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Abstract

A systematic methodology is developed to formulate scaling laws in closed-form for

thermal features of moving line heat source and Gaussian heat source problems, with

wide generality, high accuracy and practical simplicity, from fundamental principles.

The expressions are written in form of a simple solution for the dominant factor and

correction factors for secondary phenomena. In this thesis, the simple solutions are

derived from asymptotic analysis of dimensionless models, and the correction factors

are achieved with blending technique which is a standardized approach to generate a

global approximation based on asymptotic solutions. The 1-D blending technique is

modified to extend its scope of application and increase its accuracy. A systematic

2-D blending method is proposed to capture all possible cases of two independent

variables.

This thesis presents explicit, predictive and simple expressions for vital thermal

features of moving line heat source and Gaussian heat source, that are general to

different materials, processes and operating parameters. Based on the Rosenthal’s

moving line heat source model, expressions for 13 thermal features are tabulated,

including: isotherm half-width, location of the half-width, isotherm trailing length,

centerline cooling rate, isotherm leading length, centerline heating rate, maximum

temperature, gradients of maximum temperature, isotherm aspect ratio, melting ef-

ficiency, cooling time from 800 ◦C to 500 ◦C, solidification time, and thickness of

the heat affected zone. All expressions are obtained with modified 1-D blending on

one dimensionless group, Ro number that represents the intensity of heat source (ex-

cept for maximum temperature), and are accurate to 8 % of the analytical solutions,
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except heating rate at 16 %.

By employing the proposed 2-D blending method, correction factors of surface

heat losses are established for isotherm half-width and its location, isotherm trailing

length, and centerline cooling rate, resulting in errors within 12 %, with the intro-

duction of the second dimensionless group h∗. For isotherms around the heat source,

the energy distribution of the heat source affects the temperature field significantly.

The correction factors of Gaussian heat source distribution are developed with the

proposed 2-D blending method for isotherm half-width.

A comprehensive survey of published experiments and simulations is conducted

to validate the proposed engineering expressions. The comparisons illustrate good

agreements between predictions from the proposed expressions and collected data for

a broad range of materials, processes, and parameters.

The engineering expressions for all thermal features of moving line heat source

and Gaussian heat source are simple enough to be evaluated with a calculator or

spreadsheet conveniently, and are useful for a broad range of diverse materials or

processes. The expressions provide design guidelines for engineers and practitioners,

bring physical intuitions and insights, and speed up designing cycles especially at con-

ceptual stage in design and development of new technologies by inspiring creativity

and filtering infeasible or inferior designing options by evaluating many optional pa-

rameters and processes. The blending method can be adopted in broader engineering

problems since it captures the inherent essence of complex physical phenomena based

on the governing equations.
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3.8 Centerline heating rate Ṫf . . . . . . . . . . . . . . . . . . . . . . . . 89

3.9 Maximum temperature Tmax . . . . . . . . . . . . . . . . . . . . . . . 90

3.10 Gradient of maximum temperature dTmax/dy . . . . . . . . . . . . . . 92

3.11 Aspect ratio A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

x



3.12 Melting efficiency ηm . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.13 Cooling time t8/5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.14 Solidification time at centerline tsl . . . . . . . . . . . . . . . . . . . . 97

3.15 Thickness of the heat affected zone ∆yHAZ . . . . . . . . . . . . . . . 98

3.16 Effect of joint configuration . . . . . . . . . . . . . . . . . . . . . . . 100

3.17 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.18 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.19 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.A Blending of asymptotic solutions . . . . . . . . . . . . . . . . . . . . 116

3.B Blending of Lambert W function . . . . . . . . . . . . . . . . . . . . 120

4 Cooling rate in moving-heat-source manufacturing processes with

intensive surface heat losses 122

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.3 Moving heat source model . . . . . . . . . . . . . . . . . . . . . . . . 127

4.4 Scaling Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.4.1 Asymptotic Regimes . . . . . . . . . . . . . . . . . . . . . . . 129

4.4.2 2D Blending . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.5 Trailing length xb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.5.1 Asymptotic analysis of trailing length . . . . . . . . . . . . . . 133

4.5.2 Partial blending of trailing length . . . . . . . . . . . . . . . . 134

4.5.3 Full blending of trailing length . . . . . . . . . . . . . . . . . . 135
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ĥ∗+
c for isotherm width y∗max and its location x∗

max under an acceptable

error of 10 %. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

5.6 Validation of engineering expression for isotherm half-width neglecting

correction factors for surface heat loss (Equation 5.40 to 5.41). . . . 187

5.7 Validation of engineering expression for isotherm half-width consid-

ering correction factors for surface heat loss (Equation 5.40 to 5.43).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.1 Example of the isotherm with two peaks for Ry = 110 and σ∗ = 4. . 207

6.2 The criterion function ∂(χ2
max)/∂(ρ

2
max) changes with ρmax for σ∗ =

1 ∼ 10. The critical value of normalized Gaussian standard deviation

satisfying criterion Equation 6.15 is σ∗ = 2.893. . . . . . . . . . . . . 209

6.3 Process map for combinations of Ry and σ∗/σ∗
max. In the shaded region,

the isotherms have two peaks. . . . . . . . . . . . . . . . . . . . . . 210

xxi



6.4 The map of 2-D blending errors (equations 6.28 to 6.32) and asymptotic

regimes for isotherm half-width y∗max for Ry ≤ 1000 and σ∗/σ̂∗+
max ≤ 0.9.

The four asymptotic regimes can be sliced according to a given relative

error (dash lines indicate 10 % of error for asymptotic expressions) or

the matching of the two asymptotic expressions in side regimes (side

regime asymptotics equal on side lines). . . . . . . . . . . . . . . . . 214

6.5 Validation of Equations 6.28 and 6.30 with collected published data,

neglecting correction factors for size of heat source, equations 6.31

and 6.32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

6.6 Validation of Equations 6.28 and 6.32 with collected published data,

taking account correction factors for size of heat source. . . . . . . . 217

B.1 Location of isotherm width x∗
max changes with Ro number. . . . . . . 287

B.2 Relative error changes with Ro for scaling laws of x∗
max. . . . . . . . . 287

B.3 Optimizing parameters for blending of x∗
max. . . . . . . . . . . . . . . 288

B.4 Correction factors for engineering expressions for x∗
max. . . . . . . . . 288

B.5 x∗
f changes with Ro number. . . . . . . . . . . . . . . . . . . . . . . 289

B.6 Relative error changes with Ro for scaling laws of x∗
f . . . . . . . . . . 289

B.7 Optimizing parameters for blending of x∗
f . . . . . . . . . . . . . . . . 290

B.8 Correction factors for engineering expressions for x∗
f . . . . . . . . . . . 290

B.9 Ṫ ∗
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f . . . . . . . . . . . . . . . . 292

B.12 Correction factors for engineering expressions for Ṫ ∗
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Background

This dissertation conducts a systematic research on important thermal features re-

lated to isotherms in temperature field of a moving line heat source or Gaussian

distributed heat source model, where moving heat source model is referred to a heat

source of constant intensity moving on a substrate at a constant speed, as illustrated

in Figure 1.1. The research involves dimensional analysis to generalize the problem,

asymptotic analysis in extreme regimes and blending to achieve global approximation.

Many processes can be modelled as moving heat source problems in thermal analysis,

such as welding [174, 175, 179], additive manufacturing [73, 85, 190], cladding [31,

219], surface treatment [86, 106, 124], cutting [66, 149], tribology [89, 94], grinding [25,

132], machining [51, 107], wheel and track contact [102, 103], bone surgery [121, 228]

and many more.

An example is made to demonstrate the importance of studying thermal features

of moving heat source problems for the welding process. Welding is one of the crucial

fabrication technologies to form one component continuously from two by applying

heat, some times with pressure, in which “rapprochement” is built by moving atoms

close enough to share bonds. It is widely applied in many fields like chemical plants,

oil and gas, mining, aerospace industry and many more. In the most common cir-
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cumstance, the term welding is often referred to joining metals by applying heat. In

fusion welding processes, a part of substrates is heated up by moving energy sources

such as plasmas or laser beams, and a melt pool forms during heating where the base

material mixes. Then, the molten materials solidify to form a continuous joint bead

as heat source leaves and heat conducts away. The joint of fusion welds consists of

a distinct fusion zone, heat-affected zones and unaffected base materials. For alloys,

there is also a partially melted zone between the fusion zone and heat-affected zone.

Moving heat source Isotherm of interest Substrate

Figure 1.1: Schematic of moving heat source. The isotherm of interest can be temper-
atures such as melting temperature, phase transformation temperature, or thermal
residual temperature, etc.

During this thermal cycle, some thermal features are crucial to reactions and prop-

erties of fusion welding processes, such as metallurgical phase transformation, me-

chanical properties, efficiencies, and reliabilities. For example, the isotherm width is

a significant characteristic reflecting the shape of the weld pool, the region of phase

transformation, and thermal residual stresses [76]; the cooling rate affects the phase

transformation in solidification, martensitic transformation [87], and sensitivity to

cold crack [99]; aspect ratio is a vital characteristic in in-situ monitoring [195]; melt-

ing efficiency is crucial to dilution in welding of dissimilar materials [49]; and many
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more.

Similar to welding processes, investigations of thermal features related to isotherms

of temperature field under moving heat sources are central to many other processes

as addressed above, like additive manufacturing, cladding, surface treatment, cutting,

tribology, grinding, machining, wheel and track contact, and bone surgery.

The research proposes a systematic approach to build explicit, general, convenient

and practical formulae to describe relationships between operating parameters (like

heat input, travel speed and plate thickness) and important thermal thermal fea-

tures (like maximum temperature, cooling rate) for moving line heat source of two-

dimensional problems or moving Gaussian heat source of three-dimensional problems.

The practical formulae provide design guidelines for engineers and practitioners and

bring insights into initial evaluations of the process mechanisms and parameters. The

predictive formulae in closed form are suitable for transmission in textbooks and stan-

dards and general enough to be easily adapted to different materials and processes.

1.1.2 Knowledge gap

There is a significant lack of practical, reliable, and general engineering expressions

for moving heat source processes to predict critical thermal features of interest to the

practitioners, such as maximum temperature, cooling rate, size of the heat-affected

zone, and melt pool size.

In the past thirty years, the rapidly evolving numerical simulations help under-

stand and predict moving heat source processes such as laser cladding and additive

manufacturing, building up more realistic and comprehensive models benefiting from

explosively growing operator forces of computers. Simulation models are convenient

when prototype is expensive, such as cars and airplanes. Sophisticated numerical sim-

ulations are usually difficult for practitioners without training or software, especially

for highly interdisciplinary processes like welding. The experimental technologies are

also developing rapidly for accurate control and measurements. Experiments can gen-
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erate simple empirical models. Results of experiments and simulations are usually

valid for given parameters with limit amount of generalities to specific materials and

properties.

Despite the progress of simulation and experiment techniques, there is a lack of

rigorous, general, explicit, convenient, accurate and physically meaningful engineer-

ing expressions for moving heat source problems, which are essential in conceptual

designing at the first stage of engineering design [137]. At the conceptual designing

stage, many concepts, optional processes, and parameters are proposed based on in-

tuition and experience. The engineering expressions can filter infeasible or inferior

designing options by evaluating a large amount of optional parameters and processes

conveniently. With ample time and money, trial-and-error methods or numerical sim-

ulations could be utilized for accurate predictions and thorough explorations of the

whole space of possible parameters and options. However, in practical applications,

it is crucial to evaluate versatile considerations of technologies and materials with

limited time or money, which prevents the usage of detailed analysis at beginning of

designing. Moreover, the exact answer to particular materials, processes and oper-

ating parameters from perfect models or experiments is not enough as the possible

parameter spaces of them also need to be explored at conceptual design stage. Basic

design rules and engineering expressions are essential for the evaluation and creation

of parameters and technologies at the conceptual stage. They deliver engineering un-

derstanding, inspire creativity and screens infeasible and inferior designing options.

For the remaining designing options, further analysis in detail can the conducted with

sophisticated numerical simulations or experiments to form the final design.

The success of engineering expressions have been implemented in a variety of en-

gineering fields, such as stress concentration analysis in solid mechanics [165], drag

coefficient in fluid dynamics [116], stress in gear teeth [187], and calculation of convec-

tion coefficient in heat transfer [92]. One concrete example of its implementation is the

calculation of Nusselt number of external cross flows over a cylinder, which describes
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the convective heat exchanging between the cylinder and flows, from the textbook

“Fundamental of Heat and Mass Transfer” [92]. Correlation between average Nusselt

number, Reynolds number and Prandtl number can be expressed as:

NuD = 0.3 +
0.62ReD

1/2Pr1/3

[
1 + (0.4/Pr)2/3

]1/4

[
1 +

(
ReD

282, 000

)5/8
]4/5

(1.1)

where NuD is defined as the ratio of convective heat transfer to conductive heat

transfer, ReD is the Reynolds number for the cylinder, and Pr number is the ratio of

momentum diffusivity to thermal diffusivity of the cross flow. Equation 1.1 is compre-

hensive for calculating convection coefficients, covering a wide range of ReD and Pr.

Many engineering expressions in similar form in heat and mass transfer fields can not

only provide an estimation of the heat transfer coefficient efficiently and economically

but also bring engineering insights on the interplay between involved mechanisms and

parameters. There are a bunch of correlations under different conditions, which do

not provide an accurate solution to the Nusselt number but are significant and practi-

cal to the design of heat exchangers, bringing insightful and intuitive understandings

of convective heat transfer. However, Equation 1.1 obtained with Churchill’s blending

methodology is recommended for ReD ·Pr ≥ 0.2 which can not cover all values of ReD

and Pr. There is lack of systematic approach to obtain blending depending on two

dimensionless groups, which will be discussed later in this dissertation.

However, very few engineering expressions are developed for moving heat source

problems, and some published correlations are not presented correctly. The engineer-

ing expressions are usually valid for a narrow range of materials and processes [137].

For example, in American Welding Society (AWS) standard D1.1 [9], standardized

Charpy V-notch tests are required at the heat-affected zone. However, there are no

predictive methods suitable for a standard to estimate the location of fusion and

width of heat affected zone, namely bead width of melting isotherm and thickness of

heat-affected zone, and only some rough values (1 mm and 5 mm) are attributed to

thickness of heat-affected zone for different processes, which could vary significantly
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with different operating parameters and base materials. Another example is the for-

mula for cooling time from 800 ◦C to 500◦C presented in British code [192], which is a

crucial thermal feature associated with metallurgical transformations of steel, tightly

related to mechanical properties of weld bead:

t8/5 =
q2

4πkρcd2U2
×

[
1

(500◦C− T0)
2 − 1

(800◦C− T0)
2

]
(1.2)

where t8/5 represents the cooling time from 800 ◦C to 500 ◦C, q is the heat absorbed

by the workpiece, k is the thermal conductivity of the base material, U is the speed,

ρ is the density, c is the specific heat, d is the plate thickness, and T0 is the initial

or preheat temperature. Equation 1.2 provides some reasonable estimations when

welding speed is fast enough. However, in many cases of practical welding parameters,

travel speeds are not always large enough, and Equation 1.2 is not valid anymore, that

was not addressed explicitly. There are a vast wealth of known expressions related to

the heat flow and resulting thermal features; however, current knowledge is typically

process-specific or material-specific. There is a lack of insightful, practical, convenient

and general engineering expressions that are amenable to practitioners and engineers.

1.1.3 Scope

This dissertation is to propose a systematic approach to establish a set of practi-

cal, reliable and general engineering expressions for thermal features of moving heat

source problems to deliver physical understanding, enhance engineering judgment and

provide reasonable predictions. The engineering expressions are in the form of:

Characteristic Value = Ideal Solution × Correction Factor×

Correction Factor× . . . (1.3)

The ideal solution is an expression in closed-form with great simplicity for the ideal

cases, typically obtained by considering only dominant phenomena. The dominant

phenomena can be identified with analytical scaling analysis [138], experiments or
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numerical simulations with extreme operating parameter values [61], or from prac-

tical engineering experience conceptually. Heat conduction or advection due to the

motion of heat source is the dominant phenomenon for moving heat source problems

depending on whether the isotherm of interest is close or far to the heat source. To

ensure the generality of proposed engineering expressions to be independent of spe-

cific materials or processes, the ideal solutions in this dissertation are obtained by the

asymptotic analysis of normalized analytical solutions based on the classic Rosenthal

heat source model to capture the essence of heat flow under moving heat source.

Correction factors are developed to measure the departure of the ideal solutions

for ideal cases from the “reality” to capture the secondary effects. The secondary

phenomena can be surface heat loss to the environment, phase transformations, fluid

dynamics, heat source distributions and many other more, which depend on practical

processes and requirements. The “reality” can be analytical solutions, experiments,

or numerical simulation results [141]. The correction factors can be formulated by

statistic regression or blending technique. In this dissertation, the 1-D/2-D blend-

ing methodology is used to formulate correction factors for conduction or advection,

effects of surface heat losses and size of Gaussian distributed heat source.

1.2 Literature review

Point heat source

The moving point heat source model, which was proposed and solved by Wilson [215]

and popularized in welding engineering by Rosenthal [175], is the most classic moving

heat source model. Rosenthal successfully applied the model to welding and cutting

processes, and it presented reasonable estimations of the temperature field far away

from the heat source. Comparisons have been made between experimental data and

Rosenthal’s prediction [160, 176]. Rosenthal and Schmerber [176] verified Rosenthal’s

thermal distribution theory on thin plates, measuring isotherms with thermocouples.

It has been widely applied in many fields, including mass transfer [171], additive
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manufacturing such as beam-based fabrication of thin-wall structures, [73, 85, 190]

and metal cutting [66, 149], even general enough to be utilized to simulate the shell-

forming by line heating [227]. It has also been adopted to speed up and verify nu-

merical simulation procedures of heat flow due to its fundamental feature [52, 112,

163]. The experiments and theoretical equation are in satisfactory agreement on the

thin plate, excepting the area close to the heat source and the edge regions.

The point heat source model is widely utilized in welding engineering due to its

explicit analytical solution to the temperature field and capturing the essence of the

moving heat source problems with much simplicity and reasonable accuracy. Heller et

al. [84] characterized the radius of near field region, far-field region and transitional re-

gion of the temperature field based on point heat source models and achieved asymp-

totic expressions for the trailing length and maximum isotherm width. Goyal et

al. [75] employed the point heat source model as an approximation of the heat in-

put of droplets in modelling the thermal processes of PGMAW (Pulse Gas Metal

Arc Welding). Yajun [205] integrated the two-dimensional and three-dimensional

point heat source models and verified with measurements from EBM (Electron Beam

Welding) experiments where good agreements were achieved between predicted and

measured fusion line locations. Gajapathi et al. [64] reported simulation results of

micro electron beam welding processes and compared the numerical temperature field

against Rosenthal’s point heat source solution in the far-field (out of (−10µm, 1µm))

in the centerline with good agreements.

Kou [112] developed a numerical model to simulate the steady-state, two-dimensional

heat flow based on the finite difference method and adopted Rosenthal thin solution

as the first guess to speed up the computation. Comparison between calculation

given by this line heat model with his numerical results within the limits of listed

assumptions showed that the numerical and analytical solutions are nearly identical

for temperature below the melting temperature of the workpiece and thermal cycles

are also nearly identical except at the location of heat source where the temperature
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is infinity due to the point source assumption. Kazuya [154] tested the effect of latent

heat on temperature field induced by a two-dimensional heat flow numerically and

concluded that the latent heat might not be necessarily considered in the calculation

for the cases of small heat input.

The model must be applied with an understanding of its limitations caused by its

assumptions. The point heat source model is inferior in predicting temperature fields

close to heat sources, but the model can provide fair estimations for points away from

the heat source, where many critical regions locate such as the heat-affected zone.

The moving point heat source is the critical model capturing the essence of moving

heat source problems. Therefore, the moving point heat source model is utilized

in the first step of current research and serves as the theoretical basis to establish

preliminary engineering expressions. To capture the influence of sizes of heat source,

Gaussian distributed heat source model, which are reviewed below, will be employed

to develop engineering expressions for isotherm half-width associated with the vicinity

of the heat source.

More sophisticated heat source models, for example, volumetric heat sources, as

reviewed below, can improve the accuracy of temperature field prediction, particularly

for the regions close to the heat source, with elaborate choices of parameters. However,

here comes two problems. Firstly, the relevant parameters in the heat source models

are challenging to measure or estimate. Secondly, it is nearly unachievable to control

the parameters of volumetric heat sources in welding processes, making it impractical

to involve the volumetric heat source parameters in designing rules.

Surface heat source

Surface heat source models, heat imposed on the flat surface of the base material,

are utilized in many analytical and numerical methods because they provide a better

temperature description around the heat source by taking the sizes of heat sources

into account.
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The most common surface heat source model is the moving Gaussian distributed

heat source proposed by Eagar and Tsai [53]. Ghosh et al. [69] modelled the heat

input of welding arc as a Gaussian distributed heat source. Akbari et al. [8] ap-

plied Gaussian distributed heat source model to simulations of laser beam welding

of Ti6Al4V. Roberts et al. [170] and Nikam and Jain [151] employed Gaussian heat

source model to simulate laser additive manufacturing processes.

There are some other types of surface heat sources other than the Gaussian dis-

tributed heat source. One typical model is the uniform distribution or top-hat heat

source, and the top-hat models are widely used in laser beam processes [115, 161,

198]. Haghpanahi et al. [81] modelled a surface ring heat source to represent the

heat generated by friction in the shear layers. To achieve a more realistic heat source

model for simulations, Kubiak et al. [115] measured the energy distribution of Yd:

YAG laser and built a mathematical model of the heat source by interpolation for

more accuracy.

The surface heat source models introduce geometry parameters to capture the heat

source’s size and energy distribution, such as the distribution parameter σ for moving

Gaussian distributed heat source models. Those parameters can be measured directly

in experiments [115], or estimated based on the temperature fields [178].

Volumetric heat source

The heat input is not always imposed on a flat surface due to arc force and metal

evaporation and so on, especially under high current or high energy density. Volu-

metric heat source models, or more accurately speaking, curved surface heat source

models, are utilized, mostly in numerical simulations.

The double ellipsoidal heat source model proposed by Goldak et al. [74] is the most

popular volumetric heat source model, which describes the heat distribution in front

and rear parts as the of different sets of parameters. The size and shape of a double

ellipsoidal heat source can be easily manipulated with seven parameters, which has the
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advantage of versatility and flexibility to deal with different processes but also causes

difficulty in setting appropriate geometry parameters. The double ellipsoidal heat

source model is widely utilized in simulations of many moving heat source processes,

such as electron beam welding [32], laser beam welding [16], plasma arc welding [125],

and so on. Other than applications on simulations, the double ellipsoidal heat source is

also utilized in analytical approaches. For example, Fachinotti et al. [56] analytically

solved the temperature distribution of a double ellipsoidal heat source on a semi-

infinite solid medium, reducing the computation cost to a large extent.

Some volumetric heat source models have been developed for specific processes or

phenomena. Yadaiah and Bag [223] modified the double ellipsoidal heat source into

an egg-shape configuration to capture the influence of molten metal. Parkitny and

Winczek [158] built up a tilted Gaussian distributed volumetric heat source to describe

the effect of the angle of laser. Piekarska and Kubiak [164] proposed a truncated

cone-cylinder volumetric heat source model for lasers symmetric in x-y directions.

Gajapathi et al. [64] presented an exponentially decaying Gaussian distribution heat

source in the thickness direction for modelling of electron beams.

Hybrid models by integrations of well-established heat source models for different

phenomena have been developed according to the superposition principle. Chowd-

hury et al. [32] reported a combination of Gaussian distribution model and conical

heat source model to study the keyhole mode. Yajun et al. [205] merged moving

point and line heat source model in the numerical simulation of the keyhole mode in

electron beam welding. Goyal et al. [75] analytically described the temperature dis-

tribution of PGMAW as a combination of solutions to Rosenthal’s point heat source

model and double ellipsoidal model. Ghosh et al. [69] combined Gaussian heat density

distribution and ellipsoidal heat source model to analyze the heat from the arc and

molten metal separately. Winczek [216] solved the temperature field to heat sources

with changeable directions by a straight segment method. Azar et al. [13] built a

relationship between the point heat source model and ellipsoidal heat source by a
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so-called “discretely distributed heat source model” where the temperature field of

double ellipsoidal heat source was approximated by the summation of temperature

field of point heat sources positioning in a fixed distance in horizontal and vertical

directions.

Volumetric heat source models are usually more accurate with the careful selec-

tion of parameters. However, the parameters are difficult to be defined or evaluated

before welding [14, 224]. The geometry parameters of volumetric heat sources, such

as double ellipsoidal heat source, are nearly not possible directly obtained from mea-

surements and are usually via trial and error methods from experiments [14, 224]

or experience [10, 98]. Many efforts are made to achieve or reduce the unknown

geometries parameters of volumetric heat source models. Jia et al. [98] achieved ge-

ometry parameters of double ellipsoidal heat source model from multiple regression

and partial least-square regression analysis and verified the results from comparing

width penetration and peak temperature. Yadaiah and Bag [224] established the re-

lationship between the ratio of front and rear length and travel speed by least square

regression of polynomial equation method.Bag et al. [14] developed an adaptive vol-

umetric heat source model that does not need inputting of heat source parameters,

relying on the heat source diameter and the real-time weld pool size, overcoming the

disadvantage of the double ellipsoidal heat source model.

Because the geometry parameters of volumetric heat sources are usually unknown

before experiments, and it is barely possible to control the geometry of volumetric heat

inputs, the engineering expressions will not be established according to volumetric

heat source models.

Experiments

Temperature distribution of the whole field or some of the points can be measured

from thermocouples, camera, or estimation from microstructure.

Since the microstructure of weld bead is directly related to the thermal history,
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specific temperatures can be estimated from microstructure distribution, such as the

maximum temperature of the particle at fusion line is melting temperature, and the

maximum temperature of the particle at heat affected zone line is phase transforma-

tion temperature [68, 75]. However, the transformation temperature is under uncer-

tainty of chemical composition, heating rate and so on, bringing error in temperature

estimation.

The temperature can be measured directly with thermocouples or thermal cam-

eras. Thermocouple, a device based on thermoelectric effect, is widely utilized to

measure the temperature at a certain point with time [8, 161], by attaching thermo-

couples on the workpiece. Thermal cameras, based on infrared radiation, are used

to measure the radiation of the weld pool to show the temperature of a range of

wavelengths. Chen and Gao[30] detected the size of molten pool on-the-fly with

a high-speed near-infrared sensitive camera. Lammlein et al. [118] determined the

temperature of shoulder edge temperature in friction stir welding (FSW). Heller et

al. [84] measured the temperature distribution of laser keyhole welding from thermog-

raphy images and verified his mathematical model of the combination of Rosenthal’s

two-dimensional and three-dimensional formula.

Analytical methods

The temperature distribution can be approached theoretically via solving the thermal

diffusion equation, such as the solution to moving point heat source proposed by

Rosenthal[175]. The analytical solutions are usually general, but limited to simple

geometry [194] and constant physical properties [56, 161, 216, 217].

Green function method is popular to express the temperature field [56, 81, 101,

158, 161, 198, 216, 217, 223], and could be conventionally applied to various heat

source configurations. Peng [161] presented a general solution for the transient tem-

perature field by a moving laser heat source of uniform distribution and validated with

experiments and FEM solutions. Van Elsen et al. [198] investigated the temperature
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distribution of top-hat heat source or uniformly distributed heat source analytically

and numerically. In analytical solutions, Green function is applied to integrate the

instantaneous solution. Yadaiah et al. [223] analytically solved the temperature of

his proposed egg-configuration heat source model for GTAW and validated it with

experiments and simulations. Parkitny and Winczek [158] provided a solution to

temperature distribution under a tilted Gaussian distributed heat source consider

the angle of the heat source. Fachinotti et al. [56] analytically solved the temper-

ature field of a double-elliptical heat sourced and compared it with FEM solution.

Kidawa-Kukla [101] reported the solution to a moving heat source along an elliptical

trajectory on a rectangle solid.

The analytical solution can be approached by the integration of established an-

alytical solutions. Goyal et al. [75] combined the solutions to point heat source

and distributed heat source to model PGMAW and validated with experiments.

Ghosh et al. [69] predicted temperature distribution by modelling arc droplet and

surface heat loss independently. Sundqvista et al. [188] superposed Gaussian dis-

tributed heat source to describe the temperature field of any heat source profiles.

Heller et al. [84] analytically divided the workpiece plate into different regions accord-

ing to their relative position to the heat source, and integrated Rosenthal’s models

for two-dimensional heat flow and three-dimensional heat flow to capture the tem-

perature distribution of different region, and verified the integrated analytical model

with laser beam keyhole weldings.

Both the simulation and analytical methods attempt to solve the same thermal

diffusion equation in different approaches for the moving heat source problems. The

numerical solutions are more visualized and intuitive, directly illustrating the temper-

ature field, and can deal with complex material models, geometries and heat source

models. However, it is more time and computational resource consuming and brings

discretization error into the result. The analytical method can only deal with less

complex models than numerical approaches, and analytical solutions are usually ob-
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scure with complex integrals and summations. However, the analytical methods are

accurate and general, independent of the specific values and easy to be transferred to

different problems, and consume less time and computational resources.

Simulations

The temperature field can be approached by numerical simulations with fewer as-

sumptions than analytical methods, bringing temperature-dependent variables into

numerical models and considering secondary phenomena, but usually with more time

or computational resource consumption.

To reduce the time and computational resource consumption of simulation, Ding et

al. [45] reported modelling the moving heat source problem as a quasi-steady problem

rather than a transient thermal problem and reduced the simulations time signifi-

cantly from 51 hours 24 minutes down to 10 minutes, by 99%.

There are typically five methods to model melting and solidification in the mov-

ing heat source simulations: apparent heat capacity method, effective heat capacity

method, heat integration method, source-based method, and enthalpy method, where

the enthalpy method is the most popular one. Li et al. [125] utilized the enthalpy

method, bringing enthalpy as a function of temperature into the governing equation,

including the latent heat, and considered thermal conductivity, convection coefficient,

and viscosity coefficient as piece-wise linear functions. Nisar et al. [152] carried out

FEM analysis of laser enamelling processes considering the phase transformation la-

tent heat employing enthalpy method. The latent heat of melting or solidification can

also be treated as an energy source in the energy balance equation. Anca et al. [10],

Bannour et al. [16] and Akbari et al. [8] treated latent heat as a term of heat source

or sink located at fusion line. Piekarska and Kubiak [164] considered the latent heat

of fusion into effective heat capacity based on the volumetric percentage of different

phases. Van Elson et al. [198]study of temperature under moving top-hat heat source

with FDM analysis, comparing different ways to accomplish latent heat; among the
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five methods, the enthalpy method is the most stable, converges fast and incorpo-

rates the conservation of energy. Van Elsen investigated the influence of latent heat.

For large thermal conductivity, the effect of latent heat is little, and for low thermal

conductivity, the effect of latent heat causes sharping tail.

As addressed in the previous section, the physical properties are usually treated

as constant in analytical methods. In simulations, more realistic models can be es-

tablished for physical properties. Piece-wise linear functions are usually brought

to model the temperature-dependent properties, such as heat capacity[8], thermal

conductivity[8, 125]. Power-law functions are employed to describe the surface con-

vection coefficient [8, 14, 224]. Akbari et al. [8] utilized the piece-wise linear function

to describe the temperature-dependent heat capacity and heat conductivity, power-

law function to describe the surface convection coefficient and constant value models

to density and viscosity. Rouquette et al. [178] approximated the value of thermal

properties of multiphase coexistence state with the law of mixture of different phases.

Kubiak et al. [115] measured the realistic heat energy distribution of Yb: YAG laser

and proposed an interpolated heat source model for exact heat input distribution,

and compared different heat source models, Gaussian distributed heat source, top-

hat heat source, super-Gaussian heat source model. Roberts et al. [170] simulated the

transient temperature field in additive layer manufacturing processes (ALM), captur-

ing the material deposition of multilayers with the element birth and death method

(activation of new elements), where some thermal properties (enthalpy, density) are

functions of temperature, while some properties (conductivity) are not only functions

of temperature, but also depending on powder porosity. Chen et al. [28] assumed the

physical properties are of different constants for gas, liquid and solid, established a set

of transition rules for the transformation of the interface cells between three states.

Komanduri and Ho reported that appropriate choice of the average value of thermal

properties at intermediate temperature could compensate the assumption of constant

thermal properties and yield reasonable results close to experimental observations as
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long as room-temperature thermal properties are not taken [104, 106].

Bannour et al. [16] investigated the influence of thermal properties by comparing

simulation results of temperature-dependent values and constant values. For density

and enthalpy, the temperature field varies slightly between temperature-dependent

values and constant values. For thermal conductivity and efficiency, the temperature

field away from the heat source is underestimated, and at the high-temperature region

around the heat source, a good estimation is performed.

The convective fluid flow in moving heat source processes enhances the heat transfer

in the weld pool that could be captured by simulation but difficult to adequately

describe. The surface tension force is the main drive force in molten metal flow and

is usually considered as a boundary condition on the contact surface[8, 16, 125]. The

buoyancy force is considered as a term in momentum balance in vertical direction [8,

16, 125, 172]. The electromagnetic force is considered a body force that is symmetric

on the top surface, balancing the momentum in three equations, promoting fluid flow

downward[125]. The convective molten fluid flow can be captured by modification

on thermal properties or heat source model. Anca et al. [10] reported that molten

metal flow in the welding pool could be treated as increasing conductivity. Nikam

and Jain [151] treated the conductivity of molten liquid 2.5 times of solid to capture

the Marangoni flow caused by surface tension. Yadaiah and Bag [223] established an

egg configuration heat source for capturing the influence of convective molten metal.

The meshless simulation technique is employed to moving heat source problems.

Pham [163] utilized the meshless element-free Galerkin method to approximate Rosen-

thal’s two-dimensional quasi-steady temperature field for moving point heat source

and Gaussian distributed heat source, and compared the temperature in centerline

with FEM solutions.
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Blending techniques

In many transfer processes, the asymptotic solutions for extremely large or small

values of independent variables are known, while the solutions for non-asymptotic

regions are typically not in closed form. For these intermediate regions, simple and

accurate expressions can be obtained using the blending technique, which was first

proposed by Acrivos [3, 4] for the rate of heat and mass transfer in several lami-

nar boundary layer flows and was later extended and generalized by Churchill and

Usagi [34, 38] named CUE (Churchill-Usagi equation):

Y = (1 + Zn)1/n (1.4)

where Y and Z are expressions of asymptotic solutions of limiting values of the inde-

pendent variable, and n is an empirical number that could be achieved numerically or

experimentally. The proposed blending method is successfully applied to many prob-

lems, like heat transfer [35–37, 200], mass transfer [58], fluid dynamics [50]. The CUE

provides a new paradigm to obtain a general solution over the whole domain in terms

of simple, known, limiting solutions with a minimal degree of explicit empiricism,

which is typically caused by the additional introduction of the blending exponent n.

Besides blending, there are also some other methodologies to obtain global approx-

imation based on asymptotics for extreme values, such as asymptotic matching [159]

by adding inner and outer asymptotics minus the matching term, which is usually

used in perturbing differential equations.

1.3 Objectives

This work establishes predictive scaling expressions in the form of ideal solutions

timing correction factors, for crucial and practical thermal features under a moving

line heat source or Gaussian heat source. Some ideal solutions have been reported

based on the moving line heat source model, such as cooling time [192] and isotherm

width [190], and they are only valid for either “fast” or “slow” travel speed cases.
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This work contributes ideal solutions to both “slow” and “fast” travel speed cases

for thirteen thermal features of practical applications, if have not been reported.

This work contributes modifications of blending to extend the scope of application

to non-power-law, non-crossing asymptotics, and develops a systematic approach for

two-dimensional blending. The proposed blending methods are practiced to establish

correction factors for ideal solutions. This work contributes correction factors to

ideal solutions to improve the usefulness to all cases covering “slow”, “fast” and

intermediate speeds. The work also contributes correction factors that depend on

two dimensionless variables to account for secondary phenomena. They are correction

factors for effects of surface heat losses for the isotherm width and its location, the

trailing length and the cooling rate, and for effects of heat source distributions for

the isotherm width on a thick plate.

The following objectives are fulfilled:

• Modify Churchill-Usagi 1-D blending equation systematic to extend its scope of

application and improve accuracy at intermediate regimes to generate explicit

scaling laws that predict characteristics of interest depending on one dimension-

less group.

• Develop predictive engineering expressions for characteristics related to isotherms

with an implement of the modified 1-D blending methodology proposed, in-

cluding: maximum isotherm width ymax and its location xmax, trailing length of

isotherm xb, leading length of isotherm xf, centerline cooling rate Ṫb, centerline

heating rate Ṫf, maximum temperature of a point in the cross-section Tmax and

transverse temperature gradient at the maximum isotherm width dTmax/dy.

Secondary thermal features are the aspect ratio A of the chosen isotherm and

melting efficiency ηm which is defined as the ratio of energy to melt the base

material to that absorbed by the workpiece, solidification time tsl which is im-

portant to the transformation of microstructures, cooling time from 800 ◦C to
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500 ◦C, t8/5, which is a key characteristic for steel processes, width of heat

affected zone ∆yHAZ.

• Propose a systematic 2-D blending methodology that generates explicit scal-

ing laws to predict characteristics of interest depending on two dimensionless

groups.

• Develop correction factors of the effects of surface heat loss for isotherm trailing

xb and centerline cooling rate Ṫb by implementing the proposed 2-D blending

methodology.

• Develop correction factors of the effects of surface heat loss for isotherm width

ymax by implementing the proposed 2-D blending methodology.

• Develop correction factors of the size of heat source for isotherm width y∗max

based on moving Gaussian heat source model by implementing the proposed

2-D blending methodology.

• Validate the proposed predictive formulae by comparing with data collected

from published papers for a wide range of sources, materials, processes, and

operating parameters.

1.4 Thesis outline

This dissertation includes chapters as follows:

• Chapter 2 proposes the modified 1-D blending methodology by introducing ex-

ponential modification term for non-crossing asymptotics. The implement of the

modified 1-D blending methodology yields engineering expressions for isotherm

half-width ymax under moving line heat source. A comprehensive survey of ex-

perimental results indicates a good agreement with the predictions resulting

from the proposed expression.
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• Chapter 3 proposes modified 1-D blending methodology by introducing a tran-

sitional term for better accuracy in the intermediate region. Based on the

modified 1-D blending, the engineering expressions for thermal features of 12

magnitudes associated with a moving point heat source in a 2-D space are pre-

sented: location of maximum width, trailing length, centerline cooling rate,

leading length, centerline heating rate, maximum temperature, the gradient

of maximum temperature, aspect ratio, melting efficiency, cooling time from

800 ◦C to 500 ◦C, solidification time, the thickness of the heat-affected zone.

The expressions for cooling rate, isotherm length (xf−xb), maximum tempera-

ture, heat-affected zone thickness, and isotherm aspect ratio are validated with

data collected from published papers.

• Chapter 4 proposes a special case of 2-D blending and presents correction fac-

tor of trailing length and centerline cooling rate to account for the effects of

surface heat losses based on the 2-D blending. The engineering expressions and

correct factors proposed are validated with data collected from published data

for welding, hard facing and additive manufacturing under water and air.

• Chapter 5 proposes a systematic approach to achieve 2-D blending and presents

correction factor of isotherm width and its location to account for the effects

of surface heat losses with the proposed 2-D blending approach. A comparison

illustrates acceptable agreements between the predictive equations and collected

data from published papers and welding simulation results for thermal residual

stresses.

• Chapter 6 develops correction factors of size of heat source for isotherm half-

width based on moving Gaussian heat source on thick plate, with the proposed

2-D blending approach. Comparisons of the proposed equations are conducted

with measurements from literatures.
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• Chapter 7 summarizes the results and novelties in this dissertation and proposes

potential future work to continue this research.

• The appendix chapters list the supplementary materials to achieve the scaling

laws in the papers, including figures supporting blending results and Matlab

codes. The appendix chapters also proposed engineering expressions for catch-

ment efficiencies of Gaussian distributed powder cloud.
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[50] F. Durst, S. Ray, B. Ünsal, and O. A. Bayoumi, “The development lengths
of laminar pipe and channel flows,” Journal of Fluids Engineering, vol. 127,
no. 6, pp. 1154–1160, 2005.

[51] R. P. Dutt and R. C. Brewer, “On the theoretical determination of the tem-
perature field in orthogonal machining,” International Journal of Production
Research, vol. 4, no. 2, pp. 91–114, 1965.

[52] D. Dye, O. Hunziker, and R. C. Reed, “Numerical analysis of the weldability
of superalloys,” Acta Materialia, vol. 49, no. 4, pp. 683–697, 2001.

[53] T. W. Eagar and N. S. Tsai, “Temperature fields produced by traveling dis-
tributed heat sources,” Welding Journal, vol. 62, no. 12, pp. 346–355, 1983.

[56] V. D. Fachinotti, A. A. Anca, and A. Cardona, “Analytical solutions of the
thermal field induced by moving double-ellipsoidal and double-elliptical heat
sources in a semi-infinite body,” International Journal for Numerical Methods
in Biomedical Engineerin, vol. 27, pp. 595–607, 2011.

24



[58] P. S. Fedkiw and J. Newman, “Mass-transfer coefficients in packed beds at
very low reynolds numbers,” International Journal of Heat and Mass Transfer,
vol. 25, no. 7, pp. 935–943, 1982.

[61] P. W. Fuerschbach and G. A. Knorovsky, “A study of melting efficiency in
plasma arc and gas tungsten arc welding,” Welding Research Supplement,
vol. 70, no. 11, pp. 287–297, 1991.

[64] S. S. Gajapathi, S. K. Mitra, and P. F. Mendez, “Controlling heat transfer in
micro electron beam welding using volumetric heating,” International Journal
of Heat and Mass Transfer, vol. 54, no. 25-26, pp. 5545–5553, 2011.

[66] E. Gariboldi and B. Previtali, “High tolerance plasma arc cutting of commer-
cially pure titanium,” Journal of Materials Processing Technology, vol. 160,
no. 1, pp. 77–89, 2005.

[68] A. Ghosh and H. Chattopadhyay, “Mathematical modeling of moving heat
source shape for submerged arc welding process,” The International Journal
of Advanced Manufacturing Technology, vol. 69, no. 9-12, pp. 2691–2701, 2013.

[69] A. Ghosh, A. Yadav, and A. Kumar, “Modelling and experimental validation
of moving tilted volumetric heat source in gas metal arc welding process,”
Journal of Materials Processing Technology, vol. 239, pp. 52–65, 2017.

[73] J. Gockel, N. Klingbeil, and S. Bontha, “A closed-form solution for the ef-
fect of free edges on melt pool geometry and solidification microstructure in
additive manufacturing of thin-wall geometries,” Metallurgical and Materials
Transactions B, vol. 47, no. 2, pp. 1400–1408, 2016.

[74] J. Goldak, A. Chakravarti, and M. Bibby, “A new finite element model for
welding heat sources,” Metallurgical Transactions B, vol. 15, no. 2, pp. 299–
305, 1984.

[75] V. K. Goyal, P. K. Ghosh, and J. S. Saini, “Analytical studies on thermal
behaviour and geometry of weld pool in pulsed current gas metal arc welding,”
Journal of materials processing technology, vol. 209, no. 3, pp. 1318–1336, 2009.

[76] M. R. Grams and P. F. Mendez, “Scaling analysis of the thermal stress field
produced by a moving point heat source in a thin plate,” Journal of Applied
Mechanics, pp. 1–34, Sep. 2020.

[81] M. Haghpanahi, S. Salimi, P. Bahemmat, and S. Sima, “3-D transient analyti-
cal solution based on green’s function to temperature field in friction stir weld-
ing,” Applied Mathematical Modelling, vol. 37, no. 24, pp. 9865–9884, 2013.

[84] K. Heller, S. Kessler, F. Dorsch, P. Berger, and T. Graf, “Analytical description
of the surface temperature for the characterization of laser welding processes,”
International Journal of Heat and Mass Transfer, vol. 106, pp. 958–969, 2017.

[85] H. Hemmer and Ø. Grong, “Prediction of penetration depths during electron
beam welding,” Science and technology of welding and joining, vol. 4, no. 4,
pp. 219–225, 1999.

25



[86] J. W. Hill, M. J. Lee, and I. J. Spalding, “Surface treatments by laser,” Optics
& Laser Technology, vol. 6, no. 6, pp. 276–278, 1974.

[87] A. Hintze Cesaro and P. F. Mendez, “Models to predict hardness in the HAZ,”
Weld Magazine, pp. 42–55, 2019.

[89] Z. B. Hou and R. Komanduri, “General solutions for stationary/moving plane
heat source problems in manufacturing and tribology,” International Journal
of Heat and Mass Transfer, vol. 43, no. 10, pp. 1679–1698, 2000.

[92] F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Fundamentals
of heat and mass transfer. John Wiley & Sons, 2007.

[94] J. C. Jaeger, “Moving sources of heat and the temperature of sliding contacts,”
in Proceedings of the royal society of New South Wales, vol. 76, 1942, pp. 203–
224.

[98] X. Jia, J. Xu, Z. Liu, S. Huang, Y. Fan, and Z. Sun, “A new method to estimate
heat source parameters in gas metal arc welding simulation process,” Fusion
Engineering and Design, vol. 89, no. 1, pp. 40–48, 2014.

[99] T. Kasuya and N. Yurioka, “Prediction of welding thermal history by a com-
prehensive solution,” Welding Research Supplement, vol. 72, no. 3, 107s–115s,
1993.

[101] J. Kidawa-Kukla, “Temperature distribution in a rectangular plate heated
by a moving heat source,” International Journal of Heat and Mass Transfer,
vol. 51, pp. 865–872, 2008.

[102] K. Knothe and S. Liebelt, “Determination of temperatures for sliding contact
with applications for wheel-rail systems,” Wear, vol. 189, no. 1-2, pp. 91–99,
1995.

[103] F. Kolonits, “Analysis of the temperature of the rail/wheel contact surface
using a half-space model and a moving heat source,” Proceedings of the In-
stitution of Mechanical Engineers Part F: Journal of Rail and Rapid Transit,
vol. 230, no. 2, pp. 502–509, 2016.

[104] R. Komanduri and Z. B. Hou, “Thermal analysis of the arc welding pro-
cess : Part I . general solutions,” Metallurgical and Materials Transactions
B, vol. 31B, no. 6, pp. 1353–1370, 2000.

[106] R. Komanduri and Z. B. Hou, “Thermal analysis of the laser surface transfor-
mation hardening process,” International Journal of Heat and Mass Transfer,
vol. 44, no. 15, pp. 2845–2862, 2001.

[107] R. Komanduri and Z. B. Hou, “Unified approach and interactive program
for thermal analysis of various manufacturing processes with application to
machining,” Machining Science and Technology, vol. 13, no. 2, pp. 143–176,
2009.

[112] S. Kou, “Simulation of heat flow during the welding of thin plates,” Metallur-
gical Transactions A, vol. 12, no. 12, pp. 2025–2030, 1981.

26



[115] M. Kubiak, W. Piekarska, and S. Stano, “Modelling of laser beam heat source
based on experimental research of Yb : YAG laser power distribution,” Inter-
national Journal of Heat and Mass Transfer, vol. 83, pp. 679–689, 2015.

[116] P. K. Kundu, I. M. Cohen, and D. R. Dowling, Fluid mechanics, Fifth. Waltham,
MA: Academic Press, 2012, isbn: 978-0-12-382100-3.

[118] D. H. Lammlein, D. R. DeLapp, P. A. Fleming, A. M. Strauss, and G. E.
Cook, “The application of shoulderless conical tools in friction stir welding:
An experimental and theoretical study,” Materials & Design, vol. 30, no. 10,
pp. 4012–4022, 2009.

[121] J. Lee, O. B. Ozdoganlar, and Y. Rabin, “An experimental investigation
on thermal exposure during bone drilling,” Medical Engineering & Physics,
vol. 34, no. 10, pp. 1510–1520, 2012.

[124] W.-B. Li, K. E. Easterling, and M. F. Ashby, “Laser transformation hardening
of steel-II. hypereutectoid steels,” Acta Metallurgica, vol. 34, no. 8, pp. 1533–
1543, 1986.

[125] Y. Li, Y.-h. Feng, X.-x. Zhang, and C.-s. Wu, “An improved simulation of
heat transfer and fluid flow in plasma arc welding with modified heat source
model,” International Journal of Thermal Sciences, vol. 64, pp. 93–104, 2013.

[132] S. Malkin, “Thermal aspects of grinding: Part 2 – surface temperatures and
workpiece burn,” Journal of Engineering for Industry, vol. 96, no. 4, pp. 1184–
1191, 1974.

