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Abstract

Today’s mobile battery-powered communication devices require that users ac-

cess chargers via wired and, recently, wireless recharging facilities. For a device

departing from a location with a given energy “budget”, a plausible strategy

is to seek a charger location once the energy is exhausted. We present a set of

charging-aware mobility models that capture the paths followed by the nodes

with depleted energy seeking, possibly via a detour, to reach a charger.

Firstly, for a 1-dimensional space, we derive the location-dependent mobile

node density distribution, using it to express the location-dependent conges-

tion of a wireless network whose capacity is used by the mobile nodes. The

boundaries, and the relative placement of the charger, create intriguing dis-

continuities in the probability density function of the nodes across space. We

find that chargers are not always “hotspots” in terms of node density, and that

the energy budget of the nodes determines the hotspot.

For a 2-dimensional space, the analysis shows asymmetrically spiked node

density in the locality of the charger, which, counterintuitively, is encircled

by relative dips in node density. We extend the probability density func-

tion derived for one-charger deployment to approximate that under multiple

chargers, observing high accuracy for sparse deployment. We also study the

performance of charging-aware mobiles that conduct ad hoc communication in

a grid. The results show that the recharging behavior can improve energy sup-

ply and communication opportunities. The simulation further demonstrates

the advantages and implications of deploying multiple distributed chargers.
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have been published in [27], while the work of Chapters 4 and 5 is expected

to be submitted (after revision) for publication in the future.

iii



To my parents, my supervisors, and anyone else who has been believing in me.

iv



A well-designed mathematical model, on the other hand, generalizes the

particulars revealed by physical experiments, computer-based models, and

interdisciplinary comparisons.

– John H. Holland, 1995.
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Chapter 1

Introduction

1.1 Overview

The continuous development of new types of mobile wireless networks, e.g.

IoT (Internet of Things), 5G networks, delay-tolerant networks etc, together

with the proliferation of bandwidth-hungry, CPU-hungry applications, e.g.

online gaming, live broadcasting, augmented reality etc, puts great pressure

on energy provisioning for modern mobile computing systems. On the one

hand, the development of portable high-capacity batteries is not happening

fast enough to cope with energy-hungry devices and applications. On the

other hand, despite the increased popularity of wireless charging technologies,

because of their limitations in efficiency and workable ranges, the charging

behavior of mobile users has hardly changed. The users may need to “serve”

as carriers and forage for energy sources en route to sustain/restore operation

of their fast-draining mobile devices. Such charging-aware mobility and its

implications for wireless communications are the subject matter of this thesis.

Conceptually, regardless of whether we are interested in plugging laptops

into power outlets or wireless charging of smartphones, we can identify two

characteristics of the underlying system:

1) an influence exerted on a mobile agent to deviate from its original path

in order to recharge, measured against the inability to communicate if

no recharging is performed, and,

2) an increase of density of the mobile agents near chargers, resulting in
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increase of communication congestion especially if they are, as often

assumed, wireless spectrum users.

As we are primarily interested in systems akin to smartphone and wearable

devices carried by “human” agents, depletion of energy does not imply inability

to move—as opposed to the case of electric vehicles, which is outside the scope

of the thesis.

This thesis provides both an analytical and numerical investigation of the

interaction between recharging and capacity resulting from (1) and (2). No-

tably, we have attempted to explore such interaction in our previous work [26],

where we devise different possible strategies for the charger-aware mobility and

compare the induced network performance (in terms of packet delays and de-

livery ratios) through simulations. The settings assumed in [26] are close to

reality but rather complicated:

• the communication and energy consumption of the mobile devices are

subject to medium access and (epidemic) routing protocols,

• the mobiles have varying tendencies to recharge depending on their en-

ergy levels and projected delays in arrival at the destinations,

• the mobiles are subject to a maximum number of devices that can be

charged simultaneously by each charger,

• the chargers have limited, distance-dependent charging efficiency, and

• the chargers themselves are subject to varying energy reserves for charg-

ing the mobiles.

In this thesis, for tractable analysis and clearer examination, we make simpli-

fied abstractions about the system, as follows.

We consider two communication models, one where communication is pos-

sible at any location (cellular model) and one where the communication de-

pends on the existence of co-located peers (ad hoc peer-to-peer model). For

the first cellular model, we assume that a device with some energy can con-

tinuously transmit until its energy is depleted, irrespective of MAC/routing

2



protocols. The continuous transmission behavior represents a, corresponding,

continuous data traffic demand of the device to continue communicating for

as long as its energy allows it.1 Hence, the amount of energy consumed can

be expressed as distance traveled at constant speed. As long as the energy

reserves are non-zero, the device is assumed to be continuously communicat-

ing. The only energy cost is assumed to be that of communication; the travel

can continue, albeit without communication, once the energy is depleted. For

the second ad hoc communication model, we assume a mobile device, which

can also keep moving without energy, consumes energy only when forming a

pair-wise connection with another peer in its neighborhood. In this case, a

mobile may potentially travel long without encounters with others and thus

without depletion. Both communication models are subject to congestion due

to clustering and limited capacity.

Throughout the thesis, the charging-aware movements of mobiles are mod-

eled based on the Random WayPoint (RWP) model [41], a well-known mo-

bility model characterized by the notion of destinations. In the basic version

of RWP, the mobile keeps moving straight between a series of waypoints (or,

destinations) randomly generated in the space, yielding a zigzag trajectory

over time. To embody recharging behavior, we assume the presence of a single

fixed charging station that can attract depleted mobiles, diverting them tem-

porarily from direct paths to the intended waypoints. The charger is able to

restore the energy of any mobile at its location to an adequately high level im-

mediately by using ultra-fast charging technologies [34, 58]. Once replenished,

no recharge is needed again before arrival at the destination.

Note that the mobiles are assumed to behave like “reactive agents” [17,

40], i.e., triggered awareness of recharging only upon an energy drop to zero,

with no precautionary charging or path planning in advance. Also, to reduce

randomness and ease analysis, all the mobiles move at a uniform constant

speed and never pause at any waypoint or the charger. Despite the risk of

1The energy may still drain fast continuously even for sporadic communication, since
common wireless network interfaces can often incur high idle power consumption comparably
to that in the active state [7, 25].
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oversimplification in several aspects, the analytical results, as we will see, can

well approximate extensions including random speeds, “proactive” recharging

(Section 3.4), and multiple chargers (Section 4.5); besides, the effect of random

pauses can be incorporated straightforwardly (Section 2.2).

The remainder of the thesis is organized as follows: First, in Section 1.2,

we give a summary of the contributions made in the thesis. Then, in Chapter

2, we review the existing work and discuss their connections and differences to

our work. In Chapter 3, we present an analytical mobility model in the pres-

ence of a charger in a 1-dimensional space, i.e., a road-like line segment. This

is a simple but meaningful scenario, which accounts for movements on a “thor-

oughfare” path within an urban core. Each mobile follows the cellular model

for communications and would recharge after depletion as long as it is possi-

ble to reach the charger before the intended waypoint (by detouring towards

the opposite direction if needed). In Chapter 4, we extend the 1-dimensional

charging-aware mobility of Chapter 3 to the more common 2-dimensional Eu-

clidean spaces. We endow the charger with a range of attraction such that

a depleted mobile would detour for recharging only if it passes through the

vicinity of the charger and falls within its range. This attraction range can be

regarded as an abstraction measuring the charger’s interest/popularity plus

the mobile’s drive to detour for recharging. In Chapter 5, we conduct simula-

tion studies to examine the practicalities of charging-aware mobility interacting

with peer-to-peer ad hoc communications in a 2-dimensional Manhattan space

(i.e. a grid of square cells imitating city blocks). The recharging behavior fol-

lows a discrete-time Manhattan version of the mobility model of Chapter 4;

meanwhile, the processes of communication and energy consumption become

subject to the availability of peers that have non-zero energy in the locality.

Lastly, in Chapter 6, we conclude the thesis and outline worthwhile directions

for the future work.

1.2 Thesis Contributions

A summary of the thesis contributions is as follows:
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• For the 1-dimensional charging-aware mobility model, we derive closed-

form probability density functions of the mobile location over a unit

line segment, based on the recharging behavior. (See Theorem 3.4.1.1,

3.4.2.1, and Corollary 3.4.2.1.)

• For both the 1-dimensional and 2-dimensional cases, we describe the

resulting density function with respect and as it relates to the corre-

sponding RWP density. (See Section 3.4.1 and Theorem 4.4.3.1.)

• We examine the “distortion” compared to RWP behavior caused by the

mobiles veering off their original paths to reach the charger, and find it

different from “hotspot”-like concentration used in the literature. (See

Sections 3.4.3 and 4.5.1.)

• We identify and explain the discontinuous nature of the mobile distribu-

tions as being caused by the effect of the boundary. (See Section 3.4.3.)

• We note subtleties, e.g., the interplay of how “energized” a system is

(seen as energy present at the mobiles when they start their trips from

waypoints) and higher congestion depending on whether the mobile is

willing to detour or not from its path to a waypoint. (See Sections 3.5.3

and 5.4.)

• In the 1-dimensional case (cellular model), bounds of the probability that

a mobile can (has energy) but cannot (due to congestion) communicate

are given. (See Theorem 3.5.1.1 and Corollary 3.5.1.1.)

• In the 2-dimensional case, we identify, and explain a “dip” in the density

around the charger, which is an unexpected new finding induced by

detours in the 2-dimensional case. (See Section 4.5.2.)

• We use the distribution results for a single charger in 2-dimensional case

to extricate the impact of the charger on the density, and subsequently,

provide a method to approximate the density for multiple chargers. We

also demonstrate some limitations of this technique. (See Section 4.5.3.)
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• We compare the analytical 2-dimensional results with simulation results

of mobility of nodes on a Manhattan street network with a single charger

and notice similarities between them, suggesting the model is a good first

step towards modeling a realistic system. (See Section 5.3.)

• Simulations of a Manhattan street network with multiple chargers, show-

cases the (dis)advantages of deploying multiple distributed chargers with

short attraction ranges in comparison to a single charger with a relatively

long attraction range. (See Section 5.5.)
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Chapter 2

Literature Review

In this chapter we first categorize and review the rich collection of existing

mobility models (Section 2.1), from basic to sophisticated ones, and recap the

important results from formal analysis of random waypoint models (Section

2.2). Since the subject matter of this thesis falls within the general scope of

charging-aware wireless networks, we also review the related work on energy-

constrained networks (e.g. wireless sensor networks, mobile networks, etc)

aided by static ormobile chargers (Section 2.3). Note that none of the scenarios

considered in the literature fits exactly the one of our interest, i.e. human-

carried (energy-hungry) mobile devices moving between random waypoints in

the presence of static chargers that can attract and divert low-energy mobiles.

Lastly, we briefly review the work on wireless capacity (Section 2.4), showing

the different perspectives they have from our capacity-driven study.

2.1 Mobility Modeling

In this section we review the related work on synthetic mobility models for

MANETs (Mobile Ad hoc NETworks), which can be classified into two types,

namely classic homogeneous i.i.d. models and heterogeneous non-i.i.d. models.

Note that there also exists extensive literature on trace-based mobility models

that rely on empirical trajectories of mobile devices (with certain abstraction)

to capture real-life movement patterns [3, 6, 66, 71]. The trace-based models,

however, are commonly subject to dependence on specific scenarios, and thus

remain challenged for valid generalization. Our goal is to synthesize simple
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yet useful mobility models that permit tractable analysis and easy extensions

to more sophisticated variants.

Additionally, we have omitted to review the “macroscopic” mobility mod-

els, e.g. [4, 8, 76], which concern the aggregate circulation of mobiles across

the space and model the mobiles as flows in a product-form queuing network.1

Our interest is in mobility modeling from the behavioral or “microscopic” level

and analysis of the emergent distribution of mobile locations.

2.1.1 Classic Homogeneous I.I.D. Models

Classic mobility models, including random walk [23], Random WayPoint (RWP)

[41], and random direction [67], assume i.i.d. parameters (e.g. in terms of the

velocity, pause time, destination etc) over time and homogeneous movements

across all mobiles in the network.

In the random walk model, the mobile determines at the beginning of

each epoch (or trip) a random speed from [νmin, νmax] (νmin, νmax ∈ R≥0) and

a direction within [0, 2π) (in the case of a 2-dimensional space). Then the

mobile keeps moving at such a velocity until a random time interval (or travel

distance) is achieved. If any space boundary is met, the path of the mobile

would be reflected (like billiards) or wrapped around (if the space is toroidal),

depending on the treatment of boundaries [49].

Like random walk, the RWP model is also epoch-based. The difference

is that each time the mobile moves straight (at a random speed) towards a

random waypoint in the space. Once the waypoint is reached, the mobile

may pause there for a random interval before staring a new epoch. While the

random walk model always yields a uniform distribution of the mobile location,

it is observed that a mobile following RWP tends to visit the center of the

area more often than regions near the boundaries due to the border effect [12]

(Figure 2.1). On the other hand, the RWP model facilitates long-span trips

(like Lévy flights [53]), which is considered an advantage over random walk for

being more natural. It is normally far slower for a random walker to traverse

1The joint stationary probability distribution of a product-form queuing network can
be computed easily as the product of marginal distributions.
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mobility basically falls into the category of location-biased models, with addi-

tional dependence on the energy states of mobiles; it also overlaps with social

mobility if peer-to-peer communication is assumed for energy consumption

(Chapter 5).

Group Mobility Models

The group mobility models are devised to depict the particular mobility where

the mobiles travel in concert with each other to a common destination or

pursuing a common target. Among the existing work, the Reference Point

Group Mobility (RPGM) model stands as a major framework that generalizes

the typical correlated movement patterns in searching or pursuing scenarios

[33, 69]. Many other models, like the Column Mobility model and the Nomadic

Community Mobility model [69], can be implemented through variation of

RPGM.

In the RPGM model, the network would be divided into groups, each

endowed with a logical center/anchor to determine general movement of the

group. The location of each logical center is updated by imposing a random

group motion vector
−−→
GM. Each mobile moves following a designated reference

point, which is updated based on
−−→
GM. Once the next location of the reference

point is computed, a random (bounded) motion vector
−−→
RM is added as a small

perturbation to yield the final location of the associated mobile. Different
−−→
GM’s can be included to create heterogeneous group movements within the

same network.

Location-Biased Models

The location-biased models incorporate the likely bias of mobiles towards cer-

tain “hotspot” geographic areas to introduce non-uniform distribution in the

space. For instance, as a heuristic extension to RWP, the Weighted WayPoint

(WWP) model adds more weight to certain popular locations (e.g. class-

rooms, cafeterias) such that both the occurrence of destinations and pause

time intervals therein are increased (Figure 2.2) [35]. Also, the weights of lo-

cations are allowed to vary over time for temporal diversity (e.g. lunch time
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Figure 2.2: A schema of transition between highly weighted locations under
the WWP model [35].

vs. non-business hours). The mobiles, however, still move independently and

identically to each other, like the basic RWP model.

In [36], a sophisticated analytical variant of WWP, namely the Time-

Variant Community (TVC) model, is proposed to extend the basic random

direction model to capture the heterogeneity of mobility in both time and

space. Motivated by the location preferences of humans as well as their time-

varying and periodical behavior, a time-dependent Markov chain is constructed

for each mobile, where each state corresponds to a delineated popular region

in the space, or rather, a community. The mobiles would transfer between

the communities and follow random direction mobility within each. A mo-

bile is said to be in a roaming epoch when it moves freely in the whole space

without limitation to any community; otherwise, it is in a local epoch. The

incoming/outgoing probabilities of each community can be tuned to obtain

the desired stationary mobile distribution. Based on this model, other metrics

like the hitting/meeting time and average node degree can also be derived

formally.

Another model following a similar idea of [35, 36] but based on random

walks is the so-called Heterogeneous Random Walk (HRW) model, which cap-

tures the different speed zones in reality (e.g. downtown areas vs. highways)

[62]. Specifically, the model assumes a unit square torus with several circu-

lar low-speed zones, in which the mobiles following random walks are allowed
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speeds of smaller variances only. The stationary distribution of the mobile lo-

cation is also approximated based on the theory of diffusion processes. Under

this model, the mobiles are found to be more likely to cluster in low-speed

zones.

A noteworthy location-biased model is the one named SMOOTH [56],

which seeks to be simple and meanwhile realistic by capturing as many as

seven features that are commonly observed in real-life movements. The seven

features include: (1) inter-waypoint distances following Truncated Power Law

(TPL) distributions;2 (2) inter-contact times following TPL; (3) pause times

following TPL; (4) non-uniform mobile distribution; (5) mobility with certain

regularity; (6) inertia against exploration of new locations; (7) reinforced re-

turning to familiar locations. Specifically, the chance of a mobile i exploring

a new location is given by

Pexplore(i) = aD−b
i

where Di is the number of locations the mobile has visited so far, while a and b

are empirical constants. To determine a new location, the mobile would follow

a Lévy flight [53]. In the case that the mobile decides against exploration

(in probability 1 − Pexplore(i)), it would revisit one of the old locations, l, in

probability P(l), which is in proportion to the number of times the mobile has

visited l.

In [38], the classic RWP is generalized to a versatile analytical model,

namely Markovian WayPoint (MWP), which targets hotspot modeling. The

MWPmodel draws waypoints in the space following a Markov chain and allows

the velocity to vary based on the end waypoints; besides, the mobiles are

allowed to pause randomly not only upon arrival at but also halfway between

(consecutive) waypoints. The MWP model can have its parameters tuned

such that within the hotspot areas the mobiles would have their pause times

elongated, would travel at lower speeds, or have more waypoints to visit. The

main strength of this paper is the explicit expression (in the form of integrals)

2A TPL distribution is constructed by replacing the tail of a power-law distribution with
an exponential distribution.
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derived for the stationary mobile distribution in the presence of hotspots.

Note that the work of [38] assumes that we have a basis for preferring certain

locations rather than others. This type of preference is presented as input

to their model to specify the hotspots. Instead, our interest is on identifying

how such hotspots emerge in the presence of chargers. In effect, our analytical

model provides a basis for producing more realistic inputs to Markovian, and

similar, models (e.g. [36]).

Social Mobility Models

Although the group mobility and location-biased models described above have

considerably extended the classic i.i.d. models (e.g. RWP) and can reflect

various features in practical mobility, they turn out to be still deficient in cap-

turing the social interplay between the movements of mobiles. For instance,

supposing that the mobiles are socially attracted to each other, it might be

more realistic to assume temporally stronger attraction from the popular loca-

tions when they are crowded than when they are not. To this end, the social

mobility models like [13, 54, 55, 57] are proposed to embody this dimension.

In [57], the Community-based Mobility Model (CMM) partitions the space

into square cells, each associated to multiple mobiles who have their current

destinations located within the cell.3 Each mobile i decides its next destination

(upon arrival at the current one) by selecting a random point in the cell Sp,q

(with coordinates (p, q)) that has the maximum social attractivity defined as

SAp,q =
1

w

n∑

j=1,
j∈CSp,q

mi, j,

where CSp,q is the set of mobiles associated with (or destined for) cell Sp,q,

w =

��CSp,q

��, and mi, j ∈ [0, 1] is a measure of the interaction between mobile

i and j. This notion of social attractivity has enriched the concept of loca-

tion popularity by relating to the temporal social relations among mobiles.

Simulation results show that the CMM model can better approximate the real

3Unlike the TVC model, the term “community” in social mobility models refers to
temporal social clusters formed by mobiles rather than fixed popular regions.
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traces (e.g. [18]) than RWP in terms of the cumulative distributions of contact

duration and inter-contact time.

Like [57], the SWIM (Small World In Motion) model from [54] considers

the preference of humans towards nearer destinations as well as location pop-

ularity as in the likelihood of meeting others. Specifically, the whole space

is partitioned into multiple square cells. For each mobile i, each cell C is as-

signed a weight wi(C) that corresponds to the probability that the mobile has

a destination therein. Also, a special location hi is randomly chosen for the

mobile as its home. For mobile i, its cell weight is updated as

wi(C) = α · distance(hi,C) + (1 − α) · seen(C),

where distance(hi,C) is the distance from the home location hi to the center

of cell C, seen(C) is the number of peers encountered by mobile i last time

in C, and α is a coefficient balancing the two factors. The distribution of

inter-contact time proves to follow TPL under this model.

