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Abstract

Gravity currents, produced by the instantaneous release of a finite volume
of dense fluid beneath a layer of lighter fluid and overlying a spatially-varying
rigid bottom boundary, are modelled as discontinuous solutions to the systems of

nonlinear hyperbolic conservation laws arising from a shallow-water model.

Equations of motion for two stably-stratified fluids of constant density are
derived for the incompressible Navier-Stokes Equations for small aspect ratio flow
in an Eulerian fluid, and the equations are nondimensionalized using a gravity
current scaling so that they may be stated as a first order system of partial
differential equations. The model equations neglect the effects of turbulence,
entrainment, density stratification, and viscosity, but include the Coriolis force,
variable topography, and bottom friction. Special cases are stated for one-layer
three-dimensional axisymmetric flow, and in the two-dimensional case for flow
with a free surface, rigid lid, thin upper or lower layer, or small density differences.
These equations are then stated as a nonlinear system of conservation laws.

The model equations are classified as hyperbolic, with defined regions of hy-
perbolicity stated where possible. When in conservation form, discontinuous so-
lutions are considered, and the Rankine-Hugoniot jump conditions derived for
solutions which are trivial on one side of the shock. The initial release problem is

shown to be well-posed by the method of localization.

By approximating a gravity current front as a vertical discontinuity, the initial



release problem is solved numerically by use of a relaxation method designed
for systems of hyperbolic conservation laws and adapted to include boundary
conditions and forcing terms. The usefulness of this method is demonstrated
by several diagrams which show the effects of bottom slope and friction in the
two-dimensional case, and of bottom slope and rotation in the three-dimensional
one.

Since the relaxation method is applicable to systems in conservation form, a
result is proved showing that an infinite number of polynomial conservation laws
do not exist for the two-layer shallow-water equations in one spatial dimension,
and it is conjectured that this is the case for one layer in two dimensions. The
conservation laws which are known to exist are described, and correspond to the

conserved quantities of mass, momentum, and energy.
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Chapter 1

Introduction

The flow of cold air along the floor of a warm room after opening a door on a
cool day is an everyday example of the interaction between two fluids of slightly
different densities. Although more complex examples can be described, the fun-
damental ideas are similar to the notion above. For example, the motion of cold
fronts in the atmosphere, fresh water rivers meeting a salt water ocean, and even
snow powder avalanches may all be considered as the primarily horizontal motion
of one fluid below a lighter fluid or above a denser fluid. These phenomena have
been described under such general terms as density driven flow, density currents,
or the term most commonly used in this thesis: gravity currents. An excellent
review of the many examples of gravity currents has recently been updated by
Simpson (1997).

When studying gravity currents questions abound as to their rate of motion,
heights or thicknesses of layers, effects of topography and turbulence, entrainment
between the fluids, importance of boundaries and surface friction, sources and
sinks, and other physical processes. These factors and physical mechanisms are
all of varying degrees of importance when studying a specific physical example.
Before stating specific results of this thesis it is therefore useful to review some of
the relevant literature which has motivated this study.

One of the first attempts made to describe gravity currents was by Von Karman
(1940), who considered an idealized steady flow between two immiscible and invis-
cid fluids in two dimensions (horizontal and vertical) of infinite horizontal domain.
His analysis, although flawed, led to the result which was later rederived correctly
by Benjamin (1968) that the advancing front of a gravity current in this special
case moved at a speed u, which was related to the asymptotic height » behind
the front and the gravitational acceleration constant g, by the formula

u? =2 (u) gh, (1.1)
P1

where p, and rho; represent the densities of the lower and upper layers, respec-
tively. The layers are assumed to be statically stable so that p, > p;. Ben-
jamin’s result was obtained by balancing the momentum fluxes against forces in
the fluid, instead of the previously used method of hydraulic jumps. Variations
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on the formula (1.1) were also described in Benjamin’s (1968) comprehensive re-
view, which considered a variety of special cases of flow, but primarily concerned
steady-state, semi-infinite immiscible and inviscid flow over a horizontal bottom
boundary. Benjamin (1968) did acknowledge that variations in velocity profile,
bottom shape, density stratification, etc., (although not considered in deriving
(1.1)) would likely have an effect on the gravity current speed, thus warrant-
ing further investigation. Almost for the past 50 years, the study of the ‘front
condition’ of a gravity current has been undertaken, with results arising from
experiments, theoretical considerations and numerical calculations.

Experiments concerning fluid entrainment for gravity currents (for example,
Ellison and Turner (1959), Hallworth et al.(1996), and Huq (1996)) showed that
for low velocity flows, entrainment and turbulent effects are initially small and
concentrated near the advancing front. Additional experiments studied other
aspects of gravity currents such as its internal structure (Britter and Simpson,
1978), the effects of opposing flow (Simpson and Britter, 1979), or flow over small
obstacles (Lane-Serff et al., 1993).

Notable experiments which investigate non-horizontal bottom topography are
those by Middleton (1966), Britter and Linden (1979), Beghin et al.(1980), and
Alavian (1986). In general, the resulting description for gravity currents flowing
over constantly downward sloping planes with small slope, less than about 1 in
10 or approximately 5 degrees, is that the behaviour of the gravity current is
fairly close to the horizontal case. This observation resulted in the notion that
the alongslope component of gravitational force which acts to accelerate the flow
is balanced by opposing forces due to bottom friction effects. Such a concept
was mentioned by Benjamin (1968), and has been used by Hay (1983) to propose
a different style of front condition which incorporates both bottom friction and
slope.

With the assumption of a front condition in the style of (1.1), shallow-water
theory has been extensively applied to predict the behaviour of gravity currents
resulting from the instantaneous release of volumes of dense fluid. Shallow-water
theory has been quite successful in this regard, and is typified by the assumption
that the velocity in the horizontal direction is independent of the vertical spatial
variable. That is, at a given horizontal point, the horizontal velocity is indepen-
dent of height within the gravity current, a phenomenon which is observed for
low aspect ratio flow (the aspect ratio is the ratio of typical vertical height to the
horizontal length scales of the flow). Similarity solutions such as those found by
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Hoult (1972), or Grundy and Rottman (1985), and box-models (see, for example
Hallworth et al.(1996)) often employ the shallow-water assumption. These results
are all dependent on the knowledge of a front condition which must be fixed prior
to the determination of a solution. Corresponding results found via the methods
of hydraulic theory have been stated for such examples as exchange flow (Barr,
1967), or dam-break problems (Klemp et al., 1994). These examples also included
specification of a front condition, which in these cases, was necessary to provide
closure in the shallow-water equations.

When modelling gravity current behaviour by the methods of shallow-water
theory, the effects of density stratification, friction, viscosity, entrainment, and
turbulence, all contain difficulties in that they each introduce a height depen-
dence in the horizontal velocity field, contrary to the shallow-water assumption.
It is therefore a practical matter to determine a front condition from experiments,
and impose this on the shallow-water equations, subsequently solving them nu-
merically through the method of characteristics (Abbot and Basco, 1989). This
approach has been taken by Rottman and Simpson (1983), Bonnecaze (1993),
Huppert and Lister (1993), Klemp et al.(1994) and others. By using an experi-
mentally derived front condition, which includes all of the physical factors men-
tioned above, these methods work well for the specific examples for which they
are designed. However, they do not generalize easily to many situations for which
there is scant knowledge of the front condition, for example with variations in vol-
ume or bottom topography. This observation was made by Klemp et al.(1994),
who mentioned that, “...front propagation remains dependent upon the specific
source conditions and cannot be generalized.”

In addition to the existing large number of publications which concern two-
dimensional gravity currents, similar shallow-water methods have been applied
to the three-dimensional case simplified for axisymmetric flow. In this case, the
equations are similar to the two-dimensional case, and an early review by Griffiths
(1986) identified many of the specific applications. Various results have been pub-
lished by Grundy and Rottman (1985), Webber and Brighton (1986), Bonnecaze
et al.(1993, 1995), and Hallworth et al.(1996), to cite a few. Non-axisymmetric
cases such as the wedge-shaped releases reported by Huq (1996), or the horizon-
tal plumes created by Beghin et al.(1980) have also been considered. In most of
these cases, the previous front condition methodology is adapted for use in the
radial case. Recently, the addition of rotation has been considered by Ungarish
and Huppert (1998), who noted in essence that it is still unclear how to include
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the effects of rotation in a shallow-water based theoretical description of the front
of an advancing gravity current. Experimental observation is apparently also
lacking since Ungarish and Huppert (1998) stated that, “For a rotating axisym-
metric current... no investigation on the (front) condition has been performed.”
The effects of rotation on gravity currents is still under investigation and a more
comprehensive list of references may be found in Hacker (1996).

It is clear from the recent literature, and the past history of publications which
has motivated recent work, that the determination of the front position of a
gravity current plays a crucial part in the search for both numerical and analytic
solutions to the shallow-water equations which have been used, with some success,
to model gravity current behaviour. Theoretical results have, in general, been
well-supported by specific laboratory experiments. As recently emphasized by
Ungarish and Huppert (1998), the additional complication created by rotation
due to the Coriolis force, has yet to be explained in a satisfactory way theoretically
and investigated experimentally. There is most certainly an identified need for
an alternate approach which will permit a generalization from the present theory,
and incorporate the additional complications of rotation, variations in bottom
topography, and changes in dense current volume. An addition of these factors of
rotation, topography and volume changes in gravity currents is required to assist
in the connection between the laboratory and the physical world. Such physical
examples are widespread in scope, and range from the oceans to the atmosphere.

A large amount of research has been published concerning turbidity currents.
which are sometimes called particle-laden gravity currents, for example, Hall-
worth et al.(1998), Moodie et al.(1998), Dade and Huppert (1995), Bonnecaze et
al.(1993, 1995), Garcia (1994), and Sparks et al.(1993). The main motivation for
such study is the predictability of sediment depositions in the ocean or in rivers
and estuaries, Wright et al.(1990). The physical factor of nonzero bottom slope
is often of some importance in many of these examples, because sedimentation on
the sloping abyssal plain is considered in the study of turbidites (see, for example
Moodie et al., 1998, Muck and Underwood, 1990, or Dolan et al., 1989).

The theories of turbidity currents have also been applied extensively to pyro-
clastic flows on slopes by Huppert et al.(1986), or Dade and Huppert (1986). Off-
world examples exist where variable viscosity gravity currents have been used to
explain certain geologic structures on Venus (Sakimoto, 1995). Snow avalanches,
as well as some types of rock avalanches are also of some relevance to gravity
currents, as reviewed by Simpson (1997).

4



Some larger scale physical examples exist in the oceans and atmosphere. Dense
clouds of gas, which may be fed by an accidental industrial release, in general are
bound to spread out over various topography, and have been investigated by Web-
ber et al.(1993), Fannelgp (1984), and Hought and Isaacson (1970), among others.
In the ocean, examples which include the rotation of the earth are important in
describing the movement and circulation of water masses along slopes (Condie,
1995), or deep-water renewal (Karsten et al., 1993, or Quadfasel et al., 1990).

These physical examples listed above certainly differ from the laboratory set-
ting in scale, but also in the inclusion of the somewhat poorly understood afore-
mentioned factors of non-horizontal bottom topography, rotation, and changes in
volume due to either a fluid source, entrainment of surrounding fluids, or density
variations due to particles and sediment. Considering the progress of shallow-
water theory for modelling gravity currents, this approach has been quite well
validated, and it is likely that it can still be quite useful when other effects, such
as those listed above, are included. The necessity of a front condition, when used
in conjunction with the shallow-water equations, is not as widely accepted, as it
is often dependent on previously mentioned physical parameters.

An alternate way of viewing a gravity current front is as a vertical discontinuity
in the fluid, separating two regions of different density. This is most certainly an
approximation, as such factors as entrainment, turbulence, and other non-shallow-
water effects are present at this front (Simpson and Britter, 1979). However, there
is some usefulness in taking such a mathematical viewpoint, as discontinuous so-
lutions to conservation laws have been well-studied, see for example, John (1982).
This idea has a certain parallel to the following example, for the inviscid Burgers
equation, stated for a real function u(z,¢) in hyperbolic form

Ou Ou 9

at + ug;- = 07 (1"")
or in the equivalent conservation form
Ou a (1,

If a solution, u, to (1.2) is continuous, then it is also a solution to (1.3), and
vice-versa (John, 1982). However, a solution to (1.2) which is continuous to the
left of a prescribed position z4(t), and zero to the right, may be thought of in
a mathematically acceptable way as a discontinuous solution to (1.3), with zf(t)
defined by the equation (1.3) and the solution itself.
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In light of this simple example, it is proposed that shallow-water models for
gravity currents may be modelled via the conservation form of the equations. It
has been noted, for example by Whitham (1974), that the single layer shallow-
water equations admit an infinite number of conservation laws, corresponding
to such quantities as mass, momentum, energy, and other terms which do not
readily translate into physical quantities. Often, when stating the shallow-water
equations, as in Vreugdenhil (1994), they are simply stated in this form as a
matter of course. Consequently, a shallow-water model for gravity currents may
be stated as a system of equations in conservation form. This approach removes
the difficulty of how to define a front condition, replacing it with the problem of
how to deal with discontinuities in a solution. Thus, the gravity current front
is treated as a vertical discontinuity in the fluid, whose position is unknown and
evolves with the flow as part of the solution of the system.

The concept of solving the front position while at the same time finding a
solution to the shallow-water equations is not new, and has been attempted nu-
merically over three decades ago, for example by Reid and Bodine (1968) in
modelling large water surges due to storms. The difficult problem of the run-up
distance on beaches is also connected with this problem, and numerical studies
have been conducted for some time (Sielecki and Wurtele, 1970). An early review
of the problem of dealing with discontinuous solutions has been completed by Sod
(1978), while a more general treatment can be found in Press et al.(1986), or the
recent work by Godlewski and Raviart (1996). These last two references, as well
as the book by Vreugdenhil (1994) describe numerical methods for solving the
shallow-water equations.

With the creation of computing methods which permit better resolution, the
prediction of discontinuities has received specialized attention by Hyman (1984)
and Davis (1992), who, among others, investigated methods for ‘tracking’ discon-
tinuities, or interfaces. For hyperbolic systems of conservation laws, various means
of tracking discontinuities have been proposed, such as the high-resolution tech-
niques by LeVeque and Shyue (1995, 1996). A series of finite difference schemes,
known as relaxation methods, have been employed by Jin (1995), and Jin and
Xin (1995), which resolve discontinuities well, without resorting to such front
tracking methods. The book by LeVeque (1992) describes most of the finite dif-
ference methods which are in use today in relation to such hyperbolic systems of
equations.

Having briefly described some of the difficulties in modelling gravity currents
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with shallow-water theory, the stage is now set for stating the main concepts in-
volved in this thesis. There are three main themes which comprise any standard
attempt to describe a physical phenomenon. These are: experiments and observa-
tion, theoretical description, and numerical simulation. Due to the large amount
of experimental observations published, see for example Simpson (1997), the bulk
of the research herein is concerns the latter two areas.

The plan of this thesis is then as follows. In Chapter 2, an in-depth derivation
of the shallow-water model equations as applied to gravity currents is completed.
The shallow-water equations are stated for a two-layer problem in three spatial
dimensions, with and without the rigid lid assumption at the upper boundary to
close the problem as a system of six partial differential equations. Special cases
of these equations are subsequently derived for axisymmetric flow, thin lower
and upper layers, layers with small density differences. and flow in two spatial
dimensions with and without a free surface. Where it is physically appropriate
for three-dimensional flow, Coriolis effects are included, while bottom topography
is accommodated in all cases.

The development of the shallow-water equations is fairly standard, and is in-
cluded in many textbooks such as the one written by Pedlosky (1987). Notwith-
standing this, a comprehensive exposition of the assumptions imposed upon the
Navier-Stokes Equations, resulting in the shallow-water equations in the several
related settings mention above, was felt to be required. The new contribution to
the theory is made by omitting the standard front condition through considering
the problem as a system of conservation laws. This theoretical framework allows
a second novel addition to the theory in the form of a lower layer forcing term
which is introduced to capture the effects of entrainment and bottom friction on
the lower layer in such a way that it is consistent with the shallow-water assump-
tions. This new forcing term is based on a Chezy-type bottom friction form, with
the addition of a spatially varying truncation which is dependent on the gravity
current geometry.

To allow a thorough analysis of the model equations presented in Chapter 2,
some theoretical concepts are described in Chapter 3. Definitions of hyperbolic
systems, conservation laws, initial value problems (IVPs), and initial boundary
value problems (IBVPs) are stated for first order systems of partial differential
equations in several space dimensions. For systems of conservation laws, the
notion of weak solutions which admit simple discontinuities is discussed in some
detail, including a standard derivation of the Rankine-Hugoniot jump conditions
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at a discontinuity. A generalization of this analysis results in a new type of
jump condition applicable to a system of conservation laws with a discontinuous
forcing term, where the latter discontinuity corresponds to a simple jump in the
solution. This concept is described using a simple example involving Burgers’
Equation. Chapter 3 concludes with a short review of the method of localization
to determine well-posedness of an IBVP for a nonlinear system, stated as a lemma
for later use.

With the model equations outlined, and a rigorous theoretical framework pre-
sented, an analysis of the properties can proceed. Chapter 4 is concerned with an
investigation of the equations for flow in only the horizontal and vertical direc-
tions, and is divided into three sections which discuss the two-layer, thin layer,
weakly stratified, and rigid-lid equations. The first of these is the derivation of
conditions on the flow for which the various systems are indeed hyperbolic. Al-
though a portion of these results have been published previously (Montgomery
and Moodie, 1998 a,b and 1999 a,b), a new result showing hyperbolicity of the
two-layer equations when the flow velocities are low is presented. Such a situation
arises when the sudden release IBVP is considered. Proceeding under the assump-
tion that the equations are hyperbolic, the second section concerns the derivation
of various jump conditions at discontinuities for the various systems as they are
expressed in conservation form. These results are entirely new, although some
selected equations have been included in a recent paper submitted for publication
(Montgomery and Moodie, 1999b). Finally, sudden release IBVPs are shown to
be well-posed using the method of localization. Despite a previous preliminary
result (Montgomery and Moodie, 1999a), such classification of the various IBVPs
represents a new addition to the field.

Chapter 5 mirrors the methods of Chapter 4, but is concerned instead with
three-dimensional flow. A new result describing sufficient conditions for hyper-
bolicity of the two-layer case is shown, and the known results for the single layer
and axisymmetric case are included for completeness. The analysis differs from
the two-dimensional case where jump conditions for discontinuous solutions are
derived, since only the single-layer case is considered. Due to the degeneracy of
these equations, an expansion technique is used to yield a new result for predicting
discontinuous shock speeds for almost axisymmetric flow. This technique is based
on an amplitude dependent plane wave solution to the axisymmetric equations
over a horizontal boundary.

In Chapter 6, a numerical method for solving the model equations is presented
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and used to portray selected results. The finite difference relaxation method de-
veloped by Jin and Xin (1995) for the solution of an IVP for a system of nonlinear
hyperbolic conservation laws is a conservative, explicit, total variation diminish-
ing iterative technique which removes oscillations near discontinuities through
the use of a spatially second-order slope limiter. The modifications to the nu-
merical scheme which have been completed generalize the numerical scheme to
include boundary conditions, spatially dependent flux functions, and nonzero forc-
ing terms. Although these new additions to the method have been mentioned
previously (Montgomery and Moodie, 1998a,b, 1999a,b), a complete description
has been completed in the first section of Chapter 6, along with some prelimi-
nary investigation of the properties of the scheme as it concerns the resolution of
discontinuities in the solution compared with various parameters. The second sec-
tion of the chapter contains an application of the numerical scheme to the various
models for two-dimensional gravity currents. Height profiles of gravity currents
arising from the sudden release IBVP are displayed for various forms of bottom
topography, and discontinuous lower layer forcing terms. In addition, curves are
plotted which show the lower layer front position as it progresses in time, with
and without forcing terms over nonzero bottom slope. The flow values just behind
the front are used to calculate values which validate the jump conditions derived
in Chapter 4. The final section in Chapter 6 gives some selected results for the
initial release problem in three spatial dimensions. The effects of rotation and a
constantly sloping bottom are examined separately and together for comparison.

As the numerical technique relies on the ability to state the governing equa-
tions as a system of conservation laws, it is desirable to find all possible forms
of such equations. Chapter 7 investigates this question in an attempt to classify
the standard types of conservation equations which exist for the two-layer two-
dimensional situation, and the one-layer three-dimensional case. The method is a
generalization of one used by Whitham (1974), who showed that the single layer
two-dimensional equations admit an infinite number of conservation laws. The
new results for the other physical cases are not directly relevant to the preceeding
body of work; however, the results contained in Chapter 7 are important in a
more general sense, as the methods used may be generalized in a straightforward
way to other first-order systems of partial differential equations. In addition, the
equations which are chosen to model gravity currents carry with them a conserved
quantity, which may have a bearing on the gravity current front speed.



Chapter 2

Development of the Model Equations

The connection between the physical real-world setting and the mathematical
framework for gravity currents is described in this chapter. A time-dependent
shallow-water theory for two-layer gravity currents in three spatial dimensions
is derived, and the inherent physical assumptions are examined individually to
ensure their validity. The development of the two-layer shallow-water equations is
not new (Pedlosky 1987). However, the various models used to describe two-layer
shallow-water descriptions of gravity currents require that a careful and detailed
approach be taken, which is not found elsewhere. A description of these models
in a logical format allows the analysis and results of the subsequent chapters to be
portrayed in a more understandable and transparent manner than if the equations
are simply stated axiomatically.

The first section of this chapter contains a definition of the physical variables
and labels which will be used in developing the equations of motion, and a descrip-
tion of the physical geometry which is considered. The general equations for two
fluid layers of differing densities moving in three spatial dimensions are developed.
When the motion is considered to be of a large enough scale that the rotation -
of the earth cannot be neglected, the Coriolis parameter is included. Simplifying
assumptions are imposed from physical considerations; namely, the fluids are as-
sumed to be inviscid and immiscible. In addition, surface tension and effects due
to turbulent entrainment are excluded from the model. These assumptions are
the standard ones made when modelling stably-stratifies fluid layers.

Standard scaling arguments (Pedlosky, 1987) are then used in Section 2.2 to
simplify the equations, thus obtaining a shallow-water model based on the fact
that vertical length scales and velocities are small when compared with the cor-
responding horizontal ones. This small aspect-ratio flow is subsequently shown
to correspond to hydrostatic flow, with horizontal velocities independent of the
vertical position, a property typical of shallow-water flow. This results in the
equations being stated as a closed system of six partial differential equations in
six variables for either a free surface or rigid-lid case.

The derived shallow-water equations for two-layer flow are then specified to
model gravity currents resulting from initial release problems. Notably, a new
addition to the theory is made in Section 2.3. This is the inclusion of a nonlinear
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forcing term which is effective at the advancing head of the gravity current, a
region of the flow in which the shallow-water assumptions do not apply. Specif-
ically, the front of a current is characterized by large vertical accelerations and
non-hydrostatic pressures, and is an area of mixing between the fluids. Notwith-
standing these physical processes, some good successes have been achieved by
ignoring these effects and making the assumption that shallow-water theory may
be applied everywhere within the gravity current (Rottman and Simpson, 1983).
The effects of the ignored physical processes at the front are typically modelled by
imposing a vertical boundary which moves at a rate determined experimentally
via a Froude number front condition. The new nonlinear forcing term introduced
maintains the present successful shallow-water assumptions, while removing re-
liance on experiments to determine specific parameters. It is therefore a natural
addition to existing theory which may be compared to standard and established
models.

Model equations for two-layer gravity currents are expressed as six equations
in six variables, which are reduced in number for several special cases considered
in Section 2.4. The system of equations is simplified to three variables and equa-
tions by neglecting the upper layer to consider the ‘one and a half’ layer model
in three spatial dimensions. A further reduction to the axisymmetric situation,
formulated in polar coordinates, is also stated. In two spatial dimensions (ver-
tical and horizontal) the number of equations is reduced by two to obtain only
four variables. Special cases of these equations such as rigid-lid, shallow layer,
or weakly stratified (small density differences) are also stated as simplifications,
each consisting of only two nonlinear partial differential equations.

2.1 Physical Formulation

The variables for two fluid layers on the earth’s surface are defined in this
section, with the accompanying geometry also introduced. The equations for an
incompressible Newtonian Fluid are stated in a rotating frame, and approximated
in the standard way in a locally Cartesian reference frame on the surface of the
earth.

The physical situation considered is that of two layers of fluid, blanketed hori-
zontally over each other, with an impermeable bottom boundary below the lower
layer and an air/liquid interface above the top layer. The bottom boundary is
meant to represent solid topography, such as an ocean floor, whose height profile
is assumed to be a known function which then affects any time-evolution of the

11



2=H

’ X, U

(0,0,0)

FIGURE 2.1. The two-layer system geometry and variables.

two-layer flow. The upper boundary is such that the pressure above the surface,
Do, is constant and the density difference is large, i.e. po << p;. The upper and
lower layer state variables are denoted with a subscript 1 for the upper layer and
2 for the lower layer, as depicted in Fig. 2.1.

The labels shown in Fig. 2.1 are defined as follows, where the subscripts are
irrelevant to the definition and are temporarily neglected. The fluid density is
represented by p, pressure by p, and velocity by the three component vector
u = (u,v,w). The components u and v are the horizontal velocities in the r
and y directions respectively, and the vertical velocity w is in the z direction.
The force of gravity acts in the downward vertical direction and is represented by
the vector g = (0,0, —g) where g = 9.8ms™2. Additionally, the entire coordinate
system is assumed to be rotating about the z axis with the frequency of the earth,
Q = 27 radians per day or 7.27 x 107%s~},

The three surfaces displayed in Fig. 2.1 are all measured above the plane z =
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The known solid bottom contour is given by the surface z = hg(z,y), and the
upper boundary of the fluid layers are shown as the surfaces z = h(z,y,t). The
plane z = H is noted for later use and should be thought of as the value which
the upper layer of an undisturbed system at rest may assume, namely H = h;.
Additional notation which will be used where appropriate is {; = h, — hg and
€1 = hy — ha. These represent the layer thicknesses and are always nonnegative
functions of z, y and t.

To state the equations of motion which permit a description of the evolution
of the system depicted in Fig. 2.1, some specifications as to the physical nature
of the fluids need to be made. Given clearly stated assumptions, researchers will
be able to determine the applicability to physical examples of the various models
described in this chapter. With these assumptions clearly stated, it will be the case
that the application of theory may be facilitated so that anyone considering an
application will find their task simplified. Underlying the terminology is the idea
that the two fluid layers are watery in nature, and it is sufficient for the reader
to form a mental picture of a salt-water bottom layer underlying one of fresh
water. Although liquids are almost exclusively considered, many of the following
assumptions are also appropriate in some atmospheric situations. In that case,
an equation of state may be necessary to account for changes in density, which
beyond the scope of the constant-density currents considered in this thesis.

As a starting point, this thesis is concerned with situations in which the contin-
uum hypothesis holds, so that the molecular properties of matter may be ignored
and replaced by the large scale behaviour of the fluids. This is generally valid
when the scales of the motion (perhaps as small as 10~?m) are much larger than
the mean free path of the molecules (perhaps as large as 10™°m) (Kundu, 1990
p.5). With this assumption, the standard methodology of Fluid Mechanics (see,
for example, Kundu, 1990) is followed instead of the kinetic theory approach
necessary for the consideration of a rarefied gas.

Both layers are assumed to be Newtonian fluids, an assumption which specifies
the type of constitutive equation which may be used (Kundu, 1990 p.92). This as-
sumption is commonplace, and is accurate for fluids such as air and water (Kundu,
1990 p.93). The theory is not applicable to fluids that exhibit non-Newtonian be-
haviour, such as some emulsions and slurries, or fluids with viscoelastic properties.

The next fundamental assumption concerns the question of incompressibility
of the fluids. An incompressible fluid is generally defined as one whose density
does not change with pressure (Kundu, 1990 p.79, Baines, 1995 p.4). Although
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the assumption of incompressibility is generally a good one for water there are
many circumstances in which air can be considered incompressible (Baines, 1995
p.4,5) or weakly compressible through the anelastic approximation. The subject
of gas dynamics considers compressible flows, where the effects of pressure on
density are characterised through the Mach number, defined as the ratio of the
flow speed to the local speed of sound (Kundu, 1990 p.580). In general, a gas
is considered to be incompressible for Mach numbers lower than 0.3 (Kundu,
1990 p.581), for which density variations due to pressure can be neglected. For
example, in air at 15°C, the speed of sound is approximately 340ms~! (Kundu.
1990 p.585). Typical atmospheric gravity currents travel at speeds less than
about 30ms~! (Simpson, 1997 p.12-19). Ignoring small variations in the sound
speed due to temperature variation from 15°C, a rough estimate yields a Mach
number below 0.1 for atmospheric gravity currents, which is less than the cut-
off of 0.3. Therefore, considering an atmospheric gravity current example, the
incompressibility assumption for watery fluids is extended to air, and is assumed
to hold.

The assumption of incompressibility allows the continuity equation in differen-

tial form,
1Dp

p Dt
to be simplified. This simplification has been made under the label of the Boussi-
nesq approximation (Kundu, 1990 p.97), or strictly by stating that %§ = 0 for an
incompressible fluid. Regardless of the style of the argument, an incompressbile
fluid permits the term p~!Dp/Dt in equation (2.1.1) to be neglected in favour of
the divergence term. Thus the incompressible form of (2.1.1) to be used is

+V.u=0, (2.1.1)

V-u=0. (2.1.2)

The simpler form of equation (2.1.2) over (2.1.1) makes it a much more convenient
equation to use in practice.

In addition to equation (2.1.2) for an incompressible fluid, other equations of
motion, for the fluid velocity or momentum, may be stated in a rotating frame
(Kundu, 1990 p.97, Baines, 1995 p.10, Pedlosky, 1987 p. 19) as

Du
Dt
This equation, in spherical coordinates. contains R as a radial vector from the axis
of rotation which is rotating at angular velocity Q, and a vector F' to represent

- _%vp+ F + (g +Q°R) — 2Q x u. (2.1.3)
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FIGURE 2.2. Cartesian Coordinates on the Earth’s Surface.

some general, unspecified forces per unit mass, such as viscosity or diffusion. F
will be discussed in more detail in Section 2.3.

Although equation (2.1.3) is appropriate for large scale problems, it may be
simplified if the horizontal length scales of the motion involved are small when
compared to the radius of the Earth, which has an average value of 6371 km.
In this case, the motion may be approximately described in a locally Cartesian
coordinate system which is rotating at a point on the Earth, having been approx-
imated as a perfect sphere (Kundu, 1990 p. 481). This set of axes may be defined
with the z-axis parallel to lines of constant latitude, the y-axis parallel to lines
of constant longitude, and the z-axis given in an upward normal direction to the
surface. These are sketched in Figure 2.2,

The angular velocity of the Earth resolved in this coordinate system is specified
at a given latitude by the angle 8 measured from the equator, as

Q= (0,Qcos6,2sinb). (2.1.4)
Thus, the Coriolis force term, —2Q x u from equation (2.1.3), may be expressed
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in components as
20 x u=—2Q(wcosf —vsinb,usinf, —u cos §). (2.1.5)

Standard approximations for a thin layer on a rotating sphere simplify this
term (2.1.5) even further. The first of these is that the z-component wcos# is
assumed to be much smaller than vsin#, since in general, w << v. Second, the
vertical component of the Coriolis force is usually negligible when compared to
the vertical gravitational forces; hence 2Qu cos 8 is also neglected in the vertical
momentum equation. These assumptions to equation (2.1.5) simplify the momen-
tum equations {2.1.3) to the usual ones given for a thin layer, stated from Kundu

(1990, p.483) as

Du 1
— =-=-V —fu,0), 2.1.
5t = —;VP+F+E+ (fo,~fu.0) (2.1.6)

where the Coriolis parameter f is inroduced in (2.1.6) and is defined as
f =2Qsiné. (2.1.7)

In the gravity current setting, a few more physical assumptions are made about
the nature of the fluids and their interaction. The fluids are assumed to be inviscid
and of constant density within each layer. In addition, entrainment and turbulent
effects between fluid layers are not included. These assumptions may be quantified
by the parameters of Reynolds and Richardson Numbers (Baines, 1995, Kundu,
1990). These effects are most definitely important near gravity current fronts,
however they generally play only a small role elsewhere and may be ignored as
is done in standard shallow-water theory (Rottman and Simpson, 1983). As
mentioned in the introduction, the effects of entrainment and turbulence will be
modelled through the addition to standard theory of a nonlinear forcing term, to
be described later in Section 2.3.

Finally, a few comments will be made on the meaning of the word Boussinesq
as it applies in this context. The Boussinesq approximation pertains to a strat-
ified fluid in which the density changes with position in the fluid (Baines, 1995
p-7), and is usually applicable to liquids in geophysical situations. The Boussi-
nesq approximation may be phrased as the statement that in the momentum
equations (2.1.3), density changes are neglected except where they arise in the
buoyancy terms. Since only constant density layers are considered herein, this
approximation is required within each layer. However, it is noted that in such
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a case, Boussinesq flow is said to occur when the relative density differences be-
tween layers is small (Lawrence, 1990 p.459). It is in this sense that the flow is
considered Boussinesq in most situations, and the constant density assumption
may often be relaxed with the same resulting equations.

2.2 Two-layer Equations of Motion

Under the assumptions in the previous section, the equations of motion (2.1.1)
and (2.1.6) in each layer are written for each layer with subscriptsi =1ori =2to
denote the upper or lower layer, respectively. The equation of mass conservation,
or continuity equation, for an incompressible fluid is given in each layer by (2.1.2)

stated as
V. u; =0. (2-2~1)

The corresponding momentum equations (2.1.6) in component form are given by

Ou; Ou; Ou; Ou; 1 9p; _ _ 999

t tUar YUigy TV T e It He (222

Ov; Ov; Ov; Ovi _ 10pi . _ 05

ey + u; e + v; 5y +w.—5‘: = —;-@ fui + Fiy, (2.2.3)
and

Ow; _aw,' _aw,' .6w,- _ 1 api _ 09

These equations may be simplified by using the hydrostatic approximation,
which can be stated simply as

% = —pig + 0(8?), (2.2.5)

where § is the aspect ratio of the flow, defined as the ratio of typical height to
length scales. The scaling arguments leading up to this approximation are given
succinctly in Pedlosky (1987 p.38) and are not reproduced, but hold for arbitrary
frequencies of the angular velocity Q. For small aspect ratio flows, the small O(6?)
term is neglected so that equation (2.2.5) may be integrated vertically to give

pi{z,y,2,t) = —pigz + pi(z,y. ). (2.2.6)

The hydrostatic approximation is used in the presence of bottom topography.
which will excite vertical accelerations. However, small variations in bottom to-
pography with gentle slopes are consistent with shallow-water theory and may be
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used in conjunction with the hydrostatic approximation. Typical slopes of less
than 1/10 are thus considered to be compatible with the hydrostatic approxima-
tion.

Equation (2.2.6) may be combined with the boundary conditions of pressure
continuity at the fluid interfaces, so that the extra terms p; may be specified and
removed from the governing equations. The two boundary conditions discussed
simultaneously are that of the top boundary of the upper layer is either a free
surface or a rigid lid. In either case, the pressure in each layer may be simplified
somewhat. Letting p,(z,y,t) denote the pressure at the top boundary of the
upper layer, equation (2.2.6) gives the perturbation pressure p; as

P1 = p1gh; + ps.

This may be then substituted back into equation (2.2.6) for i = 1 to give the
upper layer pressure expressed as the sum of a hydrostatic part and an external
surface pressure as

pl(x, Yy, <, t) = plg(hl - 2) +p3’ (227)

Similarly, the pressure in the lower layer may be written using the continuity
of pressure at the layer interface: p; = p; at z = h;. Equation (2.2.6) may be
evaluated at z = h;, and (2.2.7) substituted into the result to find p; as

52 = P2($a Yy, h27t) + p29h2
= p1(z,y, ha,t) + pagh.
= p1g(h1 — h2) + ps + p2gha.

This manipulation allows equation (2.2.6), for ¢ = 2, to yield the lower layer
pressure expressed as the sum of hydrostatic pressure and surface pressure as:

p2(z,y.z.t) = pag(h2 — z) + p1g(h1 — h2) + ps. (2.2.8)

The only differences between the two boundary conditions considered at the upper
interface are that a free upper surface contains the simplification of constant
surface pressure p,, while a rigid lid upper surface has the constraint h; = H.
At this point, an observation may be made from equations (2.2.7) and (2.2.8).
Since p, = p,(z,y,t), taking derivatives of (2.2.7), (2.2.8) with respect to either
or y shows that the horizontal pressure gradients are independent of the variable
z. Therefore, the horizontal accelerations in equations (2.2.2), (2.2.3) are also
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independent of z, or at least any changes in z dependence are necessarily inde-
pendent of pressure. For consistency, it is assumed that if the horizontal velocities
are initially independent of z then they remain so. That is, it is assumed that
u; = ui(z,y,t) and v; = vi(z,y,t) for both i = 1,2. Along with the hydrostatic
assumption, the often termed shallow-water approximation is the basis of shallow-
water theory, and one which has been used successfully (Pedlosky, 1987, Kundu,
1990, Baines, 19935).

An important point to note in making the shallow-water approximation is that
to maintain the z-independence of u; and v;, the forcing terms F;, and F;, must
also be independent of 2. This property of the forcing term F is assumed at this
point without justification and will be discussed in Section 2.3.

In addition to simplifying the horizontal momentum equations (2.2.2), (2.2.3)

by the removal of the vertical derivatives, % and %, the shallow-water approx-

z z
imation simplifies the continuity equation (2.2.1) so that it may be integrated over
the vertical domain. This is observed clearly when equation (2.2.1) is expanded
from its vector form as

6w,~ — _6u,- _ av.' (2.2.9)

which integrates vertically, using the fact that the right hand side is independent
of z, to allow the vertical velocity w; to be stated as
Ou; Ov;
; )= —zf — 4+ — wi(z,y,t), 2.2.10
wx(l‘,y, s ) z(ax + ay +‘lb,( 1 Y ) ( )
where the terms w; are the unknown functions of the integration.

The vertical velocities may be further specified through application of kinematic
boundary conditions at the appropriate vertical boundaries of the system. First,
at the bottom boundary z = hpg(z,y), the condition of no net flow across the
boundary is imposed. This is written as

UQ'V(Z—’ZB)=0 at z = hpg,

which simplifies to
Ohp Ohg
hg,t) = . 2.2.11
UJ2(.'B, Yy, B, ) u2 9z + v2 ay ( )

The condition (2.2.11) now allows the lower layer (¢ = 2) specification of &> in
equation (2.2.10). The unknown function @, is found by evaluating (2.2.10) for
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t = 2 at z = hpg, and using equation (2.2.11) as follows:

m iy ov
wg(.'l,', y’t) = w?(:t’ y’hB’t) + hB (ﬁ' <+ —2)

oz Oy
_ Ohp . Ohp Buy | Ova
=urg tuig s the (aT*E)

0 0
= a—x(hB‘LQ) + a(hgvg).

This result, substituted into equation (2.2.10) for the lower layer, then yields the
lower layer vertical velocity as

Ouz | Ova

o 0
we(z,y,2z,t) = —2 ( E + By ) + a—x(haug) + %(hgvg). (2.2.12)

A similar procedure may be carried out for the lower boundary of the upper
layer, although the boundary condition at the top of the upper layer affects the
analysis and subsequent equations of motion, and the calculations must be com-
pleted separately for the free surface and rigid lid cases. For a free surface, the
kinematic condition at the free surface z = h; is given by

Dh,

- 2
B (2.2.13)

wl(-t,y’hlat) =

which becomes upon substitution of equation (2.2.10) for the upper layer,

aUI avl ~ _ ahl ahl . ahl 99 1.
—h1 (61‘ + ay) +w1(1:,y,t) = It + u 9z +v: ay . (“'-'14)

This boundary condition (2.2.14) then specifies the function w; which may be
substituted back into equation (2.2.10) for i =1 to allow the upper layer vertical
velocity to be stated similarly to (2.2.12) as

_ aul 3v1 3h1 ah
w(z,y,2,t) = —z ( e + 3y ) + 5 + uq

oG O O O 2
= ‘(az * 3y)+ 5t T a; () + 5o (lavr)-
(2.2.15)

For the case of a rigid boundary at = = h;, no net flow across z = h; may be

1
Or th Oy + Oz +3_y

Oh; ou, Ouy )

expressed as
wl(a:,y,hl,t) =0.
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This allows the upper layer vertical velocity to be expressed, through the use of
equation (2.2.10), as

ou, 6v1
3 <, t) = — +h ( +
mmn == (G 5 ) e (5 2

Ou 6 0
( 1 ﬂ +.a;(h1ul)+5y-(h1v1).

It is somewhat surprising at first to notice that this expression is the same as
(2.2.15) once the rigid lid specification h; = H is made, since the vertical velocity
is therefore independent of the choice of boundary condition. However, equation
(2.2.15) will be used exclusively to represent the upper layer vertical velocity for
both the free surface and rigid lid equations.

The equations of motion for the two-layer system with either a free surface or
a rigid lid at z = h; may now be specified as a closed system of equations, up to a
discussion of the forcing terms F;. Equations (2.2.2) and (2.2.3) may be simplified
through use of the shallow-water approximation, and expressions (2.2.7), (2.2.8).
With the definition of the reduced gravity,

g =p2zp), (2.2.16)
P2

the momentum equations, written explicitly for each layer, are:

6u2 6 6112 ahg ' 6h1 1 6p,
5 T ey +vz - foo = —61: (9-9)%5, — Py + F2,, (2.2.17)
Ova Ov, Ovo ,Oh2 W ORh1 1 6p,
=—qg'—=% — (g —q')—— — — F,, (2.2
5t + U — Bz + v ——— 5y + fuq g’ By (g g)ay o ay + L2y (2.2.18)
3u1 3u1 aul _ Bhl _ 1 6p, 99
a5 tUig TUg 5y —fur=—g5— Ty + Fi ., (2.2.19)
d o 0 7} oh 10
1 v1 vy - _ 1 Ps 299
ot T oz tu Oy +fu I Oy p1 Oy + 51y (2:220)

The system above is almost closed by inclusion of two more equations derived
from the kinematic boundary condition similar to (2.2.13) at the interface z = h,.
The first of these may be found from consideration of the lower layer velocity,
(2.2.12), substituted into the boundary condition at the layers’ interface,

Dh,
Dt

wg(.’L', Y. h21t) =
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This substitution yields

6u2 6v2 6 6 _ 6h2 ahg ahg
(3_:5 + a_y) + a—z(hauz) + %(thz) = w + uza— + v2 —3?’

which simplifies readily through use of the product rule to the standard surface
equation from shallow-water theory,

oh 0 9
_872 <+ a—z (hZ - hB)“?] -+ é—g [(h2 - hB)‘Uz] = 0. (22.21)

A second equation may be derived similarly via the kinematic boundary con-
dition for the upper layer at the layer interface z = hs,

Dh,
Dt -

wl(zaya h27t) =

Substitution of the upper layer vertical velocity w; given in the form of equation
(2.2.13) yields the evolution equation for the surface z = h,,

6u1 avl ahl 6 6 ahg ah2 6h2
- bbb Tt 3 = —(h =
hz(@z +3y)+ 5 +az(hlu1)+3y( 101) 5t +u16:1: +vlay,
which subsequently simplifies via the product rule to
0 0 0
3 (k1 = h2) + a3 [(h1 — ho)ua] + E™ [(h1 = h2)v1] = 0. (2.2.22)
Equations (2.2.21) and (2.2.22) are often written, in following chapters, with the
variables {; = h; — h2 and {2 = h; — h g to simplify the notation.
The six equations (2.2.17)-(2.2.22) are the two-layer equations which describe

shallow-water motions for constant density layers. For a free surface. p, =
constant, the system becomes closed since the terms involving p, are removed
from equations (2.2.17)—(2.2.20). For the rigid lid case, h; = constant, the addi-

3% [((h1 — h2)uy + (ha — hB)us] + 565 [(h1 — h2)vy + (h2 — hB)v2] = 0. (2.2.23)

Therefore, for the rigid lid case, the equations also become closed in the six
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2.3 Two-layer Gravity Currents

layers of constant density and are applicable in the case of small aspect ratio flow
which validates the hydrostatic approximation and shallow-water formulation.
Discussion of the forcing terms F; previously introduced in equation (2.1.3) is
completed in this section, and the equations of motion are revisited with the aim
of creating a model for gravity currents.

2.8.1 The Forcing Terms, F;

The two-layer system depicted in Figure 2.1 differs from the gravity current
picture through the absence of a vertical material interface which marks the pos-
sible horizontal extent of a layer. The lower layer is now considered not to be
semi-infinite in extent, as Fig. 2.1 suggests, but a finite volume of dense fluid
which is bounded over a finite domain. The lower layer is assumed to have a
relatively simple geometry, and its horizontal profile is taken to be a simply con-
nected (Marsden and Hoffman, 1987 p.146) and (finitely) bounded region in the
(z,y)-plane. More generally the boundary of a finite convex region in the plane
may be considered, although convexity is not necessary for the analysis, with a
smooth (differentiable) boundary. One such possible shape is portrayed in Figure
2.3, which appears above.

It is assumed that the curve I represents a well-defined vertical interface. In the
case that there is a smooth transition of the lower layer to zero thickness, as would
occur if the interface was horizontal or nearly so, then an effective height cut-off
at a specific value would be necessary. This difficulty exists when calculating
the front position numerically, and will be discussed in Chapter 6. An arbitrary
cutoff of 0.1% of the maximum layer thickness is a reasonable value to use in these
circumstances.

The lateral extent of the lower layer is denoted by the curve I' which may evolve
in time as the flow progresses. A point lying on ' at a certain time is usually
given a subscript F, which should not be confused with the Coriolis parameter,
to denote that the point is on the front, i.e. (zr,yr). The dense lower layer is
considered to be inside I', where the less dense upper layer exists both outside I,
and above the lower layer.

Since the curve I'(z,y) = 0 marks the horizontal extent of the gravity current,
it follows that I" evolves in a direction proportional to the frontal velocity. That
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I'(x,y)=0

FIGURE 2.3. Front Position Geometry of a Finite Dense Volume (top

view).

IS,

VI = (Z—Z, g—z) = k(uz,v2)|r, (2.3.1)
where k is a constant of proportionality. That this is the case follows from physical
reasoning that the front is a material interface and that fluid parcels at the front
do not leave the fluid. This includes the assumption that mixing at the interface
does not occur.

The forcing term F; may now be introduced as a drag force per unit mass
which acts only on the lower layer as the gravity current spreads outward from
its source. Although the actual physical mechanisms which would be normally
included in F; are from effects such as viscosity, turbulence, and entrainment,
these effects are not modelled explicitly and are gathered as a single term. In

24



words, the forcing term acts in a direction perpendicular to the front curve T,
and points inwards; it is strongest near to the front, and decays inwardly away
from I'. The form of F; mirrors a Chézy-type frictional form, such as that in
Whitham (1974, p.83). The forcing terms are thus introduced as

- (l.lz . VI‘) " o
F; = C‘f——hg —ha T(z,y,T)n, (2.3.2)

and
F; = 0. (2.3.3)

In equation (2.3.2), Cy is a constant dimensionless coefficient of friction, n is the
outward normal unit vector, and T is a truncation function. Note that the sign
of expression (2.3.2) ensures that it is in an inward direction.

As discussed in Section 2.2, the forcing terms F; must have certain properties
if the shallow-water approximation is to remain valid. Specifically, F; must be
independent of height so that F; = F;(z, y,t). This restriction is satisfied by equa-
tions (2.3.2)-(2.3.3), although it is not very satisfactory in a physical sense since
vertical structure does exist at a gravity current front. However, to be consistent
with shallow-water theory while maintaining the effective forcing of entrainment
and bottom friction in the momentum equations, this type of definition for F;
suffices.

The truncation function T is somewhat arbitrary, and a numerical investigation
of various forms will be completed later in Chapter 6, where several choices of T
are considered. Here, for want of a simple example, the truncation T is considered
in the form of a quadratic function independent of the ¢ variable, which has the
value of unity on I', and zero at a specified distance from the curve I'. To state
such a function, it is necessary to define the function £ : int(I') — [0,00) as the
Euclidean distance from the front, i.e.

£(z,y,T) = (r;lgif}er I(z,y) = (zf.y5)ll- (2.3.4)

Due to the property of the closure of the interior of I' being a compact set in
R2, such a function is well-defined. The function T in (2.3.2), redefined as T o £,
may now be thought of as a real-valued function, T : [0,00) — [0,1] which is
one-to-one, and, for example, could be defined as the lower half of a parabola as
shown in Fig. 2.4, with vertex (0,1) and varying foci dependent on a parameter
[. The equation for such a parabola,

£ =T — 1)?
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©0) ¢ ¢

FIGURE 2.4. The families of truncation parabolas, T'.

is then quickly inverted, choosing the lower half only to match the stated domain

above, as

TE)=1-— % (2.3.5)

The parameter [ in the definition (2.3.5) is called the length parameter, and rep-
resents the length of the truncation function T'.

To extend T to the entire region inside I, it is extended from (2.3.5) to the

piecewise continuous function

£ .
T(¢) = { -y #0sEsh (2.3.6)
0, ifl<eé.

The definition (2.3.6) is now used to define the forcing term F, in the definition
(2.3.2).
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The equations of motion now consist of a closed system of the six equations
(2.2.17)-(2.2.22) and the six variables uy, va, b2, u1, vy, h;. The lower layer bound-
ing curve T' represents a theoretical difficulty only since it is not assumed to be
a known function. T is therefore determined as the gravity current develops, and
the position taken into account, when the equations are solved numerically, as a
known function at each time step as the solution progresses forward in time.

2.3.2 Nondimensionalization of the Equations of Motion

The equations of motion are nondimensionalised using a scaling which fo-
cuses on the typical gravity current scalings which are observed experimentally
(Rottman and Simpson, 1983). Nondimensional quantities, signified with a tilde,

are therefore introduced as:

(z,y) = L(%,§), (hg,h1,h2) = H(hp, ki, hy),

(u1,uz) = U(t1,42), (v1,v2) =U(%y,02), (2.3.7)
L. H - o
t= —t = =Cy, s = Hp,.
b Cy LCf. ps = p29'Hp

The scalings in the above consist of a characteristic horizontal length scale L, ver-
tical length scale H, and horizontal velocity scale U. Specifying that U? = ¢'H,
two-layer shallow water internal gravity wave speed, removes the addition of any
new parameters. The nondimensionalization scheme (2.3.7), upon substitution
into equations (2.2.17)-(2.2.23) gives, upon utilization of (2.3.1) into the defini-
tions (2.3.2)-(2.3.3),

gi[% By | B fL-]_g’H[ ohs _ (g ~g") Ohy 315,}

I3 "% Ty T T | T e e 0z oz
HU? . _ il ¥t
-_— _— 2a3-8
LH Cf”'“? h2 —hB Ta ( )

U2 [az-g 00 90 L. J _gH [_aizz _(g—g') Ok 613,}

L | " wat2eg T T% =T | 5 7 65 93
2 (72 L 2
_HU Cortna L2 V27 (930
LH h2 —hpg
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U? (36, | . 89 fL gH | go0hy p;0p,
I [at +uGd+ngt+ I ] =T |79 mop| Y
HU | 0h 2,
I [w} + g[(hz hp)i,] + —[(hz - hB)vz]J (2.3.12)
HU[o0,. .. o - o . .
A [E(hl —h2) + a—[(hx ha)i:] + %[(hl - hz)vxl] =0, (2-3.13)
and
HU [ o
< [ —[(h1 — h2)ii1 + (h2 — hp)is) +3 [(hl — h2)#1 + (ke _hB)vzl]

(2.3.14)

To simplify the nondimensional equations (2.3.8)-(2.3.14), some additional
terms are defined, and the tilde notation is dropped for convenience. Two new
parameters are introduced to this end. These are the ratio of the reduced gravity

to gravitational acceleration,

!
y=L P~/ (2.3.15)
g P2

and the inverse of the Rossby number (R,),

_ 1 _fL .
€= =T (2.3.16)

With this new notation and some rearrangement of terms, equations (2.3.8)-
(2.3.14) are written in the final form:

6112 6u2 6u2 6h2 -1 8h1 ap,
o i Ty T, T - lGn =eva— 0
) p)
_ vy tvg
kCruz - T, (2.3.17)
Ovg Ov, Ov, ho -1 Oh, Op,
7+u261:+026 +6 +( —l)ay— ¥
2 2
—kCyr, X2 Vi (93 18)
h, — hg
8u1 aul 8u1 -1 3h1 _ _1% 5
5 +u Oz + v By +7 3 = U1 (1 =) Bz’ (2.3.19)



o 0 o _10h —10p,
;t‘ +u; ai-l + o al; + IEI-=—su1—(1—‘7) 1%, (2.3.20)
oh 0 o
Wz + g-(h2 — hp)us] + 5;{(’12 — hp)v2] =0, (2.3.21)
0 o 0
511 = h2) + o=[(h1 — ha)u)] + 5;[(’11 — hz)v1] =0, (2.3.22)

and
0 d
55 (1 = h2)ur + (he — hp)uz] + b—y[(hl — h2)vy 4 (h2 — hp)vy] = 0. (2.3.23)

Equations (2.3.17)-(2.3.23) represent the general nondimensional equations for
both of the upper boundary conditions considered. The free surface case is ob-
tained from the first six equations (2.3.17)-(2.3.22) with p, = constant, and the
rigid lid case is obtained through equations (2.3.17)-(2.3.21), and (2.3.23) with
h; a constant, usually equal to 1. These equations can be further considered by
imposing various physical restrictions, which will be completed in the following

section.
2.4 Physical Limits and Special Cases

The general equations (2.3.17) - (2.3.23) for a two-layer gravity current may
be simplified to consider specific cases. These are listed and described in the
following subsections. For later use and reference, the equations are rewritten as

necessary in the vector system form,

Ju Ou Ou

__+A(l)—— A(z)— =b’ 24.1

ot 3z~ 5y (2.4.1)
where u(z,y,t) and b(u,z,y,t) are n-dimensional vectors, and A}, A(? are
n X n matrices whose components are invariably functions of u, z, y, and t. For
example, equations (2.3.17)-(2.3.22) with a free surface (p, = constant) may be

written in system form as

[ug ] [ Uy 0 ‘7—1 0 0 0 T K3
U1 0 uy 0 0 0 0 v
0 hl + hl —-h2 0 Uz hg—hB 0 Uy — Uy 0 h1 +
5 uz 0 0 “/-l -1 Uug 0 1 a—:z: Uug
V2 0 0 0 0 Ua 0 U9
-h'_)_ L 0 0 0 hg - hB 0 us J _hg-




K3 0 0 0 0 0 7 (U T
0 vy ~—1 0 0 0 vy
+ 0 h] —hg v 0 h2 -—hB Uy —U; 2_ h] _
0 0 0 w0 0 |3y |ul|™
0 0 ~~1—1 0 V2 1 vy
) 0 0 0 hy—hp ve U | ho
- vy -
—&uy
u Ohp + Ohg
29z %2 Jy
= Evp — KC,U2 lhf u:';;’z T . (2.42)

—cug — kCjyvy @T

Ohp + hg
u
5 e 2 dy .
In addition to the system form (2.4.1), the equations are often recast in con-
servative form, as

du of1) 52

R T dy
for vector-valued functions f(1)(2) = £f(1).(2)(y, z, y, ). The motivation and defi-
nitions relating to equation (2.4.3) will be discussed in chapter 3.

