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Abstract 
 

Gaps in the forest canopy are common in boreal aspen, spruce and mixedwood stands and 

can negatively affect forest volume.  Data from four Alberta Vegetation Inventory (AVI) 

polygons, two aspen (Populus tremuloides) and two white spruce (Picea glauca), were analysed 

to determine how forest volume is affected by the presence of forest canopy gaps and to 

determine if this approach could be used to reconcile stand volumes estimated by growth models 

with volumes obtained from ground samples.  LiDAR point clouds were processed to create 

canopy height models (CHMs) for each polygon to differentiate canopy cover from canopy gaps.  

Strong curvilinear relationships were found between LiDAR gap area and expanded gap area 

measured in the stands (R2 > 0.90).  Based on the estimated expanded gap areas, the potential 

volume loss due to gaps in each polygon was assessed.  Potential polygon volume was estimated 

by determining the average tree occupancy area for canopy trees within fully stocked areas of 

each polygon and then estimating the “missing” volume based on the number of trees required to 

fill the gaps.  By comparing the estimates of volume lost to gaps to the potential polygon volume 

when the gaps were filled, it was shown that gaps affect volume by upwards of 18%.  However, 

the effect of gaps on volume was variable between polygons.  Lastly, the CHMs were combined 

with wet areas maps depicting depth to water index.  Estimates of the effects of hydrology on gap 

size and frequency were calculated with results showing that gaps are larger and more frequent in 

poorly drained soils than they are in well drained soils. 
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Chapter 1: Introduction 
 

Gaps in the forest canopy are common in boreal aspen, spruce and mixedwood stands and 

can negatively affect forest volume since they do not contain merchantable trees.  However, the 

ability to quantify the effects of canopy gaps on volume is not well developed.  Permanent sample 

plots (PSPs) have traditionally been used to estimate forest growth, and are also used in 

modelling to predict how regenerating stands will grow.  With the placement of PSPs being 

biased towards fully stocked stands, the effects of not considering gaps can lead to an 

overestimation of volume compared to whole stand estimates (Eriksson, 1967).  To account for 

the presence of gaps, photo interpretation is often used at the landscape level (Alberta Sustainable 

Resource Development, 2005) and field sampling for gaps has been used in some instances to 

assess gaps at the stand level (BC Ministry of Forests, 1998).  However, with photo interpretation 

being inexact and the cost of field sampling being high, complete enumeration using remote 

sensing techniques may be the best way to account for gaps (Tansanu, 2007). 

With Light Detection and Ranging (LiDAR) now being widely available, the use of 

canopy models derived from LiDAR allows for complete enumeration of gaps within forest 

stands (Gaulton and Malthus, 2010).  From these models, gap dimensions and areas can be 

determined and inferences about how these gaps affect forest volume can be made.  Additionally, 

other information such a soil drainage data (Murphy et al., 2011), may be used in conjunction 

with these canopy models to determine the nature of individual gaps beyond what is available 

from canopy models alone.  The use of these models has the potential to provide more data about 

forest canopy gaps than was previously available and has the potential to be used in decision 

making for both forest planning and operations.  The purpose of the research presented in this 

thesis is to test a series of methods that can be used to process LiDAR from the raw point cloud 

into a format that can be easily interpreted and merged with other GIS layers so that the nature of 

forest gaps can be interpreted. 

In Chapter 2, LiDAR point clouds for four Alberta Vegetation Inventory (AVI) polygons 

are processed to create canopy height models (CHMs).  From these CHMs the polygons are 

classified into tracts of contiguous canopy cover or canopy gaps based on the return height from 

the LiDAR.  A random sample of the gaps in each polygon was measured in the field to confirm 

that the gaps detected were present.  From these measurements, statistical models are developed 

that predict expanded gap area (Runkle, 1982) from the LiDAR gap measured in the CHMs. 

In Chapter 3, the CHMs developed in Chapter 2 are used along with estimates of 

expanded tree occupancy to classify individual gaps as either gaps that can host merchantable 
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trees or interstitial spaces that are too small to host merchantable trees.  Using the merchantable 

gaps, the number of trees and the associated volume that could potentially be hosted in each 

merchantable gap is estimated.  These estimates of lost volume, along with estimates of average 

polygon volume from temporary sample plot measurements, are then used to estimate the 

potential polygon volume.  To ensure that our estimates are reasonable, these estimates of 

potential volume are then reconciled against volume estimates from fully stocked areas in each 

polygon. 

In Chapter 4, wet areas mapping is introduced as a tool that can be used in conjunction 

with CHMs to determine how ground water affects forest canopy gaps.  By combining each CHM 

with a map of the depth to water index (Murphy et al., 2011); new raster models are created 

which quantify the local drainage class for each gap.  From these raster models, the prevalence of 

gaps and the mean gap size for each drainage class is determined.  Based on these results, 

inferences are made about how wet areas affect canopy gaps and how this knowledge can be used 

in forest planning and operations. 

In Chapter 5, the results of each study are summarized, some general conclusions are 

provided about how the techniques used in this thesis can be applied, and suggestions about 

potential directions of future research are made. 
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Chapter 2: The Application of LiDAR in Estimating Forest 

Canopy Gaps in the Boreal Forest 
 

2.1 Introduction 

 

The presence of gaps within the forest canopy can be natural or anthropogenic 

occurrences.  Canopy gaps are areas where the height of the forest canopy is noticeably lower 

than adjacent areas (Runkle, 1992).  Within a gap, canopy trees may be regenerating and 

growing, non-tree species such as shrubs, herbs or grasses may be suppressing canopy recovery, 

or growth may be absent due to poor growing conditions.  With canopy gaps having the potential 

to affect harvest yields, estimation of their size and distribution can be useful to foresters. 

Although a difference in canopy height is the key characteristic which defines a gap, a 

threshold for gap closure or a minimum gap area can also be part of the definition depending on 

the application.  For example, in tropical forests Brokaw (1982) considered gaps to be closed 

when the understory reached 2 meters in height, while in temperate forests Runkle (1982) 

considered a gap closed when the understory had reached 10 – 20 meters in height.  MacIssac et 

al. (2006) required a minimum area of 100 m2 when looking at post-harvest regeneration. This 

requirement was set so that gaps present in harvested stands would be also discernible on aerial 

photos as the trees matured.  When considering animal habitat, Fuller (2000) required at least 3 

fallen trees and one gap axis to be at least 40 meters long, while Fukui et al. (2011) used gaps as 

small as 2 m2 when surveying bats.  With the definition of a gap being dependent on the 

application, a wide variety of definitions can be found. 

Gaps can range in size from small interstitial spaces between trees that are too small for 

mature trees to occupy, to large patches caused by disturbance events.  With disturbance events 

often causing drastic changes to the forest ecosystem, research involving gaps larger than 1000 

m2 often falls under disturbance research (Schliemann and Bockheim, 2011).  For smaller gaps, 

the gap phase is often a temporary phase in the forest cycle, with a distinct event such as a tree 

fall resulting in gap birth. Gaps can also be persistent, unable to grow canopy trees, due to site 

conditions such as rock outcroppings or wet areas (BC Ministry of Forests, 1998). Gap death 

occurs when the gap becomes indistinguishable from the surrounding canopy, either through 

natural ingress or through the expansion of the crowns of bordering canopy trees.       

Through a description of tree death as a forest process, Franklin et al. (1987) show that 

gap formation from the death of one or a few trees results in a wide variety of ecological changes.  

These include: a release of resources such as light, nutrients and moisture (Denslow et al., 1990); 
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the creation of new resources for wildlife habitat in the form of snags and coarse woody debris 

(Bouget and Duelli, 2004); and structural changes to other trees and forest soils when trees break 

or fall (Kuuluvainen, 1994). Among the research topics investigated that are related to gaps, those 

focusing on biodiversity and forest structure are most prevalent.  Studies in biodiversity have 

included research on bryophyte diversity (Jonsson and Esseen, 1990), bat assemblages (Fukui et 

al., 2011), beetle assemblages (Bouget and Duelli, 2004), bird distributions (Fuller, 2000) and 

plant diversity (Chavez and MacDonald, 2010).   

Beyond studies focusing on biodiversity, there has also been extensive research on the 

role gap formation and dynamics play as an aspect of forest structure.  Watt (1947) was among 

the first to recognize the importance of gaps as part of forest structure when he identified the 

opening of gaps in the canopy as a phase in the forest growth cycle in beech forests.  He 

determined that the gap phase is the period where canopy regeneration occurs, whereas in other 

phases of the growth cycle regeneration is excluded due to canopy or ground cover.  Other 

researchers identified similar phases in other forest types such as maple-basswood forests in 

North America (Bray, 1956).  As the gap phase became an accepted phase of the forest cycle, 

more research into the dynamics of individual gaps began.  Beginning in the late 1970’s, research 

into the gap dynamics was conducted in both tropical forests (Brokaw, 1982; Brokaw, 1985) and 

temperate forests (Runkle, 1982).  Within the boreal regions, most research in gaps and gap 

dynamics has occurred in Scandinavian and Russian forests, and only limited research has 

occurred within the Canadian boreal forest (McCarthy, 2001).   

In the Canadian boreal forest, early research on the gap phase of the forest cycle was 

indirect as the focus of the research was on processes of stand succession and the creation of gaps 

was identified as the mechanism which allowed understory release to occur.  This is seen in aspen 

stands where decadent stands will slowly break up and the increase in light will allow for 

supressed understory species to emerge (Peterson and Peterson, 1992).  More recent  studies have 

focused directly on gaps with much of the research focusing on patterns of regeneration within 

gaps.  Kneeshaw and Bergeron (1998) were among the first to survey gaps to evaluate the gap 

size distribution and determine patterns of mortality and recruitment.  In Alberta, Cumming et al. 

(2000) showed that trembling aspen (Populus tremuloides Michx.) stands, which appear to be 

even aged, are actually uneven aged.  They noted that the maintenance of continuous canopy 

cover occurs through the emergence of aspen suckers in newly formed gaps which grow to reach 

the canopy.  Gaps can also release other tree species to encourage the formation of mixed forests.  

When aspen stands have white spruce (Picea glauca (Moench) Voss) in the understory, the gaps 

formed during the gap phase (break up) offer an opportunity for the understory spruce to enter the 
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canopy and create mixed stands (Cumming et al., 2000).  MacIssac et al. (2006) showed that after 

harvest, gap area increased from pre-harvest levels. These increases can be mostly attributed to 

suppression of the regenerating canopy trees by competition and browsing.   It was also shown 

that many gaps were likely persistent.  These gaps were present pre-harvest and continued to be 

present as the stand developed.  Tansanu (2007) conducted a study of the effects of forest canopy 

gaps on volume estimation.  In his study, aerial photo interpretation and temporary sample plots 

were used to estimate the effects of gaps on volume estimation. 

When gaps are newly formed, they are distinct canopy openings and there is very little 

understory ingress or crown expansion from bordering canopy trees to obscure the dimensions of 

the gap.  As time passes, the dynamic nature of gaps adds temporal complications to 

measurements as ingress and crown expansion can make identifying the boundaries of gaps 

subjective.  To account for this, Runkle (1982) suggested expanding gap measurements beyond 

the true canopy gap to the stems of the canopy trees bordering the gap.  This expanded gap 

concept removes uncertainty regarding the translation of true gap edges from the canopy to the 

ground by using the bordering tree stems as gap vertices.  This reduces the subjectivity of 

measurements and makes them easier to reproduce.  The use of this concept also provides a better 

estimate of the area available for understory ingress, as saplings can establish anywhere within an 

expanded gap, not just in the true gap. 

 When working at the stand or landscape level, sampling gaps presents a challenge due to 

their random occurrence and variable size.  Runkle (1982) presented a transect method for 

sampling canopy gaps which has been used in several studies in the Canadian boreal forest (e.g. 

Kneeshaw and Bergeron, 1998; Cumming et al., 2000).  However, for studies at scales larger than 

a single forest stand, the transect method may not be intensive enough and too localized to allow 

for sufficient sampling.  As an alternative to transects, MacIssac et al. (2006) used a time 

sequence of aerial photographs for select forest polygons and limited his selection of gaps to 

those greater than 100 m2 to collect a large sample of gaps, and then conducted field 

measurements to validate his findings (MacIssac et al., 2006).  In another study, Tansanu (2007) 

used photos interpreted to 10% canopy cover levels, along with intensive temporary sample plot 

measurements to determine the effects of gaps on volume estimates.  Tansanu’s methods yielded 

inconclusive results and suggested that complete enumeration would be required to determine the 

effects of gaps on forest volume estimates (Tansanu, 2007).  One method of remote sensing that 

has shown promise in the delineation and complete enumeration of forest gaps is the use of Light 

Detection and Ranging (LiDAR). 
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Since the mid 1990’s remote sensing technology has evolved to provide new tools for 

measuring and monitoring biospatial data (Reutebuch et al., 2005).  LiDAR is an active remote 

sensing technology that works by directing light pulses from a source to a target.  When the light 

is intercepted by a surface, part of the light pulse is reflected back towards a sensor at the source.  

By measuring the return time from pulse release to the return at the sensor, the distance from the 

source to the target can then be calculated.  When LiDAR hardware is mounted on an aircraft, 

landscapes can be scanned during flights and large amounts of data can be collected in a short 

amount of time.  Using the cloud of points that is collected, related points such as those that 

reflect solely off of the forest canopy can be grouped.  From these groups of points, neighbouring 

points can be used to create surface models including raster models and triangulated irregular 

networks (TINs).     

Among the surfaces that can be modelled, digital elevation models (DEMs) of the bare 

earth surface and canopy height models (CHMs) of the forest canopy are common products.  

Treitz et al. (2012) were able to accurately estimate a variety of forest properties including 

average stand height, top height, DBH, basal area, density, gross total volume, gross 

merchantable volume, and biomass using a 20 m × 20 m resolution raster model.  In addition to 

tree characteristics, gap characteristics have also been estimated for a variety of forest types using 

LiDAR scans.  To estimate canopy gaps in a forest stand, a CHM can be used.  By correcting 

each pixel within the raster for local topography by subtracting the DEM surface elevation from 

the orthometric scan height determined during the LiDAR scan a height above ground level 

(a.g.l.) can be assigned.  Pixels can then be classified as part of the canopy or as gaps by 

comparing the a.g.l. height to a gap/canopy threshold value that is determined by a gap definition.  

Using these models, proportions of gap and canopy pixels can be calculated, and groups of like 

pixels can be used to determine the dimensions of individual gaps. Among prior studies, 

Koukoulas and Blackburn (2004) investigated the use of LiDAR to extract gap features in oak 

forests in England.  Vepakomma et al. (2008) used multi-temporal LiDAR data to identify gaps 

and estimate changes over time for boreal forests in Quebec, Canada.  Gaulton and Malthus 

(2010) compared estimates from raster CHMs to estimates directly interpreted from the point 

cloud.  Vehmas et al. (2011) used LiDAR to detect gaps in Finnish boreal forests and determine 

understory characteristics based on the hits found within the LiDAR gaps. 

In this chapter previous studies are built upon by using LiDAR to estimate gap 

dimensions for two pure aspen and two mixed white spruce polygons in the boreal forests of 

Alberta, Canada.  A gap definition is developed that includes forest volume as a key criterion.  

LiDAR scans are used to develop CHMs and then using this volume based definition these 



[8] 
 

models are used to estimate the total gap area and the distribution of gaps by area for each 

polygon.  Predictive models are presented that use LiDAR gap areas to estimate expanded gap 

area.  This chapter concludes by discussing the issues relating to the use of these methods and its 

significance. 

 

2.2 Methods 
2.2.1 Study Area and Research Polygons 
 

 Research was conducted in the Weyerhaeuser Grande Prairie forest management area 

(FMA).  The southern portion of this FMA is approximately 60 km south of Grande Prairie, 

Alberta and consists of approximately 225,000 hectares of boreal mixedwood forest (Figure 2.1).  

In 2006, Tansanu (2007) conducted a study on forest fragmentation which attempted to link yield 

to canopy cover.  The initial study selected twelve aspen (Populus tremuloides Michx.) and ten 

white spruce (Picea glauca (Moench) Voss) Alberta Vegetation Inventory (AVI) polygons.  

These polygons were further stratified into 10% canopy cover classes using photo interpretation.  

Each stratum was intensively sampled using temporary sample plots.  From these 22 polygons, 

two aspen and two white spruce polygons were selected that had good access, had current aerial 

photography, and recent LiDAR point cloud data.  The polygon names and locations, using both 

latitude and longitude coordinates and the Alberta Township System are presented in Table 2.1.  

For all polygons the final three digits of the AVI GISLink number corresponds to Tansanu’s 

polygon numbers, with the exception of polygon number 411 which had a GISLink number of 

6566412. 
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Figure 2.1: Location of the Weyerhaeuser Grande Prairie Forest Management Area within Alberta, Canada. 

 
Table 2.1: Latitude and longitude coordinates for the centroids, and Alberta Township System locations of the 

Alberta Vegetation Inventory polygons used in this study. 