The aforementioned model CMM, despite taking into account the social

relations, suffers from the so-called gregarious behavior of mobiles; that is, the

simulation may be stuck in a state where the mobiles all congregate in a single

cell. To overcome this defect, the Home Cell Mobility Model (HCMM) in [13]

strengthens the spatial attraction of CMM by defining for each mobile a home

cell (similar to the home concept of SWIM). A mobile that is currently within

its home cell simply follows the rules of CMM, except the social attractivity

is now computed as SAp,q =
1

w

∑n
j=1, j∈C′

Sp,q

mi, j , where C′
Sp,q

is the set of mobiles

that share the same home cell Sp,q. If the mobile is not in its home cell, then

it randomly chooses a destination within the current cell in probability pe and

returns to its home cell with 1 − pe.

2.2 Mobility Analysis

Despite the variety of synthetic mobility models, there has been far less deriva-

tion of analytical results (e.g. stationary mobile distribution) than their nu-

merical studies, especially for RWP-based mobility. In this section we sum-

marize a series of seminal results about the stationary mobile distribution of

14



RWP [10, 11, 38, 39, 47, 49]. At first we give a primer of Palm calculus, a

statistical tool set that proves to be very useful for mobility analysis in the

literature and our work.

2.2.1 Basics of Palm Calculus

Palm calculus is a collection of techniques that facilitates the computation of

time expectations through event expectations (or Palm expectations) and vice

versa. Specifically, for any stationary stochastic process X(t), the inversion

formula states that

E [X(t)] = λET0

[∫ T1

T0

X(τ) dτ
]
, (2.1)

if X(t) is continuous with t ∈ R≥0, or

E [X(t)] = λET0

[
T1−1∑

τ=T0

X(τ)
]

, (2.2)

if X(t) is discrete with t ∈ Z≥0 [48]. Here T0 and T1 (T0 ≤ T1) are two consecutive

time instants in the stationary regime when the event of interest occurs, and

E
T0(·) = E(·| an event occurrence at T0) is an expectation operator conditioned

on an occurrence of the event at time T0. Besides, λ is the occurrence rate of

this event. If the process is the (continuous) RWP mobility, for example, the

event can be the mobile reaching a random waypoint, whereby λ is the arrival

rate at waypoints, and ET0

[∫ T1

T0
X(τ) dτ

]
is an integral measure evaluating the

continuum of locations covered along the path between waypoints.

Leaving aside the rigorous proof, Equations (2.1)(2.2) can be derived intu-

itively. Take Equation (2.1) for instance, the time expectation on the left-hand

side can be defined as4

E [X(t)] = lim
T→∞

1

T

∫ T

0

X(τ) dτ . (2.3)

On the right-hand side, the intensity λ by definition can be formulated as

λ =
[
E

T0(T1 − T0)
]−1
=

[

lim
K→∞

1

K

K∑

k=1

(Tk − Tk−1)
]−1

. (2.4)

4This definition requires the process to be ergodic, which is however not necessary for
proving the inversion formula [48]. The assumption of ergodicity is only to ease explanation
of the intuition.
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where Tk (k = 0, 1, . . . ,K) is the time instant of an event occurrence in the sta-

tionary regime. Moreover, the remaining event expectation can be expanded

into

E
T0

[∫ T1

T0

X(τ) dτ
]
= lim

K→∞

1

K

K∑

k=1

∫ Tk

Tk−1

X(τ) dτ . (2.5)

Combining Equations (2.4)(2.5) transforms the right-hand side of Equation

(2.1) into

λET0

[∫ T1

T0

X(τ) dτ
]
= lim

K→∞

∑K
k=1

∫ Tk

Tk−1
X(τ) dτ

∑K
k=1(Tk − Tk−1)

= lim
T ′→∞

∫ T ′

T0
X(τ) dτ

T ′ − T0

(2.6)

which, if assuming T0 = 0 and T ′
= T , becomes identical to the time expectation

of Equation (2.3). Equation (2.2) can be deduced similarly.

Note the subtle difference indicated above between the two expectation

operators ET0 (·) and E (·): unlike E (·), ET0 (·) does not concern the time spans

between event occurrences. This “time decoupling” property provides a unique

way to compute time expectations of processes based on event expectations.

For instance, if the objective is the (time-)expected location of a mobile that

follows RWP, instead of averaging the mobile location over time, one can focus

on pairs of random waypoints, estimate the path time in between (for λ−1),

and integrate the locations covered on the path (for ET0

[∫ T1

T0
X(τ) dτ

]
). Since

the waypoints of RWP follow a uniformly random distribution in the space,

this alternative approach turns out to be more tractable [47, 49]. Besides the

inversion formula, Palm calculus also includes many other useful results, which

nevertheless have little relevance to the thesis.

2.2.2 Analysis of Random Waypoint Mobility

The earliest work on analyzing the stationary mobile distribution for RWP

mobility comes from [10, 11]. Assuming zero pause time at waypoints and

non-zero speeds that are independent of waypoints, Bettstetter et al. prove

that the stationary pdf fX(t)(x) of the mobile location X(t) in a 1-dimensional
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Figure 2.3: Stationary pdf fX(t)(x) of RWP mobility in the 1-dimensional space
[0, a] [11].

space [0, a] (a ∈ R+) follows

fX(t)(x) = − 6

a3
x2 +

6

a2
x, (2.7)

as shown in Figure 2.3. For the 2-dimensional case, they fail to derive an exact

closed-form expression for the mobile distribution; instead, it is approximated

in two manners. The first way is to pretend the movements projected onto the

x and y axes are independent such that the 2-dimensional mobile distribution

in the space [0, 1]2 can be approximated by a product form of 1-dimensional

results, i.e.

fX(t),Y (t)(x, y) = fX(t)(x) fY (t)(y) = 36xy(1 − x)(1 − y), 0 ≤ x, y ≤ 1. (2.8)

The second approximation is more accurate but at the expense of considerably

greater complexity. We omit showing the formula for its non-trivial form.

They also consider the general mobility setting where a mobile can pause

randomly at a waypoint at time t, in probability pp(t), or stay static perpetu-

ally from the very beginning, in probability ps. The pausing probability can

be given by pp(t) = E(Tp)
E(Tp)+E(Tm) , with E(Tp) being the expected pause time and

E(Tm) the expected travel time between waypoints. In this case the stationary

pdf fX(t)(x) of the mobile location X(t) (assuming positive independent speeds)

has the additive form

fX(t)(x) = ps finit(x) + (1 − ps)pp + (1 − ps)(1 − pp) f 0m(x), (2.9)
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where finit(x) is the initial mobile distribution and f 0m(x) is the component of

movements without pauses nor static mobiles (e.g. Equation (2.7)). Note that

the additivity of Equation (2.9) suggests that the mobile distribution under

no pauses at waypoints can be extended easily to include the effect of pausing

behavior; the pdf would appear more uniform and “flattened” with pauses

added.

Using Palm calculus, Le Boudec for the first time finds the exact closed-

form expressions of mobile distribution for regular 2-dimensional spaces (e.g.

disks, squares) [47]. Specifically, for an arbitrary convex and bounded space,

the stationary pdf fX(t)(x), assuming positive independent speeds and no paus-

ing, has a general integral form

fX(t)(x) =
1

αA2

∫ π

0

ax(θ)ax(θ + π) [ax(θ) + ax(θ + π)] dθ , (2.10)

where A is the area of the space, α is the expected travel distance between

waypoints, and ax(θ) is the distance from the mobile’s location x to the space

boundary at angle θ (Figure 2.4). Based on Equation (2.10), for example, one

can derive the closed-form mobile distribution for the unit disk Ω = {x ∈ R2 |
|x| =

√
x2 + y2 ≤ 1} as

fX(t)(x) =
45

32π2
(1 − |x|2)E(|x|), (2.11)

where E(|x|) =
∫ π

2

0

√
1 − |x|2 sin2(θ) dθ is the complete elliptic integral of the

second kind (with modulus |x|) [47]. The Palm calculus techniques are also

used to implement fast simulation (or the so called “perfect simulation”) for

general mobility settings (e.g. RWP on graphs, spheres etc, with pauses) [47,

49].

Almost simultaneously, Hyytiä et al. derive via geometric deduction the

same integral-form stationary mobile distribution as Equation (2.10) [39]. An-

other main strength of their work is the analysis of network performance based

on the mobile distribution. For example, assuming an ad hoc network of m

independent and identical mobiles that move in a unit disk and communicate

following the boolean network model (i.e. any two mobiles within a radius
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2.3 Charging-Aware Wireless Networks

In the thesis we assume the charger has a relatively short effective charging

range and make no differentiation between wired and wireless charging. This

is justified by the fact that most wireless charging technologies in practice

are still subject to unsatisfactory efficiency over long distance; meanwhile, the

space settings for our models are targeted on mapping to large areas in the real

world (e.g. the size of a city). Here we briefly summarize the prevailing wire-

less charging technologies (as below), considering their frequent appearance in

existing work.

One of the most common charging techniques is inductive coupling based

on electromagnetic induction. Due to its simplicity, inductive charging has

been standardized (i.e. Qi R© [65]) and commercialized to augment various

products (e.g. cellphones, electric toothbrushes) since early on. Because of

severe power decay, however, inductive charging is viable only in short-range

scenarios that allow a few centimeters at most. Another charging technology,

magnetic resonant coupling, stems from the discovery that coils resonating

at identical frequencies can achieve efficient power transfer even over meters

(e.g. 40% around 2 meters) [46]. Despite relatively high complexity of circuits,

the efficiency of resonant charging and its capacity for concurrent charging of

multiple devices make it promising for applications in daily mid-range sce-

narios [73]. Lastly, the Radio-Frequency (RF) waves emitted from antennas

can be used to charge batteries, if the waves are harvested for energy rather

than demodulated as signals. While long-range charging (e.g. over hundreds

of meters) is feasible by radio, the power transfer still suffers from path loss,

which suits this technology only to ultra-low-power devices (e.g. RF identifi-

cations) [28, 63]. Such attenuation can be remedied by directional radiation

using beamforming [24], but its application is subject to safety concerns and

the requirements of tracking and line-of-sight paths.
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2.3.1 Static Chargers

As opposed to the case of mobile chargers, the work assuming mobile recharge-

able nodes and static chargers [20, 21, 32, 37, 42, 51, 68] are certainly more

related to our scope, which, as mentioned, is about depicting and analyzing

the usual charging-aware movement behavior of urban mobile users. Despite

the relevance, however, the existing work is still markedly different from ours

in two aspects:

(1) The mobile nodes in literature mostly have no notion of natural destina-

tions, neither would they change course because of the attraction from

chargers taking effect. Instead, it is assumed the mobiles have their own

agendas of travel that are oblivious to the charging needs (e.g. [51]).

Or even, there is no explicit modeling of trajectories but only presumed

distribution (usually uniform) of the mobile locations, with the mobiles

modeled as a (homogeneous) point process (e.g. [37]).

(2) Previously the chargers can often provide wide coverage of the network

area, being able to charge a node regardless of its location (by assuming

RF-based charging). Hence detours are unnecessary for the mobiles in

this case. Further, a mobile may sometimes be able to harvest energy

from multiple chargers simultaneously for a higher power gain (e.g. [32,

68]). This, again, is different from our setting, as we assume the chargers

are normally scattered, each with a relatively short charging range only

to serve mobiles in its very locality.

We recap the existing work as follows. In [37], Huang et al. investigate

mobile recharging in a hybrid cellular architecture, where the chargers, namely

Power Beacons (PBs), are assumed to exist to provide adequate coverage for

recharging purposes comparable to that of Base Stations (BSs) providing com-

munication coverage. Each PB can either “spread out” its radio waves isotrop-

ically for the mobiles to harvest collectively, or charge a single mobile located

nearby via beamforming. For the analytical model, a stochastic-geometry ap-

proach is followed: the PBs and BSs are both modeled as independent homoge-
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neous Poisson processes, while the mobile nodes assume a uniform distribution

in the Voronoi cells with BSs as the generator points.

The objective of [37] is to understand the possible ways to balance four

key parameters of the network, including the densities of PBs and BSs and the

charging/transmission power of PBs and the mobiles respectively, so that the

interference at BSs is below a given level and each mobile would almost surely

(for large energy storage) or highly likely (for small energy storage) sustain

its transmission power with supply from the PBs. The energy dynamics of

mobiles are not modeled in this paper, neither does it consider the concrete

mobility or clustering effect around the PBs.

Unlike the approach of [37], Madhja et al. [51] endow the mobile nodes

of an ad hoc network with the random walk mobility (see Section 2.1 for the

description of random walks). A single wireless charger of finite energy is

situated in the center of a rectangular space, with a circular charging area

CR(t). In each time slot t, any mobile that falls within the radius R(t) of

the charger receives an amount of energy (by magnetic resonant coupling)

depending on the distance to the charger, the mobile’s energy sufficiency, and

the path time within (Figure 2.5). Their goal is to adapt the charging range

R(t) ∈ [Rmin, Rmax] of the charger at discrete levels, such that (1) the total

number of mobiles charged before the charger dies or (2) the time until the last

mobile dies is maximized. After proving the NP-hardness of both problems,

they present three simple heuristics that exploit the knowledge about energy

and locations of the mobiles to different extents:

(1) Least Distant Agent. This scheme lets the charger flip the radius R(t)
like a fair coin between a minimum R′

min
and the maximum Rmax, where

R′
min

(if R′
min

≥ Rmin) is supposedly the minimum range required to cover

the mobile closest to the charger.

(2) Maintain Working Agents. Based on the energy and location information

of the mobiles, the charger would set R(t) as small as possible such that

at least a number of µ mobiles have energy in each slot t.

(3) Maximize Charges over Energy Ratio. The charger would simply follow
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Figure 2.5: Five possible cases of mobiles traversing the charging area CR(t)
of a centered charger [51]. As an example, the power transfer along the path
A→B occurs only for the segment C→D.

R(t) = argmaxRj

νλ
j
(t)

εj (t) , where ν
λ
j
(t) is the number of mobiles charged in

slot t raised to a power of λ ≥ 1 and ε j(t) is the energy transferred.

Still, the charger in this paper has no effect on trajectories of the mobiles,

and the adaptive charging range is beyond the scope of our work. The chargers

in our work always assume a constant minimal range for charging.

In [32], He et al. investigate the deployment of wireless rechargeable sensor

networks composed of RFID readers and tags, where the readers can not only

retrieve sensory data from the tags but also charge the tags through radio

waves. Their main goal is to place a minimum number of readers to cover the

whole network area such that the tags have enough energy overall to sustain

operation for sensing; formally, the average power (over time) received by a

tag from the readers should be higher than the average power for consumption.

Two forms of this optimization problem are considered, including point provi-

sioning, which concerns energy supply for static tags, and path provisioning,

which aims to charge mobile tags (that are attached to pedestrians, for exam-

ple) by exploiting their mobility. Inspired by solutions to coverage problems

in traditional sensor networks, they propose to deploy the readers on vertices

of a triangular lattice that span the area. For the two energy provisioning

problems, they derive different upper bounds for optimizing the side lengths
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of triangles in the lattice. For path provisioning, the mobile tags move indif-

ferently to the locations of readers and their stationary distribution is assumed

to be known a priori.

A study akin to [32] is conducted in [20], where, given a limited number

of chargers, Chiu et al. seek optimal partial coverage of the network area to

minimize the chances of end devices being depleted. Assuming chargers can be

deployed on vertices of a virtual square lattice (only), they devise a heuristic

two-phase algorithm that tends to place the chargers at “hotspots” in terms of

passage of depleted devices. Unlike [32] and [20], Dai et al. assume the chargers

have predetermined locations [21], and their objective is to adjust the charging

power such that the total charging utility (in proportion to the charging power

received) of the devices is maximized, while no point in the area is exposed

to electromagnetic radiation at excessive/hazardous levels. This problem is

formulated into a linear program, which is further simplified and addressed by

a series of distributed approximation algorithms. A similar problem to [21] is

also studied in [60], with extra hardware constraints (e.g. on nodes’ capacity

for recharging) taken into account. No mobility is considered in [21, 60], since

the devices are assumed to be static (throughout the execution process at

least).

Additionally, for completeness, we review the notion of detours to static

charging stations of Electric Vehicles (EVs). The work on EVs is largely inter-

ested in the aggregate impact on the electricity grid rather than on individual

vehicles or any communications thereof. Bayram et al. [9] model the power

draw from the grid and the ways to schedule recharging of EVs but are not

concerned about the paths followed by the vehicles. Closer to the notion of

impact on the mobility of individual vehicles, albeit in terms of queuing delays

at charging stations, is the work by Bae et al. [5]. They adopt a fluid-flow

approximation of the aggregate EV traffic and additionally assume that the

charging stations, when they cannot fulfill the instantaneous demand, result

in queuing of EVs. This is different from the case of the mobile devices, where

the necessary charging current/power is small and the device footprint is minor

compared to the needs of an EV, and hence queuing of devices is uncommon.
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An interesting direction has been introduced by the work of Wang at al. [72]

which address the problem of charger location planning, in an optimization

setting but with various possible objectives, but again without looking at the

characterization of how individual mobile paths are influenced by the charger

placement.

There also exist studies on charging-aware path planning of EVs or UAVs

(Unmanned Aerial Vehicles) [1, 19, 59, 70], which bear notable similarity to our

work. For instance, to achieve persistent timely surveillance of a 2-dimensional

grid space, Scherer and Rinner [70] coordinate the flight of a network of UAVs,

prescribing them cyclic paths that tend to pass the least recently sensed cells

before returning to a base station for replenishment. On the other hand,

assuming charging stations along roads that are prone to congestion, Alizadeh

et al. [1] seek optimal paths and charging decisions of EVs (in large numbers)

that can minimize the overall travel time and charging cost. While both [1,

70] acknowledge the factor of recharging needs in mobility, the distinction is

that the vehicles, which cannot move without energy, are certain to revisit a

charging station before long. In contrast, a mobile node in our case is exempt

from such strict constraints on energy reserves and reliance upon chargers.

Overall, our focus of interest in the thesis is the formal analysis of a descriptive

mobility model to understand the geographic mobile distribution subject to

random recharging behavior—as opposed to prescriptive path planning driven

directly and solely by optimization.

2.3.2 Mobile Chargers

There exists extensive literature on mobile chargers, in particular in the con-

text of wireless sensor networks [2, 44, 50, 61, 75]. This type of mobile charger

research is generally not concerned with the wireless channel capacity but,

rather, with path planning of the chargers. It also includes an implicit as-

sumption that the energy required to move the mobile charger is inconsequen-

tial to the ability of chargers to charge the nodes. Hence, this model fits the

general setting of vehicles (or even unmanned aerial vehicles) moving around

with chargers, approaching and recharging static wireless sensor nodes, but it
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does not capture the case of mobile nodes seeking a static charger, which is

the scope of the thesis.

In [75], for instance, the authors consider the scenario of a multi-functional

vehicle that can collect data from the sensor nodes as a sink while moving

around and meanwhile provide wireless charging services (based on magnetic

resonance). The vehicle must return to a (fixed) home service station period-

ically for data uploading and self-replenishment. Their main goal is to jointly

optimize the traveling path and charging schedule of this vehicle such that the

whole sensor network operates perpetually with no node depleted and the total

energy consumption, including the power for locomotion and wireless charg-

ing, is minimized. Further, the (multi-hop) data flow from the sensor nodes

to the vehicle is optimized once the optimal traveling path is determined.

In [50], Madhja et al. address the coordination between multiple mobile

chargers (with finite energy) to maximize the network lifespan. Unlike [75],

which assumes global network information is available for centralized plan-

ning, they seek distributed protocols that use no or only local knowledge. The

proposed schemes all operate in two phases, i.e. a coordination and a charging

phase. In the coordination phase, the chargers would exchange state infor-

mation about their energy levels and positions between neighboring pairs and

based on this decide partition of the network area. Chargers with sufficient

energy are supposed to be responsible for covering larger areas. When each

charger knows the real-time energy and positions of sensor nodes in its area,

its charging path can be improved by prioritizing sub-areas that contain more

low-energy sensors. When no local knowledge is available about the nodes, the

chargers would traverse the entirety of its area and conduct charging “blindly”.

The scenarios described in [50, 75], and many other literature papers (e.g.

[61]), are “niche” setups; that is, despite reaching near a static node, the

charger cannot or should not physically connect to it, and hence has to resort

to wireless energy transfer. The much more common case of pedestrian users

in an urban setting trying to find an outlet to plug their mobile devices (or,

recently, a wireless recharging table), is not captured.

A new paradigm generalizing the concept of mobile chargers is peer-to-peer
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charging or energy sharing, [15, 52, 74]. For example, Bulut and Szymanski

in [15] examine the possibility that mobile nodes forming “social” groups can

charge each other. While interesting and plausible as a future direction, it

assumes that mobility is already accounted for in the social network groupings,

and charger locations are not modeled, as any node is a potential charger.

