. : 1

Ensuring that the error,in displacements is less- than
the tolerance‘for each load increment is not quite
sufficient since this error can accumulate in subsequent
steps and eventuaily lead to numerical instability. One way
to mininize the accumulation of error is to ensUre that the
total equilibrium equation is satisfied at each~step and not
the incremental equilibrium equation. That is:

T

;5 [B] {o} dv = {R} _ . (2.32)
v :

is being Satisfied and not:

_ SR | -
j [B] {ac} dv = {AR} 4 R (2.33)
v .o ‘ .

is being satisfied.

-

This abproach ﬁill‘transfer the error.of each loading step

to the next load 1ncrement so that the accumulatlon of error

4

e \
\

can be m1n1n1zed The result 1s a more stable and accurate

e ,solutlon scheme.

2 6 2 Methods of Stress Calculatlon
* Q
The method of stress calculat1on for non- llnear and

o

’elasto plast1c problems is much more 1nvolved than for -

. elastlc proyfzms; Bas;cgllyl the 1ncremeqt\of stra1n 1s

l—,. . A ’ . . AR
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*first calculated from the increment nodal displacement given

by:
{ae} = [B]{ad} , : (2.34)
and the stresses are calculated from:

{ac} = J§ [C){de} . | | (2.35)
Ae

However, the constitutive matrix [C] is stress degendent.

¢

Therefore the integral must be evaluated by some numerical

d .
techniqgues. In this program, the Euler Forward Integrat1on

-Method, Improved Euler Met hod and the Runga KuQ;a methbd are

B Q.-*.

Used to evaluate this integral. In ‘the Euler forward
integration method, the [C] matrix is updated using the

current stress state. That is:

1

{80'} = —[C'-"]{Ae} , . : ’ (2.36)
. n
and ' o ‘ ‘ .
. n -on o . i
tao} = Z fac'} = £ ~[C'-']){Be} , - : (2.37)
v =1 ' i=1 n | o : ‘
where '

nis the number of sub -increments;

vO .

{Ao } is the change in stresses of sub 1ncrement i
[c'-*1 1s.the const1tut1ve/matr1x based on the'stress‘

state .of the previous sub-increment i-1._

S
- .

This appfcaéh,will tesult in the constitutive matrix being

>,
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one sub-increment behind the stress increment. The Euler
Forward Method‘is also called the first‘order method because
only the first order terms in the Teylor series expansion ef
" Equation (2.35) are uéed in the ;ntegration scheme where
‘higher erder terns are neglected. A detailed discussion of
these three hetnods and the errors involved are given in
Appendix A.

It is important to fdotice that the integration limits
in Equation (2.35) are over the chénges in strains due to
the entire load increment and summlng the results of all
iterations in that load increment, and not simply over the

4ﬁghanges in strains within each lteration. In other words the
stresses arenalways calculated from those based on the
p;evious-loadingvstep to which the solution has cOnverged.

This approach will mininize the error in stresses due to the

. -
ta
PR

ite;ative procedure. It mustbbe emphesized thac accurate
stcess celculation is vital in obtaining éteb;e convergence}
charécteristics beceuse'tne entire'elasto—plaStic nOn-linear'
“¥inite element formulation presented here‘iS“based on the
current state of stresses. Therefore, effort spent‘in stress
calculatlon is rewarded by more rapld and stable convergence A
whlch is partlcularly 1mportant in. analy21ng strazn | |
soften1ngamater1al. :
The'sttess célcnlation for Sigiticall§ deformed
material is a llttle mone complrcated than non-linear

.elastlc mater1al such as the hyperbol1c!!ldeiéﬁngn§?n a&d

~'Cheung 19€9). If the material is elastic, -or Ainder elastic



56

~unloading or loading, the'elastic constitutive matrix should’
be used which isvgiven by Equation (2.35). If the material
is fully plastic, then the elasto-plastic matrix should be
used. However, 1f the haterial changes from an elastic state
to a plaétic state in one load increment, then part of the .
defo?matibn will be elastic and part will be plastic.
The:éfore, it is neceésary to distinguish the portién of
elastic deformation ffom plas;ic‘deformation. .
The algorithm for‘elasto—plastié sﬁréss calculation
used here follows the approach discussed by Bathe(1982); In-
this method it is firSt‘assumed that the stress changes are
all elastic and then the final stresses are substituted into
ﬁhe yield function. If the function is less than zero, then
the assumption of elastic defgrma;ion is correct. If the
yield function 1is greater than zero and‘the-previous stress
state was plastic, then it 'is simply a case of continuous
‘loading in thg plastic region. If thé‘yield function is
_greafer than ze:q'and;the previous stress state is elastic,’
then yiéldihg'occurs within this loading step. Leé'R be the

' proportion of the elastic deformation defined as:

Flo,, + RBG,,) = 0 , R © (2.38)

v

where F is the yield function.

The value of.R can be determined using the"Intervélfﬁgz;ing

©

technique'. Since R has a lower dimit of zero and upper
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limit of one, this technique will alfays guarantee
convergence as long as F is continuous in R and no other
restricsion on the form of F is required. A description of
the 'Interval Halving Technigue' is given in Appendix Br

Durlng the stress calculation procedure, the yield
criteria may not be satisfied exactly. It is important to
satisfy the yield criteria within allowable tolerance at all .
stages in the analysis even at the expense of violating the
flow rule locallf (Zienkicwicz 1972). If the state of etress
1s ‘outside the yield surface, theo an iterative procedure is
used to bringvthe stress state back to the yield surface.
Details of this procedure is given in Aopendix C.

At this stage, one carr see the compllcatlov involved in
obtalnlng a solution uszng non-ilnear ‘elasto-plastic ’
analysis. First of all, the sequence of loading is divided
into several steps and possibly each loading step is

13
M

subdivided 1 ﬂOySeveral load increments. Then an iterative

t

procedure is used to obtain convergence of each l@%@ ﬁ@

1ncrement "Within each iteration, the stresses are

calculated in subintervals and within each subinterval the
YIEld criterion 15 to be satisfied by uszng an 1terat1ve--

pr cedure. The! fore the cost of obtaining a non—llnear

solution is at least an order of magnltude h1gher than that

IS

"of the 11near solutlon. o | ' .
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2.6.3 Computer Program SAFE

The computer program SAFE is capable of perferming
plane stress, plane strain,‘axisymmetric and three
dfmensional analyses with special features for many
geotechnical applicatiens. Such features-include the
incorporation. of iﬁfsitu stress fields with different Ko
conditions, modelling excavation and embankment construction
or merely a change of the material properties of the
elements duriﬁg the analysis. No tension-analysis,
hyperbolic elastic and various frictional and non- fr1ct1onal
plastlc models with assoc1ated ‘and non-associated flow rule
to perform fully drained and fully undrained analysis
(Chapter 5) are also avakkg/ie. Material models with
non-associated flow rule or undralned effectlve stress
analysis will result in non—symﬁetrlc stiffness matrices.
The program SAFE.is alsovcapable_of‘solviﬂg hon—symmetric

matrices.

2.7 Cenclusion

A general elasto-plastic ffhite.element formulation is

~presented in this chepter; The4£o:muletion is kept as

.generalias possible such that it cah.be applied to a variet?

'ntext of the theory- of plastlcxty. A strain soften1ng

model for - fr1ct1on1ess materlal is presented and the. fln1te

element solut1on is compared with the analyt1ca1 result with -

cons1derable success - for the 51mple problem of the expan51on'

o



of a thickwalled cylinder .under internal pressure. The
finite element procedure is found to be quite effxclent in
modelling strain softenlng materlals. The strain softenlng
model presented here requires only two material parameters
to define the material which cannot allow indepeﬁdent
variation of peak strength, residual strength, éeak étraih
ana pose péak seftening behaviour. Two more strain softenxng
'models w111 be presented in subsequent chapters with a .

higher degree of flex1b1l1ty;
- &
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B . i - . . . 2
3. FINITE ELEMENT SIMULATION OF SHEAR BAND DEFORMATION

in Chapter 2 the finite element formulation for a

strain softening material was presented. 1n pr1nc1ple uxth

this strain softening model, the basic 1ngred1ents 1n

;analyzxng progressxve fallure as outllned 1n chapter 1 are o
now available. Howeverr the deformatlon of a strain

softeninglmaterial such as stiff heavily overconsolddated
. . € - ’
clay vffen results in the formation of a localized shear
zone (sometime§'also'referred‘as.a:shear band), and the
3 i -

overall behaviour of the soil mass is thus govgrned by the

deformat1on of " thlS locallzed shear zone." Therefore it is

essentlal to understand the mechanlsm of shear zone

l

deformatlon and to capture thisebehav;our, if p0551ble,

) ) Co
using the finite element model’ One of the aims’of thlS

~ I

~chapter is to study the mechamasm of local: zed deformatlon.

H .

and to evaluate the f1n1te elementmformulatlon presented in

e !

Chapter 2 in capturlng shear band deformatlon. ,n v

<

G

7

As mentloned br1ef1y in Chapter ' shear band

deformatlon can: be broadly classifzed into, twoima1n types.
: \
The f1rst type refers bo the 51tuat10n where the locatlon of

thegshear band is predetergrned by local geology due: to6 the
dep051tlonal and geologlcaJ hlstory o%,the area whlch reSult

'in inherent zones of weaxgesses. The second type deals WIth
3 v .
‘a more or less homogeneous materlal and shear band

- .

an1t1at1Qnﬁandtprop\gatlom are unknown prlor to the

- \‘,.‘.

analysxs. The theorj for th1s latter case will be discussed

® . P . a - Teer [

Y e e



“first.

3.1 Theory of Localized Deformation

One of the theories of shear band deformation is
. . . \

focussed on the idea that localization may be,conéddered as

an instability in the constitutive description of
homogeneous deformation. The material instability here
constitutes a'necessarygbut not sufficiedt condition for
shear band‘bifurcation, For example, a specimen of unstable
materlai (the definition of unstable“ﬁaterlal will be
dlsCUSsed later), tested in an uniaxial testing"machine which
is capable of producing a perfectly uniform stress

throughout a perfectly homogeneous specimen free of defects

will net undergo localized deformation because &f symmetry,

o R Y
1sotropy, and homogeneity. This ideal case can only occur in

m&thematical and numerical models since in reality slight

imperfections in material and/or loading conditi%ps will

destroy the tonditions of symmetry and homogeneity.

Therefore, in numerical modelling it is‘important,to-ensute

that these basic conditions for localization (which are

discussed in;égpégdi{“?)'are idcbrporated into the model

when simulating shear band'bifurcation.

* ' The study of bifurcation .and d15cont1nu1ty relatlons in

i

solid mechanlcs was pioneered by Hlll (1961) and later

extended (H111 1962) to study the propagatlon of wave fronts

in SOlldS. Leuder bands are one kind of locallzed

“_;, ..

deformat1on belng studled exten51vely by metallurglsts. The -
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slip line field is a mathematical model that approximates

1dealized metal deformétion in the form of distinct shear
14

planes in obtaining limit loads for classical plasticity

problems. The propagation of a wave f;ont results in a

discontinui£y of stresses aﬁd strains across the front and

static equilibrium is not satisfied dU® to the inertia

: ) .
effect of the wave. However, a stationary wave degenerates

/

to a discontinuity in which only some components of the

stresses and strailts are discontinuous across the

discontinuity. The governing equations for a stationary wave,

1s the same as that for a discontinuity (Hill 1962). Houlsby
and Wroth (1980) have classified kinematic discontinuities
into<five dlfferent categories dependlng on the cont1nu1ty
of veloc1t1es and veloc1ty gradlents (see Appendic D). In
the presentistudy it is assumed that there.is no separation

along.the dfscontinuity‘yhich can lead to fracture and
> e
disintegration of ‘the body.

Thé solution to most cowtinuum‘proﬁlems,must satisfy
. _ ) ~
two basic conditions. These are the cqnditions—ST’
equilibrium a;d o} compatxblllty The equxllbxlum equatlon
for a élscohtlnu1ty is glven by -

"o Aog ,V“= 0‘, - A ) . * . ) (3.°1)
where T ’ v o o .

o, are the components of the materlal t1me der1vat1ve

o ’

of the Cauchy stress tensor;

L;EEE_ED& compoments qf the unit normal of the

e
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\\
discontinuity; N
and A denotes the difference in stress field inside and

outside of the discontinuity.

BN
x

Equation (3.1) expressesvthat'the traction on one side of

:he‘discon%inuity must oe equal td'that on the other side of
=

the discontinuity. If Eguation (3.1) is not setisfied, then

‘the discontinuity will not be stationary and the problem

becomes the propagation of a wave front. The condition of

competibility at the discontinuity can be expressed as:

AU, | o= Nv,, | | S 43.2)
where | |
Aéi,, are the components of the velocity gradient
‘tensor; ' ‘ ‘, ' . ~ ot

v, are the components of the unit normal of the
L _

discontinuity;

k,.are proportlonallty constants; - i .

a

and & denotes the dlffenence in veloc1ty gradlent field

-

1n51de and outs1de of the d1scont1nu1ty -

-

Equatlon (3 2) 1s to ensure that there 1s no separatlon or

slip of the body at the dlscontlnu1ty but allows some

;.

4

components“of the-veloc1ty gradlent'to be d1scon§unuous. By
comb1n1ng Equatlons (3 1) and (3.2) w1th a constitutive

-relatlonshlp of the mater1al of the follow1ng form:



Rl

N

. .

v
A,O‘ J = Cljman'\ ’
where
v . . ’ -
Lo s the Jaumann stress rate tensor;:

L

Dmn» is the symmetric part of the velocity gradient
tensor;

and C, ,m, 1s the incremental constitutive tensor.

64

(3.3)

one can derive the following relationship for infinitessimal

deformation and uniform stress field within the

- Y

. diséontinuity (see Appendix D):

.det|v,C,,mnvn| =0 .

*
L4

It is noted that Equation (3.4) is a nece®sary, but not

(3.4)

sufficient condition, for bifurcation to occur ad discussed

earlier. This condition.indicates that for bifurfdation to

occur the‘mat%ik [viCijmnva] must be singular.'Thls‘implies

the loss of elllpt1c1ty of the veloc1ty equatlons of

»
A

.equilibrium in the form: ., o
B - + ) R , ®
. ' L ’ _ e,
(CijmnAum,n«),t =.0".

.

S
v

An equxvalent statement of Equatlon (3{4) is thaf the

constltutlve relat1onsh1p tenSOr C.,mn i's not p051t1ve

91'-

deflnlte in which non- p051t1ve deflnlteness is- deflned as:

¢

5
. %1' . .
L8 ' C '

[3

%
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Cijmn€ij€ma S 0 - (3.6)-

9
for at least one arbitrary tensor_ e, and not all
components of €,;, are zero.

One should realize that of all the incremental

constitlitive tensors which satisfy Equations (3.3) and

I

(3.5), the one which satisfies Equation (3.4) will also
satisfy Equation (3.6). This restricts the possible choices

- of materlal models if localization is to be captured in

numerlcal anaIy51s. : - B e
. C ;._f'
]

W2
"

3.2 Eigenvalue Analysis of Elasto-Plastic Finite Element

Formulation

The above discussion reveals that the incremental
constitutive matrix of the elasto-plastic finite element -

formulation must satisfy Equation (3.6) iﬁ hodel}ing

4Alocalized deformation. In other words,VSOme of the
(
elgenvalues ofvthe 1ncremental consbatutlve matrix must be

A'less than or equal to zero.

'.“5
The eigenvalues of f1n1te elements have been studied' -

"for a l1near elastic materlal (Bathe and W1lson 1976)
-~ e R
However, the nonellnear const1tut1ve matrlx; espec1ally‘

us1ng the elasto- plastlc formulatlon,‘has not been studled

1n deta11 yet. Slnce the const1tut1ve matr1x depends on the"

stress state 1n the body, the elgenvalues are not .
) characterlgtlc of the partlcular formulatlon. Therefore only

©
P ; . ) N < o . >

LY TR , . 7 v v ..
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special cases will be considered below.
: L

3.2.1 Physical Meaning of Eigenvalues and Eigenvectors

-To understand the importance of eigenvalue analysijs,
let us first consider the following quantity‘termed the\
perturbation energy. The perturbation energy of an element

dv is defined as:

dw ‘=F‘A0|‘A€.jdvr , . ~ (3.7)

where

AJ{};'Ae‘, are the incremental stress tensor and

incremental’strain tensor associated with Ao, ;. @

respectively.

The perturbation energy is_a‘measure.of the stabslity of the
’ ‘ : , ' ¢

structure subjected to a slight éxternal disturbance. For’
elastic and strain hardening material, thé perturbation |

energy isfalways.positiver'For perfectly~plastic materiai’

it is zero and for strain - softenlng material 1t 1s negatlve.

-

Therefore, a zero or negatlve perturbatlon energy 1nd1cates

unstable behav1our. The perturbat1on energy is d1fferent

qh

from plastlc work 51nce work ‘is st111 requlred to deform a.

perfecgly plastlc or stralnfsdttenlng material,.and plastic o

work: ;s always pos1t1ve. R C . ST

'j°f Expre551ng the 1ncremental stress straln relatlonshlp
of the mater1a1 as: R o .'}‘- o
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‘Aoij = Ci)mnAemn ’
then dw = @, ,.4¢, ;8¢,,dv , ' . (3.8a)
dw » ’ .
or — =€, ;C, mabe€mn. (3.8b)
dv

Therefore, it is'clear that the etgenvalues of the
incremental constitutive matrix are related to the
perturbation energy per unit volume. Moreover the

incremental strains are givemn.by the eigenvectars in which

./‘/ ‘ ) ‘ ‘ i
thé;perturbation energy 1s given by the corresponding

eigenvalues if the eigenvectors are normalized. By comparing

P

Equations (3,8b) and (3.6) it is seen that a non-positive

definite conStithtive tensor which satisfies Egquation (3.6)

will result in a zero or negatlve ‘eigenvalue. This type of

V‘a"

R
'materlal is termed an unstablé materfal. From EquatTons

(3.4), (3.6) and (3.8) it is also suggested that shear (band

.bifurc&tion should occur either at or close to the peak

‘are the base vectors of the elgenspace in terms of the

K . '

strength of the materlal or 1n the post peak range.
. Elgenv//ue analy51s can be' con51dered as a change of

base from Euclldean space to elgenSpace. The elgenVectors

¢ -

Euclldean space._Slnce the e1genvectors here are the Stra1n

M

¥1ncrements, thereforeééhey represent dlfferent modes of

?

fdefonmatlon and the assoc1ated energy requlred per unlt,

‘e,

e v ,

volume is glven by the correspondlng e1genvalues. All

p0551b¥e modes of deformatlon are 1nclud°d in the

.;'
4

<
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transformed eigenspace thus the eigenvalue analysis

basically provides an insight' to the problem from a

-

different point of view. ' .

3.2.2 Eigenvalue Analysis of Elasto-Plastic matrix for

Elastic Perfectly. Plastic Material

®

The eig%nvalue of the constitutive matrix for a linear

elastlc material will first be considered here to give a

7 “a o)

~\Ra51s‘of comparlsOn with the plastic case. For a linear:

- .
alastlc material under plane strain condltlon the largest
-

/e1genvalueuand the correspondlng elgenvector represents the

A v * 68

e . Yoeg

hydrostatic compresszon (or hydrostatlc extension) mode of
deformation, see Fiéure 3.1.-The remaieing th eigenméées
are simple shear modes. These two modes‘are besigally the
seme,moae as_sﬂoﬁnqin the strain circle in Figure 3.7. For
example, if the strain state of mode Z'is represented by a
letate,of pute sheer; pqiht 3, 1nstead of the extension mode;
then Ae;x = ley, =‘pAand Ae.; = 1//2 . Note: é&iﬁjﬁ7,y,=
20¢€ . ='V§‘therefore,the pegtutbation;eﬁéth-ls given by

8 . s by Ol
<0,%, v2> [C]1 {0} -
CoL V2

N

4 -~

Az

it

Pefturbation energy

« . O : .
g S0, V2> Ap2 {0}
~ - : X t : . "' .0 N .-' L . ‘/2

where : , - L .

. . .« ~
‘\ b < 4

"
A
o .

.

&” is the e1genvalue of mod@ 2 represented by p01nt 3

, 1n the stram c1rc1e. “' e R

~F

/T‘

k

vo'
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Mode 1 - Hydrostatic Compression 1
A/E = 19.23, v=03 ’ ¥
- . 0.3536

e. = 0.7071 '

g, = 0.7071
7o = 0.0

. !
Mode 2 Extensxofx T‘Tﬁ*—r—
N/E = 76.69 Undeférn}ed Shape : |
ea = -07071 v r ' )
En = 0'7971 o Deformed;ShapefL*'J |
yo = 0.0 L : ]
° » o . . — — - _'
J* 0.3536
e
Mode 3 = Simple Shear _ ; - .
. .. : 1ot
A/E = 38.46 : I ' |
‘ £ =00 o D K
) 1.0 -+ ' I
Y2 = 1.0 | d
.
\
o - Mohr Strain Circle I N
: . . .o nk.u ] * o A .-‘ \ o . ' .f )
\i7gur‘e' 3.1: Eigen Mode Shape of Elastic Deformation
. . . . e o ' . o . . ' ) . ’ v .
PO - ) o : e (3

v
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’ . ‘ 1%
"~ Since both points 2 and 3 represent the same strain state,
the perturbation energy must be the same. Therefore:
. T . .

\

Perturbation Enercy = X, = 7.692 = < 0, 0, V2> Ay*

—~—
N o
v
y
[

or -« AL = 7,692/2 3.846 ,
1

which is the eigenvalue of mode 3.

4

' > B . ) }
:The eigenvalue of mode 2 can be derxved from mode 3 in a o

Méimiiar'ma r. Th1s 1nd1cates that there an@ only 2. ba51c '

5 ~

modes of deformat!Qn in an elastié¢ 1sotrop1c materlal and
therefore only two wparameters are required to define a

llnear“elastlc material. This result is th surprising since

€4
shearlng n dlfferent directions of an elastic 1sotrop1c =

material must requxre the same amount of energy. The same’

i

,conc1u51on cannot’:be. made for a plastzcally deformed -
('] . . . ) ‘
materlal > S .

 , - Thewfegu%i\if the elgenvalue analy51s for the elastic -
perfectly plasti mater;al is shown in Table 3 1. Slnce the g

'constltut1ve matrlx is stress dependent, two spec1a1 cases

-Q.‘
LN

will be con51dered The flrst.case is a 31mp1e un1ax1al -v }“
compression mode of deformatlon. In thlS case the ‘vertical
vstress 1s 1ncreased until. y1eld1ng occurs. The second case é-'

1s a s1mpie shear que of deformat1on' Both the von MISES 3

]and Tresca y1eld cr1ter1a are coh51dered S ) ' '
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. ! o '
’ . Table 3.1 Eigenvalue Analysis of the Elasto-Plastic
Constitgtive Matrix
\ . .
4.
Te Eigenvalue | Eigenvector (Normalized)
1 o ; . '
';‘;: ‘ . ) ':‘L ’ 1 A | € x x I .fyy | ‘7le
Y 9'$ineér« 1.9231 x10* | 0.7071 | 0.7071 | 0.0
' ‘ Belastic | 0.7692 x10* |-0.7671 | 0.7071 0.0 .
- oo > . 0.3846 x10* 0.0 . | 0.0 1.0
"~ “lE|v|unia.| 1.9156 x10* | 0.7419 | 0.6705 .0
llojcomp.| 0.3846 x70* 0.0 - |-0.0- 1.0 i
. aln 0.0327.x10* | 0.6705 {-0.7219 | 0.0
t{Mlunif.| 1.9231 x10*¢ | 0.7071 | 0.7077 0.0
: 1|1i|shear| 0.7692 x10* {-0.7071°| 0.7071 . & 0.0
. ||| 0.0 0.0 0.0 1.0
< lp| |unia.| 1.9231 x10* [-0.7071 |-0.7071 | -0.0"
41{Tjcomp.| 0.3846 x10* 0.0 0.0 -1.0
alc| ;| ot . ~[-0.7071 | 0.7071 0.0 |
isie ' — - : ;
t{sjunif. l.%;1 x10* 0.7071 0.7071 0.0
-[i|c|shear| 0.7692 x10* |-0.,7071 .} 0.7071 0.0
cla 0.0". | 0.0 0.0 -1.0
»" \.“ ,‘ ‘ . . . ‘ ]
e E = 1000.0 kPa = 0.30 0Y.= 10.0 kPa
, . o : : ~‘ ,H‘ ' B 49 S '.!
‘ ¢ ¢-‘.¢¢'¢Q¢“in g = 1,0 k\b'a Sda4a330 7 = 1.0 kpa
. R s e ‘ : O
o ' _— 171
4§, a i i + .
S . oo + T+ *
- \ '{" \ 1
o 2l 3L —J ¢ ‘
i RS b kS L N ’»‘i.-o-g-.-’.-.ﬂ-.-q-s o i
fumi’aﬁ *é‘i compression uniform sh‘ear'
e o ~ (plane strain condition) -

.

n]
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For the perfectly plastic case, .there is at least one
zero eigenvalue except in the case of uniaxial compression

of von-Mises material as shown in Table 3.1. The two basic

™

modes of deformation, hydrostatic¢ compression and sinple
shear, are present in all cases. The eigenvaiues for these
tno medes are.the same as for the elastic case. Note that
there 1s a zero energy mode for the-case of uniaxial
‘cdmpresSion‘for Tresca materiel at 45 degrees-with respect

to horizontal. However the zero energy mode fdr .the case of
uniform shear for both material are in the horlrhntal

. ' : .

directions. This indicates that the meterlal ‘has awﬂweak
direction” which is dependent upon the, state of s;ress. The

. v . . . . . LN . .
" perturbation energy in this direction is zero. This is in
‘_ . ’ s & -

agreement with the nnﬁerstanding of.non—frictional materiai'

which fails at 45 degrees in a uniaxial coﬁpression test,
For the case of unlaxlal compression of von- Mlses

materlel there 1s no zero energy mode. The elgenvalue for

[}
rsimple.shear is identical to the other cases while the ,

Ly

. - & . . : L R ‘
eigenvalue for the hydrostatic .compression mode is slightly

lower. It‘is not clear why the'von-Mises matérial dOes-not‘

have a zero' energy mode for this case, However it is clear

¢ r \/

4that the formulat1on does have a zero’ energy mode as shown
“ o % -

1m the S1mp1e shear case. The above analy51s demonstrates
“clearly:thatwthe elasto-plastlc formulat;on does satisfy‘-ﬁ,

Eqdatédn (3.5). o o . B e, e

w T
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3.2.3 Exgenvalue Analysis of Elasto- Plastxc matrix for
Strain Harden1ng and Softening Materxal

It is seen‘from above that the perturbatxon energy for

a perfeetly plast{c matérial must beegreater than or eQUal
LI N N N

to zero. Negatjbe perturbation energy can on¥y *be obtained

from a strain-softening material. with'a gradual post.peak

-~ softening behaviour. The strain scftening model discussed in

jﬁErChapter 2 will be analyzed here to-remind the reader:that
this model has a strain hardening behaviour prior to peak
strength and a strain softenlng behav1our after peak

Therefore 1t is expected’ that all of the elgenvalues will be

positive in the pre-peak range and some e;genvalues wi%} be

-negative in the post peak range. Also since the stiffness,%f

X
LR . . . . .

region, it' is also expected that.the eigenvalues, or &t

‘.—"‘ e M N i . ‘ . - = .
least .some eigenvalues, will decrease prior to peak
strength. '~ T ¢

. The elgenvalues are obtaxned by 51mulat1nq an unxaxlal

compre551on test as shown 1n Table 3.1, The results oﬁ
ana1y51s are gzven 1n F1gure 3.2. The elgenvalues fo

"‘1sotrop1c compre551bn and horlzontal shear remaln ba51 l{g[

-~
at o

A constant durlng plast1c deformatlon both41n the pre peak and

P

post peak ‘range. The elgenvalues for. sample shear mode at

%

45° decreases w1th plastlc straln as shown rn Flgure 3. 2.u

~

v | e
. . . . . . o M
‘the material decreases wz&h;stra1n except 1in the post pedk. .-

’ i, : : ' ¥

B TR
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Therefore, shearing along this plane actually resulted in a
‘release in energy due to strain sdftening behaviour but the

isotropic'compression and shearing mode at different

direct}ons reguire positive perturbation energy.‘This again
creates a 'Qeak ' direction.in which theﬂwaterial is‘more
easily sheared.'In.other words 'anisotrop}' has been indoced
by pdastic deformat ion which is one of the'main differences'
between -the elastic and -plastic formolations.,

The orientations of the. weak d1rect10n varies
sl1ghtLy durxng plastlc deformatlon _but remalns very close
o 45°, The variation ranges from 44.4° to 45° (or 45.6° to
+45°) and eventually approaches 45° at lar&e plastic strain.
IThis is differentnfrom Ehe result obtained from the

perfectly plast1c case where the 'weék'direction' 1s always

at 45° The exgenvalue for the isotropic: compre931on mode .
. ¥

also varies sllghtly and the stralns Ae, ., Ae,y are not the

same . durlng plastlc deformatlon. At large straln these two

7’
strains become closer to each other. The e1genvalue for the

: 51mple shear mode remalns constant throughout the analy51s

4 The above analysxs demonstrates two Important aspects ¢

.

of the plast1c1ty tormulatlon. First the perturbatlon energy

»

decreases with plastlc straln and becomes negat1ve in the

post peak ‘range of deformatlon for a straln softenlng
. v )

fmatérial. In the pre-peak rand® the ‘perturbation energy is
always p051t1ve. Therefore shear band blfurcatlon is

expected to occur at . or close to- peak strength The second

e
p01nt 1s that durlng plastlc deformation; :the mater1a1 has a



76

. - weak direction in which less energy 1s required to shear
This weak%é%;ectlon occurs at 45° with respect to the
. ri 1 el?
'p oc1pak§§“
AT a . . . . R
thus looaﬁfy becomes anisotropic:. FOX strain softening

. . : ] , CA
material, the\orientation of the 'weak direction' is not

esses for a frictionless material. The material

exactly 45° as would be expected for a non-frictional
material. This departure from 45° is probably too small to
‘be of practical concern but'theoretically, the propagation
of tpe shear band may locally depart from the 45° direction
depending oh the amount of plastfc straining which usually
varies along the shear band.
. _ ’
3.3 An Elastic Brittle Plastic Model
In this section a different strain softening model is
introduced to model shear band deformation. The strain
softening model discussed in Chapter 2 has a gradual .
reductlon of shear strength’ after peak. For a.very sensitive
mater1a1 the post peak deformatlom can be abrupt. An )
approx1matlon to‘the abrup? softening behaviocur can be made
by an elastic brittle'plastic material. The stress strain‘
relationship for this material is shown in Figure 3.3. In
this model the material is assumed to‘behave linear
«‘elastically:up‘to the'peak strength folloﬁed by a sudden
'.ﬂ'decrease‘in‘strengtﬂ from peak tO'residual. The material is
,*(f”‘rassumed to deform in a perfectly plastxc manner after peak

It has been shown prev1ously that the elastlc perfectly

plastlc materlal can be used in modelllng a shear band
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Peak strength

~ Residual Strength
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| Figure 3.3: Stress Strain Relationship

Brittle Plastic Material
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therefore it is expected that this'model tan also be used to

. . | . -
-

‘modelvshear band deformation. The‘advantage of“this model 1is
that the peak strength residual strength nd peak strain

can be spec1f1ed independently. Therefore at least three

3

parameters are required to define the 'model.