(2.4.3)

2.4.1 Three spatial dimensions with a thick upper layer and a free surface

The three dimensional equations with a free surface, which consist of equations
(2.3.17)-(2.3.22) with p, = constant, have already been written as a system (2.4.2)
above. The first simplification results from the case that the upper layer is very
thick compared to the lower layer, so that the horizontal motion in the upper layer
(layer 1) has negligible effect on the lower layer (layer 2) and may be neglected
in the equations of motion. Neglecting these terms reduces the six equations to a
one and a half layer model consisting of the simplified forms of (2.3.17), (2.3.18)
and (2.3.21). This consists of the following three equations:

a‘UQ a'lLQ 6"2 a}7'2

= - K 2.4.
ot TUar Ty Yo T rCrun T (2:44)
avg Jv U2 6v2 6’12 AV U% +'U§ 04=
< = — — X< < 2.4.
3 "YU, T oy euz — kCyfvy gy T, (2.4.5)
and
e + . [(hz — hg)u,] + ™ [(hz —hp)vy] = (2.4.6)

30



Equations (2.4.4)-(2.4.6) are similar to those found in either Baines (1995, p.18) or

Whitham (1970, p.454), with the additional Coriolis and nonlinear forcing terms
present here.

The system form, (2.4.1), of equations (2.4.4)-(2.4.6) may be stated as

o | v [ uy 0 1 ug v2 0 0 Ug
B_t v | + 0 uz 0 ai vo | + 0 U2 1 62 U2
ha | ho—hg 0 uz | % | hy 0 hy—hg vo| Y |hy

r ul+v3
evy — kCyruz @T

2—hp

= | —euz —anUQ@T . (2.4.7)
" Ohp . Ohp
L * oz 2 Oy

Derivation of a conservative form, (2.4.3), of equations (2.4.4)-(2.4.6) is slightly
more involved, but the results are easily verifiable, and the calculations are com-
pleted with a view to the outcome. Since equation (2.4.6) is already in the desired
form, two equations representing conservation of linear momentum in the z and
y direction need to be derived. First, the vertically integrated linear momentum
in the z direction is given, using equation (2.4.4) and (2.4.6) as

2 (s ~ hotual = B2y + (e — hp) 2
= —Uza%[(hz — hp)uz] - Uzé[(hz — hp)vz] — (hz — ha)uzaa%
_(hy — ha)vgaa—": —(hg — hB)%’% + e(hy — hp)vz
— kCy(h2 — hp)us h“%_“;jr

= = Z{(hs — ho)u] = o{(ha — haluzve] = 5[5 (ha ~ h)?)

oh
— (h2 - hB)—aTB +e(hy, — hB)vz —_ ﬂCfUz\lug + ng
(2.4.8)

Similarly, linear momentum in the y direction can be found using equations (2.4.5)
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and (2.4.6) as

Oh, ov
—[(hz — hg)vz] = 702 + (h2 — hp) 6t2
= —v2g- [(hz — hp)uz] — v2 5> [(hz — hp)vz] — (ha — hg)ua—=— %vz
—(h2 —hB)vg%—(hg hB)aa};2 —e(hz —hB)ug
— kCy(hs — hg), YLi2 T Y p
ho, — hg
= = 5 l(hz = ha)uva] - 5{(ha — ha)od] = A-{3(hs ~ ha)’]
aI 2 202 ay 2= 2 2 B
Ohp /
—(hz—hB)———E(hg—hB)UQ ——rchvg u +‘02T.
9y P (2.49)

Defining the variables u = (hy — hg)uz, v = (ho — hg)v;, and ( = hy — hg allows
equations (2.4.8), (2.4.9) and (2.4.6) to be written in the conservative form (2.4.3)

v
¢
h 2
_(aa_: ev — kCyp p:+ T
= —CagyB—su—-anu 2+u2T . (2.4.10)
0

2.4.2 Azisymmetric flow in three spatial dimensions with a thick upper layer and

a free surface

The simplified equations of motion (2.4.4)-(2.4.6) derived in the previous sub-
section may be written in polar co-ordinate form, with the variables (r,8) where
z =rcosfandy = rsinf. The velocity components (u,,ug) in the (r, 8) direction,
respectively, are given by the trigonometric transformation u, = v; sin 4+ u2 cos 6
and ug = v cos@ — uy sinf (Kundu, 1990 p.69). This polar co-ordinates change
of variables, along with the partial derivatives, is written as

P 0 o cosd 0 siné 0
Uy = urcosf — ugsin - C _— —
o and 632 gr " %‘9 (2.4.11)
v = U,rsinf + ugcos b 9 L snel cosf 9
Oy ar T 7 56
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This transformation (2.4.11) is then applied to equation (2.4.4)-(2.4.6) separately
as follows. First, note the simplification available via the spatial derivative oper-
ator which transforms by (2.4.11) as:

2_sin0£ +
or r 60)
0 cosf O

(ursinf + ug cos 8)(sin 05 +— 50—)
8 Uy 6

= 4.12)
ura +7‘69 (241)

Using this, equations (2.4.4) and (2.4.5) become, in polar co-ordinates,

(U2a% + vgaa—y) — (ur cos @ — ugsinf)(cos @

cos O-a—u— - sxnﬂa— + u,(cos 92—- — sin au") + %(co 06 sinﬁaua

ot ot or 96 00

] Ohs siné ahg
— sinfu, — cosfug) + cos b > " 58

Vui+ uZT

= €(ursinf + ug cos §) — kCy(u, cos§ — ug sin )

h2 —hsg (2.4.13)
and
. Bur 6 au atm ug, . au,- aua
sm9§—+co S 0 ——— 5 -}-u,-(squa + co 50a )+ (san 59 +cos€a—9
. . Ohy cos@ Ohs
+ cos@u, — sinbug) + siné 3 + — g
. : Vul+uf
= —&(urcosf — ugsinb) — kCy(u,sin + ug cos 0)—h——h—T.
2B (2.4.14)

a r L .
Combinations of equations (2.4.13) and (2.4.14) easily isolate 6ut and g;%. This

can be done by simple manipulations making judicious use of the trigonometric
identity cos? 6+sin’ § = 1. For example, forming the combination cos8x (2.4.13)+
sinf x (2.4.14) gives

r r ug  Oh
3aut,-+ur3u +u_96u —u—e--i-—z—fug—chfur

o r 06 r or
Similarly, —sinf x (2.4.13) 4 cos 6 x (2.4.14) gives

2
VYT (2.4.15)

h, — hp

Oug Oug ugOug urug 10h, Vui+ud
— re— + — - = —Cu, — -~ T (2.4.16
% o tT et T tTre ur = wCrup=p——=—"T. (2.4.16)

33



Equation (2.4.6) simplifies directly without resorting to trigonometric combina-

tions as
oh 0 iné 0 . .0
—a—t-z— + cos 05[(h2 — hB)uz] — su: —az[(hg — hg)usz] +sin Ogr-[(hz — hp)vz]
6 9
+2= 3gth2 —hp)vs] =0
= %?- + cos 0%[(h2 — hp)(u,cos@ — ugsinb)]
+ sin Ggr—[(hg — hg)(u,sin@ + ug cos6))
- S““S'-a%[(h2 — hp)(ur cos 8 — ugsin 6)]
cosé 3

+ —— pgl(h2 — h5)(ur sin6 + ug cos 6)] = 0.

oh o Ou, 17,
=4 urE(h& ~hg) + (hy - hB)gur— + ?%(hz — hp)

ot
(h2 —hp) (Oug
+ - (6«9 +ur) =0

Oh 0 0 Ur -
50+ 37l(he —hp)us] + z5l(ha —hp) =] + (hs —hp) L = 0. (24.17)

As a system, equations (2.4.15)-(2.4.17) may be written as

_ e 0 0
9 us Ur 0 1 U2 = Uz
5 ||+ 0 ur 0 -gr- ug |+ | 0 = T 565 ug
h2 hg - hB 0 Uy hg 0 ﬁz—:ﬁl l,_g h2

u? - uZ+u?
£ +cug — h.Cfurl{;_—h—BT
u24u?
— 4 ——Eu,-—K.Cﬂte ha— BGT .
2.4.18)

Oh  .,0hB  (hy—hp)u.
ura—r + “,‘.9" ae - ,.8)

A simplification of equations (2.4.15)-(2.4.17) is the so-called azisymmetric
case, found by assuming that the variables are independent of the azimuthal angle
6. Thus, the variables are defined for u, = u,(r,t), ug = ug(r.t), and hy; = hy(r,t)
only. The axisymmetric equations are stated as a reduction of equations (2.4.15)-

(2.4.17) as

a r r 2 z
u au — .12. + Qﬁ = Eug — anur—l_l—l""_+'tigT, (2.4.19)

ot tur or r or
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31!0 a‘uO UyrlUp

= - —_ 9
6t + u, 61‘ + - EU, KCfuo h2 —hB s (2_4,_0)
and oh 5
2 u,
= T o - - — =0. 2.4.2
3 T ar[(hz hB)ur] + (hz — hp) — =0 (2.4.21)
Equations (2.4.19)-(2.4.21) may be expressed in system form (2.4.1) as
U2 Ur 0 1 ) U2
ét— Ug + 0 Uy, 0 a— Ug =
ha ho—hg 0 u. |9 |k,
1} + cug — anur@T
= | -8 ey, — anuel,h@::gT ,  (2.4.22)
0B (ha=hp)u,
" or r

which may be seen as the system (2.4.18) restricted to dependence only on r
and t. This simplification has some obvious importance by the reduction not of
the number of variables (this still stands at three) but by the number of spatial
derivatives and matrices in the partial differential equation.

The axisymmetric equations (2.4.22) are not valid if the horizontal length scales
are such that they are large enough to notice a change in the Coriolis parameter
with latitude. Thus, the axisymmetric equations are only considered to be ap-
plicable if the horizontal scales are less than the deformation radius (Pedlosky,
1987).

2.4.8 Two spatial dimensions with a free surface

Equations (2.3.17)-(2.3.22) may be simplified in a different manner by consid-
ering only motion in one horizontal direction. Without loss of generality, motion
in the y-plane is now taken to be zero, so that two variables (v;,v;) may be re-
moved from the equations of motion, along with dependence on the transverse
(y) variable. The resulting equations, simplified from (2.3.17)-(2.3.23), may be
considered to determine the flow in only one spatial variable (r), without any
effects of the Coriolis Force. The resultant equations of motion, with v, constant,
ugy = uz(z,t), ha = ho(z,t), by = hy(z,t) and p, = constant reduce to:

aUQ 6u2 6h ahl u%

2 -1 _ 1y — 2 9
5 + uz B + 3 + (¥ 1) e anh2 _hBT, (2.4.23)
6u1 aul -1 6h1 _ 9 9
5 + u; 3r + b =0, (2.4.24)
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oh, B
S¢ + 35 [(h2 —hp)uz] =0, (2.4.25)

and

ks = ha) + 2 [(hy = haYus] = 0. (2.4.26)

Equations (2.4.23)-(2.4.26) are similar in form to those developed previously
by Montgomery and Moodie (1999a), stated as equations (2.24)-(2.27) therein.
This can be seen by some straightforward changes to the notation, and some
rearrangement of equations (2.4.25) and (2.4.26). The equations may be stated
in conservation form (2.4.3),

u) sul+ 7 0
5] hl o (h] - h2)UI + (h2 - hB)U2 0 o
_ — = u , (2.4.27
Ot | u2 + Oz Fus+he + (v - 1)k —KC”F_%;;T (2.4.27)
ha (ha — hB)uz 0
or in system form (2.4.1) as
Ui Ui “/—l 0 0 (73]
_a_ hl + hX —h2 73] hg '-hB U2 — Uy _a_ hl
Ot | uz 0 y -1 us 1 oz | u2
hz 0 0 h2 -_ hB u»2 h2
[ 0
u dhpg
g —=
dz
= u? 2.4.28
—kCri25T ( )
dhg
L %3z ]

These equations (2.4.27), (2.4.28) may be rewritten in a more recognizable
form by making the change of variable {; = h; — h, and (3 = hy — hy. With this
notation change, equations (2.4.23)-(2.4.26) may be written as a system,

dh
uy u; ~~1 0 ~™! uy —‘7_1d_:
291G L1 uy 0 0 |0 |G| _ 0
at u2 O ./_1 - 1 Uz 7—1 a-'L' u ._.7-1 .dh'_B. -— KC!ﬁT ’
2 0 0 C2 u2 G2 dzr ‘2
(2.4.29)
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or in conservation form,

h
s b + 976 + ) - g
9 |G + KA Cruy _ 0
Ot | u2 9z [ zui + (v ' =G +770 | —-1 dhp _ KCpoT
C2 Cauz dz <

(2.4.30)

In Montgomery and Moodie (1998a), three special cases of equation (2.4.30)
were considered for the case of a horizontal bottom boundary (kg = 0) and zero
truncation function T = 0, i.e. the right hand forcing vector is identically zero.
These were labelled therein as a weak-stratification model for small values of
7, and two shallow layer models for a thin lower layer and a thin upper layer.
Similar models which include more general bottom topography are derived in the
following.

For a weak stratification model, the notation of the variables is altered so that
the dimensional free surface is given by n, where hy = H + . Using the nondi-
mensionalization h; = Hhy, n = v H7j then gives the nondimensional relationship
between A, and 7} as by = 1+~7. This notation may be substituted into equations
(2.4.23)-(2.4.24), and terms which are O(y) may be neglected. The subsequent
weak stratification momentum equations, with the tilde notation suppressed, are
then

6u2 6u2 6h2 67; _ . u% 9
at + usp 62: + 61: + 5:; = —h.thz — hBT, (-431)
and
Our |, %u O (2.4.32)

ot 9z Oz
The conservation of mass equation (2.4.25) remains unaltered, while equation
(2.4.26) becomes

0 0
5;(‘/”1 —ha2) + 3 [(1 4+ 97 — h2)ua] =0, (2.4.33)

which simplifies by neglecting O(+) terms, and adding (2.4.23) to give the equation

0

e [(1 — h2)uy + (ha — hp)uz] = 0. (2.4.34)
X

Equation (2.4.34) then integrates to
(1 — h2)uy + (h2 — hgluz = Q(2), (2.4.35)
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or
Q — (h2 — hB)u,
1—h, ’

where Q(t) depends on the initial conditions, and represents the total volume flux.

Uy =

(2.4.36)

The momentum equations may be simplified through the use of (2.4.35) by sub-
tracting (2.4.32) from (2.4.31). The resulting equation is calculated in Appendix
2, and may be expressed as

Buz _ Oh, Ju, uj

0
5(212 —u)+ U2E + —6_{ - 'UIE- = —anmT, (2.4.37)

where u; is given in terms of h; and u; via (2.4.36). The weak-stratification
equations are then given to be the two partial differential equations (2.4.37) and
(2.4.25) in the unknowns h; and u;. The upper layer dynamics are then found
by solving for u; from (2.4.36), then integrating (2.4.32) once spatially to find 7.

As a system, the weak stratification equations (2.4.37) and (2.4.25) may be
stated as

g uz aii az 0 ug b1
a - = dh ) 2.4.
ot [h2] + [hz —hB U9 or h2 usp B ( 438)
dz
In equation (2.4.38), the terms a;;,a;2 and b; are given by
P 2Q(hy — hg) + [(1 — h2)? — (1 + ha — 2hB)(h2 — hB)Jus
(1 — h2)(1 — hp) ’

a1z = {2@(1 — haJuz — (14 hy — 2hB)(1 = ho)ud + (1 — ho)*—

~1Q - (b2 = hp)ual }/{(1 = ha(1 - ha) .

and

. Q + dhp (1 — ho)xCyrulT
T 1-hg M4z T (1 =hp)hz —ha)
Q' denotes the time derivative of Q(t).

Although the system of equations (2.4.38) cannot be recast directly in con-
servation form, equations (2.4.37) and (2.4.25) are already almost in the desired
form. By writing these equations as a system in conservation form

1 u3
2 [ug —ul] .9 [%uE +hy — au?] _ [-h‘CfféTfﬁT], (2.4.39)

b1

ot h, dr | (ha —hp)us
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with u; given by equation (2.4.36), a more general system of conservation laws
is thus stated. By employing a change of notation, the system (2.4.39) may be
stated explicitly in the form (2.4.3) for one spatial variable. Letting @ = uy — u;,
and employing equation (2.4.35) gives

T=u _(Q—(hz—ha)uz _(1=hs),  _ _€@
2 1 -k, T \1-h; ) 2T 1Ry’

which may be solved for u; as

_(1=ha\_ Q o
Uy = (1—h3)u+ 1—hg (2.4.40)

Similarly, 7 and u,; are related through the use of (2.4.35) as

ﬁzQ—%L-Mwl_u__ Q 1—h3)u
hy —hp ' h, —hp h, —hg) U

which solves for u; as

Q (hz—ha)_ °
- _ . 2.4.41
“NET TR, 1—hg ) ( )

Expressions (2.4.40) and (2.4.41) may be combined to yield the result

1—hy\? Q? 1-h
2 _ .2 2 =2 of 2" N2 —
2 (1—’13> YT AT har +~((1-ha)2)Qu

2 hy —h _ (ha—hp\?_
—(I—Qh3)2+2 (12—ha£)?2)Qu-( 2 B> a

which simplifies to

(1= hg)? = (hy — hp)?_ 1—hp ,
uj —ul = T ha) a2 + 9 ((1—h )2)Qu (2.4.42)

Removing the variables u; and u; from equation (2.4.39), in favor of @ with the
aid of the expressions (2.4.40) and (2.4.42), then allows the system to be expressed
using the new variable @ and h, as
— (1=ha)®—(ha—hp)® 1—h —
o= +ﬂ Fiherr o0+ oo rQut e | _
ot or Q- hz)(”:z—ha)——+ Q(h2—hp)
1

1-hpg
[(1—h)T+Q]?
— [—KCf(l_hE)g(hz—hg)T] . (2443)
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The system (2.4.43) is now in the desired form (2.4.3).

In the special case with flat bottom topography, hg = 0, zero forcing, C =0,
and no net mass flux at a point so that Q(¢) = 0, the model may be simplified
further. The results, given previously in Montgomery and Moodie (1998a), are
two partial differential equations for the lower layer dynamics in conservation
form, with two algebraic equations to solve for the upper layer dynamics. Some
additional comments are given in Appendix 2, but for completeness, this simple
case may be stated as a system

) [UZ]+[(1—h2)uz (1—hz)—d—:§—§§5u3]i[uz]=[°], (2.4.44)

ot | h2 ha uz oz | h2 0

or in conservation form as

3 [u, 0 %u§+17+h2 _ 10 .
E[hz}-*-@—r[ hau - 0]° (2.4.45)

In equation (2.4.45), the notation for  has been used as described in Appendix
2, equation A2.8. The conservation form (2.4.45) is not a special case of equation
(2.4.39), but rather another, simpler conservation law.

2.4.4 Two spatial dimensions with shallow layers

Thin layer models for shallow upper and lower layer cases have been discussed
previously in Montgomery and Moodie (1998a) for the case of hg = 0 and C f=0.
The methodology developed there is now used to generalize the results for shallow
layer models in this subsection.

The first case considered is a shallow lower layer model, which may be derived
by considering the dimensional equations (2.2.17), (2.2.19), (2.2.21) and (2.2.22)
restricted to the case with v; = v, = 0, a free surface p, = constant and f = 0
(i.e. no rotation) with the forcing term developed as in Section 2.3. The resulting

equations are

8u2 6ug ,ahg ' 6h1 — u%
5t + u2 Bz +g 3z +(g—g)a—z— K.th2_hBT, (2.4.46)
aul 8u1 3h1 _ 9 -
__.at uj —az + g az =0, (....4-4{)
Oh 0 d
wz + (h2 — ha)% + uz -a;(hz —hp)=0, (2.4.48)



0 Ou o
7P —h2) + (b1 — h2) 5~ + w1 5=(h1 — hy) =0. (2.4.49)

Equations (2.4.46)-(2.4.49) may be rewritten to include the height variations
as a free surface n = h; — H and total lower layer thickness (; = h; — hg. Using
this notation, these equations become

6t -+-uza +g 6 + (g — g)a ——gd——anng (2.4.50)
3u1 8u1 617 -
a‘t + uy— a + gaz 0 (2401)
a o
___;: +¢2 2 4 2—65:2 =0, (2.4.52)

and

) ) 8 ) dh
51— )+ (H+1-G)Zt +uig—(n—G) =hs L b TR (2453)

A nondimensionalization of equations (2.4.50)-(2.4.53) may now be done to
emphasize the thin lower layer (; with a small dimensionless parameter ¢, which
measures the small percentage of height H given to a layer thickness. The mo-
tivation for this choice of nondimensionalization may be found in Montgomery
and Moodie (1998a) but rests on the conservation of mass and momentum. The
nondimensional variables (denoted with a tilde) are given by

- 7
z=L% hpg=cHhpg, C=cHG, n= %E2Hﬁ

L H -
Ug = Eg'H‘l.lg, Uy =&y EQ'Hﬁl, T = v EQIH, Cf = ’E—L—-Cf (2454)

With this nondimensionalization, equations (2.4.50)-(2.4.53) become

i, _ Oua O 0n _ dhg s ul .
—6tT + up Oz + E‘ +(1- ‘)/)E-a—i_ = E - AC[E—zT, (...4.50)
6&1 - 6&1 617

et + 2L =0, (2.4.56)

65 - auz i 6_52- _ 9
2 t gy tiage =0, (2.4.57)
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and

o, . = . = .0u - O dh
5;(*/677—(2)+(1+'76277—€Cz)-55—’+u1 —(ve*fi —e(;) = chp au.l + €iiy d:
(2.4.58)

The leading order equations from (2.4.55)-(2.4.58) are found by neglecting terms
which are O(¢) for a thin lower layer. The resulting equations are expressed as
two nonlinear partial differential equations for the lower layer,

Oi, di; G _ dhp = U3 04 =
Py + g + —KCfC (2.4.59)

9z ' 8z  dz

and equation (2.4.57) expressed as

0
_6Ct2 + —(C2U2) =0. (2.4.60)
These expressions may be written as a system,
6 2 77 1 0 uo ...dil_B — Kié ﬁT
= = f . 2.4.61
[C2J+[C2 uz] [Cz dz 0 ¢ ( )

In conservation form, equation (2.4.61) becomes

O [E] 2 [a3+G] _ -flil—.a—né’ LT 2.4.62
[Q]*m[ by || T E [ (2.4.62)

The other equations (2.4.56) and (2.4.58) are linear, and may be solved directly
with some quick manipulations. The reduced equations with the O(¢) terms
removed are

du,  On _ o

% + % = 0, (2.4.63)
and .

0(; Ou; _ o

=~ 5 = 0. (2.4.64)

Subtracting equation (2.4.64) from (2.4.60) gives
0, z .
a—i_'(ul + (2u2) =0

which may be integrated (assuming zero initial conditions) as

-~

@y = —Cais. (2.4.65)
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Thus, for equation (2.4.63), substitution of the above yields

o1 __om
9z ot
0. | ; Bu
=5 = +¢2 5
8. . du 0L dhs s @
= uzai(fzuz)—é'zuz % 5 4z —chfz T,
which may be integrated as
- _z.2 1z < = 7 S
7N = (2uq — ;Cg - hB - KCf C.—Td.’l? (2466)
< 2

The thin lower layer model then consists of the two nonlinear partial differential
equations (2.4.59), (2.4.60) for the lower layer dynamics and the algebraic relations
(2.4.65), (2.4.66) for the upper layer. The system form is given by equations
(2.4.61), (2.4.62). A simplification of hg =0, and C ¢ = 0 reduces these equations
to those given in Montgomery and Moodie (1998a), which has the benefit of
simplifying equations (2.4.61), (2.4.62) to having a zero vector on the right hand
side of the equation.

The second case which is considered is that of a thin upper layer. Equations
(2.4.46)-(2.4.49) are written with the change of notation {; = h; — hy and h; =
H—-( +nas

6u2 6u2 _ ,6(1 617 _ u% ) -
5 +u26 95, +gaz— KCfH_Cl'*'n—hB (2.4.67)
aUI aul ] _ N

Bt + u; Or +ga—' = (2.4.68)
g("('*‘ )+_6_[H —hpglus] =0 (2.4.69)

G5t 1 n oz ( _Cl +n Bluz2| = VU, <.%.

and

o, 9 ~ o an

2 T ‘a—I(Clul) =0. (2.4.70)

A scaling which focuses on the thin upper layer is given by

z=1L% hg=cHhp, (=c¢H(, n=+cHA,

up = ev/eg’'Huy, uy =+/eg'Hu,, g,-z\/sg’H, Cr=
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The nondimensional forms of (2.4.67)-(2.4.70) using the scaling (2.4.71) are then

daz , . aaz o, 7 e2kCrulT
— + £ - — = -_— = = -, 2472
¢ ot 29z ~ 9z ' oz 1-¢(, +ef—ehp ( )
6&1 6u1 617 _ 047
S tihigs t5 =0 (2.4.73)
0, - 0
57(—C1 +77) + = [(1 — €1 + &7 ~ ehp)iz] =0, (2.4.74)
and
0
%y 2 G =0 (2.475)

The leading order equations may be obtained from neglecting any terms which are
O(e) from equations (2.4.72)-(2.4.75). These equations are the partial differential
equations (2.4.73) and (2.4.75) which remain unchanged, and the simplified linear

equations 3
aCI aﬁ _ 9
55 + Frie 0, (2.4.76)
and
a, - Ot
(- = = 2.4.77
5~ + 1) + 5= =0. (2.4.77)

Integrating equation (2.4.77) with respect to £ and assuming zero initial values
gives the relation

5=, (2.4.78)

which may be substituted into equation (2.4.76) to give

_6(3 + 1 au.z —0.
ot 1—+~ 0z
Addition of equation (2.4.75) to this result gives
0 - . S
5z (Gt + 7= 7112) =0,
a result which integrates to give
iy = —(1 — ¥)C1a,
or, using equation (2.4.78),
‘&2 = —(1 - “/)77721 (2.4.79)
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The thin upper layer model then may be written as a set of two partial differ-
ential equations in conservation form for the upper layer,

o [a]. 8 %a§+ﬁ] [0] ;
L N A L ={J]. 2.4.
&[n]+6i[ Gy 0 (2.4.80)
As a system, equation (2.4.80) may be written as
9 [a, 4 1] 0 [al]_[o] o
&[ﬁ]*[cl al]ai 7]= o] - (2:481)

It should be noted that the variables in equation (2.4.80) and (2.4.81) for the thin
lower layer model arise from a slightly different nondimensionalization than the
variables in expressions (2.4.61), (2.4.62).

The lower layer dynamics are then recovered from the algebraic equations
(2.4.78) and (2.4.79). Unlike the thin lower layer model, the bottom topogra-
phy is removed from the thin upper layer equations and the equations obtained
are precisely those given in Montgomery and Moodie (1998a) once a change of
variables has been made. This result may be interpreted physically through stat-
ing that the bottom topography may be thought of as effecting primarily the lower
layer, with a smaller order effect on the upper layer or free surface.

2.4.5 Two spatial dimensions with a rigid lid

The rigid lid equations from (2.3.17)-(2.3.23) with the simplification h, =
constant and simplified for one spatial variable z as in equations (2.4.23)-(2.4.26)
are given by

aug 6u2 ahg _ 6p, u% o o
ot tuz oz + dr  Or chhg - hBT’ (2-4.82)

a_ul_ 3u1 _ =1 ap.. )
) + ul-é—l_— =—(1-—%) Bz (2.4.83)

3h2
%2 + 2 (ke — hp)us] =0, (2.484)
and 5

Bz [(h1 — h2)u; + (h2 — hB)uz] = 0. (2.4.85)

Multiplying equation (2.4.83) by —(1 — 4) and adding the result to equation
(2.4.82) allows the pressure term p, at the interface to be removed, resulting in

the combined equation

0 o Oh u3
(w2 —(1- 7)u1)+u2 —(1-Numr+ 5= —ncfm’r (2.4.86)
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A further reduction may be obtained by integrating equation (2.4.86) with respect
to r to give
(h1 — ha2)uy + (h2 — hg)uz = Q(t), (2.4.87)

where Q(t) is the total volume flux, independent of position z. Assuming that @
is known, equation (2.4.87) may be used to solve for the variable u, as

Q — (ha — hp)uz N
— . 2.4.8
u; hy — hy ( 8)

The removal of u; from the system may be effected by substituting (2.4.88) back in
to equation (2.4.86). The result, along with (2.4.84) consists of the much simpler
system of two equations in the two unknowns k; and u;. Such an approach has
been used previously, for example by Baines (1993, p.97), where the equations
are solved using Riemann Invariants. Of direct consequence to gravity currents,
similar equations have been developed and used by Rottman and Simpson (1983)
or Bonnecaze, Huppert and Lister (1993, p. 346).

After some algebra, contained in Appendix 2, equation (2.4.86) can be written
in the form (A2.11) which is used to state the rigid lid problem as a system. This

is:
0 [uq an aj2] 9 [u2 b
- —_— = h s 2.4.
at[hg:l+[h2—h3 s | 32 | by uzdd—: : (2.4.89)

where, in equation (2.4.89), the terms a;;1,a;; and b, are given by

_ (= h2)?uz2 + (1 — v)(hy — hp)[2Q — (h1 + h2 — 2hB)u2]
[h1 — vh2 — (1 — )k B](h1 ~ h2)

an

_(h - h2)® + (1 — v)(h1 — h2)u2[2Q — (A1 + h2 — 2hB)u2]

fz = (1 = 7h2 = (1 — N)hp)(kr — h2)?
(1 =19)[Q — (k2 — hp)us]?
[hy — vha ~ (1 = 7)hB](h1 — h2)?’
and
b (1-7Q . ((1 — 7)u2[2Q — (h1 + k2 —2ha)u2]) dhg
' [hi = 7R — (1 = 7)hB] [h1 — vh2 — (1 — 7)hg] dz

(hy — ha)xCyulT
[h1 — vh2 — (1 = ¥)hB](h2 — hB)
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Although the system (2.4.89) cannot be directly written as a system of con-
servation laws, a straightforward employment of equations (2.4.86) and (2.4.84)
yields

9 [uz -1 —‘Y)UI] + 9 [%u% -3l —7)ui+ hz] — [—an—z—hz'fha T] ]

ot h2 Oz (ha — hg)u, 0

(2.4.90)

In equation (2.4.90), u; is considered to be given by (2.4.88) so that only h, and
u are unknown functions.

Equation (2.4.90) may be expressed in the simplified form (2.4.3) in a similar
manner as was completed for the weak-stratification system (2.4.39), written as
the system (2.4.43). By introducing the new variable @ = u2 — (1~ v)u;, equation
(2.4.87) allows u; and u; to be removed from (2.4.90). The new variable, %, is
therefore related to u; via

_ Q—=(h1 —ho)u; Q hy —vha — (1 —+4)hp o
= — = - 2.4.91
u Mo (1—=~)u, s he—hp u, ( )
and to u; by

Q—-t(he —hpJuz h1—7h —(1—-7)hp _(1-7)Q
hy — hs - hy — ha 2T Rl —hy
(2.4.92)

Using expressions (2.4.91) and (2.4.92), a simplifying calculation may be made
for uf — (1 — v)u? as

T=uy —(1—9)

hy — h _ (1-7)Q ’
2 _ 2 — 1 2
vz~ (=7 [hl —Sha—(L—7he " | ki — ks — (1—1)hs
2
—(1—‘7)[ Q - he = hp U:l :
hy —qh2 —(1 —v)hp  h1 —vh2a — (1 — %)k
which simplifies to

(R1 —h2)? — (1 —v)(h2 —hB)*_,
(h1 = vh2 — (1 — 7)hp)?
9(1 — — - 2
___2(1 —)(hy = hg) —Qu - (1 - 7)Q = (2.4.93)
(hy — vh2 — (1 — ¥)hB) (h1 — vhe — (1 = 9)hB)
Substituting the calculation (2.4.93) into (2.4.90) gives the conservation form

d [ U} F) [[(h:l-hz):—(l-7)(h2-h8)2172_2(l—‘7)(h1—h8)Qﬂ_.,(l__y)qz + th
+

uz ~(1—)pui=

ot

9 2[hy—vh2—(1—%)hB]*
h, Or [(hi—hg)T+(1—7)Ql(ha—hp)
hy—~h2—(1—<v)hp
_ [(hi=h2)T+(1—7)Q]?
— [ ch(hz"hB)[hl—7h2"(l""I)h8]2T} . (2.4.94)

0
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A simplification to systems (2.4.89) and (2.4.94) occurs for the case without
any forcing function (Cy = 0), bottom slope, kg = 0, or volume source @ = 0. In
this special circumstance, the system (2.4.89) may be stated as

2 [ } N [ R el S J 2 [ ] _ [0]
ot | p, oz | p, 0|’
(2.4.95)
where additional calculations are detailed in Appendix 2, equation (A2.12). Sim-
ilarly, the corresponding system in conservation form, equation (2.4.94) simplifies

hi~hy)2—(1—~)h2_.
a [7} s | & (,.f)_,,f:){’”'?uz-{-hg [0]

+ 5; hy ha =
ha ’11:7’12 hy 0

h, —hp u2

to

(2.4.96)

ot

The systems (2.4.95) and (2.4.96) are similar to (2.4.44) and (2.4.43), respec-
tively given the simplification of notation h; = 1, which is usually chosen via the
nondimensionalization (2.3.7). Making such a simplification reduces the system
(2.4.95) to

1-3ho+(1+h2)h (1-h3)3—(1—~)u?
.2 U2 (1—712).11—‘7'122)2‘"2 (I—-:h;»)(l—hvg)"‘2 _q_ uz _ 0 >

+ = . (2.4.97)
Ot | ky h2 uy 9z | h, 0

| &

and the system (2.4.96) to

_ (1—h2)?—(1—v)h2_»
o u 03] 2(hy—vh3)2 U +h2 0
- 4+ — = . (2.4.98)
ot | h, Oz (1—h2)uh, 0
1—‘{’12

In the limit as 4 — 0, the weak-stratification limit, equations (2.4.97) and (2.4.98)
become increasingly similar to the simplified weak-stratification equations (2.4.44)
and (2.4.43).

Chapter Summary

The model equations which will be used throughout this thesis have been care-
fully set forth in this chapter, with attention paid to the physical setting in which
the equations are relevant. This has been done in order to discuss some details
of the gravity current problem which are more relevant to their mathematical
treatment. A theoretical development which includes the effect of the Coriolis
force on gravity currents is, to the best of the author’s knowledge, not covered in
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any other source. For the more general shallow-water theory, Pedlosky’s (1987)
derivation of the shallow-water equations was used quite closely in some places.
The resulting two-layer equations of motion are hydrostatic, and for small-aspect
ratio flows are simplified to the shallow-water equations in Section 2.2, resulting
in equations (2.2.16)-(2.2.22).

The new addition to the theory is that for two-layer gravity currents, the spe-
cific front geometry related to the initial release problem is defined, and a height
independent frictional drag term, is introduced. Nondimensionalization then al-
lows the two-layer gravity current equations to be stated in the form (2.3.17)-
(2.3.23).

In Section 2.4, these equations are then examined and restated in various sys-
tem (2.4.1) or conservation (2.4.3) forms for specific physical limitations. For
the case of gravity currents in three dimensions, equations are stated for a thick
upper layer with a free surface, and for the special case of axisymmetric flow.
In two spatial dimensions, the governing equations are given as systems in the
most general case, and in the simplifying cases of small density differences (weakly
stratified), thin upper and lower layers, and a fixed upper layer height (rigid lid).
The various forms of these equations will be used in subsequent chapters.
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Chapter 3

Theoretical Concepts

Partial Differential Equations which exhibit certain types of behaviour have
led to a classification scheme which separates the equations based loosely on the
behaviour of the solutions, and the type of conditions required on the boundaries
of the solution domain. Equations may be classified as elliptic, parabolic, or
hyperbolic (John, 1982), although cases exist which are of mixed types and do
not readily fall into one of the three main categories. Although such classification
has become somewhat standardized over the last several decades, the strength
of a thesis rests upon attention to detail. Therefore, in this chapter, a review of
some common definitions and notions is conducted first so that the remainder of
the equation classification may be completed in later sections without confusion.

3.1 Hyperbolic Systems and Conservation Laws

The notation and definitions for hyperbolic systems is be divided into two
sections covering first the standard case with two variables, typically z and t. The
more general case with several spatial variables follows in a second subsection.

8.1.1 First order systems in one spatial variable

The notation in this section is generic, and disconnected from the previous
usage of variables. This is done to make the development easier to read, and
avoid unnecessary subscripts and symbols. Much of the definitions herein have
been adapted from Godlewski and Raviart (1996), Whitham (1974), John (1982),
or Kreiss and Lorenz (1989), and are restricted to first-order systems of equations
in several spatial dimensions.

Consider n differentiable real-valued functions u;(z,t) : R x [0,00) = R, for
¢ = 1,...,,n which are the components of the vector-valued function u : R x
[0,0c) = R™. The general first order quasi-linear system of n partial differential
equations can be written as,

Ju Ou

—_ — = .t . 3.1.1

5 TA5. =b z€R.t>0 (3.1.1)
The n x n matrix A, and the vector b may be functions of u;,....u, as well as

and ¢ (John, p.56, Whitham, p.113).
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The system (3.1.1) is usually considered with the restriction that
det(al. + SA) # 0, (3.1.2)

for some a, (3 real constants, not both zero, and I, the identity matrix. this
restriction (Whitham, 1974 p.116) is imposed so that systems which are too de-
generate are not included for consideration and classification.

Such a system as (3.1.1), satisfying (3.1.2), is said to be hyperbolic if n linearly
independent non-zero real eigenvectors r(¥) with real eigenvalues A( can be found
for the matrix A such that

Ar® = \@Opl) (3.1.3)

for ¢ = 1,...,n. The system is said to be totally hyperbolic (Whitham, 1974 p.116)
or strictly hyperbolic (Godlewski and Raviart, 1996 p.2) if there are n distinct
real eigenvalues A(). A standard result from linear algebra is that if A is a real
and symmetric matrix, then n independent real eigenvalues can be found, and the
system is hyperbolic.

Equation (3.1.3) is often dependent on uy,...,u,, z and t. For that reason,
quasi-linear systems may be classified as hyperbolic only in certain domains. In
such a domain, a characteristic curve or simply characteristic is a curve in the
(z,t) plane, X(n), T(n) parametrized by 7, which satisfies

dX dT
= (. 3.14
- Ag) =0 (3:14)

On such a characteristic, the system (3.1.1) may be written as a system of ordinary
differential equations, simplifying the overall problem considerably (Whitham, p.
115).

Equation (3.1.1) may be written in conservation form if the matrix A is derived
from a fluz function f with components f;(u,z,t) : R"*! x [0,00) > R,i=1,....,n.
The relationship necessary is that the n? components of A are given by

_ Ofi

=, t,7=1,...,n. 3.1.5
auj’ 1’7] 1’ 7n ( a)

a;j
In this situation, assumption (3.1.5) allows the system (3.1.1) to be written, via
the chain rule, as

Ou Of(u,z,t) -
—_—t—227 b ] .1.6
=+ 5 b, zeR,t>0, (3.1.6)
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where the forcing term b(u, z,t) is different from b unless f is independent of z.
Such a differential equation is usually derived from an integral conservation equa-
tion for a physical quantity (mass, momentum, energy) and allows discontinuities
in u to be included, as well as a formal definition of weak solutions (Whitham,
1974 p.139). The function b allows for a source term, such as a body force in the
momentum equations.

3.1.2 First order systems in more than one spatial variable

The concepts introduced in the previous subsection generalize to situations for
more spatial variables, although the algebra necessarily becomes more complex,
and fewer results are known.

A first order quasi-linear system of n partial differential equations in several
(p) spatial variables may be denoted as

P
%‘:— + ; A(k)% =b, x=(z1,...,.7p) ERPt>0. (3.1.7)
The notation in (3.1.7) is similar to (3.1.1), with the addition of more derivatives
in the extra spatial variables for p > 1. In (3.1.7), we have the components
u; : R? x [0,00) = R, and the matrices A¥), k = 1,...,p, as well as b, are
functions of u, x, and ¢.

Assuming that the system (3.1.7) is nondegenerate in a similar way as stated
in the constraint (3.1.2), it is said to be hyperbolic if for any w = (w;....wp) €
RP,w # 0, the matrix

p
A=) wA® (3.1.8)
k=1
has n linearly independent eigenvectors, and n real eigenvalues (Godlewski and
Raviart, 1996 p.2). If, in addition, the eigenvalues are distinct, the system (3.1.8)
is said to be strictly hyperbolic. Note that for p = 1, the condition (3.1.8) reduces
to (3.1.2) or (3.1.3) for a single spatial variable.

Much of what is known about hyperbolic systems in more than one spatial
variable concerns those that are symmetrizable. Symmetrizable systems are ones
for which a positive-definite symmetric matrix A(?) exists such that the matrices
A@AK) are symmetric for k£ = 1,...,p. Symmetrizable systems are hyperbolic
(Godlewski and Raviart p.2).

In a similar manner to the single spatial variable case (3.1.6) with p = 1, the
system (3.1.7) may be rewritten in conservation form. Although the notation
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is necessarily more complex., the procedure is formally the same as that done
previously, and is completed in the following several paragraphs.

Let €2 denote an open set which contains the range of the vector-valued function
u(x,t), that is, u : R? x [0,00) =& @ C R™. Also, consider the p x n flux functions
f,-(k)(u,x.,t) : Q2 xRPx[0,00) > R, for k=1,..,pand ¢ = 1,...,n which comprise
the p vector-valued flux functions,

£ (u,x, t)
£5) (u,x,t) = : , 9 :QxRP x[0,0c) =+ R". (3.1.9)

o
9 (u,x,t)

A quasi-linear system of partial differential equations in conservation form may
be written as a vector equation (Godlewski and Raviart, 1996 p.11)

Jdu

P
_ét— + Z gi_f(k)(u'x’t) = E(u’ x? t)’ X = (Il’ *ec9 zp) G Rp, t > 0. (3.1.10)
— k

The n components of the vector equation (3.1.10) are then given individually by

the equation

au,

(k) -
= +Z a — B u,x,t) =5;(u,x,t), fori=1,..,n. (3.1.11)

An application of the chain rule allows the derivatives of the flux functions f,-(k)
in (3.1.11) to be rewritten as

9 (k) ~ 3 .k Ouj | k)
—f: ,X, 1) = — " (u,x,t) =— +b; '(u,x,t),
g i (X 1) ?__:lau,-f' ( ) gms Th (X, )
fori=1,...,n,k=1,..,p. (3.1.12)
The terms ggk) in (3.1.12) represent the partial derivatives of ffk) with respect
to z; while holding u constant. Since ¢t and x are independent, terms due to

these derivatives do not appear. Substitution of the expression (3.1.12) into the
component equations (3.1.11) yields

au. ZZ gc)gzz — (3.1.13)

k=1 ;=1
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k
0 _ 9£°
) Ou;
derivatives of u.

The n component equations (3.1.13) may be written in the more recognizable

form (3.1.7) by association of the n x n matrices A(¥) with the components agf)

for 1,7 = 1,...,n. In this way, the system (3.1.7) is associated with the system

where a , and the term b; = b; — i=13$k) does not contain any

(3.1.10) in conservation form. Therefore, the system of conservation equations
(3.1.10) is said to be hyperbolic if the system (3.1.13) is hyperbolic, with a similar
identification for strictly hyperbolic.

To determine if a general system in conservation form (3.1.10) is hyperbolic,
the notion of entropy functions may be used. This method is most often applied
to systems in conservation form with spatially and temporally independent flux
functions, i.e. f(¥) = f(¥)(u). To keep the generality of spatial dependence, the
definitions are modified from Godlewski and Raviart (1996, p.21-23).
Definition: Let Q be a convez subset of R" x RP x [0,00). A convez function
U:Q — R s called an entropy for the system of conservation laws (8.1.10} in
Q if there ezist p functions F(F) : Q -+ R, k =1, ..., p, called entropy fluxes, such
that

(VO)TA®) = (VFNT  for k =1,...,p. (3.1.14)

This definition allows a corollary to the Godunov-Mock Theorem (Godlewski
and Raviart, 1996 p.24) to be stated. The theorem is proved there for the special
case of spatially and temporally independent flux functions. The proof generalizes
exactly for more general flux functions, and the corollary is stated as the following
lemma.

Lemma 3.1 (Corollary of the Godunov-Mock Theorem): Let U : @ — R be a
strictly convex function which is an entropy for (3.1.10) in 2. Then the system
(3.1.7) is symmetric, and hence hyperbolic.

This theorem is used in Chapter 6.
3.2 Jump Conditions Across Discontinuities

Solutions of systems of partial differential equations of the form (3.1.6) often
may exist which are not continuous. In this section, a discussion of solutions which
permit simple jump discontinuities or discontinuous derivatives is conducted. Of
particular interest is the modification of the Rankine-Hugoniot jump conditions
to include the effect of discontinuous forcing terms in the original equations.
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8.2.1 Conditions across discontinuities in u

Partial differential equations in conservative form often can be cast into an
integral conservation law. Such integral equations often increase the number of
solutions to the original partial differential equation, and these new solutions are
called weak solutions. Solutions to the original partial differential equation are
called classical solutions. Ideally, each weak solution would correspond uniquely
with a classical solution, but this is often not the case, as usually an entire family
of weak solutions appears for each classical solution. A precise definition of weak
and classical solutions is given in Godlewski and Raviart (1996, p.15). To remove
this difficulty of choosing a single classical solution from a class of weak solu-
tions, only weak solutions which satisfy some form of jump condition are chosen.
These Rankine-Hugoniot jump conditions are straightforward to implement for
scalar, spatially independent conservation laws, and more general expressions can
be derived (Whitham, 1974 p.138, Godlewski and Raviart, 1996 p.18). In this
subsection, specialized jump conditions will be derived for later use.

First consider the system of differential equations in conservation form, (3.1.6),
with components written as

Ou; ofi I 9
W‘F e =b;,z € R,t >0, (3.2.1)

for i = 1,...,n. Assuming that u; is a classical solution, this equation may be
integrated over an arbitrary constant interval [z,,r2] C R to give

i /r2 uidz + fi(u(za,t),z2,t) — fi(u(zy,t),z1,t) = /‘rz bidr, i=1,..,n.
dt z z
(3.2.2)
Equation (3.2.2), viewed without the preamble leading up to its formulation,
does not need the requirements that u; be continuous, simply integrable. Such
weak solutions may satisfy (3.1.6) in a piecewise continuous fashion, although
(3.2.2) provides a valuable constraint. To see this, consider a discontinuity in u;
located at the point s(t) € [z, 2] for some time interval. In this case, the first
term in equation (3.2.2) becomes

ra s(1) ro
_ci/‘ u;dr = i f u;dz +/ u.-dx}
dt T dt E S(t)

*(0) Ju; ds 2 Ju; ds
= —dr + —u;(s7,t) +/ —dr — —u(st,t)
/I ot dt sty Ot dt (3.2.3)

1
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In equation (3.2.3), the notation u;(s*,t) and u;(s~,t) represent the limits as
z — s(t), from the right (+) and left (—) respectively.

Since, in each of the intervals (z,, s) and (s, z;) the solution u; has continuous
partial derivatives, by assumption, equation (3.2.1) may be substituted into inte-
grals on the right hand side of expression (3.2.3). The result is simplified by the
notation [u;] representing the jump in u; across s(¢), [u;] = u;(s¥,t) — u;(s,¢).

T2 s(t)
% .. u;dr = —%[Uu‘] -’r-/‘;1 bidz — (fi(u(s™,t),s™,t) — fi(ll(1:1,t),.1:1,t))

i /() bidz — (fi(u(z2,1),22,1) — fiu(s*,2).5%.1))

= —j—j[ui] + [fi] + fi(u(z1,t),21,t) — fi(u(z2,t),z2,1) ‘*'/ bidz.
71 (3.2.4)

This expression can now be substituted into equation (3.2.2), with the result that

the remaining equation is
ds . -
—E[ui] +[fi]=0, fori=1,...,n. (3.2.5)

This relationship between shock speed and jumps in u; and f; across a disconti-
nuity is quoted in Whitham (1974, p.138) without explicit proof.

Of a more specific nature to gravity currents are discontinuous forcing terms
b;. A general form of b; is considered as

E: H(G(t) —z){'é%gi(us .'l',t) +C.’(U,I,t)} (3'2'6)
where H is the Heaviside function defined as
lifr>0
— = 9
H“)‘{owz<a (3:2.7)

The term b; may be considered as a source term to the left of a discontinuity
r = o(t), and zero to the right. The significance of this form (3.2.6)-(3.2.7) in
relation to gravity currents will be discussed later in this section, and in Chapter
4, Section 2. Its importance arises when considering the existence of steady-state
solutions over non-horizontal bottom slopes.

Such a form of b; permits equation (3.2.3) and (3.2.4) to be generalized as

follows. Rewriting b; as b; = 6_:1:(H gi) + Hc; (almost everywhere) by the chain
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rule allows part of ; to be considered as a flux term so that equation (3.2.2) has
a right hand side given by

/ bd:r—Hg, +/ Hcidx
=—gs(ll($1,t),rx,t)+/ cidz
I

whenever that z; < o < z5.
Then the integral split over the discontinuity s(¢) may be calculated as follows
in the three cases of location of o and s. It follows that

8(!)_ 2
/ b;dz + b;dx
Iy 3(‘)

is equal to one of
(1) (z1 < 0 < s < z2)

o s(t) _ T2 __ L4
/ b;dz +/ bidzr + / bidr = g;|7, +/ cidz + 0,
r: o S I

(i1) (z1 < 0 = s < z3)
6- 1.'2_ o
/ b;dzx +/ b;dz =g.~|g1 +/ cidz,
N o F3
or

() (z; < s < o < z2)

s(1) s(t)
/ bd:z:+/ bd.1:+/ bd.r-—g,|_,l+g.|" / cd:z:+/ cidzr
z (1)

= gilZ, +/ cidz. (3.2.8)

Therefore, for a discontinuous (weak) solution u;, the equality of the separate
integrations is imposed to yield

2 -4
—-— uidt + fi|72 = —gi(u(z1,t),z1,t) + / cidz. (3.2.9)
dt J,, ! J:,
Substitution of the split integration (3.2.8) into the integral form of the conser-
vation law (3.2.9) above gives
-4

[u,] +[fil = filZ22 + gilz, + /acu'dx + filz2 = —gi(u(z,t), 2,1, t) +/ cidz,

I I
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which simplifies to the generalization of the result (3.2.5), namely

d -
—Z il + [fl +gi(e7) =0 (3.2.10)
The further restriction that s(t) =o(¢) gives (3.2.10) in the form
d -
E:‘[ui] = [fi] + gi(s7), (3.2.11)

an equation which will be utilized later.

As an example of the importance of the source term to conservation laws, a
simple one-dimensional equation in one spatial variable is compared in its linear
and nonlinear forms with and without discontinuous source terms for the initial
value problem.

Ezample 8.1 (Linear Homogeneous)
Consider the one-dimensional wave equation initial value problem
Ou Ou

5 +c16—l_=0, t>0,z € R,0<c; = constant

u(z,0) = uo(z), =z €R.
The solution, found by the method of characteristics (John, 1982 p.13) is

u(z,t) = uo(r — 1 t). (3.2.13)

(3.2.12)

The initial shape is held constant along the characteristic curves with slope i—at:- =
c1. Any discontinuities which are present in the initial value uo therefore must
continue to exist, and propagate along the characteristics.
Ezample 3.2 (Linear Nonhomogeneous)
The problem (3.2.12) is modified through the addition of a source term which
has the form (3.2.6),(3.2.7). Consider
Ou Ou

£ +c B =zH(cyt — 1), t> 0,z € R,c;,c; both positive constants
T

u(z,0) = uo(z), z €R.
(3.2.14)
To solve the first order problem (3.2.14), the method of characteristics may be
used (John, 1982) to give the set of ordinary differential equations:

dt

—_— = = '2' S
I 1, t(s0)=0 (3.2.15a)
dr .
d—r =1, .’E(S,O) =3 (3210b)
du .
— =zH(cot—1z), u(s,0) = ug(s). (3.2.15¢)

dr
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Solutions of (3.2.15 a-b) are ¢t = 7 and z = ¢;7 + s which allow (3.2.15¢) to be
rewritten as

and u(s,0) = ug(s). (3.2.16)

= 0, ct—z<0

ii_‘l_z cit—s, ct—z2>0
dr ~

Equation (3.2.16) has solution

u(s,t) = clg —~st+uo(s), ct—z>0
’UQ(S), ct—z <0

which becomes, upon removing s,

%Ltz —(z—cat)+uo(z —c1t), cot—z2>0
uog(z —c1t), cot—z >0

ou)={

or
u(z,t) = uo(z — c1t) + (gclt — z)tH(cot — ). (3.2.17)

It can be observed that the solution (3.2.17) has a discontinuity along the line
T = cpt in addition to any possible initial discontinuities which propagate along
the lines of slope _at: = c;. The relation between ¢; and c; (i.e. ¢; < ¢2,¢; = ¢ or
1 > c2) then allows the front positions, or discontinuities in u, to be determined
explicitly. Since this brief discussion is not of direct relevance to the gravity
currents considered in this thesis, such an analysis is not included. Rather, the
importance of a discontinuous source term is portrayed to show its effect on the
solution.

The direct connection here to gravity currents is the case when the discontinuity
inherent in the source term travels at the same speed as the discontinuity in the
solution arising from the initial value. For this specific example, this would occur
when ¢, = c2. A more intriguing situation occurs when c; > ¢;. For instance,
suppose that c; = %cl. The solution (3.2.17) may be portrayed in the (z,t) plane
as in Figure 3.1. The discontinuity at r = %clt moves faster than the original
characteristics for the homogeneous case, modifying (increasing) the initial value
u(r — c;t) behind the shock.

If equation (3.2.14) is considered in a more general form with discontinuity
travelling along the curve r = s(¢), the partial differential equation may be re-
placed by, for example,

o 0
Claz

" = zH(s(t) — ). (3.2.18)
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t A )
’ x=clt

FIGURE 3.1. The Characteristic Plane.

