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ABSTRACT 

Developmental Dysplasia of Hip (DDH) which represents a wide range of abnormalities from 

acetabular dysplasia to fixed dislocation, is mainly defined by a loss of conformity between the 

femoral head and the acetabulum and it can lead to structural instability and osteoarthritis. The 

diagnosis of DDH on ultrasound is mainly based on Graf method. It is primarily focused on 

obtaining a single high-quality coronal 2D image containing elements such as acetabulum, ilium, 

and round femoral head. Graf method on 2DUS not only suffers from low inter and intra- rater 

agreement, but its reproducibility has also been shown to decline over time. Recording ‘sweep’ 

images allows more comprehensive hip assessment and introduces opportunities for automation 

by artificial intelligence (AI). In this thesis, agreement between readers with various background 

and expertise and an AI algorithm in detecting DDH is assessed. Additionally, this thesis evaluates 

the accuracy of AI in classification of DDH from 3DUS and its correlation with conventional 

clinical 2DUS.  
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INTRODUCTION AND THESIS SCOPE 

Developmental dysplasia of hip (DDH) is characterized by a non-conformity between the 

femoral head and acetabulum. DDH can be treated by non-invasive methods (Pavlik harness) if it 

is detected in infancy (<6 months). However, if it is missed, it can lead to osteoarthritis which may 

only be treated by hip replacement surgeries that can be hard, painful, and expensive. 

Many names have been coined, several definitions have been suggested by experts, 

clinicians, and organizations, numerous risk factors have been studied, and various detection and 

diagnosis methods (physical examination, radiography, ultrasound screening etc.) have been 

introduced for DDH. Logically, there are also many classification paradigms that have been 

proposed for DDH. 

In the first Chapter of this thesis, the developmental dysplasia of hip is first studied from a 

historical perspective. Some of the challenges in defining DDH are explained and consequently 

some of the more important associated risk factors are discussed. In the same Chapter DDH various 

classifications are reviewed and different medical imaging modalities (X-ray, CT, MR, and 

ultrasound) and their respective utilization in detection and management of DDH are covered.  

Chapter One also discusses the opportunities for automation of DDH detection and 

classification using new technologies such as artificial intelligence. Finally, Chapter One 

concludes with some of the widely accepted standards for, as well as the concerns associated with 

DDH diagnosis and its treatment.  

The focus of this thesis is on first understanding the role of imaging in DDH and then the 

classification of DDH by using two and three-dimensional ultrasound and the application of AI in 

detecting abnormal hips. This combines two innovations. first, acquiring images in a different way, 
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by use of cine sweep video / 3D ultrasound instead of single 2D image captures; and second, the 

use of artificial intelligence to interpret these images. Chapter Two presents the results of an inter-

observer variability of hip dysplasia indices on sweep ultrasound. Two sets of ultrasound hip 

images (2D images and sweep images) were rated by 12 readers with different levels of (reading 

hip ultrasound) expertise and experience. The same sets of images were also rated by an artificial 

intelligence algorithm and the results were statistically analysed and compared. Chapter two 

studies the correlation between the ratings of human raters and AI as just another individual reader.  

While Chapter Two evaluates reliability, the validity of the new ultrasound tools is 

assessed, on a large scale, in Chapter Three. This is a multi-center study on the performance of AI 

in reading 3D ultrasound images of the hip. Thousands of 2D images of infants’ hips as well as 

their respective free-hand 3D ultrasound images, through an 8-year study were prospectively 

collected, stored, clinically diagnosed, and eventually read by an artificial intelligence algorithm. 

Chapter Three evaluates the accuracy of AI in differentiating abnormal hips from healthy ones and 

discusses the future opportunities for enhancing the clinical procedures by the power of AI without 

heavy reliance on the acquisition of perfect hip ultrasound images. It is beneficial to mention that 

apart from some extra non-graphical information captured from a 3D ultrasound probe throughout 

the acquisition of images (e.g., spacing between the slices), 2D sweeps and 3D images are very 

similar despite their huge differences in availability and cost. 

In summary, this thesis outlines work in which we first assessed the current state of hip 

dysplasia imaging to identify a need for improved image acquisition and interpretation tools, then 

after developing these tools (a protocol for cine sweep / 3D ultrasound acquisition and AI image 

interpretation), evaluated their reliability and validity. We conclude that the new approach has key 
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benefits over existing imaging and may even make widespread population screening for hip 

dysplasia possible.  
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CHAPTER 1  

A NARRATIVE REVIEW ON THE ROLE OF 

IMAGING IN DDH. 

 

Introduction  

Definition, Risk Factor, Diagnosis, Classification 
 

Developmental Dysplasia of Hip (DDH) is considered essentially a condition of instability 

[1]. The term “congenital dislocation of the hip” was first coined by Dupuytren in 1847 [2]. He 

describes it as a displacement which appears due to a defect in the depth or completeness of the 

acetabulum. However, not all dysplastic hips are dislocated. PJ Klisic, in an article called 

“Congenital dislocation of the hip a misleading term” [3] noted that due to the pathologic 

variability of the disorder, and that it can emerge at various points throughout skeletal 

development, the term “congenital dislocation” should be changed to “developmental 

displacement”. Since displacement is thought secondary to changes in anatomic shape, size, and 

orientation, the term “development dysplasia of the hip” has now been widely accepted to describe 

the misalignment between the femoral head and the acetabulum [4]  

Viktor Bialik [5] defines three time periods in the history of modern medicine for the 

determination and diagnosis of DDH. In the first phase (1920s to 1950s), DDH prevalence was 

determined opportunistically when seen post-mortem or surgically almost randomly approximated 

(0% for Africans and 0.06% ~ 40% for other ethnicities). During the second phase (1950s to 

1980s), the incidence was determined based on the detection of neonates’ unstable hips by 
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conducting physical examinations and radiographs. (0.04% to 16.8%). During the third phase 

(1980s onwards), ultrasound became routinely available, resulting in a large increase in imaging 

of DDH. As is often the case when more imaging is done for a disease, an increase in the estimated 

incidence occurred (4.4% to 51.8%). This wide range is due to various definitions and 

classification of DDH. Clearly, diagnosing more than half the population with DDH is of doubtful 

real clinical value, and Bialik states that “clinical and sonographic neonatal screening, whether 

separately or in combination, seems to have introduced more confusion by eventually disclosing 

wide discrepancies between the clinical and sonographic findings.” 

DDH terminology and definitions were first introduced by Dupuytren [2] and Klisic [3]. 

However, it was Barlow who proposed a rigorous physical examination technique in 1963 [6, 7, 

8]. His proposed examination approach was a continuation to his 1961 study on 7,742 children for 

congenital dislocation and other abnormalities in the first week of life. Classification systems 

introduced for DDH over the years vary based on the clinical and imaging methods of evaluation. 

We will take a closer look at some of them (X-ray, CT and Ultrasound) in the following sections. 

X-ray, CT and MR 

Before ultrasound, the sole images available for DDH diagnosis were pelvis radiographs 

(Figure 1.1). These are necessarily limited in capability to evaluate hip alignment and stability due 

to their static two-dimensional nature. Additionally, for infants whose growth plates are open and 

axial growth is still expected, the femoral head and a great part of the acetabulum are cartilaginous 

and hence not visible [1]. Weinstein et al. classified DDH in a manner intended to be relevant to 

treatment [9]: (1) inclination of the acetabulum with centralized ossification center, Shenton’s line 

intact (dysplasia), (2) subluxated ossification center, Shenton’s line broken (subluxation), and (3) 

ossification center outside the acetabulum (dislocation). The Tönnis Classification (Grade 1~4) 
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quantifies the severity of DDH using the relative position of the ossific nucleus and the acetabulum 

on X-ray images of the hip joint [10]. The acetabular index, measured from Hilgenreiner’s line 

through the triradiate cartilages [11] (Figure 1.2), has age-specific normal values and is often used 

in diagnosis and follow-up. Since Tönnis method required the ossification centre to be present, a 

new radiographic classification was proposed by the International Hip Dysplasia Institute (IHDI) 

that used the mid-point of the proximal femoral metaphysis as a reference landmark [12] solving 

the limitation of the Tönnis method. 

Figure 1.1  X-Ray of a patient with a dysplastic, subluxed left hip and a normal right hip. 
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Figure 1.2 Hilgenreiner (red) and Perkins lines (green). The left hip shows delayed development of the 

femoral head ossification centre, which is positioned lateral to Perkin’s line, indicating dislocation. Also, 

although acetabular index (yellow) is only slightly increased at the left hip, the disruption of the normally 

continuous arc of Shenton's line on this side, together with superior/lateral position and delayed ossification 

of the femoral head, confirms a dysplastic, dislocated left hip. The normal right femoral head ossification 

centre is medial to Perkin’s line, as expected with normal acetabular coverage. 

Cross-sectional imaging (CT and MRI) offers the ability to more fully evaluate 3D hip 

deformity than radiographs (Figure 1.3 and 1.4). In 2012, Akiyama et al, using pelvic CT images 

of 79 hips, studied the correlation between acetabular version and coverage with three subgroups 

of hip dysplasia (anterior, global, and posterior deficiency) [13]. This was one of the first attempts 

to look at the DDH from a three-dimensional perspective. Later on in 2017, a similar but larger 

study by Nepple et al [14] was conducted to better understand the variability in 3D acetabular 
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deficiency and to define subtypes of acetabular dysplasia based on 3D morphology. They also 

considered the same three patterns (anterior, global, and posterior deficiency), which they 

concluded commonly occurred among young adult patients with mild, moderate, and severe 

acetabular dysplasia.  

In another CT study Fujii et al [15] concluded that acetabular tilt angle was increased in dysplastic 

hips and reported a correlation between the rotational position of the acetabulum in the pelvis with 

acetabular version and coverage in hip dysplasia. Perhaps the first usage of CT in classification of 

DDH was by Hartofilakidis et al. in 1996. They used CT to investigate four parameters of 

acetabular anatomy, a continuation to their 1988 study which had classified DDH into three classes 

as (1) dysplastic (2) low dislocated and (3) high dislocated [16, 17, 18]. 

Figure 1.3 CT scan in DDH. (a) Coronal and (b) 3D reformatted images showing the 3D shape of a 

chronically dysplastic left hip with flattened and fragmented femoral head due to avascular necrosis, in a 

6-year-old with left sided DDH. 
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Figure 1.4 MRI in a DDH patient performed while still sedated immediately after spica cast placement by 

a surgeon. The left hip is dysplastic, mildly subluxed, and has an inverted labrum (triangular low signal) 

which may be blocking reduction of the hip. These images demonstrate that MRI of infant hips is of low 

resolution and can be difficult to interpret reliably. 