Polygon 

GISLink # 

Leading 

Species 
Latitude Longitude 

Alberta Township System Legal Land Description 

(Legal Sub. - Sec. - Twp. - Rge. - Meridian) 

6796103 Aspen N54.7667 W119.3143 3 – 04 – 67 – 09 - W6 

6866289 Aspen N54.8712 W119.1494 8 – 09 – 68 – 08 - W6 

6566412 White Spruce N54.6408 W118.8840 9 – 19 – 65 – 06 - W6 

64106639 White Spruce N54.6527 W118.7575 8 – 25 – 64 – 10 - W6 

 

2.2.1.1 Aspen Polygon Characteristics 
 

 The initial selection criteria used by Tansanu (2007) for aspen polygons was based on the 

following photo interpreted (AVI) criteria: pure aspen polygons (>80% of the stand canopy cover 

is aspen or balsam poplar), C density (51 – 70% total canopy cover), stand heights between 19 

and 23 meters and a minimum polygon size of 10 hectares.  In this study, Polygon 6796103 had a 

mesic moisture class, C density canopy cover, a stand height of 20 meters, a species composition 

of 80% aspen and 20% balsam poplar (Populus balsamifera L.) by canopy cover, a stand origin 

of 1920, and a timber productivity rating of medium.  Polygon 6886289 had a mesic moisture 

class, a stand height of 22 meters, C density canopy cover, a species composition of 100% aspen, 
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a stand origin of 1910 and a timber productivity rating of medium.  The original AVI 

classification type call, the weighted photo interpreted canopy cover percentage based on the 10% 

canopy cover classes described in Section 2.2.1, and the mean height (m), percent species 

composition based on volume and breast height age (years) from the temporary sample plot (TSP) 

cruise results for the selected stands are presented in Table 2.2 (Tansanu, 2007). 

 

Table 2.2: The Alberta Vegetation Inventory and field sampled (TSP) polygon characteristics (height (m), 

species composition (%), and breast height age (years)) for the two sampled aspen polygons. 

 Polygon 6796103 Polygon 6866289 

AVI Classification mC20Aw8Pb2 20-M mC22Aw10 10-M 

Weighted Percent Canopy Cover based on air photos 70% 62% 

Height (m) (TSP) 24.2 25.7 

 Percent Species Composition by Volume (TSP) Aw 70%,  Pb 30% Aw 100% 

Breast Height Age (years) (TSP) 87 97 

 

2.2.1.2 White Spruce Polygon Characteristics 
 

 The initial selection criteria used by Tansanu (2007) for white spruce polygons was based 

on the following photo interpreted (AVI) criteria: white spruce dominant (>60% of stand 

composition by canopy cover), C density (51 – 70% of total canopy cover), stand heights between 

19 and 27 meters and a minimum polygon size of 10 hectares.  White spruce dominant stands 

were selected, because pure white spruce polygons (>80% of composition by canopy cover) were 

unavailable.  Polygon 6566412 had a mesic moisture class, C density canopy cover, a stand 

height of 19 meters, a species composition of 70% white spruce, 10 percent lodgepole pine (Pinus 

contorta Dougl. ex Loud. var. latifolia Engelm.), 10 percent balsam fir  (Abies balsamsea (L.) 

Mill.) and 10 percent aspen by canopy cover, a stand origin of 1910 and a timber productivity 

rating of medium.  Polygon 64106639 had a mesic moisture class, C density canopy cover, a 

stand height of 22 meters, a species composition of 70% white spruce and 30% lodgepole pine by 

canopy cover, a stand origin of 1900 and a timber productivity rating of medium.  The original 

AVI classification type call, the weighted photo interpreted canopy cover percentage based on the 

10% canopy cover classes described in Section 2.2.1, and the mean height (m), percent species 

composition based on volume and breast height age (years) from the temporary sample plot (TSP) 

cruise results for the selected polygons are presented in Table 2.3 (Tansanu, 2007).   
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Table 2.3 The Alberta Vegetation Inventory and field sampled (TSP) polygon characteristics (height (m), species 

composition (%), and breast height age (years)) for the two sampled white spruce polygons. 

 Polygon 6566412 Polygon 64106639 

AVI Classification mC19Sw7Pl1Fb1Aw1 10-M mC22Sw7Pl3 00-M 

Weighted Percent Canopy Cover Based on Air Photos 68% 54% 

Height (m) (TSP) 18.1 22.7 

Percent Species Composition by Volume (TSP) Sw 70%, Pl 10%, Fb 10%, Pb 10% Pl 50%, Sw 40%, Fb 10% 

Breast Height Age (years) (TSP) 47 111 

 

2.2.2 LiDAR Data 

 

 LiDAR point cloud data was acquired through the Resource Information Management 

Branch (RIMB) of the Alberta Ministry of Environment and Sustainable Resource Development 

(AESRD).  This LiDAR dataset was collected over a four year period.  The mean return density 

varied between the polygons, ranging between 1.25 hits/m2 and 2.05 hits/m2 across the four 

polygons.  For the deciduous polygons, the flight for Polygon 6796193 occurred during October 

2005 while the flight for Polygon 6886289 occurred during July 2007, meaning there is a 

difference in seasonality between these polygons.  For the individual polygons, flight 

specifications and point cloud statistics are shown in Table 2.4.   

 

Table 2.4: LiDAR flight data for the polygons used in this study. 

 Polygon 

6566412 

Polygon 

6796103 

Polygon 

64106639 

Polygon 

6886289 

Cover Type White Spruce Aspen White Spruce Aspen 

Flight Date October 2003 October 2005 August 2006 July 2007 

LiDAR Scanner Make and Model Optech Altm 

3100 

Optech Altm 

3100 

Optech Altm 

3100 

Optech Altm 

3100 

Average Flight Altitude 990 1300 1250 1200 

Pulse Rate * 50 KHz 50 KHz 50 KHz 

Scan Angle * 25 Degrees 25 Degrees 25 Degrees 

Flight Line Spacing * ~500 meters ~500 meters ~500 meters 

% Flight Line Overlap * 50% 50% 50% 

Planned Pulse Sample Spacing * 0.5 to 0.6 hits 0.5 to 0.6 hits 0.5 to 0.6 hits 

Mean Return Density (hits/m2) 1.25 1.84 1.45 2.05 

Standard Deviation of return density 0.44 0.52 0.64 0.69 

Minimum Return Density 0.04 0.04 0.04 0.04 

Maximum Return Density 2.72 4.72 4.80 5.24 

Percentage of Data with return density 

between 1 and 3 hits/m2 

72.52 94.11 73.95 85.79 

* This information was unavailable. 

 

2.2.3 Analysis Methods 

2.2.3.1 Differentiating Gaps from Canopy Cover 
 

Raw LiDAR data was acquired as tiles spanning approximately 2.1 km × 2.4 km (500 ha) 

and was processed using the Fusion/LDV software package (McGaughey, 2014).  When the 

coverage for a polygon consisted of multiple tiles, the tiles were processed to create a single 
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seamless coverage.  The data were scanned using the “Catalog” script and checked visually for 

point cloud outliers, mainly for extreme height values.  A digital elevation model (DEM) 

depicting the bare earth features was created using the “GroundFilter” and “GridSurfaceCreate” 

scripts.  The “GroundFilter” was completed using 6 iterations and a 5 m × 5 m cell size.  These 

parameters were used as it resulted in smoother surface interpretations than the default parameters 

when visually inspected.  The “GridSurfaceCreate” was also completed using a 5 m × 5 m cell 

size and the “/minimum” switch was used so that the lowest point within the pixel was used to 

determine the surface elevation.   

The points not classified as ground points were then corrected to the DEM to create a 

canopy height model (CHM) using the “CanopyModel” script (Appendices 1 and 2).  The cell 

size for the CHM was set at 3 m × 3 m and the “/ground” switch was used so that the CHM 

would display the above ground level height values.  Using this script, the maximum height 

within each pixel is used to classify the height.  This removes bias towards underestimating the 

true pixel height (Naesset, 1997).  The CHM was then converted to an ASCII raster file using the 

“DTM2ASCII” script prior to it being imported to ArcGIS 10.1 (ESRI, Redlands, California).  

Examples of the Fusion/LDV batch scripts used to create the DEMs and CHMs are presented in 

Appendix 2.1. 

In ArcGIS 10.1, the CHM was clipped to the AVI polygon boundaries.  Each pixel within 

the clipped raster was then reclassified using the ArcGIS “reclassify” tool as a gap or canopy 

pixel using a species specific merchantable height threshold.  The merchantable heights of mature 

trees for both aspen and white spruce were predicted from height-diameter equations using a 

minimum stump diameter of 13 cm, which is a common pulpwood utilization standard for 

determining merchantable logs.  For the 13 cm utilization standard, a merchantable height of 

14.95 m was estimated for aspen and 12.07 m for white spruce.  All pixels with values equal or 

greater than this threshold were considered to be part of the merchantable canopy and pixels 

below this threshold were considered gaps in the canopy.  

Using the ArcGIS “raster to polygon” tool, groups of like pixels (gap or canopy) were 

then grouped based on pixel adjacency into simplified polygons to create a vector layer.  These 

vector layers became the base dataset used to discriminate the gap areas from the canopy areas.  

Vectors were used instead of rasters as it creates smooth edges of the CHM gap boundaries and 

simplifies complex groups of pixels in to single objects.  This conversion also allows for easier 

calculation of the areas of gaps or continuous canopy.  These gap vector polygons derived using 

the LiDAR point cloud data are referred to as LiDAR gaps.     
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2.2.3.2 GIS Analysis 
 

For each raster and vector CHM, the total polygon areas as well as the gap and canopy 

cover fractions within each polygon were calculated.  This was done to determine how converting 

LiDAR data from a point cloud to a raster CHM and then to a vector CHM affects the 

interpretation of the edges of each polygon and the gap and canopy fractions.  Additionally, a 

frequency distribution by gap area for each vector CHM was plotted in a histogram.  This was 

done to show that these distributions had similar inverse J-shaped distributions to those seen in 

transect sampling (Kneeshaw and Bergeron, 1998).  Gaps were categorized logarithmically as 

there were many small gaps and a few exceptionally large gaps in each polygon. 

 

2.2.3.3 Measuring Gap Extents 
 

With a focus on determining the relationship between LiDAR gap area and the area of 

gaps as they appear in the forest, a range of gaps were sampled in each of the AVI polygons.  

Gaps were stratified by area and then randomly selected within each stratum using the polygon 

numbers assigned in the creation of the vector CHM and a random number generator.  For the 

two aspen polygons 68 LiDAR gaps were selected; 35 gaps in polygon 6886289, and 33 in 

polygon 6796103 were randomly selected.  For the two spruce polygons 102 gaps were selected; 

38 gaps in polygon 6566412 and 64 in polygon 64106639.  Gaps with boundaries that extended 

beyond the AVI polygon boundaries were not included in the sample as it was too difficult to 

determine the actual AVI polygon boundaries in the field.    

The centroid of each gap polygon was converted to a latitude and longitude coordinate 

and used as a GPS waypoint so that each target gap could be located in the field.  Once located, 

the expanded gap for each of the selected LiDAR gaps was delineated (Runkle, 1982).  To do 

this, the boundaries of the LiDAR gaps were expanded to also include the area from the edge of 

the gap to the stems of the nearest canopy trees to obtain the expanded canopy gap area 

(Appendix C).  This approach was used as it overcomes the dynamic nature of gaps by reducing 

the subjectivity of the gap boundaries.  To mark the gap extents, stems were flagged along the 

gap boundary and these locations were then recorded as GPS waypoints using a mapping grade 

GPS (Trimble GeoXT 6000).  For each waypoint, 50 hits were recorded with the desired 

precision being between 1 and 2 meters when possible.  To ensure that waypoint collection had 

minimal interference from the aspen canopy, the collection was done during the leaf off stage.  

Seasonality had no effect on waypoint collection in the white spruce polygons. 
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 After data collection was completed, each waypoint was differentially corrected using the 

Cansel base station in Grande Prairie to improve the precision of each point location.  The 

corrected waypoints of the individual tree locations bordering the LiDAR gap were then used as 

vertices to create a vector layer of polygons representing the expanded gaps.  These expanded 

gaps were then overlaid on the original LiDAR gap layer (Appendix B).  Each expanded gap and 

its associated LiDAR gap were visually confirmed in ArcGIS 10.1.  In some cases, the expanded 

gap boundaries included more than one LiDAR gap.  This occurred in cases where it was difficult 

to determine the gap boundaries in the field, or when the conversion from raster CHM to vector 

layer resulted in the creation of multiple polygons for a single expanded gap.  To account for this, 

multiple LiDAR gaps were only considered to be associated with the expanded gap measured if 

the LiDAR gap centroids were contained within the expanded gap polygon.  Once expanded gaps 

and the associated LiDAR gaps had been confirmed, expanded gap area and the total LiDAR gap 

area for each measured gap was calculated 

 

2.2.3.4 Scatter Plots and Regression Analysis 
 

The expanded gap areas measured in the field were plotted against the LiDAR gap areas 

from the vector models to graphically illustrate the relationship between the expanded gaps and 

the LiDAR gaps.  The nature and strength of the relationship was then explored using linear and 

non-linear regression.  Data analysis was completed using SAS 9.4 (SAS Institute, Cary N.C).  

Two models were fit for each polygon, a simple linear model (2.1) and a curvilinear power 

function (2.2).  The model forms are: 

 𝑌 = 𝑎 + 𝑏𝑥 (2.1) 

 𝑌 = 𝑎 +  𝑏𝑥𝑐 (2.2) 

 

where (𝑌) is the expanded gap in m2, (𝑥) is the LiDAR gap area in m2, and (𝑎), (𝑏) and (𝑐) are 

estimated coefficients.  In the linear model (𝑎)  represents the y-intercept, a constant that 

represents the size of an expanded gap when the LiDAR gap size is 0.  This value is related to the 

minimum area required to host a merchantable tree within each polygon.  The second coefficient 

(𝑏)  affects the slope of the curve and depicts the rate of change between LiDAR gap and 

expanded gap.  In the power function (𝑎) represents the y-intercept, which has the same effect on 

the function as it does on the linear function.  The second coefficient (𝑏) is a scaling factor that 

moves the function up or down depending on the value of (𝑥𝑐).  The exponent (𝑐) determines the 

rate of growth or decay for the function and the shape of the function.   
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For each model, the Y-intercept values were set based on estimates of tree crown area 

(7.11 m2 for Polygon 6796103, 6.93 m2 for Polygon 6886289, and 6.75 m2 for the spruce 

polygons).  The methods for determining these values are discussed in detail in Chapter 3.  For 

both model types, the 1:1 line indicates that the expanded gap is the same size as the LiDAR gap.  

To evaluate the fit of the models I compared R2 values, with higher values indicating a better fit; 

and RMSE, with lower values indicating a better fit. 

 

2.3 Results 

2.3.1 Aspen Polygons 

2.3.1.1 GIS Analysis 
 

For polygon 6796103, the estimated total area for the polygon is 65.49 hectares based on 

the AVI.  The clipping of the LiDAR point cloud to these boundaries followed by the conversion 

to a raster CHM resulted in no change to the polygon area.  The conversion from raster CHM to 

vector CHM then decreased the polygon area by 0.05 hectares resulting in a final area loss from 

the original AVI area by 0.05 hectares (0.07%).  The conversion from raster CHM to vector CHM 

also resulted in changes to the amounts of area classified as gaps or canopy.  The raster CHM had 

a total gap area of 22.96 ha and a total canopy area of 42.52 ha, while the vector CHM had a total 

gap area of 21.87 ha and a total canopy area of 43.57 ha, a change in area between the two 

models of 1.7%.        

 For polygon 6886289, the estimated total area is 27.56 hectares based on the AVI.  The 

clipping of the point cloud to these boundaries followed by the conversion to a raster CHM 

resulted in an increase in polygon area by 0.1 ha (0.04%).  The conversion from raster CHM to 

vector CHM decreased the polygon area to 27.54 hectares resulting in a final area loss of 

approximately 0.02 hectares (0.07%).  The conversion from raster CHM to vector CHM also 

resulted in changes to the amounts of area classified as gaps or canopy.  The raster CHM had a 

total gap area of 3.85 ha and a total canopy area of 23.72 ha, while the vector CHM had a total 

gap area of 3.61 ha and a total canopy area of 23.93 ha, a change in area between the two models 

of 0.9%.  The results of the area comparisons for both polygons are shown in Table 2.5. 

 

Table 2.5: Comparisons of the total polygon area and gap/canopy fractions for the aspen polygons between the 

Alberta Vegetation Inventory, raster canopy height model (3 m × 3 m cell size and vector canopy height model 

areas. 

Polygon 

Number 

AVI CHM Raster Model CHM Vector Model 

Polygon 

Area (ha) 

Polygon 

Area (ha) 

Gap  

Area (ha) 

Canopy  

Area (ha) 

Polygon  

Area (ha) 

Gap  

Area (ha) 

Canopy  

Area (ha) 

6796103 65.49 65.49 22.96 (35.1%) 42.52 (64.9%) 65.44 21.87 (33.4%) 43.57 (66.6%) 

6886289 27.56 27.57 3.85 (14.0%) 23.72 (86.0%) 27.54 3.61 (13.1%) 23.92 (86.9%) 
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With the creation of the vector CHM model from the 3 m × 3 m cell size raster models, 

descriptive statistics were calculated for the gap areas in both polygons (Table 2.6).  For each 

polygon the frequency of gap sizes was plotted in a histogram (Figure 2.2 for Polygon 6796103 

and Figure 2.3 for Polygon 6886289).  The frequency distributions show an exponential decrease 

as LiDAR gap size increases.  There are a high number of small gaps within each polygon and as 

the area increases the counts decrease.  In both polygons there were a few exceptionally large 

gaps which are attributed to either anthropogenic disturbance (a well site in Polygon 6796103 and 

a cut line in Polygon 6886289) or to large areas within the polygon that were sparsely treed. 

 

Table 2.6: Descriptive statistics of the gap areas for the aspen polygons in this study. 

Polygon 

Number 

Gap Count Mean Gap 

Area (m
2
) 

Standard 

Deviation 

Minimum Gap 

Area (m
2
) 

Maximum Gap 

Area (m
2
) 

6796103 3690 59.26 511.53 5.76 23991.00 

6886289 612 59.04 450.89 5.76 10639.77 
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Figure 2.2: Frequency distribution of LiDAR gap sizes for Polygon 6796103. 

 

  

 

Figure 2.3: Frequency distribution of LiDAR gap sizes for Polygon 6886289. 
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2.3.1.2 Gap Extents 
 

For each vector model of the CHM, estimated LiDAR gap areas were plotted against the 

corresponding expanded gap area measured in the field.  Linear and power function models were 

then fit for each polygon using SAS 9.4.     

