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[1] Nonlinear dynamics of a dispersive field line
resonance (FLR) is investigated in a dipolar magnetic
geometry using a new finite element code TOPO. Time
dependent dispersion and steepening of the perpendicular
Alfvén velocity profile lead to the acceleration of
dispersive effects and to localization of the FLR within
an ionospheric density cavity. Consequently, shear Alfvén
waves are trapped between turning points inside nonlinear
density perturbations. This results in a complicated
nonlinear FLR structure and an associated overlap of
timescales for dispersion and nonlinearity. We show that
nonlinear effects lead to fine scale structuring produced by
the interplay of nonlinear and dispersive effects. We
discuss the relevance of our results to observations of
FLR’s in the auroral zone. INDEX TERMS: 7827 Space

Plasma Physics: Kinetic and MHD theory; 2704 Magnetospheric

Physics: Auroral phenomena (2407); 2736 Magnetospheric
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1. Introduction

[2] Sub-structure observed in low frequency auroral
potential structures (discrete arcs on scales of 10–20 km)
is often attributed to shear wave dispersion. Dispersion in
shear Alfvén waves (SAWs) arises through electron inertia,
electron thermal pressure, and ion gyro-radius effects. Hase-
gawa [1976] and Goertz [1984] have shown that electron
inertia in SAWs can generate a parallel electric field capable
of accelerating particles to hundreds of eV above the auroral
ionosphere. Using a linear wave model, Streltsov and Lotko
[1997] found that in a dipolar magnetic field, plasma parallel
inhomogeneity can enhance SAW electric and magnetic
fields, leading to dispersive field line resonances (FLRs)
with ionospheric scale sizes of several kilometers.
[3] SAW dispersion and nonlinearity can strongly modify

FLR dynamics. In particular, wave fields in FLRs can exert
ponderomotive forces that drive density perturbations on
auroral field lines. Tikhonchuk et al. [1995] used a simpli-
fied perturbative model to show that density perturbations
take the form of a spectrum of slow magnetosonic waves
which nonlinearly shift the frequency of the SAW. Frycz et
al. [1998] derived reduced MHD equations for low fre-

quency plasma and discussed the nonlinear interaction of
dispersive FLRs and magnetosonic waves under an enve-
lope (WKB) approximation in a Box model. Rankin et al.
[1999] later extended the calculations of Frycz et al. [1998]
into a dipolar model and showed that density cavity
formation, and other observational features of auroral arcs,
can be explained qualitatively in terms of ponderomotive
forces and dispersive effects in FLRs.
[4] Nonlinear envelope models [Frycz et al., 1998; Ran-

kin et al., 1999] are limited by assumptions of weak non-
linearity and wide separation of the Alfvénic, dispersive,
and sonic time scales. Our studies show that on relaxing
these constraints, strong wave-induced nonlinearity leads to
confinement of wave energy inside latitudinally localized
density perturbations. The wave fields are found to be finely
structured due to a strong interplay between dispersive and
nonlinear effects [Samson et al., 1996]. We investigate these
effects using a newly developed finite element simulation
code [Marchand and Simard, 1997] which solves the full
set of reduced MHD equations for dispersive FLRs in a
dipolar geometry. Our non-perturbative treatment allows us
to investigate the complete dynamics of growth and satu-
ration of wave fields and density perturbations under
realistic magnetospheric conditions. We demonstrate that a
combination of dispersion and nonlinearity produces a rapid
acceleration of dispersive effects in FLRs that are trapped
inside ionospheric (equatorial) density cavities (bumps).

2. Reduced MHD Equations for Low Frequency
Plasma Process

[5] The derivation of the reduced MHD equations
describing the interaction of SAW and magnetosonic waves
is based on the following assumptions [Frycz et al., 1998]:
(1) perturbations are characterized by a perpendicular scale
length (L?) that is much smaller than the parallel scale
length (Lk), i.e., L?/Lk � 1; (2) the characteristic time for
the evolution of the wave is much longer than the ion gyro
period, 1/wcit � 1, where wci is the ion gyro-frequency; (3)
The electron inertia length le and ion gyro radius ri are
small compared to the characteristic perpendicular scale:
(le/L?)