In 2017, Wilkin GP et al, in their article “A Contemporary Definition of Hip Dysplasia and 

Structural Instability” summarized that hip dysplasia is in fact a 3D deformity of the acetabulum 

and that multiple patterns of hip instability exist that may not be completely assessed on 2D 

imaging [19]. In the same year, Joel Wells et al worked on head and neck offset differences of the 

femora of the dysplastic hip, since according to them DDH represented a spectrum of deformities 

on both sides of the joint in contrast to the many studies that had been conducted only on the 

acetabular side [20]. 

Jaremko et al, in a retrospective study of infants and toddlers with DDH who had been 

treated with spica casting, reviewed multiple indices from different sources to determine which 

indices showed sufficient reliability to be potentially useful in assessment of acetabular geometry, 

degree of hip reduction and barriers to reduction [21] (Figure 1.5). Later, in 2017 Hesham et al 

[22], reported a high inter- and intra-rater reliability (ICC>0.90) between CT and MR indices in 

children and adolescents with hip disorders in a much older range (mean age = 15.4±4.1 years). 
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These studies demonstrate that CT and MRI can be used to understand the 3D deformity of hip 

dysplasia, although due to logistical constraints (radiation dose in CT, the need for anaesthesia in 

MRI, and cost and availability for both modalities), this is only possible in a small subgroup of 

patients. Jia H. et al [23], in a retrospective study concluded that MRI was well suited to detecting 

barriers to hip reduction in DDH. Rosenbaum, Daniel G. et. al [24] note that MRI provides 

excellent soft tissue contrast without use of ionizing radiation. 

Figure 1.5 Some of the measurements possible on a hip MRI scan. Indices include axial anterior and 

posterior acetabular angles (AxAcet, AxPAcet), acetabular bony anteversion (AnteverB) and depth 

(AcetDepth), and maximum size of the bony ossification centre (OssCoreMax). (source: [21]).  

Multiple indices have been developed to assess acetabulum morphology and orientation on 

cross-sectional imaging, with many measurements possible (Figure 1.5) [21]. These can help 

interpret 3D geometry. Osman et al [25] showed that post-reduction MRI-based parameters 

including anterior acetabular index (AAI), posterior acetabular index (PAI) and abduction angle 

correlated with persistent acetabular dysplasia in patients who underwent open reduction.  
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CT is not a primary imaging modality in infantile hip dysplasia since the hip is not ossified 

yet, but it is primarily useful in operative and re-operative planning to assess angles and lines for 

optimized 3D correction. Shi et al [26] explains that CT scan‐based 3‐dimensional templating 

provides the best accuracy for total hip arthroplasty (THA) to treat the cases of neglected DDH. 

Albers et al [27] also discuss the role of CT in preoperative planning for osteotomies for treatment 

of DDH (Figure 1.6). Tallroth, Kaj, and Jyri Lepistö [28], studied CT-scan of 70 hips from patients 

who had not been diagnosed with DDH and tried to define normative CT measurements some of 

which included AA-angle, CE-angle, ACE-angle and AcetAV-angle. Tallroth et al [29] compared 

the accuracy of the measurements of femoral anteversion angle (FAVA) for both 2D and 3D CT 

scan and concluded that 3D is more accurate than 2D. 

Figure 1.6 Measurements such as those as in Fig. 1.5 can also be performed on CT, with higher spatial 

resolution and improved bony detail. CT plays a role particularly in older children to plan surgical 

correction. (a) Axial CT image from the same patient as in Fig. 1.3, showing the increased bony anteversion 

at the left hip during planning for a revision osteotomy. (b) Coronal CT image from a 10-year-old girl 

demonstrating lateral centre-edge angles (LCEA). A decreased LCEA is associated with DDH. In this 

patient the angle is negative at the left hip (i.e., centre of femoral head is lateral to the acetabular edge), and 

near zero at the right hip, suggesting dislocation and subluxation respectively. 
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Hip arthrography is also utilized for DDH as it facilitates the viewing of the cartilaginous 

part of femoral head and acetabulum. An arthrogram refers to images (X-ray, CT or MRI) of a 

joint after contrast material is injected into it. Ahmed et al [30] in their study of arthrogram in 

evaluation of closed reduction of DDH, conclude that the reliability of diagnosing hip concentricity 

in management of DDH by closed reduction is high. Similarly, Grissom et al [31] states that “the 

arthrogram helps to demonstrate the best position of the femur to obtain concentric reduction of 

the hip”. Arthrogram is often done fluoroscopically in infants under anaesthesia, such as just before 

spica casting (Figure 1.7). 

 

Figure 1.7 (a) Xray and (b) arthrogram images in a 3-year-old girl with bilateral hip dysplasia.  (a) On the 

X-ray, note irregularity of bilateral acetabular roofs related to prior osteotomies.  The right hip appears 

laterally subluxed and articular surfaces appear irregular. (b) For arthrogram, a surgeon injected contrast 

material into both hip joints under general anaesthesia.  The images outline smoother articular cartilage 

surfaces than might be expected from the bony contours on Xray, and also demonstrate that joints are 

better aligned than appreciated on radiographs. 
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Ultrasound (2D, 3D) 

Since the 1980’s, the most commonly used modality in diagnosing DDH in infancy has 

become ultrasound, which assesses bone and soft tissues with high resolution, high contrast, and 

the potential for dynamic assessment of stability. The most common analysis of ultrasound images 

is based on the Graf measurement method, which utilizes measurements performed on a static 

‘standard plane’ 2D coronal image of the mid-hip. Graf classified DDH into several categories 

[32, 33, 34] based on the value of a bone angle (α) and in some cases, a soft tissue angle (β) (Figure 

1.8) as well as age to determine subtypes. Graf categorization includes four main classes. (a) 

normal, (b) delayed ossification (dysplasia), (c) partial dislocation (subluxation), and (d) 

dislocation (total luxation).  
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Figure 1.8 Graf plane, alpha and beta angles. 

Although Graf classification of DDH which heavily relies on 2D ultrasonic images is 

widely accepted and utilized, several studies have shown that it lacks reproducibility (unless 

acquired and read by experts who have been extensively trained). In 1995, Rosendahl et al [35], 

reported a high intra-observer agreement (kappa=0.7) but only moderate inter-observer agreement 
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(kappa=0.5) in the early diagnosis of DDH. Simon et al in another inter-observer article [36] state 

that although no severe cases were missed in their study of 158 US images on classification of 

DDH based on Graf method, agreement for the classification of normal versus abnormal was only 

moderate (kappa=0.55). Similar results were reported by Roovers et al [37] on reproducibility of 

US screening examination when read by diagnostic radiographers. They reported a kappa score of 

0.65 for differentiating a type I hip versus type IIa~IV but a poor to moderate score of 0.47 for the 

exact graf classification.  

Many have studied the high variability of ultrasound indices of DDH, which can be 

summarized with two short statements from Orak MM et al [38] and Dias JJ et al [39]. They 

respectively concluded that “Sonographic evaluation of the hip appears to vary depending on the 

investigator” and “Our results showed poor reliability on both counts (inter and intra-observer 

agreements)”. In 2014, Jaremko et al [40], using 3D US (Figure 1.9), showed that alpha angles 

measured at routine 2D US can vary substantially between 2D scans solely because of changes in 

probe positioning, up to 19°, which is greater than the size of the Graf classification categories and 

risks misclassification in up to 50-75% of cases. The display of the full acetabular shape in 3D 

scans has potential to improve the accuracy of DDH assessment. Mostofi et al [41] showed in their 

reliability study of 2D and 3D ultrasound that novice users after only 1.5 hours of training could 

acquire hip scans almost as consistently as experts on 3D US (quality score for novice= 4.2±1.0 

vs expert=4.9±0.3). The inter-rater reliability was reported poor for 2D US but moderate to high 

for 3D US.  
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Figure 1.9 3D ultrasound: a block of image slices obtained by mechanical probe movement at consistent 

spacing from each other, allowing evaluation of the hip from anterior to posterior similar to CT or MRI 

image sequences. 

Later, Zonoobi et al [42] conducted a multi-center study of DDH diagnosis using 3D 

ultrasound which confirmed its use could reduce the number of borderline cases which 

subsequently would have required follow-up imaging by over two-thirds compared to 2D 



 17 

ultrasound. Quader et al [43] later suggested using a new 3D metric for femoral head coverage 

(FHC3D) based on a tomographic reconstruction of 2D cross-sections. This metric significantly 

reduced the variability of the 2D-based FHC metric (~20% !<0.05). Quader [44] also reported 

much lower test-retest standard deviation for the 3D alpha angle compared to 2D alpha angle. 

Despite the improvements in reliability and more comprehensive assessment of the whole 

hip shape vs. 2D ultrasound, 3D ultrasound is limited in reach since high-resolution linear 3D 

probes are costly and not routinely available. Manual cine ‘sweep’ videos obtained with a 2D 

ultrasound probe may be a more readily achievable surrogate for true 3D ultrasound hip imaging, 

but this has not been well studied to date. 

Imaging evaluation of Avascular necrosis of the hip (AVN) 

AVN of the femoral head is a frequent cause of musculoskeletal disability, causes major 

diagnostic and therapeutic challenges and is imaged in different ways [45]. X-ray is insensitive in 

depicting AVN [46]. It is only effective when the structural damages have already occurred. AVN 

could be detected intraoperatively using contrast ultrasound. Ntoulia et. al [47] explain that 

ultrasound intraoperative detection of decreased femoral head perfusion aids the surgeon to 

relocate the hip to less abduction, which prevents irreversible necrosis. Back SJ et al [48] noted 

that CEUS (contrast-enhanced ultrasound) studies in their research all successfully showed blood 

flow in the femoral epiphysis before and after reduction. Gornitzky et al [49] concluded that a 

perfusion MRI performed immediately after closed reduction of DDH could identify reduced 

blood flow, potentially reducing the incidence of avascular necrosis after such treatment. Tiderius 

C. et al [50] in a retrospective study agreed that gadolinium-enhanced MRI provides information 

about femoral head perfusion that may be predictive for future AVN. Contrast-enhanced 

ultrasound and perfusion MRI are somewhat specialized tests not available in all centres, however. 
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Automation and Artificial Intelligence 

The wealth of data available in 3D ultrasound also provides enhanced opportunities for 

automation of image analysis. A semi-automatic method for segmenting (modeling) the 

acetabulum bone in infant hips was introduced by Hareendranathan et al [51] in 2016. Their 

method was accurate within 1 voxel. Houssam El-Hariri [52], trained a 3D-U-Net neural network 

[53] to automatically segment the pelvis bone surfaces in neonatal hip 3D-US. In 2016, Golan et 

al [54] reported promising results comparing their novel usage of convolutional networks to 

segment a 3D hip US image to classify them using Graf metrics. Zhang et al [55] added a region 

of interest (ROI) layer to a Fully Convolutional Network (FCN) as a new pipeline to segment the 

acetabulum from 3DUS images. Tang et al [56] evaluated segmentation-by-detection for the same 

task, improving on the previous 3D U-Net. In 2020, the United States Food and Drug 

Administration approved MEDO Hip, an AI-powered commercial application which processes 2D 

or 3D US images and suggests Graf DDH diagnostic categorization. Very recently, El-Hariri et al 

[57] trained and tested the performance of a 3D-U-Net on a dataset of 136 volumes (3D US) and 

achieved a Dice score of 85% segmenting the pelvis bone surface. They discuss that their model 

outperformed other methods of segmentation for both pelvis bone surface and femoral head. These 

tools allow computers to automatically detect the acetabulum much the way our smartphone 

cameras detect faces. They have not yet been tested in large-scale clinical trials. 