S

In this model the transition from peak to residual
strength is abrupt.'Theretore the method of stress
‘caICUlation discussed in Appendix A cannot be used during
the transition from peak strength to residualystrength

because«the constitutive relationship of the material at the

e »

transition is undeflned There are several methods ava1laole

to dete;mlne the stresses for this materlal .and the method
used .in this research is dlscussed in Appendlx D |
© Sevgral yleld_criteria.can'be used ingthis-model; The
Tresca, yon—Mises, Mohr-Coulomb and’Drucker;Prager:yield
ycriteriarare available for this model in‘the'EOmpnter

-

‘jprOgram SA . Frlctlonal materlals with brlttle plastlc

behaviour can "be 'modelled by u51ng ‘the Mohr- Coulomb yield i

craterlon. Howexer 1t is known that the degree of

brlttleness varles w1th the hydrostatic stres s for many

'mater1als. Thls aspect has not been. studled her

and 1s not

e

| ;mplemented in thls_model.

s

o . L :
) th@e this is a plastic model, unloadlng after peak
| strength Wlll lead to plastic deformatlon Reloadlng in "this

model w1ll causes yleldlng t- occur- at residual strength and,

therefore peak strength w1ll only be reached once. , -
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3.4 Modelling Shear Band Deformation in a Uniaxial Plane
Strain Test
‘1In this section, a plane strain uniaxial test is

simulated numerically usipd the ‘finite element. method with
- . : ‘.-: ‘\' ) . : * . :
" the elasto-plastic formylation presented. The material is

assumed to behave fn‘an elastic brittle plastic manner as
z
shown 1in Flgure 3.3 w1th an abrupt decrease in yleld

-strength after peak i "‘\i
t

The finite eleme 1de£lxzat1on o‘ the - Spec1men is

shown in Flgure 3 4. The sp C1men 1s~10 cmihigh and 2 cm
' . .y

’wide and is sub3ected to pl ne’ straln condxtlons with zero

conflnlng pressure ‘on the’ sx es Tha tOp and bottom platens
are asSumed to be perfectly mooth and rlgld ELght node
u

‘1sopa*amet§1¢ eggments were sed w1th 661 nodes and 200 w»

*

: elements. To inffroduce non homogeneous deformatlon or
’*y/ ' -

1mperfectlohs into the spetzmen “a weak element is placed on-

'-the edge of the spec1men at a helght of 6 cm as shown 1n

Fqgure 3. 4, Yleldlng.ls expeoted to be‘inltiated at-this

< ' . . ) *

locatlon. o . o : T

The follow1ng materlal parameters a%e used in the
,analysls.3 B ?': e LT e ;.

= 1o, 'ooof k_P,a.:-_w;‘ o

m
A |

0 30~ U -‘ v, s

@
'|

s a 200 kPa,

N

. £rS
e A
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S = 190 kpa;
r
S = 150 kPa for weak element;
b .
§ = 140 kPa for weak element; ;
L B
whete - . o ot '

'

- ' L L. 5 .
S , S are the peak and residual uniaxial compressive
por e R

2

™~ . strength respectively. . T g . , 5472

-

’ : - ’ . ‘\ '
The .resca yleld condltlon is used to model frxctxOnless

materlal. In order to capture the propagatlon ‘of the Shear

- h%

band 1n51de the speci men,.a hlgh re51duaI strength 1's used

R Low residual strength Wlll result in large amount of energy'

\

'release after'peak whxch\may lead to abrupt fallure and the}

\ \

process of shear band propagatlon cannot be observed

Moreover, a straln controlled *est rs 51mulated in order to

obtaln the pOSt peak behavlour of the materlal ' "ﬂ\

A

_-The resuLts of the analy51s are shown 1n Flgure 3 5

i'g- seen . in- thlS f1gure that _the applled stress does not

I

5freach the peak strength of the materlal due to the preSence i
. of the weak element There xs also only a- Sllght decrease 1nh;t'

the applled stress after peak and the stress at re51dual 1s L ot

%:igmately 0.94 S . It 1s 1nterest1ng to note that there

pprec1able 1ncrease in strength after peak and 1t is

‘q

,.. LD

\Kfflcult to’ d1st1ngu1sh between the peak and resldual

rength.,The test reveals that the materlal 1s behav1ng

1
S
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like an elastic perfectly plastie material but in fact the'

material is a brittle plastic material with distinct peak

and residual strength. Failure to reach the peak strength is
. { . .o .

Aue to the gradual development, cf the shear zone ard

/

progressive failure of the specimen. 1t the strain within

the specimen is uniform, that is without the weak element,

.

the mobilization of the shear strendth at all points within

the specimen wildl-occur at the same time. Therefofe peaki
strength will be reached and the observer 4is able"to\measure‘
the pefk stréngth, Further deformaticn beyond.peak will be

foliowed’by an abrupt decrease in strength, and the cbserterr
will‘also'be abde to measure the residuaiestrength lHoweve},
sxnce yielding 1n1t1ates at one’ lpcatlon ;n the SDec1men,
‘due to the brlttle behav1our of the materlal the shear.
strength at thls locat;on 1s qulckly reduced to the re51dual
value. The excess load of energy IS redlstrlbuted to .the
surrounding materlal Slnce the'reduct;onr1n strength~is
relatl;ely smalt, theﬂamcUnt*of energy’reieased is_smal;
‘enough to be abSorbed by'the‘rest'of the'material' ﬁdwenér{
part of the shear zone . ‘now 1s subjected to resldual

A strength "and’ therefore when the entlre shear zone 1s
'formed, the shear stress that can be sustalned by the '
specxmen is that of the re51dual value.<Therefore the '4p
observer will not be able to measure the real peak strength
of the mater1a1 This - 1mportant aspect of progre551ve

v

fallure Wlll further be 1llustrated in the next chapter.

6
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The development of the yielding:zone at various'stages
of the test is shown in Figure 3.6. The yielding zone
initially propagates at 455:in two directions, above and
below the weak element, in the form of a band around the

f

weak element. A very slight increase in displacement
. sl v

triggers further propagation of the band in both directions..

The weak element is deliberately placed above the mid height

of the spec1men to ellmlnate symmetry. Two shear bands are

g1n1t1ally developed because of thé preferred shearing

"dlrectlonc in two orthogonal planes The top shear band

,eventually 1ntercepts the top platform therefore any further

propagatlon in this dlrectlon is prohlblted The lowe. shear

band extends through the spec1men and results in a

'contlnuous band across the specimen. It is noted that once

the lower band has.developed across the specimen, the

*eCOVerable energy stored 1n the upper half of the specxmen'

,<1s released and absorbed by the lower band Very llttle

‘movement 1; requ1red to trigger thlS reactlon and the .upper

band eventually dlsappeared' in thS unloading; process.

ThlS 1s,why very h1gh resldual strength 1s ‘used in thlS

>

example in order ‘to study the propagat1on of the shear band

"1n51de the - spec1men. Low residual- strength may rbsult in

‘ab;upt fallure and- p0551ble numer1cal 1nstab111ty Once the

.

lower band is fully extended across the spec1men a collapseu

/,mechanlsm is formed and any further deformatzon w111 be

~‘ocallzed in thls reglon.‘Subsequent deformat1on leads to,'

)

wxdenlng of the shear band although there is a. tendency tp

8-’.
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reform the upper shear band around the weak element due to
A .

some stress concentration effect. The deformed sgape of the

o axi in of 1.9% is shown in Fig

elemegt at an axial strain of shown in Figure 3.7. .
) ,

Te FAarmald AR chAath ol Aage
S,o.TITheT o 20T €1 es

Te i ~Aap-n thas o "l{;ﬂl'"

O

f v*ho?‘
1 Y 4 ° N 1]

specimen. Incidentally, the angle of the_shear,band‘is at:
45°.wi}h respect to-the major principal plane;whjch"is'
; . .

expected from the discussion earlier.

‘ This example demonstrates that shear band bifurcation P
»can.be modelled effectively usingvthe elasto~p1ast§c 1-
formulation. In this case, the location and~direcpion of the
shear band;were:not predefined prior 'to the analysis but

were captured successfully in the numerical model.

3.5 The Finite Element Method in Modelling Shear Band

The previous section;dealt'withrthe modelling‘df’the
\ : L > ! ’ L :
shear band in which the direction and location of the shear
K .. ) ) /r, . »\‘" ) )
band ‘are not prescribed. In certain-circumstances the

e B [l

presence of a weak layer between'more competent ptrata

result in local weaknesses and deformatlon 13 most l1kely to-
ka N : R
be ccncentrated in thlS regfbn. In thlS case 1t is not

£
necessary to sat1sfy the cr1ter1a d1scussed 1n Sectlon 2 2
".for the initiation ofg,hear band deformatzon. However there ‘%

are numer1cal d1ff1cu1t1es assoc1ated w1th th1s class of

o
.

,prcblem.w L ) . A

[}

Ler -

To model a shear band using the flnlte element method
0. .

it is sometlmes necessary to have'an element wh1ch can
o
.-prov1de rapxd streSs.varlatlon<along the_element,as yellwas_}-

.
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across the element. Since convergencé of the displacement

finite element formulation can be obtained by reducing the

size of the element, any complicated variation in.stresses

(e

and. strains can ‘in prlncxple be modelled by thxs technxque.
However, any practical finite element analy51s will have a
l}mitedcnumber of elements, and‘the element is finite 1in
size and.is:usually dictated by the computer resources

availlable to the analyst. ghe;thickness of the shear zone in

-

certaﬁn’geological settings can be very thin (from several

zmy to several cm thick). This will require the use of very

thin elements. Goodman's joint element is a type of element

with zero thickness which is used to model rock joints and

0

.interfaces (Goodman 1970) . However, the type of shear zone

P

that is of 1nterest here will alwaz; have f1n1te thxckness

and therefore a solld element will be more approprlate
Ghaboussi and Wilson (1973) proposed,a relative

displacement finite element formulation in which relatlve
.
displacements among the' nodes are taken as the prime L

o

wariable rather than the absolute dlsplacements of the

1ndlv1dual nodes.as the prlme varlables ‘pande (1979)

o

o

cohducted a study comparzng the relative displacement

element with the conventlonal 1soparametr1c element and

»
[

concluded that there is no 51gn1f1cant dlfference in results

0

[

between these -two types of elements as. far as numerical

K

1ll condltlonlng is concerned, THe aspect ratio of tHe

element in his stpdy,was as hlgh as one to one mllllon.

,However therejwasgno fmdication on'the limit of aspect ratio

5 \ B .
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that could be used with respect to the precision of

calculations without introducing significant round of £

Py i

errors. B u R
A .numerical experiment is_conducted here to determi;é

the limits of aspett ratio for 8-node isoparametric elements

before numerical‘ill—conditioning of the stiffness matrix

occurs. Three cases are considered to test the element under

different stress conditions: ’
g -

°

V. An uniform uniaxial tensile test with thin elements
béing placed parallel and_perpendicular to the direction
of the applied stress.

2. An uniform shear stress with thin elements being placed

“in the horizontal and vertical directions.
3. A cantilever with uniformly distributed load with thin

N

elements at the neutral axis..

These three cases are shown in Figure 3.8. For the second

case of uniforq shear, the result for the thin element being

3

placed hofizontally'should in principle be identical to that.
placed vertically. However, due to the slight differences in

boundary conditions, they are not identical problems in

- d

numerical analysis. ‘ : -

The first and second cases are used to test the
elements under uniform streSs_conditions_while the third
.case -is for a more complicated stress condition. The thin

elements in all cases are within an element assémbly. The

tests were conducted usihg the Amdahl 470v computer &ith

- e Fol
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éingle-and double precision arithmetics. Single precision
here'meansi4 bytes per word with 24 bits mantissé, 7 bits
exponent and 1 bit for sign which is eguivalent to abput.7
to 8 significant digits. Double pfecision here means Qabytes
per word with 56 bits mantissa, 7 bits exponent and.1 bit
for sign which 1s eguivalent to about 16 significant digits.
The result of the analyses are summar;zed in Table 3.2

For the first 2 ;ases, only singlé precision
éalculations were used. Practically no ill-conditioning
effiect was observed up to. an aspect ratio of 10,000 with
errors in displacements of less than 2. percent. For the
canéilever problem, both single and double precision
arithmetic was used. I* is seen that when using siﬁgle
precision arithmetic, the errors in tip dispiacement are
quite large even for relativély low aspect ratios; The tip
displhcement calculated from the beam theory does not givé
the exact sdlution for ﬁhis problem because the,plahe st;ain~
condit;on ié assumed in. the finite element analysis and also
no shearing effect is included iﬁ the beam theory. .The tip
diSplacementlfor the saﬁe cantilever is determined without
thin elements in the neutral axis for the burbose of .
comparison. When double'precision a;ithmetic ié used, the
error in tip dﬁsplécement cpmpared to that withqut!fﬁe thin

elements»doesynot exceed 0.5 % for an aspe®t ratio as'high

‘-as\10,009;ﬁ1n general, increasing the aspect ratio results

ih'smallerfdisplacement’due“to the stiffening of the.

- element. Tﬂg s;iffening_effecg is_caused.by‘the reduction in

o~

A
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Table 3.2 Displacements at A with Different Aspect Ratio

4

« Aspect Ratio | 10 | 100 | 1,000 | 10,000
‘R t ) )
. e e hor . 0.363927| 0.364041] 0.362078| 0.357488
o) c n N ’ . ! e '
N i t s vert, 0.363928| 0.363970| 0.362740] 0.358075
3 > ‘ K 5
. . W”B s , TR I
. ol h hor, 1.03920 1.03946 1.03202 | 0.997851
) 0 e ' o o
60 ¥ c a . vert., 1.03893 1.04053 0.986730| 0.855857
3 k r
B ' single % E "
canti- precis. 70.0377 55.6878 17.7827.4 17.7434
lever ! el ‘
- Double . 73.7762 73.7304 73,7273 "73.7230
precis. : : . i .

-

All values are in centimeters.

S -
At LY

Exact Soldtions

Rectangular Block.. -
Tension - upward displacement at A
t

0.364000 cm.
shear - horizontal displacement a = 1

A

- Cantilever -
Beam Theory - downward dlsplacement at
‘ ' A = 76800 cm.
F1n1te element solution wlthout thln efementy -

downward displacemerit at A = 73.3907 cm.

.04000 cm.



area as the asoect ratio is increased.
It 1s seen that.ill-conditioningaeffec:s can be Teduced
\by u51ng more precision.in performlng the calculatxon
Double prec1s;on ar1thmet1c seems to give very good results
with adeguate accuracy and therefore will be used for the
rest of the analyses. In these cases it is seen that 8-node
1soparametr1c elements can be used to model a . snear band for

an aspect ratlo not exceeeding 10,000 hhen”double prec151qg
. :w £y ‘
arithmetic 1s used. .

.

3.6 Shear Band Propagation in a Dam Foundation
. - l . X

The final exercise in this chapter deals withhtheh

development of a shear band 1n a more reallstlc situation. A -

dam 15 m high is to be constructed on a shale ‘bedrock
foundation with a bentonite seam 5 m below the ground
surface. It'is assnmed that the*bentonite seam is
practioally horizontaliénd S,om.inlthiokness.‘;he
oonstruotion:of the dam will likelf'impose severe straining
on the bentonlte seam.-ance the benton1te possesses strain
softenlng behavzour, the amount of straln softenzng in the
ibenton1te Seam 1s useful 1n performlng a stablllty analy51s.
Jn other words, rt s requ1red to know the extent of the |
"bentonzte seam Whlch 1s at re51dua1 strength so. that
approprlate strength parametefs can be used in the stab111ty
,analy51s. Moreover the deformatxon‘behav1our of the dam and
the underlylng foundatlon are also of great intérest, To.

vaccompllsh th1s w1ll requ1re a f1n1te element analy51s w1th
‘ i,
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a strain softening material model to simulate the bentonite
o »‘ ' '
. Seam.
In order to simulate the construction of the .dam in ‘a
realistic manner using the finite element method, a -
: o : / o , :

Lo
H

step-wise approach is'used..The dam is to he constructed in
six layers and in-situ stresses for the foundation are,;
imposed*using the snitch-on"gravity techn{gue. A high
Poisson's ratio of 0 499 1s used to obtain the in- E“tu &
stresses wh1ch will g1ve the value of ko of approx1mately
1.0.zIt is alsonassum d that,the constructlon of the dam is
Uﬁgt a total-stress; fully undrained

A

anaiy51s 1s valld P01SSon s ratxo of O 49 is used 1m the;

Vrelatively fast so

bentonlte seam’ throughout the analy51s. The flnlte element
1deallzatlon of the dam and foundatlon is shown 1n Flgure
3.9..

A straln softenlng mater1al model 1s used o 51mulate

»  the behav1our of the material of the dam, the shale bedrock.

a

and the bentonxte seam. The stress strain relat1onshtp of

the materlal'model is glven by Equatlon (2 20). The model is

a straln hardenlng and softenlhg materlal dlscussed in the

»

prev1ous chapter The materlal parameters used in the

analy51s arekglven in Table (3 3) The res1dual strength for
-

th@*bentonlte seam 1is qulte h1gh in compared to the peak
. ?_ustrength to. reduce the number 2; 1terat10ns requ1red for-
‘ blvcoﬁwergence. Even for thlS h1gh te51dual strength the
‘computer t1me requ1red to obtaxn a SOIutlon is qulte long a§

"“hl 1 be dlscussed later. AT Dl _ r
. . o | D :‘,,.. ‘ a i .

Yo,
N
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Table 3.3 Material Parameters used in the Finite Element

95

V' - Poisson's ratio used in Switch-on-gravity analysis.

Analysis
¢ B
‘0 Shalf' Bedrock ?
Material , Bentonite
Parameters Dam BeloJ Above Seam
° Shear Zor#|Shear Zone
E' (kPa) . oo 150000.0 150000.0 150000.0
vt b 0.499 | © 0.499 . 0.499
E (kPa) 20C00.0 | “100000.0 20000.0 10000.0
\Y 0.40 0.35 0.40 . 0.49
G (kN/m?) 19.0 22.0 22.0 20.4
Cu (peak) 200.5 Linear ,200.5 15.5
Cu (resid)|® 150.5 "Elastic 150.5 | 13.0 7
E' --Elastic Modulus used in Switch—gh—gfavity analysis.

a
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The finite element model eonsists;of a total of 189
gme;ght'nodes and six nodes isoparameteric elements with 596
nodes. bnly half of the dam is analyzed by‘taking into
aceount‘the symmetry of the problem. The dam is 180 meters
wide and the depth of the foundation is taken to be 60 m
~ with a fullf fixed boundary at-the bottom of the.foundation:
" Since the extent of the she&r zone is not known, the width’\
RN
of the foundation is taken tolbe 230 m wide so that the '

———

poundary gopditionxon ehe side will not affect the
propagation of the shear zone. The aspect ratio of the
element at the shear ‘zone does not exceed 400 and is even
‘smaller at locatlons near the da;. ‘This aspect ratio is
found to be guite satisfactory using the 8-node elemerits '
with(double pteclalon calculation.

Figure 3.10 shows the mobilization of the shear
strength along the shear zone at vatlous stages. Peak
stfength is mobilized at portions of the shear zone during
the second stage of dam constructlon when some softening

'behav1our is ob?erved The length of the softenlng zone wvas
about 5 m.and‘;s located near the toe.of the dam. The
resldual strength of the seam has fiot yet.been reached at
this stage. The construction oi‘aniadditional liftrof 2.5 m
‘tr1ggers a rap1d propagatlon of . the shear zgne. The '
softenlng zone has been extended: from 5 m to 35 m. The
propagatlon is mainly in the upstream d1rect1on w1th only 10
o

m exten51on beyond the toe of the danm. The fourth let

further ewtends_the shear zone,frcm‘35 m to €5 m w:tH
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propagation almost egual in'both.the upstrean and downstream
directions. The stresses to calculate the degree of '
‘mobilization of shear strength are evaiuated at the lower
Gaussian points of the elements at the shear zone. As
discusséd in Chapter 2 the peak stgength-may‘or may not
'coincide with the‘Gaussian.pofntsvof the element. Therefore,
it is possible that the peak strength shown may not be equal
to the peak strength of the shear zone. This simpiy means
that the .location of the peak strength in this partioular
instance does not coincide'with the Gaussian point. The‘
construction of the fifth lr‘t hae‘extended the shear Zzone
to- 1ts maximum length of 70 m. The addition of the sixth
llft resdlts in further shearlng at the ‘shear zone
espec1ally towards center of the dam. It is noted that in \K
all of these steps.the stresses are decreasxng very rapldly
beyond the toe of ‘the dam. The moblllzed strength at about
15 m from the location of the peak strength has been reduced'
to only 5 percent of the\peak strength The entire sectlon.

of the shear zone underneath.the‘dam xnuthls case has been

reduced to the residual strength value when construction has

[}
4

been completed o ' | _ ’_a-_ .
Flgure 3.11 shows the dlsplacement vectore 1nd1cat1ng
the'flow of materlal of the dam and the foundation. Some
y heav1ng occurs at the toe of the dam ‘and relatlvely large
dlsplacements are observed at the shear zone. Flgure 3.12
»shows the horlzontal dxsplacements at varlous ‘locations at

different stages of constructlon of the dam . The fohndation
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moéement 1s mainly l%%gfized ét the shear zone with the
‘maximum displacement 6& a@out_B cm. The amount of movement
fgeneraily increases with increasing height of the dam except
at,locaéions neér the toe of the dam where more movement is
deteqted at the third lift of the dam than at the fourth
Tift”, However, horizdntal displacements increase after the
.fourth lift. The stra@ns at the shear zone are shown in
Figure 3.13. Severe straining occurs at the ShEar zone due
_’%o gh; weaker material and strain softening behaviour at the
shear zone. ,'." _ ) v

To compare the difference.in behaviour of the

elasto-plastic strain softening model afnd the eléstic

o : , .

brittle plas;ié,model, this analysis is repeated using
“identical pargmeters with the exception that tﬁ§ softening
model is repléced by the brittlé plastic model. Von-Mises

~

yield criterion is used in the brittle plastic model with

“ uniaxial yield strength of 31 kPa and residual strength of

26 kPa as in the-soffening médel.‘Figure 3.14 shows the
result of t%e brittle_piastic model. The transitipn zone
from theApéak strength to fesidual strength along the shear
bénd‘disappéars becaus# of the brittle behaviour of the
material. The extent of the softening zone is very Similar‘
to the strain softening medel. Even the initiation of
yielding occurs at éhe same step. As befo}e, ﬁhg mobilized

strengtH’dgcrqases‘very rapidly beyond the toe of the dam.
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3.7 Conclusion

The preceeding two examples have demonstrated that
shear band deformation and propagation can be captured using
the elasto-plastic finite element formulation for situations
‘where either the location of -the shear band isnprescribed or
15 not presoribed; To obtain the solution of an analysis
with strain softening material behaviour requires
considerable patience and computer resouroes. The material
itself is inherentlv unstable‘and therefore requires a large
number of iterations for the numericalAsolutionlto converge.
Before introducing the stress calculation‘methods discussed |
in Aopendix,A, the solution process often oscillates and
sometimes diverggs because of the error introduced during
lthe iteration procedure. Using the new methoos of stress
calculation, the convergence rate is often very fast but
sometimes when the increment of load introduces extensive
yielding and large propagation of the shear band, the
convergence rate can be_quite'slow. Physically this
‘represents the release of a large amount of energy‘and-
. energy redistribution, which must be absorbed by tﬁé, |
adjacent media‘in order to maintain overall stability'TThisf
absorption process can be very slow if it 1n turn tr;ggers
further release of energy. In numerlcal models, such
processes require con51derable red1str1butlon of unbalanced
energy and hence requ1res much computatlonal effort.
However ‘due to the rapig rate of advancement ‘of modern

Pe

computer technology, ese obstacles w1ll gradually be
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minimized. The formulation and solution procedure
nevertheless provides a viable method for modelling the

unstable behaviour of the strain softening material and

. shear band deformation.



.4._HYPERBOLIC STRAIN SOFTENING MODEL

4

4.1 Introduction 4 S .

The strain softening model introouced in Chapter 2 can
be used to simulate material with gradual post peak strain
softening‘oehaviour. However, this model has'only two
material. parameters (A and B) to describe the‘stress strain
relationship~of'the material. fhese two parameters are oftenl
Afelatedtto the peak and resfdual strength of the'material.
Once the peak and re51dual strengths are spec1f1ed the peak
| straln and post peak softenlng behav1our for the materlaI
'are determ1ned and cannot be var1ed 1ndependently Thxs
model is therefore restricted to only one stress straln
relationship for one value of peak strength and re51dual
"strength Ideally 1t 1is de51rab1e to spec1fy the peak
strength, residual strength, peak straln,and post peak
softening behaviour independently, inrorder to nodel‘a
varlety of stress strain relat1onsh1ps. The br ttle plastlc
model d1scussed 1n Chapter 3 has relleved ‘one restrlctlon

-

from the Prevost'straln softenlhg model. Peak strength

P

rre51dual strength and peak straln €an be spec1f1ed ‘H_,”

1ndependently 1n the brlttle plastlc model Thls model can
4

also be’ ‘used. to model frlctlonal mater1al w1th re51dual
"_cohe51op and frlctlon angles dlfferent from the peak values.,
The abrupt decrease in strength after peak 1s an,

~approx1mat10n to the extremely brittle behav1our of some

Asen51t1ye 50115,-Howeyer, not all_s01l:is 50 sensxtlve and :

. : . .
. <. . .

] R R 'i R



‘behaves elastlcally up to a peak value ‘and then the shear
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this model lacks the ability of prescribing the post peak

softening behaviour of the material. In this chapter another
strain softening model will be introduced which will allow a

more precise description of the stress strain relationship
o .

of the material.

5. AN

The‘new model hasically'aSSumes that thelmaterial'
v
strength decreases gradually after peak ThlS ‘model will

requ1re four parameters to describe the materlal namely,,

'the peak strengtn “the res*dual strength the peak strain

(strain at peaw strendth) and the rate of post peak ., ,

Usoftenlng Unlike other straln softening models 1ntroduced

by some authors who often assume pseydo elast1c behav1our

after peak or constant rate.of SOftenlng after peak in

- plasticity‘models (Hoeg and Whitman 1968), this ‘model is

- based on the plaSticity formulation discussed earlier with a

e

variable rate of post peak softeningJ‘The post peak,
behav1our is. approx1mated by an 1nverted hyperbola'

asymptotlc to the re51dual strength value Lo (1972) has

o used the hyperbollc relat1onsh1p to model the post peak

softenlng behav1our of 5011 Under 11m1t equ111br1um

condltlons. The straln measure used 1n hlS analy51s was

i taken to be the total straln less the peak straln. The model
‘-fwhlch w:ll be presented 1n thlS chapter adopts the: plastlc' |
lftstraln to be the Straln measure 1n the formulatlon of theb
4.“ff1n1te element model Before dlscuss1ng the appllcab111ty of

..the model 1n de5cr1h1ng the post peak behav1our of a real

#
’ .
*
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soil, the theory of the model and relevant finite element

formulation will be presented. Results from laboratory tests

°

wili be used to .demonstrate the validity of the model and
methods of ohtaining paremeters for this model from
conventional. triaxial tests will be discussed. Sihce this
model‘uses a hyperbola to approxfmate the post peak
softening behavieer of the soil, it will be termed the
nyperbolie Strain Softenihg Model'..Although the present

model is restricted to frictionless material, extension of

the theory to -frictional soii shouid not be difficult.
2 .

4.2 Theory of the Hyperbolxc Strain Softening Model
I
The hyperbollc strain softening model assumes llnear

/
elastic behaviour for deformation prior to p trength.

Generalized Hooke's Laws will be used for elastic.

/

deformationahht peak strength, yielding is defined as:

where N
g = V3J2 H @

.. = uniaxial compressive peak strength.
‘ Sl L . 3 ,

The strength of the" materlal decreases gradually after peak

and the y1eld functlon 1n the post peak reglon is deflned :
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as:
r - ¢
F.=qg -« =0 . ' . (4.2a)
where _ i
: : . .
kK =k (1 - ) (4.2b)
p .a *+ be
and
P P
e =1 de = equivalent plastic strain ; (4.2c)
P 2 p P
de = ( ~ de,,de,, )" * ;
3 o .
PP
deij = df,jv_ dfkké,J/B;

P -
de;; = increment of plastic strain tensors;

and a and b are material parameters.

RS : o : :
At peak strength, ¢ = 0, Equation (4.2) reduces to Equation

. P . »
(4.1). At very large strain, € =.o, the shear strength

should approximate the residual strength of the material.

' - _P , - ‘ _
Substitute ¢. = = into Equation (4.2), the yield. function
begomesﬁ, |

(4_.’3)

)
1
a
!
&
"
(e

- where L . "5 - . :',;, ) . b R .



- Therefore,

b=1/ (1 -k /k) (4.4)
r p

Recall that the brittleness index I is defined as:

B &

I = (k - xJ)/k =1-«x/k , (4;5)

thus the b parameter is simply the reéiprical of the

-

brittleness index:-

“b=1 /1 . | . (4.6)
The b-parameter depends‘only on the amount of softening of
the material. The significance of the a parameter can be

. .
found by differentiating x with respect to'e¢ in Equation

(4.2). One ob-ains: z
¢ S0k : p . ’ .

—p = -a k /(a + be )2, : (.77

- de .. P : o .

.. P 3 -
Let ¢ = 0; :

ok LA ‘ o

af E /a ' : ' : o

: In‘othgrﬂwordslx'/a'is the tangent of the initial slope of.
. L p . B .

’the_post‘peak stfess strain reiatibnship ofithe material. A

o
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typical stress strain relationship of this model and the
meaning of the a and b parameters'are illustrated in Figures

4.1 and 4.3.

4.3 Finite Element Formulation
. v
The finite element formulation is similar to the
Prevost softening model discussed in Chapter 2. First the

comgistency condition is expressed in terms of the

equivalent plastic strain as:

oF oF 3« P » .
dF = <—>{do} + — —P de =0 (4.9)
do Ok Oe¢
where
_p -
de = AQ;
/2 3Q 8- 1 2Q  aQ
0 = /—( - - )
A v 3 d0,,; d0,, 3 30 mm 00,.
N : i
Q = plastic potential 0V

RN

F for assotiateé-flow‘rule; -
Ffbm Equationw(4.9)i the hardening term in the
elasto-pléstic matrix can be replaced by

e

© 9F 0Q oF dx ‘ . - .
<—_P>{—} = — ——:P Q ‘ . N (4.10)
T de do Ok De : ' T

From Equation (4.2):
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o : P
' By plottlng (e /1 - k/x ) as the ordinates and e %s the

: p
absc1ssae, the y 1ntercept will yleld the a parameter and

oF - :
—_ = - . \ (6211)
oK :
aK‘ \ p o .

and —p = - a k /(a + b e )7¥ , ' (4.12)
de _ P .

Equations (4.10) to (4.12) can then be .substituted into the
elasto-plastic matrii in strffness formulatieh and stress
calculations as discussed earlierg,.
, .

4.4 Determination df.the a and b Paraheter; frem Triaxial

Test Results |

To determine the a and:b_parameters.from triaxial test
resufts,'gquation (4.2b) shéuld be rewittenﬁin'a linear form

as:

(—— ) =a*be ' N VRES

. . p /(\ ) . ., . N
e ' . | \' N : N

~

the slope of the stra1ghﬁ line w1ll ‘be equal to the b

B parameter, as 1llustrated in Figure 4. 2 It can be shown by(‘

‘assuming” a tr1ax1a1 stress condition that the value of K. qu

« 1in Equation (4 10) are the current dev1ator stress after

o -
peak and the dev1ator stress_at peak strengthvrespect1vely.v

‘That is

K.'¢%(Q1.- 03) k=hé_ at peak strength _ 7  4.u -“(4,14)ﬂ’
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kK = (6, - 03) = 04 for.post peak detormation (4.15)

To determine the eguivalent plastic strain, it is necessary
T
to determine the total and the elastic strains. The plastic
¥ v . <

. \ . i -
straln is given by:

- ‘ (4.16)
where ' v s
E . A _
€.,, €,, are the total and elastic strain tensors

respectively.

Defining:

m
I}
—_

de,y v - ' (4.17)

where

(2/3 de, ;de;,)'"* ,

s,

délj
and de;j =deij -dfgkél,'/B ’
it can be shown that by assuming ‘fuqlly‘undrained triaxial
stress condition and de,, = dey;: -

dey = 0, . e - "~ (4.18a)

anz' dfzz =( df;gy = -1/2 d.€|1 ,- .. ., ' . .' (4.18b)‘

&
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. equivalent plastic strain is givéﬁ
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the equivalent strain e can be expressed by the uniaxial

straln as:
€ = €4, = €, (4.19)

The elastic strain can be calculated using Hooke's Law as:

S

e, = (0, -~ v( 0, + a3 )I/E | | (4.20)

-
: /?
ar
A
.

and'assumiii-fhat o, = 0, and v = 0.5 for undrained

énaﬁysis, then:

E 0, =~ 03 9
¢ = (4.21)
-~k
| E P
At peak strength (o, - 03) = (0, - ¢,) and e, = ¢ and e,
~= 0 prior to peak streqgth, therefore the elastic modulus
can be determined frygg/ equation (4.21) as:
(01 _03) R . .
E = ————f . . (4.22)
. ‘€ ~ - . - )
p L ]

CR.

To determine the plastic’strain for Equation (4.13), it can
be shown by assuming de,, = 0 for frictionless material and

p . , : -
de,s = - de,/2 under triaxial stress state that the

T o : .
by: . E o
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P P p E
€ = €474 = €47 = €41 T €,
..
= €, _'(0‘ - 03)/E (4.23)
where
(0, -0,) is the current deviator stress after peak as,
illustrated 1n Figure 4.3. v
o "‘.
When (o0, -03) = (0, -03) , the total strain is equal co the
) o .