Then the jump condition (3.2.11) may be applied to give
ds z?
(—i?[u] = [Clu] + ?’I_t:a, (3.2.19)

which becomes, using [c;u] = ¢;{u] and assuming {u] # 0,

ds 52
- = — 2.2
az c + 2[u] . (3.2.20)

. . . ... ds
Clearly any weak solution does not satisfy the simple jump condition priaks [u]
as did (3.2.12). Any weak solutions must satisfy (3.2.20), ensuring that the source
term in (3.2.18) affects discontinuities in the solution.
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Ezample 3.8 (Nonlinear Homogeneous)

The nonlinear Burgers equation with a definite initial discontinuous profile
is chosen to illustrate the importance of nonlinearities in the partial differential
equation. Such a Riemann problem is stated as

ou Ou
5+u6_x-0’ t>0,zeR
1, z<0

u(=,0) = {0, z>0

The appropriate discontinuous weak solution (LeVeque, 1992 p.29) to (3.2.21)
which satisfies the jump condition (3.2.5) is given by a discontinuous function

represented in the (z,y) plane as

(3.2.21)

1
u(z,t) = {(1) z f g: (3.2.22)
The discontinuity travels the line z = 3t which is an average of the two speeds
impinging on either side of the discontinuity.
Ezample 8.4 (Nonlinear Nonhomogeneous)

The nonlinear Burgers equation in the form is (3.2.21) with a nonlinear dis-
continuous forcing term is stated as

Ou Ou

§+u5;=xH(d—z)’ t>0,zeR
1, <0

u(z,0) = {0’ z>0

In the problem (3.2.23), £ = o(t) describes an arbitrary path in the (z,t) plane
with an assumption of differentiability and initial value ¢(0) = 0. For = < o, the
initial value problem (3.2.23) may be stated as

gzi-{»-ua—u=:z:, t>0,z<o0o

ot Oz
u(z,0) =1, <O0.
A solution of problem (3.2.24) by the method of characteristics (John p.15)
gives the set of ordinary differential equations
dt

(3.2.23)

(3.2.24)

— =1, t(s5,00=0 (3.2.25a)
dr
4 oy 2(s,0)=s (3.2.25b)
dr
du L w(s,0) = uols). (3.2.25¢)
dr
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Although equation (3.2.25a) integrates directly as ¢t = 7, the other equations
may be solved in a fairly straightforward manner. Taking a second derivative of
. . o ) d
equation (3.2.25b) with respect to 7, and substituting equation (3.2.25¢) for _d_u
i
gives the second order ordinary differential equation
d%z

dz
S ms 2(s0)=s, 5,0 =1

which has the solution
z(s,7) = sinh 7T + scosh . (3.2.26)

The solution u may be found by differentiating (3.2.26) according to equation
(3.2.25¢). The resulting differentiation gives

u(s,7) = cosht + ssinhr. (3.2.27)

The variables s and 7 may be removed by inverting equation (3.2.26) and using
t = 7 to express the solution (3.2.27) as

u(z,t) = cosht + (x_;—_cglﬁn_th_t) sinht
= cosht 4 (z — sinht)tanht. (3.2.28)

Therefore, the solution to the problem (3.2.23) may be given by

__ f cosht + (z —sinht)tanht,z < o(t)
u(z,t) = { 0,z > a(t). (3.2.29)

It is interesting to note the remarkable difference in the solution (3.2.29) and
that of (3.2.22) to the homogeneous problem. The effect of the forcing term is
not negligible even for small z as the exponential growth in ¢ quickly becomes
apparent.

The remaining question from problem (3.2.23) is the determination of the path
of the discontinuity o(¢). Although it can be imposed arbitrarily, the natural
choice is the one which will make the solution (3.2.29) a weak solution. Such
a constraint requires that the jump condition across ¢ must satisfy condition

(3.2.11), which may be expressed as

do

Ol = [3e%] + 52%0e-. (3.230)
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This condition is similar to (3.2.19) for the linear case, and may be simplified by
dividing by [u] assumed nonzero to obtain

do 2

g

1
= = _ o
gt = 3o Tule-) + 5o (3.2.31)
By implementing the solution u in the form (3.2.29), the jump condition (3.2.31)
becomes
doe 1 a?
—_— == ¢ —si
g7 2(cosh + (o Smht)tanht)+2(cosht+(a—sinht)tanht)

_1 {cosh2 t + 2(c — sinht)sinht + (0 — sinht)? tanh®t + o2 }
2 cosht + (o0 —sinht)tanht (3.2.32)

for t > 0, and with the initial condition ¢(0) = 0. Although the constant %

nary differential equation cannot be solved explicitly. The numerical solution is
given in Figure 3.2, where for comparison, the discontinuity position o for the
homogeneous problem (3.2.21) is also shown.

Figure 3.2 also shows the beginning of asymptotic behaviour for later time. As
t — oc, equation (3.2.32) simplifies to

do

5=
which then may be solved with some initial value o¢ as ¢ = oge’. Thus, the shock
speed grows exponentially, which is quite distinct behaviour from the homoge-
neous problem.

Figure 3.2 has a direct physical connection to gravity currents described in the
following several paragraphs. Consider the initial release problem of a gravity
current obeying (2.4.23) with u;, (1, {2 all constant and Cy = 0. The resulting
equation which describes the evolution of u; is

Ou 0,1
52— + _3_2:.(2 2) =7 dz
to the left of the fluid intrusion, and by definition u; = 0 to the right. That is,
up can be thought of as satisfying, at some time #g, an initial boundary value
problem which is similar to the form
aautz + uy 661;2 — _"__1%
uz(z,t0) = {1(‘)?7 mx><a?§;(;.)

H(o(t) —z), t>to.z >0,

(3.2.33)
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FIGURE 3.2. Numerical Solution to Equation 3.2.32.

Given the similarity of (3.2.33) to (3.2.23), it should be expected that solutions
to (3.2.33) may be divided into two types: solutions for which o(t) is known a
priori, and weak solutions. The latter method of solution is clearly preferable as
it is applicable to general problems, and the front position is determined as part
of the solution. The former method presupposes knowledge of the front position.
Such knowledge may be obtained by physical experiments which include assump-
tions and factors neglected during the derivation of the equations of motion. The
restriction of front position or front speed prior to solving the system does not
permit the natural discontinuities which arise from the IVP to propagate at the
proper speed. This may be a cause of differences between numerical calculations
based on models which ignore physical effects such as entrainment and friction,
and experimental results.
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This imposition of front position may then lead to differences between numer-
ical calculations meant to model experimental results. Such occurrences will be
discussed in later chapters of this thesis.

For systems with more than one spatial variable in the form of equation (3.1.1 1)
a similar result may be derived, although points of discontinuity are replaced by
surfaces of discontinuity. Due to the additional complexity of the added spatial
variables, extra care to the definition of weak and classical solutions must be
taken, as is done in Godlewski and Raviart (1996, p.15) for the special case
without forcing b and with flux vectors f(¥) which are independent of x and ¢.
However, for the most general case, a generalization of previous results is stated
as the following result.

Lemma 3.2 Let u: R? x [0,00) — Q be a continuously differentiable solution of
equation (3.1.11) except at a finite number of smooth surfaces T in (x,t) space
at which u may have a jump discontinuity. Denote the normal vector to such a
surface ¥ as

n = (ng,...,np, n,)T.

Then, along surfaces of discontinuity, u satisfies the jump condition
P
[uln: + D [fF]ne =0, (3.2.34)
k=1

where
— h -n _ —ut — u—
[u] = tlﬁ+ u((x,t) + en) eli%l+ u((x,t) —en) =u u

denotes the difference of the limits of u on each side of .

Proof:

Let M = (xa,trr) be a point on a surface of discontinuity ¥, and B a small open
‘cylinder’ in R? x [0, c0) centered at M given by B = By,, x (tar —€,tp + €) for
a small positive real number ¢ and open ball B,,, € R?. Assume that ¥ is the
only surface of discontinuity which intersects B so that ¥ separates B into two
disjoint open sets By and B_ as in Figure 3.3.

The normal vector n = (n;,...,np,n,)7 to the surface T is assumed to point
into the set B,. Next, let g denote an appropriate vector ‘test function’, namely.
g : B — R™ has continuous partial derivatives in B and is zero on the boundary
9B = B\B. Now, form a volume integral over B,

g a k) 08 9 =
/B {u- > +kZ=:lf 5er (Xt (3.2.35)
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FIGURE 3.3. Geometry of the cylinder B.

Equation (3.2.35) may be split into two integrals, |, s = J B, T f p_» in each of
which the integrand is continuous. In each of these integrals an integration by
parts followed by an application of the Gauss Divergence Theorem may be com-
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pleted. The resulting calculation is

+ z £5) . g B Yot

d rf Ou - GfR)
= e . -_— f(k) . d dt - . M t
/,3+{at(“ g)+k§=l: 57, -B)dx _/B+{6t + 5e. | 8dxd

k=1

P
= "/ {(u* -g)n: + E (f(k)+ 'g)nk}45+/ b - gdxdt
JEéBLNE

= / {n¢u++2nkf(k) } - gdxdt — / b - gdxdt.
BnZ

k=1
The compactly supported property of g is used in the third line above, wherein the
surface integral over B4+ \(0B4+ NX) does not contribute to the overall boundary
integral since g = O there. Similarly to the above calculation, the | g_ may be
simplified to

Og z (k) Og
/;_ {u- i + ;f Bz }dxdt

/B {nu” +anf("’ }- gdxdt+/ b - gdxdt.
N

k—

Putting these calculations together, equation (3.2.35) is now written as

A { +Zf“’ }dxdt [ tndul+ 3 i) gds+

k—
+ / b - gdxdt,
B
or more simply,

0 ? 0
/B{u'b%-*-kz:f(k)'T::.—b.g}d"dt;-_./g {n,u]+§_‘:nk[f“‘) - gdS.
=] =
(3.2.36)

The volume integral on the left hand side of the above equality (3.2.36) is depen-
dent on the size of € in the interval (t5; — €,tas + €) since it may be expressed

as
tar+e ag ag
(k) . -
[ /B{ %3 28 bg}dxdt
XA
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Since the surface integral is independent of ¢ (except for perhaps small values for
which the cylinder B would not contain ¥), both sides of the equation must be
equal to the constant value

tar+€ ag P ag
(k) . -
e—>0 /z; { +Zf Bz b. g} dxdt =0,

since the integrand, although discontinuous, is assumed to be bounded in the
domain B. Using the arbitrary choice of the function g, it follows that the in-
tegrand of the remaining surface integral in (3.2.36) is zero. Therefore. at the
original point M, the result (3.2.34),

ne[u] + i ni[f®] =0

is shown. d
This proof has been generalized to allow for the spatial dependence and forcing
terms. A proof for the simpler case may be found in Godlewski and Raviart p.16.
or done as an exercise (John, 1982 exercise 5, p-19).
A special case of the above lemma is given when the surface of discontinuity ¥
has a normal vector of the form

Np

Then, equation (3.2.6) may be written as

P
vlu] = ni[fP]. (3.2.37)
k=1
Here, if n is a unit vector, the scalar v and vector n,, ..., np)T may be considered

as the speed and direction of propagation of the discontinuity ¥ (Godlewski and
Raviart, 1996 p.18). This result thus can be seen to recover property (3.2.5) for
hyperbolic equations in one dimension.

3.2.2 Conditions across discontinuities in derivatives of u
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The general approach in the previous subsection, concerning discontinuities in
u, is to use the equations written in conservative form to derive Jump conditions
across such discontinuities. Of a somewhat different nature are conditions which

arise from considering solutions for which the u;, i = 1,...,n, are continuous,
) .. Ou; Ou; . .
but the partial derivatives a—' or Bt—‘ may have simple jump discontinuities.
Lk

The following results have been collected together by Whitham (1974), and may
be summed up by the statement that such discontinuities in the first partial
derivatives of u can occur only on characteristics.

In general, for a hyperbolic system such as (3.1.7), let £(x,t) = 0 be a surface
Ou; au,

around which — , k =1,...,p may be piecewise continuous but u; are

ata:r

continuous. By embeddmg the surface ¥ = 0 in a family of surfaces £ =constant,
the surface ¥ 1tse1f can be chosen as a local co-ordinate, and the discontinuities

. 6u,~ 6
In ——, or

3 —at—, which are normal to ¥ are expressed as (Whitham, 1974 p.140)
oF 3

oL (0T \ [8u] _
(&1 +) A Brs [av]_o. (3.2.38)

k=1

The discontinuities in the derivatives of u; occur only on surfaces satisfying

oL, )9\ _ 2
det( ZA 52 ) =0 (3.2.39)

Equation (3.2.39) is a condition which identifies a surface & = constant as a
characteristic surface, and is a result quoted in Whitham (1974, p. 141).

In one spatial dimension, (p = 1), the simplification of (3.2.39) is often ex-
pressed simply as

a-—l a-—J
det ( 5+ A 6.1:) = 0. (3.2.40)

This condition (3.2.40) is similar to the characteristic condition (3.1.4), so the
result that discontinuities in the first derivatives of u can occur only on charac-
teristics becomes clear (see Whitham, 1974 p.128). This idea is extremely useful
when considering the technique of expansion near a wavefront (Whitham, 1974
p-130) for describing discontinuous derivative solutions.
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3.3 Initial Boundary Value Problems

When solving problems involving hyperbolic systems such as (3.1.1) in one
spatial variable, or (3.1.7) in several (p) variables, knowledge of the hyperbolicity
of the coefficient matrices A¥), k = 1,...,p, is not enough to describe the solu-
tions effectively. Various types of initial or boundary information must often be
supplied to discern a reasonable solution from a family of prospects. To ensure
that a system and associated initial or boundary conditions is sensibly stated, the
problem is said to be well-posed if there exists a unique solution such that small
perturbations in the initial data (or forcing term b) do not lead to large variations
in the solution, for at least a small time interval. . This concept of well-posedness
has been stated with more precision, for example by Kreiss and Lorenz (1989,
p-19), but such a development is unnecessary for this thesis and is omitted.

The boundary conditions associated with a hyperbolic system which most often
leads to results concerning well-posedness are initial values. This problem is gen-
erally referred to as either a Cauchy Problem (John, 1982 p.56), or an Initial Value
Problem (Godlewski and Raviart, 1996 p.2) abbreviated as IVP. A tremendous
amount of research has been conducted for initial value problems, with arguably
the most famed result being the Cauchy-Kowalevski Theorem (John, 1982 p.74)
for the existence of real analytic solutions. Examples of Cauchy problems in one
spatial dimension were portrayed in Section 3.2, examples 1-4.

For the physical problem of shallow-water gravity currents which is examined
in this thesis, the systems involved often have not only initial values, but also
boundary conditions. For example, a physical barrier such as a wall which does
not permit flow across it, can be portrayed as a constraint on the solution to a
hyperbolic system of partial differential equations. For this reason, an equation
with boundary conditions is termed a Boundary Value Problem, or BVP. The
initial and boundary values may be combined to create additional complexity as
an IBVP: Initial Boundary Value Problem. It will be shown that the gravity
current problem considered herein is an IBVP.

The relevant question to this thesis is then: when is the gravity current prob-
lem well-posed? More precisely, this may be phrased as a problem of examining
the subsequent IBVP to determine if the initial and boundary conditions arising
from the physical problem lead to a well-posed problem. Unfortunately, a com-
plete answer to this question is elusive at this time. However a partial answer is
achieved, based on the linear theory provided in Godlewski and Raviart (1996,
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Chapter V) and Kreiss and Lorenz (1989). For the general IBVP, results may
be obtained using the methods of linearization and localization, as discussed in
Kreiss and Lorenz (1989, p.20/21). The first notion is stated as follows:

Linearization Principle: A nonlinear problem is well-posed at u if the linear
problems which are obtained by linearizing at all functions near u are well-posed.

This principle is most applicable to coefficient matrices of the form A*)(u).

For more general problems with coefficient matrices of the form A*)(z,t),
a linear problem is related to a constant-coefficient problem by cuusidering the
fixed points (o, to) and freezing the coefficients A(¥)(zq, ¢9). This process is called
localization, and the problem is related to the variable-coefficient problem by the
following:
Localization Principle: If all frozen (constant) coefficient problems are well-posed,
then the corresponding variable coefficient problem is also well-posed.

It should be noted that the linearization and localization principles are not
strong results or theorems, but merely methods which turn out to be applicable
for hyperbolic equations based on the Navier-Stokes equations (Kreiss and Lorenz,
1989 p.21). Using these principles, it is assumed that for the general problem to
be well posed, it is necessary that the constant-coefficient linear problem be well-
posed. Results are therefore compiled for these cases.

The applicable result is for the system

o d
— —u= . \ 3.3.1
0tu+A(x’t)axu b(z,t), 0<z.0<t, ( )
with initial data
u(z,0) = ue(z), z=>0. (3.3.2)

At the boundary point r = 0, boundary conditions of the form
E()u(0,t) = g(t), ¢ >0, (3.3.3)

are considered where the matrix E is a m x n matrix, and g is a m component

vector function.
Consistency of (3.3.2) and (3.3.3) require that

E(0)uo(0) = g(0), (3.3.4)
a compatibility condition which is hereafter assumed.
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Rather than simply quoting the special case of a more complete result (Kreiss
and Lorenz, 1989 p.259 Theorem 7.6.4) concerning the types of matrices E for
which equations (3.3.1)-(3.3.4) are well-posed, it is useful to conduct some cal-
culations. The following analysis is more general than that given in Godlewski
and Raviart (1996, p.424-426) for constant-coefficient homogeneous problems, and
serves to illuminate the types of boundary conditions (3.3.3) for which the IBVP
considered in this thesis makes sense.

The hyperbolicity of system (3.3.1) guarantees that the matrix A can be di-
agonalized by the change of basis matrix (see Norman, 1995 for example) P,
consisting of the eigenvectors of A, such that

PT'AP =D, D= diag(\1,---,Aa),Aj = Aj(z, 2). (3.3.5)
The eigenvalues in (3.3.5) are ordered such that Aq,..., Ap are positive, and the
remaining eigenvalues, Apti....,A, are nonpositive for some integer 1 < p < n

and for all time ¢ > 0. The case for which the eigenvalues change sign is not
considered, for if this occurs, then the results are only considered valid for small
time intervals in which the signs of the eigenvalues do not change.

New (characteristic) variables U are defined by

u(z,t) = P~ 1(z,t)u(z,t). (3.3.6)

Such a transformation (3.3.6) transforms equation (3.3.1) to the diagonal form

0. 0. = ~ -
v +D—a—z—u =b + C(z,t)u, (3.3.7)

where the vector b and matrix C(z,t) are detailed in Appendix 4 along with the
calculation of equation (3.3.7). Similarly, the initial condition (3.3.2) becomes

u(z,0) =P~ !(z,0)up(z), z >0, (3.3.8)
and the boundary condition (3.3.3) may be written as
E(t)P(0,t)u(0,t) = g(t), t>0. (3.3.9)
Now, split the vector u into two parts defined by

~ ~ ~ ~ ~ \T ~ =~ \T
u=(u1,...,up,up+1,...,u,,) =(u+,u_) s (3.3.10)



where U is a p component vector corresponding to the positive eigenvalues, and
u_ isa (n — p) component vector corresponding to the nonpositive eigenvalues of
A. At £ =0, u- is entirely described by integrating the n — p parts of (3.3.7)-
(3.3.8) along those characteristics which initiate from the initial data. Hence,
u_(0,t) is assumed to be known.

With definition (3.3.10), the boundary condition (3.3.9) becomes

g(t) = E(t)P(0,t) (14 (0,¢t),u-(0,2))7
= (EP)4+u4(0,t) + (EP)_u_(0,1). (3.3.11)

In the last line of (3.3.11), the arguments have been supressed for the two new
matrices introduced. (EP); is an m x p matrix which consists of the first P
columns of EP, and (EP)_ is an m x (n — p) matrix consisting of the last n — p
columns of EP. The splitting of the matrix EP is written explicitly in Appendix
4, equations (A4.5). Rewriting equation (3.3.11) as

(EP)+1+(0,t) = g — (EP)_u-(0,1),

shows that to compute 14(0,t) nontrivially, (EP); must be a square matrix
which is invertible, that is m = p, and EP is an invertible matrix (the result
(EP)+ = EP. is given in Appendix 4 as equation (A4.6).) This requirement is
now stated as a result which generalizes one from Godlewski and Raviart (1989,
Lemma 1.1 p.426).

Lemma 3.3 The hyperbolic IBVP (3.3.3)-(3.3.3) with consistency condition
(3.3.4) 1s well-posed if E(t) is a p x n matrix such that EP_ is invertible, where
P is the n x p matrix whose columns are the eigenvectors of A corresponding
to the positive eigenvalues.

It is useful to apply this result to a simple problem such as the one dimensional
wave equation, examined in detail by John (1982, p.40-43) and in many other
texts.

Ezample 3.6 Consider the wave equation in one spatial variable for a C2? function
u : R? = R which satisfies
u  ,0%u
a7 ~ € 8z

The scalar equation (3.3.12) may be expressed as a system by defining a column

=0, 0 < c= constant. (3.3.12)

vector u as follows

uz

u= ["‘] R - Y (3.3.13)



The components of u satisfy

Ou, 8%u 8%u Ou,

ot  0zdt  Otdr Oz’

and
Ou, O%u 0%u 2 Ou;
= = c2 =C s
ot ot? or? oz
which may be written in the system form
3 (731 0 1 3 Uy _ 0
S RER I N R

The eigenvalues and eigenvectors of the coefficient matrix A in (3.3-14) can be
quickly calculated (Whitham, 1974 p. 118) as

-—C

A] =C,/\2=—C, andv1=[:;] ,V2=[ 1 ], (3.3.15)

which are ordered in the desired fashion, so that n = 2 and p = 1 since \; > 0
and Az < 0. The change of basis matrix P is then given along with its inverse as

P=[i l]andp—l=i[° 1]. (3.3.16)

2clc -1

For initial and boundary data of the form (3.3.2)-(3.3.3), with n = 2 and p=1,
Lemma 3.3 requires that the matrix E(¢) be a 1 x 2 matrix such that EP, is
invertible. A calculation gives

EP+ = [Cll(t) elg(t)] [i] = €11 + ceja. (3317)

The condition for well-posedness of the hyperbolic system (3.3.14) with initial and
boundary conditions (3.3.2), (3.3.3) is then expressed through the invertibility of
the scalar in (3.3.17), that is

€11 + C€12 # 0. (3318)

For the special case of constant matrix E, the compatibility condition (3.3.4)
is applied as follows. If uo = (fi(z), fo(z))7T, then (3.3.4) yields the additional
relation between ug, E and g as

g9(0) =[e11 e12] [2585] = e11.f1(0) + e12£2(0). (3.3.19)
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The result (Lemma 3.3) essentially states that the outgoing characteristic vari-
ables are described in terms of the incoming ones and a boundary term g. If
the function g is somehow under or over-defining, this contradicts the solution
obtained by the method of characteristics. The resulting size restrictions are
phrased as a simple condition via linear algebra. A more thorough and compre-
hensive discussion which includes integral bounds on the solution may be found
in Kreiss and Lorenz (1989, Section 7.6) and in the paper by Kreiss (1970). The
study of IBVPs is ongoing, and in many circumstances quite difficult. Once a
theoretical description of admissible boundary conditions can be determined, in
practice, implementation depends on the problem. and * ... it mostly remains a
matter for the expert, whose know-how is seldom (emphasis added) described in
detail.” (Godlewski and Raviart, 1996 p.417).

Chapter Summary

Chapter 3 has introduced several classical ideas from the theory of partial
differential equations, while rephrasing or generalizing some known results with a
view to their application in later chapters.

The concepts of a hyperbolic system of partial differential equations and hy-
perbolic system of conservation laws discussed in Section 3.1 turns out to be
quite applicable to gravity currents. Discontinuous solutions are also investigated
in somewhat more detail in Section 3.2, with explicit calculations of Rankine-
Hugoniot jump conditions at a shock. The sensitivity of discontinuous solutions
to nonhomogeneous forcing terms for several one-dimensional hyperbolic problems
is portrayed through some examples, the relevance of which will become clearer
throughout the thesis.

As it concerns well-posedness of IBVPs, Section 3.3 describes the principles of
localization and linearization which allow statements such as Lemma 3.3 to be
applied in more general settings.



Chapter 4

Two-dimensional Gravity Currents

The notation and concepts expounded in chapter 3 will be used to analyze
the two-dimensional equations with a free surface from chapter 2. Specifically,
the notation leading to equation (2.4.29) in the system form (3.1.1) and equation
(2.4.30) in conservation form (3.1.6) are used. Questions concerning hyperbolic-
ity, discontinuities, and well-posedness will be answered for the two-dimensional
gravity currents in two layers and for the special cases such as thin layers, small
density differences, or rigid lid.

4.1 Hyperbolicity

The first section of theoretical results concerning gravity currents is devoted to
investigating the hyperbolicity of the equations when written in the system form
(3.1.1). Determining the hyperbolicity aids in classifying the situations for which
various numerical schemes are appropriate to use to obtain numerical solutions, as
well as determining the type of IBVP which may be stated to obtain a well-posed
problem. The most general case, that of two fluid layers, is considered first with
special cases and simplifying assumptions examined subsequently.

4.1.1 Two-layer gravity currents with a free surface

Hyperbolicity of the equation (2.4.29), which is stated in the form (3.1.1). is
examined where the coefficient matrix is given by

uy y~1 0 ~!
C1 uy 0 0

0 v 1—-1 up ~7!
0 0 Cz U2z

A= (4.1.1)

To find the eigenvalues of A, the methods of row reduction (see, for example,
Norman, 1995 Section 5.2) are used to calculate the characteristic polynomial,

0 = det(A — AL4) = det(B) (4.1.2)
with
up—A 47! 0 !
_ _ Cl uy — A 0 0
B=A-)\= 0 U1 wp— A A . (4.1.3)
0 0 G2 uy — A
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The matrix B can be row reduced through several steps.

u; — A ~1 . 0 ‘y‘: 1
Ry — b R, — 0 ul—A—%l_—% 0 ‘ju_l'-%
uy — A 0 “/—1 -1 ug — A 7-1
0 0 Q) uz — A
Uy - A ‘/—1 0 ‘)/_1
0 uy —A—a 0 —a
0 “/-l -1 U — A “/_1
0 0 (2 Ug — A

where a = v71(; /(u; — A). Further row reduction steps give

u; — A “/_1 0 “/—1
-1
¥t -1 0 uy —A—a 0 —a
Rs ul—)\—aRzﬁ 0 0 ug — A *,'“1+%—_l—:—l%‘i
0 0 (2 ug — A
and
u; — A ~1 0 ~~1
Ca 0 Uy — A —a 0 —a
-1
R
1 ¢a(u1—A)=Caa
0 0 0 w— A= GG

Hence, equation (4.1.1) may be expanded to write the characteristic polynomial

as

~ ¥ 16 (uy — A) — (2a
0= (Ul - ’\)(ul - A —a)(u2 _,\)(U2 —A- (ug — /\)(ul - A -a)>

= (u; — M) {(u2 — A2(uy — A —a) — v 1Ca(u; — A) + C2a}. (4.1.4)
Substituting in @ = v~1(; /(u1 — A) gives

0= (ur = M {(uz = A2t = A= T8y _ 4 =Le(uy — A) 4 152613
- uz 1 Y G2(uy Y
= (u2 = A [(u1 = AP = 7G) = (ur = Ay T + 1T 0.

Multiplying by 4% and completing the square allows this result to be expressed

simply as
[v(A = u2)? = G[v(A — u1)? = G] = (1 = 7)616a- (4.1.5)
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Equation (4.1.5) is a quartic equation in the variable A\, and as such may be
solved exactly. The equation may be rewritten after a few algebraic steps which
follow.

[Y(A2 = 2u2 + u3) — G[v(A%2 = 2usd +ud) — 1] = (1 — 7)1

= y2(A% = 2ua A + u2)(A2 = 2up ) + ul) — 7 (A = 2uy ) + u?)
-G (A = 2ud +uf) + (16 = (1 = 7)1

= v\ - 2u N + ugz\2 —2u; A% + 4ujug\? —‘Zulu%/\ +uf/\2 - 2ufu2/\ +u§u§)

— (G + ()N + 29(u1 (e + u2i) A — v(uiGe +udG) = =701 62

= 422 — 242 (uy +u2) A + [v3(ud + duruz +ul) — (G + ()IA?
+ [ (—2u1u3 — 2uPug ) + 2y (w1 G + w2 G ) A+ YR udud — vy (ui +uia — (1¢2) = 0

=\ — 2(u; + uz)/\3 + [(Ul + uz)2 + 2uju; — ‘/—I(Cl + Cz)]'\2

+2(v 7 (w1 + u2r) — waug(ur + u2)]A + uiul — vy M (uiGe + u3C — (1¢2) = 0.
(4.1.6)

After a change of notation, equation (4.1.6) can be observed to be similar to one
that was stated previously, (Montgomery & Moodie 1999a), and its roots have
been discussed therein with a condition for hyperbolicity described.

Another approach which yields a simpler solution is obtained through the
change of variable A = n + (u; + u2)/2 directly in equation (4.1.5) to get a re-
duced form. Details are shown in Appendix 3, where the roots of equation (4.1.6)
are also described. The result parallels the exposition given in Montgomery &
Moodie (1999a) and does not provide any new results. As such, the formulation in
Appendix 3 merely provides a convenient outline for use in numerical calculations.

Although it will be used in subsequent chapters, equation (4.1.6) does not
always have four distinct roots, and therefore equation (2.4.29) may not always
be hyperbolic. For example, if {; = (2 = (. and u; = —ug = u, then (4.1.6)
reduces to

M2 —y710ON +ut =712 =) =0.
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This equation has imaginary roots if
(u? = 471)? - [u* =y H(u® - ¢)¢] <O,
which simplifies for ¢ > 0 to the restriction

u? > (v - 1)¢.

Thus, for large flow velocities, the hyperbolicity assumption is expected to become
invalid. However, for gravity currents resulting from initial releases, the speeds
are usually slow enough for the equation to be classified as strictly hyperbolic.

The various regions of the variables for which a similar system is hyperbolic
has been examined (Lawrence, 1990) in terms of various Stability Froude Num-
bers for each layer. There, after some simplifying assumptions, a single critical
Froude Number for the entire flow was defined for which a simple criterion for
hyperbolicity or stability may be quickly observed from a single stability curve
(Lawrence, 1990 Fig. 2). Here, the level of detail needed for implementation of
boundary conditions to be investigated later requires a more general approach to
be taken. Of specific interest is in the region near a vertical end wall, where the
horizontal velocities u; and uz are constrained to be small in magnitude in the
vicinity of the wall due to the boundary condition of zero flow at z = 0. This
physical constraint motivates solutions of the characteristic equation (4.1.6) which
may be found from a small parameter (¢) expansion of the form

ui(z,t) = sugl)(:::,t) + 52u§2)(:1:,t) + 0(e®),
ua(z,t) = eul(z,t) + 2ulP(z,t) + O(?),
G =, t) + ¢z, t) + 2¢ Pz, t) + O(3). (4.1.7)
G =7 (z,t) + €G3 (z,t) + £2¢7 (2. 8) + O(®), and
A= 2Oz ¢) +edV(z,t) + 20P) (z,t) + O(P).
Substitution of the expansion (4.1.7) is completed in Appendix 3, with the
second order solution given by the expressions (A3.10), (A3.11), (A3.13) and

(A3.15). The result is that to first order, there are four distinct eigenvalues to
the matrix (4.1.1) for small velocities u; and uz and 4 < 0.5. These are given by

L
1 _ 1 _ 2
A9 = 4 [;-, 1¢@ + ¢+ S 1\/( © 4 ¢f2 — 4y fo)Céo)J + O(¢),
(4.1.8)



where the indices i in (4.1.8) correspond to the signs being chosen as i = 1 for
(+,+), ¢ = 2 for (+,—), i = 3 for (—,~), and i = 4 for (—=,+) so that the
eigenvalues are numbered in decreasing order as \; > A3 > 0> A3 > )\,.

The eigenvectors, v, of the matrix A given by (4.1.1) satisfy the expression
Av = Av for each of the eigenvalues \;. Expanding A as A = A(® +:A(1) £ O(e2)
and A according to (4.1.7) gives

(A(°> - A(°)I4) v® = 04+ O(e). (4.1.9)
Neglecting the superscripts (0) for simplicity, the first order equation from (4.1.9)
becomes
- ‘/—1 0 ‘7—1 15} 0
G -2 0 0 |[|w] _|o
0 ‘}'_l -1 =\ ‘7—1 vs - ol- (4.1.10)
0 0 G2 A vy 0

For any eigenvalue ), an eigenvector v = (v, v2, v3, vy )T must satisfy from (4.1.10)

the following three equations, with v, considered as a parameter:
A
vz = Z:z‘vu

I Nt . O 2. Sl

A N e T2

A +A%2 — ()

vy = A —G)A

(1-7)0¢

Choosing v4 appropriately (i.e. nonzero) in (4.1.11) leads to a general expression
for each eigenvector v corresponding to the eigenvalue A\. One such family of

vy, and (4.1.11)

(23] 4-

linear independent eigenvectors may therefore be given by

v = (A2 = )X (A% = )G (L= )AGL, (1 —1)G6) T (4.1.12)

The two-layer equations with a free surface do not admit a simple form for
regions of hyperbolicity. However, the low-flow rate expansions are useful in both
classifying the equations as hyperbolic, and finding the eigenvalues and eigenvec-
tors as appropriate.

4.1.2 Two-layer gravity currents with simplifying assumptions

The case described in subsection 4.1.1 above is somewhat limited in that the
complexity of the characteristic equation (4.1.6) does not permit a simple answer
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to the question of hyperbolicity for the two-layer equations (2.4.29). Fortunately.
the simplified systems described in Section 2.4.3 allow a more comprehensive and
complete analysis. Previous results concerning several of some of the simplified
two-layer equations can be found elsewhere (Montgomery & Moodie 1998a), how-
ever the more general cases are considered herein.

The first simplified equations considered are the weak-stratification equations
for situations with small v. Equation (2.4.38) contains the 2 x 2 system whose
coefficient matrix is written after the substitution {; = hy — hg as

_ | @11 a2
A= [(2 s ] . (4.1.13)

The coefficients of A in (4.1.13) then simplify after the change of notation into

2Q¢ +[(1 =G~ hp)? - (14 ( — hp)i2]us
(1—-hp —()1-hg)
2Q¢ +[(1 — 20 —2hp +20hp + (2 + k%) — (G2 + (2 — (2hp)u.
(1—hpg—(2)(1 —hpB)
2Q¢ + [(1 — hB)? — 3(; + 3hplo]us
(1—hp—GC)(1—-hp)
2Q¢ + (1 —hp — 3 )(1 — hp)u,

T A-he-C)(1-hs) @11

a; =

and

a2 = [2Q(1 —hp — G)uz — (1 —hg + ()(1 —hg — C)ul + (1 —hp — (2)°
—(Q - G2u2)?]/[(1 = hp — (2)(1 — hp)]
= [2Q(1 - hp — G2)uz — (1 —2hg — (2 + h)ul + (1 — hp — (2)°
—(Q% — 2QC2uz + (3u3)]/[(1 — hp — (2)*(1 — hB)]
_ —(1~hg)*u} +2Q(1 — hp)us + (1 — hp — (2)® — Q? _
= (T~ h5 ~ G)(1 = hp) | N

The hyperbolicity of the weak-stratification equations (2.4.38) may now be ad-

dressed by solving the characteristic equation for the matrix (4.1.13), 0 = det(A —
Al;). Such a calculation yields

0 = (a1 = A)(uz — A) — a12¢2.

or
A2 —(u2 +an)A +ajuz —a12¢2 = 0. (4.1.16)
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Prior to solving the quadratic equation (4.1.16), the two coefficients are simplified.
First, the coefficient of A, upon use of equation (4.1.14) is given by

s+ ayg = (1-hp—C)(1 —hpluz +2Q( + (1 — hp — 3(2)(1 — hp)u,
(1—hp—()(1 —hB)
_(1-hB)1—-C —hg+1-23( — hp)uz +2Q¢
B (1—hg~C)(1—hp)
_2(1=hg)(1 —hp —20)us +2Q¢;
B (1—=hp —¢()(1 - hp)

(4.1.17)

The other coefficient in (4.1.16) may be calculated similarly as

2Q¢2u2 + (1 — hp — 3(3)(1 — h)u?
(1 -k —()(1~ha)
_ [—(1 — hg)’Cu} +2Q(1 — hp)luz + (1 — kg — (2)3C2 — Q3¢
(1 —hg~¢(2)2%(1 —hp)

= [2Q¢2(1 —hp — (2)uz + (1 —hp — 3(2)(1 — hg — (2)(1 — hp)ul

+ (1 ~hp)*Gui —2Q(1 — hg)Gus — (1 —hg — (2)°C2

+ @Q%°¢)/[(1 — hp — (2)*(1 — hp)]
= [[(1-hp=3¢G)1~hp—G)+ (1 - hp)Gl(1 = hp)ud + (1 — hp~

— (1 =hB)]2QCuz — [(1 = hp — (2)* — Q%](2]/[(1 — kB — (2)*(1 - hB)],

ajjuz —apz =

which simplifies finally to

(1 —hp)? ~3(1 —hp —(2)G](1 — hp)uj —2QCFus
(1—hp—-¢(2)%(1 —hB)
_[A=he =) - Q%G
(1—hp —(2)%(1 —hg)’

ajjuz — a2z =

(4.1.18)

The two eigenvalues for (4.1.13) can now be expressed as the roots of (4.1.16)
through expressions (4.1.17) and (4.1.18). The result is

1 1
Ax = §(u2 +ap;) % \/"4—(“2 + all)2 — (ar1u2 — a12¢z). (4.1.19)

In keeping with the decreasing ordering, the eigenvalues are given the subscripts
A1 = At and A2 = A_, so that A\; > A; when the discriminant in (4.1.19 is posi-
tive. The weak-stratification equations (2.4.38) are therefore classified as strictly
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hyperbolic whenever the term beneath the square root in (4.1.19) is positive. This
occurs precisely when

(u2 + a11)?® — 4(ar1uz — a12(2) > 0. (4.1.20)

Such an inequality as (4.1.20) may be employed with expressions (4.1.17) and
(4.1.18) to be restated as a restriction on the numerator since the denominator
of (4.1.20), which may be seen to be (1 — hg — (3)%(1 — hpg)?, is assumed to be
strictly positive. This results in the inequality,

[2(1 = hB)(1 ~ hp — 2C2)uz +2Q¢2)" — 4(1 — hp){[(1 — hB)*
—3(1—hg — (2)C2J(1 — hp)ul —2QC2us — [(1 — hp — (2)° — Q%|(2} > O,

which simplifies by dividing by 4 and collecting terms in powers of u; to give

(1—hB)*[(1-hp—2()* —(1—hB)? +3(1 —hp — (2)C2lus +2Q(1 — hg)(3F]uz
+[2Q(1 ~hB)(1 —he —2(2)2 + Q*CG +[(1 —he — (2)° — Q*(1 — hB)(2 > 0.

After further algebra, this expression may be expressed in the simpler form

— (1= hB)* (1~ hp — (2)C2ul +2Q(1 — hp)(1 — hp — (2)C2u2
+ Q%2+ [(1—hp—()® —Q%)(1 —hg)e >0. (4.1.21)

This condition of hyperbolicity (4.1.21) depends on u2, (2. hp, and @, and is
therefore not simple to interpret algebraically. Thus, (4.1.21) remains a quick
check on the hyperbolicity of equation (2.4.38). A much simpler result arises from
the case without any endflow, @ = 0, for which the condition (4.1.21) simplifies
significantly to the equation

- 2

w2 <8 _1h_’3f;‘2) . (4.1.22

This condition (4.1.22) simplifies to that obtained by Montgomery and Moodie
(1998a) for the case hg = 0.

To aid in a physical interpretation of the condition (4.1.22), it may be expressed

dimensionally by replacing the nondimensional variables with the dimensional

ones from (2.3.7). After some quick simplification, the result is given by the

dimensional inequality
2 _ 9'(H — ha)®

4.1.2
Uy < H — hB ( 3)
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Condition (4.1.23) may now be interpreted as the physical statement that the
system is strictly hyperbolic for flow with velocity below a Froude Number which
depends on both the height of the lower layer and bottom depth.
The eigenvectors v = (v1,v2)7 for the matrix (4.1.13) satisfy the second row
equation,
C2v1 + (u2 — A)ve = 0.

An appropriate choice of parameter allows the two eigenvectors for the weak
stratification equations (2.4.38) to be expressed as

viz2 = (A12 —u2,(2). (4.1.24)

In Section 2.4.4, a thin layer analysis for the equations for two layer flow in two
dimensions was completed. For a thin lower layer, equation (2.4.61) has a 2 x 2
coefficient matrix, given by

~ % 1 5
A= [Cz 52] . (4.1.25)

The eigenvalues for this matrix (4.1.25) may be found by solving the characteristic

equation
(G2 —A)? =G =0,

to give two eigenvalues, ordered as
/\1 = 52 + ZQ, and /\2 = Eg - V Zg. (4126)

The eigenvectors to (4.1.25) associated with the eigenvalues (4.1.26) are vectors
v = (vq, ‘Ug)T which satisfy the equation

(uz — A)vy +v2 =0.

An appropriate choice of eigenvectors may therefore be given by

vy = [\/l'g] , and vy = [_\1/5—2] . (4.1.27)

From the expression (4.1.26), it can be seen that the thin lower layer equations
are strictly hyperbolic precisely when C; > 0.

For the case with a thin upper layer, equation (2.4.81) has a similar coefficient
matrix to (4.1.23) with subscript 2 replaced by the subscript 1. By comparison
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with the results (4.1.25)-(4.1.27), it may therefore be observed that the thin upper
layer equations are strictly hyperbolic precisely when ¢{; > 0. The eigenvalues for
the thin upper layer equations are thus given by

Al = 171 + E1, and /\2 = fil - Z], (4128)

with the corresponding eigenvectors

v, = [\/lz-:} . and vy = [_\1/;?] . (4.1.29)

The last simplifying case to be considered is that of the rigid lid equations
(2.4.89). This is also a 2 x 2 system, with coefficient matrix A defined by (4.1.13)
with the two coefficients stated as

_20=7)QG+ [ — (1 =7)(G +26)¢]us
GG + (1 — v)¢] ’

(4.1.30)

a;

and

_ G+ (1 =9)Gu2[2Q — (G +26)]uz — (1 — ¥)(Q — Gua)®
GG + (1 —7)¢]

- {ci‘ £ 2Q(L = ¥)Gruz — (1= )(Gr + 2C2)Crue—

a2

(1= 1)(Q? - 2QGouz + Pl }/{cf[cl (1 7)621}

_ G -(1-7Q%+2Q0 —)(G1 +G2)us — (1 = 7)(G1 + ¢2)%}
Clz[CI +(1- 7)(2] (.4_1.31)

In equations (4.1.30) and (4.1.31), the notation {; = hy — h2 and {; = h, — hp
has been used, leading to a different, yet similar, set of coefficients than (4.1.14)
and (4.1.15). The hyperbolicity of the rigid lid equations with coefficient matrix
given by (4.1.13), (4.1.30)-(4.1.31) may therefore be found by solving a similar
characteristic equation to (4.1.16). The two coefficients in this case are slightly
different than (4.1.17) and (4.1.18) and must be recalculated as

_G (G + (1 —7)Clua +2(1 = 4)QC + [(F — (1 — ¥)(G1 + 2¢2)C2]uz
G[¢ + (1 —7)G)]
2(1 - v)Q% + [2¢2 + (1 — v)(¢162 — €162 — 2¢F)]ua
GG + (1 —7)¢2]
_ 21 = 9)Q¢ + 2[¢ — (1 = v)(F]usg
- Gi[6 + (1 —v)¢) | (#1.32)
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and

{201 = 1)Q¢ + [¢F = (1 = v)(¢1 + 262)C2Juz} Crug
GG+ —7)¢]
_ G -1 =9)@% +2Q(1 — 4)(¢1 + G2)uz — (1 — v)(G1 + (2)2u2](e
¢t [Cl + (1 —7)¢2]

= {[(1 =)@ — ¢1¢2 + [2Q(1 = 7)C1é2 — 2Q(1 — 7)(C1 + C2)CJuz+

+[GF = (1 =G +26)0G+ (1 )G + (2)%Clu3 }/{¢E1¢ + (1 — 7))}
— [(1 —~)Q% - (312 — 2Q(1 — Y)GEuz + ¢+ Q1 - '7)(23]"2
CGElC1 + (1 — 4)¢]

ajjuz —apfe =

(4.1.33)

The eigenvalues for the rigid lid system (2.4.89) are then given by (4.1.19), the
same expressions as the weak-stratification results, with the expressions (4.1.32)
and (4.1.33) inserted as appropriate. For two distinct and real eigenvalues, the
accompanying inequality (4.1.20) must therefore hold. Since the denominator in
(4.1.20) becomes (Z[¢; + (1 — v)(2]?, which is assumed to be strictly positive, the
resulting inequality which much be satisfied for hyperbolicity is then given by

{(1=71Q¢ +[¢f — (1 = )¢Zu2}’ - {(1 = MQ*¢ — (3 — 2Q(1 — v)¢Euz
+[G + (1 —7)Elud G + (1= ¥)¢] > 0.

Expansion and multiplying of the above allows this inequality to be written as

(1= Q% +2(1-9)Q¢(¢E — (1~4) Flu +[¢2 (1 —7) 22 e - [(1-7)Q* -3 [Ca
+(1=7)¢2] G2 +2Q(1—7)E G + (1 =) C2Jue —[¢F + (1 =) NG + (1 =) Jud > 0.

A series of further manipulations and rearrangement yields

{20 -G+ -G -G -1 =-70G -1 =1
— (1 =G i +2(1 = )QG{¢E — (1 — )¢ + GG + (1 — 1)¢2] }uz
+ (1 —=?Q*E -1 -7QG+ (1 —7)2Q* — ¢ — (1 = 7)¢3G)G: >0,

which becomes

(1= y)(=2¢2¢5 — Q143 — C3¢a)ud +2(1 — v)QC261 (G + C2)ua
+ (1= 7)(CF — Q¥ + ({2 > 0,
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and finally, since the product of the layer thicknesses, (1{2. is assumed to be
positive,

(1=7)(C1+G2)%ul —2(1 —1)Q((1 +C2)uz =+ (1 — ) (Q% = (2(2) < 0. (4.1.34)

The rigid lid equations are therefore hyperbolic if the condition (4.1.34) is sat-
isfied, and the eigenvalues and eigenvectors are given by (4.1.19) and (4.1.24)
respectively, employing the expressions (4.1.32) and (4.1.33).

To further explore the suitability of the condition (4.1.34), for the special case
@ = 0, (4.1.34) can be rewritten as

2 SF-1Ee

_ . 4.1.35
PTG +G0)? (4.1.39)
This expression simplifies for v — 0 to
-3 2 2
W< S tbit (4.1.36)

(Gi+¢)? G+

Substitution of the variables (; = h —hg and {; = 1 — (2 — hp (i.e. for rigid
lid condition h; = 1) allows (4.1.36) to be seen as identical to the simplified
hyperbolicity condition for the weak stratification equations, (4.1.22).

The inequality (4.1.36) is nondimensional, and can be interpreted dimension-
ally. Using the variables in the nondimensionalisation (2.3.7), a bit of simplifica-
tion yields the inequality in dimensional form,

2 _ g'(H — ha)?

u; < T —hy (4.1.37)

Expression (4.1.37) is identical to the previous dimensional condition (4.1.23)
which characterised hyperbolicity for the weak stratification equations. for the

4.2 Jump Conditions Across Discontinuities

In this section, discontinuous solutions of the two-dimensional gravity current
problem are considered. The governing equations written in the various conser-
vation forms from Chapter 2 are examined using the theoretical results developed
in Chapter 3. Discontinuities are considered solely as simple jumps in the layer
height variables (> and velocity u;. The fact that gravity current fronts are not
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vertical has no bearing on the analysis, only interpretation of validity of the re-
sults.

4-2.1 Discontinuities in u for the general two-layer situation

The specific discontinuous situation which motivates the analysis in this section
is that of the gravity current problem for a dense lower layer intruding into a body
of lighter fluid, which may not necessarily be at rest. Without loss of generality,
the assumption is made that the fluid is moving from left to right, so that for a
discontinuity at position z = s(t), s is increasing monotonically, and the lower
layer variables for z > s(t) must satisfy u; = 0 and (3 = 0 in this domain.

The equations for two layers in conservative system form (2.4.30) are consid-
ered, with a simple discontinuity in the variables u;, (3, u2, and (;. The system
i1s written as the four equations,

Ou g (1 - —14dh
-El + 5 (5"? +17 NG+ Cz)) = -7 IE:'B-, (4.2.1)
0 0
B s Gu) =0, (4:2:2)
Ouz o (1, -1 _ -1 _ _-14khs _ 1‘_121 2
Bt + Bz (§u2 + (v DG +77'¢) =~ dr xCy Cz T, (4.2.3)
and
0 0
B+ g () =0 (+:24)

Prior to implementing any jump conditions at s(t), the equations to the right
of the discontinuity are considered. Substituting { = 0 and u, = 0 into equation
(4.2.3) yields

CRIL L (4.2.5)
which may be substituted back into the right hand side of (4.2.1) to vield only
two equations which are satisfied in the domain z > s(¢). These are the simple

one-layer shallow water equations, (4.2.2) and

Bul 8 1 2
—at— -+ E‘I:— (5111 + Cl) = 0- (42'6)

Considering this, equations (4.2.1)-(4.2.4) may now be assumed to be hyperbolic
on both sides of the discontinuity 2 = s(¢). (The fact that the single-layer shallow
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water equations are hyperbolic follows from comparison with the thin laver models
discussed in Section 4.1.)

Equations (4.2.1)-(4.2.4) are of the type (3.2.1), and therefore satisfy the
Jump conditions (3.2.5). To employ (3.2.5) the notation used in Section 3.2
is used, namely the jump notation [u] = u* — u~ for any variable u, where
ut = lim,_,,+ u(z,t), and u™ represents the similar left-handed limit. Using this,
the jump conditions for (4.2.1)-(4.2.4) become

d
dj[uxl = —(u )2 - %(ul’)2 +y7HG =+ -6 (4.2.7)

d
—S[Cx] = (Fuf — (g, (4.2.8)

d
d”: [uz] = ‘(uz )2 - ‘(uz P+ -G - TN - ), (4.29)

and

d
d—i[Cz] =Gud — G ug. (4.2.10)

Since it has been assumed that u7 = 0 and (; = 0, a change of notation to
[u2] = uf —uy = —ug and [{2] = ¢F — ¢; = —(2 is employed in (4.2.7)-(4.2.10)
so that they simplify somewhat to

ds

0 —ur) = -(u1 )2~ —(ul P+ -6 - ), (4.2.11)
S+~ oy = crut — crur 2.12
a?(cl =61 )= ul = (lug, (4.2.12)
uz%% = %(uz) + (1 =) = ¢T)+ 77, (4.2.13)
and q
C2-d% = Qauz. (4.2.14)

From equation (4.2.14), nontrivial values for (; immediately reveals the shock
speed to be the ower layer velocity behind the shock,

ds

— = 2.
- = U (4.2.15)

This result is expected since the shock may be imagined as a vertical material
interface which moves at the lower layer horizontal velocity, us.
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Employing (4.2.15) in the remaining equations (4.2.11)-(4.2.13) to remove the

shock speed 3—: gives the following three equations in six variables:
- 1 1, _ _ -
up(uf —up) = 5(uf)? - (D) + 77N - T - @), (4.2.16)
ua (¢ — (7)) = (Fut — (Tut, (4.2.17)
and )
sus =1 =y =)+ (4.2.18)

If the terms to the right of the shock, namely uf and (;' are known, then
equations (4.2.16)-(4.2.18) reduce to three equations in four unknowns which may,
in principle, be solved to provide relationships for uy, §; , and u3 in terms of (5.
With such an assumption the following simplification is straightforward, and is
similar to a simpler calculation completed by Montgomery and Moodie (1999a).

Equation (4.2.17) may be rewritten as
Gt -G _ G —u)

¢; (4.2.19)

u; —up uz2 —up

which, when substituted back into equations (4.2.16) and (4.2.18) for (] yields
the two equations

+/ 4+ -
waluf —u7) = 5P - Flup)? 47 (L) —cz), (4.2.20)
2 2 Uy —ul
and e
53 = (1 -7 (St 4 o (4.221)
< UQ—‘UI

Rearranging (4.2.21) as
Gf —uy) _ 248 -170 _ yu3 -2G
uz —uj 1—4+-1 2(y -1)
then allows this expression to be substituted into (4.2.20) where the term on the
left hand side of the above equation appears. The result is then calculated to be

- 1 1, _ - 2-2
i} —ui) = 3 - 3+ (FERE -6

1 1 _ 1 YuE =26 —2(7 = 1)(2
= 5i)? = 5(u)? ++ 1( 2 5 = 1) )
1 | 2_9
= E(u?‘)z - E(ul )2 + ‘;z_‘/-_——f%’ (4.2.22)
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Expression (4.2.22) is then rewritten after multiplication by 2(y — 1) as
2(y = Duz(uf —uy) = (v = Dl(])? = (u7)*] + 3 - 2¢,
which becomes
(v = D2ua(uf —uy) = (u])? + (u7)*] = v — 2,
or, after factorization of (u])? — (u7)? = (uf + uy }(uf —uy),
(1 =) (=2uz + uf +up)uf —ug) =u3 — 20 (4.2.23)

A different rearrangement of (4.2.21) allows u; to be written in terms of u; as
follows. Multiplying (4.2.21) by 24(u; — uy ) gives

wud(uz —uy) = -2(1 - ¢ (uf = up) + 2¢2(uz —ul).
Rearranging this expression as
[—vud = 2(1 = 7)¢F +2CJuT = —vud — 2(1 — ¥)(ruy + 20u.  (4.2.24)
allows u; to be expressed as

y = yud +2(1 — v)¢Fuf — 26u2
yul +2(1 — )¢ — 2¢2

—~—
e
go
[V
wt

N

Now it can be noted from (4.2.25) that

[vu2 +2(1 — )¢ — 2Gluf £ [vud + 2(1 — 7)) uf — 2Cu,]
yu? +2(1 — 7)¢T — 26,
+yud + yuFud F 2Cus + (2 £2)(1 — ¥)¢uf — 2¢uf

b

yud +2(1 — )¢ — 26 (4.2.26)

+ - —
u] tuy =

which allows equation (4.2.23) to be substituted into equation (4.2.23). After
multiplication of the entire equation by [yu2 + 2(1 — v)¢{; — 2(2]?, (4.2.23) then
becomes

(1= 9){ = 2uz[vud + 2(1 — 7)¢ — 2C2] + vud + yutul — 2Cuz + 4(1 — ¥)¢Huf
— 2Cuf | H=~ud + vufud + 2Guz — 2Guf]

= [yul +2(1 — )¢ - 2G)% (3 — 2¢2). (4.2.27)
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This last equation, (4.2.27), contains only the unknowns u, and ¢, and may be
written as

(1 ={ = 7u3 + vuful — [4(1 - )¢ = 2GJuz + [4(1 — 7)¢F - 2C]uf }[—vud
+yufuj + 2Quy — 2GuT] = [yud + 2(1 — ¥)¢F — 262 (12 - 262),

or

(1= 9){ = yuj(uz —uf) — [4(1 — )T = 2] (w2 — uf ) H~rvud(uz — uf)
+ 2¢2(u2 — uj )] = [7“2 +2(1 - )Cl - 2(...2] (Uz - 2¢2),

which becomes

(1 —7)[vud — 2 + 4(1 — v)¢FN(vud — 2¢2) (w2 — uf)?
= [yul — 20 + 2(1 — )T P (ud — 2¢2).  (4.2.28)

Equation (4.2.28) is a sixth order polynomial in u; which, for most values of
(2, ¢, etc., will have six distinct solutions. These must be found numerically in
order to relate the lower layer velocity (shock speed) to the lower layer height.
Fortunately, some analytical progress may be made algebraically by considering
an asymptotic expansion for the special case of small density differences.

Under the assumption that p; — p1 << p2, the parameter v defined by (2.3.15)
is then much less than 1, i.e. 0 < ¥ << 1. With v a small parameter, equation
(4.2.28) may be rewritten as a polynomial in powers of ~. The result follows after
a few rearrangements of (4.2.28), to expand as such a polynomial.