For polygon 6796103, the linear model (2.3) was statistically significant (p<0.001, 

R2=0.894, RMSE=116.88, n=33). The non-linear model (2.4) was also significant (p<0.001, 

R2=0.949, RMSE=81.92, n=33).  The models for this relationship are: 

 𝑌 = 7.11 + 1.974𝑥 (2.3) 

 𝑌 = 7.11 + 21.613𝑥0.567 (2.4) 

 

where (𝑌) is the estimated area of the expanded gap and (𝑥) is the area of the LiDAR gap.  For 

the linear model, the 95% confidence interval for the slope is 1.72 to 2.22.  For the power 

function, the 95% confidence intervals are: 7.046 to 36.181 for the coefficient and 0.441 to 0.693 

for the exponent. 

For polygon 6886289, the linear model (2.5) was statistically significant (p<0.001, 

R2=0.832, RMSE=202.24, n=35). The non-linear model (2.6) was also significant (p<0.001, 

R2=0.944, RMSE= 118.40, n=35). The models for this relationship are: 

 𝑌 = 6.93 + 3.379𝑥 (2.5) 

 𝑌 = 6.93 + 45.711𝑥0.524 (2.6) 

 

where (𝑌) is the estimated area of the expanded gap and (𝑥) is the area of the LiDAR gap.  For 

the linear model, the 95% confidence interval for the slope is 2.84 to 3.92.  For the power 

function, the 95% confidence intervals are: 24.017 to 67.404 for the coefficient and 0.431 to 

0.618 for the exponent. 

With the confidence intervals of the slopes for the two linear models not overlapping, the 

two models are significantly different; therefore pooling the data to create an aggregate model 

was not justified.  For the power functions the confidence intervals between the two models 

overlap for both terms, however there is clear differentiation between the populations based on 

the seasonality of the LiDAR scans that does not advocate for pooling the data.  When comparing 

the linear models and the power functions, the power function is a better representation of the 

relationship between LiDAR gaps and expanded gaps.  This determination is based on the higher 

R2 values and lower RMSE fit statistics for the dataset.  A scatterplot of the linear and non-linear 

models are presented in Figure 2.4 and Figure 2.5.   
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Figure 2.4: Relationship between LiDAR gap area and expanded gap area for aspen polygons using linear 

models.  The models used for these relationships are Y= a + bX. 

 

Figure 2.5: Relationships between LiDAR gap area and expanded gap area for aspen polygons using power 

function models.  The models used for these relationships are Y= a + bX
c
.  

𝑌 = 7.11 + 1.974𝑥 

𝑌 = 6.93 + 3.379𝑥 

1:1 

1:1 

𝑌 = 6.93 + 45.711𝑥0.524 

𝑌 = 7.11 + 21.613𝑥0.567 
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2.3.2 White Spruce Polygons 

2.3.2.1 GIS Analysis 
 

For polygon 6566412, the estimated total area is 12.86 hectares based on the AVI.  The 

clipping of the point cloud to these boundaries followed by the conversion to a raster CHM 

resulted in no change to the polygon area.  The conversion from raster CHM to vector CHM 

decreased the polygon area to 12.85 hectares resulting in an area loss of approximately 0.1 

hectares (0.08%).  The conversion from raster CHM to vector CHM also resulted in changes to 

the amounts of area classified as gaps or canopy.  The raster CHM had 6.20 ha of gap area and 

6.66 ha of canopy area, while the vector CHM had 6.06 ha of gap area and 6.79 ha of canopy 

area, a change of 1.09%. 

 For Polygon 64106639, the estimated total area is 51.53 hectares based on the AVI.  The 

clipping of the point cloud to these boundaries followed by the conversion to a raster CHM 

resulted in a loss of 0.04 hectares (0.08%) to the area of the polygon.  Part of this change can be 

attributed to the 11 pixels (99 m2, 0.02%) in the raster CHM classified as “no data” pixels, due to 

a lack of point cloud hits within the pixel area.  The conversion from raster CHM to vector CHM 

decreased the polygon area to 51.44 hectares resulting in a final area loss of approximately 0.05 

hectares (0.10%).  The conversion from raster CHM to vector CHM also resulted in changes to 

the amounts of area classified as gaps or canopy.  The raster CHM had 15.40 ha of gap area and 

36.09 ha of canopy area, while the vector CHM had 14.50 ha of gap area and 36.94 ha of canopy 

area, a change of 1.7%.  These results are shown in Table 2.7 

 
Table 2.7: Comparisons of the total polygon area and gap/canopy fractions for the white spruce polygons 

between the Alberta Vegetation Inventory, raster canopy height model (3 m × 3 m cell size ), and vector canopy 

height model areas. 

Polygon 

Number 

AVI CHM Raster Model CHM Vector Model 

Polygon 

Area (ha) 

Polygon  

Area (ha) 

Gap  

Area (ha) 

Canopy  

Area (ha) 

Polygon  

Area (ha) 

Gap  

Area (ha) 

Canopy  

Area (ha) 

6566412 12.86 12.86 6.20 (48.2%) 6.66 (51.8%) 12.85 6.06 (47.2%) 6.79 (52.8%) 

64106639 51.53 51.49 15.40 (29.9%) 36.09 (70.1%) 51.44 14.50 (28.2%) 36.94 (71.8%) 

 

With the creation of the vector CHM from the 3 m × 3 m cell size raster model, 

descriptive statistics were calculated for the gap areas in both polygons (Table 2.8).  For each 

polygon, the frequency of gap sizes was in a histogram (Figure 2.6 for Polygon 6566412 and 

Figure 2.7 for Polygon 64106639).  The distributions of gap areas are similar to the distributions 

shown in the aspen polygons.  In Polygon 6566412, the largest gap is attributed to anthropogenic 

disturbance (a road) within the polygon.  With many gaps bordering the road corridor, this gap 

was much larger than the estimated 1.3 hectares that could be attributed to just the road.  
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Figure 2.6: Frequency distributions of LiDAR gap sizes for polygon 6566412. 

 

 
Figure 2.7: Frequency distribution of LiDAR gap sizes for polygon 64106639. 
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Table 2.8: Descriptive statistics of the gap areas for the white spruce polygons in this study. 

Polygon 

Number 

Gap Count Mean Gap 

Area (m
2
) 

Standard 

Deviation 

Minimum Gap 

Area (m
2
) 

Maximum Gap 

Area (m
2
) 

6566412 656 92.39 1527.26 5.76 39075.49 

64106639 2570 56.53 244.10 5.76 5678.53 

 

2.3.2.2 Gap Extents 
 

For each vector model of the CHM, estimated LiDAR gap areas were plotted against the 

corresponding expanded gap area measured in the field.  Linear and power function models were 

then fit for each polygon using SAS 9.4 

For polygon 6566412, the linear model (2.7) was statistically significant (p<0.001, 

R2=0.826, RMSE=54.94, n=33).  The non-linear model (2.8) was also significant (p<0.001, 

R2=0.912, RMSE=39.79, n=33).  The models for this relationship are: 

 𝑌 = 6.75 + 0.883𝑥 (2.7) 

 𝑌 = 6.75 + 12.944𝑥0.499 (2.8) 

 

where (𝑌) is the estimated area of the expanded gap and (𝑥) is the area of the LiDAR gap.  For 

the linear model, the 95% confidence interval for the slope is 0.73 to 1.04.  For the power 

function, the 95% confidence intervals are: 3.786 to 22.101 for the coefficient and 0.359 to 0.639 

for the exponent. 

For polygon 64106639, the linear model (2.9) was statistically significant (p<0.001, 

R
2
=0.850, RMSE=109.66, n=65).  The non-linear model (2.10) was also significant (p<0.001, 

R2=0.913, RMSE=84.08, n=65).  The models for this relationship are: 

 𝑌 = 6.75 + 1.230𝑥 (2.9) 

 𝑌 = 6.75 +15.183𝑥0.587 (2.10) 

 

where (𝑌) is the estimated area of the expanded gap and (𝑥) is the area of the LiDAR gap.  For 

the linear model, the 95% confidence interval for the slope is 1.10 to 1.36.  For the power 

function, the 95% confidence intervals are 7.970 to 22.395 for the coefficient and 0.505 to 0.669 

for the exponent.    

With the confidence intervals of the two models not overlapping, the linear models are 

significantly different from one another; therefore the pooling of the data to create an aggregate 

model was not justified.  For the power functions, the confidence intervals between the two 

models overlap for both terms.  When comparing the linear models and the power functions the 

power function is a better representation of the relationship between LiDAR gaps and expanded 

gaps.  This determination is based on the R2 and RMSE fit statistics for the dataset.  A scatterplot 

of the linear and non-linear models are presented in Figure 2.8 and Figure 2.9. 
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Figure 2.8: Relationships between LiDAR gap area and expanded gap area for white spruce polygons using 

linear models.  The models used for these relationships are Y= a + bX. 

 

Figure 2.9: Relationships between LiDAR gap area and expanded gap area for white spruce polygons using 

power function models.  The models used for these relationships are Y= a + bX
c
. 

𝑌 = 6.75 + 1.230𝑥 

𝑌 = 6.75 + 0.883𝑥 

1:1 

𝑌 = 6.75 + 15.183𝑥0.587 

𝑌 = 6.75 + 12.944𝑥0.499 

1:1 
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2.4 Discussion 
2.4.1 GIS Analysis 
 

The LiDAR point cloud data that was used in this analysis had a hit density that averaged 

1.7 hits/m2 when weighted by polygon area.  At this hit density, clipping the point cloud using 

AVI polygon boundaries and then converting the point cloud to a raster CHM and then vector 

CHM produced area and cover estimates that were very close to those delineated through photo 

interpretation.  The differences in the total area estimates between AVI and the CHMs were small 

with none exceeding 0.08% of the total polygon area.  This high correspondence shows that the 

hits were spread evenly throughout each polygon so there were no pixels within the polygon that 

lacked hits and that discrepancies were concentrated along the boundaries of each polygon.   

When the polygons were initially selected for analysis, all had an AVI canopy cover class 

of C (50-70% canopy cover).  From the vector CHMs, the only polygon that had a canopy cover 

estimate outside of this range was Polygon 6886289, an aspen polygon, which was calculated to 

be 86.9% canopy cover.  With LiDAR interpretation being more objective than photo 

interpretation, discrepancies may be due to several issues.  These include the gap definition and 

pixel size used for LiDAR interpretation, the challenges of photo interpretation in some polygons 

(Tansanu, 2007), the differences between the time the aerial photos were taken and the LiDAR 

scans were conducted, and the effects of converting a raster to a vector model. 

The frequency distribution of gap sizes developed from the vectorized CHMs showed an 

inverse J-shaped distribution similar to those developed using traditional transect sampling.  The 

distribution developed from the CHMs showed that interstitial spaces and small treefall gaps 

under 100 m2 are ubiquitous throughout a polygon, with gaps of this size having a relative 

frequency of 92%, but making up only a small amount (7%) of the total polygon area.  In 

contrast, larger gaps from disturbance events have a relative frequency of 8% within each 

polygon, but make up 22% of the total polygon area.  This agreement of sampling distributions 

and population enumeration agrees with results obtained by Kneeshaw and Bergeron (1998) for 

aspen and conifer stands in Quebec. 

  

2.4.2 Gap Analysis 
 

With LiDAR gaps having dimensions that are not equal to the true canopy gap, the 

development of statistical models that relate LiDAR gaps to the expanded gap allows for better 

estimation of gap area in a polygon than LiDAR gaps alone would provide.  To accurately 

measure gaps in the field, it required a methodology that was objective, replicable and could 
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verify that the use of LiDAR gaps was an appropriate surrogate to field measurements.  To do 

this, the expanded gap concept presented by Runkle (1982) was used.  By expanding the gap 

measurements beyond the canopy gap to the nearest tree stems it was possible to objectively 

identify the vertices of the gaps, whereas measuring the canopy gap directly was less objective.  

Also with the time between gap formation and the LiDAR scans and the time between the LiDAR 

scans and the field measurements spreading across several years, the expanded gap removes the 

effects of recent dynamic changes on the gaps.  With the stems of the boundary trees being used 

as vertices, the expanded gap area would remain constant over time unless further disturbance or 

growth occurred.  By developing both linear models and power functions to describe the 

relationship, much of the variation present in the data sets can be explained. 

 In the aspen polygons, the slope values provided by the linear functions most likely 

reflect differences in phenological stages of the polygons when LiDAR was flown.  LiDAR was 

flown in October for Polygon 6796103 and July for Polygon 6886289.  In Polygon 6796103, the 

slope of approximately 3.4 represents leaf off polygon, while in Polygon 6886289 a slope of 2.0 

was determined for leaf on.  The non-linear power functions illustrate similar relationships 

between the LiDAR gaps and expanded gaps, and also show the differences between two 

polygons that were seen in the linear models.  The strength of using the power function over 

linear models is that as gap size increases, the difference between LiDAR gap area and expanded 

gap area tapers because the proportion of the total expanded gap area that would be measured 

underneath the crowns of the bordering trees becomes smaller than the area sensed by the 

LiDAR. 

In the white spruce polygons, the linear functions were also less effective than the power 

functions at explaining the relationship between LiDAR gaps and expanded gaps.  However, with 

the slope values of the linear functions being very close in value it shows that when phenology is 

not a factor that the relationships between LiDAR gaps and expanded gaps have similar 

trajectories across different polygons.  With the conical crown shapes of white spruce, the 

relationship between LiDAR gap and expanded gap is closer to a linear relationship than seen in 

the aspen models.  The narrower tree crowns and the lower and denser canopy also introduces 

error into the measurements as it is more difficult to collect GPS locations close to the stems of 

some trees.  This is seen in the measurements of Polygon 6566412, where both the linear and 

power function curves have values that are lower than the 1:1 relationship between LiDAR gaps 

and expanded gaps.  Further research is required to find methods that reduce the error seen when 

estimating expanded gap area in white spruce polygons.  
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2.4.3 Gap Definition 
 

The frequency distributions and predictive models created are strongly influenced by the 

gap and pixel size criteria selected prior to analysis of the point cloud and field measurements.  

With the focus of this thesis on investigating how LiDAR can be used to fully enumerate canopy 

gaps with forest volume as an objective, it required a gap definition which was consistent with 

historical definitions relating to the height of the regenerating canopy (e.g. Brokaw, 1982; Runkle 

1982), but also required a linkage to volume.  To determine merchantable height, a 13 cm stump 

diameter was used as it is a common standard for merchantable pulpwood.  From this stump 

diameter, a taper equation (Huang, 1994) was used to estimate tree heights.  The tree heights 

estimated based on this stump diameter were used as threshold heights that were consistent with 

traditional gap definitions that were determined using volume criteria.  By setting this 

merchantable height criterion as a threshold, all hits below the threshold were classified as being 

within gaps and all hits above as part of the forest canopy.  With the threshold being definitive, 

hits can be classified as part of a gap regardless of whether they reflect off of the ground or 

unmerchantable biomass (e.g. saplings, shrubs).   

 

2.4.4 LiDAR Biases 
 

The potential biases that result from using LiDAR are present because the randomness of 

the pulses rarely results in hits that contact the canopy maxima of individual trees.  If a raster is 

created to model the canopy surface and an arithmetic mean is used to estimate the canopy height 

for a pixel then the value will likely be an underestimate of the actual height (Naesset, 1997).  

Naesset suggests that if the maximum height within an individual pixel is used as the pixel height 

value and not an average then the estimate will be unbiased.  While this method was used to 

account for bias in this study, other methods such as adjusting the merchantable height using 

LiDAR point cloud information for the area around the point could be used to limit the effects of 

this bias.  If it is known how much the LiDAR is underestimating canopy height, then a polygon 

wide adjustment may also improve the canopy estimate.  However, when comparing models 

across different cover types or adjusting values to mixed stands, this may not be effective since 

the correction factor will likely differ between conifer, deciduous, and mixed stands.   

Using models other than rasters may also reduce biases.  By directly interpreting gap 

dimensions from the point cloud, Gaulton and Malthus (2010) were able to accurately interpret 

gap edges using high density LiDAR scans.  In this study, a raster method was chosen because it 

was a simpler surface than a TIN and with a simple canopy/gap surface being interpreted, the 
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texture of the surface was less important.  Due to the low density of hits in our LiDAR data, use 

of the point cloud directly to interpret the surface would be unlikely to improve models.  Using 

raster models instead of TINs or models created from point clouds also keeps the models simple 

to meet the objective of developing methods that are practical for forest planning using current 

technology and interpretable by all forest planners.   

 

2.4.5 Determining Pixel Size 
 

In choosing to use a raster model as a base for the CHM, the most important aspect is 

selecting an appropriate pixel size.  For a given hit density, it is important to find a pixel size that 

is big enough to allow for accurate estimates of canopy height.  At the same time, minimizing the 

number of pixels that have no hits, ensuring small gaps are not missed and ensuring that 

boundaries of the polygons are not over- or under-estimated to large extents are all 

considerations.  Overall, pixel size defines what gaps are seen in the model and this is directly 

relates to point cloud density.  With point cloud density being a major factor in determining the 

cost of the LiDAR scans, this also affects what pixel size is used.  Treitz et al. (2010) conducted a 

study using dense scans and then decimated them to determine how the scans perform at lower 

density.  Their results suggest that a scan density as low as 0.5 hits/m2 for a 20 m × 20 m pixel 

can provide effective results for collecting forest inventory data.  With scan densities in this study 

ranging between 1.25 and 2.05 hits/m2, it is sufficient for this study and by setting the raster pixel 

size to 3 m × 3 m, it was possible to identify gaps in the field that were delineated by the raster 

model.  A 3 m × 3 m pixel was chosen after visually assessing the canopy height models that 

were created with pixel sizes ranging from 2 m × 2 m to 10 m × 10 m.  At this pixel size, 

identifying small gaps within the polygon was possible and the creation of large, contiguous gaps 

throughout each polygon was minimized.  