2.4 Wireless Capacity

Following the canonical work of Gupta and Kumar [31] and Grossglauser

and Tse [30], Ko et al. investigate the asymptotic throughput of an energy-

constrained MANET of m mobiles supplied by n energy-sufficient Wireless

Charging Vehicles (WCVs) [44]. They assume a space of unit area and an

underlying i.i.d. mobility model such that both the mobiles and WCVs fol-

low a uniform distribution. The packet forwarding is scheduled in two phases

[30]: each source node forwards a packet to a relay node (if no destination

node nearby) only in an even time slot, and each destination receives from a

relay (or a source if nearby) only in an odd slot. The reception of a packet

is always successful if the transmitter is the only one within a radius R of

the receiver. The charging area around a WCV is modeled as a set of con-

centric rings serving different levels of charging efficiency; a random subset

of mobiles would be chosen for recharging if there are too many around the

WCV. Given this setting, they prove that the network throughput scales as

Θ

(
min

(
1, n

m

)
· cmin(1, nm )

)
, with 0 < c < 1 being a constant.

On the other hand, as mentioned in subsection 2.3.1, Huang et al. [37]

study the feasible deployments of a cellular network under two constraints,

including an outage constraint for an acceptable SINR (Signal-to-Interference-

plus-Noise Ratio) at BSs and a power-outage constraint for acceptable power

received by mobiles from the PBs. To satisfy the outage constraint, they prove

a necessary condition for mobiles with large energy storage, i.e.

zmqλpλ
α
2

b
≥ c1 ,

where q and λp are the charging power and density of PBs respectively, λb is

the density of BSs, zm is the array gain of PBs for power transfer, α is the
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path loss exponent, and c1 is a constant depending on the mobiles’ (fixed)

duty cycle ω. In the case of mobiles with small energy storage, the necessary

condition for satisfying both the outage and power-outage constraints is given

by

zmqλ
β
2

p λ
α
2

b
≥ c2 and zmqλ

α
2

b
≥ c3 ,

where β is the path loss exponent for power transfer and c2 and c3 are two

constants related to the network deployment.

There exists other similar work on the capacity/throughput performance

of rechargeable wireless networks, e.g. [43, 45, 68]. These studies, in general,

either seek to derive a throughput scaling law like [31, 44] or concern network-

wide configuration of transmission power and node densities like [37]. Apart

from the differences in settings, our focus of interest, i.e. the location-dependent

congestion resultant from the clustering effect of charging-aware mobility in-

teracting with capacity constraints, still remains open to exploration.

28



Chapter 3

Charging-Aware Mobility in

1-D Space

3.1 Introduction

In this chapter we study the interaction between charging-aware mobility and

wireless capacity on a line segment. Each mobile is assumed to communi-

cate continuously until its energy is exhausted. A mobile with no energy to

communicate is still allowed to move, as we assume human carriers that use in-

dependent energy sources for locomotion. Upon exhaustion, the mobile would

turn towards the charger for recharging (possibly via a detour backwards) if

the charger location is not beyond the intended waypoint.

The remainder of this chapter is structured as follows: In Section 3.2 we

provide the simplified system model and give examples of the concept of de-

tours we model. Section 3.4 includes the key analytical results regarding the

stationary distribution of the mobiles subject to detours (subsection 3.3) and

the distribution subject to availability (or depletion) of energy (subsection

3.4.2), as well as a comparison (subsection 3.4.3) of analytical results versus

simulation results, confirming the accuracy of the developed formulas. It also

investigates the approximations for random energy budgets (or speeds) and de-

tours started out of sync with depletion (subsection 3.4.4). The capacity-driven

study of mobility versus capacity is unfolded in Section 3.5 where bounds are

derived and explored (subsection 3.5.1) and the relative impact of detours

(versus no detours) is examined (subsection 3.5.3). Section 3.6 concludes this
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chapter.

3.2 Assumptions

Without loss of generality, we investigate the trajectory of a mobile node in a 1-

dimensional space S = [0, 1], in the presence of a stationary charger located at

c ∈ S. Similarly to the random waypoint model, a mobile that has arrived at a

waypoint Wk−1, will move to the next, uniformly randomly selected, waypoint

located at Wk ∈ S (k ∈ Z+). We assume the mobile, whose energy is consumed

only for communications, departs from each waypoint with an initial amount

of energy that translates to an ability to continuously transmit while traveling

up to a distance d, at a constant speed, ν. In the following, d is also assumed

to be constant to ease the analysis. However, as explained in subsection 3.4.4,

a constant d well approximates the cases where this travel distance is chosen

randomly from selected distributions with mean d.

In the case of energy depletion before reaching Wk , say at position W′
k
,

the mobile would be attracted and detour from W′
k
to the charger at c for

replenishment, only if c resides in the opposite direction of the travel to Wk .

Upon arriving at the charger, the mobile is assumed to be restored to its full

capacity or a sufficient energy level such that it will not require any further

recharging before continuing its travel to reach Wk , i.e., a maximum of a single

recharge event from the origin waypoint to the destination waypoint.

Note that the mobile moves myopically in the sense that it will not recharge

or detour for the sake of recharging until the actual energy depletion occurs.

We examine a relaxed version of this behavior in subsection 3.4.4, allowing

also for detours to occur before (or after) energy depletion.

Typical trajectories of the mobile are shown in Figure 3.1. In Figure 3.1(a),

the waypoint Wk is reached before the energy is depleted (which would have

happened at W′
k
). In Figure 3.1(b), the energy is depleted at W′

k
but the

charger is “further” away than the destination Wk ; hence the mobile reaches

its destination with its energy depleted—the path from W′
k
to Wk being without

any energy to allow communications. In Figure 3.1(c) the mobile’s energy is
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3.3 Stationary Expectation of Mobile Loca-

tion

We follow the well-established approach of applying Palm calculus to mobil-

ity models [47]. The stationary expectation of the mobile’s location can be

expressed as

E [X(t)] = λET0

(∫ T1

T0

X(τ) dτ
)
= λ

∫
1

0

∫
1

0

∫ T1

T0

X(τ) dτ dwT0
dwT1

(3.1)

where T0 ∈ R is an arbitrary time instant in the stationary regime, T1 > T0 is

the time when the mobile first reaches a waypoint WT1
after T0, and E

T0(·) =
E(·|ξT0) denotes the expectation conditioned on the event ξT0 that the mobile

arrives at a waypoint WT0
at time T0. For brevity, it is assumed T0 = 0, and

WT0
= W0, WT1

= W1 hereafter. Also, λ−1 = α
ν
is the expected travel time

between waypoints, with α being the expected travel distance, which includes

the segments traveled for detours when the mobile needs to reach a charger.

Depending on the waypoint locations W0, W1, and the setting of charger

location c, Equation (3.1) should be evaluated in two cases depending whether

the mobile takes a detour for charging.

3.3.1 Case I: Direct Path

The mobile travels directly to its next waypoint, W1, without a detour to the

charger (Figures 3.1(a)-3.1(c)), if:

1. the mobile has enough energy to cover the distance from waypoint W0

to W1, i.e. |W0 − W1 | ≤ d, or

2. the mobile’s energy is exhausted but it does not change its travel direc-

tion, because the charger is in the direction of travel to waypoint W1 (as

shown in Figures 3.1(b) and 3.1(c)), i.e.

W′
=

{
W0 + d ≤ c, if W0 < W1

W0 − d ≥ c, if W0 > W1

(3.2)
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Table 3.1: Intervals of Integration for Case I.

w0 ≤ w1 c W0 W1

Yes

[0, d) [0, 1 − d] [w0,w0 + d]
(1 − d, 1] [w0, 1]

[d, 1]
[0, 1 − d] [w0,w0 + d]
(1 − d, 1] [w0, 1]
[0, c − d] (w0 + d, 1]

No

[0, 1 − d]
[d, 1] [w0 − d,w0)
[0, d) [0,w0)

[c + d, 1] [0,w0 − d)

(1 − d, 1] [d, 1] [w0 − d,w0)
[0, d) [0,w0)

Table 3.2: Intervals of Integration for Case II.

w0 ≤ w1 c U0 U1

Yes
[0, d) [0, 1 − d) (w0 + d, 1]
[d, 1] (c− d, 1− d) (w0 + d, 1]

No
[0, 1 − d] (d, c + d) [0,w0 − d)
(1 − d, 1] (d, 1] [0,w0 − d)

Hence, the expectation of location in the case the mobile follows a direct

path is given by1

λE0
I

(∫ T1

0

X(τ) dτ
)
= λE0

(∫ T1

0

[
W0 +

τ

T1
(W1 − W0)

]
dτ

)

= λE0
(
T1

∫
1

0

[(1 − ρ)W0 + ρW1] dρ
)

=

λ

ν

∫

W0

∫

W1

|w0 − w1 |
∫

1

0

[(1 − ρ)w0 + ρw1] dρdw1 dw0

(3.3)

where the intervals of integration, W0 and W1, depend on the relative values

of w0 and w1 and also the value of c, as enumerated in Table 3.1.

1The subscript I in E0
I
(·) denotes that this expectation corresponds to Case I, where the

mobile follows a direct path to its destinations.
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3.3.2 Case II: Path with Detour

As opposed to Case I, the mobile would take a detour to the charger be-

fore reaching waypoint W1, if |W0 − W1 | > d and the point of energy deple-

tion occurrence, W′, resides between W1 and the charger location c (Figures

3.1(d)(e)). In this case, the trajectory can be partitioned into three compo-

nents: 1) the travel from waypoint W0 to W′, 2) the travel from W′ to the

charger location c, and 3) the part from c to waypoint W1. Thus the expecta-

tion can be formulated accordingly as

λE0
II

(∫ T1

0

X(τ) dτ
)
= λE0

(∫ T ′

0

X(τ) dτ +
∫ Tc

T ′
X(τ) dτ +

∫ T1

Tc

X(τ) dτ
)

=

λ

ν

∫

U0

∫

U1

ψ(w0,w1) dw1 dw0

(3.4)

where T ′ and Tc denote the time instants when the mobile reaches W′ and c

respectively, and

ψ(w0,w1) = d

∫
1

0

[(1 − ̺1)w0 + ̺1w
′] d̺1

+ |w′ − c |
∫

1

0

[(1 − ̺2)w′
+ ̺2c] d̺2

+ |c − w1 |
∫

1

0

[(1 − ̺3)c + ̺3w1] d̺3

with w
′ following Equation (3.2). The intervals of integration U0 and U1 are

detailed as in Table 3.2.

3.4 Stationary Distribution of Mobile Loca-

tion

3.4.1 Overall Stationary Mobile Distribution

Now we present the main results of this chapter as a series of formal statements,

whose proofs can be found in the Appendices. Firstly, we have the following

theorem:

Theorem 3.4.1.1. The stationary pdf, fX(t)(x), of the mobile location X(t) is
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Table 3.3: Sub-Domains of PDF, fX(t)(x).
d c X1 X2 X3

[0, 1
2
]

[0, d) [0, c) [c, d) [d, 1]
[d, 1 − d] [0, c) ∅ [c, 1]
(1 − d, 1] [0, 1 − d] (1 − d, c] (c, 1]

(1
2
, 1]

[0, 1 − d] [0, c) [c, d) [d, 1]
(1 − d, d) [0, 1 − d] (1 − d, d) [d, 1]
[d, 1] [0, 1 − d] (1 − d, c] (c, 1]

Table 3.4: Intervals of Integration, V0, V1, and V′
1
.

w0 ≤ w1 c V0 V1 V ′
1

Yes [d, 1] [0, c − d) (w0 + d, c] (c, 1]
No [0, 1 − d] (c + d, 1] [c,w0 − d) [0, c)

a piecewise quadratic function:

α fX(t)(x) =



1 − (1 − x)2, if x ∈ X1

1 − (1 − x)2 − x2 + (1 − d)2, if x ∈ X2

1 − x2, if x ∈ X3

(3.5)

where the sub-domains X1, X2, and X3 depend on the travel distance before

energy depletion, d, and the charger location, c, as in Table 3.3.

Proof. See Appendix A. �

Note that the integration needed to compute the value of coefficient α−1
=

λ
ν

follows the same intervals of w0 and w1 as in Table 3.1 and 3.2. Thus the

calculation of α−1 is straightforward. Alternatively, given the pdf expressions

derived in Theorem 3.4.1.1, we can calculate the area of [0, 1] × [0, α fX(t)(x)],
which is equal to α. Following the second method, we have for d ≤ 1

2
that

α =




α1(c, d), if c ∈ [0, d)
c2 − c + 2

3
, if c ∈ [d, 1 − d]

α2(c, d), if c ∈ (1 − d, 1]
(3.6)

where

α1(c, d) =
4

3
d3 − 3d2

+ 2d +
c3

3
− (1 − d)2c +

2

3
(1 − d)3

α2(c, d) = c2 − c +
2

3
− c3

3
+ (1 − d)2c − 2

3
(1 − d)3
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while for d > 1

2
there is

α =




α1(c, d), if c ∈ [0, 1 − d]
4

3
d3 − 3d2

+ 2d, if c ∈ (1 − d, d)
α2(c, d), if c ∈ [d, 1]

(3.7)

Note that Theorem 3.4.1.1 provides an extension, to account for detours,

of the stationary distribution results known for the 1-dimensional RWP model

(Equation (2.7) and Figure 2.3 in Section 2.2). The derived closed-form sta-

tionary pdf of the mobile location, which extends the results of RWP to model

charging-aware mobility, is one of the main contributions of the thesis.

3.4.2 Stationary Distribution under Energy Depletion

Next, we wish to express the stationary distribution for the location of a node

given that it has incurred energy depletion or not. This is needed to separate

a node that has energy and hence contributes to the traffic load and one that

does not. We introduce the state U(t) ∈ {0, 1} of the mobile, to encode whether

it has incurred energy depletion (U(t) = 1) or not (U(t) = 0). For the former

case, we need to filter out the movements while energy is depleted:

1. Direct path. The mobile would be exhausted only while moving from

W′ to W1 or c, assuming |W0 − W1 | > d. Instead of Equation (3.3), the

expectation of location of concern now is

λE0
I

(∫ T1

T ′
X(τ) dτ +

∫ Tc

T ′
X(τ) dτ

)

=

λ

ν

( ∫

V0

∫

V1

|w′ − w1 |
∫

1

0

[(1 − ̺)w′
+ ̺w1] d̺dw1 dw0

+

∫

V0

∫

V ′
1

ψ̃(w0,w1) dw1 dw0

)

(3.8)

where ψ̃(w0,w1) is defined (below) by Equation (3.10), and the intervals

of integration,V0,V1, andV′
1
, are set as in Table 3.4. The three intervals

would all be ∅, if w0 ≤ w1 and c ∈ [0, d), or w0 > w1 and c ∈ (1 − d, 1].

2. Path with detour. The energy depletion spans the detour segment of

travel of the mobile from W′ to c for recharging. The expectation in
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Equation (3.4) is thus reduced to

λE0
II

(∫ Tc

T ′
X(τ) dτ

)
=

λ

ν

∫

U0

∫

U1

ψ̃(w0,w1) dw1 dw0 (3.9)

where

ψ̃(w0,w1) = |w′ − c |
∫

1

0

[(1 − ̺2)w′
+ ̺2c] d̺2 . (3.10)

The intervals of integration U0 and U1 still follow Table 3.2.

By deducing the expectations of Equations (3.8)(3.9), we obtain the second

theorem, which, together with Corollary 3.4.2.1 (as below), adds to our main

contributions of the thesis:

Theorem 3.4.2.1. The joint stationary pdf, fX(t),U(t)=1(x), of the mobile loca-

tion X(t) given that its energy is depleted, is a piecewise quadratic function:

α fX(t),U(t)=1(x) =




x2

2
, if x ∈ X′

1

g2(x, d), if x ∈ X′
2

g3(x, d), if x ∈ X′
3

(1−x)2
2

, if x ∈ X′
4

(3.11)

where

g2(x, d) = c11
x2

2
+ c12

(1 − d)2
2

+ c13(1 − x)(x − d) + c14(1 − d − x)x

g3(x, d) = c21
(1 − x)2

2
+ c22

(1 − d)2
2

+ c23(1 − x)(x − d) + c24(1 − d − x)x

and the sub-domains, X′
1
, X′

2
, X′

3
, and X′

4
, depend on the values of d and c, as

in Table 3.5.

Proof. See Appendix B. �

Corollary 3.4.2.1. The joint stationary pdf, fX(t),U(t)=0(x), of the mobile lo-

cation X(t) given that the mobile has energy is given by

fX(t),U(t)=0(x) = fX(t)(x) − fX(t),U(t)=1(x). (3.12)
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Table 3.5: Sub-Domains and Coefficients of Sub-Functions of PDF,
fX(t),U(t)=1(x).

d c X′
1

X′
2

X′
3

X′
4

c11 c12 c13 c14 c21 c22 c23 c24

[0, 1
2
]

[0, d) [0, c) [c, d) [d, 1 − d] (1 − d, 1] 0 1 0 1 1 0 0 1

[d, 1 − d] [0, d) [d, c) [c, 1 − d] (1 − d, 1] 1 0 1 0 1 0 0 1

(1 − d, 1] [0, d) [d, 1 − d] (1 − d, c] (c, 1] 1 0 1 0 0 1 1 0

(1
2
, 1]

[0, 1 − d] [0, c) [c, 1 − d] (1 − d, d) [d, 1] 0 1 0 1 0 1 0 0

(1 − d, d) [0, 1 − d] (1 − d, c) [c, d) [d, 1] 0 1 0 0 0 1 0 0

[d, 1] [0, 1 − d] (1 − d, d) [d, c] (c, 1] 0 1 0 0 0 1 1 0

3.4.3 Numerical Results

To verify the derived stationary mobile distributions, we simulate the 1-dimensional

charging-aware mobility (Section 3.2) on the line segment [0, 1], which is par-

titioned into 103 equisized subintervals (“sites”). The mobile is initially placed

at random uniformly on this line segment and then moves to another random

waypoint by “hopping” over the subintervals at a step size 10−3. Each hop

consumes one unit of energy (if the mobile has any). Upon depletion of en-

ergy, the mobile would turn towards the charger for recharging, although the

subinterval of the destination may be reached first, which triggers the trip to
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Figure 3.2: Analytical results as per Theorem 3.4.1.1 versus simulation results
for c = 0.1, 0.3, 0.5, and d = 0.2, 0.6, and d ≥ 1 (RWP). The agreement
between analytical and simulation results is exact.
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a new uniformly generated waypoint. The path to the destination waypoint

is subject to the detour options as exemplified in Figure 3.1. The mobile’s

probability density at a certain location is approximated by the count of vis-

its to the enclosing subinterval, normalized by the total count of visits/hops

across the line and the step size 10−3. Figure 3.2 provides a comparison of the

simulation versus analytical results of the probability density function (pdf)

of the mobile location. The charger locations, c, used are 0.1, 0.3, and 0.5,

and the energy budget, d, is 0.2, 0.6, and d ≥ 1. Note that the case d ≥ 1

is essentially the original RWP, as it obviates any recharging and, hence, any

need for detours.

It can be seen that the analysis indeed provides an accurate characteriza-

tion of the mobile distribution. By comparison to the RWP behavior (d ≥ 1),

the charger creates a hot spot in its locality to which the mobile would grav-

itate for recharging. The attraction to the charger appears to have less effect

on the mobile distribution in a highly-energized system (i.e. d > 1

2
) than in

an under-energized one (i.e. d ≤ 1

2
), which is unsurprising.

Specifically, two patterns of the mobile distribution shown in Fig. 3.2 are

worth mentioning:

1. The distribution always exhibits a discontinuity at the charger location,

except when the charger resides at the very middle (i.e. c = 0.5). This

common discontinuity appears to result from the boundary effect. In-

deed, as Appendix C confirms, removal of the boundaries causes the

discontinuity to disappear. For example, assume d = 0.2 and c = 0.3.

Then, since the charger “sees” more space to its right, the mobile returns

to the charger more often when moving to the right than it does when

moving to the left, which results in an unbalanced probability mass on

the two sides.

2. The charger location, if deployed relatively close to the boundary, i.e.

c ∈ [0, d) (c ∈ (1 − d, 1] resp.), is not the highest density “hotspot” even

in an under-energized system; instead, the hotspot appears to be at d

(1 − d resp.). As shown in Fig. 3.2, for (d = 0.2, c = 0.1), the hotspot
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is around location x = 0.2 (= d) instead of the charger at x = 0.1 (= c).
The increase of probability from location c to d is another reflection

of the boundary effect on charging-aware movements. Unlike the case

(d = 0.2, c = 0.3), assuming a mobile that travels from the left edge, the

mobile cannot be arbitrarily close to the charger when it starts to detour

for recharging, because of the limitation of d. As a result, and similarly

to the case of RWP (d ≥ 1), the probability increases towards the middle

within region [c, d) (or, symmetrically, (1 − d, c]).