(1 =) {2 ~uf P [v?uj — 2C2ud v + 4¢T ud(1 — 7)7 = 8¢ G2 (1 — 7) — 2ud(ey + 4¢3
= [uy® + 2u3[2(1 — )¢ = 2G]y + [2(1 — 7)¢F — 2¢]%)(ud - 2¢2)

=> (1 — 7)(u2 — uf)?[(uj — 4¢TFu)7® + (—2udG + 4C¢Tud + 8¢ G2 — 2ul(e)y
€1 G2 +4C2] = [(u2 Cl u2) +4u2(C1 — G2)r +4(1 “) (G‘-)z
- 8QTC2(1 —¥) + 4¢3 (u3 - 2¢;)

=>(1 — 7)(uz — uf ) [(u3 — 4¢Fud)v? + (4¢Fu? + 8¢ 2 — 4u3 )y — 8¢ G2
+4¢3) = [(u§ — 4¢TFud + 4(¢F ) 72+ (4¢Fud — 8(¢TH)? + 8¢ o — 4ulta)y
+4(¢7)? — 8¢ ¢ + 4¢2)(uk ~ 2¢2)
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= - (“2—“1) (u2 ¢ u2)7 +{(u2—u 2(“2 441 U2)“("2"U )2><
x (4C1 “2 + 841 G2 — 4u2C2) - ("2 - °C2)(u2 - 4(1 Uz + 4((1 )}“/
+ {(u2 —uy ) (4C1 “2 + 841*.(2 ”‘4"2(2) — (u2 —uj )2( 8(1 G2 +4C2)
— (u5 = 2G)(4¢TF ui — 8(¢7)? + 862 — 4uila) v
+ {(u2 — uf)?(—8¢TF ¢z + 4¢3) — (uf — 2G2)(4(¢T)? — 8T G2 +4¢3)} =

= — (w2 — uF)?(ud - 4¢F)udy® + {(u2 — uF)?(uf — 8¢ ul + 4uiCe — 8((2)
— (u = 20)(ud ~ 2¢ )2 2 + {(u2 — u)?(4¢F ud — 4u3e + 166 ¢ — 4¢3)
— (uf — 2¢:)(4¢F ud — 4ul e + 8¢ - 8(¢T )y
+ {(uz — uF)*(C — 2¢F)4¢ — (v} — 2¢2)(2¢F — 2¢2)*} = 0. (4.2.29)

Neglecting terms which are O(+?) in equation (4.2.29) simplifies this equation to

0 = (w2 —u])2((2—2¢F ) — (u3—2G2)(¢F —C2)? + [(u2 —u{ ) (T ui —Gui+4¢T G2
—(3) — (12 - 20) (¢ ud - Gud + 2¢F G2 — 2(¢T)D)] v + O(+?).  (4.2.30)

Now, an expansion solution about small 4 may be utilized, and is considered

in the form

uz = uy” +7uf’ + O(4?). (4.2.31)

Substitution of the expansion (4.2.31) into equation (4.2.30) yields

0)2 2

0 = [us” +2‘7u(°’u(”— 2(u ‘°)+—ru‘2”)ur+(u+)21(cz—24;*)4 ~ (uy”
0 (0] o]
+29u®u) —20)(CF — G)? + [0 = 2uPuf — (PG

2 2
+aul®® bact — ) - @ —2g) (¢ el czu§°’

+20F ¢ — 2062 + O(?),
which simplifies to
0 = (u® = 2u©u 4+ (wF))(G - 204G — (@ = 2G)(¢F — &)
+ {2 ul) - ‘”ur)(cz—oc;‘)cz—ou‘°’ D¢t — )2
+ @ Z 2@t — ()¢ + ul® +4¢H G — GB)

— (@ —20)(¢uf" - Gul?” + 265 G - 2A¢H )} + 00,
(4.2.32)
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The O(1) problem from (4.2.32) is then given by the first line of the above,

which is

(8" = 2ufuf + ()G - 265 G) ~ (- 26)I(GF)? - 2+ ¢Fl =0
(4.2.33)
This equation (4.2.33) may be reorganized so that it may be written as a quadratic
equation for u§°). This is completed through the following steps:

(G2 = 2¢F G — (¢F)? + 267 G — ¢2)ul®” + (—2u7 G2 + dut ¢ G2 )ul®
+ (uf)?G - 2(uf (TG +2(¢H)2 G -4 +2¢ =0,

which becomes

— ()24 = 2uF (G - 2 + ()¢ — 2(uF)PCH + 2(C )
—4¢H ¢ +2¢3¢G =0,

and finally

()2u$? +2(C — 26 Yt Gul® — [(u) (G —2¢F) +2(CF —C2)%IC2 = 0. (4.2.34)

(0)
2

Equation (4.2.34) now solves for u, ° via the quadratic formula as

L© _ 1 GG —6)
: ()2
N \/(ur)zcz(cz — 2F)?
(G

Cal(u)? (G2 — 2¢T7) + 2(¢F — (2)?]
(¢F)?

+

)

which simplifies to

(0) _

1
o
£/ (F)2G (G — 26F)? + (6 )2Cal(u )22 — 2GH) + 2(¢F — Cz)zl}- (4.2.35)

{ufcz(zc:’ )

To choose the correct sign in (4.2.35), the physical limit of an almost undisturbed
upper layer to the right of the discontinuity is considered, that is, {}} ~ 1 — hp
and uf = 0. For such a special limit, the solution (4.2.35) becomes

ug = (1 -lhg)z' {0 O+ (T =haPGI0+ 21— ks - G}

1—hg —
= :i:——B-—CE\/2C2. (4.2.36)
l1—-hg
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Since the physically acceptable root in (4.2.36) corresponds to the choice of the +

sign, this choice is imposed on the solution (4.2.35) to yield a single asymptotic

solution u( ),

The first order correction solution to u )is given by solving the O(v) problem
from (4.2.32) which is given by

2(uf” — uf) (G — 26 Gud? — 26 (CF - G)2ul = (- 26,)(¢Hul®’
— G + 265G - 2 — (" = 2uPuf — (WG U
+ Gul®” +agt e, - ). (4.2.37)
This equation (4.2.37) provides a single solution ug ) once ug Y is specified by the
positive root in (4.2.33). The first correction term to u; in (4.2.31) is thus given
by
uf) = {(u” — 26)(F e — Gl + 26 G - 26 - (P — 2Pt
— @)UY + Gul® + 46 G~ /{268 — uf )G - 266
—2uP(¢F - ()% ). (4.2.38)

With the asymptotic solution (4.2.31) found, equation (4.2.25) may be used to
determine an asymptotic solution to u7 . It is easier to employ expression (4.2.24)
so that u; satisfies

2
[l —2(1=7)¢F +2G]uT = —7ul®” —2(1—) ¢ ut +26 (w2 ++ulP)+0(12).

(4.2.39)
This expression simplifies by considering an asymptotic solution uj of the equa-
tion (4.2.39) which is assumed to be of the form

uf = ul? + 3 + O(+?). (4.2.40)
Such a substitution into (4.2.39) yields the equation
2
(=26 +2¢)u” + 7 [(—ug”” + 26wl + (=26 + 26 )]
= —2(Fuf +26ul” +4[ - u(®? +20Huf +26ulV] + 0(+2).  (4.2.41)

This equation (4.2.41) yields the O(1) solution

(0)
(0) __ C2u2 — Ci*.u;l’ (4 2.49
W@ = S22 U 2.42)
G2 — ¢}

95



and the O(+) correction

(0)

2
“gO) '*‘24; Uy

u(l) - ‘ugO) +2CI “1 + 2(2 “(1) - (-
! -2¢F +2¢,

which yields, upon substitution of u§0) from (4.2.42),

o _ a4 octud + 96016 - ) + () — 268 )(Gul® - ¢Fuf)
! 2(¢2 — ()2
= { = ul G + 2 ut o +26ulV G + ul®’ cl —2(¢F)%uf — 26 Gul?
w6 — 267 ul® — uO Gt + 2P ur Y/ {2(C — ¢F)).

CTuf G - 20 Gul® + u§°’ ¢ - ug°> Fut +2ulV¢2 - 2¢tulVe,
- 2(42 - Cl )
26t Ga(uf = ul®) — ul ¢ (uf — ul) + 200 (G2 — CF)
- 2(C2 — ¢ )2
_ 26 —uf)ud —u2)e + 26 - ) (4.2.43)

2(¢2 — (7 )?

Similarly, to find ¢, equation (4.2.17) may be employed to give an expansion
(we” + )G = 0 = (el = T +9ui) + 0(+),
which simplifies to
us (CF = )+ GTul® = Gruf + V(G - ) - Tl = 0(+%). (4.2.44)
An expansion solution may be considered of the form
¢ =2 + ¢ +0(+2), (4.2.45)
Substitution of (4.2.45) into equation (4.2.44) then gives
(0)(Ci+- C§O)) —~u (0) (1)+C(0) (O)'*"YC(I)UEO)'*' r[ugl)(Cl ~(0)) Q(O) (1)] = O(“,’2),

which can be expressed as

0 4] 4] 1
(4.2.46)

96



The order solutions to (4.2.46) are then given by the O(1) part,

(0)
(0) Usy Cl (
=_Y2 5 4.2.47)
1 ugO) _ ugO)

and the first order correction,

(o] 1) 1 1]
W _ @y _ WMt - ¢y

ugm )

(4.2.48)

Substituting the solution (4.2.47) for ({O) into the above O(~) solution (4.2.48)
yields a simplified version of this solution as:

(0)C+ (1) ugl)qf-(ugo) 0))+u(1)ug0)4;+-

(1y _
1

(0) (1 (1) (0) (1) (0) (1 0)
_[uy "1) Uy Uy " Uy U+ 2) ( 16+
- (0) )

—(u, —u2 )?

0) 1 (0)

(u2 )ug ) ( ) )C;—

0 (0
—(ug ) — Uy ))

(4.2.49)

Equations (4.2.31) for u;, (4.2.40) for u;, and (4.2.45) for {; , now provide a
solution expanded about the small parameter - for the conditions (4.2.16)-(4.2.18)
about a discontinuity. Each of these allows the limit of the solution on the left-
hand side of the discontinuity to be expressed in terms of the solution to the right
and the height of the lower layer on the left, {; = (;.

4.2.2 Discontinuities in u for a lower layer intrusion into a quiescent upper layer

For a lower layer moving into a quiescent fluid, the type of discontinuous so-
lution to be considered is more specific than that used in Section 4.2.1. Here, to
the right of a discontinuity again denoted by z = s(t), the desired solution is

up =0, (=0, u; =0, and(; =1—hg. (4.2.50)

A difficulty quickly arises when equations (4.2.1)-(4.2.4) are used, since the desired
solution (4.2.50) does not satisfy equation (4.2.3), which results in

th ~1dhB
—7 ——

—“1_1— —-—:
(l 1) dl"
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or, more simply,

dhs -
= = 0. (4.2.3])

For general topography, hg(z), the condition (4.2.51) is too restrictive to con-
sider quiescent solutions of the form (4.2.50). For physical reasons, it is expected
that (4.2.50) should be a solution of the equations of motion. Therefore, the in-
compatibility must lie in the governing partial differential equations themselves.
It is simpler to consider in this case the equations (2.4.27) in conservation form,
with the notational simplification {2 = h2 — hpg for the lower layer, but without
any such notation for the upper layer. The resulting system is expressed as the

four equations

a 0 /(1 —
5t (E"f T 1"‘) =0 (425
oh o
Wl + a_r[(hl - C2 - hB)ul + C2u2] = 07 (4'2'53)
ou o1 _ dh .
——32 *+ 3 [5“% +(v7 = Dh + Cz] = d_B - “CIC (4.2.54)
and
g
(9(: = (Czuz ) =0. (4.2.55)

Equations (4.2.52)-(4.2.55) are four partial differential equations in the four un-
known variables u;, h;, us, and {,.
A steady-state quiescent solution of (4.2.52)-(4.2.55) of the form (4.2.50) is

written as
uz =0, (=0, wu; =0, and h; = constant, (4.2.56)

where h; is usually, but not necessarily, chosen to be 1. Substitution of the desired
solution (4.2.56) into equations (4.2.52)-(4.2.55) shows that the solution satisfies
three of these equations (4.2.52), (4.2.53) and (4.2.53) trivially, but leaves equation
(4.2.54) as a restatement of the condition (4.2.51) which restricts the topography.
To modify the equations of motion so that a solution such as (4.2.56) is satisfied,
the lower layer mome..tum equation (4.2.54) is written as

dhp

Our , O [:.21‘"5 + (7 =R + Cz] = H (s(t) — z) [—d; —KkCp==

5t T oz

us

C2

T] (4.2.57)

In equation (4.2.57) the Heaviside function H is defined by (3.2.7). Now, any so-
lution of the form (4.2.56) satisfies the four equations of motion (4.2.52), (4.2.53),
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(4.2.55) and (4.2.57). Therefore, the shock conditions (3.2.11) for this system of
equations are employed to determine the form of discontinuous solutions which
are possible.

Using the same notation as introduced previously for equations (4.2.7)-(4.2.10),
the jump conditions (3.2.11) are employed to yield the four equations

ds 1 1, _ - - -
vl =500 - @) + 97 R — Ry, (4.2.58)
ds - - - - - -
5 l= (T =G —hE)ul — (R — (7 —hpul + GFuf — Guy,  (4.2.59)
ds o4y _ 1, 2 -1 + - + - - 9
Et‘[uz] = 5(uz)" = )+ (7 = (AT k1) + (G -G —hp,  (4.2.60)
and

d
d—‘:[(z] = Guf — ;. (4.2.61)

For the solution (4.2.56) employed as the right-hand limit, the conditions (4.2.58)-
(4.2.61) simplify to

_ds 1 _ _
g T 5("1 > + 47 (AT = RY), (4.2.62)
ds . _ _ - - — - -
-ds 1 _, N - - 1.9
Uy “2‘ = 5("2 Y+ (1—-5 )(hl - hl ) + G + hB? (4.2.64)
and d
_as - -
C2 E = C2 ‘U2 . (4265)

Equations (4.2.62)-(4.2.65) now represent five equations in four unknown vari-
ables, with the assumption that A} and hg are known.

To employ equations (4.2.62)-(4.2.63), some simplification is necessary, and
the superscript () is omitted where obvious, although the positive sign is still
used for h{. The last equation, (4.2.65), yields the same result as (4.2.15) which
fixes the shock speed as the lower layer horizontal velocity u; . Substituting this

simplification back into (4.2.62)-(4.2.64) to remove E‘:- gives

1 -
ujug = Euf + 5 HhT = hy), (4.2.66)
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uz(hy — k) = (k1 — (2 — hB)u; + Caua2, (4.2.67)

and )
ul = Eug + (1 =y"Y)(h{ —h1)+ G + kB (4.2.68)

Expanding equation (4.2.67) and reorganizing the terms gives

uzhy —uthy = ughy — Quy — hpu; + Qou2,

from which k) may be isolated as

_ + _ +_
_ Gluz —w) tushf —hpus _ . ushi —hgur (4.2.69)

hy

U — Uy
This result may be used to obtain the expression

‘U2h.l+ - hBul)

h;_h1=h;_g2_(

U2 — U
= —C + h‘l”(u2 —up) — u2h'f + hpu,
- 2 Uz —u)
hf —h
=—Cp — (-1-112_—11‘19) u;. (4.2.70)

Substituting the result (4.2.70) back into equations (4.2.66) and (4.2.68) re-

duces the number of unknowns by one to yield

— 1, -1 hf‘hB -
Uiy = §u1 - (Cz + mul . (4.2.71)
and
1 2 __ -1 h-l*- - hB
uz =—(1—7 )[Cz'*--u—z-:u—lul + G2+ hp
-1 1y hiT -h
=G DU Zhelu e gy, (4.2.72)

U — U3

To remove u; from (4.2.71) and (4.2.72), the first line of (4.2.72) is rearranged

as
+ _ 12 ¢, —h
C2+<h1 hB)ul=2“2 fz = (4.2.73)
Ug — Uj ~—1 -1
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This is substituted into equation (4.2.71) to yield

1, -1 %"%—@“hB
Ujugs = §u1 - ( 7_1 1

1 1 1 -
= §u§ _ -1——7 (-2-1[% - Cz - hB) . (4.2(4)

Next, the expression (4.2.72) is rewritten to solve for u; by multiplying by (uz—u;)
to give

%“%("2 —uy) =(v7 = 1)(hY = hB)ur + (Y7 ¢ + k) (uz2 — u1),

which allows the terms to be rearranged as

1 _ _ _ 1
[—§u§ — (v ' =1)rf —hB) + 772 + hB] uy = (v7'¢ + hp)uz — 5“3,

so that the variable u; may be expressed as

(3u? —y71¢ — hB)u,

. (4.2.75)
T+ (v — DA =7 1G — 7 thp

u; =

Substituting expression (4.2.75) into (4.2.74) yields a relationship between the
two unknowns, (2 and u;. Straightforward substitution gives

su? — v — hp)u} 1 1,
1,2 -1 + -1 -1 = Ta=-- 3“2_42—]23
gus + (v~ = DAy =71 —v7hB (1-v)\2
2
L1 (3u3 —v7'¢ — hp)uz
2 | 3ud+ (v = DR =97~ the |

which, after multiplication by a common denominator becomes

1 _ 1 5 _ _
(75“%"’ 142"’13)“% (§u§+(‘/ TR -G - ’hB)

1 (1 1 - _ BT
=—‘1“_—;(3“§—42—h3) (3“%'*'(‘/ T =7 -y 1h3>

1/1 2
+5(3d-1"a-hs) (4:2.76)

-
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The expression (4.2.76) is a cubic polynomial in u2. To write such an equation
in standard form, several algebraic steps are completed, which follow. First,
isolating the powers of u3 may be achieved by expanding (4.2.76) as

18+ {5ve —he) + H — DA — 77 vtha] | ut

- - _ -1 (1
+ (=771 = hB)(vT = V)RY — 47—y hplud = 1—_§<3”§

4

1 — _ _
— (2 — hs) {Zué +[(v7P - DA =7 = v hplul + (v = AT

_ 1[1 1- _
-7 - ’h312}+;[ZU3+(—7 G2 — hp)uj + (=7 lCz—hB)z}ug

This reorganizes further as

1 ~ — —
Z“g”“—[ G2 —vhe + (1= vh — G — hplui =77 (G2 +vhB)7 7 (1 - AT
-1 1 1 1, _ _
- G+ halud = 7o Gt - G+ hadud 4 ™ - DT~

+ hp)luj — (C2 + hB)[(v™ = 1)AY — 72 + hp)u? + %[(“/—1 — 1)hf

7GR = (Gt Ra)lr — DR G+ k)P 4 bt

7! y? 2, 2
~ (G +vhB)uj + (G2 + vhB)*u3,

or
%ug + %7“[(1 ~ AT =20 — (1 + v)hplui — 773G + vhs)[(1 ~ 7)Y
~1 (1 1
— (¢ + hB)lu; = 1——_7{81‘3 +37 2(1 = )Rt — (2+7)(C2 + h)ul

-i— 772(1 = Y)RT = (G2 + hB)I[(1 — Y)hT = (C2 + hB) — 2(C2 + hB)]ud

£

1722 + RB)[(1 — 7)ht — (G2 + hB)]? } + %ug - %‘/"(Cz + vhp)uj

+ =77%((2 + vhB)*ul.

N
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Collecting terms in powers of u2 gives the previous equation as

1 1 1
(Z YT g)ug + {%‘Y—l[(l - kT =20 — (1 +v)hp + (G2 +vhB)]

-1

gy 20 - A - @G + ha)l}us + { ~ 773Gz + vhB)[(1~
-2
—hi — (G2 +hB)] + 2(;/_ po [(1 = AT = (G2 + RB)I[1 — VA -
— (1 +29)(&2 + hB)] - %‘/-2(4’2 + ,_/hB)z}ug =
=2
= T2 (G +he)( = AT ~ (G2 + ks,

which simplifies to

a1

2—7v 6 4
4(1-7)

+2(1 =)} = (24 )G+ ha) pud +

{20-ht —20 =262 =201 - ha

~ =2

1 -+

{[(1 —)hT
— (G2 + hB)|[-(1 = ¥)(¢2 + vhB) + %(1 —7)hi - %(1 +2v)(¢2 + hg))

-2
T (G + el = AT ~ (G2 +ha)

- 3= )G + ko) fu =
Multiplying by ¥2(1 — v) allows this to be then expressed as
%72(2 —7)ul + %*/{2(1 =N =T —(E -7 + he)}u‘é + {[(1 —7)hT
~ (G + k)5 (1 = DhY = 3G + (27 =27 — kg

~ 51 =G+ ~,-ha)2}u§ = —(G +ha)(1 ~ AT = (G2 + ha)*. “

(V]

77)
Finally, equation (4.2.77) may be multiplied by 8 to allow it to be written as
72 = 7)us +27 {21 = )2 -k — (4 —¥)(G2 + hp)} uj

+ 4{[(1 —1)hT — (G2 + hB)[(1 — ¥)RT — 362 + (2% — 47 — 1)k ]

=G+ ‘/ha)z}ug — —8(Co + ha)[(1 =AY — (G2 + a2
(4.2.78)
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Equation (4.2.78) may be solved explicitly using the methods outlined in Ap-
pendix 3; however, it is useful to examine the solutions for small 4. Taking the
limit of equation (4.2.78) as ¥ — 0 reveals

4[(hf — G2 — hB)(h{ —3¢2 ~hB) — (G2 + hB)*] v} = —8(C2+hB)(Af —C2—hp)?,
which may be solved for u2 as

o2 = 2(¢2+hB)(hY — (2 —hB)?
L 2 + + :
(2 +hg)? — (hy — (2 — hp)(hy —3(2 — hB)

(4.2.79)

The solution (4.2.79) with h{ = 1 is sim’lar in form to the special limit of (4.2.36)
for the quiescent upper layer case. Differences between the two expressions re-
flect the choice of equations (4.2.7)-(4.2.10) or the modified ones {4.2.52)-(4.2.55)
with the lower layer momentum equation (4.2.54) replaced by (4.2.57). Although
(4.2.79) is an exact calculation of the jump condition into a quiescent layer, it is
easier to compare experimental evidence to the approximate expression (4.2.36)
which is simpler and is of a similar form to (4.2.79). These expressions will be
compared in Chapter 6.

4.2.8 Discontinuities in u for the simplified systems

The first simplified case considered is the weak-stratification equations devel-
oped in Chapter 2. These were expressed in the conservative form (2.4.39) and
are written here with Q = 0 and (2 = h; — h, employing (2.4.36) to remove u;.
The result is

d —Couz a |1 1 ~Guz  \°| _
E[uz ——1_42_h3]+-3—z[u2+<z+h3— (1—c2—h3>]”
-———KCf T (4.2.80)
(2

and
26,
ot
Equation (4.2.80) is simplified to

8 [(L—hpuz] | 8 [ —he)? —20(1 - hp)u} ]__
5[1-@—@]*6:[ 21-G—hap  TthE[= KC’CT
(4.2.82)
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so that the two variables u; and {; are described by the system (4.2.81) and
(4.2.82).

To consider a discontinuous solution of equations (4.2.81) and (4.2.82), it is
assumed that for z > s(t), the lower layer is nonexistent so that the equations of
motion admit a solution of the form

uz =0 and (2 = 0. (4.2.83)

This solution clearly satisfies (4.2.81), however when substituted into the second
equation (4.2.82), the result is ha

z
fore, equation (4.2.82) is restated in the form (3.2.6) by replacing the right hand

side with a discontinuous forcing term to yield

= 0, as found previously with (4.2.15). There-

6 (1 - hB)Uz 8 [(l b h3)2 - 2(2(1 - hB)]u2
E[l—cz—hs]+6_r[ 2(1 — (2 — hp)? 2“2]
= H(s(t) — z) [—%’ff - nC;Z—fT] . (4.2.84)

The shock conditions (3.2.11) may not be employed directly to the system
(4.2.81) and (4.2.84) since these equations are not precisely in the form (3.2.1).
However, the argument leading to the conditions (3.2.11) generalizes simply to
include such cases as {4.2.84). The results are then

ds [ (1 —hBlus ] _ [[(1 — hp)? — 2(2(1 — hp)Ju?
dt |1—C —hp] 2(1 — ¢ — hp)?

+ C’.’] + zl—if?- (—hB(l')) ’
(4.2.85)

and d
el = [Gaual, (4.2.86)

where the square brackets denote the change in the function across the disconti-
nuity.

Imposing the solution (2.4.87) on the jump conditions (4.2.83) and (4.2.86)
results in

_Elf (1—hglu, __[(1—h§)2-2g'2"(1_h5)]u2—2 P )
dt 1-(; —hpg - 2(1-¢5 _hE)z Ca kg, (4.2.87)
and .
s - — —-—
e =G (4.2.88)
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Simplifying the notation in (4.2.87) and (4.2.88) so that the superscripts are
neglected yields the conditions

E (1 — hB)u: _ [(1- h.B)2 —2¢2(1 — hB)]u§
dt1—(; —hp 2(1 - ¢2 — hB)?

+ (2 + ha, (4.2.89)

and d
Ej' = u. (4.2.90)
Equation (4.2.90) is familiar, and allows % to be removed from (4.2.89) to give

a single equation in u2 and (; as

(1 —hp)ui _ [(1~h5)® —26(1 —hp)ul
1—-¢(2—hg 2(1—-¢2 — hp)?

+ (2 + hpB. (4.2.91)

Equation (4.2.91) may be solved for u3 by multiplying by the denominator
2(1 — {3 — hpg)? to yield

2(1-C—hp)(1—hp)u} =[(1-hp)* —2C(1 —hp)lu;+2(¢2 + hp)(1 - (2 —hp)%.
This equation may be rewritten as
2(1~ ¢ —hB)1—hp) = (1 =hp)® +20(1 - hp)luj = 2(¢2 + ha)(1 = (2 — ha)?,
which simplifies to

(1—hp)*ui =2((2 + hB)(1 — (2 — hB)?,

then solves for u2 as

2(¢2 +hp)(1 = ¢ —hp)? .
ul = 202 (‘i_hB)g Bl . (4.2.92)

This expression (4.2.92) is identical to (4.2.36) except for the inclusion of hpg in
(4.2.92). It should be noted that if hg = 0, then the square root of (4.2.92)
becomes identical to (4.2.36).

The next simplified equations to be considered are those for a thin lower layer,
(2.4.60). These equations were stated in different nondimensional variables given
by (2.4.54) and the two partial differential equations are given by

o oz \ 2" dz

- i Y
-a—.a2 + 9 (3'3 + Cz) __dhs _ Kc,‘Cf—2T, (4.2.93)
2
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and .
0¢2 0
ot oz
Again, a discontinuous solution is desired such that for z > s(¢), the lower layer
has zero thickness. Such a solution is expressed as (4.2.83), which transforms
through the scaling (2.4.52) as

(iiz) = 0. (4.2.94)

(2 =0, and @, = 0. (4.2.95)

Since this is not a solution of equation (4.2.93), as it again produces the topo-
graphical restriction (4.2.15), this equation must be restated as

1 - . - 2
%az + a% (§a2 + cz) = H(3(f) - %) [—dh—: - nC,'Cf—2 ] . (4.2.96)

In equation (4.2.96), the new term 3§ is nondimensionalized as  in (2.4.52).
This equation (4.2.96), along with (4.2.94) admit the solution (4.2.95), and the
jump conditions (3.2.11) may be employed across the discontinuity. The result is

ds - .
Slia) = [éué + Cz] - lim hp(2), (4.2.97)
and ds
(6] = [Geial. (4.2.98)

Substitution of the solution (4.2.95) for @7 and {; simplifies these two equations.
Neglecting the superscript (7) then permits the jump conditions to be expressed
= ds_ 1
S _ . - -
= §u§ + (2 + kg, (4.2.99)

and 43
S ~ ~
— (2 = (a1,. 4.2.100
Y Gz = a2 ( )
The shock speed (4.2.100) is the same result as found previously, and may be
substituted into (4.2.99) to yield

which solves for @2 as
a2 = 2({2 + k). (4.2.101)



This result may be obtained from (4.2.92) by taking the limit for thin lower layer
variables, (2 << 1 and hg << 1.

In the case of a thin upper layer, the system of conservation laws derived in
Chapter 2 may be read directly from equation (2.4.80) without any change of

notation as

Oy 0 (1.2 =\ _ 2.102
= + £ (2u1 +n) =0, (4.2.102)
and & 5

= + a=(t1) = 2.

The nondimensional variables in (2.4.102)-(4.2.103) are defined through the scal-
ing (2.4.71).

The solution discontinuity desired for the upper layer is that for z > s(t),
u; = 0, and h; = constant. From the paragraph prior to equation (2.4.67), such
a condition may be rewritten in nondimensional variables as 4; = 0, and

n=hy — H+ (hy —hz)=h; — H,

which nondimensionalizes via (2.4.71) to

n _h-H

Thus, when h; is constant, so is 7}, and notably 77 = 0 when h; = H.

Unlike previously for the thin lower layer, this solution satisfies equations
(4.2.102) and (4.2.103) precisely, allowing the jump conditions (3.2.5) to be ap-
plied directly. This results in

ds

il = [%ag +,7} , (4.2.104)

and &
S
1A = [Aa,]. 4.2.105
dt[n] [fia,] ( )

Denoting the jump in 7} by [/j = i+ — fj— and using a} = 0 allows the conditions
(4.2.104) and (4.2.105) to be expanded to

(@7)2 + 7~ — it (4.2.106)



and d3
S, . -— —— e —
E(T# —77)=—-7"4;. (4.2.107)

The shock speed may then be calculated from (4.2.107) as

ds n-uy '
e 4.2.108
dt n- -7t ( )
Substituting (4.2.108) back into equation (4.2.106) yields
I W PP
77_ _’7’+ 1 2 1 T] r’ ?
which then simplifies to
c—smy2 _ Lo ) == _ st VA~ _ A+
7 (ar) =507 =) ar)? = @G -3 - 5).
Collecting terms in the above reveals a simpler equation
Lo oy a2 =— __ =42
S +07)ay) = (77 —47)?,
which solves for 4 as
IMNp— — pt)2
(a7 = 20— (4.2.109)

A+ At
The special case previously mentioned of 77+ = 0 reduces the relation (4.2.109) to

the much simpler expression,
(a7)* =247, (4.2.110)

which is similar in character to the previous shock speed (4.2.101) determined for
the thin lower layer.

The last special case to be considered are the rigid lid equations (2.4.90) with
a constant value for h;. With the change of notation (; = h; — h g, the system
(2.4.90) may be expressed as the following two equations:

7] o [1
5t [ + =5 -CZ”- ha] * oz [5 +Gthe-

2
2

2 hy — (2 —hp
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and

0z 0

—_ — = 9 9
5t + Bz (2u2) = 0. (4.2.112)
Some simplification of (4.2.111) allows it to be restated in the more useful form
9 [(hl — 762 — hB)Uz] + 9 [[(hl — hg)? —20(h1 — hp) + v(Z|ud + Cz]
ot hy ~¢; —hp Oz 2(hy — {2 — hp)?
_ dhpg u? o
= —F _ KC!‘C—zT. (4..-.113)

It is desired to find a discontinuous solution such that the solution to the right of
the discontinuity z = s(t) is given by (4.2.83). As with the weak-stratification case
for equation (4.2.82), this is not a solution of equation (4.2.113). Consequently,
equation (4.2.113) must be replaced by the associated equation with discontinuous
forcing term,

9 [(hx -7 — hB)u2] L9 [[(h1 — hB)? — 2G(hy — hp) + v¢F]u] 4 C]
8t | hi—Cz— ks 9z 2(h1 — (2 — hp)? 2
dh 2
= H(s(t) — z) [_—d:r_B - rcC;i—%T] . (4.2.114)

A discontinuous solution to equations (4.2.112) and (4.2.114) must satisfy the
jump conditions (3.2.11). Employing this condition on (4.2.112) and (4.2.114)
yields

ds [(hl — 762 — hB)Uz] _ [[(hl —hg)? =20 (h1 — hp) + v(F]u} Iy ]

dt |” hi—G —ks | 2(hy — (2 — hp)? 2

v —Il_i,m_ hg(z), (4.2.115)

and d
3162l = [Gaual. (4.2.116)

Substituting the zero-valued solution to the right of the s(¢) discontinuity allows
(4.2.116) to simplify as the shock speed,

ds

dt

Using this result in the second jump condition (4.2.115) yields

(h1 ~ ¢ —hp)(uz)? _ [(h1 —hp)* —2¢ (h1 —hg) + 4()2(uy )2 ., _
hy—( —hp B 2(hy — ¢ — hp)? ta ths.
(4.2.118)

=uj. (4.2.117)
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The notation k] is not used since h; is a constant value.
Equation (4.2.118) is expressed in the usual fashion with the suppressed super-
scripts, and simplified as

2(hy — 2 — hp)(h1 — v(2 — hp)uj = [(h1 — hB)* —2(2(h1 — hB) + v(3]ul
+2(hy — C2 — hB)*((2 + k).

Collecting the coefficient of u2 in the above equation then yields

[2(h1 —hB)? —2(1 —7)C2(h1 —hB) +2vCF — (h1 — hB)? +2(2(hy — hg)? —+(E]ul
=2(¢2 + hg)(h1 — (2 — hB)?,

which then simplifies to
[(R1 — hB)? + 27C2(h1 — hB) + v(F]ul = 2(C2 — hp)(h1 — {2 — hB)%.

Finally, this expression solves for u2 as

2(¢2 + hB)(h1 — (2 — hB)?

2
(h1 — hB)? +27Co(hy — hB) +~(F (4.2.119)

ul =

The expression (4.2.119) reduces to (4.2.92) in the limit as ¥ — 0, but is more
general due to the presence of v in the denominator.

4.3 Initial Boundary Value Problems

Assuming that the various two-dimensional gravity current problems are indeed
hyperbolic, the various initial and boundary conditions are examined to determine
whether or not they are appropriate. The question of well-posedness for the
resulting initial boundary value problems (IBVPs) was introduced theoretically
in Chapter 3.3, and the framework extended therein is employed for the specific
examples of concern to this thesis.

The physically motivated problem is that of the initial release of a finite volume
of dense fluid in a semi-infinite region of less dense fluid at rest. It is seen that this
initial value is also accompanied by possible boundary values which restrict the
horizontal flow along a vertical boundary. The general case for two-layer gravity
currents with a free surface is considered first in section 4.3.1, with the remaining
special cases and simplified systems discussed in the following section 4.3.2.
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4.8.1 IVPs and IBVPs for the two-layer equations with a free surface

The two-layer equations with a free surface were written as a 4 x 4 system in
Chapter 2, equation (2.4.29). For the variables, u;, ¢, u2 and (2, a typical initial
value for a finite volume at rest takes the form

u;(z,0) 0
u(z,0) = 5:((28)) = | Gel=) | (4.3.1)

C2(Ie 0) C2o($)
Typically, a block profile is considered to be existent for 0 < r < 1, since the
horizontal extent may be altered via nondimensionalization. This leads to a form
of the initial data in (4.3.1) as

C20(z) = {

where the constant in (4.3.2) is chosen so that it is between 0 and 1. This avoids
the non-physical problems where the lower layer is initially thicker than the typical
vertical length scale H. The initial value for the upper layer profile is chosen to
match the physical character of the problem as portrayed in Figure 2.1 This is
then

constant, 0<z <1
’ =% = 2
o, otherwise (4.3.2)

Clo(z) =1- CZO(z) - hB(.’L‘). (433)

The initial data (4.3.1) is noncharacteristic for the first order hyperbolic system
(2.4.29), which permits the existence of a solution for at least a short time (John,
p-46-51). The IVP (2.4.29) with initial values (4.3.1)-(4.3.3) is therefore properly
stated. For initial release of a parcel of fluid, this initial value is then sufficient.

For the case where a vertical boundary is important, without loss of generality
an impermeable barrier at the point z = 0 is considered across which there is no
flow. This may be expressed mathematically by the boundary values

u1(0,¢) = 0 and u2(0,t) =0 for ¢t > 0. (4.3.4)

The IBVP is a half-space problem which consists of the system (2.4.29) for z > 0,

the initial value (4.3.1), and the boundary value (4.3.4). To determine if this

IBVP is well-posed, the method of localization described in Chapter 3.3 is used.
The boundary value (4.3.4) may be expressed in the form (3.3.3) as

u1(0,1)
1 0 0 0]{G(.t)| _T[o )
[0 01 0] ulg(O,t) “[o]thO- (4.3.5)

C2(0’t)
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The notation used in (3.3.3) is satisfied with the identification of the matrix E as

[t 000
E‘[0010]'

That this boundary condition satisfies the consistency condition (3.3.4) for the
initial value (4.3.1) may be seen from a quick substitution.

To make use of Lemma 3.3, the eigenvalues of the matrix (4.1.1) must be con-
sidered at the point z = 0 where the boundary value is in effect. This calculation
was completed in Section 4.1.1 where the four eigenvalues were given by formula
(4.1.8). Substituting in the initial values at z = 0 allows these eigenvalues to be
simplified as

o

2

’\i == [%7—1 (Cl(oat) + 42(01 t) x \/(Cl(o't) + C?(Ost))z - 4‘/41(0? t)c2(0’ t))]

which becomes

\i==+ [%7-‘ (1 — hp(0)

1

+ VIR0 (1 =G0.5) = hB(O))C2(0,t))]

Since hg(0) = 0 by the choice of the system variables depicted in figure 2.1, this
simplifies further to

1
1 _ 2
Ai =% [;‘Y ! (1 £v1-4y(1- Cz(O,t))Cz(O,t))] ,
for: = 1,...,4. Since 0 < (2(0,t) < 1 and v < 0.25, there are two positive
eigenvalues corresponding to the choice of signs as
1
3

Atz = [%7'1 (1 £v1-4y(1- (g(O,t))(g(O,t))] : (4.3.6)

where the subscript 1 corresponds to the positive square root, and the subscript

2 corresponds to the negative one.

The eigenvectors corresponding to the positive eigenvalues (4.3.6) are given
by equation (4.1.12). Substituting (4.3.6) into this expression yields the two
eigenvectors v; and v, stated together as

(410 £ VT= 0 =~ GO G0, - C(0.8) Az

Vig = (‘/%‘/—1(1 + /1 —47(1 — (2(0,1))¢2(0, 1) — ¢2(0, t)) ¢1(0,8) | | (4.3.7)
(1 = )A1,261(0,¢)
(1 = 9)¢1,(0)¢2(0, ¢)
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Using (; = 1 — {2 — hp and the fact that hg(0) = 0 simplifies the eigenvectors
(4.3.7) to

(3- @0, }/T-HA-GO,NG0,0) ha

Via = (% —G2(0,t) £ /1 - 47(1 - Cz(Oat))Cz(O,t)) (1-¢(0,%) | . (4.3.8)
(1 = 7)A1,2(1 = ((0,¢))
(1= ¥)(1 = ¢2(0,1))¢2(0, ¢)

The 4 x 2 matrix P4 introduced in Section 3.3 is then given by the block notation

(vih
(vi)2
(vi)s
(v1)s

P+=

(vah
(v2)2
(v2)3
(v2)s

(4.3.9)

=[V1 V2],

where v; 2 are the column vectors from (4.3.8), whose components are denoted,
for example, by (v;);.-

For Lemma 3.3 to be applied, the matrix product EP; must be shown to
be invertible. A calculation of this matrix, with the simplification {2 = (2(0,t).
follows to give

(1 0 0 0O
EP, = 0 0 1 0]["‘ W
_[vin (Vz)xJ

| (v1)3 (v2)s

G-+ T=ma-00)n ($-¢-/T=5(T=-0)X) /\21
(1=7)A(1-¢) (1-=7%)2201~-¢) (43

-

0)

The matrix (4.3.10) is invertible if and only if its determinant is nonzero. Such a

calculation follows as

det(EP4) = (% -+ %\/1 —4~(1 — Cz)Cz) A1(1=9)A2(1 = ¢2)

- (é — G2 = ';'\/1 —4~(1 - Cz)Cz) A2(1 = )A1(1 —¢2)

=an-n0-Gl 5o -G+ra+(3+3) VIZRA-GIG]

=(1—9)(1 = G)V1-49(1 = )M s

(4.3.11)
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The expression (4.3.11) is nonzero precisely when the term within the square
root is nonzero, which is the condition for hyperbolicity. Therefore, if the system
is assumed to be hyperbolic, then det(EP.) # 0, and Lemma 3.3 may be applied.
This may be summed up as the following statement: the IBVP consisting of the
system (2.4.29) with the initial value (4.3.1) and boundary value (4.3.4) is well-
posed whenever 1t is strictly hyperbolic.

4.3.2 IVPs and IBVPs for the simplified systems

In this section, the preceding methodology is applied to the special cases of
the two-layer two-dimensional gravity current problem described in Chapter 2.
These are the weak-stratification equations, the thin lower and thin upper layer
equations, and the rigid lid equations, which are all 2 x 2 systems of first-order
equations. The results are all quite simple to show when compared to the previous
section 4.3.1; however, for completeness, the results are included.

First, for the weak-stratification equations (2.4.38), an initial value for the
instantaneous release of a block of fluid may be expressed as

_ fu2(z,0) ] _ 0
o0= [N L[ 01 asie

The relation (4.3.12) can be seen as a specialization of the more general ini-
tial condition (4.3.1), so that (4.3.2) still may be assumed for a description of
C2,(z). When the weak-stratification system (2.4.38) is hyperbolic, the initial
value (4.3.12) for z € R is noncharacteristic, so that the IVP (2.4.38) and (4.3.12)
is well-posed.

To include a boundary value in the description of the problem, no flow across
a vertical barrier is considered as in section 4.3.1 to give a physical boundary

condition of
u2(0,t) =0, for t > 0. (4.3.13)

This boundary condition may be expressed in the matrix form (3.3.3) as

0,t)

1 o] |ve(® ] =0, 4.3.14

oo (4:314)

where the notation E = [1 0] is used. This condition (4.3.14) also satisfies the
consistency condition with the initial value (4.3.12).

To apply the results from Section 3.3, the eigenvectors and eigenvalues for the

system (2.4.38) must be examined. From equation (4.1.19) it can be recalled that
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this system has one positive and one negative eigenvalue. Using the expressions
(4.1.17) and (4.1.18) with hg(0) = 0 and u;(0,¢) = 0, the positive eigenvalue at
the boundary z = 0 from (4.1.19) is written as

. (QQ@mt ¢ (mXM00> ~[(i = ¢2(0,))* — @%]6:(0,2)
! 1-G(0,1) 1= G(0,) (1-G(0,1))2 ’

which simplifies to

QCZ(()’ t)
Al = —————— /(1 — 2(0,¢). 3.1
= ey T VI GOOGE0.D (4.3.15)
The eigenvector corresponding to the eigenvalue (4.3.13) is then given by equation
(4.1.24) as
AL — U2(0,t)] [ A1 ]
- — - 4.3.16
v [ 6:(0, 1) ¢(0,1) (4.3.16)

Lemma 3.3 examins questions the invertibility of the matrix EP,. For the
weak stratification equations, this matrix is given by

EP, =[1 0] [czé)l,t)] = A (4.3.17)
By the condition (4.3.17), EP, is invertible precisely when A, # 0, which is ex-
actly the condition of hyperbolicity. Therefore, the IBVP for the weak-stratifica-
tion equations (2.4.38) with initial value (4.3.12) and boundary value (4.3.13) is
well-posed if the equations (2.4.38) are hyperbolic.

The next special case to be considered is the thin lower layer first order system
(2.4.61). This situation is similar to the previous one in that the initial release
problem has the initial condition formulated as

= [800] =[] a9

The shape of (2(z,0) is similar to that given by the finite volume profile (4.3.2)
with a tilde. As mentioned previously, the initial data (4.3.18) is noncharacteristic,
leading to a well posed IVP for the equations (2.4.61) with (4.3.18) over z € R.

To include the standard boundary condition at r = 0, it may be written as
(4.3.13) or (4.3.14) with superscript tildes, and is not restated. There is one
positive eigenvalue given by (4.1.26) at £ = 0 as

’\1 = 52(0at)e (4319)
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with associated eigenvector

vi= [ /\11] . (4.3.20)

Since P, = v, in this case, the matrix EP, is given by
EP, =[1 0] [/\1 ] -1 (4.3.21)
1

By Lemma 3.3 and equation (4.3.21), since EP is invertible, it follows that
the IBVP for the thin lower layer equations consisting of (2.4.61), (4.3.18) and
(4.3.13) is well-posed.

Similarly to the thin lower layer. the thin upper layer problem consists of
equations (2.4.81) with the initial value

u= [1:7((5(%)] = [ﬁo(()r) ] ' (4.3.22

The function 7jo(z) in (4.3.22) may be expressed similarly to (4.3.2) as

- constant, 0<zr <1
Mo(z) = {0, otherwise. (4.3.23)

As in the previous discussion, the IVP (2.4.81) and (4.3.23) is well-posed for z € R
since the data is noncharacteristic.
The boundary value at z = 0 may be expressed as

21(0,t) =0, for t > 0, (4.3.24)
or in the matrix form
E(t)u(0,t) =[1 0][,;(0,t)7(0,¢)] = 0. (4.3.25)

To apply Lemma 3.3, the eigenvalues and eigenvectors at r = 0 must be found.
The positive eigenvalue and eigenvector from equations (4.1.28) and (4.1.29) turn

out to be
A1 = V7(0,¢), (4.3.26)
and
1
= 1.3.27
Vi [/\1 ] . (4.3....()



Comparison with equations (4.19)-(4.3.21) then gives the matrix product EP, =
1.

Again through use of Lemma 3.3, since EP, is invertible it follows that the
IBVP for the thin upper layer equations (2.4.81) with initial value (4.3.22) and
boundary value (4.3.24) is well-posed.

The last case considered is the rigid lid equations (2.4.89). The similarities
between the rigid lid system and the weak-stratification system are such that the
result (4.3.19) holds here, with a slightly different value of \; than (4.3.13). The
initial value (4.3.12) and boundary value (4.3.13) are identical to the previous
weak-stratification case. The same result, that the IVP is well-posed for z €
R, and the IBVP (2.4.89), (4.3.12) and (4.3.13) is well-posed thus follows from
Lemma 3.3, as long as the system (2.4.89) remains hyperbolic.

Chapter Summary

Two-dimensional gravity currents have been considered in this chapter, ex-
panding on the equation development from Chapter 2, and the theoretical results
discussed in Chapter 3.

For the two-layer equations with a free surface, it was shown that the equations
are in general strictly hyperbolic, as long as the flow is of a sufficiently slow nature,
such as that resulting from an initial release problem. Discontinuous solutions
may be considered to satisfy one of two conditions, depending on the assumption
of movement of the lower layer into a fluid at rest or not. The natural physical
boundary conditions then lead to a well-posed problem.

Similar results are obtained for the special cases from Chapter 2, namely the
weak-stratification equations, the thin lower and upper layer equations, and the
rigid lid equations. It can be observed that the results for the rigid lid situation
reduces to the weak-stratification equations, suggesting that the rigid lic equations
may be more usefully employable.
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Chapter 5

Three-dimensional Gravity Currents

With the previous chapter’s analysis concerning two-layer and two-dimensional
gravity currents complete, a similar approach is now taken towards generalizing
these results for the three-dimensional situation. The results mostly pertain to
the simpler one and a half layer model rather than the full two-layer case, since
the consideration of two spatial variables adds a complexity which is not present
in the two-dimensional equations.

In the first section, the systems of partial differential equations are examined
to determine whether or not they are indeed hyperbolic. Both the two-layer and
the single layer equations are shown to be hyperbolic for most domains of the
flow variables. This allows associated full-space initial value problems, such as
the instantaneous release of a volume of dense fluid, to be stated as well-posed.
Boundary conditions such as impermeable vertical barriers considered in the two-
dimensional case are not considered here.

In the second section, the idea of discontinuous solutions is considered, with
the aim of determining expressions for front speeds which generalize those dis-
covered in Chapter 4. Since the two-layer equations were not easily expressed as
a closed system in conservation form (this topic will be addressed in Chapter 7),
the results are obtained only for the single layer case. The method used to obtain
expressions for front speeds is a novel idea based existing perturbation methods
such as acceleration fronts (Seymour, 1975) and nonlinear optics (Whitham, 1974
p-533). A general development of this method is not conducted as it is an intu-
itive technique developed for this case alone in order to investigate the effects of
rotation on a spreading gravity current.

5.1 Hyperbolicity

In this section, the hyperbolicity of the two-layer model, equations (2.3.8)-
(2.3.13), is examined first, followed by conditions for hyperbolicity for the simpler
single layer model, equation (2.4.6) and the axisymmetric case, equation (2.4.22).
Since both of these systems have two spatial variables, the definition of hyper-
bolicity from equation (3.1.8) is used. In calculating the determinants of the
matrices, the method of row reduction is used. This is a change from the more
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common techniques of expansion by cofactors, and they can be found in most
introductory texts of linear algebra (for example Norman, 1995 Ch. 5).
5.1.1 The Two-Layer Equations

For the full two-layer system, the system of equations (2.4.2) may be written
as the system

Fup ru; O ~~1 0 0 ~71j Cuy T
v 0 u; 0 0 0 0 v
921G + Gt 0 u 0 0 0 i ¢1
ot | uz 0 0 ~1'—1 up 0 ~71} 08z |uz
v2 0 O 0 0 u 0 v2
L Cz 4 L O 0 0 Cz 0 Ug J L Cz .
U 0 0 0 0 0 1 [ ug
0 (251 ‘7-l 0 0 ‘/-l (3]
0 G N 0 O 0 9 |G| _ -
1o 0 0 w0 0 |3g|ul=" G
0 0 ~v'=1 0 v, ~7! vy
L 0 0 0 0 CQ U2 J L C2 J

where the change of notation {; = h; — h; and {; = h, — hg has been employed,
and b is given by the column vector

h % I )
b= (evl - A/-IQ—B—’_EUI _7-16—}127 07 _'A/_l‘ah—B + vy — KCfu2 _U2 + Y2 ’
Oz 9y Oz G2
2 2 T
—"‘%h—y’i—suz—ncfvz——“""’c:%m) . (5.1.2)

Hyperbolicity depends upon a new matrix, A, which is defined in (3.1.8), for
equation (5.1.1). It can be recalled that a single matrix is formed as a scalar
linear combination of the coefficient matrices in (5.1.1) as

1 1 -

- & 0 w1y~ 0 0 w1y~
0 @) wa~y~1 0 0 way !
_ w1t wa(y W 0 0 0 .
| O 0 wi(v1-1) @ 0 wy |’
0 0 wyv-'=1) 0 @ wey™? (5.1.3)
L 0 0 0 w12 w22 Wy

where the notational simplification @; = wju; + wyv; and @2 = wyu2 + wavs has
been used. The scalars w; and w, are arbitrary, but not both zero as discussed
Subsection 3.1.2.
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To determine the hyperbolicity of equation (5.1.1), the eigenvalues of the matrix
(5.1.3) must be found by solving the equation

det(A — Mg) = 0. (5.1.4)

To solve equation (5.1.4) for the scalar ), row reduction methods are employed
using the following two properties (Wilde, 1988 p.137) for a square n by n matrix
B:

(1) If C is obtained from B by the addition of £ € R times row i to row j,

then det(C) = det(B), and

(2) If C is upper triangular, then det(C) = [[:=] cii-

The matrix (5.1.3) can now be employed in the condition (5.1.4) by several row
reduction steps. First, the matrix in (5.1.4) is written as

-1 -

[0 — A 0 wrf"l 0 0 w1
0 T - A woy ! 0 0 woy ™!
_ | w11 w2y @ — A 0 0 0 .
A—/\IG o 0 0 (.dl(")/_l - 1) 52 - A 0 wl",'_l ’ (01.5)
0 0 wo(v~1 —1) 0 Ty — A woy™!
. 0 0 0 w12 w22 Wo — by

Addition of a scalar multiple of the first row to the third row, symbolized by the
row reduction notation R3 — (%’%)Rl — R3, gives the new matrix

-u_Jl - A 0 wl‘y’l 0 0 wl*/_l T
0 @ — A wg‘y"lz l 0 0 49‘22‘/—1—1
0 wilt T -A-2I g 0 —ES
0 0 wl(‘/"l —_ 1) Gg - A 0 wl-y‘l
0 0 (.4.4'2(“/-1 - 1) 0 Wo — A u,‘g’)/—l

L 0 0 0 wng L‘J2C2 (:'-2 - A J

Similarly, the addition of another scalar row multiple, denoted R; — (é’%%)Rz —
R; yields the matrix

[T — A 0 wyy ! 0 0 wyy™
0 w1 — A woy~1 0 0 w%‘}'—l
0 0 Wy —A— J_;%—Z;\i 0 0 —%—i\;{ (5.1.6)
0 0 wi (771 —-1) W2 — A 0 wyy~? ’ e
0 0 wg(‘y‘l - 1) 0 T2 — A LU2“;’—1

[ 0 0 0 wif  wily Da—A
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where the notation w? = w? + w2 in (5.1.6) has been used to simplify the two
nontrivial expressions in the third row. The bottom right hand four rows and
columns of the matrix (5.1.6) may be written, for convenience of notation, by the

4 x 4 matrix
Wi—A—a 0 0 —a
wi(y"t=1) @ - A 0 w1y~
wa(y~1 = 1) 0 Tg — A way~
0 w1(2 waa @2 —A

1
e (5.1.7)

where the letter a in (5.1.7) represents w?(;v~!/(@; — A). The row reduction
procedure on the matrix (5.1.6) can now be completed by considering the smaller
matrix (5.1.7), keeping the same row numbers as for the 6 x 6 matrix. The step
R, — (M)R;; — R, alters the matrix (5.1.7) to

Ul—k—d
@i—A—a 0 0 —a
i) —1—
0 Tr-A 0 wyl4aegi =l
wg(“/—l -1) 0 W — A wz‘/—l
0 w12 w22 T — A
which may be further reduced via Rs — (‘-‘%‘;_’:%)R;, — Rs as
Gl —A—a 0 0 . —a L
0 T-) 0 ma—Segmgien—l ) (5.1.8)
0 0 w2 — A w2yl + G%T:_aﬁ
0 w12 w2(2 w2 — A

The matrix (5.1.8) becomes, using the notation b = [y~ (& —A) —a]/(@1 — A —a),

D1 —A—a 0 0 —a
0 w2 — A 0 wib -
0 0 Ta—XA  wb (5.1.9)
0 w12 wela @2 —A

Further row reduction steps for the matrix (5.1.9) complete the procedure, and

are listed as
Re — (11_42.)34 — Rs

wa2—A
(.‘31 —)\—a 0 0 -—a
0 Wo — A 0 wlb
0 0 w2 — A (.ugb 2 ?
0 0 wl T-A-2ZE



and then R¢ — (;“’—:Eﬁ)Rs — Rg resulting in

o« —A—a 0 0 —a
0 Wy — A 0 wyb
0 0 w2 — A wob . (5'1'10)
— T2Cb w3(ab
0 0 0 Tp — A — Za820 _ w282b

W2—A W2—A

Through the previous steps of simple replacement of a row with a scalar mulit-
ple of another row, the matrix (5.1.5) has been reduced through matrices (5.1.6)-
(5.1.10), giving the upper triangular form

[T — A 0 wiy! 0 0 wyy~t )
0 W — A QJQ‘)/-I 0 0 u.)g“/—l
0 0 D1 —-A—a 0 0 —-a
C={( o 0 0 G2 —A 0 wib
0 0 0 0 —2 - wgb
0 0 0 0 0 Tp—A-—g£R
(5.1.11)

Using the previously stated property (2) of the determinant, det(C) may be
calculated easily as

det(C) = (@) — A2 (@1 — A — a)(@ — A)? [Uz Ao wzCzb]

@y — A
= (@1 — A)?2 @2 — A)(@1 — XA —a)[(@2 — N)? — bw?(2].
(5.1.12)

Now, since the matrix (5.1.11) was obtained from (5.1.5) by row reduction steps
consisting of the addition of scalar multiples of one row to another, property
(1) for determinants gives det(C) = det(A — Alg). Using this in (3.1.12), and
reintroducing the full expression b = [y~!1(@; — A) — a]/(T; — A — a) yields

det(A — M) = (T1 — \) (@2 = \)(@1 — A — a) [(wz —A)2-

_ W[yl (@ — A) —a]

w1 —A—a

= (@1 — M)} (@2 = A) {[(@T2 = N} (@1 — A — @) —w?y7 (@1 — A) + w?(ea}.
(5.1.13)

Now, substituting the value a = w?¢;v~1/(@; — A) into (5.1.13), the resulting
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expression may be reformulated as
—_ 27— — 2/— — ‘-‘chl"/—1
det(A -—_ /\IG) = (wl — /\) (L‘JQ -_— /\) [(u)g -_ /\) (wl —_— /\) -_— (wz b /\)Zﬁ
1 —
wiGer™!
@ — A
= (@1 = A\)(@2 - M) [(@2 — 1)} (@1 = A)? =Gy (@2 — A)?
— WGy @1 — A)? +wi iG]

= (@1 ~ MA@z = N{@1 — 1)} (@2 — A)? — w7 G (@2 — A)?