2 � (ri/L?)
2 � 1; and (4) the plasma remains quasi-

neutral. Following Frycz et al. [1998], we have rederived
the reduced MHD Equations for low frequency plasma
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Here, A is the parallel component of the vector potential, f
is the scalar electric potential, r is the plasma density, B0 is
the unperturbed magnetic field, e is the elementary charge,
P is the plasma pressure, Pe is the electron pressure, ne is
the electron number density, b is the unit vector along the
magnetic field, Vk is the ion fluid velocity along the
magnetic field, and dBk is the compressional perturbation of
the magnetic field. Equations (1) and (2) describe SAWs.
Their coupling to density, pressure, and finite ion gyroradius
effects are accounted for in (1), while (2) accounts for
electron inertia and electron thermal pressure effects.
Equations (3) and (4) describe magnetosonic waves.
According to Ampere’s law, dBk is coupled to the plasma
pressure through

r?dBk ¼ � m0
B0

r?P � m0r
B2
0

b	 d

dt
r?f: ð5Þ

Note that our equations differ from that of Frycz et al.
[1998] and Rankin et al. [1999] in that equation (2) is
derived from the generalized Ohm’s law without making an
isothermal approximation. Here, the above set of equations
is solved with a newly developed finite element code TOPO
[Marchand and Simard, 1997] in an arbitrary two-dimen-
sional curvilinear geometry assuming azimuthal symmetry.

3. Background Parameters

[6] We consider a two-species plasma with a constant
density of hydrogen, nH = 1 cm�3, and an oxygen compo-
nent with a density nO = 102 cm�3 at the ionospheric ends
which decreases exponentially with altitude over a scale
length hO = 600 km: n0(s) = nH + nO exp [�(smax � jsj)/hO],
where s is the coordinate along the magnetic field line, s = 0
at the equator, and the subscript ‘‘0’’ corresponds to the
initial conditions of the related parameters. Along a given
magnetic field line, the background electron and ion tempe-
ratures are initially chosen to satisfy the equilibrium con-
dition of constant pressure, and the initial electron and ion
temperature profiles are calculated from B0 � r(n0Te0,i0) = 0,
using Te0

eq = 100 eV and Ti0
eq = 200 eV at the equator. The

time dependent plasma response is adiabatic with a constant
ratio Ti/Te along the field line.
[7] To excite a standing SAW in the magnetosphere, we

impose a monochromatic driver by adding an electric
potential f to equation (1) of the form, Q = Q0 sin(w0t)
exp(�[(x � x0)

2 + z2]/�2). Here, x0 = 7 Re and � = 0.5 Re.
The frequency w0 of the driver is resonant with the funda-
mental SAW mode at L = 7. We use a driver strength of
Q0 = 2 	 102 V/s, corresponding to an effective driver

R = 2.5 	 10�2 (see the definition of R, equation (7) of
Rankin et al. [1999]). This choice was made to achieve a
reasonable amplitude of the resonance fields, i.e., field
aligned currents on the order of tens of mA/m2 above the
ionosphere [Samson et al., 1996].
[8] Our choice of parameters corresponds to a SAW

period of approximately 1.1 min and to a small negative
dispersion parameter, d = �5.04 	 10�6Re

2, where d is
related to the SAW frequency through the dispersion rela-
tion w = w0 (1 + k?

2d) (in the WKB approximation). For the
definition of dispersive properties of a SAW standing along
a magnetic field line, see equation (7) of Rankin et al.
[1999]. The chosen SAW period is shorter than that found in
typical observations. To lengthen the period, we have a
choice of stretching the background field [Rankin et al.,
2000; Lui and Cheng, 2001] or invoking coupling of the
SAWs to the slow acoustic mode [Bhattacharjee et al.,
1999]. This is beyond the scope here and a subsequent
paper will discuss nonlinear and dispersive effects in a
stretched topology.