Figure 3.3 displays the comparison of simulation results versus the ana-

lytical results (Corollary 3.4.2.1) for the stationary pdf of the mobile location

given that it has energy (i.e. U(t) = 0), with c = 0.1, 0.3, 0.5, and d = 0.2, 0.6.

Besides the agreement of simulation with the analysis, the aforementioned two

patterns, i.e., the discontinuity and the “hotspot deviation”, are still present.

The discovery of such novel patterns of the distorted mobile distribution, which

result from the mobile’s recharging behavior and the boundary effect, is one

of the main contributions of the thesis. When comparing Figure 3.2 and 3.3,

it is evident that, apart from a scaling inflicted by conditioning on the mobile

having energy, the mobile is very likely to have energy (i.e. unlikely to have

its energy depleted) if located near either boundary (within [0, d) or (1− d, 1]),
unless the charger is also nearby and close to the boundary (which can distort

the mobile distribution). This comes from the fact that the mobile moving in-

wards would never incur energy depletion within distance d of either boundary.

3.4.4 The Role of the Budget Parameter d

The presented charging-aware mobility model assumes that the mobile always

incurs energy depletion after traveling a constant distance d from its originat-

ing waypoint (provided the next waypoint is more than d away). However, in

d we conflate three, technically independent, parameters: (i) the energy budget

upon departing from a waypoint, (ii) the travel distance from a waypoint to

the point of energy depletion, and (iii) the duration of travel starting from a
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Figure 3.3: Analytical results as per Corollary 3.4.2.1 for nodes with energy,
versus simulation results for c = 0.1, 0.3, 0.5, and d = 0.2, 0.6. The agreement
between analytical and simulation results is exact.

waypoint and up to energy depletion. The three parameters are reduced to

a single one because, (a), the device is assumed to be continuously commu-

nicating as long as it has energy, and, (b), the users are assumed to have a

constant speed when moving. Given the uncertainties around (a) and (b), one

could be called to see d as an average of a random distribution rather than as

a constant. Let us assume that the time that the detour is taken is a random

variable D subject to E(D) = d. We first examine distributions of D against

the approximating simplification of a constant d.

As shown in Figure 3.4(a), the mobile has similar distributions of location

under an exponentially distributed D. The noticeable difference around loca-

tion 1 − d = 0.8 comes from the fact that the mobile now may incur energy

depletion before reaching 1 − d when moving from the right boundary. With

regard to the left side, however, the mobile would be first drawn back to the

charger at c = 0.1 and thus less likely to encounter it at location d = 0.2

with its energy depleted. When D follows a truncated normal distribution as

D ∼ N(0.2, σ2; 0,∞) with σ = 0.1, similarity of the mobile distributions re-

mains. As the variance σ2 increases, however, the mobile shows less attraction

to the charger because of the growing possibility of D having large values, like
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increase of probability that D attains a small value (e.g. D ≤ 0.1). Generally,

for a closer approximation to systems involving a random D, one can consider

the weighted sum of mobile distributions from several systems energized with

different constant values of d.

In addition to the random energy budget D, we investigate an extended

model that allows advanced or delayed detours for recharging. That is, the

mobile, which is still bound to exhaust its energy after traveling a constant

distance d, can start a detour upon reaching a distance D∗, with D∗ drawn from

a random distribution and E(D∗) = d. In this scenario, it is possible the mobile

acts proactively and initiates the detour long enough before energy depletion

such that no outage occurs throughout the path to the charger/destination.

On the other hand, the mobile may sometimes decide “sluggishly” (e.g. long

after energy depletion) to detour for charging, which can be costly in terms of

both travel distance and outage time if the destination is not reached first.

Mobile distributions under this variant model (denoted MD*) are shown in

Figure 3.5. Firstly, it can be seen that the new results are generally still well

characterized by the original model (denoted MD) for the given distributions

of D∗. Secondly, as shown in Figure 3.5(a), when D∗ ∼ Exp(0.2) or D∗ ∼
N(0.2, σ2; 0,∞) with σ = 0.1, the mobile under model MD* is more likely to

have energy especially between 0.1 (= c) and 0.2 (= d) than under model

MD, because of the potentially proactive charging behavior. In the case that

D∗ ∼ N(0.2, σ2; 0,∞) with σ equal to 0.2 or 0.4, however, the mobile may

have deviated far beyond the point of energy depletion and even reached the

destination before deciding to take a detour. As a result, the attraction to the

charger would drop while the outage time along the detour or direct path (to

the destination) tends to increase. As for Figure 3.5(b), owing to the relatively

high energy budget (d = 0.6), there is a greater chance that the mobile still

has energy when it arrives at the charger/destination.
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3.5 Interaction with Wireless Capacity

3.5.1 Bounds

Armed with the results from the previous section, we can now consider the

case of a system with a number of independent, but statistically identical,

users/devices. Their stationary distribution with respect to location under

the assumption that they have energy (Corollary 3.4.2.1) allows them to com-

pete for the wireless capacity at that location/site. If the number of mobiles,

perceived as traffic demand, is larger than the wireless capacity at that loca-

tion, not all mobiles will be able to transmit successfully. Hence, areas where

mobiles congregate, as in around chargers, are areas of wireless medium conges-

tion. In this section we study the interplay between charging-aware mobility

and wireless congestion.

We first clarify, the terminology of certain states of a mobile. A mobile

is said to be operational if it has energy (i.e., its energy is not depleted). A

mobile is blocked if it is operational but fails to communicate due to exceeding

capacity (discussed below); a communicating mobile is one that is operational

and not blocked.

The distributions of location derived previously provide the basis for further

performance analyses of (1-dimensional) networks composed of charging-aware

mobiles. With Equation (3.12) the stationary probability that any mobile falls

into a region R ⊆ S and is not depleted of energy can be given by

p(R) = P (X(t) ∈ R,U(t) = 0) =
∫

R
fX(t),U(t)=0(x) dx . (3.13)

Given a network of m i.i.d. mobiles with [Xi(t)]1≤i≤m and [Ui(t)]1≤i≤m, for

instance, one can learn about the spatial clustering of operational mobiles in

region R through the counting variable

N(R) =
m∑

i=1

✶ (Xi(t) ∈ R ∧ Ui(t) = 0) (3.14)

whose (binomial) distribution is then

P(N(R) = n) =
(
m

n

)
pn(R) [1 − p(R)]m−n .
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More importantly, suppose the whole segment S is partitioned into a num-

ber of s disjoint intervals
[
Ij

]
1≤ j≤s

, each of length ∆ = s−1, and the number of

mobiles per interval that can communicate concurrently is limited by a capac-

ity ω ∈ Z+. Note that we assume fair medium access such that the contending

mobiles in any interval are equally likely to be blocked upon exceeding capac-

ity; besides, each mobile would keep consuming energy (if any) at a constant

rate, despite being blocked. Then, as part of our main contributions, we can

assess the conditions of mobile communications as follows:

Theorem 3.5.1.1. Given a network of m i.i.d. charging-aware mobiles and

a capacity constraint ω, the probability, P (C(t) = 0, X(t) ∈ R,U(t) = 0), that

each mobile is blocked (C(t) = 0) in any region R = ∪ j∈J(R)Ij ⊆ S, where

J(R) ⊆ {1, 2, ..., s}, is lower-bounded as

P (C(t) = 0, X(t) ∈ R,U(t) = 0) ≥
∑

j∈J(R)
max

(
p(Ij) −

ω

m
, 0

)
(3.15)

where C(t) denotes the communication state of each mobile.

Proof. Assume that the line segment S = [0, 1] is partitioned into a number

of s disjoint unit-sized intervals
[
Ij

]
1≤ j≤s

(i.e. S = ∪s
j=1

Ij , ∩s
j=1

Ij = ∅, and
��Ij

��
= δ, ∀ j). Also, for notational convenience, we define a special “interval”

I0 and the counting variable

N(I0) =
m∑

i=1

✶ (Xi(t) ∈ S ∧ Ui(t) = 1)

that accounts for the number of exhausted (depleted energy) mobiles over

the entire segment. Then, the counting variables
[
N(Ij)

]
0≤ j≤s

, where each

N(Ij) ( j ≥ 1) is defined as in Equation (3.14), would follow a multinomial

distribution, i.e.

P
(
n = [n j]1≤ j≤s

)

= P (N(I0) = n0, N(I1) = n1, ..., N(Is) = ns)

=

{
m!∏s
j=0

nj !

∏s
j=0 pnj (Ij), if

∑s
j=0 n j = m

0, otherwise

(3.16)

where p(Ij) is defined as in Equation (3.13).
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Furthermore, we delineate a region R = ∪ j∈J(R)Ij ⊆ S, where J(R) ⊆
{1, 2, ..., s}. Given the capacity (per interval) ω, the probability, P (C(t) = 0, X(t)
∈ R,U(t) = 0), that each mobile falls into R with energy but remains blocked

(C(t) = 0) can be lower-bounded as

P(C(t) = 0, X(t) ∈ R,U(t) = 0)

=

1

m

∑

∀n

P (n)
∑

j∈J(R)
max

(
n j − ω, 0

)

≥
∑

j∈J(R)
max

(
1

m

∑

∀n

P (n) n j −
ω

m
, 0

)

=

∑

j∈J(R)
max

(
p(Ij) −

ω

m
, 0

)

(3.17)

which proves Theorem 3.5.1.1. �

Remark 1. Theorem 3.5.1.1 (as well as Corollary 3.5.1.1) appears generalizable

to higher-dimensional spaces tessellated with countable equisized tiles, consid-

ering that the division
[
Ij

]
1≤ j≤s

and the probability p(Ij) (Equation 3.13) can

be defined in higher dimensions.

Corollary 3.5.1.1. The probability, P (C(t) = 1, X(t) ∈ R), that each mobile

communicates (C(t) = 1) in any region R = ∪ j∈J(R)Ij ⊆ S is upper-bounded

as

P (C(t) = 1, X(t) ∈ R) ≤ p(R) −
∑

j∈J(R)
max

(
p(Ij) −

ω

m
, 0

)
. (3.18)

Proof. This follows from Theorem 3.5.1.1 and the fact that the probability of

a mobile falling into any region R without energy depletion equals p(R). �

3.5.2 Tightness of Bounds

Now we can assess the tightness of the bounds of Equations (3.15)(3.18) against

simulation results. From Corollary 3.4.2.1 the stationary mobile distribution,

fX(t),U(t)=0(x), assuming d ≤ 1

2
and c ∈ [d, 1 − d], can be given by

α fX(t),U(t)=0(x) =




2x − 3x2

2
, if x ∈ [0, d)

d + (1 − d)x − x2

2
, if x ∈ [d, c)

1

2
+ dx − x2

2
, if x ∈ [c, 1 − d]

1

2
+ x − 3x2

2
, if x ∈ (1 − d, 1]

(3.19)
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As a general case, suppose R = S. Then, by plugging Equation (3.19) into

Equation (3.15), we can calculate the lower bound
∑

j∈J(S)max
(
p(Ij) − ω

m
, 0

)
,

as long as the values of m, ω, d, c, and s are given. For example, for m = 8000,

ω = 4, d = 0.2, c = 0.3 (thus α = c2 − c + 2

3
= 0.4567), and s = 103, we

have P (C(t) = 0, X(t) ∈ R,U(t) = 0) ≥ 29%, which is quite close to 31.27%, the

corresponding result from the simulation.

Figure 3.6 shows the probabilities that each mobile is blocked or commu-

nicating versus different settings of ω, with m = 8000, d = 0.2, and different

positions of the charger c = 0.1, 0.3, 0.5. Specifically, Figure 3.6(a), depicts the

lower bound versus the simulation results for the probability of blocking. The

shaded areas indicate the difference between the two lines. It can be seen that

the lower bound of Equation (3.15) becomes less tight as the capacity ω in-

creases. Figure 3.6(b) depicts the upper bound on the probability of successful

communication versus the simulation results. It is evident that the simulation

results diverge further from the upper bound (Equation (3.18)) as the capacity

increases. These patterns demonstrate the fact that the bounds derived apply

best to heavily loaded systems, where at any time a good portion of mobiles

tend to be blocked due to the constraint of a low capacity.2 Hence, the bound

provides a better prediction if we focus R to the popular regions where the

operational mobiles tend to cluster (e.g. R = [0.3, 0.5] when c = 0.3).

3.5.3 Effects and Tradeoffs of Detours

Finally we explore the effects and tradeoffs related to the detours the mobiles

would take to recharge. For this we consider the (MD) model used so far

where, once the energy is depleted, the mobile will move towards the charger

possibly causing the mobile to move further away from its destination. As

an alternative, we also consider the model, called M, where a mobile will not

detour to recharge. In this model, a mobile will only be able to recharge if

the charger is on the path towards the destination. In both cases, mobiles are

given an energy budget of d when they arrive at a waypoint and start towards

2Equivalently, the system load and thus the bound accuracy would increase with the
total number of mobiles m.
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A noteworthy pattern regarding the MD model is that the mobiles are not

guaranteed to be more likely to communicate when the charger is placed in-

wards, although their energy keeps increasing (Figure 3.8). As shown in Figure

3.7(b), when ω = 4 and d = 0.2, the communicating probability of a mobile

under MD descends somewhat to its lowest around 0.1 before increasing again.

This type of behavior has been seen when capacity ω < 8 and is more promi-

nent when the mobiles are under-energized. We make the following inferences

about the reasons. When the charger is located at the boundary, the mobiles

would rarely visit the charger without taking potentially long detours. As the

charger location is placed further inwards, the mobiles can, on average, be

more likely to recharge; meanwhile, however, the distortion of mobile distribu-

tion starts to emerge, which overshadows any energy gains. Specifically, when

the charger is placed (not very far) away from the left boundary, mobiles that

travel from the right would mostly not visit locations beyond but congregate

in the locality before the charger (Figure 3.3). As a result, the exceeding

capacity worsens. As the charger location moves further towards the center

(from around x = 0.15), the mobiles can travel shorter to recharge and their

distribution becomes less distorted by the charger; then, more mobiles, with

energy, are able to communicate. Also, the effect of the distorted mobile dis-

tribution on communication intensifies more at medium capacities. When the

capacity is high (e.g. ω = 8), the communication of operational mobiles would

still be accommodated even if there is heavy clustering. At a low capacity

(e.g. ω = 2), the performance of communication would remain inferior, being

impacted little by the charger location.

When we consider the mobility model, M, where mobiles are not allowed

to detour towards the charger, the above pattern shown in model MD does

not occur for any charger location and capacity. The probabilities of blocking

(because of exceeding capacity instead of energy depletion) and successful com-

munication of the under-energized mobiles are lower than for the MD model.

This is because fewer mobiles would have energy without the compensation

from detours for recharging. However, highly-energized mobiles under model

M are more likely to be blocked or communicate successfully than under model

50



0 0.1 0.2 0.3 0.4 0.5

c

40

50

60

70

80

90

100

P
ro

b
a

b
ili

ty
 o

f 
tr

a
v
e

lin
g

 w
it
h

 n
o

 o
u

ta
g

e
 (

%
)

d=0.2, MD

d=0.6, MD

d=0.2, M

d=0.6, M

Figure 3.8: Probabilities of traveling while having energy, under the MD and
the M models, for arbitrary capacity, versus location of the charger (c). The
two top lines are for over-energized systems (d = 0.6) while the two bottom
lines are for under-energized systems (d = 0.2).

MD. The longer paths of the MD model (which allows detours) have a reduc-

ing effect on the overall energy. This can be seen in Figure 3.8 where the

fraction of time a mobile travels while having energy is plotted for different

placements of the charger. Generally, under-energized mobiles are more prone

to energy shortage, which can be ameliorated by the detours for recharging.

The highly-energized ones, however, have their energy conditions and perfor-

mance impaired because of the redundant traveling. Note that the energy

gains from detours are always at the expense of (possibly large) delays in the

arrival times at waypoints. As shown in Figure 3.9, it would take long for

the mobiles that follow mobility MD to reach the waypoints, especially if the

mobiles are under-energized and the charger is deployed far away from the

center.

We note an interesting tradeoff between the MD and M models. If the

system has low energy, then a model (MD) where mobiles detour towards the

charger is preferred; if the system is highly energized then no detour works

best. If it is not known whether there is high or low energy, movements with

detours suggest the middle ground. However, detours will obviously cause

significant delays towards reaching a waypoint.

51



0 0.1 0.2 0.3 0.4 0.5

c

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

A
v
e

ra
g

e
 t

ra
v
e

l 
d

is
ta

n
c
e

 r
a

ti
o

 (
M

D
 /

 M
)

d=0.2

d=0.6

Figure 3.9: Average ratio of travel distance (between waypoints) under model
MD over that under M, with d = 0.2 and 0.6, vs. charger location (c).

3.6 Chapter Summary

This chapter proposes an analytical model of user mobility in the presence of

recharging opportunities for a 1-dimensional system. We verify the analysis

with simulation and analyze the effect of the boundaries on the location of

mobiles. We find that the boundaries create discontinuities in the location of

mobiles at the charger location and, if the charger is very near to the boundary

(i.e. within d, the energy budget, of the boundary), the highest concentration

is not at the charger location. We add capacity limitations to our model and

derive an upper bound for the probability that a mobile can communicate and

a lower bound for the probability that a mobile has energy but is blocked due

to a lack of capacity. We find that these bounds are tighter when capacity is

more constrained. Finally we analyze the tradeoffs of systems where mobiles

take detours versus systems where no detours are made for different placement

of chargers. Unsurprisingly, placing the charger in the center has slightly better

performance. We find that if there is not much energy in the system, a model

with detours is beneficial as long as delays to arrive at the intended destinations

can be tolerated. If the energy of the system is not known, a heuristic that

promotes detours may improve performance. In high energy systems no detour

is preferable.
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Chapter 4

Charging-Aware Mobility in

2-D Space

4.1 Introduction

In this chapter we study the 2-dimensional charging-aware mobility in a unit

disk in the Euclidean plane. In addition to the energy budget d of the mobile,

we introduce a parameter d′ to account for the charger’s attraction range; a

depleted mobile falling within a radius d′ of the charger would be diverted for

recharging. Based on this model, we analyze the overall stationary mobile dis-

tribution across the area, examine the energy-wise mobile distribution through

simulation, and provide the approximate results for multiple chargers.

The rest of the chapter is organized as follows: In Section 4.2, we first

describe assumptions of the 2-dimensional mobility model and illustrate the

trajectory involving a detour to the charger. In Section 4.3, we formulate the

case-wise stationary expectation of the mobile location (depending on whether

the mobile takes a detour or not), in preparation for the analysis of Section

4.4. In Section 4.4, we analyze the overall stationary mobile distribution under

the assumed mobility model, making remarks on its implications and general-

izations. In Section 4.5, we demonstrate the analytical results by simulation

(subsection 4.5.1) and obtain the numerical results of mobile distribution sub-

ject to energy availability (subsection 4.5.2); besides, we consider the extension

to multiple chargers and propose a solution of approximation based on indi-

vidual chargers (subsection 4.5.3). We summarize the chapter in Section 4.6.
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4.2 Assumptions

We assume the space is a unit disk Ω = {z ∈ R2 | |z | ≤ 1} in the 2-dimensional

Euclidean plane. A static charger is deployed at a location c = (a, b) ∈ Ω.
Like the RWP model, the mobile starts its movement from a random source

waypoint at W0 = (U0,V0) ∈ Ω, and moves, at a constant speed ν, towards

a random destination at W1 = (U1,V1) ∈ Ω; upon arrival at W1, the mobile

immediately (with no pause) turns towards another randomly selected location

in the area as the destination of a new trip, and so on. From each waypoint,

the mobile, which keeps consuming its energy (if any) for communication only,

departs with an energy budget that permits continuous communication up to

a constant travel distance d ≥ 0. In the case that the mobile has traveled

d (from the source) but still not reached the destination, it could deviate

from the straight path and detour to the charger for replenishment as soon

as it ever falls into the “attraction” range of the charger, i.e. within a radius

d′ > 0 of c (Figure 3.1). The detour point is denoted by Wq = (Uq,Vq) =
W0 + Q(cosΘ0, sinΘ0), where Q = |W0 − Wq | is the distance between W0 and

Wq and Θ0 = ∠(W1 − W0) is the angle of the destination W1 with respect to

the source W0.