+G@ - AP +wtG ey (5.1.14)

This result (5.1.14) may be stated finally as

-y (@ - ) +

det(A — Me) = (@1 — M) (@2 — M) {[([@1 — A)? -Gy H[(@2 — A)? =2y 7]
+w'GGy T (1 -7} (5.1.15)

Using equation (5.1.15), equation (5.1.4) may now be solved. Clearly, two
eigenvalues are given by

Al = W1 =wiuy +wavy and Ay = T = wug + wavs. (5116)
The other roots may be found by solving the quartic equation
(@1 =N =Gy (@2 = V) ~W? Ry =GRy (T - ). (5.117)

Equation (5.1.17) may be solved directly via the methods for solving quartic
equations. However, it is more useful, when investigating hyperbolicity of the
two-layer system (5.1.1), to obtain more specific information from the quartic
equation (5.1.17). This is phrased as the following result.

Lemma 5.1 Equation (5.1.17) has four real and distinct solutions if and only if
the following two conditions hold:
(1) '

e D) = %, (5.1.18)

{ |1 — @2| # w(Vr 10 + V7))  if @ # @s.

—_ _— 2 — —_ 2
w (73] . - (73 w -

>y i (7 —-1), (5.1.19)
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where A\. € R is given by

Ac = -21-(51 +@2) — \/%[24&2‘7”((1 + (2) + (@) —@2)?] x

1 [ VU@ —@)w?y ™1 (G — G2) ] _T
g °°S{3°°s [[2w2‘7“(61 +O+ @ — @27 3}'

Proof: Consider a change of variable to (5.1.17) given by

z=A— (i"j—“’z) . (5.1.20)

Removing A from (5.1.17) in preference of z via (5.1.20) gives

1 1_\? _ I_ 1_\? _
l:(l'-i-;wz—-wl) - w1y 1] l:(x'*';wl-EUz) — w2y 1]

= GGy (v - 1), (5.1.21)

(V)

Introducing the notation for T as

. 1_ 1_ 1 1
w= -2—w1 — §w2 = §w1 (u1 — w2) + §w2(v1 — v2), (5.1.22)
simplifies equation (5.1.21) to
fl@) =Gy (v - 1), (5.1.23)

where f(z) is defined by the fourth degree polynomial,
f(z) =[(z - @) —2G7 7 [(z + @)% — w2y (5.1.24)

It should be observed that the right hand side of equation (5.1.23) is strictly
positive since 0 < v < 1.

Equation (5.1.24) is already factored, so that the roots of the equation f(z) =0
may be directly found to be the set

T € {—u’:—w\/ Yy L, T+wVhy Lo —wVOGv T +wyV 417—1} . (5.1.25)

The signs of the square roots are chosen so that w = /w? +w? > 0 and (3, (2,
~+~1 are all strictly positive by assumption: thus, the roots (5.1.25) are all real. If
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FIGURE 5.1. Sketch of f(z) for distinct roots, and w*(; (v~ (v~ 1 -
1).

the roots are all distinct, then the graph of f(z) must be of the same nature as
portrayed in Figure 5.1, which is shown on the following page.

From Fig. 5.1, equation (5.1.23) may be seen to have two solutions at z = s,
and z = sz, for all possible cases of the roots of f(z) in (5.1.25). Assuming
distinct roots ry,r2,73,74, it can be seen from Fig. 5.1, that equation (5.1.23) has

four distinct real solutions if

fle) > wiCiGey (v~ - 1), (5.1.26)

where ¢ € R is the critical number corresponding to the local maximum in Fig 5.1.
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The value of ¢ may be found by solving for the derivative, f' (z), from (5.1.24) as

f(z) = 2(z = D)(z +©)* =@y + [(z — @) — w2y 72z + @)
=2{(z —-@)z+@)P +(z -0z +@) - Gy (z - D) + (2 +@)(1]}
=2{(z - D)z + D)z +T +z - ) — w2y 7H(C1 + C2)z + (¢t — &)@}
=2[(z* —=T*)2z -y (G + G2)z — WG - ()T,

which gives the cubic equation, f'(z) = 0, after dividing by 4 to be

1 _ 1 - - N— - -
2 =3 P+t TN G+ Q) 2 - St TG - )T = 0. (5.1.27)

-

From the ordering of the roots to (5.1.27) calculated in Appendix 1, ¢ is given
from equations (A1.17)-(A1.19) as

c= —2\/%[252 + w2y + (2)]cos[(6 — 7)/3]. where

e |27 @G - () -
0 = cos [ RO Ty CZ)]:’:I . (5.1.28)

To guarantee four distinct roots (5.1.25), three cases are considered for the
signs of @.
Case (i): @ = 0. The roots (5.1.25) in this case simplify greatly by dividing by w

to give

S {—w\/Cz‘/“‘,uJ\/(z‘/“, -w\/Cx‘/“,w\/Zw“} .

Since w > 0, it follows that there are four distinct roots if and only if (, # (1.
Case (11): @ > 0. Clearly, the roots from (5.1.25) may be ordered almost com-

pletely since
—T-wVEYTI < -T+eVrTl, T-wVOrTi <@ +wVOrTl,
and
—T-wVOrl <T+wVOrl

Therefore, there are at least three distinct roots (5.1.25). For there to be only
one root, the only way for this to occur is for the remaining two roots not covered

by the inequality above to be equal, i.e.

—WtwVer! =T —wVhGrTl,
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which may be rewritten as

2% = w1 (VG + V).

Thus, four distinct roots exist for

@ € (0,00)\ 3V (VG + V). (5.1.29)

Case (iii1): @ < 0. This is similar to case (ii), in that there are precisely three

roots (5.1.25) if
-Gy =T+ VG,

and four distinct roots otherwise. Since this condition is rewritten as

-2 =wy ‘Y-l(\/a'*' ¢1),

a similar conclusion to (5.1.29) can be stated, namely that four distinct roots exist

for

T € (-00,0\ =5 V¥ (VG + V). (5.1.30)

In summary, the polynomial equation (5.1.23) has four real and distinct roots
precisely when either (i) ¢; # (; if @ = 0, or (i) [&] # £V (V{1 + V&) if
@ # 0. This statement may be reworked via the notation @ from (5.1.22) to obtain
the statement (3.1.18). Once four real roots are assumed, the condition (5.1.26)
with ¢ given by (5.1.28) is sufficient and necessary to guarantee four distinct real
solutions to (5.1.22), thereby showing through the change of variable (5.1.20)
that there exist four distinct real solutions to (5.1.17). The condition (5.1.26) is
rewritten in terms of A = ¢+ $(@; + &) as the statement (5.1.19) with the aid
of the solution (5.1.28) O

Returning to the question of hyperbolicity of the system (5.1.1), the result may
now be encapsulated as a theorem to complete this subsection.

Theorem 5.1 If Lemma 5.1 is applicable, that is equations (5.1.18) and (5.1.19)
both hold, then the system (5.1.1) is hyperbolicfor { > 0,(; > 0,and 0 < v < 1.
Proof: To show that the system (5.1.1) is hyperbolic, it is sufficient to show that
the matrix A in (5.1.3) has 6 real and independent eigenvectors for every scalar
pair (w;,w2) # (0,0). From linear algebra, it is known that this is the case if A
has 6 real and distinct eigenvalues, );, for every scalar pair w;,w2 not both zero.
Two of these eigenvalues are given by equation (5.1.16), and the remaining four
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must solve equation (5.1.17). If the conditions of Lemma (5.1) hold, then (5.1.17)
has four distinct real solutions, and it suffices to show that the eigenvalues (5.1.16)
do not solve (5.1.17), so that there are indeed six distinct eigenvalues of A. First,
if A =@, then this corresponds by equation (5.1.20) to
T=o - (w_——l +52) =9 n_g
2 2 2

The value z = @ is not one of the roots (5.1.25) unless {; = 0, a condition
which would be contrary to assumption. Hence, A = &, is not a repeated root.
Next, if A = @3, then a similar calculation to the above yields r = ~@, which is
not one of the roots (5.1.25) unless (; = 0, which also contradicts assumptions.
Therefore, A = @, is not a repeated root either. Therefore, as long as Lemma 5.1
is satisfied, there are six real and distinct solutions of equation (5.1.4), requiring
that A has six distinct real eigenvalues for every pair of scalars (w;,w;) € R? such
that w? +w? > 0. O

5.1.2 The Single Layer Equations

In this section, the single layer model (2.4.7) from Section 2.4.1 is examined,
when written in the system form with a change of variable {, = h; — hp. The
system (2.4.7) is then rewritten as

Up uz 0 1 Uug voe 0 O u2
g{vg -+ 0 wus 0 i v2:|+|:0 U9 IJ-a— J-“—'

v2
atCz G2 0 u Oz C2 0 ¢ v 0y G2
h )
EvVp — aa_.l‘B - KCfU2@T
= —€U2—aahy3—"icfv2!/u§:ng . (5.1.31)

As with the matrix (5.1.3), hyperbolicity of the system (5.1.31) depends on a
matrix A defined via (3.1.8) for (w;,w2) € R? as

Wit + wov2 0 w1
A=uwA; +wA, = 0 WUz + wavg w2 (5.1.32)
w162 w2(2 wiuz + wav2

Since the system (5.1.31) is hyperbolic if A has three real and linearly inde-
pendent eigenvectors, it is sufficient to show that there are three real and distinct
eigenvalues. These are obtained from solving

0 = det(A — Al3), (5.1.33)
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for a scalar eigenvalue A. Substituting (5.1.32) into (5.1.33) gives the equation to
be solved as

wiu2 +wavz — A 0 wi
0 = det 0 Witz + wavy — A w2 . (5134)
w12 w22 Wil + waty — A

Expanding the determinant (5.1.34) via cofactors in the first column allows this
to be expressed as

0 = (wiuz + wavy — A)[(wrug + wave — A)? — w2(a]

+ w1620 — wy(wruz + wary — A)]
which simplifies to
0 = (wius + wov2 — A)[(wiug + wave — A)? — (Wi + w?)(]. (5.1.35)
Equation (5.1.35) therefore has three real roots, given by

Al = wiuz + wav2, and Ap 3 = wius + wove £/ (w? + w¥)(e. (5.1.36)

It follows that for (2 > 0, equation (5.1.36) yields three real and distinct
eigenvalues for all (w;,w2) € R? such that w? + w2 > 0, and the system (5.1.31) is
therefore hyperbolic whenever (o > 0. It should be noted that this result may be
obtained from a simplification of the determinant for the two-layer case (5.1.13)
with @ =0, @2 = wiuz +wyvg, and ; = 0.

Another form of the simplified equations for the single lower layer is the conser-
vative form (2.4.10) with the notation u = (ou,, v = (v, representing vertically
integrated momentum in the two horizontal directions. The conservative form
(2.4.10) may be easily expanded to be written as a system, with (2 — (, as

o [\, % ¢ <oF a[’: [ﬁic—%{:]a[{_
3 S i s e 2] =
ot ¢ 6 & 1% |c)le § "o <]

- —aai:— +ev — h.‘Cfp\/u% + ’U%T
= —C%hya— —Eu — KCfV\ /u% + U%T . (51.37)
0
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To discern hyperbolicity of the system (5.1.37), the matrix A from (3.1.8) is
formed as

w |26 0 G-y wy | VS KB —wy
A=w1A,+szy=C—2 v( wpul —pv +—C; 0 2v¢ ¢3-v?

(2 0 0 0 ¢? 0
1 | (e +war)( woul wi(¢? — p?) — wopv
= — wiv( (wip + 2wav ) —wipv +wo (¢ —0v?) | .
¢ w1 C? wa(? 0 (5.1.38)

To find the eigenvalues of the matrix (5.1.38), the characteristic equation
(5.1.33) is solved with A from (5.1.38). To simplify the algebra, equation (5.1.33)
is multiplied by (® (assumed to be nonzero) to give

0 = ¢®det(A — M3) = det(¢%A — ¢2AI3)

(2wip + war)( — (2 wau w1(¢® — p?) —wopv
= det wivC (wip + 2wor ) — (PA —wipv +wa (3 —02) | .
wi§? wo(? —¢*A

This equation is a cubic equation in A, which is obtained by evaluating the deter-
minant via the method of cofactors on the first column. The resulting polynomial
is then

0= [(2wip +w2v) = CA{ [(wrp + 2w2v)¢ — CPA(—C3N)
— [—wipr + w2 (¢ — v)w2(?}
— w1 {wapnl(—¢3A) — [wi(¢® = p?) — wapv)wa (P} + w1 P {wapl~wrpv
+w2(¢® = v?)] = [ (¢ = 1?) — wopv][(wrp + 2w2v)C — (2A]}.
(5.1.39)

Equation (5.1.39) may be simplified greatly, although the algebra is a bit tedious.
The steps involved in expanding and simplifying (5.1.39) follow first by expanding
as

0= [—(2A + (2w + wav)()[CA2 — (w1 + 2wav)C3N + wrwapuv(l—
— w3(¢® = V)] = wrv[—wop(P A — wiw (¢ — p?)¢? + wapr(?)
+ w1 {[w1(¢? - p?) — wapr] (A — wrwop ¢ + wFp((¢P - V) -
— w1 (¢ — p?)(wip + 2w2ev)( + wapv(wip + 2wav)(}.
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The previous equation may then be further expanded to obtain

0=~ + 3% (wip + wat)A? + [— (2w + wav)(wi g + 2w2v)Ct — wrwppr(t
+wi(¢® = %) + wiwaur(t + wi(? — p?)Ct - wrwapv (A + (Zorp
+wav)[wrwapr — wi((® — )] + wiwav (¢ ~ p?) ¢ — wrwipr? ¢
— wiwap v + wrwip(C® — V)¢ — Wi (¢ - ) (wrp + 2w2v)C
+ wiwapv(wip + 2w (3.
Gathering terms in like powers of A allows this expression to be compressed in
the following three steps:
2,2

0= —(A% 4+ 3C%(wip + wa)A? + (M(w? + w2)(® — 22 p? — Bwwapy — 2oy

~wiv? —wiu? — wiwapr)A + CRulwrp®y + wiwip? + 2wipr? + WP

2 2
—wlwgp V_wllAJzﬂV —UILU2/1 u—wlwz;u/ +w1y +..w1w2/,t V+u1w2p v

2 2 3 2 3 2 2 3 2
+ 2wiwipr® + C(—2wwip — wiv + wiwal + wiwsp — wip — 2wiwev)),

0=—C°A% + 3¢ (w1p +wav)A? + (H(w? +w3)(® — B(wrp + wav)?]A
+ Clorp(wip? + 2wiwapr + wiv?) + wov(wip? + 2wiwopr + wiv?)

— C(wip + wiwip + wivr + w3u)),
and

0= —(¢5A% +3C%(wi1p +wav)A? + (Y (w? + w2 = 3(wip + war)?]A
+ C(wip + w2v)[(wip +w2r)? = Cle] +w3)).

This last expression simplifies finally, after multiplication by —¢3, to
0= ¢33 —3¢C%T\? — (w3 - 3T%))\ — T(@* — (P (5.1.40)

where equation (5.1.40) is simplified through introduction of the notation

2

T=wip+ww, and w?=uw?+ul

Equation (3.1.40) shown in Appendix 1, equation (A1.8) to have three real and

unequal roots _
{20, M1, 22} = {% — VG, c + VWil (5.1.41)
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which are unequal whenever ( > 0. Therefore, the system (5.1.37) is hyperbolic
if ( = (2 > 0, as seen for the system (5.1.31).

lower layer variables are expressed in polar coordinates (r,6,t) with the notation
ur = ur(r,t) representing the radial velocity, ug = ug(r,t) the tangential velocity.
and h; = hz(r,t) the thickness of the lower layer as before. Restating the system

(2.4.22), with the familiar notation {; = hy — hg(r), gives
I u2+u2
g |ur ur 0 17 5 [ur ¥ teug— 5=~ KC/W@T
e ug | + 10 u, 0 > ug | = _vews _ oy KCfuo@T
2 Gz 0 wu, Ca r e 2

r

(5.1.42)
The axisymetric case is thus seen as a single spatial variable case (3.1.1), and as
such is hyperbolic if the coefficient matrix

ur O 1
A= 0 u O], (5.1.43)
C2 0 Ur

has three real and linearly independent eigenvectors.
A quick analysis of the matrix (5.1.43) in a similar manner to that completed
after equation (5.1.33) gives the eigenvalues of (5.1.43) from

Upr — A 0 1
0 = det 0 Ur — A 0

Cg 0 Uy — A
= (ur — A)[(ur — A)? - 0] + ¢2[0 — (ur — A)]
= (ur = A)[(ur = A)? = ¢]. (5.1.44)

The characteristic equation (5.1.44) has the solution
Al =ur, and A2 3 = u, = V(. (5.1.45)

Since the real roots (5.1.45) are distinct precisely when ¢z > 0, the system (5.1.42)
is strictly hyperbolic whenever {; > 0.
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5.2 Discontinuous Solutions

For the two-layer shallow-water equations in two dimensions, Section 4.2 con-
tains various expressions for determining the front speed of a finite volume of
dense fluid spreading laterally into a quiescent volume of lighter fluid. When the
two-layer equations in three spatial dimensions are examined, the corresponding
system of six equations contains a complication additional to the increase in the
number of variables. This is that there are fewer than six known corresponding
conservation laws, the number that is required to close the system of algebraic
conditions at a discontinuity. Since the Rankine-Hugoniot jump conditions hold
at a discontinuity for a system of conservation laws, there is a requirement for
the two-layer, three-dimensional system to be expressed as a closed system of
conservation laws, which so far has not been possible. An investigation into this
problem is postponed until Chapter 7.

Due to this difficulty, only the simplified case, where the motion of the upper
layer is neglected, is considered. Such equations are discussed in Sections 2.4.1
and 2.4.2. In this section, the single layer equations (2.4.4)-(2.4.6) are considered,
in the conservative form (2.4.10) or the axisymmetric form (2.4.22). The general
type of discontinuous solutions considered are those of a finite volume of dense
fluid spreading outwards from an initial resting state.

5.2.1 Discontinuous Solutions for the Single Layer Equations

The conservative form of the single layer equations (2.4.10) is given by

8 1,2 £
o |# o | T+3¢ ) 3 _
= A I o e vl o e O CE
¢ Jy v

where b(0,0,0,z) = 0. Equation (5.2.1) is of the form (3.1.11) for p = 2 where

2 [4
g+ 1 3
£ = sy and f(?) = 2y 1c2|. (5.2.2)
u v

A discontinuous solution to equation (5.2.1) is considered by restricting the
solution to having only one discontinuity along a simple curve (z, v, t) =0, such
that in the interior of £, the solution is continuous, and outside of £, the solution
Is trivial, i.e. (u,v,() = 0. This solution satisfies (5.2.1) outside T since %2 = u,,
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-‘2—2 = vg, and % = ugv2(2, which all have limits of zero as u;, vz, and (; vanish.

For such a situation, Lemma 3.2 may be applied to give the jump conditions
(3.2.34) along the curve L.

A specialization of the jump condition is noted in the form (3.2.37), which may
be applied for curves T of the form £ = o(z,y) — s(¢), which has an outward

normal vector n given by
ao (_ds 00 00
- dt’ 0z’ dy /)’

The condition (3.2.37) for such a curve may be expressed as

Et.[u] — = [f(l)] [f(2)] (5.2.3)

In (5.2.3), the notation used is

[u] = 1_ig1+ u((x,t) +en) — elirg+ u((x,t) — en)
—0—u"=-|v |, (5.2.4)

where =, v—, and (™ are the limits of the inner solution on the interior of ¥.
Similarly, the jumps in the flux vectors f(!) and f(?) are given by

(u ) + (C )2'
(D] = —(fV)~ = — % . (5.2.5)
L K J
and - - -
=
[£] = —(f@)" = — g_x:,‘__)’ +1¢)2 |- (5.2.6)
- vo -

Substituting the notation (5.2.4)-(5.2.6) into the condition (5.2.3), and sup-
pressing the superscript (™) allows the jump conditions to be written as three

ds _aa 2 0o [ puv -
A CEE IR AL >:20

R TOR (N
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and ds. 80 8
S - OO (¢4
EC = -a';:-# + au. (5.2.9)

The three equations (5.2.7)-(5.2.9) contain six unknowns, and should be viewed

. . S . .
as a restriction on the shock speed — in terms of the system variables y, v and ¢

given that the geometry, or direction, of the discontinuity o(z,y) is known. With
0o do

= and —— assumed determined, equations (5.2.7)-(5.2.9) may now be solved to

Oz Oy
find %:— in terms of (. To achieve such a simplification, it is assumed that ¢ # 0,
so that multiplication of equation (5.2.7) by ( yields the equation

ds\ 9o (4 15\, 00
#<Cdt> =32 (u + 2( + ay;w. (5.2.10)

Substitution of (5.2.9) into (5.2.10) then results in
(Z0s2) 22 (4 Jo) o 22
HF\oz"T38y") T az \* T2 "

which reduces to simply 0 = Z—UC3. Since ¢ # 0 is assumed, the resulting re-
z

striction becomes g—z = 0. Similarly, multiplying (5.2.8) by ¢ and substituting in
do

equation (5.2.9) to remove = produces the analogous result — = 0. Using this

dt dy

knowledge in (5.2.9), it follows that d_s = 0, and hence that ¥ is a constant curve.

This rather surprising result leads to the conclusion that the conditions (5.2.7)-
(5.2.9) are inappropriately imposed for such a discontinuous solution. This de-
generacy has been investigated by Renardy (1998), who showed that near the
front a degenerate hyperbolic system exists which may change type and lose its
hyperbolic character. The jump conditions are an over-specification of the solu-
tion, and lead to an alternate method to consider the problem, which follows in
the next section. The difficult occurs in reconciling integrated jump conditions
over a radial domain with those in the azimuthal direction.

5.2.2 The Azisymmetric, Radial-motion Equations

A special case of the system (5.2.1) is considered for which the jump conditions
make sense. This is the axisymmetric equations (2.4.19)-(2.4.21) with the restric-
tion that the azimuthal velocity, ug, is zero. This assumption ensures that the
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velocity is entirely in the radial direction, which restricts the Coriolis parameter
to also vanish, i.e. ¢ = 0. The simplified equations (2.4.19) and (2.4.21), with the
notation (2 = h, — hp, may be stated as the system

dhp 2
2 Ur 2 %“3-*-(2 - —'——'—I{Cf%:T
ot [Cz] * o [ Caur | ar . - (5.2.11)

The system (5.2.11) is remarkably similar to the equations for a thin lower
layer (4.2.93) and (4.2.94). From this comparison, for a solution to (5.2.11) which
has a single jump discontinuity at a radius given by r = s(¢), where the solution
is zero for r > s(t), the results (4.2.100) and (4.2.101) may be applied directly
after changing the notation. This gives the jump condition at r = s(¢) as

uz =2(¢2 — hg), (5.2.12)
and the shock speed
ds
— = u,. 5.2.1
il (5.2.13)

Contrasting the results (5.2.12)-(5.2.13) with the lack of information obtained
for the system (5.2.1) via the same methods motivates an expansion technique
which attempts to expand upon the information for the axisymmetric, radial-
motion equations (5.2.11). In this way, an inclusion of azimuthal velocity and
the Coriolis parameter may be achieved. The use of this method recognizes the
conservation of linear radial momentum, raher than the r and y components
separately with a small variation due to angle.

5.2.8 An Ezpansion Technique for Discontinuous Solutions to the Azisymmetric

Fquations

The full axisymmetric equations (2.4.19)-(2.4.21) are considered, with the only
simplifications assumed as Cy = 0, and hg = 0. Also, for ease of the following
analysis, a change of variable notation is made to:

u=u, v=ug, and h = h,. (5.2.14)

The new notation (5.2.14), along with the assumptions above give the equations

(2.4.19)-(2.4.21) as
Ou Ou Oh v?
— — — T =9
5 +u3r + 5 - + ev, (5.2.15)
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d oh O h
u
— 4 = = —— 2
+ —(hu) —. (5.2.17)

For equations (5.2.14)-(5.2.17), discontinuous solutions are desired of the form

(0,0,0) for r > s(t),

(u,v,h) = {(u,v,h) € C! for r < s(t). (5:2.18)

At the single discontinuity r = s(¢), it is desired to find some form of jump
conditions which relate the solution and the speed of propagation of this curve.

Equation (5.2.17) is in the form (3.2.1), and as such the jump condition (3.2.5)
may be applied directly, to yield

ds
~ o] + [l =0,

which simplifies, from the solution (5.2.18), to

ds

—h™ —h7u" = 5.2.

dth h~u 0, (5.2.19)
where h™ = lim,_,4¢)- h(r,t) and v~ = limr — s(¢)"u(r,t). Assuming that

h~ > 0, the condition (5.2.19) then becomes

%:. —u, (5.2.20)
which is the familiar physical result that the discontinuity travels at the speed of
the horizontal radial velocity, and in this way the discontinuity may be thought
of as a material interface.

To determine the relationship between u~, v~, and h~, normally, two more
conservation equations may be used to produce an algebraic relationship between
these variables, as done in Chapter 4. However, equation (5.2.16) is not in con-
servation form, and an alternate method of obtaining the information from this
equation is required. The idea behind this method is that of expansion about
a plane wave solution, which is sometimes called linear geometrical optics (see
Whitham, 1974 or Seymourm, 1975), to obtain the important effects of v~ and ¢
on the front speed. This method cannot be applied directly. however, since plane
wave solutions to equations (5.2.15)-(5.2.17) do not exist.
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A solution to equation (5.2.16), motivated by geometrical optics, is considered
which consists of a plane wave, slowly varying along the characteristic variable
A = r — ut, multiplied by an attenuation factor which is dependent on the radial
variable. Such a solution would be of the form

v(r,t) = f(r — ut)g(r). (5.2.21)

If it is assumed, momentarily, that u in (5.2.21) is constant, then substitution
of this desired solution (5.2.21) into equation (5.2.16), using the notation f’ =

df

m, reveals
d
—uf'g+u (f’g +fd—f) = -u—fg —eu
which simplifies to
u(FE+ 2+ ) =o (5.2.22
dr r

Since u # 0 identically, equation (5.2.22) may be rewritten as an ordinary differ-
ential equation for g whenever f # 0 as

9 __9_¢% (5.2.23)

The choice of the solution (5.2.21) may now be seen to have the advantage
that, once f is known, equation (5.2.23) may be integrated to solve for g, hence
determining v by (5.2.21). The resulting solution v can then be substituted into
equation (5.2.15) which, in turn, when written in conservation form, can be used
to yield a relationship between u~ and k™. Such a calculation follows, with the
assumption that locally, near the discontinuity r = s(t), the value of f is given
by a constant, which is arbitrary, and the assumption of constant u leading in
(5.2.21) is thus not necessary.

The local analysis is completed by assuming that at some time t = to, the
variables are denoted by

ro = s(to), fo = f(ro —u"tg), and go = g(r0)- (5.2.24)
For r — rp small. the function g is expanded in a Taylor series as
— dg 2 =0 o=
9(r) = go + (r = 7o) T (r0) + O((r — r0)?). (5.2.25)
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This series (5.2.25) may be written using the relation (5.2.23) to give
€
o) = g0+ (= ro) (-2 — £ 4 0((r - ro)?)
To fo
= (2— ;%) go—(r—ro);—o+0((r—ro)2). (5.2.26)

Now, equation (5.2.15) may be rewritten using the approximations above to
rewrite the right hand side of (5.2.15) by substituting (5.2.21) for v, obtaining

2 2.2
v
—+€v=fg
r r

+cfg. (5.2.27)

ear t = tg, equation (3.2.27) is replaced with the aid of the approximations
.2.24) and (5.2.26) as

w2

2 2 r 2
Pr— + v = —f:’— [(2 - ;) go—(r— 7‘0);—0 + 0((" - 7’0)2)]

e (22—t 06 o)

-k [(2 ~L) -2 —r (2= L) 2 1 o(cr - To)z):l

+¢€ (2 - —r-> fogo + O(&2,(r —1o)?)
To

= (Q—L)zﬁ—&:(r—ro) (2——1.—‘) M-+—5(2—1_—r0—>f090

To r To r

+ O((€2, (r —ro)?). (5.2.28)

Expanding the expressions, and rewriting (5.2.28) then gives

2 4 4 —
T T To To o r

+0((%, (r — 10)?),

which may be simplified further to

v? 4 4 r 4r r
y +cv = fozgg (; - ;‘; -+ %) + £fogo (TO -4+ E) + O((ezg(r - r0)2).
(5.2.29)
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Now, the expression (5.2.29) is rewritten in gradient form as

-1;—2%-5 =f0goa6 (4lnr— +-2125 +efogo§ (4r01nr—4r+%>
+ O((e? ,(r—ro)z)
8 [0 » 2 r2
=a—r[foga (41nr—4—+— + £ fog0 (4rolnr—4r+z_—0-)]
+ O((2,(r — ro)?). (5.2.30)

This result, (5.2.30) may be substituted into the partial differential equation
(5.2.15) to rewrite it in conservation form as

Ou Of1 , r?
Bt—-i-a[; fogo <4lnr—4 +§g
2

— £ fogo (4rolnr—4r+— J O((: 7‘—7‘0) ) (5.2.31)

ro
Equation (5.2.31) is now in the necessary form (3.2.1), and an application of the
Jump condition (3.2.5) at r = s(¢) is possible. So that the condition (3.2.5) does
not reduce to the result (5.2.12), the Taylor series for g(r) given in (5.2.5) is
restricted to r < ro. In this way, the term go in (5.2.31) may be substituted with

a discontinuous function,

(r) = 0, for r > s(t),
90(r) = 1 go for r < s(t).

This allows the jump in the term fogo to be given as | fogo] = 0 — fogo.
Applying condition (3.2.5) to the partial differential equation (5.2.31) at the
discontinuity r = s(¢) then yields

ds — 1 —\2 — 2 7'3
a5 R = ogn)? (atmro— a2 4 16
r2
— &fogo (47‘0 Inrg —4rg + — |}, (5.2.32)
2ro

which simplifies to

d 1 - 1 1
a;u- = §(u-)2 +h - (f0g0)2 (41117‘0 -4+ 5) —Efogoro (41117‘0 -4+ 5

(

= %(u‘)2 +h™ ~ [(fog0)? + € fogoro] (41117'0 - ;) : (5.2.33)

-
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Using the notation v~ = gpgo to denote the azimuthal velocity limit in the
interior solution, and using (5.2.24), equation (5.2.33) becomes

d
2d—ju“ = (u7)2 +2h~ — v o™ +es(t0))(8ln s(t0) — 7). (5.2.34)
Substituting equation (5.2.20) for % into the result (5.2.34) then yields a final
relationship between the variables at the discontinuity r = s(¢), for any ¢, which
is restated in the original variables from (5.2.14) as

—=u; = \/2h2“ ~ug(ug +es)(8lms—7). (5.2.35)

Some physical interpretation of the condition (5.2.35) assists in its comprehen-
sion. For example, if u; = 0 and there is no rotation, then the previous result
(5.2.12)-(5.2.13) is recovered, as expected. Also, for small values of €, and when

-
[

Inro > ¢ (which occurs for ro Z 2.4), the leading term in (5.2.35) is

u; = +/2h; — puy, (5.2.36)

where 0 < p < R is constant. It can now be seen from (5.2.36) that the radial

velocity is reduced from its nonrotating value of v/ 2h; independently of the di-
rection of spin. This is also intuitive physically, since if a particle is travelling
radially, and is deflected azimuthally, the net radial distance it will have travelled
will be reduced. It should be emphasized that this is a local expansion, and does
not assume any balance (e.g. geostrophic) which may exist for long time periods.

Chapter Summary

In Chapter 5, the two-layer and single-layer equations for gravity currents in
three spatial dimensions have been examined. The two-layer equations were shown
to be hyperbolic if two conditions, (5.1.18) and (5.1.19) were satisfied. The single-
layer equations simplified this problem greatly, and in all cases of the equations,
the systems are strictly hyperbolic precisely when the thickness of the lower layer,
(2, is positive.

When considering discontinuous solutions, only the single-layer cases were ex-
amined since the two-layer system cannot yet be expressed in conservative form.
For the general single layer equations in conservative form (5.2.1), the jump con-
ditions were found to be degenerate. This difficulty was circumvented through
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a novel method of analysis. A slowly varying plane wave solution for the az-
imuthal velocity ug was assumed which allowed a jump condition to be expressed
as (5.2.35) for the flat bottom case without any forcing terms, Cs. This front speed
condition was shown to be physically reasonable for the limits when ug = 0, and
when the radius of the discontinuity is greater than about 2.4 for small Coriolis
parameters €.
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Chapter 6

A Numerical Model For Gravity Currents

The study of gravity currents by numerical methods is not new, and many
high-resolution computing techniques have been developed to simulate the various
physical problems (Simpson, 1997). In fact, when considering the present-day
calibre of computing abilities, it is quite appealing to simply purchase one of
the available packages of commercial Computational Fluid Dynamics software,
adapt it to the desired physical IBP or IBVP, compute, and present the results
in a visually attractive graphical format. While this approach is certainly useful,
it does have some severe limitations, in addition to the academic leap of faith
required when using commercial software.

Arguably, high-resolution computing methods can be expensive, both mone-
tarily and in required computing time, and may not permit the desired amounts
of detail for the specific problem in question. Notwithstanding some of the more
controversial issues of numerical computing, it is often the case that when using
the unsimplified Navier-Stokes Equations, any analytical results or theoretical
concepts can be obscured. This may cause the researcher not to pursue various
methods of analysis which may eventually prove to be productive. It is the au-
thor’s belief that relatively simple numerical methods are an important tool for
any researcher in the natural, and especially the mathematical, sciences. Such
methods are easy to comprehend and adapt, are well-studied and widespread,
allow results to be produced quickly and cheaply, and often permit the researcher
to gain insight and new ideas pertaining to the problem under study. It is with
this philosophy in mind that this chapter is written. The numerical concepts dis-
cussed serve to help explain some of the theoretical results, as this is the main
intent of the completed calculations.

In the first section, a numerical method is described in detail prior to its sub-
sequent implementation for gravity currents. This method is a generalization
of a finite-difference relaxation scheme adeveloped recently to solve hyperbolic
systems of nonlinear conservation laws (Jin and Xin, 1995). This previously de-
veloped numerical method is generalized herein so that it is applicable to systems
of nonlinear hyperbolic conservation laws which may have: spatial dependence in
the flux vector, both boundary and initial values, and nonzero forcing terms. The
method is described sufficiently so that it may be applied to systems in either
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one spatial variable, (3.1.6), or several spatial variables (3.1.10). This numerical
approach to modelling gravity currents is new (Montgomery and Moodie 1998a,b
and 1999a.b), and contrasts sharply with other methods in use such as the method
of characteristics (Bonnecaze et. al 1993). It is shown to be more adaptable to
many applications of gravity current models.

Subsequent Sections 6.2 and 6.3 contain an application of the relaxation method
to gravity currents in two and three spatial dimensions, respectively. The two-
dimensional case considered in Section 6.2 concerns some of the various cases
from Chapter 2, such as the two-layer, weak-stratification, rigid lid, and thin layer
equations, while the three-dimensional case examined in Section 6.3 is restricted
to the single-layer problem. The three-dimensional two-layer problem is not solved
numerically since this case cannot be stated as a closed system of conservation
laws. Questions concerning the effects of front speed for the instantaneous release

problem are discussed in both sections.
6.1 The Relaxation Method

The numerical method presented by Jin and Xin (1995) is a system of relax-
ation schemes for systems of conservation laws in several space dimensions. These
schemes are finite-difference, iterative, and have been shown to be total variation
diminishing (TVD) for scalar hyperbolic conservation laws. For nonlinear hyper-
bolic systems, the second-order relaxation schemes are stable, conservative, and
capture discontinuous solutions in a nonoscillatory manner corresponding to the
correct shock speed for initial value problems.

In this section, the scheme proposed by Jin and Xin (1995) is generalized
to include problems for which the system has spatial dependence in the flux
vector, boundary values and nonzero forcing terms. This generalization of the
method allows it to be employed later to solve the gravity current equations
developed in Chapter 2. It is described first for systems of conservation laws in
one spatial dimension so that the ideas may be expressed in as simple a notation
as possible. The subsequent generalization to more spatial dimensions is then
somewhat condensed since the main ideas are all contained in the previous case.

6.1.1 The Relazation Method in One Spatial Dimension

The relaxation scheme is designed for application to an initial value problem
for a system of the form

0 9, +
§u+ ézf—b, (z,t) e R x RT, (6.1.1)
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where u = u(z,t) € R*, f = f(u,z) € R", and b = b(u,z) € R” are all vector-
valued functions. The variables are all assumed to be nondimensional so that
units may be neglected throughout the expressions in this Chapter.

Associated with the system (6.1.1) is a larger system, called the modified relaz-
ation system. This system consists of 2n equations derived from the n equations
in (6.1.1), and it can be expressed as

-gt-w + %F(w) = B(w,b,f), (z,t) e R xR, (6.1.2)
where w, F, and B are all vector-valued functions in R2". f in (6.1.2) is the same
vector-valued function that appears in equation (6.1.1). These new vectors are
defined as

M up 7 (‘Ul ] b
w=|un F=|"'" dB= bn (6.1.3)
T o | Tleuw | TCET | HA-w) | -
L Up L QUn ] _%(fn.—vn)_

for real scalars a and €. The symbol € introduced in (6.1.3) is a positive param-
eter, and is not related to the Coriolis parameter discussed previously. Although
this notation is somewhat ambiguous, the Coriolis parameter will not be used
until Section 3 of this chapter, and specific reference will be made there to avoid
confusion of the terms.

Using the definition (6.1.3), the system (6.1.2) may be restated as two separate
systems of n equations each by

0 0
5“ <+ a—zv = b, (61.4)
and ) 8 1
b?v+al,,a—zu= E(f—v). (6.1.5)

The modified relaxation system interpreted in the form (6.1.4), (6.1.5) may now
be described as linear, and is such that in the limit as ¢ — 0, equation (6.1.5) has
the solution f = v, which subtitutes back into (6.1.4) to yield the original system
(6.1.1). In this way, it is theorized that for small enough values of ¢, solutions of
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(6.1.1) can be obtained as limits of solutions to the linear, and much simpler to
deal with, system (6.1.2).

The system (6.1.2) is stated in more general terms than that considered pre-
viously (Jin and Xin, 1995) where the simpler systems f = f(u) and b = 0 were
considered exclusively. Before the numerical method to solve the linear system
(6.1.2) is outlined, a few comments about the parameters a and ¢ are necessary.

The easiest explanation concerns ¢, in light of the desired relaxation limit as
¢ = 0. It was shown by Jin and Xin (1995) that when solving the system (6.1.2)
numerically, the solutions tended to solutions of (6.1.1) for

e = 0((At)%), (6.1.6)

where At is the width of the discretization for the time variable ¢. In general, for
the present calculations, a value of € = 1071° or 10~!! was found to be sufficient
to satisfy (6.1.6) while being small enough so that the approximate solutions to
(6.1.2) were indistinguishable from those of (6.1.1).

The parameter o requires more description than €. a is a constant parameter
whose choice depends on the magnitude of the eigenvalues of the Jacobian matrix
f'(u, z), where the derivative is taken with respect to u alone. This matrix is pre-
cisely that examined in detail in previous chapters when discussing hyperbolicity.
In general, for the system to be dissipative, the condition

a> A%, (6.1.7)

ceey

Ai of f'(u,z). Thus, from the knowledge of the eigenvalues for the hyperbolic
system considered in Chapters 4 and 5, a lower bound for « is easily determined.
An upper bound for a arises quite naturally from the Cauchy-Friedrichs-Lewy
(CFL) condition for the numerical stability of a linear system. The CFL number
for the system (6.1.2) is defined following Jin and Xin (1995) by the expression

CFL # = ‘/z_ft. (6.1.8)

The CFL number, in general, must be less than 1 for numerical stability. This
stability condition, is then expressed as either an upper bound for the grid width
At, or a lower bound for the parameter a as

2
es(82) 019
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where Az is the grid width of the spatial discretization for z.

Equations (6.1.8)-(6.1.9) may at first glance seem somewhat unusual due to
the lack of an apparent velocity term. However, closer inspection reveals that the
velocity is present through the parameter a. From the form of the system (6.1.2)
expressed as (6.1.4)-(6.1.5), the left hand side is seen to be a linear system, with
a natural velocity of a.

The effects of choosing a are such that it is desirable to choose a as small
as practicable while satisfying (6.1.7), and then to fix the grid widths At and
Az so that (6.1.9) holds. Conceptually, a must be large enough such that the
characteristic curve £ —at creates a wide enough cone in (z,t) space to encompass
the characteristic curves z — \;t from (6.1.1), while being small enough so that
shocks are permitted to remain for enough time steps to be observable. If a is
too large, then the resolution of discontinuities is poor, and the system becomes
first order (Jin and Xin, 1995).

With a and ¢ fixed, a finite-difference numerical method is now described to
calculate solutions of (6.1.2). This method is generalized from that proposed by
Jin and Xin (1995), and is a second-order TVD Runge-Kutta splitting scheme,
which employs Van Leer’s slope limiter (LeVeque, 1992) to remove oscillations
near any shocks. It is an iterative scheme on a numerical approximation of w
which is discretized on a uniform grid. To maintain the conservative nature of
this scheme, cell averages are used (LeVeque, 1992) as described in the following
paragraph.

The spatial domain z € [0,00) and ¢ € [0, 00) is discretized by the points z i+d
forj=0,1,2,... with Ty = 0,and ¢t for k =0,1,2,... with t¢c = 0. The uniform
grid width is denoted by Az = Tjty — Tj—y for j > 0, and At = tiyy —t; for
k > 0. At an arbitrary grid point (z j+4tk), the approximate point value of
w is denoted by W;_*_% = w(:zj_*_%,tk). Additionally, for the j* cell, defined as
[z =3 T+l ] for j > 0, w is approximated by the cell average w}‘ given as

wf = _1_./ T+ w(z,ti)dzr. (6.1.10)
Az z_y

The splitting scheme is defined as a five step iterative process for each vector
wf, and is written in the following general notation without the subscript j:

w* =wf —~ AtB*, (6.1.11)
w) = w* — AtD(F*), (6.1.12)
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w* =w) 4 AtB** + 2AtB*, (6.1.13)
w(® = w** — AtD(F**), (6.1.14)

and

k+1

w (w" + w(2)) . (6.1.15)

_ 1
T2
The new notation in (6.1.12) and (6.1.14) is given by the spatial discretization
operator D : R?" — R?" defined for the j** cell as

L 1 * L 3
D(F*) = = (Fj1y - Fi_;). (6.1.16)

with a similar definition for F**. The abridged notation in expressions (6.1.11)-
(6.1.16) is defined as F* = F*(w*), F;+% = F‘(w)‘._h}), and similarly for B*, F**,
etc.

The spatial discretization to find F L for either F* or F** is given through
equation (6.1.3) by Van Leer’s second-order MUSCL scheme (Jin and Xin, 1995)

via

1 va Ax - -
Vj+% = 5 (Vj+1 +Vj) - -—2—‘ (llj+1 - llj) + T (U;F - Uj+1) ’ (611()
and
1 1 Ar -
llj_*_% = 5 (l.lj+1 + l.lj) - ._?.—\/-Z (Vj+1 - Vj) + m (U;' + Uj ) - (6.1.18)

The slope vectors in (6.1.18) are given by

o = 2= [(vier = Vi) £ Va (a1 — uj)] 6(65), (6.1.19)

where each component of the n-vector 0;-“ is given by

o _ (05 = v5m) & Valuy — ujm) .
7 (vj41 —vj) £ Va(uj —uj)’ (6.1.20)

and the slope limiter function ¢ : R® — R" is defined by

é1(6:)
i| +8;
s0)=| |, e =R
Sn(6n) '

=1,...,n. (6.1.21)
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It can be observed from (6.1.11)-(6.1.15) that there are only two implicit steps,
namely (6.1.11) and (6.1.13), with the other three steps being explicit. This
does not present as many difficulties as it may seem to at first glance, since, for
example, (6.1.11) can be written in components from (6.1.3) as

ul = uf — Ath;(u*,z), i=1,... n, (6.1.22)

and
At

i _?(fi(u.,l')—v."), i=1,...,n. (6.1.23)

.
vy =v

Therefore, only b needs to be inverted from (6.1.22), a difficulty which is not
great since b is usually straightforward in most of the gravity current equations
to be solved numerically. Consequently, v* can be solved explicitly by rearranging
(6.1.23) as the vector equation

-1
v = (1 + %) [v‘ - %f(u‘,x)] : (6.1.24)

once u* is determined from (6.1.22). A similar analysis for B** may be completed
for equation (6.1.13) to get resulting equations which are quite similar to (6.1.22)-
(6.1.24)

6.1.2 The Relazation Method in Several Space Dimensions

The numerical scheme in Section 6.1.1 for systems of hyperbolic conservation
laws may be expanded to encompass systems in several space variables by gen-
eralization of the results stated by Jin and Xin (1995). Instead of (6.1.1), the

problem to be considered in p spatial dimensions is
iu + i if<"> =b, (x,t)eR?xRT, (6.1.25)
ot = Ozx; ' ’ ’
where u = u(x,t) € R", f = f(u,x) € R",and b = b(u,x) € R". Associated with
(6.1.25) is the relaxation system, which is stated in a style similar to equations
(6.1.4)-(6.1.5) as

14
and
8 .. , .
gt_v(z) + ailnéu — é(f(t) _ v(')), i=1,...,p. (6.1.27)



In the relaxation system (6.1.26)-(6.1.27), € is the relaxation constant, which
is considered to be a small parameter. The choice of the constants a; requires
more consideration than was done for the p = 1 case, and uses the notion of an
entropy function for the system (6.1.25). The entropy is not the same as the
physical concept, and a definition is stated from Godlewski and Raviart (1996,
p.21). A convex function n: R® — R is called an entropy for (6.1.25) if there exist
p functionsq? :R o R,i=1,..., p, called entropy fluzes such that

n'(u)f (u,x) = q?' (u,x), i=1,...,p, (6.1.28)

holds, where the prime notation denotes the Jacobian matrix with respect to u.
The condition that the constants «; must satisfy can now be stated from Jin
and Xin (1995), which is that the system (6.1.26)-(6.1.27) is dissipative if

P ()12
> () <1, (6.1.29)
3 a;
=1
where
(i) — (?) (i) .
A 1<J,k< {l/\ s i '} sy t=1,...,p. (6.1.30)

In equation (6.1.30), the scalars /\S-i) and ;tg) are the eigenvalues of the matrices
£ (u, x)n"(u)~! and 1" (u)f)' (u, x), respectively. The matrix n” is the Hessian
matrix, and f()’ is the Jacobian matrix, which are both symmetric matrices for
which real eigenvalues always exist.

Once the «a; are chosen appropriately, the second-order Runge-Kutta splitting
scheme (6.1.11)-(6.1.15) applies, with w, F, and B generalized to be vectors of
length (p + 1)n in the style of definition (6.1.3). The only difference is that the
spatial discretization operator D becomes multi-dimensional. In addition, given
a regular partition of width Az for each of the variables z;, 7 = 1,...,p, the CFL
condition for stability, stated as (6.1.8) in one spatial variable, becomes

_ Vai At
CFL # lle;aécp{ A } (6.1.31)

For numerical stability, the condition that the CFL number is < 1, may be rewrit-
ten via (6.1.31) as the more useful equation

T

max ./« <A.

1<i<p

(6.1.32)
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This constraint restricts the relative size of the grid widths which may be used so
that the numerical scheme remains stable.

An example of the spatial discretization is stated for p = 2, since this is the
situation for the gravity current equations stated in Chapters 2 and 5, wherein
z; = and 2 = y. A grid is created for the spatial grid points (1:,-+%,yj+%) for i
and j integers. The uniform grid is denoted with a grid width of Az for both the
horizontal directions, Az =z} ;i1 —Ti—1 j+3 and AT =y ) j4 )~ Yir g j-)
(Ay is not used in favour of the simpler notation Az = Ay). With the point
values for a vector u(z,y) given by Wil il = u(:r,-_*_%,yﬂ_%), the spatial cell
average, introduced in one variable as (6.1.10), is generalized to

1 Tivk [Yi+d
u;; = W/;.._t /!;j- u(z,y)dydzr. (6.1.33)

With the time variable discretized as before, the discretization operator D in
(6.1.12) and (6.1.14) becomes

D v 4 Dyv(z)‘ for the first n components,
D(F*) = { a;D.u" for the second n components, and (6.1.34)
azDyu® for the last n components.

The notation D; and D, denotes the spatial discretization with respect to the =
and y variables, and is given for each component by

. 1 7. . -
Douf; = (“,-+,:,,,- _ u,-_;,,-) , (6.1.35)
and for the y variable as
* 1 - -
Dyu; ; = Az (“i,j+§ - “i.j—é) ' (6.1.36)

Similar definitions may be stated for D,v(1)" and D,v(?)", with u replaced by v(!)
or v{?), and an expression using F** can be stated identically to (6.1.34)-(6.1.36)
with the superscript * replaced by **

The second-order MUSCL discretization with Van Leer’s slope limiter is given

componentwise, without the * superscript, by

1 (1) 1
Yi+3 T 9 G (v vx(+)l,j) 5 (Ui + tiv1,j) + —— \/_ CHAE T
(6.1.37)
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and

1 A.’B
1 1 I | t -+ -
'U(. )1 i = ..,) (Uf l)l W ‘U(l)) \/_ (ul 1 t+1 J) I : ‘] o’i+l.j‘:' ) Y

t+3%,
(6.1.38)
The slopes d £ are defined as

z 1 -,
o-iv.’i:t = E [(vtgi)l,j (1)) + \/—(ul+l g Ui J)] ¢(0 i) (6.1.39)

where

(1 (1
0_:.;t - ( ) - :-)1 ]) + va (u,, ui-l,j)
1 1 )
(Uf+)1 g vf ,)) = \/al(uH-l,j - u;, ;)

and ¢ is defined as before in (6.1.20). For v{?), the formulas (6.1.37)-(6.1.40)

remain the same, with the change of notation a; — a; and the components
vf‘lj) — v(z) The discretization in the y direction, for u; g+l and v(z) L

obtained by interchanging z and y where they appear in the expressxons (6.1.37)-
(6.1.40), except for the Az term, and by switching i and j, for example u;,; ; —

(6.1.40)

may be

ui'j+% .
6.1.8 Numerical Implementation of Initial and Boundary Values

For the system (6.1.1) or (6.1.24), an initial value problem may be stated with
a known vector function ug(x) € R™ such that u{x,0) = uo(x) for x € R?, with
p = 1 for the system (6.1.1). Using this, an initial value for the relaxation system
(6.1.4)-(6.1.3) or (6.1.26)-(6.1.27) is chosen to be

u(x,0) = up(x), and v(?(x,0) = £ (uo(x),x), fori =1,...,p. (6.1.41)

Such a choice of initial value for the vectors v(¥) was suggested by Jin and Xin
(1995) for spatially independent flux functions, and the generalization is suggested
as (6.1.41). This choice avoids the introduction of an initial boundary layer (Jin
and Xin, 1995), and is consistent with the equilibrium solution v = f()(u,x)
which is desired in the limit as ¢ — 0.

In the case with p = 1, for gravity currents in two spatial dimensions, the
system of conservation laws which will be solved numerically is of the form (6.1.1),
and there is a boundary value u(0,t) of the form (4.3.4). Although it would seem
straightforward to follow the pattern suggested in (6.2.39) by stating the boundary
values for v as

v(0,t) = f(u(0,¢),0), (6.1.42)
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this is not possible since only two of the four components of u(0,t) are specified
at the boundary z = 0 through the physical boundary condition (4.3.4). For this
reason, a new approach to implementation of this boundary condition must be
devised.

The innovation chosen here is to state the unknown values of u(0, t), discretized
at each time step as u;, in terms of the known values uf+ 3 for : > 0. These

are computed for each k from the previous time step’s vectors uf;,l for 1 > 0.
This may be done, for example, as described by Leveque (1992), through a Taylor
Series approximation of the cell averages. Such a calculation for a single unknown
component follows which is then applied in the subsequent section.

For an arbitrary component of u¥, denoted simply by u;, it is assumed that
u; is known for ¢ > 1, and u; must be calculated through an interpolation using
these values. A Taylor series, valid near z = 0, is assumed for the solution u of

the form L
u(z) = u(0) + u'(0)z + Eu"(O):z:2 + O(z?), (6.1.43)

which is approximated by the cell averages u; at the midpoints of each cell. That
is, from (6.1.43), and the definition of the spatial cells in the paragraph prior to
equation (6.1.10), it follows that

u; = u(0) + u'(0) (A;) + %u"(O) (%)2 +0((Az)*), (6.1.44)
uz = u(0) + u’(0) (3f1> ~u"(0) (3‘”) +0((Az)?), (6.1.45)

and

us = u(0) + u'(0) ("’2’”) ~u"(0) ("A") +0((Az)?). (6.1.46)

To remove numerical oscillations introduced at the boundary, the smoothness
assumption u'(0) = 0 is made which allows (6.1.44) to be restated as

u; = u(0) + %u"(O)(AJ:)2 + 0((Az)?). (6.1.47)
Solving (6.1.45) and (6.1.46) for u(0) and u”(0) in terms of uz and uj gives

u"(0) = — uz) + O(Az), (6.1.48)

1
3(Az)?
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and 25 9
_= 9 3
u(0) = 16u2 16‘!13 + 0((AI) ). (6.1.49)
Expressions (6.1.48) and (6.1.49) can now be substituted back into equation
(6.1.47) to give the result
25 9 1

u; = Igug — igu;; <+ R(u:; -— u2) <+ O((A.’L‘)s)

= 1.5u; — 0.5u3 + O((Az)?). (6.1.50)

It is this expression, (6.1.50), which is subsequently implemented, neglecting the
smaller terms, in the boundary conditions at z = 0 for determining the first cell’s
unknown portions.

With the description of a general relaxation scheme for conservation laws in
one or more spatial variables complete, the second-order discretization can be
applied to specific systems. The equations for gravity currents in two dimensions
are mostly systems of the form (6.1.1) in one spatial variable; consequently, the
numerical methods are applied first to these systems in the followirg Section.