Concerns, standards, and recommendations 

Although many different methods of imaging by various modalities for DDH are 

introduced, appropriateness of imaging for deciding on the treatment is significantly important due 

to valid concerns on overtreatment or the radiation harms.  
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American College of Radiology (ACR) in their appropriateness criteria for DDH-Child 

[58] states that “the potential benefits of early diagnosis and treatment must be weighed against 

the risk of overtreatment and potential for iatrogenic complications.”. For similar reasons, the 

American Academy of Pediatrics (AAP) recommends usage of US between 4 to 6 weeks of age 

[59], and the American Academy of Orthopaedic Surgeons (AAOS) recommends pediatric 

orthopedic referral before 4 weeks of age [60]. ACR states that after the ossification, pelvic 

radiography is the preferred imaging modality (4 to 6 months). American Journal of 

Roentgenology (AJR) in their general imaging review [61] mentions that CT is primarily used for 

management, typically in the postoperative period and is currently used infrequently due to 

ionizing radiation harms. AJR continues that MRI is more and more utilized for treatment planning 

and monitoring. 

Discussion 

In this review we have taken a historical perspective to assess the role of imaging in 

assessment of developmental dysplasia of the hip. Unlike cardiovascular disease, where death or 

myocardial infarction are indisputable endpoints, hip dysplasia is notoriously difficult to reliably 

define, and there are seemingly as many diagnostic criteria and examination systems as there are 

imaging modalities and investigators. The key risk factors clearly include ethnicity, female sex 

and breech presentation during pregnancy, but underlying mechanisms for development of 

dysplasia are incompletely understood. There is a fairly consistent historical base rate of frankly 

dislocated hips from severe dysplasia, but the overall incidence of DDH depends strongly on how 

it is diagnosed, with ultrasound tending to identify a higher proportion of hips as dysplastic than 

clinical examination. In regions where ultrasound is routinely used, rates of surgery for late-
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presenting hip dysplasia are lower than elsewhere [62], implying that there is some benefit to 

identifying DDH by imaging in infancy.  

X-ray is a traditional modality to evaluate DDH but its role is quite limited in the infant 

period. CT and MRI more fully assess 3D anatomy but are impractical for routine assessment of 

large numbers of infants. The Graf method in diagnosing and classifying DDH from ultrasound 

images is well studied but lacks reliability, with the limitations and drawbacks of 2D ultrasound 

highlighted by more recent work using 3D ultrasound. The most recent development in DDH 

imaging is the use of computer science technologies to automate DDH diagnosis.  

The effect of advancement of technology on the field of hip dysplasia is strong and 

complex. Early ultrasound techniques have likely led to over-diagnosis, but recent advances in 3D 

imaging and automated computer image interpretation could allow hip imaging to be more easily, 

cost-effectively, and reliably acquired and assessed. Eventually, these advancements could 

facilitate large multi-center studies to enhance our understanding of the 3D deformity and 

prognosis of hip dysplasia, and to allow cost-effective broad population screening to reduce the 

burden of disability and pain from osteoarthritis due to hip dysplasia. 
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CHAPTER 2  

INTER-OBSERVER VARIABILITY OF HIP 

DYSPLASIA INDICES ON SWEEP ULTRASOUND 

FOR NOVICES, EXPERTS, AND ARTIFICIAL 

INTELLIGENCE. 

 

Introduction 

Developmental dysplasia of the hip (DDH) is characterized by a lack of conformity 

between the femoral head and acetabulum, associated with structural instability and predisposing 

to osteoarthritis [1]. If diagnosed in early infancy (<6 months) DDH can be treated by non-invasive 

methods such as Pavlik harness. Ultrasound (US) imaging of the hip, first proposed in 1980 [2], is 

widely used to diagnose DDH, typically using the bone angle (alpha) and acetabular coverage 

(d/D) (Figure 2.1) [3]. A complementary index, the beta angle, may be helpful in severely 

dysplastic hips [4]. Harke et al. also proposed a dynamic technique of hip sonography incorporated 

motion and stress maneuvers [5] 
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Figure 2.1 Illustration of the Graf plane used for calculating the alpha angle and coverage for 

detecting DDH measured on a coronal ultrasound image of the right hip 

For the Graf method, a high-quality single 2D ultrasound image is required but can be 

difficult to acquire reproducibly, risking misdiagnosis, especially for inexperienced users [6]. With 

advances in technology, sweeps (videos recording the view on the scanner as the user sweeps the 
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probe through the entire hip) are increasingly being stored. The additional data in sweeps is well-

suited to automatic evaluation by artificial intelligence (AI) algorithms.  

AI has been used in DDH US in several ways. It can estimate conventional indices or novel 

3D indices (promising improved diagnostic accuracy) and minimizes inter-observer variability [7]. 

A semi-automated segmentation to generate 3D acetabular surface models showed effectiveness 

in diagnosis of DDH via Graf indices [8]. Several automated approaches to diagnose DDH from 

hip US have been described, including derivation of a contour alpha angle [9], use of an object 

localization unit to improve semantic segmentation accuracy [10], automatic identification of 

suitable 2D US images and extraction of dysplasia metrics [11], and a technique allowing real-

time inference for clinical workflow [12].  

Although the use of sweeps for DDH US shows promise, there is little data on inter-

observer variability for human and AI assessment of sweeps. This study analyzes inter-observer 

variability of readers with varying experience levels and an AI algorithm in the assessment of 

infant hip US sweeps for dysplasia. We hypothesized that reliability would be equivalent for 

analysis of single 2D images vs. sweeps and that AI would perform equivalently to a human reader. 

Methods and Materials 

Images 

This study was approved by the University of Alberta Health Research Ethics Board. 

Imaging was performed at Stollery Children’s Hospital, Edmonton, Alberta, Canada, from 2012-

2020. All subjects were referred for hip ultrasound based on clinical suspicion of DDH. At the first 

routine clinical hip 2DUS, written informed consent was obtained from the subject’s parents. 

Images were acquired by people with diverse levels of experience ranging from expert 
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sonographers to researchers who had been trained to take a hip scan, intended to represent the 

range seen in a typical clinical practice, from junior to expert sonographers. 

We studied one hip in each of 70 male and 170 female patients. The 240 cases were a non-

random sample deliberately including the widest possible range of image quality. Using known 

clinical diagnoses, we included a wide range of hip morphology (normal to severely dysplastic). 

For each hip we randomly chose whether to use a single coronal plane US image (n=120), or a 

sweep US (n=120).  

Patients underwent US at mean age 61 days (females: 7-267 days, mean=59; males: 4-140 

days, mean=66, median=51). We observed clinical care for at least 6 months to classify each 

imaged hip as Normal (Category 0; 2D n=56, sweep n=59), Borderline, meaning questionably 

abnormal initially (generally Graf IIa) but with findings that resolved spontaneously at follow-up 

imaging and clinical examination (Category 1; 2D n=22, sweep n=14), or Dysplastic (requiring 

treatment by using a Pavlik harness and/or surgery; Category 2; 2D n=38, sweep n=44). 

Image Processing 

Images were analyzed using US FDA cleared third-party software (MEDO Hip) allowing 

viewing and interpreting of US images (Figure 2.2). This software also facilitated de-identification 

and transfer of large amounts of data (240 scans made up of 15,912 images) to readers.  
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Figure 2.2 Each reader picked 5 landmarks (circles) to allow the algorithm to determine the alpha angle 

and the coverage. 

Readers 

We recruited 12 readers with different backgrounds and experience levels in reading hip 

US scans. (Table 2.1).  
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Name Designation Years of experience DDH sub specialist 

CB Sonographer 23 Yes 
SK Sonographer 19 Yes 
JJ Radiologist 17 Yes 

ND Radiologist 15 No 
AS Clinician 12 No 
PS Radiologist 12 No 
SM Radiologist 10 No 
DK Clinician 9 No 
AR Researcher 5 No 
MM Researcher 5 No 
EO Researcher 4 No 
SG Researcher 2 No 

Table 2.1 Readers list and their years of experience interpreting ultrasound sorted by years of experience. 

Readers examined each 2D image using the Graf technique by identifying the 5 landmarks 

needed to calculate the alpha angle and coverage (Figure 2.2). For sweeps, readers first chose the 

best slice (Figure 2.3) matching Graf standard plane criteria, before identifying the 5 landmarks. 

Readers were blinded to the diagnosis of the selected pool of images. 

 

Figure 2.3 Readers had to choose their preferred slice within the sweep and then make the measurements. 
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AI Methods 

An overview of the method is shown in Figure 2.4. We used MEDO Hip to generate an 

AI-estimated alpha angle and coverage, as though this tool was an additional reader. The AI 

initially segments the acetabulum and femoral head (Figure 2.5) and then uses it to pick the 

preferred slice within a sweep. Then it (1) fits Line 1 over the horizontal portion of the acetabular 

mask; (2) fits Line 2 over the angular portion of the acetabular mask; (3) finds Line 3, the maximal 

vertical diameter line passing through the femoral head mask (4) uses basic geometry to identify 

the 5 landmarks. 

As shown in Figure 2.4, A CNN is used to obtain segmentation masks of the acetabulum 

and femoral head. Based on these the alpha angle and coverage for each slice is then calculated. 

These values were used to train a probabilistic graphical model (PGM) that estimates the 

probability of dysplasia and classifies each hip as either normal or dysplastic. 
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Figure 2.4 Overview of the proposed approach for AI-augmented DDH diagnosis. Instead of using end-

to-end deep learning we propose a more modular approach which computes the alpha angle and coverage 

to arrive at a diagnosis 

 

 

Figure 2.5 Example of an AI-segmented ultrasound hip (left) and corresponding highlight of the 

acetabulum and femoral head (right), showing the three lines generated by automated segmentation 

analysis. Note the slight tilt of the inferior aspect of the iliac wing; the AI computes indices for each 

image slice in which anatomical landmarks are identifiable, even if these do not quite form a perfect Graf 

coronal plane image. 