Note that the mobile is assumed to behave like a “reactive agent”, in

the sense that it would not initiate a detour to the charger until passing the

depletion point at Wd = (Ud,Vd) = W0+d(cosΘ0, sinΘ0) (thus Q ≥ d). Also, the

mobile would recharge sufficiently such that it need not detour again before

arriving at the destination. Given this charging-aware mobility model, our

primary goal is to derive the time stationary pdf (probability density function)

fZ(t)(z) of the mobile location Z(t) over time t.

4.3 Stationary Expectation of Mobile Loca-

tion

Next we redefine W0 and W1 as waypoints in the stationary regime. Follow-

ing the Palm inversion formula [47], we can calculate the (time) stationary
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2) When the destination cannot be reached within d from the source (i.e.

|w0 − w1 | > d), the charger is located too distantly to attract and divert

the mobile after depletion. Formally, this means the minimum distance

from the charger c to the path from the depletion point wd to w1 is larger

than d′, i.e.

min
z∈P(wd,w1)

|z − c | > d′ (4.3)

where P(wd,w1) = {z = (1 − ̺)wd + ̺w1 | ̺ ∈ [0, 1)}.1

Accordingly, the expectation of Equation (4.1) assuming that the mobile

only takes direct paths can be expanded as

λE0
I

[∫ T1

0

Z(τ) dτ
]
= λE0

[∫ T1

0

w0 +
w1 − w0

T1
τ dτ

]

= λE0
[
T1

∫
1

0

(1 − ρ0)w0 + ρw1 dρ0

]

=

1

π2α

∬

WI

|w0 − w1 |
∫

1

0

(1 − ρ0)w0 + ρ0w1 dρ0 dw0 dw1

(4.4)

where WI ⊂ R4 is the admissible domain of double integration over w0 and

w1, i.e.

WI =

{
W0 ∪W1 ∪W2 ∪W3, if d ≤ d′

W0 ∪W1 ∪W2 ∪W4, if d > d′ (4.5)

with




W0 = {(w0,w1) | w0 ∈ Ω \ D(c, d′
+ d),w1 ∈ L(w0, c, d

′)}
W1 = {(w0,w1) | w0 ∈ D(c, d′

+ d) \ D(c,
√

d′2
+ d2) ∩Ω,

w1 ∈ L(w0, c, d
′) ∪ D(w0, d) ∩Ω}

W2 = {(w0,w1) | w0 ∈ D(c,
√

d′2
+ d2) \ D(c, |d′ − d |) ∩Ω,

w1 ∈ F (w0, θ3, θ4) ∪ D(w0, d) ∩Ω}
W3 = {(w0,w1) | w0 ∈ D(c, |d′ − d |) ∩Ω,w1 ∈ D(w0, d) ∩Ω}
W4 = {(w0,w1) | w0 ∈ D(c, |d′ − d |) ∩Ω,w1 ∈ Ω}

(4.6)

and

L(w0, c, d
′) = Ω \ F (w0, θ1, θ2) ∪ F (w0, θ1, θ2, d0) \ D(c, d′). (4.7)

Relevant basic domains are defined as follows.

1Hence the detour point (if any) can be defined as wq = argmin̺∈[0,1) P(wd,w1) subject
to |c − wq | ≤ d ′.
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|w1 − w0 | > d) and (2) the mobile will fall within a radius of d′ of the charger

after depletion occurs (i.e. minz∈P(wd,w1) |z − c | ≤ d′). The corresponding

expectation of the mobile location in this case is given by

λE0
II

[∫ T1

0

Z(τ) dτ
]
= λE0

[∫ Tq

0

Z(τ) dτ +
∫ Tc

Tq

Z(τ) dτ +
∫ T1

Tc

Z(τ) dτ
]

=

1

π2α

∬

WII

ψ(w0,w1) dw0 dw1

(4.8)

where Tq and Tc are the time instants the mobile arrives at the detour point

wq and the charger c respectively. The integrand function ψ(w0,w1) consists
of three components, i.e.

ψ(w0,w1) = |w0 − wq |
∫

1

0

(1 − ρ1)w0 + ρ1wq dρ1

+ |wq − c |
∫

1

0

(1 − ρ2)wq + ρ2c dρ2

+ |c − w1 |
∫

1

0

(1 − ρ3)c + ρ3w1 dρ3

(4.9)

which correspond to the three legs involved along the path, including w0 → wq,

wq → c, and c → w1 (Figure 4.1). As a complement to WI, the admissible

domain of integration, WII, is defined as

WII =

{
W5 ∪W6 ∪W7 ∪W8, if d ≤ d′

W5 ∪W6 ∪W7, if d > d′ (4.10)

where





W5 = {(w0,w1) | w0 ∈ Ω \ D(c, d′
+ d),w1 ∈ Ω \ L(w0, c, d

′)}
W6 = {(w0,w1) | w0 ∈ D(c, d′

+ d) \ D(c,
√

d′2
+ d2) ∩Ω,

w1 ∈ Ω \ L(w0, c, d
′) \ D(w0, d)}

W7 = {(w0,w1) | w0 ∈ D(c,
√

d′2
+ d2) \ D(c, |d′ − d |) ∩Ω,

w1 ∈ Ω \ F (w0, θ3, θ4) \ D(w0, d)}
W8 = {(w0,w1) | w0 ∈ D(c, |d′ − d |) ∩Ω,w1 ∈ Ω \ D(w0, d)}

(4.11)

4.4 Stationary Distribution of Mobile Loca-

tion

The stationary distribution of the mobile location, fZ(t)(z), can be induced from

the stationary expectations of Equations (4.4)(4.8). In subsections 4.4.1 and
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4.4.2, we first make substitutions for variables of the integrals with respect to

the mobile’s location z, and then in subsection 4.4.3, we formulate the mobile

distribution in Theorem 4.4.3.1 based on the transformed integrals.

4.4.1 Direct Path

Firstly, for the case that the mobile takes a direct path only, we can change

the variables ρ0, w0, and w1 as follows:




ρ0 =
l0

l0 + l1
w0 = z − l0(cos θ0, sin θ0)
w1 = z + l1(cos θ0, sin θ0)

(4.12)

where z = (x, y) = r(cos ϑ, sin ϑ), and l0 (l1 resp.) is the distance from z to the

source w0 (destination w1 resp.). The Jacobian (determinant) of such change

of variables is computed to be J(x, y, l0, l1, θ0) = 1. Suppose d′
+d ≤ 1− |c | such

that D(c, d′
+ d) ⊆ Ω. Then, leaving aside the scalar (π2α)−1 (to be covered

in subsection 4.4.3), Equation (4.4) can be expanded as
∬

WI

|w0 − w1 |
∫

1

0

(1 − ρ0)w0 + ρ0w1 dρ0 dw0 dw1

=

∫

Z0

z · f0(z) dz +

∫

Z1

z · f1(z) dz +

∫

Z2

z · f2(z) dz

+

∫

Z3

z · f3(z) dz +

∫

Z4

z · f4(z) dz

(4.13)

where the domains of integration, Z2, Z3, and Z4, and the pdf’s, f3(z) and
f4(z), are defined depending on the value of d relative to d′. Specifically, we

have

Z0 = Ω \ D(c, d′
+ d) (4.14)

Z1 = D(c, d′
+ d) \ D(c,

√
d′2
+ d2) (4.15)

Z2 =

{
D(c,

√
d′2
+ d2) \ D(c, d′), if d ≤ 2d′

D(c,
√

d′2
+ d2) \ D(c, d − d′), if d > 2d′ (4.16)

Z3 =

{
D(c, d′) \ D(c, |d′ − d |), if d ≤ 2d′

D(c, d − d′) \ D(c, d′), if d > 2d′ (4.17)

Z4 =

{
D(c, |d′ − d |), if d ≤ 2d′

D(c, d′), if d > 2d′ (4.18)
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and

f0(z) =
∫ θ5+θ6

θ5−θ6
φ0 dθ

′
0
+

∫ θ5−θ6+π

θ5+θ6

φ1 dθ
′
0
+

∫ θ5+θ6+π

θ5−θ6+π
φ2 dθ

′
0

(4.19)

+

∫ θ5−θ6+2π

θ5+θ6+π

φ1 dθ
′
0

f1(z) =
∫ θ5+θ6

θ5−θ6
φ0 dθ

′
0
+

∫ θ5−θ6+π

θ5+θ6

φ1 dθ
′
0
+

∫ θ5−θ7+π

θ5−θ6+π
φ2 dθ

′
0

(4.20)

+

∫ θ5+θ7+π

θ5−θ7+π
φ3 + φ4 dθ

′
0
+

∫ θ5+θ6+π

θ5+θ7+π

φ2 dθ
′
0
+

∫ θ5−θ6+2π

θ5+θ6+π

φ1 dθ
′
0

f2(z) =
∫ θ5+θ6

θ5−θ6
φ0 dθ

′
0
+

∫ θ5−θ6+π

θ5+θ6

φ1 dθ
′
0
+

∫ θ5−θ7+π

θ5−θ6+π
φ0 + φ4 + φ5 dθ

′
0

+

∫ θ5+θ7+π

θ5−θ7+π
φ3 + φ4 dθ

′
0
+

∫ θ5+θ6+π

θ5+θ7+π

φ0 + φ4 + φ5 dθ
′
0

(4.21)

+

∫ θ5−θ6+2π

θ5+θ6+π

φ1 dθ
′
0

f3(z) =
{

f3a(z), if d ≤ 2d′

f3b(z), if d > 2d′ (4.22)

f4(z) =
{

f4a(z), if d ≤ d′

f4b(z), if d > d′ (4.23)

f3a(z) =
∫ θ5−θ7+π

θ5+θ7−π
φ0 + φ6 dθ

′
0
+

∫ θ5+θ7+π

θ5−θ7+π
φ7 dθ

′
0

(4.24)

f3b(z) =
∫ θ5+θ6

θ5−θ6
φ0 dθ

′
0
+

∫ θ5−θ6+π

θ5+θ6

φ1 dθ
′
0
+

∫ θ5+θ6+π

θ5−θ6+π
φ0 + φ4 + φ5 dθ

′
0

(4.25)

+

∫ θ5−θ6+2π

θ5+θ6+π

φ1 dθ
′
0

f4a(z) =
∫

2π

0

φ7 dθ
′
0

(4.26)

f4b(z) =
∫

2π

0

φ0 + φ6 dθ
′
0

(4.27)

where



θ′
0
= θ0 + π

θ5 = atan2(b − y, a − x)

θ6 = arcsin

(
d′

|z − c |

)

θ7 = arccos

(
d2
+ |z − c |2 − d′2

2d |z − c |

)
(4.28)
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and





φ0 =

∫ l4+d

0

∫ l2

0

l0 + l1 dl1 dl0

φ1 =

∫ l3

0

∫ l2

0

l0 + l1 dl1 dl0

φ2 =

∫ l3

0

∫ −l5

0

l0 + l1 dl1 dl0

φ3 =

∫ l5+d

0

∫ d−l0

0

l0 + l1 dl1 dl0




φ4 =

∫ l3

l5+d

∫ −l5

0

l0 + l1 dl1 dl0

φ5 =

∫ l5+d

l4+d

∫ d−l0

0

l0 + l1 dl1 dl0

φ6 =

∫ d

l4+d

∫ d−l0

0

l0 + l1 dl1 dl0

φ7 =

∫ d

0

∫ d−l0

0

l0 + l1 dl1 dl0

(4.29)

with




l2 =

√
1 − r2 sin2(θ′

0
− ϑ) + r cos

(
θ′
0
− ϑ

)

l3 =

√
1 − r2 sin2(θ′

0
− ϑ) − r cos

(
θ′
0
− ϑ

)

l4 = |z − c | cos
(
θ′
0
− θ5

)
−

√
d′2 − |z − c |2 sin2(θ′

0
− θ5)

l5 = |z − c | cos
(
θ′
0
− θ5

)
+

√
d′2 − |z − c |2 sin2(θ′

0
− θ5)

(4.30)

The variables defined in Equation (4.28)(4.30) are illustrated in Figure 4.3(a).

4.4.2 Path with Detour

In this case, the expected mobile location is evaluated in a piecewise manner,

corresponding to the three legs of a trip that includes a detour to the charger.

Again, assume d′
+ d ≤ 1 − |c |. For the first leg from the source w0 to the

detour point wq, suppose w0 and w1 are such that wd ∈ Ω \ D(c, d′) and thus

wq , wd; the variables can then be changed as




ρ1 =
l0

l0 − l5
w0 = z − l0(cos θ0, sin θ0)
w1 = z + l1(cos θ0, sin θ0)

(4.31)

of which the Jacobian is J(x, y, l0, l1, θ0) = l0+l1
l0−l5
=

l0+l1
|w0−wq | . When wd ∈ D(c, d′)

and wq = wd, we have ρ1 =
l0
d
and the Jacobian equal to l0+l1

d
=

l0+l1
|w0−wq | . Hence,

generally, the expected mobile location (ignoring (π2α)−1 for now) for the first
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where the domains Z0 to Z4 are defined as in Equations (4.15) to (4.18), while

the pdf’s are given by

f5(z) =
∫ θ5+θ6+π

θ5−θ6+π
φ8 dθ

′
0

(4.33)

f6(z) =
∫ θ5−θ7+π

θ5−θ6+π
φ8 dθ

′
0
+

∫ θ5+θ7+π

θ5−θ7+π
φ9 + φ10 dθ

′
0
+

∫ θ5+θ6+π

θ5+θ7+π

φ8 dθ
′
0

(4.34)

f7(z) =
∫ θ5−θ7+π

θ5−θ6+π
φ10 + φ11 dθ

′
0
+

∫ θ5+θ7+π

θ5−θ7+π
φ9 + φ10 dθ

′
0

(4.35)

+

∫ θ5+θ6+π

θ5+θ7+π

φ10 + φ11 dθ
′
0

f8(z) =
{

f8a(z), if d ≤ 2d′

f8b(z), if d > 2d′ (4.36)

f9(z) =
{

f9a(z), if d ≤ d′

f9b(z), if d > d′ (4.37)

f8a(z) =
∫ θ5−θ7+π

θ5+θ7−π
φ12 dθ

′
0
+

∫ θ5+θ7+π

θ5−θ7+π
φ13 dθ

′
0

(4.38)

f8b(z) =
∫ θ5+θ6+π

θ5−θ6+π
φ10 + φ11 dθ

′
0

(4.39)

f9a(z) =
∫

2π

0

φ13 dθ
′
0

(4.40)

f9b(z) =
∫

2π

0

φ12 dθ
′
0

(4.41)

with




φ8 =

∫ l3

0

∫ l2

−l5

l0 + l1 dl1 dl0

φ9 =

∫ l5+d

0

∫ l2

d−l0

l0 + l1 dl1 dl0

φ10 =

∫ l3

l5+d

∫ l2

−l5

l0 + l1 dl1 dl0




φ11 =

∫ l5+d

l4+d

∫ l2

d−l0

l0 + l1 dl1 dl0

φ12 =

∫ d

l4+d

∫ l2

d−l0

l0 + l1 dl1 dl0

φ13 =

∫ d

0

∫ l2

d−l0

l0 + l1 dl1 dl0

(4.42)

For the path from the detour point wq to the charger c, define l7 as the

distance from the depletion point wd to wq, l6 as the distance from wq to the

current location z, and l8 as the distance from wq to the destination w1 (Figure
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4.3(b)). For z ∈ D(c, d′) \ {c}, the substitutions of variables can be given by




ρ2 =
l6

l6 + |z − c |
w0 = z − l6(cos θ5, sin θ5) + (l7 + d)(cos θ′

0
, sin θ′

0
)

w1 = z − l6(cos θ5, sin θ5) − l8(cos θ′0, sin θ′0)

(4.43)

whose Jacobian is J(x, y, l7, l8, θ′0) = − cos
(
θ′
0
− θ5

) l7+l8+d
|z−c | with l6 = d′ − |z − c |,

when wd ∈ Ω \ D(c, d′) (i.e. wq , wd). When wd ∈ D(c, d′) (i.e. wq = wd), we

have J(x, y, l6, l8, θ′0) =
l8+d
|z−c | with l7 = 0. The corresponding expected mobile

location is then
∬

WII

|wq − c |
∫

1

0

(1− ρ2)wq + ρ2c dρ2 dw0 dw1 =

∫

D(c,d ′)\{c}
z · f10(z) dz (4.44)

where

f10(z) =
∫ θ5+

3π
2

θ5+
π
2

∫ l̂10−d

0

∫ l̂9

0

− cos
(
θ′
0
− θ5

) l7 + l8 + d

1 − ρ̂2
dl8 dl7 dθ

′
0

+

∫ d ′−|z−c |

0

∫
2π

0

∫ l9

0

l8 + d

1 − ρ2
dl8 dθ

′
0
dl6

(4.45)

with



l9 =

√
1 − r2q sin

2(θ′
0
− ϑq) + rq cos

(
θ′
0
− ϑq

)

l10 =

√
1 − r2q sin

2(θ′
0
− ϑq) − rq cos

(
θ′
0
− ϑq

) (4.46)

Here rq and ϑq denote polar coordinates of the detour point wq, i.e. wq =

(uq, vq) = rq(cos ϑq, sin ϑq); their definitions based on l6 are given by
{

rq =

√
l2
6
+ r2 − 2rl6 cos(ϑ − θ5)

ϑq = atan2 (y − l6 sin θ5, x − l6 cos θ5)
(4.47)

Note that l̂9 and l̂10 are simply l9 and l10 (following Equation (4.46)) specific

to wq , wd or |wq − c | = d′. In this case, l6 = d′ − |z − c | for rq and ϑq in

Equation (4.47). Correspondingly, ρ̂2 =
d ′−|z−c |

d ′ . For z ∈ {c}, we define the pdf
as limz→c f10(z) = +∞.

Lastly, for the path from the charger to the destination w1, suppose l16 is

the distance from the current location z to w1 (Figure 4.3(b)). Again, we have

for z ∈ Ω \ {c} that




ρ3 =
|z − c |

l16 + |z − c |
w0 = z − l16(cos θ5, sin θ5) + (l7 + l8 + d)(cos θ′

0
, sin θ′

0
)

w1 = z − l16(cos θ5, sin θ5)

(4.48)
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When wd ∈ Ω\D(c, d′), the Jacobian J(x, y, l16, l7, θ′0) = − l7+l8+d
|z−c | , where l8 = l15

(Equation (4.52)). When wd ∈ D(c, d′), there is J(x, y, l16, l8, θ′0) = − l8+d
|z−c | (with

l7 = 0). The expected mobile location can then be expanded as

∬

WII

|c − w1 |
∫

1

0

(1 − ρ3)c + ρ3w1 dρ3 dw0 dw1

=

∫

Ω\D(c,d ′)
z · f11(z) dz +

∫

D(c,d ′)\{c}
z · f12(z) dz

(4.49)

where

f11(z) =
∫ l17

0

∫ θ5+θ8

θ5−θ8

(∫ l̂10−d

0

l7 + l15 + d

ρ3
dl7 +

∫ l15

l14

l8 + d

ρ3
dl8

)

dθ′
0
dl16

(4.50)

f12(z) =
∫ d ′−|z−c |

0

∫
2π

0

(∫ l̂10−d

0

l7 + l15 + d

ρ3
dl7 +

∫ l15

0

l8 + d

ρ3
dl8

)

dθ′
0
dl16

+

∫ l17

d ′−|z−c |

∫ θ5+θ8

θ5−θ8

(∫ l̂10−d

0

l7 + l15 + d

ρ3
dl7 +

∫ l15

l14

l8 + d

ρ3
dl8

)

dθ′
0
dl16

(4.51)

with




θ8 = arcsin

(
d′

l16 + |z − c |

)

l14 = (l16 + |z − c |) cos
(
θ′
0
− θ5

)
−

√
d′2 − (l16 + |z − c |)2 sin2(θ′

0
− θ5)

l15 = (l16 + |z − c |) cos
(
θ′
0
− θ5

)
+

√
d′2 − (l16 + |z − c |)2 sin2(θ′

0
− θ5)

l17 = r cos(ϑ − θ5) +
√
1 − r2 sin2(ϑ − θ5)

(4.52)

Also, the pdf for z ∈ {c} is defined as limz→c f12(z) = +∞.

4.4.3 Integration

After the preparation in subsections 4.4.1 and 4.4.2, now we prove Theorem

4.4.3.1, giving the main result of this chapter, which is also a main contribution

of the thesis.