6.2 Numerical Solutions for Gravity Currents in Two Dimensions

To portray the usefulness of the relaxation method to hyperbolic systems of
conservation laws of the form (6.1.1), the discretization described in Section 6.1
can be applied to compute solutions to some of the IVPs for gravity currents
in two spatial dimensions. Application of the relaxation method to the two-layer
gravity current equations in two spatial dimensions has been published previously
(Montgomery and Moodie, 1998a, 1999a). The first application (Montgomery
and Moodie, 1998a) showed the usefulness of the method for shock determination
within the initial release problem, and compared numerical solutions to the two-
layer equations with calculations for the weak-stratification and thin-lower /upper
layer equations. Later, constant slope bottom topography was included, with an
introduction of the forcing term kCjyu2/(h; — hg)T discussed in Chapter 2, in
Montgomery and Moodie (1999a). The addition of a following flow was completed
in Montgomery and Moodie (1998b).

The aim of this section is to establish the appropriateness of the relaxation
method to the model equations developed in Chapter 2 for gravity currents in two
spatial dimensions, without simply restating the previous results (Montgomery
and Moodie, 1998a, 1999a). To do this, the relaxation method will be examined
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using various values of the parameters a and ¢, and the grid widths Az and At,
to display stability and resolution of the method. In addition, a discussion of
the numerical determination of front position, and the front speed graphs to be
portrayed, will be included. The numerical scheme will then be applied to the
two-layer equations with varying topography, and the rigid lid equations will be
solved for the first time by the modified relaxation method outlined in Section
6.1.

6.2.1 Resolution of the Relazation Method

The two-layer equations to be solved are those given in the nondimensional
conservation form (2.4.30), which are in the desired form (6.1.1). The problem
of instantaneous release of a fixed volume of dense fluid consists of these four
equations, with the initial value and a boundary value given by (4.3.1)-(4.3.4)
where the initial value chosen for the next few calculations is the constant value
(2, = 0.75. Throughout this ubsection the equations (2.4.30) will be considered
without the effects of topography or lower layer forcing, and it is assumed that
hp = 0 and Cy = 0, so that these factors do not affect any changes in the
parameters a, €, CFL number, and Az which are varied.

To decrease the amount of computing time required in solving the system of
four equations (2.4.30), a reduced form is considered when the lower layer height
is negligible. Physically, when the lower layer height is positive, equations (2.4.30)
hold in their entirety; however, if the lower layer thickness, (2, is zero, then only
the two equations from (2.4.30) relating to the upper layer variables u; and (1
need to be solved. This approach is implemented numerically by keeping track
of the advancing lower layer gravity current front position which moves from the
left to the right in the following diagrams. This front tracking is achieved at an
arbitrary position, and for the calculations presented herein, a point at which ¢,
is less than 10710 was considered sufficiently negligible such that only the single
upper layer exists to the right of this point. Thus, for such grid points z;, the
reduced system consisting of the two upper layer equations from (2.4.30) was
solved, rather than solving the larger system containing a redundant number of
zeros. This reduction in the size of the system decreased the required computing
time, which, although not always important as most calculations are completed in
a matter of several minutes, sets a desirable precedent for subsequent calculations
which are more involved.

The first parameter to be investigated is the dissipation parameter a which,
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from (6.1.7), is bounded below by the eigenvalues from (2.4.30). Although these
are not known prior to solving the equations, the experience gained from previ-
ous calculations (Montgomery and Moodie, 1998a) places the supremum of the
eigenvalues to be somewhere around 3 for most calculations. Using this value, a
minimum choice for a which would then satisfy all of the subsequent calculations.
would be a = 9.

0.35 7 T L L4 .
- - a=10
----- a=100
0.1 .
0.05+ -
o L N . L L
0 1 2 3 4 5 6
x

FIGURE 6.1. Graph of (;(z) versus z at time ¢t = 4 for varying values
of a. Relevant parameter values: ¢ = 1071°, Az = 0.02, and CFL
#=0.75.

As can be seen from Figure 6.1, the resolution of the shocks as strictly verti-
cal discontinuities decreases with increasing values of a. This is not as large a
drawback as is imposed by the upper bound (6.1.9) on At, which requires that
If a is increased by a factor of 10, then At is decreased by a factor of 102, thus
increasing the computing time required. From results such as those portrayed
in Figure 6.1, a standard value of @ = 10 was chosen for use in subsequent cal-
culations for Section 6.2. This value is large enough to satisfy (6.1.7), without
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substantially sacrificing the resolution of discontinuities, and is small enough so
that the computation time is reasonable. Figure 6.1 also displays a rear bore
which travels catches up to the initial front prior to the gravity current similarity
solution. This type of behaviour has been observed experimentally (Rottman and
Simpson, 1983) for large enough initial release height values.

The second parameter to consider is the relaxation parameter, €. Variation of
this parameter does not have any effect on the calculation time, or the choice of
grid width, but its choice is very important to shock resolution. To display the
effects of variation in ¢, calculations are portrayed in Figure 6.2 for three differing
values.

0.35 T T

03

01

0.05

x

FIGURE 6.2. Graph of (2(z) versus z at time ¢t = 4 for varying
values of €. Relevant parameter values: a = 10, Az = 0.02, and CFL
#=0.75.

It can clearly be seen in Figure 6.2 that the larger € values tend to cause the shock
resolution to be quite limited. In fact, the numerical scheme does not approximate
a solution to any useful degree of accuracy, and choosing sufficiently small values of
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€ is quite important. The curve corresponding to a value of ¢ = 10!, for example,
exhibits a blurring of the fine features such that they become unrecognizable. For
these reasons, as well as ensuring that ¢ satisfies (6.1.6), a value for the relaxation
parameter of € = 107!° was chosen for subsequent calculations.

The third parameter which effects the numerical stability of the calculations is
the CFL number (6.1.8). Although linear stability theory gives a requirement that
this number must be less than 1 (LeVeque, 1992), choosing this number to be small
again forces At to be small via the inequality (6.1.9). A few initial calculations
showed that the relaxation method proved fairly robust to changes in the CFL
number, in the range of 0.2 < CFL number < 2.5. Since numerical instability
has been observed in past calculations (Montgomery and Moodie 1999a), a CFL
number of 0.75 was chosen for use in subsequent calculations.
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FIGURE 6.3. Graph of (3(z) versus z at time ¢ = 4 for varying values
of Ar. Relevant parameter values: a = 10, CFL number = 0.75, and
e =10"10,

With o and the CFL number fixed, equation (6.1.8) gives a relationship be-
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tween At and Az, At = CFL #Az/\/a. 1t is a standard practice to first choose
Az, and then fix At in this manner. The question of numerical stability is there-
fore not important when varying Az; rather, the resolution and refinement of any
discontinuities is limited by the spatial grid width, Az.

A similar portrayal in the style of the previous results is given in Figure 6.3,
which shows the lower layer height for varying grid widths. Although smaller
values for Az will lead to better spatial resolution, there is a limitation imposed
by the computational power available. For the purposes of this thesis, a grid
width of Az = 0.02 was found to be sufficient to determine the front position
adequately without necessitating lengthy computations, and was used exclusively
for the remaining diagrams in Section 6.2.
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FIGURE 6.4. Graph of Front Position versus time for varying values
of grid width Az. Relevant parameter values: a = 10. CFL num-
ber=0.75, and € = 10710,

The last diagram of this subsection is a portrayal, not of the lower layer height
as shown in Figures 6.1-6.3, but of the tracked front position as a function of
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time. This type of curve is produced because it mimics the most common style of
portraying experimental results of gravity front position versus time. The frontal
speed (i.e. the slopes of the lines in Figure 6.4) is independent of the gridth width
only after the initial starting time due to the varying widths of the initial value
disconinuity at ¢ = 1. Although Figure 6.4 shows a similar qualitative nature
for the slopes of the front position, i.e. front velocity, the actual position is quite
dependent on the choice of grid width. For this reason, as well as the shock reso-
lution in figure 6.3, Az = 0.02 is felt to be a good compromise between capturing
the shocks and front position accurately and keeping the computation time and
memory requirements down. This is not a serious problem, since computation
times of only several hours are not considered too lengthy for practical purposes.

6.2.2 Comparison of the Weak-Stratification and Rigid Lid models to the Two-

Layer Equations

With the properties of the relaxation method established, the shock resolu-
tion and simplicity of the scheme’s implementation suggest that it is a useful
method for solving systems of hyperbolic conservation laws. As a first applica-
tion, this method is used to examine the differences between three models: the
weak-stratification equations (2.4.43), the rigid lid equations (2.4.98), and the
two-layer equations (2.4.30). Although the weak-stratification equations have
been considered previously (Montgomery and Moodie, 1998a), the form of the
equations solved therein differs from the form (2.4.43), and it is useful to contrast
the simplified equations with the general case.

The equations are solved in the case without the forcing term C, bottom slope,
hpg, or source terms Q. This simplification removes any additional parameters
which may tend to obscure the relevant parameter here, which is the density
difference parameter, <. In addition, other parameters are fixed at a = 10, ¢ =
10719, and the CFL number at 0.75 as determined in section 6.2.1. The single
parameter change is to the initial value problem, which is implemented with an
initial height of {3, = 0.9, a value greater than the value of 0.75 considered in the
previous subsection.

The first diagram, Figure 6.5, shows a comparison between numerical solutions
to the weak-stratification equations (2.4.43), and the two-layer equations (2.4.30)
for decreasing values of « at a fixed time. The agreement between the solutions is
quite obvious as v decreases, and it is observed that this solution to the simpler
weak-stratification system (2.4.43) exhibits similar qualitative properties to the
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FIGURE 6.5. Graphs of (2(z) versus r at time t = 4 for the two-

layer equations with varying values of <, and the weak- stratification
equations. Relevant parameter: {3, = 0.9.

solution to the larger two-layer system (2.4.30). Figure 6.5 is similar to a previ-
ously published diagram (Fig 2D of Montgomery and Moodie, 1998a) with the
differences of a larger grid width (Az = 0.02 instead of Az = 0.01), and a later
time (t = 4 instead of t = 3). The front position is very close for all four cases
portrayed in Fig. 6.5. The curves in Fig. 6.5 all show the emergence of the rear
bore which has been observed experimentally (Rottman and Simpson, 1983) to
occur initially, and overtake the front after a short time. In between the rear bore
and the front are several smaller waves which exist due to the high shear between
the layers at the interface. These do not have time to grow into Kelvin-Helmholtz
type billows since the rear bore catches up to the front in a fairly short time and
removes the smaller waves.

In company with the lower layer height resolution portrayed in Figure 6.5, is the
lower layer velocity, ug, which is graphed in Figure 6.6 to portray any differences
in velocity calculation between the two-layer and weak-stratification equations.
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The difference between the graphs is even less pronounced in Figure 6.6 than
in Figure 6.5, which suggests that a comparison of lower layer height values is
an effective method for measurement of the main differences between the model
predictions. Similar results hold for the upper layer variables, {; and u;, and are
not included since the resulting plots are similar in nature to Figures 6.5 and 6.6.
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FIGURE 6.6. Graphs of u;(z) versus = at time t = 4 for the two-

layer equations with varying values of <, and the weak- stratification

equations. Relevant parameter: (2, = 0.9.

The second comparison is between the rigid-lid equations (2.4.98) and the
weak-stratification equations (2.4.43). A comparison of lower layer thickness (; is
portrayed in Figure 6.7, again at the same time and initial height, for decreasing
values of 4. The graphs in Figure 6.7 are similar to those in Figure 6.5, suggesting
that the solutions to the rigid-lid equations approximate the solutions to the
simpler weak-stratification equations as v — 0.

The results of Figures 6.5-6.7 allow the following suggestion to be made when
approximating two-layer gravity currents by simpler models. For v < 0.05, the
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FIGURE 6.7. Graphs of {3(z) versus z at time ¢t = 4 for the rigid-
lid equations with varying values of v, and the weak- stratification
equations. Relevant parameter: (;, = 0.9.

weak-stratification equations are a better approximation than the rigid-lid equa-
tions, while the situation is reversed for 0.05 < 4 < 0.2. To make this notion more
quantitative, a measure of the difference between two solutions, denoted (,, (z,t)
and (2,(z,t) can be given by the time-dependent error function, denoted by E(t),
and defined via the L?-norm as

E(t)? = / (Gl 1) = ool 1))? . (6.2.1)

This integral can be approximated by a finite spatial discretization, evaluated at
discrete time steps, tx, resulting in the notation

o
EZ =Y [(G2.)F = (G)F]" Az (6.2.2)
=1
This discretized error function, Ex = E(t;) from (6.2.2), may be used to com-

pare the differences between the numerical solutions to the two-layer equations,

164



the rigid-lid equations, and the weak-stratification equations. The results, plotted
in Figure 6.8 for ¢t < 30 and v = 0.05, show that the error between the weak-
stratification equations and the two-layer equations is less than the other two

error estimates.
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FIGURE 6.8. Graphs of E; versus ¢ for differences between the weak-
stratification, two-layer (v = 0.05), and rigid-lid equations (v = 0.05).
Relevant parameter: (;, = 0.9.

Although these errors are dependent on v, and only measure the differences in
the calculated lower layer heights (2, such calculations as portrayed in Figure 6.8
give a quantifiable support for choosing one approximation over another. Addi-
tional results may be calculated and obtained for various values of 4 as required
by the researcher.

6.2.8 Front Speeds for Discontinuous Solutions

Since the question, “How fast does a gravity current travel?” is of some im-
portance, a feature of the numerical simulations is portrayed to help investigate
gravity current speeds when they are thought of as discontinuous solutions to
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systems of hyperbolic conservation laws. Again, the situation with hg = 0 and
Cs = 0 is considered exclusively to avoid any effects which may obscure the front
speed calculations.

For the system with a discontinuity moving to the right into a quiescent fluid,
several expressions relating the lower layer velocity, u; and the lower layer height.
(2, were derived in Section 4.2. These discontinuities may be perceived as a
vertical interface which separates the two fluids of densities p; and p3, and is well-
defined through the relaxation method as shown in Figures 6.5-6.7, for example.
The jump condition (4.2.79) across this discontinuity for the two-layer equations
with A} = 1 and kg = 0 simplies to the expression

2¢2(1 — (2)?
S i (6.2.3)

uf =

Similarly, the weak-stratification relation (4.2.92) with hg = 0 yields
2 __ o _ 2 )
ul = 2C2(1 — )2 (6.2.4)

Finally, the rigid-lid equations were used to produce the jump condition (4.2.119),
which simplifies using hg =0 and h; =1 to

. 20(1— G)? )
Y T GE+G) (6.2.5)

To employ expressions (6.2.3)-(6.2.5), the appropriate equations are solved via
the relaxation method, and the variables used to calculate the right and left
hand sides of (6.2.3)-(6.2.5). The usefulness of (6.2.3)-(6.2.5) may then be found
through plotting a general function for all of the expressions which is of the form

u3 (6.2.6)
f(G2) o
In (6.2.6), the various forms of f((;) are chosen as the right-hand sides of (6.2.3)-
(6.2.5) as appropriate. In this way, the expressions (6.2.6) are in agreement with
numerical calculations whenever the graph of (6.2.6) plotted against time is equal
to 1.
A comparison to standard experimental values, for example Bonnecaze et
al.(1993), can be achieved through use of the experimental expression,

u% = Fr(,, (6.2.7)
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FIGURE 6.9. Graphs of u%/f((2) versus t for expressions (6.2.3)-
(6.2.5) and experimental expression (6.2.7). Relevant parameter val-
ues: (2, = 0.9, v = 0.05.

for which the Froude Number is usually fixed in the range of 1.2 — v/2. By using
the calculated values for u; and {, near the front, portrayal of the ratio u3 to (,
will yield a value which may be compared directly with the constant Fr.

These ratios are portrayed together in Figure 6.9, where the changes in time
show distinct domains of agreement for each of the expressions (6.2.3)-(6.2.5) and
(6.2.7). For very early times, there is a short adjustment phase as the gravity
current is established from the initial release. After this initial adjustment, the
ratios are all constant until approximately ¢ = 26, at which point the rear bore
overtakes the front. During this phase, the experimental Froude Number can be
seen as approximately 0.95, and there is a good correlation for the expressions
(6.2.4) and (6.2.5). The two-layer condition (6.2.3) displays a rather poor corre-
lation. This is expected since this expression is achieved for the special limit of
+ = 0, and intrusion into a quiescent upper layer.

For t £ 26, the approximate expression for the two-layer equations becomes
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more valid, and the correlation of expression (6.2.3) improves. In this region, it is
the experimental Froude Number which jumps drastically, showing that there are
different Froude Numbers for different flow regions. However, the correlation for
expressions (6.2.4) and (6.2.5) remains quite close to 1 throughout the evolution
of the gravity current. This verifies the calculations in Chapter 4 leading to the
various theoretical jump conditions.

6.2.4 Two-layer Gravity Currents With Varying hg and Cy.

In the previous calculations for Figures 6.1-6.9, neither bottom topography,
h g, nor nonlinear forcing terms Cy are present to affect the results. The addition
of a linearly sloping bottom has been considered previously in Montgomery and
Moodie (1999a); however, the introduction of the truncation function C f therein
was somewhat limited. The relaxation method is therefore applied in this section
to the two-layer equations with varying forms of bottom topography, and various
forms of forcing term Cf, so that the relative importance may be described. Three
different types of Cy will be examined in conjunction with four different bottom
topographies: horizontal, constant positive slope, constant negative slope, and
sinusoidally varying.

In Montgomery and Moodie (1999a), it was observed that for a bottom bound-
ary with a constant negative slope, there is a linear acceleration due to the com-
ponent of gravity acting along the slope. This will, after a certain time which
is dependent on both the slope and gravity current parameters, cause the two-
layer equations to become non-hyperbolic, which may lead to instabilities at the
interface which are characterised in the laboratory by strong regions of entrain-
ment between the flow. Since, as mentioned in Chapter 1. this phenomenon is
not observed in the laboratory for small slopes near the horizontal (Middleton,
1966), the standard method of avoiding this runaway acceleration problem is by
including a basal frictional drag term of the form Csu?/{, (see Whitham, 1974 or
Baines, 1995 p.48). Such a forcing term on the lower layer equations only permits
steady-state solutions which, through bifurcation theory, lead to the phenomenon
of roll waves (Dressler, 1949).

In Figure 6.10, solutions to the two-layer equations (2.4.30) are solved using
three non-horizontal bottom topographies, with the results compared for the lower
layer height. The comparison is between the actual layer thickness relative to the
bottom height, and the cross-sections are not measured in relation to an absolute
value of z = 0. The effects of the bottom shape may be observed, and compared to
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FIGURE 6.10. Graphs of (2(z) versus z at time t = 4 for varying
values of the bottom topography function, hg(z). Relevant parameter
values: (2, =0.9,v=0.1, Cy =0.

the horizontal case in Figure 6.5. The important features of the gravity current
are changed by the topography. With positive and sinusoidally varying slope,
the gravity current front position is behind that corresponding to the negatively
sloping bottom. Also, some additional shocks and discontinuities develop behind
the front for the downslope case, which are dependent on the initial height and
disappear after a short time.

The corresponding front positions are displayed in Figure 6.11 for ¢t < 20, where
the effects of the three different functions hg(z) may be observed in a different
manner. In contrast with Figure 6.4, which only portrays the front position
for a short time for a gravity current travelling over a horizontal surface, the
curves in Figure 6.11 vary substantially. For example, the curve corresponding
to hg = 0.1z, i.e. a positive bottom slope, only exists for a short time. This is
due to the breakdown of solutions when the lower layer height overlaps the upper
layer height; that is, the lower layer ‘breaks through’ the surface numerically. In
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FIGURE 6.11. Graphs of Front Position versus time for varying values
of the bottom topography function, hg(z). Relevant parameter values:
(20 =09, v=0.1,Cs=0.

this case, for example, at about the time ¢ = 6, the lower layer has advanced
to approximately rr = 5, corresponding to hg = 0.5. The lower layer thickness
here, of approximately {, = 0.3 then overlaps with the upper layer thickness,
¢1 = 0.3. Thus a total heightof value hg + (1 + (2 = 1.1 is greater than 1, leading
to the breakdown of the hyperbolicity of the equations, and hence the numerical
solution technique.

To gain a better insight into the nature of solutions having positive slope, a
smaller slope is used, hg = 0.05z, to calculate the time evolution of the lower
layer, which is portrayved in Figure 6.12. In Fig. 6.12, the lower layer is graphed
as its absolute height, with the bottom topography, hpg also portrayed. It can
be observed that the lower layer velocity begins to reverse direction so that a
reverse flow occurs down the slope, tending towards, for long time, the stable
constant-height solution consisting of a triangle of dense fluid with a horizontal

upper interface.
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FIGURE 6.12. Graphs of lower layer height, h,, relative to the bottom
topography hg(z) = 0.05z, for several times. Relevant parameter
values: (2, =0.9, v =0.1,Cy =0.

Gravity currents which are created in the laboratory from instantaneous release
of a dense fluid are observed not to have a steady-state velocity profile within the
current. The front speed usually decays with time, once the gravity current has
been observed in for several stages of the flow (Huppert and Simpson, 1980). In-
deed, the fluid behind the head generally travels faster than the front, while the
front speed controls the evolution of the current (Simpson, 1997). To capture this
observed behaviour numerically, and avoid the kinds of difficulties in equation
classification apparent from Figure 6.11, Montgomery and Moodie (1999a) intro-
duced a weighted forcing term which multiplied the standard force Cyu2/(; by a
spatially dependent truncation function, T(z), which was developed in Chapter
2.3. The introduction of T(z) specifically neglects the existence of any vertical
structure so that it may be used consistently with the shallow-water approxima-
tions (see Chapter 2, Section 3). The effect of the truncation is solely to act as a
control on the retarding force which is in effect at the front of the gravity current
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while not present behind the head so that the following flow is unchanged.

The three truncation functions T'(z) are defined as follows. The first, T} (z) = 1,
leads to the standard constant forcing term already mentioned, and is employed
to serve as a benchmark in comparing the effects of the other two types. By
denoting the front position as z g, this truncation may be extended to the entire

half line as
0 ifz>zF,

N(z) = { 1 f0<z<zp. (6:2.7)

The second truncation function is that developed in Chapter 2.3, a parabolic
truncation. For a specific length parameter, [ > 0, this may be expressed directly
from equation (2.3.6), limited to one spatial dimension as

0 ifz > zF,
Tp(z) = 1— /2% ifxp—1<z<zF, (6.2.8)
0 fo<z<zp-L

Introduction of another parameter, the length [, is problematic since it requires
some sort of knowledge of the effective head width parameterized as a ratio of the
total length scale.

The third, and last, truncation function to be used is the one proposed pre-
viously by Montgomery and Moodie (1999a), which is an exponential truncation
designed to maintain an infinitely smooth transition. This contains an additional
parameter similarly to (6.2.8), which is denoted as well by I > 0, and is defined

as
0 ifz>zF,

falz) = {exp[— (£7%)") if0<z<zr. (6:2.9)

This truncation function (6.2.9) has a value of 1 at the front, decaying to zero
behind it. Thus although it is in effect throughout the entire length of the lower
layer, unlike the parabolic truncation (6.2.8), the exponential decay distinguishes
T; from the constant forcing term 7.

The effect of the three truncation functions on gravity current evolution is
portrayed for a horizontal bottom slope in Figure 6.13 so that a reference may be
made with similar calculations for hg # 0. Two different length parameters are
chosen, so that the effective cutoffs behind the front for the truncations (6.2.8) and
(6.2.9) are similar, although not identical. Two observations which may be made
from Figure 6.13 are: there is little difference between the parabolic truncation
T3 and the exponential truncation T, and the constant forcing term arising from
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FIGURE 6.13. Graphs of (3(z) versus z at time ¢ = 4 for varying
values of the truncation function, Ti(z). Relevant parameter values:

€20 =09, =0.1,Cf =025, 1 =05 for T, | = 0.2 for T3, and
hg = 0.

the truncation function T; affects the shape of the gravity current substantially.
This diagram reinforces the result from Montgomery and Moodie (1999a) that the
truncated forcing terms retain the essential shapes of the gravity current without
any forcing. On the basis of the curves in Figure 6.13, it seems reasonable to
conclude that the exponential truncation T3 gives the sharpest discontinuity and
is likely the best choice.

The truncation functions also have a pronounced effect on the position of the
advancing front of the lower layer, as shown in Figure 6.14. There, although the
front positions are almost identical for either T or T, the constant forcing term
associated with the truncation function T} has a slowing effect on the front of the
gravity current. This shows that the following flow in the lower layer, which is
only affected by T, is important in determining the front speed of the current.
That is, the gravity current travels at a roughly constant speed for both T, and
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FIGURE 6.14. Graphs of Front Position versus time for varying values
of the truncation functions, T; in equations (6.2.7)-(6.2.9). Relevant
parameter values: (3, =0.9,vy=0.1,Cy =0.25,] = 0.5 for T, = 0.2
for T3, and hg = 0.

T3, as is the case for the case without bottom friction, C; = 0 (Montgomery and

Moodie, 1998a).

The previous calculations for Figures 6.13 and 6.14 can be examined with
a change in bottom topography to a gradually sloping downward plane, hg =
—0.1r. From Figure 6.15, the truncation functions may be observed to have
similar effects as seen in Figure 6.13. The change in bottom topography has the
effect of changing the profile within the lower layer, when compared with the
horizontal case in Figure 6.13. Again, there is a marked difference between the
effects of T} and T3, T3 in both the heights, and position of the front.

The corresponding diagram for the position of the front is plotted in Figure
6.16. There, the effect of bottom slope is observed through the increase of the
front positions when compared with the results from Figure 6.14. Qualitatively.
no observable differences are created due to the bottom slope in conjunction with
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FIGURE 6.15. Graphs of (;(z) versus z at time ¢ = 4 for varying

values of the truncation function, T;(z). Relevant parameter values:

(20 =09,v=0.1,Cf = 025,01 = 0.5 for T2, | = 0.2 for T3, and

hg = —0.1z.

the truncation functions. However, there is a noticeable acceleration of the front
for the two curves corresponding to the truncations T and T3. Although not
displayed, this acceleration occurs until the rear bore catches the front, and is
present for the Cy = 0 case. Additional results are shown in Montgomery and
Moodie (1999a).

The results portrayed in Figures 6.10-6.16 show that the relaxation method
generalizes easily to encompass non-horizontal bottom topography while retaining
the essential shallow-water nature of the flow. The addition of a nonlinear lower-
layer forcing term with an assumed truncation function is an interesting new
addition to the theory which has the benefit of retaining the qualitative nature of
the solutions used to predict gravity current behaviour. The obvious advantage
to the practical researcher is that a front condition such as (6.2.4) needs not be
assumed prior to any experiments, and may be calculated as the flow evolves. This
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FIGURE 6.16. Graphs of Front Position versus time for varying values
of the truncation functions, T; in equations (6.2.7)-(6.2.9). Relevant
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for T3, and hg = —-0.1z.

allows the flexibility accorded to variations from horizontal bottom topography,
and changes in volume of the current.

These results are at this point only described in a numerical fashion. Compar-
ison with experimental results was beyond the scope of this thesis, and was not
conducted. Such a comparison was identified as a topic for future research.

6.3 Numerical Solutions for Gravity Currents in Three Dimensions

For systems of hyperbolic conservation laws in more than one spatial dimen-
sion, the relaxation method may be employed, as described in Section 6.1.2. For a
single layer gravity current, the shallow-water equations (2.4.7) were shown to be
hyperbolic in Section (5.1.2). The conservation form of these equations, (2.4.10),
is considered in this section with Cy = 0 exclusively, i.e. no nounlinear forcing
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terms, to yield a well-posed initial value problem to model finite volume grav-
ity currents in three spatial dimensions. Results are obtained for various initial
volume geometry, bottom topography kg, and Coriolis parameter &.

The initial value problem to be solved via the relaxation method is stated as
an equation in the conservative form (6.1.25) with p = 1 and n = 3, where, from
(2.4.10), the functions f(!) and f(?) are given by

g 4 1c2 &
¢ T2 <

£ l: p(_u :' , and f® = [u_: +%<2J . (6.3.1)
H v

The forcing term, b, and generic vector u in (6.1.25) are also given by

h
<52 e
T H
b=|_.0hs __ |, andu=|v]|. (6.3.2)
60 K ¢

In (6.3.1), (6.3.2), the terms (, u and v represent the layer thickness, r momentum,
and y momentum, respectively. The initial value, stated with the aid of Figure
2.3, may be expressed as

0
u(z,y,0) = 0 Az,y) € R?, (6.3.3)
¢(z,y,0)

where ((z,y,0) is a discontinuous initial function

Cla3,0) = { @9 or (2y) < ioello) (6.3.4)

s otherwise.

The notation I'g in (6.3.4) is assumed to be a simple, closed, and convex initial
curve in R?, and (o(z,y) is assumed to be a smooth (at least C?) function, (o :
int(Fy) - R.

The initial value problem consists of equation (2.4.10), with the definitions
(6.3.1)-(6.3.4). As discussed in Section 6.1.2, several scalars a; must be chosen, in
this case with 1 = 2, before any numerical calculations may be completed. This
choice of scalars is the topic of the next subsection.

6.3.1 The Entropy and Entropy Fluzes
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To implement the relaxation method. two scalars a; and a; must be chosen to
satisfy the dissipative condition (6.1.29). Thus, an entropy n and entropy fluxes
q'V, q» satisfying (6.1.28) need to be defined for the system (2.4.10).

A convex function, which will subsequently be shown to be an entropy for
(2.4.10), is the function n: R® — R, defined as

2 2
() = 5 (552 ) + 3¢ (633)

¢

This function, (6.3.5), may be considered as the sum of the kinetic and potential
energies of the lower layer. Since 0 < (, this function is well-defined and convex
over the region R? x (0,00). The gradient vector, 7, is given by a single row

matrix

2 ”2
M=Van=[2 ¥ 158D 4], (6.3.6)

For the vectors f(!) given by (6.3.1), the Jacobian matrices are

o |20 —4 4+ (] N
(=g & ar o, (6.3.7)
10 0 |
and v v -
(¢ ¢ &
£ = oy _u2 6.3.8)
=10 2¢ % +¢|- (6.3.
0 1 0 .

Equations (6.3.6)-(6.3.8) then may be used to calculate the desired matrix
products n'f(" in (6.1.28) for 7 = 1, as

2%+—-——( =) +¢ S+ lm+¢

'tV = 0+ +0 = Ly : (6.3.9)
| & tu—t+0 e

and

i £ +0+0 &

nf = | B g LleR) o o Le 8 g (6.3.10)
: - :u — &+ _%ﬁ tv

Defining two functions
qt) = %#(#2‘2*‘ v?) + uC, (6.3.11)



and
(B2 + %)

1
q? = 5 & + v, (6.3.12)
gives the gradient vectors
3u?2 102 v 2+ 2
qu(l)= (55—24-5(—24'(7%,—&(_3_2 +l‘> ’ (6.3.13)
and
1 2 3 2 2 2
qu(l) = (%’§%+§%+C’_("%Z+u) . (6.3.14)

By writing (6.3.13) and (6.3.14) as column matrices, they are seen to be equal to
the products (6.3.9) and (6.3.10), respectively. Therefore, by a direct calculation,
(6.1.28) is shown to be satisfied so that the vectors q{!) and q(?, given by (6.3.11)
and (6.3.12), are entropy fluxes for the system (2.4.10) with entropy (6.3.5).

With the entropy pairs n and q{*), an estimate of the scalars a; and a; through
(6.1.29) and (6.1.30), requires an approximate knowledge of the eigenvalues for
the following four matrices: f(1)'n"” ™", £@ p"™" prg()’ and "’ The Hessian
matrix ’ may be calculated as

[ d’n  8’n  F%n ]
aéﬂ 8;12311 3;,123C % 0 -&
vOp  Ov ovd(¢ v 24,2
32,7 8%n 3217 —z.‘% —-= ch +1
L 9COu  OCov  O¢% |

This matrix has an inverse, 7"~ , which may be calculated easily through the
cofactor method, and expressed as

2
. |Ste & ¢
3 ¢ 1

By use of the matrices (6.3.7), (6.3.8), (6.3.15) and (6.3.16). the necessary
matrix products may be calculated, and labelled, as

%;+3/1 “?235+«>' %;+C
E=fVn" = &4y 804y & |, (6.3.17)

2

etl &= 3
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v Er+p &
[ -1 2
E,=f®p""" = Ecl_a_ +u %; + 3 %; +C |, (6.3.18)
2
@ a&t¢ ¢
& 0 —f +1
E; = nllf(l) = 2O ‘CP! 2—27‘,’- , (6.3.19)
v (us+v°)
1 g b,
and
50w
, 2
E; =n"f?® = 0 E",— —-Z—s +1 (6.3.20)
2

__Apv _¥ (u2+v3)v _ v
T &+l g ¢

The matrices (6.3.17)-(6.3.20) are all real and symmetric, and therefore each
have real eigenvalues. These may be expressed analytically, however for the ma-
trices E; and E;, the expressions for the eigenvalues are lengthy. Since all that
is needed are upper bounds on the eigenvalues in (6.1.30), some straightforward
approximation simplifies the analysis to obtain a sutficient maximum value. The
first property involves expressing the maximum of the eigenvalues through the
2-norm (Golub, 1996 p.394) as

IBillz = max {17} DL, 1M1} (6.3.21)

where /\5:) represents an eigenvalue of E;. The 2-norm of a 3 x 3 matrix A is

defined as

Allz = sup IAXlz (6.3.22)
o#xem [[x|l2

with the usual Euclidean vector norm, x = /7% + zZ + z2.
A useful approximation for an upper bound on [|A||2 is given in terms of the
elements of the matrix (Golub, 1996 p.56) as

A2 < V3||A|, (6.3.23)

where

=3
Al = jmax, {Z lasjl} . (6.3.24)

=1
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Thus, for the matrix E; from (6.3.17), for example, an upper bound is given by

2
3
' ’} (6.3.25)

2

174
<3+

__+,,;+ i

AT =max{

+3u,

C3
uv

+C2

+<|

C2

By the triangle inequality, and using the fact that ¢ > 0, the expression (6.3.25)
may be further bounded above as

2
”Ellh:ma"{“c‘l cl > cz*" cl:».l” I+ CL“'HuI
luv| p luv| | |u
+Z:’C2 +C+ ’g +%} (6.3.26)

Assuming that ( < 1, |u] < 1, and [v| < 1, the upper bound (6.3.26) can be
replaced by a numeric expression, and evaluated as

I|E1|l; = max {8,5,4} = 8. (6.3.27)

For these ranges of ¢, i, and v, similar expressions to (6.3.25) and (6.3.26) can be
derived for the other matrices in (6.3.18)-(6.3.20), which then give upper bounds
on the 1-norms as

E2fli <8, [|[Es|li <6, and [|E4]|1 < 6. (6.3.28)

Now, using the relation (6.3.23), the 2-norms, and hence the maximum eigenvalues
of the matrices E; via the equality (6.3.21), may be bounded by (6.3.27) and
(6.3.28) after multiplication by /3. It then follows from (6.1.30) that

A = max {||Ei||2, ||Eall2}
< V3max {||E1 |1, |Esl1}
< V3max {8,6} = 83, (6.3.29)

and similarly
A® = max {||Ez[l2, [|Esll2} < 8V3, (6.3.30)

whenever ( <1, [u| €1, and |[v] < 1.
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Estimates (6.3.29) and (6.3.30) then allow the restriction (6.1.29) to hold by
the ordering
A(1))2 A(2))2 )
(A1) + (At%) < 19 + 192
(23] (e )] [a 3} a2
so that if the right hand side of (6.3.31) is less than or equal to 1, then (6.1.29)
holds. With the restriction that a; = a;, it can be seen that (6.1.29) holds,
provided that

: (6.3.31)

192 192
92 192

(23] aji

which occurs precisely when
a; > 384. (6.3.32)

In practice the constraint (6.3.32) produces a value of a; which causes the grid
width for the time variable to be quite small, through the CFL condition (6.1.32).
To obtain a quicker computation time, smaller values of a; = a3, denoted simply
by a, were used to compute solutions to the initial value problem (6.3.1)-(6.3.4)
with T'o a circle of diameter 1, and (o(z.y) = 1. A cross section of the solution
after a short time, with varying values of o, is plotted in Figure 6.17.

From Figure 6.17, the parameter a = 10 was chosen for use in the subsequent
calculations for Section 6.3, since, although this is certainly less than the estimate
(6.3.32), the savings in computation time were quite appreciable, and worth the
occasional appearance of small oscillations such as those observed at the peak
in Figure 6.17 for the a = 10 plot. The other parameters were fixed as: the
relaxation parameter as 107!° and the CFL number as 0.5. The notation ¢,
which previously was used to denote the relaxation parameter, is now used solely
for the Coriolis Parameter from the notation (6.3.2), and future reference to the
relaxation parameter will be stated explicitly without use of potentially confusing

symbols.
6.3.2 Numerical Solutions With Horizontal Bottom Topography (hp =0)

The relaxation method, with the aforementioned parameter restrictions, is now
employed to solve the initial value problem (6.3.1)-(6.3.4) for varying values of
the Coriolis parameter, ¢, and various initial geometries, I'y. Boundary values are
not necessary to use in the calculations as the number of grid points required to
solve the IVP simply increases in time as the support for the non-zero solution
covers more area. The initial height profile, {p, is not varied, and a constant value
of (o = 1 is to remove any effects due to the surface height, and allow easier
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FIGURE 6.17. Cross-Section profile of the lower layer height, ¢, at
time ¢ = 1 for two values of the parameter a. Relevant parameter
values: Az = 0.02, ¢ = 0, hg = 0, relaxation parameter 1071°, and
CFL number 0.5.

interpretation of the results. Before varying any parameters, a straightforward
diagram is shown to act as a reference of some of the later figures.

The first diagram, Figure 6.18, shows a three-dimensional plot of the lower layer
height, computed at the shown time step, for the initial value problem starting
with a cylinder of height and diameter both equal to 1. It is easy to see that the
cross-section profile from Figure 6.17 matches with one from Figure 6.18, with
the only substantial difference being the relative proportions. The dome-shaped
surface of Figure 6.18 was found to be the most prevalent configuration for the
time-dependent initial release problem. In fact, variation of the initial geometry
from a cylinder to a cube, or a rectangle, only caused observable effects for a short
time after release.

The time evolution of the initial release problem, as shown in Figure 6.19,
suggests that cylindrical geometry is the most general one, and that the instan-
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FIGURE 6.18. Lower layer height { at ¢t = 10. Relevant parameters:
e =0, hg =0, T a circle of diameter 1, and {;, = 1.

taneous release problem will tend to this geometry after a short period of time.
This occurs since a collapsing volume will tend to smooth out any irregularities
In curvature by balancing the flow speeds near a bend or corner. Although a
deeper analysis could be completed by examining the eccentricity of the geometry
to quantify the observation that the front positions are nearly circular, the object
of this diagram is to show that study of circular initial releases is a basic geome-
try which should be considered. Figure 6.19 also shows the slowing down of the
radially expanding gravity current, observed by the shrinking distances between
time steps.

When the Coriolis parameter is non-zero, the effects of rotation on the calcula-
tions may be portrayed in two ways, either as a vector plot, in which the velocities
are superimposed over a contour diagram, or as a line diagram which displays the
front position versus time, as done in Section 6.2. This latter type of diagram is
portrayed below in Figure 6.20.

The three curves in Figure 6.20 show that the front position slows with time,
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FIGURE 6.19. Top-view contour plot for cubic initial geometry, with
['g a square of length 1, at increasing times with the contour drawn at
¢ = 0.01. Relevant parameters: ¢ =0, hg =0, (o = 1.

as expected as the gravity current expands radially. As in the two-dimensional
case, the front position was determined as the radius at which the layer height,
averaged over the azimuthal angle, was below a specific value, here chosen as
1071 Once the Coriolis parameter is increased, it acts to slow the spread of
the gravity current. The two bottom curves, with ¢ = 1/10 and ¢ = 2, both are
truncated since at that time the front position ceases to advance. The small jumps
in the curves, at around ¢t = 10 for example, are due to a rescaling of the grid
width once the arrays reach the limit of memory constraints, and are a numerical
effect only.

A second method of portraying the effect of the Coriolis parameter, is to view
the results from above, with vector representation of the lower layer velocity. This
is done in Figure 6.21, which shows that the gravity current, after this amount of
time, is flowing towards a steady rotating state in the clockwise direction, and the
solution begins to approach a geostrophic balance. This state occurs, according
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FIGURE 6.20. Front position versus time for increasing levels of the
Coriolis parameter, €. Relevant parameters: hg =0, (o = 1.

to Figure 6.20, at approximately time ¢ = 26. It should be noted that although
the velocities are non-zero in a region outside of the contours shown in Figure
6.21, the actual calculated values for the z and y momenta are small, and do
decrease with radius. The calculated values of velocity, are portrayed by dividing
the momentum by the lower layer thickness, ¢, which also decreases with radius.

The effect of rotation portrayed in Figure 6.21 is intuitive in the following sense.
With the Coriolis parameter set at ¢ = 1/10, this may be expressed physically
by stating that the ratio of the effects of inertial spreading to rotation is 10 to 1.
Thus, after 10 time steps, the effects of rotation should be observable. Hence, at
t = 20 as shown in Figure 6.21, the effects of rotation are such that they have had
an equal effect as the spreading. For short times, ¢ < 10, the inertial spreading
would be the primary source of fluid motion, a fact which is observed numerically,
while for later times rotation becomes increasingly important.

6.5.3 Numerical Solutions With Gradually Sloping Bottom Topography
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FIGURE 6.21. Height contour and velocity vector plot at time ¢ = 20.
Relevant parameters: hg =0, € = 1/10, (o = 1.

The effects of non-horizontal bottom topography on three-dimensional gravity
currents are quite unlike that of two-dimensional currents, once rotation is in-
cluded. As a simple example, a constantly sloping bottom, with height given by
the function hg = 0.1z, is considered in this subsection.

The initial release problem previously investigated is restated as a cylinder of
diameter 1, as before, but with a horizontal lower layer height of 1, as opposed
to a constant lower layer thickness. The addition of nonzero bottom topography

then gives the function (o chosen in (6.3.4) as

CO(Iay) =1- hB(zay)
=1-0.1z. (6.3.33)

Such an initial function as (6.3.33) gives a horizontal height profile of the lower
layer, h = ¢ + hp, while keeping the initial volume the same as that considered

previously.
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FIGURE 6.22. Height contour and velocity vector plot at time ¢ = 10
without rotation. Relevant parameters: hg = 0.1z, ¢ = 1/1000, (o =
1+0.1z.

To show the effects of nonzero bottom topography, a similar diagram to Figure
6.21 is plotted as Figure 6.22. This diagram, plotted at ¢ = 10, should be viewed
while keeping in mind that the bottom topography is such that the height of the
bottom on the left side is lower than that on the right side. It can be observed
from Figure 6.22, that the sloping bottom tends to push the centre of the gravity
current down the slope, as the original position was at £ = 0. In addition, the
velocity, at this time is such that the upslope spreading has been checked, and
the entire current begins to move down the slope.

When the additional factor of rotation is included in the calculation leading
up to Figure 6.22, it has quite a dramatic effect. Initially, as the gravity current
begins to spread, the Coriolis parameter is not very important. However, as seen
in Figure 6.23, at a later time ¢ = 10, the effects of rotation are such that the
centre of the gravity current has been deflected in the y-direction, and now has
an approximate centre (—5,2), as opposed to the value of approximately (—5,0)
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FIGURE 6.23. Height contour and velocity vector plot at time ¢ = 10
with rotation. Relevant parameters: hp = 0.1z, ¢ = 1/10, (o, =
1+0.1z.

without rotation. (Unfortunately, the aspect ratio shown in Figure 6.23 is not 1:1,
so the diagram looks skewed. This is a limitation of the plotting routine, which
omits portions of the height contours when labelling the diagram.)

Figure 6.23 clearly shows that the effects of rotation and bottom slope cause the
gravity current to travel in a direction which is neither down the slope, nowralong
the slope, but along a path on which the effects of inertial spreading, gravitational
acceleration, and rotation are balanced.

Chapter Summary

In Chapter 6, a finite-difference numerical scheme, the so-called relaxation
method, has been described and generalized to include non-zero forcing terms
and boundary conditions. The method is applicable to nonlinear systems of hy-
perbolic conservation laws in both single and several spatial variables, and has
the advantage of not requiring calculation of the eigenvalues of the system during
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calculation of numerical solution. Since the gravity current equations developed
previously are, in general, hyperbolic, the method is applicable in this case.

In Section 6.2, the relaxation method was investigated as to the parameters in-
volved, and then applied to solve the two-dimensional gravity current initial value
problem. The results and calculations portrayed are well supplemented by addi-
tional calculations published and submitted for publication by Montgomery and
Moodie (1998a, 1998b, 1999a, and 1999b). The results suggest that the method
is quite useful for calculating solutions to the nonlinear problem without relying
on an experimentally or theoretically determined front condition. As such, the
method is generalizable to include non-horizontal bottom topography, spatially
dependent forcing terms such as friction, and variable-volume gravity currents
(Montgomery and Moodie 1998b).

In Section 6.3, the relaxation method was applied to calculate numerical so-
lutions to the initial value problem in three dimensions. The initial release of
a cylinder is such that the external radius slows with time, and is affected by
the Coriolis parameter such that the rate of spreading slows with an increase in
the effects of rotation. The addition of a non-zero bottom slope acts to drag the
ensuing gravity current in the down-slope direction, which is balanced by inertial
spreading and the effects of rotation.
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Chapter 7

Multinomial Conservation Equations

In chapter 2, various cases of the gravity current equations were introduced,
and where possible, stated as systems of conservation equations. Physically, a
conservation equation often represents a quantity which is conserved, such as
mass, momentum, or energy. In this chapter, a classification of the conservation
equations arising from multinomial flux functions are characterized for three di-
mensional (one and two-layer) and two dimensional (two-layer) gravity currents
with a free surface.

It is known (Whitham, 1974 p.459) that the shallow-water equations

-a—h-f-—g-(uh):O, §E+u§2—l—+ Oh

5% 1oz o Tl t95; =0

admit an infinite number of conservation equations of the form

-gt-P(u, h) + %Q(u,h) =0,
where P, Q are polynomials (more correctly, multinomials) in u and k. This result
is useful since either inverse scattering methods or the hodograph transformation
may be used to solve the system (Whitham, 1974). In addition, the situation
in two spatial dimensions, specified as the fully nonlinear long wave equations
which are a simplification of the equations considered in this chapter, has been
shown by Miura (1974) to admit an infinite number of conservation equations.
This chapter will examine the more general shallow-water equations for gravity
currents which have been previously investigated, to discover whether or not these
situations admit an infinite number of multinomial conservation equations. The
various conservation forms and equations will be examined in subsequent sections,
which are arranged in increasing order of complexity: the two-dimensional two-
layer case is discussed in section 7.1, three-dimensional one-layer system in section
7.2, and the three-dimensional two-layer equations in section 7.3.

The equations considered in this chapter are the dimensional ones from chapter
2 with a free surface. A change of notation {; = h; — he, and {; = h; — hp,
is affected so that the variables represent the actual thickness or height of the
respective layers. Equations (2.2.17)-(2.2.22) with the simplifications F, = 0,
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F, =0, p, =constant and the above substitution are stated for use in this chapter

as
aU2 6u2 a‘U2 6(1 Bg’g _ ahg -
5 Ty +vzay +(1—‘Y)9E'+ga—z——g¥+fvz, (7.1)
Ovz | 00,00 30 % _ _, %5 7
5 tuzg, vz 3y +(1— )g +g 93y ——ga_y—fuz (7.2)
Ou, Ou, du,q 6( 9¢ 6hp .
at +u; az + v a +gaz +ga =g a +fU1, ((’3)
6v1 8v1 8v 6( 8(2 aha
17 6
g + 5= (Gaua) + 5-(Gaon) = 0, (7.5)
and a¢
b G+ y(clvx) =0. (7.6)

7.1 Two-Dimensional, Two-Layer Conservation Equations

The two-dimensional, two-layer simplification consists of equations (7.1), (7.3).
(7.5) and (7.6) with the restriction that the functions are independent of the vari-
able y, and the transverse velocities v;, v2 both vanish. The simplified equations

are

Ou, Ou, o1 0 _ dhg -
g +U26 + (11—~ )9’5—+gax = g—(ﬁ—’ (7.1.1)
Ou, Ou, oG ¢, dhpg -~ 10
2 +ga rodt o gtz (7.1.2)
0
%+ 2 (Gua) =0, (7.1.3)
and ac
atl + —(Clul) = 0. (7'1‘4)

Combinations of equations (7.1.1)-(7.1.4) for the homogeneous case with con-
stant bottom height hp are desired to be in the form

%P(ul’uhfle@)‘f'%Q(uhl‘?,ClaC?):O, (7.1.5)

where P and @) are constant coefficient multinomials in u;, usz, {;, and (.
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The functions P and @ in (7.1.5) are by assumption infinitely differentiable in
their arguments. Differentiation of (7.1.5) with several applications of the chain
rule yields the expression

OP Ou, 4 OP Ou, 4 OP 0(; + P 3¢; | 0Q Odu; 0Q Bu; + 0Q 9¢;
Ou; Ot Ou, Ot 0 Ot 9 Ot " Ouy Oz  Ouys 8z 8¢ O
0Q 8¢z _
+ 8—C2.6_a: = 0. (7.1.6)
Substitution of the temporal derivatives from equations (7.1.1)-(7.1.4) into equa-
tion (7.1.6) then gives

P (LB 06) 0P (L on 8 0G)
Ou; ( b oz g oz gax) + Ouq 42 oz (1-7)g oz ga:z:
oP Ou, 8¢ P Ouz ¢

+aG (‘41 oz ! 61:) t 3G (’42 9z 3:1:)

9Q Ou, 0Q Ou; 0Q0¢ |, 0Q 0 0

Ou; Oz Ou, 0z 8¢, 8z = O Oz

: e . 0
This expression simplifies, upon collection of the common — factors to
I

—uy + | —u2

5uy 93¢, T 5, ) Bz urg =5+ 5u, ) Bz

oP oP OP 9Q\ 3¢

+ ("gﬁ —A=Ngg-—mgs + acl) Bz
b (g2 2E 20, 22 O
gaul gauz Uz 34'2 6(2

=0. 7.1.7
Or (7.1.7)

Since uz, u2, (1, and (2 are in general independent for all z and ¢ in the
domain of interest, it is necessary that this property holds for each of their spatial
derivatives. Therefore, using this property of independence, for equation (7.1.7)
to be satisfied the following four equations must hold:

60 oP . oP i}
Ju, = ulaul + (1 £ . (7.1.8)
8 oP . OP -
6112 uz 6u2 + C2 a<2 ' ((1'9)

8Q P P oP _

55 ga—ul+(1— /)ga +ulacla (7.1.10)



and

aQ oP oP oP
G gaul + 9 Bu; 2 ¢
From these expressions, the various second order derivatives of Q can be evalu-
ated separately and used to derive compatibility conditions for the function P.
The relevant second derivatives are calculated from (7.1.8)-(7.1.11) to derive six

compatibility conditions.

(7.1.11)

. ... . . 0 .
The first compatibility condition arises from equating s of equation (7.1.8),
2

8*Q _ o%pP ¢ 8*P
Bu1Buz " Ou Bu; | (0w,
) 0 . -
with Bur of equation (7.1.9),
8%Q _ 6%P + o*P
Bugaul = U2 3u2au1 26(26111 ’
to obtain

o*P o*pP &P

At g ., 2 1.12
(g u2)3u13u2+ 18C,0us 2 8(,0u; (7.1.12)

o0 .
The second compatibility condition is obtained by calculating —— of equation

oG
(7.1.8),

2Q " o*P + oP +¢ 92_13
Bulag] - laulaCX aCl ! aClz '
and equating this with 6% of equation (7.1.10),
1
8%Q 9P o*pP oP 8*P

+(1—

3(,’16111 =gauf A/)gaugaul + 8{1 + UIagla‘UI )

The resulting equation is

o*P o*P o*P

= - . 7.1.