The CNN used for segmenting the acetabulum and femoral head was based on a 

modification of the U-Net architecture. The modified U-Net was trained on a set of 20000 

ultrasound image slices. In each of the images the contours of the acetabulum and femoral head 

were traced by an expert radiologist. The output of the trained  U-Net is the mask of the acetabulum 
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and femoral head which was then used to calculate the alpha angle and coverage. As a post-

processing step, a morphological closing operation with a circular structuring element of size 10 

pixels was performed to remove smaller objects. 

The skeleton S from the post-processed acetabular mask as shown in Figure 2.6 was 

extracted. The steps involved in computing the alpha angle are described below: 

1. Define a baseline lb also shown in Figure 3 connecting leftmost and rightmost pixels in the mask 

2. Compute the distance d  between each pixel and the baseline lb and determine the farthest point 

from the line as the apex point a 

3. Fit two straight lines la and li, through the acetabular roof and illum passing through the apex a 

using least square fit 

4. Compute the  alpha angle (A) based on the slope of lines la and li 

 
Figure 2.6 Schematic illustration of computation of alpha angle and coverage 

Similarly, the computation of coverage involves the following steps: 

 
1. Define a line lf  through the highest point  pt  and lowest point pb  of the femoral head mask 

2. Compute the intersection point pm of straight lines lf and li 

3. Compute coverage C = |pb-pm|/|pt-pm| 
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The values of A and C  for each slice is analyzed by the PGM to estimate the probability 

of dysplasia. 

The PGM used the values of alpha angle and coverage as inputs to  a non-linear logistic 

regression model. The output of the logistic regression is defined as the conditional probability of 

not having dysplasia (D) given the angle (A) and coverage(C). 

 
Statistics 

We compared alpha angle and coverage measurements from all reader pairs, within groups 

of readers with similar backgrounds and also within groups of similar levels of experience. While 

computing index measurements, we took the median of the 3 DDH sub-specialist readers’ 

measurements for the alpha angles as the widely accepted standard. Randolph's Kappa 

[13][14][15] was used for categorical data and intraclass correlation coefficient (ICC(2,1)) for 

continuously-valued data. The performance of each reader to measure the alpha angle was 

evaluated against the widely accepted standard using the ICC score. ICC score of each group was 

also calculated to be compared against other readers groups to analyze the impact of expertise in 

reading DDH US. DDH sub-specialists were compared with non-DDH-specialist medical imaging 

experts in diagnosing the DDH US images (kappa). We also compared these two groups of medical 

imaging experts’ performances against the widely accepted standard. The performance of AI was 

eventually evaluated against widely accepted standard. 

Significant differences were identified by the presence of non-overlapping 95% confidence 

intervals. We illustrated this on a diagram and also calculated the mean difference ± standard 

deviation for the DDH-sub-specialist imaging experts. We repeated this analysis by adding AI as 

though it was an additional reader. All statistics were computed using R (version 4.0.2 (2020-06-

22)) 
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Results 

Interobserver reliability for alpha angle and coverage, was highest on 2D images (Table 

2.2). Interobserver reliability decreased slightly for sweeps. For both 2D and sweeps, sonographers 

had the highest inter-observer reliability (ICC=0.95~0.98 for alpha angles and 0.90~0.93 for 

coverage) (Table 2.2). 

  Single Images Sweep Images 

 Readers Alpha Coverage Alpha Coverage 

Researchers 4 0.85 
0.81 ~ 0.89 

0.94 
0.92 ~ 0.96 

0.84 
0.80 ~ 0.87 

0.91 
0.88 ~ 0.93 

Sonographers 2 0.95 
0.93 ~ 0.96 

0.98 
0.97 ~ 0.98 

0.90 
0.87 ~ 0.92 

0.93 
0.91 ~ 0.95 

Radiologists 4 0.91 
0.85 ~ 0.94 

0.94 
0.92 ~ 0.96 

0.80 
0.73 ~ 0.86 

0.88 
0.85 ~ 0.91 

Clinicians 2 0.88 
0.85 ~ 0.91 

0.89 
0.85 ~ 0.92 

0.77 
0.69 ~ 0.83 

0.85 
0.81 ~ 0.89 

Table 2.2 Inter-observer reliability for indices of hip dysplasia, expressed as ICC(2,1) and its 95% 

confidence interval, for different groups of readers. 

We compared each individual reader rating (including AI) with the clinical diagnosis 

(Table 2.3) Agreement ranged from fair to good by criteria of Landis and Koch [16]; AI showed 

moderate agreement with clinical diagnosis (Kappa 0.47-0.49). 
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 Single Images Sweep Images 

Researcher 1 0.67 
0.57 ~ 0.78 

0.43 
0.30 ~ 0.56 

Researcher 2 0.5 
0.37 ~ 0.63 

0.39 
0.26 ~ 0.52 

Researcher 3 0.59 
0.46 ~ 0.70 

0.56 
0.45 ~ 0.68 

Researcher 4 0.44 
0.31 ~ 0.56 

0.26 
0.13 ~ 0.41 

Clinician 1 0.42 
0.29 ~ 0.55 

0.21 
0.08 ~ 0.35 

Clinician 2 0.61 
0.49 ~ 0.72 

0.28 
0.15 ~ 0.41 

Radiologist 1 0.55 
0.42 ~ 0.66 

0.45 
0.32 ~ 0.59 

Radiologist 2 0.63 
0.51 ~ 0.74 

0.35 
0.21 ~ 0.47 

Radiologist 3 0.56 
0.43 ~ 0.69 

0.41 
0.28 ~ 0.53 

Radiologist 4 0.55 
0.42 ~ 0.66 

0.44 
0.29 ~ 0.56 

Sonographer 1 0.55 
0.43 ~ 0.66 

0.54 
0.41 ~ 0.67 

Sonographer 2 0.56 
0.44 ~ 0.68 

0.37 
0.24 ~ 0.51 

AI 0.49 
0.36 ~ 0.62 

0.47 
0.36 ~ 0.60 

Table 2.3 Kappa scores and 95% CI of individual readers (including AI) vs clinical diagnosis for 2D and 

sweeps. 
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We divided the 6 imaging specialists (radiologists and sonographers) into two groups, (1) 

readers sub-specializing in DDH diagnosis (JJ, SK, CB) and (2) readers less frequently assessing 

DDH (ND, SM, PS). We considered the median of the 3 DDH sub-specialist raters’ readings as 

the widely accepted standard for each index. We then calculated the ICC scores of each group of 

raters vs the widely accepted standard (table 2.4). The agreement of radiologists and clinicians 

with the widely accepted standard, while still high, was significantly poorer for sweeps than 2D 

images (p<0.05). AI performance was not significantly different from radiologists, although AI 

was more consistent between 2D and sweep images (ICC=0.90 vs. 0.87 for alpha, and 0.91 vs. 

0.91 for coverage).  

  Single Images Sweep Images 

 #Readers Alpha Coverage Alpha Coverage 

Researchers 4 0.88 
0.85 ~ 0.91 

0.95 
0.93 ~ 0.96 

0.86 
0.83 ~ 0.89 

0.92 
0.90 ~ 0.94 

Sonographers 2 0.97 
0.96 ~ 0.98 

0.99 
0.98 ~ 0.99 

0.94 
0.92 ~ 0.95 

0.96 
0.95 ~ 0.97 

Radiologists 4 0.93 
0.88 ~ 0.95 

0.95 
0.94 ~ 0.97 

0.84 
0.78 ~ 0.88 

0.90 
0.87 ~ 0.92 

Clinicians 2 0.91 
0.89 ~ 0.93 

0.92 
0.90 ~ 0.94 

0.82 
0.77 ~ 0.86 

0.87 
0.84 ~ 0.90 

AI 1 0.90 
0.85 ~ 0.93 

0.91 
0.68 ~ 0.96 

0.87 
0.83 ~ 0.90 

0.91 
0.88 ~ 0.93 

Table 2.4 ICC scores of each group of readers vs human gold standard. 

We examined reliability in more detail for the 6 imaging specialists. Considering all 

images, the group of DDH sub-specialist readers had near-perfect inter-observer agreement for 2D 

(Kappa=0.80), and substantial agreement for sweeps (Kappa=0.72). Non-sub-specialist imaging 
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experts showed substantial agreement for 2D (Kappa=0.66) and significantly lower agreement for 

sweeps (Kappa=0.54) (Figure 2.7).  

Looking only at category 0 or 1 (normal or borderline), all 6 imaging readers showed high 

agreement with clinical diagnosis on 2D images (Kappa=0.76-0.82), but non-sub-specialist 

imaging experts struggled to interpret the sweeps (Kappa=0.50-0.74). In contrast, when 

considering only the dysplastic hips (category 2) the sub-specialists’ performance remained similar 

but non-sub-specialists demonstrated poorer agreement for categorization of 2D images than for 

sweeps (Kappa=0.47 vs. 0.61). (Figure 2.7).  

 

Figure 2.7 Inter-observer agreement by Randolph’s Kappa between the DDH sub-specialists and between 

the non-sub-specialist medical imaging experts, all images (categories 0, 1, 2) 

We observed similar patterns calculating inter-observer variability as ICC vs. the widely 

accepted standard (Figure 2.8). In the full data set, sub-specialists had slightly higher ICC than the 

other readers (0.97[0.96~0.98] vs 0.95 [0.94~0.97]) for 2D images; and higher ICC for sweeps 

(0.94[0.92~0.95] (p<0.05) vs. 0.87[0.82~0.90] (p<0.05)).  
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Considering only category 0 (normal) or 1 (borderline), the sub-specialists again showed a 

slightly higher ICC for alpha angle measurements (0.95[0.93~0.96] vs 0.91[0.88~0.94] for 2D 

images, and significantly higher for sweeps (0.90[0.86~0.93] vs 0.77[0.70~0.83], p<0.05).  

For Category 2 (dysplastic), interobserver variability decreased for the sub-specialists, but 

increased, for the other readers on 2D images (ICC=0.94 [0.91~0.96] vs. 0.92 [0.88~0.95]). On 

sweeps, sub-specialists had a slightly lower ICC score (0.87 [0.81~0.92]) while non-sub-

specialists’ score dropped more sharply (0.74 [0.57~0.84], p<0.05).  

We also compared the reliability of AI as a ‘reader’ vs the human widely accepted standard 

(Figure 2.8). AI had substantial to perfect agreement with the widely accepted standard for both 

2D and sweeps, performing slightly inferiorly to non-subspecialist human readers on single images 

but nearly identically to these readers on sweeps. 

 

Figure 2.8 Agreement between the widely accepted standard alpha angle and non DDH sub-specialist 

imaging experts for different patient groups, as ICC with vertical bars representing the 95% CI. AI had 

substantial to perfect agreement with the widely accepted standard for both 2D and sweeps, performing 
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slightly inferiorly to non-subspecialist human readers on single images but nearly identically to these 

readers on sweeps. 