A - . . .
_elastic strain and e === 0. The peak elastic strain is always

greater than the elastic strain after peak for 'strain
softening material. By'using Equation (4.22) to find the
elastic modulus and Equation (4.23) to find the plastic

strain, a normalized relationship can be plotted using

Equation (4.13).

If anisotropic consolidation is used in the triaxial
test, the methodiof calculation of the eélastic modulus will

be slightly different “To calculate the elastiC‘NOdulus,'one

.must choose the datum for the strazn to be the state of

isotropic stress condltlon. However, very often the stralns

are measured from the end of the consolldatlon process, ‘

therefore it is necessary to calculate the 1n11ta1 stralnr

‘which was caused by the appllcatlon of the deV1ator stress

‘durlng the consolldatlon process. Let ko be the ratio of

gs/0%, wvhere the superSCrlpt b denotes the quantlty\at the

end of thé”conSolidation.protess. Therefore the initial",

. ¢ :
strain can be calculated \from:

3

\
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x/xp (01-~03)/(0,-0,)

Peak Strength
1.0 - v

tan (-« /a)
.Tangent of

Post Peak Curve

Residual Strength
Elastic Unloading -
and Reloading

‘ ¢

™

.o F . . . : . \‘«A;
Co : . o : N

Figure 43 Stress Strain Relatioash.ip for thes »
S _ Hyperbohc Strain So temng Model '
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€¢ = (0% - 0*)/E = 03(1 - Ko)/E ' (4.24)
and the total strain becomes:

€1 = el + e, L L (4.25)
where
e, is the strain measured from the end of the
consdlidation process as illustrated in Figure 4.4.

‘

The elastic modulus is then calculated from:

(0, - 05) - (0% - 0%) .
E = . £ — - . . (4.26)1
€ N
, L P
and therijﬁggzl strain is given hy:
s S s
: . T )
: o} - 03 ; ,
€ = —_-—E‘_ ‘\ - ¢ ~(4.27)

Q .. : R ‘
After»determlnlng eo, the total strain should be referenced

to the zero straln state correspondlng to the 1sotrop1c'
stress state. Therefore the total straln calculated by

Equatlon (4.25)- should be used in calculat1ng the plastlc

’straln in Equatlon (4 23)
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(0]’03)

// (01“03)0)/€peak
oL
/7
—a
L LA - —
. '61
_ peak -
o e}v S € ‘
€y )

| Figure 44 Calculation or Strains and Elastic Modulus
| for Anisotropic Consohdatmn - '
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1

4.5 Triaxial Test of a Stiff Brittle Clay

A series of triaxial tests were performed by Mr. Andre )
Chan (a Ph.D. student at the Unjversity of Alberta) on‘a
'stiff clay obtained from a site,lccated about 65 km west of
Edmonton. Conventional consolidated undrained tests were’j
perfermed with stress strain relationshipsbshonn in Figure
4.5. The water contents and Atterberg limits of these |
samples are gl;en»in Table 4.1. The test results are also
plotted on the normalized plot using Equation (4;ll) as
shown 1a Figure 4.6. It is noted from Figure 4.6 that"thej‘~
postupeak'deformation’closely follows a~straight llne on the
‘normalized plot which indicates that the assumption of a"
'hyperbola in'the post peaeregion is valid for‘this soil.
There are SOme'points close to peak strength which do not
follow the straight line because there"is a changevpf
curvature of the stress straln curve 1mmed1ately after peak
fstrength whldh cannot be approx1mated by a hyperbola
However the ma]orlt; of the _post peak deformatlon closely
-ffollows the" hyperbollc relat1onsh1p The ‘a- and b parameters

“for all four samples are: ngen in Table (4 ). It is found

& that the br1ttleness 1ndlces determlned from the peak

strength and re51dua1 strength are usually sllghtly 10weri
'“than those calculated from the-b parameter This 1is because
‘the re51dual strength calculated from the hyperbol1c straln L
so{tenlng model assumes that resxdual strength is reached

}when the plast1c straln is 1nf1n1te. Slnce the re51dual

/_strength 1n actual stress straln relat1onsh1ps 1s obta1ned

By
t
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from a strain less than infinity, therefore in general the
value of I calculated from the b parameter is larger than
B

the value from x« and x . There are, however, occasional
. r p .
exceptions as shown in Table 4.1. The I wvalue calculated
B

from the b parameter should be used in the analysis.

4.6 Comparison of Finite Element Results
To 1nvestigate the assumption of the hyperbolic model

and alsc to verify the finite element formulation, the
triaxial test 1is simulated using the finite element mgdel.
The %est'wés conducted using a specimen of 76 mm high and 38
mm dilameter. By:considering the symmetry of the specimen,
only one quarﬁe: of the specimen neec be analyzed. One
8~node is&parametric rectangula;»element is used to model
the specimen. | .
- The analy;is consists of applying an iﬁifial all at;und
pressure  to simﬁlate thé consolidation part of the
experiment. Since the yield criterion is independ;nf of fhe
hydrostgtlc component'bf_phe stress tensor,‘the application
of the confining pressure will have no éffec; on the. |
jyieldinéfof the ﬁateriél; An excepﬁion occur$»wheﬁ the
specimeﬁ is undergoing anisotropic'consblidétion suchra§ 
speéimen‘numbert4 which i§ subjected to a ko value of 0.6
" during cbnsblidation;‘Aftgf.thg application of the cgafih}ng_3
pressure, the'axiai strain is inc}eaééd beyéné"failufe‘and
-intd thetpostvpeék softening range. Thé parameteré used in
tﬁe anaggses are given in'Table‘4;1;-Thé réSuits of'the  |

|
.
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analyse’s are shown in Figure 4.7. It is seen from Figure 4.7

S U . , .
that the post peak softemng region of the stress sWfmin

curve follows a nypgrbola curve w1th reasonable accuracy
LA
especially for\Q 1k0 kPa and 123 kPa For ¢ = 140 kPa

the shear strength of ‘the clay increases after reachlng a
» ,
mininium value of ab0ut 65 kPa. This type of behaviour cannot

pe modelled by the nyberbblic strain softening relationship.
.However tbe increase in strength is usually not very large
and canfbe negiected for all practical pnrposes. The
pre-peak deformation for the real .soil behaves in a
non-linear manner-while the model assumes linear elastic
" behaviour. This introduces soméxerrorwin‘pre—peak
deformationt However, the predict{on of\%ielding or peak

strength is not affected by the'linear elastic assumption
\

\
because the peak strength and the correspondlng straln are
Andependent quantities in the model. T e analxszs here'

1nd1cates that this model yields promlsfng resub@s for

Amoaelllng the post peak deformation of an\actual\straln

. : - \
softening soil.. v V%
, A . S \ E
\ \ N
4. 7 Bear1ng Capacxty Analys1s of Strazn Soften1qg Maté&1al
: N\
To - 1llustrate the effect of progre551ve fa1lure 1m
¥

more realistic engineering problem using the hyperbollc

strain softenlng model a str1p fQotlng w111 be analyzed

Bearlng capac1ty of a footlng 1s a%k;nterestlng and

V.
R

challenglng problem in plast1c1ty and soil- mechanlcs because
{

the:fa1lure of a footlng 1nvolves,p1ast1c flow around the
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s

footing, stress concentration at the edge of the footing and.

a hydrostatic compression zone underneath the footing. The
limit load for a perfectly flexible footing on frictionless
material can be determined from a %1ip line field.and sSince

the upper and lower *bounds of the footing pressure coincide,

this implies that the bound solution gives the exact

®

coilapse load for a rigid plastic material.

The footing being. analyzed in this chapter 1is a

perfectly smooth, rig¢id, strip footing. In many bearing

capacity analys footing is often assumed to be

’perfectly flexible. This results in a uniform pressure

: N J : ,
underneath the footing. By assuming the footing to be rigid,

A .

the pressure distribution will not be uniform and one may-.

expect stress‘concentratibn at the edge of the fpoting; The

reason for analyzing a rigid footing rather than a flexible

’

footing is beCause the displacement of the footing can be

specified in the analysis instead of prescribing a uniform

pressure in the case of a.flexible footing. Prescribing the

displacement hot*only results in. a more stable numerical

solut1on in most cases but, more 1mportantly, it enables one -

:‘to determlne the post peak response of the system If.

'pressure is prescrlbed the footing w1ll collapse when the

’l}m1t lpad 1s.reached ‘and it is not possible “to obtain a

numerical solution or any -solution after peak. However if

diSplacements are preScr‘bed 'the'pressdre'distributlon »

underneath the footlng varies in such a way. as to mazntaxn

3

equil1br1umqof ‘the system after the: collapse load is .

i
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reached. This point has been discussed in some detail in
Chapter 2 of this thesis.- ' -

The width of the strip footing that will be analyzed
' here 1s 10 feet énd the‘depth 0f the 501l underneath the
footing is taken to be 150 feet. A no slip b0undary
condition is assumed at depth 150 feet. More elaborate
analyses of the bearing,capacity problem of the strip
vfooting will be given in Chapter 5 in stuéying the effect of
the'propagation of the plastic zone and the pore pfessure
effect. Therefore details of “he finite element mesh and the
rationale for determining the size of the foundation soil
;rs giveh.in the next chaéter. As i1llustrated in Figure
5.14, 229 B-node isoparémetri; elements with 736 nodes wiph 
a 2x2 inggération'scheme are used in the analysis. Very
small elements are used near the footing to model
accurately, the rapid variation of stresses in'this region.

.Thesoilgunaérneath the footing is assumed to have a
peak cohesion of 1440 psf and residual cohesion of 7é0 psf
which gives a brittleness index of 0.5.. The material is
assumed to be frictioﬁless witb a Poissqn'é ratib of'0.499
to model the fully undrained cohdition.u |

Five separate cases will be ‘considered. The first case
asshmgs>that fhe ﬁate;ial behaves in an elastic perfectly
plastic maﬁher with a cohesior equal to_1440vpsf.:fhi§ will
give the uppér,iimit of the bearing,capaéity of‘the footing.
- The seéoﬁd, third and fourth cases assume stéainvSOfteniﬁg

- behaviour after a peak cohesionAéf 1440 psft i5'reached with

¢
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the residual cohesion of 720 psf with different rates of
post peak séftening.lThe second case has the highest rate of
softening with the a parameter eqdal to 9 and ‘the third and
fourth cases have a more gradual rate of softening with a
values of 27 and 81 respectively. The flnal Caselassumes the
material behaves in an elastic plastic;herfectly manner with
peak cohesion of 720 psf. This will give the lower limit of
the bearing capacity of the footing. The strain to peak
strength for all fiYe cases.is equal to 3%. The stress
strain relationships for all five cases arejshOWn on figure
4.8. ' .

The pressure displacement responses of the footing for
all five cases are shown in Figure 4.9. The limit load for
cases 1 and 5 are approxi%ately equal to 8875 psf and 4272
psf at about 6 ft settlement respectlvely The limit loads

are still increasing at a very slow rate as shown in Flgure

\]

4.9. This limit load is slightly higher than that calculated
using (ﬂ+2)CU for a perfectly flexible footing-due to the
constralnts 1mposed by the rlg1d1ty of the footlng The

maximum pressure for cases 2, 3 and 4 are con51derably lower

than case 1 but hlgher than case/S/ Case 4 shows/hlgher
\
footing pressure than case 3 Whlch in turn is hlgher than

case 2. Since all 3 cases have the same peak and‘xe51dual

strengths, the only dlfference among these cases is the rate

-

of softenlng after peak. A. h1gher rafe of soften1ng results

~_ I .

in a lower maximum footing pressure due to the development

of the plastic zone and partlal failure underneath the
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footing. For a more brittle material, in the sense that it
reaches the residual strength faster, the localized yielding
results in a ‘larger release of’recoverable energy and ahus
leads to'an earlier collapse mechanism as well as a lower
max imum pressure The effect of progressive failure is
clearly 1llustrated in Figure 4.9.

Figure 4.10 shows the development or the.plastic zone
underneath the footing at different stages of thetanalySis.
The footing'displacements arefselected at 1.5 ft, 2.5 f¢t,
3.5 ft and 4.5 £t or as clcse to these values as possible to
give an idea of the yield zone at pre-peak, near peak and
~post peak deformation. The dots shown ‘in Figure 4.10
represent yielding having occurred at these partlcular
locations. These locat1ons are selected at the Gaussian
point of the elements. Therefore, the spacxng of the dots is
depeddent .upon the size of the element. It is seen that,for
the elastlc perfectly plastic cases, cases 1 and 5 the
yield zone is in the shape of a by b that extends to"
approximately 3xB before reachlng the maXimum_footing
'pressure,'where'B ls the width.of‘the footing At the
ultimate load, a tr1angular wedge is. formed close to the
ground surface and the shape and sizes of the: y1eld zone for
cases 1 and 5 are very sxmllar although the shear strengths
: for these two materlals are dlfferent For the stra1n
softenlng cases, the extent of the y1eld zones are
Hcon51derab1y smaller than the perfectly plastlc cases. The

,Yleld zone 1n1t1ally extends downward and then spreads
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. ) . »G
laterally. However, the lateral extension i's followag_by

"unloading of the plastic zone underneath.the'fOOtingt

. Eventually only a small plastic zone remains at the surface
during post veak deformation. It seems that the more brittle

-, : : \

is ‘the mafet?al, the smaller is the post peak plastic zone.
More discussion of the deve;ppment of.the plastic zone under"
a footing will be giVeh in next chapter. )
The results in Figure 4.9 have another important

- i

implication. Since the‘peak strengthrof the material for

‘cases 1 to 4 are ail the same and the re51dual strength for

cases 2 to 5 are aﬁg the same, the dlfference in limit load
for cases 2 to 4 is mainly due to the different rate of post

] ’ .

peak softening of the material. Therefore, the determination
of the maximum pressure of the footing is not possible

sihply based on the peak and residual strength alone without

knowing the post peak strain.softening characteristicshof ’

' the material. Another point is that by observ1ng the limit

'.load of the footing, the calcﬂlatatlon of the peak strength
of ‘the materlal 1s'1mposs;ble without a knowledge of the
post”peak'softening'behaviour, This is because the
(proéreSSfVe ﬁeQelepment of the yielding zone is dependent
upoh the_tate of’pbstjéeak seftehinq. |

One’may'eitehd the.above argUment to the testing of‘

Stlff clay us1ng tr1ax1al and shear box apparatus. Slnce in

‘Vtrlax1al or shear box testlng, one is obServ1ng the reSponse

of a system whlch is composed of a collect1on of 5011

’ part1cles, from whlch the stress strain relatlonshlp of the
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material at a point are.deduced. The results here sho? such
a deduction for a strain softening meterial is impossible
)whenever progressive failure occurs4in the sample. Thus the
stress strain relationship ohtained from the 1aboratory
testing of a strain softening matenlal do not give the true
response of the material at a point, it is simply the
response of the sample ano, Strictly speaking, cannot be
generalized to other situations. ?ortunately, the obsg¥§ed
peak strength from_the test is always lower than the actual
peak strength‘of the'material and cne is on the safe side as
far as design is cohoerned. This point can be further
_clarified using the uniaxial compression test example_in
Chapter 3. The material in this example'is assumed to be
elastic brittle plastic with the residual st}ength'beingg
lower‘than the peek strength. However, in simulating the
uniaxial test the observed load displacement response
resembles that of a perfectiy plastic matetial with no
"éecreese in strength after peak. The meximum‘mobilized
strength is actually at re51dual The reason is due to the
abrupt decrease in strength after peaﬁ.of the actual |
material and the effect of progre551ve fallure occurrlng in
the sampl° which glves a lower system”response. By u51ng the
result from thlS test in deduczng the strength of this
materxal the observer w1ll conclude that the materlal has

no softenlng behav1our and report a lower shear strength

-—than the actual peak strength of the materlal..

v

#
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4.8 Conclusion
The hyperbolic strain softening model presented in this
chapter enables one to analyze prog;essive failure of so1l
structures with realistic stress strain relationships. The
‘formulation of this model is relatively simple and the
ﬁaterial-parametérs can be determined quite readily from

- i

triaxial tests. Much has been learned from the exercise of

4

the bearing capacity problem and it has been demonstrated

' v
clearly that the effect of progressive failure can change
the bearing capacity of the footing drastically.,B The amount

and rate of post peak softening are equally important to the

behaviour ¢f the soil structure.
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5. EFFECTNVE STRESS APPROACH OF UNDRAINED ANALYSIS
O

The effective stress principle is one of the greatest
discoveries in soil mechanics. Since it is known that soil
behaviour is dependent upon effective stresses and not total
stresses, there 1is a need in numérical modelling to analyze
soil deforﬁation in Eerms’of effective stresses. It is often
assumed in the anaiysisltﬁqt“soil.is elther under fully
drained or fully undrained conditions. Sometimes when !
neither assumption can be made, the effect of pore pressure
diffusion must be considergd. Undg;/fhlly dréihed .
conditions, the pore pressure remains constant and any
change in total stresé mqu‘be accompanied by a? equal
change in effective stress;rHowever under fully undéaiﬁed
condition the‘pore pressure 1is not constant and the chahge
“in pofe‘p:essure is a result of soil deformation.-The
deformation“qf the soil is, in turn, depenaent upon the pore'
pressure. It is often assumed in the total stress analysis
that‘ghe undréihed parameters determined from la?oratory
_tests ean,be usea in the field. This‘implies that the pore.
'pressure generated in the laboratory expefimént will be the
same. as fhat of the soil'at‘the site. Howe&e;, sincé the

# .

- generation of pore pressure .is dependent upon the

deformation of the soil and streSS'histofy, this'assump:ion
cannot be true throughout the soil mass. It is-the purpose

in this chapter to intréduce a finite element formulation
for<‘hlly undrainéd'analyses in terms of effective stresses.

-

139
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For the case where there is significant pore pressure

~diffusion and the fully undrained assumption cannot be made,

the SOlUthﬂ to this problem has been studied (Hwang 1971)
and will not be considered here.

i; Many finite‘element formulations for undrained analysis
have been proposed (Hwang 1971, Desai C.S. 1977). Most of
these analyses relate the change in pore\pressure to the
change in volumetric strain under fully saturated M
conditiohs. In conventional geotechnical analysis the change
in pore pressure rs normally related to.the change in total
stress using the Skempton A and B pore pressure parameters.
These parameters can be measured in the laboratory and the
range of values of these parameters reflects different soil
conditions which are familiar to geotechnical engineers.\}he
following fsrmulation ultiiizes these parameters although
they are  in fact Henkel's parameters which can be easily
related to the Skempton parameters (Henkel, 1960). This

formulation can be used in fully drained and fully uhdraihedh

analysis.

5.1 Undrained Finite Element Formulation

The elasto plastic formulation discussed in Chapter 2

AWIll be used here. Therefore the material model can be any

one of the'modeIS"discussed in this thesis. In‘fact there

is very little restrictlon on the constitutive relationship

'ofﬁthe material but. obv1ously the assumpt1ons made - 1n the

plast1c1ty formulation in Chapter 2 will also ‘be applled
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here. To formulate the problem in terms of effective stress,

the change in total stress must now be separated into the

change in effective stress and in pore pressure. These are

given by:

Ao',“= AU,, —6.1AU v \

or in matrix notations:

{Ac0'} = {A0} - {m}lAu :-EH’_
4where |

{Aa } is the increment of'effactiverstress;
i.e {A0} = <lo0,, Ao,,, BoL,, Oo0},; ODo,,, Ao;z>T;

Au 1s the 1ncrement of pore pressure;
o \'\ . g .
<m> is a vector defined as

—

<m> = <1

The pore pressure generated due to the changes 1ﬁ total

stresses can be calculated\B Henkel‘1960):

Au = —(Ao,+A0,+A0,) - ' -
3 27A ,
o 1 4 ‘ !
a/?ﬁo«—Aoz)‘+(ha}5Aa})?+{Aa3-Aai)? .

fwhere.
Aoy, Aoz, A03 are the changes in total pr1nc1pal'

StI'ESSGS'

yand,a, ﬁ are‘pore,pressure paramété:s.

(5.2)

(5.3)
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It ig assumed‘that the chahges 1n pore pressure are due to
the following two effécts::
J; Au is' the changeiin pére pressure due té changes in the
segond stress invariant of the stress tensor.
2. Au 1is the change in pore pressure due to changes in

Y

mean hydrostatic stress.

The:total change in pore pressure will be given by the sum

of Au and Au , that is:

a B
>
Au = Au + Au . . (5.4%
a ﬁ
o

In matrix notatlon'

~ay<Ao°>{Ao°] , L © (5.5a)

Au =
a
Au = f<m>{Ac} ;- , “’  1ff (5.5b) -
where g o ‘ o , .
- L
<Qo¥> = <Ae> - —<m><m>{Ag}
' 3

The.negativé'sign'in Equation (5.5a) is due to compre551ve
‘stresses which are bexng con51dered as negatlve quantltxes.
It can easily be shown that. L

'_'b‘

<Ao"> = <Ao‘>‘,", "'; J R S :‘:  ffSiG)-

'-051ng Equatlons (5 2), (5 3) (5.4);”(5§5a);‘(5;5b)} andi
(5 6) one can show thav( ‘ ’: B “i: v-1,_v . 1;7



w
— Au = ————<m>{A0'} - ay<do' >{hAd' 7} . (5.7)
‘3(1—ﬁ) ' : :

Q

. Multiplying and dividing the second term by <ao'>{do'}

results 1n:

Au = <P>{Ao0')] ; _ (5.8)
where "
‘ﬁ‘ N -a‘/<Aald>{A0ld}<A.ol>
<p> = (——<m> - : )
. 3(1-8) <do'>{s0"}

-

-

Note that for f=1.0, which implies incompressibility, the
~ iv} . . .

change in pore pressure is théoretécally indeterminate. It

. :

is because for an incompressible material, any arbitrary

increment of hydrostatic st_( e which is in eQuilibrium can

be supefimposed on the existing stress state.without causing

additﬁonal 5éformat@on. Substituting (5.8) into (5.2) and -
: _ \ <

*

(2.3), the equilibriﬁm equation becomes:

- _"‘I‘ . ' ‘. . [ . .
f tB) [Dl{Ac'}av = {AR} , (5.9a)
LR v N oo , , ‘ ‘ . .
“where = o .

-[D]'».= (1] + .{‘m}'<P> (5.9b) .

i -
* ’ 3 - : . N - » . v‘ ’
Expressing the incremental constitutive relationsh#p of the

‘material in terms of effective stresses:

. Ttaeti - fetltaed L sa10)

-

and the strain displacement relationship using isoparametric



formulation:

{ae} = [B1{as} , ‘ | (5.11)
one arrives at the following matrix eguation: #
[(K1{as} = {ar} , (5.12a)
where T ®»
[K] = s [8] [D}{c')(Blav ; : o (5.12b)
v : L '
<Ad> = 1increments of displacement.

{V

Note that the matrix [D] can be éymmetric or unsymmetric.
[D] is symmetric if only the Au  effect is be}ng?cdnsidered,
otherwise, [D] is unSymmetfic. 1f [D] fs unsymmetric, then
[K] is.unsymmetric. However, from Equatipn (5.12b), even if
-[D] is symmétric,‘[K] can be symmetric or unsymmetric. It is
found that for linear elastic materlal .and non- frlctlonal
piastlc materlal w1th the associated flow rule nnglectlng
the Au effect, the matrix [K] is always’symmetrlc. For
frlctlgnal plastlc materlal with an assoc1ated or 2
non-assoc1ated flow rule,_[K] is unsymmetrlc. |
The symmetrlc property of [K] has some 1nterest1ng
1mp11catlons. If [K] is not symmetrlc, not only will it
requ1re a non- symmetric equatlon solver to obtaln a
.solutlon, bgt_1t y1ll,glso violate Maxwell s recipocal
relétionship of stiffness coefficients. Thé principle ,of

~ superposition, is no longer valid even for linear elastic

-

-
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Y

material 1f the shearing'effect of the pore pressure is’to
be conside;ed. Due tg the path‘dependgnt nature of -
eiasto-pla;tic maéeriilu the principle of superposition
cafinot be applied in any eveht. However it is assumed that
in an incremental'analysis, the material is piecewiée
linear. The results here emphasize that the‘correct loading
seguence is very important in 32 effective stress analysis
‘using this formulation.‘It-is noted that thé‘unsymmet;ic
property of the stiffness matrix is due to the generation of
porq pressure due to the shearing component of the stress
tensor because the pore pressure acts in reducing onlyvthe
normal stresses anaAhot shear stresses. Also an iterativef
procedure is\fequired 1f the Au elfect is included since
<P> becomes stress dependent.A *

The formulation of the incremental constitutive matrix
[(C'] follows tgeAsame procedure as in Chapter 2 but all
Sstress guantities must now be expressed in térms.of
"effective stresses. It is noted that.the formulation is
~valid for elastic, elgsto—plastic strain hardening and

softéhing materials. Therefore all of the soil models

discussed earlier can be app1ied in this formulation.

5.1.1 Matrix Solution Scheme

Since thé unarained fbrmulationjrésults in a
non-symmetric§}stiffness matrix, it is necessary to have an.
eéuation solver for non-symmetric matriqes, The plasticity

‘formulation presented in Chapter 2 mayIaISOIrééult in a



146

non-symmetrical stiffness matrix if the non-associated flow
rule is usédh In the finite element program SAFE, a compact
storage scheme called the 'Skyline Method' is used to store
the glébal stiffness matrix. The Gauss eliminétion ptocedure
is used to obtain a solution with this method which was |
initially proposed by Bathe and Wilson (1976). To obtain a
solution of non-symmetrical matrices, it 1s desirable to
have a non-symmetric matrix solution solver which uses the
compacted storage scheme and is akle tonsolve non-positive
definite matrices. For non-symmetrical'matrices a new
'E#tended Skyline method’ has.been developed. For strain
softening material, the stiffnebs matrix is non-positive
definite and caﬁ be solved using the 'Extended Skyline

method'. Details of this method is given in Appendix E.

5.2 Expansion of a Thickwalled Cylinder

The thickwalled cylinder_analyzed iﬁ Chapte? 2 will be
reconsidered here. First, the solutions using the totél-
stres;es are obtained. This wiil.sérvé as~a bésis of
compérison for the efféctive stréssranalysis. Both the
elaStic perfectly plaStic and stfain softening cases will be
- éénsidered. For the eiastfc perfectly plastic.maéerial the‘
Tresca and von Mises yield criterion will be used. For the
strain Softening materfal, the modelldiécusséd in Chapter 2

will be used.
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5.2.1 Elastic Perfectly Plastic Model

The analytical sclution for this problem with Tresca
and von Mises yield criteria have been discussed by Hill
(1953) and Hodge and White (1950). A cloﬁed fdrm solution
" using the Tresca criterion is available. The pressure

displacement relationéhips are given by (Hill, 1953):

c c?

P . . :
— = k(=) + 1/2(1 ~ — ) , , (5.13a)
Y a - b ? : -
u Y(1+pr)c? : b?
—a = —~—[(1 - 2») + - ], (5.13b)
a 2Eb? ‘ a '
where
a - ‘inner radius of the cylinder;

b - outer radius of the cylinder;

Y - uniaxial yield strength;

P —}%g;grﬁal pressure (external pressure is assumed to
be ;é§6);

u - inner wall displacement;

{cé* radius to the elasﬁic—plastic boundary. -

The stresses in the elastic region is given by:

o c* b* . RV SRR
r= - —(— - 1), - - (5.14a)
Y 2b* r* - R - v
for c < r <b ,
o c? b* : : S -
-8 = —(— + 1), : : - (5.14b) . .
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where
o - radial stress
r
A
and ¢ - circumferential (hoop) stress.
X 6 :

The stresses in the plastic.region are given by:

] c c?
~r = =1/2 - In(=) + — , , (5.15a)
Y r 2b? ‘

. - for a £ r £ ¢
o ‘ . c . ¢t ‘ .
—0 = 1/2 - 1In(-) +° . - Co. (5.15b)
Y r 2b? : £

The radius to the elastic-plastic boundary c can be taken as
the i1ndependent variable in these equations and the

'displacements and stresses for different internal pregsures
can be determined. The initial yielding occurs at the inner

radius at an internal pressure of:

¥ - .
‘Po . at . ‘
© — = 1/2(1 - —) . . , (5.16)
_ Y - b? _ N

When,the,Tresc&«yield'critéridn is used, the radial stress
o and the hoop stress o are dlways the minor-and major

Tt e - |
principal stresses respectively, which simplifies the - -

algebra in-obtaining the closed form s@lhtion. No closed

form solution-has been obtained when the von Mises yield

\\

cr1ter1on 1s used and numerlcal procedures are requ1red in

’solv1ng the governlng d1fferent1al equatlons.,However, the

1n1t1al ylelalng pressure using the von Mlses crzter1on can

e

LR 3
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be calculated from:

_ a’ / a‘l .
Wit - —)/ /0 + (1 - 2JY——) . / (5.17)
o b? - ‘/ b+ .

< | o
]

Finite element solutions have been obtained using both
the Tresca and von’Mises criteria for the mesh shown in
Figure 2.3. Figure 5.1 shows the relationship betueen rhe
internal pressure versus the outer-wall dispiacement. The
material parameters used in the analysis are also shown in
>Figure 5.1. The outeh wall d}splacem;nt has been normalized
with respect to the shear modulus G, yield stress Y and the
radius of thevinner wall a. Excellent agreement between the
| analytical and finite element selution is obtained Elastic
unloadlng and reloadxng behaviour of the cylinder are also
shown. It is noted that the y1eld1ng pressure for reloading
after plastiy deformar1on is higher than that ﬁor the
~initial leading even though the ﬁaterial behaves in a
perfecﬁly blgstic manner. ‘The apparent increase in yielding
pressure is net due to the strain'hardenihg'effect but due
ﬂ;to the build up of residual stresses and spreadlng of the
plastzc zone durlng plastic deformatlon. Thus complete
unloading after plastlc deformation will not bring about a
return to the initiai stress free state. V
| Flgure 5. 2 shows the hoop stress dlstrlbutlonb

throughout the cyllnder at. varlous internal pressures using

the Tresca crlterlon. A 3x3 Gau551an 1ntegrat10n scheme is

"used in the finite element solution and ‘the locatlon of the
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integration point may not coincide with the elastic plastic
boundary. It happens that for P/Y = 0.5833 the elastic
plastic boundary coincides with the third integration .point,
of the secon? el=ment but this is net true for other cases.
The propegation of the plastic zene and the elastic plastic
boundary are clearly Shown in Figure 5.2. In the finite
element analysis, the elastic plastic boundaries in many
cases are inside the_element thus making part of the element
elastic and part plastic.(Therefore, in the element
.stitfness formulation, the eIemth will be treated as both
elastic and plastic depending on the lpcationkof the
1ntegrat10n p01nts Such 1s the case fot EéY = 0.4167 as
ﬁg@“” in Figure 5.2 where the first integretion point
(actually the first thtee integration pointe to be preciée)
ate in the plastic region and the remaining integration
-pofntsAare in the elastic tegion. If the elaetic plastic
boundafy falls betéeen the fnteg—ation peinté and the
element bounde?§; then the presence of ‘he” boundary within
“the element will hot be.detected‘by the 1ntegrat10n scheme.
AR example oﬁvthis'éituatien is the case for P/Y = 0.6667 in
Figure 5.2. Since the integrationfpoints are close to the
element boundaryf no‘significant_errof will result if the
elements are smell, - v
COmpletevunioading is siﬁﬁleted in the finite element
analy51s after the 1nternal pressure has reached a value of
P/Y = 0. 6667 The re51dual stress,éigfto.plastlc deformatlon
':is_shown in Flgure 5.2~andupart of the ctijnder is under

3
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‘tension during unloading. Compression yielding can occur if

the cylinder is sufficiently thick and the pressure is high
enough to'cause a large plastic zone prior to unloading.
Reloading is'performed.in which the stress state before
unloading is restored.