0 .
A third equation may be found by equating —a-c— of equation (7.1.8),
2

*Q _, &P . OP
6u16C2 - la‘ulaC2 laCIGCZ’
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and i of equation (7.1.11),

5ur
2Q &P &P 8P
3C0u; 9542 V95004, T “* 3604,
yielding
82 P P &P &P

(ul _u2)6C26u1 +<l 6616C2 =gauf +gau16ug'

For the fourth compatibility condition —a-- of equation (7.1.9),

T 8G
3’Q — 8’P +e é’pP
Ou0¢; 26u26C1 23(234’1’
17 . -
and — of equation (7.1.10),
aU2
3°Q 8*P o’pP 8*pP
30w ~ I5uou, T AT 9% T 5050,
equate to
8’P o*p o°P 9*P
- = 1- g2 .
(us “‘)aclauz + CzaClaCz gaulauz +( ¥)g Jul

) 0 .
Another manipulation, equating -52_—- of equation (7.1.9),
2

#Q _ . #p  op &P
Bu20(s  ‘0u0(; = (2 2 oG’

0
with —6_172— of equation (7.1.11),

#Q _ &P &P 9P = &P
BC20uz  JOuiOuz  JOul | 0Cz | 20(20up’

results in the fifth compatibility condition

»P_ BP_ PP
23 = 95u0u; " IoT
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The sixth (and final) compatibility condition arises when % of equation
2
(7.1.10),
’Q 8P +(1 ) d*P é*pP
8¢:0¢; ~ I 0u10¢; ~ 198u,8¢, 3C “18¢0G"
and —3? of equation (7.1.11),
Q g i + o’P tu a*pP
0¢20G 8u18C  JBus0¢; | 8C28C
are equated to obtain
(2 —u)62P+ 8%P +(1==) é’pP &P + i

' 278¢,0¢, gaulaCz 19 8u20¢, 20(2 gaulaCl gauzaCl ’

With compatibility conditions (7.1.12)-(7.1.17) imposed on the multinomial P,
the constraints on the form of P may then be used to describe the form of Q via
equations (7.1.8)-(7.1.11). General binomial functions satisfying equation (7.1.5)
are then assumed to be of the form

(7.1.17)

n n-—t

Pluy.uz,C1,G) =3 D pisGils  pis = pijlun,ue). (7.1.18)
1=0 j=0
Binomials of the form (7.1.18), although not the most general, are sufficiently
general to achieve the desired result.
To apply the conditions (7.1.12)-(7.1.17), it is desirable to write down the
partial derivatives involved by differentiating equation (7.1.18) as required. The

first derivatives are

n n—t 6 ; aP n n—i ap! iy
Sy O _$Fiomugy
== ‘—: JZO.. (7.1.19)
aC ZZZP:JQ-IQ, a.nd - ZZJP'JCI
1 =1 j=0 1=0 ;=1
Equation (7.1.19) allows the second partial derivatives to be written as
32P n n—g 621)," - 62P n n-—i a pi;
=2 aunglCﬁ, £ ZZ 14'14'2
i=0 jy=0 1 =0 j=0
32P n n—i n n—i L,
= ZZ’(’ — Dpi;¢ 3¢, and 64’2 Z Z](J - )pi;¢i¢i e,
=2 j=0 =0 j=2
(7.1.20)
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The six mixed partial derivatives may be stated similarly as

na ®pij i .j P i ap,J 1.
aulauz g:z Ou;0u, Gi6z; 5u13(1 ; Z_; ¢2>
o’p = = Opi; - 2= -Opij i
Ou;19¢, ;;1 Cx ) m ;J—ZO Cl Cg (7.1.21)
62P _ n n-—g 319;, i1 n n-—i J—l
Bu200, ;ZJ GG acla(z ,Z;Jz_:l’]p.,cl :

The partial derivatives (7.1.19)-(7.1.21) may now be substituted into the com-
patibility conditions (7.1.12)-(7.1.17). These results are calculated for each com-
patibility condition to determine restrictions on the functions p; ;-

The first equation (7.1.12) is employed by substituting the appropriate deriva-
tives from (7.1.21) to give

o8 —uz)ggai adid +<lz;z;za’l’: g =c Zozja””cl
=0 ;= =1 = 1=1

After simplifying, the above equation becomes

n n—i

8%pij .Opij 3?:1)
ZZ (u1 —u2)3u16u2 +18u2 i3 ¢icl =0,

=0 J—O

which gives, upon using the independence of {; and (,, the result

(u1 — )ai ’é‘; —]‘Zz‘j—igf“: fori=0,...,n, and j =0,...,n—i. (7.1.22)

The next condition, (7.1.13) is slightly more involved, but substitution of the
derivatives from (7.1.20) and (7.1.21) into equation (7.1.13) gives

635 it - vpeirdl =gy Y2 Zpy GG+ (- B e e S gidi.
=2 j=0 i=0 j=0 1=0 j=0

Gathering terms and shifting indices allows this expression to be rewritten as

follows:

S S ii- s - Y S (B3 + -kl ) cict =0

1=0 j=0 =0 ]-0
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n—1n—i-1 n n—i
=Y 3 Gimanstid -3 Yo (B +a- 128 ) did =0

i=1 j=0 i=0 j=0

=1 J=0 =0
- 821’0) ] 3?pno 3%pno n _
—Zg( L1~ ) )Cz—g(au% +(1—‘7)au—165;)fl—-0-

Independence of the powers of (; allow this result to be stated as a condition for
each i. Therefore, it follows that

n—1 {n—-i-1 . _ ; n—i 82 Pu 32?.‘,‘ p ;
ﬁz Z (1+1)lp.‘+1,j<2 —zg( a +( )aulauz)C2 Cl

azpno 32?1:0 -1 09
= .1.23
Ou? +(1- )Bulaug 0, (7.1.23)

and

Eg( Ly (1 ol )c"=o,

j=0
from which it follows that

2, . 2, .
665‘2” +(1—~,)ai—%°;2=0forj=o,...,n. (7.1.24)
1 1
For the remaining terms, with i = 1,...,n — 1, equating the coefficients of (}
to zero yields
n—i—1 n—s
. azp,_ a2p‘.. .
; st (I — U (1—~)—=Pii_\i_g
jz.zo (Z + 1)1p:+1,1<2 ;g ( au% +( )aulau2 C )

which may be rewritten as

n—i—1
. . 6 Dij P: ]
Z ((l + l)zpi+l J -9 a 21 - ( )gau a; ) Cé

J=0
ap:n i pln—l n—-i__

From this sum, it follows that for: =1,...,n — 1,

9%pi;

(1f1)2p1+11—ga +(1— )_—_



An additional equation follows from the coefficient of (5‘" which can be made to
include equation (7.1.23) and (7.1.24) with j = n by writing it as

8%pin—i 8%pin—1

By +(1—7) . 0, (7.1.26)

forz =0,.
The third compatibility condition (7.1.14) is now used to place restrictions on
pij- Substituting the expressions for the derivatives produces the relation

n n—i n n-—i

.Opij i
(wi—u2) Y ¥ iz HGAGT +G Y iipudiTIG
1=0 j=1 =1 j=1
n n—ig p n n—i a p
lJ 5] i)
=g> Y Pt S G 93 D s 5.3
=0 j=0 =0 j=0
By collecting terms and simplifying, the above expression can be written as
n n—i 2
PtJ 0°pij J| i
(u —Uz)J +1.7Pt ) ) G a=0,
from which the n 4+ 1 conditions arise for t =0,...,n as
n—i—1

' p:. 3%p; &?p; :
> ((u;—uz)(J+1)Laﬂ+’(J+”"”“ gap2J gaug; )C‘g

j=0
3%pi n—-i a2p,-,,,_,-> n—i
‘g( 5ur T Buiou, )2 =0

By isolating the powers of (2, the above equation gives rise for i =0,...,n —1 to

a Di; 3 Dij
+iJ+1pij+1=g du 2J +gau,a;2 (7.1.27)

(ur —u2)(y + 1)—1)%

for j=0,...,.n—7—1,

and for:=0,...,n to

O?pin—i O%pin-i -
2 : = 0. .1.2
u? + Ou,0uy (7.1.28)

Equation (7.1.26) and (7.1.28) can now be subtracted to give the result that,
for v # 0 (an assumption), fori =0,...,n

a2pi.n—i

ZPim—i 7.1.2
e =0 (7.1.29)
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This result can be substituted back into equation (7.1.28) to give the correspond-
ing condition for 1 =0...,n

2., . .
ﬂf’a-;’%‘—" =0. (7.1.30)

Equation (7.1.15) gives a similar result to the above as, after substitution of
the derivatives (7.1.20), (7.1.21) it becomes

(u2 — ul)zz ”" 2.6 G +g2§:iup,,c
i=1 j=0 i=1 j=1
S5 3) DpA WL RUIEYY 3y pica: 1)
=0 j=0 =0 ;=0

This expression may be employed after a few manipulations which follow:

n n-—it

> ((Uz - ul)l

i=1 j=0

+ l]Pt]) :—lcg

n n—i ; a ; i
—Zzg(au i;; +(1-=7) p’)ClCé

i=0 j=0

n—1ln—i—1

=Y > ((uz—ul)(i+1)a—’g%+(i+1)jp.-+l.,-> ¢icd

=0 j=0
n n—i p. p, .

1=0 j=0

n-1 |n—i-1
. a i . N s
= [ > i+ ((uz - ul)—%f:'—J +JPi+1.j) G

=0 =0
= o4 Dij azpij j i __ ( azpno . o pnO)
Zg (au Ou2 +(1=7) u? G| G=9 Ou;0u; +1=7) ou? -
The coefficients of the powers of {; may now be isolated for i =0,...,n — 1 as,

. Opi+1,; _ ( 3%pi; 321);‘,‘)
(i +1) ((U2 - ) =5 +JP.+1,J) =9\ Guou, T3z ) (7131
forj=0,...,n—1—-1,
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and the remaining term, for : =0,...,n

Ppin-i

Pt n—i
6u16u2 +( ‘7)

=0.

The coefficient of (' is included in the above equation. Using equation (7.1.29)
allows this last result to be simplified to

azpi,n—i

uZ =0, fori1=0,...,n. (7.1.32)

The simplification for the compatibility condition (7.1.16) is somewhat shorter
than that completed previously. Substituting the expressions for the derivatives

gives
DHIELWLEEH NS i+ 3 SR
=0 j=2 1=0 j= t=0 y=0

which simplifies as

n—i n—i a2pl_j azpij) j .
1 - 1= 0
; Jz_;J(J Dpi; (3~ ;g(a'ulau2 + 2 G| G

Isolating the coefficients in the powers of (; yields, after some manipulation of
the indices,

n—i—1

L Vips pij  pij\] .
> [(]+1)JP:,J+1 Suioug 53 G

j=0
8 Din—i + a2pi,n—i) n—i
Ou,8u; Oul 2 -

This gives the final result, for: = 0...,n — 1, as

; ; &pi; 9pi; . .
i+l = s =0,....n—1—-1. 1.
(J+1Dipij+1=g <3u13u2 + Bu2 ) for j=0 n—1 (7.1.33)

The remaining coefficient yields

O?pin—i . 0*pin_i
6u16u2 8u§

=0,
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for i = 0,...,n, which after substituting in the result (7.1.29) becomes nothing
more than the result (7.1.32).
The last compatibility condition, (7.1.17), becomes

n n—i n n—i

(w1 —u2) 3 igpiici—i¢i™ ‘+gZZy p"cl
=1 j— 0]—1
SR B) B To ) S B il + ZZ T,
=0 j=1 i=1 j=0 =1 j=0

which may be rearranged as

n—1 | n—1—1

S S G4 D5 - wndpisn i +Z (e +a-m2)g

i=0 j=1
n—i—1
Opi+1,j 3Pi+1,j) il i
- Z(z-i-l)g( ou. " ous ¢3¢ =o.

j=0

From this sum, each coefficient of (i vanishes for i = 0,...,n — 1. These are

written as

n—i—2 n—i—1

Do +1G + D —u)pisr 1+ Y. (G +1)g ( e
=0

7=0

dp:. " Opit1y , Opi+1s\
+(1- )”’“)42 Z(z+1)g(’;;"’+‘;;“)cg=o,

0 =

which allows the following restrictions by isolating powers of (5. The result is, for
1=0,...,n -2,

. . ) Op;.j 9pi.;
(2 + 1)(7 + 1) (w1 — u2)pig1,j+1 + (7 + 1)g ( %u]jl +(1-1) %J:l)

=(E+1)g (a”‘“ d 4 ap‘“”) for j=0,...,n—i—2, (7.1.34)
6 (751 6u2

and, for: =10,...,n—1,

.\ [ OPi,n—i \Opin-i) _ . Opi+1.n—i—1 5Pi+1.n-.'-1)
(n—i) ( Ou, +(1-7) Ou, ) =(i+1) ( Oou; + Ou, ’
(7.1.35)
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The previous few pages of calculations may now be summarized. The six
equations (7.1.12)-(7.1.17) for a general continuous function P, become, upon
assumption of the form of P as (7.1.18), eleven equations: (7.1.22), (7.1.24),
(7.1.25), (7.1.27), (7.1.29)-(7.1.35). Before making a general statement concerning
the possible solutions p; j to these constraints, it is useful to examine the problem

in several steps, stated as lemmas.

Lemma 7.1 The coefficients Poj,J = 1,...,n for the multinomial P(u,,u,,(;, (2)
in equation (7.1.18) are functions of uy only.

Proof: Equation (7.1.27) with ¢ = 0 becomes

o o2 o? . -
(up —u2)(j + 1) Po_,+1 =g ang +gau I;OJ forj=0,...,n—1. (7.1.36)

From equation (7.1.24), this result may be simplified to

_ pOJ+] azpo _ _ -1 7
(ur —u2)(j + 1)L~ Bu; =g au Gz , forj=0,...,n— 1. (7.1.37)

Now, equation (7.1.22) with : = 0,

6p0] _ .Opo
("““2)au duy ’a

may be substituted into equation (7.1.37) above to give

, for 7=0,...,n,

Jpo -
(u; — uz)? (_7-+—1)—M—~,g_7a for 7=0,...,n—1. (7.1.38)
Uy
This recursive relation, by starting with j = 0, gives
Opo1 Opo2 Opon
= =0,...,—=0. 7.1.39
our - Bu; T By (7.1.39)

Since p;; = pij(u1,u2), this last equation (7.1.39), gives the desired result, Poj =
poj(uz)for j=1,...,n. O
The next result is a similar one to Lemma 1 for the opposite coefficients.

Lemma 7.2 The coefficients p;g, i = 1,...,n for the multinomial P(u,,u,, C1,(2)
in equation (7.1.18) are functions of u; only.

Proof: Equation (7.1.31) with 7 = 0 simplifies to

2

a bio +(1—~/)ga p;O for 1 = 0,...,”—1. (7140)
Ou?

aulau

(1 4+1)(uz —uy) Pz+10 =
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By considering equation (7.1.33) for j = 0,

8 pio & pio :
O—Q(Bulaug + u2 ) fori=0,...,n -1,

equation (7.1.40) may be expressed as

3p,+1 o _ d*p;
(7 + 1)(uz — uy ) ——=— - ~ 1930 50 au2 for: =0,. - 1. (7.1.41)

Use of equation (7.1.22) can now be made with j = 0 as

&pio _ _.9po .
—U)——— = for:=0,..., , .1.42
(uy u2)6u13u2 - ” ort=0,....n (7.1.42)
which substitutes into (7.1.41) to give
(G +1)(uz — u&w = —~gi . Opi , fori =0,. — 1. (7.1.43)
3u2 6 2
This recursive relation, starting with ¢ = 0, yields
dp10 dp20 _ 9pno -
au2 —-0, 6u2 —0,,%—0 (1144)

Since p;; = pij(u1,uz), this last equation (7.1.44), achieves the desired result.
pio = pio(uz) fori=1,...,n. O

Lemma 7.3 The coefficients p; ,—i, ¢ = 0,...,n for the multinomial function
P(uy,u2,(1.¢2) in equation (7.1.18) are constant for n > 2 a positive integer. If
n =1, then pjo and po; are linear in u; and uz, respectively. If n = 0 then pog is
linear in both u; and u; separately.

Proof: For p;n-i, equations (7.1.29), (7.1.30) and (7.1.32) state that the sec-
ond partial derivatives vanish everywhere. The only continuously differentiable
coefficients which satisfy this constraint must take a linear form

Pin—i = aju; + bjug +¢c;for1 =0,....n, (7.1.45)

where the terms a;, b;, and ¢; are all real constants. If n = 0, then this is precisely
the required result for this special case.
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Coefficients of the form (7.1.45), substituted into equation (7.1.22) for i =
0,....n and j = n — i, give a further constraint on the constants,

tby = (n —1)a; fori =0,...,n. (7.1.46)

From (7.1.46) it is quickly observed that for n > 1, ap = 0 and b, = 0. Addition-
ally, for i = 0,...,n — 1, equation (7.1.35) simplifies to

(n —d)[ai + (1 = 7)bi] = (i + L)ai+1 + bis1]. (7.1.47)

Substitution of (7.1.46) into this result (7.1.47) for to remove b; yields, for
t=1,...,n-1,

(n—1)

(n—2)a: + (1~ ‘Y)—i-ai] = (i + 1)[ai+1 + L a7 (+1)

ai+l]a

t+1
which simplifies as
(n —)[vi + (1 — ¥)n]a; = ina;4;. (7.1.48)
Similarly, for i = 0, equation (7.1.46) and (7.1.47) give
n(l —~)bo = a; + (n — 1)ay,
which simplifies to
(1-7)b = a;. (7.1.49)

Using equations (7.1.46), (7.1.48) and (7.1.49) determines the constants a; and
b; recursively to depend on the single constant, a,. If n = 1, then only (7.1.49)
applies, and the coefficients from (7.1.45) take the form

Po1 =bouz +co. pi1o = (1 —7)bous + 1,

which is the result for n = 1.
To determine a,, two more constraints are employed. First, consider equation
(7.1.25) for i = n — 1 and j =0, which is
0?pr-10 3%pn-1,0 -
- =g—F 1-— —_ .1.50
n(n 1)Pn0 g au% + ( ‘7)9 aulau2 (‘ )
Using Lemma 7.2 and substituting in the form (7.1.45) for pno simplifies (7.1.50)

to
d2 n-— - -
n(n — 1)(apuy + ¢cn) = g—"#. (7.1.51)
duf
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Similarly, equation (7.1.27) fori =n —1and j =0 is

apn—l 1 321’1:—1 0 32Pn-—1 0
—_ _— - = 2 =, .1.52
(u; — ug) 3, +(n—-1)pn-11=g Bu? +g N (7.1.52)

Again, by use of Lemma 7.2 and the form (7.1.45) for Pn—1,1 this result becomes

d?p,—
(ur —u2)an-1 +(n — 1)(@n-1u1 + bn_1uz + cn—1) = g— I; u21,o ;
1

which simplifies further by removing b,_; through (7.1.46) to

d?p,, -
(UI - uz)an_l + (Tl - 1)(an-1u1 + n — lan—lu2 + Cn—l) =g Z';fl‘oa
or d2
nulan—l + (n - l)cﬂ—l = gM' (7.1-53)

du?
Comparing equations (7.1.51) and (7.1.53) gives the equality of the respective
left hand sides as

n(n — 1)(anuy + cp) = nu1an-1 + (n — 1)cp—1,

or
n[(n — 1)an — nan—1ju; + (n — 1)[ncy, — cp—1] = 0. (7.1.54)

Since u; is not, in general, a constant, equation (7.1.54) gives rise to the equality

(n — 1)an = nanp—_;. (7.1.53)
However, equation (7.1.48) withi =n —11is

(n —v)an-1 =n(n - 1)a,, (7.1.56)
which, after a,_; is removed by use of (7.1.55), yields
(n—1)(n — v)ap, = n*(n — l)a,.

For n > 2, this result then simplifies to

(n — v)a, = na,. (7.1.57)
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Since v # 0, equation (7.1.57) can be used to conclude that a, = 0. By the
recursion formula (7.1.48), it follows that a; = 0 for i = 1,...,n — 1. Finally,
equation (7.1.49) gives by = 0 as well. Therefore, from the form (7.1.45) it may
be seen that p; n—i = ci, a constant, for i = 0,...,n whenever n > 2. O

Complementing Lemma 7.3 is an additional result which relates the constant
terms p; ,—; by a recursive relation. This is stated as:

Lemma 7.4 The coefficients p; n—;, 1 =0, ..., n —1 (n > 2) for the multinomial

P(uy,uz,(1,(2) in equation (7.1.18) satisfy

Pitimoios = B ”E.’Tlg(ln—_"zg" — U ifori=o0,...n—1 (7.1.58)

Proof: By Lemma 7.3, the terms p; ,—; are all constant, and are substituted into
the appropriate previously derived constraints to determine the recursion relation
(7.1.58). First, consider equation (7.1.23) for j = n —¢ — 1, which is

. . azpi,n-i—l azpi.n-i-l .
(1 + 1)ipit1,n—i—1 = QT +(1 - V)QW, fori=1,...,n-1,

(7.1.59)
and equation (7.1.27) for j =n—-i~1,

O%pin—i-1 3?pin—i-1

(N — 1)pin—i = ,fori=1,...,n—-1. 7.1.60
i(n —1i)p;, g B3u? +g Buiou, = Oor! n (7 )

Subtracting equation (7.1.59) from (7.1.60) gives the equation

2., .
i{n —)pin—i — (I + 1)pit+1 n-i—1 = */ga—apt;—'l%:l, fort=1,...,n—1. (7.1.61)

Next, equation (7.1.31) for j = n — 7 — 1 may be written as

. . azp', —i—1 azpi,n—i—l .
(2+1)(n—l—1)pi+l,n—i—l = g_a:;‘l—r-la—uz—+(1—7)g—a—u%_ for i = 0,. . ,n—l,

(7.1.62)
and equation (7.1.33) for j = n — { — 1 simplifies to
a2pi,n—i—l 32Pi,n-—x‘—1

—7 —7 = in—i — .=0,..., —1. 7.1.3
(n-2)(n—1—1)p;, g EY +g E™ for 1 n (7.1.63)
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Subtracting (7.1.62) from (1 — v) times (7.1.63) then yields

: - (s . _ o O Pi,n—i-1
(1- 7)(" - z)(n —t1- l)px,n-z - (i + 1)(7l -1 - 1)Px+l,n—|—1 = —-7g—m

fori=0,...,n—-1. (7.1.64)
For ¢ = 0, equation (7.1.64) becomes

62P0,n—1

(1 =7)n(n —1)pon — (n — 1)py,n—1 = LAy vy vt (7.1.65)
By Lemma 7.1, a;’ao-u"—i = 0, so that the right hand side of (7.1.65) is zero, which
1
then gives (since n > 2 is assumed)

P1,n—-1= (1 — ¥)npon. (7.1.66)

For i = 1,...,n — 1, substituting the result (7.1.61) into (7.1.64) allows the
partial derivative to be removed to yield

(L= =i)(n—7=1)pin—i = (i + 1)(n —i = 1)pis1,n-i-1

=1t + 1)pi+1,n—i-1 —i(n — )P n—i, fori=1,...,n—1,
which simplifies to

(n=)yi+ 0 -7)n—-1)]pin-i=({+1)(n=Dpiyin_i—y fori=1,...,n~1.

(7.1.67)
Since equation (7.1.67) reduces to the result (7.1.66) for the case i = 0, division
by (i + 1)(n — 1) and inclusion of i = 0 then permits the result to be expressed in
the desired form (7.1.58). O

A final Lemma can now be proved to investigate the form of the coefficients
Pio and po; previously discussed in Lemmas 7.1 and 7.2.

Lemma 7.5 The coefficients pig and poi, fori = 1,...,n, n > 2, are polynomials
in u; and u; respectively, with maximum degree of 2(n — ). If n > 1 then pgo is
linear in u; and u,.

Proof: For n > 2, first p;o is considered, since the proof for po; is similar. When
the result of Lemma 7.2 is used, equation (7.1.25) with j = 0 becomes an ordinary
differential equation,

2

d*p; )
(i + 1)ipiv10=g dff, fori=1,...,n—1. (7.1.68)
1
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Since pno is a constant by Lemma 7.3, integration and induction are used to show
the desired result.

Inductive hypothests: (deflation on i) pi is a polynomial of degree 2(n — i) for
n > 2 a fixed positive integer, and i =1,...,n — 1.

For ¢ = n — 1, pno is a constant, which is a polynomial of degree zero. Then
Pn—1,0 satisfies equation (7.1.68) which can be integrated twice with respect to u;
to give, for example a quadratic,

n(n—-1) ,
Pn-10 = Tul + aju; + a2,
where a;, a; are arbitrary constants of the integration. pp,—;o is therefore a
polynomial of degree 2, and the inductive hypothesis is shown for : = n ~ 1.

Assuming that the hypothesis is true for a fixed valueof ;, 1 < i < n -1, it
is necessary to show that p;_; o is a polynomial of degree 2(n — ¢ + 1). Again,
dzpi—l.o

du1
t). Integrating such a polynomial twice with respect to its argument yields a

polynomial of degree 2(n — i) + 2 = 2(n — i + 1), which is the desired result.
The inductive hypothesis is now shown for an arbitrary finite value of n, and
accounting for zero coefficients in the leading terms for the polynomials, the state-

Pi—1,0 satisfies equation (7.1.68), so that is a polynomial of degree 2(n —

ment of the lemma has been shown for pjg.
For the terms poi. equation (7.1.33) with : = 0 may be written with the use of

Lemma 7.1 as
. . d2po; . .
(G + 1)jpoj+1 = g—gh, forj =1,...,n — 1. (7.1.69)
2

Since pon is a constant by Lemma 7.3, an analysis similar to the above argument
may be completed, to give the stated result after switching the indices 7 and j.

For the case n > 1, equations (7.1.22), (7.1.24) and (7.1.33) respectively be-
come, for : = 0 and 5 =0,

32P00 321’00 32P00 -
54,00, =0, —5-1-‘%— =0, d 6u§ =0. (7.1.70)

This equation implies that the coefficient pgo must be of the form
Poo = auj + buz +c, (7.1.71)
with a, b, and ¢ constant, which is the second statement of the lemma. O
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With the results of Lemmas 7.1 to 7.5, the possible forms of conservation laws
(7.1.5) may now be stated for the possible values of n in the multinomial form
(7.1.18) of P. The simplest case is for n = 0, which is considered in the following
theorem.

Theorem 7.1 (Solution for n = 0.) Conservation laws of the form (7.1.5) with
P given by (7.1.18) with n = 0, must be of the form

b
P=au; +bus, Q= guf +su}+gla+ (1-7)bl¢ +gla+b)G,  (7.1.72)

for a and b arbitrary constants.

Proof: For n = 0, Lemma 7.3 requires that the function P must be of the form
P = poo(uy,uz) = au; + buy + ¢ for a, b and c all constants. Since constant
terms do not change the differential form of a conservation law, ¢ is assumed to
be zero without loss of generality. Equations (7.1.8)-(7.1.11) then describe the
first partial derivatives of Q via the following steps with subsequent integration.

0

6_1?1—=au1 = Q= §u¥+Q(I)(u2:Cls 42)7
b a b
E%:Mz = Q: -2-'U§+§US+Q(2)(C11C2)1

uf + gud + gla+ (1= DBG + Q@)

R

9Q _ _ _
5, ~9et(l-7gb = Q=

and finally,

b - [ d
gg =ga+gb = Q= %uf + ;u% +gla+ (1 —)bJ¢1 + gla + b)¢2. (7.1.73)

This last equation allows the result of the theorem to be stated as equation
(7.1.72). In addition, it should be noted that the conservation laws (7.1.1) and
(7.1.2) are recovered from (7.1.72) by the choice of constants (a,b) = (1,0) and
(a,b) =(0,1). O

Theorem 7.2 (solution for n = 1) Conservation laws of the form (7.1.5) with
P given by (7.1.18) with n = 1 must be of the form

P = (auz +b){2 + [(1 — v)au; + ¢)](1s
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and

Q = (au} + buz)Ga + [(1 — Mau? + curl¢ + EZ W gag?

+ (1 —v)gali(z + %ga(%. (7.1.74)

for a, b, and ¢ all constants.

Proof: For n > 1, Lemma 7.5 gives poo = au; + buz + ¢ for a, b, and ¢ constants.
It can be assumed that a = b = ¢ = 0 without loss of generality, since if we
write P = Pln=o0 + P|n>1 then (7.1.8)-(7.1.11) allow a similar decomposition,
Q = Qn=0 + Qln>1, where P|,=¢ and Q|n=¢ satisfy Theorem 7.1. The linearity
of the conservation law in differential form allows P and Q to be written as the
sum of such terms, and since the form of pg is the same as for the n = 0 case, no
new terms appear in Q|n=o and therefore may be ignored, and pgg = 0 assumed.

By Lemma 7.3, po; and pyo are linear in u, and u;, respectively, and are
therefore assumed to be of the form

po1 = auz + b, and Pio = cu; + d, (7175)

for a, b, c and d all constants. A quick verification of conditions (7.1.22)-(7.1.35)
shows that the coefficients in (7.1.75) satisfy all of these conditions trivially so that
no constraints on the four constants arise, and P takes on its most general form.
To find Q, equations (7.1.8)-(7.1.11) are used with P = (auz + b)(2 + (cu; + d)(s.
The first derivative, (7.1.8) gives

a_Q_ = UICCI + CI(C‘UI + d)

3u1
= (2CU1 + d)Cla
which integrates to

Q = (cu? + du1)C1 + QW (u2, 1. G2),
for the function Q(*) to be determined. Equation (7.1.9) is similar, and becomes

oQ

Buz

from which the form of @ written above can be further determined up to another
unknown function Q(?) as

= (2auz + b)(,,

Q = (cul + du; )¢ + (auj + buz) + QP (1. (o).
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Equation (7.1.10) becomes

g% =g(c(1) + (1 — v)g(alz) + uj(cu; + d),

from which @ may be further specified to be
Q = (cuf +dur)y + (aud + bua)Cz + 5967 + (1 = 7)9aGiGa + Q¥ (G2). (7.1.76)

In (7.1.76), Q¥ is still undetermined. The last partial differential equation for Q
is (7.1.11), which simplifies to

Q = g(cC1) + galz + uz(auz +b).
3¢,

Substitution of (7.1.76) into this result yields

do®)
auj + buz + (1 — v)galy + Q = g(c(1) + galz + uz(auz + b),

d¢e
40
d¢;

of the form (the constant of integration is zero without loss of generality):

from which it follows that ¢ = (1 — v)a and = ga(z. Therefore, @ must be

1-17)
2

gact +(1 = 7)gaciGz + 59aG3.

(7.1.77)
After relabeling the appropriate constants, equations (7.1.75) and (7.1.77) can be
easily restated as the result (7.1.74). O

Q = [(1 = 7y)au? + dus)C + (aul + bua)Cz + .

Some special cases of the result (7.1.74) are observed to occur. First, when
a = 0, choosing b = 1, ¢ = 0 gives the conservation law (7.1.3), and choosing
b =0, c = 1 recovers equation (7.1.4). The interesting new equation is for a = 1,
b =0, ¢ = 0 which gives the conservation law
gt‘[(1—‘/)111(1+u2C2]+5%[(1*‘/)U%C1+"%Cz+(1 3 7)9412+(1—’7)9C1C2+%9C§] = 0.
(7.1.78)
Equation (7.1.78) corresponds the physical to the physical principal of conserva-
tion of total horizontal momentum, as the density difference between the layers
is accounted for in the terms with 1 — ~.
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Before examining expansions such as (7.1.18) for n > 2, some additional de-
velopment and simplification of the eleven conditions (7.1.22), (7.1.24), (7.1.25),
(7.1.27), and (7.1.29)-(7.1.35) is completed in light of the results in Lemmas 7.1-
7.5. For example, in equation (7.1.22), the i = 0 and j = 0 cases are satisfied
trivially. As well, the terms with ¢ + j = n are satisfied due to Lemma 7.3. The
remaining condition is restated with appropriate range of indices as

.. .. 1 =1,...,n—2
Pt J . 3?; J . an I £ t ’ ’ ?
= - 7.1.79
(w1 "2)6u Jaul lauz or j=1,...,n—1—1. ( )
Although equation (7.1.24) is always trivially satisfied due to Lemma 7.1, equa-
tion (7.1.25) is only somewhat simplified by removing a few indices. The resulting
condition is then

apl] 2 i=11"'7n—27 -
(z+1)2p.+u—g(9 +(1—7)ga au for Gi=1l..m—iol (7.1.80)

The case with j = 0 in equation (7.1.25) results in Lemma 7.5’s (7.1.68) which is
excluded from (7.1.80).

Equation (7.1.27) is reduced somewhat as well since the 1 = 0 case is trivial
due to Lemma 7.1. The resulting condition becomes

a i 8 i
+t(J+1)pij+1 =g ap2J + aulgtjtz

fori=1,...,n—-land j=0,...,n—2—1. (7.1.81)

(w1 = u2)(j + 1)%

The two conditions (7.1.29) and (7.1.30) are satisfied by Lemma 7.3, and equation
(7.1.31) without the trivial case for 7 = 0 may be stated as

d? Dij Pt]

+ (@ + Dipini =95, “Bu, +(1 -9
forz-O,...,n—2and]—1,...,n—1—1. (7.1.82)

P:+1,J

(1 + 1)(uz — 1)

Of the four remaining equations, equations (7.1.32) and (7.1.35) are satisfied
trivially by Lemma 7.3. Condition (7.1.33) simplifies to

. . azpij a pz] 1= ’ :
i1 = fi . 7.1
(7 + 1)jpi,j+1 95u0u; 79 32 O 1. (7.1.83)

j=1l,...,n—1—
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where the 1 = 0 case is removed since it simplifies to (7.1.69) in Lemma 7.5 The
remaining equation, (7.1.34) is restated for completeness as

) y . i - ba ) i .
(Z+1)(]+1)(u1 —“2)Pi+1,j+1 =(l+1)g (3? +1,7 + p+1'1)
aul 6112

. Opi,j+1 Opi j+1 ¢=0,...,n-2,
- 1 —=J7_ - 7.1.
(7+1)g u, +(1-7) Buiy for =0,...m—i—2. (7.1.84)

Therefore, for n > 2, the coefficients of the multinomial solution P of the
form (7.1.18) must satisfy the six constraints (7.1.79)-(7.1.84), as well as the two
equations (7.1.68) and (7.1.69) found in the proof of Lemma 7.5. It is now easier
to prove the following results.

Theorem 7.3 (Solution for n = 2.) Conservation laws of the form (7.1.5) with
P given by (7.1.18) with n = 2, must be of the form

P = 5(1=7ulG + 5(1 = 1)gct + JulGe + 3963 + (L = 1)gGiGe.  (7.185)
and

Q= :.12'(1"“/)1‘";'(1 +(1—‘/)9U1§12+%U3C2 +9u2G +(1—7)g(ur +uz)¢i 2, (7.1.86)

or scalar multiples of (7.1.85) and (7.1.86) with scalar additions of the solutions

forn=1land n =0.

Proof: As done in the proof of theorem 7.2, the coefficient pgg = 0 without loss
of generality. Of the remaining 5 coefficients, Lemmas 7.3 and 7.4 describe pog2,
P11 and pyo up to an arbitrary constant. Employing the recursive algorithm in
Lemma 7.4 gives, for an arbitrary constant a,

e (7.1.87)
_C-0R0+ A - 5.
P = O+ D2 -1) poz = 2(1 —7)a. and (7.1.88)
o Vet 1 e

(7.1.89)

By Lemma 7.5, the remaining coefficients p;o and po; are polynomials of degree
2, stated with arbitrary constants a,, a;, ag, b2, b;, and by as

Plo = aguf 4+ aju; + ag, and (7.1.90)

por = bau} + byus + bo. (7.1.91)
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Substituting equations (7.1.87)-(7.1.91) into the constraints (7.1.79)-(7.1.84)
reduces the number of constants further. Although the conditions (7.1.79) and
(7.1.80) are not applicable for n = 2, equation (7.1.81) becomes

o d?
(ul —uZ) apll +p11 =g dP;O1

which simplifies to the result
(1 -+v)a = gas. (7.1.92)
Similarly, the condition (7.1.82) is

d? P01

%)
p” —FPu=(1-79g> E»

(Uz—ul)

which becomes simply
a = gb,. (7.1.93)

The constraint (7.1.83) is not applicable, and the remaining condition (7.1.84)
may be applied as follows:

dp; d
dP (1_7) P01

(u)
which becomes
2(uy — u2)(1l — v)a = g(2a2u; + a;1) — g(1 — v)(2b2uz + by).

Substituting the results (7.1.92) and (7.1.93) into the above for a; and b, simplify
this greatly, revealing the equation

0=a; — (1-7)b. (7.1.94)
The results (7.1.92)-(7.1.94) then allow the multinomial P to be given as
_ (I1=7) 2
P = au? + ayu; + a0 ) (1 + (1= 7)ac? +  =uf + ———uz + bo ) G2
g g (1 - /)
+al? +2(1 —v)ali (2. (7.1.95)

Equation (7.1.95) can be rearranged as

P= g [(1—v)ulC+ (1 — 7)g¢? + u3Ce + 9¢2 + 2(1 — 7)g616a]

+ 1’[(1—‘/)"1(1+u2C2]+aoCx+boC2- (7.1.96)

1—14
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By the linearity of equations (7.1.8)-(7.1.11) for Q, and the linearity of the con-
servation form (7.1.5), the previous n = 1 solution in (7.1.96) may be neglected
without loss of generality. By setting a; = 0, ap = 0 and by = 0, the desired result
(7.1.85) can be derived directly from (7.1.96) with a = £.

To find the form for the multinomial @, equations (7.1.8)-(7.1.11) may be
integrated individually. For example, for P given by (7.1.85), equation (7.1.8)
becomes

29 w1 =Pl + G [%(1 — )l + (1 - 7)gC + (1 — ‘/)ng] ,
1

which integrates once as
1 - -
Q=51 —7uG + (1 =7)guilf +(1-7)gui6ilz + QM (uz, (1, ¢2). (7.1.97)

Similarly, equation (7.1.9) yields

1
gTQz = uz(u2Q2) + (2 [5"3 +9G+ (1 —7)gCs

Substitution of (7.1.97) into the left hand side of the above expression, and inte-
grating with respect to up; produces

1
Q= 5(1 — 3G+ (1 = 7)guilE + (1~ v)gui1i e
+ :l,'“ng + guaC? + (1 — 7)gu2(i2 + QP (¢1,¢2).  (7.1.98)

Equation (7.1.10) becomes, after substituting equation (7.1.85) for P,

ST? =g(1 — v)ui$y + (1 — v)gu2lz + ux[%(l —yud + (1 —7)g¢ + (1 — 7)gé].

aQ® .
Substituting the derivative of (7.1.98) into the above shows that 3QC =0, ie.
1

Q® = Q¥ ({2). Similarly, equation (7.1.11) may be written as

9Q

G 9(1 = y)ur1ls + gualz + “2[é“§ +9¢ + (1= )9C].

‘ . . g dQ®
after which calculating T G - 0.

Therefore, without loss of generality, it can be assumed that Q® = 0. With

of (7.1.98) to compare terms gives simply
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this assumption, equation (7.1.98) may be rewritten to give the desired result
(v.1.86). O

In the n = 0 and n = 1 cases for Theorems 7.1 and 7.2, the form of P contains
easily identifiable terms, such as mass, velocity and momentum. For n = 2, the
conserved quantity is interpreted physically as the sum of vertically integrated
kinetic and potential energy per unit mass (of the lower layer). This can be seen
from the following short calculation. The vertically integrated kinetic energy per
unit mass is given by

i1 ERACD | 1 1
[ 3udds+ /< 5= 7udds = 2ulG + (1 -l (7.199)
3 5

The vertically integrated potential energy per unit mass is similarly obtained via

¢2 C1+¢2 1 ) 1 ) 2
[ gsa +/< 9(1 = 7)zdz = 2gC2 + 2g(1 = 7)[(G1 + ) — ¢
2 596 + 5

1 1
=596 + 59(1 = )¢ +9(1 = 7)61Ca.
2 2 (7.1.100)

The sum of the right hand sides of the kinetic energy (7.1.99) and the potential
energy (7.1.100) gives the conserved quantity (7.1.85).

An observation may now be made concerning the results of Theorems 7.1-7.3.
This is that the number of arbitrary constants involved in the conserved quantities
P seems to decrease with increasing n. In equation (7.1.72), for the n = 0 case,
P contained two arbitrary constants. For the n = 1 case, equation (7.1.74)
contains three arbitrary constants, two of which are associated with the ‘first-
order’ conservation laws (7.1.3) and (7.1.4). For n = 2, equation (7.1.85) does not
have any arbitrary constants, although adding scalar multiples of the previous
earlier cases would necessarily yield some scalars. This pattern motivates the
conjecture that for increasing values of n, (n > 3), the constraints (7.1.79)-(7.1.84)
may result in some inconsistencies which do not permit higher-order conservation
laws associated with the two-layer shallow water equations. This question is
answered through the final result of this section.

Theorem 7.4 (Solution for n > 3) Conservation laws of the form (7.1.5) for
the two-layer shallow water equations (7.1.1)-(7.1.4) with hp =constant do not
exist for multinomials P of the form (7.1.18) having n > 3.
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Proof: It is assumed that P exists which is non-trivial of order n with n > 3.
That is, the coefficients p; n,—; # 0 for i = 0...,n, for otherwise it would suffice
to consider multinomials P of order n — 1. From Lemma 7.3, Din—i is a constant
for : = 0,...,n. The four equations (7.1.80)-(7.1.83) exploit this property with
the indices chosen as i = n — 2 and j = 1. The simplified results are

a n n o d
(n =2+ 1)(n = Dpn-13 = 9= 52 + (1= 7)g a—”—— o (7.1.101)
0%pn—21 | Fpn-zy -
- 2 n— = . D) .1- 02
(n—2)2pn_22=g 5u? +gaulau2 (7.1.102)
0? Pn-2,1 azpn—2,1 -
(n =2+ 1)(1)pn-11 _g6_6_+(1—7)gW’ (7.1.103)
and 5
Fpn21 -{-g6 Pn-21 (7.1.104)

2Pn-22 =95 "5 o3

From Lemma 7.4, the constants p,_z 2 and pp—;,1 are related by the recursion
relation (7,1,58). Stated for : = n — 2 this is

_n=-(r=2h(r-2)+ 1 -y)(n— 1)]

P11 (n—2+1)(n—1) n-2.2
_2[ny=2y+n—1—9n+4]
- (n _ 1)2 Pn-2,2
2(n—1—1) - =
= ————"Dn-22. 7.1.105
(n—1)2 Pn-2,2 ( )

Equation (7.1.105) may be substituted into equations (7.1.101)-(7.1.104), while
making the change of variables
apn—Zl a1’:'n-21 apn 2,1
= —_ —_—, = ) d -1 = Dn- .
r1 =g EN R Iz = 6u16u2 I3 =g o2 and (n }Ts = pn-2.2
(7.1.106)
to give four linear equations. The first two,

1+ (1 —7)z2 =2(n — 2)(n — 1 — v)zy,

and
Ty + 72 =2(n - 1)(n — 2)zy4,
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can be manipulated to give the solution parameterised by z4 as

22 =9772(n=2)[n—1—(n—1—1)|zs = 2(n — 2)z4, and

) (7.1.107)
71 =2(n—1)(n - 2)zy — zo = 2(n — 2)%z,.
The last two equations,
T2 + (1 —v)z3 =2(n — 1 — v)zy,
and
T2 + 13 =2(n — 1)z4,
are similarly solved as
T3 =27 n-1=(n—-1—7~)lry =2z , and
3 oA ( x4 4 (7.1.108)

T =2(n - l)zg —z3 = 2(n — 2)z4.

Substituting the change of variable (7.1.106) back into the results in (7.1.107)
and (7.1.108) gives

u? T g(n-1) Pn-22. Ou,08u, g(n — l)Pn—z,z, _
) (7.1.109)
a Pn-2,1 2
and = Pn-22-

oui  g(n-—1)

Continuously differentiable solutions to the partial differential equations (7.1.109)
are given by

) (=22 e Un=d)
n—2,1 = 75— Pn-2.2 T Pn-=-2,2Uu1U2
g(n —1) 'gln—1)
1 2
+ —————Pn-2,2u3 + au; + bus; + ¢, (71110)
g(n —1) :

for a, b, and c arbitrary constants.
Now, since n > 3, constraint (7.1.79) may be applied to p,_2; with i =n — 2

and 7 =1,

azpn-z 1 3Pn—2 1 Opn—-2.1
— - = - —-2) = 7.1.111
(ul UQ) aulau2 aul (Tl (‘ )
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Calculating the appropriate derivatives from (7.1.110) and substituting the results
into equation (7.1.111) gives the result

(41 — )...(n—2) _2(n—2)2 u +2(n—2) +
1 2 —(n I)Pn-2 —_—_g(n — 1) Pn—2,2U) g—_(n — 1)Pn-2,2u2 a
2(n — 2
-9 -
-(n-2) (g(n Pn—z,zul + o(n = l)Pn-2.2u2 +b),
which simplifies to
2(n -2
(up — u2) EZ ;pn_g,z =a—(n—2)b. (7.1.112)

Since u; and us are independent, it follows that u; — u» is not a constant. There-
fore, equation (7.1.112) yields the result that p,_; 2 = 0 which contradicts the
original assumption, completing the proof. O

Summarizing the results from Theorems 7.1-7.4, it is seen that the four con-
servation laws (7.1.1)-(7.1.4) give rise to only two additional conserved quantities
of the form (7.1.18). These conserved quantities have been interpreted as: total
horizontal momentum, given by equation (7.1.78), and energy, given by the con-
served quantity. This result stands in contrast to the result of Whitham (1974,
p.460) for the one-layer shallow-water equations which have an infinite number
of conserved quantities of the form P = Y., pi(u)h'. It may be observed that
the special cases of Theorem 7.2 and 7.3 for one layer may be obtained by tak-
ing u; = 0 and {; = 0 to recover the corresponding single layer results derived
elsewhere (Whitham, 1974 p.460).

In general, if the shallow-water equations (7.1.1)-(7.1.4) admit any more con-
servation laws than those found in this section, then the conserved quantities must
necessarily be of a more general form than the multinomial (7.1.18).

7.2 Three-Dimensional, One-Layer Conservation Equations

The one-layer simplification of equations (7.1), (7.2) and (7.5) may be obtained
by letting the upper layer variables vanish, i.e. {; =0, u; = 0, and v; = 0. By
implementing the change of variable u; — u, v — v, and {; — (, the three
equations simplify with constant bottom topography hpg to

Ou Ou Ou 3

§+u8_x+v3y

~I
()

= = fo. (7.2.1)
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5 tug tug, teg = —fu (7.2.2)
and
gf 5o (Cu) + —(Cv) =0. (7.2.3)

It is desired to obtain combinations of equations (7.2.1)-(7.2.3) which may be
expressed in the conservative form

S P(,0,0) + 2 Q(uy0,0) + o R, ) =0, (729

for sufficiently continuous functions P, @, and R. By necessity, only the irrota-
tional case is considered (f = 0) so that no forcing terms will appear on the right
hand side of equation (7.2.4). In a similar (but shorter) manner to section 7.1,
the partial differential equations (7.2.1)-(7.2.3) are used to place constraints on
the specific forms of P, @, and R which may exist and still satisfy (7.2.4).

An application of the chain rule allows equation (7.2.4) to be written as

glzgzi+§£a_v+3PaC+6Q3u 3Q6v+8_Q_6_(_
Ou ot ' Jv Ot OC 3t Oudr Ovdz 0O¢ Iz
_OROu 0RO ORI _ ..o
T oudy "oy ooy T
Substituting the temporal derivatives from equations (7.2.1)-(7.2.3) into the result
(7.2.5) gives

o + 2 (B %) + 22 (- 2w
Ou “9z ~ 6y ga:c Oy gay o¢ oz

0 9Q Ju 0Qov 0Q BC ORJOu OROv B_R _3_( _
"‘“”) 5udz  Bvor oz Oudy  Gvdy oCoy
which can be rewritten as
oP 9P _8Q 8P 8P _9Q\ &
(_ 5w " Sac Tt )ar*”("gau“"ac*ac)
aP+— in++ 6P+6—R-)QE (7.2.6)
Oz Ou Ou/ By -
o (—o2P _ 0P aR v (_ oP _ 8P+6R)Q_C__O
v T8¢ ac 8¢ -
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By the linear independence of the first partial derivatives, it follows that for
nontrivial or nonconstant solutions to the original equations (7.2.1)-(7.2.3), the
coefficients in (7.2.6) must vanish. This may be written as six equations

aQ oP oP 0Q oP 0Q oP OP OR oP

5 "t T B '3 B¢ 9 YA Fw Vo
oR 0P 0P _ oR_ P 0P
Bv  "9v T tac e T8 TVac

(7.2.7)
The relations in (7.2.7) may be differentiated and restated as constraints on the
7Q d 9 ives
8vdu "¢ Bvdu ©

function P alone. First, equality of the second derivatives

ligd o’P 9P o*P

“vou T Beac ~ v T “udu’
which simplifies to the result
OP 9P
—_— 7.2.8
ov Cavag (7.2.8)
Next, equating 2Q and 7Q yields the equation
9Cou oud(
&P + oP +<82P _ &P + oP tu &P
“8cou T 8¢ T°acz Tz T B¢ T “aud(
which becomes simply
9P 3’pP
= 7.2
Cacz - gau2 * ((""‘9)
3’Q 3°Q
. d Zx
The equality of —— 3w 3cay, 20d 33 c produces
u 8P _ 0P tu 8*P
8cov ~ Bvau T “avdC
giving the simplest result
P _ 0 (7.2.10)
Ovlu = o
which also be obtained by equati O'R and R A fourth equation ma;
ich may also be o y equating 3udC 5Cou” q y
. . &R 8*R .
be derived from the equality of and which becomes
Ovdu Oudv

oP +ov o*pP 0P + o*P
ou avau auav oud’

222



resulting in

gp = 4::;, (7.2.11)
The last constraint on P arises from equating g;alz and g: :; to obtain
&P OoP &P _ &P 0P &P
Yacaw tac T4 =980 T ac T Vawac
which then becomes 2p 52p
CGer =95 (7.2.12)

Equations (7.2.8)-(7.2.12) are now used to determine the form of P. First,
equation (7.2.10) implies that P must be of the general form

P(u,v,() = a(u,{) + B(v,(), (7.2.13)

for arbitrary C? functions a and 3. Substituting this form of P found in (7.2.13)
into the remaining conditions (7.2.8), (7.2.9), (7.2.11) and (7.2.12) give

a8 8% N
3 = $uac’ (7.2.14)
8%a 0%p 9%a e
C(EE?+ ﬁ) =gw. (1.2.10)
dc 5a
‘)
Ou CauaC (7.2.16)
and 8? %3 4’8
a4 - -
C(a_c?+a_c2) = g5y (7.2.17)
: . o - 8%a %8
Comparison of equations (7.2.15) and (7.2.17) reveals that 302 = 597 from
2 2
which it follows that g ;21 + —gc—f = f((). Substituting this deduction into equa-

tion (7.2. cf = (f(¢), which integrates twice to produce a general

expression for a with two arbitrary functions of ¢ as

& = 3CF()? + ao(Cu + e (€). (7.2.18)
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Substituting this form form a into equation (7.2.16) yields, after multiplying the
entire equation by g to simplify it,

df dao
Cfut+ao=( (fu+CE<7u+ TC-) ’
from which the following conclusions may be drawn:
df
— 29 —
0=¢ ac = f=c
and
a0 = cdi; = ag = a, (7.2.19)

for a and c both constants.
Similarly, equation (7.2.17) may be integrated to yield an expression for 3
involving arbitrary functions of ¢,

98 = 5CFu? + Bo(Co + B (C). (7.2.20)

Using the fact that f = c, this expression may be substituted into the equation
(7.2.14) resulting in

which simplifies to a single ordinary differential equation for 3y as in equation
(7.2.19), which then integrates as

Bo = bC, (7.2.21)

for b a constant.
Using equations (7.2.18)-(7.2.21), the function P may be further described from
the form stated in (7.2.13) as

Plu,v,€) = 5C(u +7) + ZC(au +bu) + P(Q), (7.2.29)

where the unknown functions a; and #; have been combined into P. This last

2

. P .
into either equation (7.2.9) or (7.2.12), resulting in Cd_(2 =g (?() . which may

be integrated to contain two additional constants, d and e as
~ 1 _
P(¢) = ze¢* +d¢ +e. (7.2.23)
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Since without loss of generality, e = 0, equation (7.2.23) may be inserted into
(7.2.22), and the constants reorganized to state the most general form of P (with-
out any constant terms) which satisfies the conservative form (7.2.4) as

P(u,v,() = gaC? + [a(u? + v?) + bu + cv + d|C. (7.2.24)

To determine the flux functions @ and R, the partial derivatives from the
statement (7.2.7) can be used knowing P above. For @, the analysis is completed
in three steps. First, the derivative with respect to u is expressed as

9Q

e u(2au + b)¢ + ([2ga¢ + a(u? + v?) + bu + cv + d]

= 2gal? + (3au® + av? + 2bu + cv + d)C,

which integrates to an expression for Q containing an unknown function,

Q = 2gau(? + (au® + auv?® + bu® + cuv + du)¢ + Q, (v, ¢). (7.2.25)
o aQ : - - .
The next derivative of B0 obtained from (7.2.7) and (7.2.24) is
9Q
= —u(2 ,
Do u(2av + ¢)¢
d
from which substitution of (7.2.25) for @ reveals that dQvl = 0, and hence @; =

Q1 ((). The final derivative, ?9_? vields the equation

a—Q- = g(2au + b)¢ + u[2gal + a(u® + v?) + bu + cv + d]

o¢
= (4au + b)g¢ + au® + auv? + bu? + cuv + du.

Differentiating equation (7.2.25) with respect to ¢ and comparing the result with
the above equation yields
d@,

T=bgC,

which integrates to (with the constant of integration set equal to zero without loss
of generality) give Q1 = 3bg(?. This allows the final result of Q, up to addition
of a constant, which is

Q(u,v,() = <2au + %b) 9¢% + [au(u® + v?) + u(bu + cv + d)]¢. (7.2.26)
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In a similar manner, the form of the function R can be described. The u partial
derivative of R from (7.2.7) and (7.2.24) is given by

OR

i v(2au + b)¢,
which integrates to
R(u,v,¢) = (au?v + buv)¢ + Ri(v,¢). (7.2.27)
.. OR . .
The next derivative, B from (7.2.7) yields the expression
OR 2 2 _
50 = v(2av + c){ + ¢[2ga¢ + a(u?® + v*) + bu + cv + d]
= 2ga(? + (au® + 3av? + bu + 2cv + d)(. (7.2.28)

Substituting equation (7.2.27) into the expression (7.2.28) simplifies somewhat

to yield
OR,
ov

which may be integrated to include an unknown function in ( as

= 2ga(? + (3av? + 2cv + d)C,

Ry (v,¢) = 2gav(? + (av?® + cv? + dv)¢ + Ra(C). (7.2.29)

OR . .
The final equation to be used to help determine R is obtained from a in (7.2.7),

and becomes

g—? = g(2av + ¢)¢ + v[2gal + a(u? + v?) + bu + cv + d]

= (4av + c)g¢ + [a(u? + v?)v + buv + cv? + dv). (7.2.30)

Substituting the form of R given by equations (7.2.27) and (7.2.29) into the ex-
pression (7.2.30) gives

dR; cgC
ac ~ >
which integrates to
R, = %cg(z, (7.2.31)
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where the constant of integration in (7.2.31) has been chosen as zero without
loss of generality. Equations (7.2.27), (7.2.29) and (7.2.31) may now be used to
express the most general form of R, up to addition of a constant, as

R(u,v,() = (2av + %c)g(2 + [a(u? + v?)v + (bu + cv + d)V)C. (7.2.32)

Equations (7.2.24), (7.2.26), and (7.2.32) can now be combined as a concise
result, stated in the following theorem, which has been proved by the preceding
discussion.

Theorem 7.5 The three-dimensional, one-layer irrotational shallow-water equa-
tions (7.2.1)-(7.2.3) with f = 0 admit conservation laws of the form (7.2.4) with
P, Q, and R given by equations (7.2.24), (7.2.26) and (7.2.32), respectively.

In essence, theorem 7.5 states that there are four conserved quantities asso-
ciated with the three-dimensional one-layer shallow water equations. These are
mass, momentum in the z and y directions, and the sum of kinetic and poten-
tial energy, all vertically integrated through the height of the layer. This can be
observed readily by choosing the constants in the conserved quantity P given by
(7.2.24) as required. For example, the energy equation may be obtained by fixing

the constants asa =1, andb=c=d =0.

7.3 Three-dimensional, Two-layer Conservation Equations

To consider the types of conservation equations which may arise from the full
shallow-water equations (7.1)-(7.6) without any simplifications other than h g con-
stant and f = 0, an analysis similar to the methodology in sections 7.1 or 7.2 may
be employed. However, initial calculations did not prove productive, prompting a
different style of result which generalizes the stronger statements of theorems 7.4
and 7.5 to determine the associated mass, momentum and energy conservation
equations. Thus, these conserved quantities examined in sections 7.1 and 7.2 are
generalized for the three-dimensional two-layer shallow water equations, and the
related conservation equations are verified in the following statement.

Theorem 7.6 The three-dimensional two-layer shallow-water equations (7.1)-
(7.6), neglecting rotation (f = 0) over constant bottom height h g, admit conser-
vation equations of the form

0
EP(UI,U2,’01,02, ClyCZ) + %Q(UI,UQ,'U},UQ, Cl:(?)

o -
+3-R(ulau27vlav2eglvc2) =07 ("31)
Y
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with P, @, and R of the form
P= 1 5 2 1 2 2 1 2.1 2
= af 30 +v)G + 51 = N +93)G + 396 + 5(1 ~ 79

+(1- ‘7)9(1(2} +b6{(1 = vuriC1 +u2(2} + c{(1 = 7)1y + v2C2} + dCi + e(a,
(7.3.2)

@ = of Jua(ud + o) + 31 = us(ud + 91 +9l(1 — s E + uacl
+ (1= 1) (w1 +u2)C Cz} + b{(l - ui +ui + ég[cf.? +(1—)¢F)

+(1- ‘Y)gClCl} +c{(1 = y)uiv1 (1 + uav2{e} + duy @y + eua (s,
(7.3.3)

and

R= a{ 543+ 3)2Ge + 2(1 = )(wd +7)1Cr + gl(1 = 7)1 C? + 02
+ (1 = v)g(v1 + vz)QCz} +5{(1 = Y)urv1 {1 + uzv2(e} + c{(l — iG +viG
+ -;—g[(l -G +Gl+ - 7)g61€2} + dvi (s + eva(a, (7.3.4)

where a, b, ¢, d, and e are arbitrary constants.

Proof: Equations (7.1)-(7.6) are rewritten for subsequent use with constant kg
and f = 0. They are also reordered and stated as

%"T‘ = —ul%t—l;l' —_— aaz;’ -—gaail —ggf, (7.3.5)
L LRy (7.3.6)
S =2 w2 -G~ o, (7.8.7)
9;72=_u2%‘:-v2% (1- )?—g%—?, (7.38)
= -2 )~ o) (7.3.9)
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and

= g uaG) - o (1a) (7.3.10)

The linearity of P, @, and R in the constants a — ¢, and the linearity of the
partial derivatives in equation (7.3.1), allows the verification of equations (7.3.1)-
(7.3.4) to be completed in five parts, one corresponding to each constant. That
is, substitution of equations (7.3.2)-(7.3.4) into (7.3.1) may be written as

oP, Q. OR. oP, 9Qs ORs 8P, Q. @R,
a[6t+61:+3y] b[3t+6:z:+6y]+c[6t+6z+6y

OP; 0Qq aR,,] te [6Pe 0Q. OR.