[137] P. F. Mendez, K. E. Tello, and S. S. Gajapathi, “Generalization and commu-
nication of welding simulations and experiments using scaling analysis design
rules in welding design rules in engineering : Calibrated minimal representation
approach,” in Trends in Welding Research, Proceedings of the 9th International
Conference, ASM International, 2012, pp. 249–258.

[138] P. F. Mendez, “Advanced scaling techniques for the modeling of materials
processing,” in Industrial Practice, vol. 7, ASME, 2006, pp. 393–404, isbn:
978-0-7918-4358-1.

[141] P. F. Mendez, K. E. Tello, and T. J. Lienert, “Scaling of coupled heat transfer
and plastic deformation around the pin in friction stir welding,” Acta Materi-
alia, vol. 58, no. 18, pp. 6012–6026, 2010.

[149] V. Nemchinsky, “Temperature created by a moving heat source that heats
and melts the metal plate (plasma arc cutting),” Journal of Heat Transfer,
vol. 138, no. 12, p. 122 301, 2016.

[151] S. H. Nikam and N. K. Jain, “Finite element simulation of pre-heating effect on
melt pool size during micro-plasma transferred arc deposition process,” in IOP
Conference Series: Materials Science and Engineering, ser. IOP Conference
Series: IOP Publishing, vol. 389, 2018, p. 012 006.

27



[152] A. Nisar, M. J. J. Schmidt, M. A. Sheikh, and L. Li, “Three-dimensional
transient finite element analysis of the laser enamelling process and moving
heat source and phase change considerations,” Proceedings of the Institution of
Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 217,
no. 6, pp. 753–764, 2003.

[154] K. Ogawa, “Analysis of temperature distribution around moving heat source
in thin plate,” Journal of the Marine Engineering Society in Japan, vol. 22,
no. 4, pp. 257–262, 1987.

[158] R. Parkitny and J. Winczek, “Analytical solution of temporary temperature
field in half-infinite body caused by moving tilted volumetric heat source,”
International Journal of Heat and Mass Transfer, vol. 60, pp. 469–479, 2013.

[159] W. Paulsen, Asymptotic analysis and perturbation theory. CRC Press, 2013.

[160] V. Pavelic, R. Tanbakuchi, O. A. Uyehara, and P. S. Myers, “Experimental and
computed temperature histories in gas tungsten-arc welding of thin plates,”
Welding Research Supplement, vol. 48, pp. 295–305, 1969.

[161] Q. Peng, “An analytical solution for a transient temperature field during
laser heating a finite slab,” Applied Mathematical Modelling, vol. 40, no. 5-
6, pp. 4129–4135, 2016.

[163] X.-T. Pham, “Two-dimensional Rosenthal moving heat source analysis using
the meshless element free Galerkin method,” Numerical Heat Transfer, Part
A: Applications, vol. 63, no. 11, pp. 807–823, 2013.

[164] W. Piekarska and M. Kubiak, “Theoretical investigations into heat transfer
in laser-welded steel sheets,” Journal of thermal analysis and calorimetry,
vol. 110, no. 1, pp. 159–166, 2012.

[165] W. D. Pilkey and D. F. Pilkey, Peterson’s stress concentration factors. John
Wiley & Sons, 2008.

[170] I. A. Roberts, C. J. Wang, R. Esterlein, M. Stanford, and D. J. Mynors, “A
three-dimensional finite element analysis of the temperature field during laser
melting of metal powders in additive layer manufacturing,” International Jour-
nal of Machine Tools and Manufacture, vol. 49, no. 12-13, pp. 916–923, 2009.

[171] O. F. T. Roberts, “The theoretical scattering of smoke in a turbulent atmo-
sphere,” in Proceedings of the Royal Society of London, ser. Series A, Contain-
ing Papers of a Mathematical and Physical Character, vol. 104, Royal Society,
1923, pp. 640–654.

[172] M. Rohde, C. Markert, and W. Pfleging, “Laser micro-welding of aluminum
alloys: Experimental studies and numerical modeling,” The International Jour-
nal of Advanced Manufacturing Technology, vol. 50, no. 1-4, pp. 207–215, 2010.
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Chapter 2

Width of thermal features induced
by a 2-D moving heat source

2.1 Abstract

Novel expressions in explicit form are presented for the estimation of the width of the

bead, location of heat affected zone, and the width of any chosen isotherm in materials

processes such as welding, additive manufacturing, laser heat treatment, and cutting.

These expressions are applicable when the substrate is relatively thin (as in most cases

of welding and additive manufacturing of walls), or when the heat source penetrates

deeply into the substrate (as in keyhole mode in laser or electron beam welding). The

explicit expressions are based on the widely used Rosenthal 2-D solution, which yields

results of the correct order of magnitude compared to experiments for a broad range

of materials, processes, and parameters. Asymptotic analysis was applied and a new

blending technique was developed to arrive to explicit expressions within 7% of the

exact solution. The key dimensionless group in this case is the Rosenthal number Ro,

which enables the blending of solutions corresponding to fast and slow heat sources.

A comprehensive survey of experimental results indicates a good agreement with the

predictions resulting from the proposed expression.
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Table 2.1: Notation

Variables Unit Description

Ac m2 Cross sectional area of melt

c J kg−1 K−1 Specific heat of the substrate

d m Thickness of the substrate

dc,2D m Maximum thickness to approximate as
2D

dc,h m Minimum thickness to ignore convec-
tion

h Wm−2 K−1 Convection coefficient on top surface

h′ Wm−2 K−1 Convection coefficient on bottom sur-
face

i0 J kg−1 Enthalpy at the far temperature

il J kg−1 Enthalpy at the liquidus temperature

isl J kg−1 Latent heat of fusion

k Wm−1 K−1 Thermal conductivity of the substrate

q W Power absorbed by substrate

q′ Wm−1 Intensity of line heat source

r m Distance from the heat source

t s Time

T K Temperature

T0 K Far temperature or preheat

Tc K Temperature of interest

U m s−1 Travel speed of the moving heat source

x, y m Cartesian coordinates

xmax m Location of maximum isotherm width

ymax m Isotherm half-width

Greek symbols

α m2 s−1 Thermal diffusivity of the substrate

Continued on next page
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Table 2.1 – continued from previous page

Variables Unit Description

γ 1 Euler–Mascheroni constant

ρ kg m−3 Density of the substrate

σ m Distribution parameter of the heat
source

ηm 1 Melting efficiency

Dimensionless
Groups

Bi Biot number

Pe Peclet number

Ro Rosenthal number

Ry Rykalin number

St Stefan number

Superscripts

∗ Dimensionless value

̂ Asymptotic behavior

+ Correction for intermediate regions

Subscripts

III Regime III (large Ro, fast)

IV Regime IV (small Ro, slow)

Acronyms

AM Additive manufacturing

EBW Electron beam welding

FSW Friction stir welding

GMAW Gas metal arc welding

GTAW Gas tungsten arc welding

HAZ Heat affected zone

Continued on next page
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Table 2.1 – continued from previous page

Variables Unit Description

LBW Laser beam welding

SAW Submerged arc welding

SMAW Shielded metal arc welding

2.2 Introduction

In the thermal analysis of moving heat source problems, the estimation of the size and

shape of isotherms is essential because it determines the extent of thermal alterations

in the base metal and resulting properties. For example, in the field of welding, the

size and shape of the melting isotherm determine critical features such as weld seam

geometry and metallurgical dilution. For the case of steel, the maximum width of

the isotherm of austenization temperature (Ac1) has a large influence in the reach of

the heat affected zone (HAZ), which has a decisive effect on joint properties. Despite

the importance of prediction of isotherm width and the numerous previous efforts to

calculate it, there is no engineering expression to anticipate it in typical conditions,

and in practice engineers typically resort to previous experience or trial and error

when developing parameters for moving heat sources.

Previous efforts to predict the width of isotherms fall into three main categories:

analytical approaches [53, 140, 179, 190, 213], measurements from experiments [54,

62, 71, 155, 176], and numerical simulations [12, 90, 146, 160, 163, 183].

Analytical approaches of isotherm width for extreme (asymptotic) cases have been

investigated before; however, published expressions focus only on one extreme [145,

213], or both extremes [84, 88, 190], neglecting the intermediate regime. Paradox-

ically, most real-life applications are in the intermediate regime for which there is

currently no available closed-form solution.

Case-by-case results of experiments with different processing parameters and par-
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ent materials are insufficient to inform novel applications. Also, empirical equations

in open literature [70, 96, 190, 213] are only valid for specific processes and limited

to narrow ranges of operating parameters for which empirical parameters were fitted.

The practical application of numerical simulations is frequently restricted by the

need of specialized software, demand of computational skills, and the need to consider

parameters that are difficult to measure in real operating situations. Numerical sim-

ulations are seldom part of standards the way explicit expressions are, and are often

difficult to implement into metamodels, while explicit expressions like those devel-

oped here can readily be assembled into larger models. The intuitive and pedagogical

advantage of explicit expressions is often challenging to obtain with simulations.

The work presented here is part of a broader research program aimed at identi-

fying moving heat source features and presenting practical and accurate predictive

expressions useful to practitioners. The overall program is based on the understand-

ing that many important aspects of complex problems such as welding and additive

manufacturing can be treated using a minimal representation that captures only the

dominant physics, with the secondary physics included as correction factors. This

approach is often used in all engineering disciplines at an intuitive level, and a formal

implementation is described in [134, 137, 140, 141, 218].

The predictive equations proposed in this investigation were developed within the

framework of the broader program and also consist of closed-form asymptotic solutions

and correction factors to account for intermediate cases. In this work, the asymptotic

cases are based on Rosenthal’s 2-D solution [176], also called the “thin plate” solution

or “line heat source” solution. This solution is accurate enough to be used routinely

used in practice for a wide range of materials and problems including arc welding [62,

160, 176, 213], laser and electron beam welding [73, 85, 190], metal cutting [66, 149],

thermal forming of shells [227], and has even been adapted to mass transfer [171].

Due to its fundamental nature, the expressions developed in this work can be used

for the estimation of heat source efficiency, optimization of processing parameters, or
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determination of resulting material properties in a simple and economical manner in

many applications, including welding with most techniques, additive manufacturing,

laser heat treating, grinding, and machining. In addition, the effect of processing

parameters and their interplay are displayed explicitly, bringing understanding and

intuition for the physical phenomena involved.

2.3 Governing equation

The idealized model considered in this work consists of a point heat source of intensity

q which moves with constant velocity along a straight path on an infinite 2-D domain

of constant thermophysical properties. The 2-D domain represents in practice a

substrate of thickness d which can be either very thin with a point heat source on the

surface, or of any thickness with the heat source becoming a line of constant linear

heat intensity q′ = q/d penetrating the full thickness, as represented in Figure 2.1.

Surface heat losses by convection and radiation can be taken into account easily when

the substrate is thin. It will be shown later that beyond certain thickness (typical

of many processes such as welding) surface heat losses are negligible compared to

conduction in the substrate.

x

y

q

d

(a)

x

y

q

d

(b)

Figure 2.1: Isotherms for a 2-D point heat source of intensity q on a substrate of
thickness d. The domain is −∞ < x < ∞,−∞ < y < ∞ and there are no gradients
in z. The 2D behavior is approximated in thin plates (a) or thick plates with the
heat input distributed uniformly along the thickness (b).

Except for the start and stop stages, the moving heat source is in a convenient

36



pseudo-steady state, captured with an Eulerian formulation with the heat source

considered fixed and the substrate moving along the x-axis in the negative direction.

The governing equation in this case is:

∂2T

∂x2
+

∂2T

∂y2
= −U

α

∂T

∂x
+

h+ h′

kd
(T − T0) (2.1)

with the following boundary conditions:

∂T

∂r
= − q

2πrkd
as r → 0 (2.2)

T = T0 as r → ∞ (2.3)

where x, y are the coordinates defined in Figure 2.1, r =
√
x2 + y2, T (x, y) is the

temperature at each point, U is the relative velocity between the heat source and

the substrate, h and h′ are the effective convection coefficients on the top and bot-

tom surface (they also account for radiation in an approximate way), α and k are

the thermal diffusivity and thermal conductivity of the substrate, d is the substrate

thickness, q is the rate of heat (W) absorbed by the substrate, which accounts for the

thermal efficiency of the process, and T0 is the uniform temperature of the substrate

far from the heat source.

In Equation 2.1, the surface heat losses are be approximated as volumetric losses, in

a way similar to the study of fins [19]. This is an accurate approximation for substrates

thin enough as to have a small Biot number Bi= (h+h′)d/k. This condition is common

in practical processes such as arc welding; for example, a representative weld would

have surface heat losses h+ h′ of the order of 20 W/m2K (natural convection in air)

and a thermal conductivity of 50 W/mK (steel). In these conditions, a large substrate

thickness such as 100 mm still would yield a small Biot number of 0.04.

This problem was first solved by Wilson in 1904 [215], and it was solved indepen-

dently again by Rosenthal [175–177] in the 1940s, with a focus on welding. Compre-

hensive reviews of these solutions are in [27, 78, 145]. The solution to Equation 2.1

with the boundary conditions of Equation 2.2 and Equation 2.3 is:
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T (x, y) = T0 +
q

2πkd
exp

(
−Ux

2α

)
K0


r

√(
U

2α

)2

+
h+ h′

kd


 (2.4)

where K0 is the modified Bessel function of second kind and zero order. This equation

provides the temperature value for each point in the substrate. The singularity at

the origin (r = 0) is a consequence of assuming the heat source is concentrated in an

infinitesimal area.

2.4 Normalization and dimensional analysis

The analytical solution of Equation 2.4 can be expressed more concisely in dimen-

sionless form as:

T ∗(x∗, y∗) = exp (−x∗)K0

(
r∗
√
1 + h∗

)
(2.5)

where

T ∗ =
2πkd (T − T0)

q
(2.6)

h∗ =
4α2 (h + h′)

kdU2
(2.7)

x∗ =
Ux

2α
(2.8)

y∗ =
Uy

2α
(2.9)

r∗ =
Ur

2α
(2.10)

In Equations 2.5-2.9, the ∗ superscript indicates a dimensionless quantity, con-

sistent with [43, 139, 140] and other modern literature. Equation 2.5 involves four

dimensionless groups: two independent variables x∗, y∗ (r∗ is not independent), the

dependent variable T ∗(x∗, y∗), and the parameter h∗ associated with surface heat

losses. Normalization of spatial variables x∗ and y∗ is similar to the definition of

Peclet number in convection heat transfer, representing the ratio of the rate of ad-

vection to that of conduction mechanisms.
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The number of dimensionless groups obtained is consistent with the number ex-

pected from applying dimensional analysis theory [24]. Equation 2.4 involves nine

magnitudes with units: the two independent variables x, y, the dependent variable

T (x, y), and six problem parameters T0, q/d,k,U , α, and h+ h′. The groups q/d and

h+ h′ are considered together because they never appear separately in this analysis.

There are four independent units for the magnitude with dimension (m, kg, s, ◦C)

and the number of dimensionless groups is 9 − 4 − 1 = 4 (the “-1” on the left hand

side appears because no temperature must be measured in absolute terms [210]).

When considering the maximum width of isotherm T ∗ = T ∗
c , the four dimensionless

groups are constrained by Equation 2.5 and by the condition y∗max = max(y∗), leaving

only two degrees of freedom. For practical reasons, and for consistency with previous

literature, one of the degrees of freedom will be h∗, and the other the Rosenthal

number (Ro), first proposed by Fuerschbach et al. [62], who used it to collapse onto a

single curve several measurements with various welding methods and base materials.

The expression of the Rosenthal number is:

Ro =
q

2πkd (Tc − T0)
=

1

T ∗
c

(2.11)

where the factor of 1/2π is included to simplify the final expressions detailed below.

This definition is consistent with the dimensionless groups of [62, 85, 160, 186, 190].

Similarly to the Rykalin number (Ry) [140, 207], the Rosenthal number can also

be interpreted as a Peclet number Pe = UL/α where the characteristic length L =

Q”/ (2πρc∆T ) is related to the amount of heat deposited per unit length of travel and

unit thickness of substrate Q” = q/(Ud) and the heat absorbed by the substrate by

heating the material next to the weld (within a distance L from the centerline) by an

amount ∆T = Tc − T0. The Peclet number relates the effect of advection relative to

conduction and therefore a high Ro value can be interpreted as a “fast heat source”

where advection dominates over conduction, and a low Ro value can be interpreted as

a “slow heat source” with heat transfer dominated by conduction. The dimensionless
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groups Ro and Ry are related to each other as

Ro =
Ry

d∗
(2.12)

where

d∗ =
Ud

2α
(2.13)

2.5 Limitations of idealized model

The idealizations that result in Equation 2.4, enable for a much desired practical

formula. Fortunately, the gains in practicality come at a relatively low cost in terms

of accuracy. The most important simplifications have been addressed in previous

research indicating that the idealizations are consistent with most practical problems.

Four idealizations are reviewed here: the effect of a finite heat source, the effect of

temperature on thermophysical properties, the effect of latent heat, and the effect of

surface heat losses. The effects of more complex phenomena such as convective flows

during melting involve multiple additional physics and new dimensionless groups, and

deserve a special treatment such as [169].

2.5.1 Effect of finite heat source

Equation 2.4 considers that the heat source is concentrated in a point, contradicting

the reality that all heat sources have a finite size. The effect of finite heat sources is

noticeable when the heat source is larger than a critical value. A finite heat source can

have many different distributions of surface heat intensity [144, 198] or volumetric heat

intensity [64, 74]. Here, we consider a circular gaussian surface distribution which

includes the additional parameter of distribution σ as the next step in complexity

beyond a point heat source. It is reasonable to expect that heat sources other than

gaussian, but of similar size will have comparable thresholds for separating point-like

behavior from distributed behavior. Gaussian heat sources were studied for thick

substrates in [39, 53] and intermediate thickness in [117, 133]. The expression of a
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circular gaussian surface heat source is:

q”(x, y) = q”max exp

(
− r2

2σ2

)
(2.14)

where q”max = q/(2πσ2) and σ is the standard deviation of Gaussian distribution.

A preliminary numerical analysis using Matlab and COMSOL Multiphysics indi-

cates that the maximum width assuming a point heat source is overestimated with

an error smaller than 10% compared to a Gaussian heat source for 0.1<Ro<100:

σ∗ =
Uσ

2α
< σ∗

c = 0.6 ŷ∗max < 0.6
1 + 2Ro

1 + Ro
ŷ∗max (2.15)

where y∗max is the dimensionless half-width of an isotherm, explained in detail later in

this paper and expressed explicitly in Equation 2.25. The criteria 0.6(1 + 2Ro)/(1 + Ro)ŷ∗max

agrees with the simulation results and could be simplified to 0.6y∗max as a conserva-

tive rule-of-thumb (σ < 0.6ymax). The derivation of Equation 2.15 is included in

Appendix 2.C. For the case of very fast moving heat sources (Ro≫1), this criterion

might be too conservative and is the subject of current research.

2.5.2 Effect of substrate thickness

When the heat source is a line of uniform intensity through the thickness of the

substrate, if the intensity of the line heat source q′ is constant through the thickness

and surface heat losses are negligible, the substrate thickness is irrelevant. This

condition also applies approximately for full penetration welds and for deep keyhole

welds with partial penetration, in which the heat source is a segment; in this case the

length of the line heat source is the keyhole penetration.

When the heat source is a point applied on the surface of a plate of finite thickness,

3D effects will exist near the heat source, but 2D conditions will exist further from

the heat source. The 3D effects on maximum width of an isotherm are smaller for

thinner substrates. A comparison of the 2D solution against the exact solution for

plates of intermediate thickness was performed in [146]; following this work, the error
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of in using the 2D for a point heat source on the surface of a finite plate is an

underestimation smaller than 5% for 0.2 < Ro < 100 when

d∗ < d∗c,2D ≈ 1/4 y∗max (2.16)

2.5.3 Effect of temperature dependence on thermophysical

properties

Equation 2.4 assumes that the thermophysical properties of the substrate are con-

stant. Real materials have temperature-dependent properties, and this commonly use

approximation must be assessed for practical cases. This assessment requires numer-

ical methods and has been explored for the case of melt pool length in 304 stainless

steels [20], showing that constant properties assessed at 1000 K result in errors within

±6.5%. For estimates of maximum width of weld pool in mild steel (Tmelt ≈ 1500◦C)

and heat affected zone width (THAZ ≈ 727◦C), the errors of assuming constant proper-

ties were approximately 5% and 2%, respectively, for all values of thermal properties

in the temperature range of 400◦C to 1300◦C [106].

In this work, when effective thermophysical properties of the substrate needed to

be calculated, they were obtained as detailed in Appendix 2.A.

2.5.4 Effect of melting

For the case of welding, where melting is involved, the assumption of constant ther-

mophysical properties cannot account for the variations associated with the latent

heat of phase change. Melting also introduces convective heat transfer in the melt.

The effect of convection has been studied extensively, for example [114, 156], and

captured with scaling laws based on three dimensionless groups (Marangoni, Prandtl,

and aspect ratio of cross section) [169]. These convective flows affect mostly the shape

of the fusion line, often captured by width and depth. The effect of convective flows

is less important in highly conductive materials (e.g. aluminum) and in small welds.

Currently, it is known than in aluminum and steels with low sulfur or low oxygen
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contents, weld are typically wider and shallower than predicted, while in steels with

higher sulfur or oxygen welds are narrower and deeper. There is no general rule to

assess when convective flows affect estimates of width and depth, and no attempt has

been made on quantifying the magnitude of departure from the ideal case. A more

comprehensive analysis is the focus of ongoing research. Other effects of melting

also include the depression of the free surface [136], and impingement from metal

transferred from the electrode [95].

The effect of latent heat on moving heat sources can be tackled with different nu-

merical methods such as the apparent heat capacity method [40], the source based

method [199], and the enthalpy approach [147]. The dimensionless group that ac-

counts for latent heat is the Stefan number:

St = c(Tm − T0)/isl (2.17)

where isl is the latent heat of fusion. Larger Stefan numbers indicate a relatively

smaller influence of the latent heat. Typical values for 304 stainless steel are St≈4.3

(properties from [57]), for mild steel St≈3.7 (properties from [55]), for Ti-6Al-4V,

St≈3.2 (properties from [198]) and for aluminum St≈ 1.5 (properties from [54]).

Ushio et al. [197] explored the influence of latent heat in mild steel and showed that

the main effect on the temperature profile is to delay the point where isotherm width

reaches a maximum (increasing the magnitude of xm using the notation of [207], with

ym essentially unaffected. Numerical work on Ti-6Al-4V by Van Elsen et al. [198] also

concluded that the influence of latent heat is small for Ti-6Al-4V, except for the case

of a loose power bed.

2.5.5 Effect of surface heat losses

The surface of the substrate typically exchanges heat with the surroundings via con-

vection and radiation. These surface heat losses act in parallel with the heat conduc-

tion through the bulk of the substrate. When the surface heat losses are low enough,
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or when the substrate is thick enough, surface heat losses can be neglected. Asymp-

totic analysis indicates that the error in isotherm width when assuming an adiabatic

surface is an overestimation below 10% when:

h∗ < h∗
c = 0.2

[
1 +

( π

2e
Ro2

)n]−1/n

(2.18)

where h∗
c is the threshold ensuring an error below 10% in the estimation of isotherm

width and n = 0.9405. Equation 2.18 is derived in Appendix 2.D. This criterion can

be expressed in dimensional form in terms of plate thickness:

d > dc,h =
20α2 (h+ h′)

kU2

[
1 +

( π

2e
Ro2

)n]1/n
(2.19)

This condition is typically met in electron beam and laser beam welding in keyhole

mode where the plate is usually relatively thick and velocities are large, arc welding

of steel of plate thicker than about 0.2 mm and aluminum plate thicker than 0.7

mm (assuming U=10 mm/s and h+h′=100 W/m2K), and most other practical cases

with moderate convection coefficient. Surface heat losses become relevant in problems

with enhanced heat transfer such as in-service weld repairs (e.g. “hot tapping”), and

underwater wet welding in which liquid flow causes strong convective cooling, even

in relatively thick material.

This paper focuses on the cases when surface heat losses can be neglected, where

the solution to the governing equations (Equation 2.4) reduces to:

T = T0 +
q

2πkd
exp

(
−Ux

2α

)
K0

(
Ur

2α

)
(2.20)

2.6 Asymptotic analysis

When surface heat losses are neglected, the geometry of isotherms in dimensionless

space depends only on the Rosenthal number, as illustrated in Figure 2.2. The value

of Ro can vary between zero and infinity, defining two asymptotic regimes: Regime

III, corresponding to large values of Ro, and Regime IV with small values of Ro,
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representing the high-speed and low-speed limits of the problem. The naming of

regimes is consistent with [140, 206, 207], where Regimes I and II are the 3D (thick

substrate) equivalents of 2D Regimes III and IV.

x

y

y m
a
x

Ro = 2 Ro = 1 Ro = 0.5

Figure 2.2: Isotherms corresponding to Ro = 0.5, 1, and 2. For large Ro (Regime III,
fast) the isotherms are elongated, and for small Ro (Regime IV, slow), the isotherms
are rounder and narrower.

The point of maximum width of the isotherm is located with two coordinates. In

cartesian coordinates, the maximum width would occur at (x∗
m, y

∗
m); however, for this

analysis, it is convenient to consider a hybrid set of coordinates (x∗, r∗), where r∗ is

in polar coordinates, yielding the following coupled equations:

1

Ro
= exp (−x∗

max)K0 (r
∗
max) (2.21)

∂T ∗

∂x∗

∣∣∣∣
x
∗
=x

∗

max

y
∗
=y

∗

max

= − exp (−x∗
max)

[
K0 (r

∗
max) +

x∗
max

r∗max

K1 (r
∗
max)

]
= 0 (2.22)

Equation 2.21 corresponds to the constraint given by Equation 2.20 at a selected

isotherm T = Tc, and Equation 2.22 corresponds to the zero-slope condition at a max-

imum width. The asymptotic analysis of these equations is detailed in Appendix 2.B,

resulting in:

ŷ∗maxIII
(Ro) =

√
π

2e
Ro for Regime III (2.23)

ŷ∗maxIV
(Ro) = 2 exp(−γ) exp

(
−Ro−1

)
for Regime IV (2.24)

where γ = 0.5772 . . . is the Euler Mascheroni constant, and the symbol ̂ indicates an

asymptotic behavior. These asymptotic approximations are illustrated in Figure 2.3.
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Equation 2.23 is consistent with similar asymptotic analysis in [84, 145, 179, 190] for

fast moving heat sources, and Equation 2.24 is consistent with [84, 190] for slow mov-

ing heat sources. The asymptotic behavior of ymax is a power law in Regime III (fast)

and an exponential dependence, not a power law, in Regime IV (slow).
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Equation 2.23

Equation 2.24

Equations 2.21 and 2.22

Figure 2.3: Dimensionless maximum isotherm half-width y∗max as a function of Ro.
Equation 2.23 and Equation 2.24 are asymptotic behaviors represented with thinner
lines. The thicker solid line represents numerical calculations obtained by solving
Equation 2.21 and Equation 2.22. The dashed line represents the modified asymptote
in Regime III, which includes the modification factor exp

(
−Ro−1

)
. The blended

solution is undistinguishable from the numerical solution (thick solid line)

2.7 Blending of asymptotic solutions

The simple expressions obtained for each asymptotic regime are less accurate for

intermediate values (Ro=O(1)). The powerful methodology of blending proposed

in [34] and used in [140, 207] is not able to blend Equation 2.23 and Equation 2.24
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because they do not cross, which is an essential requirement [34]. The extended

blending technique proposed in [206] is used here. This extended technique is general,

and useful for problems beyond maximum isothermal width, with non-crossing or

non-power-law asymptotic behavior.

The extended blending technique consists of multiplying one of the non-crossing

asymptotic functions by the factor exp(aRob) where a and b are constants (positive

or negative), and then performing a standard blending technique. This approach

forces the asymptotic functions to cross at an intermediate point without affecting

their asymptotic behavior, thus enabling a standard blending approach. A similar

approach was used in [58] to blend mass transfer limited Sherwood numbers for packed

beds with the introduction of an exponential dependence on Reynolds number. This

methodology is limited to asymptotic behaviors in which the asymptotic behavior is

the same as or weaker than exponential.

In this work, the modification was applied to the asymptote for Regime III (rep-

resented graphically in dashed line in Figure 2.3) yielding the following blending

expression:

y∗max(Ro) ≈ ŷ∗
+

max(Ro) =

=
{[
ŷ∗maxIII

(Ro) exp
(
−Ro−1

)]n
+ ŷ∗maxIV

(Ro)n
}1/n

(2.25)

This choice of blending is convenient because by choosing a = b = −1, the exponen-

tial factor results in a common factor with Regime IV, helping simplify the resulting

expression, and having only n as the adjustment variable in the optimization.

The optimal value of n is determined with the same optimization procedure detailed

in [140], by minimizing the absolute maximum error of estimation compared to the

value of ymax calculated by solving numerically the system of Equation 2.21 and

Equation 2.22 over a wide range of Ro. The error has the same definition as in [137,

139, 140], and it is equivalent to the standard form of relative error when the error is
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small:

error = ln
ŷ∗

+

max

y∗max

(2.26)

For the calculation of ymax, the error depends only on Ro and n. Figure 2.4

illustrates the error as a function of Ro for different values of n. This figure also shows

that the error tends to zero in the asymptotic extremes; this is not by coincidence,

but an essential property of the blending methodology. Figure 2.5 illustrates the

maximum absolute value of error (over all Ro) as a function of n. The sharp minimum

is because the maximum error can be positive (for n below the optimum), or negative

(for n above the optimum). For the optimum value n =1.407, the absolute value of

the maximum error is below 6.8% over the whole domain of Ro (0 < Ro < ∞).
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Figure 2.4: Blending error of dimensionless maximum isotherm half-width ymax as a
function of Ro for the blending parameter n at or near the optimal value of 1.407.
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Figure 2.5: Maximum blending error as a function of the blending parameter n. The
maximum error reaches its minimum, 6.8% at n =1.407.

2.7.1 Correction factors

Practical engineering expressions often have the form of a simple formula that provides

a rough prediction accompanied by one or more correction factors. This is possible in

this work too, and the correction factors addressing the effect of travel speed can be

calculated explicitly. Correction factors addressing the simplifications beyond travel

speed, addressed above, require further work, which is the focus of current research.

Because the formulation used in this work has two asymptotic extremes (high and

low Ro), there are two simple formulae associated with each. The correction factors

associated with the maximum isotherm half-width ymax can be derived directly by
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rearranging Equation 2.25:

ymax ≈ ŷ+max = ŷmaxIII

{
[
exp

(
−Ro−1

)]n
+

[
ŷ∗maxIV

(Ro)

ŷ∗maxIII
(Ro)

]n}1/n

=

= ŷmaxIIIfymaxIII
(Ro) (2.27)

ymax ≈ ŷ+max = ŷmaxIV

{
1 +

[
ŷ∗maxIII

(Ro) exp
(
−Ro−1

)

ŷ∗maxIV
(Ro)

]n}1/n

=

= ŷmaxIVfymaxIV
(Ro) (2.28)

where the optimal blending parameter n = 1.407 is the same for Equations 2.27

and 2.28.

Equations 2.27 and 2.28 are exactly equivalent and they are the same approxima-

tion to the exact solution, but based on the asymptotic solutions for Regime III and

Regime IV, respectively. By substituting the asymptotic behavior in these equations,

a practical closed-form for the correction factors can be obtained:

fymaxIII
(Ro) = exp(−Ro−1)

{
1 +

[√
8e

π

exp(−γ)

Ro

]n}1/n

≈

≈ exp(−Ro−1)

[
1 +

(
1.477

Ro

)1.407
]0.7107

(2.29)

fymaxIV
(Ro) =

{
1 +

[√
8e

π

exp(−γ)

Ro

]−n}1/n

≈
[
1 +

(
1.477

Ro

)−1.407
]0.7107

(2.30)

These correction factors are illustrated in Figure 2.6. As Ro approaches infinity

(Regime III), fymaxIII
(Ro) tends to the exact value of 1 and when Ro tends to 0 (Regime

IV), fymaxIV
(Ro) tends to 1 indicating that as the asymptotic regime is approximated,

no correction is necessary. In traditional blending, a conventional limit between the

two asymptotic regimes can be determined at the crossing point of the correction

factors, where the error of ignoring both corrections would be the same. In this case

in which modified blending is used, the correction factors in this case do not cross,

and a new convention needs to be established to estimate a limit between the two

regimes. The new convention proposed considers the value of Ro at which the absolute
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value of the error is the same, resulting in a critical value Roc =0.9499. This value of

O(1) is typical of the vast majority of limits between regimes.

The limits of 10% error (when the correction factor is 0.9 or 1.1) are useful to

estimate when correction factors can be omitted. In Regime III, the error of omitting

the correction factors is less than 10% when Ro > RoIII = 3.553, and in Regime IV

when Ro < RoIV = 0.3856.
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Figure 2.6: Correction factors for the maximum isotherm half-width ymax as functions
of Ro. For Ro > 3.553 or Ro < 0.3856, neglecting correction factors yield an error in
estimation smaller than 10% compared to blended solution of 2.25.

2.7.2 Expressions with units

In practical calculations it is convenient to count with explicit expressions using units.

Conversion of Equations 2.27 and 2.28 into expressions with units is done by substi-
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tuting Equation 2.9 and Equation 2.11 into Equation 2.25:

ŷ+max = ŷmaxIIIfymaxIII
(Ro) =

1√
2πe

qα

Ukd (Tc − T0)
fymaxIII

(Ro) (2.31)

ŷ+max = ŷmaxIVfymaxIV
(Ro) =

4α

U exp(γ)
exp

(
−Ro−1

)
fymaxIV

(Ro) (2.32)

2.8 Validation

The focus of this paper is on the width of isotherms in general, not only the melting

isotherm in welding. However, the high-quality data available in the literature is in

its vast majority for the melt width, and it is the data that will be used for validation.

The validation of the proposed predictive expressions was made by comparison

against published data and shown in Figures 2.7-2.9, spanning a range of Ro of two

orders of magnitude from (0.1 to 10). Measurements were collected for arc welding

processes including Gas Tungsten Arc Welding (GTAW), Shielded Metal Arc Welding

(SMAW), Submerged Arc Welding (SAW), Gas Metal Arc Welding (GMAW); for

concentrated heat sources including Laser Beam Welding (LBW), Electron Beam

Welding (EBW); and for Additive Manufacturing (AM) for a wide range of materials

including aluminum, titanium, carbon steel, stainless steel, and superalloys.

The published values were normalized using Equation 2.9 and Equation 2.11, and

compared against the blended expression in Equation 2.25. Some of the experimental

points were already in dimensionless form [62, 71, 160, 213]. In some cases, the

isotherm width was not directly reported, but inferred from associated magnitudes

such as cross sectional area [72] or melting efficiency [62, 213]. The characteristic

temperature used in these calculations (Tc) corresponds to the melting temperature

(Tm) in all cases, except some points in [142] which correspond to the edge of the

HAZ (Ac1).

Assuming full penetration, 2D heat transfer, isotherm width and cross sectional

area are related as follows:

ymax ≈
Ac

2d
(2.33)
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When melting efficiency is provided, the corresponding cross sectional area is:

Ac =
ηmq

ρ(il − i0)U
(2.34)

where ηm is the melting efficiency, il is the enthalpy at liquidus temperature, and i0 is

the enthalpy at the far temperature T0. For data corresponding to partial penetration

keyhole welding [54], the plate thickness considered was that of the penetration, and

the average width considered was half the width measured at the top surface.

The thermal properties, thermal efficiencies, and processing parameters used in

the literature survey are listed in Table 2.2. When not listed in the original sources,

the thermophysical properties were obtained from the literatures or software (JMat-

Pro v11). Thermal efficiency was assessed from original sources or from the AWS

handbook [96]. The far temperature T0 was always assumed or given as 20◦C except

for [153], which measured 23◦C. The data for GTAW in [62, 160] and EBW in [70]

were published in dimensionless form. For assessment of surface heat losses in the

references consulted, an approximate effective convection coefficient of 10 W/m2K

whose used to assess processes with low expected effective convection (EBW, SAW,

and EB based AM), and a coefficient of 100 W/m2K was used for processes with

higher expected convective effects (GTAW, GMAW, SMAW, and LBW).

The validity of simplifying hypotheses discussed above was verified when data was

available or could be inferred feasibly. In almost all cases the simplifying hypotheses

are valid, except some points from [54] for which the heat source cannot be considered

a point (Equation 2.15). Details about the verification of hypotheses are included

as attached excel. The neglected secondary phenomena are a source of scatter in

the comparisons. Other sources of scatter are uncertainties in the thermophysical

properties used, uncertainties in thermal efficiency, which is especially broad for laser

processes, and of course, experimental error. The criteria for negligible surface heat

loss is fulfilled for all data collected.

Figure 2.7 compares Equation 2.25 with published data for width in four arc weld-
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ing processes (GTAW, SMAW, SAW, GMAW). For these processes the agreement

with experiments is good and unbiased, except with a slight overprediction of width

at height Rosenthal numbers. Arc welding processes, unlike laser or electron beam

processes, are not capable of keyhole penetration, and operate only as surface heat

sources. In these cases, the face of the weld is much wider than the root (or waist

in [153]), and incipient 3D effects might reduce the actual weld width at large values

of Ro.

Figure 2.8 compares Equation 2.25 with published data for weld width in laser

beam welding (LBW) and additive manufacturing (AM). The results are accurate

and unbiased, except for a slight underprediction for the date from [153]. If the ther-

mophysical properties and measurements are correct, the underprediction of width is

typically due to the finite size of the heat source or to fluid flow effects in the weld

pool. Given that the welds considered meet the criterion for “point heat source,” the

slight bias is likely to be due to fluid flow effects. The near-perfect agreement with [72]

is not surprising, given that it corresponds to numerical simulations, not to experi-

mental data. The excellent agreement also supports the applicability of Rosenthal’s

2D solution and the small error caused by its simplifications.

Figure 2.9 compares Equation 2.25 with published data for electron beam welding

(EBW) in a broad diversity of conditions. This figure includes points for which

the “point heat source” simplification is invalid (indicated with different symbols).

Predictably, Equation 2.25 underpredicts the width in those cases. The comparison

with data from [190] shows a small systematic over prediction, while comparisons

with [70] show a systematic underprediction. It is likely that these small and opposite

systematic errors are associated with the materials and process properties used in the

estimates. At low Ro, the underpredictions for [70] are larger; although no beam size

is provided in this case, it is likely that the condition for point heat source is not met

for those points. Another possible source of error for comparisons with [54] is that

most of the welds considered are partial penetration keyhole welds, which have a 3D
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effect at the bottom of the keyhole. For the comparisons, only welds with a depth to

width ratio greater than 0.75 were considered.

Table 2.2: Operating conditions and average thermal properties utilized in calculation.
The temperature of interest is the melting temperature in all cases except when
marked. The blanks in the table correspond to data published only in normalized
form.
Process Material

Plate thickness
(mm)

Power
(kW)

Thermal
Efficiency

Velocity
(mm/s)

Conductivity
(W/mK)

Diffusivity
(m2/s)

Tc
(◦C)

Ref.

GTAW

Kovar 75.2 1.1× 10−5 1490 [62]

Hastelloy B2 50.6 7.2× 10−6 1431 [62]

Aluminum 1100 237 6.0× 10−6 660 [62]

Mild steel 1-4 0.75∗ [96] 0.4-12.7 [160]

Stainless steel 304 38.4 6.3× 10−6 1454 [61, 62]

SMAW
SAW

Mild steel 2-50 0.75 8.2× 10−6 [93, 213]

GMAW
Carbon steel 2 2.138-2.790 0.79-0.88 5.5-7 35 + 5.9× 10−6+ 725× [142]

Carbon steel 2 2.138-2.790 0.79-0.88 5.5-7 43 + 8.4× 10−6+ 1510 [142]

LBW

Inconel718 1.6 1.5-2.9 0.3 ∗[96] 11.85-38.94 20+ 3.5× 10−6+ 1375+ [153]

Stainless steel 321 0.125-0.417 0.25 0.15 4.7-38 24 4.9× 10−6 1530 [190, 211]

Stainless steel 302 0.125-0.250 0.25 0.15 4.2-21.1 24 4.9× 10−6 1530 [190, 211]

17-7PH 0.125 0.25 0.15 47 27 5.9× 10−6 1530 [190, 211]

Inconel 0.1-0.25 0.25 0.15 16.9-63.5 24 5× 10−6 1410 [190, 211]

Nickel 0.125 0.25 0.15 14.8 67 1.3× 10−5 1450 [190, 211]

Monel 0.25 0.25 0.15 6.4 35 7× 10−5 1340 [190, 211]

Titanium 0.125-0.250 0.25 0.15 21.1-59 24 7.2× 10−6 1680 [190, 211]

Stainless steel 304 6.4-8.9 8 0.5 12.5-16.7 24 4.9× 10−6 1530 [126, 190]

Stainless steel 304 12.7-20.2 20 0.9 21.2-42.4 24 4.9× 10−6 1530 [126, 190]

AA 6065T4 2.5 3 0.37/0.80 83.3-133 193-199+ 7.7-7.9× 10−5+ 59-292 [1, 2]

AM Ti-6Al-4V 12.7-20.2 1-5 0-42.3 17.6 [143] 5.6× 10−6 [143] 1660 [72]

EBW

HY-130 3.3-0.04 1.5-22.5 0.9 4.16-41.6 35 7.3× 10−6 1530 [108, 190]

EN58B 8.4 2.5 0.9 25 24 5.5× 10−6 1530 [79, 190]

EN58J 8.8-12.5 3.6 0.9 5.7-25.9 24 5.3× 10−6 1530 [7, 190]

EN58J 7.4-12 5.2 0.9 21.1-50.8 24 5.3× 10−6 1530 [6, 190]

† [70]

Stainless steel 304 6.3 0.35-1.4 0.95 6.4-3200 25 4.5× 10−6 1433 [54]

Aluminum 2024 6.3 0.3-1.2 0.95 6.4-3200 175 6.7× 10−5 595 [54]

* Estimated + Properties calculated by software JMatPro v11 × Ac1 † Aluminum 1100, 2024, 6061, carbon steel, and stainless steel
304 and 316

2.9 Example of application

Consider the LBW of 321 stainless steel of 0.005 in (0.127 mm) thickness performed

by Webster [211]. The laser power was 250 W CO2, with a spot diameter between

0.002 in (50 µm) and 0.005 in (127 µm), a travel speed of 90 in/min (38 mm/s),
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Figure 2.7: Comparison of explicit blending solution (Equation 2.25) with published
data for weld width in arc welding (GTAW, SMAW, SAW, GMAW).
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Figure 2.8: Comparison of explicit blending solution (Equation 2.25) with published
data for isotherm width in laser processes (LBW, AM).
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Figure 2.9: Comparison of explicit blending solution (Equation 2.25) with published
data for weld width in EBW.

a thermal efficiency of 0.15 estimated based on analysis of [190]. Interpreting this

spot size as a full width at half maximum (FWHM) in a gaussian distribution, the

corresponding standard deviation σ ranges between 22 µm and 54 µm. Effective

thermophysical properties and heat transfer efficiency are provided in [190] and listed

in Table 2.2. The measured full width of bead was 0.018 in (457 µm).

For the weld considered, the Rosenthal number using weld penetration for d is

Ro=1.3 (Equation 2.11), corresponding to Regime III (fast moving heat source).

Equation 2.15 indicates that the heat source can be considered a point (σ∗ = 0.084

to 0.21 <0.49), and Equation 2.19 indicates that the effect of surface heat losses are

negligible (d= 0.005 in > dc,h= 10−4 in, assuming h+ h′=100 W/m2K). A 2D model

is appropriate in this case because this is a full penetration weld, and the criterion for

thin substrate (Equation 2.16) is not relevant. For this example, the dimensionless

plate thickness is larger than the critical thickness for 2D heat transfer for a point

heat source on the surface (d∗=0.49> d∗c,2D=0.20), but this is not a problem. The
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Stefan number for stainless is of the order of 4.3, indicating latent heat is not likely

to affect the calculations significantly.

The prediction of weld width is made using the appropriate equation for Regime

III (Equation 2.31), which yields ŷmaxIII = 0.010 in (254 µm), and fymaxIII
(Ro) = 0.81

(Equation 2.27). The correction applied in this case is larger than 10%, consistently

with the intermediate value of Ro. The predicted weld width is 2ŷ+max =0.016 in (406

µm), which is an underprediction with an error of 12% compared to the measured

value of 0.018 in (457 µm).

2.10 Discussion

Consistently with the foundations established in [140], the analysis presented here

dispels old misconceptions and brings new insights. Similarly as before, proper di-

mensional analysis of Equation 2.20 yields four, not five dimensionless groups as

usually considered based on [33]. There is no variable-independent dimensionless

group, as attempted unsuccessfully in [33], and the dimensionless group associated

with temperature (Rosenthal number) is slightly different than in [140] (the Rykalin

number), but carries the same physical meaning.

For fast welds (Regime III), the weld width is proportional to the heat input

(q/U) making it an essential welding parameter; however, this relationship breaks

down for slower welds (Regime IV). Codes and standards tend to omit the slow

welding regime. This omission is seldom a problem since slow 2D welds are less

frequent in practice; however, Regime IV is typical in friction stir welding (FSW)

and full penetration gas tungsten arc welding (GTAW) of aluminum, among others

process/material combinations. In Regime IV, two welds with the same heat input

do not necessarily have similar width.

Similarly to [140], the work presented here brings new insight in the understanding

of the origins of the Rosenthal number, and in agreement with [60], a single dimen-

sionless group (in this case Ro) can be singled out as a key magnitude to characterize
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the behavior of a moving heat source in 2D.

The extended blending technique used in this work overcomes the limitations of

the Churchill-Usagi blending methodology, and can be used for problems beyond

the one analyzed here. Although the factor introduced (exp(aRob)) would involve

a 3-parameter optimization (a, b, and n), a smart choice of a and b reduces the

problem back to an optimization of a relatively simple expression with only n as the

optimization variable. The error in the blending used here is always below 6.8%, for

any value of Ro, and Figure 2.4 can be used together with Equation 2.26 to generate

a local correction greatly reducing the error in a chosen range of interest. Just as

in [140], the correction factors are accurate even far from the asymptotic regime.

The validation performed shows a relatively narrow and symmetric scatter, which is

somewhat unexpected, considering the important approximations made in the model,

the broad range of materials, processes, and authors, and also that the melting tem-

perature isotherm is more affected by the “solid heat transfer” approximation than

isotherms further into the solid substrate. It is not obvious at this stage how much of

the scatter is due to the approximations of the model, how much is due to experimental

error, and how much is due to error in the values used for thermophysical proper-

ties [134]. Although the errors observed suggest room for improvement (especially

when the error is systematic), a validation of similar scope has never been performed

between numerical results and experiments, at least for welding simulations. There

is no evidence in the literature that a numerical simulation (without ad-hoc calibra-

tions) would show less scatter when compared against the same dataset used in this

work.

Possible sources for systematic underpredictions are the presence of outward ther-

mocapillary flows. This possibility cannot be evaluated within the limitations of the

formulation presented here. Other possible cause for underpredictions is that the

heat source can sometimes bee too large to be considered a point. This is possible

at the lowest Ro ranges, when the predicted isotherm width is unfeasibly small. Pre-
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vious attempts to capture the low Ro regime assumed the dimensionless isotherm

width to become zero at Ro<0.25, without proper physical justification or further

considerations of the nature of different heat sources and their size. Possible causes

for systematic overpredictions are 3D effects in partial penetration welds, or welds in

which the root is much narrower than the face.

2.11 Conclusions

This work presents for the first time practical and rigorous expressions for calculating

the width of an isotherm (ymax, Equation 2.29 and Equation 2.30) in conditions of 2D

heat transfer. The expressions proposed have the form of an asymptotic expression

multiplied by a correction factor, and are based on theoretical analysis, not empirical

fitting.

The dimensionless width depends only on the Rosenthal number, Ro, which is a

metric of how fast or slow a heat source is in 2D conditions. The Rosenthal number

divides all possible solutions in two regimes: Regime III corresponding to high Ro

(“fast” 2D heat sources) and low Ro (“slow” 2D heat sources). Because Ro depends

on a chosen temperature, moving 2D heat sources cannot be deemed as intrinsically

fast or slow until a temperature of interest is selected.

The Churchill-Usagi blending equation has been extended to consider non-power-

law, non-crossing asymptotic expressions (Equation 2.25). The modified blending

technique approach is novel, and it overcomes a limitation of previous studies in-

capable of capturing properly the behavior of slow heat sources (e.g. [213]). These

asymptotic expressions coincide with the exact solution in the extremes, and the

blending expression for the intermediate regime, exhibits a discrepancy always within

7% of the exact solution.