AI showed high and statistically equivalent intraclass correlations to the human expert 

widely accepted standard for alpha angle measurements across all hips (ICC=0.90 for 2D, 0.87 for 

sweeps). Variability between AI and widely accepted standard alpha angle measurements trended 

higher for dysplastic hips than for all hips (Table 2.5). 

 Overall Category 1 & 0 Category 2 

 2D Sweep 2D Sweep 2D Sweep 

ICC(2,1) 0.90 
0.85 ~ 0.93 

0.87 
0.83 ~ 0.90 

0.84 
0.76 ~ 0.89 

0.76 
0.66 ~ 0.83 

0.80 
0.66 ~ 0.88 

0.72 
0.56 ~ 0.82 

Table 2.5 Agreement between AI and human gold standard for alpha angle.  

We also compared actual case-by-case differences (mean absolute difference) in readings. 

We calculated the signed differences in alpha angle measurements vs. the widely accepted 

standard, for each human reader and AI. For 2D images, the largest differences were 1.1° (SD = 

2.4°). For AI the average difference was -1.9° (SD=5.7°). For sweeps, the largest average 

difference for the measurement of alpha angles between human readers was 0.29° (SD=4.2°) while 

AI average difference was -1.3° (SD=7.2°); (Figures 2.9 and 2.10 and Table 2.6).  
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Figure 2.9 Signed difference between each reader and widely accepted standard for alpha angle for 2D 

images and their respective 95% confidence intervals 
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Figure 2.10 Signed difference between each reader and widely accepted standard for alpha angle for 

sweeps and their respective 95% confidence intervals 

Difference from gold standard 
(mean ± SD) 2D Sweep 

Reader 1 -0.035 ± 2.7 0.29 ± 4.2 

Reader 2 -1 ± 2.2 -0.25 ± 3.9 

Reader 3 1.1 ± 2.4 0.15 ± 3.8 

AI -1.9 ± 5.7 -1.3 ± 7.2 

Table 2.6 Signed difference between selected reader values and gold standard for alpha angle (degrees).     

When comparing non-subspecialist to subspecialist human readers pairwise, sensitivity for 

category 2 hips requiring treatment was high (0.81~1.0) but specificity was poor (0.05~0.22 for 2 

of the 3 readers, 0.45~0.55 for the other reader). Comparing AI with sub-specialists, sensitivity 
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was also high (0.83~1), and specificity low but within the range of human non-specialist readers 

(0.16~0.21). 

On a case-by-case review, all outliers where AI readings differed substantially from human 

observers were observed to be in the lowest-quality images (Figure 2.11). 

 

Figure 2.11 examples of images where AI prediction either failed or was substantially different from the 

widely accepted standard. These are poor quality images (generally obtained at the beginning of our data 

collection in 2012-13) which do not meet Graf standard plane criteria and are difficult for human 

observers and AI to assess. 

Discussion 

In this paper we assessed interobserver variability of DDH index measurement and 

diagnostic classification for 12 human readers and AI on 120 2D US images and 120 sweep US 

images. We found that variability between readers was wide and was influenced more by the level 

of reader experience specifically with DDH ultrasound than by the reader’s professional specialty.  

We also found that AI performed equivalently to our human non-subspecialist readers. 

Performing conventional 2D hip ultrasound involves the user finding the hip joint, then 

making fine changes in probe position to optimally approximate the Graf standard plane, saving 

an optimized 2D image and measuring indices including alpha angle on that image. This is time-

consuming with a squirming infant and requires a highly trained and experienced user.  With 
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modern probes it is possible to simply save all the images from an US sweep through the entire 

hip joint and select the best image for analysis afterward.  Such a protocol is attractive for large-

scale screening because the images could be acquired by a less-experienced user, more complete 

hip anatomy is recorded, and image selection and index measurement can be automated using AI.  

However, the reliability of this approach has not been evaluated previously. 

Numerous prior studies have focused on the reliability of making measurements on 2D 

images. Our variability for 2D images was higher than in a recent study on 798 infants, in which 

all interobserver agreements were classified as excellent [17]. In another small study 3 experienced 

readers rated the same set of images twice, pre-, and post-training in Graf classification, finding 

ICC scores from 0.91~0.94 to 0.97~0.98 after training [18]. These very high ICC are likely the 

maximum achievable, on high-quality images read by experienced observers. More concordant 

with our results, a larger study using single images in 210 infants showed only moderate 

interobserver reliability for the alpha angle (ICC 0.62 overall; 0.47 between two residents, 0.65 

between two specialists and 0.68 between two professors) [19]. An earlier study with more 

observers (22) than images (20) found intraobserver and interobserver agreement ratios on the 

Graf classification to be 0.65 and 0.51 respectively [20], slightly poorer than in our study. We 

observed higher reliability than Quader et al, whose systematic review and meta-analysis of 497 

articles showed inter-examination and interrater ICC for alpha angle to vary from 0.03 to 0.445 

[21]. Inter-examination variability is the most demanding metric because different images are 

obtained at different times by each observer, rather than simply having different observers interpret 

the same image or sweep. A retrospective study comparing 12 readers in 15 DDH radiographs 

using the Tonnis and IHDI classifications found Fleiss Kappa scores to rise with increased user 

experience [22]. Our study mirrors these findings in a different imaging modality.  
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Our study is the first we are aware of to assess interobserver variability on ultrasound 

sweeps. As expected, since readers had an additional task of image selection, reliability was lower 

on sweeps than 2DUS images, for all readers and AI but by different amounts. Sonographers were 

not significantly less reliable on sweeps, while radiologists and clinicians were. This may be 

because sonographers are deeply familiar with the process of selecting the best image as their daily 

task. Reliability was also more affected by direct user experience with DDH scans than user 

background; even among imaging professionals there were significant differences in reliability 

between experienced and less-experienced users. Fortunately, there was still at least moderate 

reliability of diagnostic classification in all types of images.  

Another novel aspect of our study is the comparison of AI with human readers for DDH 

indices and diagnosis. We found high AI accuracy vs. widely accepted standard, ICC 0.87 for 

sweeps and 0.90 for single images. AI agreement with clinical diagnosis was moderate (Kappa 

0.47 for sweeps, 0.49 for single images), but this represented better performance than achieved by 

10/12 human readers on sweeps. 

AI performance was intermediate between expert readers and less-experienced human 

readers on this challenging data set. AI performance would likely be improved by an initial 

automated pre-screen of images to reject the lowest-quality images from being analyzed [23]. 

Overall, we observed only slightly lower inter-observer reliability on sweeps than on 

conventional single 2D ultrasound images for hip dysplasia index measurement and diagnosis and 

found that an AI package interpreted sweeps similarly to expert non-subspecialist human readers, 

performing only slightly lower compared to the widely accepted standard.  Since sweeps provide 

more data than single images, are more easily obtained by non-experts, and are amenable to post-

scan analysis by human experts or artificial intelligence, these results motivate further study of hip 
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dysplasia ultrasound using sweeps.  Since AI performed intermediate between non-expert and 

expert readers, one use of AI could be to help readers improve closer to the expert level. 
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CHAPTER 3 AUTOMATED DIAGNOSIS OF HIP 

DYSPLASIA FROM 3D ULTRASOUND USING 

ARTIFICIAL INTELLIGENCE: A TWO-CENTRE 

MULTI-YEAR STUDY. 

 Introduction 

 
Developmental dysplasia of the hip (DDH), characterised by a lack of conformity between 

the femoral head and acetabulum [1], includes a wide spectrum of abnormalities of the acetabulum 

and the proximal femur [2]. DDH prevalence varies depending on its definition and is in the range 

of 28.5 cases per 1000 [3]. If detected before acetabular ossification (<6 months), DDH can very 

often be corrected noninvasively (e.g.  with a Pavlik harness). Delayed or missed diagnosis is 

associated with, more invasive interventions  often including multiple surgeries in childhood and 

markedly higher rates of poor outcome (ie. early onset end stage osteoarthritis necessitating hip 

arthroplasty in young adulthood.  

Physical examination by Ortolani and Barlow tests can detect DDH in neonates but requires 

a skilled examiner and has limited sensitivity in older infants and for milder disease [4]. Ultrasonic 

imaging (US) diagnosis of the hip, originally introduced in 1980 by Graf et al. [5], classifies DDH 

by measuring the acetabular angle (alpha) and the position of the femoral head (coverage). The 

Graf method utilizes a single 2D ultrasound image (Graf plane) for classification (Figure 3.1). 

However, the diagnosis is susceptible to errors due to inaccurate orientation of the probe, seen 

more often with less experienced users [6] 
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To improve reliability and minimize overdiagnosis [3], three-dimensional (3D) US has 

been used [7]. 3D US provides a more comprehensive view of the hip by imaging the whole joint 

from anterior to posterior. This not only aids human readers to more reliably assess the scans [8], 

it also facilitates automation of diagnosis by artificial intelligence (AI) algorithms.  

AI has been used in DDH diagnosis in several ways, including automatic segmentation of 

the bony acetabulum and derivation of geometric indices of hip [9]; computing the alpha angle by 

convolutional neural network [10] and enhancement of the segmentation accuracy of fully 

convolutional networks by incorporating a localization unit [11]. In 2020, a commercial AI 

application (MEDO Hip) was approved by the U.S. Food and Drug Administration to detect DDH 

in ultrasound images.  

This study evaluated the diagnostic accuracy of this commercial AI application. To assess 

AI generalizability, data sets from two centres: Edmonton, the Canadian centre that provided the 

original training data for the app, and Melbourne, a large centre in Australia with a much higher 

prevalence of dysplastic hips due to referral patterns were evaluated. Focus was on the inter-rater 

agreement between AI and human expert diagnosis and  the sensitivity and specificity of the AI 

diagnostic classification versus reference-standard clinical diagnosis at both centres.  It was 

hypothesized that AI measurements would vary from human expert readings by no more than 

published ranges of variability between human readers, and that diagnostic classification as normal 

versus dysplastic would have near-100% sensitivity for severe DDH (Graf III+) at both centres. 

Methods and Materials 

Images and Inclusion Criteria 

This retrospective study of prospectively collected data was approved by the health 

research ethics boards of the two participating centers. All patients had been referred for hip US 
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to assess for presence of hip dysplasia (from January 2012 to December 2020). With parental 

written consent, 3D US of each hip was acquired at the same visit as conventional 2D US. The 

scans were performed at Stollery Children’s Hospital, Edmonton, Alberta, Canada, using Philips 

equipment (typically IU22 13 MHz VL13-5 probe) and the Royal Children’s Hospital, Melbourne, 

Australia using Toshiba/Canon equipment (14LV7 probe) between 2012 and 2020.  