 To find an appropriate balance for pixel size, stand conditions must be taken into 

consideration.  The selection of one deciduous polygon that was leaf on and one that was leaf off 

meant that there needed to be a balance that did not sacrifice precision in either case.  When a 

deciduous polygon is leaf on the gaps are distinct, while leaf off polygons have very little 

discernible expanded gap.  This is demonstrated in the linear regression models as the slope 

coefficient for Polygon 6886289, the leaf on polygon, is approximately 2.3 while in Polygon 

6796103, the leaf off polygon, the slope coefficient is approximately 1.5.  In leaf off polygons 

there are only stems and branches for the laser pulses to reflect off of, while in leaf on polygons 

the large amount of leaf biomass increases the reflective surface areas.  This creates more distinct 

boundaries between gaps than in leaf off polygons and may allow for smaller pixels to be used.  
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This means that in leaf off situations, a larger pixel may be required compared to leaf on 

conditions and if scans across multiple seasons are being used then a larger polygon is the best 

option to minimize the effects of seasonality.  Other stand characteristics, such as stand age and 

the presence or absence of more than one tree species, can also affect scans and affect which pixel 

sizes are the best options. 

 Another consideration that can affect the choice of pixel size are mixed stands of 

deciduous and conifer trees.  With aspen trees having distinct crowns that are widest at the top 

and spruce having a conical shape with the maximum width approximately 2/3rds of the total tree 

height (Sattler et al., 2014), LiDAR is more likely to underestimate spruce than aspen.  As a 

result, the use of larger pixels allows for better estimation of conifer heights as there are more hits 

per pixel to take the estimate from.  When taking estimates for mixed stands, larger pixels may be 

preferable so that the conifer portions are not underestimated but this is done at the expense of 

more accurate measurements within the deciduous portions of the polygon.  Overall, it is clear 

that pixel size is the most important issue in developing models of the forest canopy that consider 

gaps and that careful consideration of field conditions is required before developing models. 

With the selection of a pixel size that accurately models canopy gaps, the raster models 

were then converted to vectors which simplified the model from a series of pixels into gap and 

canopy polygons.  In doing this, gaps with dimensions that are more likely to appear in the forest 

were modelled.  This conversion also allowed simplifies analysis as polygon centroids could be 

used for field navigation and areas of larger gaps were easier to determine.  This conversion had 

the potential to add additional error to the LiDAR gap estimates as there was a conversion from 

point data to a raster and then a vector.  When the area of the original AVI polygons to the raster 

and the vector areas we compared, there was very little change to the extents of the polygons, 

with the maximum difference being 0.02 ha.  The conversions from raster to vector model created 

some discrepancies in the amount of canopy and gap area interpreted.  Between the four AVI 

polygons the maximum difference in gap or canopy area between the raster and vector models 

was 3.6% in Polygon 6796103, while others did not exceed 1%.  As the count of gaps increases 

the area discrepancy should be expected to increase as the amount of edge will increase and the 

smoothing of edges will result in loss of either gap or canopy area. Had the pixel resolutions been 

increased beyond 3 m × 3 m cell size then this would have resulted in more unclassified areas due 

to a lack of data, and likely reduced the ability of our models to predict field conditions. 
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2.5 Conclusions 
 

The results from this chapter show that it is possible to model the dimensions and spatial 

distribution of forest canopy gaps in the Canadian boreal forest using canopy height models to the 

same degree as other regions (e.g. Koukoulas and Blackburn, 2004; Vepakomma et al., 2008; 

Gaulton and Malthus, 2010; Vehmas et al., 2011).  Being able to completely enumerate gaps 

provides a variety of benefits including more accurate classification of canopy cover for forest 

inventory and the ability to monitor change to the forest canopy with the use of LiDAR scans 

over time.  Further research in the area of mature tree occupancy may allow for improvement of 

these models by altering the Y-intercept values and the use of other data, such as wet areas maps, 

may allow for further classification of individual gaps into temporary and persistent types. 
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Appendix 2.1.  Fusion/LDV Batch Scripts Used to Create DEMs and 

CHMs. 
 

The following scripts were used to develop the raster models used in this thesis.  Further 

documentation of these scripts is available in Fusion/LDV manual 

 

Polyclipdata /shape:field#,value Polyfile OutputFile DataFile  

Clips a .las file to the boundaries of an ESRI shapefile.  Where: “/shape:field#,value” 

refers to the specific polygon used to clip the data; “Polyfile” refers to the directory 

location of the ESRI .shp file; “OutputFile” refers to the output .las file created from this 

process; and “DataFile” refers to the .las file that is to be clipped. 

 

Catalog /image /index /coverage /intensity:area,min,max /density:area,min,max 

/firstdensity:25,1,3 /outlier datafile [catalogfile]  

Creates a Fusion catalog file which provides descriptive reports for LiDAR data sets.  

Where “/image” creates an image file for the .las file; “coverage” creates an image 

showing the data coverage for the .las file; “/intensity” creates an intensity image using 

the intensity values for the point cloud where area is designated pixel area for the image, 

while min and max set the range of intensity values used for the image color ramp. For 

images used in this thesis area was set to 2, min was set to 0 and max was set to 186; 

“/density” and “/firstdensity” create images showing the density of LiDAR hits across the 

landscape with /density using all hits and /firstdensity only using first hits.  Where area is 

the pixel area, and min and max set the color range for the optimal hit density.  For 

images used in this thesis, area was set to 25, min was set to 1 and max was set to 3; 

“/outlier” creates a report that can identify height outliers; datafile refers to the raw .las 

file being catalogued; and [catalogfile] refers to the name of the output file.  For this 

thesis catalogs were run for both the clipped .las file created from the “polyclipdata” 

script and for the group of unclipped .las files that intersect the target AVI polygon.  

 

Groundfilter /iterations:# /diagnostics outputfile cellsize datafile   

Filters the raw .las file using a filtering algorithm to create a .las of ground points.  Where 

“/iterations:#” refers to the number of iterations used to develop the file; “diagnostics” 

provides diagnostic information during the run about the intermediate files created; 

“outputfile” refers to the name of the output file created; “cellsize” refers to the pixel size 

used to create the intermediate products; and “datafile” refers to the individual .las file or 

a .txt file listing multiple .las files that are being filtered. 

 

GridSurfaceCreate /minimum surfacefile cellsize xyunits zunits coordsys zone horizdatum 

vertdatum datafile 

Creates a surface model from a .las file, most frequently a bare earth digital elevation 

model (DEM).  Where “/minimum” sets the minimum value within each pixel as the 

pixel elevation value; “surfacefile” refers to the output file that will be created from this 

script, which is in a .dtm format; cellsize refers to the pixel size of the product, which was 

set to 5 for this thesis; “xyunits and “zunits” refer to the units of the datafile which were 

both set to M for meters; “coordsys” refers to the coordinate system used which was set 

to 1 for UTM; “zone refers to the zone of the coordinate system which was 11; 

“horizdatum” and “vertdatum” refer to the horizontal and vertical datums that the datafile 

used which were set to 2 for NAD83 and 0 for unknown resepectively ; and “datafile” 

refers to the raw .las files used to create the surface, which in this case are were created 

using the Groundfilter script. 
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CanopyModel /ground:file Surfacefile cellsize xyunits zunits coordsys zone horizdatum 

vertdatum datafile 

Creates a canopy surface model from a .las file.  Where “/ground:file” refers to the DEM 

created from the GridSurfaceCreate script, using this switch results in a product that has 

been corrected for elevation; “surfacefile” refers to the output file that will be created 

from this script which is in a .dtm format; cellsize refers to the pixel size of the product, 

which was set to 3 for this; “xyunits and “zunits” refer to the units of the datafile which 

were both set to M for meters; “coordsys” refers to the coordinate system used which was 

set to 1 for UTM; “zone refers to the zone of the coordinate system which was 11; 

“horizdatum” and “vertdatum” refer to the horizontal and vertical datums that the datafile 

used which were set to 2 for NAD83 and 0 for unknown resepectively ; and “datafile” 

refers to the raw .las files used to create the surface. 

 

DTM2ASCII  inputfile [outputfile] 

Converts .dtm files created by the GridSurfaceCreate and CanopyModel scripts into ascii 

files which can then be imported into ArcMap for further processing.  “inputfile” refers to 

the .dtm files created by either the GridSurfaceCreate or CanopyModel script; and 

“[outputfile]” refers to the name of the output file created, which by default is an .asc file. 
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Chapter 3: Estimation of Forest Volume Lost to Gaps and 

Reconciliation of These Estimates Against Sampled Volume 

Estimates. 
 

3.1 Introduction 
 

Gaps in the forest canopy represent areas that are not stocked with trees and therefore do 

not contribute to total forest volume.  In Alberta, MacIssac et al. (2006) attributed up to 29% of 

the area in regenerating aspen polygons to gaps, while Cumming et al. (2000) measured upwards 

of 16% gaps in mature aspen polygons.  In Chapter 2, complete enumeration of gaps through 

LiDAR analysis resulted in average gap percentages of 23% in aspen polygons and 38% in white 

spruce polygons.  With gap frequency varying by forest polygon and potentially affecting a large 

proportion of growing area, developing methods to account for the effects of gaps on polygon and 

landscape yields has the potential to improve short term yield estimates by adjusting yields to 

account for gaps and in long term forest planning by preventing overestimation of yield for future 

harvests. 

Traditional forest volume estimates have come from a combination of permanent sample 

plots (PSPs) and temporary sample plots (TSPs).  The establishment and repeated measurement 

of PSPs is used to develop growth curves for different forest strata.  In some instances, such as in 

Alberta, AESRD government PSPs are biased towards fully stocked areas (Alberta Land and 

Forest Service, 1994).  Data from these PSPs are used to estimate potential yield for a forest 

stratum and can be used to develop “normal” yield tables for a region.  Adjusting normal yield 

tables according to local stocking levels is one way to account for gaps within a polygon.  One 

issue with this approach is that a percent stocking adjustment is needed to use these normal yields 

in application.  Biased placement means that the PSPs assume that the sampled polygon is more 

fully stocked and more homogeneous than is truly the case.  In reality, forests in Alberta are 

heterogeneous polygons consisting of many biological stands (Tansanu, 2007).  The effect of PSP 

bias on volume estimates was investigated by Eriksson (1964) in Swedish forests.  In this study, 

volume estimates from PSP measurements were compared to whole stand volume estimates taken 

using randomly placed temporary sample plots.  The results showed that PSPs had yields 15% 

higher than whole stand estimates. 

In addition to PSPs, a random sample of TSPs is often used to estimate average stand 

volume.  With random placement, TSPs provide a sample that includes the natural variability 

seen on the landscape and accounts for both species variability and the presence of gaps when the 

sample size is adequate.  From this random sample,  TSP data can be used to estimate volume for 
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large forest polygons, or be stratified by local conditions to create cover type volume tables.  One 

weakness of TSP data is that a large sample is required to estimate volume, especially if there are 

a large number of strata, strata variability is high, or there is a large land base.  In Alberta, TSPs 

are also often limited to natural stands since older managed stands are unavailable to sample.  In 

these cases growth models are used to predict growth of these stands.  Additionally, while 

random sampling may be sufficient for planning, the results may still have confidence intervals 

too wide for other uses. 

 With the emergence of LiDAR as a forest inventory tool, the ability to completely 

enumerate gaps is now possible, providing an alternative to field sampling methods.  Through the 

creation of canopy height models, gaps can be enumerated and areas for each gap can be 

estimated (LiDAR gap area).  From these LiDAR gap areas, expanded gap areas can be estimated 

using the relationships developed in Chapter 2.  With LiDAR gap area being affected by tree 

crown overhang and seasonality (deciduous polygons); estimating the expanded gap (Runkle, 

1982) area can be based on the relationship between LiDAR gap area and expanded gap area.  

This provides a more consistent estimate of ground area available to host trees while LiDAR gap 

area can help determine if there is sufficient area amongst the tree crowns for an additional tree.  

With knowledge of the crown area and expanded occupancy for trees in fully stocked areas, we 

can classify gaps which are large enough to host trees as merchantable gaps, and gaps that are too 

small as interstitial space.   

 The difficulty is to determine how much area a tree needs within a stand.  With tree 

crowns showing plasticity, trees can respond to the opening of gaps by expanding their crowns 

into newly opened spaces.  Conversely, as crowns expand their growth and size may be limited 

by the expansion of neighbouring trees.  The actual area that trees need to grow varies by species, 

size, age and local growing conditions.  Therefore, determining this area should be done on a 

stand by stand basis.  When assessing the amount of area corresponding to a gap in the preceding 

chapter, we relied on the expanded gap (Runkle, 1982) to provide a consistent way of measuring 

the ground area associated to an opening in the canopy.  To determine how much area a single 

canopy tree needs to compete, an expanded occupancy measurement can be used in the same 

way.  By measuring trees in fully stocked areas, we can determine how much area canopy trees 

require and classify gaps of this size as merchantable gaps.   

For each merchantable gap, volume lost to the gap can be estimated.  The summation of 

the volume from all the gaps provides an estimate of total volume lost to gaps in a stand or 

polygon.  To ensure that these estimates are reasonable, estimates of volume for an entire polygon 

(average polygon yield) and for fully stocked areas within that polygon (potential or normal 
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yield) can be obtained through TSP measurements.  Since average polygon yields account for 

gaps, we can add the estimates of volume lost to gaps to the average polygon yields to produce an 

estimate of potential polygon yield.  This value can then be compared to our estimates of normal 

yield to help determine if our estimates are reasonable. 

The objectives of this chapter are to classify gaps defined in Chapter 2 using the vector 

CHM as merchantable gaps or interstitial space and to estimate the expanded occupancy area and 

crown area for trees in fully stocked areas of the polygon.  Using these measurements we will 

estimate how many trees and how much volume is potentially lost to merchantable gaps within 

each polygon and reconcile this volume loss against estimates of normal yield taken from TSPs in 

the fully stocked areas of a polygon.  The implications of our findings on yield will be discussed.   

 

3.2 Methods 
3.2.1 Expanded Occupancy Measurements 

 

To estimate the mean expanded occupancy area for dominant and codominant trees in 

each polygon, sampling was conducted in three of the four Alberta Vegetation Inventory (AVI) 

polygons analysed in Chapter 2.  The polygons sampled include the two aspen (Populus 

tremuloides Michx.) polygons (Polygons 6796103 and 6886289), and one white spruce (Picea 

glauca (Moench) Voss) polygon (Polygon 6566412).  Polygon 64106639 was not included in this 

part of the study, because there were not enough large patches of contiguous white spruce to 

allow for sampling.  In 2006, Tansanu sampled this polygon for volume using temporary sample 

plots (Tansanu, 2007).  Since those data were collected, parts of this polygon had been sanitized 

to limit the spread of mountain pine beetle (Dendroctonus ponderosae Hopkins) during the recent 

outbreak in Alberta.  This entailed cutting and burning lodgepole pine (Pinus contorta Dougl. ex 

Loud. var. latifolia Engelm.) infested with beetles.  Sanitation did not affect the amount of white 

spruce in this polygon; however the removal of pine resulted in a reduction of canopy cover 

throughout the polygon which increased the difficulty in finding patches where white spruce 

could be sampled for the purpose of estimating the expanded occupancy.  Sanitation did not affect 

gap delineation methods conducted in Chapter 2. 

For the three polygons in which sampling occurred, air photo interpretation was used to 

stratify each AVI polygon into fragments based on 10% canopy cover classes (Tansanu, 2007).  

Fragments were assigned a value between 0 (0% to 10% canopy cover) and 9 (91% to 100% 

canopy cover) with no minimum fragment area requirement.  The stratified fragment boundaries 

were imported into ArcGIS 10.1 (ESRI, Redlands, California) and used to delineate the AVI 

polygons.  Fragments classed as 6 or greater (60% to 100% canopy cover) were identified as 
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candidates for sampling.  Within each candidate fragment, a tie point was found near the 

fragment boundary and transects were overlaid starting at this point running parallel to the longest 

axis of the polygon.  At approximately 30 meter intervals along each transect, a tree was selected 

for sampling to determine expanded occupancy area for the leading tree species (aspen or white 

spruce).  A goal of 30 sampling points (individual expanded occupancy measurements) was set 

for each polygon.  Each point was located in the field, and concentric circles were used to find the 

nearest dominant or codominant canopy tree of the leading species (target tree).  For a target tree 

to be selected, it had to have a crown completely enclosed by other canopy trees (boundary trees) 

(Appendix D).  To ensure independence from other points the target tree also had to be within 15 

meters of the sampling point to ensure it did not share boundary trees with another target tree.  

For each target tree, the DBH was recorded and the target and boundary trees were mapped using 

a mapping grade GPS (Trimble GeoXT 6000) to record tree location.  A minimum of 50 hits were 

recorded at a desired precision between 1 and 2 meters for each recording.   If no tree met these 

criteria, then the point was rejected.   

After sampling was completed, the GPS points collected for each target and boundary 

tree were differentially corrected and used to create polygons in ArcGIS 10.1.  These polygons 

represented the expanded occupancy area for target trees.  From these polygons, descriptive 

statistics for each of the target trees and their associated expanded occupancy area were 

calculated.  For each AVI polygon, expanded occupancy areas were plotted against the DBH of 

the target trees.  Linear regression was then used to describe the relationship between DBH and 

expanded occupancy area.  These procedures were conducted using SAS 9.3 (SAS Institute, Cary, 

N.C.). 