Theorem 4.4.3.1. Suppose a charging-aware mobile with an energy budget

d ≥ 0, a charger located at c ∈ Ω with an attraction range d′ > 0, and
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d′
+ d ≤ 1− |c |. The stationary pdf fZ(t)(z) of the mobile location Z(t) over the

unit disk Ω = {z ∈ R2 | |z | ≤ 1} is a piecewise function:

π2α · fZ(t)(z) = fRWP(z) +



g0(z) − h0(z), if z ∈ Ω \ D(c, d′)
g1(z) − h1(z), if z ∈ D(c, d′) \ {c}
+∞, if z ∈ {c}

(4.53)

where the functions fRWP(z), h0(z), h1(z), g0(z), and g1(z) follow the definitions

of Equations (4.62)(4.63) and (4.65)–(4.67).

Proof. We can combine the derived pdf’s of the mobile location, i.e. f0(z) to
f12(z), based on the associated domains of integration over z, i.e. Z0 to Z4.

The combination of Equations (4.13)(4.32) and further evaluation of the inner

integrals over l0 and l1 yield

∬

WI

|w0 − w1 |
∫

1

0

(1 − ρ0)w0 + ρ0w1 dρ0 dw0 dw1

+

∬

WII

|w0 − wq |
∫

1

0

(1 − ρ1)w0 + ρ1wq dρ1 dw0 dw1

=

∫

Z0

z · f̃0(z) dz +

∫

Z1

z · f̃1(z) dz +

∫

Z2

z · f̃2(z) dz

+

∫

Z3

z · f̃3(z) dz +

∫

Z4

z · f̃4(z) dz

(4.54)

where

f̃0(z) = f0(z) + f5(z) = fRWP(z) − h0(z) (4.55)

f̃1(z) = f1(z) + f6(z) = fRWP(z) − h0(z) (4.56)

f̃2(z) = f2(z) + f7(z) = fRWP(z) − h0(z) (4.57)

f̃3(z) =
{

f̃3a(z), if d ≤ 2d′

f̃3b(z), if d > 2d′ (4.58)

f̃3a(z) = f3a(z) + f8a(z) = fRWP(z) − h1(z) (4.59)

f̃3b(z) = f3b(z) + f8b(z) = fRWP(z) − h0(z) (4.60)

f̃4(z) = f4a/b(z) + f9a/b(z) = fRWP(z) − h1(z) (4.61)
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with



fRWP(z) =
∫

2π

0

1

2
l2l3(l2 + l3) dθ′0

h0(z) =
∫ θ5+θ6

θ5−θ6

ϕ0

2
dθ′

0

h1(z) =
∫

2π

0

ϕ1

2
dθ′

0

(4.62)

and {
ϕ0 = l2(l3 − l4 − d)(l2 + l3 + l4 + d)
ϕ1 = l2(l3 − d)(l2 + l3 + d) (4.63)

The term fRWP(z) accounts for the mobile distribution assuming random way-

point mobility (with no detour) [47].

Equations (4.62)(4.63) show that the pdf’s f0(z) to f9b(z) can be unified

into succinct forms. Intuitively, this simplification comes from the causality

that the probability density of a location being visited, provided the mobile

has not taken a detour (if any) to the charger, does not depend on whether

the detour will occur afterwards.

In addition, by equating l6 with l16, Equations (4.45)(4.51) can be combined

as ∬

WII

|wq − c |
∫

1

0

(1 − ρ2)wq + ρ2c dρ2 dw0 dw1

+

∬

WII

|c − w1 |
∫

1

0

(1 − ρ3)c + ρ3w1 dρ3 dw0 dw1

=

∫

Ω\D(c,d ′)
z · g0(z) dz +

∫

D(c,d ′)\{c}
z · g1(z) dz

(4.64)

where

g0(z) = f11(z) =
∫ l17

0

(
1 +

l16

|z − c |

)
· γ0
2
dl16 (4.65)

g1(z) = f10(z) + f12(z)

=

∫ d ′−|z−c |

0

(
1 +

l16

|z − c |

)
· γ1
2
dl16 +

∫ l17

d ′−|z−c |

(
1 +

l16

|z − c |

)
· γ0
2
dl16 (4.66)

+

∫ θ5+
3π
2

θ5+
π
2

d′

|z − c | ·
ϕ2

2
dθ′

0
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with



γ0 =

∫ θ5+θ8

θ5−θ8
(l13 − l14 − d)(l13 + l14 + d) dθ′

0

γ1 =

∫
2π

0

l12(l12 + 2d) + (l13 − d)(l13 + d) dθ′
0

ϕ2 = − cos
(
θ′
0
− θ5

)
· l̂12(l̂13 − d)(l̂12 + l̂13 + d)

(4.67)

and



l12 =

√
1 − r2

1
sin2(θ′

0
− ϑ1) + r1 cos

(
θ′
0
− ϑ1

)

l13 =

√
1 − r2

1
sin2(θ′

0
− ϑ1) − r1 cos

(
θ′
0
− ϑ1

) (4.68)

Here r1 and ϑ1 are polar coordinates of the destination w1, i.e.

{
r1 =

√
l2
16
+ r2 − 2rl16 cos(ϑ − θ5)

ϑ1 = atan2(y − l16 sin θ5, x − l16 cos θ5)
(4.69)

Like l̂9 and l̂10, l̂12 and l̂13 are l12 and l13 in the specific case of |w1 − c | = d′

(thus l16 = d′ − |z − c | for r1 and ϑ1).

It is not difficult to derive that

fRWP(z) = 4(1 − r2)E(r) (4.70)

where E(r) =
∫ π

2

0

√
1 − r2 sin2(θ) dθ is the complete elliptic integral of the sec-

ond kind (with modulus r). Numerical computation of such integrals has been

facilitated by extensive studies on the subject [64]. Nonetheless, while there

is

h1(z) = 4(1 − r2)E(r) − 2d2E(r) − πd, (4.71)

the function h0(z) defies a closed-form expression. The difficulty remains for

g0(z) and g1(z), which can be expanded but only partially to complex forms.

On account of this, the pdf’s are left in the form of integrals. �

Remark 1. For the computation of coefficient (π2α)−1, one can refer to the def-

inition of α, i.e. the expected travel distance (including detours), or formally,

α =
1

π2

(∬

WI

|w0 − w1 | dw0 dw1

+

∬

WII

|w0 − wq | + |wq − c | + |c − w1 | dw0 dw1

) (4.72)
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Equivalently, the value of α can be obtained by integrating the function of

π2α · fZ(t)(z) from the right-hand side of Equation (4.53) over the area Ω, i.e.,

α = π−2
∫
Ω
π2α · fZ(t)(z) dz, since

∫
Ω

fZ(t)(z) dz = 1. Nonetheless, we resist the

temptation to give a more explicit expression of α, considering the lack of a

closed form for fZ(t)(z). Moreover, the value of α need not be computed if the

interest is in the ratio of densities between different locations.

Remark 2. The condition d′
+ d ≤ 1 − |c | has been imposed for a simpler

analysis. Its relaxation (such that, e.g., d′ ≤ 1 − |c | or d′ > 1 − |c |) would

require non-trivial but straightforward adaptation of the pdf’s from f0(z) to
f12(z), so as to account for changes (e.g. more segmentation) of the domains

of integrals.

Remark 3. The derivation of Theorem 4.4.3.1 can be generalized to other

convex and bounded areas, with redefinition of segment lengths like l2, l3, l12,

l13, and l17, which intersect with and thus depend on the boundary. Also, the

coefficient π2α should be replaced with A2α, where A is the area size.

Remark 4. The obtained pdf fZ(t)(z) counts all movements of the mobile, re-

gardless of whether its energy is depleted or not. For the distribution of the

mobile only in a certain state, e.g. having energy, we can filter out in inte-

gration any path from the depletion point wd (if any) to the destination w1

or to the charger c. Such refinements are left for future work. Here we only

show the numerical results of energy-wise mobile distribution from simulation

(subsection 4.5.2).

4.5 Numerical Results

4.5.1 Mobile Distribution

In this subsection we summarize the simulation results of mobile distribution

and compare to the corresponding analytical results as per Theorem 4.4.3.1.

Specifically, we simulate the charging-aware mobility (Section 4.2) within a

unit disk centered at (0, 0). The square [−1, 1] × [−1, 1] enclosing the unit

disk is split by a grid into 104 (square) cells, each of area ∆2 = 0.022. While
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the mobile moves in the disk (at a constant speed), the distance traveled in

each cell is counted over time. The probability of a cell being visited is then

approximated by the travel distance accumulated in the cell normalized by the

total distance covered during the simulation. The density is the result of the

division of the probability mass by the cell area ∆2.

Figure 4.4 shows the results for energy budget d = 0.2, attraction range

d′
= 0.2, and charger location at c = (−0.6, 0). Note that the corresponding

analytical results are an exact match and thus are omitted. As easily noticed in

Figure 4.4(a), the density of mobile visits spikes over cells in the vicinity of the

charger, which demonstrates the attraction effect; that is, the depleted mobile

would detour (straight) to the charger for recharging anytime it falls within the

attraction range, and the closer a cell is located to the charger, the more likely

it would be traveled by detours. Leaving aside the salient spike, the mobile

distribution appears to follow the shape of a dome, with a hotspot (of much less

magnitude) at the center/origin of the disk area and density vanishing towards

the boundary. Such non-uniform distribution is unrelated to the charger but

has been found to come from RWP under the boundary effect [11]. Specifically,

to reach a random destination a mobile following RWP in a bounded area often

needs to traverse the center region, which would then receive more visits than

regions near the boundary. Besides, we note an intriguing observation that

the density tends to dip slightly around a distance of d′ to the charger from

any direction. This feature will be explained in subsection 4.5.2.

As further illustrated in Figure 4.4(b), the contours of density centered at

the origin, instead of being all symmetric like under RWP, are now subject

to distortion due to the presence of the charger. It can be seen that certain

contours become concave around the charger’s attraction range (d′
= 0.2),

implying the dips aforementioned. Figure 4.4(b) also shows the symmetry

of mobile distribution between the two half-disk areas with respect to the x-

axis, or more generally, the line passing through the origin and the charger

location c. This results from the circular symmetry of the disk area. On the

other hand, the distribution appears to be asymmetric near the charger with

respect to x = a = −0.6, as evidenced by the eccentric contours surrounding
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Figure 4.9: Cross-sectional results of mobile distribution from simulation for
d = 0.2, 0.3, d′

= 0.1, 0.2, a = ±0.6,±0.3, 0, and b = 0, given the mobile has
energy (upper) and is depleted (lower) respecitvely.

a distance d to point F, the mobile would detour from B to the charger c and

then the destination D, remaining depleted for the portion F→B→c. The

segment B→D is not covered because of the diversion for recharging. By the

same token, the mobile, if moving reversely from D to A, would follow the path

D→E→G→c→A and remain depleted for E→G→c, with the segment G→A

uncovered. By collecting paths of the two directions, we can see gains of

density towards the charger but no travel along the chord B↔G. Note that

radii like B→c and G→c (with angles rotated) can still contribute density to

B↔G, but mainly for its middle part that is closer to the charger. Parts near

the endpoints B and G, however, would incur losses of density in the depleted

state, resulting in the dips observed. Also, because of the tight space bounded

to the west of the charger, the segment D→E is likely to straddle the frontier

of the charger’s attraction zone, with the depletion point E and detour point

G merging with each other. As a consequence, densities of the mobile being

in the depleted state would be reduced on both sides of the frontier, lessening

the dips to the west, as shown in Figure 4.8 (around x = −0.8). Further,

the waypoint D can be located within range of the charger (like Figure 4.6),
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causing asymmetric distribution in the depleted state with radii B→c and G→c

both in the east.

As for the mobile distribution in the operational state, we can examine

boundary effects on the segments A→F, c→D, D→E, and c→A in Figure 4.7.

Unlike F→B and E→G that are variable in length, A→F and D→E have their

lengths unaffected by the boundary as both have to conform with the constant

budget d. On the other hand, the segments c→D and c→A suggest that any

path involving a detour for recharging would contribute to the density in the

operational state solely on lines connecting the waypoints and the charger. For

paths comprising no detours, only segments covered by the (limited) budget

d = 0.2 (like A→F and D→E) would count for density in the operational state.

All these lead to the mobile distribution shaped as in Figure 4.8(a).

4.5.3 Multiple Chargers Heuristic Approximation

The analysis and simulation so far have illuminated many characteristics of the

charging-aware mobility in the presence of a single charger. Often, however,

more than one charger may be deployed to increase the opportunity for the

mobile to recharge; accordingly, there is also a need to investigate the mobility

in n-charger (n ≥ 2) scenarios. The mobile would still follow the rules of

movement in Section 4.2. Note that we assume the chargers are normally

scattered (for balanced coverage) such that no point in the area is within the

attraction ranges of two or more chargers. Instead of rigorous deduction, which

is potentially intractable (especially when n is large), we extend the 1-charger

result of Theorem 4.4.3.1 heuristically to approximate the analytical n-charger

mobile distribution. This heuristic approximation approach, which constitutes

one of our main contributions, is presented in the form of a remark of Theorem

4.4.3.1:

Remark 5. Suppose a charging-aware mobile with an energy budget d ≥ 0, a

number of n ≥ 2 chargers situated at {ci ∈ Ω | i = 1, 2, ..., n} with attraction

ranges d′
i
> 0 respectively, and d′

i
+ d ≤ 1 − |ci |, |ci − c j | > d′

i
+ d′

j
, for i, j =

1, 2, ..., n, i , j. The stationary pdf f
(n)
Z(t)(z) of the mobile location Z(t) over the
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unit disk Ω can be approximated by

π2α(n)· f
(n)
Z(t)(z) ≈ fRWP(z)+




∑n
i=1 g0|i(z) − h0|i(z), if z ∈ Ω \ ⋃n

i=1 D(ci, d
′
i
)

g1|i(z) − h1|i(z)
+

∑n
j,i g0| j(z) − h0| j(z), if ∃i : z ∈ D(ci, d

′
i
) \ {ci}

+∞, if ∃i : z ∈ {ci}
(4.73)

where the functions fRWP(z), h0|i(z), h1|i(z), g0|i(z), and g1|i(z) follow the def-

initions of Equations (4.62)(4.63)(4.65)–(4.67). Besides, α(n)
=

∑n
i=1 αi − (n −

1)αRWP such that
∫
Ω

f
(n)
Z(t)(z) dz = 1, where αi is the expected travel distance of

the mobile in the presence of the ith charger only and αRWP (≈ 0.9054) corre-

sponds to RWP. When n = 1, Equation (4.73) would degenerate to Equation

(4.53).

Intuitively, Equation (4.73) can be interpreted as the distortion effects of

chargers “superimposed iteratively” onto mobile distribution of RWP. The ap-

proximation takes no account of the interplay among chargers, e.g. the charger

located ahead facing the mobile would attract and divert it first, causing fewer

visits to other chargers “behind”. To understand the efficacy of approximation,

we investigate the charging-aware mobility in a scenario of three chargers de-

ployed at c = (−0.6, 0), (0.6, 0), and (−0.4,−0.3) with attraction range d′
= 0.2,

0.2, and 0.1 respectively. Figure 4.10 displays the corresponding results of mo-

bile distribution from simulation (Figure 4.10(a)) versus approximation as per

Equation (4.73) (Figure 4.10(b)), and Figure 4.11(a) gives the cross-sectional

plot in the xz-plane.

It can be seen that the actual values of density are well approximated in

general. However, as Figure 4.11(a) illustrates, the accuracy of approxima-

tion is reduced very close to the charger locations. There, the approximate

values of density appear to “upper-bound” the actual ones, with a larger dis-

crepancy noted around the charger location (−0.6, 0) than around the charger

located at (0.6, 0), showing the effect of the third charger. This pattern agrees

with the aforementioned fact that Equation (4.73) has left out the mutual

blocking effect between chargers on attracting the mobile. That is, densi-

ties around the location (−0.6, 0), which is in close proximity to the third
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4.6 Chapter Summary

In this chapter we conduct a formal analysis of the charging-aware mobility

in a (2-dimensional) unit disk and derive an explicit expression for the overall

stationary mobile distribution (under the condition d′
+d ≤ 1−|c |). Like Chap-

ter 3, we assume a scenario akin to cellular networks where there is universal

cell coverage across the area of interest; hence the mobile can communicate

continuously. The numerical results from simulation verify correctness of the

analysis and exhibit unique patterns induced by detours. In our model, the

charger shows a “quasi-local distortion” effect: while the mobile density spikes

high within the charger’s attraction range, the values outside are generally

thinly reduced from those under no detours. Around the charger we have ob-

served asymmetric concentration enclosed by counterintuitive dips in density

around a distance d′ to the charger. The former observation can be explained

by attraction to the charger overlaid with the boundary effect. The dipped

density, on the other hand, is linked to the fact that the frontier of the charger’s

attraction zone is often where the mobile changes course and starts a diversion

for recharging. We also address the approximation for multiple chargers based

on 1-charger results. The approximation for a 3-charger deployment shows

great accuracy when the chargers are located at sufficient distances from each

other.
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Chapter 5

Charging-Aware Mobility in Ad

Hoc Networks

5.1 Introduction

In Chapter 4 we analyzed the 2-dimensional charging-aware mobility formally

and empirically. As a follow-up study, in this chapter we examine the interac-

tion between such mobility and wireless communications in a more practical

setting. Specifically, we consider an ad hoc network where the mobiles would

communicate and consume energy depending on peers in the neighborhood.

This contrasts with the assumption in Chapters 3 and 4 that communication is

always possible, like in a cellular network with complete coverage of the whole

area. The movement space is assumed to be a grid of square cells to mimic

urban scenarios; accordingly, the mobility model from Chapter 4 is discretized

to accommodate the Manhattan space. Based on these assumptions (Sec-

tion 5.2), we investigate the mobility and network performance under three

variables, including the network size (Section 5.3), the wireless capacity limit

(Section 5.4), and the deployment of multiple chargers (Section 5.5).

5.2 Assumptions

We make the following assumptions about the system for simulation:

• The space is a square grid on the Cartesian plane with its four corner cells

centered at coordinates (-1, -1), (1, -1), (1, 1), and (-1, 1) respectively.

All the cells have a uniform side length ∆ equal to 0.04.
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• The mobiles have continuous data traffic, with queues never empty. Dur-

ing a time slot, any two operational mobiles (i.e. having energy to com-

municate) in the same cell can pair up randomly for communication

(without interference with neighboring cells), if the wireless capacity

ω ∈ Z+ of that cell is unsaturated. A capacity ω = 1 means only one

pair of mobiles is allowed communication per cell. Any paired mobile

consumes one unit ∆ = 0.04 of energy. Note that even the capacity is

not exceeded, an operational mobile may still not be able to pair with

any peer (thus consuming no energy), because all the other operational

mobiles in the cell have already paired up. This occurs if there are an

odd number of operational mobiles in that cell.

5.3 Effects of Mobile Numbers

In this section, we investigate the effects of the number of mobiles on their

probability density distribution. The objective is to see whether mobile dis-

tributions of an ad hoc network in a Manhattan space can be approximated

by analytical results especially when the network size is sufficiently large. As

we will see, the similarities between the analytical and simulation results show

the capacity of our model for more realistic systems. This is one of our main

contributions. Throughout the section we assume ω = ∞ to remove the impact

of wireless capacity.

First of all, we simulate a special case where there is only a single mobile

in the grid. The mobile would consume a unit of energy for communication

every slot as long as it has any energy. This corresponds to the ideal models

analyzed in Chapters 3 and 4. Since the mobile drains energy at the fastest

rate, this setting can provide an upper bound for the charger’s attraction effect.

Equivalently, we can assume an infinite number of mobiles moving in the grid

with unlimited capacity and zoom in on the mobility of one mobile. Figure

5.2 shows the simulation results of the mobile’s densities, assuming the energy

budget d = 0.2 (i.e. d
∆
= 5 units of energy), the attraction range d′

= 0.2, and

the charger’s location c = (−0.6, 0). Akin to Figures 4.4 and 4.8 (Section 4.5),
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the neighborhood of the charger has strikingly high density values, because of

the attraction effect. The hotspot with smaller magnitude around the center

of the area (Figures 5.2(a)(b)(e)(f)), as previously explained, stems from the

boundary effect on the component RWP mobility (Figure 2.1); the asymmetry

and dips in density also remain around the charger, because of, again, the

boundary effect (Section 4.5).

Despite the retained key features, there are two new patterns in Figure 5.2

that are worth noting about the distributions:

• It can be seen that the overall densities around the charger rise markedly

towards eight directions, with the operational-state distribution con-

tributing to the diagonal “bumps” (Figures 5.2(c)(d)) and the depleted-

state distribution contributing horizontally and vertically (Figures (e)(f)).