Ultrasound scanning was performed at both centers as per the American College of 

Radiology recommendations. Coronal 3D US images of each hip were captured with the probe 

positioned with the head resting near the greater trochanter of the infant. Sonographers acquired 

an automated sweep through each hip image such that the central slice approximated the Graf 

standard plane. 

AI Methods 

The commercial MEDO Hip package was used, a US-FDA cleared AI analysis package 

previously trained using 20,000 prior hip images from several centers, including other patients in 

Edmonton who were not included in this study, and none from Melbourne. When a study is 

supplied to the app, AI first automatically detects the acetabulum and femoral head on each slice 

of every 3D image and segments these structures when present. It uses these features to choose the 

slice which best matches the Graf Standard Plane criteria. AI then measures the alpha angle and 

acetabular coverage on this slice (Figure 1).  Using these indices and other image features, it 

predicts the hip classification as a Boolean value which indicates whether the patient requires 

treatment (dx=1) or not (dx=0)). The neural network used for segmentation is a U-Net-like 

architecture [12]. It consists of an encoding path and a decoding path. Features extracted from the 

encoder are combined through a sequence of up-convolutions and concatenations to generate the 

final segmentation. More elaboration has been provided in Chapter 2 under AI methods section. 
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Figure 3.1 (a) Illustration of alpha angle and coverage calculation in the standard Graf plane as 

performed in most clinics and (b) 5 Landmarks to measure alpha angle and acetabular coverage used in 

the MEDO Hip package. 

Statistics 

The reference-standard diagnosis against which AI performance was judged was that used 

in routine clinical care, based on chart review with at least 6 months follow-up for hip that were 

not normal. The 3D ultrasound models and AI analysis were not available to clinicians or 

radiologists during their assessment. When hips were considered normal at initial 

radiologist/clinician review of 2D US images and clinical examination, and no further imaging or 

treatment was performed, they were classified as 0 (normal). Hips which were recalled for follow-

up ultrasound imaging (typically due to immaturity, Graf IIa), but which were considered normal 

at follow-up and not treated, were classified as 1 (Borderline). Hips that went on to treatment, 

usually by Pavlik harness, were classified as 2 (Dysplastic).  AI classification versus clinical 

diagnosis was compared via confusion matrix (sensitivity SN, specificity SP, positive and negative 

predictive values PPV, NPV), for a binary classification in which classes 0 and 1 (normal and 

borderline) were combined as nondysplastic, versus class 2 (dysplastic). 
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AI and reference-standard diagnosis were also evaluated as though they were competing 

raters. Percentage agreement (the proportion of cases for which AI and clinical diagnosis were in 

agreement) and Randolph’s Kappa score [13-15] were used to measure the reliability of categorical 

data. Agreement was evaluated by criteria of Landis and Koch, where a kappa score of 0.8~1.0 is 

near-perfect and 0.6~0.8 is substantial [16].  Since hip dysplasia classification is heavily based on 

the acetabular alpha angle (Figure 3.1), AI versus clinical alpha angle measurements were 

assessed. The clinical alpha angle was measured from a 2D Graf standard plane image and 

originally reported clinically. The AI alpha angle was selected by AI on the best slice of a 3DUS 

sweep image of the same hip (i.e., measured on a different image of a different scan than the 

clinical alpha angle). Bland-Altman plots were used to evaluate for bias between the two sets of 

measurements. Scatterplots and Pearson correlation coefficients from linear regression were 

generated across the entire dataset and also for each center individually. 

 
Results 

From 2012-2020 there were a total of 3633 imaging studies at the two centres 

(Melbourne=3903, Edmonton=2351), that included concurrently obtained 2D and 3D US with at 

least two 3DUS image sets (for optimal AI performance).  Only the first visit of each patient was 

included (to avoid biasing the results with any treatments performed before follow-up studies), 

leaving 2649 studies. Of these, 157 scans were excluded due to either incomplete clinical data or 

obvious data set errors (e.g., errors in hip labelling). This left 2492 scans (Edmonton=1294, 

Melbourne=1198) of 1563 unique patients.  The mean patient age was 87 days (range 4-267 days). 

As expected, given DDH prevalence, nearly 70% of patients were girls. Age and gender 

distribution are shown in Table 3.1 Figure 3.2.  
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 Both Edmonton Melbourne 

Number of Hips 2492 1294 1198 

Normal or Borderline Hips 2327 1256 1071 

Dysplastic Hips 165 38 127 

Boys % 0.30 0.35 0.26 

Girls % 0.68 0.65 0.71 

Age Mean (Range) 87 (4 ~ 267) 76 (4 ~ 267) 100 (4 ~ 234) 

Boys Age Mean (Range) 85 (4 ~ 223) 79 (4 ~ 223) 94 (6 ~ 203) 

Girls Age Mean (Range) 88 (4 ~ 267) 75 (6 ~ 267) 102 (4 ~ 234) 

Table 3.1 Age and Sex distribution of the dataset 
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Figure 3.2 Population distribution by age and sex. 

Agreement between AI and clinical diagnosis for DDH diagnosis was high across the entire 

dataset (86%, p<0.001) and highest for Melbourne data (91%, p<0.001). According to the 

confusion matrix of positive and negative predictive values for DDH diagnosis by AI versus 

clinical diagnosis (Table 3.2), with DDH prevalence 6.6%, with respect to human expert reference-

standard the AI had sensitivity 0.90 (17 false-negative cases, of which 16 were Graf II subtypes 

and only one was Graf III), specificity 0.86, negative predictive value NPV=99.2%, positive 
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predictive value PPV=32%.  For the image that was clinically categorised Graf III hip dysplasia, 

the clinical alpha angle measurement was 42 degrees and AI 44 degrees.  

 
Table 3.2 Confusion Matrix comparing DDH diagnosis by AI analysis of 3D hip ultrasound images 

versus reference-standard expert clinical diagnosis from 2D ultrasound images, in Edmonton and 

Melbourne. 

Comparing AI diagnosis from 3DUS and clinical diagnosis from 2DUS as two raters of the 

same underlying pathology, inter-rater reliability was high for the full dataset and also for each 

center. While AI and human diagnosis (normal vs. dysplastic) had substantial agreement in 

Edmonton (Randolph’s kappa=0.64, p<0.0001) and across both centers (k=0.73 , p<0.001), 
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agreement was rated as near-perfect for Melbourne data (k=0.82 , p<0.001), which contained more 

dysplastic hips.  

AI diagnosis was also tested against a purely image-based reference-standard diagnosis 

based on the Graf category (I, IIa, IIb, IIc, III) determined from the alpha angle measured clinically 

on 2DUS and the patient age [4]. As class I and IIa are considered normal and any classes above 

them need further investigation, three subclasses were formed as I, IIa and (IIb or higher). The 

kappa score was again calculated and it was observed that agreement was high and followed 

similar patterns (Table 3.3). 

 
Both Edmonton Melbourne 

% Agreement 0.86 0.82 0.91 

kappa 
(AI vs. clinical diagnosis) 

0.73 
0.70 ~ 0.76 

0.64 
0.60 ~ 0.69 

0.82 
0.79 ~ 0.86 

kappa 
(AI vs. 2DUS Graf I / IIa / IIb+) 

0.79 
0.77 ~ 0.82 

0.86 
0.83 ~ 0.89 

0.72 
0.68 ~ 0.75 

Table 3.3 Inter-rater agreement between AI analysis of 3D hip ultrasound versus human expert clinical 

diagnosis of 2D ultrasound. “Clinical diagnosis” refers to the radiologist's/surgeon’s clinical decision at 

time of clinical management. “2DUS Graf I/IIa/IIb+” refers to the simplified Graf image classification on 

2DUS.  

Bland-Altman plots (Figure 3.3) did not demonstrate any clear systematic bias overall, and 

it was noted that the few cases seen outside 95% confidence interval boundaries were dysplastic 

scans from Melbourne. 
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Figure 3.3 (a) Relation of variability to mean values of alpha angle: Bland-Altman plots for alpha angle 

measurements at 3DUS/AI vs. 2DUS in the full two-centre dataset, (b) normal and borderline cases only; 

(c) dysplastic cases only. 

A scatterplot (Figure 3.4) confirms high correlation of the AI and clinical reference-

standard alpha angle measurements (r2=0.99 for both centres), although with a relatively wide 

range of variation and a few distant outliers.  The ICC for AI versus clinical alpha angles were 

0.56 (0.40-0.66, p<0.001) across the two centres, 0.36 (95% CI 0.06-0.56, p<0.001) in Edmonton, 

and 0.72 (0.69-0.74, p<0.001) in Melbourne. 
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Figure 3.4 3DUS/AI versus 2DUS/human expert alpha angle measurements.  AI computed alpha angles 

from the AI-selected best slice within one of two 3DUS data sets per hip.  Human expert alpha angle 

measurements were obtained by the reporting radiologist at time of original clinical interpretation using 

conventional 2D ultrasound images obtained at the same visit, i.e different images. 

When the obvious outliers from the Bland-Altman and scatter-plot diagrams were 

individually evaluated, three sources of error were noted: (1) dissimilarity of the 3D and the 2D 
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images to an extent suggesting a different hip had been scanned, likely due to unrecognized errors 

in data labeling (i.e., left or right hip or wrong patient), (2) human error in reading the 2D image 

(e.g., a large difference between the original reported clinical value and study team member 

reassessment of the saved images from the study), and (3) poor quality of the 3D image (e.g., 

poorly visualized acetabulum or femoral head) (Figure 3.5).   

 
Figure 3.5 Frames from 3DUS image stacks in 4 hips, in which there were large differences (a, b) and 

minimal differences (c,d) between 3DUS/AI and 2DUS/human expert alpha angle measurements. The 

two images on the left (a,b) had large differences in alpha angle measurement and are from 3DUS sweeps 

of poor quality, while the two images on the right (c,d), of higher quality, gave 3DUS/AI measurements 

similar to human 2DUS measurements. 

The differences between alpha angle measurements (AI versus Clinical) by study centre 

were also stratified (Figure 3.6). On average the AI alpha angle measurements were slightly lower 

than clinical measurements at both centres, with a difference of 6.3±5.7° (mean ± standard 

deviation SD). 
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Figure 3.6 Histogram of differences between alpha angle measurements (AI vs Clinical) 

Discussion 

This study compared artificial intelligence analysis of 3D ultrasound images with original 

clinical interpretation of concurrently obtained conventional 2D ultrasound images for detection 

of hip dysplasia, in a large prospectively collected dataset from two different tertiary pediatric 

medical centers.  This was a challenging test for AI.  In this 8-year study, ultrasound equipment 

from two manufacturers was used by a diverse collection of sonographers and trainees of varying 

levels of experience to scan infants at centres in two continents with different distributions of 
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normal and dysplastic hips and patient demographics, comparing results to diagnosis made by 

clinicians with varying background and practice patterns.  Despite all these factors, we found that 

3DUS/AI showed high to near-perfect agreement with clinical diagnostic classification, and 

sensitivity of 90% for hip dysplasia, across the two centres.   