The practical expressions presented here require much smaller computational effort

than numerical methods, do not present convergence issues, and can be calculated

using a handheld calculator or a basic spreadsheet; these expressions can also be used
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to estimate, for example, the width of a weld, the size of zone affected by the heat

source in a broad diversity of processes, or to validate numerical models.

The methodologies and results obtained are applicable to moving heat sources

within the hypotheses of the problem formulation, and are valid beyond welding

to additive manufacturing and many other manufacturing and broader engineering

problems, since they capture the inherent essence of complex physical phenomena

based on the governing equations.
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Appendix 2.A Estimation of effective thermophys-

ical properties

2.A.1 Thermal diffusivity

Thermal diffusivity can ba calculated based on effective values of thermal conductivity

and specific heat.

αeff =
keff

(ρc)eff
(2.35)

2.A.2 Thermal conductivity

A reasonable approach to calculating an effective thermal conductivity keff is to con-

sider the overall thermal resistance of a wall of thickness L in steady state.

R′′ =
∆T

q′′
=

L

keff
(2.36)

where R′′ is the thermal resistance associated with the absolute values of heat flux q′′

(in the direction of coordinate ξ, perpendicular to the wall) and temperature difference

∆T through the thickness d of the wall. In steady state, the heat flux is constant

because there can be no accumulation or depletion of heat at any point in the wall:

q′′ = −k(T )
dT

dξ
= constant (2.37)

where T = T (ξ) and k = k(T ). The temperature difference between the surfaces of

the wall can be calculated by integration of Equation 2.37.

∆T =

∫

L

dT

dξ
dξ = −

∫

L

q′′

k(T )
dξ = −q′′

∫

L

dξ

k(T )
(2.38)

Because T = T (ξ), we can say

dT =
dT

dξ
dξ (2.39)

Comparing Equations 2.36, 2.38, and 2.39 we obtain

keff = L

[∫

∆T

1
dT
dξ

dT

k(T )

]−1

(2.40)
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which for the case when the temperature gradient is approximately constant can be

approximated as

dT

dξ
≈ ∆T

L
= constant (2.41)

resulting in

keff ≈
[

1

∆T

∫

∆T

k(T )−1dT

]−1

(2.42)

where

∆T = Tc − T0 (2.43)

This definition of ∆T accounts for thermal conduction between the isotherm of

interest Tc and the far regions of the substrate which are at the far temperature T0.

2.A.3 Specific heat

The selection of an average value of c is potentially problematic. Phase changes

cause peaks with significant amounts of enthalpy, but the peaks can be missed or

underestimated in the resolution of thermodynamic calculations, and in the case of

isothermal phase changes, the peak becomes a line at a given temperature. A better

approach is to use the definition of specific heat:

c =
di

dT
(2.44)

Equation 2.44 requires a constant density, such that cp = cv = c, then it is possible

to write, because density is considered constant in the governing equation,

ρc =
dρi

dT
(2.45)

(ρc)eff =
∆(ρi)

∆T
(2.46)

with the same definition of ∆T as before.
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Appendix 2.B Asymptotics for maximum isotherm

half-width

The maximum isotherm half-width y∗m and its location x∗
m can be implicitly expressed

as:

T ∗
c = exp (−x∗

max)K0

(√
x∗2
m + y∗2m

)
(2.47)

∂T ∗

∂x∗

∣∣∣∣
x∗

m,y∗m

= 0 (2.48)

Based on the relationship between derivatives of Bessel function Kn (ξ),
dKn (ξ)

dξ
=

−Kn−1 (ξ) −
n

ξ
Kn (ξ)[21], Equation 2.47 and Equation 2.48 can be represented by

using the zeroth order (K0) and first order (K1) of the second kind of modified Bessel

function to obtain:

1/Ro = exp (−x∗
max)K0

(√
x∗2
m + y∗2m

)
(2.49)

K0

(√
x∗2
m + y∗2m

)
+

x∗
maxK1

(√
x∗2
m + y∗2m

)

√
x∗2
m + y∗2m

= 0 (2.50)

Therefore, x∗
m and y∗m can be written as a function of r∗m =

√
x∗2
m + y∗2m :

x∗
max = −r∗max

K0 (r
∗
max)

K1 (r∗max)
(2.51)

y∗m = r∗max

√
1−

[
K0 (r∗max)

K1 (r∗max)

]2
(2.52)

where r∗m can be implicitly expressed as a function of Ro number by Equation 2.47:

1/Ro = T ∗
c (r

∗
m) = exp

[
r∗max

K0 (r
∗
max)

K1 (r∗max)

]
K0 (r

∗
m) (2.53)

T ∗
c (r

∗
m) is continuous and has a strictly monotonic dependence on r∗m, the inverse

function of Equation 2.53(r∗m (Ro)) exists and has an unique representation. Asymp-

totic analysis of Equation 2.53 yields two limiting solutions of r∗m (Ro) in Regime

III and IV, which would be substituted into Equation 2.52 to obtain asymptotes for

maximum isotherm half-width y∗m (Ro).
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Regime III: Ro → ∞

In regime III where Ro → ∞ and T ∗
c → 0, the point locating at isotherm width is far

from the heat source (r∗maxIII
→ ∞). For large values of r∗m, the asymptotic behavior

of Ro number changing with r∗m is achieved by asymptotic analysis of the right side

of Equation 2.53:

1/Ro =

√
π

2e r∗maxIII

+O
(
r∗−3/2
maxIII

)
(2.54)

To solve r∗maxIII
, let r∗maxIII

= π
2e
Ro2 [1 + ǫ (Ro)], assuming ǫ (Ro) → 0 which is equiv-

alent to r̂∗maxIII
= π

2e
Ro2. If ǫ (Ro) can be solved and satisfies the assumption, the

solution to r∗maxIII
for Equation 2.54 is determined and unique. Substituting the as-

sumed expression of r∗maxIII
into Equation 2.54, Equation 2.54 turns into:

1/Ro =

√
1

Ro2 [1 + ǫ (Ro)]
+O

{ π

2e
Ro2 [1 + ǫ (Ro)]

}−3/2

(2.55)

According to the assumption ǫ (Ro) → 0 in Regime III, ǫ is solved:

ǫ (Ro) = O
(
Ro−2

)
(2.56)

The solution O
(
Ro−2

)
≪ 1 satisfies the assumption in Regime III where Ro → ∞.

r∗maxIII
has a parabolic dependence on Ro in Regime III:

r∗maxIII
=

π

2e
Ro2 [1 + ǫ (Ro)] =

π

2e
Ro2 +O(1) (2.57)

Substituting Equation 2.57 into Equation 2.52 yields solution to half-width in

Regime III:

y∗maxIII
= r∗maxIII

√√√√1−
[
K0

(
r∗maxIII

)

K1

(
r∗maxIII

)
]2

=

√
π

2e
Ro +O

(
1

Ro

)
(2.58)

The asymptotic expression of half-width in Regime III is:

ŷ∗maxIII
=

√
π

2e
Ro (2.59)
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Regime IV: Ro → 0

In Regime IV where Ro → 0 and T ∗
c → ∞, r∗maxIV

is small as it decreases with T ∗
c .

The asymptotic analysis of the right side of Equation 2.53 for r∗maxIV
→ 0 in Regime

IV produces:

1/Ro = − ln
(
r∗maxIV

)
− γ + ln(2) +O

(
r∗2maxIV

)
(2.60)

where γ ≈ 0.5772 is Euler–Mascheroni constant. Performing exponential transforma-

tion on both sides yields:

exp [−1/Ro− γ + ln (2)] = rmaxIV exp
[
O
(
r∗2maxIV

)]

= rmaxIV

{
1 +O

[
O
(
r∗2maxIV

)]}
= rmaxIV

[
1 +O

(
r∗2maxIV

)]
(2.61)

As is the asymptotic analysis in Regime III Equation 2.55, writing the rmaxIV as

rmaxIV = exp [−1/Ro− γ + ln(2)] [1 + ǫ (Ro)] assuming ǫ (Ro) → 0, into Equation 2.61:

1 = [1 + ǫ (Ro)]
{
1 +O

{
exp [−1/Ro− γ + ln (2)]2 [1 + ǫ (Ro)]2

}}

= [1 + ǫ (Ro)]

{
1 +O

[
exp

(
− 2

Ro

)]}
(2.62)

According to the assumption ǫ (Ro) → 0, it is solved:

ǫ (Ro) = O

[
exp

(
− 2

Ro

)]
(2.63)

The solution O
[
exp

(
− 2

Ro

)]
≪ 1 satisfies the assumption because Ro → 0 in Regime

IV. Therefore, in Regime IV, the solution to Equation 2.53 is:

r∗maxIV
= 2 exp (−1/Ro− γ) +O

[
exp

(
− 3

Ro

)]
(2.64)

The solution to half-width y∗max in Regime IV can be obtained by substituting Equa-

tion 2.64 into Equation 2.52:

ymaxIV = r∗maxIV

√√√√1−
[
K0

(
r∗maxIV

)

K1

(
r∗maxIV

)
]2

= 2 exp (−γ−1/Ro) +O [exp (−3/Ro)] (2.65)
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Therefore, the asymptotic expression to half-width of isotherm in regime IV when

Ro → 0:

ŷ∗maxIV
= 2 exp (−γ−1/Ro) (2.66)

Appendix 2.C Criterion for point heat source

The criterion is established to ignore heat source size assuming under gaussian dis-

tribution. The temperature field is simulated with Comsol Multiphysics v5.4 setting

thermal properties k, ρ, cp, α as 1 for convenience of normalization. The simulations

are under three groups of operating parameters:

q = 2πW, U = 2m/s, σ = 0.1 : 0.1 : 0.9, 1 : 1 : 55m (2.67)

q = 20πW, U = 20m/s, σ = 0.1 : 0.1 : 0.9, 1 : 1 : 55m (2.68)

q = 2πW, U = 2m/s, σ = 3 : 6× 10−4, 3 : 6× 10−3, 3 : 6× 10−2m (2.69)

The result of simulation is illustrated in Figure 2.10. The criteria to neglect effect of

heat source size for 0.1 < Ro < 100 is:

σ∗
c ≈ 0.6ŷ∗max < 0.6

1 + 2Ro

1 + Ro
ŷ∗max (2.70)

Appendix 2.D Criterion for insulated surface

Under mild convection for small values h∗, the isotherm width y∗maxh
and its location

x∗
maxh

can be written as:

x∗
maxh

= x∗
max + δ∗x y∗maxh

= y∗max + δ∗y

where x∗
max and y∗max are isotherm width and its location for adiabatic surface cases

that can be estimated with Equation 2.31 and Equation 2.32, and the variation δ∗x ≪
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Equation 2.68
Equation 2.69

σ
∗

Ro

σ∗
c ≈ 0.6ŷ∗max
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ŷ∗max

Figure 2.10: The simulation result and criteria proposed Equation 2.70 to neglect
heat source size effect for isotherm width

x∗
max, δ

∗
y ≪ y∗max. The isotherm width can be expressed implicitly as:

1

Ro
= T ∗

∣∣∣
x∗

maxh
,y∗maxh

,h∗

≈

≈ 1

2
exp (−x∗

max)

[
−
K1 (r

∗
max)

(
2δ∗xx

∗
max + 2δ∗yy

∗
max + h∗r∗2max

)

r∗max

− 2(δ∗x − 1)K0 (r
∗
max)

]

(2.71)

0 =
∂T ∗

∂x∗

∣∣∣
x∗

maxh
,y∗maxh

,h∗

=

=
1

2
exp (−x∗

max)

{
1

r∗2max

x∗
maxK2 (r

∗
max)

(
2δ∗xx

∗
max + 2δ∗yy

∗
max + h∗r∗2max

)
+

+
K1 (r

∗
max)

[
δ∗x(4x

∗
max − 2) + 2δ∗yy

∗
max + x∗

maxh
∗(x∗

max − 2)− 2x∗
max + h∗y∗2max

]

r∗max

+

+2(δ∗x − 1)K0 (r
∗
max)} (2.72)
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According to the implicit expression of isotherm width and its location neglecting

surface heat loss Equation 2.49 and Equation 2.50,

K0 (r
∗
max) =

1

Ro
exp (x∗

max) (2.73)

,K1 (r
∗
max) = −r∗max exp (x

∗
max)

x∗
maxRo

, (2.74)

K2 (r
∗
max) = K0 (r

∗
max) +

2

r∗max

K1 (r
∗
max) (2.75)

Bringing the relationships of equations 2.73 to 2.75 into Equation 2.71 and 2.72,

δ∗x ≈ x∗
max

(
x∗
max

2 + y∗max
2
)

x∗
max

2 + (x∗
max − 1)y∗max

2
· h∗ δ∗y ≈ −

(
x∗
max

2 + y∗max
2
)

2y∗max

· h∗ (2.76)

For accepted relative error EA% for isotherm width,

δ∗y
y∗max

=
r∗2max

2y∗2max

h∗ ≤ EA% (2.77)

The criteria to ignore surface convection under 10% accepted error is:

h∗
c = 0.2

y∗2max

r∗2max

≈ 0.2
[
1 +

( π

2e
Ro2

)n]−1/n

(2.78)

dc,h =
20α2 (h + h′)

kU2

[
1 +

( π

2e
Ro2

)n]1/n
(2.79)

where n = 0.9405 is the optimal blending parameter. The criterion of Equation 2.78

is compared to the numerical solution from Equation 2.5 in Figure 2.11.

75



10-2 100 102

10-6

10-4

10-2

100

Ro

h
∗ c

Numerical result from Equation 2.5

Criteria Equation 2.78

Figure 2.11: The numerical result and criteria proposed Equation 2.78 to neglect
surface convection for isotherm width
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Chapter 3

Characteristic values of a
two-dimensional point moving heat
source

3.1 Abstract

This paper presents engineering expressions for characteristic values of 12 magnitudes

associated with a moving point heat source in a 2D space: location of maximum

width, trailing length, centerline cooling rate, leading length, centerline heating rate,

maximum temperature, gradient of maximum temperature, aspect ratio, melting ef-

ficiency, cooling time from 800 ◦C to 500 ◦C, solidification time, and thickness of the

heat affected zone. A modification of the heat intensity enables the extension of pre-

dictions to dissimilar thicknesses and alternative joint configurations. All proposed

expressions are obtained with a systematic approach and are accurate to within 8 %

of the exact solutions, except heating rate at 16 %. The explicit expressions proposed

depend on a single dimensionless group that captures all possible cases. This dimen-

sionless number is the Rosenthal number (Ro) for all cases, except for the estimation

of maximum temperature, for which a dimensionless width is used. The engineering

equations obtained are simple enough to be evaluated with a calculator or spread-

sheet, and are useful for a broad range of diverse applications such as welding, additive

manufacturing, heat treating, sliding contact, and more.
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Table 3.1: Notation.

Variables Unit Description

c J kg−1 K−1 Specific heat

d m Thickness of substrate

f Correction factor

i J kg−1 Enthalpy

k Wm−1 K−1 Thermal conductivity

q W Power of heat source absorbed by substrate

r m Distance from the heat source

Ro 1 Rosenthal number

St 1 Stefan number

t s Time

t8/5 s Cooling time from 800 ◦C to 500 ◦C

T K Temperature

T0 K Initial temperature

Tmax K Maximum temperature

dTmax/dy Km−1 Gradient of maximum temperature

U m s−1 Travel speed of moving heat source

W Lambert function

x, y m Cartesian coordinates

Greek symbols

α m2 s−1 Thermal diffusivity

ηm 1 Melting efficiency

φ ◦ Actual heat flow angle

γ 1 Euler-Mascheroni constant (0.5772. . .)

Superscripts

∗ Dimensionless value

Continued on next page
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Table 3.1 – continued from previous page

Variables Unit Description

̂ Asymptotic behavior

+ Correction for intermediate values

˙ Time derivative

Subscripts

500 500 ◦C

800 800 ◦C

b Isotherm trailing point

c Variable of interest

eff Effective value

f Isotherm leading point

HAZ Heat affected zone

III Regime III

IV Regime IV

i Intermediate value

m Melting

max Isotherm half-width

sl Solidification

Others

A 1 Aspect ratio of isotherm

Acronyms

EBW Electron Beam Welding

GMAW Gas Metal Arc Welding

GTAW Gas Tungsten Arc Welding

LBW Laser Beam Welding

SAW Submerged Arc Welding

Continued on next page
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Table 3.1 – continued from previous page

Variables Unit Description

SMAW Shielded Metal Arc Welding

3.2 Introduction

Moving heat sources are ubiquitous in heat transfer problems, with practical techno-

logical applications including welding [174, 175, 179], heat treatment [86, 106, 124],

tribology [89, 94], grinding [25, 132], machining [51, 107], and railroad wheel and

track contact [102, 103].

Despite the abundance of analytical solutions (e.g. [174, 175, 179, 212], also Green’s

function methods [157]), numerical solutions (e.g. [59, 74]), and empirical expressions

(some of them compiled in [173, 181]), this knowledge is seldom used by practitioners.

The main obstacle is that in practice, important temperatures are known, such as

transformation temperatures, melting temperatures, and degradation temperatures,

and what is desired is to know the extent of their reach into a substrate, the cooling

or heating rate around transformation, or other process information associated with

a particular temperature.

Analytic or numerical solutions calculate the temperature at a given location, which

is the inverse of what is typically needed in practice; thus they do not readily provide

an answer to many practical questions. Root finding and optimization algorithms

can be used to obtain the desired answer, but at an increased level of involvement,

which is often beyond the abilities or time availability of practitioners. The need

to use numerical tools also makes the development of metamodels significantly more

difficult.

Dimensional analysis indicates that idealized moving heat source problems can be

much reduced in their number of degrees of freedom with mathematical exactness; for

the cases studied in this paper, all magnitudes associated with a temperature depend
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on a single dimensionless group, regardless the nature of the heat source and the base

material. The theory of blending [34] enables the development of explicit expressions

that approximate inverse functions with high accuracy.

This paper applies the methodologies of scaling analysis, asymptotic analysis, and

blending techniques to the exact solutions originally developed by Rosenthal [174,

175] and verified experimentally in [176] for the study of temperature fields in weld-

ing. These exact solutions were independently developed also by Rykalin [179], Wil-

son [215] and Roberts [171] (for the case of mass transfer). Based on the exact

solution, 12 novel characteristic values associated with the isotherm T (x, y) = Tc

are calculated, represented in Figure 3.1. The approach used here is based on the

Minimal Representation and Correction Factors methodology [135], and the details

of its application to a moving point heat source on a thin plate are in [130], where

only the maximum isotherm half-width (ymax) was analyzed as demonstration of the

methodology.

Closed-form, explicit expressions are presented for 7 new primary characteristic

values (in addition to isotherm half-width ymax studied in [130]), and 5 associated

secondary characteristic values. The new primary characteristic values are: the lo-

cation of isotherm half-width xmax, the trailing length of isotherm xb, the centerline

cooling rate Ṫb, the leading length of isotherm xf, the centerline heating rate Ṫf, the

maximum temperature Tmax and the gradient of maximum temperature dTmax/dy.

The associated secondary characteristic values studied are the aspect ratio A of

isotherm, the melting efficiency ηm which is a rough approximation to estimate the

dilution of filler metal in welding, especially important in corrosion resistant alloys

such as stainless steels [48], centerline cooling time t8/5 from 800 ◦C to 500 ◦C corre-

sponding to the time it takes for the center line to cool from 800◦Cto 500◦C, and a key

determinant of hardness in weldments [23, 87], solidification time tsl which is a rough

approximation of the time needed to dissipate the latent heat of fusion, and thickness

of Heat Affected Zone ∆yHAZ which is the difference between isotherm half-widths.
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The relevance of the characteristic values studied is detailed in [207].

The methodology used does not have problems of convergence, and the explicit ex-

pressions obtained can be implemented directly into higher order models, or spread-

sheets for direct estimations. The effects of the parameters are directly visible in the

expressions, and facilitate the intuitive understanding of the problem.

3.3 Mathematical model

The mathematical model employed here is the 2D solution for a moving point heat

source in steady state in Eulerian coordinates presented in [171, 175, 215]:

T (x, y) = T0 +
q

2πkd
exp

(
−Ux

2α

)
K0

(
Ur

2α

)
(3.1)

where K0 is modified Bessel function of the second kind and zeroth order, x and y

are two independent variables illustrated in Figure 3.1, q is the heat input of the

point heat source, d is the thickness of the substrate (in a 2D formulation, q and d

always appear together as q/d = q′, where q′ is the intensity per unit thickness in 2D

model), k is the thermal conductivity of the substrate, T0 is the temperature of the

substrate far from the heat source, U is the velocity of the heat source relative to the

substrate, and α is the thermal diffusivity of the substrate. The radial coordinate r

is defined in relation to the independent variables as r =
√

x2 + y2. In the welding

community, this solution is called the “thin-plate Rosenthal solution”, although it is

also applicable to thick substrates provided the heat source resembles a line through

the thickness. In these cases, this same solution is often called the “moving line heat

source solution”

The scope of this model and its range of validity is analyzed in detail in [130],

including the effect of a finite heat source, substrate thickness, variable material

properties, latent heat, and surface heat losses (convection and radiation). For the

case of welding, these effects are shown to be secondary for most practical applications

for temperatures below the melting point. The unrealistic asymptotic behavior at the
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origin is an artifact of considering the heat source as a point and is not a problem

in practice. Further validation against experimental and numerical data the authors

found in the literature is also performed in this work.

Equation 3.1 can be rewritten in dimensionless form as:

T ∗ = exp (−x∗)K0 (r
∗) (3.2)

where:

T ∗ =
2πkd (T − T0)

q
(3.3)

x∗ =
Ux

2α
(3.4)

y∗ =
Uy

2α
(3.5)

r∗ =
Ur

2α
(3.6)

In Equations 3.3-3.6, the ∗ superscript indicates a dimensionless quantity. Dimen-

sional analysis suggests that dimensionless characteristic values for an isotherm Tc

(except for maximum temperature) depend only on the Rosenthal number (Ro) [130]:

Ro =
q

2πkd (Tc − T0)
(3.7)

In this paper, expressions of characteristic values in asymptotic regimes are pre-

sented for the two regimes corresponding to high and low Ro. For consistency with

previous work [130], these regimes are named Regime III (high Ro), and Regime IV

(low Ro). Based on these regimes, correction factors are developed to provide explicit

estimates at the intermediate Ro numbers regime with accuracy and simplicity. The

correction factors are especially well suited for engineering applications.
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Figure 3.1: Characteristic values of isotherm T = Tc for moving heat source prob-
lems [207].
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3.4 Location of maximum isotherm half-width xmax

For xmax the location of maximum isotherm half-width as illustrated in Figure 3.1,

the dimensionless asymptotic behavior is:

x̂∗
maxIII

(Ro) = − π

2e
Ro2 for Regime III (3.8)

x̂∗
maxIV

(Ro) = − 4

Ro
exp

(
−2γ − 2

Ro

)
for Regime IV (3.9)

Equations 3.8 and 3.9 have an important asymmetry; the former is a power law,

while the latter is an exponential. In this case, the advanced blending techniques

explained in the Appendix yield a lower blending error than traditional blending

techniques. The lowest blending error is obtained using the alternative methodology

described in 3.A (Equation 3.113), resulting in:

x̂∗+
max (Ro) = − exp

(
− 2

Ro

)[
π

2e
Ro2 +

4

exp (2γ)Ro
+ aRob

]
(3.10)

where the optimal blending parameters are a = 1.427, b = 1.077, with a maximum

error of 6.3%. The asymptotic behaviors cross at Ro = 0.6799, and their error against

the exact solution is less than 10 % for Ro > 1.650 or Ro < 0.2999. Traditional

blending (Equation 3.104) would have resulted in a higher error (18% versus 6.3%).

Correction factors for asymptotic behaviors of equations 3.8 and 3.9 are obtained

from Equation 3.10, yielding:

fxmaxIII
(Ro) = exp

(
− 2

Ro

)[
1 +

8

π exp (2γ − 1)Ro3
+

2ae

π
Rob−2

]
for Regime III

(3.11)

fxmaxIV
(Ro) =

[
1 +

π

8
exp (2γ − 1)Ro3 +

a

4
exp (2γ) Rob+1

]
for Regime IV

(3.12)

The engineering expressions with units are obtained for the location of isotherm half-
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width as:

x̂+
max = x̂maxIIIfxmaxIII

(Ro) = − αq2

4eπUd2k2 (Tc − T0)
2 fxmaxIII

(Ro) for Regime III

(3.13)

x̂+
max = x̂maxIVfxmaxIV

(Ro) = − 16παdk (Tc − T0)

Uq exp (2γ + 2/Ro)
fxmaxIV

(Ro) for Regime IV

(3.14)

3.5 Trailing length of isotherm xb

The trailing length, xb, is the length of the hot area behind the heat source. The

trailing length x∗
b is calculated by solving the negative root of Equation 3.2 (T ∗ = T ∗

c )

at the centerline (y∗ = 0) (the positive root is the leading length). Asymptotic analysis

of Equation 3.2 yields:

x̂∗
bIII

(Ro) =− π

2
Ro2 for Regime III (3.15)

x̂∗
bIV

(Ro) =− 2 exp

(
− 1

Ro
− γ

)
for Regime IV (3.16)

The blending equation for trailing length x∗
b employing blending Equation 3.113

with a positive exponent is:

x̂∗+
b (Ro) = − exp

(
− 1

Ro

)[
2 exp (−γ) +

π

2
Ro2 + aRob

]
(3.17)

where the optimal blending parameters are a = 0.7659, b = 1.541, with a maximum

error of 6.8%. The asymptotic behaviors cross at Ro = 0.5111, and have an error

below 10 % against the exact solution when Ro > 1.700 or Ro < 0.1919. Similarly as

before, the choice of blending technique was based on smallest error. If blending had

been performed using Equation 3.104, the error would have been larger: 12% instead

of 6.8% .

The blending Equation 3.17 generates the following correction factors for asymp-

totics Equation 3.15 and Equation 3.16:

fxbIII
(Ro) = exp

(
− 1

Ro

)[
1 +

4

π exp (γ)
Ro−2 +

2a

π
Rob−2

]
for Regime III (3.18)

fxbIV
(Ro) =

[
1 +

π

4
exp (γ) Ro2 +

a

2
exp (γ) Rob

]
for Regime IV (3.19)
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The engineering expressions with units are obtained by substituting Equation 3.4

and 3.7 into Equation 3.15 and Equation 3.16:

x̂+
b = x̂bIII fxbIII

(Ro) = − αq2

4πUd2k2 (Tc − T0)
2 fxbIII

(Ro) for Regime III (3.20)

x̂+
b = x̂bIV fxbIV

(Ro) = − 4α

U exp
(
γ + 1

Ro

) fxbIV
(Ro) for Regime IV (3.21)

3.6 Centerline cooling rate Ṫb

The centerline cooling rate is a crucial characteristic value to determine because of its

dominant influence on the microstructure when phase transformations are present.

Because of the Eulerian formulation of the problem, the cooling rate is defined using

material derivatives:

Ṫb =
DT

Dt

∣∣∣∣
xb

(3.22)

Using the following definition of t∗ [207]:

t∗ =
U2t

2α
(3.23)

the cooling rate can be calculated using the following dimensionless expression:

Ṫ ∗
b =

4πkαd

qU2

DT

Dt

∣∣∣∣
xb

= − ∂T ∗

∂x∗

∣∣∣∣
xb

(3.24)

The derivative ∂T ∗/∂x∗ at the trailing point xb is derived from Equation 3.2,

resulting in:

̂̇T
∗

bIII
(Ro) = − 1

πRo3
for Regime III (3.25)

̂̇T
∗

bIV
(Ro) = −1

2
exp

(
1

Ro
+ γ

)
for Regime IV (3.26)

The blending equation for cooling rate Ṫb using blending Equation 3.113 with n = −1

is:

̂̇T
∗+

b (Ro) = − exp
(

1
Ro

)

πRo3 + 2exp (−γ) + aRo−b
(3.27)
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where the optimal blending parameters are a = 3.839, b = −2.108 resulting in a

maximum error of 5.8%. The asymptotic behaviors cross at Ro = 0.3338 and have an

error below 10 % for Ro > 0.7569 or Ro < 0.1776. The choice of blending technique

was based on smallest error. If blending had been performed using Equation 3.104,

the error would have been larger: 18% instead of 5.8%.

The blending Equation 3.27 generates the following correction factors for asymp-

totics Equation 3.25 and Equation 3.26:

fṪbIII

(Ro) = exp

(
1

Ro

)[
1 +

2

π
exp (−γ) Ro−3 + aRo−b−3

]−1

for Regime III (3.28)

fṪbIV

(Ro) =

[
1 +

1

2
π exp (γ)Ro3 +

1

2
a exp (γ) Ro−b

]−1

for Regime IV (3.29)

The engineering expressions with units are obtained for cooling rate:

̂̇T
+

b = ̂̇T bIII fṪbIII

(Ro) = −2πU2d2k2 (Tc − T0)
3

αq2
fṪbIII

(Ro) for Regime III (3.30)

̂̇T
+

b = ̂̇T bIV fṪbIV

(Ro) = − U2q

8παdk
exp

(
γ +

1

Ro

)
fṪbIV

(Ro) for Regime IV (3.31)

3.7 Leading length of isotherm xf

The leading length of an isotherm, xf, is a metric of heat conduction against advection

ahead of the heat source. The magnitude x∗
f is the positive root of Equation 3.2 for

T = Tc at the centerline. Asymptotic analysis of Equation 3.2 yields expressions for

the leading length in Regime III and IV:

x̂∗
fIII

(Ro) =
1

4
W

(
2πRo2

)
for Regime III (3.32)

x̂∗
fIV
(Ro) =2 exp

(
−γ − 1

Ro

)
for Regime IV (3.33)

whereW is the Lambert W function [41], defined as the solution to x = W (x) exp [W (x)].

The Lambert W function can be calculated numerically with existing code such as

in Matlab, Scipy, and Mathematica. When a precoded function is not available,

approximate functions using ubiquitous closed-form expressions can be used. The
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approximation in [17] has a maximum error of 0.196 %, but it is tedious to input and

prone to human input error. 3.B uses blending techniques to arrive to a much simpler

expressions, albeit with a larger error of 5.9 %.

Blending in this case is performed using Equation 3.104 with n = −1 and applying

the weight factor to the Regime IV asymptotics (neither of both asymptotics obeys

power law), resulting in:

x̂∗
f (Ro) =

1

4W−1(2πRo2) + 1
2
exp(γ + 1

Ro
+ aRob)

(3.34)

where the optimal blending parameters are a = 1.548, b = 1.389, with a blending

error smaller than 7.3%. The asymptotic behaviors cross at Ro = 0.6819 and have

an error below 10 % for Ro > 1.246 or Ro < 0.2653. If blending had been performed

using Equation 3.104 with modification on asymptotic for Regime III, the error would

have been larger: 30% instead of 7.3%.

The blending Equation 3.34 generates the following correction factors for asymp-

totics Equation 3.32 and Equation 3.33:

fxfIII
(Ro) =

[
1 +

1

8
W

(
2πRo2

)
exp

(
γ +

1

Ro
+ aRob

)]−1

for Regime III (3.35)

fxfIV
(Ro) =

[
8 exp

(
−γ − 1

Ro

)

W
(
2πRo2

) + exp
(
aRob

)
]−1

for Regime IV (3.36)

The corresponding engineering expressions with units are obtained by substituting

Equation 3.4 into Equation 3.32 and Equation 3.33, resulting in:

x̂+
f = x̂fIII fxfIII

(Ro) =
α

2U
W

(
2πRo2

)
fxfIII

(Ro) for Regime III (3.37)

x̂+
f = x̂fIV fxfIV

(Ro) =
4α

U
exp

(
−γ − 1

Ro

)
fxfIV

(Ro) for Regime IV (3.38)

3.8 Centerline heating rate Ṫf

The centerline heating rate, Ṫf, is relevant to understand phase transformations and

phase changes in thermal processes. The derivations for Ṫf follow the same path as
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those for Ṫb, also involving Equation 3.24. Asymptotic analysis of Equation 3.2 yields:

̂̇T
∗

fIII
(Ro) =

2

Ro
for Regime III (3.39)

̂̇T
∗

fIV
(Ro) =

1

2
exp

(
γ +

1

Ro

)
for Regime IV (3.40)

Blending for the heating rate Ṫ ∗
f is performed using Equation 3.113 with n = −1,

resulting in:

̂̇T
∗+

f =
exp (1/Ro)

1
2
Ro + 2 exp (−γ) + aRob

(3.41)

where the optimal blending parameters are a = −0.6618, b = 0.5055, with a blending

error smaller than 16%. The asymptotic behaviors cross at Ro = 3.440 and have an

error below 10 % for Ro > 175.6 or Ro < 0.03730. If blending had been performed

using Equation 3.104, the error would have been larger: 36% instead of 16%. The

blending Equation 3.41 generates the following correction factors for asymptotics

Equation 3.39 and Equation 3.40:

fṪfIII

(Ro) =
exp(1/Ro)

1 + 4Ro−1 exp (−γ) + 2aRob−1
for Regime III (3.42)

fṪfIV

(Ro) =
1

1 + 1
4
exp (γ)Ro + a

2
exp (γ)Rob

for Regime IV (3.43)

The corresponding engineering expressions with units are obtained by substituting

Equation 3.3 into Equation 3.39 and Equation 3.40, resulting in:

̂̇T
+

f = ̂̇T fIII fxfIII
(Ro) =

U2 (Tc − T0)

α
fxfIII

(Ro) for Regime III (3.44)

̂̇T
+

f = ̂̇T fIV fxfIV
(Ro) =

U2q

8παdk
exp

(
γ +

1

Ro

)
fxfIV

(Ro) for Regime IV (3.45)

3.9 Maximum temperature Tmax

The maximum temperature of a point at given y is an indication of possible thermal

effects that are desired or should be avoided. In contrast with all previous char-

acteristic values that depended on the Rosenthal number, in this case, dependence

is on position and is the reverse of isotherm half-width y∗max(Ro) studied in [130].
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Asymptotic analysis of Equation 3.2 result in the asymptotic expressions of maxi-

mum temperature for Regime III and Regime IV:

T̂ ∗
maxIII

(y∗c ) =

√
π

2e

1

y∗c
for Regime III (3.46)

T̂ ∗
maxIV

(y∗c ) = ln

(
1

y∗c

)
for Regime IV (3.47)

The asymptotic behavior of Equation 3.47 cannot be extended into Regime III to

perform blending because it changes sign for y∗c = 1. 3.A describes the blending

approach in this case, in which a modified function is proposed for the asymptotic of

Regime IV:

T̂ ∗′
maxIV

(y∗c ) = ln

(
1

y∗c
+

1

a

)
modified for Regime IV (3.48)

which is valid for the whole domain when a < 1. The blending of Equation 3.46 and

Equation 3.48 using equations 3.119 and 3.104 is:

T̂ ∗+
max =

[(√
π

2e

1

y∗c

)n

+ ln

(
1

y∗c
+

1

a

)n]1/n
(3.49)

where the optimal blending value is a =0.3350 and n =-2.013, with a blending error

smaller than 2.1%. The asymptotic behaviors cross at Ro = 0.4645 and have an error

below 10 % for Ro > 1.195 or Ro < 0.1632. The blending Equation 3.49 generates

the following correction factors for asymptotics Equation 3.46 and Equation 3.47:

fT ∗

maxIII
(Ro) =

{
1 +

[√
2e

π
y∗c ln

(
1

y∗c
+

1

a

)]n}1/n

for Regime III (3.50)

fT ∗

maxIV
(Ro) =



1 +



√

π

2e

1

y∗c ln
(

1
y∗c

+ 1
a

)



n


1/n

for Regime IV (3.51)

The corresponding dimensionless engineering expression for maximum temperature

are generated by substituting Equation 3.3 and 3.5 into Equations 3.46 and 3.47,
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resulting in:

T̂+
max = T0 +

(
T̂maxIII − T0

)
fTmaxIII

(y∗c ) = T0 +
αq√

2πeUdkyc
fTmaxIII

(y∗c ) (3.52)

for Regime III

T̂+
max = T0 +

(
T̂ ′
maxIV

− T0

)
fTmaxIV

(y∗c ) = T0 +
q

2πdk
ln

(
2α

Uyc
+

1

a

)
fTmaxIV

(y∗c)

(3.53)

for Regime IV

3.10 Gradient of maximum temperature dTmax/dy

The maximum temperature experienced by each point in the plate depends on the

distance to the center line yc; therefore, there is a lateral gradient associated with

the maximum temperature in the substrate. The gradient of maximum temperature

is useful to build single-term predictions of thickness of areas affected by different

temperatures such as the HAZ (heat affected zone) in welding. The dimensionless

maximum temperature gradient can be calculated by the derivative of T ∗
max(y

∗) =

T [x∗
max(y

∗), y∗], as shown in [207]:

dT ∗
max

dy∗
=

∂T ∗

∂y∗

∣∣∣∣
x∗

max,y
∗

max

(3.54)

with the following asymptotics:

d̂T ∗
max

dy∗

∣∣∣∣∣
III

(Ro) = −
√

2e

π

1

Ro2
for Regime III (3.55)

d̂T ∗
max

dy∗

∣∣∣∣∣
IV

(Ro) = − 1

2
exp

(
γ +

1

Ro

)
for Regime IV (3.56)

Blending for the maximum temperature gradient dT ∗
max/dy

∗ is performed using

Equation 3.113 with n = −1, resulting in:

d̂T ∗
max

dy∗

+

= − exp( 1
Ro
)√

π
2e
Ro2 + 2exp(−γ) + aRob

(3.57)

where the optimal blending parameters are a = 0.2765, b = 1.629, with a blending

error smaller than 6.6%. The asymptotic behaviors cross at Ro = 0.3903 and have an
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error below 10 % for Ro > 0.4144 or Ro < 0.3158. If blending had been performed

using Equation 3.104, the error would have been larger: 11% instead of 6.6%. The

blending Equation 3.57 generates the following correction factors for asymptotics

Equation 3.55 and Equation 3.56:

f dTmax
dy |

III

(Ro) = exp

(
1

Ro

)[
1 +

√
8e

π
exp (−γ)Ro−2 + a

√
2e

π
Rob−2

]−1

for Regime III

(3.58)

f dTmax
dy |

IV

(Ro) =

[
1 +

√
π

8e
exp (γ)Ro2 +

1

2
a exp (γ)Rob

]−1

for Regime IV

(3.59)

The corresponding engineering expressions with units are:

d̂Tmax

dy

+

=
d̂Tmax

dy

∣∣∣∣∣
III

f dTmax
dy |

III

(Ro) = −
√
2πeUdk (Tc − T0)

2

αq
f dTmax

dy |
III

(Ro) (3.60)

for Regime III

d̂Tmax

dy

+

=
d̂Tmax

dy

∣∣∣∣∣
IV

f dTmax
dy |

IV

(Ro) = − Uq

8παdk
exp

(
γ +

1

Ro

)
f dTmax

dy |
IV

(Ro) (3.61)

for Regime IV

3.11 Aspect ratioA

The aspect ratio of an isotherm is easily visualized in practice, and it is also a proxy

for Ro because it depends only on Ro. The aspect ratio, A, is the ratio of length

(xf − xb) to width (2ymax) of an isotherm:

A =
xf − xb

2ymax
=

x∗
f − x∗

b

2y∗max

(3.62)

The asymptotic expressions for trailing length, leading length and isotherm half-

width yield the following expressions for Regime III and Regime IV:

ÂIII(Ro) =

√
πe

8
Ro for Regime III (3.63)

ÂIV(Ro) = 1 for Regime IV (3.64)
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The aspect ratio of 1 in Regime IV is consistent with the radical symmetry of the

pure conduction problem. Blending in this case can be done using the traditional

approach (Equation 3.99):

Â
+
=

[
1 +

(√
πe

8
Ro

)n]1/n
(3.65)

with the optimal blending parameter n = 1.972 and an error always less than 3.3%.

The crossover point for the asymptotes is Ro = 0.9679. Asymptotic expressions result

in an error less than 10 % for Ro > 2.095 or Ro < 0.4471. Equation 3.65 yields the

following correction factors for Equation 3.63 and Equation 3.64:

fAIII
(Ro) =

[
1 +

(√
8

πe

1

Ro

)n]1/n

for Regime III (3.66)

fAIV
(Ro) =

[
1 +

(√
πe

8
Ro

)n]1/n
for Regime IV (3.67)

The corresponding engineering expressions with units are obtained by substituting

Equation 3.7 into Equations 3.63 and 3.64 to obtain:

Â
+
= ÂIII fAIII

(Ro) =

√
2eq

8
√
πdk (Tc − T0)

fAIII
(Ro) for Regime III (3.68)

Â
+
= ÂIV fAIV

(Ro) =1 · fAIV
(Ro) for Regime IV (3.69)

3.12 Melting efficiency ηm

Melting efficiency, ηm, is a magnitude defined for fusion welding processes; despite the

limitations of Rosenthal’s equation, expressions for melting efficiency are qualitatively

correct, and quantitatively not far from reality, as reviewed in [207].

The melting efficiency is the ratio of the energy used to reach liquidus temperature

relative to the total energy deposited from the heat source. For 2D moving heat source

problems, the energy per unit thickness needed to reach melting is ρc(Tm−T0)/d, and

the width of the fusion zone is (2 ymax,m), where subscript m indicates the isotherm

of melting temperature. The melting efficiency can then be calculated as:

ηm =
ρcU(Tm − T0)(2d ymax,m)

q
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which can be rewritten using equations 3.5 and 3.7 as:

ηm =
2y∗max,m

πRom
(3.70)

where Rom corresponds to melting temperature Tm (liquidus temperature). Replacing

the asymptotic expressions for ŷ∗max, Equation 3.70 yields the following dimensionless

expressions:

η̂mIII
(Rom) =

√
2

πe
for Regime III (3.71)

η̂mIV
(Rom) =

4

πRom exp
(
γ + 1

Rom

) for Regime IV (3.72)

Because ηm is based on y∗max, the correction factors for Regime III and Regime IV

are the same as correction factors for y∗max.

Equation 3.71 indicates that for 2D moving point heat source, the maximum of

melting efficiency reaches 48.39 % for large Rosenthal numbers, but it never reaches

100 % because of the superheat inside the melt pool and the temperature gradients

on substrate. Equation 3.72 indicates that for small Ro, heat conduction decreases

the melting efficiency significantly.

Equations 3.71 and 3.72 suggest that the melting efficiency is always greater than

zero, regardless of the power of the heat source; in practice, the finite size of the heat

source implies that melting efficiency can be zero for diffuse heat sources [207].

The corresponding engineering expressions with units are obtained by substituting

Equation 3.7 into Equations 3.71 and 3.72, obtaining:

η̂+m = η̂mIII
fηmIII

(Rom) =

√
2

πe
fymaxIII

(Rom) for Regime III (3.73)

η̂+m = η̂mIV
fηmIV

(Rom) =
8dk (Tc − T0)

q exp
(
γ + 1

Rom

) fymaxIV
(Rom) for Regime IV (3.74)

where fymaxIII
(Ro) and fymaxIV

(Ro) are the correction factors for isotherm half-width

calculated from [130].
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3.13 Cooling time t8/5

The characteristic value t8/5 is a metric of cooling rate for steels. t8/5 is the time a

point at centerline takes to cool down from 800 ◦C to 500 ◦C, which is equivalent to

the time it takes for the heat source travelling the difference of the trailing length of

two temperatures xb,800 and xb,500; thus:

t8/5 =

∣∣∣∣
xb,800 − xb,500

U

∣∣∣∣ (3.75)

where xb,800 and xb,500 are rear lengths for 800 ◦C and 500 ◦C. Substituting Equa-

tion 3.20 and Equation 3.21 into Equation 3.75 gives:

t̂8/5
+

III
=

αq2

4πU2k2d2

[
fxbIII

(Ro500)

(T500 − T0)
2 −

fxbIII
(Ro800)

(T800 − T0)
2

]
(3.76)

for Regime III

t̂8/5
+

IV
=

4α

U2 exp (γ)

[
exp

(
− 1

Ro500

)
fxbIV

(Ro500)− exp

(
− 1

Ro800

)
fxbIV

(Ro800)

]

(3.77)

for Regime IV

where Ro800 and Ro500 are the Rosenthal numbers for 800 ◦C and 500 ◦C, T800 and

T500 represents 800 ◦C and 500 ◦C, fxbIII
and fxbIV

are correction factors for trailing

length of Regime III and IV. When Ro800 ≫ 1, in Equation 3.76, fxbIII
(Ro500) =

fxbIII
(Ro800) ≈ 1; when Ro500 ≪ 1, in Equation 3.77, fxbIV

(Ro500) = fxbIV
(Ro800) ≈

1.

The time t8/5 can be approximated by using the cooling rate calculated above:

t8/5 ≈
800◦C− 500◦C∣∣∣Ṫb,i

∣∣∣
(3.78)

where Ṫb,i is the cooling rate of Ti between 500 ◦C and 800 ◦C. Replacing Equation 3.30

and Equation 3.31 into Equation 3.78 produces the following approximations:

t̂8/5
+

III
≈ αq2(T800 − T500)

2πU2d2k2(Ti − T0)3
fṪbIII

(Roi)
−1 for Regime III (3.79)

t̂8/5
+

IV
≈ 8παdk(T800 − T500)

qU2 exp
(
γ + 1

Roi

) fṪbIV

(Roi)
−1 for Regime IV (3.80)
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where Roi is the Rosenthal number for intermediate temperature Ti, and fṪbIII

(Roi)
−1

and fṪbIV

(Roi)
−1 are the reciprocal of correction factors for cooling rate.

There is an intermediate temperature Ti for which equations 3.76 and 3.77 are

exactly the same as equations 3.79 and 3.80. The exact expression of that intermediate

temperature is not practical, but following [207], it can be approximated as:

Ti ≈ T0 +
√
(T800 − T0) (T500 − T0) (3.81)

which for a 20 ◦C preheat corresponds to Ti ≈632◦C.

3.14 Solidification time at centerline tsl

The Rosenthal model can be extended to capture phase transformations when their

presence causes second-order effects. At the trailing point xb, the enthalpy loss rate

can be estimated as:

Di

Dt

∣∣∣∣
xb

= c Ṫb (3.82)

where i is enthalpy per unit mass, and c is the effective specific heat assumed constant

for all points in the domain, whether they are solid or liquid state.

When phase transformations have a small effect on the solution (as is the case of

steels [197]), Rosenthal’s formulation can be extended to estimate the phase transfor-

mation time by considering the rate of enthalpy loss. For solidification, the time tsl

could be calculated with the latent heat of solidification isl, which can be presented

in dimensionless form:

t̂∗slIII =
πRo2m
St

for Regime III (3.83)

t̂∗slIV =
2

RomSt exp
(
γ + 1

Rom

) for Regime IV (3.84)

where Rom is Rosenthal number corresponding to melting temperature, t∗sl is normal-
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ized time and St is the Stefan number:

t∗sl =
U2tsl
2α

(3.85)

St =
c (Tm − T0)

isl
(3.86)

where Tm (“melting temperature”) is a temperature representative of the solidifica-

tion, typically intermediate between liquidus and solidus.

The corresponding engineering expression with units can be expressed as:

t̂+slIII = − isl
Di/Dt|xb

=
αq2

2πU2d2k2(Tm − T0)3
isl
c
fṪbIII

(Rom)
−1 for Regime III (3.87)

t̂+slIV = − isl
Di/Dt|xb

=
8παdk

qU2 exp
(
γ + 1

Rom

) isl
c
fṪbIV

(Rom)
−1 for Regime IV (3.88)

where Tm (“melting temperature”) is a temperature representative of the solidifica-

tion, typically intermediate between liquidus and solidus, Rom is the corresponding

Rosenthal number, fṪbIII

(Rom)
−1 and fṪbIV

(Rom)
−1 are the reciprocal of correction

factors for cooling rate. Note the similarity of equations 3.87 and 3.88 with equa-

tions 3.79 and 3.80, which are equivalent if the factor isl/c, which has units of tem-

perature, is expressed as a temperature variation.

The extension of Rosenthal model can be applied to other phase transformations,

for example austenite decomposition.