. The convergence rate of the finite element analysis is
monotonic and quite rapid. With a displacement tolerance of
0.001 (see Equation (2.31)), only 3 to 4 iterations are
required to reach convergence. Boundary pressure at the
inner wall of the cylinder was prescribed rather than
specifying the inner wall displacement as the other

alternative which would result in an even more stable and

rapid convergence rate,

5.2.2 Undrained nnalysis of Elastic Perfectly Plastic
Material o ; ” . .
In the following section the result of the‘undra1ned
f1n1te element analysxs of the same - cyllnde* is presented
The effectlve stress parameters used in the undralned

analy51s are the same as the parameters used previouly and

- the material is assumed to be fully saturated. Earlier:

dlscuss1ons in thxs chapter indicate that the pore pressure

. under undra1ned cond1t1ons can be separated 1nto that due to

‘the hydrostatlc stresses and that due to the dev1ator1c“

tresses. For a- fully saturated mater1a1 the pore pressure

parameter B w1ll be equal to unlty. Slnce unlty’represents

1ncompr3551b;l1ty whlch results-ln the pore pressure njiTg
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st

undetermined, a f value of 0.99 is used in these examples.
Jwo cases are considered. In the first gase 1t 1s assumed
that no pore pressure is Qenerated due to the deviatoric
stress component, therefore a = 0.0. In the seCOnd case an a
~value o; 0.5 is used to stndy the effect of shearing on the

generation of pore pressure.

The results of the dndrained analysis using Tresca
yielq criterion with an<elastic erfectf} plaétic model are
shown in Figures (5.3) to (5.9). Figure 5.3 shows the |
pressure displacement response of the thickwalled cylinde;
as compared to the fully drained case. The result here éhews
that_the cylindet 1s considerably stiffer due to the nearly
incompressible behavionr of the material. Very little
difference in the reénlt is ogserved between «the case -of a =
0.5 and a = 0.0. Honever, it is noted that the unloading and
reloading path for the case of ad=-0.0 are the same but
thére are noticeable but small differences in the.unloading
and reloading behaviourlfor the case of a # 0. A1though the

materlal is- elnearlv elastlc durlng unloading and rel dlng,

the path dependent deformatlon 1s due to the fact that the

Yy

& 'Yconstltutlve relatlonshlp is dependent upon the stress

K. 1ncrement and becomes non=-symmetric when ‘the dllatancy

"effect is taken 1]&% account for e # 0 as dlscussed earlier.
Theré%ore, unloadlng and reloadlng are performed in several
load 1ncrements for a # 0 but only one 1ncrement is requ:red

-

for the case of a = 0.,
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The effective hoop stresses inside the cylinder at various

internal pressures are showh in Figure 5.4. As eVpected the

effectlve stress 1is reduced due to the generation of pore‘
- pressure. However, it is anterestlng to see that the
‘ .

effective stress remains constant within the plastic zone

V-

while in the drained case it shows an increase in stresses

-

from the inner wall with;n the‘plastic zone. To maintain

i
)

equilibrium, while keeping the effective hoop stress

constant one would expect an 1ncrease or decrease in pore

pressure within the plastze zone., Flgure 5.5 shows the pore

pressure d1str1but1on inside the cyllnder. The pos1t1ve pore

o~

pressure 1in Flgure 5.5 actually means negative pore pressure_

(or dilation) in the conventional geotechnlcal sense. Since

compre551on 1s taken as . negative 1n thlsﬁthe51s, the pore

|

:
{
_ pressure due to compress1ve stresses is also con51dered as L

elastic reglon throughout the analy51s wSlnce the pore

Y

negatlve quantlty. The pére pressure 1is constant in the. f
J

pressure depends on the hydrostatlc strer S only for a-

0.0," ‘constant’ pore pressure 1mp11es consta
[

o
hydrostatic |
stresses w1th1n the elastxc-zone. Examin 1oh of'the - I

they are 1ndeed constant 1n/the elastlc reglon Further

|
/ -
. I
s
]

dlscusszon on the stress path of th1s problem lS g1ven 1n

Append1x A. A total stress plot Bbtalned by combznlng J
{
‘The total str%

/

, Flgures 5 4 and 5 5 is- shown in Figure 5 6,
?.s

agrees extremely well w1th the results from the dralned ¢
l

analy51s. Although the total stresses are the same for th
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drained and undrained analysis,}the strains are different as

\
N

would be expected from Figure 5.3
)
The pore pressiyre generated due{to shearing is modelled

using a non zero a value of 0.5. The results of the analysis

¢

are shown in Figure 5.7 and 5.8. It is seen in Figure 5.7 -
that the pore pressure is notfﬁery different from that for a

= 0.0. Since a positive a value is used, negative ﬁlre

»

pressure (compression is negative) is generatég due to
shearing. This reduces the pore pressure inside the cylinder

thus resulting in an increase in effective stress as, shown

)

in Figure 5.8, In }eality)the a peraneter ﬁey be positive or
‘negative and its values"hdrmaliy vary during the deformation
of the soil.  Therefore, the total pore pressure can be;
hiéhet or lower than that due to hydrostatic pressure

depending on the value of a. Varying the a value .can be
' \ . . . - .
modelled by specifying the dependence of a as a function pf

\\

strain using an algebraic expression or a piece-wise linear

approach. Co

!

wy .
.

5.2.3 Undrained Aha%z?is-of Straiﬁ-Softening Material .
‘The - stra;n soften1ng model discussed 1n Chaptet 2 is

used here to study the effect of soften1ng on the generatzon

-ol

of pore pressure..The materlal parameters are the same as 1n'

’

FSVChapter 2 except that the mater1a1 is under fully undralned

°

' ‘cond1t1ons with a = 0, O.and 0. 5 andfﬁ = 0.99. The

)

brlttleness index. in- thlS case 1s equal to Q. 25 A 51m11ar

set. of results u51ng the strain softenlng model 1s shoun 1n'
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Figures 5.9 tb 5.12. There is very little difference in
response between the drained cases and undrained cdse
because the material is a almost-incompressible (v=0.5)
non-frictional, non-dilating material. However, considerable
pore pressure 1s generated and the effective stress is much
lower than the total stresses as ‘shown in Figure .5.10 to
5.12. Again there are noticeable but small differences in

stresses and pore pressures for a = 0.0 and a = 0.5.

5.3 Bearing Capacdty Analysis ) ' )
In this section the bearing capaédty‘and the load
deformatfon response of a strip footing in a seni—‘nfinite
half space will be studied. Both the dralned and undraln d
analysis in terms‘of total’ and effectlve stresses fom
frictional and frictionless material will’be"considefed.ﬂfhe

footing is assumed to be perfeftly fléxible and'smooth 50 ¢

that the applled pressure 1is unlformly dlstrlbuted over the

Bnentlre grea of the. footing. The 5011 1s assumed to be

we1ghtless and to behave in an elast;c perfectly plastlc

&

manmer. Both the Tresca (o= 0) and Mohr Coulomb (¢¢0)

‘crlterla will be used w1th assoc1ated flow rule. The

objectlve here is to determ1ne the u1t1mate 10ad of the
footxng and to compare 1t with ex1st1ng solutlons and' to
study the propagatlon of the yiedd zone and deformat1on

'response durlng the loadlng hlstory of the footlng The pore

ApressUre durlng plast1c deformatlon is also of 1nterest

r
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- - Figure 5.10; H
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The gﬁastic solution for a strip footing in a semi~infinite
{ - : } . .
medium i5 given by Poulos and Davis (1974). It is known that

the.surface displacement under a strip footing in a
¥ . o '
semi-infinite elastic medium is infinite. Theréfore, only

[

relaﬁdve displacement is meaningful in this case. In the

’

case of a finite element modecl, since it is not possible to
model a semi-'infinite medium with the conventional

ﬁ ~ a0
tsoparametjc finite felement formulatlon, the surface

. -

,-l'igégment ‘wlll thus cepend on th\e size of the foundatnon

7
'belng éon51dered The stresses under the footlng are fxnlte

<
for the case of a semx-lnfjnlte halflspace and ianact the

"maximum shear stress for the elastic case dccurs on a

circular arc with.radigﬁ B/2 below the footiné where B is

3

thg&Wldth of the footing (Poulos and Dav1s 1974). Since it

1s‘hot posslble to have a semx—lnflnlte foundatron in the

f1n1te element model 12 1s 1mportant to ensure that the
size of the foundatlQp is’ large ﬁnough so that the results
are not affected by the f1n1te element boundaries.

One" method of study*ng the boundary effect is to change_

the boundary condltlons at the bottow of the, f1n1te element

mesh and to observe any chang%s ‘in reSponse near tke z'fv

- -a

- surface. If there 1s llttle change 1n)respon5e near the:

;;surface, then the effect of the boundary JS not 51gn1f1cant

*‘1

;tand the size of’ the foundatlon 1s con51dered to be

3

'yacceptable. P o RO i{;,' 1? RO = f

The f1n1te element mesh forjthls study is ﬁhown 1n

-3
F1gur€ 5, l3.00nly half -of the problem is analyzed due to,u

Al . . vl . . ‘_‘ . . . . o - T
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1

- 5.14, It is seen that there 1s practlcally no change 1n”

4

“t®searchers to mlnimnze the boundary effect on the results

170

symdetry about the center line of footing. A plane strain
condition is assumed. The width .of the footing is assumed to
be 10- feet and the depth and width of cné foundation ls
taken to be 150;fe;t or 15?. The total number of elements,
and nodes in this.mesh are 229 and 736irespeotiuely. Eﬁéht
node 1soparameter1c rectangular and 6 'ndde tr1angular
elements with a 2x2 1ntegrat10n scheme were used. '

\

The size of the f0undat10n in thlS study 1s

Afgnsiderably larger'thaﬂ normdlly recommended by other ;

:’,
L.

near the.surface. To ensure the boundaries are far enough

away, a parametric study was conducted_by varying the - -~

a

,boundary condition at the bottom of/ the finite element mesh.

By varying the depth of the foundation and changxng the

bottom boundary from a fixed boundary (no sllp boundary) to.

- i

.«a frlctlonless boundary,‘theechange in dlsplacement at the

k)

surface Can -be observed If the bottom boundary 1s 1ndeed

far enough away, then: a change from flxed td free boundary -t

wlll -not affect the surface displacement at any conszderable )

extent. The results of the analyses are shown in Flgure font

Vo
enter 11ne dlsplacement at a depth/footlng wldth ratlogﬂysf

15 Therefore,‘the depth of the foundatlon 1s taken to bed-‘

150 feet‘ - T ‘"5‘3‘ ?lf o ﬂ t
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5.3.1 Bearing Capacity of ¢ = 0 Material
The ultimate load of'a flex1ble footlng in a r1g1d

: plastlc half . space 1s given by:

First yield: g = #Cu ,- 1(5.19a)

Ultimate load: g = (7+2)Cu . . 3&5.19b)-

' .
where g is the applied footing pressure

and Cu is the undrained shear strength.
- N ) . ’ .

The reéuit of 'the finite element analysis is shown in Figure
5.15. The predlcted ultlmate load lies between 5.14Cu and

18Cu compared with the exact solutlon of (m+2)Cu (or

Lo .
1416Cu) Convergence'rate of-the solUtion-process 1s Quite
l'~ ©

rapid as 1nd1cated 1n Flgure 5.15 except when the applied

pressure is close ta\the ultimatg pressure A smaller load

4

increment.was useg/to_obtain,more stable convergence when
i . . - ’ ) . . N . R i .
approaching theflimit load. The stiffness matrix of the

elements were upd\ted at every 1teratlon except for the case*

" of a footlng pressure of 3.8Cu. It is found that not only 1s

.

the convergence rate‘slower if the matr;x 1s//ot updated at.

every 1terat1on, but also that the convergence

)

characterlstla 1s less stable espec1ally near the 11m1t
v

load A very hlgh&e%ast1c modqus and P01sson s ratzo are

.‘used to mlnxnlze the elast1c deformat1on in. 51mulat1ng the

‘:rlgld plastlc behav1our of the materlal The . amount of

’fdlsplacemenc atvthe surface is dependent upon the size of
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the foondation as discussed earlier and no comparisoh of
results 1is hade here.

Figute 5.16 shows the deeelopment of‘the yiela zone
throughout, the loading histor§‘of thHe footing. The yie}dino
zohe'is initiated at’ the edge of the,footing athabout 3Cu.
The doté in'Figure 5.16 indicate yielding has ocourredzat

Gl
N

that particular integration point of the element.:The exaco
pressure for }nitial'yielding to occur is mCu or 3.1416Cu.
The'fihite element result hes siightly underpredicted this
value. The initiation of the yleldlng zone occurs at the
edge of the footing due to the high stress concentratlon at
this locatlon; At a footing pressure of 3.2Cu, a 7
semi—oircolar yield zohe is developed which corresponds»tox\ﬁ»
the locatio; of maximum shear stress from thelelastio '
solution.. The yielding zone starts p:opagating‘downward-to/ai
depth of 2 B and expands laterally.between depthsaof O.S(g
and 1.5 B. The increase in epacing’among the dots with depth
in Figure 5.16 is due to the increase in the size of the'
elements Therefore the region between the dots has’ also
ylelded A very large y1eld1ng zone of oepth 2B and w1dth 3
B has developed when the appl1ed pressure is close- to the
oltimate.oreésd:ef,HoweQer, the yie%ding‘ioge ﬁo; a footing
oressqre of 5.f4'Cu is‘conteihed by the sutrounding‘EOil

' which.is st1ll eiast1c. Therefore, the foot1ng will not fa1l
uhlees a collapse mechan1sm is formed At an applled

pressure of 5.18 Cu,uthe 5011 adjacent to the footlng has

‘yieldedzggdvthe yieldlng zonevbecomes'untonfined. This.
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results in a collapse mechanism. Note that the adjacent soil
formed a triangular yield zone and shéar at an angle of
approximately 45° with respect to,the horizontal. This is
similar to the failure mechanism postulated by Terzaghi and
other authors in determining the limit load for a footing;

- o Y |
5.3.2 Bearing Capacity of Frictional Haterial‘

Zienkiewicz (1975) published results of.an analysis of

a footing for cohesive frictional material using an
\elasto—plastic finlteVelement formulation. Simmons (1981)
alsoAconducted'similar studies and obtained vér?ﬁsimilar
results- for the limjt load of the footing. However, there is
a con51derable dfffecggde in the development of the yield
zone under the foot/ng in these two cases. In both cases,
the y1eld zones exfended to the bottom boundary of ‘the

/
foundatlon, therefore, the yield zone may be affected by the

boundary conﬁitions being impdsed The bearing capacity

problem is re- analyzed here w1th a much larger mesh to study

D

the development of the yleldlng zone. “

The elastic perfectly plastlc model" 1% used 1n this
-analys1s with Mohr-Cbulomb yleld crlterlon. An assoc1ated
flow rule 1s used wlth fr1ct1on angle of ¢ = 20°. An elastlc;
modulus" of 300, 000 psi and a POISSOD s ratlo of 0 30 are
.assumed The f1n1te element mesh used in the prev1ous

example is- USed here. S . - . _ 'l

-The collapse loads for th1s problem have beén dﬁven by

Prandtl and Terzagh1 as 143 and 175 psx respectlvely Coxf



i

P prev1ous emample A Zx2 1ntegrat10n scheme was used

' : ‘ ¢
(1973) also calculjied the collapse’ load to be 151 psi. Th%

result of the finite element analy51s is shown in Fxgure

(5.17). It 1s noted that re ;s more abrupt than the

case of frlctlonless atefial. Similar behaviour is also

{
{
I

obtained by Zienkiewicz (1975) which is in good agreement

S

with the preSent analys1s The magnltude of displacement

cannot be compared dug to the difference in the size . of the

fidite element mesh. .

N

The development of the yleld zone in. the s0il ‘is shown

in Fzgure 5.18. The yleld zonewls con51derably deeper and

more extens1ve than the case of the frlctlonless materlal

\

The yleld zone ;s‘znnthe shape of a bulb and collapse.occurs

when.&ielding.has‘extended;tovthe ground surface,with the

: . . . : A : .
development of a triangular yielding zone adjacent to the

:

_footlng The angle of " the fa1lure planes in the trlangular

reglon shound be equal to 45 - ¢/2 from slip llne f1eld

solutlonewhlch-+s -equal to 35° for ¢ = 20°. It i5 seen that '-

<

the angle of the trlangular yleld zone 1s smaller 1n thlS

[ -
-

- case than in. the prev1ous case’ but ‘1t 15 dlfflcult to

I}

'/x/conclude that thls angle is 1noeed{35° ‘Also the shape of

the yleldlng zone 1s dlfferent from the re#ult publlshed by
Zlenklew1cz and Slmmons. OT“‘ ‘ o
The above analys1s employed a 3x% 1nt gratlon scheme

rather than 2x2 1ntegrat10n scheme whlch was used in the

1n1t1ally but the convergence characterlst1c was very

,unstable. ﬂhe unstable behav1our may betdue to the presence

g } LI : , i : N I |
l

‘\”
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of spurious energy modes in this.case since the material is
compressible both’elastically and plastically. A very stable
and rapid Convergence_rate is‘obtained‘when the 3x3
intearation scheme‘is used as ili:strated in Fiqure 5.17.
5.3.3’Effective StreSS'Undraihed Ahalysis

An undrained analysis is performedﬂto study the'effeot
of pore pressure on the footingvpressure and the propagation
of the yield zone. The Mohr Coulomb yield criterion is used
and the,éffectiue stress parameters are the same as in the
. previous case. The 5011 is assumed to be fully saturated ’
with § = 0.99 and a = 0.0.

In the’undrained analysis, the stiffnessvmatrix of the
element is‘unsymmetric and'the global stiffness matrix for
this problem requires 389,056‘storage locations and with’
double precision_arjthmetid, the in-core storage exceeds 1.5
megabytes. Thrs amount of storage exceeds the maximum amount 3
available on»the Amdahl compUtér at the University of
| Alberta and therefore the analysis is performed using the
super computer ‘Cyber 205, reoently 1nstahled at the

LR
4

\

. Before performing non-linear elasto—pfastic analysis, a

University of Calgary.

linear elastlc analy51s was flrst carrled out to study the.

generat1on of ‘pore. pressure under the footln due to
\

,fdlfferent values of the pore pressure B parameter. The pore
3 pressure parameter B was varled from O 99 to .0 to study 3 k‘

~the effect on footlng settlement. The pore pmessure

e

e



-

@ ’ B

parameter a was assigned to be zero. The strip footing is
. N o
assumed to be perfectly flexible as in the previous analysis

and the applled footing pressure was kKept constant at 45
psi. The result of the analy51s is shown in F1oure 5.19, ‘The

footing dlsplacement increases thh decreasing value of g

since the material becomes more compressible as f deéreases.

The difference in displacement'for a‘fully'saturated,soil'

with f = 1 and-a perfectly dry soil with g = Olls'asfmuch as
. > A ) “ . L .
70 %. The pore pressure contouts at different f values are

shovn An Figure 5.20. very high pore pressure‘isldeveloped
just underneath the footing.-The stress‘condltdon in this
region is ba51cally 1sotrop1c and the pore pressure belng
developed is close to the footlng pressure. Therefore one\'
would expectuthe effectlve stress to be very low The~

varlatlon of pore pressure is very. rap1d near the edge of

the footlng and-a pressure bulb is developed 51m1lar to the

'stress contour’ underneath the footxng dlSCUSSed earller. The

/ v
- //

pore pressure decreases to about‘lS% of the footxng pressure

" (about 1000 pst) at a ‘depth of about twice the width of ‘the

th1s case..

footlng As the value of ﬁ decreases to 0 5, the pore

/

pressure generated is con51derably less. The 15% contour

+ C

~extends to a depth of 80% ‘of the w1dth of the footlng At a

ﬁ value of 0.2 ‘the 15% contour only extends to a depth of-;{ T

10% of the w;dth Very small pore pressure 15 developed 1n
The result for thls analys*s was performed US1ng a 2x2_

1ntegrat10n scheme. In1t1ally a 3x3 1ntegrat1on scheme was

o
%

<

. »
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L)

used but the variation of porg pressure 'is very erratic for
B = 0.99. This is due to the fact that the element is almost

s incompressible and therefore the 3x3 ‘integration scheme will

2ot lecking. This effect was discussed earlier

e S - hi

JESLLl L2

1

.for material with Poisson's ratio close to 0.5. .
" The result of the non-linear elasto plastic anal;sis 1s

‘ anWh in Figure 5.21.AInitial yielding otgurs at a footing
_urpressure around 20 p51 which is much less than the y1eld1ng
Pressure_ln theﬁfully drained case of over 45 psi. The
inrgxal yzeLdlng pressure is close to that for the !

frictionless matérial of 31.14 psi. The center'lbne
&1splacement under the footing varies nonl1nearly with the

] .. ro
1ncrement or footlng pressure and the convergence of the

problem - becomes very sen51t1ve to the size of the 1ncrement ¢

‘

8f the footlng pressure. Flgure 5. 21 shows that a very small‘~

@

load step was useg to optaxn stable cpnvergence. Although it

se?ms that aglarger load step was applled towards the 11m1t
( . .
Sload ofaB C, the- ;%oad\ ‘incrementjat thlS stage was d1v1ded oo
h -
1nto ﬁﬁny sub- 1ncréments in %&der to obtaln a solutlon.,A,

total of 71 ﬁoad 1ncrements}w§s applled wlth an ayerage of 5

A1

iterations: per load 1ncrement in order to obtain stable t@” 7
convergence characterlstlcs. The number of 1terat10ns

1néreases dra;tlcally towards the limit load Theaextent of
theﬂy1e1d1ng .Zzone under the fopt1ng is shown in F1gdre 5 EZ ] ;
An 1n1t1al sem1~c1rcular ylpldlng zone“ls formed's1m4lar }o‘ ;

ne case of fr1ct1onle§e mat;rlaf.the yleld zone - . éf

subsequenily,extends to a depth of about 215 B befo%e -
: . e T A '
) . X 8 s re

% \.;_ SR ' e A . e .. . ‘ M ‘ . o,
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collapse finallonccurred. The extent of the yileld zone is
much less than that of the fully drained case for the
frictional material and very sihilar to that of the
frictionless material. At ghe collapse load, a yielding zone
6f the shape of a triangular wedge is {brmed adjacent to the
footing but it is diffieult to conclude that the failure
plane of this triangular zone is at 45°.

The pore pressure distribution under the footing is

shown in Figure 5.23.Initially a 'semi circular pore

pressure contour 1is forﬁed with decreasing values away from
the footing similar to the elastic cese. Wheﬁ yieiding has
propagated to about 1 1/2 times the width of the footing,
the shape of the contours is affected by the extent of the
yielding zone and thershape and size of‘ehe elements being

used in that region. Trianghlar elements and larger

‘rectangular elements are used in this region which may

explain the‘rapid variation of the contours in this region.

The abeve analysis shows that a very high pere pressufe
1s deveioped under a footin§ for a fully eatureted soil.
Also the limit load of éhe fooeing is mucﬁ ie@ss than that in
Ie“fﬁlly.drained case. In fact the limit load is very close
o that of the frictionless material of 5.14 C. Slnce the
fr1ct10na1 component of the shear strength is not mob1llzed
due to the generation of the pore pressure, the matet1al

actually behaves as a purely cohesive’ mater1a1 with cohes1on

C'. Therefore the limit load should be equal to (n + 2) C'.
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5.3.4 Cost of the Finite Element Analysis

Due to the large number of nodes and eiements being
used in'this analysis, considerable computer resources uere
used te dhtain one set of results, The CPU time reauired to

% .
obtain a set of results vith 10-12 steps was longer than an

Lhour'on the Amdahl 470 computer. Double prec1sxon arlthmetlc

was used in all of these analyses because 51ngle prec151on
g:.

~_ar1thmet1c does not glve sufficient accuracy for non- 11near

problems. By using the skylwne technlque the amount o;

storage space for the global stiffness has been reduced from

204,900 to 97,947 storage‘locations when eompared with the

-

w7

conventional half"banduidth method. Although.considerable

sav1ng in memory is obtalned in using the skyllne method,
£

"the present memory capac1ty of the Amdahl is not enough for

an undrazned analysis which requires a memory space of
194,528 storage locations (abdut .5 megabytes) us1ng the
extended skyline method. Thls exceeds the max1mum core
memory of 1 megabytes available in the computer:
Fortunately, the use pf the super—eomputer made these

analyses possible.

. | o - /.

5.4 Conclusion

The undralned analyses presented in this chapter enable
englneers to analyze soil deformatlon under fully undralned
or fully dralned 51tuations using,éffective stress”
parameters. This. formulatton 1s unlque in the sense that

total stress pore pressure parameters a- and p are used wh1ch ‘

a
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can be used to provide initial stress coﬁaitions.for pore

190

can be measured guite readily in the laborétorf} Moreover
the pore pressure parémeter B can be le§§ than ohe to model
unsaturated soi;: Although there is no analytical solution
e

to compare with the finite element solution for the problems
presented, the results of the finite element solutibns 7
reveal no contradiction bésed on the present underst-andingc
of soil mechanics..In situations in which fully drained or
fully undrained assumptions cannot be made, tﬁis approach A

pressure diffusion problems.
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6. EXCAVATI&“ BEHAVIOUR OF EDMONTON CONVENTION CENTRE \\
B

6.1'Introductidn : o | ' /\

In previons chapters, two finite eldment formulatlons
and several stga;n softening models have been presented
Numerous simple and;compllcated problems have been studied
to comparevthe finite element results‘with analytical ”
solutions whenever posSible. In this chapter, the strain A,
softening model and the finite element formulation are

applied to a real life engineering problem .to evaluate the

,effectiveness of the preglnt approach. The study will
I

e

R
he behav1otr of an excavatlon durlng the construct1on of .
°

Cl
anOLve a pack analy51s of a well documented case hlstory on _.

the Edmonton Conventlon Center.

The Edmonton Conventlon Center 1is docated on the north

*.\ »

bank of the North Saskatchewan R1ver whlqh flows through the
\

center of the city of Edmonton. Tne constructlon of the
f

(
conventlon center requ1red an excavatlon 20 m deep on the»

t

river valley wall., Tangent plles walls vere’ used to support

the excavatlon w1th 6 levels of pre- stressed anchors
l
embedded 1nto the- underlylnq soil and bedrock The

performance of the excavatlon was carefully monltored to

m1n1nxze the rlsk of damag1ng nearby\structures due to‘

exce551ve deformatlon of the surround1ng 5011 Site
1nvestggatlon had 1nd1cated the presence of . Ehree major

zones of benton1te ly1ng practlcally hor1zonta1 and hav1ng a_

1,
relatlvely low shear strength A f1n1te element model was
£ : . : .. e

AT S 191
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used to simulate the exoavatioh process and it was concluded
that the stability and performance og\the structure were
predominantly governed by the behavioyr of these bentonite

layers. Observations from.the slope indicator measurements

-during the gxoavation process indicatjd that there aad been

substantial movement in excess of' the values predicted by
the finite element analysis at the légést of the three
bentonife layers. It is the objective here to re-evaluate

the finite element model and study the causes of such

discrepancies.

6.2 Geology of the S1te
The city of Edmonton is 51tuated within the Eastern

Alperta Plains in«central Alberta. The North Saskatchewan

River, which flows from the Rocky Mountains to Hudson's Bay,

divides the city‘basically into north and south regions as

shown in Figure 6.1. Extensive urban development occurs on

both sides of the river and slope ihspabiliéies are faifiy

‘common on ;he river valley walls. The general geology of the

tity_and its vinioity has been repofted by Rathol and S
McPherson (1975) and others (May and Thomson, 1978). 'The

domlnant surf1c1a1 features in this area are glac1al e

lanqiorms such as ground moralnes, t111 rldges and a

g;éc1o lacustrlne plaln.

z’-

The glac1o lacustrlne sedlments near the ground surface -

f3are 1nterbedded clay,_51lt and sand’ WIth some gravel and

“focca51onally pockets of dramlcton. The underlylng tlll

) ¢
ST [

- ] SR : . R 4
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deposits are heterogeneous and consists of 40 to 45% sand,
2% to 35% silt and 20 to 30% clay siaes that contain a high
proportlon of montmorillonite. The liquid limit for the till
ranges from 20% to 40% and plastlc limit from 10 to 20% (May
Ynd Thomson, 1978). Water bearing sand lenses are commonly
found in the till. The Saskatcheyan sands and gravelé are
dominantly composed of quartzite rock fragments with small
amounts of chert, petrified wood, coal and clay ironstone.
The bedrock\}5~ba§1cally bentonltlc shale, 51ltstone coal
seams and bentonlre beds of the upper Cretaceous perlod “The -
bedrock 1is cbmmonly referred as the/Horseshoe Canyon
Formation. At greater depths the'Paleozic strata are mainl}
composed of limestones, dolomiteg andievapoﬁities..The
bedding in genera1 dips'south:uestward at a slope of about

three to five meters per kilometer.

6.3 Location of the'Edmonton Convention Center

The Edmonton Conuention'Cenfer is located on Grierson
'Hill on the North Saskatchenan River as shown in Figure 6.
and 6.2. The Convent1on Center 1is 51tuated in an area of

‘actlve slope 1n5tab111ty There have been at least two major
slope,faxlures at the east and west end of _the. Grlergon Hill
area and - the first sl1de is w1th1n the 51te. Tbe ‘time. atl
wh1ch the flrst sllde occurred is not known but is begleved
to be many centurles ago The second sllde whlch occurred

“’about 1905 extends from the east boundary of the sxte‘to

‘approximately the eastern,extremlty of the‘Grlerson Hill
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‘ . L . \\

area. The mode of failure was a transl%tional mction alcng a

s
Ao ‘

horizontal plane.and subsidence at theiprest of the slide

was about 1 to 2 meters. Cobal-mining activities took place

o

at the end of the nineteenth century but were terminated
shortly after the second slide. o

Concerns for the stability of Grierson Hill have

’ .

resulted 1n extenalve stud1es of this area. It was concluded

-that pore pressure, in addition to the river erosion along

’

'ﬂthe river bank, were the major causes of slope 1nstab111ty.

\ ¢

‘A .5 meter- dlameter drarnage gallery was 1nscalled in. 1960

whlch extended 1nto about the;madfp01nt of the'present
\ ' ‘

conventzon center 51te. It has considerably reduced the

s11d1ng act;v1ty in this area. More detalled dlscu551ons of '\X

‘the stablllty of. Grlerson Hzll ‘can be found from other

fpubllcatlons (EBA 1981) . ‘f" S .

»

Jydur1ng the constructlon perlod and 1ts long term
'f7performanceu Informatxon 1s avallable for thls area from‘h
'-,vprevlous Studles of landsllde act1v1ty and also from the B

'7frecord of constructlon of nearoy structures..However, a‘

’ e L4

'2.6 L Soxl Stratlgraphy and Mateqxal Propertxes . o

Srnce the Conventlon Center s1te is an area of

landsllde 1nstab111ty, a careful and comprehen51ve site .

, 1nvestlgat10n 1s cruc1al to the safety of the structure

2 NN

~

v 1, bl

. .‘(’h

_,microscoplc study of the materlal behav1our 1s necessany and

wvldentxflcatzon of zones of weaknesses is cr1t1cal to the

v
L

r}des1gn of the excavatlon._ngh quallty samples u51ng trlple rﬁkn,
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tube core barrel samplers were obtained by EBA Engineering
Consultant Company and a comprehensive report on the

geotechnical(orooerties of the site is available (EBA 1978).

6.4.1 Soil Stratigraphy - . ' o ' ) NN
A layout of the'borehole locatiofp™®

in Figuré 6.2. Several soil profiles have been pryd

“portion of the site is fairly typical of the area. It
consists of approximately 3.1 m of undifferentiated

sand—siltfciay fill with organic jnclusions underlain byﬂ1}7
meters of lacustrine'clayef—silt with low to medium B ,
plasticity Beneath the silt is a hlghly plastic, 'stiff’toa
_very stiff clay to a depth of 8 8 meters. Sandy c&af (till)
of low to medium plast1c1ty is found beneath the lacustrlne
clay to a depth of 15.2 meters which often contains water -
bearing sand lenses.\Saskatchewan sands and gravels are

“found beneath. the £i11 and aboveAthefclay shale bedrock$ -

- The bedrook is interbeddedxshale and sandstone starting'
LY

at an average depth of 18 3 meters. Coal seams and bentonlte; o

layers are found throughout the bedrock to a depth of over

60 meters. “The extent of the bentonlte layers are not kﬂiwn,IV.L'J

‘but there are three bentonlte layers at depths of about 20
\ ,‘_) . :

meters, 30 meters and 45 meters which, from local

' experlence, are bel1eved to be contlnuous The propertles _
) -
and cont1nu1ty of thesegentonlte layers are cruc1a1 to the_ -

P

hS o
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stability of the structure.

" The coal beds are believéd to be continuous atrdepths
of 28,32,39,46,56 and 65 meters. Thelcoal is a black,
'brittle, highly fractured and free draining material with a
thickness varying.from'o 3 to 0.5 m. The bentonite layers
are found to be in co-existence &nd in contact with the coal
and often separated by 10 to 50 mm of carbonaceous shale at
a depth of 39.0m to 45.1 m; The coal acts ae a%drain for
the bentonite which tends to be softened by water.