 

3.2.2 Estimation of Canopy Area from Expanded Occupancy 
 

After calculating the mean expanded occupancy area for each polygon, the values were 

used to estimate tree canopy area.  Under the assumption that expanded occupancy polygons were 

circular, the radius of the circle for the mean expanded occupancy area was calculated.  With 

spacing between trees assumed to be equal throughout the polygon, this radius is equal to the 

distance between neighbouring tree stems.  Dividing this radius by two is used to represent the 

crown radii of both the target and boundary trees, assuming that the target and boundary trees 

have equal crown areas.  The estimate of the average target tree crown radius is then used to 

estimate the average tree crown area for individual trees within the polygon.  The mean tree 

crown radius and associated area represents the physical canopy area an individual tree requires 

to compete within a particular polygon.  This area also represents the minimum threshold value 
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that determines whether a LiDAR gap is large enough to host a tree or is simply interstitial space, 

an area too small to host a tree.  LiDAR gaps smaller than the threshold area should not be 

included in any volume reconciliation calculations.  This value is also used as a Y-intercept value 

for the predictive models generated in Chapter 2. 

 

3.2.3 Volume Reconciliation 
 

To reconcile the volume lost to gaps for each AVI polygon, the vector CHMs from 

Chapter 2 were used to generate a list of gaps which were sorted in descending order by area (the 

gap list). Using the gap lists, LiDAR gaps with areas smaller than the mean tree crown area were 

removed from the list.  This was done to remove gaps considered to be interstitial spaces within 

the polygon and not capable of hosting merchantable trees.  For the remaining LiDAR gaps, the 

power function models generated in Chapter 2 were used to estimate expanded gap area.  For all 

expanded gaps larger than 400 m2, the expanded gap area was set to equal the LiDAR gap area.  

This prevented the overestimation of expanded gap area as gaps larger than this size exceeded the 

range of values measured in the field to develop the models for estimating expanded gap size. 

The expanded gap area divided by the mean expanded occupancy area, rounded down to 

the nearest whole number represents an estimate of the number of mature trees that could be 

inserted into each gap. The volume of a merchantable tree was estimated using provincial taper 

equations (Huang, 1994) and the mean DBH calculated in Section 3.2.1.  Multiplying the number 

of trees lost to gaps by the estimated volume for each tree provides an estimate of lost volume for 

the polygon and an estimate of lost volume per hectare. 

 To determine whether this estimate of volume loss to gaps is reasonable, estimates of 

actual yield for each polygon are required.  Estimates of actual polygon volume for the entire 

polygon and for the individual fragments came from temporary sample plots (TSPs) measured by 

Tansanu (2007).  Estimates using TSPs across the entire polygon, weighted by fragment area, 

were considered to represent the average polygon volume.  To estimate the volume of a fully 

stocked or near fully stocked polygon, the weighted volume from the TSPs in the canopy cover 

fragments classed as 8 were used in the two aspen polygons.  With the highest canopy cover in 

the spruce polygon being classed as a 7, the TSPs in these fragments were used to estimate fully 

stocked volume in the spruce polygon.   

 Adding the volume per hectare lost to gaps to the average volume per hectare for the 

entire polygon provides an estimate of the potential volume per hectare for the polygon when no 

gaps are present.  This number can then be compared to the fully stocked volume from the high 

canopy cover fragments within the polygon. 
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3.3 Results 
3.3.1 Estimation of Expanded Occupancy 

3.3.1.1 Aspen Data 
 

For Polygon 6796103, 30 trees were selected using the systematic sampling grid.  The 

mean DBH was 27.6 cm with values ranging from 21.2 cm to 34.2 cm.  The mean expanded 

occupancy area surrounding each tree was 28.4 m2 with values ranging from 3.5 m2 to 84.0 m2.  

Descriptive statistics for the DBH and occupancy area for this polygon are presented in Table 3.2.  

The linear model relating DBH to occupancy area is represented by the following equation:  

 𝑌 = 38.041 − 0.348𝑥 (3.1) 

 

where (𝑌) is the estimated occupancy area in m2 and (𝑥) is the DBH of the tree in cm.  The 

relationship between DBH and expanded occupancy was not statistically significant (p = 0.697, 

R2 = 0.006, RMSE = 16.80). A scatterplot of these results is presented in Figure 3.1.   

For Polygon 6886289, 27 trees were selected using the systematic sampling grid.  The 

mean DBH was 26.1 cm with values ranging from 19.9 cm to 34.7 cm.  The mean expanded 

occupancy area was 27.7 m2 with values ranging from 5.1 m2 to 57.9 m2.  Descriptive statistics 

for the DBH and occupancy area for this polygon are presented in Table 3.1.  The linear model 

relating DBH to occupancy area is represented by the following equation:  

 𝑌 = −8.442 + 1.385𝑥 (3.2) 

 

where (𝑌) is the estimated occupancy area in m
2
 and (𝑥) is the DBH of the tree in cm.  The 

relationship between DBH and expanded occupancy area was statistically significant (p = 0.019, 

R2 = 0.202, RMSE = 12.49).  A scatterplot of these results is presented in Figure 3.2.   

 

3.3.1.2 White Spruce Data 
 

 For Polygon 6566412, 29 trees were selected using the systematic sampling grid.  The 

mean DBH was 22.1 cm with values ranging from 15.1 cm to 30.8 cm.  The mean expanded 

occupancy area was 27.0 m2 with values ranging from 4.3 m2 to 66.5 m2.  Descriptive statistics 

for the DBH and occupancy area for this polygon are presented in Table 3.3.  The linear model 

relating DBH to occupancy area is represented by the following equation:  

 𝑌 = 15.854 + 0.505𝑥 (3.3) 

 

where (𝑌) is the estimated occupancy area in m2 and (𝑥) is the DBH of the tree in cm.  The 

relationship between DBH and expanded occupancy area was not statistically significant (p = 

0.3927, R2 = 0.0272, RMSE = 13.60).   A scatterplot of these results is presented in Figure 3.3. 
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Table 3.1: Descriptive statistics (mean, variance, standard deviation and range) for DBH and expanded 

occupancy area data collected for Polygon 6796103 (n=30) 

 DBH (cm) Expanded Occupancy 

Area (m
2
) 

Mean 27.6 28.4 

Variance 12.4 274.0 

Standard Deviation 3.5 16.5 

Minimum 21.2 3.5 

Maximum 34.2 86.0 

 

 

 

Figure 3.1: Plot of DBH against expanded occupancy area for Polygon 6796103 (n=30). 
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Table 3.2: Descriptive statistics (mean, variance standard deviation and range) for DBH and expanded 

occupancy area data collected for Polygon 6886289 (n=27) 

 DBH 

(cm) 

Expanded Occupancy 

Area (m
2
) 

Mean 26.1 27.7 

Variance 19.8 188.1 

Standard Deviation 4.45 13.7 

Minimum 19.9 5.1 

Maximum 34.7 57.9 

 

 

 

Figure 3.2: Plot of DBH against expanded occupancy area for Polygon 6886289 (n=27). 
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Table 3.3: Descriptive statistics (mean, variance, standard deviation and range) for DBH and expanded 

occupancy data collected for Polygon 6566412 (n=29). 

 DBH 

(cm) 

Expanded Occupancy 

Area (m
2
) 

Mean 22.1 27.0 

Variance 19.5 183.4 

Standard Deviation 4.4 13.5 

Minimum 15.1 4.3 

Maximum 30.8 66.3 

 

 

 
Figure 3.3: Plot of DBH against expanded occupancy area for Polygon 6566412 (n=29). 
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3.3.2 Estimating Average Tree Crown Area and Crown Radius 

 

 The average tree crown area for individual trees found in fully stocked fragments is an 

estimate of the crown area required by a single tree of the same size and species to be competitive 

within that stand.  This area is estimated using the average expanded occupancy area by assuming 

crowns are circular and equally allocating crown to both the target tree and its neighbouring 

boundary trees.  Table 3.4 shows expanded occupancy area and the associated occupancy radius 

for the three polygons and the estimates of crown area and radius that were obtained from these 

numbers.  For Polygon 6796103, the average expanded occupancy area is 28.4 m2.  Assuming 

this area is circular, the expanded occupancy radius is 3.01 m.  Dividing this occupancy radius 

equally between target trees and boundary trees gives a target tree crown radius of 1.5 m.  The 

tree crown area of a circular crown with a radius of 1.5m is 7.1 m2.  In Polygon 6886289 tree 

crown area was estimated at 6.9 m2, and in Polygon 6566412 tree crown area was estimated at 6.8 

m2.  Since the crown area of these trees represents the minimum gap area that would be needed in 

the canopy to accommodate a mature tree, a LiDAR gap must be larger than this average tree 

crown area before it can be occupied by a merchantable tree.  To ensure our assumptions were 

reasonable, we compared our crown radii to estimates calculated using a published crown radius 

formula (Stadt et al., 2005) and the mean DBH calculated for each polygon.  Using Stadt et al.’s 

equations, the estimated crown radius for Polygon 6796103 was 2.4 m, Polygon 6886289 was 

estimated at 2.32 m, and Polygon 6566412 was estimated at 1.7 m (Data not shown).  Our results 

indicate that our tree crown radii are smaller than those predicted by Stadt et al. 

 

Table 3.4: Estimates of tree crown area and radius based on expanded occupancy area and radius calculated for 

the three research polygons analysed. 

Polygon 

Number 

Leading 

Species 

Expanded 

Occupancy Area (m
2
) 

Expanded Occupancy 

Radius (m) 

Tree Crown 

Radius (m) 

Tree Crown 

Area (m
2
) 

6796103 Aspen 28.4 3.0 1.5 7.1 

6886289 Aspen 27.7 3.0 1.5 6.9 

6566412 White Spruce 27.0 2.9 1.5 6.8 

 

3.3.3 Estimating Volume Lost to Canopy Gaps and Total Polygon Volume 

3.3.3.1 Aspen Data 
  

For Polygon 6796103, the total polygon area was 65.5 ha (Table 3.5).  An anthropogenic 

disturbance (a well site) was removed from the calculations bringing the net polygon area to 63.1 

ha.  Using the vector CHM created in Chapter 2, the total LiDAR gap area was calculated to be 

19.5 ha (30.9% of the total area).  All LiDAR gap areas smaller than the crown areas presented in 
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Table 3.4 were removed as they were considered interstitial space as canopy gaps of this size 

would be too small to host a canopy tree.  These gaps were removed from the gap list, leaving 

18.3 ha of merchantable LiDAR gap area.  Expanded gap area was estimated for the 

merchantable gaps using the non-linear model generated in Chapter 2 (Equation 2.4) that relates 

LiDAR gap area to expanded gap area.  The estimate of total expanded gap area from the 

merchantable LiDAR gaps was 39.2 ha.  For gaps larger than 400 m2, expanded gap area was set 

to be equal to the LiDAR gap area to prevent overestimation of expanded gap area.  For each 

merchantable gap, the expanded gap area was divided by mean expanded occupancy (28.4 m2) 

and rounded down to the nearest whole number.  This provides an estimate of 12881 trees lost to 

gaps.  Rounding down to the nearest whole tree prevents the inclusion of partial trees within 

individual gaps and explains the discrepancy when the total expanded gap area (39.1 ha) is 

divided by the mean expanded occupancy (28.4 m2) but does not equate to the expected 13762 

trees.   Multiplying the number of lost trees by the estimated volume per tree (0.6 m3) results in 

an estimate of 7728.6 m3 or 122.5 m3/ha of lost volume within the polygon.  Based on TSP 

volume estimates collected by Tansanu (2007), the average volume within the polygon is 301.4 

m3/ha.  Adding the estimate of lost volume (122.5 m3/ha) to Tansanu’s estimate of average 

polygon volume (301.4 m3/ha), we estimate a potential polygon volume of 423.9 m3/ha.  The 

average volume from TSPs found within the fragments of highest canopy cover within the 

polygon (classed as 8 or greater) was 358.6 m3/ha.  The difference between Tansanu’s fully 

stocked polygon volume (358.6 m3/ha) and the potential polygon volume (423.9 m3/ha) is 69.6 

m3/ha.  Considering the volume loss per hectare (122.5 m3/ha) and estimated potential polygon 

volume (423.9 m3/ha), the volume loss per hectare is estimated to be 28.9% for this polygon 

(Table 3.5). 

For Polygon 6886289, the total polygon area was 27.6 ha.  An anthropogenic disturbance 

(a cutline) was removed from the calculations bringing the net polygon area to 26.9 ha.  Using the 

vector CHM created in Chapter 2, the total LiDAR gap area was calculated to be 2.9 ha.  With 

gaps smaller than 6.9 m2 being too small to host a canopy tree, they were removed from the gap 

list, leaving 2.8 ha of merchantable LiDAR gap area.  Expanded gap area was estimated for the 

merchantable gaps using the non-linear model generated in Chapter 2 (Equation 2.6) that relates 

LiDAR gap area to expanded gap area.  The estimate of total expanded gap area from the 

merchantable LiDAR gaps was 10.7 ha.  For gaps larger than 400 m2, expanded gap area was set 

to be equal to the LiDAR gap area to prevent overestimation of expanded gap area.  For each 

merchantable gap, the expanded gap area was divided by mean expanded occupancy area (27.7 

m2) and rounded down to the nearest whole number.  This provides an estimate of 3722 trees lost 
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to gaps.  Rounding down to the nearest whole tree prevents the inclusion of partial trees and 

explains the discrepancy when the total expanded gap area (10.7 ha) is divided by the mean 

expanded occupancy area (27.7 m2) but does not equate to the expected 3861 trees.  Multiplying 

the number of lost trees by the estimated volume per tree (0.6 m3) results in an estimate of 2233.2 

m3 or 83.1 m3/ha of lost volume within the polygon.  Based on TSP volume estimates collected 

by Tansanu (2007), the average volume within the polygon was 371.0 m3/ha.  Adding the 

estimate of lost volume (83.1 m3/ha) to Tansanu’s estimate of average polygon volume (371.0 

m3/ha) we estimate a potential polygon volume of 454.1 m3/ha.  The average volume from the 

TSPs found within the fragments of highest canopy cover (classed as 8 or greater) was 427.7 

m3/ha.  The difference between Tansanu’s fully stocked polygon volume (427.7 m3/ha) and the 

potential polygon volume (454.1 m3/ha) is 26.4 m3/ha.  Considering the volume loss per hectare 

(83.1m3/ha) and the estimated potential polygon volume (454.1 m3/ha), the volume loss per 

hectare is estimated to be 18.3% for this polygon.  These results are presented in Table 3.6. 

 From these results, Polygon 6796103 has a relationship between merchantable LiDAR 

gap area (29.0%) and Volume Loss percentage (28.9%) of approximately 1:1.  This shows that 

for every percentage point of polygon area classified as merchantable LiDAR gap there will be a 

loss of potential volume of just under 1%.  For Polygon 6886289, the relationship between 

merchantable LiDAR gap area (10.2%) and Volume Loss percentage (18.3%) is 1:1.85.  This 

shows that for every percentage point of polygon area classified as merchantable LiDAR gap 

there will be a loss of potential volume of 1.9%.  These results are summarized in Table 3.6. 

  



[47] 
 

Table 3.5: Statistics for Polygons 6886289 and 6796103 relating to the reconciliation of LiDAR canopy height 

models to volume sampling data.  Polygon 6796103 has had a 2.4 ha anthropogenic disturbance (well site) 

removed from all area calculations and Polygon 6886289 had a 0.68 ha anthropogenic disturbance (cutline) 

removed from all area calculations. 

 

 Polygon 6796103 Polygon 6886289 

 

Total Polygon Area 65.5 27.6 

 

Total polygon Area with Anthropogenic disturbances removed 63.1 ha 26.9 ha 

 

Total LiDAR Gap Area 19.5 ha 2.9 ha (10.9%) 

 

Total LiDAR gap area estimate (merchantable gaps only) 18.3 ha 2.8 ha 

 

Expanded gap area estimate (merchantable gaps only) 39.2 ha (62.1%) 10.7 ha (39.8%) 

 

Mean Occupancy Area 28.4 m2 27.7 m2 

 

Number of trees lost to gaps  

(Expanded gap area/Mean Occupancy Area) 12881 trees 3722 trees 

 

Volume lost to gaps 

(Trees lost to Gaps *0.6 m3; where 1 tree = 0.6 m3 ) 7728.6 m3 2233.2 m3 

 

Volume loss per hectare 

(Volume Lost to Gaps/Total Polygon Area) 122.5 m3/ha 83.1 m3/ha 

 

Average Polygon Volume (TSP estimate) 301.4 m3/ha 371.0 m3/ha 

 

Fully Stocked Polygon Volume  

(TSP estimates from fragments CC >=8) 358.6 m3/ha 408.6 m3/ha 

 

Potential Polygon volume  

(Average Polygon Volume + Volume Loss per hectare) 423.9 m3/ha 454.1 m3/ha 

 

Difference between Potential Polygon Volume and Fully Stocked 

Polygon Volume 65.3 m3/ha 45.5 m3/ha 

 

Volume Loss Estimate 

(Volume Loss Per Hectare/Potential Polygon Volume) 28.9% 18.3% 

 

Table 3.6: The relationships between LiDAR gap area percentage and volume loss percentage for aspen 

Polygons 6796103 (leaf off) and 6886289 (leaf on). 

Polygon Merchantable 

LiDAR Gap Area 

Percentage (%) 

Volume Loss 

Percentage (%) 

LiDAR Gap Area % to Volume 

Loss % Ratio 

6796103 29.0 28.9% 1:1 

6886289 10.2% 18.3% 1:1.85 
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3.3.3.2 White Spruce Data 

 
 For Polygon 6566412, the total polygon area was 12.9 ha (Table 3.7).  An anthropogenic 

disturbance (a road) was removed from the calculations bringing the net polygon area to 11.7 ha.  

Using the vector CHM created in Chapter 2, the total LiDAR gap area was calculated to be 4.9 ha 

(41.7% of the total area).  With LiDAR gaps smaller than 6.8 m2 being too small to host a canopy 

tree, these gaps were removed from the gap list, leaving 4.7 ha of merchantable LiDAR gap area.  