3.15 Thickness of the heat affected zone ∆y
HAZ

The heat affected zone (HAZ) is a central concept in welding and thermal cutting

of metals. It is defined as the amount of material that experiences temperatures

between the melting temperature Tm (typically solidus) and a temperature specific

to the metal THAZ (typically Ac,1 in the case of carbon steels. The thickness of the

HAZ is then defined as:

∆yHAZ = ymax,HAZ − ymax,m (3.89)
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where ymax,HAZ is the half-width of the isotherm THAZ and ymax,m is the half-width of

the melting isotherm Tm. Substituting THAZ and Tm into blending results of isotherm

half-width ymax [130] results in the following predictions for thickness of the HAZ:

∆̂y
+

HAZ
=

αq√
2πeUdk

[
fymaxIII

(RoHAZ)

THAZ − T0
−

fymaxIII
(Rom)

Tm − T0

]
for Regime III (3.90)

∆̂y
+

HAZ
=

4α

exp (γ)U

[
fymaxIV

(RoHAZ)

exp (1/RoHAZ)
−

fymaxIV
(Rom)

exp (1/Rom)

]
for Regime IV (3.91)

For a relatively thin HAZ, its thickness can be approximated using the lateral

temperature gradient:

∆̂y
+

HAZ
≈ Tm − THAZ

|dTmax/dy|i
=

αq(Tm − THAZ)√
2πeUkd(Ti − T0)2

f dTmax
dy |

III

(Roi)
−1 for Regime III (3.92)

∆̂y
+

HAZ
≈ Tm − THAZ

|dTmax/dy|i
=

8παdk(Tm − THAZ)

qU exp
(
γ + 1

Roi

) f dTmax
dy |

IV

(Roi)
−1 for Regime IV (3.93)

where dTmax/dy|i is the gradient of maximum temperature in a cross section, evalu-

ated at a temperature Ti intermediate between THAZ and Tm, Roi is the corresponding

Rosenthal number, and f dTmax
dy |

III

(Roi)
−1 and f dTmax

dy |
IV

(Roi)
−1 are the reciprocal of

correction factors of maximum temperature gradient as in Equation 3.58 and Equa-

tion 3.59. The dimensionless counterpart of equations 3.92 and 3.93 is expressed

as:

∆̂y∗HAZ

T ∗
m − T ∗

HAZ

=

(
dT ∗

max,m

dy∗

)−1

(3.94)

where the right hand member depends only on Ro, and can be estimated using Equa-

tion 3.57.

A good choice for intermediate temperature is:

Ti = T0 +
√

(Tm − T0) (THAZ − T0) (3.95)

which makes equations 3.90 and 3.92 and equations 3.93 and 3.92 nearly equivalent.

For the asymptotics of Regime III, Equation 3.95 is exact.
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3.16 Effect of joint configuration

The 2D moving point heat source model has two symmetrical heat flow paths, in the

direction of +y and −y with a heat intensity per unit thickness q/(2d) for each side.

This configuration could be extended to multiple paths of heat flow in thin plates,

such as those illustrated in Figure 3.2.

For a joint configuration involving m half-panels of thickness d1, d2, . . . , dm, there

are m paths of heat flow with independent heat inputs q1, q2, . . . , qm such that:

q =

m∑

i=1

qi (3.96)

and each panel experiences its own heat intensity per unit thickness q′j = qj/dj.

Considered individually, each panel behaves exactly as if it was a symmetric thin

plate with a heat intensity per unit thickness of:

q′effj
=

2qj
dj

(3.97)

All formulae developed above will be applicable to each individual heat path by

replacing q/d by q′effj
. When the heat intensity per unit thickness is the same for all

panels, this generalization is exact; when not, the asymmetry can cause heat transfer

from one plate to another, which is not captured by the symmetric 2D formulation

used here, and this generalization is only approximate.

An example of application of generalized joint configuration is the building of

high thin walls in additive manufacturing, shown in Figure 3.2(c). In this case, the

path of heat flow is only one (m =1), and all the predictions of characteristic values

apply exactly when using an effective heat intensity per unit thickness of 2q/d. This

can be interpreted also as considering an effective heat intensity qeff = 2q and the

nominal wall thickness, or a nominal heat intensity q and an effective wall thickness

deff = d/2. Another example is the case of a T-joint of members of equal thickness

(m =3, Figure 3.2(e)), assuming the heat intensity q is divided equally in all three

directions, the effective heat intensity per unit thickness in each direction would be
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(2/3)q/d. This can be interpreted also as considering an effective heat intensity

qeff = (2/3)q and the nominal thickness, or a nominal heat intensity q and an effective

wall thickness deff = (3/2)d. These joints configurations are contemplated already in

standards such as [192].

Typically, the same characteristic values (such as cooling rate) are desirable for

all members of the joint. In this case, the generalization to m paths of heat flow is

exact, and the heat intensity applied to each path of heat flow is proportional to the

thickness of the path:

qj
q

=
dj∑m
i=1 qi

(3.98)

where j = 1, 2 . . .m identifies each heat path. For example, for the dissimilar thickness

butt joint of Figure 3.2(b), d2 = 1.5d1, resulting in q1 = qd1/(d1 + 1.5d1) = 0.4q and

q2 = q1.5d1/(d1+1.5d1) = 0.6q. In this case, the partition of heat for welding should

be 40 % on the thinner side, and 60 % on the thicker side. The same approach can be

applied to other joint configuration examples Figure 3.2(c) to 3.2(e). The practical

implementation of partition of heat in welding is discussed in detail in [207].

3.17 Validation

The proposed predictive expressions are validated against available published data

for cooling rate Ṫb, weld pool length (xf − xb), maximum temperature (Tmax, away

from the centerline), HAZ thickness (∆yHAZ), and isotherm aspect ratio A, shown

in figures 3.3 to 3.7.

Experimental values were collected for various welding processes including sur-

face hardening, Gas Tungsten Arc Welding (GTAW), Shielded Metal Arc Welding

(SMAW), Submerged Arc Welding (SAW), Gas Metal Arc Welding (GMAW), under

water wet welding, Laser Beam Welding (LBW) and Electron Beam Welding (EBW)

for a wide range of materials including aluminum, titanium, carbon steel, stainless

steel, ultra-high-strength steel and superalloys.
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Figure 3.2: Equivalent power source intensity (q′eff) and energy distribution (qi) for
typical welding joint.
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The thermal properties used for the calculation of predictive expressions were ob-

tained from the original sources, other literature, or software (JMatPro v11). When

temperature-dependent properties were available, effective values were obtained using

the methodology introduced in [130]. Thermal efficiency, when not listed in the orig-

inal sources, was assessed from the American Welding Society handbook [96]. The

far temperature T0 was either reported [99, 120, 142, 166, 184, 189] or assumed to be

20 ◦C. The raw data from literature and all values used to calculate the points are

listed in the supporting online material.

Figure 3.3 compares the cooling rate predictions of Equation 3.27 with data for

nine published sources. In the comparison, the thermal efficiency is estimated 0.8 for

GMAW [63]. When cooling time t8/5 was provided instead of cooling rate [12, 99,

120, 166, 182, 184, 189], the cooling rate at 632 ◦C was estimated as 300◦C
/
t8/5 , with

effective thermal properties calculated between 500 ◦C and 800 ◦C. The agreement

of the predictions with eight sources shows a relatively narrow scatter and a slight

underprediction (in absolute value) for large Ro numbers and a slight overprediction

in absolute value for small Ro numbers. The ninth source ([63]) shows cooling rates

much faster in absolute value than predicted. This discrepancy is because the data

considered corresponds to underwater wet welding, where the very intense convec-

tion invalidates the hypothesis of negligible surface heat losses. Surface heat losses

might also be the main source of the small systematic error observed. This effect is

considered in current work to be published separately.

Figure 3.4 compares the weld pool length (x̂∗
f − x̂∗

b) predicted using Equation 3.17,

against measurements for two different welding processes (GTAW in [109, 160], and

LBW in [46]). The thermal efficiency for [160] is assumed as 0.5. The comparison

shows a relatively narrow scatter and a no obvious bias.

Figure 3.5 compares maximum temperature away from the centerline predicted

using Equation 3.49 against experiments from five sources from the literature. In

this comparison, the thermal efficiency for EBW is estimated as 0.95, for LBW in
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Figure 3.3: Validation of predictions for cooling rate using Equation 3.27. The curve
corresponding to the exact solution (Equation 3.2) is undistinguishable within the
thickness of the line.
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b using equa-
tions 3.34 and 3.17.
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conduction mode as 0.15, for LBW keyhole mode as 0.9 [190]. The comparison shows

a relatively narrow scatter and a consistent slight overprediction against most authors.
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Figure 3.5: Validation of predictions of maximum temperature using Equation 3.49.
The curve corresponding to the exact solution (Equation 3.2) is undistinguishable
within the thickness of the line.

Figure 3.6 compares the thickness of heat affected zone predicted using Equa-

tion 3.92 against experiments from three sources from the literature. The thermal

efficiency is estimated as 0.9 for LBW on ultra-high-strength steel [131] and 0.7 for

LBW on Ti-6Al-4V [185]. The effective thermal properties are calculated between

melting temperature Tm and heat affected zone temperature THAZ. THAZ for Ti-6Al-

4V is listed as 995◦C [143], and for ultra-high-strength steel, it is stated that it is below

Ac1 [131] , and is assumed as 500◦C, which is when martensite tempering accelerates

greatly [42].

Figure 3.7 compares the weld pool aspect ratio predicted using Equation 3.65

against three sources from the literature. The shape of weld pool was measured from
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Figure 3.6: Validation of predictions of heat affected zone half-width using Equa-
tion 3.94.

optical images for [46, 204] and from simulations for [109]. The comparison shows a

relatively narrow scatter and slight systematic error of underprediction.

3.18 Discussion

The formulae in closed form for a 2D moving heat source are novel. They are different

from previous research in that the intermediate regime can now be calculated with

explicit expressions. A single dimensionless group is identified that determines all

characteristic values. This dimensionless group is defined as the Rosenthal number

for most of the characteristic value except for maximum temperature (y∗c ) that is

proposed by Fuerschbach and Knorovsky [61] based on experiments, but had not

been widely adopted by the heat transfer or welding communities. This approach

is also consistent with [207], in which the Rykalin number is used to generalize 3D

moving heat sources. The characteristic values can be calculated with the proposed
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formulae using ubiquitous means such as calculators or spreadsheets.

The engineering expressions are based on the equation of heat diffusion, are simple

to use and general to a wide range of processes and materials, and are within 8

% of the exact analytical solutions with the only exception of heating rate (16 %

maximum error against exact solution). Comparisons of the expressions proposed

against experiments or simulations show relatively low scatter and systematic error

comparable with the experimental error in welding experiments (random error in

GTAW experiments were assessed to be of the order of ±15 % [47]).

Aside from heating rate, for values of Ro larger than 10 or smaller than 0.1, the

correction factors account for less than 10 % and can be omitted in most applications;

the final expressions are very simple and practical. Many industrial applications, such

as laser and electron beams operate at Rosenthal values consistently much larger than

10.

The accuracy of proposed expressions cannot exceed that of the original exact solu-
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tion, which includes many simplifications to the physics and mathematics of moving

heat source problem. Some of those limitations can be overcome in practical ways.

The limitation of constant thermophysical properties can be addressed in a practical

way by using effective values, such as those proposed in [130]. The limitation of a

point heat source can be addressed with the consideration of distributed heat sources,

which would add precision and physical meaning with a single extra parameter (di-

mensionless size of the heat source). For heating rate, the errors in the blending

expressions are secondary to the errors incurred by neglecting the finite size of the

heat source, this is because the front of the isotherm is very close to the origin. The

limitation of considering only conduction can be addressed by accounting for the

effect of fluid flow as in [169], which would add two dimensionless groups (Prandtl

number and Marangoni number). The challenge to considering secondary phenom-

ena is that blending must be extended to two or more dimensionless groups, which is

beyond the capabilities of the techniques described in 3.A and is the focus of current

research [135].

The asymptotic formulae and correction factors proposed also serve as accurate

predictors of actual processes and their metallurgical implications, in a way similar,

but more general and based on fundamentals than the predictions of [91] used in [181].

In these references, the correction factors to asymptotic solutions are developed em-

pirically.

The engineering expressions developed also enhance engineering intuition and re-

flect quantitative effects of process parameters and their implications for the thermal

history of the material involved. Although most validations were carried out for

welding and additive manufacturing cases, the methodology (asymptotic analysis,

blending and correction factors) and engineering expressions obtained can be applied

to a number of processes and materials in different disciplines, since they capture the

essence of the thermal problem based on fundamental equations, not ad-hoc treat-

ment.
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3.19 Conclusions

This work presents novel engineering expressions for 12 characteristic values of tech-

nological relevance in welding, additive manufacturing, and other processes involving

a moving heat source. The characteristic values analyzed are: location of isotherm

half-width, trailing length of an isotherm, cooling rate at a given temperature in the

center line, leading length of an isotherm, heating rate at a given temperature in the

center line, maximum temperature at a point away from the center line, lateral gradi-

ent of maximum temperature, aspect ratio of an isotherm, melting efficiency, cooling

time from 800 ◦C to 500 ◦C, solidification time and heat affected zone thickness. The

expressions associated with these characteristic values are listed in Table 3.2.

The findings of Table 3.2 can be extended to alternative joint configurations by

replacing the intensity of the heat source q′ = q/d by q′eff according to Equation 3.97.

As a general rule of thumb, for Ro < 0.1 or Ro > 10 except for heating rate,

the asymptotic solutions alone yield an error below 8 % against analytical results for

listed characteristic values.

The engineering expressions were validated against published data when it was

available in the literature: length of isotherm (Figure 3.4), centerline cooling rate

(Figure 3.3), maximum temperature (Figure 3.5), thickness of heat affected zone

(Figure 3.6), and isotherm aspect ratio (Figure 3.7).
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Table 3.2: Summary of characteristic values and correction factors.

Variable Regime Asymptotic Correction factor Parameter Error(%) Eq.

ymax

III αq√
2πeUdk(Tc−T0)

exp
(
− 1

Ro

){
1 +

[
2
√

2e
π

1
exp(γ)Ro

]n}1/n

n = 1.407 6.8%
[130]

IV 4α
U
exp

(
−γ − 1

Ro

) {
1 +

[√
π
8e
exp (γ) Ro

]n}1/n
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xmax

III − αq2

4eπUd2k2(Tc−T0)
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(
− 2
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) [
1 + 8

π exp(2γ−1)Ro3
+ 2ae

π
Rob−2

]
a = 1.427
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Uq exp(2γ+2/Ro)

[
1 + π

8
exp (2γ − 1)Ro3 + a

4
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4πUd2k2(Tc−T0)
2 exp
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π exp(γ)
Ro−2 + 2a
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Appendix 3.A Blending of asymptotic solutions

Blending is a methodology to achieve simple expressions for all conditions, based on

the expressions for asymptotic regimes. It is based on the observation that almost

always intermediate cases yield results that are based on combinations of asymptotic

cases, for example. Blending has been explored in [3, 4] and generalized in [34, 38]

for simpler cases. As an example of traditional blending, consider the two asymptotic

behaviors of the dimensionless characteristic value u∗
c(Π): û

∗
c i(Π), when Π → 0, and

û∗
cj(Π), when Π → ∞. When these asymptotic behaviors are monotonous in Π and

cross only once, traditional blending yields:

û∗+
c (Π) =

[
û∗
c

n

i (Π) + û∗
c

n

j (Π)
]1/n

(3.99)

where û∗+
c (Π) is the blending approximation of u∗

c(Π) and is illustrated schematically

in Figure 3.8(a) for the case of blending two power laws. In this methodology and all

that follow, the general expressions used have the following corresponding concepts

in the blending derivations of this paper when they are based on Ro:

Π = Ro (3.100)

Regime i = Regime IV (3.101)

Regime j = Regime III (3.102)

Many asymptotic behaviors studied in this paper cannot be blended with the tra-

ditional approach described above, or yield larger errors than the novel alternatives

developed here. In these paper, three extensions of traditional blending techniques

were developed: for the case of monotonic functions that do not cross or are not

power laws, for functions in which the error in traditional blending is too high, and

for functions that change sign or are not defined over the whole domain.
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Blending of monotonic functions that do not cross or are not
power laws

Consider a modification of the previous example in which û∗
c i(Π) is not a power law,

and it is possible that it does not cross û∗
cj(Π); in this case, it can be expressed as:

û∗
c i(Π) = v∗i (Π)p

∗
i (Π) (3.103)

where p∗i (Π) is a power law and v∗i (Π) is not, but v
∗
i (Π) is chosen such that v∗i (Π) → 1

in Regime j. In this case, the power law û∗
cj(Π) can be replaced by v∗i (Π)û

∗
cj(Π), with

the same asymptotic behavior, and after taking v∗i as a common factor, the blending

involves two power laws that typically cross, and can be blended, for example, using

the traditional approach:

û∗+
c (Π) = v∗i (Π)

[
p∗i

n(Π) + û∗
c

n

j (Π)
]1/n

(3.104)

and the resulting correction factors are:

fi(Π) =

(
1 +

û∗
cj(Π)

p∗i (Π)

)
(3.105)

fj(Π) = v∗i (Π)

(
1 +

p∗i (Π)

û∗
cj(Π)

)
(3.106)

This blending methodology is illustrated in Figure 3.8(b), and is applied, for exam-

ple to the calculation of maximum isotherm half-width ymax. The asymptotic behavior

for ŷ∗maxIII
(Ro) is a power law, while ŷ∗maxIV

(Ro) is not [130]. In this case:

û∗
c i(Π) = 2 exp

(
γ − Ro−1

)
(3.107)

û∗
cj(Π) =

√
π

2e
Ro (3.108)

v∗i (Π) = exp
(
−Ro−1

)
(3.109)

p∗i (Π) = 2 exp(γ) (3.110)

The blending of these two equations based on Equation 3.104 is:

ŷ∗
+

max (Ro) = exp
(
−Ro−1

){
[2 exp (−γ)]n +

(√
π

2e
Ro

)n}1/n

(3.111)

from which the correction factors fymaxIII
(Ro) and fymaxIV

(Ro) are derived.
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Alternative blending of monotonic functions that cross

An effective novel approach can yield blending errors smaller than Equation 3.99,

often when one or both asymptotic behaviors are not power laws:

û∗
c

+
(Π) =

[
û∗
c

±1

i (Π) + û∗
c

±1

j (Π) + aΠ±b
]±1

(3.112)

where a > 0 and b are determined by optimization minimizing the maximum error

over all values of Π. The value of 1 in the exponents could also be replaced by a third

adjusting parameter c and 1/c; however, fixing it to 1 reduces the complexity of the

expression, and experience has shown that the two adjusting parameters a and b are

enough to give acceptable errors. This approach requires the asymptotic behaviors

to be monotonic and to cross one each other. When û∗
c i(Π) and û∗

cj(Π) are power

laws (illustrated in Figure 3.8(c)), the exponent b in Equation 3.112 is intermediate

between the exponent of the two power laws.

If the functions that do not cross or are not power laws, instead of the blending of

Equation 3.104, this alternative approach would yield:

û∗
c

+
(Π) = v∗i (Π)

[
p̂∗

±1

i (Π) + û∗
c

±1

j (Π) + aΠ±b
]±1

(3.113)

This blending methodology is applied, for example, to the calculation of centerline

cooling rate Ṫ ∗
b (Ro). The asymptotic behavior ̂̇T ∗

bIII
(Ro) is a power law (Equa-

tion 3.25), while ̂̇T ∗
bIV(Ro) is not (Equation 3.26). These two asymptotic behaviors

do not cross; in this case:

û∗
c i(Π) =

1

2
exp

(
γ + Ro−1

)
(3.114)

û∗
cj(Π) =

1

π
Ro−3 (3.115)

v∗i (Π) = exp
(
Ro−1

)
(3.116)

p∗i (Π) =
1

2
exp(γ) (3.117)

(3.118)
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and Equation 3.112 with negative exponents yields a lower error than Equation 3.112,

resulting in the blended expression of Equation 3.27.

Blending of functions that change sign or are not defined over
the whole domain

Consider the case in which û∗
c i(Π) is not defined or changes sign for values of Π below

or above a certain critical value Πc, and û∗
cj(Π) is a power law. A new function v̂∗c i(Π)

can be defined as:

v̂∗c i(Π) = û∗
c i

[(
Π±1 + a±1

)±1
]

(3.119)

with values of a always positive, and in the range in which the domain is defined, and

positive exponents when the problems with the domain are at small values of Π and

negative exponents when they are at large values of Π. The value of a is adjusted by

optimization; the value of 1 in the exponents was chosen for simplicity similarly to the

previous blending extension discussed. For all values of a, the asymptotic behavior

of v̂∗c i(Π) is the same as û∗
c i(Π) in Regime i, and function v̂∗c i(Π) can replace û∗

c i(Π)

in any of the blending techniques described above. The correction factor is applied

to v̂∗c i(Π), not û
∗
c i(Π).

This blending methodology is illustrated in Figure 3.8(d), and is applied, for ex-

ample to the calculation of maximum temperature at a distance yc from the center-

line. The asymptotic behavior for T̂ ∗
maxIII(y

∗
c) is a power law (Equation 3.46), while

T̂ ∗
maxIV(y

∗
c ) (Equation 3.47) involves a change in sign above y∗c = 1. In this case, the

equivalent asymptotic behavior is obtained using the negative sign, resulting in:

Π = y∗c (3.120)

Regime i = y∗c → 0 (Regime IV) (3.121)

Regime j = y∗c → ∞ (Regime III) (3.122)

û∗
c i(y

∗
c) = ln

(
y∗c

−1
)

(3.123)

v∗i (y
∗
c) = ln

(
y∗c

−1 + a−1
)

(3.124)
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which is blended with T̂ ∗
maxIII(y

∗
c ) using Equation 3.99, resulting in the blended ex-

pression of Equation 3.49.

ln Π

ln
u
∗ c
(Π

)

û∗
cj
(Π)

û∗
ci
(Π)

û∗
c

+
(Π)

(a) Traditional blending

ln Π
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∗ c
(Π

)

û∗
cj
(Π)

û∗
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(Π)

û∗
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+
(Π)û∗

cj
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(b) Extension for “non-crossing” asymptotics
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û∗
cj
(Π)

û∗
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(c) Alternative blending
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û∗
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[
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±1
]

(d) Undefined asymptotic in part of the
domain

Figure 3.8: Traditional blending and three extended methodologies.

Appendix 3.B Blending of Lambert W function

The Lambert W function W (x) is the solution to:

W (x) exp [W (x)] = x (3.125)

The asymptotic expressions to Lambert W function, according to Equation 3.125,

for large and small x are:

ŴI (x) = ln (x) for large x (3.126)

ŴII (x) = x for small x (3.127)
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Using equations 3.112 and 3.119 from the blending methods introduced above, the

positive branch of the Lambert W function could be calculated approximately with:

Ŵ+ (x) =
[
x−1 + ln (x+ c)−1 + a x−b

]−1
(3.128)

where a = 0.08568, b = 0.1028, c = 2.586, and the relative error is smaller than 5.9

% for the positive branch and all x > 0.
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Chapter 4

Cooling rate in moving-heat-source
manufacturing processes with
intensive surface heat losses

4.1 Abstract

Closed-form engineering expressions for trailing length and cooling rate at a given

temperature are developed based on a two dimensional moving point heat source

model which also accounts for surface heat losses. Cooling rate is a dominant fac-

tor in determining material properties, and trailing length determines the needed

reach of gas shielding in moving heat source problems such as welding and additive

manufacturing. The consideration of surface heat losses enables the extension of the

moving heat source analysis to complex, but technologically relevant problems such

as underwater wet welding, in-service welding, additive manufacturing of thin walls,

and combinations of thickness and low target temperatures where natural convec-

tion in air becomes relevant (e.g. analysis of residual stresses) for which closed-form

predictive expressions do not exist. The novel expressions presented are generalized

using two dimensionless numbers: the Rosenthal number, which captures the balance

of conduction and advection, and a dimensionless surface heat loss coefficient which

takes into account the effect of surface heat loss. These expressions consist of asymp-

totic expressions with rigorous correction factors for the intermediate cases. The

122



correction factors are developed for all possible combinations of Rosenthal number

and dimensionless surface heat loss coefficient, yielding predictions with a maximum

relative error less than 8 % compared to the exact analytical solution. The engineer-

ing expressions proposed are validated with data collected from published data for

welding, hard facing and additive manufacturing on steel under water and air. These

expressions are also applicable to moving heat sources in biological tissue that can be

represented with the bioheat equation.

Table 4.1: Variables used in the paper with the units and
description.

Variables Unit Description

c J kg−1 K−1 Specific heat of the substrate

d m Thickness of the substrate

f, g - Correction factors

h Wm−2 K−1 Surface heat loss coefficient on top surface

h′ Wm−2 K−1 Surface heat loss coefficient on bottom sur-
face

k Wm−1 K−1 Thermal conductivity of the substrate

q W Power absorbed by substrate

r m Distance from the heat source

Ro 1 Rosenthal number

t s Time

t8/5 s Cooling time from 800◦C to 500◦C

T K Temperature

T0 K Initial temperature or preheat

Tc K Temperature of interest

Ṫb K/s Cooling rate

U m s−1 Travel speed of the moving heat source

W0 - Principal branch Lambert W function

Continued on next page
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Table 4.1 – continued from previous page

Variables Unit Description

x, y m Cartesian coordinates

Greek
symbols

α m2 s−1 Thermal diffusivity of the substrate

γ 1 Euler–Mascheroni constant

ρ kg m−3 Density of the substrate

ω m3 s−1 Perfusion rate

ǫ 1 Emissivity

ǫA 1 Acceptable relative error

σ Wm−2 K−4 Stefan–Boltzmann constant

Superscripts

∗ Dimensionless value

̂ Asymptotic behavior

+ Improvement or modification over asymp-
totic

· Time derivative

Subscripts

b Trailing point of isotherm

c Critical value

i Intermediate value

III Regime III

IV Regime IV

IIIa Regime IIIa

IVa Regime IVa
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4.2 Introduction

In thermal analysis of moving heat source problems, trailing length and cooling rate

(represented in Figure 4.1) determine key properties such as microstructure, mechan-

ical properties, and need for shielding gas in welding and additive manufacturing.

For example, for a given steel composition, the microstructures resulting from the

decomposition of austenite, which are crucial to the properties of fabrications and

laser or wire-arc additive manufacturing (WAAM), are often predicted by the cool-

ing time between 800 ◦C and 500 ◦C, which can be calculated by trailing length or

approximated by an average cooling rate.

Previous investigations have proposed predictive scaling laws for trailing length,

and cooling rate without considering the effect of surface heat loss in thick plates [140,

207] and thin plates [128, 130]. The resulting scaling expressions neglecting heat

losses match well with available data for processes under mild convection conditions.

However, these expressions are unable to capture technological relevant processes

such as underwater wet welding, in-service weld repairs, and water cooling in additive

manufacturing. This work aims to close this gap.

The validity of ignoring surface heat loss is discussed in [130]. For the case of

isotherm width, the criterion to ignore surface heat loss within 10 % of relative error

is proposed as:

d >
20α2 (h+ h′)

kU2

[
1 +

( π

2e
Ro2

)n]1/n
(4.1)

where d is the thickness of substrate, h and h′ are surface heat loss coefficient on

top and bottom surface, k is the thermal conductivity, U is the traveling speed of

heat source, Ro is a dimensionless number representing isotherm which is defined as

Equation 4.9 consistently with [128, 130].

Equation 4.1 indicates that the relevance of surface heat loss depends not only on

surface heat transfer coefficient, but also on parameters such as plate thicknesses,

velocities, and the temperature of interest.
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Empirical or semi-empirical correction factors of the effect of surface heat loss have

to been implemented for processes with intense surface heat loss such as underwater

wet welding [63] or in-service welding [22, 29], thin-wall additive manufacturing [15,

203], thin-plate welding [111], and problems concerning low temperatures far away

from heat source (residual stress zone [76], hydrogen cracking [99]). Correction factors

are typically based on a single parameter (1D blending techniques). 1D blending is

studied in detail in [128, 130, 140, 207]. The consideration of the two parameters in

this paper (surface heat losses and Rosenthal number) required the novel extension

of blending techniques to two parameters (2D blending).

xb

T = Tc

x

y

T (y = 0)

∂T

∂x
= − 1

U
Ṫb

U

Figure 4.1: Schematic of trailing length xb and cooling rate Ṫb = −U ∂T/∂x associ-
ated with isotherm T = Tc induced by a point heat source at the origin moving at
velocity U .

This paper aims to establish practical and accurate engineering expressions for

characteristic values of moving heat source problems. The engineering expressions

close up the gap in textbooks and standards, synthesize the essence of simultaneous

conduction and advection, and deliver understanding of process scaling. The scaling

law formulae have clear physical relevance, and provide a means for accurate and

insightful predictions for engineering practitioners.
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4.3 Moving heat source model

The two dimensional moving point heat source model, which is also often termed as

‘moving line heat source model’, describes a point heat source traveling on a 2D panel

that is large enough to ignore edge effects, as illustrated in Figure 4.1.

The assumptions, limitations, validity, and scope of this model have been discussed

in detail in [128, 130]. In this approach, the substrate is assumed to have constant

thermophysical properties, the heat flow is essentially 2D in a substrate which is infi-

nite in the x and y directions, the heat source is very small in the x and y dimensions,

and is moving in a straight line with constant velocity. These hypotheses prevent the

model from being applied to small workpieces due to edge effects and from capturing

melting and fluid flow effects accurately. The effect of surface heat losses, however

intense, are accounted for, which is an important new consideration that has not been

made before for explicit predictive expressions.

In this model, the temperature field is pseudo-steady in the coordinate system of

the moving heat source, which establishes quickly after the start of heat deposition,

typically on the order of seconds [105]. The 2D temperature field is proposed as [27,

175, 215]:

T = T0 +
q

2πkd
e−

Ux
2α K0

[
r

√(
U
2α

)2
+ h+h′

kd

]
(4.2)

where K0 is the modified Bessel function of the second kind and zero order, T0 is the

ambient temperature or preheat temperature of substrate, x, y are spatial location,

r =
√

x2 + y2 is distance to the heat source, q is amount of heat applied on the

base material, and other parameters are the same as introduced in Equation 4.1.

Equation 4.2 implies the following heat transfer mechanisms: conduction in the solid

workpiece, advection due to relative motion, and surface heat loss. In Equation 4.2,

the assumption of point heat source exerts a singularity at the origin r = 0. The heat

input per unit thickness, q′ = q/d, can be defined to represent heat input intensity

and extend the Equation 4.2 to configurations in addition to a 2D panel, which has
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been discussed in [130].

Equation 4.2 can be normalized as follows:

T ∗ = exp (−x∗)K0

(
r∗
√
1 + h∗

)
(4.3)

where the dimensionless groups are defined as:

T ∗ =
2πkd (T − T0)

q
(4.4)

x∗ =
Ux

2α
(4.5)

y∗ =
Uy

2α
(4.6)

r∗ =
Ur

2α
(4.7)

h∗ =
4α2(h+ h′)

kU2d
(4.8)

The dimensionless groups (equations 4.4 to 4.8) are consistent with normalization in

previous work [128, 130]. The dimensionless variables x∗ and y∗ are essentially Peclet

numbers that that capture the relative relevance of advection to conduction [144],

and the dimensionless heat loss factor h∗ has been interpreted as Biot number [109],

although the physical meaning of its effective length is not obvious.

Following [130], the dimensional analysis of Equation 4.2 suggests four dimension-

less groups, consistently with Buckingham Pi theorem [24], and corresponding to

equations 4.4 to 4.8 (r∗ =
√
x∗2 + y∗2 is not an independent variable).

Typically, a particular temperature T ∗ = T ∗
c is of interest, which leads to, defining

the Rosenthal number as:

Ro =
q

2πkd(Tc − T0)
=

1

T ∗
c

(4.9)

The Rosenthal number has shown to be useful to synthesize and data of 2D heat flow

for diverse processes and materials [26, 62, 128, 130].
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4.4 Scaling Considerations

4.4.1 Asymptotic Regimes

In the calculations of trailing length and cooling rate, two constraints are implied: a

temperature of interest T = Tc, which defines an isotherm, and location at the cen-

terline y = 0. These two constraints reduce the number of independent dimensionless

groups (degrees of freedom) from four to two, which are chosen as the Rosenthal num-

ber (Equation 4.9) and the normalized surface heat loss coefficient h∗ (Equation 4.8).

The Rosenthal number Ro has been discussed in previous work [128, 130]; it char-

acterizes 2D moving heat source problems and is always larger than zero. Large Ro

typically indicates fast speed, low-temperature region or high-intensity heat sources.

The dimensionless heat loss coefficient h∗ is greater than or equal to zero, with h∗ = 0

indicating adiabatic surfaces; large h∗ typically indicates intense surface heat loss such

as in underwater wet welding, in-service welding, or welding of thin plates.

With the definition of Ro and h∗, four asymptotic regimes are identified:

• Regime III (Ro → ∞, h∗ → 0), corresponding to fast heat sources with negli-

gible heat losses

• Regime IV (Ro → 0, h∗ → 0), corresponding to slow heat sources with negligible

heat losses

• Regime IIIa (Ro → ∞, h∗ → ∞), corresponding to fast heat sources dominated

by heat losses

• Regime IVa (Ro → 0, h∗ → ∞), corresponding to slow heat sources dominated

by heat losses

The choice of names for the regimes is consistent with [128, 130]. The four

asymptotic regimes for trailing length and cooling rate are illustrated in figures 4.2

and 4.4. The transition between regimes is not sharp, but gradual. Different criteria

can be used to divide regimes.
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A useful criterion to bound the regimes, is to determine the boundary at which the

error (defined as in [140]) between the asymptotic behavior and the exact solution

reaches a small arbitrary number. In figures 4.2 and 4.4, the dashed lines correspond

to the application of this criterion with an error of 10 %.

When the asymptotic expressions between contiguous regimes intersect, the line

of intersection is a reasonable heuristic for the division between regimes. This is the

criterion used to draw the continuous lines between regimes IV and IVa, IIIa and IVa

in Figure 4.2 and regimes IV and IVa in Figure 4.4.

When the asymptotic expressions between contiguous regimes do not intersect, the

line of division between regimes can be determined as the points where the absolute

relative error of each asymptotic regime (relative to the exact solution) is the same.

This is the criterion used to draw the continuous lines between regimes III and IV,

III and IIIa in Figures 4.2 and regimes III and IV, III and IIIa, IIIa and IVa in

Figures 4.4.

Some of the solid lines near the center of the figures have been excluded because of

their complex geometry in that region, which betrays the intuitive purpose of placing

a line to identify a smooth transition.

4.4.2 2D Blending

Blending is a rigorous approach to achieve approximate, but accurate engineering

expressions in closed-form when the exact expression is expressed in implicit form, or

when asymptotic behavior at the extremes is known form experiments or simulations.

From blending expressions, correction factors can be developed to extend the range

of validity of an asymptotic expression. Often, the correction factors extend the

validity of an asymptotic formula into its opposite asymptotic extreme [135]. Blending

techniques are typically simple and practical approximations with accuracy better

than 10 %; occasionally, blending results in exact expressions.

When blending depends only on one dimensionless group (1D blending) the method-
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ology is well understood [3, 4, 34]. 1D blending has been used successfully used to

develop engineering expressions for moving heat sources on a thick substrate [140,

207] (with the Rykalin number as blending parameter) and on thin substrates [128,

130] (with the Rosenthal number as blending parameter).

This investigation in this paper faces and important challenge, in which the dimen-

sionless exact solution depends on two, not one parameter (2D blending). The two

dimensionless parameters are Ro and h∗. The increase in complexity is enormous,

comparable to the increase in complexity from single variable calculus to multivariate

calculus, and there is no generalized approach for 2D blending. Some fundamental

concepts are lay down here to help solve the concrete problem of interest, and also to

pave the way for future progress in 2D (and higher order) blending.

Fully asymptotic regimes correspond to situations in which all blending parameters

are at an asymptotic extreme, and will be identified with just one label (e.g. Regime

III). Not all 2D blending problems have 4 fully asymptotic regimes, for example in [82],

the 2D parameter domain is divided into five fully asymptotic regimes. For trailing

length and cooling rate in this research, the two dimensionless groups define four fully

asymptotic regimes. All asymptotic expressions are indicated with âsymbol.

In addition to the four fully asymptotic regimes (Regimes III, IV, IIIa, and IVa)

and the blending over the full domain (full blending), there is blending over sub-

domains (“partial blending”). Partial blending has two forms: “side blending” and

“corner blending,” corresponding to “side regimes” and “corner regimes”. All blend-

ing expressions are based on asymptotic expressions and carry thêsymbol. Blending

expressions are distinguished from fully asymptotic regimes with a + superscript.

Side regimes are problem configurations in which all but one of the blending pa-

rameters are at an asymptotic extreme. Side blending consists of 1D blending of two

contiguous regimes across one of the blending parameters, while all other blending

parameters are at an asymptotic extreme. Side regimes will be identified with two

labels (e.g. Regime III-IIIa). There are four side regimes in this research: Regime
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III-IIIa (yielding exact blending), and side regimes IV – IVa, IIIa – IVa, and III – IV,

yielding approximate 1D blending.

Corner regimes are problem configurations around a fully asymptotic regime, and

its contiguous regimes. In these configurations, at least one of the blending parameters

corresponds to the reference fully asymptotic regime. Corner blending consists of an

asymptotic expression corresponding to a regime, with its range of validity extended

into the two adjacent regimes using correction factors. In 2D blending, corner regimes

will be identified with three labels, with the first label corresponding to the central

fully asymptotic regime. The corner regime of relevance in this work is Regime III-

IIIa-IV, developed around Regime III.

Full blending (or overall blending) consists of an approximate expression that ap-

proximates the target magnitude over the whole blending domain. When full blending

is based on a particular fully asymptotic regime, the corresponding expressions indi-

cate this regime. If no regime is indicated, the expression corresponds to full blending

without a particular fully asymptotic regime as center.

The methodology employed here to obtain 2D blending expressions for trailing

length and cooling rate over the whole domain has three steps: First, expressions for

all four fully asymptotic regimes are obtained. Second, partial blending is defined

on asymptotic side and corner regimes. Third, 2D blending for the full domain is

obtained by combining partial blending results.

In this paper, the 2D blended expressions trailing length and cooling rate have

the form of an asymptotic expression for Regime III multiplied by correction factors

that account for motion of the heat source and heat losses extend the validity of

calculations to fast and slow heat sources with negligible or dominant heat losses.

4.5 Trailing length xb

Trailing length xb is the location of the rear point of the isotherm T = Tc. At large

Rosenthal numbers, xb is also a good estimate of the length of an isotherm.
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4.5.1 Asymptotic analysis of trailing length

To perform 2D blending of the trailing length, four asymptotic expressions are ob-

tained for each of the four asymptotic regimes: III, IV, IIIa and IVa.

In regimes III and IV, where h∗ → 0, the surface heat loss is negligible. The

asymptotic expressions for trailing length are derived from Equation 4.3 with h∗ = 0

and y∗ = 0, and were obtained in previous work [128]:

x̂∗
bIII

= −π

2
Ro2 (4.10)

x̂∗
bIV

= −2 exp

(
− 1

Ro
− γ

)
(4.11)

In Regime IIIa, where Ro → ∞ and h∗ → ∞, isotherms of low temperatures away

from the heat source are studied under intense surface heat loss conditions. The

asymptotic behavior of trailing length in Regime IIIa is derived in 4.A, resulting in:

x̂∗
bIIIa

= − 1

2
√
h∗

W0

(
πRo2

)
(4.12)

where W0(x) is the principal branch of the Lambert W function, which is the solution

to x = W0 (x) exp [W0 (x)] [41]. The Lambert W function is built-in in Matlab,

Mathematica and other common scientific software. It can also be approximated by

explicit functions such as [17]. A practical simple approximation using 1D blending

is proposed in [128]:

Ŵ+
0 (x) =

[
x−1 + ln (x+ c)−1 + a xb

]−1
(4.13)

where x and ln (x) are asymptotic expressions for small and large values of x. The

optimal blending parameters are a = 0.08568, b = −0.1028, c = 2.586. The maximum

relative error Equation 4.13 for all x > 0 is 5.9 %.

In Regime IVa, where Ro → 0 and h∗ → ∞, the isotherms of interest are in the

high-temperature zone closed to the heat source. The asymptotic behavior of trailing

length in Regime IVa is derived in 4.B, resulting in:

x̂∗
bIVa

= − 2√
h∗

exp

(
− 1

Ro
− γ

)
(4.14)
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4.5.2 Partial blending of trailing length

The asymptotics expressions, equations 4.10 to 4.12 and 4.14, are accurate at each

asymptotic regime but less accurate at intermediate regimes, as shown in Figure 4.2.

Along four asymptotic side regimes: III – IV (h∗ → 0), III – IIIa (Ro → ∞), IV – IVa

(Ro → 0) and IIIa – IVa (h∗ → ∞), side blending expressions are obtained to provide

accurate estimations at intermediate regimes between adjacent asymptotic regimes.

In side Regime III – IV, where h∗ tends to zero (negligible surface heat loss), the

behavior of trailing length changes only with Ro. Side partial blending in this case

reduces to 1D blending of equations 4.12 and 4.14, obtained in [128]:

x̂∗+
bIII−IV

= −e−
1

Ro

[
2 exp (−γ) +

π

2
Ro2 + aRob

]
(4.15)

where the optimal blending parameters are a = 0.7659, b = 1.541. The maximum

error is 6.8 % [128].

In side Regime IIIa – IVa, where h∗ tends to infinity (surface heat loss is dominant),

the behavior of trailing length changes only with Ro. Side partial blending in this

case reduces to 1D blending of equations 4.12 and 4.14:

x̂∗+
bIIIa−IVa

= − e−
1

Ro

2
√
h∗

{[
W0

(
πRo2

)]n
+
[
4e−γ

]n}1/n
(4.16)

where the blending parameter n = 2.205 and the maximum error 2.4%.

In side Regime III – IIIa, where Ro tends to infinity (fast heat source), considering

isotherms away from the heat source, the behavior of trailing length changes with

both Ro and h∗ according to equations 4.10 and 4.12; therefore, the 1D blending

on one variable cannot be applied directly. The scaling law for trailing length along

asymptotic side III – IIIa is obtained by asymptotic analysis of large Ro according

to 4.A:

x̂∗
bIII-IIIa

= − 1
2
√
1+h∗−2

W0

[
π
(
1− 1√

1+h∗

)
Ro2

]
(4.17)

which is an exact asymptotic expression for trailing length for Ro → ∞ with no

blending parameters involved.
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In side Regime IV – IVa, where Ro tends to zero (low heat source), considering

isotherms close to the heat source, the behavior of trailing length changes only with h∗.

Side partial blending in this case reduces to 1D blending of equations 4.11 and 4.14:

x̂∗
bIV-IVa

= −2 exp

(
− 1

Ro
− γ

)[
1 +

(
1√
h∗

)n]1/n
(4.18)

where n = −2. In this case, the 1D blending is also the exact expression, derived

from asymptotic analysis for small Ro in 4.B.

4.5.3 Full blending of trailing length

The expressions developed above provide accurate estimations for four fully asymp-

totic regimes (III, IV, IIIa, IVa) and four side regimes (III – IV, III – IIIa, IV – IVa,

IIIa – IVa). Full blending over the 2D domain is carried out by a combination of par-

tial blending results and fully asymptotic expressions. In addition, the parameters

of partial blending are improved by simultaneous optimization of the full blending

expression over the whole domain.

With the expressions for fully asymptotic regimes (equations 4.10 to 4.12 and 4.14)

and side blending expressions (equations 4.15 to 4.18), 2D blending of trailing length

over the full domain can be developed around Regime III as:

x̂∗+
b (Ro, h∗) = −π

2
Ro2 · f(Ro) · g (Ro, h∗) (4.19)

where f(Ro) is a correction factor between regimes III and IV according to Equa-

tion 4.15:

f(Ro) = e−
1
Ro

[
1 +

4

πeγ
Ro−2 +

2a1
π

Rob1−2

]
(4.20)

where the blending parameter a1 = 0.7659, b1 = 1.541. The correction factor f(Ro)

are from [128].

g(Ro, h∗) is a correction factor for the effect of surface heat loss according to Equa-
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tion 4.17, depending on both Ro and h∗:

g (Ro, h∗) =
W0

[
π
(
1− 1√

h∗+1

)
Ro2

]

π
(√

1 + h∗ − 1
)
Ro2

(4.21)

≈
[
Π−1 + ln (Π + c2)

−1 + a2Π
b2
]−1

π
(√

1 + h∗ − 1
)
Ro2

(4.22)

where Π is denoted as Π = π
(
1− 1√

h∗+1

)
Ro2, a2 = 0.08568, b2 = −0.1028, c2 =

2.586 adhering to the approximation of Lambert W function (Equation 4.13). The

maximum relative error over the full domain is 13 %. The 2D blending for trailing

length, equations 4.19 to 4.22, satisfies all of the asymptotic expressions in extreme

regimes and sides and provides estimation over all values of Ro and h∗.

The blending parameters are optimal for partial blendings along asymptotic sides,

but not optimal over the full domain. With the adjustment of blending parameters,

the maximum relative error over the full domain is reduced to 7.1 % when a1 = 0.7806,

b1 = 1.517, a2 = 0.1260, b2 = −0.1273, c2 = 3.815. The relative error of trailing length

over the full domain of Ro and h∗ is illustrated in Figure 4.2. Figure 4.3 relates the

blending result of trailing length x̂∗+
b and surface heat loss h∗ for Ro =0.1, 1 and 10

from Equation 4.19 to 4.22.

The engineering expressions with units for trailing length xb is:

x̂+
b = − αq2

4πUd2k2(Tc − T0)2
· f(Ro) · g (Ro, h∗) (4.23)

where f(Ro) is proposed as Equation 4.20 and g(Ro, h∗) is proposed as Equation 4.22.

4.6 Centerline cooling rate Ṫb

Cooling rate is a crucial magnitude to assess phase transformations associated with

engineered moving heat sources such as welding, laser heat treating, or accidental

heat sources such as sliding contact in railroad wheels.

The cooling rate at the centerline is often representative of the whole area experi-

encing phase transformations. For example, the cooling rate in the heat affected zone

in welding is just 5 % to 10 % lower than in the centerline [97, 166].
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Figure 4.2: Error map of blending of trailing length (Equations 4.19 to 4.22) for the
optimal blending parameters a1 = 0.7806, b1 = 1.517, a2 = 0.1260, b2 = −0.1273,
c2 = 3.815. The maximum relative error is 7.1 %.

Centerline cooling rate can be derived from the temperature gradient ∂T/∂x by

the material derivative as introduced in [128]:

Ṫb ≡ DT

Dt

∣∣∣∣
xb

= − U
∂T

∂x

∣∣∣∣
xb

(4.24)

In dimensionless form, the centerline cooling rate can be calculated with:

Ṫ ∗
b =

4πkαd

qU2

DT

Dt
= − ∂T ∗

∂x∗

∣∣∣∣
x∗

b

(4.25)

which is consistent with [128]. According to equations 4.3 and 4.25, Ṫ ∗
b can be ex-

plicitly expressed in terms of Ro, h∗ and x∗
b:

Ṫ ∗
b =

1

Ro

[
1−

√
h∗ + 1K1

(
−x∗

b

√
h∗ + 1

)

K0

(
−x∗

b

√
h∗ + 1

)
]

(4.26)

where x∗
b is a function of Ro and h∗ that can be estimated by Equations 4.19 to 4.22.
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Figure 4.3: The x̂∗+
b , calculated from the blending result Equation 4.19 to 4.22,

changes with h∗ for Ro = 0.1, 1, 10.

4.6.1 Asymptotic analysis of cooling rate

Asymptotic expressions for cooling rate are obtained by combining the asymptotic

expressions for trailing length (equations 4.10 and 4.11) into Equation 4.26 as studied

in previous work [128]. In regimes III and IV, h∗ tends to zero with negligible surface

heat loss, resulting in

̂̇T
∗

bIII
= − 1

πRo3
(4.27)

̂̇T
∗

bIV
= −1

2
exp

(
1

Ro
+ γ

)
(4.28)

In Regime IIIa, where Ro → ∞ and h∗ → ∞, low-temperature isotherms experi-

ence intense surface heat loss. According to Equation 4.74 derived in Appendix, the

138



asymptotic behavior of cooling rates in Regime IIIa is:

̂̇T
∗

bIIIa
= −

√
h∗

Ro
(4.29)

In Regime IVa, where Ro → 0 and h∗ → ∞, the asymptotic behavior of cooling

rate is derived in the Appendix (Equation 4.79), resulting in

̂̇T
∗

bIVa
= −1

2

√
h∗ exp

(
1

Ro
+ γ

)
(4.30)

4.6.2 Partial blending of cooling rate

Similar to trailing length, partial blending of cooling rate are obtained along four

asymptotic sides with 1D blending between adjacent asymptotic regimes (III – IV,

IV – IVa, IIIa – IVa) and asymptotic analysis in III – IIIa where the asymptotic

behavior changes with both Ro and h∗ and 1D blending is not applicable.