4. Nonlinear Acceleration of Dispersive Effects

[9] During the initial temporal evolution of FLRs, non-
linear and dispersive effects are not important, and the
imposed driver causes the SAW to narrow and grow linearly
with time f / A / t. This is the linear phase mixing stage.
The corresponding wave vector k? increases linearly with
time, enhancing the wave dispersion that ultimately causes
wave propagation in the perpendicular direction. The sense
of propagation depends on the sign of the dispersion
coefficient. Such a picture of the linear FLR evolution is
shown in Figure 1a. For the parameters chosen, the dis-
persion coefficient is very small, and consequently perpen-
dicular propagation of the SAW is not apparent.
[10] The ponderomotive force in equation (3) / Af

drives density perturbations which produce a nonlinear
steepening of the perpendicular profile of the Alfvén veloc-
ity. Correspondingly, the frequency of SAW oscillations
changes and this nonlinear frequency shift, d�, increases
in proportion to the magnitude of density perturbations dr
(which grow like t2). The perpendicular derivative of the
nonlinear SAW phase shift �d�t defines the perpendicular
steepening scale k? � d�t/lw, where lw is the characteristic
scale length of the perpendicular variation of the SAW
eigenfrequency. Evidently, due to nonlinear ponderomotive
effects, k? increases with time much faster than it would
due to linear phase mixing alone. Steepening must terminate
at a level where dispersive effects come into play, at which
point dispersive waves will be observed to propagate away
from the resonant field line. This process is clearly seen in
Figure 1b, where nonlinear phase mixing terminates at
around 10 SAW periods. At that time, the dispersive term
is of the same order of magnitude as the nonlinear term,
d� = w0k?

2d, and this provides an estimate of the initial
nonlinear phase mixing time, tmix ¼ lw=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
w0d�d

p
. When

nonlinearity dominates FLR evolution, dispersive scales
appear after tmix, and nonlinear dispersive waves propagate
throughout the region where density perturbations are
excited. In general, this scenario depends on the ambient
field line parameters and on how strongly the resonant field
line is driven. Associated characteristic amplitudes, time-
scales, and spatial scales can be estimated from the weakly
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nonlinear envelope approximation developed in Rankin et
al. [1999].
[11] The example shown in Figure 1 shows the typical

evolution of FLRs in the equatorial plane in the linear
(Figure 1a) and nonlinear regime (Figure 1b), respectively.
In comparing the striking differences in the time evolution of
the electric field shown in panels a and b, we note that the
linear case presents itself as a single standing wave structure
in which dispersive effects are too small to make significant
contributions to wave energy propagation. In the nonlinear
case illustrated, nonlinearity and electron inertia attempt to
move the resonance Earthward, while thermal effects work
in the opposite direction. In Figure 1, inertial effects are
larger than thermal effects. Thus, the resonance position
moves Earthward, and a much broader and more compli-
cated resonance structure is observed. According to the
envelope approximation, the timescale tnl for nonlinear
ponderomotive effects is only a few SAW periods. This
indicates a break-down of the envelope approximation in our
earlier perturbative models, but points to strong nonlinear
behavior at a modest SAW amplitude around Bnl = 9 nT.
[12] It is informative to compare the above estimates with

the linear dispersive saturation time td = 32 SAW periods,
and the dispersive saturation amplitude, Bd = 225 nT. We
should also compare the nonlinear spatial scale lnl = 0.7 Re

with the characteristic dispersive scale ld = 0.03 Re. These
estimates from Rankin et al. [1999] would seem to imply
that for the chosen conditions, dispersion and nonlinearity

are spatially and temporally decoupled. However, they do
not account for nonlinear modification of the spatial scale.
The large density perturbation observed in Figure 2, which
shows a 2D spatial distribution of the relative density
perturbation along the field line at 23 SAW periods, changes
the characteristic length scale of the radial variation of the
SAW eigenfrequency. Our results show that at t = 23 SAW
periods, lw decreases from 2.2 to 0.46 Re at the equatorial
plane, at x = 6.7 Re. The dispersive saturation time td is
consequently reduced from 32 to around 9 SAW periods
(i.e., comparable to the nonlinear timescale evident in
Figure 2. and defined by tmix ¼ lw=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
w0d�d