Expanded gap area was estimated for the merchantable gaps using the non-linear model generated 

in Chapter 2 (Equation 2.8) that relates LiDAR gap area to expanded gap area.  The estimate of 

total expanded gap area was 5.9 ha.  For gaps larger than 400 m2, expanded gap area was set to be 

equal to the LiDAR gap area to prevent overestimation of expanded gap area.  Additionally, when 

the model predicted expanded gap area to be smaller than the LiDAR gap area, the expanded gap 

area was set to be equal to the LiDAR gap area.  For each merchantable gap, the expanded gap 

area was divided by mean expanded occupancy (27.0 m2) and rounded down to the nearest whole 

number.  This provides an estimate of 1985 trees lost to gaps.  Rounding down to the nearest 

whole tree prevents the inclusion of partial trees and explains the discrepancy when total 

expanded gap area (5.9 ha) is divided by expanded occupancy area (27.0 m2), but does not equal 

the expected 2196 trees.  Multiplying the number of lost trees by the estimated volume per tree 

(0.3 m3) results in an estimate of 595.5 m3 or 51.1 m3/ha of lost volume within the polygon.  

Based on TSP volume estimates collected by Tansanu (2007) the average volume within the 

polygon was 227.9 m3/ha.  Adding the estimate of lost volume (51.1 m3/ha) to Tansanu’s estimate 

of average polygon volume (227.9 m3/ha) we estimate a potential polygon volume of 279.0 

m3/ha.  The average volume from the TSPs found within the fragments of highest canopy cover 

(classed as 7) was 230.8 m3/ha.  The difference between Tansanu’s fully stocked polygon volume 

(230.8 m3/ha) and the potential polygon volume (279.0 m3/ha) was 48.2 m3/ha.  Considering the 

volume loss per hectare (51.1 m3/ha) and the estimated potential polygon volume (279.0 m3/ha), 

the volume loss per hectare is estimated to be 18.3% for the polygon.  These results are presented 

in Table 3.7.   

From these results, Polygon 6566412 has a relationship between merchantable LiDAR 

gap area (40.0%) and Volume loss percentage (15.0%) of 1:0.45.  This shows that for every 

percentage point of area classified as merchantable LiDAR gap, there will be a loss of 0.5% 

potential volume.  These results are summarized in Table 3.8. 
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Table 3.7: Statistics for Polygon 6566412 relating to the reconciliation of LiDAR canopy height model to volume 

sampling data.  A 1.2 ha area anthropogenic disturbance (road) was removed from all area calculations. 

  

Polygon 6566412 

 

Total polygon Area 12.9 ha 

 

Total polygon Area with Anthropogenic disturbances removed 11.7 ha 

 

Total LiDAR gap area estimate 4.9 ha 

 

Merchantable LiDAR gap Area 4.7 ha 

 

Expanded gap area estimate (merchantable gaps only) 5.9 ha 

 

Mean Occupancy Area 27.0 m2 

 

Number of trees lost to gaps  

(Expanded gap area/Mean Occupancy Area) 1985 trees 

 

Volume lost to gaps 

(Trees lost to Gaps *0.3; where1 tree = 0.3 m3 ) 595.5 m3 

 

Volume loss per hectare 

(Trees Lost to Gaps/Total Polygon Area) 51.1 m3/ha 

 

Average Polygon Volume (TSP estimate) 227.9 m3/ha 

 

Fully Stocked Polygon Volume  

(TSP estimate from stands with CC =7) 230.8 m3/ha 

 

Potential Polygon volume  

(Average Polygon Volume + Volume Loss per hectare) 279.0 m3/ha 

 

Difference between Fully Stocked Polygon Volume  

and Potential Polygon Volume  48.2 m3/ha 

 

Volume loss Estimate 

(Volume Loss Per Hectare/Potential Polygon Volume) 18.3% 

 

Table 3.8: The relationship between LiDAR gap area percentage and Volume Loss percentage for Polygon 

6566412. 

Polygon Merchantable LiDAR 

Gap Area Percentage 

Volume Loss 

Percentage 

Merchantable LiDAR Gap  

Area % :Volume Loss % Ratio 

6566412 40.0 18.3 1:0.45 

 

3.4 Discussion 
3.4.1 Expanded Occupancy Determination 
  

 The results from the individual tree occupancy sampling show that within the fully 

stocked areas of a polygon, the expanded occupancy area of the canopy trees has a weak 

relationship with tree DBH (R2 values of 0.006, 0.202 and 0.027).  Since one would expect crown 

size to increase with DBH (Stadt et al., 2005), it is reasonable to expect that expanded occupancy 

areas would also increase accordingly.  However, the lack of statistical significance in these 
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relationships suggests that although DBH and crown area are correlated, the expanded occupancy 

area of canopy trees in fully stocked areas is quite variable.  This lack of significance may be 

attributed to the relatively narrow range of DBHs sampled.  In this study, we focused on a 

specific population of trees within each polygon: canopy trees within fully stocked areas that had 

fully enclosed crowns.  Our population is similar to a mature vigorous stand that shows little 

variability in expanded gap spatial structure but may show variability in DBH.  To contrast this, 

mature aspen stands undergoing breakup may have several cohorts of trees of different sizes, ages 

and social classes in close proximity.  Their size, DBH, height and crown areas could all have 

been influenced by stand density, tree position in the canopy, current and past competition, and 

other factors (Sattler et al., 2012).  With Pretszch (2014) showing that trees can adjust crown 

length without adjusting crown width, this suggests that a vigorous tree does not need to have 

large occupancy areas.  A random sample balanced over all sizes and ages would likely have a 

wider range of DBHs and expanded gap sizes which would have likely resulted in stronger 

relationships.   

Beyond sample size, there may also be biological reasons for the lack of a relationship.  

As stands develop, mortality of individual trees and the ensuing crown encroachment of the 

remaining canopy trees should allow the occupancy areas to increase in size.  However, in cases 

of high stocking, crown sizes will be smaller and crown shyness is likely a major factor that 

prevents individual tree crowns from growing larger than those of neighbouring trees (Long and 

Smith, 1992), keeping the occupancy areas small.  Interestingly, the average expanded occupancy 

area was not very different over the three polygons.  The two aspen polygons have approximately 

the same age and average DBH (Tansanu, 2007), so it appears that average occupancy area may 

be quite stable, relative to DBH.  The spruce polygon had a smaller DBH, but the expanded 

occupancy area was similar to aspen.  Crown size and other characteristics are species specific 

(Stadt et al., 2005) therefore one would expect occupancy to be species specific.  While our 

polygons were primarily mature, pure polygons; a polygon with a mixture of species will likely 

add an additional factor to measuring occupancy (Pretzsch, 2014).  Full stocking at different ages 

may also result in different occupancy areas due to changes in tree and crown sizes.  Although the 

primary use of an occupancy measurement would be in estimating volume loss at rotation age, 

more research to further explore how expanded occupancy changes by species, species mixture 

and age is needed and would support development of dynamic models. 

In the three polygons measured, the precision of the expanded occupancy measurements 

may have been limited by the precision of the GPS unit used to record boundary tree locations.  

The minimum expanded occupancy measurements in all three cases appeared lower than 
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expected, although there is little literature pertaining to aspen and white spruce occupancy.  We 

used a mapping grade GPS (Trimble GeoXT 6000) that had a maximum precision of 

approximately 0.5 meters.  We do not believe this was achieved even with a collection of 50 hits 

per tree location.  Collecting fifty hits is the Alberta Environment and Sustainable Resource 

Development standard for recording corners in PSPs (Cosmin Tansanu, Personal Communication, 

2014).  The accuracy of the area estimates was probably much higher in the aspen stands than the 

spruce polygons as there was no foliage to impede the GPS.  This was not the case for the spruce 

polygon and in some cases it was difficult to obtain the desired hits.  We assume however that 

GPS errors are random and there would be no systematic bias to them.  We did not validate 

locations but expected individual point locations to be within one or two meters of the true 

location.  More work into the accuracy and precision of GPS units in forest conditions is needed. 

 

3.4.2 Tree crown radius measurements 
 

Tree crown radii were estimated from expanded occupancy under the assumption that 

crowns were circular and equidistant with bordering trees.  The assumption of circular crowns is 

mathematically and computationally convenient, accepting that crowns can be quite variable in 

size and shape for different species (Stadt et al., 2005).  The overall implications of these 

assumptions were not explored but may be a topic of future study.  The use of LiDAR or high 

resolution photography to measure crowns may be an avenue to explore, providing that high 

resolution LiDAR scans or photography are available (Gaulton and Malthus, 2010).  To ensure 

that our crown area estimates were realistic, we compared our crown radii to calculated estimate 

of tree crown radii using DBH to crown area relationships developed by Stadt et al. (2005).  The 

estimates of crown radii based on expanded occupancy were slightly smaller than those 

calculated using Stadt et al.’s equations.  This is likely because estimates based on expanded 

occupancy were biased towards trees that had full crown enclosure. Comparatively, the trees used 

by Stadt et al. to develop the DBH to crown radius formula came from a range if canopy cover 

classes stored in a large database of randomly selected trees.   

 

3.4.3 Estimating Gap Area 

 
 Using the tree crown area estimates, the results show that the majority of gaps within a 

polygon can be considered too small to support canopy trees.  These gaps are referred to as 

interstitial space.  Despite there being a large number of these gaps, the total area of these gaps is 

only a small proportion of the total polygon area and has little effect on the volume lost to gaps 
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within a polygon.  For example, in Polygon 6796103 there were 1917 gaps classed as interstitial 

space.  The total area of these interstitial spaces was 1.2 hectares, 1.6% of the total polygon area.  

Comparatively, the number of larger, merchantable gaps is a smaller proportion (n=1772 for 

Polygon 6796103) of the overall gap percentage, but affects potential polygon volume by 28% in 

that polygon.  All gaps larger than 400 m2 were considered to have expanded gaps equal to their 

LiDAR gaps.  This was done because the expanded gap area estimates based on LiDAR area 

(Equations 2.4, 2.6, 2.8 and 2.10) developed in Chapter 2 did not include many gaps in the 

sample that were larger than 400 m2.  Additionally, the influence of crown overhang on expanded 

gap area should theoretically get smaller as gaps get larger.  These equations, due to a lack of data 

did not reflect this effect such that expanded gaps became unrealistically large. 

 The process of removing small gaps was a critical step in estimating whether a gap was 

large enough to support a canopy tree.  Since the raster resolution for differentiating gap versus 

canopy was 3 m x 3 m (9 m2), a single pixel would be simplified to a size of approximately 5.8 

m2 in the vector model, with some variation depending on the arrangement of the pixels in the 

raster model.  With these gaps being smaller than the estimated crown size for the polygon they 

could be removed from the gap list.  There is a poor fit of the equation due to limited sampling.  

With small gaps not being sampled, the behaviour of the model was unreliable in this region. We 

also believe that sampling these small gaps increased the possibility of false negatives, especially 

with the low LiDAR hit count of 1.6 hits per m2.  When visiting these small gaps in the field we 

felt that in many cases these gaps were interstitial spaces.   

The summation of all expanded gaps into one large gap area and then determining how 

many trees would fit into that area would also artificially inflate the total estimate of trees that 

would be lost to gaps.  To account for this, the process of filling gaps with trees was done at the 

individual gap level.  By ensuring that gaps would only be able to hold whole trees, fractional 

areas were dropped from these estimates.  We also assumed that trees were of similar size over 

the polygon, and that the spacing between trees was at high densities.  Although this is not always 

true, it was considered a reasonable approach for distributing trees within the gap areas. 

 To estimate the merchantable area lost to gaps from the LiDAR gaps, the use of expanded 

gaps was important.  In situations where data sets may have a mixture of both leaf on and leaf off 

LiDAR scans for deciduous polygons, the amount of gap area will vary with the season.  For 

example, if a single polygon was scanned in both leaf on and leaf off stages, the amount of gap 

area sensed during the leaf off stage would be greater than the amount seen in the summer.  

Without using the models developed in Chapter 2 to estimate expanded gap area, LiDAR gaps 

could be used, but they would not account for the true stand conditions, nor address differences 
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between leaf on and leaf off conditions.  However, using LiDAR gaps would provide 

conservative estimates of gap area.  This would also result in fewer gaps being considered 

merchantable.  In estimating expanded gap area, the gap area on the ground is considered, instead 

of the opening in the canopy sensed by the LiDAR.  This ensures that gaps with ground area to 

support canopy trees are not overlooked.     

 

3.4.4 Reconciling Volume Lost To Gaps 
 

The addition of the volume lost to gaps to the average stand volume taken from TSP 

measurements estimates the potential stand volume, the volume attained if all gaps were occupied 

by trees.  These potential volume estimates were compared to actual stand estimates taken in the 

areas of high stocking within each polygon.   The process of adding the volume lost to gaps to the 

average volume from the entire polygon was an attempt to reconcile whether the estimates of 

volume lost were reasonable.  In all cases, these potential volumes were larger than the average 

volumes taken from the fully stocked areas in the polygon.  This is not unexpected as the mean 

volume for the polygon included fully stocked volumes.  Additionally, even in areas of high 

stocking some gaps still exist and the process of filling gaps with trees would have included 

filling those gaps that exist in the fully stocked potions of the polygon with trees.  Overall, the 

process of reconciling volume using the TSPs, does demonstrate that estimates of potential stand 

volume obtained using the expanded gap methodology provides reasonable results.   

Looking at the different percentages of gap loss between polygons we can see that while 

gaps are common in all polygons, local conditions and the nature of individual gaps can have 

different effects on volume loss for a polygon.  In Chapter 4 we investigate the nature of 

individual gaps by linking them spatially to wet areas and predicting how this may affect our 

volume predictions. 

 

3.4.5 Applications 
 

 The ability to discern between merchantable canopy gaps and interstitial spaces between 

trees has the potential to improve long term forest planning by accounting for gaps in growth and 

yield models.  With many models using PSP data to develop growth curves, these models will 

show similar volume overestimation to that seen by Eriksson (1964), unless gaps are accounted 

for.  Examples of programs that have the potential to account for volume loss due to gaps include 

Table Interpolation Program for Stand Yields (TIPSY) (B.C. Ministry of Forests, Lands and 
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Natural Resource Operations 2013) and the Mixedwood Growth Model (MGM) (Bokalo et al., 

2014).   

 To account for gaps in TIPSY, this model includes two operational adjustment factors 

(OAF1 and OAF2) as model parameters.  These parameters adjust yield projections by 

considering gap presence as it models stand growth.  The OAF1 parameter is an adjustment that 

is incorporated across the model to account for stocking gaps which are present throughout the 

life of a stand (B.C. Ministry of Forests, 1998a).  The OAF2 parameter is a value which increases 

as the stand ages.  This adjustment is used to account for the increased occurrence of gaps in a 

stand as a forest ages and trees die.  The starting values and rate of increase for OAF2 are often 

held constant, however the OAF1 values can vary by stand and sampling can be used to 

determine how gaps affect individual stand types. Prior to the development of these LiDAR 

methods, random sampling was recommended as a method to estimate the value of OAF1 (B.C. 

Ministry of Forests, 1998b).  With there being some difficulty in determining merchantable gaps 

from interstitial space in the field, the use of LiDAR has the potential to provide a more objective 

estimate of gap percentages and greatly reduce sampling efforts. To account for gaps in MGM, a 

gap loss percentage parameter is included in the model.  Similar to OAF1, the gap loss percentage 

is a calculation of the percentage of stocking gaps that will be included in the model.  The 

inclusion of this parameter reduces the growing area of the polygon, which increases competition 

between trees in the occupied portion of the polygon.  This increase in competition reduces the 

overestimation of volume at the polygon level and will bring estimates closer to those expected. 

For models that do not have a gap loss percentage or operational adjustment factor 

included in the model parameters other methods can be used so that gap percentages can be 

incorporated into model projections.  One method would be to reduce polygon volume by the 

expected gap area prior to running the model.  This would allow models to run in a similar way to 

models that do have gap loss parameters.  Another way to adjust yields would be through a yield 

adjustment after the models have been run.  By determining the rate at which volume decreases 

when gap area increases, a post-hoc adjustment can be done to projections to bring them closer to 

expected values. 

 Beyond forest planning, these methods can also be useful in forest operations.  When 

forest polygons are harvested, average yields for a stratum may be used to estimate how much 

volume is available in an individual polygon.  By estimating the amount of gaps from a recent 

LiDAR scan, it is possible to compare polygon conditions to the stratum averages and determine 

if gaps are more or less prevalent.  By estimating how much volume may be harvested, it can 
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assist mill operators in ensuring they are harvesting sufficient stock.  This can help ensure that the 

mill will not experience any shortages when harvesting is not occurring. 

Outside of volume adjustments, these gap analysis methods also have the potential to be 

used in other forestry applications.  For biodiversity studies that focus on forest gaps (e.g. De 

Grandpre et al., 2011), these methods can now allow for accurate identification of gaps which 

may be of interest before visiting a field site and for modelling ecosystem services associated 

with gaps.  This could include gaps of particular sizes or shapes, or gaps with other characteristics 

that may be of interest.  These methods can greatly reduce time in the field required to find 

appropriate sites.   