In side Regime III – IV, where h∗ → 0 with negligible surface heat loss, the

behavior of cooling rate changes only with Ro. The side blending of cooling rate has

been presented in previous work by 1D blending of equation 4.27 and 4.28 [128]:

̂̇T
∗+

bIII−IV
= − exp

(
1
Ro

)

πRo3 + 2exp (−γ) + aRob
(4.31)

where the optimal blending parameters are a = 3.839, b = 2.108 and the maximum

error is 5.8% [128].

In side Regime IIIa – IVa, where h∗ → ∞ with intense surface heat loss, the

behavior of cooling rate changes only with Ro. The side blending of cooling rate is

obtained by 1D blending of equations 4.29 and 4.30:

̂̇T
∗+

bIIIa−IVa
= −

√
h∗ exp

(
1
Ro

)

2 exp (−γ) + Ro + aRob
(4.32)

where the optimal blending parameters are a = −0.6004, b = 0.6014 and the maxi-

mum error reaches 4.7%.

In side Regime III – IIIa, where Ro → ∞ considering isotherms away from the

heat source, the asymptotic behavior of trailing length changes with both Ro and h∗
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according to equations 4.27 and 4.29. Similar to x∗
bIII-IIIa

, the scaling law for cooling

rate in the asymptotic side III – IIIa is obtained by asymptotic analysis of large Ro

number according to Equation 4.73 derived in Appendix:

̂̇T
∗+

bIII−IIIa
= −

√
h∗+1−1
Ro

{
1 + 1

W0

[
π

(
1− 1√

h∗+1

)
Ro2

]

}
(4.33)

In side Regime IV – IVa, where Ro → 0 considering heat transfer around the heat

source, the behavior of cooling rate changes only with h∗. The side blending of cooling

rate is obtained by 1D blending of equations 4.28 and 4.30:

̂̇T
∗+

bIV−IVa
= −1

2
exp

(
1

Ro
+ γ

)[
1 +

(√
h∗
)n] 1

n

(4.34)

where n = 2. Akin to Equation 4.18, the value of n is derived from asymmetric

analysis according ton Appendix 4.78, rather than from blending processes.

4.6.3 Full blending of cooling rate

Similar to 2D blending of trailing length (equations 4.19 to 4.22), 2D blending of

cooling rate over the full domain is carried out by combination of asymptotic expres-

sions (equations 4.27 to 4.30) and partial blending results (equations 4.31 to 4.34).

2D blending of cooling length for all Ro and h∗ can be expressed based on asymptotic

of Regime III together with two correction factors:

̂̇T
∗+

b (Ro, h∗) = − 1

πRo3
· f (Ro) · g (Ro, h∗) (4.35)

f (Ro) is a correction factor between regimes III and IV according to Equation 4.31:

f(Ro) = e
1
Ro

[
1 +

2

πeγ
Ro−3 +

a1
π
Rob1−3

]−1

(4.36)

where the blending parameter a1 = 3.652, b1 = 1.971. The correction factor is con-

sistent [128].

g (Ro, h∗) is a correction factor for the effect of surface heat loss depending on both
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Ro and h∗ according to Equation 4.33:

g(Ro, h∗) = π
(√

1 + h∗ − 1
)
Ro2 ·

{
1 + 1

W0

[
π

(
1− 1√

1+h∗
Ro2

)]

}

≈
√
1 + h∗

[
1 + Π + Π

ln(Π+c2)
+ a2Π

b2+1
]

(4.37)

where Π = π
(
1− 1√

h∗+1

)
Ro2, a2 = 0.08568, b2 = −0.1028, c2 = 2.586 when using

the approximation of lambert function of Equation 4.13, yielding a maximum error of

20 %. The 2D blending for cooling rate, equations 4.35 to 4.37, satisfies asymptotic

expressions in all regimes and sides. If the parameters of Equation 4.13 are reassessed

in a global optimization together with blending, the blending parameters are adjusted

to a2 = 0.06407, b2 = −0.1004, c2 = 6.252, the maximum error is reduced to 7.6 %.

The maximum absolute error of 2D blending of cooling rate, equation 4.35 to 4.37 is

much lower (20 %), as is illustrated in Figure 4.4. Figure 4.5 relates the blending result

of cooling rate ̂̇T
∗+

b and surface heat loss h∗ for Ro =0.1, 1 and 10 from Equation 4.35

to 4.37.

The engineering expressions with units for cooling rate Ṫb is:

̂̇T
+

b = −2πU2d2k2(Tc − T0)
3

αq2
· f(Ro) · g (Ro, h∗) (4.38)

where f (Ro) corresponds to Equation 4.36, and g (Ro, h∗) corresponds to Equa-

tion 4.37 that expresses the effect of surface heat loss.

4.7 Criterion to neglect surface heat loss

When the surface heat loss is mild, the trailing length and cooling rates could be

calculated directly with equations 4.15 and 4.31, without the correction factors for

surface heat loss g(Ro, h∗), equation 4.22 and 4.37. For a certain acceptable relative

error of ǫA, the critical heat loss coefficients in dimensionless form to neglect surface

dissipation in the prediction of trailing length are obtained by comparing equation 4.19

and 4.15 with equations 4.35 and 4.31.
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For trailing length, following the derivation in the Appendix (Equation 4.83), the

critical value for h∗ is:

ĥ∗
c,x∗

b
= 2ǫA

[
1−

K0

(
−x̂∗

bIII-IV

)

K1

(
−x̂∗

bIII-IV

)
]

(4.39)

while for cooling rate, according to 4.87 in the Appendix, the critical value for h∗ is:

ĥ∗
c,Ṫ ∗

b

=
∣∣∣2ǫA

[
K0

(
−x̂∗

bIII-IV

)
−K1

(
−x̂∗

bIII-IV

)]2·
[(
x̂∗
bIII-IV

+ 1
)
K1

(
−x̂∗

bIII-IV

)2 − x̂∗
bIII-IV

K0

(
−x̂∗

bIII-IV

)2]−1
∣∣∣∣ (4.40)

In Regime III, according to equations 4.88 and 4.84 derived in Appendix, the
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critical values of surface heat loss coefficient to neglect surface heat loss are:

ĥ∗
c,x∗

b
,III

≈ 2ǫA

πRo2
(4.41)

ĥ∗
c,Ṫ ∗

b
,III

≈ ǫA

πRo2
(4.42)

In Regime IV, according to equations 4.89 and 4.85 derived in Appendix, the

critical values of surface heat loss coefficient to neglect surface heat loss are:

ĥ∗
c,x∗

b
,IV

≈ ĥ∗
c,Ṫ ∗

b
,IV

≈ 2ǫA (4.43)

The critical values of h∗ (Equations 4.39 and 4.40) and their approximations (Equa-

tions 4.39 and 4.40) are illustrated in Figure 4.6.

For fast moving heat sources, substituting equations 4.8 and 4.9 into Equation 4.42

to obtain the critical heat transfer coefficient with units within 10 % error in Regimes

III for cooling rate:

h + h′ ≤ π(Tc − T0)
2k3d3

10α2(q/U)2
(4.44)

The power law on each parameter in Equation 4.44 is the same as the condition

proposed by Jhaveri [97]. Equation 4.44 implies that surface heat loss may become

important for large convection coefficients, such as in underwater wet welding and

in-service welding, large heat input q/U such as in thick welding passes, materials

having low thermal conductivity such as titanium, thin sheets, and isotherms of low

temperature such as the yield temperatures associated with plasticity in welding.

Correction factors for surface heat losses are necessary when they exceed the threshold

given by Equation 4.44.

As an example, consider the case of welding of steel under typical conditions,

assuming thermal conductivity is k ≈ 50 W/mK, thermal diffusivity of α ≈ 10−5

m2/s and an absorbed power of 2000 W supplied at a speed of 10 mm/s with a total

heat loss coefficient 200 W/m2K, typical of cooling in a gentle current of air. For the

isotherm of 632 ◦C which is an effective intermediate temperature representing the

cooling rate between 800 ◦C and 500 ◦C [207], the effect of surface heat loss is negligible
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for steel plates thicker than 4 mm (Ro = 2.6). For steel of 1 mm (Ro = 2.9× 10−4),

the critical value to neglect surface heat loss is 3.7 W/m2K, which is below typical

values of natural convection, and would require surface insulation. For the case of

additive manufacturing, local surface heat losses are relevant for walls thinner than 6

mm or interpass temperatures above 1244 ◦C. Surface heat losses affecting the overall

(not just local) accumulation of heat and interpass temperatures involve different

calculations outside the scope of this work.
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c,Ṫ ∗

b

are critical values for trailing length

and cooling rate. The thin lines equations 4.39 and 4.40 are estimation of the critical
values h∗
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4.8 Validation

The engineering expressions proposed for cooling rate, equations 4.35 to 4.37, are

validated with data collected from published research, as illustrated in Figure 4.7

Measurements were collected for processes including: Gas Tungsten Arc Welding

(GTAW), Submerged Arc Welding (SAW), Gas Metal Arc Welding (GMAW), hard

facing, additive manufacturing and underwater wet welding.

The published cooling rates are normalized with Equation 4.25. Some cooling rates

are reported directly at a given temperature [63, 111]. In other measurements, cooling

rates are not reported directly, but calculated by cooling time, such as cooling time

from 800 ◦C to 500 ◦C (t8/5) [120, 166]. An intermediate temperature is estimated

by Equation 4.53. For the case of room temperature at 20 ◦C, the intermediate

temperature for t8/5 calculations is 632 ◦C.

Thermal properties, like conductivity and diffusivity, are either listed in original

sources or obtained from software (JMatPro v11). An estimate of effective ther-

mal conductivity is in the Appendix, and estimates for other effective properties are

in [130]. Thermal efficiency, the ratio of amount of heat deposited on the substrate

to the heat generated, is assumed 0.8 for underwater arc welding [63, 122].

For underwater processes, surface heat loss coefficients are assumed 4000 W/m2K

for underwater flux-cored arc welding conducted by Li et al. [122] and 10000 W/m2K

for underwater wet welding conducted by Fukuoka [63], which are in the range of

surface heat loss coefficients involving boiling [19]. For processes in atmosphere, the

surface heat loss coefficient is assumed 100 W/m2K for GTAW by Poorhaydari et

al. [166] and GMAW by Fukuoka et al. [63] and 300 W/m2K for hard facing by Lazic

et al. [120] and additive manufacturing by Wang et al. [202].

Figure 4.7(a) compares the published data with predictions calculated with equa-

tions 4.35 and 4.36, without taking into account the correction factor for the effect of

surface heat loss g (Ro, h∗). Figure 4.7(b) compares the published data with predic-
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tions calculated with equations 4.35 and 4.36. In general, the predictions lacking the

correction factor of surface heat loss can underestimate cooling rates severely, while

the predictions with correction factors (Equation 4.37) agree with experiments and

show no obvious bias.

4.9 Extensions of Results

4.9.1 Extension to different geometries

When the effects of surface heat losses are secondary, satisfying the criteria of Equa-

tion 4.40 for the case of cooling rate, the obtained engineering expressions can be

extended to other geometries in addition to a flat plate, including plates of different

thicknesses, thin-wall additive manufacturing, and Tee-joints [128]. Those configu-

rations are treated as combination of half-panels. For example, a flat plate can be

treated as two half-panels of the same thickness, while additive manufacturing of thin

walls corresponds to a single half-panel.

All formulae developed above will be applicable to each individual half-panel by

replacing q/d by q′effj
.

q′effj
=

2qj
dj

(4.45)

When the heat intensity per unit thickness q′effj
is the same for all panels, and when

the h∗
j is the same for all panels, this generalization is exact; when not, the asymmetry

can cause heat transfer from one plate to another, which is not captured by the

symmetric 2D formulation used here, and this generalization is only approximate.

Additive manufacturing of thin walls and welding of plates of same thickness with

similar heat loss conditions approximate closely the conditions for exact predictions.

4.9.2 Consideration of the bioheat equation

The “fin” treatment of heat losses, in which they are equivalent to a volumetric heat

loss in a thin plate, opens the door to applying the results obtained to systems with
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actual volumetric heat losses, such as energy exchange between blood and tissue in

human body captured by the bioheat equation.

The bioheat equation was first introduced in [162], with generalizations to beyond

1D [44] and moving heat sources [191] and can be written in 2D as

∂2T

∂x2
+

∂2T

∂y2
+

q̇m
k

+
ωρbcb
k

(Ta − T ) = 0 (4.46)

where T (x, y, z) is the local tissue temperature, q̇m is metabolic heat generation, ω

is the perfusion rate, ρb and cb are blood density and specific heat, k is the thermal

conductivity of tissue, and Ta is the arterial temperature entering capillaries.

With a change to Eulerian coordinates x′, y′ fixed to a heat source moving with

constant velocity U in the x′ direction and a variable substitution

T ′(x′, y′) = T (x, y)− q̇m/ωρbcb (4.47)

Equation 4.46 can then be rewritten as

∂2T ′

∂x′2 +
∂2T ′

∂y′2
= −U

α

∂T ′

∂x′ +
ωρbcb
k

(Ta − T ′) = 0 (4.48)

which is the exact equivalent of Equation 1 in [130] and is the governing equation for

moving heat sources in 2D, of which Equation 4.2 is the solution. In this equivalency,

the heat transfer by blood perfusion is captured by the surface heat loss term when

h+ h′

d
= ωρbcb (4.49)

T0 = Ta (4.50)

The expressions derived in this work are thus applicable to 2D moving heat sources

in biological systems that obey the bioheat equation.

4.10 Discussion

The Ro is a key number of characterizing isotherms of 2D moving heat source prob-

lems, that has been analyzed in [128, 130]. The h∗ is a dimensionless number reflecting
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the significance of surface heat loss. According to the definition Equation 4.8, the

value of h∗ depends not only on the surface heat loss conditions h and h′ on each

side, but also on material properties, travel speed, plate thickness. The definition of

normalized surface heat loss coefficient is consistent with the dimensionless number

proposed by Kou et al. [109] and Heller et al. [84] except by a factor of 4, where h∗

was interpreted as a Biot number [109] with characteristic length L = α2/kU2.

The value of heat loss coefficients h and h′ can be measured [83] or calculated

based on theoretical or semi-empirical correlations [19, 214]. The surface heat loss

mechanisms usually involve convection and radiation, or thermal contact.

The natural convection coefficient hconv is a magnitude of the order of 2 W/m2K

to 25 W/m2K in gases, while forced convection involving externally imposed flows

is of the order of magnitude of 25 W/m2K to 250 W/m2K for gases such as air

or shielding gas, and of the order of magnitude of 100 W/m2K to 20,000 W/m2K

for liquids, such as in in-service welding. The presence of bubbling in underwater

wet welding is comparable to boiling heat transfer with convection coefficients of the

order of 2500 W/m2K to 100,000 W/m2K [19]. Natural convection during welding

was determined also in [15, 83].

In general, surface convection is mild and negligible for processes in air when the

isotherms of melting temperature are studied. Surface heat loss for welding in air is

reported less than 1 % of the heat input for aluminum alloys by Kou and Le [110],

and less than 5 % for carbon steels by Tekriwal and Mazumder [193]. When study

the isotherms in low temperature zones, surface heat loss is usually crucial, even for

small values of h∗, because the critical value to ignore surface heat loss decreases

considerably for large values of Ro, as illustrated in Figure 4.6.

The effect of surface convection is central to many processes such as welding on

thin plates, underwater wet welding, in-service welding, or when considering the low-

temperatures away from the heat source, as in the case of calculation of residual

stresses. For thin plates, resistance to conduction in the substrate is larger than that
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for thick plates, and the heat loss plays a more significant role on characteristic values.

For underwater wet welding processes, the surface heat loss coefficient could in-

crease considerably of orders of magnitude. Habchi reported a Leidenfrost tempera-

ture (the critical temperature for film boiling) for water on stainless steel at 1 atm

to be around 280 ◦C [80], which is below the typical temperatures of interest for

processes like welding.

Besides convection, radiation and thermal contact resistance can also be taken into

account with equivalent coefficients. One practical equivalent coefficient to account

radiation within the formulation of this work is [19]:

hrad = ǫσ(T 2
i + T 2

0 )(Ti + T0) (4.51)

where ǫ is emissivity, σ is Stefan-Boltzmann constant, and Ti is an intermediate tem-

perature between the temperature of interest. This coefficient assumes that radiation

is towards an environment at T0. All temperatures in Equation 4.51 are in absolute

scale.

The heat transfer between the workpiece and backing plate can be captured with

a coefficient hcontof the order of magnitude of 104 W/m2K under the contact pressure

in the order of 0.1− 10 MPa as reported by Yovanovich [226].

The total surface heat loss coefficient, htot, is the summation of the three surface

heat loss coefficients.

The trailing length and cooling rate magnitudes yield much information related

to the cooling time from 800 ◦C to 500 ◦C (t8/5), which has a decisive effect on

phase transformations in steel, the cooling time from solidification temperature to

100 ◦C which is in relevance with evolution of hydrogen and cold cracking [99], and

the cooling time from 400 ◦C to 290 ◦C which affects the tensile strengths for high

quench sensitivity aluminum alloy [148]. With the engineering expressions for trailing
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length and cooling rate, cooling time from T1 to T2 can be calculated as

∆̂t
∣∣∣
T2

T1

=
1

U
(x̂b,T2

− x̂b,T1
) ≈ T1 − T2

̂̇T b,Ti

(4.52)

where Ti is an intermediate temperature between T1 and T2. Consistently with [128,

207], the intermediate temperature can be approximated by geometric mean:

Ti = T0 +
√
(T1 − T0)(T2 − T0) (4.53)

4.11 Conclusions

Practical engineering expressions derived from fundamental analysis are presented for

the trailing length (equations 4.19 to 4.22) and cooling rate (equations 4.35 to 4.37)

of an isotherm for the case of 2D heat sources subject to surface heat losses. The

engineering expressions depends on two dimensionless groups, Ro and h∗, and the

blending technique is extended to consider two parameters. The engineering ex-

pressions developed are not empirical, and are valid for all materials (metallic or

otherwise), heat sources, and surface heat losses that match the framework of the

problem. Their closed-form is amenable to practical calculations, for example with

spreadsheets. The predicted cooling rates are validated against experimental work

from the literature (Figure 4.7(b)).

The engineering expressions coincide with the exact solution in four asymptotic

regimes, and exhibit a discrepancy within 8 % of the exact solution in the interme-

diate regimes. A critical value of dimensionless heat transfer coefficient is proposed

(equations 4.39 and 4.40); for larger values, the correction factors for surface heat

losses enable predictions within acceptable errors (for Ro = O(1), the critical value

of h∗ is around 0.01). The expressions obtained are also applicable to moving heat

sources in biological tissue that can be represented with the bioheat equation.
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Appendix 4.A Asymptotics of x∗b in the asymp-

totic side Regime III – IIIa

In the asymptotic side Regime III – IIIa, where Ro → ∞ and T ∗
c → 0, −x∗

bIII-IIIa

√
h∗ + 1

tends to infinity since exp(−x∗
bIII-IIIa

) > 1 for x∗
bIII-IIIa

< 0. Therefore, centerline tem-

perature distribution in Regimes III− IIIa is:

T ∗
c = exp

[
x∗
bIII-IIIa

(√
1 + h∗ − 1

)]
·
[√

π
−2

√
1+h∗x∗

bIII-IIIa

+O
(√

1 + h∗x∗
bIII-IIIa

)− 3
2

]

(4.54)

For simplicity, the denotation w = W
[
π
(
1− 1√

1+h∗

)
Ro2

]
is utilized in the current

section. Let x∗
bIII-IIIa

= − w

2(
√
1+h∗−1)

(1 + ǫ), and to find the solution to trailing length

is equivalent to finding ǫ. Because there is one root to ǫ corresponding to each Ro, if

ǫ is solved based on assumption ǫ ≪ 1, the asymptotic is achieved. The right side of

temperature distribution, Equation 4.54, can be rewritten asymptotically,

T ∗
c = exp

[
−w (ǫ+ 1)

2

]√
π
(√

1 + h∗ − 1
)

w (ǫ+ 1)
√
1 + h∗

·
[
1 +O

(√
1 + h∗ − 1

w
√
1 + h∗

)]
(4.55)

The root of ǫ is found:

ǫ =
W

{
π

(
1− 1√

1+h∗

)
Ro2

[
1+O

(√
1+h∗−1

w
√

1+h∗

)]}

W

[
π

(
1− 1√

1+h∗

)
Ro2

] − 1 (4.56)

Because W [χ(υ+1)]
W (χ)

= 1 + υ
W (χ)+1

+O (υ2) = 1 +O (υ) when υ → 0, the ǫ is:

ǫ = O





1− 1√
1+h∗

W
[
π
(
1− 1√

1+h∗

)
Ro2

]



 (4.57)

Because

d

dh∗

1− 1√
1+h∗

W

[
π

(
1− 1√

1+h∗

)
Ro2

] = 1/2 (h∗+1)−
3
2

1+W

[
π

(
1− 1√

1+h∗

)
Ro2

] > 0

,

ǫ = O



 lim

h∗→∞

1− 1√
1+h∗

W
[
π
(
1− 1√

1+h∗

)
Ro2

]



 = O

[
1

W
(
πRo2

)
]
≪ 1 as Ro → ∞

(4.58)
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As the solution to ǫ is found and much smaller than one, the solution to trailing

length is

x∗
bIII-IIIa

= −
W

[
π
(
1− 1√

1+h∗

)
Ro2

]

2
(√

1 + h∗ − 1
) ·

{
1 +O

[
1

W
(
πRo2

)
]}

(4.59)

The asymptotic expression for the dimensionless trailing length when Ro → ∞ (the

asymptotic side III – IIIa) is:

x̂∗
bIII-IIIa

= −
W

[
π
(
1− 1√

1+h∗

)
Ro2

]

2
(√

1 + h∗ − 1
) (4.60)

In Regime III when h∗ → 0, π
(
1− 1√

1+h∗

)
Ro2 tends to zero, and the Equation 4.60

can thus be simplified to asymptotic expression of trailing length in Regime III:

x̂∗
bIII

= −πRo2

2
(4.61)

In regime IIIa when h∗ → ∞, the asymptotic expression can be derived from

Equation 4.60 as:

x̂∗
bIIIa

= −W
(
πRo2

)

2
√
h∗

(4.62)

Appendix 4.B Asymptotics of x∗b in the asymptotic

side Regime IV – IVa

In the asymptotic side Regime IV – IVa when Ro → 0, x∗
bIV-IVa

→ 0 x∗
bIV-IVa

√
h∗ + 1 →

0, and temperature distribution at centerline can thus be written as:

T ∗ =
[
1 +O

(
x∗
bIV-IVa

)]
·
[
ln

(
2

−x∗

bIV-IVa

√
h∗+1

)
− γ +O

(
x∗
bIV-IVa

√
h∗ + 1

)]
(4.63)

Let x∗
bIV-IVa

= − 2√
h∗+1

exp
(
− 1

Ro
− γ

)
(1 + ǫ), assuming ǫ ≪ 1, resulting in the

following temperature field at trailing length:

T ∗ =

[
1 +O

(
e−

1
Ro

)]{
ln

[
(1 + ǫ) e

1
Ro

]
+O

(
e−

1
Ro

)}
(4.64)

158



The ǫ is solved:

ǫ =e

O

(

e
−

1
Ro

)

−γ

O

(

e
−

1
Ro

)

+1

− 1

Ro

[

O

(

1+e
−

1
Ro

)]+ 1
Ro

+γ

− 1 = O

(
1
Ro
e−

1
Ro

)
≪ 1 as Ro → 0

(4.65)

Therefore, the solution to trailing length for Ro → 0 is:

x∗
bIV-IVa

= −2e−
1
Ro

−γ

√
h∗ + 1

[
1 +O

(
1
Ro
e−

1
Ro

)]
(4.66)

and the asymptotic for x∗
b in the asymptotic side Regime IV – IVa is:

x̂∗
bIV-IVa

= − 2√
h∗ + 1

exp
(
− 1

Ro
− γ

)
(4.67)

In Regime IV when h∗ → 0, the Equation 4.67 can be simplified to asymptotic

expression of trailing length in Regime IV:

x̂∗
bIV

= −2 exp
(
− 1

Ro
− γ

)
(4.68)

In Regime IVa when h∗ → ∞, the Equation 4.67 can be simplified to asymptotic

expression of trailing length in Regime IVa:

x̂∗
bIVa

= − 2√
h∗

exp
(
− 1

Ro
− γ

)
(4.69)

Appendix 4.C Asymptotics of Ṫ ∗
b in the asymp-

totic side Regime III – IIIa

In the asymptotic side Regime III – IIIa, −x∗
b

√
h∗ + 1 → ∞, the right side of Equa-

tion 4.26 could be expressed asymptotically:

Ṫ ∗
b =

1

Ro


1−

√
h∗ + 1 +

1

2x∗
bIII-IIIa

+O

(
1√

h∗ + 1x∗
bIII-IIIa

)2

 (4.70)

=
1

Ro




1−

√
h∗ + 1 + 1

2x∗

bIII-IIIa

{

O

[
1

W(πRo2)

]

+1

} +O

(
1√

h∗+1x∗

bIII-IIIa

)2





(4.71)

=
1

Ro

{
1−

√
h∗ + 1 +

1

2x∗
bIII-IIIa

+O

[
1

x∗

bIII-IIIa
W(πRo2)

]
+O

(
1√

h∗+1x∗

bIII-IIIa

)2
}

(4.72)
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Because O

[
1

x∗

bIII-IIIa
W(πRo2)

]
≪

∣∣∣∣ 1
2x∗

bIII-IIIa

∣∣∣∣ and O

(
1√

h∗+1x∗

bIII-IIIa

)2

≪
∣∣∣∣ 1
2x∗

bIII-IIIa

∣∣∣∣ for

large Ro number and
∣∣x∗

b

√
h∗ + 1

∣∣, the asymptotic cooling rate is derived by substi-

tution Equation 4.59:

̂̇T
∗

bIII-IIIa
= −

√
h∗+1−1
Ro



1 +

1

W
[
π
(
1− 1√

h∗+1

)
Ro2

]



 (4.73)

In Regime IIIa, h∗ tends to infinity, the asymptotic cooling rate is:

̂̇T
∗

bIIIa
= −

√
h∗

Ro
(4.74)

In Regime III, h∗ tends to zero, the asymptotic cooling rate is:

̂̇T
∗

bIII
= − 1

πRo3
(4.75)

Appendix 4.D Asymptotics of Ṫ ∗
b in the asymp-

totic side Regime IV – IVa

In the asymptotic side Regime IV – IVa, −x∗
b

√
h∗ + 1 → 0, the right side of Equa-

tion 4.26 could be expressed asymptotically:

̂̇T
∗

bIV-IVa
= − 1

−x∗
bRo

[
ln
(
−1

2

√
h+ 1x∗

b

)
+ γ

] + O

(
1

Ro

)
(4.76)

Bringing the solution to trailing length Equation 4.67 into Equation 4.76, the cooling

rate is:

̂̇T
∗

b = −
√
h∗ + 1 e

1
Ro

+γ

2
[
1 +O

(
1
Ro

e−
1
Ro

)] [
1 +O

(
e−

1
Ro

)] +O

(
1

Ro

)

= −1

2

√
h∗ + 1 e

1
Ro

+γ +O

(√
h∗ + 1

Ro

)
(4.77)

Because O
(√

h+1
Ro

)
≪

∣∣∣−1
2

√
h∗ + 1 e

1
Ro

+γ
∣∣∣ for small Ro number, the asymptotic cool-

ing rate in the asymptotic side Regime IV – IVa is:

̂̇T
∗

bIV-IVa
= −1

2

√
h∗ + 1 e

1
Ro

+γ (4.78)
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In Regime IVa, h∗ tends to infinity, the asymptotic cooling rate is:

̂̇T
∗

bIVa
= −

√
h∗

2
e

1
Ro

+γ (4.79)

In Regime IV, h∗ tends to zero, the asymptotic cooling rate is:

̂̇T
∗

bIV
= −1

2
e

1
Ro

+γ (4.80)

Appendix 4.E Critical surface heat loss

For small h∗, trailing length is expressed as perturbation x∗
b = x∗

bIII-IV
+ δx, where

δx ≪ x∗
bIII-IV

. Substitution of x∗
b = x∗

bIII-IV
+ δx into Equation 4.3 yields the following

temperature distribution at the trailing length:

T ∗
c = e

−x∗

bIII-IV
−δxK0

[
−
(
x∗
bIII-IV

+ δx
)√

h∗ + 1
]

≈ T ∗
c − T ∗

c

[
δx −

(
δx +

h∗x∗

bIII-IV

2

)
K1

(
−x∗

bIII-IV

)

K0

(
−x∗

bIII-IV

)

]
(4.81)

Thus, the solution to δx is:

δx ≈
h∗x∗

bIII-IV
K1

(
−x∗

bIII-IV

)

2
[
K0

(
−x∗

bIII-IV

)
−K1

(
−x∗

bIII-IV

)] (4.82)

Considering certain percent error ǫA =
∣∣∣ δx
x∗

bIII-IV

∣∣∣, the critical value of h∗
c to neglect

surface heat loss for trailing length can be obtained:

h∗
c,x∗

b
≈ 2ǫA

[
1−

K0

(
−x̂∗

bIII-IV

)

K1

(
−x̂∗

bIII-IV

)
]

(4.83)

In Regimes III, when Ro → ∞, Equation 4.83 is simplified as:

h∗
c,x∗

b
≈ 2ǫA

πRo2
(4.84)

In Regimes IV, when Ro → 0, Equation 4.83 is simplified as:

h∗
c,x∗

b
≈ 2ǫA (4.85)
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For small values of h∗, according to Equation 4.82 and 4.26, the cooling rate can

be written as:

Ṫ ∗
b =

1

Ro

{
1−

√
h∗+1K1

[
−
√
h∗+1

(
x∗

bIII-IV
+δx

)]

K0

[
−
√
h∗+1

(
x∗

bIII-IV
+δx

)]

}

≈ Ṫ ∗
bIII-IV

{
1 + h∗

2

[(
x∗
bIII-IV

+ 1
)
K1

(
−x∗

bIII-IV

)2−

x∗
bIII-IV

K0

(
−x∗

bIII-IV

)2] [
K0

(
−x∗

bIII-IV

)
−K1

(
−x∗

bIII-IV

)]−2
}

(4.86)

Considering certain relative error ǫA =
∣∣∣Ṫ ∗

bIII-IV
/Ṫ ∗

b − 1
∣∣∣, the critical value of h∗

c to

neglect surface heat loss for cooling rate can be obtained:

h∗
c,Ṫ ∗

b

=
∣∣∣2ǫA

[
K0

(
−x∗

bIII-IV

)
−K1

(
−x∗

bIII-IV

)]2·
[(
x∗
bIII-IV

+ 1
)
K1

(
−x∗

bIII-IV

)2 − x∗
bIII-IV

K0

(
−x∗

bIII-IV

)2]−1
∣∣∣∣ (4.87)

In Regime III, when Ro → ∞, Equation 4.83 is simplified as:

h∗
c,Ṫ ∗

b

≈ ǫA

πRo2
(4.88)

In Regime IV, when Ro → 0, Equation 4.83 is simplified as:

h∗
c,Ṫ ∗

b

≈ 2ǫA (4.89)

Appendix 4.F Estimation of effective thermal con-

ductivity

An effective thermal conductivity keff can be approximated as the constant conduc-

tivity yielding the same thermal resistance in a wall of thickness L in steady state.

R′′ = −∆T

q′′
=

L

keff
(4.90)

where R′′ is the thermal resistance associated with the absolute values of heat flux q′′

in the direction of coordinate ξ, perpendicular to the wall, and temperature difference

∆T through the thickness d of the wall. In steady state, without accumulation or

depletion of heat:

q′′ = −k(T )
dT

dξ
= constant (4.91)
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Integrating Equation 4.91 along the thickness of the wall results in

∫ L

0

−k(T )
dT

dξ
dξ =

∫ T2

T1

−k(T )dT = q′′L (4.92)

Combining equations 4.92 and 4.90 results in

keff =
1

∆T

∫ L

0

k(T )dT (4.93)

indicating that a good approximation to the effective value of thermal conductivity

is the average value between two temperatures. For problems involving just one

temperature of interest, the average is suggested between T0 and the temperature of

interest Tc. For problems involving a temperature range, the suggested average is

within that range, for example, between 800 ◦C and 500 ◦C for t8/5.
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Figure 4.7: Comparisons of predictions of cooling rate. 4.7(a): Equation 4.35 without
corrections for surface heat loss. 4.7(b): Equation 4.37 with correction factors for
surface heat loss.
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Chapter 5

Width of thermal features induced
by a moving heat source on a thin
plate with surface heat losses

5.1 Abstract

This paper proposes explicit expressions to estimate isotherm half-width and its lo-

cation of moving heat source on a thin plate with correction factors for the effect of

surface heat losses. The expressions depend on two dimensionless groups: the Rosen-

thal number relative to the intensity of the heat source and h∗ representing the effects

of surface heat losses. A systematic approach is proposed to establish 2-D blending

with the two dimensionless groups, which yields predictive equations in closed-form

within 9.6 % and 12 % of the exact solution for isotherm width and location. Valida-

tion against published experimental results and simulations shows a close agreement

with the predictive equations.

Table 5.1: Notation

Variables Unit Description

d m Thickness of the substrate

h Wm−2 K−1 Convection coefficient on top surface

h′ Wm−2 K−1 Convection coefficient on bottom surface

Continued on next page
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Table 5.1 – continued from previous page

Variables Unit Description

k Wm−1 K−1 Thermal conductivity of the substrate

K0 Modified Bessel function of the second kind, zero order

q W Power absorbed by substrate

r m Distance from the heat source

T K Temperature

T0 K Far temperature or preheat

uc Dependent variable for 2-D blending

U m s−1 Travel speed of the moving heat source

W Lambert function

x, y m Cartesian coordinates

Greek symbols

α m2 s−1 Thermal diffusivity of the substrate

γ Euler–Mascheroni constant

η 1 Thermal efficiency

Π Independent variables for 2-D blending

Superscripts

∗ Dimensionless value

̂ Asymptotic behavior

+ Correction for intermediate regions

Subscripts

c Critical values

max Related to maximum isotherm half-width

III Regime III

IV Regime IV

IIIa Regime IIIa

Continued on next page
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Table 5.1 – continued from previous page

Variables Unit Description

IVa Regime IVa

5.2 Introduction

The estimation of the half-width of an isotherm is one of the central questions in

analyzing moving heat sources. For example, in laser cladding, the half-width of

the melting isotherm determines the half-width of the bead [219]; in the analysis

of thermal distortions in welding or additive manufacturing, the amount of material

experiencing plasticity is determined by the isotherm of yield temperature [76].

While numerical simulations can often make an accurate prediction, in practice,

engineers typically resort to previous experience or trial and error when developing

parameters for moving heat sources. Engineering expressions and empirical formulae

have been explored to predict the half-width of an isotherm induced by a moving heat

source in a very large substrate [140] and a 2-D situation such as thin plates [70, 84,

88, 96, 130, 145, 190, 213]. For neither of these cases, the effect of surface heat losses

was considered.

While for moving heat sources on a thick substrate, the effect of surface heat losses

is negligible in almost all practical conditions. The effects of surface heat losses on

a thin substrate are relevant in two common families of problems. The first type of

problems includes systems experiencing intense convection, such as in-service welding

where the weld is made on a pipe carrying a moving fluid [22], or underwater wet

welding [67], in which the plate is exposed to the convective cooling of water. The

second type of problems includes the calculation of residual stresses during welding,

in which the yield temperature is low (of the order of 100 ◦C), compared to other

temperatures of interest such as melting (around 1500 ◦C for steels) or transformations

(around 700 ◦C in steels).
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The aim of this work is not to obtain predictions for particular cases, for which

numerical simulations are already very advanced [222]; or to solve particular problems,

which are routinely solved by trial and error in practice. Instead, this work aims to

provide predictions of great generality, simplicity, and accurate enough for practical

applications. The results presented here are valid for any material and any type of

heat source within the basic hypotheses.

The work presented here is part of a broader research program aimed at identi-

fying moving heat source features and presenting practical and accurate predictive

expressions useful to practitioners. The overall program is based on the understand-

ing that many important aspects of complex problems such as welding and additive

manufacturing can be treated using a minimal representation that captures only the

dominant physics, with the secondary physics included as correction factors. This

approach is often used in all engineering disciplines at an intuitive level, and a formal

implementation is described in [134, 137, 140, 141, 144, 167, 218].

The proposed predictive equations consist of closed-form asymptotic solutions and

correction factors to account for intermediate cases. In this work, the asymptotic cases

are based on Rosenthal’s 2-D solution [176], also called the “thin plate” solution or

“line heat source” solution. This solution is accurate enough to be used routinely

used in practice for a wide range of materials and problems including arc welding [62,

160, 176, 213], laser and electron beam welding [73, 85, 190], metal cutting [66, 149],

thermal forming of shells [227], and has even been adapted to mass transfer [171].

5.3 Governing equation

The model considered in this work consists of a point heat source of intensity q

moving with constant velocity along a straight path on a thin plate of thickness d,

infinite length and width, and constant thermophysical properties, as illustrated in

Figure 5.1.

The formulation of this problem is discussed in detail in [130]. The governing
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x

y

q

d

Figure 5.1: Isotherms for a point heat source of intensity q on a thin substrate of
thickness d. The domain is −∞ < x < ∞,−∞ < y < ∞ and gradients in z are
negligible [130].

equation is:

∂2T

∂x2
+

∂2T

∂y2
= −U

α

∂T

∂x
+

h+ h′

kd
(T − T0) (5.1)

with the following boundary conditions:

∂T

∂r
= − q

2πrkd
as r → 0 (5.2)

T = T0 as r → ∞ (5.3)

where x, y are the coordinates defined in Figure 5.1, r =
√

x2 + y2 is the distance to

the heat source, T is the temperature field, q and U are the rate of heat and velocity

of the heat source, h and h′ are surface heat loss coefficients on the top and bottom

surfaces combining the effects of convection, radiation and contact resistance, α, k, d

and T0 are the thermal diffusivity, conductivity, thickness and initial temperature of

the substrate.

This equation approximates the surface heat losses as volumetric losses, as it is

common in the study of fins, which is accurate for substrates with a small Biot

number Bi= (h + h′)d/k. Equation 5.1 can also capture the transient behavior of

a fin under the condition of an instant amount of heat deposited at the root. This

problem is of much relevance for the calculation of residual stresses in manufacturing

processes involving moving heat sources such as additive manufacturing of walls or

welding of relatively thin plates [77].

The solution of Equation 5.1 with boundary conditions of equations 5.2-5.3 and
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accounting for surface heat losses was first obtained by [176]:

T (x, y) = T0 +
q

2πkd
exp

(
−Ux

2α

)
K0

[
r

√(
U
2α

)2
+ h+h′

kd

]
(5.4)

where K0 is the modified Bessel function of second kind and zero order. This equation

provides the temperature value for each point in the substrate.

The idealizations used to obtain Equation 5.4 have relatively little impact on the

predictive accuracy and were reviewed in detail in [130]. The fin approximation

is accurate for most welding conditions; for example, a representative underwater

wet weld would have surface heat losses h + h′ of the order of 50 – 1000 W/m2K

(natural convection in water) and thermal conductivity of 50 W/mK (steel). In these

conditions, a large substrate thickness such as 25 mm still would yield a small Biot

number of 0.5.

5.4 Normalization and asymptotics

The normalization of Equation 5.4 is discussed in detail in [130], resulting in:

T ∗(x∗, y∗) = exp (−x∗)K0

(
r∗
√
1 + h∗

)
(5.5)

where the ∗ superscript indicates a dimensionless quantity:

T ∗ =
2πkd (T − T0)

q
(5.6)

h∗ =
4α2 (h + h′)

kdU2
(5.7)

x∗ =
Ux

2α
(5.8)

y∗ =
Uy

2α
(5.9)

r∗ =
Ur

2α
(5.10)

where r∗ =
√

x∗2 + y∗2. Equation 5.5 involves four dimensionless groups: two inde-

pendent variables x∗, y∗ (r∗ is not independent), the dependent variable T ∗(x∗, y∗),

and the parameter h∗ associated with surface heat losses.
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When considering the maximum half-width of isotherm T ∗ = T ∗
c , the four dimen-

sionless groups are constrained by Equation 5.5 and by the condition y∗max = max(y∗),

leaving only two degrees of freedom: h∗, and the Rosenthal number (Ro) [62, 130]:

Ro =
q

2πkd (Tc − T0)
=

1

T ∗
c

(5.11)

When surface heat losses are considered, the geometry of isotherms in dimensionless

space depends on Ro and h∗, as illustrated in Figure 5.2. The values of Ro and h∗

can vary between zero and infinity, defining four asymptotic regimes in this paper,

illustrated in Figure 5.4. For small values of h∗, Regimes III (for large Ro) and Regime

IV (for low Ro) were introduced in [130]. When surface heat losses are important,

two new regimes appear: Regime IIIa for high values of h∗ and high values of Ro,

and Regime IVa, for high values of h∗ and low values of Ro. Regime I and Regime II

correspond to a moving heat source in 3D conditions and were defined in [140].

x

y

Ro = 2, h∗ = 0

Ro = 1, h∗ = 0

Ro = 1, h∗ = 1

y m
a
x

Figure 5.2: Isotherms corresponding to Ro = 1 and 2, and h∗=0 and 1. The surface
heat losses have a significant effect on the half-width of the isotherm.

5.5 Two-dimensional blending

Blending is a methodology that produces explicit prediction on the full domain for

all values of dependent variables. The full domain can be divided into asymptotic
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regimes where variables tend to extreme values, like zero or infinity, and intermediate

transitional regimes. At asymptotic regimes, simple expressions can be obtained

with asymptotic analysis or regression on experimental data; by combining two or

more asymptotic expressions, blending yields closed-form approximate expressions

that cover not only asymptotic regimes but also intermediate regimes.

For a characteristic value u∗
c depending on one variable Π, two asymptotic regimes

are: û∗
c i
(Π) at Regime i (Ri) where Π → 0 and û∗

cj
(Π) at Regime j (Rj) where Π → ∞,

where the superscript ̂ indicates asymptotic behavior. 1-D blending results in an

approximation over the full domain û∗+(Π) where the superscript + indicates results

of blending, as discussed at [4, 34, 38, 140, 207] and modified to extend its scope of

applicability as discussed at [128, 130].

For a characteristic value u∗
c that depends on two variables Π1 and Π2, the general

approach to two-dimensional blending has not yet been established systematically.

Previous attempts achieve the partial 1-D blending on a subdomain that works only

for a limited range of variables [214]. A general and systematic approach is proposed

to achieve 2-D blending of u∗
c(Π1,Π2) as follows.

For extreme values of Π1 and Π2, the full domain of (Π1,Π2) is divided into four

asymptotic regimes: û∗
c i
(Π1,Π2) at Regime i (Ri) where Π1 → 0 and Π2 → 0,

û∗
c j
(Π1,Π2) at Regime j (Rj) where Π1 → ∞ and Π2 → 0, û∗

ck
(Π1,Π2) at Regime k

(Rk) where Π1 → 0 and Π2 → ∞, û∗
c l
(Π1,Π2) at Regime l (Rl) where Π1 → ∞ and

Π2 → ∞, as illustrated in Figure 5.3. In this paper, the general expressions used
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have the following corresponding concepts in the blending derivations:

u∗
c = y∗max or x∗

max (5.12)

Π1 = Ro (5.13)

Π2 = h∗ (5.14)

Regime i = Ri = Regime IV (5.15)

Regime j = Rj = Regime III (5.16)

Regime k = Rk = Regime IVa (5.17)

Regime l = Rl = Regime IIIa (5.18)

The subscripts III and IV indicated the previously identified regimes for the case of

negligible surface losses [130]. The subscripts IIIa and IVa refer to the corresponding

regimes with intense surface loss.

Π1

Π2

û∗
c i

at Ri û∗
c j

at Rj

û∗
ck

at Rk û∗
c l

at Rl

Figure 5.3: Schematic of process map u∗
c depending on Π1 and Π2. Four asymptotic

regimes are defined for extreme values of Π1 and Π2.

Along asymptotic ‘sides’ of the full domain, partial blending results are achieved for
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the following combined regimes: side Regime i− j (Ri−j) when Π2 → 0, side Regime

k − l (Rk−l) when Π2 → ∞, side Regime i − k (Ri−k) when Π1 → 0, side Regime

j − l (Rj−l) when Π1 → ∞. Side partial blending, for example û∗
c i−j

(Π1,Π2) along

the asymptotic side Ri−j, can be obtained with 1-D blending when side asymptotic

behaviours change with one variable (Π1 for side Ri−j and Rk−l, Π2 for side Ri−k and

Rj−l). When side asymptotic behaviours change with both Π1 and Π2, 1-D blending

cannot be applied directly and side partial blending must be derived using asymptotic

analysis.

After obtaining side partial blending results, correction factors (f) can be devel-

oped for each of the asymptotic formulae. For instance, the correction factor can be

obtained for side Ri−j based on the asymptotic formula for Ri is:

fi−j(Π1,Π2) =
û∗
c

+

i−j
(Π1,Π2)

û∗
c i
(Π1,Π2)

(5.19)

At asymptotic ‘corners’ of the full domain, partial blending results are defined on

the subdomain consisting of two asymptotic sides sharing the same base asymptotic

regime, for example the asymptotic corner Ri−j−k based on Ri containing side Ri−j

and side Ri−k. Corner partial blending combines asymptotic expressions at the base

regime and correction factors along both sides, for example at corner Ri−j−k based

on Ri:

û∗
c

+

i−j−k
(Π1,Π2) = û∗

c i
· fi−k · fi−j (5.20)

where fi−k(Π1,Π2) and fi−j(Π1,Π2) are calculated with Equation 5.19.

With a corner partial blending developed, the correction factor g(Π1,Π2) is de-

fined to estimate u∗
c/û

∗
c

+

i−j−k
that represents 2-D blending of û∗

c(Π1,Π2). g(Π1,Π2) is

asymptotically 1 at Ri Rk Rj , and û∗
c l
/(û∗

c

+

i−j−k
)
l
at the opposite Rl, where (û∗

c

+

i−j−k
)
l

is the asymptotic behavior of the corner partial blending in Rl. The 2-D blending of

g(Π1,Π2) could not be obtained with corner partial blending directly which can only

satisfy three asymptotic regimes.
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When the asymptotic in Rl is large, gl
(Π1,Π2) ≥ 1, a systematic approach to 2-D

blending of g (Π1,Π2) that is used in this paper is:

g (Π1,Π2) = 1 + Ĝl

+
(Π1,Π2) (5.21)

where Ĝl

+
(Π1,Π2) is a corner partial blending based on the opposite Rl. If the asymp-

totic in Rl is small, (g)
l
(Π1,Π2) < 1, 2-D blending of g (Π1,Π2) can be transformed

to 2-D blending of the reciprocal 1/g (Π1,Π2) that is larger than one.

In Equation 5.21, Gl (Π1,Π2) is an auxiliary function constructed as:

Gl (Π1,Π2) =
u∗
c (Π1,Π2)

û∗
c

+

i−j−k
(Π1,Π2)

− 1 (5.22)

which tends to zero at Ri Rk Rj, and (g)
l
− 1 at the opposite Rl. If the asymptotic

behaviors of g (Π1,Π2) change with one variable along side Rk−l and Rj−l, blending

of Gl (Π1,Π2) can be achieved with corner partial blending based on Rl similar to

Equation 5.20:

Ĝl

+
(Π1,Π2) = Ĝl (Π1,Π2) · I (Π1,Π2) (5.23)

where Ĝl (Π1,Π2) is the asymptotic expression of Gl (Equation 5.22) at the base Rl is:

Ĝl (Π1,Π2) =
û∗
c l
(Π1,Π2)(

û∗
c

+

i−j−k

)
l
(Π1,Π2)

− 1 (5.24)

and I (Π1,Π2) is an unit correction factor for corner partial blending:

I (Π1,Π2) =
[
1 +

(
a1Π

b1
1

)n1

]1/n1
[
1 +

(
a2Π

b2
2

)n2

]1/n2

(5.25)

where a1, b1, n1, a2, b2, n2 are arbitrary blending parameters. Equation 5.25 is one

at Rl, a1Π
b1
1 at Rj and a2Π

b2
2 at Rk that tends to zero.