This comes from the mobility nature of Manhattan RWP: once the mo-

bile has the same x (y resp.) coordinate of the intended destination

(i.e. the charger or waypoint) at, say, (x∗, y∗), it would move straight

along cells on the line x = x∗ (y = y
∗ resp.) throughout the path after-

wards. By the same token, when the mobile heads towards the charger

for recharging, it is likely to hit the line x = a or y = b first and then stick

to it for the detour. As a result, densities in the horizontal and vertical

directions are higher. The diagonal bumps are because the charger is

where the mobile started after recharging but its destination waypoint

was neither on x = a nor y = b. This is not a rare incident. Hence, the

possible outgoing paths tend to be diagonal.

• Another interesting observation is the strips of concave density in Figure

5.2(e), as delineated by dashed lines in Figure 5.2(f). The two strips,

both of which appear to be d′ in width, span the whole area (beyond

the charger’s locality) and intersect perpendicularly at the charger. The

cause behind this shape is explained as follows. Suppose a pair of way-

points, w0, which is the source waypoint located in the rectangular

region R0 = [−0.8,−0.4] × [−1,−0.2], and the destination w1 ∈ R1 =

[−0.8,−0.4] × [0.2, 1]. To reach w1 the mobile must pass through the
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neighborhood of the charger, which, in the case of a detour for recharg-

ing, will guarantee energy sufficiency in the region R1 for any subsequent

path to w1, hence reducing the depleted-state density therein. Note that

this “regional” loss of density can occur even if the source w0 resides

outside the region R0; it remains as long as the mobile detours to the

charger. This also explains the perpendicular strips of convex density

in the operational-state distribution of Figure 5.2(c). Additionally, the

charger’s cell c has zero density when the mobile is depleted, which is

unsurprising, since the mobile is assumed to be able to recharge and gain

energy sufficiency instantly at the charger.

The mobile distributions of Figure 5.2 showcase the general patterns that

apply to various settings. If, instead, a finite number of mobiles consume en-

ergy for the pair-wise communication, the overall densities around the charger,

especially the maximum value at the cell c, are expected to be lower than

those in Figure 5.2. Theoretically, the fewer mobiles there are, the less often

they would meet and consume energy for communication, and the less often

the charger would be visited for recharging. The energy-wise densities in the

charger’s neighborhood also vary in sync with the number of mobiles. In view

of this, we sample the overall density at the charger cell c to peek into how

the number of mobiles affects their distributions over the grid.

Figure 5.3 shows the corresponding probability density values (per mobile)

as the population m increases from 500 to 8000, for the case where the attrac-

tion range is d′
= 0.2, the charger cell is at c = (−0.6, 0), and ω = ∞. For the

energy budget d, we assume two uniform values, i.e. d = 0.2, which accounts

for the case of all mobiles being under-energized, and d = 0.6 (i.e. d
∆
= 15

units of energy), for highly-energized ones. It can be seen in Figure 5.3 that

for either d = 0.2 or d = 0.6 the probability density at cell c gradually rises

with m towards the upper bound under continuous energy consumption. This

demonstrates that the mobiles indeed tend to pay more visits to the charger

as they increase in numbers.

Moreover, it is worth discussing the differences in mobility between the two
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Figure 5.3: Average probability density values (per mobile) at the charger cell
c, for the number of mobiles m = 500, 750, 1000, 1500, . . . , 8000, the budget
d = 0.2 and 0.6, the attraction range d′

= 0.2, the charger cell c = (−0.6, 0),
and the capacity ω = ∞.

energy budgets. Firstly, Figure 5.3 shows that the under-energized (d = 0.2)

mobiles always pay more visits to the charger than highly-energized (d = 0.6)

ones for any population m. It reflects the fact that a mobile initialized with a

lower budget of energy is more prone to depletion and recharging (Figure 5.4).

Secondly, compared to highly-energized mobiles, it takes a smaller population

for under-energized mobiles to reach the upper bound of the expected density

of the charger. Informally, the bound is a measure of how “attractive” the

charger is to mobiles. This is because the increased opportunities for pair-wise

communication would increase energy consumption rates and exacerbate the

need for recharging more so for under-energized mobiles.

5.4 Effects of Wireless Capacity

In this section we explore the interaction between the charging-aware mobility

(denoted MD) and the wireless capacity ω. The interest is in understanding

the effects and trade-offs of detours for recharging in the setting of an ad hoc

network constrained by different capacities for communications. For compar-

ison, we propose a “detour-free” mobility model, denoted M, which resembles
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the original model MD, except that the mobile follows (Manhattan) RWP only

and never initiates a detour to the charger for recharging. In other words, a

depleted mobile will recharge at the charger with the rare exception of acci-

dentally passing through the charger’s cell c on its path to the destination.

In both models, the mobile renews its energy to d upon leaving a waypoint.

Like the case of 1-dimensional cellular communications (Section 3.5.3), the

investigated interplay between the energy budget d and the congestion level,

depending on whether the mobiles are willing to detour to the charger for

recharging, makes one of the main contributions of the thesis.

Figure 5.5 displays the (time-average) percentages of mobiles being blocked,

communicating, and depleted respectively under the mobility models MD and

M,1 with the number of mobiles m = 20000, the budget d = 0.2 and 0.6,

the attraction range d′
= 0.2, the charger cell at the center/origin, i.e. c =

(0, 0), and the capacity ω = 1, 2, . . . , 5. In general, the mobiles following MD

demonstrate higher blocking and superior communicating probabilities than

mobiles following M. Such differences in performance between the mobility

1Recall that a mobile is said to be blocked if it has energy but cannot communicate due
to exceeding capacity (Section 3.5). An operational mobile that is not blocked is said to be
communicating.
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Figure 5.5: Percentages of mobiles blocked (a), communicating (b), and de-
pleted (c) respectively, under the charging-aware mobility model MD and the
variant model M, for the number of mobiles m = 20000, the budget d = 0.2 and
0.6, the attraction range d′

= 0.2, the charger cell c = (0, 0), and the capacity
ω = 1, 2, . . . , 5.

models are due to two factors.

Firstly, it can be seen in Figure 5.5(c) that the mobiles under MD are always

more likely to have energy, because of the ability to detour for recharging, and

thus, potentially, have more opportunities for communication (possibly blocked

for congestion) than under M. Secondly, the distributions of operational mo-

biles are supposed to differ between these two models, which can deepen their

differences in communication. For this we examine the conditional block-

ing/communicating probabilities given that the mobiles have energy, as shown

in Figure 5.6. While the higher blocking probabilities of MD are retained in

Figure 5.6(a), Figure 5.6(b) shows that the operational mobiles typically have
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Figure 5.6: Percentages of operational mobiles being blocked (a) and commu-
nicating (b) respectively, under the charging-aware mobility model MD and the
variant model M, for the number of mobiles m = 20000, the budget d = 0.2 and
0.6, the attraction range d′

= 0.2, the charger cell c = (0, 0), and the capacity
ω = 1, 2, . . . , 5.

lower communicating probabilities under MD than M. This seemingly “coun-

terintuitive” property of MD is believed to be a consequence of the attraction

effect of the charger, as elaborated below.

Specifically, for a high energy budget d = 0.6 and a highly constrained ca-

pacity ω = 1, the mobiles are rarely depleted (Figure 5.5(c)), meaning almost

all mobiles in the network are constantly available for pair-wise communica-

tion. On the other hand, the mobile distribution would be distorted the least

since there is hardly any need for detours and recharging. In effect, in this

case, there is little difference in mobility and communication between MD and

M.

When the constraint on capacity is relaxed, however, the highly-energized

mobiles start to incur less congestion but faster energy consumption. Under

MD mobiles will be attracted to the charger and form congregations frequently;

despite the gains in energy, this behavior not only increases the chances of

being blocked around the charger (Figure 5.6(a)) but also reduces the number

of scattered mobiles (i.e. those not concentrated at the charger) that can

pair up for communication without congestion (Figure 5.6(b)). Nonetheless,

regardless of the distortion effect on mobile distribution, the energy sufficiency
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characterizing MD still gives the highly-energized mobiles superiority in overall

communicating probability (Figure 5.5(b)).

Under a low energy budget (d = 0.2), the mobiles exhaust their energy

quickly even when the capacity is the lowest (ω = 1). As a result, due

to frequent recharging and severe congestion around the charger, the under-

energized mobiles that follow MD suffer markedly higher probabilities of being

blocked (Figures 5.5(a), 5.6(a)). As the capacity increases, while congestion

quickly diminishes under the M model because of its RWP mobility, the mo-

biles under MD perform more detours to the charger for recharging, gaining

energy as well as extra opportunities for communication with peers around the

charger (Figure 5.6(b)). Unlike the high-budget case, the under-energized but

charging-unaware mobiles that follow M would suffer from persistent depletion

and infrequent operational peers with which to communicate.

Lastly, we show in Figure 5.7 the costs of the charging-aware mobility of

MD, in terms of delays in reaching waypoints due to detours to the charger (like

Figure 3.9 of Section 3.5). Besides d′
= 0.2, we also show results for attraction

range d′
= 0.6 to allow for possibly long detours. Firstly, it can be seen that

the delays are always higher for under-energized mobiles (d = 0.2) because of

their stronger attraction to the charger. Secondly, when the attraction range

is as short as d′
= 0.2, the delay stays small (less than 5%) with little variation

for either energy budget level. By contrast, when d′
= 0.6, the mobiles can

arrive late to the extent of 25%–30% for a budget d = 0.2 or 15%–20% for

d = 0.6, provided the capacity is high enough. We regard these delays as

mostly acceptable and the detours for recharging as cost-effective, considering

the incidental benefits of more energy and more chances of communication.

5.5 Effect of Multiple Chargers

In this section we investigate the charging-aware mobility MD in the presence

of more than one charger. Specifically, we are interested in the communica-

tion performance under n ≥ 2 chargers versus under a single charger. Here

we consider n = 5 chargers deployed at c1 = (0, 0), c2 = (c∗, c∗), c3 = (−c∗, c∗),
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c = (0, 0), and the capacity ω = 1, 2, . . . , 5.

c4 = (−c∗,−c∗), and c5 = (c∗,−c∗) respectively (c∗ > 0), with the attraction

ranges d′
1
= 0.12 (or, 3 cells), d′

2
= d′

4
= 0.04 (1 cell), and d′

3
= d′

5
= 0.08 (2

cells). Figure 5.8 illustrates a placement of the five chargers with c∗ = 0.6. In

respect of Section 5.4, where the charger has an attraction range d′
0
= 0.2, the

values of d′
1
, d′

2
, . . . , and d′

n have been configured such that the total attrac-

tion areas in the area are equal between the 5-charger (D5) and 1-charger (D1)

deployments.2 This assumption allows us to explore the (dis)advantages of

multi-charger deployments in connection with different locations of the charg-

ers. Such exploration of multi-charger deployments is a main contribution of

the thesis. Note that the value of c∗ is supposed to be large enough such that

the chargers are scattered with no overlap of attraction areas between any two

chargers.

Figure 5.9 displays network performance under deployment D5 in compar-

ison with D1, as c∗ increases from 0.12 to 0.84, i.e., as the four chargers in

the quadrants are gradually moved away from the center. For consistency,

the number of mobiles m = 20000, the energy budget d = 0.2 or 0.6, and

2For our specific setting, the five chargers “cover” 61 cells in total that can attract and
divert depleted mobiles, the same as that covered by the single charger at (0, 0) with d ′

0
= 0.2.
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and in the presence of five chargers located at c1 = (0, 0), c2 = (0.6, 0.6), c3 =

(−0.6, 0.6), c4 = (−0.6,−0.6), and c5 = (0.6,−0.6) respectively, with attraction
ranges d′

1
= 0.12, d′

2
= d′

4
= 0.04, and d′

3
= d′

5
= 0.08. The number of mobiles

m = 20000, the energy budget d = 0.2, and the capacity ω = 5.

the capacity ω = 2 or 5. The results of Figure 5.9(c) show that the com-

munication performance of D5 generally outperforms that of D1. The reason

behind this superiority of D5 is two-fold: (1) the mobiles have easier access

to the distributed chargers for recharging (Figure 5.9(d)); (2) the congestion

due to clustering would not be overly exacerbated but even ameliorated when

there are multiple chargers (with relatively short attraction ranges) to share

the recharging load (Figure 5.9(a)).

As per Figure 5.9(c), when the four corner chargers are placed distantly (i.e.

c∗ ≥ 0.76 for d = 0.2 and ω = 5), the center charger alone would not attract

enough mobiles for good performance. On the other hand, when the chargers

are situated too close to each other (e.g. c∗ = 0.12), D5 begins to resemble

D1 and lose its advantage of distributed deployment. The optimal charger

locations for maximizing the communication probability generally correspond

to around c∗ = 0.28 and 0.36, leaning towards the center of the area. This

is because the mobiles are supposed to visit the center areas more often than
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areas near the boundary. Chargers that are close (but not too close) to the

center therefore can sustain many mobiles for recharging and communication.

For both energy budgets d = 0.2 and d = 0.6, the differences in commu-

nicating probabilities between D5 and D1 appear larger for a high capacity

constraint ω = 5 than for a lower capacity ω = 2. This conforms to the

fact that when limited by capacity and unable to transmit, the mobiles would

consume energy slowly. Thus they will seldom detour for recharging. In the

extreme case of ω = 2 while d = 0.6, the rare need for charging leads to almost

identical communicating probabilities between the two deployments (Figure

5.9(c)). Also, when d = 0.2, the maximum communication performance tends

to shift from c∗ = 0.28 to c∗ = 0.36 (or 0.44), as the capacity decreases from

ω = 5 to ω = 2. The dampened performance at c∗ = 0.28 under ω = 2 comes

from the intense congestion incurred in communication restricted by low ca-

pacity (Figure 5.9(a)); hence in this case, as chargers are moved further away

from the center, the decrease in their attraction can reduce clustering and

produce more opportunities for communication.

Between the two energy budgets d = 0.2 and d = 0.6, the differences in

performance between D5 and D1 are generally larger for d = 0.2, because of the

corresponding stronger attraction to chargers. This stronger attraction effect

under d = 0.2 also helps D5 maintain its advantage longer (up to c∗ = 0.76)

as the corner charger locations move away from the center. When the energy

budget d = 0.6 and the capacity ω = 5, D5 has a higher communicating

probability only for c∗ < 0.6.

In Figures 5.9(a)(d), as mentioned, the probabilities of mobiles being blocked

and depleted basically agree with the patterns observed in Figure 5.9(c).

In general, when the four corner chargers are deployed properly (e.g. with

c∗ = 0.28), the area would be covered in a balanced manner such that the mo-

biles can access the chargers easily for recharging (Figure 5.9(d)), meanwhile

forming congregations frequently (Figure 5.9(a)). Note that the congregation

around multiple chargers is often less harmful than one might think, as shown

next. When the capacity constraint is lifted to ω = 5, for instance, the con-

gestion incurred under the deployment D5 is, overall, very close to that under
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D1. For 0.36 ≤ c∗ < 0.76 while d = 0.2, or c∗ = 0.44 and 0.52 while d = 0.6,

D5 even has lower blocking probabilities than D1 (Figure 5.9(b)), while still

being able to maintain higher communicating probabilities (Figure 5.9(c)). We

believe these c∗ values (depending on the budget d and capacity ω) have cap-

tured certain “sweet spots” of charger locations, in the sense that the extent

of clustering around each charger fits the capacity limit well enough to boost

communication without causing severer congestion. A similar pattern can be

observed for a lower capacity ω = 2. For c∗ = 0.68 and 0.76 while d = 0.2,

for instance, the aforementioned “sweet spots” reoccur for D5. Another ad-

vantage of multi-charger deployment is the reduced cost of recharging; in the

simulation the mobiles are delayed less than 2% under D5 for both energy

budgets.

In summary, if the mobiles have a low energy budget and the capacity is

highly constrained, the chargers should be deployed slightly distantly from the

center (e.g. c∗ = 0.44) to reduce their attraction and consequent congestion of

mobiles. Otherwise, the chargers can be distributed moderately close to the

center and each other (e.g. c∗ = 0.28) for the highest chances of communica-

tion.

5.6 Chapter Summary

In this chapter we investigated the performance of charging-aware mobility in a

MANET setting. From the plots of stationary mobile distribution we first ob-

serve several new patterns particular to the Manhattan space, e.g. “bump” of

density sticking out from the charger and convex/concave density in “strips”.

As the network size grows, the mobiles would encounter each other more often

and have their energy drained faster for pair-wise communication; as a result,

with concentration intensifying at the charger, the mobile distribution across

space tends towards that under the analytical model (or equivalently, under in-

finite mobiles). This shows that the analytical results can approximate mobile

distributions for sufficiently dense networks. On the other hand, by comparing

the (detour-enabled) charging-aware mobility MD with a detour-free model M
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Figure 5.9: Percentages of mobiles blocked (a), communicating (b), and de-
pleted (c) respectively, under the MD model and in the presence of five charg-
ers located at c1 = (0, 0), c2 = (c∗, c∗), c3 = (−c∗, c∗), c4 = (−c∗,−c∗), and
c5 = (c∗,−c∗) respectively, with c∗ = 0.12, 0.2, 0.28, . . . , 0.84, and attraction
ranges d′

1
= 0.12, d′

2
= d′

4
= 0.04, and d′

3
= d′

5
= 0.08. The number of mo-

biles m = 20000, the budget d = 0.2 or 0.6, and the capacity ω = 2 or 5.
The results for comparison assume one charger located at c0 = (0, 0) with an
attraction range d′

0
= 0.2. For clearer illustration, we also zoom in on the

blocking probabilities with capacity ω = 5 in Figure 5.9(b).

under varied capacity, we find that the detours for recharging not only supply

the mobiles with more energy to communicate but also increase the oppor-

tunities for communication, provided the mobiles have a lower energy budget

(d = 0.2) and the communication is not too limited by capacity (ω > 3). For a

high energy budget (d = 0.6), however, the congregations around the charger

appear to reduce the chances of communication across the network. The costs

of the benefits, i.e. delays in arrival at destinations, are mostly not signifi-
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cant (less than 30%) even when the charger has a fairly large attraction range

(d′
= 0.6). Additionally, the study on multi-charger deployments suggests

that it is mostly better to deploy more chargers with shorter attraction ranges

than fewer chargers with longer ranges. The rule of thumb is to distribute the

chargers not too close to each other and not close to the boundary of the area.
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Chapter 6

Conclusion

6.1 Thesis Summary

In this thesis, we have modeled the recharging behavior of mobile nodes in

1-dimensional and 2-dimensional spaces, studied the resultant spatial mobile

distributions both analytically and numerically, and explored the interaction

between charging-aware mobility and ad hoc wireless communications through

simulations. We recap the contributions as follows.

Charging-aware mobility in 1-dimensional space

A 1-dimensional analytical mobility model is proposed to depict a possible pat-

tern of recharging behavior in the presence of a charger. The corresponding

stationary distribution of the mobile location is derived, so is the energy-wise

mobile distribution (i.e. while the mobile has energy or not). The analytical

and simulation results exhibit the impact of boundaries, which creates asym-

metry across space and discontinuities at the charger location. Notably, if the

charger is located as near as within a distance d (i.e. the distance correspond-

ing to the energy budget) to a boundary, the peak value of mobile density

would shift from the charger location.

Insofar the interaction between mobility and wireless capacity is concerned,

we have derived two bounds, including an upper bound for the communicat-

ing probability (per mobile) and a lower bound for the probability of be-

ing blocked due to exceeding capacity. In a comparison between the detour-

enabled charging-aware mobility and a variant detour-free mobility model, we

97



observe the benefits of detours for recharging especially for under-energized

mobiles that are more in need of energy supply. The study also indicates the

advantages of a centered charger in the space, including the highest chances

of communication and the least travel delays in reaching destinations.

Charging-aware mobility in 2-dimensional space

A 2-dimensional charging-aware mobility model is proposed and analyzed first

in the setting of a (Euclidean) unit disk. Besides the perfect match between

analytical and simulation results, we observe that the charger’s impact to the

mobile distribution is limited within its attraction range, which we call the

“pseudo-local distortion” effect. Another interesting observation induced by

the detours is the relatively dipped density at a distance d′ (attraction range)

to the charger. Based on the analytical results for single chargers, we also

approximate the mobile distribution for multiple chargers, finding that the

results are most accurate for sparsely distributed chargers.