5%t T By 5 T 5 T ay]=0, (7.3.11)

+d [
where P;, Qq4, Ra, etc. are the coefficients of P, Q, R with respect to the con-
stants a through e. Equations (7.3.1)-(7.3.4) may be verified by checking that
separate terms in the square brackets in equation (7.3.11) vanish separately. For
the constants d and e, this exercise is straightforward from the observation that
if a = b = ¢ = 0, then equations (7.3.1)-(7.3.4) reduce simply to dx(7.3.9) +
cx(7.3.10).
For the term in P which is the coefficient of the constant ¢, P., consider a =

b=d =-¢e =0, and ¢ = 1 without loss of generality. In this case, B¢ may be
calculated from equation (7.3.2) as
oP aCI 3‘02 3C2

9 -
_at—=(1—‘/) (%Cl +Ul-aT) +‘a—tC2+v2—a—t-- (7.3.12)

Substitution of the time derivatives from equations (7.3.6), and (7.3.8)-(7.3.10)
into (7.3.12) yields

3_P_(1_ ) [— avl_vavl_ S 3(2]
ot 7 “1 5z By gay gay

+ (1 —7)n [—éa—x‘(ul(l) - aiy(vICI):I + [— Uz% - 02%;" - (1= ‘/)!]aa—i1
~ 52t vr [~ g uate) - o). (73.13)

Reordering the result (7.3.13) and applying the product rule allows the following
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calculation:

OoP ov 0
il —(1—9) (’5;1111(1 + v a—l_(ulﬁ)) - (%—vz-uzé'z + vzai(uzCz)>

—(1—1) (%ZivICI + %(vlﬁ)) - (361;2 v2(2 + vz—(sz2)>

o 0 5] o
—(1—‘7)9C1"a%-(1— )9 (Cl‘%'*‘ 3242) gaczCz,

which then becomes

oP 0
5 =32 {(1 = w11y + uzv2(2}

0

~ 3y {(1 — i +viC + 5(1 —1g¢t + (1 —7)g61Ce + %gcé} . (7.3.14)

This result (7.3.14) may now be seen as equations (7.3.1)-(7.3.4) with a = b =
d=e=0and c#0.

The coefficient for the constant b may be handled similarly. Witha=c=d =
e = 0, and b = 1 without loss of generality, equation (7.3.2) may be differentiated
to give

6t ——Cl at Uy ——. (7.315)

A
Substitution of equations (7.3.3), (7.3.7), (7.3.9) and (7.3.10) into (7.3.15) gives,
along with some reorganization,

o o 0
%t]i =(1—17) (—ulaal;‘ —vlaul —gai —gaC2> G +(1—‘r)ul(—5;(u141)

Oy
- %(mﬁ)) + (_u2aal;2 _v23 —(1—17)g a_il_gaaiz)cz

aP - (1 _ ) (3u1 8(1) BUQ 6C2

+ u2 (—aéx-(uzCz) - a%(”z(z))

= oP _ =—(1-7) (_:BUICI +ur - (UlCl)) - (6;2 u2(2 +uza£(u2C2))

ot
~ (=76 R (1 - g (cf"z %, Cz) 022
- (1—-17) (a—?vlCl + u;— (Ul(l)) - (aal;zvzﬁz +u2£(sz2))
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oP 7 1 1
= %= "o {(1 —uiG + u3(, + 5(1 - 7)g¢i + §gC22 + (1 - ‘7)9(1(2}

- a—ay-{(l — Y)u1v1(y + uzv2l2} - (7.3.16)

Equation (7.3.16) therefore verifies equations (7.3.1)-(7.3.4) for the coefficient b #
Oanda=c=d=e=0.
To complete the verification of equations (7.3.1)-(7.3.4), assume that a = 1 and

b=c=d=e=0. Then, % of equation (7.3.2) results in

ot ot ot

1 a
+§( )(ul-{-vf) +9§2£+(1 7)9C1i+(1 ‘7)9(6;;(24’(13(2)

P 0
0_ = (u26u2 + v2 UZ)C2+l(ug+v§)%2_+(1_./) (ulﬁ‘*‘vléﬁ) G

which simplifies to

oP _( 2 9 duy B 1
7%—=( v af)cw(l—v) (u17§+v1 ;t‘)c1+(§(u§+v§)+gcz
9G

o
+(1=796 ) G2+ (50 -20F +oD) + 1=+ )g<1+(1—~/)g<2)3%

Substitution of the six equations (7.3.5)-(7.3.10) into (7.3.17) removes the deriva-
tives with respect to time to permit

O [ (  Gwa_ dwu . 0G_ 0G\, (  ou o
at -~ |"? Y275z 23y 9%z 952 vl T %2y 23y

o 15] 15]
—-(1- /)999—932)](2+(1— r)[ul (—ul au; —vxaal;l —gail —gaiz)

+ v ("Ul?ﬂ'_vlavl _ g% —gacz)]Cx

9z oy 9y 9%y

+ [%(u% +v3)+ g+ (1— '7)9(1] [—Ea;(uzfz) - 585(02(2)]

+(1—7) [%(u? +vi) +9G +gC2] [- g (u1€1) — %(vlg’l)] . (7.3.18)
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Reordering terms in the above expression (7.3.18) yields

6—P = (u 2u—z-u ¢ + 1
i 25, 42C2 uza (uzCz)) (vz—U2Cz+ vza (u2C2))

6v2

ou 1
- (Uz—a—yzszz + -u23—(02C2)> - (vz '@0242 + vza (Uzcz))

~-(1—-9) [Ula—‘ 161 + 1“16 (u1€y) +v1%v—U1C1 + = 1 ("1(1)]

o

Ou
-(1-1) [ul—a—vlCl + lulay(vlCl) +01661v1€'1 + 201 By (UlCl)]
~(1—-)g [-a£‘02(2 + Cl (uzCz) + '6—9'"1(1 + Cla (u1C1) + %HIG
+ Cz—(ulCl)] —(1-7v)g [%—302(2 + G a—(szz) + aa—?vle + G a(vlﬁ)
+ %%vlﬁ + Cz—(thl)] - [-—agz-uzCz + Cz—(uzCz) + 622 v2(2

+¢2 ’a;(vz G2 )] )

which simplifies using the product rule to

oP o (1 1 2 (1 1
% =52 (5"%"2(2 + 5031‘2(2) ~ 5 (5"%”2@ + 5”%”242)

15 1 1 15 1 1
—-(1- 7)8_3:_ (5“3“1@ + 5”?“1@) - (1 —“/)% (§u¥v141 + ‘§va1(1)
o o
—(1- ’7)93—2' (u2C1le + ur G + w11 2) — (1 — ‘/)ga—y (v2C1C2 + v1(?

a . o
+010G) — 957 (28) — 95 (v2G2)
becoming, finally, expressed in the desired form

oP 2 (1 9 1
sy = —a—x{§(‘ug + v3)uale + 5(1 - ‘7)("% + vf)"lcl

+9 [(1 =) (w1d] + (w2 +u2)C1G2) + u2(3] }

J (1 1
- 3;{5("3 + v3)valo + 5(1 - ¥)(ui +v3) (016

+9[(1 =) (©1C2 + (01 + v2)C1Ga) + vacd] }
(7.3.19)
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Comparing the result (7.3.19) with the expressions for Q,. R, in formulas (7.3.3)
and (7.3.4) show that the calculation, and hence the theorem, is complete. O

The statement of Theorem 7.5 is not as strong a property as desired: a re-
sult stating that the number of conservation laws associated with the three-
dimensional shallow water equations is finite would be certainly of greater use.
Such a result remains conjecture, since attempting to prove this statement by
contradiction rests on theorems 7.4 and 7.5, and does not cover conserved quan-
tities of the form P(u,,vq,(1,(2), for example. As such, this problem remains
unsolved.

Notwithstanding the clarification of this open problem, it has been shown in
equation (7.3.2) of theorem 7.6, that the quantities of mass in each layer, hor-
izontal momentum in two perpendicular directions, and energy, are conserved
quantities of the flow and lead to five equations for the three-dimensional two-
layer system. Thus, the six variables in equations (7.1.)-(7.6) are one equation
short of being expressed as a closed system of conservation laws, and the numer-
ical methods for hyperbolic conservation laws developed in previous chapters are
not applicable in this case.

Chapter Summary

An investigation of the conservation laws which are admitted by the shallow-
water equations has been completed in this chapter. This analysis was motivated
by the existence of an infinite number of conservation equations for the two-
dimensional single layer system, as shown in Whitham (1974). These results are
valid for flow for which the effects of the Coriolis Force are negligible, and the
bottom boundary is horizontal.

In the two-dimensional, two-layer case examined in Section 7.1, the four equa-
tions for shallow-water flow (7.1.1)-(7.1.4), were found to admit a finite number
of conservation equations. The conserved quantities found were all multinomial
real-valued functions P : R* - R of the form

n n—i

P(ul’u2~, CI’C2) = Zzpij(ulvt‘l?)C{Cga

i=0 jy=0

for functions p;; which are C? in each of the variables u; and u2. The resulting
six equations in conservation form represent: conservation of mass and velocity
(in each layer), horizontal momentum, and energy.
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In the three-dimensional, one-layer case investigated in Section 7.2, the three
equations for shallow-water flow are shown to admit only four conservation equa-
tions with conserved quantities P : R? — R of the general form P(u,v,() which
are also C? in each variable. The conserved quantities represent mass, momentum
(in the z and y directions) and energy.

For the full three-dimensional and two-layer situation described in Section 7.3,
it was found that the generalized mass, momentum and energy detailed in the
previous sections resulted in five conserved quantities. Although it is thought
that only a finite number of C? conserved quantities exist for this system, this
idea remains unproved. Therefore, the five relevant equations are insufficient to
close the six-variable system, and allow it to be restated as a system of hyperbolic
conservation laws. Hence, the numerical method contained in Chapter 6 is not
applicable in this situation.
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Chapter 8

Conclusions

A summary of the results of this thesis is contained in this chapter. Where it
is applicable, the results are discussed in context with existing knowledge so that
the new contributions may be more easily observed. Ideas for future research are
interspersed throughout the discussion instead of being tabulated separately, so
that they can be viewed in context.

Gravity currents, examples of which are prevalent in nature and the labora-
tory, may be created from sudden releases of fixed volumes of dense fluid into
larger quiescent volumes of lighter fluid. The modelling of this time-dependent
motion has been achieved through the use of shallow-water methods, resulting
in analytic and numerical methods of solution (see for example, Rottman and
Simpson, 1983). These methods are limited by their requirement to rely on the
specification of a head or front condition, which must be determined prior to
the development of the gravity current. To the best of the author’s knowledge,
a general front condition which encompasses non-horizontal bottom topography,
friction, entrainment, turbulence, and volume changes does not exist. This thesis
describes a model, based on shallow-water theory, which overcomes the limitation
of a front condition by a consideration of the equations of motion stated as a
system of conservation laws for which a gravity current front may be considered
as a vertical discontinuity or shock.

The model equations derived are for two homogeneous layers of stably-stratified
incompressible Newtonian fluid overlying a rigid bottom boundary and beneath
a semi-infinite quiescent region. The layers are depicted in Figure 2.1, and the
dimensional equations of motion consist of equation (2.1.2) and (2.1.6) for a ro-
tating fluid with the f-plane approximation. For small aspect-ratio flows the
hydrostatic approximation and shallow-water approximation were made. The re-
sulting six equations in six unknowns, simplified through use of the boundary

found in Pedlosky (1987), and is not new. However, a comprehensive derivation
which specifies the assumptions and scalings is not generally found in connec-
tion with gravity currents. Therefore, this development of the model equations is
useful in this context.
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A new addition to the existing theory for two-layer gravity currents resulting
from initial releases of dense fluid was stated in Chapter 2, Section 3. This
is in the proposition of a nonlinear forcing term (2.3.2) for the lower layer. The
addition of this forcing term was motivated by observations (Benjamin, 1968) that
the nature of a gravity current does not change appreciably within the region of
small bottom slopes from the horizontal (< +5 degrees) and that drag due to
bottom friction generally acts to slow propagation speed (Middleton, 1966). The
forcing term was introduced in a way that it is consistent with shallow-water
theory, that is, independent of height within the layer. The form of the layer
forcing is similar to Chézy’s basal drag law (Whitham, 1974), and allows for
spatial variation along the length of the lower layer gravity current. Motivated
by physical observation (Huppert and Simpson, 1980) a spatial variation within
the forcing term is included in the form of a truncation function which decreases
the strength of the drag with increasing distance behind the front.

The addition of the forcing term is done in a fairly heuristic and intuitive
manner, and is still a current topic of research (Montgomery and Moodie, 1999a).
A more direct link to physical motivation, for example through experiments and
parameter estimation, is required before it can be regarded as a fully justified
addition to the theory. The front of a gravity current is generally characterized as
a region of entrainment and large vertical accelerations for which the assumptions
made in deriving the model equations do not apply (Simpson, 1997). However,
the successes of describing gravity current behaviour by assuming shallow-water
theory throughout the current (Rottman and Simpson, 1983, Bonnecaze et al.,
1993) show that such an approach is valid. The addition of a new term consistent
with shallow-water theory merely expands upon these successes. The forcing term
can be described as a way to capture non-shallow-water effects at the head of a
gravity current in a way that is consistent with shallow-water theory.

Some special cases of the model equations have been portrayed. The equations
in three spatial dimensions for a thick upper layer with a free surface are given
by the three equations (2.4.4)-(2.4.6) in three variables. In axisymmetric form,
these equations are stated in polar coordinates as (2.4.19)-(2.4.21). In two spatial
dimensions, horizontal and vertical, the general equations for two layers with a free
surface are stated as the system (2.4.29) of four equations in four variables. This is
further simplified to two equations in two variables for: the weakly strafitied case
(2.4.38), a thin lower layer system (2.4.61), thin upper layer system (2.4.81), and
rigid lid upper boundary condition (2.4.89). Recasting of these first order systems
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of partial differential equations in conservation form was also completed. These
equations have been used previously, for example by Lawrence (1990), Rottman
and Simpson (1983), Bonnecaze et al.(1993), Baines (1995), and Montgomery
and Moodie (1998a, 1999a). However, they are derived in Chapter 2 with the
lower layer forcing term and variable bottom height. The development of these
equations is useful as it is a comprehensive equation development which is not
found elsewhere. This should be of assistance to researchers trying to relate
general models to specific cases.

A review of most of the theoretical concepts used in the thesis is collected in
Chapter 3. This list includes a definition of a first order hyperbolic system of
partial differential equations in one or more spatial variables (3.1.7), and how
such a system may be written in conservation form (3.1.10). By stating a first
order system in conservation form, the class of solutions to an initial boundary
value problem (IBVP) grows to include weak solutions which may have disconti-
nuities. Rankine-Hugoniot jump conditions are used to select the correct solution
at a jump discontinuity (John, 1982), and these are generalized to include possi-
ble discontinuities in the forcing terms, yielding a new jump condition (3.2.11).
This jump condition is examined using several simple variations on the Burgers’
Equation to show its usefulness in solving IBVPs.

To examine well-posedness of IBVPs, several recent results (Kreiss and Lorenz,
1989 and Godlewski and Raviart, 1996) are discussed and framed in notation
which is applicable to the model equations from Chapter 2. The method of
linearization and localizaton is useful in examining nonlinear hyperbolic systems
since it allows the suitability of the boundary conditions to be assessed through
a statement such as Lemma 3.3.

A thorough analysis of the mathematical properties of the shallow-water models
for two-dimensional gravity currents is contained in Chapter 4. The equations for
two layers with a free surface have been shown previously to be hyperbolic in
certain cases (Montgomery and Moodie, 1998a). Of particular usefulness is the
result that for small flow velocities, such as those near a vertical barrier in the
fluid, the equations were shown to be strictly hyperbolic if, from (4.1.8), the
inequality (¢1 + ¢2)? > 4v(1(2 holds. This is satisfied if ¥ < 0.5, which is clearly a
valid assumption for layers which are close in density. For the weak-stratification
equations, an exact expression of hyperbolicity is given by (4.1.21), which reduces
for zero endflow to a simple Froude Number requirement stated dimensionally
as (4.1.23). Analysis of the rigid-lid equations yielded the same result. All of
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these relations characterizing regions in which the equations are hyperbolic are
new results, and complete the analysis stated previously for the thin layer models
(Montgomery and Moodie 1998a). Such knowledge of hyperbolicity is critical in
choosing an appropriate numerical scheme to solve the equations.

Under the assumption that the model equations for two-dimensional flow are
hyperbolic, the jump conditions derived in Chapter 3 were applied resulting in
several expressions discussed in Chapter 4, Section 2. In these cases, the front
of an advancing gravity current was assumed to be a simple discontinuity in
the height of the lower layer, arising from a discontinuity existing in the initial
geometry. Although the general two-layer system with a free surface could not be
solved completely (4.2.28), a small v asymptotic expansion solution was obtained
in (4.2.35). An exact result in the small ¥ — 0 limit is given by (4.2.79) in the
special case that the upper layer is assumed to be quiescent. Similar manipulations
yielded jump conditions for the weak-stratification case (4.2.92), the thin lower
layer (4.2.101) and thin upper layer situation (4.2.109), as well as the rigid-lid
equations (4.2.119).

The importance of all of the jump condition expressions is that they all have the
general form u% = f(h,h,,hpg,v), which is a generalization of previous results
which do not include variations in bottom height. The equations represent a
purely theoretical prediction arising from the shallow-water equations expressed
in conservation form, and are independent of experiments and the forcing term
parameter, Cy. This analysis is new, and provides both results and methodology
to the field, although there is still a need to compare these results with both
pre-existing methods of modelling gravity currents and experiments.

The final section of results from Chapter 4 shows the well-posedness of the
IBVP for sudden releases via the method of localization. All of the equations
for two-dimensional flow are shown to be well-posed whenever the equations are
strictly hyperbolic. This is an important theoretical result, which provides a
strong theoretical basis for the initial release problem.

For gravity currents in three dimensions, Chapter 5 contains the pertinent re-
sults. Sufficient conditions for the two-layer equations are described in Theorem
5.1, where they are described precisely. The single layer equations give a simpler
result (5.1.41) which guarantees hyperbolicity of the equations for all conditions
of flow in which the layer thickness is strictly positive. By stating the single-layer
equations in conservation form through polar coordinates, an asymptotic jump
condition (5.2.35) is obtained for small deviations from the axisymmetric case.
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The result includes rotation, but is limited to the special case of constant bottom
height. This condition is new, and generalization to include changes in bottom
height is worthy of future study. A comparison to experimental and numeri-
cally generated results would also be useful to confirm the practical usefulness of
equation (5.2.35).

The generalized relaxation method, described in Chapter 6, was shown to be
a useful tool for computing solutions to the IBVPs for systems of nonlinear hy-
perbolic conservation laws. New generalizations to the finite difference relaxation
method developed by Jin and Xin (1995) are discussed in Section 6.1, and al-
low the method to be applied with boundary conditions, spatially dependent flux
functions, and forcing terms on the right hand side of the equations which are in-
dependent of derivatives in the system variables. The method is shown to resolve
discontinuities well, without oscillations, and several calculations investigating
resolution and parameter limits are portrayed in Figures 6.1 to 6.4.

The relaxation method has been applied to many of the two-dimensional model
equations to calculate solutions to the initial release problems by Montgomery and
Moodie (1998a,b and 1999a,b). In section 2 of Chapter 6, some similar results are
portrayed to highlight some of the important features of the numerical solutions
to the model equations. The weak stratification and rigid lid are both shown to
yield good approximation to the two-layer equations, although for small values of
v the weak stratification equations yield a quantitatively better approximation, as
seen in Figure 6.8. The usefulness of the jump condition expressions at the front
is also demonstrated in Figure 6.9, where an experimental front condition of the
form u = Fr(; is compared. Varying functions for the bottom topography are
shown to have important effects both in the shape of the gravity current (Figure
6.10) and the front speed (Figure 6.11). All of these results would benefit from
further analysis and comparison to experimental results to permit a quantitative
description of the usefulness of the numerical scheme.

Addition of the nonlinear forcing term in the lower layer is examined for three
truncation functions. For a constant forcing, the effect is quite different from
forcing which is focussed on the front of the gravity current (Figure 6.13). Al-
though the forcing terms permit long-time downslope gravity currents to achieve
a steady-state (see also Montgomery and Moodie, 1999a), a quantitative com-
parison of the effects of the forcing term with experimental results is necessary
to fully justify the inclusion of such a term in the model equations. However,
the implementation of a front-based drag term yields qualitative results which
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are similar to experiments such as the small decelerations observed in front speed
(Middleton, 1966).

Some results for the three-dimensional single layer case are portrayed in Chap-
ter 6, Section 3. Several calculations were completed for the initial release of
a fixed volume at rest which then spreads out under the influence of gravity.
These new results show that the relaxation method captures the accelerative af-
fects of constant bottom slope, as well as Coriolis accelerations. These results
are somewhat preliminary, and would benefit from further analysis to investigate
the regions of lateral instability due to rotation, as well as the effects of variable
bottom slopes, a continuous volume source, and vertical boundaries. Comparison
with experimentally obtained results would also be quite useful to further verify
both the appropriateness of the model equations, and the predictive capabilities
of the numerical method.

The one-layer shallow-water equations in one spatial dimension admit an in-
finite number of conservation equations. In Chapter 7, the previously men-
tioned methodology of Whitham (1974) was employed to find that the various
shallow-water model equations only have associated with them a finite number
of polynomial conservation equations, corresponding to the conserved quantities
of mass, momentum and energy. For the two-layer case in two dimensions, the
conserved quantities and associated fluxes are given for velocity (7.1.72), momen-
tum (7.1.74), and energy (7.1.85)-(7.1.86). Higher order polynomial conserved
quantities for this case were shown not to exist, as discussed by Theorem 7.4.
In the three dimensional case, the one-layer equations are shown to also only
have a finite number of conserved quantities, listed in Theorem 7.5. The three
dimensional, two-layer case is slightly different from the previous ones in that
the simpler results are generalized to describe the conserved quantities relating
to mass, momentum and energy (Theorem 7.6). A more general result that these
equations only permit a finite number of conservation laws still remains conjec-
ture. Such a result would be useful since the relaxation method is applicable only
to systems of conservation laws, and thus should not be used for any system which
cannot be expressed as a closed system of conservation laws.

The results concerning the number of associated conservation laws to the dif-
ferent systems of equations are new, and are of theoretical concern in their own
right. The only direct relation to the modelling of gravity currents is a complete
characterization of the types of equations in conservation form which exist. In
addition, the general methodology of Whitham (1974) is shown to be quite useful,
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and may be of use as a general method to characterize the possible ways to rewrite
systems of first order partial differential equations in conservation form.

The shallow-water model constructed in this thesis has been investigated both
theoretically and numerically. The hyperbolic nature of the equations allows a
gravity current front to be approximated as a vertical discontinuity for which
a nonlinear forcing term may be introduced in a way that is consistent with
shallow-water assumptions. The model permits the effects of variable bottom
topography and volume changes within the current to be investigated numerically
without reliance on an experimentally imposed front condition. This advance is
quite useful in generalizing present methods of prediction of the properties and
behaviour of gravity currents.
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Appendices

Appendix 1

To solve the cubic equation (3.3.5), assume ¢ > 0, and write the equation as

0=2%-3w(™ A% + (35¢ ! = W20 + (W — T3 (¢T3, (Al1.1)
Transform (Al.1) via
z=o(" ' and y = (¢ (Al1.2)
to get the equation
0=2X%—3z2% + (322 — y)\ + (zy — £3) (A1.3)

noting that from definition (A1.2) the variable y is positive since w? > 0 and

¢>0.
Comparison of (A1.3) with the general form

0=2%+pAZ4+qr+r, (Al.4)

with p = —3z, ¢ = s2? — y, and r = zy — z3 gives 3 real unequal roots to (Al.4)
(see, for example the CRC Handbook 1970 p.129/130) if
b at
— + — AlS
2 + o7 <0, (ALl.5)
where
2 L .2 2
(3¢ —p7) = 3(92° =3y — (-32)") = —y

[

a=
and

1
b= —(2p° - 2
27(1) 9pq + 27r)

2%[2(—3::)3 — 9(—3z)(3z% — y) + 27(zy — z°)

1
E[-54z,3 + 8123 — 27zy + 27Tzy — 273
=0.

Therefore, (A1.5) holds precisely when y > 0. Since this was initially assumed to
be so, it follows that equation (A1.1) has three real unequal roots.
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The roots of (Al.1) are given by

M=A+B+=z
A+B -
,\1=—( ; )+(AOB>\/—3+1 (A1.6)

Azz_(A;B) _(A;B)\/_—:H_z’

where in (A1.6) the symbols A, and B are defined as

Thus the solutions (A1.6) simplify to

/\0=I

A = —(0) + (—i\/g)(i\/ﬁ) tr=G+zr (A1.7)
A2 = —(0) + (i\/g)(i\/g) +z=—g+r.

Substituting for the original variables from (A1.2) into the solution (Al.7) gives
the three roots

Xo =

| E|

: A1=‘§+ (2, A=

— V¢l (A1.8)

Roots of Equation ({.2.78)

In a similar manner to the previous method, equation (4.2.78), which is a cubic

equation in the u3 may be solved. A comparison with (A1l.4) allows (4.2.78) to
be stated with A = u2, and

p= e {20 - M@ - — (4= )G +hs)} .
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4

g= ;2(2—_7){ [(1 =AY — (&2 + k)] [1 ~ AT - 3G

+ (27 — 47— )ha] — (1 - )G +‘7h3)2},

.= 8
732 -7)
Using this p, g, and r, notation is introduced as

(G2 + hB)[(1 = V)RT - (&2 + hB))%.

a= —;-(3q —-p’)and b= %(2113 — 9pq + 27r).

The solution of equation (4.2.78) is then given by

A+B—§-, and-<A“;B)i(A'2'B)\/— -%’, (A1.9)

where A and B are given by

and

The choice of the physical root from (A1.9) is made by comparison with the v — 0
limit given by equation (4.2.79).

Roots of Equation (5.1.27)

Equation (5.1.27) is in the reduced form

z° +pz +4=0, (A1.10)
where p and g are given by
1 -
p= 528" + NG + &) (A1.11)
and
1_ 5
qg=—gww " (G~ (2). (A1.12)
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The roots z,, z2, and z; of (A1.10) are given, in general by

A+B:tzA B\/i

=A+ B, z3=-— 5 (A1.13)
where
a={-3+Q. B=3-1-\Q,
and
= (2)’ + (9}’
‘(3) +(2) ' (Al.14)

Calculating @ from (A1.11) and (A1.12) gives
@= ( ) (“) (22" + PG + )]
2 2
+ (%) (—%) T2ty — (2)?
131—242 2 13—2 —1_ -1
= (‘2‘) {'2“4 w0 — ) - (5) [8z% + 12Ty~ (1 + ¢2)
+ 657w Y 3G + )% + w3 (G + ()] }

Collecting powers in & then gives this as

Q= —%{%w“ + gw““w TG+ G2) +TPwiy? [g(cf + 201G +¢3)
- 5 - 206+ )] + oG + 6
= {50 + Bty + o) + Tt (-2 + Raa-2a)
+ —1—w6 v (G + Cz)a}
- (—-;-) ;) {—w +480P NG+ ) + 5Pty (=50 + 266G — 563)
+ 3G+ ) (AL13)

From equation (A1.15) it can be seen that Q < 0 if

‘3_% + 85w (G 4+ G) + 3w 13+ G2)?

+ %U w2 [=5(¢ — €2)? +16¢1 (2] > 0,
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which occurs precisely when

16 2
= + 85wy T (G 4+ G2) + %‘““7'3(41 +6) > 25wty 2[5(C — G2)? + 160,

3 2
(A1.16)
In the case @ < 0, that is the situation in which (A1.16) holds, there are
three different real roots (A1.13). These may be expressed via the trigonometric
solutions

Ty = 2‘/—§cos(0/3), ZTy3 = —2‘/—§cos[(0 +m)/3], (A1.17)

where the angle 6 is defined by
cosf = ——3 (A1.18)

2v/~=(p/3)*
Substituting (A1.11) and (A1.12) into (A1.18) gives cos§ as

cosf = 3oty — G2) _ 27 w16 — () . (AL.19)

2, /EEF +utr (G + QP ¥ 2 BT BTG+ QP

In general, for p < 0, the relative signs of the roots (A1.17) are ordered as z3 <
0 < z2 < z3. These correspond to the roots (A1.13).

Appendix 2
Derivation of the weak stratification equations

Differentiation of equation (2.4.35) with respect to time is completed in the
following steps.

dQ(t) _ 8(1—h Ou;  8ha —h 9
?15)= (6t iy (1 - ha) Ta (26t 2z + (he — o) ;tz
d(hy — h 3 d(hy —h 2
_ _Ohz —hp) e By 4 (1= ho) s ( = 8) 4 (ks — hg) -

The derivatives with respect to time in the right hand side of the last equation are
converted into spatial derivatives via equations (2.4.23), (2.4.31), and (2.4.32).

W0 = ()22 228) 4 (1 )2t - he)

= —(uz = w1) (s — hgYuz] + (1 = ha)(~ e (505 + )]
¥ (ke = h)l~ pe(3u3 + hy — hg +7) T
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The notation C; = &C !7.2—'1%;T has been used in the last equation. Further
simplification now yields the following series of equations, with equation (2.4.35)
used in the second step.

dQ(y)
dt

= (uz — w)—[(hz —hp)uz] + (1 - hz)—( U1 +1n)

3) —
+ (h2 — hB)—( ug +hy —hp +n)+ (ha —hg)Cy

O(hs —h o
=u2[—(26$—3)+(h ~hB) P2] — s 2@ — (1 ha)u]
aul 317 6112 a(hg hg) 61)
+(l—h2)(u1 -a—z)+(h2—h3)(u2 Bx + Bz 31‘)
+ (h2 —hB)Cf
O(h2 — h Ous o d(l1-h
=u§% °(h2—h3)u23—+_u1(1—h2) e uf—(_a-—z—)
On 3(ha — h —
+ (=) 4 (hy = h3) 2L + (hy = hp) (;ai)w,)
o 10
= 5-[(h2 —hp)uf + (1 - h2)ui] + (1 - ha)g" 555 ("2 — k)’
+ (h2 — hp)Cy
o 1
= a—z[(hz —hg)ud + (1 — ho)u? + §(h2 ~hB)}]+(1 —hg)?
o(l1-nh o(l—nh
¢ 2Ate), Qo R8), 4 (v, — ha)C
o 1
= 3_[(h2 —hp)uj + (1 — ho)ui + 5(h2 — hg)* + (1 — hp)n]—
o1-~h —_
2 RB) 4 hy — h)T
= 2 (ke — ha)ud + (1= ha)u? + H(ho — hp)? + (1 = ha)n]
18 1 Cll. (A2.1)

In the special case that Cy =0, hp = 0, and Q = 0, equation (A2.1) simplifies
to

5, 1
3 [haul + (1 — ho)ul + h2 +n] =0. (A2.2)

Equation A2.2 may be integrated to give another algebraic condition in addition
to (2.4.35),

1
n=—[hau} + (1 —hy)u? + 3h§]- (A2.3)
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To derive equation (2.4.36), the identity (2.4.35) is used to calculate the as-
sociated partial derivatives. Equation (2.4.25) is also used to remove temporal
derivatives of hy. The first step is

9 _Ouz 0 (Q—(ha—hB)u,
il —w) = Gt - 5 (Gl rele)
=6u2 1 6

ot - (1 _ h2) E[Q - (h2 - hB)u2]
[Q — (ha —hp)u2] O

T )
_ Oup 1 @ 4 [Q — (ha — hp)us] Bk,
T ot —(l—hg)[dt ’5[(”2"’3)“2” B (i —hy)? ot
_ 6UQ Q' 1 6(’12 —hB) 6112
== —1—h2+(1—h2)[ 5 vz +(h2—hp)—=1

ot
[Q — (ha —hp)us] O

+ 55 [(h2 — hp)uz]
-SSR S
=+ S g e — o
- ()5 - I PR e e

Similarly to the derivation of (A2.4), another term is derived using identity

(2.4.35) exclusively.

Ou;, 0O [Q—(hz—ha)u2]

9z ~ Oz 1—h,
= e [ = 2 {(he — hpYual(L — k) — [Q = (ke — ha)usl (1 — k)
=T =hy2| "3zl B)u2j 2 2 = hp)uz] 35— 2
1 8. Q= (he —hg)us] B, _
TTo R ar M2 T el F S g (e ke hB)'(Az.s)

Equations (A2.4) and (A2.5) may now be substituted into the difference of equa-
tions (2.4.31) and (2.4.32) to remove 1. The resulting manipulations follow.

o Ou, Ohs —hp Ouy _ dhp
E(uz —u)+u; oz * Oz — 0z  dr Cs
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1—hpg)\Ou, Q - (1 - hp)u, o' o
=><1—h2)6t +[ (1 = hy)? ng[(hz—hg)ug]—l_hz_i,uzaz

O(h - h — (h2 — hB)u -
+ (263: B)_[Q (12_’128) 2][ 1 %[(h2_ha)u2]

+ [Q — (hz — hp)us] 8 (h —hp) + Q@ — (hz hg)us] th]

(1- h2) (1 — hg)? dx
_ dhp =
=3 ¢

1-hpg\0u,  [Q—(1—hp)us+Q— (hy —hp)uz] 3
:(1—}12) ot +[ (12—h2)2 : 2]6—[(h2—h3)u2]

—_ 2 u
S

= Q’ —_ th [Q - (hz - hB)Ug]’ th _ _C_
1-h; dz (I-F)?  dz

=(1 - ) [2Q - I“ibh: 2h3)“2} 57 (h2 — hp)ua] + (1 — h2)uz >— 6"2
_ 2
# 1o -5 ((fg— R e ko)
- - 2 .
P R T P

—(1—h )auz {[QQ —(1+h2 —‘.2/23)112](’12 —hE) 4 (1 _hz)uz}aug

1 —hg 3:1:
2Q - (1 + hg - 2h3)U2
* {[ 1 —h ]u2
(1 — h2)® — [Q — (ha — hB)us]?
* [ (1 - k)2 ]}—(h2 —hg)

[, [@—(ha=hB)u?]dhp . , =
=Q [1 ha =T ]dz (1 - ha)Cy
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6’(12

=1 —hg) 7~
{2Q(h2 —hp)+ [(1 —hy)? — (1 + h2 —2hg)(h; — hB)]us } Ou,
1-— h2 a.l'
+ m{QQ(l —h2)uz — (1 + hy — 2hB)(1 — hy)ul
+(1=h2)* ~ (@ = (ho —hB)uzlz}ga;(hz —hp) =
(@ — (h2 — hp)us]*] dhp =
- [1—’12— (1—h2)2 ] P —(l—hg)Cf. (A.?.ﬁ)

In the special case Q =0, kg =0, and C; = 0, equation (A2.6) simplifies to

Ou, i {0 +[(1 - h2)2 — (1 + h2)halu, }6112

6t 1— h2 6:1:
1 Bhg

+ ———{0— (L + h2)(1 —ha)u} + (1 — h2)® — (- thz)z} =0
(1 — hs)?
Ous, [1 —2h, + h% — hy — h%]ug Ou,
¢ * I hy oz
1
+ ———=[(1 —h2)* — (1 — k] + K2 =0
Bug 1- 3h2 6u2 (1 - h2)3 - u%) 6h2 -
=0. A2,
=>8t+(1-h2)u231+( A=ha2 Joz =0 (A2.7)
Rewriting equation (A2.3) using (2.4.35) for u;,
1 hou3
1=—3M-1oh
allows (A2.7) to be written as
Ou, on . 0 Oh
e vt g 22 (14 2T
or the conservation form
—5t—+a—$(;2-u2+77+h2) = 0. (A2.8)

The last equation is in the form stated in Montgomery and Moodie (1998a).
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Derivation of the rigid lid equations

In a similar manner to the above calculations, the system form for the rigid lid
equations (2.4.82) and (2.4.84) derived in section 2.4.5 may be completed using

equation (2.4.86). First, equation (2.4.86) is used to calculate % and —6;1,

where h;, it must be recalled, is considered to be a constant.

du _ 0 (Q-(hz—ha)uz)

ot ~ ot hy — h,
oh o
e
ot hy — h,

+1Q = (he = e (<h1 :lhz)2> (_a;:)

—_ 6u1 _ Q' _ h2 - hB 6u2 Q (hg et hB)u2 _ Ua ) ahz
3  hi—hy Rhi—h; Ot T (hy — h3)? hi—hy) Ot

uy Q@  ha—hpou + (Q—(hz-ha)uz—(hl —hz)uz) Oh2
3t ~ hi—hs i —h, Ot (hy — h2)? 5t

du, Q' (hz - hB) Ouz (Q — (b — hB)W) % (A29)

=8t  hi—h \ i —h, (h1 — h2)? a3t

Similarly,
Ou; 0 (Q—(hz —ha)uz»)
dr O hy — ha
o o
u; 0~ uzz—(ha—hg)—(hs -h;,)—"—2
F——4 = L
Oz hy — h,

(@ (ke ~ha)u ((hl :lhz)Z) (‘%?)

6u1 _ (hg—hB aUQ + (Q—(hz—ha)uz Uz ) ahg

0z \hi—hy ) Oz (hy —h2)2  hy—hy /) Oz
ug th 9
T a (A210)
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Using the expressions (A2.9) and (A2.10) allows equation (2.4.84) to be rear-
ranged using the same notation C; = xC fh——z—T (as introduced previously) is
used. Substitution into equation (2.4.84) of equation (2.4.86) for u; gives

Q‘l _ ?u_ aﬂ Q—- (h2 —hB)uz) 6u1 ahg —
v (1-=19) -{-uza —(1—7)( =T 32 + 5 = Cy,

into which expressions (A2.9) and (A2.10) are now introduced in the following

steps, and equation (2.4.82) used to remove =2,

ot

3212 Q' hg —hB Bug Q (h1 —hB)‘U2 ahz

T?t‘“l‘”['hl—hz*(hl—hz) ( (hy — )2 ) w]
- - —h

+UQ-66%'+(1 _7) (Q (h2 hB)U2) (hz 3) 6u2

hy — ha hy —hs ) Oz
—(1-7) Q —(h2 —hBluz (Q —(h2 —hBJuz  uy ) Oh,
! hy — k2 (h1 — h2)? hy —hy ) Oz
Q — (ha — hp)u, up dhp  Ohs _ =
-(1_7)( hy — ha T, dz T oz - ¢!

(1 =~)(hza — hpB)\ Ou: (1 -9)[Q — (h1 — hB)uz]
="(1+ Py ) ot ‘( (hy — ha)? )

0 (1 —y)(ha — hB)[Q — (h2 — hp)uz] Ou;
x B—z[—(h2 — hpg)ua] + <U2 + 2 (e = Fa)? 2 ) 5
(1 —9)[Q — (h2 —hB)uz]? = (1 —7)u2(Q — (ho — hg)uz]\ Oh;
" (1 B (hs — hz)? * (hs —h)? ) dz
_1-7e + (1 — v)u2[Q — (h2 — hp)uz]) dhp _T
~ hi-h (h1 = hz)? dz _°r

which becomes

(hl — hg 4 (1 = ~)(h2 — h3)> dup ( L (L=)(he ~ 15)[Q — (1 ~ h)us]

h; —h, ot (hy — h2)?
4 1 =7)(h2 ~ hp)[Q — (k2 — hp)uz]) Duz (1 — 7u2[Q — (hy1 — hp)u2)
(hy — ho)? ) 5z © (1 * (hr —hp)?
L 4= Y)uz(Q — (he — hpluz] (1 -9)[Q — (h2 — hB)'u2]2> Ohy _ (1 —-7)Q’
(hl - h2)2 (hl -_ h2)3 61‘ h1 - h2
(1 =7)u2[@ — (hy —hpluz] (1 —7)u2[@ — (h1 — hB)u2] dhs =
( (hy = h2)? + (hy — h2)? ) = ¢
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Multiplying by h, — h; gives this equation as

by = vhs = (1= o] ot + (= hauz

(1 = 4)(h2 — hB)[2Q — (h1 + h2 — 2hp)uz]\ Ou,
+ hi —hs 5z T (P1—he
, (1= 7)w0(2Q = (b1 + by = 2hp)uz] _ (1 =)[@ = (ha = hp)us]?) Oha
hl - h2 (hl -— h2)2 61:
, 1- 2Q — (hy + ha — 2h dh —
=(1-7Q + (( ua| Qh( ot B)'“]) T2 — (b1 — h2)C-
12 o (A2.11)
The simplification hg =0, Q@ =0, Cy = 0 gives equation (A2.11) as
3u2 (1 —‘)’)thg(hl +h2) Ou,
(h1 — 7h2)-5t— + ((hl — ha)uz - - .
., (d=muit+hy) (1 —7)’1%“3) Ohy
+ (h‘ ha hi — hs i)t ) Bz 0
oy Ou2 (1 = h2)? — (1 = 7)(h1h2 + h3) Ou.
=>(h1—/hz)at +( P uz -
+ ((hl — h2)? — (1 = 7)ud[(h1 ~ h2)(h1 + h2) +h§]) Ohz _
(h1 -_ h2)2 61:
— (hy —~h Ous, h% — 2h,h, +h§ — hihy —h% + ‘y(hl + ho)h, u Ous
! K 2) Ot + h] —h2 2 a.’L'
W(GEDEICELT G SR E
(hl —h2)2 3.1: ’

which becomes
Qu_g + (h? —3h1hy + vy(hy + hz)hz) un Ou,
ot (h1 — vh2)(h1 — h2) " Oz
3 2
((hl —h2)* = (1- ‘Y)h%l‘z) Ohy _ 0. (A2.12)
(h1 — vh2)(h1 — h2)? Oz

It should be observed that equation (A2.12) reduces to equation (A2.7) with the
simplification h; = 1 and in the limit as v — 0.

Appendix 3
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Roots of equation (4.1.6)

Equation (4.1.5) simplifies upon the change of variable A = + (u1 + u2)/2 as
follows.

YA —u2)® = QI[vA — 1) =Gl =1 = 4)Gée

= [v(n+ %ul - 2u2)? = Gilla(n - éux + %uz)2 —Gl=>0 -7

2 2
= [v(n+ %) — Gllv(n —%2) - G] = (1 — )12, (A3.1)
where the notation 7, = %ul - %Ug has been introduced in equation (A3.1).

Multiplying out equation (A3.1) gives a fourth order polynomial in 7,
Y +%)(n—%) 1O+ ) — vGmn — %) + (6 = (1 — 1)

= -13) -7+ T) -y e —T) +v 7 06 =0
2t = 2@ - TN G+ L+ T — v (G - G)+ 7 GG =0, (A3.2)

Equation (A3.2) may now be solved by the standard methods such as the
Descartes-Euler Solution (see Korn & Korn 1968 p. 23/24). The solution depends
on the roots of the cubic equation for z

2+ 3(~20)2 + = l(~2) — 4T — 7 m(G — &)+ v )]s

- 6%[—‘/—1(0 + &) =0

=% —u3? + ;1-‘/-1[52((1 - (2) = GiG2)z = 6%7_2(41 +(2)* =0. (A3.3)

The roots of equation (A3.3) may be expressed as

62
znn=A+B+ 2

3
<2 = - 2 +1 2 \/—3-+? (‘ 3)
A+B .A-B u3
23 = — ; —1— \/§+1—l33,

where

(XL

A= [—§+\/5]%,and3=[—%—\/5]
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The expressions C and D above are given by

—’ﬂ% —E% 2 _ Y
C= [2( ) — n w2(C1 — (2) + ——C1C2] - —(Cl + (2)?
—u2 2 ¥ _
= 72[5"2 -7 %G -G)- —4142] (Cl + (2)?
2 ~~1
= —ﬁﬁg Eﬂg(ﬁ 2) — —uzClCz - 4 (Cl + ¢2)?,
and
E? FE EFF G
D=[——3'+F] [(—)3—?+;]2
__E E'F s B _EF B, EFG EF G
= 3_3+ 3 ‘EF+F+3_6' ? TG "6 tTe T
_ _<Y% 6 4 3 2 2 3 1 1 2
= -2E°+ S E'F+ S EG~ ZE*F 4+ F* — ZEFG + 67,
where E, F, and G are the coefficients in (A3.3),
1
F = Z‘T-l[ﬁ'z(Cl - (2) — $162]

1
G= 52" (G + G)%
The roots of (A3.2) and hence (A3.1) may now be given as the combinations
e NEEXVEERVES

with the signs chosen so that
F
\/21,/22\/23 = —g.

Ezpansion Solution of equation (4.1.6)

Substitution of the small parameter expansion (4.1.7) into the characteristic
polynomial (4.1.6) is completed as follows.

(A 4 ex® 4 22— 2e(ufV +ull +eul? + ul® ) A +ea®)3
+[62(u§1)+u21))2+‘)£2 gl) (1) _ —I(C(O) (0)+£((1)+ C(l)+€2d2)
+2G)A® + XD 4+ 2A@)2 Loy le(ui ¢ + ui ()

+ 412 (@0 + e £ w4+ uP OO 4 )
_7-162(1‘9) C(O) 1) C(o) +‘7'1[Cf°)C(°) ’(Cfo) (”+Cf”C§°))
+e2(G7¢P + ¢V ‘”+<f’<§°’)} O(&*). (A3.5)
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Equation (A3.5) simplifies further by multiplying some of the terms and removing
O(e®) coefficients. An intermediate equation is

MO 4 2eA@AMD 4 2(AD? L 23 @3@)2 _9e(u () 4 o) 4 eu® 4 0P
x(,\(0)3+3€/\(o)2,\(1))+[62(u§1)+u21))2+2€zu(11)ugl) 4= 4 @
+6C(l)+eC(1)+E2Cl(2)+e2C§2))][/\(°) +9-,\(0),\(1)+62(/\(1) +9,\(0),\(2))]
+ 29 (V¢ + w4 e(u B0 4 M a4 P O] x
x A 4 941, 2(u§1) (0)+ (I)C(O))/\(l) ~"1e 2(u(1) (0)+ 21) C{O))

O8O 4 (@ M 4 (D) L e2(c@¢ @ 4 (WM
+ G267 = 0(),
which expands further to

AOF L 4ed©@% 30 4 2(6A@%ND? 4 A )\ _ge(y V) 4, 1))z @3

— 2e2[(u{® + g2)),\(0)3+3(u(1)+u(1))/\(0)2/\(1)] -1(((0)_+_C(0)),\(o)2
+6[(<(1)+421)),\(0) 9.-1(((0)+<(0))/\(0),\(1)]+€ [(u(l) 4u§1)u§1)
+u(1) )/\(o) +°(C(1) C(U)/\(O)/\(l) —1(4(0) 0))(/\(1)2+.)/\(0),\(2))]
+ 29 (M + ulV@\©@ 4 941 2w ¢ 4+ u V¢ 4P

(2)C(°))/\(°)+(u(” 0) (l)do))z\“)]+7"Cf°)C(°) ey~1(¢@ ¢V
+G76") + 267G + cf”d” +676”
— 17 D @ + w0 = o). (A3.6)

From equation (A3.6), the various coefficients of the orders of ¢ may be singled
out to separate the equation into various order problems. The order 1 problem
corresponding to the coefficient of €° is written as

A1 _ 41 (0)+Q.20))/\(o) -IC(O)(W) (A3.7)

Equation (A3.7) has a solution given by the quadratic formula as

1
XOF = Sy + 6N £ 5V + () — 490, (a3

lolo—-

There are two real, positive and distinct solutions of (A3.8) if and only if
(CI(O) + (20))2 > 474(0) (0)’
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or
(1 =27 + ¢§)2 > —24(¢% 4 (%),

A sufficient condition for (A3.8) to have four distinct real roots is therefore

1
1-24>0,0ory < 5 (A3.9)

Assuming that (A3.9) holds, which is often the case in most physical or laboratory
applications where 0 < 4 < 2, the four solutions of (A3.8) can be given by

- 1 _
A0 =20 = [_ 1@ 4+ L, 1/ + ¢y 4‘7Cf°)C(°)J
(A3.10)
as well as
AP = A0 A0 = @) (A3.11)

which are ordered such that A% > A > 0 > A{® > AV,
The next condition from (A3.6) is the O(¢) problem, which may be seen to be

+°~r‘(u§” ® +uy¢] °’)A<°> +7°‘(c‘°’ )+ ”c °’) =0. (A3.12)

Equations (A3.12) is linear in A1), so it may be solved uniquely as

AW = {2(u® 4 uf)AO@° (¢ 4 (MA@ _ g1, (@) +uz U@
3 -
=GV + GUEMN IO - 2971+ ()A@) . (A3.13)

The fact that the denominator in (A3.13) is nonzero may be seen from its simpli-

fication to

. [*(0)2 577G + ‘°’)] = 2247V + ()2 — ¢ # 0,

from substitution of equation (A3.8) for A©2 Equation {A3.13) may now be used
to provide the O(g) correction term to A(®) through the four corrections /\1 2.3.4
corresponding to the four values for A(®) in (A3.10) and (A3.11).
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The third equation which may be extracted from (A3.6) is the O(¢2?) problem,
which can written as

6AOIAM? L 4207 A@ _ o[y 1 y@)A@® 4 3(u{M + u{)A@ ()]
+(u§1)2+4u§1) (1)+u(1) )/\(0) +2(¢V 4 @@
-1(4(0)_*_(%0))(,\(1) +2/\(°)/\(2))+2‘/’1[(u12)C(°)+u§l)((l) (I)C(l)
+uPONO@ 4 (@D 4 (I)C(O))/\(I)I+C§°) @ 4 (WD) | (@0
_7-1(u11> ¢ 4 (1) ¢y = (A3.14)

Equation (A3.14) is also linear in the unknown variable A(?), and may be therefore
solved uniquely as

A® = £ 6@ AW L o[ 4 u@)AO 4 3l + u{)A@? NV
~ @ 4 4uWuD 4 WOHAOF g ® 4 D)@\
(¢ 4 @AM 2y WPl 4D 4 uDe® 4y D @)@
+ @@ 4 P @)aD] = (@@ _ Cl(”c(” ¢

- 2 3 -
F oy l(u(l) 0) ugl) CI(O))}/{4’\(O) 2~ I(C{O) | Céo))/\(o)}.
(A3.15)

It can be noted that the denominator of (A3.15) is identical to the denominator
of (A3.13) which is nonzero. Hence, four second-order correction terms to the
eigenvalues A\ can be calculated from the expression (A3.15) to obtain /\5?1),‘3'4 by

substituting in the appropriate solutions )\El) and /\EO) for:=1,2,3,4.
Appendix 4

The change of variable
u(z,t) = P(z, t)ii(z, 1), (Ad.1)

for n vectors u and U and n x n matrix P, may be substituted into equation
(3.3.1) as follows.

%(Pﬁ) + Ai(Pﬁ) =

— s . pdu A(ap Pa—u>=b,

ot ot Oz 0
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Ju du oP oP\ _
=P§+APE=|)—(E+AE u,
— .a_ii_*..p‘lAPﬁ—E-{—C(z t)u (A4.2)
ot oz = A -
where
b(z,t) = P~'b, (A4.3)
and P P
—_p-1{9%Y or
Clz,t) =—P7' (2o + A ) : (A4.4)

The two other calculations from Section 3.3 involve various manipulations using
matrix mulitiplication. To confirm equation (3.3.11), consider a m x n matrix A
with components a;; and a n-vector x written as a column, and choose an integer p
such that the vector x has components denoted by x = (z;,..., TpyTptly---3Tn )T.
Then the product of the matrix A and the vector x may be calculated as

a; - Qn T
Ax = az azn z2
Ldm1 -°° Qmn In
[ anzi +aza +---+ a1pTp Q1p+1Zp+1 + -+ A1nZTh
= : + :
[ @m1T1 +@m2T2 + -+ aAmpTp Amp+1Zp+1 + - +AmnZTn
(a;y - a1p I Qip+1 " Q1in Tp+1
=1 : .. ST
| @m1 " Qmp Ip QGmp+1 °°° Qmn In
=Apxy +A_x_, (A4.5)

where the notation from Section 3.3 is used in the last line of equation (A4.5),
such that A4 is a m X p matrix, and A_ is a m x (n — p) matrix.

Now consider a n x n matrix B with components b;;. The product matrix
(AB), is a m x p matrix which may be observed from the m x n matrix product

(@11 -+ ain bii -+ bin
AB = :
Lqm1 *** QGmn ba1 -+ ban
[ aj- - bil IR - 5 E bLn
= : : . (A4.6)
| Am— bll rr 8me— b.l,n
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From (A4.6) it can be seen that simplifies (AB)+ to AB. as shown:

[a;,-by; --- aj,-by,
(AB)+ =
ane by o ame-by,
a1 -+ Qin bip --- bin
Lam1 - @mnd |bnp - bpn
= AB,. (A4.7)

Appendix 5

The figures in Chapter 6 were produced by reading lists of data into the pro-
gram MATLAB, version 5.3.0.10183 (R11). To allow reconstruction of plots, some
of the commands necessary for their creation are included here.

For line plots, the data is saved as separate files, for example, the files “x.dat”,
“vl.dat”, and “y2.dat”, may contain long lists of data. These are entered into
MATLAB as vectors through the commands,

> load x.dat
> load yl.dat
> load y2.dat

for example, where the MATLAB prompt > is included.
The data vectors can be plotted with the command

> pIOt(x7y17’-,7x’y27’:,)
which creates two line plots, the x list on the horizontal axis, and yl, y2 on
the vertical axis, with the two lines drawn with different symbols. The scale of

the diagram may be altered by changing the horizontal and vertical axes by a
command such as

> axis([-3 3 0 0.2])
which gives the domain as [-3,3] and the range [0,0.2]. Additional commands
which further specify the figure by creating a legend, and axis labels with normal
TeX fonts. These are, for example,

> legend(’\alpha=1,’,'\alpha=100’);

> xlabel(’x’)

> ylabel(’\zeta’)
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To create contour plots, similar methods may be employed. A data list (single
column) may be read in as

> h=load(‘h10.dat’);
which needs to be reworked as a square matrix. This may be done through the
commands

> n=sqrt(length(h))

> H=reshape(h,n,n)
With the matrix H defined, the z and y coordinates must be defined via the
command

> [x,y]=meshgrid(0:0.1:10,0:0.1:10);
which creates a matrix of spacing as indicated. Care should be taken so that the
matrices x,y, and H are of the same size. Once this is done, the plot may be
created via

> [A,B]=contour(x,y,H,5)
which has the handle [A,B] assigned to it, and will draw 5 contours. This is so
that the diagram may be labelled through the command

> clabel(A,B)
Labelling a vector allows the contour plot to be plotted at a specified level, for
example,

> v=[0.1 0.1}

> contour(x,y,H,v)

To place an additional vector plot, similar commands as the above should be
done for the square matrices containing the velocity data. With a grid x1,y1, and
data u,v, These may be overlaid on the contour plot via the commands

> hold on
> qUivel'(ansU,V)
> hold off

Similar commands which specify labels and sizes are used in the 3D plots. One
additional command which was of some use was the

> axis square

command which gives a 1:1 aspect ratio for the diagram.
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