The lower portlon of the site is more co@plicated;
Instead of finding clay- shale bedrock in the “river valley,

clay-till-sand sequence was found inlsome boreholes. A’

N

careful interpretation of the borehole 1nformat10n was made
and it was concluded‘that the lower port1on "of the 51te has .
been subjected 'to a major landsllde failure. The failure was
a translatlon sl1dzng followed by a sub51dence at'the top of
the slide as illustrated in Fiqure 6.7. The appgoxlmate zone'
of gailure is identified and shown in Figures 6.3 and 6.4. A
more detailed discussion of the lnterpretation of the
borehole informatjon and soil stratigraphy is giyen in a

report by EBA (13978).

'6 4.2 Ground Water
Ground water level is 1nfluenced by reglonal and local

'1nf11trat1on and. seasonal effects. The dralnage gallery

1nstalled 1n the late 1950 s ‘has lowered the water table of

the slope and hence 1ncreased the stablllty. ‘Thirteen

s, . .. oo . . - $

. a
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Failure Surface

. (1) PRIOR TO MOVEMENT

Fatlure Scarp | , )‘

’ /,,] Graben Depression

New Position of Transision Block ——~

(B) AFTXR MOVEMENT

Figure 6.7: Schematic of Tz’anslational Failure - .

- EBA ‘and N.'RM Consultants Ltd.
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. J .
pneumatic piezometers have been installed in this site for

|

the project. PRerched water tables are observed at numerrus

b

|
locations due to the complex stratigraphy of interbedced
; .
\
shale, sandstone, gravelfand coal layers. The ground water

- , / o X .-
table in this area is prObably close to river level which is

well below the ‘bottom of}the excavation for the conventlon

center, . {

6.4.3 Material,Propertieé .

Much oflthe‘informaLioh‘on theéenéineering,properties
of the soils and bedroc‘s rn the Edmonton area have heen
collected: Table 6.1 summarizes the elast;c and strength
'propertiee of the materials-at the Edmonton Convention
Centérrsite.'The elastilc parameters are hased on the

research work on local [soils performed at the Unlver51ty of

Alberta over the past ﬁo years Pressuremeter tests were

-

used to determine the Flastic.modulus (Eisenstein, 1973) and-
|

have been applied to a number of structures with reasonable
. . ! : . [N

" agreement between the | computed and observeépdeformatioﬁ
-‘behaviour; The elasti ‘modulus of the shale 1s estlmated to

. | S
_be 137900 kPa and 1ncrease1Fat a rate of 28959 kPa/m below :

EEY

6.4. 4 Material Propertles of the Shear Zone and Bedrock o
“The strength and deformat1on propertles of the -

benton1t1c shale and benton1te 1n ‘the Edmonton area have

v'beeh measuredfby S;nclalr‘and Brooker (S;nclair‘1967).

# r”“\ K o . . . . R N

»
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,Triéxial*and direct shear tests had been performed under
consolidat%on pressures ranging from 15 to 2000 psi, or 103
to 13790 kPa. Also”Atterberg limits were obtained with LL =
125, PL = 44 ané LI = 0.1 -0.2 for thf bentonitic shale and
LL = 264, PL = 60 and LI = 0.02 - 0.03 for the bentonite.
The effective peak.friction anéle for the bentonitic
shale is about 20° for'pressures below 150 psi (1034 kPa)
with negligible cohesion. For pressures above 150 psi, the
failure envelope beeomes concave downward with'an'effective<
friction angle of only 8.2° and an apparenL cohesion of
aboui 30 p51 (345 kPa). The elast;c modulus for this
maperifl can elso be estimated from the tests. Depending on
the.confining pressure the elastic modulus ranged'fromc
200, 000 kPa at a hlgh conflnlng pressure of 300 k to
"50 000 kPa at low conflnlng péggsures The regults shown
earlxer obtained by Eisentein using the pressuremeter test
refect a 51m11ar order of magnltude of elastic modulus.
These values will be used in the initial finite element
vanalysis. ‘
p Sor'the bentonite‘the‘effective‘peak'friction anéle is
:abOUt 14° with a small cohesion from 0 - BQTkPa for a
conf1n1ng pressure 1ess than. 150 psz (1034 kPa). For a
conf1n1ng pressure above 150 psi. the effect1ve frlctlon
: angle is reduced to 9. 5°:— 10° w1th an apparent cohesion of
S 10 p51 (70 kPa) The residual frlcxlonal angle of the

'bentonlte ranges from 7°'—'8 5 The elastic modulus is

estlmabed from the stress straln curve es-followsa
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Using Hooke's Law and let o; = o, under triaxial test

conditions, one obtains: ' . : Co.
0, — 2v0, .
€r 2"
E .
or
(01 - 0;) + (1 ‘- 2V)03 ‘
E = — _ (6.1)
R €, .-
The elastic mqgulus E can be determined frombthe (o, ~ 0,3)
-vs € plot knowing the confining prssure o, and an assumed
vallie of Poisson's ratio. It is noted that. (¢, - 0,) is the

same in terms of effective stress or total s;resses.
The:efore, if total stress 05 is‘used in equation (6.1),
then E and v are total strésg parameters. If effective
stress o3 is used, then E ana v are efﬁeetive stress
parameters. Undér'fully undrainead conditiong, v = 0.5, the
total stress parémeter-E is independent of the confining
préssure‘o,. .
- . The elas£ic modulus™for theubgntonite~i§ estimated to :
'-be 49,000‘kPa'fofvg % 0;4 éf‘a hi§h>confihihg pressure of
120.psi {830 kPa). This‘value'wiil be used for the aeébest
<'bentoﬁite'shéar‘?one. At lower coﬁfining preséu:es, the

elastic'quulus E is in ‘the ordervbf(35,000 kPa for Q‘= 0.4.
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6.4.5 Excavation for the Convention Center

The construction of the Convention Center required a 20
meter. deep excavation as shown in Figure 6.8. Excavation
began in mid April 1980 and was essentially completed in
December 1980. The excavation is supported by a tangent pile
wall system on the North, Eest and West sides. High tensile

anchors with steel bars-and multiple strands were used to

control the deformation of the adjgcent soi1l. The actual

sequence‘of excavation is given in the report by EBA (EBA
1981). Basically, the excavation for tnelupper exhibition
floor, éigure 6.8,.was performed in‘six levels starting from
the east wall and progressing to the west. nnchors were

“

installed at each excavation level and excavation for the

next level was not allowed until the anchors had been .

stressed to the .designed load. Approximately 235000 cubit

meters of soil and soft rock were excavated.

6.4.6 Tangent Piles Wall and Anchor Support

The 20 meter deep excavation is supported by 312

'téngent pileé on the north, east and west sides. There are

73 piles on the east wali,'154 piles on the northowall‘and
85~pile§‘on the west welf. Most.o‘ the piles were installed

between MarCh 6th and Méy‘30th 1980. The tangent piles»are _

‘stralght shaft concrete plles of 1 meter dlameter and 30

“meters long. The length of the plles vary on’ the ‘east and

west wall dependlng on the surface topography

a
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The piles were installearusing conventional drill rigs with
a lOGé milllﬁeter diameter auger. Casing was used on some
piles to pre;ent seegage and sloughing from the Saskatchewan
" sands and gravels. In general, the walls of the'ﬁfl: holes
were nard;‘intact, dry and clean with‘no significant
seepage. - ‘ ,

| The top of the pile was about 2.5 meters below the
original ground surface. H-piles and wood lagging were used
to subport the soil above the_top.of the tangent piles,"The
depth of the tangent piles were determinéd based on an |

~

elaborate study using the finite element method to provide.
adequate‘supporf to controlbdeﬁormation as well as long term
'.stability (EBA 1980). The tangent p{les terminate on the
sandstOne'ana shale bedrock.just'below the second zone of
Qeakness at an elevatlon of 649 m.(the’City;s'elevation‘is
679'm)l'It was concluded in the analytical study thatfthel
piles are most effective if they terminate‘just below the
second zoneﬂof weakness. To intercept the third (lowest) -
zone\of weakness would req01re extremely long p1les which
;“was-not economlcally feasible. vat '3 g o
Szx levels of pressure grouted anchors were used to
vsupport the tangent p1le wall A total of 1054 anchors were .
1nstalled in whlch 490 anchors are 1 3/8 inch d1ameter
"threaded bars at the first and secqu levels. Depend1ng on .
:‘the worklng load of the anchors, the rema1n1ng levels ' R
Vcons1st of mult1 strands of 16 mllllmeter dlameter cable

A

'1w1th concrete wallng . The. anchors were 1nsta11ed at an angle
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N
of 30 degrees with respect to the horizonttal to a mefimum
length of,approximately 41 m..The first~two rows of anchors
are embedded in till with‘a»capacity of 120 kips/afichor. The

Strest of the anchors are_embeddeo in the shale bedrock with 5
| capacity of 320 kips/anchor.hn grouting eressure in‘the
range of 2 to 6 MPa was.used. All anchors\were stressed to
the required load‘le¥el,before excaeation belowvthet anchor
~level could begin. Due to the consoiidation'and creep
: . : :
effects of the anchors, some enchors; especially‘thg_top 2
levels, had to be restressed. Permanent load cells are

1nstalled at all 6 levels to monltor the long term behav1our

of the structure,

‘6.5 Excavation Performance
The eXCavatlon and the tie back wall system are heav1ly

) “n
1nstrumented _There are 12 slope 1nd1cators,k5 heave gauges,. -

7 piezometers, 15 settlement plugs for the ground surface,
12 settlement plugs for,the tangent p11e walls and o4 load |
‘cells at varlous anchor levels. The locat1on of~some of the
1nstruments are glven 1n Flgure 6 2. A brief d1scuss1on of
the results of the lnstrumentatlon w1ll be gzven below..f

1Detalls of all the 1nstrumentat10n can be found 1n reference.

(EBA 1984)

6 5 1 Slope Inalcators
The depths of the slope 1nd1cators range from 25 meters 3
'to 50 meters’ bélow ground surface. Slope 1nd1cators

[

o )
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vSI—dO~11. SI;80-4, SI1-80-12 and.SI—BO—Z are 50 metere deep

and are ueed to monitor the movement.at great depthe'on tbe
east) north and west walls. Tbe rest of the slope indicators
&Fe 25 to 30 meters deep. Most s;ope indicators Sh?f
movement of the tangent pile walls into the excavation of

the order of 10 to 20 millimeters at the toprof the pﬁles.

_yovements gradually decrease with depth except for slope

oM

#xindisators SI-80-4 and SI-80-2. The measurements af slope

indieator SI-80-4 is given in Figure 6.9. These figures
clearly illustrate that intensive shearing occurs at a depth
of around 46.3 meters. The direction of movement of slope

indicator SI-80-4 on th® north wall is about 30 degrees to

. the normal of the wall while movement of slope indicator

SI-BOjZ‘is almost parallel to the west wall. The zone of
intengive movement coincides- with the lowest zone of

'b weakness., Movement of the order of 30 mm was cbserved when

the excavation was completed. Moreover there seems to be a
direct correlation between the movement at this depth and
the amount of material being excavated. Figures 6.10 and

6.11 show the deflectlon -volume of excavated materlal

| relatlonshlp for slope 1nd1cators SI- 80 4 and SI-80-2. Thqﬁ»

relatlonshlp shown in Flgure 6.10 is practlcally llnear. In
add1t1on, there seems to be a threshold value of excavated
'materlal before accelerated movements began. This threshold
value is 50mewhere between 50 to 100 thousand m’>of . .
gxcavated mate jal whlch corresponds approxlmately to

excavat;o level 16(5\m deep) ~and level 2 (11 m deep)

’ ‘45 ' . . . . - = ."t

o

£
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respectively. Frgure 6.9 also shqys movement into the soil .
between a depth from 3 meters to about 18 meters. This is
due to the heavydtie back forces applied to the tangent pile
wall. The 1arge displacement near the ground surface is-the
result of the use of H;piles and wood lagging support which
is not integrated with the tangent pile wall system:

Slope indicator SI-80-12 which is located 80 meters
north.of S1-80-4 showed'considerably less movement. However,
about 10 months after the excavatlon was completed, SI-80-12

\
showed 4 mm of movement at a depth of 4@ meters which.
corregponds to the lowest zone weakness, Slope rndlcator
S1-80-4 showed contlnuous movement after excavatzon was

: /
completed before it eventually stopped at a total

.d1spla¢ement of 30 mm.

f6.5;2 geave Gauges and Settlement Plugs,

4Three‘of the five heave gauges weteidamaged‘during
construction. Only heave ‘gauges HG-4 and HG- 5, which'are
located ‘at the center and near the east wall of the
excavation as shown in Figure 6.8, gave complete records of
the upward movement of the excavatlon floor. The amount of
Aheave was measured to be about 100 mm at elevatlon 646 45
meters (19 meters below original grdund level) to 50 mm at
@levatlon 638. 366 m (27 234 m below orlglnal ground level)
as shown in Flgure 6 12 ’

The movement of the adjacent ground and the tangent

p11e walls are ba51cally upward of the order of 5 to 15 mm.'
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" The wall plugs show about 5 mm horizontal movement into the
soil at the mid—point of the north wall and 20 and 10 mm
movement at the east and west end of the north wall
"respectively. The west wall moved slightly into the
excavation while the east wall moved slightly ihto the soil,

- The magnitude of movements were about 5 to 15 mm.

6.6 Linear Elastic Finite Element Analysis

A series of linear elastit finlte element analyses was
petformed to obtain a basic understandinglof the behaviour
of the structure. EBA Engineehing Company had performed
slmilar elastic analyses but their main concern was to
"”obtain information for-designing the tangent pile wall and -
fot the stability of the excavation. The objectlve here is
to back ahalyze.the deformation of the structure and,study
the effect of various factors in affeCtimg the—behavlour‘of
the excavation. It is hoped that the result of the linear
elastic analyses will provide some insight ‘into various
. factors 1nvolved and also’ from/a. b551s ‘of comparzson for thel
~ non= 11near analy51s. » | o
| One of the major d1ff1cult1es in ahaly21ng geotechnlcale
_structures is to obtaln representatlve values for the
‘ properxles of the materlal In an elastlc ana1y51s the
amount of deformatlon is dlrectly related to the values of
v'the elastlc modulus and the Polsson % ratlo.,Although the |
-_range ‘of the values of the P01sson s ratlo is not very |

wlarge, the elastlc modulus of the so1l can vary cons1derablyi
f:” A .
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v

especially in the case of the shale bedrock. The values
given in Table 6.1 are believed to be the most |
representative values for this site, however 1t is not
surprising that the actual values‘may be different.

In addition to the uncertainty in the material
properties, the in—situ-scress field is also a major unknown
factor. Previous analysis performed by EBA Engineering
Company employed a‘switch-on-gravity technique to
incorporate the in-situ stress field. The material

parameters used in the in- situ stress analy51s are the same

as the material parameters used in modelllng,the excavation.

Therefore, the in-situ stress field cannot be\varied Unless
. ‘ .

~the material parameters are changed. Local experience 1n the

'Edmonton area 1nd1cates that the ko value should be less

than .0 in the tlll layer and may " be close to 1.0 or’
Slzghtly hlgher than” 1.0 in the shale bedrdck-' However, the
presence of the river valley will deflnltely create some

stress relzef 1n the adjacent 5011 The phenomenon‘of valley

' rebound (Matneson,'1973) may 1ntroduce some'flexural shear

1n the bedréck and consequently reduce the horlzontal stress

~in the 5011 and- bedrock It 1is eat1mated that the ko value

.can range from 0.65 to 1.0 or sllghtly hlgher than 1. O for‘

thlS 51te.‘

To model dlfferent ko cond1t1ons, f1ct1t10us values for

" the’ 901sson s rat1o for all materlals are a551gned durlng

2N

the sw1tch on grav1ty analy51s and then the materlal

-

parameters w1ll be changed to thelr most’ representatlve
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values in subsequent analyses. This will enabie the

incorporation of -different k, conditioms without affecting
the material properties in sgbsequent analyses.vln fact ko
i< mainly affected Ly the Poisson's ratio. The elastir~
modulus only affects the amount of deformation for a

homogeneous material. For a one dimensional problem with no

lateral deformation, Poisson's ratio » will result in a ko,

“value of v/(1 - »). The elastic parameters used in the

switch-on-gravity analysis are fictitious in order to
incorporateva‘self equilibrium initial stress field. SiACe
the displacements and often the strains derived from the
switc%—on—gravitf analysis are generally neglected, the

elastic modulus can be assigned any value without affecting

the stressrfield, assuming that the soil is perfectly

homogeneous. An alternativeﬂmethod of creating in-situ

stresses 1S to impose an initial stress field on the

structure. However, the stress fleld must be 1tself in

~
equ111br1um otherwise dumerlcal 1nstab111ty is to be

/

expected 1n‘a non—11near analy51s. Slncewlt is very

dlfflcult to determine the stress at every p01nt in the

“so1l the. sw1tch on- grav1ty technlque is usually preferred

The value of ko ‘has a con51derable effect on the amount
of shear1ng 1n the 5011. A ko value of 1.0 1nd1cates that

both the horxzontal and vertlcal stresses are equal and 1f’

one assumes that they are the pr1nc1pal stresses, then . the'
soil is under a state of hydrostatlc compression . and the

dev1ator stress and shear stress w111 be zero.,A ko value_
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other than unity will induce shear stresses and the further

away from unity, the higher the initial shear stress.

. (! , ,
However, in the case of an excavation, a lower k, value will

result in less stress relief;hut the initial shear stress is
higher. If the deformation of the soil can be assumed 1linear
. : P

‘elastic, a lower ko normally results in less deformatiof.
However, 1f the deformation 1is large enough to induce local
failure during the excavation process, a lower kg may not -«
alwaYs result in less deformation because the higher initial
shear stress may lead to more exten51ve yleldlng than a

higher value of ko. This is partlcularly true for a strain

softening material.

.A two dimensional idealization of the Conventlon Center .~

51te is shown in Figqure 6.13 and the stratigraphic sequence
'used in the finite element analysis is shewn’in Figure 6.14.
Eight node &nd six node rectengular andvtriahguler elements
are used with a total of 826 nodes and 269 elements. There
are 3 hofizontal shear zones at Elevations 635, 650 and 660
m. The concxete wall 1s assumed to be 20 m deep and is
vtermlnateg at an elevatlon of 65; m. The H- plles and wood
llaggxng support system near the ground surface are not
incorporated in this model The th1ckness of the wall is
assumed to be 0 9 m. whlle the actual dlameter of the pxles
is 1064 mm, The thlckness of the wall in th1s model is
:calculated by assum1ng the flexural stlffness in the ff

2- dlmen51onal plane straun model 1s the same as the c1rcular

pllep. Thé anchor loads d%e modelled as p01nt.loads appl;ed
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on the tangent piles'and the geaction from the anchors are

modelled as uniform dlstrlbuted traction over the length of
«--.\ 4}"‘

, the grouf%d section of thé~anchor. All anchors load$ are

N
applied at 20° with }e:pect to the horizontal.

To mininize the effect\of boundary conditions on the

sizes and the bottom bounaary of the finite element model
the boundarzes are taken to be 150 m from both sides of the
excavation and the foundation is taken to be 80 m below the
bottom of the excavation. A no slzp boundary cond1t10n is

assumed on the bottom boundary. - ‘

N

To model the actual excavation sequence accurately, the

excavation was performed in six sta@es. Thexelevatlons of
the excavatlon floor were 675 5 m, sf%\m, 6g§ m, 666 m,
662 5 m and 660 m for the flrst second}\third; fourth,
fifth and sixth layers_respectxvely; For t@e slxth‘level'of‘zfJ
. ekca{%tion, an additional excavation was made close;to'the
. BN ,

valley’wall for the meeting room’ area to eleﬁation 652 5m

(see Figure 6.8). In s1mulat1ng the excavat’on\wéocess 1n

'rhe f1n1te element -model, ‘the elements 1n51de th;\excav%tlon.

were removed and an- equ1va1ent load due to the stress relfff

nOf the excavat1on was appl1ed ‘on the surface of the"\

N
A

excavat1on to ! obtaln a. boundary w1th zero nodal forces. ThlS’
'approach 1ntroduced an error in load of an amount equal to‘
half the- 51ze of the element 1n51de tZ; excavatlon adjacent

to the excavated surface ThlS error can be reduced by . \'

provxdzng a thin element adjacent to the excavated surface. e

@
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s

The anchor loads on the tangent pile wall were"applied
simultaneously at.the cOrrespondlng level of excavation
because‘in‘the aetpal construct1on sequence“ﬁo excavatxon -
bnlov a ~er+tain leval was allowed unless the anchors for
that level were 1nstalled and tested to the required ’
spec1f1cat10n The‘anéhor loads used in this analysis were
the average anchor forces\measured from the anchor load
tests. Table 6.2 summarizes the average loads on each level
of anchor per un1t width of excavation. It was observed from
‘ the fleld measurements ‘that the anchor forces on level l_and
2 had aecreased to unacceptably low values durlng the -third
.and fourth level of excavatlon. These anchors were then
restresséd and these changes ‘in anchor loads are also given
in Table 6. 2 No‘51gn1f1cant load reduction was observed at
levels 3, 4, 5 and 6 and therefore no adjustment of loads
were made in the finite element model The " reactlon of the
anchor loads were assumed to be unlformly dlstrlbuted over

S .
the grouted sectlon of the anchors.

6. 7 The Effect of ko on the Behavxour‘of the Excavatxon
B As dlSCUSSGd prev1oUsly, the in-situ stress f1eld and
the value of ko are’ usually unknown. However, the'u-“
”approxlmate value of ko for thlS 51te 1s belleved to be 0 8
w1th a- p0551b1e range from 0 65 to 1. 00 The value of kq of
;40 .65 is belleved to be the lowest llmzt and thxs value may

',OCCLI near . the valley wall In order to determlne whether or -

N not the behav1our of the excavat1on is sen51t1ve to the -
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Table 6.2 Anchor Forces Applied in the Finite Elemen*

Anlaysis .
14 i ‘ ) !
Stage | I | 1& | III | IV | VI
i s95 | 571 | - | 571 | -
2 629 | -81 | 593 | 490 | 599
Jd 3 830 | -88 | =91 | 402 | 502
4| 831 | 19( | -7 | 595 | 495
175 | 635 | A 134 | 599 | 629
6 805 | o | o | 599 | 629
— ,
I - F}nél Anchor Force* on Each Level
1L - Changé‘of Anchor Force on Level 1

rIII'* Change of Anchqr Fgrce on Level 2

VI Total Anchor Force on Level 1 at each;Stage

V- Total Anchor Force on Level 2 at eath Stage

* Forces are ekpressed in kN / m of wall, - »e
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4

value of k,, a series of linear elastic analyses were
performed. This will provide insig into the effect of k.

The switch-on-gravity technigpe was used to generate
the in-situ stress field. The elastiic modulus of *+he

material given in Table 6.1 was used in the

. Switch-on-gravity analysis. However, the Poisson's ratio

<o

varied from 0.394 to 0.499 to give ko values of

approximately 0.65 to 0.99. The unit weight\o; each material
given in Table 6.1 were used to Qenefate the in-situ
stresses by applying body forces due to gravitf The
dlsplacements and stralns due to the switch-on-gravity
analyses are neglected in subsequent analyses.

A?ferdthe switch-on—giavity'analysis, the material

’

pfoperties of all the elements are replaced by the values
gi§eh ih Table 6.1. The material propertles of tﬂe elements
located at the tangent pile wall location are replaced by
that of concrete. The effect of drilling and installing, the
tahgent.pile wall on the behaviour'of‘the entire excavation

is believed to be minimal and such detaile are, not

incbrporated*invthe finite element modedl. The excavation was

.then performed i six stages as described earller. Since the

. amount of movement of the tangent pile wall and upward heave

~of the foundatlon-floor'of the excavation were measured in

~ the field, interpretation of the results from the linear

, , . _
elastic analysis focussed on these areas. Also the

-mobilization'of shear strength along the lower sheaz'zone is.

of interest since it will affect the mpVement of the tangent

R K .
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pile wall.

Figure 6.15 shows the mobilized internal friction angle
l-at the location of the lower shear zone assuming zero
cohesion due to the switch-on-gravity stress fieldl it is
seen that -the lower value of ko, results in higher mobilized
friction along the lower shear zone as?expected. Also the
moQilized.friGtion\increases towards the river valley wall
wlth'the ¢ value ranging from 11° for ko = 0.99 to 17° for
ko = 0.65. The peak friction for the bentonite }s around”l4°
which indicates instability is quite possible close_co the
valley wall. In fact, land slides have occurred in this
region as discussed earlier. “

Remote from the valley,; the ¢ values range, from 2° for
ko = 0.99 to 13° for ko = 0.65. The ¢ values at the location
of the tangenr pile‘uall are‘very cloae to these values as
well. This re-affirms the idea that the shear zone 1is oot
pre—sheared due to the in-situ stress field. The most
probable value of ko, for this site is believed to be 0.80.
For a<k, of 0.80, the mobilized ¢ value near the tangent

IV, N

‘pile wall is about 7° and increases to 13° towards the river.

valley

\ *+

The mobilized friction along the lower shear zone when

e §

“the excavatlon'was completed {s shown in Figure 6v16.
Similar to the previous results, loWer'k;"valuesfshow higher
mob1112at1on of shear strengthf However/;he maximum ¢ values
occurred beneath the excavatien\igstead of near the’ river

—

valley; The ¢ value ranged from 16° fbr“ko = 0.65 tO'around
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10° for ko = 0.99. For ko = 0.80 the maximum ¢ value is
about 11.5°, Since 7° is mobilized due to the initial stress
field the effect of the excavation is only 4.5°, The peak
friction ofdthe bentohite is around 145 which‘is nOt'very
far from 11.5°. Field observation from slope'indicators
showed that movement had started 4t the secondﬁto thirgd
level of excavation. According to the elastic analysis there
should have been no failure at ‘this stage. |

The movement of the soil behind the tangeht pile wall,
1s showh in Figure €. ;' ‘It is seen clearly that the value
of ko has very llttle effect on the horlzontal movement at
h the lower shear zone. The movement at the lower shear zone
1s close to 8 mm ‘as compared to 30° mm observed in the f1eld
The only dlfference among d1fferent values of ko is the ﬂ
movement ot the soil behind the tangent piile wall between
elevation 679 m and 660 m. Higher.values of k, result in
less .movement than lower values of ko due to the higher
'-horlzontal stresses being relieved *he excavatlon The -
anchor forces applied on the tangent pile wall tend to push
- the wall into:the soil CIf the stress rellef due to the.
_ekcavationlis higher as in the case of high- value of ko,
then the movement into the soil will be smaller.

‘The heave of the foundat1on floor is: 1nsen51t1ve to the

value of ko as shown in F1gure 6 18 The maX1mum heave

calculated is about 33 mm . compared to the 100 mm observed

It is seen. from the above d1scu551on that the elastzc L

~lanaly51s has under predlcted the mob1llzed fr1ct1on and

4 .
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movement along the lower sheéar zone and the heave of the
excavation floor. The effect of the value of ko, on both the
hori1zontal movement behind the tangent -ffile wall and the
heave of the excavation floor is not very significant for
the most probable range of ko values for this site. The k,
value ofl0.80‘ls believed to be the most representa}ive
value and will be used in subseguent analyses. Results in
this section indicate that °’ight departures from the valgg
of 0.80 will not affect the results significantly and
.definitely cannot<account for the discrepancy between the
predicted and observed movement of the excavation,

’

- 6.8 The Effect of Elastic Parameters on the Behaviout of the
Exacavation ‘ | | *

One of the reasons for the under pred1ct1on of the
amount of movement at the lowest shear .zone ~and the heave of
the.ﬁoundatlon floor is due to the overstlffening of the
material. Since the elastic modulus -and P01sso "s ratio are
‘the only mater1al parameters used in the elastlc analy51s,
the results here suggest§that the elast1C‘parameters are
probably too hzgh To observe the effect of the stiffness of
“the materlal on the- behav1our of the excavat1on, the elastlc
'modulus for each materlal vere varled | f

| S1x case w111 be con51dered as summar1zed in Tagle 6. 3
In the flrst case the E value for the Edmonton Clay }f
reduced by 50% The E value Eor the till is reduced by 33%

I's

’1n the second case. The E value for the Saskatchewan sands
B . .
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Table 6.3 Summary of the values of the Elas*ic Modulus in

- the Linear Elastic Anlayses

Case 'Clax | Tili ' SAale | Shear
- ‘ o : Zone
1 24,133 | 137,900 | >139,700 | 49,000
2 | 24,133 | 91,933 | >139,700 | 49,000
3 24,133 |- 91,933 | 90,000 | 49,000
4 24,133 | 91,933 | 90,000 | 3,000,
5. 24,133 | 91,933 | 90,000 | 1,000

Note - Ail values of Elastic Modulus are in kPa.

The Elastic Modulus of .the shale for cases 1 and 2
increase with depth. ’ '



v\ N
and gravel anqgthé colluvium and fill are kept constant. In
tﬂe‘third éase the E value for the shale is reduced to
90,000 kPa and in the final 2 ghses the E value for the
. lower shear zone are rgduced‘to 3;000 kPa and 1,000 kPa
feSpectively.

Figure 6.19 shows théfeffeCt o% varying\the elastic -

modulus on the mobilized frigtion along the lower shear

zone. The reference case is taken from the result of ko =
. f
0.8 with the E values used in previous analysis. The result

of‘case 1 1s obtained by reducing the E value of the cla§

4
P

from the reférence case and the resuLz//} case 2 is obtained
by reducing the E value of the till from case 1 and so on.
It is seen tha; there 1is practically,go changg in ¢ va%ﬁe by
varying the E values of the‘clay and‘till material. Herver
the mobiiized-friction is increased by reducing the E value
of the shale. The maximum mobilized‘iriction is close to 14°
- as compared to 11.5° obtained earlier. By reducing the E
value of the shear*zohe, the mobilized friction ;s reduced
due to thg‘fact that softer material tends to redis}ribute
.stresses to the adjacent stiffer material.

| The effe;t of reddting the E value of the clay and till
have an insfgnificant effeét on the ‘movement at the 10wef
shear zone and only some effé“f on the movement of the soil
‘behlnd the tangent p11e wall as shown in Flgure 6.20. By
reduc1ng‘the elast1C-modulus of the“shaleiw1thout reduéing
“the elastic hodulus of the lower shear zone. (tryjng to

simulate the condition of no shear failure at the léwer

-
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shear zone) increases the horizontal movenent:in the shale
hut'not the movement at the shear zone. However substantial
movement occurs at the lower shear Zone when the E value of
the lower shear zone 1s reduced. By comparlng ‘the results of
case 4 and the observed movement of the slope indicator
behlnd the’taaafnt pile wall, close'agreement can be -
Q¥tained by varying the E values ot the shale and the. shear
zone. This indicates that the E value for the shale in
previous-analyses was too high and shear fallUre at the

\ - :
lower shear zone has most likely occurred. Since the :
mobilized”friction'at the end of excavation'is only 14° for
case ¢ as shown“in‘Eigure 6.19, the results here indicate
that the actual peak friction.in the‘shear zone may be lower
than }4° and shear failure at the lower shear zone hay have
occu;red orior to the-completion of thevexcavation. There is
no point in comparing: the actual movement at the shear zone
wlth calculated values from the elastlc analy515 because one
~can ‘get close agreement by 51mp1y varylng the E values of
thé mater1a1 However, ‘with E values of 3, 000 kPa,v he
'movement at the lower shear zone 1s about 50 mm whxch 1s
‘_much ‘higher than the observed value. Nevertheless the
deflectlon of the. 5011 bethd the tangent pile wall from the

elastlc analyszs closely resembles the actual observatlon.»