Extending 2-dimensional analytical models to realistic setups

To understand the interaction between recharging and peer-to-peer commu-

nications, we further simulate an ad hoc network of charging-aware mobiles

moving in a grid of cells (like in an urban core). When there is only one charger,

the simulation results show that the concentration at the charger would in-

crease with the mobile numbers. This is because the energy consumption

for pair-wise communication is supposed to be faster when more mobiles are

present. Moreover, by varying the limit of capacity and examining the cor-

responding blocking, communicating, and depletion probabilities of mobiles,

we observe that the recharging behavior can indeed improve the network per-

formance, especially for under-energized mobiles, by bringing gains in energy

and extra communication opportunities (due to clustering). Meanwhile, the

detours for recharging increase the average path time between waypoints by a

factor of 1.3 at most, which should be acceptable in many cases. When there

are more than one charger to deploy, the simulation results basically match

the heuristic: the chargers should be scattered properly so as to cover the area
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in a relatively even manner.

6.2 Direct Extensions

The work of this thesis can be extended directly in the following ways:

• As remarked in Section 4.4, the integral-form spatial mobile distribution

derived based on the unit disk is generalizable to any 2-dimensional

bounded convex area. Hence a direct extension is to apply the results

to other (simple) shapes of areas, e.g. rectangles. The crucial part is to

redefine the relevant lengths including l2, l3, l12, l13, and l17, as well as

replacing the factor π2α with A2α, with A being the size of the area.

• Throughout the thesis, we assume the charging process is relatively short

and the charging-aware mobiles never pause at any charger (or way-

point). Despite the development of fast charging technologies, this as-

sumption of instantaneous charge may be arguably too idealistic. In

effect, according to Equation (2.9), the effect of pauses on mobile dis-

tribution can be incorporated as an additive component, provided the

pause time follows an independent distribution.

• We can generalize the current models by introducing heterogeneity into

mobility, e.g., with respect to the occurrence of destinations across space

(like [12, 35]), which is achievable by designating non-uniform distribu-

tions for the probability density function of waypoints. Moreover, we

can consider mixes of populations with different charging awareness, i.e.,

a constitution of mobiles who would detour to a charger for recharging

plus charging-unaware ones who would not. The expected mobile distri-

bution is supposedly equal to the weighted mean of densities under the

charging-aware and RWP mobility. A similar extension applies for a mix

of charging-aware populations with differently designated chargers.

• It is conjectured that the modeling of probabilistic energy consumption

at mobiles can be well approximated by the weighted mean of mobile
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distributions under different constant energy budgets d. Apart from

the question of finding proper weights for high accuracy, however, this

problem can be prohibitively difficult if the consumption is assumed to

be dependent on ad hoc communications between peers.

6.3 Future Work

In this section we propose three directions for future investigation.

Adaptive Energy-Aware Transmission Scheduling

In Chapter 5, we assume a fully greedy communication protocol followed by

the mobiles; that is, a mobile is always ready to pair with any peer for com-

munication as long as it has energy. A more realistic setting is to assume

that an operational mobile is willing to be scheduled for pairing with a cer-

tain probability which can be less than 1.0. Or even further, each mobile

may adjust its schedule based on energy conditions of it own and of the net-

work. A lesson learned from the study in Chapter 5 is that despite the energy

gained from recharging, the clustering resulting from detours to the charger

can cause severe congestion especially for low-energy mobiles and highly con-

strained communication capacity. Given the charging-aware mobility, is there

a way to schedule the mobiles optimally such that they can capitalize on en-

ergy sufficiency and improved opportunities for communication but at low risk

of being blocked? This is a noteworthy question for future exploration.

Optimized Multi-Charger Placement

In Chapter 5, Figure 5.9(b) suggests that there is an optimal deployment

(in terms of communicating probability) of five chargers corresponding to c∗

valued between 0.2 and 0.44, depending on the energy budget and capacity

limit. Note that the optimal charger locations are not fully consistent with

the supposedly most balanced coverage, i.e. c∗ = 0.5, by which the four corner

chargers would be centered in their respective quadrants, each covering a unit

area. Actually, since there is still a charger at the center, the corner chargers

100



should be deployed further away with c∗ > 0.5 so as to yield even coverage

across the area. The discrepancy in the optimal value of c∗ is conjectured

to come from the fact that the center area, which tends to be visited more

often than areas near the boundary, correspondingly bears more burden to

cover the area with recharging possibilities. Considering this connection, it

is noteworthy to formulate the optimal deployment for a given number of

chargers under the charging-aware mobility.

Approximation and Bounds of Mobile Distribution

As shown in Equation (4.53) (Chapter 4), the stationary pdf fZ(t)(z) of the

mobile location has a non-trivial integral form in the 2-dimensional case. To

facilitate its application to further analyses, we can approximate the function

fZ(t)(z) by bounding the lengths of relevant line segments through geometric

induction. For instance, to bound functions h0(z) and h1(z), we can decouple

the set of segment lengths including l2, l3 − l4 − d, l2 + l3, and l4 + d, and find

their globally admissible ranges (not subject to the integral limits θ5 − θ6 and

θ5 + θ6), i.e.




1 − r ≤ l2 ≤ 1 + r

1 − |c | − d′ − d ≤ l3 − l4 − d ≤ 1 + |c | + d′ − d

2
√
1 − r2 ≤ l2 + l3 ≤ 2

|z − c | − d′
+ d ≤ l4 + d ≤ |z − c | cos θ6 + d

(6.1)

It would be harder to find appropriate bounds for the other two functions

g0(z) and g1(z). Despite the lack of sophistication and tightness, the above

crude method should be generalizable to areas in arbitrary shapes. Further

investigation is left for future work.
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Appendix A

Proof of Theorem 3.4.1.1

We detail the proof only for the case where d ≤ 1

2
and c ∈ [d, 1−d], considering

that given other settings of d and c (Table 3.3) the pdf can be derived following

similar steps. Firstly, we have the following lemma for Case I (i.e. movements

following direct paths), provided d ≤ 1

4
and c ∈ [2d, 1 − 2d].

Lemma 1. Suppose c ∈ [2d, 1 − 2d] while d ≤ 1

4
, and the waypoints are

such that the mobile travels directly without detours. Then the stationary pdf,

f I
X(t)(x), of the mobile location X(t) is

α f I
X(t)(x) =




h(x, c), if x ∈ [0, d)
h(x, c) + (x−d)2

2
, if x ∈ [d, c − d]

d2
+ x + c − d − (x+c)2

2
, if x ∈ (c − d, c + d)

h(x, c) − x + c − d +
(x+d)2

2
, if x ∈ [c + d, 1 − d]

h(x, c) + c − 1

2
, if x ∈ (1 − d, 1]

(A.1)

where

h(x, c) = 2x − 3x2

2
− cx.

Proof. Supposing w0 ≤ w1, then we can make substitutions as follows:





ρ =
l0

l0+l1

w0 = x − l0

w1 = x + l1

where l0 (l1 resp.) is the distance from the mobile’s current location x to

waypoint w0 (w1 resp.). The Jacobian of such transformation is given by [29]

det [J(x, l0, l1)] =

�������

0 l1
(l0+l1)2

− l0
(l0+l1)2

1 −1 0

1 0 1

�������
= − 1

l0 + l1
.
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Then we have for Equation (3.3) that

∫

Ww0≤w1
0

∫

Ww0≤w1
1

|w0 − w1 |
∫

1

0

[(1 − ρ)w0 + ρw1] dρdw1 dw0

=

∫ d

0

x

∫ x

0

∫ d−l0

0

1 dl1 dl0 dx +

∫
1−d

d

x

∫ d

0

∫ d−l0

0

1 dl1 dl0 dx

+

∫
1

1−d

x

∫
1−x

0

∫ d−l1

0

1 dl0 dl1 dx +

∫ d

0

x

∫ x

0

∫
1−x

d−l0

1 dl1 dl0 dx

+

∫ c−d

d

x

∫ d

0

∫
1−x

d−l0

1 dl1 dl0 dx +

∫ c−d

d

x

∫ x

d

∫
1−x

0

1 dl1 dl0 dx

+

∫ c

c−d

x

∫ d

x−(c−d)

∫
1−x

d−l0

1 dl1 dl0 dx +

∫ c

c−d

x

∫ x

d

∫
1−x

0

1 dl1 dl0 dx (A.2)

+

∫
1

c

x

∫ x

x−(c−d)

∫
1−x

0

1 dl1 dl0 dx

=

∫ d

0

x ·
(
dx − x2

2

)
dx +

∫
1−d

d

x · d2

2
dx

+

∫
1

1−d

x ·
(
d(1 − x) − (1 − x)2

2

)
dx +

∫ d

0

x ·
[
(1 − d)x − x2

2

]
dx

+

∫ c−d

d

x ·
(
x(1 − x) − d2

2

)
dx +

∫ c

c−d

x ·
(
c − d(1 − x) − x2

2
− c2

2

)
dx

+

∫
1

c

x · (c − d)(1 − x) dx

Likewise, when w0 > w1, there is

∫

Ww0>w1
0

∫

Ww0>w1
1

|w0 − w1 |
∫

1

0

[(1 − ρ)w0 + ρw1] dρdw1 dw0

=

∫ d

0

x ·
(
dx − x2

2

)
dx +

∫
1−d

d

x · d2

2
dx

+

∫
1

1−d

x ·
(
d(1 − x) − (1 − x)2

2

)
dx (A.3)

+

∫
1

1−d

x ·
[
(x − d)(1 − x) + (1 − x)2

2

]
dx +

∫
1−d

c+d

x ·
(
x(1 − x) − d2

2

)
dx

+

∫ c+d

c

x ·
[
(1 − d)x − x2

2
− c2

2

]
dx +

∫ c

0

x · (1 − c − d)x dx

We can then obtain Equation (A.1) by combining Equations (A.2)(A.3). �

Now we consider Case II, i.e. movements involving detours, and still c ∈
[2d, 1 − 2d].

110



Lemma 2. Suppose c ∈ [2d, 1 − 2d] while d ≤ 1

4
, and the waypoints are such

that the mobile always needs to detour for charging. Then the stationary pdf

of location, f II
X(t)(x), is

α f II
X(t)(x) =




x2

2
+ cx, if x ∈ [0, d)

dx − d2

2
+ cx, if x ∈ [d, c − d]

x − c + d − d2
+

(x+c)2
2

− x2, if x ∈ (c − d, c)
1 − x − c + d − d2

+
(x+c)2

2
− x2, if x ∈ [c, c + d)

d(1 − x) − d2

2
+ (1 − x)(1 − c), if x ∈ [c + d, 1 − d]

(1−x)2
2
+ (1 − x)(1 − c), if x ∈ (1 − d, 1]

(A.4)

Proof. Firstly, suppose w0 ≤ w1, then we can derive for Equation (3.4) that

∫

Uw0≤w1
0

∫

Uw0≤w1
1

ψ(w0,w1) dw1 dw0

=

∫
1−d

c−d

d(1 − w0 − d)φ1(w0,w0 + d) dw0

+

∫
1−d

c−d

(1 − w0 − d)(w0 + d − c)φ2(w0 + d, c) dw0

+

∫
1−d

c−d

∫
1

w0+d

(w1 − c)φ3(c,w1) dw1 dw0 (A.5)

=

∫ c

c−d

x

∫ x−(c−d)

0

(1 − x + l2 − d) dl2 dx +

∫
1−d

c

x

∫ d

0

(1 − x + l2 − d) dl2 dx

+

∫
1

1−d

x

∫ d

x−(1−d)
(1 − x + l2 − d) dl2 dx +

∫
1

c

x

∫
1−x

0

(1 − x − l3) dl3 dx

+

∫
1

c

x

∫
1−x

0

∫ x+l4

c

1 dw′ dl4 dx

=

∫ c

c−d

x ·
(
x − c + d +

c2

2
− (x + d)2

2

)
dx +

∫
1−d

c

x ·
(
d(1 − x) − d2

2

)
dx

+

∫
1

1−d

x · (1 − x)2
2

dx +

∫
1

c

x · (1 − x)(1 − c) dx

where

φ1(w0,w0 + d) =
∫

1

0

[(1 − ̺1)w0 + ̺1(w0 + d)] d̺1

φ2(w0 + d, c) =
∫

1

0

[(1 − ̺2)(w0 + d) + ̺2c] d̺2

φ3(c,w1) =
∫

1

0

[(1 − ̺3)c + ̺3w1] d̺3
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and for w0 > w1,

∫

Uw0>w1
0

∫

Uw0>w1
1

ψ(w0,w1) dw1 dw0

=

∫ c+d

d

d(w0 − d)ϕ1(w0,w0 − d) dw0

+

∫ c+d

d

(w0 − d)(c − w0 + d)ϕ2(w0 − d, c) dw0

+

∫ c+d

d

∫
w0−d

0

(c − w1)ϕ3(c,w1) dw1 dw0

=

∫ c+d

c

x

∫ c+d−x

0

(x + l2 − d) dl2 dx +

∫ c

d

x

∫ d

0

(x + l2 − d) dl2 dx (A.6)

+

∫ d

0

x

∫ d

d−x

(x + l2 − d) dl2 dx +

∫ c

0

x

∫ x

0

(x − l3) dl3 dx

+

∫ c

0

x

∫ x

0

∫ c

x−l4

1 dw′ dl4 dx

=

∫ c+d

c

x ·
[
c2

2
− (x − d)2

2

]
dx +

∫ c

d

x ·
(
dx − d2

2

)
dx

+

∫ d

0

x · x2

2
dx +

∫ c

0

x · cx dx

where

ϕ1(w0,w0 − d) =
∫

1

0

[(1 − ̺1)w0 + ̺1(w0 − d)] d̺1

ϕ2(w0 − d, c) =
∫

1

0

[(1 − ̺2)(w0 − d) + ̺2c] d̺2

ϕ3(c,w1) = φ3(c,w1)

Combining Equations (A.5)(A.6), proves the lemma. �

Finally, by joining Equations (A.1)(A.4), we can obtain the piecewise

fX(t)(x) of Equation (3.5) with sub-domains x ∈ [0, c) and x ∈ [c, 1]. A similar

procedure can be followed to derive the pdf for c ∈ [d, 2d) and c ∈ (1−2d, 1−d]
respectively. It turns out the location c−d (c+d resp.) relative to d (1−d resp.)

has no effect on the form of Equation (3.5) and the according sub-domains, as

long as c ∈ [d, 1 − d] and d ≤ 1

2
.
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Appendix B

Proof of Theorem 3.4.2.1

The complete proof of Theorem 3.4.2.1 consists of six lemmas accounting for

the distributions under different settings of d and c (Table 3.5). For the sake

of brevity, and because of the symmetry in all sub-cases, we provide complete

proofs for two lemmas (Lemma 3 and 6); the rest can be verified in a likewise

fashion.

Lemma 3. Assuming d ≤ 1

2
and c ∈ [d, 1 − d], the stationary pdf of location,

fX(t),U(t)=1(x), is

α fX(t),U(t)=1(x) =




x2

2
, if x ∈ [0, d)

x2

2
+ (1 − x)(x − d), if x ∈ [d, c)

(1−x)2
2
+ (1 − d − x)x, if x ∈ [c, 1 − d]

(1−x)2
2

, if x ∈ (1 − d, 1]

(B.1)

Proof. If d ≤ 1

2
and c ∈ [d, 1 − d], then Equation (3.8) (normalized by α−1)

can be expanded as

λ

α−1E
0

I

(∫ T1

T ′
X(τ) dτ +

∫ Tc

T ′
X(τ) dτ

)

=

∫ c

d

x

∫ x−d

0

∫
1−x

0

1 dl1 dl′
0
dx +

∫
1−d

c

x

∫
1−d−x

0

∫ x

0

1 dl1 dl′
0
dx

=

∫ c

d

x · (1 − x)(x − d) dx +

∫
1−d

c

x · (1 − d − x)x dx

(B.2)
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while for Equation (3.9) there is

λ

α−1E
0

II

(∫ Tc

T ′
X(τ) dτ

)

=

∫
1

c

x

∫
1−x

0

(1 − x − l3) dl3 dx +

∫ c

0

x

∫ x

0

(x − l3) dl3 dx

=

∫
1

c

x · (1 − x)2
2

dx +

∫ c

0

x · x2

2
dx

(B.3)

Combining Equations (B.2)(B.3) we derive Equation (B.1). �

Lemma 4. Assuming d ≤ 1

2
and c ∈ [0, d), the stationary pdf of location,

fX(t),U(t)=1(x), is

α fX(t),U(t)=1(x) =




x2

2
, if x ∈ [0, c)

(1−d)2
2
+ (1 − d − x)x, if x ∈ [c, d)

(1−x)2
2
+ (1 − d − x)x, if x ∈ [d, 1 − d]

(1−x)2
2

, if x ∈ (1 − d, 1]

(B.4)

Lemma 5. Assuming d ≤ 1

2
and c ∈ (1 − d, 1], the stationary pdf of location,

fX(t),U(t)=1(x), is

α fX(t),U(t)=1(x) =




x2

2
, if x ∈ [0, d)

x2

2
+ (1 − x)(x − d), if x ∈ [d, 1 − d]

(1−d)2
2
+ (1 − x)(x − d), if x ∈ (1 − d, c]

(1−x)2
2

, if x ∈ (c, 1]

(B.5)

Lemma 6. Assuming d > 1

2
and c ∈ (1 − d, d), the stationary pdf of location,

fX(t),U(t)=1(x), is

α fX(t),U(t)=1(x) =



x2

2
, if x ∈ [0, 1 − d]

(1−d)2
2

, if x ∈ (1 − d, d)
(1−x)2

2
, if x ∈ [d, 1]

(B.6)

Proof. In this case, since V0 = V1 = V′
1
= ∅ when d > 1

2
and c ∈ (1 − d, d), we
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only need to expand Equation (3.9) as

λ

α−1E
0

II

(∫ Tc

T ′
X(τ) dτ

)

=

∫
1

d

x

∫
1−x

0

(1 − x − l3) dl3 dx +

∫ d

c

x

∫
1−x

d−x

(1 − x − l3) dl3 dx

+

∫
1−d

0

x

∫ x

0

(x − l3) dl3 dx +

∫ c

1−d

x

∫ x

x−(1−d)
(x − l3) dl3 dx

=

∫
1−d

0

x · x2

2
dx +

∫
1

d

x · (1 − x)2
2

dx +

∫ d

1−d

x · (1 − d)2
2

dx

(B.7)

�

Lemma 7. Assuming d > 1

2
and c ∈ [0, 1 − d], the stationary pdf of location,

fX(t),U(t)=1(x), is

α fX(t),U(t)=1(x) =




x2

2
, if x ∈ [0, c)

(1−d)2
2
+ (1 − d − x)x, if x ∈ [c, 1 − d]

(1−d)2
2

, if x ∈ (1 − d, d)
(1−x)2

2
, if x ∈ [d, 1]

(B.8)

Lemma 8. Assuming d > 1

2
and c ∈ [d, 1], the stationary pdf of location,

fX(t),U(t)=1(x), is

α fX(t),U(t)=1(x) =





x2

2
, if x ∈ [0, 1 − d]

(1−d)2
2

, if x ∈ (1 − d, d)
(1−d)2

2
+ (1 − x)(x − d), if x ∈ [d, c]

(1−x)2
2

, if x ∈ (c, 1]

(B.9)
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Appendix C

Charging-Aware Mobility on a

Circle

To demonstrate the impact of removing the boundary effect on the mobile

distribution, we simulate the charging-aware mobility on a circle (1-torus), as

illustrated in Figure C.1 (where the two ends of the line segment S = [0, 1]
are conjoined). The mobile still follows the rules of movement as modeled in

Section 3.2 (Figure 3.1), except that it may now cross the boundaries so as to

travel along a shorter path to any target location (be it the destination or the

charger).

Figure C.2 shows the simulation results of charging-aware mobiles (depleted

or not) on the circle, with the charger location c at 0.1, 0.3, 0.5, and 0.7, and

energy budget d of 0.2, 0.4, and 0.6, respectively. It can be seen that the

charging-aware mobility would degenerate to what is expected of RWP and

yield a uniform mobile distribution over the circle when d = 0.6 (≥ 0.5). This
is because of the absence of boundaries that enables access to any destination

within a distance of 0.5. More importantly, in contrast to the results of Figure

3.2, the discontinuities of distributions around the charger have disappeared

for any given values of c and d. Additionally, the hotspot around the charger

persists and is symmetric, regardless of where the charger is placed, i.e., even

if c = 0.1 < d = 0.2. These notable differences compared to the model with

boundaries confirm the important impact of the boundaries.
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