The 2-D blending of the characteristic value u∗
c is formulated on one asymptotic

regime, Ri for example, as:

û∗
c

+
(Π1,Π2) = û∗

c i
· fi−k · fi−j · g (5.26)

where fi−k(Π1,Π2) and fi−j(Π1,Π2) are obtained through side partial blending Equa-

tion 5.19 and g(Π1,Π2) is obtained through Equation 5.21.
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5.6 Asymptotic analysis of isotherm half-width ymax

The asymptotic analysis of Equation 5.5 for isotherm half-width ymax and its location

x∗
max in Regime III and Regime IV where surface heat losses are negligible yields

simple expressions:

ŷ∗maxIII
=

√
π

2e
Ro for Regime III (5.27)

x̂∗
maxIII

= − π

2e
Ro2 for Regime III (5.28)

ŷ∗maxIV
= 2 exp

(
−γ− 1

Ro

)
for Regime IV (5.29)

x̂∗
maxIV

= − 4

Ro
exp

(
−2γ − 2

Ro

)
for Regime IV (5.30)

where γ = 0.5772 . . . is the Euler-Mascheroni constant. Equations 5.27 and 5.29 are

consistent with asymptotic analysis in [130] for fast heat sources and low surface

heat losses, and equations 5.28 and 5.28 are consistent with [128]. The asymptotic

behaviour is a power law in Regime III (fast) and an exponential dependence, not a

power law, in Regime IV (slow); the modified 1D blending is used to obtain global

approximation [130].

The asymptotic analysis when surface heat losses are intense is detailed in Ap-

pendix. In Regime IIIa, for large values of Ro and h∗, the asymptotic behavior of

y∗max is obtained according to Equation 5.94 and x∗
max is obtained according to Equa-

tion 5.93:

ŷ∗maxIIIa
=

1

2

√
1

h∗W
(
πRo2

)
for Regime IIIa (5.31)

x̂∗
maxIIIa

= −W
(
πRo2

)

2h∗ for Regime IIIa (5.32)

where W (x) is Lambert W function, which is the solution to x = W (x) eW (x) [41].

Regime IIIa also captures characteristic values for the case of a fin with an instant

amount of heat deposited at the root. The value ŷ∗maxIIIa
represents the maximum

reach of a particular temperature along the length of the fin, while the value x̂∗
maxIIIa

,
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corresponds to time t̂maxIIIa = x̂maxIIIa/U , and indicates the time it takes for the

temperature of interest to reach its maximum reach along the length of the fin.

In Regime IVa, for small values of Ro and large values of h∗, the asymptotic

behavior of y∗max is obtained according to Equation 5.81 and x∗
max is obtained according

to Equation 5.80:

ŷ∗maxIVa
=

2√
h∗

exp

(
− 1

Ro
− γ

)
for Regime IVa (5.33)

x̂∗
maxIVa

= − 4

Ro h∗ exp

(
− 2

Ro
− 2γ

)
for Regime IVa (5.34)

5.7 Blending of isotherm half-width ymax

With the asymptotic behaviours of isotherm half-width in asymptotic regimes, equa-

tions 5.27, 5.29, 5.31 and 5.33, side partial blending results are developed firstly along

four side regimes, and then 2-D blending of isotherm half-width for the full domain

is achieved based on Regime III.

5.7.1 Side partial blending

In asymptotic side Regime III – IV, for small values of h∗, the predictive scaling law

has been proposed in previous work neglecting surface heat convection [128]:

ŷ∗+maxIII−IV
= 2e−

1
Ro

−γ

{
1 +

[√
8e
π

exp (−γ)

Ro

]−n
}1/n

(5.35)

where the blending parameters n = 1.407 and the maximum relative error is 6.8% for

all values of Ro and h∗ = 0 [130].

In asymptotic side Regime IIIa – IVa, for large values of h∗, partial blending is

obtained with 1-D blending on Ro:

ŷ∗+maxIIIa−IVa
=

exp(− 1
Ro)√

h∗

{(
2e−γ

)n
+

[
W(πRo2)

2

]n} 1
n

(5.36)

where the blending parameter n = 2.205 and the maximum relative error 2.4%.
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In asymptotic side III – IIIa, for large values of Ro, side partial blending can not be

obtained through 1-D blending as the asymptotic behaviors of isotherm half-width

change with both h∗ and Ro. The partial blending results is derived through the

asymptotic analysis under Ro → 0 according to Equation 5.90:

ŷ∗maxIII−IIIa
=

ω

2
√
h∗

√
1 + 2

(1+h∗)ω
(5.37)

where ω is a blending function of Lambert W function:

ω ≈
{[

πh∗Ro2

exp
(

1
1+h∗

)
(1+h∗)

]−1

+ ln

[
πh∗Ro2

exp
(

1
1+h∗

)
(1+h∗)

+ c

]−1

+ a

[
πh∗Ro2

exp
(

1
1+h∗

)
(1+h∗)

]b}−1

(5.38)

where a = 0.08568, b = −0.1028, c = 2.586 to be consistent with [128].

In asymptotic side Regime IV – IVa, for small values of Ro, the partial blending

for isotherm half-width is obtained with 1-D blending on h∗:

ŷ∗+maxIV−IVa
= 2 exp

(
− 1

Ro
− γ

)[(
1√
h∗

)n

+ 1

]1/n
(5.39)

where n = −2, which is derived according to Equation 5.77 rather than from opti-

mization.

5.7.2 2-D blending

With asymptotic and side partial blending expressions proposed, 2-D blending of

isotherm half-width for any values of Ro or h∗ for isotherm half-width y∗max is formu-

lated based on Regime III (Equation 5.27) multiplying three correction factors:

ŷ∗+max =

√
π

2e
Ro · fIII-IV (Ro) · fIII-IIIa (Ro, h∗) · g (Ro, h∗) (5.40)

where the correction factor fIII-IV(Ro) is for asymptotic side III – IV according to

Equation 5.35:

fIII-IV (Ro) = exp

(
− 1

Ro

){
1 +

[√
8e

π

exp (−γ)

Ro

]n} 1
n

(5.41)
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where n = 1.407 to be consistent with [130]. The correction factor fIII-IIIa (Ro, h
∗), ac-

cording to side partial blending along asymptotic side Regime III – IIIa Equation 5.37,

is:

fIII-IIIa (Ro, h
∗) =

√
e

2πh∗
ω

Ro

√
1 +

2

ω(1 + h∗)
(5.42)

where ω is a function of Ro and h∗ calculated with Equation 5.38. The correction

factor g(Ro, h∗) is:

g (Ro, h∗) = 1 + ĜIVa (Ro, h
∗) · I (Ro, h∗) (5.43)

where the asymptotic expression of y∗max

/(
ŷ∗maxIII

· fIII-IV · fIII-IIIa
)
− 1 at Regime IVa

is ĜIVa(Ro, h
∗) and corner blending correction factors is I(Ro, h∗):

ĜIVa(Ro, h
∗) =

√
2

πeRo2 + 2e/(1 + h∗)
(5.44)

I(Ro, h∗) =
(
1 + a1Ro

b1
)n1

(
1 + a2h

∗b2
)n2

(5.45)

The optimal blending parameters are a1 = 16.09, b1 = 1.438, n1 = −0.2508, a2 =

0.05885, b2 = −0.3583, n2 = −24.44. The maximum relative error is 9.6%.

5.7.3 Engineering expression

The engineering expression with units of isotherm half-width is obtained from Equa-

tion 5.40:

ŷ+max =
1√
2πe

qα

Ukd (Tc − T0)
· fIII - IV (Ro) · fIII - IIIa (Ro, h

∗) · g (Ro, h∗) (5.46)

where the correction factor fIII - IV (Ro) is Equation 5.41, fIII-IIIa (Ro, h
∗) is Equa-

tion 5.42 and g (Ro, h∗) is Equation 5.43.

5.8 Blending of isotherm half-width location x∗max

Similar to the 2-D blending of isotherm half-width, with the asymptotic behaviours of

isotherm half-width location x∗
max in asymptotic regimes, side partial blending results

are developed along four side regimes first, and then 2-D blending for the full domain

is achieved based on Regime III in this section.
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Figure 5.4: The error map of isotherm half-width y∗max for Equation 5.40.

5.8.1 Partial blending

In asymptotic side Regime III – IV, for small values of h∗, the predictive scaling law

has been proposed in previous work ignoring surface heat convection [128]:

x̂∗+
maxIII−IV

= − exp
(
− 2

Ro

) [
π
2e
Ro2 + 4

exp(2γ)Ro
+ aRob

]
(5.47)

where the blending parameters are a = 1.427, b = 1.077. The maximum error is 6.3%

when h∗ = 0 [128].

In asymptotic side Regime IIIa – IVa, for large values of h∗ with intense surface

heat loss, the behavior of isotherm half-width location changes with Ro as:

x̂∗+
maxIIIa−IVa

= − exp(− 2
Ro)

h∗

{[
W(πRo2)

2

]n
+
[

4
Ro exp(−2γ)

]n}1/n

(5.48)

where the blending parameter n = 1.112 and the maximum error is 9.9%.

In asymptotic side Regime IIIa – IIIa, for large values of Ro, the asymptotic be-

havior of isotherm half-width location changes with both Ro and h∗ and can only

be achieved by asymptotic analysis. According to Equation 5.89, the side partial
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blending of x∗
max is:

x̂∗
maxIII−IIIa

= − 1

2h∗W

[
πh∗Ro2

exp
(

1
1+h∗

)
(1 + h∗)

]
(5.49)

In asymptotic side Regime IV – IVa, for small values of Ro, the asymptotic behavior

changes with h∗ and the side partial blending of x∗
max is:

x̂∗+
maxIV−IVa

= − 4

Ro
exp

(
− 2

Ro
− 2γ

)[
1 +

(
1

h∗

)n]1/n
(5.50)

where n = −1 is derived by asymptotic analysis according to Equation 5.76 rather

than optimization.

5.8.2 2-D blending

Similar to 2-D blending of y∗max in Equation 5.40, isotherm half-width location x∗
max

is formulated with 2-D blending as asymptotic of Regime III and three correction

factors:

x̂∗+
max = − π

2e
Ro2 · fIII-IV (Ro) · fIII-IIIa (Ro, h∗) · g (Ro, h∗) (5.51)

The correction factor fIII-IV (Ro) between Regime III – IV is according to Equa-

tion 5.47:

fIII-IV (Ro) = exp

(
− 2

Ro

)[
1 + 8e

π exp(2γ)
Ro−3 + 2ae

π
Rob−2

]
(5.52)

where a = 1.427, b = 1.077 to be consistent with [128].

The correction factor between Regime III – IIIa fIII-IIIa (Ro, h
∗) according to Equa-

tion 5.49 is:

fIII-IIIa (Ro, h
∗) =

eω

πRo2h∗ (5.53)

where ω is a function of Ro and h∗ calculated with Equation 5.38.

The correction factor from the opposite corner g (Ro, h∗) is:

g (Ro, h∗) =
[
1 + ĜIVa (Ro, h

∗) · I (Ro, h∗)
]−1

(5.54)
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where Ĝ (Ro, h∗) is a function constructed as:
x̂∗

maxIII
·fIII-IV·fIII-IIIa
x∗

max
− 1 = eω

πRo2
− 1. At

Regime IVa, the asymptotic behavior of ĜIVa(Ro, h
∗) for small Ro and large h∗ is:

ĜIVa(Ro, h
∗) = e− 1 (5.55)

and the corner blending correction factors I(Ro, h∗) is:

I (Ro, h∗) =
(
1 + a1Ro

b1
)n1

(
1 + a2h

∗b2
)n2

(5.56)

where a1 = 3.143, b1 = 0.8608, n1 = −0.5360, a2 = 0.3143, b2 = −0.7133, n2 =

−2.645. The maximum relative error is 12 %.

5.8.3 Engineering expression

The engineering expression with units of isotherm half-width location is written based

on Regime III:

x̂+
max = − αq2

4eπUd2k2 (Tc − T0)
2 · fIII - IV (Ro) · fIII - IIIa (Ro, h∗) · g (Ro, h∗) (5.57)

where the correction factor fIII - IV (Ro) is Equation 5.52, fIII-IIIa (Ro, h
∗) is Equa-

tion 5.53 and g (Ro, h∗) is Equation 5.54.

5.9 Criterion to neglect surface heat loss

For the cases with negligible surface heat loss effects (h∗ = 0), previous investigations

have reported explicit predictive expressions for isotherm half-width y∗max [130] and

its location x∗
max [128]. The expressions are obtained with modified 1-D blending

method of one dimensionless group (Ro number), and they are used as partial blending

results in asymptotic side Regime III – IV in this paper (Equation 5.39 for y∗max

and Equation 5.47 for x∗
max respectively). Consistent with the previous predictive

expressions, the correction factors for the effect of surface heat losses, fIII-IIIa(Ro, h
∗)

and g(Ro, h∗) in 2-D blending (Equation 5.42, 5.43 for y∗max and Equation 5.53, 5.54

for x∗
max), approach one pointwisely when h∗ tends to 0.
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For an acceptable relative error of 10 %, for example, the effect of surface heat

losses can be neglect under a critical value of h∗
c . The critical value h

∗
c depends on the

Ro number, as illustrated in Figure 5.5. The criterion to disregard correction factors

of surface heat loss is suggested for the isotherm half-width y∗max within a relative

error of 10 % in [130]:

ĥ∗
c,y∗max

= 0.2
[
1 +

( π

2e
Ro2

)n]−1/n

(5.58)

where n = 0.9405; the criterion for the location of isotherm x∗
max can be estimated by

the blending equation:

ĥ∗
c,x∗

max
= 0.1

[
1 +

( e

πRo2

)n]1/n
(5.59)

where n = −1.296. Blending results of the critical surface heat losses, ĥ∗
c,y∗max

and

ĥ∗
c,x∗

max
, are shown in Figure 5.5.

10-2 100 102

10-6

10-4

10-2

100

Ro

h
∗ c

h∗
c,y∗max

h∗
c,x∗

max

ĥ∗+
c,y∗max

Equation 5.58

ĥ∗+
c,x∗

max
Equation 5.59

Figure 5.5: Critical values of surface heat losses h∗
c and its blending approximation

ĥ∗+
c for isotherm width y∗max and its location x∗

max under an acceptable error of 10 %.

For a typical welding processes on steel, thermal diffusivity α = 10−5m2/s, thermal
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conductivity k = 50W/mK, the velocity U = 10mm/s, the heat input q = 3000W,

the thermal efficiency η = 0.85, the plate thickness d = 1mm, the room temperature

T0 = 20 ◦C. In consideration of the critical temperature of thermal residual stress

Tc = 100 ◦C, the Rosenthal number is Ro = 101; the critical to neglect the effect of

surface heat loss is h∗
c = 3.36× 10−5 and the corresponding coefficient of surface heat

loss is 0.42W/m2K that is much smaller than the order of natural convection in air,

10W/m2K, and the effect of surface heat loss is therefore significant.

The critical values of the proposed surface heat loss correction factors, h∗
c (equa-

tions 5.58 for isotherm half-width and equations 5.59 for isotherm width location),

suggest that more significant effects will be necessary for the higher Rosenthal num-

bers (i.e. lower temperature ranges). The temperature range for the plastic zone

associated with residual stress has been previously shown to be approximately an or-

der of magnitude lower than the fusion zone [76] and will therefore be more influenced

by surface heat losses.

5.10 Validation

The explicit engineering expressions for isotherm width are validated with data col-

lected from published papers and simulation results of thermal residual stress ne-

glecting and considering the correction factors for surface heat losses, as shown in

Figure 5.6 and 5.7. The experimental values were normalized using Equation 5.9,

and compared against the partial blending expression (equations 5.40 and 5.41) in

Figure 5.7 and 2-D blending expressions with correction factors for surface heat losses

(equations 5.40 to 5.43) in Figure 5.7. With the lower temperature range relevant

for residual stress, limited literature data is available for measurement of isotherm

widths, so additional numerical validation was performed using the computational

weld mechanics software package Simufact Welding.
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5.10.1 Published data

Measurements were collected for processes like Gas Tungsten ArcWelding (GTAW) [11,

123], Laser BeamWelding (LBW) [100], Underwater Cutting [201], Friction Stir Weld-

ing (FSW) [168] for materials including titanium alloys (Ti-6Al-4V [123],Ti [100]),

steel (St37 [11],Q235 [201]), stainless steel [11, 168].

In addition to the properties listed in the published papers, the thermal properties

of base materials (thermal conductivity and diffusivity) are obtained from material

property textbook [143] or software JMatPro (v11), and the effective values are calcu-

lated with the method presented in previous work [129, 130]. The thermal efficiency

is assumed 0.9 in [11, 168]. The effective surface heat loss coefficient is estimated for

validation. The heat loss coefficient is assumed 300 W/m2K in [11, 100] for processes

in atmosphere, and is assumed 500 W/m2K in [123, 168] accounting for clamping

and backing, which are in the order of magnitude 10 2W/m2K. For underwater cut-

ting, the effective surface heat loss coefficient is assumed 100,000 W/m2K in [201].

In [11], only the points away from the centerline in 4× the plate thickness is included,

satisfying the criterion for two-dimensional heat flow [130].

5.10.2 Simulation results

A large thin flat plate substrate is considered with a thickness in the z direction

of d = 3 mm, a length in the x direction of 2400 mm and a half-width in the y

direction of 1000 mm. The substrate material was chosen as A36 structural steel

with temperature-dependent material properties obtained from the computational

material software JMatPro (v11). The heat source was modelled as a cylinder with

a depth equal to the plate thickness and a radius of 5 mm.

The substrate mesh consists of 8-node isoparametric bricks with a maximum ele-

ment size of 40 mm at the plate edge, which decreases to a minimum element size of

2.5 mm at the weld axis. A single layer of elements in the plate thickness direction

is adequate to capture the 2-D temperature field associated with the full-penetration
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heat source. The mesh size at the weld line is equal to half of the heat source radius,

which represents a balance between computational efficiency and limiting instabilities

associated with the heat source “jumping” between nodes on the weld line.

The heat transfer coefficient for the bottom plate surface is held constant at h′ =

0 W/m2K. Three levels are studied for the heat loss coefficient of the top plate

surface: h = 10 W/m2K (free convection), h = 20 W/m2K and h = 100 W/m2K

(forced convection). The edges of the plate are assumed to be perfectly insulated.

All simulations consider a net power of q = 1920 W and a travel speed of U =

8 mm/s for an effective welding heat input of Q′ = 240 J/mm. A xz symmetry plane

is applied at the weld axis resulting in a thermal condition equivalent to a centre weld

between two plates, and therefore a shape correction to the heat source power used

to calculate the 2D Rosenthal temperature field is not necessary.

The isotherm widths are reported for temperatures of ∆T = 50−350◦C, measured

on the top surface of the substrate at the mid-plane. The reported value is obtained

by linear interpolation between the maximum temperature recorded for the nodes

adjacent to the mid-plane section. The minimum isotherm size corresponding to

∆T = 300◦C and h = 100 W/m2K was ymax = 12 mm which is more than 4× the

plate thickness, thereby satisfying the criterion necessary to apply the 2D point heat

source model [130].

5.11 Discussion

Similar to the study of the effects of surface heat losses to cooling rate [129], the

2-D blending of isotherm half-width, equations 5.40 to 5.43 for y∗max, and its location,

equations 5.51 to 5.54 for x∗
max, depends on two dimensionless groups: the Rosenthal

number (Equation 5.11) and h∗ (Equation 5.7). The Rosenthal number was first

proposed by Fuerschbach and Eisler to match experimental results [62]. Ro represents

an isotherm in the temperature field of moving heat source problems that is consistent

with [128–130]. The h∗ is a dimensionless group to illustrate the significance of the
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Figure 5.6: Validation of engineering expression for isotherm half-width neglecting
correction factors for surface heat loss (Equation 5.40 to 5.41).
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Figure 5.7: Validation of engineering expression for isotherm half-width considering
correction factors for surface heat loss (Equation 5.40 to 5.43).
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effects of surface heat losses. The surface heat loss (htot) is total effect of convection

(hconv), radiation (hrad) and contact resistance (hcond), htot = htot + hrad + hcont. The

surface heat losses are in different orders of magnitudes for different cases as discussed

in [129]. For cases in air, the surface heat loss is in order of 10 W/m2K without forced

convection and in order of 102W/m2K with forced convection. For cases underwater,

the surface heat loss is in order of 50−103W/m2K without forced convection, in order

of 102−2×104W/m2K with forced convection, and in order of 2.5×103−105W/m2K

with phase transformations [92].

To achieve global approximations of x∗
max and y∗max over the full domain of Ro and

h∗, a systematic approach is proposed to obtain 2-D blending results for a character-

istic depending on two variables, as introduced in Equation 5.26. The full domain of

2-D blending could be divided into four asymptotic regimes (III, IIIa, IV and IVa in

this paper), in terms of extreme values of the two dimensionless groups (0 or ∞ of Ro

and h∗). Based on asymptotic expressions in the four regimes, side partial blending

can be obtained with either 1-D blending or asymptotic analysis along asymptotic

sides between asymptotic regimes next to each other. Then, corner partial blending

is obtained by combining partial blending sharing the base regime Equation 5.20.

The 2-D blending is finally formulated systematically with corner partial blending

on one regime (Regime III in this paper) and blending based on the opposite regime

(Regime IVa in this paper), as shown in Equation 5.26. The systematic 2-D blending

approach extends the scope of blending methodology from characteristics depending

on one dimensionless group [34, 128, 130, 140, 207] to characteristics depending on

two dimensionless groups for the first time. Different from 1-D blending that has one

correction factor, 2-D blending usually involves three correction factors from the base

regime to the other three regimes. However, when Ĝl (Π1,Π2) in Equation 5.24 is

zero, 2-D blending is simplified to two correction factors, such as trailing length and

centerline cooling rate for a 2-D moving point heat source in [129]. The proposed 2-D

blending approach does not engage with the cases with more than four asymptotic
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regimes.

The novel 2-D blended expressions presented here offer immense value to industrial

practitioners. Since these expressions are explicit and closed-form, they can readily be

implemented in procedure development problems or codes and standards. The gen-

erality of these equations makes them particularly suitable to broad design problems

where empirical methods are neither feasible nor cost-effective. However, the ana-

lytical method and associated understanding may also be leveraged in combination

with experimental and numerical techniques. For example, consider a time-intensive

numerical simulation that has been previously performed with an assumed value for

the surface loss coefficient h. The correction factors in this work might be readily

applied to answer questions such as how the width of the weld pool and HAZ be

expected to change if this coefficient was doubled. It also creates the possibility to

perform fewer simulations with parameters optimizing for computational efficiency.

The same is true for empirical investigations. For example, consider a small-scale

experiment with forced surface-convection via flowing water, which is conducted for

a given material, substrate thickness and flow rate. The blended equations in this

work enable previously inaccessible insight as to whether these results will remain

valid or need adjustment if applied to field conditions that do not precisely match

those which were tested. This methodology is inherent in consideration of essential

variables for modern welding procedure design. The theory presented here, for the

first time, provides a fundamental basis to extend that philosophy to include the

effects of surface heat losses.

5.12 Conclusions

This work presents for the first time practical and rigorous expressions for correction

factor for the effects of surface heat losses of an isotherm half-width (ymax, Equa-

tion 5.46) and its location (xmax, Equation 5.57). Examples of processes, where these

expressions apply, include underwater processes, in-service welding, welding on a thin
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plate, and the calculation of residual stresses associated with moving heat sources.

The isotherm half-width and its location depends on two dimensionless groups:

the Rosenthal number and h∗; all cases are therefore divided into four asymptotic

regimes: Regime III and Regime IV without convection, Regime IIIa and Regime IVa

under intense convection. The proposed expressions have the form of an asymptotic

expression (in Regime III) multiplied by three correction factors.

A novel systematic approach is developed for the blending of two variables (Equa-

tion 5.26), which develops engineering expressions based on theoretical analysis rather

than empirical fitting. The 2-D blending of isotherm width and its location yields

global approximation within 9.6 % and 12 % of the exact numerical solution, respec-

tively.

The critical thickness to neglect effects of surface heat losses in the predictions

(error below 10 %) of width depends on the temperature considered. For a typical

welding process on steel with a convection coefficient of the order of 100 W/m2K,

surface heat losses are negligible for thickness above 0.07 mm for the width of melt

(with typical values of Ro ≈ 1). Also, for steel, if a temperature of 630◦C is considered

as representative of the 800 ◦C to 500 ◦C, the critical thickness is 2.4 mm. (with typical

Ro ≈ 10). For the calculations of residual stresses in steel, in which the characteristic

temperatures are of the order of 100 ◦C, the critical thickness is 23 mm (with typical

Ro ≈ 100).

Validation against published experimental results and simulations shows a close

agreement with the predictive equations (Figure 5.7).
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Appendix 5.A Asymptotic analysis in asymptotic

side Regime IV – IVa

The isotherm half-width y∗max and its location x∗
max are expressed implicitly relating

to a given temperature Tc:

T ∗
c = exp (−x∗

max)K0

(
r∗max

√
1 + h∗

)
(5.60)

∂T ∗

∂x∗

∣∣∣∣
x∗

max,y
∗

max

= 0 (5.61)

where r∗max =
√

x∗2
max + y∗2max. Equations 5.60 and 5.61 can be transformed to the

Rosenthal number, zeroth and first order modified Bessel function of the second kind:

exp (−x∗
max)K0

(
r∗max

√
1 + h∗

)
=

1

Ro
(5.62)

1 +
x∗
max

√
1 + h∗

r∗max

K1

(
r∗max

√
1 + h∗

)

K0

(
r∗max

√
1 + h∗

) = 0 (5.63)

According to Equation 5.63 and the denotation R = r∗max

√
1 + h∗, the isotherm

half-width y∗max and its location x∗
max can be expressed as:

x∗
max = − r∗maxK0(r∗max

√
1+h∗)

√
1+h∗K1(r∗max

√
1+h∗)

= − R
1+h∗

K0(R)
K1(R)

(5.64)

y∗max = r∗max

√
1− K2

0

(
r∗max

√
1 + h∗

)

(1 + h∗)K2
1

(
r∗max

√
1 + h∗

) (5.65)

=
R√

1 + h∗

√
1− K0 (R)2

(1 + h∗)K1 (R)2
(5.66)

In asymptotic side Regime IV – IVa, where Ro → 0 considering the isotherms close

to the heat source, the isotherm half-width y∗maxIV−IVa
≪ 1, its location x∗

maxIV−IVa
≪

1, r∗maxIV−IVa
≪ 1 and RIV−IVa ≪ 1. By replacing x∗

maxIV−IVa
with Equation 5.64,

asymptotic analysis of Equation 5.62 in asymptotic side Regime IV – IVa produces:

1

Ro
= −γ + ln (2)− ln (RIV−IVa) +O (RIV−IVa) (5.67)

Writing the R in asymptotic side Regime IV – IVa as:

RIV−IVa = 2 exp (− 1/Ro − γ) (1 + ǫ) (5.68)
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Solving RIV−IVa in Equation 5.67 is identical to finding the root of ǫ. To obtain

asymptotic expressions in asymptotic side Regime IV – IVa, asymptotic analysis is

performed assuming ǫ → 0. If the solution to ǫ assures the assumption, asymptotic

expression to R̂ is obtained; asymptotic expressions to ŷ∗max and x̂∗
max are then derived.

Bringing the denotation Equation 5.68 into Equation 5.67 yields:

O

[
exp

(
− 1

Ro

)]
= ln (1 + ǫ) (5.69)

Therefore, as Ro → 0 in asymptotic side Regime IV – IVa, the solution to Equa-

tion 5.67 is:

ǫ = −1 + exp
{
O
[
exp

(
− 1

Ro

)]}
= O

[
exp

(
− 1

Ro

)]
(5.70)

RIV−IVa = 2 exp
(
− 1

Ro
− γ

) {
1 +O

[
exp

(
− 1

Ro

)]}
(5.71)

Substituting Equation 5.71 into Equation 5.64 and Equation 5.66, the solutions to

isotherm half-width y∗maxIV−IVa
and its location x∗

maxIV−IVa
are:

x∗
maxIV−IVa

=
R2

IV−IVa

1 + h∗

[
γ + ln

(
1

2
RIV−IVa

)]
+O

(
R3

IV−IVa

)
(5.72)

= −4 exp
(
−2γ − 2

Ro

)

(1 + h∗) Ro
+O

[
1

Ro
exp

(
− 3

Ro

)]
(5.73)

y∗maxIV−IVa
=

RIV−IVa√
1 + h∗

+O
(
R2

IV−IVa

)
(5.74)

=
2 exp

(
−γ − 1

Ro

)
√
1 + h∗

+O

[
exp

(
− 2

Ro

)]
(5.75)

In asymptotic side Regime IV – IVa, the partial blending of isotherm half-width and

its location are:

x̂∗
maxIV−IVa

= −4 exp
(
−2γ − 2

Ro

)

(1 + h∗) Ro
(5.76)

ŷ∗maxIV−IVa
=

2 exp
(
−γ − 1

Ro

)
√
1 + h∗

(5.77)

In Regime IV as h∗ → 0, the asymptotic expressions for isotherm half-width and
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its location are

x̂∗
maxIV

= − 4

Ro
exp

(
−2γ − 2

Ro

)
(5.78)

ŷ∗maxIV
= 2 exp

(
− 1

Ro
− γ

)
(5.79)

In Regime IVa as h∗ → ∞, the asymptotic expressions for isotherm half-width and

its location are

x̂∗
maxIVa

= − 4

h∗Ro
exp

(
−2γ − 2

Ro

)
(5.80)

ŷ∗maxIVa
=

2√
h∗

exp

(
− 1

Ro
− γ

)
(5.81)

Appendix 5.B Asymptotic analysis in asymptotic

side Regime III – IIIa

In asymptotic side Regime III – IIIa, where Ro → ∞ considering isotherms away

from the heat source, RIII - IIIa → ∞. By replacing x∗
maxIII−IIIa

with Equation 5.64,

asymptotic analysis of Equation 5.62 in asymptotic side Regime III – IIIa produces:

1

Ro
= exp

(
−h∗ RIII - IIIa

1 + h∗ − 1

2 + 2h∗

)
·
[√

π

2RIII - IIIa
+O

(
1

RIII - IIIa

)]
(5.82)

Denote ω as:

ω = W

[
πh∗Ro2

exp
(

1
h∗+1

)
(h∗ + 1)

]
(5.83)

Write the R in the asymptotic side Regime III – IIIa as:

RIII - IIIa =
h∗ + 1

2h∗ ω(1 + ǫ) (5.84)

Equation 5.82 is can be written as:

1 = exp
(
−ǫω

2

) 1√
1 + ǫ

[
1 +O

(
1√

RIII - IIIa

)]
(5.85)

0 ≈ −ǫω

2
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2
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(
1√

RIII - IIIa

)
(5.86)
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The solution to ǫ is:

ǫ = O

[
1

1+ω

√
2h∗√

(h∗+1)ω

]
= O

[√
h∗

(h∗+1)ω

]
(5.87)

In asymptotic side Regime III – IIIa, partial blending results of isotherm half-width

and its location are:

R̂III - IIIa =
h∗ + 1

2h∗ ω (5.88)

x̂∗
maxIII−IIIa

= − 1

2h∗ω (5.89)

ŷ∗maxIII−IIIa
=

ω

2
√
h∗

√
1 +

2

(1 + h∗)ω
(5.90)

In Regime III as h∗ → 0, the asymptotic expressions for isotherm half-width and

its location are:

x̂∗
maxIII

= − π

2e
Ro2 (5.91)

ŷ∗maxIII
= 2 exp

(
− 1

Ro
− γ

)
(5.92)

In Regime IIIa as h∗ → ∞, the asymptotic expressions for isotherm half-width and

its location are:

x̂∗
maxIIIa

= − 1

2h∗W
(
πRo2

)
(5.93)

ŷ∗maxIIIa
=

1

2
√
h∗

W
(
πRo2

)
(5.94)
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Chapter 6

Isotherm half-width of Gaussian
moving heat sources on a thick
substrate

Abstract

This paper presents a systematic analysis of the maximum isotherm half-width under

a Gaussian distributed heat source on a semi-infinite solid. Dimensionless isotherm

half-width y∗max depends on two dimensionless groups: the Ry number representing

velocities of heat source, and normalized standard deviation of Gaussian distribution

σ∗ representing sizes of heat source. A new phenomenon is identified for the first

time: the presence of two local width maxima in an isotherm under some parameter

combinations. Correction factors for maximum isotherm half-width are determined in

closed-form for the first time over a wide range of σ∗ and Ry. The methodology em-

ployed consists of dimensional analysis, asymptotic analysis, and blending techniques.

The maximum error of the proposed equations is within 6.1 % from the analytical

solution for Ry ≤ 1000 and σ∗/σ̂∗+
max(Ry) ≤ 0.9, where σ̂∗+

max(Ry) is the maximum

heat source size for certain Ry. The expressions obtained can be calculated using a

calculator or a basic spreadsheet and are useful for engineers. Comparisons of the

proposed equations are conducted with measurements from literatures.
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Table 6.1: Variables used in the paper with the units and
description

Variable Unit Description

Im 1 Constant Im = 1.280

k Wm−1 K−1 Thermal conductivity of the substrate

q W Power absorbed by substrate

Ry 1 Rykalin number

T K Temperature

T0 K Initial temperature or preheat

Tc K Temperature of interest

Tmax,c K Maximum temperature at centerline

U m s−1 Travel speed of the moving heat source

x, y, z m Cartesian coordinates

xmax,c m Location of maximum temperature at center-
line

xmax m Location of maximum isotherm half-width

ymax m Maximum isotherm half-width

Greek symbols

α m2 s−1 Thermal diffusivity of the substrate

χ 1 χ = x∗ − σ∗2

ρ 1 ρ =
√

(x∗ − σ∗2)2 + y∗2

σ m Standard deviation of a Gaussian function

σmax m Maximum heat source distribution parame-
ter

Superscripts

∗ Dimensionless value

̂ Asymptotic behavior

+ Improvement over asymptotic approximation

Continued on next page
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Table 6.1 – continued from previous page

Variable Unit Description

Subscripts

I Regime I (concentrated and fast heat
sources)

II Regime II (concentrated and slow heat
sources)

V RegVme V (wide and fast heat sources)

VI Regime VI (wide and slow heat sources)

6.1 Introduction

The maximum isotherm half-width at a temperature of interest is one of the most

critical dimension characteristics in investigations of moving heat source problems.

For example, maximum isotherm half-widths of melting temperature determine the

size of the melt pool and melting efficiencies for fusion welding processes. Maximum

isotherm half-widths of phase transformation temperatures, such as Ac1 for carbon

steel, determines sizes of the heat-affected zone or area of surface hardening.

Prediction of the maximum isotherm half-width based on the classic point heat

source model has been proposed in previous investigations for thick plates [140, 207]

and thin plates [130], which is a reasonable assumption in considering isotherms away

from the heat source. However, for isotherms near the heat source, the distribution

and size of heat source can not be neglected, that drives development of moving dis-

tributed heat source models [39, 74, 150, 212]. The moving Gaussian heat source is

one of the most widely applied models [39, 53], that a good representation of heat

sources like electronic arcs [113], laser beam [65]. It describes a Gaussian distributed

heat source moving on the surface of the workpiece, avoiding the problem of singu-

larity for the temperature field induced by a point heat source. It has been proved

that a moving Gaussian source can predict important thermal characteristics such as
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isotherm shape, cooling rate and peak temperature with high accuracy [39, 196, 209].

There have been many studies of the maximum isotherm half-width with varying

emphases on experiments, numerical simulations and analytical modelling. Based on

Rosenthal’s thick plate solution, an approximation of fusion zone width was obtained

by regression of experimental data for bead-on-plate welds with a limited applicable

range [155]. Empirical equations for HAZ width or fusion width have been proposed as

a function of interactive processing variables by multiple linear regression [5, 18, 98].

Despite the simplicity, empirical equations are valid for a limited range of parameters

and can hardly be extrapolated to conditions beyond which they were developed.

Temperature field in a two-dimensional plate was solved using a finite difference

method, and the isotherm width at the melting temperature was correlated to the pro-

cess variables [160]. Thermal history and shape of isotherms under a double ellipsoid

model have been calculated by the finite element method for thick workpieces [74].

A computer model for three-dimensional heat flow under a Gaussian surface source

was developed using the finite element method to predict the configuration of the

fusion zone and the resultant grain structure [110]. Sophisticated numerical models

can take complicated geometry and multiple physics such as latent heat into account.

However, the requirement of specialized software and computational skills restricts

the applicability of simulations in industrial practice. Furthermore, simulation re-

sults can seldom be generalized as explicit and intuitively understood design rules

amenable to use by practitioners.

A simple estimation of fusion line width was reported by Wells for single-run butt

welds on thin plates [213], but it is only valid under very limited conditions. Asymp-

totes of fusion width for large Peclet and small Peclet numbers have been derived

from Rosenthal’s 2D solution [190] but failed to obtain an explicit solution valid for

intermediate Peclet numbers. The analytical temperature field of a distributed heat

source typically involves improper integrals or summations that require a careful com-

putational implementation to extract a solution for the maximum isotherm width [39,
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53, 216].

The objective of this paper is to present a general and easily applicable solution

that would predict with high accuracy the maximum isotherm width at a temperature

of interest when given operational parameters and thermal properties of the substrate

based on previous work on moving point heat source model [140]. A moving Gaussian

source model was used as the theoretical basis. A correction factor for the heat

distribution parameter was obtained using the 2D blending technique to improve

predictions derived from Rosenthal’s solutions. The obtained explicit equation for

the maximum isotherm width is compared against the Rosenthal calculations and

experimental measurements from the literature.

6.2 Moving Gaussian heat source

The moving Gaussian heat source model refers to a constant heat source obeying

Gaussian distribution moving at a constant speed on a plate that is thick and wide

enough to ignore edge effects. The temperature distribution after a given time interval

is solved by Eagar and Tsai using Green’s function with average substrate’s thermal

properties [53]:

T = T0 +
qα

1
2

2kπ
3

2

∫ t0

0

τ−
1
2

2ατ + σ2
exp

(
−x2 + 2xτU + U2τ 2 + y2

4ατ + 2σ2
− z2

4ατ

)
dτ (6.1)

where x, y, z are coordinates relative to the center of the heat source, T is the

temperature field and T0 is the initial temperature, q and U are the rate and velocity

of the heat source, α and k are thermal diffusivity and conductivity of the substrate,

σ is the standard deviation of Gaussian distribution, t0 is the time interval of the

heat source motion. As t0 increases to infinity, the term of time is omitted and the

temperature field approach pseudo-steady state.

Normalization reduces the Equation 6.1 to dimensionless form, independent of
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specific operating parameters and material properties, with:

T ∗ =
4πkα (T − T0)

qU
(6.2)

x∗ =
Ux

2α
(6.3)

y∗ =
Uy

2α
(6.4)

z∗ =
Uz

2α
(6.5)

σ∗ =
Uσ

2α
(6.6)

where ∗ indicates dimensionless numbers.

The dimensionless pseudo-steady temperature field on the top-surface (z∗ = 0) is

written with Equation 6.2 to 6.6 as:

T ∗ =
1√
2π

∫ ∞

0

τ−
1
2

τ + σ∗2 exp

(
−x∗2 + 2τ ∗x∗ + τ ∗2 + y∗2

2τ + 2σ∗2

)
dτ (6.7)

With variable substitution

t = arctan

(√
τ

σ∗

)
(6.8)

the improper bounds of the integral in the normalized temperature field, Equation 6.7,

can be avoided:

T ∗ =
2√
2πσ∗

∫ π
2

0

exp

{
−σ∗2

2

[(
x∗

σ∗2 − 1

)
cos t+ sec t

]2
− y∗2 cos2 t

2σ∗2

}
dt (6.9)

The integrand has one peak value located at:

t = arccos


 σ∗

4

√
(σ∗2 − x∗)2 + y∗2


 (6.10)

By defining variable χ = x∗ − σ∗2, ρ =
√
(σ∗2 − x∗)2 + y∗2, the temperature field

can be reduced to:

T ∗ = exp(−χ− ρ)

∫ π
2

0
exp

[
−1

2

(
cos t
σ∗

ρ− σ∗

cos t

)2]
dt

√
π/2σ∗

(6.11)
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The temperature field is analogous to the temperature field of moving point heat

source (the term exp(−χ− ρ)) as discussed in [140, 207].

Equations 6.11 and 6.7 contain four degrees of freedom. With the normalized

temperature field function and the constraints for maximum width, ∂T ∗/∂x∗ = 0, the

investigation of isotherm half-width leaves two degrees-of-freedom. One is captured

by Ry number that has been discussed in detail in [140, 207]:

Ry =
qU

4πkα(Tc − T0)
(6.12)

The remaining degree-of-freedom is σ∗ (Equation 6.6) to represent the diameter of

Gaussian heat sources, categorizing the heat sources into concentrated and wide cases.

The judgement of concentrated or wide heat source depends not only on the value

of σ∗, but also on the temperature of interest, i.e., Ry number. The maximum heat

source size σ∗
max for a given Ry has been studied in [208]. A variable σ∗/σ∗

max is defined

to address the moving Gaussian heat source problems in a better way.

The Ry number ranges from zero to infinity, and the values of σ∗ ranges from zero to

one. Four asymptotic regimes can be defined for combinations of Ry and σ∗ describing

four types of heat sources, which are: Regime I for Ry → ∞, σ∗/σ∗
max → 0 (fast and

concentrated), Regime II for Ry → 0, σ∗/σ∗
max → 0 (slow and concentrated), Regime

V for Ry → ∞, σ∗/σ∗
max → 1 (fast and wide), Regime VI for Ry → 0, σ∗/σ∗

max → 1

(slow and wide). The regimes are illustrated in Figure 6.4.

To deal with characteristic values depending on two variables, a systematic 2-

D blending method is proposed in previous research in the investigations of two-

dimensional heat flow under intense heat losses [127, 129]. The whole domain for 2-D

blending involves four asymptotic regimes, where both variables tend to their bounds,

and four asymptotic side regimes between neighbor asymptotic regimes, where one

of the variables tends to its bounds. When all asymptotic side regimes converges to

dependence on one variable and side partial blending can be achieved either with 1-D

blending or asymptotic analysis directly, the proposed 2-D blending method produces
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global approximations covering the whole domain of two dimensionless groups. In this

paper, side partial blending results can be obtained in asymptotic side regimes I – II

(σ∗/σ∗
max → 0), II – VI (Ry → 0), V – VI (σ∗/σ∗

max → 1). However, in the asymptotic

side Regime I – V (Ry → ∞), isotherms with two peaks might occur and this paper

did not manage to find corresponding side partial blending. The problem can be

treated by considering part of whole domain. For example, the blending result of

isotherm half-width is researched for Ry ≤ 1000 in this work.

In the following sections, the cases of isotherms with two local maximum width

are studied and the corresponding region in process map is illustrated; the asymp-

totic expressions for four asymptotic regimes are derived; the side partial blending

results are obtained with 1-D blending; the 2-D blending results is formulated and

the engineering expressions for isotherm half-width are developed.

6.3 Isotherms with two local width maxima

Study about the moving point heat source model on thick plate [140] has shown that

the normalized width of isotherm y∗max depends only on one dimensionless group Ry

number, i.e. the value of y∗max can be determined solely for any given Ry number.

However, isotherms with two peaks, referring to the cases of two local maximum

half-widths y∗max for one isotherm, can be found for some Ry and σ∗ numbers. An

example of the isotherm with two peaks is the isotherm of Ry = 110 under Gaussian

heat source of normalized distribution parameter σ∗ = 4 as illustrated in Figure 6.1.

The special situations of two-peak isotherms can be explained by alternating domi-

nant mechanisms in different regions. In Regime I, in which the heat source moves fast

and the distribution parameter of the heat source could be neglected (σ∗/σ∗
max → 0,

Ry → ∞), the heat advection due to the relative motion between the heat source

and substrate dominates where the isotherms are far away from the heat source. In

Regime II, in which the heat source moves slowly and the distribution parameter of

the heat source is neglected (σ∗/σ∗
max → 0, Ry → 0), the heat conduction in the near
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field of heat source is the dominant phenomenon. In regimes V and VI, where the

distribution parameter of heat source is the critical factor to the temperature field

around the maximum centerline temperature (σ∗/σ∗
max → 1), the distribution heat

source deposited on the substrate is the primary phenomenon. Between regime I

and V, when the heat source is large and moves fast (Ry → ∞ and σ∗ → ∞), the

isotherms with two peaks can be found. These isotherms can be interpreted with

caution that one isotherm peak is in the near field of heat source and is dominated

by direct energy depositions from the Gaussian heat source; the other isotherm peak

locates at far field of heat source and is dominated by heat advection.

-40 -30 -20 -10
9.5

10

10.5

x∗

y
∗

Isotherm Ry = 110, σ∗ = 4

Figure 6.1: Example of the isotherm with two peaks for Ry = 110 and σ∗ = 4.

By substituting Equation 6.35 into Equation 6.11, ρmax can be solved for maxima

and minima of isotherms. For a given normalized Gaussian parameter σ∗, ρmax is a

function of Ry; the isotherm half-width y∗max and its location x∗
max can be calculated by

the value of ρmax with equation 6.38 and 6.36 (the isotherm minima is also calculated

as width y∗max in this method). For a σ∗ where all isotherms have only one peak, the
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y∗max increase with ρmax; for a σ∗ where the isotherms with two peaks exist, there is

a range of ρmax in which y∗max decreasing with ρmax. The criterion can, therefore, be

expressed for the existence of isotherms with two peaks:

For a given σ∗, ∃ ρmax,
∂y∗max

∂ρmax
< 0 (6.13)

Because of the definition of ρmax =
√

y∗2max + χ2
max, the criterion, Equation 6.13, can

be rewritten as:

∂y∗max

∂ρmax
=

∂
√

ρ2max − χ2
max

∂ρmax
=

2ρmax − 2χmax(
∂χmax

∂ρmax
)

2
√
ρ2max − χ2

max

< 0 (6.14)

Thus, the criterion is that for a σ∗, a ρmax exist such that:

∂(χ2
max)

∂(ρ2max)
> 1 (6.15)

A function is constructed to further formulate the criterion (Equation 6.15), and

derivatives with respect to ρ2max:

I(n) =
∫ π

2

0

cosn t · exp
{
−1

2

[(
cos t

σ∗

)2

ρ2max +

(
σ∗

cos t

)2
]}

dt (6.16)

A recursive relationship is established on the derivatives of function I(n) with respect

to ρ2max:

∂I (n)

∂ (ρ2max)
=

∫ π
2

0

cosn+2 t
2σ∗2 · exp

[
−1

2

(
ρ2max cos2 t

σ∗2 + σ∗2

cos2 t

)]
dt =

I (n + 2)

2σ∗2 (6.17)

Equation 6.35 can be written based on the constructed functions I(n):

χmax = −σ∗2I(0)
I(2) (6.18)

The derivatives of χ2
max with respect to ρ2max in the criterion, Equation 6.15, can be

formulated according to equations 6.17 and 6.18:

∂(χ2
max)

∂(ρ2max)
= 2χmax

∂χmax

∂(ρ2max)
= σ∗2I(0) · I(4)I(0)− I(2)2

I(2)3 (6.19)

∂(χ2
max)/∂(ρ

2
max) is calculated with Equation 6.19 for some σ∗ from 1 to 10, as illus-

trated in Figure 6.2.
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Figure 6.2: The criterion function ∂(χ2
max)/∂(ρ

2
max) changes with ρmax for σ∗ = 1 ∼

10. The critical value of normalized Gaussian standard deviation satisfying criterion
Equation 6.15 is σ∗ = 2.893.

The criterion for the existence of isotherms with two peak, Equation 6.15, can be

rewritten for a given σ∗:

max
ρmax

[
σ∗2I (0)

I (4)I (0)− I (2)2

I (2)3

]
> 1 (6.20)

As shown in Figure 6.2, the critical value of σ∗ is 2.893, larger than which isotherms

with two peaks exist, and the corresponding critical value of Ry number is 58.20,

larger than which there are some values of σ∗ induce an isotherm Ry having two

peaks. The combinations of Ry and σ∗/σ∗
max standing for isotherms with two maxima

are illustrated in the shaded region in Figure 6.3. For any Ry and σ∗/σ∗
max in the

shaded region, two values of isotherm half-width can be calculated, and the larger

value is used in 2-D blending of y∗max.

For example, a heat source of 4000W moves at a velocity U = 40mm/s on Ti-
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6Al-4V, assuming thermal conductivity is k ≈ 13W/mK and thermal diffusivity

α ≈ 5 × 10−6m2/s. The initial temperature is 25 ◦C. In considering the isotherm of

1000 ◦C relating to the heat affected zone, the corresponding Ry number is 402 and

the normalized maximum heat source size σ∗
max is 55. The range of σ∗/σ∗

max results

in two-peak isotherms is 0.11 - 0.14, where the minimum value of heat source size is

σ∗ = 6.2 and σ = 1.6 mm; the maximum critical heat source size is σ∗ = 8.1 and

σ = 2.0 mm. In considering the isotherm of 200 ◦C relating to thermal residual stress,

the corresponding Ry number is 2239 and the normalized maximum heat source size

σ∗
max is 173. The range of σ

∗/σ∗
max results in two-peak isotherms is 0.057 - 0.11, where

the minimum value of heat source size is σ∗ = 9.9 and σ = 2.5 mm; the maximum

critical heat source size is σ∗ = 19 and σ = 4.8 mm. On the other hand, for a moving

heat source of size σ = 2 mm corresponding to σ∗ = 8, the isotherms involves two

peaks for Ry numbers ranging from 396 to 952, or for temperature ranging from 436

◦C to 1014 ◦C.