The heave of the. excavatlon floor 1s shown in- Fzgure :

"6 21 and 51m11ar conc1u51ons can be made‘ The effect of

vary:ng the E values for the clay and tlll have practlcally

no . effect on the heave but the B value of the shale is very
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important. Upward movement of 90 mm is obtained By reducing
the E value of the shale to 90,000 kée and more heave is
obtained by reducing the E value of the shear zone. The
increase in heave due to reducing the E value of the shear
zone is unrea..stic because if shear fajldre occurred;pt the
Tower shear.zone? it 1s not likelyvthat the volumetric
deformationfcharacteristics of the material will be
decreased by the same amount as the shearing characterlstics
which are implicitly assumed in‘the‘elastic model. .
The results from this analysis are very informative. It
is seen from these results that the stiffness of the shale
is very imbortant with respect to the.mobilized'friction
along the lower shear zone, on the deflection of the tangent
. . »
pile wall and on the heave of the excavation floor. This is
"beoauee movement of the soil above the hiddle‘shear zone 1is
controlled by the tangent wall which.then t:ensfers the load

- to thﬁ underlylng shale. The effect of the excavation causes

strese)rellef and upward movement of the shale whlch in turn

“‘transmlts such effects to the lower shear zone. If the shale

1s very Stlff the transm1551on of the effect of the

12

y
excavatlon to the lower shear zone ‘is reduced This results //

e 7

in lower mobilized shear strengthsat thls locatlon. Also

‘stlffer shale w111 g1ve less movement of the tangent plle/
wall as vell as less upward movement of the excavatlon
floor. Moreover, the flow of the so1l between the tip of the'

‘tangent plle wall and' the lower shear zone is 1mpeded
o \
vhecause of the st;ffness of the shale. Therefore,funlegs the
. e h _ e
E-.d
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stiffness of the shale is reduced, it is bnlikely that the
finite element model will yield movement comparable to the

-

actual field observationsi.
6.9 Non-Linear Finite Element Analysis
It is seen from the previous section that the elastic
finite element model does not give accurate results in
predicting the behaviour of the excdvation. Mofeover, it is
do; fealistic\to assume a very low valﬁe of elastic modulus
for tﬁe entire lower shear zone simply in order to match the
observed movement. In addition, ‘the elastlc mddel cannot
predzct the extent of the shear zone in the evaluatlon of
the stablllty of the excavatlon.
Before presenting-the results of the non- llnear_
" analysis, it will be useful to first summarize the results
of the l1near elasnlc analy51s. The result from the linear
elastic anlay51s indicate the follow1ng ‘ 20
1. The effect of K, for 1.0 > ké > 0.65.
‘a. -Due thé switch-on—gravity stfesses,‘the m;ximum
mobilized friction angle at the lower shear zone
ranged from 11° to 17° for ko of 1.0 to 0 65
respectlvely at a location close to the fate ofxthe
1slope. Over thg majority of the shear zone .
underneath the.exéayatién thé mobi lized friction
»ranggd from:zq to 13°, | ‘
At the complétiqn7of;theVexéévatidh, the méximum'

mobilized friction occurred at a location about 15m
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from the tangent pile wall with values ranging from
10° to .16° for‘ko of 1.0 to 0.65 respectively.
There are‘some.effééts on the amount of movement of
the tanéent pile wall above the bottom of the
excavation but very little or no effect below the

bottom of the excavation and practically no effect

on the heave of the excavation floor.

2. With a Ko value of 0.8, the effect of the elastic

modulus of various material are:

a.

= 0.8 vari

The, elastic moduli of the clay and till have very
little effect on the shear zone~movement'and the
amount of heavef v

The élastic modulus of the shale above the lower
shear zone has a very important{influence on the
heave of the excavation fioor. The elastic moduli
for’ the shales presentiy used are too'high and
result in a very stiff layer and under predié}ion of
the amount of heave. e

The finite element_modellhas‘under predicted the
movemenﬁ at the location of theziowér she;r zone.

Reducing the elastic modulus at this location

increases the amount of movement. This implies that

' shearing has méry likely occurred -at this location.

This leads to a reduction of shearing resistance.

. The mobiTlized friction at the final stage at the.

. . % By . ¥ - .
lower Sheaj'zone when excavation is completed for ko

s from 10° to 14 °. Reducing the modulus

<
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of shale increases the mobilized frict}on from 10°
to 14°.

It seems clear that the oroperties of the'shale are
very important with regard to the heave of the foundation
floor. The value of k, is-important to the amount‘of K
mobilized strength along the shear zone which, in turn,
atfects the the movement of the tangent pile wall at the
location of the lower shear—aene

Since the heave of the foundation fioor is sensitive to
the properties of the shale and €£§§ field observation that
the amount of'heave'is not linear in*relation tO'the volume

A ’ .

oé excavation, a non-linear model seems necessary in order
to model the behaviour of the shale accnrately. The oo
hyperbolic model is a.simple and effective model and was
found to be applicable toua variety of soils, hence thisj
model will be used here. The formuLatlon of the model w1ll
'not be d1scussed here. Those whd are not fam111ar with the
‘model shouPd refer to the publlcatlons by Duncan and Cheng
(1970), Konder (1963), u‘hawy (1972) However, there are
some aspects of thls model which deserve ‘some attentlon.

There are several versions of the hyperbollc model and
the one that is used here uses the elast1c modulus and bulk
‘modulus as the pr1nc1pal materlal parameters rather than the
’elastxc modulus and the 901sson S ratlo which are . more
commonly used (Duncan 1980). The hyperbollc model is .

developed based on trlaxlal stress condltlons in whlch the’

tangent elast1c modulus is derived from a deviator-Stress

¢
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-

versus axial strain plot. It is normally assumed that the
strain at the beginning of the test is zero‘and the sample
is subjected to isotropic stress condition. However, if the
stress state is not isotropic, as‘rs the case of ko#1 in the
field, then the soil is initially subjected to a nonzero
deviator stress. If the definition of strain is still
referenced to this state, then the hyperbola will not start
from the origin. As discussed in chapter 4, the reference
state of zero strain is quiteharbitrary4;nd thereforevone
can shift the origin of the strain measure and this problem
will not:exist. o | : ' .

. The hyperbolic model was originally developed to
simulate'the non-linear behaviour of the soil during the
construction of dams and other engineering)structures. The

. . R
application of the model to excavations has been made but'’

~one must realize that excavations are not the same problem’

.

~as dam construction because excavation involves unloading

¥

- and dam constructidn involves loading, although both types

of 1oad1ng could be monotonic. Load1ng here refers to an
1ncrease in dev1ator stress and unloading refers to a
decrease in dev1ator stress. If k o# 1, then the stress path
of a point in the 5011 w111 undergo unloadlng and. should not
follow the loadlng path of the hyperbola. Instead the |

unloadlng modulus should be used wh1ch is often assumed to .

be 1ndependent of the dev1ator stress and only dependent

'upon the conf1n1ng stress. In app1y1ng the hyperbol1c model

d?to the unloadlng 51tuat1on, the sotl parametefs must be
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derived from the laboratory test with a similar stress path,
that‘is, the laboratory test must be related to the field
conditions as close as is possible.

In realizing these probleme and the lack of time to
perform laboqatory tests, ;he parameters for the hyperbolic
.model have been esﬁimated from actual.field observations.
The heave of the excavation floor provides a cpntinuous
record of the amount of upward movemeut uhlch can be used to
obtaln the parameters fer the hyperbolic model. Based on

. . ‘
this information, EBA Engineering Company has suggested the
T .

. following parameters for the shale: |

)
¢ = Cohesion = 48 kPa
¢ = Fric;ion angle = 21°
K = Modulus number =327.3
n = Modulus exponent = 1,59 )

K =-Bulk modulus number = 273,

n = Bulk modulus exponent = 1.59
"R = Failure'ﬁatio =‘0,0; , =

£ . P ’ , : ~ -
These pa:emetefs were obtained by essuming one dimensional
deformat1on and triaxial stress condition’ of the shale belou
'the excavat1on. Th1s leads to an over est1mat1on of the
stlffness of the shale as w111 be seen 1ater. Slnce the
actual condltlon is closer to plane strain ‘than plane streSS‘

- or ax1symmetr1c cond1t10ns, the appareﬁt modulus under plane”
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strain conditions is larger than that under plane stress or
‘axisymmetric conditions due to the lateral constraint

o

imposed by the plane strain condition. The modulus number .in
the hyperbolic model reflects the pre;sure dependent
behaviour of the material. An n value equal to 1 inplies
linea; increases in elastic modulus with increase in o,.
Therefore an n value greatet than 1 indicates more rapid
increases in mpdulus than‘the ;nprease in 0,. If o, is’
linearly related to the depth of the soil, then the depth
effect is ampllfled The variation of elastlc modulus shown
earlier 1ndlcates that the depth effect is constant or
diminishing and therefore the n value-should be® equal to or
less than 1. The failure ratio R reflects the change in
elastic modulus. due to the sheargng effect. Since'excavation
repreSents‘the unloading process end the unlOading‘modulus
is not dependent Upon the R. value, therefore the value of

é 'is not used in the presegt model The vaiues:of'n m, K,
Kf for the shale wlll be varied 1n the non—llnear analy51s
12 order to obtain agreement wlth field observatlons.

o Inm selecting the value of ko for the non- llnear
analyls, 1t.ls belleved from geological evidence that a.
preglac1al channel 1s present to the noFth of the excavation
and due to the prox1m1ty of the river- valley~south of the
excavatlon that the ko‘value for the szte should not be -
.(greater than 1. Also from local experience on various:
englneerlng structure, ko values of h1gher than 1 are very

P

'unllkely. From the result of l1near elast1c analy51s it is

”
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seen that for ko values less than 0.65, the mobilized
friction along the shear zofie will be higher than 14° which
indicates that the lower shear zone will be pre-sheared due’
to the formation of the river valley and‘the gravity
stresses. Follow1ng careful examxnatlah of a soil sample
obtained at the location of the. lower shear zone, Dr N.
Morgenstern indicated that the bentonite layer was not
pre-sheared before the excavation. Therefore kg yelues of

.0 and 0.65‘are considered to be the most probable limits.,
Fer a ko véiue of 0.8, the elastic analysis indicates that
the maximum mebilized friction at the lower shear zone at’
_the completion of the excayatien process is about.14°.
Therefore shearing occurs only at the'final stage of the
exc*"ation'which seems to be a:;ittle late because : \
substantial movement had been oteerved after the secgnd |
level of excavation. From the results of the elastic
“analySis,_it‘is seen that a lower E value of the shale
increased the.mobilizedAsttength. Therefore the use of the
hypefbolic model for the shale‘may help-to increase the - |
amount of moblllzed strength at the lower shear zone. Also a
‘,sllghtly lower friction angle of 13° 1s used to tr1gger an -
earlier fa11ure.v1th ko of 0.8. |

. A.final pdint is that the sheariné of the upﬁef -and

" lower. shear zone is 1mpeded by the tangent pile wall. The '
shear1ng of these two shear zones will not affect the
overall movement of the excavation and llnear elastlc models

"~ are used fof’ﬁ;ese two shear zones.



249

Based on these assumptions and arguments, the fi;st
non-linear analysis, Case 1,.was per formed. The result-of.
the non-linear analysis is shown in Figures 6.23 and 6.24.
The mdterial parameters used in different cases are
summarized inATahle é.4 The mobilized friction at the lower
shear zone shown in Figqure (6.23) is léss than 13° and no
failure has occurred. Because of no failure at the shear
zone the movenent at the lower shear zone is only 7.mm. The
heave of the foundatlon is atound 69 mm which is much less
than the observed value of 100 mm. The movement of the
tangent pile wall indicates that the n valuerused in'the
hyperbolic model is too high which results in a rapid
‘incﬁgﬂse of the elastic modulus #ith depth. The report by
Duncan,(198d) has quoted n values for a wide variety of
material and reveals that?the n value islbetween 0 a;d 1.
Therefore, a n value of 1 is used for the next trial.

As shown in Flgures 6. 22 to 6. 24 for Case 2, decrea51ng
'the value of n has Iéd to larger horlzontal and upward heave
ot the shale. However, the mobilized strength at the lower
sheargzone is still less than'13°“and~thereforevvéry little
slio'has occurfed. Thevfinal,heave of the foundation floor
is 94 mm which 1s close to the observed value. It seems that
w1th ko of 0 8 and these values of the 5011 parameters, a
fa1lure at the’ lower shear zone is not likely to be
‘tr1ggered To note the effect of shearing at the lower shear.
zone on the movement at’ p01nt A (FlguP§!§123)~and the heave

;of the excavatlon floor, a re51dual fr1ctlon€;ﬁ\7 ///\\:EF
) ) : . R ‘ :

E 1
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fer the lower”Shear zone. This does not imply that the shear
zone has been pre-sheared but to investigate whether or not
the. amount of hovement can be matched iﬁ the ‘lower sHear

“zone has yielded with the values of the material parameters
used'in the analysis.
The results of CaSe 3 shows about 16 mm of movement at

the lower shear zone (p01nt A, figure 6.23) as compaged to
PO mm observed in the field at the tomplet1on of the

:excavatzon. There 15 a not1ceable but small 1ncrea$e in the
g
Aneave of the - foundation floor. The mabilized strength at the

lower shear zone is, of course, 7°.%

v At thls ‘stage, it seems.that eveén if .the lower shear
f { £ )
N zone has been sheared the movement at-the lower shear zone
R
o1j}gt1ll lower than the observed value. Before the entire

. s¥tuation is re“an lyzed two more analyses were performed

1

to study the sensxt1v1ty of other Varzables whlch have not
PR :

been mentxoned S0 far. A lower elastxe modulus was used in o«

case 4 for the lower shear zone and the movement 1ncreased
\ - l} ’
- o &
/}t to 18 mm wh1ch is stil] too low. The n value of the Shale

,‘ .

‘was 8ecreas to 0.8 1n case S but the elastlc modulus oj

\’“ T

* the shale at 40 ‘m depﬁh was. malntalned by 1ncrea51ng the K .

value. Th1s is to check the effect of a slower rate ‘of 5
/;:~ A ”~'
1ncrease of the elastlc modulus w1th depth No 51gn1f1cant

a0

O 1ncrease 1ngmovement was observfd 1‘m]fd“j}- " e,
& L Lot P RN
' It ‘is seen from the abg d1scuss1on that better ©

the founddt1on floor 1s obta1ned

v agreement of the heave

-
t

by u51ng the hyperboli model wltﬁ a lower value of n but

Or
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the movement. at the lower shear zone is underestimated by
the finite element model even assuming the res;gual friction
angle at the lowe; shear zone. At this stage”it seems

' appropriate to reconsider thé assumptions made earlier in
“this anal}sis.

The first assumption that should be reconsidered\is the
~value of-kq. It is.éeen that ko of- 0.8 will not triggé&
movement at the iower shear zone for a friction angle of 13°
eéen with the use of the hyperbolic model in modelling the
sﬁale. Alsb, results»ihdicate ghat thé mobil?zéd ffiction'at
the completioﬁ of the excavation is around 13°, Even'if the
peak friction for the shear zone has been‘over'eStimateq by
about 2°, tﬂe failure pf'the lower shear zone will‘stillA
occur too }été. It is observed from thé slope indicator
measurements that substantial movement has occurred after
fﬁé second 1®t of excavation. With this value of ko it is
not likely to QObilize 12° to 14° of friction at the second

lift of»Zxcavafion. Moreover, evenlxhough,tﬂe Eoil has been.
' pre-sheared béfqreNthch contradicts observation, the °
. movement &'t "the lowerasheér zone is still under-predicted by

thevfinite elemenb_modél. BésédAoa.;his-argumeqt“a different ;-
ko Yalueé should be used. . .

Since fhe k§ value is Selievea t§ iig Befween’B.GS and
1.0, a value of ko of higher than 0.8 will only decrease the
‘_;mobilizéd‘friction at the lower shear zone.fMoreoverhit:is‘
Aobger?gd that slip had occurred at the earlié:lSEQge'of the
exé;vagion, Eheréf&re, the.mobilized4f;ic;ioh_éuelto the .

G
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in-situ stresses should he close to the peak value. It is
seen from Figure 6.25'that ko of 0.65 gives a mobilized
friction less than but close to 14° on most parts of the
lower shear,zone. Therefore k, of 0.65 was used for the next
trial.

Decreasing the value of ko will result in less energy"
release due to excavation (Bjerrum, 1967) . Since the
excavation is very‘close to the river valle}ﬂ a slight
decrease will‘not have a very significant/efﬁect on the
amount of strain energy released. Since the lover shear zone
is modelled using the elastic brittle plastic model .
discussed in Chapter 3 with a peak friction of I4°‘and a
residual'strength of 7° and due to the brittle behaviour of
the material there will be some energy released once the
shearlng process has been triggered.

Many trial and error analyses have been performed-to
study the effect of the n and K values on the amount. ot
heave and movement at\the lowermshear zone. The results of
-these trlals will not be presented here but basically it was_‘
found that decea51ng the n and K values will lead to more
movement ‘at the lower shear zone and also will result in a
“ Ilarger heave of the foundatlon. To ‘obtain a. hor1zontal

movement of about 30 mm at the lower shear zone . requlres an

v, n value of about 0.5 wlth ak value of 327 3. But 'a final

heavea1n excess of 150 mm w111 result Therefore, the?® must
be other parameter(s% which are essentlal but, to this .

'poxnt haye not reCelved sufﬁ1q1ent a{:ent1on.4
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In the hyperbolic model, tﬁe parameters other than n
"and K parameters, are the m and K parameters which_
represent the variationdof the bu?k modu;us'with 0.
Presently the n and m vglues are taken to be”the same;
therefore the minor principal stress o, will have the same
effect on the elastic modulus and :the bulk moduius. The
value of K is chosen to given a Poisson's ratio of 0.3. It
1s seen frgm Table 6. that the Poisson's ratio for the
shale should be about 0.4. A lower value of P01sson s ratlo
1nd1cates that less defocmatlon will occur in one direction
when the material is strained in the other direction. Also a
lower Poisson's ratio represent more volume change or a
lowet bulk molulus. Since the bottom of the excavation floor
ts 20 m above the lower‘shear zone, the effect of the
excavatiod is transmitted to the loeer shear zone by the
deformatiqn of the shale. By haeing'a lower Poisson's ratio
for the shale, the haterial'ds acle_to deform more easily
due to its ability to change Vclume and therefore the
stress and energy release due ‘to the excavatxon can be
‘absorbed more easily by the shale and less energy is

transm1tted to the lowerkstrata ‘than- in the case w1th -a

h1gher Po1sson s ratlo In other words the effect of - the

X,

inexcavatlon is reduced due to a lower Poisson's’ratio. In
reallzlng these £acts, a P01sson s ratlo of 0 4 was used.;»

The materlal parameters used in” the final case, case .6, are-

P e

summarxzed 1n Tdble 6.4.

2

)
N ’
SR
,
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The results for case 6 are showQ\in Figures 6.25 to

6.29. Figure 6.25 compares the observed heave in the shale

(Heave Gauge ‘No. 4) and the heave predicted by the f3 ite
»element model. Measurements were made at seven differedt
depths in the shale and not all of these point may coincide
with the nodal coordinates in the finite element model-.
Point 3 1is not shown for‘comparison because the nearest
nodal point is at least 3 m away. Average values trom points
5 and 6 are used to obtain vertical movement between these
"polnts for comparlson with the‘findte element modelf Fioure
6.25 shows that the finite element‘model not only predicts
the final.amounf of.hesve’at the end of excavation,'but also
yields reasonable agreement throughout the depth of the
shale and at ditferent stages of the excavation. Figure 6.26
shows the heave of.the excavation floor at different stages
of the analysfs. = ’
; F1gure 6.27 shows the movement of the tangent pile wall'
and the shale at dlffereniystages of the excavatlon. In
comparlng the resultS'from the flnlte element analysis w1th
{1eld observatlon it is seen’ that the response of the actual

a 1

avat1on is not 1nstantaneous as in the case oﬁ the f1n1te
: element model Movement is observed some‘txme after the ..

.completlon of the excavat1on. The horzzontal movement at the
1owe§ shear zone was measured to be 18 mm at the completlon

of: the excavat1on but eventually 1ncreased to 30 mm several

~_months later. Therefore, movement recorded at ‘the ‘time of_

?”

"{the completlon of certa1n stage of the excavatlon does not
E%'“ : .

. . . . :
< . . .
. : ! . . o N o *
o« o . . . X . o .
, o K PN : s ° -
b ) - . . . . .
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”

correspond "to the effect of that stage of the excavation.

The actual movement due to that stagevis larger and occurs

at a later time. Since the excavation process is continuous
- . 1’ ) A.

and did not allow movement of the soil to stabilize before

construction ‘proceeded further, the exact amount of movement

was_difficult to estimate until the excavation was

-

completed. Therefore, the finite element solution is the

result of assuming eguivalent stlffnesses over the duration
rof loadlng '
{

. Flgure 6 27 shows a final movement of 28 mm at the
%
locatlon of';h;zlower shear zone predicted by the finite.

element model' as compared to 30 mm observed. The flnal slope

. 1ndicator reading was taken five months after the cempletlon
of the excavatlon when movement had more or less stab1l1zed0

¢ i ) i ’
The fxnlte element resulss’ show a larger movement in ‘the

o~ y.'v

shale than that actually observed The cause of thls
< I

dlscrepancy is- not thoroughly understood but it 1s suspected .

that anlsotropy and the swellxng behav1our of the shale may
.i\

.be .part of ‘the cause.

-

’

The mobzllzed frlction at the lower shear zone at

d1fferent stagesrgf the analysis 1s shown in ?1gures 6.28

-

‘and 6.29. ‘The mobilize strength ‘due to the ]

[ 3

“switch-on- grav1ty~stress is’ below 14° .for the most part of

the shear zone except near the valley wall Thqrefore, 1t 18
-expected that’ the shear zone may be pre- sheared near the
pvalley wall The effect on: the moblllzed strength ‘due to the

-flrst 11ft of exeavatzon 1s qu1te large. The decrease 1n/5

e
-

LS
! ’

ot
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‘mobilized friction near the valley wall is due to the

{
!

switch-on-gravity stresses and is not due to the excavation
. _ < . ,
process.' Ini%@ation of the shear zone occurs at the second

' stage of “the excavation. The shear zone -at this stage has
I -

v A ‘ - - |
propagated in excess of 25 m to a position near the tangent

pile wall. At the.same time unloading at the sheat zone
aoccurs near the valley wall, therefore the mobilized
BRI
;,hStrength bas deﬁreased to a value below the residual

‘frlcf‘on e of 7 -, Excavatlon of the: (thxrd l1ft extended
N
the regloafof shearing by about 10 m - to a. pOSlthD just past,

LY

‘the tangent plle wall and the slope 1nd1cator SI 804.

Observat1pn from th1s slope 1nd1cator showed substantlal

[ an

movement and shearlng during ‘the second life of the, Ay‘

’

excava@%on. Thrs agrees with the predlctron from the finite

o

K element\modél An add1t10na1 10 m of propagatzon of the f, _

: shear Zone 1s obtalned in, the fourth lift of exc;vatlon \
However essentlalaly no g’opagatlon for the fifth llft 1s :
obtalned As shown 1n Fzgure 6.27 the tangent pile wall

v{éﬁows a sl1ght forward t1lt towards the excavatlon both

’predncted by the model and observed by the slope 1nd1cator..r
The extavatxon of this 11ft correébonds to ‘the removal of

!;ftheegaskatchewan sands and gravel wh1ch 1s a rather st1ff
Juelayer in compar1son w1th the rest of the materlal The sands
and gravels have been actlng as a lateral support therefore:.d

Aremoval of th1s rather stlff support ﬁead to a sllght

lfgravel 15 h1gh1y stress depe dent and thereforeha‘gradual ;d"\‘

B forward movemeqm? In realltxkthe stlffness of the sahds and



"~ propagated to a §ufficient extent and the shearing
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decrease in stiffness during the excavation process will be

more realistic. Although very lxttle propagation of the

. shear zone 1is predlcted during. the excavation of the flfth

life, movement -in the order of 5 mm at the lower shear zone
is obtaxned The final 1ift of excavat&%n ‘has trlggered a
subStantlal shear zone propagatlon to about 40 m behind the
tangent p11e wall. Note that the mobxlxzed fricticn at the
shear zone near the valley wall increased during the

excavation process. This is because the shear zone has

- Py

e

‘resistance is so 1ow that the whole excavation is moving

towards the river valley and thus increases the mobilizeds:

‘ stfength near the valley wall. Slope indicatot medsurements -

4

also have 1nd1cated 5ubstant1al movement in the order of 15'

L 2N

ﬁmm for the final stage of the excavatzon. This is 1n

agreement with the pred1ct10n by the finite element model.
<
B A - . ;..}” ) - . ’ %
6.10 Conclusion
oo , _
The f1n1te element models presented.ln this" the51s have

)
been applzed to the analysis of a real1st1c englneerlng

problem.’ It 1s seen that although the model. is: capable of -

,modellzng the behav1our of ‘the 5011 and structure in thxs

"tfdxfflculty in, obtaxn:ng t

: case, the lack -of knowledge of the actual 51te cond1t10ns,
‘ » &*

the uncertalnty concernxng\the most representat1ve model
‘he assoc1ated parameters, present much
/

actual beﬁav1our of the. f/

and the values (o}

structure. The usefulness of the 11nearre}est1c analyé1s is

-

v . . | 5 )

. . ’ . -
. . : . P . L
o ) ) R . .
. N - - » ;
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demonstrated cleatrly in understanding the beh&viour of the

o

structure and the importance of various.components to the
overall response of.theosystem This 1nformat10n is

subsequently used in guxdlng the non- llnear analy51s

LR

It is noted that the behav1qur of the ‘excavatlon is *
senSitive to varloUS'factors whlch include the valué of ko'».'
and the stress strain behav1our of the shale as well as the -
brxtgkeness of the shear zone. Therefore ~it is seen that
acd‘aggely modelllng the behav1our.of only part of the

-

structure, for example the shear zone, is not suff1c1ent to

'obtaln ‘the correct responge. The 1nteract10n with the
adjacent material in prodUclng the overall response is
equally important. Nonetheless the results here are very

.

encouraglng in applylng the f1n1te element model to real

“ﬂ'englneer1ng analyses. 4
. *,

| @ B



7. CONCLUSIONS

'

7.1 Conclusions

s

'The ability to model strain softening material is a
necesaary condition to obtain a solution to the problem of
progress{ve failure as outiined in Chapter 1. It has been
demonstrated clearly that the the piasticity formulation
presented in Chapter 2~canﬁbe applied in a strain softening

material model. The strain softening model discussed in

Chapter 2 was introducéd by Prevost and the finite. element

A,

»

formulation is derived in this research. This model is
limited to tno independent material parameters-when four
independent material parameters are.uaually most desirable.
In'analyzing strain softening materials using the finite
element methpd,,there are some departures from the usual
approach since the stiffnesa matrix for elements of strain
softenlng ‘material will not’ be p051t1ve definite. This
requ1res a non- p051t1ve matrix solution scheme whlch is
edlscussed in Appendlx E o

The problem of p051t1ve def1n5teness 1s elaborated in
some deta11 in Chapter 3 during the d1scu551on.of shear band
blfurcat1on. The necessary cond1t1ons for ahear band
bifuréatien are shown to be satiafged using the finite
element formulatlon presented in Chapter 2 for some
'plast1c1ty models. .The ab111ty to capture shear band

\

"blfurcatlon is demonstrated in the exercise of modelling the

Ve

"process of the formation of shear bands in a plane strain

-



test and also under a dam fdundation{'An eiastic brittle
plastit model is introduced in this chapter to model the
behaviour of very sensitive soil. Interesting results are
obtalned uszng this model in simulating the plane straih
test experiment. It is seen that although the’ materlal is a
dbrittle'plastic materlal wi'th distinct péak and re51dual
strengths, the load-displacement response from this test
actually reeeals\the material is-elastic,perfectly plastic
without any decrease:in‘strength after peak. Thislis due to
the progressive failure of the sample and the brittle
behaviour of the material. This aspect is studied further in '
Chapter 4 during the discussion df the‘hyperbolic strain
_softening model. ! |
In Chapter 4 a new strain softenlng model termed the
'hyperbollc strain softenlng model' is - introduced. ThlS
model has four independent parameters wglch are capable of
modeiliﬁg materlals with d1fferent rates ofhpostvpeak |

softening. The assumption, approxlmatlng the post, peak

behaviour of a real soil u51ng a hyperbola,'ls demonstrated

- -

using the trlaxla; test results of a stiff clay. Reasonable
agreement'between7the.finite element- model aﬁd the actual
soil behav16Ur is obtained for this soil. The exertise of
ahalyzing the”bearlng capacity of a str1p footing reveals
some very 1nterest1ng results.” It is demonstrated that
different rates of post peak softening: iead to d1fferent
11m1t loads. Th1s 1llustrates the effect of progre351ve

fa%lure on the capac1ty and the deformatlon response of~the

o @
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soil mass comgkhﬁlng strain softening material. The
conclus1on fg@ﬁ3thls exercise is that the observed:

o ’;L“ . '3
deformation ‘response of a soil mass, whikh can be a triaxial

sample, is alsyst m response which is dependent-upon the
rate of softening of ‘the material and the extent of
progre551ve fafﬁure occurring within the mass. Therefore,
strictly speaking, one cannot deduce the material response
from th1s system response for a strain softenlng material.
The formulatlon presented in Chapter 5 1s a very
gensra% one in applying the principle of effective stress in>
fuliy'drained‘or fully undrained analyses.'Thfs formulation
cah be used in any one of the models presented in thlS
thesis which are all available in the computer program SAFE.
The intent of this chapter 1s,to“1ntrodUCe the use of
effective-stress parameters in finite element analyses. The

~

formulatlon 1ncorporates both the A and B pore pressure

/

parameters. The pore pressure generated by the shearing of

I

the materlal results in a non-symmetr1cal constitutive
i h :

matrix. The deformation and pore pressure response of a

thickwalled cylinder and a strip footing were obtained with
an interesting pore presSure distribution for both cases.

In order to gain some confidence in the formulation

being\presented in real engineering'problems, the

'déformation behaviour of an excavation for the Edmonton

Convention Center is analyzed using the finite element
model A series of elastic. analyses were performed to <

understand the mechanzsm of deformatlon whzch 1nd1cate that
O

.

oLy
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. ’ Y _ )
the shear zone deformatioén in this case is highly affected
by the deformatlon of the adjacent soil. Non- llnear analy51s
indicates that shear banhd propagation can, be captured by .
“using the apprgprlate values of the materlal models.
In1t1at10n of the shear band in this case is affected by the.
1n situ stress fleld

Thls research has not only provided a deeper
dnderstandinghof the effect of progressive failure and the
behaviour of;strain softening.material on the deforﬁation/'
resppnse of soil masses, but also powerful analytical,tdpls
have been developed to perform'quantitative7ana1yses and
calculations on the eﬁbent and amount of failure-in real
englneeringjstructures. This enables engineers téfadopt a-
more rational approach in the design and. back analysls of
s0il structures when progressive‘failure ﬁay or may not be a
threat to the safety of these strnctdres. éy'no means has
this research completely solved the problem of progressive
failure.-ln fact; this is only a step for;ard towards the
ultimate ‘goal of analyzing progressive falldres with(great
confidence and ease;'This study may be.considered'td be the
beginning'of the "analytical era‘in the prbblemvdf v
progre551ve fallure. However, the sophlst1cat10n of the
analyses must not. overshadow the callbre of the data used in
the analys1s. These analyses do not replace the judgement
required in any englneer1ng de51gn but enhanbe 1t.ﬂSomer\‘.

' recommendations for’ further research are given below in‘
lightﬂof thisqreSearch as the neitbétep,in approaching this -

.
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;'mltimatevgoal.
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1
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] 7.2 Recommendatlon for Further Research

e

Although” the formulatlon and analysis presented in thxs
- thesis shows promising results in applying. the theory of
plasticity and the!f1n1te element method in ana1y21ng ';
progresssive failure«problems, there_is(much to be Iearntﬁin
understanding. the behariour of strain softening materiaL and

the progre551ve fallure problim More case histories. should

o ) ‘
j

be studied to have more comprehens1ve evaluatlons of the

methods used in different real engineering problems..xé. \
Obv1ously, such reﬁords are not easy to obtaln espec1aily in
Aest1mat1ng the maLer1al parameters for the soil' in order to
make objectlve predictions of “the observed measurement} It
is felt in thlS research and from other experlence, that the
o

uncertalnty in the 1n*sltu~stress conditions and ihe

strength and deformatibn parameters of the soil often leads

to unexpected variations in results, o ‘

In the analysisrof the Edmonton Connentionfclnt;j’ it
“is seén that the value of ko, can vary from 1.0 to
OEGS nhich has definite effects on the'mobilfzat qn of the
shear strength at the Shear zone. Also the elastlc
parameters of the clay, tlll .and shale bedrock are not known

.~

to the desxred accuracy 1n order to. predlct movement in the
order of m1111mEEers. Needless to say the\var1at1on of the
‘values of the elastic and strength parameters have a d1rect

,effect on the conflde ce in the pred1ct10n of the so11
. L %
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movement using the analytical, models.
'From the preceeding, in order to advance our ability to
make~aCcurate engineering predigtions, the development of

sophisticated.computer models must'belaCCOmpanied by

‘ . ) *
.comparable gain in cordfidence in obtaining material
Y B . . v ¥

— parameters for these computer models. This will require

‘better laboratory testing equipments and procedures

simulating.the appropiate Stress‘path»in order.to obtadn the

proper materlal parameters. Thls is espec1ally 1mportan€ for
strain softenlng materlal

In the course of this research, considerable
diffic;ltles were encountered in-qbtaining stable
coneergence forbsome non—linear problems. Not only ls'the

computational cost of the non-linear analysis an order df

, magnitﬁde4higher than for the elastickanalysis, but

sometimes it is difficult to obtain a converged solution for

problems with strain softening material behaviour and for

problems with stress concentratlon effects. To obta1n the,
11m1t load and the extent of the yieid zonegof the bearlng
capac1ty problem presented in Chapters 4 and 5 requ1red many
load 1ncrements and 1teratlons and careful mon1tor1ng of. the

applled load There are few guzde 1nes in determ1n1ng the

ns1ze of the joad. step whlch must be appl1ed to avo1d

: d1vergence and osc1llatzon. The value of the tolerance is

qu1te arb1trary and the value used in th1s research is based

n present experlence to m1n1m1ze the accumulabnon of error

ch could eventually lead to dxvergence.