p
), and the non-

linear spatial scale becomes 0.1 Re, which is only three
times larger than the dispersive spatial scales. Therefore, in
this regime, there is actually a strong overlap between
dispersive and nonlinear effects, and this is observed in
Figure 1b and in Figures 2, 3 and 4.
[13] Figure 3 and Figure 4 show the radial dependence of

the FLR at the equator, and at an altitude of 1.1 Re,
respectively. Note that according to Figure 2, the density
perturbation occurs within a narrow region, creating turning
points on either side of the resonance that trap the SAW
inside the density perturbation. This slows down the SAW
wave packet and after 30 periods it forms an almost
stationary structure completely decoupled from the driver.
This is clearly seen in Figures 1b and 3. At the same time,
the driver continues to generate new SAWs which compli-
cate the field structure and dynamics shown in Figures 3
and 4. A structure with a density bump at the equator (in

Figure 1. Dynamic evolution of electric field component
perpendicular to the magnetic field E? at the equatorial
plane in the (a) linear and (b) nonlinear cases.

Figure 2. Relative density perturbation dr/r0 of a non-
linear FLR at t = 23 SAW periods.

Figure 3. Radial dependence of perpendicular electric
field (solid lines) and density perturbation (dotted lines) at
the equatorial plane at t = (a) 23, (b) 46, and (c) 92 SAW
periods.
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Figure 3) and a current carrying depletion above the iono-
sphere (Figure 4) can be unambiguously seen. The low
altitude density depletions in our model may potentially
explain those observed in satellite data. The localized sub-
structuring of wave fields in our model also offers a possible
explanation for certain features of long period auroral arcs
[e.g., Samson et al., 1991, 1996].
[14] Figure 2 demonstrates the field aligned density

distribution. The parallel SAW structure corresponds to a
magnetic field node in the equatorial plane and anti-nodes at
the ionospheric ends. Correspondingly, the ponderomotive
force pushes plasma towards the equator, creating a density
bump in the FLR near the equatorial plane. This is the
mechanism that decreases the FLR frequency, and the
enhancement of the wave dispersion and eventual wave
trapping. At the same time the ponderomotive force produ-
ces a strong density depletion near the ionospheric ends of
the resonance field line.

5. Conclusion

[15] We have developed a new reduced MHD finite
element code, TOPO, to investigate the nonlinear dynamics
of dispersive field line resonances in a curvilinear geo-
magnetic field. We solve the full set of nonlinear reduced
MHD equations self-consistently, without making use of the
slowly varying amplitude (envelope) approximation. By
relaxing the assumptions of the envelope model, we are able
to study fine scale structuring of auroral arcs resulting from
the interplay of enhanced nonlinear and dispersive effects.
[16] Our results show that FLRs are latitudinally localized

within nonlinear density perturbations. Inside ionospheric

(equatorial) density cavities (bumps), time dependent dis-
persion and steepening of the perpendicular Alfvén velocity
profile lead to a rapid acceleration of nonlinear phase mixing
and associated spacial structuring of FLR wave fields. We
identify the appropriate timescales for dispersion and non-
linearity, and demonstrate that without nonlinearity, fine
scale dispersive structuring may be difficult to achieve on
auroral field lines that support FLR frequencies in the mHz
range. The ionospheric density cavity may result in an
enhancement of auroral electric fields [Tikhonchuk and
Rankin, 2000], and can potentially explain density deple-
tions that are a common feature of low altitude satellite data.
[17] In future work, we will address FLRs that are excited

on stretched field lines characterized by specific solar wind
conditions. This can potentially address FLRs with frequen-
cies in the range of a number of observations [e.g., Samson
et al., 1991, 1996].
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Figure 4. Spatial dependence of (a) perpendicular electric
field and (b) parallel current across the magnetic field lines
at an altitude 1.1 Re for the time of 46 periods. The dotted
line is the relative density perturbation. l corresponds to the
distance in Earth radius from the inner boundary.
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