σ∗/σ∗
max

R
y

Figure 6.3: Process map for combinations of Ry and σ∗/σ∗
max. In the shaded region,

the isotherms have two peaks.

210



6.4 Asymptotic analysis of isotherm half-width

The asymptotic analysis of the normalized temperature field gives asymptotic expres-

sions in four asymptotic regimes.

In regimes I and II, where σ∗/σ∗
max → 0 and the Gaussian heat source can be

treated as point heat source, the asymptotic expressions are obtained in previous

work [140]:

ŷ∗max,I =

√
2

e
Ry (6.21)

ŷ∗max,II = Ry (6.22)

In Regime V, where Ry → ∞ and σ∗/σ∗
max → 1 the isotherms are close to the

heat source, the asymptotic analysis around the centerline maximum temperature is

derived in Appendix Equation 6.61 as:

ŷ∗max,V =
√
3

(√
2

π
Im

) 2
3

Ry
2
3

(
σ∗

σ∗
max

)√
ln

(
σ∗
max

σ∗

)
(6.23)

In Regime VI, where Ry → 0 and σ∗/σ∗
max → 1 the isotherms are close to the

heat source, the asymptotic analysis around the centerline maximum temperature is

derived in Appendix Equation 6.48 as:

ŷ∗max,VI =
√
2πRy

(
σ∗

σ∗
max

)√
ln

(
σ∗
max

σ∗

)
(6.24)

6.5 Blending of isotherm half-width y∗max

6.5.1 Partial blending

Based on the asymptotic expressions for isotherm half-with, equations 6.21 to 6.24,

side partial blending results are obtained along the side regimes I – II, II – VI, V – VI

with 1-D blending. In the side Regime I –V, the larger asymptotic value is chosen to

predict the isotherm half-width.
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In side Regime I – II, where σ∗/σ∗
max tends to zero and the heat source can be

treated as point heat source, the isotherm half-width y∗max is independent on σ∗. Side

partial blending side Regime I – II have been proposed in [140]:

ŷ∗+max,I−II = Ry

[
1 +

(√
2

eRy

)n]1/n
(6.25)

where the optimal blending parameter is n = −1.731 with maximum error 0.72 %.

In side Regime II – VI, where Ry tends to zero considering the isotherms around

the heat source, the asymptotic behavior of isotherm half-width y∗max changes with

σ∗/σ∗
max. Side partial blending along the side Regime II – VI can be derived by 1-D

blending on σ∗/σ∗
max between asymptotic Equation 6.22 (multiplied by exp

[
a (σ∗/σ∗

max)
b
]

to force crossing as discussed in [128]) and Equation 6.24:

ŷ∗+max,II−VI

Ry
=

{
exp

[
a

(
σ∗

σ∗
max

)b
]n

+

[
√
2π

σ∗

σ∗
max

√
ln

(
σ∗
max

σ∗

)]n}1/n

(6.26)

where a = −1.560, b = 4.463, n = 4.112 with maximum error of 0.27 %.

In side Regime V – VI, where σ∗/σ∗
max → 1 considering isotherms under the heat

source, the asymptotic behavior of y∗max changes with Ry. Side partial blending along

the side Regime V – VI can be derived by 1-D blending on Ry number between

asymptotic Equation 6.23 and Equation 6.24:

ŷ∗+max,V−VI

σ∗

σ∗

max

√
ln
(σ∗

max

σ∗

) =






√3

(√
2

π
ImRy

) 2
3



n

+
(√

2πRy
)n





1/n

(6.27)

where n = −3.055 resulting in a maximum error within 0.38 %.

In side Regime I – V, where Ry tends to infinity, the isotherms with two peaks

occur. The isotherm half-widths in this side regime do not converge to a 1-D problem.

This paper did not obtain partial blending on side Regime I – V, which results in 2-D

blending has an upper bound for Ry (Ry ≤ 1000 herein).

6.5.2 2-D blending

The asymptotics in four asymptotic regimes and side partial blending in side regimes

are proposed from Equation 6.21 to Equation 6.27. The expressions coincide with
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exact solutions calculated from the analytical model (Equation 6.7) in their corre-

sponding regimes, but there is a lack of equation covering the whole domain. The

formulae for the full domain is carried out with the 2-D blending proposed in [127] by

combining the asymptotics and partial blending results. The parameters of partial

blending results in Equation 6.25 to 6.27 are adjusted to improve the accuracy of the

full domain of 2-D blending.

The 2-D blending of isotherm half-width, y∗max, can be developed based on Regime

II with three correction factors for Ry ≤ 1000 and σ∗/σ̂∗+
max ≤ 0.9

ŷ∗max = Ry · fII−I · fII−VI · g (6.28)

The blending equation for maximum heat source size to reach the given tempera-

ture T ∗
c = 1/Ry is studied in [208] as:

σ̂∗
max =

[(
1.014Ry2/3

)n

+
(√

π/2Ry
)n]1/n

(6.29)

where n = −2.644.

The correction factor, fII−I, is for side Regime I – II, depending only on Ry:

fII−I =

[
1 +

(√
2

eRy

)n]1/n
(6.30)

where n = −1.791.

The correction factor, fII−VI, is for side Regime II – VI, depending only on σ∗/σ̂∗+
max:

fII−VI =

{
exp

[
a n

(
σ∗

σ̂∗+
max

)b
]
+

[
√
2π

(
σ∗

σ̂∗+
max

)√
ln

(
σ̂∗+
max

σ∗

)]n}1/n

(6.31)

where n = 4.533, a = −3.603, b = 13.09.

The correction factor, g, is for the opposite corner, depending on both Ry and

σ∗/σ̂∗+
max:

g = 1 +
(
0.8170Ry

1
6 − 1

)(
1 + a1Ry

b1
)n1

[
1 + a2

(
σ∗

σ̂∗+
max

)b2
]n2

(6.32)
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Figure 6.4: The map of 2-D blending errors (equations 6.28 to 6.32) and asymptotic
regimes for isotherm half-width y∗max for Ry ≤ 1000 and σ∗/σ̂∗+

max ≤ 0.9. The four
asymptotic regimes can be sliced according to a given relative error (dash lines indicate
10 % of error for asymptotic expressions) or the matching of the two asymptotic
expressions in side regimes (side regime asymptotics equal on side lines).

where the constant
√
3(
√
2/πIm)

2/3/(2
√
π/e) ≈ 0.8170, and the blending parameters

are where a1 = 3.859, b1 = −0.5737, n1 = −0.8034, a2 = 0.01703, b2 = −2.202,

n2 = −2.226. The maximum error is 6.1 %, as illustrated in Figure 6.4.

The engineering expressions for isotherm half-width y∗max can be delivered in di-

mensional form:

ŷmax =
1

2π

q

k(Tc − T0)
· fII−I · fII−VI · g (6.33)

The correction factors fII−I, fII−VI, g, are equations 6.30 to 6.32. The engineering

expressions result in a maximum error of 6.1 % for Ry ≤ 1000 and σ∗/σ̂∗+
max ≤ 0.9.

6.6 Validation

Prediction of the maximum isotherm half-width calculated by equations 6.28 to 6.32

is validated with experimental measurements collected from the literature for various
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materials, including 4145MOD steel, Ti6Al4V, alumina-based refractory, and 316L

stainless steel [123, 220, 221, 225].

Although the expressions proposed for isotherm half-widths applies to general mov-

ing heat source problems, laser processing of materials is the primary data used for

validation because reliable measurements or reasonable estimation of laser beam ra-

dius are readily to access. The collected measurements were normalized using equa-

tions 6.2 to 6.6 into a dimensionless form such that data of different processes can

be plotted and compared in a single graph. The characteristic temperature, Tc in

Equation 6.12 corresponds to the melting point of the substrate [123, 220, 221] or the

temperature of the heat affected zone [220, 225]. The preheat temperature T0 were

provided in [220, 225] and estimated as 20◦C for [123, 221].

Thermal properties are listed in the original papers in all cases, except for [221],

where an effective thermal conductivity was obtained using temperature-dependent

data from software JMatPro v11. Values of laser absorptivity are provided in the

original papers, except for [123] where an estimation of 0.6 was taken to represent

the absorption of alumina-based refractory of CO2 laser radiation according to liter-

ature [119].

Measured isotherm half-width is compared with the point heat source prediction

(Equations 6.28 and 6.30 without Equation 6.31 and 6.32) in Figure 6.5 and the

Gaussian heat source prediction (Equations 6.28 to 6.32) in Figure 6.6. It is obvious

that the Gaussian source prediction has a much better agreement with collected

experimental data, and there is no obvious bias. The correction factors for the heat

distribution parameter can significantly improve the underestimation by point source

solution. Despite the large simplifications in the moving Gaussian surface source

model, the obtained expression can still predict the maximum isotherm half-width

using parameters known before experiments with high accuracy, at least as accurate

as measurements.

Secondary phenomena neglected in the model, such as surface heat loss, latent heat
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Figure 6.5: Validation of Equations 6.28 and 6.30 with collected published data,
neglecting correction factors for size of heat source, equations 6.31 and 6.32.

associated with phase transformations, and fluid flow in the molten pool, contribute

to the scatter in the comparisons. Other sources of error include uncertainties in

the laser absorptivity and constants used for thermal properties and errors in the

measurements.

6.7 Example of application

The laser cladding test performed by Wood [220] is used here as an example of

application. The power source was a 3980 W laser in TEM00 mode. The distribution

parameter of the laser beam was estimated as 1.62 mm. The test was performed on

a 20.3 mm-thick 4145-MOD steel substrate. Travel speed and preheat temperature

were measured as 38.18 mm/s and 267 ◦C, respectively. A laser absorptivity of 0.3

was taken from literature [180]. Effective thermophysical properties are provided as:

k = 32.52W/mK and α = 5.73× 10−6m2/s [220]. The measured melt width was 1.23
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Figure 6.6: Validation of Equations 6.28 and 6.32 with collected published data,
taking account correction factors for size of heat source.

mm.

For the case considered, Ry = 16.9 (Equation 6.12), dimensionless heat distribution

parameter is σ∗ = 5.40 (Equation 6.6), the dimensionless maximum feasible heat

distribution parameter is σ̂∗+
max = 6.56 (Equation 6.29), yielding a ratio of σ∗/σ̂∗+

max =

0.822. Predicted melt half-width by the point source solution is ŷ+max,point = 1.02 mm,

indicating a relative error of the estimation of -19 % compared to the measured half-

width. As Ry ≤ 1000 and σ∗/σ̂∗+
max ≤ 0.9, Equation 6.31 and 6.32 can be applied to

obtain correction factors for the heat distribution parameter: fII−VI(Ry, σ
∗) = 0.988

and g(Ry, σ∗) = 1.18. Prediction by the Gaussian model is given by ŷ+max,Gaussian =

ŷ+max,point ·fII−VI(Ry, σ
∗) · g(Ry, σ∗) = 1.19 mm, and it has an error of 3.3 % compared

to the measurement. This is case of calculation, and the accuracy should not be

expected for all problems.
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6.8 Discussion

Novel expressions in closed-form for maximum isotherm half-width, ymax, are obtained

under moving Gaussian heat source using a systematic method of asymptotic analysis

and blending, based on previous investigation on point heat source problems [140].

Correction factors for the size of heat sources are obtained for the first time to improve

the prediction of half-width for isotherms close to heat source. With an introduction of

heat distribution size parameter σ (the standard deviation of Gaussian function), the

singularity in temperature field caused by point heat source assumption is avoided,

and the prediction of isotherm half-width is significantly improved without much

complexity, as indicated in Figure 6.5 and 6.6. The correction factors of the heat

distribution are presented to extend the usefulness of the point heat source solution

to a Gaussian distributed heat source. When σ tends to zero, the correction factors,

Equation 6.31 and 6.32, tend to one and the engineering expressions coincide with

the point heat source solution in [140].

Division of Regime I, II and Regime V, VI reflects the dominance of two heat

transfer mechanisms: heat directly absorbed from the Gaussian surface heat source

and heat conduction and advection in the substrate. For a fixed heat source power,

the maximum isotherm half-width has different dependence on the heat distribution

parameter depending on the distance between the location of interest to the heat

source. In the near-field region where the heat absorbed directly from the Gaus-

sian source dominates (Regime V and VI), the maximum isotherm half-width ymax

increases with heat distribution parameter σ to a maximum at σ ≈ 0.5 ∼ 0.6σmax

and then decreases to zero until σ = σmax. In the far-field region where conduction

and advection dominate (Regime I and II), the maximum isotherm half-width always

increases with heat source size parameter. The balance between the heat from the

Gaussian source and conduction in the solid can also explain the isotherms with two

peaks, which occurs in the transition region from Regime I (far-field) to Regime V
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(near-field). Heat absorbed directly from the Gaussian source generates the first peak

in the isotherm half-width, while the heat transferred by conduction in the substrate

yields the second peak.

The convectional 1-D blending technique has been extended to a 2-D domain in

a way consistent with previous publication [127]. The obtained expression maintains

the asymptotic behaviours in all regimes, and it can provide accurate prediction in

the intermediate regimes with optimized blending constants. When partial blending

results can be obtained in side regimes, the 2-D blending is valid in the whole domain.

However, because half-width does not converge to dependence on one parameter in

side Regime I – V as for Ry → ∞, partial blending can not be derived and the

2-D blending result fails to cover the whole domain, which is valid only for Ry ≤

1000. In side Regime V – VI, the asymptotics, Equation 6.23 and 6.24, involves a

logarithm term ln(σ∗
max/σ

∗), where a small error in σ∗
max could result in a huge error in

approximation. In this paper, σ∗
max is estimated by Equation 6.29, which will generate

a large error when σ∗/σ∗
max → 1. The 2-D blending is valid only for σ∗/σ̂∗+

max ≤ 0.9.

6.9 Conclusions

The paper presents practical, accurate expressions in closed-form to predict the max-

imum isotherm half-width under a moving Gaussian surface heat source. The dimen-

sionless form of maximum isotherm half-width, y∗max, depends on two dimensionless

groups: Rykalin number (Ry) and σ∗/σ∗
max(Ry), where σ∗

max(Ry) is a function of

Ry calculating the maximum heat source size to reach the temperature of interest

T ∗
c = 1/Ry. The full domain is divided into four regimes: Regime I (large Ry and

σ∗/σ∗
max → 0), Regime II (small Ry and σ∗/σ∗

max → 0), Regime V (large Ry and

σ∗/σ∗
max → 1), and Regime VI (small Ry and σ∗/σ∗

max → 1).

The expressions to estimate the maximum isotherm half-width are presented in

from of a simple formula multiplied by three correction factors written as scaling laws

(Equation 6.28 to 6.32), and dimensional engineering expressions (Equation 6.33).
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The correction factors consists of the correction factor for moving point heat source,

Equation 6.30, and correction factors for the size of heat source (Equation 6.31

and 6.32). The correction factors are obtained with a systematic methodology of

dimensional analysis, asymptotic analysis and 2-D blending.

The engineering expressions, derived from 2-D blending, matches the asymptotic

behaviours in all four regimes exactly. The maximum error at intermediate regimes

compared to the analytical model is smaller than 6.1 % for Ry ≤ 1000, and σ∗/σ̂∗+
max ≤

0.9. Although the blending result, Equation 6.28 to 6.32, inherits all limitations of

the moving Gaussian heat source model, it still can reasonably predict the maximum

isotherm half-width over a wide range of processes and materials, as indicated in the

validation Figure 6.6.

Derived from fundamental principles of heat transfer, the expressions proposed can

be applied to manufacturing processes other than laser processing. The expressions

in closed-form can be easily calculated by a calculator or a single spreadsheet or

embedded into larger metamodels.
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Appendix 6.A Expressions for isotherm half-width

and its location

According to the definition of isotherm half-width,

∂T ∗

∂x∗

∣∣∣∣
x∗

max,y
∗

max

=
2 exp (−χmax − ρmax)√

2πσ∗3
·

∫ π
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−σ∗2 +

(
σ∗2 − χmax

)
cos2 t

]
exp

[
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2

(
cos t
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cos t

)2
]
dt = 0 (6.34)

Thus, χmax depends only on ρmax:

χmax =
−σ∗2 ∫ π

2

0
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cos t
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cos t

)2]
dt

(6.35)

The isotherm half-width y∗max and its location x∗
max can be calculated:

x∗
max = σ∗2 −

σ∗2 ∫ π
2

0
exp

[
−1

2

(
cos t
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)2]
dt
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y∗max =
√
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=

√√√√√√ρ2max −





σ∗2
∫ π

2

0
exp

[
−1

2

(
cos t
σ∗

ρmax − σ∗

cos t

)2]
dt

∫ π
2

0
cos2 t exp

[
−1

2

(
cos t
σ∗

ρmax − σ∗

cos t

)2]
dt





2

(6.38)

Appendix 6.B Regime VI, σ∗ → σ∗
max → 0, Ry → 0

For cases σ∗ tending to σ∗
max, the isotherm of the given temperature T ∗

c surrounds the

maximum temperature T ∗
max,c locating x∗

max,c at centerline. The maximum tempera-

ture and its location are studied in previous work [208].

At the isotherm half-width y∗max = 0 + dy∗, and its location x∗
max = x∗

max,c − dx∗,

where dx∗, dy∗ → 0, the temperature gradient along x-direction equals zero. In first

order Taylor expansion, the thermal gradient ∂T ∗/∂x∗ = T ∗
x∗ (x∗

max, y
∗
max) is written

as:

T ∗
x∗ (x∗

max, y
∗
max) = 0 (6.39)

≈ T ∗
x∗

(
x∗
max,c, 0

)
+ T ∗

x∗x∗

(
x∗
max,c, 0

)
dx∗ + T ∗

x∗y∗

(
x∗
max,c, 0

)
dy∗ (6.40)
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where T ∗
x∗

(
x∗
max,c, 0

)
= 0 according to definition of maximum temperature, and

T ∗
x∗y∗

(
x∗
max,c, 0

)
= 0 because the temperature function only involves the term of the

second order (y∗2). Therefore, the increment of isotherm half-width location dx∗ ≈ 0,

and the location of isotherm half-width can be assumed as the location of centerline

temperature

x∗
max ≈ x∗

max,c (6.41)

For σ∗
max → 0, the maximum temperature at Regime VI is T ∗

max,c =
√

π
2
σ∗−1

and the location is x∗
max,c = −σ∗2 [208]. The location of isotherm half-width x∗

max =

x∗
max,c = −σ∗2 according to Equation 6.41. The temperature near the centerline

maximum temperature is expanded in taylor series:
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2πσ∗3

π

4
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= T ∗
max,c ·

(
1− dy∗2

4σ∗2

)
(6.45)

Therefore, the isotherm half-width at Regime VI can be solved with Equation 6.45:

ŷ∗max,VI ≈ dy∗ = 2σ∗

√
1− T ∗

T ∗
max,c

(6.46)

Because of the relationship between maximum temperature and heat source diam-

eters at Regime VI [208], T ∗
max,c =

√
π
2
σ∗−1, the asymptotic Equation 6.46 can be
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written as function of Ry and σ∗/σ∗
max:

ŷ∗max,VI = 2σ∗

√
ln

(
σ∗
max

σ∗

)
(6.47)

=
√
2πRy

(
σ∗

σ∗
max

)√
ln
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max

σ∗

)
(6.48)

Appendix 6.C Regime V: σ∗ → σ∗
max → ∞, Ry → ∞

In Regime V, when σ∗ → σ∗
max and σ∗

max → ∞, the maximum temperature is T ∗
max,c =√

2
π
Im σ∗−1.5 and its location x∗

max,c = −0.7650σ∗ [208], where Im = 1.280. The loca-

tion of isotherm half-width, according to Equation 6.41, is x∗
max = x∗

max,c − 0.7650σ∗.

The temperature around the maximum temperature is expanded in taylor series:
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In Regime V, as σ∗ → ∞, the integrand is non-zero around t ≈ 0, according to

Equation 6.10:

t = arccos





σ∗

[(
σ∗2 − x∗

max,c

)2
+ y∗2

] 1
4





(6.49)

≈ arccos





σ∗

[
(σ∗2 + 0.7650σ∗)2 + y∗2

] 1
4



 (6.50)

≈ arccos





σ∗

[
(σ∗2)2

] 1

4



 ≈ 0 (6.51)

226



T ∗(x∗
max, y

∗
max) =

2√
2πσ∗

∫ π
2

0

exp

{
−σ∗2

2

[(
x∗
max,c

σ∗2 − 1

)
cos t + sec t

]2}
dt

− 2√
2πσ∗

∫ π
2

0

exp

{
−σ∗2

2

[(
x∗
max,c

σ∗2 − 1

)
cos t+ sec t

]2}
dy∗2

2σ∗2dt (6.52)

=
2√
2πσ∗

∫ π
2

0

exp

{
−σ∗2

2

[(
x∗
max,c

σ∗2 − 1

)
cos t+ sec t

]2}
dt ·

(
1− dy∗2

2σ∗2

)
(6.53)

≈ 2√
2πσ∗

∫ π
2

0

exp

{
−1

2

[
x∗
max,c

σ∗ + σ∗ (sec t− cos t)

]2}
dt ·

(
1− dy∗2

2σ∗2

)
(6.54)

(6.55)

≈ 2√
2πσ∗

∫ π
2

0

exp

[
−1

2

(
−0.7650 + σ∗t2

)2
]
dt ·

(
1− dy∗2

2σ∗2

)
(6.56)

= T ∗
max,c ·

(
1− dy∗2

2σ∗2

)
(6.57)

Thus, the asymptotic for isotherm half-width at Regime V can be solved:

ŷ∗max,V ≈ 0 + dy∗ =
√
2σ∗ =
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(6.58)

Similarly, because T ∗
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→ 1 in Regime V,
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In Regime V, with the relationship T̂ ∗
max,c =

√
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Im σ∗−1.5 [208]:
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Chapter 7

Conclusions and future work

7.1 Conclusions

This thesis presented systematic methodologies to obtain engineering expressions in

closed-form with broad generalities, high accuracies and practical simplicities, for

thermal features of temperature field under moving line or Gaussian heat sources. The

proposed engineering expressions are based on theoretical analysis and not empirical.

They are valid for all materials, heat source sizes, and surface heat losses that match

the framework of the problem.

The engineering expressions are written in the form of a simple solution for the

dominant factor and correction factors for secondary phenomena, by dimensional

analysis, asymptotic analysis and blending. Normalization and dimensional analysis

ensures the generality of the proposed expressions that do not depend on specific

processes, operating parameters or material properties; asymptotic analysis yields

simple solutions in extreme regimes for dominant factor; blending generates correc-

tion factors in the intermediate regimes. The blending of functions with only one

dependence is developed based on the modification of the Churchill-Usagi blending

equation. The modified 1-D blending method is extended to consider non-power-law,

non-crossing asymptotic expressions (Equation 2.25). The modified 1-D blending

method also improves the behaviour at the intermediate regime by introducing an

additional term, especially when the exact solution is asymmetric (Equation 3.112).
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The modified blending technique approach is novel, and it overcomes the limitation of

previous studies which was incapable of capturing the behaviour of slow heat sources

(e.g. [213]) properly. Beyond modifying and improving the 1-D blending formula, a

two-dimensional blending technique is proposed for the first time herein to extend

the blending technique applicable to functions of two independent variables (Equa-

tion 5.26).

This thesis presents for the first time practical and rigorous expressions for calcu-

lating 13 isotherm features of 2-D temperature field under moving line heat source.

The isotherm thermal features include: isotherm half-width (ymax, Equation 2.29

and Equation 2.30), location of isotherm half-width (xmax, Equation 3.13 and Equa-

tion 3.14), trailing length of an isotherm (xb, Equation 3.20 and Equation 3.21),

cooling rate at a given temperature in the center line (Ṫb, Equation 3.30 and Equa-

tion 3.31), leading length of an isotherm (xf , Equation 3.37 and Equation 3.38),

heating rate at a given temperature in the center line (Ṫf , Equation 3.44 and Equa-

tion 3.45), maximum temperature at a point away from the center line (Tmax, Equa-

tion 3.52 and Equation 3.53), lateral gradient of maximum temperature (dTmax/dy,

Equation 3.60 and Equation 3.61), aspect ratio of an isotherm (A, Equation 3.68

and Equation 3.69), melting efficiency (ηm, Equation 3.73 and Equation 3.74), cool-

ing time from 800 ◦C to 500 ◦C (t8/5, Equation 3.79 and Equation 3.80), solidification

time (tsl, Equation 3.87 and Equation 3.88) and heat affected zone thickness (∆yHAZ,

Equation 3.92 and Equation 3.93). These expressions associated with thermal fea-

tures of moving line heat source are listed in Table 3.2.

These engineering expressions are developed with the modified 1-D blending method

based on Rosenthal’s model of moving line heat source. The expressions depend only

on the Rosenthal number, Ro, a metric of the intensity of heat source. The Rosen-

thal number divides all possible solutions into two asymptotic regimes: Regime III

corresponding to high Ro (large intensity) and low Ro (small intensity). Because Ro

depends on a chosen temperature, the heat sources cannot be deemed intrinsically
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high or low intensity until a temperature of interest is selected. The expressions coin-

cide with the exact solution of Rosenthal’s model in the extremes, and the blending

expression for the intermediate regime, exhibiting a discrepancy within 8 % of the

exact solution, except for heating rate within 16 %. A modification of the heat in-

tensity can be made to extend the scope of predictions to dissimilar thicknesses and

alternative joint configurations, by replacing the intensity of the heat source q′ = q/d

with q′eff according to Equation 3.97.

The equations in Table 3.2 can not be applied in processes subject to intense

surface losses, such as underwater processes, welding on extreme thin plates, thin-wall

additive manufacturing, and the calculation of thermal residual-stresses associated

with moving heat sources. A dimensionless number h∗ is defined to capture the

relative intensity of surface heat losses, and a systematic 2-D blending approach is

proposed to capture all combinations of Ro and h∗ for the first time. Practical

engineering expressions are derived from fundamental analysis for the trailing length

(xb, equations 4.19 to 4.22), cooling rate (Ṫb, equations 4.35 to 4.37), isotherm half-

width (ymax, equation 5.40 to 5.43) and its location (xmax, equation 5.51 to 5.54). All

cases are divided into four asymptotic regimes: Regime III and Regime IV without

convection, Regime IIIa and Regime IVa under intense convection. The proposed

expressions are in the form of an asymptotic expression (in Regime III) multiplied by

two or three correction factors, yielding global approximation within 7.1 % for trailing

length, 7.6 % for cooling rate, 9.6 % for isotherm width and 12 % for its location. The

consideration of surface heat losses enables the extension of the moving heat source

analysis to complex but technologically relevant problems such as underwater wet

welding, in-service welding, additive manufacturing of thin walls, and combinations

of thickness and low target temperatures where natural convection in the atmosphere

becomes relevant (e.g. analysis of residual stresses).

Critical value of dimensionless heat transfer coefficient, h∗
c , is proposed for an

acceptable error of 10 % depending on the value of temperature of interest, less than

230



which the correction factors for surface heat losses can be neglected. The critical h∗

for trailing length is Equations 4.39, for cooling rate is Equation 4.40, for isotherm

half-width is Equation 5.58, and for location of isotherm half-width is Equation 5.59.

For Ro = O(1), the critical value of h∗ is around 0.01.

For the temperature field near the heat source, the heat flow typically can not

be treated as two-dimensional, and the distribution of the heat source is a crucial

factor. Based on Eagar’s Gaussian distributed heat source model [53], the correction

factors for Gaussian heat source depend on two dimensionless groups, Ry number (an

alternative number for Ro in three-dimensional heat transfer) and σ∗ (representing

the size of heat source). Therefore, all cases are divided into four asymptotic regimes:

Regime I and Regime II for the point heat source, Regime V and Regime VI for

Gaussian heat source. The correction factors for isotherm half-width, ymax, are derived

with the proposed 2-D blending approach, similar to correction factors for surface heat

losses, as Equation 6.28 to 6.32 with the maximum error 6.1 % for Ry ≤ 1000 and

σ∗/σ̂∗+
max(Ry) ≤ 0.9, where σ̂∗

max(Ry) is a function of Ry calculating the maximum

heat source size to reach the temperature of interest T ∗
c = 1/Ry.

A comprehensive survey of published experiments and simulations is conducted

to validate the proposed engineering expressions. The thermal features from a wide

range of materials, processes, and parameters are collected to compare with the pro-

posed engineering expressions. The validation of isotherm width, ymax, is illustrated

in Figures 2.7-2.9, the validation for length of isotherm (xf − xb) is illustrated in

Figure 3.4; the validation for centerline cooling rate, Tb, is illustrated in Figure 3.3;

the validation for maximum temperature, Tmax, is illustrated in Figure 3.5, the val-

idation for thickness of heat affected zone, ∆yHAZ, is illustrated inFigure 3.6, and

the validation for isotherm aspect ratio, A, is illustrated in (Figure 3.7). The cor-

rection factors derived from 2-D blending are also validated. The validation for the

correction factors of cooling rate for surface heat losses is illustrated in Figure 4.7(a)

and Figure 4.7(b). The validation for the correction factors of isotherm half-width
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for surface heat losses is illustrated in Figure 5.6 and Figure 5.7. The validation for

the correction factors of isotherm half-width for Gaussian distributed heat source is

illustrated in Figure 6.5 and Figure 6.6. Validation against published experiments

and simulations shows a close agreement with the predictive engineering expressions

despite its simplicity. They capture the essence of the complex physics of moving

heat source problems.

The engineering expressions must be applied with an understanding of their lim-

itations caused by the assumptions. For example, they can not be applied in edge

parts because of the assumption of the infinitely thin plate. They can not be applied

in multilayer welding since the temperature gradient in thickness direction usually

can not be neglected. They can not be applied in pulse heat input because of the

assumption of pseudo-steady state and constant heat input. They can not be applied

when the marangoni flow in the melt pool is significant [82]. For the processes where

the engineering expressions can not be applied because of a secondary phenomenon,

as mentioned above, correction factors for the secondary phenomenon can be derived

by 2-D blending, following similar steps in Chapters 4 and 5 for the effect of surface

heat losses.

The engineering expressions provide reasonable predictions of the thermal features,

but exact matching to the experiments or sophisticated simulations should not be

expected for most engineering calculations. Higher accuracy can be achieved with

more sophisticated simulation models or well-designed experiments; however, with

the cost of more computational resources, convergence problems, more parameters

to be determined prior to calculation, equipment and skill training. For example,

volumetric heat sources can improve the accuracy of temperature field prediction in

regions close to the heat source, with elaborate choices of parameters. However, it

comes with two problems. Firstly, the relevant parameters in the heat source models

are difficult to measure or estimate. Secondly, it is nearly unachievable to control the

parameters of volumetric heat sources in welding processes, making it impractical to

232



employ the volumetric heat source parameters in designing rules. The idealizations in

this dissertation enable for a much desired practical formula. Fortunately, the gains

in practicality come at a relatively low cost in terms of accuracy. The application

of analytical modelling at the initial design stage can significantly reduce the time

and effort spent in trial and error tests and ensure the mathematical and physical

exactness of the obtained expression from the fundamental principles of heat transfer.

The validation figures indicate that the idealizations are consistent with most practical

problems.

The proposed engineering expressions are rigorous, general, explicit, convenient

and accurate. The closed-form expressions are amenable to practical calculations,

for example, with Excel spreadsheets or calculators. The engineering expressions

deliver engineering understanding and judgment, have clear physical relevance, and

provide reasonable predictions in the initial stage in designing and developing new

technologies, inspiring creativity and filtering infeasible or inferior designing options

by evaluating many optional parameters and processes. The engineering expressions

are obtained with a systematic methodology consisting of identification of the dom-

inant phenomena, asymptotic analysis to obtain a simple solution to the dominant

mechanism, blending technique to achieve approximation over the whole domain, de-

veloping correction factors to capture the deviation from simple solution and validat-

ing against analytical solutions, experimental measurements or numerical simulations.

The methodology can be adopted in broader engineering problems since the engineer-

ing expressions in this thesis show that many important aspects of complex problems

can be studied with this methodology. The simple formulae and correction factors

can be derived either from asymptotic analysis and blending of analytical modelling

as in this thesis, or from regressions of numerical or experimental data.

Novelties

Here is a brief summary of the novelties of this dissertation:
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• Modified 1-D blending method (Churchill-Usagi equation) to extend its scope

of application to consider non-power-law, non-crossing asymptotic expressions;

• Modified 1-D blending method (Churchill-Usagi equation) with a transitional

term to improve accuracy in the intermediate region, especially for “asymmet-

ric” solutions;

• Established a set of engineering expressions for 13 thermal features induced by

moving line by implementing the modified 1-D blending method and validated

the expressions with published data;

• Extended moving line heat source engineering expressions to dissimilar plate

thicknesses and various joint configurations;

• Proposed a systematic 2-D blending approach to achieve global approximation

covering the full domain of two dimensionless numbers;

• Proposed correction factors of surface heat losses for isotherm trailing length

by implementing the proposed 2-D blending method;

• Proposed correction factors of surface heat losses for cooling rate by implement-

ing the proposed 2-D blending method and validated the correction factors with

published data;

• Proposed correction factors of surface heat losses for isotherm half-width and

its location by implementing the proposed 2-D blending method and validated

the correction factors for isotherm half-width with published data;

• Proposed correction factors of size of Gaussian distributed heat source for

isotherm half-width by implementing the proposed 2-D blending method and

validated the correction factors with published data;
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7.2 Future work

Base on the results presented in this thesis, future work can be conducted on the

following aspects:

• To investigate other thermal features of moving heat source problems, for ex-

ample, correction factors for leading length and heating rate of Gaussian heat

sources, moving rectangle heat source that is widely used in surface heat treat-

ments, catchment efficiencies, and many other engineering problems.

• To develop a more general 2-D blending method for cases with more than four

asymptotic regimes;

• To implement the 2-D blending approach to establish correction factors for prac-

tical characteristic values in other disciplines, like correlations between Nusselt

number, Reynold number and Prandtl number;

• To conduct the sensitivity analysis of different operating parameters for practi-

cal problems;

• To study blending method depending on more than two variables.
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[174] D. Rosenthal, “Etude théorique du régime thermique pendant la soudure
à l’arc,” Congres National des Sciences Comptes Rendus Bruxelles, vol. 2,
pp. 1277–1292, 1935.

[175] D. Rosenthal, “The theory of moving sources of heat and its application to
metal treatments,” Transactions of the A.S.M.E., vol. 68, pp. 849–866, 1946.

[176] D. Rosenthal and R. Schmerber, “Thermal study of arc welding,” Welding
journal, vol. 17, no. 4, pp. 2–8, 1938.

[177] D. Rosenthal, “Mathematical theory of heat distribution during welding and
cutting,” The Welding Journal, vol. 20, no. 5, pp. 220–234, 1941.

[178] S. Rouquette, J. Guo, and P. Le Masson, “Estimation of the parameters of a
Gaussian heat source by the Levenberg–Marquardt method: Application to the
electron beam welding,” International Journal of Thermal Sciences, vol. 46,
no. 2, pp. 128–138, 2007.

[179] N. N. Rykalin, Calculation of heat flow in welding. Mashgis, Moscow, Russia:
Mashgis, 1951.

[180] M. F. Schneider and M. F. Schneider, “Laser cladding with powder,” PhD
thesis, University of Twente, 1998.

[181] P. Seyffarth, B. Meyer, and A. Scharff, Grosser atlas schweiss-ztu-schaubilder,
ser. Fachbuchreihe Schweisstechnik. Düsseldorf: Deutscher Verlag für Schweis-
stechnik, 1992, isbn: 9783871551277.

[182] A. K. Shah, S. D. Kulkarni, V. Gopinathan, and R. Krishnan, “Weld heat-
affected zone in Ti-6AI-4V alloy Part l–computer simulation of the effect of
weld variables on the thermal cycles in the HAZ,” Welding Research Supple-
ment, vol. 74, no. 9, pp. 297–304, 1995.

[183] Y. Sharir, A. Grill, and J. Pelleg, “Computation of temperatures in thin tanta-
lum sheet welding,” Metallurgical and Materials Transactions B, vol. 11, no. 2,
pp. 257–265, 1980.

249



[184] S. Shen, I. N. A. Oguocha, and S. Yannacopoulos, “Effect of heat input on weld
bead geometry of submerged arc welded ASTM A709 Grade 50 steel joints,”
Journal of Materials Processing Technology, vol. 212, no. 1, pp. 286–294, 2012.

[185] A. Squillace, U. Prisco, S. Ciliberto, and A. Astarita, “Effect of welding pa-
rameters on morphology and mechanical properties of Ti-6Al-4V laser beam
welded butt joints,” Journal of Materials Processing Technology, vol. 212, no. 2,
pp. 427–436, 2012.

[186] W. M. Steen and J. Mazumder, Laser material processing, Fourth. London:
Springer, 2010.

[187] Stock Drive Products / Sterling Instrument, Handbook of METRIC drive com-
ponents D805. 2010.

[188] J. Sundqvist, A. F. H. Kaplan, L. Shachaf, and C. Kong, “Analytical heat
conduction modelling for shaped laser beams,” Journal of Materials Processing
Technology, vol. 247, pp. 48–54, 2017.

[189] L. E. Svensson, B. Gretoft, and H. K. D. H. Bhadeshia, “An analysis of cooling
curves from the fusion zone of steel weld deposits,” Scandinavian Journal of
Metallurgy, vol. 15, pp. 97–103, 1986.

[190] D. T. Swift-Hook and A. E. F. Gick, “Penetration welding with lasers,” Weld-
ing Research Supplement, vol. 52, no. 11, 492s–499s, 1973.

[191] M. R. Talaee and A. Kabiri, “Exact analytical solution of bioheat equation
subjected to intensive moving heat source,” Journal of Mechanics in Medicine
and Biology, vol. 17, no. 05, p. 1 750 081, 2017.

[192] Technical Committee CEN/TC 121 Welding, Welding - recommendations for
welding of metallic materials - Part 2 : Arc welding of ferritic steels, Technical
Committee CEN/TC 121 Welding, 2001.

[193] P. Tekriwal and J. Mazumder, “Finite element analysis of three-dimensional
transient heat transfer in GMA welding,”Welding Research Supplement, vol. 67,
150s–156s, 1988.

[194] K. Tello, U. Duman, and P. F. Mendez, “Scaling laws for the welding arc,
weld penetration and friction stir welding,” in Trends in Welding Research,
Proceedings of the 8th International Conference, The Material Information
Society, ASM International, 2009, pp. 172–181, isbn: 9781615030026.

[195] R Trivedi, S. David, M. Eshelman, J. Vitek, S. Babu, T Hong, and T DebRoy,
“In situ observations of weld pool solidification using transparent metal-analog
systems,” Journal of applied physics, vol. 93, no. 8, pp. 4885–4895, 2003.

[196] N. Tsai, “Heat distribution and weld bead geometry in arc welding,” PhD
thesis, Massachusetts Institute of Technology, 1983.

[197] M. Ushio, T. Ishimura, F. Matsuda, and Y. Arata, “Theoretical calculation on
shape of fusion boundary and temperature distribution around moving heat
source (Report I),” Transactions of JWRI, vol. 6(1), no. 1, p1–p6, 1977.

250



[198] M. Van Elsen, M. Baelmans, P. Mercelis, and J.-P. Kruth, “Solutions for mod-
elling moving heat sources in a semi-infinite medium and applications to laser
material processing,” International Journal of Heat and Mass Transfer, vol. 50,
no. 23-24, pp. 4872–4882, 2007.

[199] V. R. Voller and C. R. Swaminathan, “General source-based method for solid-
ification phase change,” Numerical Heat Transfer, vol. 19, pp. 175–189, 1991.

[200] C. S. W. and C. H. H.S., “Correlating equations for laminar and turbulent
free convection from a vertical plate,” International Journal of Heat and Mass
Transfer, vol. 18, no. 11, 1975.

[201] J. Wang, J. Shi, J. Wang, W. Li, C. Liu, G. Xu, S. Y. Maksimov, and Q.
Zhu, “Numerical study on the temperature field of underwater flux-cored wire
arc cutting process,” The International Journal of Advanced Manufacturing
Technology, vol. 91, no. 5-8, pp. 2777–2786, 2017.

[202] L. Wang, S. Felicelli, Y. Gooroochurn, P. T. Wang, and M. F. Horstemeyer,
“Optimization of the LENS® process for steady molten pool size,” Materials
Science and Engineering: A, vol. 474, no. 1-2, pp. 148–156, 2008.

[203] L. Wang and S. Felicelli, “Analysis of thermal phenomena in LENSTM depo-
sition,” Materials Science and Engineering: A, vol. 435, pp. 625–631, 2006.

[204] X. Wang and R. Li, “Intelligent modelling of back-side weld bead geometry
using weld pool surface characteristic parameters,” Journal of Intelligent Man-
ufacturing, vol. 25, no. 6, pp. 1301–1313, Jan. 2014.

[205] Y. Wang, P. Fu, Y. Guan, Z. Lu, and Y. Wei, “Research on modeling of heat
source for electron beam welding fusion-solidification zone,” Chinese Journal
of Aeronautics, vol. 26, no. 1, pp. 217–223, 2013.

[206] Y. Wang, Y. Lu, M. Grams, A. H. Cesaro, and P. F. Mendez, “Asymptotics and
blending in the modeling of welding,” in Numerical Analysis of Weldability,
Graz, Austria, 2018.

[207] Y. Wang, Y. Lu, and P. F. Mendez, “Scaling expressions of characteristic
values for a moving point heat source in steady state on a semi-infinite solid,”
International Journal of Heat and Mass Transfer, vol. 135, pp. 1118–1129,
2019.

[208] Y. Wang, Y. Lu, and P. F. Mendez, “Prediction of peak temperature under a
moving gaussian surface heat source,” 2021.

[209] Y. Wang and P. F. Mendez, “Prediction of maximum isotherm depth under a
moving gaussian surface heat source.”

[210] T. Washio and H. Motoda, “Extension of dimensional analysis for scale-types
and its application to discovery of admissible models of complex processes,”
in International Workshop on Similarity Method, 1999, pp. 129–147.

[211] J. M. Webster, “Welding at high speed with the CO2 laser,” Metal Progress,
vol. 98, pp. 59–61, 1970.

251



[212] P. S. Wei and W. H. Giedt, “Surface tension gradient-driven flow around an
electron beam welding cavity,” Welding Journal, vol. 64, no. 9, 251s–259s,
1985.

[213] A. A. Wells, “Heat flow in welding,” Welding Research Supplement, vol. 31,
no. 5, 263s–267s, 1952.

[214] J. B. Will, N. P. Kruyt, and C. H. Venner, “An experimental study of forced
convective heat transfer from smooth, solid spheres,” International Journal of
Heat and Mass Transfer, vol. 109, pp. 1059–1067, 2017.

[215] H. A. Wilson, “On convection of heat,” in Proceedings of the Cambridge Philo-
sophical Society, vol. 12, 1904, pp. 406–423.

[216] J. Winczek, “Analytical solution to transient temperature field in a half-infinite
body caused by moving volumetric heat source,” International Journal of Heat
and Mass Transfer, vol. 53, no. 25-26, pp. 5774–5781, 2010.

[217] J. Winczek, A. Modrzycka, and E. Gawrońska, “Analytical description of the
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Appendix A: Matlab codes for
blending

Listing A.1: General Matlab class for 1D blending and export latex files.

1 classdef Blending_Grid_size

2 %BLENDING_GRID_SIZE blending over varying blending grid size
3

4 properties

5 Xdef=struct(’xsize’,[10,20,40,60,80,100,200,400,600,800,1000,],

...

6 ’xmin’,[],’xmax’,[]);

7 BP=struct(’pseed’,[],’PList’,[],’MaxEList’,[],’P’,[],’MaxE’,[],’

BResult’,[])

8 FigCorrectionFactor=struct(’cross_cf_val_error_y2’,[],’

figure_correction_factor’,[], ...

9 ’accept_error_valy_y1’,[], ’accept_error_valx_y1’,[], ’

accept_error_valy_y2’,[],...

10 ’accept_error_valx_y2’,[], ’cross_cf_valx’,[], ’

cross_cf_valy_y1’,[], ’cross_cf_valy_y2’,[],...

11 ’cross_cf_val_error_y1’,[]);

12 end

13

14 properties

15 Funyest

16 Blending_Equation

17 funy1=@(x) nan;

18 funy2=@(x) nan;

19 funmodify1=@(x) nan;

20 funmodify2=@(x) nan;

21 funinter=@(x) nan;

22 end

23 properties

24 latexRegimeI=’I’ % name of Regime I
25 latexRegimeII=’II’ % name of Regime II
26 latexX % name of dependent variable
27 latexY % name of dependent variable
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28 latexBlendingEquation % blending equation
29 latexAsyI % asymptotic I
30 latexAsyII % asymptotic II
31 latexCfI % correction factor for regime I
32 latexCfII % correction factor for regime II
33 latexBps % blending parameters
34 end

35 properties

36 Opt=struct(’Isminsearch’,1,’options_minsearch’,optimset(’

MaxFunEvals’,1e10),...

37 ’Isminunc’,1,’options_minunc’,optimoptions(@fminunc,’

StepTolerance’,1e-40),...

38 ’Ismincon’,1,’options_mincon’,optimoptions(@fmincon,’

StepTolerance’,1e-60),...

39 ’Isga’,1,’options_ga’,optimoptions(@ga,’PopulationSize’,

1000,...

40 ’HybridFcn’, { @fminsearch },’Display’, ’off’,...

41 ’PlotFcn’, {@gaplotbestf @gaplotscorediversity }));

42 Pplot=struct(’x_label’,’xx’,’y_label’,’yy’,...

43 ’figname’,’yx’,...

44 ’plot_yx’,{{true}},...

45 ’plot_error’,{{true,’x_label’,’x’,’y_label’,’error’}},...

46 ’plot_error_p’,{{true}},...

47 ’pvallist’,[]); %[;;])
48 end

49

50 methods

51 function obj = Blending_Grid_size(Funyest,Blending_Equation,xmin,

xmax,pseed)

52 %BLENDING_GRID_SIZE Construct an instance of this class
53 obj.Funyest =Funyest ;

54 obj.Xdef.xmin = xmin;

55 obj.Xdef.xmax = xmax;

56 obj.BP.pseed = pseed;

57 obj.Blending_Equation = Blending_Equation;

58 end

59

60 function obj = Blending(obj)

61 %Blendig: Blending on different grid size of X
62 for i=1:max(size(obj.Xdef.xsize))

63 X=logspace(log10(obj.Xdef.xmin),log10(obj.Xdef.xmax),obj.

Xdef.xsize(i));

64 Y=obj.Funyest(X);

65 Fun_Blending=obj.Blending_Equation(X);
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66 [obj.BP.PList{i},obj.BP.MaxEList{i},˜] =

fun_blending_general_1D(Fun_Blending,X,Y,obj.BP.pseed)

;

67 disp([’n=’,num2str(obj.Xdef.xsize(i))]);

68 end

69 figure(1)

70 plot(obj.Xdef.xsize,100*cell2mat(obj.BP.MaxEList),’-k’,’

linewidth’,2)

71 xlabel(’N’)

72 ylabel(’Err%’)

73 figure(2)

74 p=[];

75 for j=1:max(size(obj.BP.PList))

76 p=[p;obj.BP.PList{j}];

77 end

78 plot(obj.Xdef.xsize,p,’k’,’linewidth’,2); hold on

79 legend

80 xlabel(’N’)

81 ylabel(’p’)

82 end

83

84 function obj=FBlending(obj,N)

85 X=logspace(log10(obj.Xdef.xmin),log10(obj.Xdef.xmax),N);

86 Y=obj.Funyest(X);

87 Fun_Blending=obj.Blending_Equation(X);

88 Y1=obj.funy1(X);

89 Y2=obj.funy2(X);

90 Y1modify=obj.funmodify1(X);

91 Y2modify=obj.funmodify2(X);

92

93 [obj.BP.P,obj.BP.MaxE,obj.BP.Result]=fun_blending_general_1D(

Fun_Blending,X,Y,obj.BP.pseed,...

94 ’Y1’,Y1,...

95 ’Y2’,Y2,...

96 ’Y1modify’,Y1modify,...

97 ’Y2modify’,Y2modify,...

98 ’Isminsearch’,obj.Opt.Isminsearch,’options_minsearch’,obj

.Opt.options_minsearch,...

99 ’Isminunc’,obj.Opt.Isminunc,’options_minunc’,obj.Opt.

options_minunc,...