R . L o - s
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In orderfto solw lem of convergence, one must

ifg of the convergent characteristics
of nOn-linear problems with or withoutfstrain>softehing

materlal beha 1our 1n1t1ally for more- specific problems and-

-

then search for more un1versa1 cr1ter1a in detecting .
| ot

d1Vergence and a better definition for convergence. Unless
these difficulties are overcome ang thoroughly understood,

the problem of convergence w111 always be an obstag&e in

‘-

mak;ng?non linear analy51s more'attractlve t0'1ndustry.
The effective stress finite element formulation
presented in Chapter 5 serves as a. startxng point in

1ntroduc1ng the effectlve stress approach ‘in the ana1y51s of
L

so11 structures. Due to the llmitak1ons of the t1me

1 " H
ccccc

“avallable, thxs|approach has not been applied to real
enganeerlng problems.;However,.the results -shown in Chapter

5 reveal a promlslng future for thlS approach To obta1nf
‘ /
confxdence in thlS approach some case hlstorles are

requ1réd to compare the f1n1te element pred*ct1on of pgre J
/\/gssure “and 501l’move ent thh observed measurements. Thrs
approadh can further be 1mproved by 1ncorporat1ng the -
- var1at1bn of the pore pi?ssure A parameter with stra1n1ng

As discussed in'Chapder 5, the. result of the undralned

analys1s can be applAed as the 1n1t1a1 stress condlt1on for-

consol1datzon probl ms. - ?

For the three straln softenlng models presented in thls“
/

: the51s, only the last1c brittle plastlc model can be used

\

»foretrxctlonal. ter;al. The other tvo models ere-reStrlcted

i N . . -
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l".

to frictionless material which can only be used to anal&ze‘
- - . » - i . - . / )
short term undrained soil behaviour. Extension of these two

»

models to frictional material can be made. This.is very

useful in analyzing long term stability of brittle material

under fully drained conditions. N . /’)/,,,/-~55
. ) . >,
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APPENDIX A

N ~ 0

Methods of Stress Galculation for Non-linear Problems

o

A.1 Introduction
Several methods used in the calculation of stresses

will be discussed in this appendix. It is sometimes argued

that stresses and strains are secondary variables in the

-

finite element analysis. Since displacements are the prime
‘ |

variables, stresses are not as sensitive as the , : *
. i . » . . . Al ‘
displacements. However, the entire non-linear finite element

formulation pr§§§nted in this thesis 1s dependent upon-the
[ E N ¢ .

~
”

current state of stress-and strain, therefore accurate

stress calculation during the analysis is not only important:

-~

in obtaining an accurate solution, but also vipai‘in

<
obtaining any solution at all.
T The stresses in a finite element analysis in general
Can be calculated frbm>;hq strains and the’constitutive
frelé;ionship of the material which 15 given by:
‘ . . o \.. ’
b ) . "
GI“} = J Cilmn‘dfmn ’ " : ' (A.1)
whgre | . ‘ .
Ciymn is the. elasto-plastic constitutive matrix which
carn be in terms of total ‘stress or effective stress
.parameters. . . .. >
) 1 AN ”‘ ’ -
It is understood that.the constitutibe matrix ‘is stress and
L . * . ' ’ . P
strain dependent, that is: . . _
. : 3-:??’.; ' - ’ -
hY t e * , N X ) o

e . 282 ..



Cijmn =‘CA)mn<oljr elj)- (A.Z)

Y

v
- B A
-

~ To simplify notation, the second order stress and strain A
tensors will be reduced to vector guantities and the fourth
, 3
crider censzitutive tenscr will be reduced to a second order

tenSor. Therefore Equation (A.1) can be rewritten as:

) o, = J C,,de, | (A.3)
\
where
‘'O, = O0uxy Oyy, Ouy, Oz, Oyz, 0,,, for i =1, 2, .... 6;
€1 = €xus €yyy €uy, €2z, €yzy Exgy for 1 =1, 2, .... 6.

«Ncte that the summation is taken from 1 to 6 and not from 1

to 3 here. The symmetrigal properties of the stress and

fstrain tensors arénused to reduce Equatien (A.1) to Eguation
(A.3) ‘but the constitutive tensor can still’be unsymmetric. e
The integration limit in Equation (A.3) is taken from the
strains of the previous step (loading step) to the strains

of the latest eqﬁilibrium iteration of the current step.

That is:

AO. = f C|)dfj ’ ’ (An4)
where |

the back subscripts m and m+1 represent the loading step

A ~ m and m+1 repectively;
.the back superscripts i denote the i-th equilibrium

iteration of the current loading step;

i
'

and 4 denotes the change in stresses or strains from ioading

~s

step m to m+1,
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It is important to realize that the integration is always
performed from the strains of the previous step to the
latest iteration of the current step and;not from the

previous iteration of the current step to the latest

iteration. The reason is that before the ion has

converged, the current displacement, and rains, are

¥ :
only aPproximated, and therefore there wi{l be error in
calculating the stresses during the iterative scheme. By
performing the %htegration from thé converged strains éf the
previous loading step, the error during the iterative
process will not be accumulated. This w}ll lead to a more
(stable solution process.

?To evaluate the integral in Eguation- (A.4), a nﬁherical
procedure must be used due to the complicated form of the.
constitutive tensor.and the fact that it is stress and
straih*dependent. bne can approximate the integral pf

Equation (A.4) by a summation in which the limits of

integration are divided into n equal sub-intervals. That is:
A )

-C% (A€, /n) _ : (A.5)

]
nM™M3

4 . . ®

. -
= i - . , 3
Ael = m,1€j mfj, 4/5' v

o

and the front superscript k denotes subinterval k.

Equation‘(A.4) can be recovered from (A.5) by taking f%g
limit as n approaches infinity.
Since the constitutive tensor depends on the current

stress state which is unknown prior to the calculation, it
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‘preE%nts‘a problem when one wanfs to determine the stresses
exactly. The methods presented below will give an
approximate solution td Equation (A.5). Discussion of these
methods for a single variable can be found in Ker?szig(1972)

.and Milne(i970). The objective of all these methods is to
calculate the stresses and strains at subinterval k+1 given
that the stresses and .strains at subinterval k are known,
Since 1t is assumed that‘they are known ‘at the lower limit
of the 1ntegrat10n Equamlon (A.4), one can then proceed the

integration from the lower limit to the upper limit.

' < WJ . a

A.2 Euler Forward Method
In the Euler Forward Method, the constitutive tensor

Ct, is evaluated based on the latest calculated stresses and
A

strains state at subinterval kwl. Therefore, Equation (A.S)

should be rewritten as:
& .
. n 1 n . . ®
Ao, = I Aok = — I C%'Ae,, , (A.6)
» =1 n k=1 R
where ' : .

Chi' = Ciylot-r, et 1),

Hence, the constitutive tensor is always one subinterval
.,behind in the calculation. This method is also called the

first order method because the error introduced®in the

}fggﬁlculation is of 'the second order of (1/n)?, .i.e. 0(1/n)2.

This can be shown as follows: E RN

i}
, e - AN :
Apprdff;ateftheexact stresses at subinterval k+1 by a
Taylor series in the neighbourhood of e!:

%

J



A

dgf*)
gi**') = gf*) + (ef=r — €Y) + e
36,
g_,
. ‘ i ook
- - (f.j“ —- f,)(fk" - f:,) +
2! afjaem
vt ( 4 \ f
s 1. 3%f%) \ | ‘ ’
= (e e ekt eh)(eh i ed) 4
o : 3! ' 0e;dende,
. . . . . higher order tefms™* . ...  “(A.7a)
1 9o (I EPIS N
= o‘sk) + ’AEJ + - Af,Afm +L,
n  de, 2!n? 0de ey .
1 3 ‘ .
Ae jAenle, + '
3!'n° Oe, demde,
R f
. . « . . . higher order terms _ (».7b)
where
g{**') are the exact stresses at strains e)°', that is
gf*) =.0i(€7”).

It is important to d15t1ngu1sh the quantltles that have
brackets around the superscrlpts and those without brackets.
Those with brackets in the front superscrlpts are true or
exact values and ‘those without brackgts are approx1mated
values evaluated.on the basis-of Eqdation (A. 6) or other

1

methods discussed latef. S1nce the stralns are the
o
1ndependent varlables, 1t is not necessary‘fg-dlstxngu1sh

s
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“

' ° Lo :
between exact and approximate quantities. |

Differentiegghg Equation (A-3) with respect to €, and

|
3

':\,

evaluating at subinterval k gives:

dok o : L . S -
= CT] . ' \\ (A.S)
A aCJ ) :
. m (
From Eguation (A.6) and/[%\@):
. 1 . | A
oi*' = af + — C¥ Ae ‘ .
n A
. > . ;
1 30" . , P
= of + —- —fe ) . (A.%a)
1 do{*? o
= g% + — —Ae; . . (A.9Db)
. n ae, . , \

'S
Compar1ng kquatlon (A.9) and (A.7), it is seen that the

second order terw,* (1/n)?, and the higher order terms are
neglected The error result;ng from truncatlng the hlgher’
_order terms of the Taylor series is called the truncation
‘error. This error can be reduced by 1nCrea51ng the number of
sub1:¥ervals n and hence reduc1ng the size of the
sub1ntervals. However, 1ncreas1ng fhe number of sub1ntervals
will- 1ncrease the round off error due to the f1n1te number
of dlglts used in the calculat1on. More detalled dlSCUSSlOD
of calculat1on errors wulq‘be g1ven later. Graphlcal ‘
~»1nterpretatlon of the Euler method is 1llustrated in. F:gure

A.1,
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Approximate o, ¢ relationship”

~

o
by Euler Forﬁ'ard Method
oy .
Ouf——=——-,
, A \ .
Uf —————— Actual o = C(o, ¢) ¢
| relationship
g, o .k
! slope Clo,. &)
: ‘
! I~ slope C(c., &)
L b
] 1 I -
g, & £, . £
9 Ae Ae g, — initial strain
* o, —. initial stress
. B :
' Figure A.1: Nlustration of the Euler Forward Method
% , ) . U . . .
;- | o
-

N o
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In Figure A.1 let us assume that the integration begins at

-oo and e, which is lbcated on the exact stress strain cﬁrve
. N
as shown. Tﬁen, usiné the current §?ate\of stress and
strain, the incremental constitutive matrix is detergined
and appro#imate stress o, is calculatea. In the next
subinterval, the evaluation of the conétiﬁutive'maﬁrix'ié
based on thé.stress,state g, at point A and strain state €.
But it is seen that the stress state ¢, will have an acfual
strain state corresponding to boint A', or the strainre,
will have an actual stress state of A". If the consStitutive

A

relationship depends on the stress state only, the slope of

the stress strain curve at point A' will be péed in the next
subinterval.'However, if the constitutive relationship;is
dependent upon both tpe current state of stréss and strqin,
'usingffhe slope at point A' will introduce inconsistency
sinc;‘point A'is‘not on the acgual stress strain éﬁrve..This
will result in.an error iﬁ the evaluation of the

4 constitutive matrix: Moreover the error introduced is
accumulated duriﬁg the integrat&on process'and will not be
reduced by the equilibrium iteration procéss. This creates a
problem in pbtéining rapid and séﬁble convergency fo; Pé

Lo

sensitive material. . . . CE .

A.3 Improved Euler Method
Since the Euler Method does not account for the‘siress,.
state at ‘the k+1 interval when evaluating the/CGhStitutive:;

k\{éqor Ciy, the Improved Euler Method will first estimate

\\
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the stress state at the k+1 interval before calculating the
final stresses. The estimation of the stresses are given by:
* 1
GT.‘ =0";‘ +—'C‘:]Af-1 ’ > . (Ac‘O)

n

and the final stresses are given by:

1 %
g%t = af + — (Ch; + CX5')Ae, | ‘ (A.11)
2n :
where
* . ’ —
C5j' = C,;(o% ", e€%3') is evaluated based on the

approximated stresses from Equation (A.10).

This procedure essentially calculated half the stress

-

, changes u51ng C,, based on the prev1ous stress state and the
other half on the approx1mated current stress state. The

graphical interpretation of the method is shown in Figure

i

A.2. The‘Improved Ebler Method is a second order method

because the truncation efror is of the order of (1/n)°, This
* : .
can be shown by ?pprox1mat1ng the term C“'l using the Taylor

series as: L . -
Lo N P
B M. el * Rk B '*; x
vk 18k, T arch | | i %.w?
Chyte= S ———DE gy Dembe, + . . . SR
oey 2!n? depde, , ' A T
: ' S : <
” s @
4 - ¥
¢ » & . . higher order terms , (A 12a) o
x| * " : * o '
: BC.L _ _3207' B’C'f., 3‘;",0'.‘ o _ ‘)
Jandzr. = - , = - . ] (A:12b) "
: = aem . 0€,0€em .. bemb§"~‘ O€ j0emdey : -

] - . oo . . .
R - . A

, Substltute Equat1ons (a. 12) ‘and maklng the approx1matlon

E

vgpét ck ' = CY%;', then: - -




2971

R
< :
o
o ' .
‘~.r"‘\~\,‘_t S, = 0o + 'C(.OO,E&)AE ‘
] ‘
P Apper. Stress
0 1 T — - ——
t
k] 01 v ‘ * ~
i slope C(o,,€,)
0o \
{
> |
' . ] 1 —
o , . A B
Ae/2 | Ac/2 A : 4 Jf
. , J o : Vs :
. .
-

Figure A.2:*Illlistration of the Improved Eulep Mc_eih'ody

a
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Q
I 1 3ot
of ' = of + — (ch, + cyy + - dem '
2n n-0e,;dep
I DY EP
+ : Ae ,Ae, +

2!n? QJe,;den0€,
»
« «. . . .- higher order terms ]Ae,

\

1

o ~
1 1 9%0k o
= 0.: + - ij + AC,Afm‘
: n 4n* de,dem
Y ) T \
1 30 - ) ‘
o o+ ' Ae jAenbe, + & . . . .
4n’ Oe¢ 0emde, o
..« % . . higher order terms . (A.13)-

Making the approximation o%f = o{*’, and CY%,; = C{*, the "
truncation error of Equation (A.11) can be calculated by -

/;ubtrecting.Equétioni(A.7XNfrom (A.13):

4

. ‘ TR ant . ) '
error = ' Ae jAej A, + ., . .
12n? ae,ae den R
e e . hlgher order terms , (A.14)
. which is of the,order‘li/n)’." T B
A.4.Runge-Kutta Method "-( : ,sf??},, .
. - . o ~‘, ‘“’l -; ;

"The Runge Kutta Method 1s a more accurate method than"
’*the Improved Euler Method sxnce the truncatxon error is of:

the order of - (1/n)'f_1n thls’method; the followlng

E2N
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quan%ities are first. calculated: .
1 e - '
0} = - Cij(oir e'll)Aej ’ (A.-]SB)
n o
] 1 1 A B
0} = — C|1(0|+ -0, e+ _Ael)AeJ (A.15b)
n 2 2n
. 1. I 1 :
0} = — C,,(o%+ -0}, ek+ —Ae,)he,; ; (A.15¢c)
n 2 2n
1
ot = —C,, (01, *)ae; ; (A.1548)
n. : e
. !
and the final stress is given by: [
/;” . of*? = ot + —(o} + 207 + 207 + 0¢). - - (a.16)

The acvantage of all thesevmethods is that only the

‘ constltutlvegtensor need be calculated and no derivatives
‘aretrequ1red which sometlmeskcan be qu;te diffjcult to
determine. Therefore, it is not necessary for the
der1vat1ves 'to be fqute, and in fact it is only requ1red
that the const1tut1ve tensor be p1ece wise contlnuous w1th1h
the stra1n sub1ntervals. However, for the case of elastlc
br1tt1e perfectly plastic material model dlscussed in: |
Chapter 3, the const1tut1ve tensor is p1ece wise cont1nuous
but the tran51t1on from the peak strength to the residual
strength cahnot be determ1ned from these method or any
other 1ntegrat10n scheme because the constltutlve‘
relat1onsh1p is not deflned at' the tran51t10n. The method
for stress calculat1on for thlS case 1s dlSCUssed in :
Append1x D. All of- these methods are used in Talculatihg

stresses 1n the computer program SAFE ‘In order to prov1de

I1r'some guldance 1n selectlng these methods, the ch01ce of the_
' L . , - o A C
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e mater1al obeys Tresca or von-Mlses y1eld cr1ter1a.

N ' . 294

s
<

number of subintervals, and the error involved, a detailed

discussion %mjthe errors in these methods are given below.

A.5 Comparision of various‘Stress Calculation Methods)

The three methods discussed above are used in
calculatlng stresses for’ non- lxnear problems. In all of
these methoﬂs, if the+schanges in stresses in any sublnterval
.+do not resuft in changes in the constltutlve matrxx, then *
all of these methods will lead to the same result. This is
not only true for linear elastic material butufor non-linear

material along certain stress paths in which the

constitutive matrix remains unchanged during the integration

. process. For example, the stress path of an unconfined

compression test' is shown in éigure A.3. The materiml is
assumed to be llnear elastlc perfectly p%ast1c wlth TreSCa d
yleld cr1ter1on. The stress path indicates that -once
yleldlng has occurred the dlrectlon of the plastlc‘strain,
i.e. the normal to the yleld surface, rema1ns unchanged and
hence the elasto plastic matrlx remalns unchanged during.

plast1c deformatlon. L
A second example 1s”shown in F1gure A 4 of an exoans1on
of a, thlckwalled cyllnder. The stress path also 1nd1cates
that the d1rectlon of the plastlc stra1n remalns unchanged
once y1eld1ng has occurred The above 15 true whether the
4

Therefore, in calculatlng stresses, 1t is not necessary to

“ subd1v1de the 1ntegral fnto sublntervals regardless of the

. -
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K .
methods of numerical integration used?® It is seen that one

can make use of the above observaeion in stress calculation
and updating the stiffness matrix in non-linear problems if,
the stress path of the material can be identified.. The
elasto-plastic matrix needs to be updated once. This wil1
have the same\effect as'updating it in every iteration.

TO'evaluate ;he effectiveness of the different methods
of stress calculation, three cases will be considered. The
hyperbolic non-linear elastic model (Duncan and Chang 1972)
w?ll be used in ehe first case. Since this is an elastic
model and the tangent elastic modulus is dependent on the
strese level, the problem discussed in the previous
paragreph will not occur here. An axisymmetric uniexial
compression test is simulated here as shown in Figure A.5.
The finite ele;ent model and material parameters are given
in this figure. An axial strain of 0.4% is imposed on the
specimen. The étreésesvare calculated using all three
metho@s dlscussed and compared with the exact solution of
76.74131032 which 1s summarlzed in Table A

The\material models for the second and third C;sesvare
linear- elastic perfectly plastic models with Tresca and
von-Mises yield critefia.,An uniaxial plane strain test is
simulated using the finite element method. As discussed
_earlier, the stress patE\&n this test will lead to a -
constant constitutive matrix and.the result is 1ndependent.

of the method of sttess calculatlon or the number of <

subxntervals. Therefore, the StIESS'path in these two cases



Table A.1 Summary of Result of Stress Analysis
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Hyperbolic Tresca von-Mises
Exact Solution 76.74131032 9.16515139 10.51581088
Euler n 4] 82.67610799 9.39199416 10.77216770 |
u |err 7.73 % 2.48 % (10) 2.44 % (8)
Forward m ) ’
b 20| 77.82494686 9.21484835 | 10.62473948
Scheme e |err 1.14 % 0.54 % (7) 113 % (6)
r
o | )
Improved| f. 2] 75.40459019 9.17491675 | 10.60234440
err 1.74 % 6.1 % (6) 0.82 % (6)
Euler i ' "
t 10] 76.69396018 9.16908650 10.59945449
Scheme e lerr 0.06 % 0.04 % (6) 0.80 ¥ (6){
r
a
. t . ,
Runge- i 11 76.74711398 9.16977211 10.59964206
o |err 0.0076% -0.050% (6) 0.0797% (6)
Kutta n '
. s 51 76.74119752 *9,16904539 10.59943858
Scheme err 0.00015% 0.043% (6) 0.0795% (6)

~

( ) indicates the number of equilibrium required to obtain

convergence. -
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20 cm ,
10 cm
| o,
I 5 cm
Unjaxial Compression Test Finite Element MOdTl \
’( 0,0 3 ) N ) -
Material Parameters.
P, = Atmosphéric Pressure = 101.28 kPa
- * ’ . k=295 n=0.65 R,=0.90
: ¢=cohesion=0
! .
. * g=friction angle=30.4
1 o . %:
0.4 9, strain £ 0.=98 LPa

Cofy

R (_ v n
Hyperbolic Relationship Et’ ;{ kPa (o 3/Pa )

(01"03) = 6/(1/Et + € Rf/(ol‘-os)f) 'i

(o,-o,)f = (2 Ccos¢ + 2 0, sing)/(1 - sing)

Figure A.5: Uniaxial Compression of Hyperbolic
- Elastic Soil '
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will belslightly more complicated. Initially the specimen
will be loaded uniaxially untii yielding occurs as shown in
Figure A.6. Then uniform shesr stresses are applied around
tthe specimen which leads to arrotation‘of'principal
stresses. The vertical displacement, or strain, will be

v

maintained constant during the application of shear

L

'stresses. The rotation of principal stresses while
maintaining the vertic¢al strain constantvmust be accompanied
by'a decrease in vertical stress if the_yield criterion'is
to be’satisfied. The exact fﬁnal stress condition is gjven
in Figure A.7. This will be used in the,compar{son with the
finite element solution. The horizontal stress will remain
constant throoghout this process. Theﬁstress path on the
octrahedral plane is also shown in Figure (A.7) for both the
Tresta and von—Mises yield criteria. The application of
shear stress result in a path along the yield_surféce which
leads to a rotation of the orincipal‘plastic strair |
"directions. It is noted that plane strain condition is
as;:med in the analysis and the stress path in the elastio
range w111 be affected by the P01sson s ratio. A 901sson s
ratio of 0. 3 is used in these two cases. The parameters used
in.-these two exampler are g1ven in ‘the figure.

Table A.1 summarizes the results of the analyses. Slnce
Athe use of the Improved Euler Scheme requ1res the evaluatlon
:of the constltutlve matrix tw1ce for every subinterval and
four times “for the Runge Rutta Method therefore, the . Qg?ber'

of sub-intervals used for these two methods w1ll be half an&
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one quarter of tha& in the Euler Forward Scheme
respectively..Four/and twenty sub-intervals are used in the
Euler Forward Scheme while 2 and 10; and 1 and 5
sub-intervals are used in the Improved Euler Scheme and the
Runge-Kutta Scheme respectively. The results in Table A.1
-show consistantly that the Runge-Kutta Scheme gives more
accurate results than the Improved Euler Scheme which in
iturn is more accurate than the Euler Forward ScHeme for the
sahe}amount of computational effort This supports the proof
of the errors 1nvolved in all thesé methods. For the case of
,elastléiperfectly plastic meterials, an iterative procedure
. is required to obtain convergence since constant shear
stresses are applied on tne specimen boundary. The number of
equ111br1um iterations required for each case are shown and
the same displacement tolerance of 0.00001 is used for all
three cases (refer to Chapter: 2 for deflnltlon of
.dlsplacement convengence tolerance) :

It 1s clear that the Improved Euler and the Runge-Kutta
scheme dlscussed here result in more accurate stresses than
the Euler Forward Scheme . Accurate stress calculatlon is.
important in obtaining stable and effective-solution |

‘procedures for incremental analyses. All three scheme are

available in the computer program SAFE.

1



APPENDIX B

Solution of Non-Linea quation using the

Interval Halving Technique ' o §
(.

The interval halving technique is a simple and
effective way of obtaining a solution for an equation of the
. , ,

form:

f(x) =0 . (B.1)

Usually only one independent varféble is csnsiaered. The
purpose is obviquély to find a vg;ue of x, for_examplelx =
Xo, yhith will'satiéfy Equation (B.1). If there is more than
one value of x satisfying Equétion (B.1), then all the
values of ; can be obtained b§ specifying the appropriate
inter?al. In o:de}\xo obtain a solution, the following

- conditions mugé‘be satisfied: h

1. F must be continuous in x.

2. The upper and lower valueés of x=xg are known, that is:

f(xy‘) >0, . ) , . \ N .. (B.2a)
f(x,) <0 , ‘ (B.2b)
‘where x, and x; define the range of x;; : &

L ' . . L &
.For the case where f is the yield function and x is the’

raf@o R defined in Chapter 2, condit{oh (1) is alwsys &
satisfied. Otherwvise, tﬁe y;eld surfaces wili_have a hole in
it which'doeé not exist for all the‘yiéld éurfacgs under

: consfdefatjon. Since the range pf R must' lie between 0 and

1, the second condition can be satisfied easily.

304
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A solution of Eguation (B.1) can be obtained by

following these.steps:

1. Determine the mid point of the interval,

X, * X3

2. Check if f(x,) = 0 or is within tolerable limit?
| 1f yes, then xo, = X, and a solution\is obtained.
If'ng, proceed to the nextstep.(
3. Check if f(xmj <07 ‘ : X ly
I1f yes, assign x, to x, and repeat etEps 1 and 2. -«
If no, then‘f(rm)gmust be less than zero; essign Xm ro

X; and repeat steps 1 and 2. . -, @ =

The procedure is graphlcally shown in Flgure B.1. The

' convergence rate of this technlque is usually slower than =«

1

other techniques, however,.thls technique will guarantee
convergence whlch is an important feature in obta1n1ng

solutions for non—llnear equations as ;ong aS‘f(x) is

- . \-
.continuous. It can be shown that the number‘of-lteratxons
'réquared for thlS method is approximately glven (to the

'nearestld1gxt for 0 € x < 1) (Trxbert 1969) by.

i

N = logg(mw1) - o _ - ° (B.2)

-where

n is the number of 1teratlons requlred and m is the

number of S1gn1f1cant*dlglts of  x.

£



.

C xm=(x,+x,)7/2 p

- Figure B.1: Solution Pfoc’qdu:e of Interval
| Halvirig«{lechnique |

)

1]
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. ;
For,example, if single prééision is used with six
significant digits, then the‘nUmber of iterationsnrqguired
Eo determine x wjthout any logs‘of accuracy is 15927 =
23.25, or 23 itefations. Normally it 1s npot necessary to
perform&Fhat mény iterations Lecausé there is some loss in
accuracy in.evaluating-the function f(x). Anotﬁer'advahtage
of this ﬁethod is’;hat it ‘is not neéessary to have the

derivatives of f being continuous. Therefore yield surfaces

\TEK\?\*qgh cornefg can be solved without any difficult.



APPENDIX C -

Method of Stress Calculation for

Elastic Brittle Plastic Material

The methods of stress calculat1on dlscussed in Appendlx-
A are for material models with well deflned and smooth
stress strain relat1onsh1ps One of the material models used
infthis research is an elastic brittle Qléstic model as
illustrated . in Figure 3.3. Such a mode;“is an ideeligation
of the real behaviour of very sensitive material such as
ouich clay. The procedure to calculate stresses for‘this
model differs from that of the methods presented.in Appendix
A since there is a discontinuity in the stress strain' |

/

relationship of the material.

\

It is assumed that the material behaves dlastically
_prior to‘the peak strehgth,'the stresses can simbly be
calculated from équetion (2137) usfng‘the elestic
constitutive relat1onsh1p wthh 1s stress 1ndependent. Eor
post peak deformatlons?NEny of the. methods d1scussed in
Appendlx A can be used b causé. the materlal behaves in a .
perfectly plast1c manner. wath wel& def1ned yleld cr1ter1a

/

) andhstress strain relatlonshlpsw The problem here is at the;.

transition of the stpess state from peak strength to ;
‘ re51dual strength$.51nce the trans1t1on 15 not well def1ned

.in the model and in fact, no con51stent mathemat1ca1 law is

avéllqble &et an emp1r1cal approach is necessary

Al
-—

w o,
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.

ok l o ;"A .

o ‘In piasiticity analyses, ifﬂthé'stress state 1s outside

. t&slyield?5urfaée,\yhich is physically inadmissible, it is

~

often assumed that the real stress state can be found by

‘ 4 | .
projed¢ting the current stress state onto the yield surface.
i ‘ p .

The' sudden cpntréct}on of the yield surface after the peak

)

s;rangth has been lobilized for a brittle plastigc material,
g  _wii1 leave the state of stress outside the yield surface’
when the étrength of the material has been decreased to

‘residual. Therefore:‘it is assumed that the sfress state
afteﬁftﬁe beak strength will be the projectioﬁ of the peak
stress on to the yigld su:face. This method é:; be expressed
mathematically as follows. Let <op> and Fp be the stress

N ’ R R

R : ) :
state gnd yield criterion at peak strength and <o > and F
{ g . . .
“be the stress state and the yield criterion at residual

'strehgtg, then: .

iy . PP : »
‘ F (o) =0 (C:1a)
- just before softening occurs and:
“«. L ‘ . . m . ! , . . A{}
A "R R , 2 \ -~ Eé
P F (o) =0 ' | (CéTa&Q
just after softening has occurred.
The difference in'streSSesh<do} is{éésumed to be
pgrpendicular“to‘the yield surface at the residual stress
*  state. Thgr is: " |
TR
. . oF . "
o {do} x X {— (o)} - ' < {C.2)
' T “d0 - o - ’ . 7
N g L4

where
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A 1s an undetermined constant, and o is the current

state of stress which initially is the state of stress

at_peak strength. < .
~ )
OFR d
Since aF = <— (o0)>{do}
90 ‘
R : p P
and dF = F (o) - F (o )
R
= F (a)

R

{C.s3a)

(C.3b)

where F (o) is evaluated at the current stress state.

From Equation (C.3b) and (C.2), the value of X can'be

evaluated. e
R R
R. oF . OF
F (0) 5= <— Mo)>x{— (0)} .
00 oo

aF“ oF
<— (o)>{— (o)} -
o0 o0

The change in stresses is therefore given by:'

~

R R
. F (o) oF
{do} = R R {— (o)} ,
oF oF 00
<— (0)>{— (0)}
o0 00

p .
ard {o} = {0 } + {80} .

R

(C.4)

(C.5)

(C.6)

1f {0} = {o }, then 4F will be zero and <do> will

also be zero.

.

-
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Since <do> in Egquation (C.6) _is dependent upon the
current stdte of stress <o>, Equation (C.6) must be
solved by an iterative process. Therefore at any

iteraticn i, the current stress is calculated from:

+

{0.1}

1}

{o,.4} + (o, .} . /,,,, o

/’14&;

This method of stress calculation is illustrated
i : - .

graphically in Figure C.
l This meﬁhod of stress calculation is not only
restricted to use inG%lastic bri}tle plastic material,
it can also be used in finite element plasticity
andlysis in making cérfec;ions to the stress state
whenever it 1s outside the yiéld surface (Zienkiewicz
1972).~Althou§h the methods discussed in Appendix A

provide fairly accurate stresé'calculatign procedures,

-

it is not uncommon that the state of stress lies ogtside

the yield surface. It is important'that the yield

criteria should be satisfied as -accurately as possihle

bebause'this error will be‘accumuléfed during the

‘analysis and may eventualiy-lead to numerical

1nstab111ty or incorrect results. This procedure can be

comb1ned with the methods in Appendix A to ensure that

2

the y1eld crltetla are satlsfled ‘at all times in the

analysis. It is noted that the stress increments

calculatéd'using this procedure may biolate the flow

rule locally but actually, the flow rule is undefined at

this di5c6htinuiQY’dn the stress strain relationship.