This is the first cross-region multi-center study evaluating automated detection of hip 

dysplasia at ultrasound versus human observers. Many studies have measured the reliability of 

measuring and diagnosing DDH on 2DUS, concluding in general that despite high inter-observer 

variability, reliable diagnosis can be possible. In a recent study on 798 infants, kappa and intraclass 

correlation coefficients were reported to be very high between expert observers (>0.8) [17].  

However, observers of different backgrounds approach images differently, with varying results: 

inter-rater reliability for measurement of the key sonographic index of DDH, the alpha angle, on 

2DUS between two DDH orthopaedic specialists and two paediatric orthopaedic professors had 

ICC only 0.65 and 0.68 [18].  In a large systematic review on reproducibility of ultrasound-based 

DDH metrics including 28 studies, ICC scores for the alpha angle were poor to moderate, varying 

from 0.03 to 0.445 [19].  Because 3DUS provides more comprehensive visualization of the hip 

than saved single 2D images, it may improve reliability. 3DUS images are easier to acquire for 

novice sonographers since the probe only needs to be placed roughly near the greater trochanter.   

In a recent study, intra-rater reliability for the alpha angle was unchanged when expert readers 

used 3DUS (ICC for 2D=0.80, 3D=0.77), but 3DUS significantly improved reliability for novices 

(2D=0.54, 3D=0.74), and 3DUS markedly improved inter-rater agreement between expert and 

novice readers (2D=0.10, 3D=0.83) [7].   

In the current study, alpha angles measured on 2DUS in clinical practice and alpha angles 

measured by AI on 3DUS scans obtained at the same visit showed ICC=0.56.  It is expected that 
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this correlation would be only moderate because it is an inter-scan reliability measurement: the 

human observers and AI were measuring alpha angles on different images of the same hips, not 

providing competing interpretations of the identical images.  Also, there was a significantly higher 

ICC in Melbourne (a surgical referral population), than Edmonton (primarily a screening 

population), likely due to the higher prevalence of dysplastic hips in Melbourne.  Since ICC 

compares within-subject variability to total variability, the fact that Edmonton hips were more 

frequently normal decreased the total variability in Edmonton data, causing within-subject 

variability to have a proportionately higher effect reducing ICC in Edmonton. 

Another way to look at the reliability of AI alpha angle measurement is the magnitude of 

differences.  In this study, AI versus clinical alpha angle measurements (on different scans) 

differed by an average of 6.3±5.7° (mean ± standard deviation SD), similar to the SD=6.4-6.7° 

observed in a 2006 study when the alpha angle was re-measured in the same images by 3 observers 

with different levels of training [20].  This confirms the findings of a recent study showing AI 

inter-observer variability for alpha angle measurement to be similar to other human observers [21] 

AI showed a robust classification of infants' hips as normal vs. dysplastic requiring 

treatment.  Overall sensitivity for dysplastic hips was SN=90%, with specificity SP=86%.  

Negative predictive value exceeded 99% while positive predictive value was PPV=32%.  This 

compares favorably to the PPV=14% for conventional DDH ultrasound reported in a recent UK 

analysis [22].  Additionally, of the 17 false-negative cases in which AI did not detect DDH in 

patients who went on to clinical treatment for hip dysplasia, 16 were relatively mild (mainly Graf 

IIb) and only one was severe (Graf III). In the single Graf III hip dysplasia case, the clinical alpha 

angle measurement was 42 degrees and AI 44 degrees, just on opposite sides of the 43 degree Graf 

threshold, leading AI to categorize this hip as Graf IIc versus human classification as Graf III.  
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This type of variability near a threshold is inevitable whenever a threshold exists.  The hip was not 

considered normal by AI, just one grade lower dysplasia than by the human assessment. As 

expected, our accuracy was somewhat lower than that observed in a 2017 study which involved 

more laborious semi-automated assessment of 3DUS images in a data set with fewer dysplastic 

hips, SN=0.98 and PPV=0.93 in a setting which likely represented the optimal performance of 

3DUS [3a]. It was observed, 3DUS/AI PPV=32%, indicating that approximately one in three AI-

detected positive scans are dysplastic requiring treatment, may seem low at first glance, but is in 

the optimal range for mammography [23], an imaging-based population screening task with some 

similarities to DDH screening.  Formal economic analysis of suitability for screening is outside 

the scope of the current study. 

In this 8-year study with multiple personnel involved at two sites, the rates of incomplete 

or erroneous data entry were still relatively low (total 2.16%). The AI had a 100% technical success 

rate converging on a result in all cases, but this did require use of two 3DUS scans per hip, and 

there were occasional unusual/outlier AI results which on manual image review occurred mainly 

in cases with poor 3DUS image quality.  Reviewing these images suggests that overall diagnostic 

accuracy of AI could be improved by adding an initial quality check on the 3D images. 

Hareendranathan et al. devised an AI-powered scoring system to measure the quality of a hip scan 

[24].  By adding this, the current low-quality scans which would be rejected by a DDH expert 

could be removed first-up.  Ideally, this quality check could occur prospectively in real time, 

flagging scans which the user would repeat to improve diagnostic quality. 

AI network accuracy at alpha angle measurement was lower on the most dysplastic hips 

from Melbourne, possibly because the AI network had been exposed to relatively few cases of 

severe hip dysplasia during training.  This measurement is challenging for human observers in 
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dysplastic hips and the difference was likely of little clinical impact, since it led to misclassification 

of only one Graf III hip. Some errors in classification were likely also attributable to inevitable 

imperfections in translating textual clinical diagnosis from imaging reports and clinic charts into 

categories of normal, borderline and dysplastic.  Accordingly, agreement of diagnostic 

classification was higher between 3DUS/AI and categories derived directly from applying Graf 

thresholds to clinically measured alpha angles at 2DUS (kappa=0.72-0.86) than between 3DUS/AI 

and the diagnostic categories derived from clinical practice (i.e treatment performed or not; 

kappa=0.64-0.82).  The decision to apply treatment may also be based on factors not evident in 

ultrasound images, such as laxity, clinical concern or individual surgeon practice, which almost 

certainly accounted for some cases of treatment of sonographically normal appearing hips in this 

data, reducing AI sensitivity. 

Strengths of this study include its large size and use of multi-year, multi-center data to 

provide a clear estimate of real-world AI performance in DDH detection.  The study had 

limitations, most importantly (as is common in many DDH studies) the lack of an external 

reference standard beyond ultrasound and clinical management.  There is a critical lack of long-

term data linking infant ultrasound with outcomes beyond skeletal maturity in DDH, a concern 

motivating initiatives such as the International Hip Dysplasia Registry (IHDR) [25], of which both 

study sites are members.  In this study it would have been desirable to add a reference standard 

comparison with indices measured on radiographs obtained in all patients at age 6-12 months, as 

per IHDR protocol, but unfortunately the ethical approval during the study term did not include 

obtaining radiographs of healthy infants.  Results of this study demonstrate that AI analysis of 

3DUS is able to closely mimic conventional clinical diagnosis in DDH.  The future hope is that 
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the comprehensive hip shape data provided in 3DUS combined with outcomes data will eventually 

help improve the accuracy of the reference standard diagnosis of DDH.   

A feature of this study that could be seen as a limitation was that AI and human observers 

were interpreting different scans: 3D image stacks and conventional 2D images, respectively. 

However, this was intentional, because we ultimately envision a screening test performed by 

lightly trained users via cine sweep imaging simulating 3D ultrasound, so it is more important to 

evaluate AI analysis of sweep/3D image stacks than AI performance on single images obtained by 

expert users. Since index values are known to vary with changes in probe orientation between 

scans [6], this inevitably decreased the human-AI correlations.  However, the fact that AI and 

clinical diagnostic classifications were so similar despite being based on different images is also a 

strength, in that it confirms the robustness of the 3DUS/AI approach.  A final practical limitation 

is that the high-resolution 3DUS linear probes used in this study are not widely available.  Mass 

population screening would be more realistically achievable if handheld portable 2DUS probes 

could be used instead of 3DUS probes.  To test this, planned future work will assess whether the 

observed high diagnostic accuracy is maintained when AI analyzes 2DUS ‘sweeps’ as pseudo-3D 

hip image stacks. 

In conclusion, automated AI analysis of 3DUS had high diagnostic accuracy for 

classification of infant hips as normal or dysplastic compared to reference-standard clinical 

diagnosis made using 2DUS.  These advances in technology could ultimately be the foundation 

for cost-effective mass population infant screening for hip dysplasia to reduce the burden of hip 

osteoarthritis worldwide.  
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CHAPTER 4 DISCUSSION AND CONCLUSIONS 

Thesis Overview 

This thesis studied and evaluated the benefits of acquisition of cine sweeps / 3D ultrasound 

images versus the ordinary 2D ultrasound images and the use of artificial intelligence in reading 

and interpreting those images (2D, 3D, cine sweeps) and detecting DDH. Due to known issues of 

Graf method for classification and diagnosis of hip 2DUS (high inter/intra-rater variability), this 

thesis discussed the advantages of saving sweep images and elaborated on how it can allow the 

reader as well as artificial intelligence to have a more complete and comprehensive view of the 

hip and thus provide a more accurate diagnosis with lower inter-rater variability (higher 

agreement) and higher reproducibility. 

Chapter One presented a historical narrative on developmental dysplasia of the hip, 

discussed its various definitions, explored several associated risk factors, multiple methods to 

diagnosing it and numerous classifications that have been suggested for it. Chapter One also 

explored the use of different medical imaging modalities (i.e., CT and Ultrasound) as well as their 

applications in diagnosing and managing DDH. In the same Chapter, the opportunities for 

automation of the analysis of hip ultrasound were discussed and the potential for future 

improvements were reviewed. 

Chapter 2 assessed reliability of sweep/3D image acquisition and AI analysis. As such it 

had two main goals; first to evaluate the effect of the readers’ background and their level of 

expertise in reading hip ultrasound and second, to assess the agreement (hence the variability) 

between artificial intelligence and gold-standard in classification of hip ultrasound. In Chapter 

Two, the reliability of AI as an individual reader in processing 2D and sweep ultrasound was 
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compared against DDH-sub-specialist as well as non-DDH-sub-specialist medical imaging expert 

readers. 

while Chapter Two focused on assessing reliability across a pseudo-random sample of hips, 

to establish validity and accuracy of the combined new method (3D acquisition and AI 

interpretation), it was necessary to perform a much larger study. Through a two-center, multi-year 

study, Chapter Three explored the hypothesis that artificial intelligence analysis of 3D ultrasound 

can produce high agreement with human experts’ diagnosis for hip dysplasia (high sensitivity) and 

can measure the alpha angle in similar range to human experts. 