  

3.5 Conclusions 
 

 This chapter has provided a methodology that uses individual canopy gap areas 

determined using LiDAR, and estimates of individual tree expanded occupancy to estimate how 

canopy gaps affect estimates of stand volume.  By adding the estimates of volume loss to stand 

level volume estimates we get volume estimates that correspond well with volume measured in 

the areas of highest stocking.  Through a variety of methods, adjustments can be made to account 

for gap area before growth is modelled, or post-hoc adjustments can be made based on the 

relationship of gap area to volume loss.  These adjustments have the potential to improve long 

term planning by providing better estimates of growth potential.  Further improvements that can 

further stratify gaps as temporary or persistent may improve these methods further.  
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Chapter 4: The Relationship between Canopy Gaps and Depth 

to Water Index 
 

4.1 Introduction 
 

Gaps are common in boreal forests and influence forest regeneration (MacIssac et al., 

2006), stand structure (Cumming et al., 2000), and biodiversity (Bouget and Duelli, 2004; Chavez 

and Macdonald, 2010).  Few studies have examined the effect of gaps on yield due to difficulties 

in enumerating the full population of gaps; however the development of LiDAR and other remote 

sensing techniques provides effective tools for quantifying the size and extent of gaps.  In Chapter 

2, methods were developed that enabled the determination of the dimensions and spatial 

distribution of gaps using LiDAR and GIS analysis.  Other characteristics recommended by 

Runkle (1992) that could be assessed to characterize gaps include: gap microhabitat, gap age, 

adjacent forest type, gap aperture size, vegetation within the gap, gap site characterization (slope, 

aspect, elevation, soil conditions, topographic position), and the number of trees that died to form 

the gap (number of gap makers). 

A population of gaps from a polygon will show common characteristics based on the 

characteristics of that polygon, for example, soil type, depth to water or tree species.  Gaps will 

also display characteristics that are common between polygons.  For example the different gap 

characteristics suggested by Runkle (1992) may be spatially arranged based on local land features 

such as contours, aspect, slope, hydrology, differences in overstory and understory vegetation, 

and soil characteristics.  The temporal nature and dynamics of gaps may also link gap 

characteristics to the time since gap birth or how and when gap death is achieved, either through 

the expansion of tree crowns or from ingress of regeneration.  Having additional information 

about the individual gaps, the polygon and landscape may permit researchers make better 

inferences about the nature of gaps and their influence as it related to their research questions.   

The wet areas mapping (WAM) process, developed by Murphy et al. (2011), is a 

classification system that uses topographic data derived from the LiDAR point cloud to map 

stream flow channels and delineate soil drainage patterns at high resolution (White et al., 2012).  

Among the products created by the WAM process, maps of the depth to water (DTW) index are 

potentially useful in classifying gaps caused by high water tables or seasonal flooding.  Depth to 

water approximates the elevation difference between the soil surface and the nearest open water 

features (such as flow channels and water pools), and provides an estimate of the degree of soil 

saturation based on the distance from any point of interest to these features (Murphy et al, 2011).   
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By combining CHMs developed in Chapter 2 with the DTW index, a stratification of 

canopy gaps based on the DTW drainage class is possible.  This allows for the classification of 

gaps beyond simple presence and absence and identifies gaps whose presence may be caused by 

excessive ground water.  In addition, mean gap size within each drainage class can be estimated.  

With the presence of open water being one cause of open forest canopies, such as in boreal fens, 

knowing whether large gaps are present only in these areas, or if gaps have similar sizes and 

frequencies in drier areas may also be of interest.  

In this chapter the relationship between gaps measured in four polygons (as described in 

Chapter 2) and depth to water is examined using soil drainage classes that are estimated from the 

WAM estimates of depth to water.  In particular, the relationship between soil drainage and the 

number and average size of gaps will be examined. 

 

4.2 Methods 

 
To analyse the relationship between canopy cover and the forest hydrology, raster models 

of the cartographic depth to water (DTW) index were acquired from Alberta Environment and 

Sustainable Resource Development (AESRD).  The WAM rasters were created using algorithms 

in use during October of 2011.  Each DTW raster was built using a 4 ha catchment area and has a 

pixel size of 1 m2.  In addition to the DTW rasters, the 3 m × 3 m raster versions of the canopy 

height models (CHMs) developed in Chapter 2 were also used in this analysis. 

 With a primary goal of identifying gaps which may have been caused by or influenced 

by high ground water, the CHMs were modified in ArcGIS 10.1 (Redlands, California) to remove 

anthropogenic disturbances and interstitial space from the models.  Anthropogenic disturbances 

were removed because the creation of these gaps in the canopy is often accompanied by an 

alteration to the local drainage patterns.  The inclusion of these gaps in the analysis would likely 

bias our analysis towards finding gaps in well drained areas.  These disturbances were removed 

from each polygon CHM according to the boundaries provided during the photo interpretation of 

each polygon (Tansanu, 2007) using the “Erase” tool.  In addition to removing anthropogenic 

disturbances, gaps classed as interstitial spaces were also removed using the average tree crown 

size found in each polygon.  Interstitial spaces are ubiquitous, temporary gaps in the canopy with 

their presence not dictated by the presence of ground water.  The inclusion of these gaps in the 

analysis would likely reduce the ability to predict gaps caused by high ground water because 

there is a disproportionate amount of dry area to wet area in each polygon.  This has the potential 

to bias results towards finding gaps more frequently in dry areas.  To remove interstitial space 
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from the CHM, several tools in the spatial analyst toolbox in ArcGIS 10.1 were used.  The first 

step was to group pixels associated with continuous tracts of gap or canopy using the “Region 

Group” tool, grouping pixels using four neighbours.   Following this, the groups of pixels with 

counts greater than one were extracted using the “Extract by Attributes” tool to create a mask 

layer of the gaps which were large enough to host one or more merchantable trees.  By using this 

mask layer and the “Nibble” tool, the pixels that were not part of the mask were reclassified to 

match the classification of the pixels surrounding it.  Using these processes, the resulting CHM 

for each polygon has no gaps caused by anthropogenic disturbance or interstitial space.  It is 

noted that the gap areas calculated using this direct raster processing method are slightly different 

than those calculated in Chapter 2 and 3 using vector CHMs. 

 Each of these modified CHMs was then combined with the DTW raster using the 

“Combine” tool.  This resulted in a new raster layer being created with unique pixel values based 

on the combination of canopy classification (1 for gap or 2 for canopy), and the depth to water 

index (in cm).  With resolutions between the two rasters being different, the combine process 

created a raster at a 3 m2 resolution.  From this raster, counts of pixels based on their canopy 

classification and DTW value were then tabulated for each polygon.  This was done using 

drainage classes defined by White et al. (2012), with the classes being: Very Poor (DTW < 10 

cm); Poor (10 cm < DTW < 25 cm); Imperfect (25 cm < DTW < 50 cm); Moderately Well (50 

cm < DTW < 100 cm); Well (100 cm < DTW < 2000 cm); and Exceedingly Well (DTW > 2000 

cm).  Additionally, the minimum DTW value was used to assign a DTW class for each gap 

occurrence.  For each drainage class, the number of gaps per hectare and the mean gap size was 

tabulated based on this classification. For each gap, the minimum DTW value was used to 

classify the gap within a drainage class.  This was done as gaps caused by wet areas are thought 

to be centered on areas with wetter soils and be bordered by better drained soils.  For gaps 

classified within each drainage class, the mean gap area was also calculated.  With some gaps 

having small areas around their centroids of poorly drained soils and these centroids being 

surrounded by better drained soils, there was potential for large mean gap areas in drainage 

classes with small total areas.  
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4.3 Results 
4.3.1 Area Analysis 
 

After combining the CHM raster and DTW raster, the pixel counts within each drainage 

class were tabulated and converted to areas in hectares (Table 4.1).  For each polygon, the areas 

within each drainage class classified as gap or canopy area were also tabulated (Tables 4.2 and 

4.3).   

In the aspen polygons, Polygon 6796103 had 15.21 ha (23.36%) of area classified as very 

poor, poor, imperfect or moderately well and 49.90 ha (76.64%) of the area classified as well 

drained soils.  Across the polygon approximately 32.6% of the area within each drainage class 

was classified as gap area.  The gap area across the drainage classes ranged between 30.2% and 

37.4% with the relative area decreasing slightly as the classes moved from the very poor to well 

drained soils.  In Polygon 6886289, 1.77 ha (6.42%) of the area was classified as very poor, poor, 

imperfect and moderately well, and 25.67 (93.58%) was classified as well drained.  When 

classified according to canopy cover, 12.9% of the area was classified as gap area with a high 

proportion of gap area in the very poor drainage class (39.3%).  This proportion decreases as 

drainage improves to 11.7% in the well-drained soils.   

In the spruce polygons, Polygon 6566412 had almost entirely (99.98%) well drained soils 

so no generalizations can be made about this polygon.  Polygon 64106639 was found on a slope 

and therefore had a high proportion of both well drained (22.41 ha, 43.60%) and exceedingly well 

drained soils (27.27 ha, 53.05%) and only a small proportion of area that was considered very 

poor, poor, imperfect or moderately well drained (1.72 ha, 3.35%).  When classified according to 

canopy cover, 28.0% of the area was classified as gap area with a high proportion of gaps in the 

very poor drainage class (52.2%).  This proportion decreases as drainage improved to 26.3% in 

the exceedingly well drained soils.  
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Table 4.1: Area distributions amongst drainage classes for the four research polygons in this study.  Areas 

attributed to anthropogenic disturbances and interstitial spaces are not included in this table. 

 Aspen Polygons Spruce Polygons 

Drainage Class 
Polygon 6796103 

(ha) 

Polygon 6886289 

(ha) 

Polygon 6566412 

(ha) 

Polygon 64106639 

(ha) 

Very Poor 

(DTW<10 cm) 

2.27 

(3.49%) 

0.28 

(1.02%) 

0 0.23 

(0.45%) 

Poor 

(10 cm<DTW<25 cm) 

2.35 

(3.89%) 

0.26 

(0.95%) 

0 0.29 

(0.56%) 

Imperfect 

(25 cm<DTW<50 cm) 

3.64 

(5.59%) 

0.36 

(1.31%) 

0 0.43 

(0.84%) 

Moderately Well 

(50 cm<DTW<100 cm) 

6.95 

(10.67%) 

0.87 

(3.17%) 

0.01 

(0.08%) 

0.77 

(1.50%) 

Well 

(100 cm<DTW<2000 cm) 

49.90 

(76.64%) 

25.67 

(93.58%) 

12.78 

(99.98%) 

22.41 

(43.60%) 

Exceedingly Well 

(DTW>2000 cm) 

0 0 0 27.27 

(53.05%) 

Total Area 65.11 27.43 12.79 51.40 

 

Table 4.2: Gap and canopy areas and percentages of area within each drainage class for the aspen polygons.  

Percentages indicate the percentage of areas in the drainage class that is gap or canopy.  Areas attributed to 

anthropogenic disturbances and interstitial spaces are not included in this table.   

 Polygon 6796103 Polygon 6886289 

Drainage Class 

Gap Area 

(ha) 

Canopy Area 

(ha) 

Gap 

Area 

(ha) 

Canopy Area 

(ha) 

Very Poor 

(DTW<10 cm) 

0.81 

(35.7%) 

1.46 

(64.3%) 

0.11 

(39.3%) 

0.17 

(60.7%) 

Poor 

(10 cm<DTW<25 cm) 

0.88 

(37.4%) 

1.47 

(62.6%) 

0.10 

(38.5%) 

0.16 

(61.5%) 

Imperfect 

(25 cm<DTW<50 cm) 

1.20 

(33.0%) 

2.44 

(67.0%) 

0.11 

(30.6%) 

0.25 

(69.4%) 

Moderately Well 

(50 cm<DTW<100 cm) 

2.10 

(30.2%) 

4.85 

(69.8%) 

0.20 

(23.0%) 

0.67 

(77.0%) 

Well 

(100 cm<DTW<2000 cm) 

16.21 

(32.5%) 

33.69 

(67.5%) 

3.01 

(11.7%) 

22.66 

(88.3%) 

Total Area 

 

21.20 

(32.6%) 

43.91 

(67.4%) 

3.53 

(12.9%) 

23.90 

(87.1%) 

 

Table 4.3: Gap and canopy areas and percentages of area within each drainage class for the white spruce 

polygons.  Percentages indicate the percentage of areas in the drainage class that is gap or canopy.  Areas 

attributed to anthropogenic disturbances and interstitial spaces are not included in this table.   

 Polygon 6566412 Polygon 64106639 

Drainage Class 
Gap Area 

(ha) 

Canopy Area 

(ha) 

Gap Area 

(ha) 

Canopy Area 

(ha) 

Very Poor 

(DTW < 10 cm) 

0 

(0%) 

0 

(0%) 

0.12 

(52.2%) 

0.11 

(47.8%) 

Poor 

(10 cm<DTW<25 cm) 

0 

(0%) 

0 

(0%) 

0.11 

(37.9%) 

0.18 

(62.1%) 

Imperfect 

(25 cm<DTW<50 cm) 

0 

(0%) 

0 

(0%) 

0.18 

(41.9%) 

0.25 

(58.1%) 

Moderately Well 

(50 cm<DTW<100 cm) 

0.01 

(100%) 

0 

(0%) 

0.31 

(40.3%) 

0.46 

(59.7%) 

Well 

(100 cm<DTW<2000 cm) 

5.90 

(46.2%) 

6.88 

(53.8%) 

6.48 

(28.9%) 

15.93 

(71.1%) 

Exceptionally Well 

(DTW>2000 cm) 

0 

(0%) 

0 

(0%) 

7.18 

(26.3%) 

20.09 

(73.7%) 

Total Area 

 

5.91 

(46.2%) 

6.88 

(53.8%) 

14.39 

(28.0%) 

37.01 

(72.0%) 
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4.3.2 Gap Occurrences within drainage classes 

 

 To account for the unequal distribution of area within each drainage class, the number of 

gap occurrences within each drainage class was divided by the drainage class area to estimate the 

number of gaps per hectare (Tables, 4.4, 4.5, 4.6, and 4.7).   

 In the aspen polygons, Polygon 6796103 had the highest count of gap occurrences in 

well-drained soils, with 70.02% being found within this stratum.  However, when calculated as 

gaps per hectare based on the area included in each drainage class, gaps are more prevalent in the 

very poorly drained soils (62.14 gaps/ha) and this prevalence decreased to 25.18 gaps/ha in the 

poor drainage class and further to 20.63 gaps/ha in the well-drained soil as drainage improved.  

The mean gap area was also larger in the very poor drained soils (426.45 m2) and decreased as 

drainage improved.  It should be noted that the mean gap area reflects the average area of gaps 

with a minimum DTW value and does not mathematically correlate to the total area in each DTW 

class.  For Polygon 6886289, the highest count of gap occurrences was in the well-drained soils, 

with 89.61% of the gaps being found in this stratum.  However, when calculated as gaps per 

hectare based on the area included in each drainage class, gaps are more prevalent in the very 

poorly drained soils (53.42 gaps/ha) and this prevalence decreased to 9.74 gaps/ha in the well-

drained DTW class.  The mean gap area was also larger in the very poor soils (649.29 m2) and 

decreased to 73.72 m2 as drainage improved. 

 In the spruce polygons, Polygon 64106639, approximately 94.44% of the gaps within the 

polygon were in either well drained or exceedingly well drained soils.  As with the aspen 

polygons the prevalence of gaps per hectare in each drainage class was higher in the very poor 

soils (193.24 gaps/ha) and decreased to 24.64 gaps/ha in the exceedingly well drained soils.  The 

trends in mean gap area for each stratum were also similar with larger gaps being found in very 

poor soils and mean gap size decreasing as drainage improved. Polygon 6566412 did not 

sufficient variation in soil drainage classes to be of much interest.   
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Table 4.4: Estimates of merchantable gaps per hectare and mean gap area for Polygon 6796103, an aspen 

polygon. 

Drainage Class 
Total Stratum Area 

(ha) 

Gap 

Occurrences 

Gaps/ha Mean Gap Area
1
 

(m
2
) 

Very Poor 

(DTW < 10 cm) 

2.27 141 62.14 426.45 

Poor 

(10 cm<DTW<25 cm) 

2.34 59 25.18 120.97 

Imperfect 

(25 cm<DTW<50 cm) 

3.64 90 24.74 134.20 

Moderately Well 

(50 cm<DTW<100 cm) 

6.95 151 21.73 134.52 

Well 

(100 cm<DTW<2000 cm) 

49.91 1030 20.63 109.02 

Entire Polygon 65.10 1471 22.60 144.09 

 
Table 4.5: Estimates of merchantable gaps per hectare and mean gap area for Polygon 6886289, an aspen 

polygon. 

Drainage Class 
Total Stratum Area 

(ha) 

Gap 

Occurrences 

Gaps/ha Mean Gap Area
1
 

(m
2
) 

Very Poor 

(DTW < 10 cm) 

0.28 14 

 

53.42 649.29 

Poor 

(10 cm<DTW<25 cm) 

0.25 4 15.70 99.00 

Imperfect 

(25 cm<DTW<50 cm) 

0.36 1 2.76 144.00 

Moderately Well 

(50 cm<DTW<100 cm) 

0.87 10 11.52 330.30 

Well 

(100 cm<DTW<2000 cm) 

25.67 250 9.74 

 

73.72 

Entire Polygon 27.43 279 10.21 111.52 

 
Table 4.6: Estimates of merchantable gaps per hectare and mean gap area for Polygon 6566412, a white spruce 

polygon. 

Drainage Class 
Total Stratum Area 

(ha) 

Gap 

Occurrences 

Gaps/ha Mean Gap Area
1
 

(m
2
) 

Moderately Well 

(50 cm<DTW<100 cm) 

0.01 

 

1 

 

100.00 8802.00 

Well 

(100 cm<DTW<2000 cm) 

12.78 267 20.89 149.93 

Entire Polygon 12.79 268 20.96 182.22 

 
  

                                                            
1 For each gap occurrence, the minimum DTW value was used to determine which drainage class it belonged to.  Based 

on this classification mean gap area was calculated.  Many gaps contained pixels from more than one drainage class, 

explaining the large mean gap areas.  
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Table 4.7: Estimates of merchantable gaps per hectare and mean gap area for Polygon 64106639, a white spruce 

polygon. 