A . L
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Figure C.1: Stress églculatjon Method for

Elastic Brittle Plastic 'Matirial |

Voo , ‘
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All these methods of stress calculation are available in.

the computer program SAFE.



APPENDIX D

/

o Mechanics of Localized Deformation

The theoqz/ei localized deformation is based on the
hypothes“s_éhat ldcalization can be considered as a result
of the igﬁgigility in the constitutibe relationship of the

material (Rice 1976, 1980, Rudnicki, 1975, 1977, 1979). It

is é%éﬁ;;d that the constitutive relationshipyallows_

[y

bifurcation to occur from an initial uniform deformation

field to a non-uniform deformation field in a narrow band

under conditions of continuang equiiibrium and.continuing

homogeqeous defdrma;ion'outside thé zonéuofulocalizatioh. A

state of deformation in which all the strain'ébmgsnen s are
o

-

[onstant in a body isAcalled homogeneous deformétidma
onditions for shear band bifurcation will be derived from

first principles below. The basic conditions that must be

\. .. oy e .
satisfied are compatibility and equilibrium which allow

' Q ‘ : :
stress and strain discontinuities to occur across any

|
v/

. arbitrary surface or surfaces.

The—study‘of diséontinuous surfaces in continuum
mechanics was pioneered by Hill (1961)'and szgeqUéhtly'
exteﬁded to study the propagatiqn;of waves in solids (1962).f
;It has been shown fﬁat.shear band type of localized'
deformation corrgsponds'to,a sta;ionary wave with components

of velocity being discontinuous .across the front. Houlsby

and Wroth (1989) have clasSif}ed the mode of deformation

into five méin categories, see Figure D.1. The first type of

314
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Continuity of

AEY

(i) All Quantities Continuous

u, v, du/dx, dv/dx, du/giy:%\dvjdy

("(

V-
:— : : - (ii) Strain Discontinuous
. u, v, du/dx, du/dx
s | ) -
‘ / ; : .
- = 6o . .
If"_ . : (iii) Velocity Discontinuous
I _L 5 ' . a - '
v du/dx, dv/dx
-5 , Ix . _
50 §20 )
lr : (iv) Rupture
oo ' v, dv/dx
.,*"’6' =~ ke Si#6. : \
[T : | o\
If_ : ! (v) Fracture
: ‘
i .
' none @

-

" Figure. D.1: Compatibility Reld?ionships of Discontinuity B
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deformation represents uniform deformatxon w1th all
dlsplacements and displacement gradients bexng continuous.
Types 2 and 3 are cases with some components of

- displacementseand displcement gradienés being discontinﬁous.
These -two types are of interest in the present study because
they represent the shear band type of bifurcation. Thé last -
two types involve rupture and fracture .of material which
will not be considered here. The compatibility equations for
certain quantities (strain in this case) that are !
diséontinuous aéross an arbitrary surface will be derived
belowf

Consider a function f(x;) in Cartesian coordinates X,
(3=1,2,3) which is required to 5a;isfy the following "
conditions in region N and surféce z ithigure D.2:
1. f is constant in I;
*2. f is continuous in N.and"on z;
3. the first partlal derlvatlve (one side der1vat1ve) of f

exists in'N and is finite when approachlng .
The function f must have the following form:

af | | . o
—_— = kyl y ‘ : (D.1)
ax,' - -
where |
vy is the components of the unit normal of Z

and A is an arbitrary scalar function.

i

‘Equation (D.1) can be proved as follows. Since'frsatiéfied
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conditions (2) and (3), therefore:
af
df = _dx, , (D.2)
ax

exists in region N and on L.

From condition (1), f is constant on I, therefore,
df = 0 ,
of : )

or — dx, = 0 _ on L, - ‘ (D.3a)
ox ‘

-

for arbitrary dx, satisfyingd:

v,dx, = 0\.' . - » _ (D.3b)

of :
From Equation (D.3a) and (D.3b), — must be in the
ox
' dlrectlon of the unit normal v but its magnitude is

undeflned. Thus Equation (D.1) is ‘obtained.

; The result of Equation (D.1)'c§n be genetalized to a

vector G with components u (3=1, 2 ;). The above argument

can be appligd to the 1nd1v1dual components of u, therefore,
_\%,vl . ! o : : " ‘ ) - (D.4) ’ﬂ? '

'The quant1t1es G can be 1nterpreted as the 1nf1n1;e51mal

‘.dlsplacements.or velocities with x, being the Lagrang;an. -

' AN .

‘coordinates.

¥ The dlSCUSSlOD so far is restrlcted to a functlon f

belng def1ned in region N and on surface Z Let us now

. considér a surface of discontinuity Z separatlng a body into

/
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two regions N_. and N. as shown in<Eigure,D.2. The function f

is assumed to satisfy conditions (25 and (3) but not
neﬁessarily (1).. That is, f is continuous acrdés Z but the
one-side derivative can be dis;ontinuous;aqross‘t and f can
vary along Z. Consider the fuhctign f-in region N. tf be
denoted as f_. on one side of I and being continuous across L

. with the first deriQative also continuous across Z: The
value of f. in region N. will not be the same as the actual
value of f in region N.,, which is denoted as f., and the
‘difference is given b} (f. - £.) as sﬁown in Figure D.2b.
The differénce (£, - £.) vaniéhes,on Z'(since f is |

continuous), thus satisfying condition {1), and it also

satisfies conditions (2).and (3) in region N.-because both

! ]

f. and f. are continuous functions in N. and on X, and the
. ' N

first derivative of (f, - f_) is finite on"L. Thefefore from

Equation (D.1), it folldwf that: - _' o i
Lo .

o(f, - £.) , : ,
f——— = X, , (D.5a)
! - 9x, | . - : ,
of, of._ / .
or —— - — =Xy, , (D.5b)
' X, 0x, : :
. : , . of
. must be satisfied on L at.the N, side. Since.— is
. - T 3x, T
/ e . . . . ) : )
continuous across Z, Equation (D.5b) represents the change
of ' of
in'— from the region N_ to N,. The jump in — . across the
0x ' ' , T0X :

surface oanisgontinUity is denoted by A ana'rewriéing

Equation (D.5b) as:



. &e=0

Figgre D.2: Bod'y: with one Surface of Discont‘inuity
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of , ‘
) A{—"] =XNv, , (D.6)

Equation (D.6) indicates that the change in the gradient of
f between the discontinuous surface and  the ad)acent regxon

. <
must be proportlonal to the dlrectlon of the normal of the

¢

discontinuity. Genera11z1ng the above result to a vector a

with U being not necessarily constant on L, ®gives:
A[Uilj]v = AiV} . ' ’ (D.7)

Equation (D.?? is the cémpatibility reletionship that
_must be satisfied at the surface of the dis®Pontinuity. It
must be emphasized that the funétions u, in Eguation (D.7)
must be ContanOUS across the dlSCOﬂtlnulty z, therefore, it

is only applicable to d1scont1nu1ty types (11)-and (1ii) 1in

°
’

Figure D.1. ¢
The equilibrium requirement at the discontinuity is
’. N

-

given by:

viBo., =0, . | o (D.8)
where. | : |

o, is the heteriél time derivative 5: the Caueby sgfeSS

tenser: R . .‘ .

vy, are the coﬁpbnents‘of the unit‘ﬁormalf
and.A.denotes.the diffefenqe-of thevstre§5es Qithin“the

" discontinuity and the outside field.

Equation.(D;ﬁ) can be shown as follows,



T

Rewriting (D.B) as: ' g
S n

>
@

N
V|(0}‘_0?J) =\0 ‘
A

where the superscript * denbtes the stress field at the

" discontinuity and ° denotes the outside field. Then,

. .

h’|0‘|j =~V|0?’ .

Since v,0},; is the traction rate on the surface of the
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discontinuity, when equilibrium is satisfied, it must be

equal to the traction »,0¢; of the utside fields. Hence

Equation (D.8) is obtained H\- \\
Y

Equatlon (D.8) is valld because the variation of stress

\
fleld within the d15cont1nu1ty is restrlcced by the

compatlblllty relation of Equatlon (D.7) wﬁl ch alhpws

var1a,1on~of the velocity gradient across\th& discontinuity

A

o#iy} S i | | - '_".‘” K\ ;\
' N

.'-;\

stcontxnulty
The two ba51c cond1t10ns that must be satisfied-at

inCipiént'localization were discussed in the previous

'section. Let us'study the consequences ¢f the'abOQe

cond1t10ns on the constltutlve relathggnlps of the

oy

d15cont1nu1ty Rewrltlng Equatlon (D 7) in terms of the

veloc1ty gradlent'

'AU["j = X|Vj ’

. D:2 Rest:iction on the Constitutive Relationship ipr«the\
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and from'Equafion (D.8):

ViA‘;lj =0 . ‘;‘: L ’»(D.10)‘

’

‘Since the Iate-oﬁ the.Cauchyvstress tensor is not
1nvar1ant under . r1gld body rotatxon it is convenient to
xntroduce the the Jaumann stress rate defined as:

v . \ . e .
Oiy = 01) @y - 0 Ry, ' - - (D.11)

where
Q.;.= 1/2(u; , - u; ;) is the spin tensor.

Assume -that the constitutive relationship is of the form:
7 - . . -

v. : : : S
0i; = C(}mann ‘r - . (D.12)
where - | -
D,; = 1/2(u, ;| + u;,:) is the velocity strain tensor;
affd C; ,n, is ‘the intremental modulus tensor.
« “\ . . N ’
\ :
It can be shown that o., and D, are~energy conjugates
From Equatlon (D, 12) the const1tut1ve relatlonshlp at the
Hﬁlscont1nu1ty 1s glven by° »
A (

andjthe outside field . is giVén,bYé' o DR .
.:V . ,'-o o » " - ) , . @ o

" 0%, = CYymaDin . ﬁ e - (D.14)

F#om Equétioh (D.11), rewr1t1ng the Cauchy stress rate in

termsiof the Jaumann stress rate and substltutlng 1; 1mto‘

the equ111br1um equatlon, Equatlon (D. 10) ’one obta1ns::

C}'.

01y = ClymaDdn o L (Da3)

t
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V -
VI[(O}j o8 t O;in.) -
.V .
('07) + 0 Q¢ +‘0‘)’kQ:I)] = 0, , ’ (D.15')
. ¢ .
Substituting Equations (P.13) and (D.14) into (D.15):
vi[(ClymaDma = C%ymnDan) + (01,90, - 03.88,) *
+ (0.0, - 05,08,)] = 0 . - (D.16)
. ,
Since
iy, - DYy = 1/2(h:,, = ub )+ /2y - us L),
and from Equation (D.7):
uj ., -.ut = Niv, ,
then,
A D!, =~ D) = 1/2(v A, + » ,A,) ,
or. ' ' .
D}, =.1/2(v,x, + v, A,) + D°, . (D.17)
Similarly, o
i, = 172000y — vy X)) + Q7 . (D.18)
‘SubStituge Egugtion (D.17) and (D.18) into (D.16):
. . - . \
% 9 lCHan (/20000 + vada) *+ DA - CT,aaDa,) ¢
):‘. A{‘a}"|(1/2(y,"x1 = U"-Rm) + 9:.)) - a?mgl:)j} + v
{osm(1/2(vpX, = v X)) + Q%) - o3m@Ai}] = 0 . (D.19)
Since’
' o

v (0MgE; - 00.88,) = vi(ol, -~ 0300, = 0,
| 0 |

from Eduation (D.10), and

*
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V|(0}u9i’n“ Oij:a) =0,
also
C:)mn(]/z(ynkm + mGn)) = :jmnynxm [
because it is assumed that C| ., = Ci,nm, then Equation

(D.19) become$:

Pi(Cl imaPaln) + P (Clima = C¢ mn)Da, +

V20 0w N - 1/2v 01 v X, + 1/2v,0),v X\,

1/2v,0 v A, = 0 .- o (D.20)
Aiéor

1/?11,02ka)\, = (1/2V|0‘|me6k‘.))\k

1/2v,0 AN, = (1/20,0 ) mvm) Ay
and  1/2v,0}.v Ny = 1/207, ), because v,v, = 1,
/’_\-

Equation (D.20) thus further reduced to:

(ViC:jmnpn)km + 1/2 [(V.Ozmvmﬁk,)kk - (V.U;kVJ)Ak +

(Vkolmpm)kk - (Olk)xk] = Vl(cgjmn - ‘:)mn)D&n
) Let A*J = 1/Z(Vio‘im'ymékj - Vio}kV) + VkO}me - a;k) ’
- (Vlczjmnpn + Am])}\m = VI(ngm" - Cz‘mn)D;n . " v(D;?l)

At incipient localization, if one assumes that the’

incremental modului, C, mn, within‘the'discontinuity‘is the

same as that in the adjacent field, that is :

Climo = C%ymn o . % | (D.22)
then Equation (D.21) simplifies to:

<

N . -
[ . 2
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[vuClymnva * Am,]{rm =0 . ‘ (D.23)
L/ ' ' '

~—

For noh—trivial/sekﬁtion of A,, that 'is for localization to

occur, the Syléowing must Be true:

det|viCl ma¥a * Am,| = 0, : , (D.24)
where

det| | denotes»the détermihant of the matrix in

bracket. | | a _

Equation (D.24) gives thé constraints on the possible form

of the constNutive relationship for the discontindity at
the incipient of localization. The term A, in Equation
(D.24) 1is non zero when rotation of the material eiement is
large. If small spin is assumed, that is:

. V . .

o,; =0,, ,
then A,, = 0 and Equation’(D.24) becomes:

det|v C! maval = 0 . 1 ) (D.25) -

‘The discussion here is restricted to only one surface

of’discontihuity, that is case (ii) in Figure D.1.«Before

discussing further implications of Equations (D.Z4) and

. : . , .
(D.25), let ts derive a similar set of eguations for two

surfaces of digcontinuity which is type (iii) in Figure D.1.

D.3 Conditions for Localization with Two Surfaces of
, . . e _ . .

Discontinuity L L C

-~
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Consider a body with two surfaces of discontinuity
separating the body into three regions as shown in Fiqure

D.3. The constitutive relationships for each regionn are

X <
g.va2n by: .
v ' : '
01, = C! mnDmn for region 1; (D.26)
v < L
7b?l = C?]mnDr:\h ) fer region 2; ; (D.27)
- V n, 7 .
01, = C} maDan for region 3. (D.28)

The compatibility relations at the discontinuities (1) and

(2) are:
Aul ;= Aiv} ‘ _ at disc'onltinuity‘ (1); ) (D.29)
and Au} at discontinuity (2) . (D.30)

]
>
Y

<
—

Equilibrium conditions at discontinuities (1) and (2) are:
vifol; =0 at ‘discontinuity (1); (D.31)

~and »!Ao?, = O at discontinuity (2); (D.32)
’ & ' ' \\,

The superscripts 1, 2 and 3 in'Equations (D.26) to (D.28)"
denote the guantities in regions 1}:2'and 3 respectively
while the supérscripﬁs 1 and 2 in Equations (D.29) to (D.32)
denote the quantities at discontinuties 1 and 2
respectively. | _ |

" For discontinuity 1, us1ng Equqtlons (D.26), (D.Z?), -
.(D 29) and (D.31) and performlng the same algebrlc

man1pqlat10ns as that for the single discontinuity, one

<
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normal v’
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obtains a similar gxpression for localization as Equation
g ) O -
(D.21), namely;

(y}C?)mnpr‘\ + Ari\i)xr:\ f V}(C'i‘jmn - C?jmn)Dr:'\n_ ’ (D-33)

where

Aa) = 1/2(viotivibm, =~ violav) + vholivi - oia)
: \

The double superscripts are explaiﬁed below.

. For discontinuity 2; since the stress field and straiq
field can vary in region 2 between the two discon;inuitfes:
the stress'tensorAin region 2 at discontinuity 1 may not be
'tﬁe same as ﬁhat at diséontinuity 2. The variation of-

-~

stresses within region 2 is denoted as do},;. Therefore:

3

011 ="g1! + dot, , - o (D.34)

where
o1} denotes the Cauchy stress rate tensor in region 2 at
discontinuity 2; '

and ot} denotes the guantity in region 2 at discontinuity 1.

Similar expressions are obtained for strain and
incremental moduli. They are given by:

ugry o= utn, s Aot IR (D. 35)

'\;511mn = Climn * ACT mn + R (D.36)
Using Equations (D.34), (D.35) and (D.36) in addition to the

equilibrium and compatibility equations, Equations (D.32)

and (D.30), and the constitutive relationships (D.27) and
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\

(D.28), one obtains the following equations:

[V?(Cf}mn + dC?Jmn)l/: + A:r:x + dAjm]x:\ =
>1C? jmn = (CHjma + dC% naDn] , ~ (D.37)
where

A3, is ghe same as in Equation (D.33);

and dA,, = 1/2(vidoivib,;m - vidoiiv? + vidoi,v] - doinm).

Equations (D.33) and (D.37) thus become the governing
équétions for shear band initiation. Let us consider the

following special cases:

D.3.1 Uniform Stress Field across the Shear Band
If the sfress field and strain field are uniform across

the shear band, then:

4Ct mn = O and doty = 0°,

0.

o~ dA,,

Equation (D.37) reduces to:
. < ’

[¥1CHjma¥d + ATRINA = #1(CT mn =.CT ma)Din . (D.38)

D.3.2 Two'Surfaces of Discontinuity are Paréllel
N ? N

, If the two.surfaces of discontinuity are parallel,

thgn:

Cpi= -p1,

/ h AN /
: : . ! :\\“,,..,/
and Equatibn;@p.BB) is further/éeduced to:
) » : N 4 ) ’ / 1 :

/
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@

[V1CT mard * A1AIAE = 291 (Clymm - Clima) B2 . (D.39)

D.3.3 Uniform Stress Field outside the Shear Band
I1f we further assume the stress field outside *he band

is uniform, that is?
Dv:\n = Dr;n ’ and C}jmn = C?jmn '

then Equations (D.33) and (D.39) can be rewritten as:

-

[(v1CImavas + AL}IN, vi{Cl ma = Clima)Dan , (D.40)

and

(#iCHimava + AIRIAL

“vi{Cl jma = Cljma)Dmn . . (D.41)

Equation (D.40) and (D.41) are identical equations if X;
-Ai. Therefore, under the above assumptions, the governing
equation‘for shear band bifurcation redpees to either
Equation (D.40) or (D.41).

The above conditions are preeiselyr;he same as if the
thickness of the region is‘feduCed to ;erd( We'see in this-
case that Equations (D.40) or (Ba1) are identical to
Equafion (D.21) for a single diseontinuity under the : '
condition that the out51de f1e1d is unlform. Therefore
Equations (D.33) and (D.37) represent the general govern1ng“
equat1ons while Equat1on (D 21) 1s only a special case of
(D.33) and (D.37). | |

There are three possible solutions for A{ and A} in
<Equations.(D;33) and (D.37): .

1. Al = -\ =0 for all A} and A¢;
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but not all A} = 0 or A2 = 0;

4]

for at least one A}, and at least one A}

or one A{ not equal to zero.

\

The first solution is a trivial solution which
indicates no shear band bifuréation as shown in Figure D.4a.
Thé structure may undergo elastic or plastic deformation gﬁt
the variation of velocity gradient throughout the domain is
continuous (not necessarily constant as shown in Figure D.4a
fqr simplicity). The second soluiion represents shear band
bifurcatidn from a uniform field in which Equations (D.33)

and (D.37) degenerate into one equation, Eguation (D.21).

. »
The velocity gradient is discontinuous as shown in Figure
D.4b. Even if the thickness of the shear band is reduced to

zero, the velocity gradient is not necessariiy contiM™uous.

The third solution can only,be obtaéned by éélégng equations
(D.33) and (D.37) simultaneously. Thisg represen;s shear band
b1furcat1on from a- non uniform stress field as shown in
Figure D.4c.

The first case 1s not partlcularly 1nformat1ve ‘since it
.gives no real solution té the problem. The thlrd)case ‘is
difficult to solve because of the non-uniform var:atlon of
stresses both inside and out51de the shear. band Most .
research effort -is focused on thq §gcond case to explore -the
characteristic of shear bands. - )

v s
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APPENDIX E

Solution of a Non-symmetric Matrix using the

Extended Skyline Method

/]
E.1 Introduction ’

The use of the finite element method requires the P
solution of simultaneous algebric equations. The basic

eguations can be writtem in matrix foig/gs: !
(K] {u} = {R} , : (E.1)

where [K] is the stiffness matrix;
{U} is the displacment Jectof; ' .
{R} is the load vector. )
The étiffness matrix [K) normally has the.follow}ng
properties: . X
1. [K] is positive definite;

2. [K] is banded;"

3. [K] is symmetric-

Many QChémés have been proposed ﬁé obtain'the’éolution‘fo}
Equétion (E.1) which mékes use of the above properties of
[K].kThe‘analysis of strain sOftenihg,ﬁaﬁerial results in a
stiffness matrix which does nét neceséa;iiy have all of the
above prbperfies; That is: | )
i., [K] is not necessafily pdéitive»definite;

2. [K] is usually banded;

333
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‘ e
3. '[K] is not necessarily symmetric.
I the material mogdel possesses stsaih softening behaviour,
" then the stiffness matrix [K] can be non- positive definite
as a result of the. post peak deformatxon. When the
non—assoc1ated flow rule is 'used in a plasticity formglation
or in a fully uodrained analysis, the matrix [K] is no
longer symﬁetric. However [K] is usually banded and the
number of non-zero élehents}above or below the diagonal of
the matrix must be the‘same..Although'[K] is banded,.there_
are still many zero elements vithin the banéwidth. The
skyline method proposed by Bathe and Wilson (1976) makes use
‘of. this property of the stlffness matrix in which only
calculation of the non-zero elements and some of the zero
elements are performed. This results in a more effiogent
scheme in terms of the améunt of in-core storage requ1red
and the computational time. However, the skyllne~method can
only be used to solve symmetrlcal matrices. The exten51on of
th}s -method to non- symmetrlc matrices will be’ 1ven below
together with a brief review of the skyline method.
E.2 Ditect’Solutioh Scheme using EaussFEIimination Metﬁod
' A solution to Equation (E“1) can be obtazned by u51ng
the-Gauss-EL;mlnatlon method. The solution is obtained by
redoé{f;ﬁthe stiffness matrix [K] into an upper tr1angu1ar
'mat;1x.and the vectorv{u}fcan be determ;ned by back ‘
SubstitUtion} Operations performed ohiﬁatrix'[k] must .also

be done on f{u}. Gauss-elimination can be performned using



- ' 335

elementary matrices denoted by [Li']), where

- . -

1 ) elements o /;
. not shown
are zeros
i. . )
[Li'] = =1, ; (E.2)
'ls~2 |
™~
4—1 1
L | " ‘: J

and k&') 1s the element of the m-th row and n-th column of
matrix [K‘'’] and
TRC) = [Ly:,] - - - - [L3'] (K], (E.3)

where matrix [L] is a lower diagonal matrix:

3

iy =1,y if 1> 3 ' L . '
= v if 1 = 3
=0 if i< § .

v

Lower caee letters and‘subscrlpts in this appendlx represent
1the elemehts of the matr1x and’are not tensor quantltles.
‘Therefore the summatlon conventlon for tensors does not

, apply here. If [K"’] is pre—multlplled by [L T, the.
=elements in the i-th column of [K"’] below the dlagona;

wlll be reduced to zero. Let - S
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A B Y T ¢ TR B (E.4)

where n is the size of matrix [K],

A

such that
{L-'1 (K] = {s], - s (E.5)
and [S] is an upper diagonal matrix:

Sy = Sl,J.‘; foN e lflhs j
=0 PE i< .
. ( ]

Therefore pre-multiply Equation (E.1f by [L-'} , then

(L-'1 [K] {u}u= (L-'1 {R} , L - (E.8)
and from‘Eouation (E.5), ' ,/f
151 fo) = (e ®’} . (g

Y

Since [s]l is an upper trlangular matrix, {u} can be solved ‘

N
from (E 7) by back substltutlon. It is assuméd in Equation

(E.2) that the matrix [K"’] must not contain zero dlagonal
" elements. Note that it is not necessary to have p051t1ve o
diagonal elements in matrix LK"’] therefore non p051t1ve
def1n1te matrlces can be solved u51ng thlS scheme 1f [K] is

A
‘_ymmetr1c, then [S]‘can_be written as:

18] = (0] (5] “"\ . : R  . (E.8)

D -
o where [D] contalng'only the d1agona1 elements of (s] .

It can be shown ea51ly that’

e
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zero and they are not stored or being operated during the

337
. ‘\T | “ -
(51 - 01 (9 (E.9)

However, for non-symmetric matrices, such convenient

relationships cannot be found and both the matrices [S] and

[L] must be determined.

E;3,Computer Implementation of the Extended Skylihe‘Method

The solutlon scheme u51ng ‘the skyline method has been

dlscussea_In detail by Bathe and Wilson (1976). The elements

of the stiffness matrix are stored in a one-dimensional

&

_arr%yAés shown in Figure E 1. The skyline of any column j 1s

deflned .as the d1fference between j and the row number of

the first non-zero element. Elem‘ above the skyline are

§

_ solution procedure. Howeve®, the zero elements below the

skyline are stored and they, usually .become non-zero durlng

>
¢ A Ly

the matrix reductlon process. Slnce the matrlx shown ‘in Y
Figure E. 1s@symmetr1c, only half of the matrix [K] is
stored To 1ﬁenthfy the corresponding elements of matrix [K]
in atray A, the addressing -of ‘the dlagenal elements of A

must ‘P& determined. The array MAXA stores all the addressing

.of thé diagonal elements of A. The.relatiOnship.betweeg’the

addre551ng for any element in array ‘A and the matrix [K] is

»

g1ven in F1gure E 1.

- . v

‘For non-symmetr1cal matrices, it is ciear that all bf,

.

.«\*

“ the non- zero elements above or below the diagonal of “the

matrix (K] must be stored. The storage scheme is very

slmllar to ‘the case for a symmetr1c ‘matrix and is shown in
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Figure E.1: Reduced Storage Scheme o

7,
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Half Bandwidth * ¢
R >|
o
Kir K2 Kys 0o 0 0 0 0 o0
/ Kzz Kzs- 0 kzs kze 0 0 0 -
/ k33 k3n O k)s 0 0 0 (Q
/ Kaa kKas Kas kay 0 0
(K] = |/ N kss Kse 0 0 ks HE SN YR
. symmetric © Kgs 0 kgsg kg
// k77 kva k79
/ kea Kgg
" . k99
A +
a( 1) a( 3) a( 6)
a( 2) a( 5) . al12) a(17)
: a( 4) a( 8) a(11) a(1 .
A : ( 7) a(10) a(15) a(21) v
{a} = a( 9) a(14):a(20) - a(29).
symmetric . a(13) a(19) a(24) a(28)
a(18) a(23) a(27)
: a(22) a(2e6)
’ ! a(25)
. "“ 3
MAXA = <1, 274, 7, 9, 13, 18, 22, 25, 30>
ki; = a(L) where L = MAXAﬂj)>+ j -1 if 1 €3
cand L = MAXA(Q) + i <3 if i > j

f the Skyline Method

I'd

.
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1

Figure E.2. It is assumed that the.number of non-zero

-

elements below and above the skyline are the same. That is
the form of the matrix ls symmetrlc but the values of the
elements are not necessarily thehsame.

To obtain a solution of {u} using Equation (E.7), both"

the [S] and [L- "] matrices must be determined. The stiffness

matrix [K] can be written as:
(K] = [L} [S) . = | . (E.10)

After the reduction process, both the [S] and [L] matrices
are conveniently stored inl the same storage location for

matrix (K]. That is the elements above and iﬁtludiog the .
| .
diagonal elements will be replaced by the elements of matrix

[S],'anF the elements below the diagonal elements by matrix
{L]. _ 0
Let us consider reducing a typical column and row of

matrix [K] into the corresponding columh'and row of matrices

[S] and [L] as shown_in Figure E.3. It is assumed that the”

_ -elements above and to the left of thlS typlcal row i and

;column i respectively, contain the eleﬁrhts of matrlces [S]
.and (L] descrlbed earl1er The obJectlve is then to reduce
. this row i and column i{ Once the solution scheme for thlS
‘typlcal row and colfmn has been established, then the

uprocedure can. be re eated for the entire matrix.

The Gauss-el1 ination process using the elementary )

1

matrlces descrlbed(by Equatlons (E 2) to (E 5) is used to

3
perform the follow ng operatlons. In order to ellmlnate the



(K]

1}

{A}

MAXA

ki, = a(L)  where L

and L
n
Figure

-

Half Bandwidth

a( 1) a( 3)
a(49) a( 2)
a(48) a(47)

(45)
a(42)

<1, 2, 4,

E,2 Reduced Storage Sche

K1
kzs
k33
le

>

0

Ksa
kll

[en]

Kea
K7a

OOOw

a( 6)
a( 5)
a( 4)
a(46)
a(44)
a(a1)

7, 9,

Method:

i

ksn‘

.>'

0
kz‘s
Kss

Kss
Kes

Kos

[V VI U ]
W W

[]]

p

.

13,

DO W~N®
— N

k2

ka
ks
ke

nee

k96

18,°

0

s Ka
(]
8

a(12)
a(11)
a{10)
a( 9) -
a(39)
a(37)

a(33)

22, 25,

MAXA(F) + j - i

64

size of the [K] matrix.

30>

-

;1 340

o kuj;“kjl H

.7“
.

-

if i<

2 MAXA(n+1) - MAKA(i+1) + 2 i - j - n -1 if i > j

&

me of the Extended Skgli e
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Typical
column
T3 unreduced
> | <=—>| < : > |
NS
“
K _ ‘column
: AN\ height
kI i

Gauss Elimination Method
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non-zero elements of matrix [K] below the diagonal in row i

and column T, where i > j and

ky,, # 0, k,; is subtracted

0}

from Loy j multiplied by the pivot k,,/s,,;, where k,, is the

¢

_element of [K] to be reduced to zero and s,, is the diagonal

.element of the j-th row of the upper triangular matrix [S].

The subtraction is performed for every element in row i.

Therefore for a typical element above the diagonal in column

i which is to be reduced to matrix [S] , the operation

required is:

- 1-1
S.J = k|] -Zlgg st}
t=m

.

where m, .is the first non-zero element of column j. i

for i < j (E.11)

{1

All the guantities in Equation (E.9) are definéd since 1t 1is

assumed that all the elements
the left and abowe the column

.To obtain the mafrix'[L]

<

foilowed. By defiﬁing:

j-1 .
- L 1l,¢ 54y

gi; = ki
. t=m1

where m; is the column number

"of row i, and:

1y =95/ 855,

" and for the_diagonai.elements:

<

for i

of the [L] and [S] matrices to
j and row i are known..

, a similar procedure is

(E.12)

of the first non-zero element

(E.13)
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S,y =g, = k,, —1211.,us(, . ‘ (E.14)
t=m, :

The quantities s,,, 1,,, s,, will replace the corresponding
elements of the original stiffness matrix. It is noted that
the [S] matrix is calculated by column and the [L] matrix is
calculated‘by row. This procedure is in harmony with the
storage scheme used in étofing the elemgﬁts of the stiffness
matrix. |

Once the [S] and [L] matrices are determined, the load

vector on the right side of Equation (7) can be calculated.

Let
{v} = [L] {R} | - - (E.15)
then
i-1 . :
vy, = r; - z lig V. - . (E.16)
t=m, ) ’ ' .
3
where : vV, = 1, N
and B i = 2, 3, L A A A ) n; .
m; = first non-zero element of row i;

n = size of vector {R}. -

v}The calculation progresses from the first element of {R} to

| . , . _ c ‘
'the last element of {R} and all the quantities in Equation

(E.16) -are known.AOnce the vector {R} has been reduced using
Equation (E.15) andv(E.16),'the unknown diéplacemehts'can be

obtained by back substitution,



P

344

.. (E.17)

Since the profess of matrix reduction and back stvhstitution
"can be performed independently in the computer program, this
scheme can be very effectiye when the modified '
Newton-Raphson iterative procedufe is used. The matrig
reduction process need only be performed once and solution
can be obtained by reducion of the load-vector and back
subsE}tgtion Since the operations for load vector reduction
and back substitution processes require the same amount of
effort for non—stmetrical matrices as for symmetrical
matrices, this can léad to substantial saving in computer
time. A listing for the source cod; of the Subrouiine SOLVER

in Fortran-1V is given in Figure E.4.
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