Statistical Analysis 

Throughout this thesis, for quantitative measurement of agreements between various 

readers, intraclass correlation coefficient (ICC(2,1), single random rater) was used for 

continuously-valued data (e.g. alpha angle measurements) and Randolph's Kappa was used for 

categorical data (e.g. borderline hip versus normal hip). 

Randolph's Kappa is a free-marginal implementation of Fleiss-Kappa. Although Fleiss-

Kappa solves the issue of having more than two raters which is not possible with Cohen's Kappa, 

Brennan and Prediger (1981) [1-3] suggest using free-marginal Kappa when raters do not 

necessarily have to assign a certain number of cases to each category of reading. This was exactly 

the case for the studies of this thesis. 

As mentioned before, single random raters intraclass correlation coefficient statistics 

(ICC(2,1)) were calculated by traditional techniques for continuously-valued data, together with 

95% confidence intervals for each. Single random raters ICC (ICC(2,1)) is preferable when each 

matter has been rated or measured by each rater, and the reliability is based on a single 

measurement. This was exactly how this thesis’s studies were designed and conducted. The other 
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types of ICCs are briefly described below, for further clarification on why they were not applicable 

to this thesis. 

- ICC(1,1) 

Each matter is rated/measured by a different set of randomly selected raters and the 

reliability is based on a single measurement. This was not applicable to this thesis as 

every image was read by every reader. 

- ICC(1,k) 

Each matter is rated/measured by a different set of randomly selected raters  but the 

reliability is the average of k raters measurements. Similarly, since every image was 

read by every reader, this method was not applicable. 

- ICC(2,k) 

Is similar to ICC(2,1) which is used in this study but the reliability is measured as the 

average of the k ratings, which was not done in this study. 

- ICC(3,1)  

each matter is rated by a single rater who is the sole rater of interest and the reliability is 

based on a single rating. Again this was not how this study was designed. 

- ICC(3,k)  

Is similar to ICC(3,1) but the reliability is measured as the average of the k ratings. 

In summary, a special variant of kappa which was most appropriate, and traditional 

techniques for ICC, were used for this thesis. 

Inter-observer agreement in measuring 2D Ultrasound vs Sweep Ultrasound 

Performing a hip ultrasound that is adequate to make a diagnosis on is prone to errors and 

sometimes very difficult even for experienced sonographers. Optimizing the probe orientation and 
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finding/approximating the perfect Graf plane can be very challenging. Therefore, the variabilities 

in measuring the indices on static 2D images of the hip are reported high (low inter/intra rater 

agreement). With recent technology advancements sweep images (records of short videos of the 

probe view through the entire hip) are more easily and more frequently acquired. These images 

show the bone far more comprehensively and allow the reader to choose the best frame from the 

video to do their readings.  

Chapter Two illustrated that the inter-observer reliability for alpha angle and coverage was 

highest for 2D versus the sweeps. Sonographers had the highest inter-rater agreement for reading 

both the 2D and sweep images (within their group versus the radiologists, the clinicians, and the 

medical imaging researchers groups). While examining the hypothesis that AI can measure hip 

images just like a human reader, Chapter Two confirmed that Randolph kappa agreement score 

between AI and the human gold-standard is similar to an individual human reader. 

Among the medical imaging expert readers, those who had sub-speciality in DDH had 

higher inter-observer agreement with the gold-standards compared to those who were not sub-

specialized in DDH. The results in Chapter Two also showed that the DDH sub-specialist readers 

had higher ICC scores for both 2D and sweep images. Furthermore, the difference between the 

agreement scores of the two groups was wider for the sweeps for normal, borderline, and dysplastic 

hips.  

In the same Chapter, the results showed that although AI algorithm had poorer agreement 

with the gold-standard for 2D images compared to human readers, it still performed like the non-

sub-specialist medical imaging expert readers for sweeps. 

Finally, per the scope of this thesis and its literature reviews, it is the first study (that we 

are aware of) on the assessment of inter-observer variability on sweep ultrasound images. It seems 
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that the extra step of choosing the appropriate image on sweeps, however, introduces challenges 

for the readers especially with less experience compared to those with more. This results in lower 

reliability on the sweep images compared to 2D images, but a more direct comparison would be 

to inter-scan error on 2D images, which is not well studied in the literature. 

Performance of the AI in measuring 3D Ultrasound 

As elaborated in Chapter Three, percentage agreement between AI and clinical diagnosis 

was proved high across the entire dataset in both data centers (Edmonton, Canada and Melbourne, 

Australia). AI was also highly sensitive in correctly detecting abnormal hips (failed for only one 

case). Similarly, looking at the AI classification of the 3DUS and comparing it to the clinical 

diagnosis on the corresponding 2DUS, ICC scores were either high or near perfect for both centers.  

We also tested AI on a purely image-based diagnosis (based on Graf categories) and 

defined three sub-classes as Class I & IIa (normal hips) and class IIb and above (requiring further 

management). This classification was based on the combination of measured alpha angle on 2DUS  

and the patients’ age (if available). It was observed that AI similarly had a high kappa score 

agreement with the clinical results in classification of the hips. 

 Bland-Altman and scatter plots of the alpha angle measurements (AI on 3DUS versus the 

clinical measurement on the 2DUS) determined no systematic bias and demonstrated a high 

correlation between the two measurements as the r2 values were calculated 0.99 for each center 

and across the entire dataset. This was supplemented by an average difference of 6.3 degrees (SD 

= 5.7) on the measurement of alpha angle which showed AI slightly down-measured comparing to 

the clinical values. 

Considering the outliers in the two plots (scatter plots and Bland-Altman) it was realised 

that they could be the result of (1) dissimilarity between the 2D and 3D images suggesting that 
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there were errors in labelling the images (left instead of right or vice-versa), (2) human errors 

(large differences between the original clinical measurement and the outcome of the re-

measurement of the same images during the study team assessment), and (3) low quality 3D images 

which would not be adequate to make a diagnosis on. 

Limitations 

As clinical measurements and diagnosis are routinely made on the 2DUS, throughout the 

studies in this thesis we had to overcome the challenge of defining human gold standard on the 

sweeps and 3D images. In our variability study (Chapter Two) we took the median of the readings 

from a sub-set of the readers who were sub-specialised in DDH as our gold standard. This may 

have suggested some bias in our results especially while comparing the performance of the two 

medical imaging expert readers sub-groups (DDH sub-specialists versus non-DDH sub-

specialists). Similarly, in our 3D study (Chapter Three), we compared AI measurements on 3D 

images with gold-standard values which had been extracted from the clinical results on 

corresponding 2DUS. This we believe was the main reason for some of the outliers in the dataset. 

We tried to minimize this issue by a holistic and extensive data validation/preparation followed by 

a comprehensive assessment of the questionable outliers, communicating our doubts with the two 

centers’ representatives and under circumstances when we were completely certain that there was 

an error, removing the images from the dataset. 

The other main limitation was the very subjective nature of hip dysplasia and its 

classifications methods. Patients are prescribed for treatment based on the clinicians’ assessments, 

but these assessments are not necessarily reflective of Graf methodology. Because of the same 

issue, a hip image with an alpha angle that had been measured very similarly by both the clinician 
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and the AI, could have been categorized very differently. So quantitatively AI and the clinician 

were in perfect agreement, but qualitatively they were not. 

Finally, all subjects in our studies were referred for hip ultrasound based on clinical 

suspicion of DDH. In fact, this was our initial inclusion criterion. Therefore, some of the patients 

could be beyond the age that ultrasound would be the modality of choice for DDH screening. So, 

although not ideal, but these were in fact part of clinical routine in the two centers that were 

participating in our study. This is unfortunately typical of a population where there is no universal 

screening, and diagnosis can happen late. 

Future Directions 

In our two studies, human readers, and AI, made their measurements and diagnosis in 

absolute isolation. An interesting scenario for future work would be to utilize the AI algorithm as 

an assistive tool to make the initial measurement on the 2DUS or choose the best slice for making 

a diagnosis on from a sweep or 3DUS before the human reader can modify or confirm. The effect 

of this may help with increasing the low intra/inter-rater agreement between hip ultrasound 

readers.  

One of our main observations throughout this study was the considerable extent to which 

the quality of the images can affect the diagnosis. A human reader is always entitled to reject an 

image due to inadequacy, but that is not necessarily the case for AI. We noted that most of the 

questionable results and outliers were the result of low-quality images. Hareendranathan AR et al 

[4] in their article have discussed the impact of scan quality on AI assessment of hip dysplasia 

ultrasound and reported AI accuracy of 57% in low quality images versus 89% in other cases. A 

beneficial avenue to explore would be to add an extra layer of quality check on the images which 

would reject non-adequate ones. 
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Furthermore, as we already mentioned in the introduction of this thesis that 2D sweeps and 

3D images are very similar, one important bit of future work could be to confirm that these two 

types of images can be viewed as equivalent in medical imaging and further in the use of AI in 

interpreting them. 

Conclusion 

In this thesis we studied the reliability and validity of a novel approach to infant hip 

ultrasound combining a new acquisition technique (multi-frame images, either by 2D sweep or 3D 

capture) with a new image interpretation tool (AI).  We assessed interobserver reliability for 

assessment of hip dysplasia from ultrasound sweep images, for human readers and artificial 

intelligence. This was the first study of the sort that we are aware of. We found that interobserver 

reliability is slightly lower on these images than on single 2D images, as expected due to the 

additional reader task of selecting the optimal image from the sweep for review. Greater reader 

experience, subspecialist status, and background as a sonographer increased reliability. An AI 

network functioned with intermediate reliability between experienced and inexperienced human 

readers, encouraging further study of AI to facilitate DDH diagnosis and treatment. We then 

observed, in a large multi-center study, that artificial intelligence can classify infant hips 3DUS 

into normal and dysplastic categories with high accuracy compared to gold-standard clinical 

diagnosis using 2DUS.  

This thesis essentially tried to evaluate the hypothesis that AI can eventually be relied on 

to measure images of hip that have been acquired by non-expert users, when multi-frame imaging 

(2D sweep or 3D) is applied. The images used in this thesis were acquired by people with diverse 

levels of experience. It was intended to represent the spectrum in a typical clinical practice, from 
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medical imaging researchers who had been trained to take hip ultrasound to expert sonographers 

who had spent the entirety of their careers in screening infants’ hips.  

Despite the minor errors mostly pertinent to the strict results of rule-based diagnosis (versus 

humans’ experience/gut-based diagnosis), AI was very sensitive and specific in picking abnormal 

hips. It does not seem too far away that these minor errors will eventually be minimized to very 

negligible numbers to enable the health industry to develop and maintain universal screening 

schemes more easily and more robustly. This will likely be possible only by incorporating similar 

technologies in every step of the screening process and not solely the image processing step (e.g., 

image quality check, patients’ demographics management etc.).   
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