Drainage Class 
Total Gap Area (ha) Gap 

Occurrences 

Gaps/ha Mean Gap Area
1
 

(m
2
) 

Very Poor 

(DTW < 10 cm) 

0.23 44 193.24 421.36 

Poor 

(10 cm<DTW<25 cm) 

0.29 8 27.95 217.13 

Imperfect 

(25 cm<DTW<50 cm) 

0.43 10 23.10 224.10 

Moderately Well 

(50 cm<DTW<100 cm) 

0.77 10 12.98 46.80 

Well 

(100 cm<DTW<2000 cm) 

22.41 551 24.58 114.83 

Exceptionally Well 

(DTW>2000 cm) 

27.27 672 24.64 85.75 

Entire Polygon 51.40 1295 25.20 111.11 

 

 

 

Figure 4.1: Estimates of gaps per hectare for each polygon stratified by drainage class. 

                                                            
1 For each gap occurrence, the minimum DTW value was used to determine which drainage class it belonged to.  Based 

on this classification mean gap area was calculated.  Many gaps contained pixels from more than one drainage class, 

explaining the large mean gap areas. 
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Figure 4.2: Estimates of mean gap area for each polygon stratified by drainage class. 

 

4.4 Discussion 
4.4.1 Area Analysis and Predictions of Gap Drainage 
 

 The results of the raster analysis show that Polygon 6566412, a white spruce polygon, 

had only a small proportion of the polygon area that was not well drained (approximately 81 m
2
 

classified as moderately well drained).  The lack of diversity in drainage for this polygon prevents 

us from making any further inferences about the effects of forest hydrology on these gaps.   

For polygons 6886289 (aspen) and 64106639 (white spruce), trends of higher canopy gap 

proportions in poorly drained soils and lower proportions of gaps in better drained soils are 

clearly evident.  These results correspond to the observations by MacIssac et al. (2006) that gaps 

were more prevalent in wet areas.  Polygon 6796103 (aspen) did not show this trend, and instead 

had a consistent proportion of approximately 32% gaps across all drainage classes.  This 

exception to the trend seen in the other two polygons may be explained by the CHM used in the 

analysis.  For this polygon, the LiDAR scan used was conducted during the leaf off period, while 

the other aspen polygon was leaf on, and the spruce polygon was not subject to seasonality.  

Using a scan during the leaf off period provides higher estimates of gap area than full foliage 

scans and as a result the proportion of merchantable gap area increases.  With poorly drained 

areas already having a high proportion of gap pixels, the addition of any pixels due to seasonality 

should not change the proportion of gap pixels to canopy pixels to a large degree.  However, in 

0

100

200

300

400

500

600

700

Very Poor Poor Imperfect Moderately
Well

Well Exceedingly
Well

M
e

an
 G

ap
 A

re
a 

(m
2
) 

Drainage Class 

Polygon 6796103

Polygon 6886289

Polygon 64106639



[67] 
 

better drained areas where canopy cover is notably higher and gaps are low, the loss of foliage 

due to seasonality creates a large increase in the number and size of gaps detected.  The 

disproportionate increase in gaps being detected by the LiDAR results in all drainage classes 

having the same proportion of gaps.   

To account for this inequity in areas, estimates of gaps per hectare in each drainage class 

were also calculated.  Across the three polygons, the estimate of gaps per hectare was higher in 

the poorly drained areas and decreased as drainage improved.  Additionally, the mean gap size 

decreased as drainage improved.  Overall, these results show that gaps will be more prevalent in 

areas of poor drainage than in better drained areas.  In addition, gaps are larger in the poorly 

drained areas in the better drained areas. 

The lack of replication within the cover classes prevented an analysis of variance from 

being conducted which could have provided more insight into how gap frequency or size differs 

between drainage classes.  While there were two aspen polygons in this analysis, the seasonal 

difference between the LiDAR scans prevented any further analysis at the gap level.  Using the 

DTW values and canopy cover classifications for each pixel, a logistic regression was run for 

each polygon to determine if DTW could be used to predict canopy cover.  While the results were 

statistically significant, the receiver operating curves (ROC) did not have values higher than 0.60 

(results not shown).  According to Hosmer and Lemeshow (2000), values between 0.5 and 0.7 

indicate poor discrimination; values between 0.7 and 0.8 indicated moderate discrimination; and 

values higher than 0.9 indicate excellent discrimination.  One explanation for the lack of 

predictive ability in these results may be that within any gap, there is a transition in DTW from 

the lowest point to the highest point.  Each gap can therefore have several drainage classes with 

the poorest in the minority.  From a practical perspective, knowing the probability of a single gap 

being a gap is of marginal value since gaps are clusters of pixels.  The summary tables using the 

minimum DT to classify gaps into DTW showed the key trends that we expected.   

 

4.4.2 Occurrence of Wet Areas 
 

 In the field, the wet areas in each polygon were mostly narrow, intermittent streams, 

although there were several ephemeral draws that also appeared as wet areas according to WAM.  

The centers of the stream channels likely correspond to the linear groups of pixels classified as 

having very poor drainage.  With the channels being bordered by pixels classified as poor, 

imperfect, and moderately well, we can likely estimate the width of the stream channels 

depending on the severity of seasonal flooding.  The addition of a digital elevation model (DEM) 
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layer may assist in visualizing stream channels and areas that can flood beyond what is seen in 

the raster images and provide additional ways to estimate the width of stream channels. 

Although stream channels may be considered by some to be areas unable to host trees, 

they were not removed from the merchantable area of the polygons in this study.  In these 

polygons, stream channels were generally too narrow to prevent trees from closing the canopy 

above them.  With canopy cover being our main indicator of merchantability it was not apparent 

how the stream channels affected the trees.  The use of additional WAM products such as the 

flow accumulation and flow direction layers could be explored to determine how canopy cover is 

affected by wet areas.  Operationally, streams of a given size would be buffered and the area 

removed from the merchantable land base. 

 

4.4.3 Raster processing 
 

 In this chapter, the CHM was processed in raster format to estimate gap areas, while in 

Chapters 2 and 3, a vector model created from the CHM was used.  This resulted in a difference 

in merchantable gap area estimates between the two models, with the raster models having larger 

merchantable gap estimates between 0.78 ha and 2.91 ha.  This difference can be attributed to the 

simplification that occurs when a raster model is converted to a vector.  Initially, the vector 

models of the CHMs were used in Chapters 2 and 3 because they provided better estimates of 

where the gap boundaries may be when assessing the gaps in the field.  Processing the gaps as 

raster models in this chapter allowed for easier integration with the DTW raster layers.  With both 

versions of the CHM being effective in providing estimates of gap area, more work to assess the 

differences in accuracy of the two versions of a CHM is suggested. 

 During the creation of the raster that combined both the CHM and DTW rasters, the 

CHM had a resolution of 3 m2 while the DTW raster had a resolution of 1 m2.  This difference in 

resolution, along with differences in the raster boundaries, results in a loss of resolution in the 

new combined raster.  In cases where raster resolutions are different, ArcGIS 10.1 creates rasters 

at the resolution of the largest raster pixels involved.  In the case of this study, the product rasters 

were created at a 3 m2 resolution.  The difference in boundaries also means that the pixels are not 

perfectly aligned with nine DTW pixels corresponding to each CHM pixel.  To account for this, 

the pixel in the DTW layer closest to the center of each CHM pixel is used to determine the depth 

to water in the product raster.  With gradients between pixels in the DTW layer being very 

gradual any reprocessing of the DTW layer at a 3 m2 pixel was not considered necessary and 

would likely still result in some misalignment between the two rasters.    
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4.4.4 Application 
 

 The ability to add new layers of data to the CHM offers opportunities for better forest 

management decision making.  When considering the addition of the DTW layer, it becomes 

apparent that gaps are larger and more prevalent in areas with poor and very poor drainage.  

Forest planners may consider removing the merchantable gaps in the very poor and poor drainage 

classes from their merchantable land base knowing that the forest in these areas are likely low in 

yield due to the gaps, and may be difficult to regenerate.  For the polygons in this study, the low 

proportion of wet areas would affect the potential volume estimates calculated in Chapter 3 to 

only a small degree, reducing the potential growing area by between 0.21 and 1.69 ha across the 

four polygons.  This is unlikely to affect volume predictions at this scale to any great degree.  

However, if persistent gaps were recognizable for an entire stratum, this may prevent an 

overestimation of predicted volume.  Further work on discerning temporary gaps from persistent 

gaps may be an important next step in gap research. 

Reducing the predicted volume based on wet areas can be further justified based on 

ecological reasons. Beyond the low stocking that is caused by gaps, wet areas may have different, 

less desirable species than the drier areas of the polygon.  For example, in aspen dominated 

polygons, wet areas often feature a higher proportion of balsam poplar (Populus balsamifera L.).  

In harvest operations, balsam poplar is less merchantable than aspen in that it rots sooner and has 

a shorter lifespan (Peterson and Peterson, 1992).  From an operational perspective, harvesting in 

these areas is less profitable than in the drier, more fully stocked pure aspen fragments.  In 

addition, the harvest of wet areas often results in more difficult silviculture and can be subject to 

rutting by heavy machinery if summer harvesting is done.  With Alberta harvest regulations 

requiring buffering of certain areas prior to harvest and the additional sensitivity of wet areas 

being acknowledged, the use of WAM in providing harvest boundaries within a forest polygon 

may both reduce the expense per hectare of harvest and silviculture and protect the sensitive 

areas. 

The inclusion of additional layers to a CHM can also be effective beyond the use of 

WAM.  The inclusion of layers that classify soil types, the forest overstory or understory, or other 

forest characteristics may allow further inferences to be made about the forest canopy and gaps, 

as well as about productivity, biodiversity and other values.  Another important avenue that 

should be explored is the ability to classify gap dynamics, to study the temporal nature of gaps.  

Repeated LiDAR flights could help understand how gaps change over time (Vepakomma et al., 

2008).  This may further improve our understanding of gap dynamics and further improve 

estimates of potential polygon volume beyond those estimated using the procedures in Chapter 3.  
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4.5 Conclusions 
 

 With the ability to understand and classify gaps according to the local soil conditions, I 

have demonstrated how we can potentially improve forestry at both the planning stage and during 

harvest operations.  There are numerous data layers similar to WAM that can be added to a 

LiDAR layer to further our ability to make inferences about gaps and gap dynamics for a number 

of disciplines.   
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Chapter 5: General Conclusions 
 

This thesis examines methods that can be used to process LiDAR point cloud data for the 

purposes of delineating canopy gaps, with a goal of improving forest management practices.  The 

objective was to determine whether gap delineation methods developed for other forest types in 

Europe (e.g. Gaulton and Malthus, 2010) could be applied in the boreal forests of Alberta using 

LiDAR data currently made available by the Alberta Ministry of Environment and Sustainable 

Resource Development. 

The first objective of Chapter 2 was to develop canopy height models (CHMs) from the 

LiDAR point cloud for each of the research polygons.  Our second objective was to develop 

mathematical models that relate the LiDAR gap areas derived from the CHM to field measured 

expanded gap measurements (Runkle, 1982).  With the main objectives of this thesis relating to 

forest volume loss, gap definition was linked to the minimum height of a merchantable tree.  For 

other applications, the definition used can be modified.   

The results from the LiDAR analysis show that within a polygon, the frequency 

distribution of gap sizes was an inverse J-shape, with many small gaps and fewer large gaps.  

However, the small gaps made up only a small proportion of total gap area, while the few large 

gaps made up a much larger proportion of the total gap area.  The minimum gap size that could be 

detected was driven by the resolution of the canopy height model.  Choosing the correct pixel size 

was an important step as a small pixel size was too sensitive in detecting gaps and a large pixel 

size had the potential to miss gaps.  The pixel size also needed to work well with the LiDAR 

point cloud density.  Additionally, between the two aspen polygons, one was flown leaf on and 

one was flown leaf off, and this also had to be considered when selecting the appropriate pixel 

size.  Having polygons available with flights during different seasons aids in determining the 

sensitivity of the LiDAR in detecting gaps.   

The models developed to relate the LiDAR gaps to expanded gaps were statistically 

significant and had strong model fit (R2) values.  The fact that each stand was represented by a 

significantly different equation demonstrates the importance of seasonality with deciduous 

species.  The power functions behave better biologically, however, further analysis of the 

relationship between LiDAR gaps and expanded gaps is needed for both very small gaps (<100 

m2) and for larger gaps (>400 m2).  While the number of small gaps in a polygon is large, 

identifying these gaps in the field is difficult because they may not be readily apparent and 

measuring their small size requires precise measurements.  For the larger gaps, the number found 

within a single polygon will be limited, so understanding the how large LiDAR gaps relate to 
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field measurements may require measurements from several polygons.  Additionally, large gaps 

can have islands of trees within them, thus they can be difficult to measure.  The understanding of 

the relationship between LiDAR gap and expanded gap for large gaps may not be as important as 

small and mid-sized gaps since the ratio of crown overhang to overall gap size is small. 

 In Chapter 3, the LiDAR gap areas were applied to the expanded gap models that had 

been developed in Chapter 2 to understand how gaps affect the potential volume within a 

polygon.  Using field measurements, estimates of how much expanded gap area a merchantable 

canopy tree requires were made by measuring expanded occupancy from a sample of trees in 

fully stocked areas, using measurement methods similar to Runkle’s expanded gap (Runkle, 

1982).  The area represented the expanded gap area a single merchantable tree occupied in a fully 

stocked portion of the polygon.  These estimates of expanded occupancy were then applied to 

estimate how many merchantable trees could potentially be added to each gap within a polygon.  

This provided an estimate of the potential volume of a polygon when no gaps were present, as 

well as an estimate of the volume lost to gaps.  To achieve this, crowns were assumed to be 

circular and would be equidistant from one another.  Importantly, this process identified the 

minimum size of an expanded gap that was needed to host a merchantable tree.  All gaps below 

this threshold were considered to be interstitial spaces between trees and not included in the 

potential volume estimates.  To assess whether the potential volume estimates were realistic, we 

compared the volume per hectare estimates from temporary sample plots placed in near fully 

stocked fragments of the polygon (Tansanu, 2007) to our potential volume estimates.  The results 

showed that the methodology was robust and results were plausible.  The main application of this 

research deals with estimating the potential volume for a polygon.  Traditional forest practices 

estimate average yield based on a random sample of temporary sample plots.  Using with GIS and 

LiDAR estimates of how much a polygon should yield based on the percentage of area 

unoccupied by trees can be made.  Forest operators will also be able to better predict harvest 

volumes brought to the mill.  Forest growth and yield modellers can utilize the percentage of gaps 

to further improve future yield estimates by accounting for gaps.  Further development of these 

relationships to account for the seasonality of deciduous polygons across a landscape would be 

useful, as LiDAR scans are not necessarily conducted during the same season in a single region. 

 The objectives of Chapter 4 were to then add an additional data layer to the GIS, in the 

form of a depth to water index layer, to see if further information could be used to understand 

individual gaps.  In this chapter, I developed raster filtering methods to remove small gaps from 

the CHMs, and then determined how prevalent gaps were within different drainage classes.  The 

results showed that in areas with poor soil drainage, gaps were more prevalent and larger, while 
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in areas that were well drained gaps were less prevalent and smaller.  This suggests that the 

addition of additional GIS layers to an analysis should allow for improved characterization of the 

nature and frequency of individual gaps.  Further research to understand the gaps in each drainage 

class would be useful, as gaps in poorly drained soils have a likelihood of being persistent 

(MacIssac et al., 2006).  Operationally, understanding why gaps are present can lead to better 

forest management decision making.  Gaps found in low lying draws may indicate sensitive sites 

that may pose difficulties in regeneration.  Having this information in advance of harvesting 

would lead to better forest management.  

 In this thesis, I have moved from sampling gaps to total enumeration of gaps within a 

polygon.  The processes developed in this study can be used over an entire landscape.  By 

stratifying polygons into meaningful groups based on characteristics such as species, age and 

location, a broad understanding of how gaps span the landscape can be drawn.  LiDAR scans 

taken at two different periods in time may also provide useful information on gap dynamics.   

  



[75] 
 

References 
 

Gaulton, R., and Malthus, T.J.  2010.  LiDAR mapping of canopy gaps in continuous cover 

forests: A comparison of canopy height model and point cloud based techniques.  

International Journal of Remote Sensing 31(5): 1193 – 1211.   

doi: 10.1080/01431160903380565 

 

MacIsaac, D., Comeau, P.G., and Macdonald, S.E.  2006. Dynamics of regeneration gaps 

following harvest of aspen stands. Canadian Journal of Forest Research 36(7): 1818 – 

1833.  doi: 10.1139/X06-077 

 

Runkle, J.R. 1982. Patterns of disturbance in some old-growth mesic forests of eastern North 

America. Ecology 63(5): 1533–1546.  doi: 10.2307/1938878 

 

Tansanu, C.S. 2007.  The Role of Forest Stand Structure in Predicting Yield.  M.Sc Thesis.  

University of Alberta.  129 pp. 

  



[76] 
 

Appendices 
 

Appendix A 

 

 

 

Appendix A: Images of the raw point cloud from lateral and overhead views.  The lateral view displays the 

distinction between canopy and ground hit seen by the LiDAR.  The overhead view shows that in areas with no 

canopy cover that gaps are clearly displayed. 
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Appendix B 

 

Appendix B: A canopy height model (CHM) raster which depicts canopy pixels in green and gap pixels in 

brown.  Expanded gap polygons have been overlaid to show the differences in predicted area from the CHM and 

the expanded gap areas measured in the field. 
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Appendix C 

 

 

Appendix C: Schematic of the forest canopy depicting a LiDAR gap surrounded by canopy trees.  The polygon 

created by the tree stems bordering the LiDAR gap act as vertices of the expanded gap polygon. 
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Appendix D 

 

 

Appendix D: Schematic of the forest canopy depicting a fully enclosed canopy tree surrounded by neighbouring 

trees.  The polygon created by the tree stems bordering the center tree as vertices of the expanded occupancy 

polygon. 
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