100 ’Ismincon’,obj.Opt.Ismincon,’options_mincon’,obj.Opt.

options_mincon,...

101 ’Isga’,obj.Opt.Isga,’options_ga’,obj.Opt.options_ga,...

102 ’plot_yx’,obj.Pplot.plot_yx,...

103 ’plot_error’,obj.Pplot.plot_error,...
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104 ’plot_error_p’,obj.Pplot.plot_error_p,...

105 ’pvallist’,obj.Pplot.pvallist...

106 );

107

108 if min((size(Y1)==size(Y)).*(size(Y2)==size(Y)))

109 obj.FigCorrectionFactor= fun_plot_correction_factors_1D(X

,obj.BP.Result.estimation,Y1,Y2,...

110 ’ea’,0.1,....

111 ’xlabel’,obj.Pplot.x_label,’ylabel’,obj.Pplot.y_label)

;

112 end

113 end

114

115 function obj=funWrite(obj,filename)

116 fileID = fopen(filename,’w’);

117 fprintf(fileID,[’\\section{’,obj.latexY,’}\n’]);

118 fprintf(fileID,[’\\def\\’,obj.latexY,obj.latexRegimeI,’{’,obj

.latexAsyI,’} %% asymptotic \n’]);

119 fprintf(fileID,[’\\def\\’,obj.latexY,obj.latexRegimeII,’{’,

obj.latexAsyII,’} %% asymptotic \n’]);

120 fprintf(fileID,[’\\def\\’,obj.latexY,’B’,’{’,obj.

latexBlendingEquation,’} %% blending equation \n’]);

121 fprintf(fileID,[’\\def\\’,obj.latexY,’cf’,obj.latexRegimeI,’{

’,obj.latexCfI,’} %% correction factor \n’]);

122 fprintf(fileID,[’\\def\\’,obj.latexY,’cf’,obj.latexRegimeII,

’{’,obj.latexCfII,’} %% correction factor\n’]);

123 fprintf(fileID,[’\\def\\’,obj.latexY,’Bps’,’{’,obj.latexBps,’

} %% blending parameters \n’]);

124 fprintf(fileID,[’\\def\\’,obj.latexY,’BME’,’{’,num2str(round(

obj.BP.MaxE*100,2,’significant’)),’\\%%} %% blending error

\n’]);

125 fprintf(fileID,[’\\def\\’,obj.latexY,obj.latexX,obj.

latexRegimeI,’{’,num2str(round(obj.FigCorrectionFactor.

accept_error_valx_y1,4,’significant’)),’} %% valx of 10%%

acceptable error \n’]);

126 fprintf(fileID,[’\\def\\’,obj.latexY,obj.latexX,obj.

latexRegimeII,’{’,num2str(round(obj.FigCorrectionFactor.

accept_error_valx_y2,4,’significant’)),’} %% valx of 10%%

acceptable error \n’]);

127 fprintf(fileID,[’\\def\\’,obj.latexY,obj.latexX,’c’,’{’,

num2str(round(obj.FigCorrectionFactor.cross_cf_valx,4,’

significant’)),’} %% valx of the same error \n’]);

128 fprintf(fileID,’\n\n\n\\paragraph{Result of blending:}\n’);

129 fprintf(fileID,[’Blending parameters are:P= ’,num2str(round(

obj.BP.P,4,’significant’)),’, the maximum error is ’,
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num2str(round(obj.BP.MaxE*100,4,’significant’)),’\\%% \\\\

\n’]);

130 fprintf(fileID,’It is grid size independent:\n’);

131 for j=1:max(size(obj.BP.PList))

132 fprintf(fileID,[’P=’,num2str(round(obj.BP.PList{j},4,’

significant’)),’, Error ’,num2str(round(obj.BP.

MaxEList{j}*100,4,’significant’)),’\\%%, N=’,num2str(

obj.Xdef.xsize(j)),’ \\\\ \n’]);

133 end

134 fprintf(fileID,’\n\n\n\\paragraph{Result of Correction

factors:}\n’);

135 fprintf(fileID,’\\begin{align}\n’);

136 fprintf(fileID,[’Ro_{I}=’,num2str(round(obj.

FigCorrectionFactor.accept_error_valx_y1,4,’significant’))

,’\\qquad \\mathrm{where \\quad }f1=’,num2str(round(obj.

FigCorrectionFactor.accept_error_valy_y1,4,’significant’))

,’\\\\ \n’]);

137 fprintf(fileID,[’Ro_{II}=’,num2str(round(obj.

FigCorrectionFactor.accept_error_valx_y2,4,’significant’))

,’\\qquad \\mathrm{where \\quad }f1=’,num2str(round(obj.

FigCorrectionFactor.accept_error_valy_y2,4,’significant’))

,’\\\\ \n’]);

138 fprintf(fileID,[’Ro_{c}=’,num2str(round(obj.

FigCorrectionFactor.cross_cf_valx,4,’significant’)),’\\

qquad \\mathrm{where \\quad }f1=’,num2str(obj.

FigCorrectionFactor.cross_cf_valy_y1),’\\quad f2=’,num2str

(round(obj.FigCorrectionFactor.cross_cf_valy_y2,4,’

significant’)),’ \n’]);

139 fprintf(fileID,’\\end{align}’);

140 fclose(fileID);

141 end

142

143 end

144

145 methods

146 function value = get.latexAsyI(obj)

147 value=obj.function2str(func2str(obj.funy1));

148 end

149 function value = get.latexAsyII(obj)

150 value=obj.function2str(func2str(obj.funy2));

151 end

152 function value = get.latexBlendingEquation(obj)

153 value=obj.function2str(func2str(obj.Blending_Equation));

154 end

155 function value = get.latexCfI(obj)
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156 value=obj.function2str([’(’,func2str(obj.Blending_Equation),’

)/(’,func2str(obj.funy1),’)’]);

157 end

158 function value = get.latexCfII(obj)

159 value=obj.function2str([’(’,func2str(obj.Blending_Equation),’

)/(’,func2str(obj.funy2),’)’]);

160 end

161 function value = get.latexX(obj)

162 value=obj.Pplot.x_label;

163 end

164 function value = get.latexY(obj)

165 value=obj.Pplot.y_label;

166 end

167 function value = get.latexBps(obj)

168 if max(size(obj.BP.P))==1

169 value=[’n=’,num2str(obj.BP.P)];

170 else

171 if max(size(obj.BP.P))==2

172 value=[’a=’,num2str(obj.BP.P(1)),’, b=’,num2str(obj.BP

.P(2))];

173 else

174 value=[’P=’,num2str(obj.BP.P)];

175 end

176 end

177 end

178 function strout=function2str(obj,f)

179 str = regexprep(f, ’ˆ@\(.*?\)|@\(.*?\)|@\(.*?\)|@\(.*?\)|@

\(.*?\)’, ’’);

180 str = regexprep(str, ’\.\*’, ’*’);

181 str = regexprep(str, ’\.\ˆ’, ’ˆ’);

182 str = regexprep(str, ’\./’, ’/’);

183 str = regexprep(str, ’exp\(1\)’, ’e’);

184 if max(size(obj.BP.pseed))>1

185 str =regexprep(str,’p\(1\)’,’a’);

186 str =regexprep(str,’p\(2\)’,’b’);

187 str =regexprep(str,’p\(3\)’,’c’);

188 else

189 str =regexprep(str,’p\(1\)’,’n’);

190 end

191 strsym = feval(symengine, ’hold’, str);

192 strout=strrep(latex(strsym),’\,’,’’);

193 strout=strrep(strout,’\’,’\\’);

194 end

195 function strout = sym2latex2print(fs)

196 strout=strrep(latex(fs),’\,’,’’);
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197 strout=strrep(strout,’\’,’\\’);

198 strout=[strout,’\n’];

199 end

200 end

201 end

Listing A.2: Matlab function for general 1D blending.

1 function [P,MaxE,ResultStruct] = fun_blending_general_1D(

Blending_Equation,X,Y,Pseed,varargin)

2 %FUN_BLENDING_GENERAL_1D
3 % GENERAL 1D BLENDING THAT HAVE TO INPUT BLENDING FORMULA

_BLENDING_EQUATION_
4 %
5 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 % −−−−− USAGE EXAMPLE −−−−
7 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 % [P,MaxE,ResultStruct] = fun_blending_general_1D(...
9 % Blending_Equation,X,Y,Pseed ,...

10 % ’Y1’, ,...
11 % ’Y2’, ,...
12 % ’ Isminsearch ’,1,’ options_minsearch ’,{},...
13 % ’Isminunc ’,1,’ options_minunc ’,{},...
14 % ’Ismincon ’,1,’ options_mincon ’,{},...
15 % ’ Isga ’,1,’ options_ga ’,{},...
16 % ’Y1modify’, ,...
17 % ’Y2modify’, ,...
18 % ’plot_yx ’,{ true ,..},...
19 % ’ plot_error ’,{ true ,..},...
20 % ’plot_error_p’,{ true ,..},...
21 % ’ pvallist ’,[,,;,,;,,],...
22 % )
23

24 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
25 % −−−−− INPUT PARAMETERS −−−−
26 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
27 % Blending_Equation: handle of blending function
28 % X: vector of independent variable
29 % Y: vector of dependent variable
30 % Pseed: initial guess for blending parameters
31 % ’ Isminsearch ’,’ options_minsearch ’{}: settings of "fminsearch"
32 % ’Isminunc ’,1,’ options_minunc’,{}: settings of "fminunc"
33 % ’Ismincon ’,1,’ options_mincon’,{}: settings of "fmincon"
34 % ’ Isga ’,1,’ options_ga ’,{}: settings of "ga"
35 % ’Y1’: vector of asymptotic in regime I
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36 % ’Y2’: vector of asymptotic in regime II
37 % ’Y1modify’: vector of modified asymptotic in regime I
38 % ’Y2modify’: vector of modified asymptotic in regime II
39 % ’plot_yx ’,{ true ,..}: setting of plotting figure y vs x
40 % ’ plot_error ’,{ true ,..}: setting of plotting figure error vs x
41 % ’plot_error_p’,{ true ,..}: setting of plotting figure maximum error vs P
42 % ’ pvallist ’,[,,;,,;,,]: different blending parameters for figure maximum

error vs P
43

44 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
45 % −−−−− SETTING FOR PLOT −−−−−−−
46 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
47 %’Y1’,y1 ,’Y2’,y2 ,’ xlabel ’, xlabel ,...
48 %’ylabel ’, ylabel ,’ xscale ’, xscale ,’ yscale ’, yscale ,...
49 %’axis_range ’,[ x0,x1,y0,y1 ],’ xtick ’, xtick ,’ ytick ’, ytick
50

51 %% Set output
52 P=[]; MaxE=[]; ResultStruct=[];

53 %% Checking size
54 Yseed=Blending_Equation(Pseed);

55 if size(Yseed)˜= size(Y) & size(X) ˜=size(Y)

56 disp(’X and Y have to be of same size’);

57 return;

58 end

59 %% Parse inputs
60 [default,parse]=SetDefalutParse;

61 [p,exitflag]=Parse_Input(default,parse,varargin{:});

62 if ˜exitflag

63 disp(’Error happends in parsing inputs’);

64 return;

65 end

66 %% error / maximum error function
67 fun_error=@(p) log(Blending_Equation(p)./Y);

68 fun_max_error=@(p) max(abs(fun_error(p)));

69 %% search optimal value
70 if p.Isminsearch

71 Methods{1}=’Isminsearch’;

72 [p_optimal{1,2},m_error(1)]=fminsearch(@(p) fun_max_error(p),Pseed,p

.options_minsearch);

73 end

74 if p.Isminunc

75 Methods{2}=’Isminunc’;

76 [p_optimal{2,2},m_error(2)]=fminunc(@(p) fun_max_error(p),Pseed,p.

options_minunc);

77 end
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78 if p.Ismincon

79 Methods{3}=’Ismincon’;

80 [p_optimal{3,2},m_error(3)]=fmincon(@(p) fun_max_error(p),Pseed

,[],[],[],[],[],[],[],p.options_mincon);

81 end

82 if p.Isga

83 Methods{4}=’Isga’;

84 p_vars=max(size(Pseed));

85 [p_optimal{4,2},m_error(4)] = ga (fun_max_error,p_vars

,[],[],[],[],[],[],[],[],p.options_ga);

86 end

87 %% find the best one among four results
88 MaxE=min(m_error);

89 P=p_optimal{m_error==MaxE,2};

90 E=fun_error(P);

91 Yest=Blending_Equation(P);

92 ResultStruct=struct(’maximum_error’,MaxE,’optimal_p’,P,...

93 ’error’, E,’estimation’,Yest,’ErrFunHandle’,fun_error,’

MaxErrFunHandle’,fun_max_error);

94 ResultStruct.results_of_different_fmin.p=p_optimal;

95 ResultStruct.results_of_different_fmin.max_error=m_error;

96 ResultStruct.results_of_different_fmin.methods=Methods;

97 %% Plotting
98 % plot the y vs . x graph
99 if p.plot_yx{1}

100 ResultStruct.handle_of_figure_y_x=fun_plot_yx_1D(X,Y,p.plot_yx{2:end

});

101 if size(p.Y1) == size(Y)

102 hold on;

103 plot(X,p.Y1,’--k’,’linewidth’,1);

104 end

105 if size(p.Y2) == size(Y)

106 hold on;

107 plot(X,p.Y2,’--k’,’linewidth’,1);

108 end

109 if size(p.Y1modify) == size(Y)

110 hold on;

111 plot(X,p.Y1modify,’-.k’,’linewidth’,1);

112 end

113 if size(p.Y2modify) == size(Y)

114 hold on;

115 plot(X,p.Y2modify,’-.k’,’linewidth’,1);

116 end

117 end

118
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119 % plot the error vs x graph
120 if p.plot_error{1}

121 pY=100*fun_error(P);

122 [ResultStruct.handle_of_figure_error,l]=fun_plot_yx_1D(X,pY,p.

plot_error{2:end},’yscale’,’linear’);

123 title(’error vs x’); hold on

124 set(l{1},{’DisplayName’},{strcat(’n=’,num2str(P))});

125

126 if size(p.pvallist,2)==size(Pseed,2)

127 for ipval=1:size(p.pvallist,1)

128 l2=semilogx(X,100*fun_error(p.pvallist(ipval,:))); hold on

129 set(l2,{’DisplayName’},{strcat(’p=’,num2str(p.pvallist(ipval

,:)))});

130 end

131 end

132 legend show

133 legend(’boxoff’)

134 end

135

136 % plot the error vs p graph
137 if p.plot_error_p{1}

138 if max(size(P))==1

139 plist=linspace(P*0.5,P*1.5,31);

140 MElist=arrayfun(@(x) fun_max_error(x),plist);

141 ResultStruct.handle_of_figure_maximum_error_p=fun_plot_yx_1D(

plist,100*MElist,’xlabel’,’n’,’ylabel’,’maximum error (\%)’,’

xscale’,’linear’,’yscale’,’linear’,p.plot_error_p{2:end});

142 title(’maximum error vs n’); hold on

143 plot([P,P],[0,1000*MaxE],’--k’); hold on

144 text(P,200*MaxE,strcat(’n=’,num2str(P)),’Interpreter’,’tex’,’

FontSize’,14);

145 else

146 if max(size(P))==2

147 av=linspace(0.7*P(1),1.3*P(1),151);

148 bv=linspace(0.7*P(2),1.3*P(2),151);

149 fun_plot_contour_error_ab(av,bv,fun_max_error,’aop’,P(1),’bop

’,P(2),p.plot_error_p{2:end})

150 else

151 disp(’plot maximum error on P only works for one or two

blending parameter’);

152 end

153 end

154 end

155

156 end
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157

158 function [default,parse]=SetDefalutParse

159 default.Isminsearch=true;

160 parse.Isminsearch=@(x) islogical(x) || x==0|| x==1;

161 default.Isminunc=true;

162 parse.Isminunc=@(x) islogical(x) || x==0|| x==1;

163 default.Ismincon=false;

164 parse.Ismincon=@(x) islogical(x) || x==0|| x==1;

165 default.Isga=false;

166 parse.Isga=@(x) islogical(x) || x==0|| x==1;

167

168 default.p_lb=[nan,nan];

169 parse.p_lb=@(x) size(x) == [1,2];

170 default.p_ub=[nan,nan];

171 parse.p_ub=@(x) size(x) == [1,2];

172

173 default.options_minsearch=optimset(’TolX’,1E-20,’TolFun’,1E-10,’

MaxFunEvals’,1e10);

174 parse.options_minsearch=@(x) 1;

175 default.options_minunc=optimoptions(@fminunc,’StepTolerance’,1e-40);

176 parse.options_minunc=@(x) 1;

177 default.options_mincon=optimoptions(@fmincon,’StepTolerance’,1e-60);

178 parse.options_mincon=@(x) 1;

179 default.options_ga=optimoptions(@ga,’PopulationSize’, 1000,...

180 ’HybridFcn’, { @fminsearch [default.options_minsearch] },’Display’,

’off’,...

181 ’PlotFcn’, {@gaplotbestf @gaplotscorediversity });% options =
optimoptions(options ,’ PlotFcn ’, { @gaplotbestf @gaplotscorediversity }) ;

182 parse.options_ga=@(x) 1;

183

184 default.Y1=[];

185 parse.Y1=@(x) 1;

186 default.Y2=[];

187 parse.Y2=@(x) 1;

188

189 default.Y1modify=[];

190 parse.Y1modify=@(x) 1;

191 default.Y2modify=[];

192 parse.Y2modify=@(x) 1;

193

194

195 default.plot_yx={false};

196 parse.plot_yx=@(x) 1;

197 default.plot_error={false};

198 parse.plot_error=@(x) 1;
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199 default.plot_error_p={false};

200 parse.plot_error_p=@(x) 1;

201 parse.pvallist=@(x) 1;

202 default.pvallist=[0];

203 end

204 function [p,exitflag]=Parse_Input(default,parse,varargin)

205 % 1. parse the inputs , choosing default value if it ’ s not showed in varargin
206 % 2. check output with function parse .
207 % Usage
208 % [p, exitflag ]=Parse_Input(default , parse , varargin )
209 %% if some problems happened, exitflag = 0
210 exitflag=1;

211 %% size of varargin
212 [r_varargin,c_varargin]=size(varargin);

213 %% if varargin is empty use default
214 if r_varargin˜=0

215 % varargin should be a cell of [1x2n]
216 if r_varargin˜=1

217 disp(’Inputs must be a line.’);

218 exitflag=0;

219 return;

220 end

221 if rem(c_varargin,2)==1

222 disp(’Inputs must be in pairs’);

223 exitflag=0;

224 return

225 end

226 % transform the [1x2n] cell to a struct of n.
227 varargin_field=varargin(1:2:c_varargin);

228 varargin_value=varargin(2:2:c_varargin);

229 % check the field name of varargin in default struct
230 is_in_fields=isfield(default,varargin_field);

231 for i=1:size(is_in_fields,2)

232 if is_in_fields(i)<eps

233 disp(char(strcat(’Property name ’,{’ ’}, varargin_field{i},{’

’}, ’is wrong’)));

234 else

235 % change the value of default
236 default.(varargin_field{i})=varargin_value{i};

237 end

238 end

239 end

240 % pass the changed struct to output
241 p=default;

242 % check if the output satisfied the parse
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243 for fld = fieldnames(p)’

244 if ˜parse.(fld{1})(p.(fld{1}))

245 disp(char(strcat(’Error happened in the value of’,{’ ’}, fld{1}))

);

246 exitflag=0;

247 end

248 end

249 end

250 function [h,l] = fun_plot_yx_1D(X,Y,varargin)

251 %FUN_PLOT_Y_X_1D format plot of 1D graph
252 %Example:
253 % [H,l]=fun_plot_yx_1D(X,Y,’Y1’,y1,’Y2’,y2,’ xlabel ’, xlabel ,...
254 % ’ ylabel ’, ylabel ,’ xscale ’, xscale ,’ yscale ’, yscale ,...
255 % ’axis_range ’,[ x0,x1,y0,y1 ],’ xtick ’, xtick ,’ ytick ’, ytick ) ;
256 %
257 % Output:
258 % H: handle of figure
259 % l : handle of line
260 % Properties include :[[[ properties : description [ type ] { default }]]]
261 % Y1/Y2: asymptotics [ vector ] {nan( size (X))}
262 % xlabel : name of x [ string ] {’x’}
263 % ylabel : name of y [ string ] {’y’}
264 % xscale : salce of x [ log/ linear ] {’ log ’}
265 % yscale : salce of y [ log/ linear ] {’ log ’}
266 % axis_range: range of figure [4X1] {[xmin,xmax,ymin,ymax

]}
267 % xtick : tick of x axis [ vector ] {[]}
268 % ytick : tick of x axis [ vector ] {[]}
269

270 %% GRAPH SETTINGS (DONT CAHNGE IF NOT SURE)
271 default_curve={’-k’,’linewidth’,2};

272 default_label={’FontSize’,14};

273 default_gca={’FontSize’,14, ’MinorGridLineStyle’,’none’, ’linewidth’,1,’

box’,’on’};

274 default_curve_asymptotics={’-k’,’linewidth’,1};

275 %% ckeck for X and Y
276 h=[];

277 if ˜min(size(X) == size(Y) )

278 disp(’Inputs X Y have to be of same size’);

279 return;

280 end

281 if isempty(X)

282 disp(’X and Y can not be empty’);

283 return;

284 end
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285

286 %% parse varargin
287 [default,parse]=SetDefalutParse(X,Y);

288 % parse inputs
289 [p,exitflag]=Parse_Input(default,parse,varargin{:});

290

291 % if error happened in parsing inputs
292 if ˜exitflag

293 disp(’Error happends in parsing inputs’);

294 return;

295 end

296

297

298 if ˜isempty(p.xtick)

299 p.xtickmode=’manual’;

300 end

301 if ˜isempty(p.ytick)

302 p.ytickmode=’manual’;

303 end

304

305 %% plotting
306 h=figure; % creating handle
307 DefaultGca

308 xdata=X; ydata=Y; % passing data
309

310 l{1}=plot(xdata,ydata,default_curve{:}); hold on;

311 if ˜min(isnan(p.Y1))

312 l{2}=plot(xdata,p.Y1,default_curve_asymptotics{:}); hold on;

313 end

314 if ˜min(isnan(p.Y1))

315 l{3}=plot(xdata,p.Y2,default_curve_asymptotics{:}); hold on;

316 end

317 xlabel(p.xlabel,default_label{:});

318 ylabel(p.ylabel,default_label{:});

319 set(gca,default_gca{:},...

320 ’Xscale’,p.xscale,’Yscale’,p.yscale,...

321 ’XTick’,p.xtick,’XTickMode’,p.xtickmode,...

322 ’YTick’,p.ytick,’YTickMode’,p.ytickmode,...

323 default_gca{:});

324 grid on;box on;

325 axis(p.axis_range);

326 DefaultGca

327 end

328 function DefaultGca

329 box on;
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330 set(gca,’FontSize’,14,’LineWidth’,1,...

331 ’MinorGridLineStyle’,’none’,’box’,’on’);

332 set(gcf,’color’,[1,1,1],...

333 ’Units’,’pixels’,...

334 ’PaperPosition’,[1.33,3.3125,5.83,4.375],...

335 ’PaperPositionMode’,’manual’,...

336 ’Render’,’painters’)

337 grid on

338 end

Listing A.3: Matlab function to plot maximum error changing with two blending
paramters for 1D blending.

1 function fun_plot_contour_error_ab(a,b,funerror,varargin)

2 %FUN_PLOT_CONTOUR_ERROR_AB: Plot error map for optimization of 2
parameters

3 % fun_plot_contour_error_ab(a,b,funerror ,’ aop ’,,’ bop ’,,’ vectsz ’,,...
4 % ’ xlabel ’,’’,’ ylabel ’,’’)
5 figure

6 % default value
7 default.aop=nan;

8 parse.aop=@(x) size(x)==[1,1];

9 default.bop=nan;

10 parse.bop=@(x) size(x)==[1,1];

11 default.vectsz=30;

12 parse.vectsz=@(x) min(size(x))==1;

13 default.xlabel=’a’;

14 parse.xlabel=@(x) 1;

15 default.ylabel=’b’;

16 parse.ylabel=@(x) 1;

17 default.axis_range=[-inf,inf,-inf,inf];

18 parse.axis_range=@(x) 1;

19 % parse inputs
20 [p,exitflag]=parsevarargin(default,parse,varargin{:});

21 % if error happened in parsing inputs
22 if ˜exitflag

23 disp(’Error happends in parsing inputs’);

24 return;

25 end

26

27 [AL,BL]=meshgrid(a,b);

28 error=100*arrayfun(@(a,b) funerror([a,b]),AL,BL);

29 Vector=linspace(min(min(error)),max(max(error)),p.vectsz);

30 Vector=round(Vector,1);

31 contour(a,b,error,Vector,’-k’,’ShowText’,’on’); hold on

268



32 contour(a,b,error,max(max(error))*[0,1],’-k’,’ShowText’,’on’); hold on

33 plot(p.aop*[1,1],[min(b),max(b)],’-.k’); hold on

34 plot([min(a),max(a)],p.bop*[1,1],’--k’); hold on

35 plot(p.aop*[1,1],p.bop*[1,1],’.k’,’MarkerSize’,24); hold on

36 shading interp

37 text(p.aop,p.bop,’me’)

38 title(’maximum error vs a,b’); hold on

39 xlabel(p.xlabel)

40 ylabel(p.ylabel)

41 axis(p.axis_range)

42 DefaultGca;

43 end

44

45 function DefaultGca

46 box on;

47 set(gca,’FontSize’,14,’LineWidth’,1,...

48 ’MinorGridLineStyle’,’none’,’box’,’on’);

49 set(gcf,’color’,[1,1,1],...

50 ’Units’,’pixels’,...

51 ’PaperPosition’,[1.33,3.3125,5.83,4.375],...

52 ’PaperPositionMode’,’manual’,...

53 ’Render’,’painters’)

54 grid on

55 end

56

57 function [p,exitflag]=parsevarargin(default,parse,varargin)

58 % 1. parse the inputs , choosing default value if it ’ s not showed in varargin
59 % 2. check output with function parse .
60 % if some problems happened, exitflag = 0
61 exitflag=1;

62 % size of varargin
63 [r_varargin,c_varargin]=size(varargin);

64 % if varargin is empty use default
65 if r_varargin˜=0

66 % varargin should be a cell of [1x2n]
67 if r_varargin˜=1

68 disp(’Inputs must be a line.’);

69 exitflag=0;

70 return;

71 end

72 if rem(c_varargin,2)==1

73 disp(’Inputs must be in pairs’);

74 exitflag=0;

75 return

76 end
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77 % transform the [1x2n] cell to a struct of n.
78 varargin_field=varargin(1:2:c_varargin);

79 varargin_value=varargin(2:2:c_varargin);

80 % check the field name of varargin in default struct
81 is_in_fields=isfield(default,varargin_field);

82 for i=1:size(is_in_fields,2)

83 if is_in_fields(i)<eps

84 disp(char(strcat(’Property name ’,{’ ’}, varargin_field{i},{’

’}, ’is wrong’)));

85 else

86 % change the value of default
87 default.(varargin_field{i})=varargin_value{i};

88 end

89 end

90 end

91 % pass the changed struct to output
92 p=default;

93 % check if the output satisfied the parse
94 for fld = fieldnames(p)’

95 if ˜parse.(fld{1})(p.(fld{1}))

96 disp(char(strcat(’Error happened in the value of’,{’ ’}, fld{1}))

);

97 exitflag=0;

98 end

99 end

100 end

Listing A.4: Matlab function to plot correction factors for 1D blending.

1 function [R] = fun_plot_correction_factors_1D(X,Y,Y1,Y2,varargin)

2 %FUN_PLOT_CORRECTION_FACTORS_1D plots the correction factors
3 %
4 %FUN_PLOT_CORRECTION_FACTOR_1D(X,Y,Y1,Y2,...
5 % ’ea ’,0.1,....
6 % ’Y1est ’,[ vect ],’ Y2est ’,[ vect ],,...
7 % ’ xlabel ’,’ X ’,’ ylabel ’,’ y ’,
8 % ’ xscale ’,,’ yscale ’,,’ axis_range ’,,’ xtick ’,,’ ytick ’,,...
9 % ’ cf_table ’,,...

10 % ’figure_name’,)
11 %
12 %INPUTS
13 % X is the independent variable
14 % Y is the dependent varible
15 % Y1, Y2 are the asymtotics for y [ vector ] {can be empty}
16 %
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17 % Properties include :
18 % − ea: error acceptable , [ scalar ] {0.1}
19 % − xlabel : name of x, [ string ] {’x’}
20 % − ylabel : name of y, [ string ] {’y’}
21 % − xscale : salce of x [ log/ linear ] {’ log ’}
22 % − yscale : salce of y [ log/ linear ] {’ log ’}
23 % − axis_range: range of figure [4X1] {[−inf , inf ,− inf , inf ]}
24 % − xtick : tick of x axis [ vector ] {[]}
25 % − ytick : tick of x axis [ vector ] {[]}
26 %
27 % OUTPUTS:
28 % R is a cell , containing the handle of figure and the X_1 X_2 X_c etc.
29

30 %% GRAPH SETTINGS (DONT CAHNGE IF NOT SURE)
31 default_curve={’-k’,’linewidth’,2};

32 default_label={’FontSize’,14};

33 default_gca={’FontSize’,14, ’MinorGridLineStyle’,’none’, ’linewidth’,1};

34 default_vertical_dashline={’-.k’,’linewidth’, 1};

35 default_horizontal_dashline={’--k’,’linewidth’, 1};

36 %% ckeck X Y
37 if size(X) ˜= size(Y)

38 disp(’Inputs X Y have to be of same size’);

39 R=[];

40 return;

41 end

42 if isempty(X)

43 disp(’Inputs X Y can not be empty’);

44 R=[];

45 return;

46 end

47 %% parse varargin
48 % figure range
49 if size(Y1)˜=size(X)

50 min_py1=0.1;

51 max_py1=10;

52 else

53 min_py1=min(Y./Y1);

54 max_py1=max(Y./Y1);

55 end

56 if size(Y2)˜=size(X)

57 min_py2=0.1;

58 max_py2=10;

59 else

60 min_py2=min(Y./Y2);

61 max_py2=max(Y./Y2);
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62 end

63 %% default and parse criterial
64 default.axis_range=[min(X),max(X),0.1,10];

65 if min_py1>0.1&& min_py2>0.1

66 default.axis_range(3)=0.1;

67 else

68 default.axis_range(3)=min(min_py1,min_py2);

69 end

70 if max_py1<10 && max_py2<10

71 default.axis_range(4)=10;

72 else

73 default.axis_range(4)=max(max_py1,max_py2);

74 end

75 parse.axis_range=@(x) min(size(x)==[1,4]);

76 default.ea=0.1;

77 parse.ea=@(x) isscalar(x) && x>0 ;

78 default.xlabel=’x’;

79 parse.xlabel=@(x) ischar(x);

80 default.ylabel=’y’;

81 parse.ylabel=@(x) ischar(x);

82 default.xscale=’log’;

83 parse.xscale=@(x) sum(strcmpi(x,{’log’, ’linear’}));

84 default.yscale=’log’;

85 parse.yscale=@(x)sum(strcmpi(x,{’log’, ’linear’}));

86 default.xtick=[];

87 default.xtickmode=’auto’;

88 parse.xtick=@(x) isa(x,’double’);

89 parse.xtickmode=@(x) sum(strcmpi(x,{’auto’,’manual’}));

90 default.ytick=[];

91 default.ytickmode=’auto’;

92 parse.ytick=@(x) isa(x,’double’);

93 parse.ytickmode=@(x) sum(strcmpi(x,{’auto’,’manual’}));

94 default.Y1est=nan*Y1./Y1;

95 default.Y2est=nan*Y2./Y2;

96 parse.Y1est=@(x) size(x)==size(Y1);

97 parse.Y2est=@(x) size(x)==size(Y2);

98 default.cf_table=’’;

99 parse.cf_table=@(x) 1;

100 default.figure_name=’’;

101 parse.figure_name=@(x) 1;

102 % parse inputs
103 [p,exitflag]=parsevarargin(default,parse,varargin{:});

104 % if error happened in parsing inputs
105 if ˜exitflag

106 disp(’Error happends in parsing inputs’);
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107 R=[];

108 return;

109 end

110

111

112 if ˜isempty(p.xtick)

113 p.xtickmode=’manual’;

114 end

115 if ˜isempty(p.ytick)

116 p.ytickmode=’manual’;

117 end

118

119 %% initialization
120 % cf corresponding to acceptable error
121 vapy1=exp(p.ea); % acceptable cf under acceptable error >1
122 vapy2=exp(-p.ea); % acceptable cf under acceptable error <1
123

124 % indicator of plotting vapy1 vapy2
125 indicator_plot_apy=[false,false]; % vector to describle which dash line (apy1 or

apy2) has been plot , to avoid plotting one line twice
126

127 % labels on figure X_1 X_2 X_c
128 if p.xlabel(end)==’$’

129 sx=find(p.xlabel==’$’);

130 x_strI=strcat(p.xlabel(1:sx(end-1)),’{’,p.xlabel(sx(end-1)+1:end-1),

’}’,’I’);

131 x_strII=strcat(p.xlabel(1:sx(end-1)),’{’,p.xlabel(sx(end-1)+1:end-1)

,’}’,’II’);

132 x_strc=strcat(p.xlabel(1:sx(end-1)),’{’,p.xlabel(sx(end-1)+1:end-1),

’}’,’c’);

133 else

134 x_strI=strcat(p.xlabel,’I’);

135 x_strII=strcat(p.xlabel,’II’);

136 x_strc=strcat(p.xlabel,’c’);

137 end

138

139 % labels on figure f_I f_II
140 ylcf=p.ylabel; ylcf(ylcf==’$’)=[];

141 f_strI=strcat(’f’,ylcf,’I’);

142 f_strII=strcat(’f’,ylcf,’II’);

143

144 if isnan(p.axis_range(1))|| isinf(p.axis_range(1))

145 textfyxval(1)=min(X);

146 else

147 textfyxval(1) = p.axis_range(1);
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148 end

149 if isnan(p.axis_range(2))|| isinf(p.axis_range(2))

150 textfyxval(2)=max(X);

151 else

152 textfyxval(2) = p.axis_range(2);

153 end

154

155 % creat figure
156 R.figure_correction_factor=figure;

157

158 %% correction factor for Y1
159 if ˜isempty(Y1)

160 %check size
161 if size(X) ˜= size(Y1)

162 disp(’Inputs X Y1 have to be of same size’);

163 return;

164 end

165

166 pY1=Y./Y1; % creat correction factor
167

168 % characteristics
169 mean_py1=mean(pY1);

170

171 plot(X,pY1,default_curve{:}); hold on;

172

173 % acceptable error dash lines >1
174 if mean_py1>1

175 % plot dash line if there is none
176 if ˜indicator_plot_apy(1)

177 plot(X,vapy1*X./X,default_horizontal_dashline{:}); hold on

178 indicator_plot_apy(1)=true; % apy1 has been plot
179 end

180 % find the critical value coressponding to acceptable error
181 interp_y=pY1(pY1>((vapy1+1)/2)&pY1<1.2*vapy1);

182 interp_x=X(pY1>((vapy1+1)/2)&pY1<1.2*vapy1);

183 vp1=interp1(interp_y,interp_x,vapy1,’linear’);

184 R.accept_error_valy_y1=vapy1;

185 end

186 % acceptable error dash lines <1
187

188 if mean_py1<1

189 % plot dash line if there is none
190 if ˜indicator_plot_apy(2)

191 plot(X,vapy2*X./X,default_horizontal_dashline{:}); hold on

192 indicator_plot_apy(2)=true; % apy2 has been plot
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193 end

194 interp_y=pY1(pY1>0.8*vapy2&pY1<(vapy2+1)/2); interp_x=X(pY1>0.8*

vapy2&pY1<(vapy2+1)/2);

195 vp1=interp1(interp_y,interp_x,vapy2,’linear’);

196 R.accept_error_valy_y1=vapy2;

197 end

198

199 % plot vertical dashline
200 plot([vp1,vp1],[p.axis_range(3),R.accept_error_valy_y1],

default_vertical_dashline{:}); hold on

201 % label X_1
202 % text_y1=5∗p.axis_range(3);
203 text(vp1,1,x_strI,default_label{:});

204 % label f_I
205 if abs(pY1(1)-1)>abs(pY1(end)-1)

206 text(textfyxval(2).ˆ(5/6)*textfyxval(1).ˆ(1/6),2,f_strI,

default_label{:});

207 else

208 text(textfyxval(2).ˆ(1/6)*textfyxval(1).ˆ(5/6),2,f_strI,

default_label{:});

209 end

210 % out put
211 % R.correction_factor_y1=pY1;
212 R.accept_error_valx_y1=vp1;

213 else

214 %output
215 % R.correction_factor_y1=[]; % vector of correction factor for Y1
216 R.accept_error_valx_y1=[]; % the x vlaue of acceptable error for Y1
217 R.accept_error_valy_y1=[]; % the correction factor of acceptable error Y1
218 end

219

220 %% correction factor for Y2
221 if ˜isempty(Y2)

222 % check size
223 if size(X) ˜= size(Y2)

224 disp(’Inputs X Y2 have to be of same size’);

225 return;

226 end

227 % define correction factor
228 pY2=Y./Y2;

229 % characteristics
230 mean_py2=mean(pY2);

231

232 plot(X,pY2,default_curve{:}); hold on;

233
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234 % plot acceptable error dash lines
235 if mean_py2>1

236 if ˜indicator_plot_apy(1)

237 plot(X,vapy1*X./X,default_horizontal_dashline{:}); hold on

238 indicator_plot_apy(1)=1; % apy1 has been plot
239 end

240 interp_y=pY2(pY2>((vapy1+1)/2)&pY2<1.2*vapy1); interp_x=X(pY2>((

vapy1+1)/2)&pY2<1.2*vapy1);

241 vp2=interp1(interp_y,interp_x,vapy1,’linear’);

242 R.accept_error_valy_y2=vapy1; % the correction factor of acceptable
error Y2

243 end

244

245 if mean_py2<1

246 if ˜indicator_plot_apy(2)

247 plot(X,vapy2*X./X,default_horizontal_dashline{:}); hold on

248 indicator_plot_apy(2)=1; % apy2 has been plot
249 end

250 interp_y=pY2(pY2>0.8*vapy2&pY2<((vapy2+1)/2)); interp_x=X(pY2

>0.8*vapy2&pY2<((vapy2+1)/2));

251 vp2=interp1(interp_y,interp_x,vapy2,’linear’);

252 R.accept_error_valy_y2=vapy2; % the correction factor of acceptable
error Y2

253 end

254 % plot
255 plot([vp2,vp2],[p.axis_range(3),R.accept_error_valy_y2],

default_vertical_dashline{:}); hold on

256 % label x_II
257 % text_y2=5∗p.axis_range(3);
258 text(vp2,1,x_strII,default_label{:});

259 % label f_II
260 if abs(pY2(1)-1)>abs(pY2(end)-1)

261 text(textfyxval(2).ˆ(5/6)*textfyxval(1).ˆ(1/6),2,f_strII,

default_label{:});

262 else

263 text(textfyxval(2).ˆ(1/6)*textfyxval(1).ˆ(5/6),2,f_strII,

default_label{:});

264 end

265 %
266 %R.correction_factor_y2=pY2; % vector of correction factor for Y2
267 R.accept_error_valx_y2=vp2;% the x vlaue of acceptable error for Y2
268

269 else

270 %output
271 % R.correction_factor_y2=[]; % vector of correction factor for Y2
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272 R.accept_error_valx_y2=[]; % the x vlaue of acceptable error for Y2
273 R.accept_error_valy_y2=[]; % the correction factor of acceptable error Y2
274 end

275

276 %% plot estimated cf
277 plot(X,p.Y1est,’--k’,’linewidth’,1); hold on;

278 plot(X,p.Y2est,’--k’,’linewidth’,1); hold on;

279 %% cross point
280 if ˜isempty(Y1) && ˜isempty(Y2)

281 % interp value
282 Delta_Y=abs(log(pY1))-abs(log(pY2));

283 interp_y=Delta_Y(Delta_Y>-0.5&Delta_Y<0.5);

284 interp_x=X(Delta_Y>-0.5&Delta_Y<0.5);

285 vc_x=interp1(interp_y,interp_x,0,’linear’);

286 vc_y1=interp1(X,pY1,vc_x,’linear’); vc_y2=interp1(X,pY2,vc_x,’linear

’);

287 %plot vertical dash line
288 plot([vc_x,vc_x],[p.axis_range(3),max(vc_y1,vc_y2)],

default_vertical_dashline{:}); hold on

289 % label x_c
290 text(vc_x,1,x_strc,default_label{:});

291 % output
292 R.cross_cf_valx=vc_x; % the x value of cross cf
293 R.cross_cf_valy_y1=vc_y1; % the value of cf for y1 at cross point
294 R.cross_cf_valy_y2=vc_y2; % the value of cf for y2 at cross point
295 R.cross_cf_val_error_y1=log(vc_y1); % the error of Y1 at cross point
296 R.cross_cf_val_error_y2=log(vc_y2); % the error if Y2 at cross point
297 else

298 R.cross_cf_valx=[]; % the x value of cross cf
299 R.cross_cf_valy_y1=[]; % the value of cf for y1 at cross point
300 R.cross_cf_valy_y2=[]; % the value of cf for y2 at cross point
301 R.cross_cf_val_error_y1=[]; % the error of Y1 at cross point
302 R.cross_cf_val_error_y2=[]; % the error if Y2 at cross point
303 end

304

305 %% label axis
306 xlabel(p.xlabel,default_label{:});

307 ylabel(strcat(’correction factor for ’,p.ylabel),default_label{:});

308 set(gca,default_gca{:},...

309 ’Xscale’,p.xscale,’Yscale’,p.yscale,...

310 ’XTick’,p.xtick,’XTickMode’,p.xtickmode,...

311 ’YTick’,p.ytick,’YTickMode’,p.ytickmode);

312 axis([-inf,inf,0.1,10]);

313 grid on;box on

314 DefaultGca
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315 %% save files
316 if ˜isempty(p.cf_table)

317 writetable(struct2table(R), strcat(p.cf_table,’.txt’))

318 end

319 if ˜isempty(p.figure_name)

320 % saveas(gcf ,p.figure_name,’epsc ’)
321 % saveas(gcf , strcat (p.figure_name ,’. fig ’) )
322 end

323

324

325 end

326 function DefaultGca

327 box on;

328 set(gca,’FontSize’,14,’LineWidth’,1,...

329 ’MinorGridLineStyle’,’none’,’box’,’on’);

330 set(gcf,’color’,[1,1,1],...

331 ’Units’,’pixels’,...

332 ’PaperPosition’,[1.33,3.3125,5.83,4.375],...

333 ’PaperPositionMode’,’manual’,...

334 ’Render’,’painters’)

335 grid on

336 end

337 function [p,exitflag]=parsevarargin(default,parse,varargin)

338 % 1. parse the inputs , choosing default value if it ’ s not showed in varargin
339 % 2. check output with function parse .
340

341 % if some problems happened, exitflag = 0
342 exitflag=1;

343

344 % size of varargin
345 [r_varargin,c_varargin]=size(varargin);

346 % if varargin is empty use default
347 if r_varargin˜=0

348 % varargin should be a cell of [1x2n]
349 if r_varargin˜=1

350 disp(’Inputs must be a line.’);

351 exitflag=0;

352 return;

353 end

354 if rem(c_varargin,2)==1

355 disp(’Inputs must be in pairs’);

356 exitflag=0;

357 return

358 end

359
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360 % transform the [1x2n] cell to a struct of n.
361 varargin_field=varargin(1:2:c_varargin);

362 varargin_value=varargin(2:2:c_varargin);

363 % check the field name of varargin in default struct
364 is_in_fields=isfield(default,varargin_field);

365 for i=1:size(is_in_fields,2)

366 if is_in_fields(i)<eps

367 disp(char(strcat(’Property name ’,{’ ’}, varargin_field{i},{’

’}, ’is wrong’)));

368 else

369 % change the value of default
370 default.(varargin_field{i})=varargin_value{i};

371 end

372 end

373 end

374 % pass the changed struct to output
375 p=default;

376 % check if the output satisfied the parse
377 for fld = fieldnames(p)’

378 if ˜parse.(fld{1})(p.(fld{1}))

379 disp(char(strcat(’Error happened in the value of’,{’ ’}, fld{1}))

);

380 exitflag=0;

381 end

382 end

383 end
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Appendix B: Supplementary
materials for the moving line heat
source model

B.1 Matlab codes for isotherm width of moving

line heat source in Chapter 2

Listing B.1: Matlab code to calculate and blending isotherm width y∗max of moving
line heat source.

1 clear;clc;close all;

2 ymII=@(Ro) 2*exp(-0.5772)*exp(-Ro.ˆ-1);

3 ymI=@(Ro) sqrt(pi./(2*exp(1)))*Ro;

4 Blending_Equation=@(Ro) @(p) exp(-Ro.ˆ-1).*((2*exp(-0.5772)).ˆp(1)+(sqrt

(pi./(2*exp(1)))*Ro).ˆp(1)).ˆ(1/p(1));

5 %% blending
6 Bym=Blending_Grid_size(@fun_ymaxcal,Blending_Equation,1e-2,1e5,1);

7 Bym.Pplot.pvallist=[1.507;1.307];

8 Bym.Pplot.x_label= ’Ro’;

9 Bym.Pplot.y_label= ’ymax’;

10 Bym.funy1= ymI; Bym.funy2= ymII;

11 Bym.funmodify1= @(Ro) sqrt(pi./(2*exp(1)))*Ro.*exp(-Ro.ˆ-1);

12 Bym=Bym.Blending;

13 Bym=Bym.FBlending(1000);

14 %% export latex
15 Bym.latexRegimeI=’III’; Bym.latexRegimeII=’IV’;

16 Bym=Bym.funWrite(’thin_ymax.tex’);

17 %% calculation of ymax
18 function [ym]= fun_ymaxcal(Ro)

19 % fun_ymaxcal: calculate numerical result of ymax
20 funTRmax=@(rmax) exp(rmax.*besselk(0,rmax,1)./besselk(1,rmax,1)-rmax).*

besselk(0,rmax,1);

21 options = optimset(’TolX’,1e-50);

22 rmax=zeros(size(Ro));

23 for i=1:max(size(Ro))
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24 rmax(i)= fzero(@(rmax) funTRmax(rmax)-1./Ro(i),[1e-50,1e10],options)

;

25 end

26 ym=rmax.*sqrt(1-(besselk(0,rmax,1)./besselk(1,rmax,1)).ˆ2);

27 end

B.2 Matlab codes for characteristic values of mov-

ing line heat source in Chapter 3

Listing B.2: Matlab code to calculate and blending location of isotherm width x∗
max

of moving line heat source.

1 clear;clc;close all;

2 xmI=@(Ro) -4*exp(-2*0.5772)*Ro.ˆ-1.*exp(-2*Ro.ˆ-1);

3 xmII=@(Ro) -pi./(2*exp(1))*Ro.ˆ2;

4 Blending_Equation=@(Ro) @(p) -exp(-2*Ro.ˆ-1).*(((pi./(2*exp(1))*Ro.ˆ2))

+(4*exp(-2*0.5772)*Ro.ˆ-1)+p(1)*Ro.ˆp(2));

5 %% blending
6 Bxmax=Blending_Grid_size(@fun_xmaxcal,Blending_Equation,1e-2,1e4,[1,1]);

7 Bxmax.Pplot.pvallist=[1.507;1.307];

8 Bxmax.Pplot.x_label= ’Ro’;

9 Bxmax.Pplot.y_label= ’xmax’;

10 Bxmax.funy1= xmI; Bxmax.funy2= xmII;

11 Bxmax.funmodify1= @(Ro) -pi./(2*exp(1))*Ro.ˆ2.*exp(-2*Ro.ˆ-1);

12 Bxmax=Bxmax.Blending;

13 Bxmax=Bxmax.FBlending(1000);

14 %% export latex
15 Bxmax.latexRegimeI=’III’; Bxmax.latexRegimeII=’IV’;

16 Bxmax=Bxmax.funWrite(’thin_xmax.tex’);

17 function [xm]= fun_xmaxcal(Ro)

18 % fun_ymaxcal: calculate numerical result of xmax
19 funTRmax=@(rmax) exp(rmax.*besselk(0,rmax,1)./besselk(1,rmax,1)-rmax).*

besselk(0,rmax,1);

20 options = optimset(’TolX’,1e-50);

21 rmax=zeros(size(Ro));

22 for i=1:max(size(Ro))

23 rmax(i)= fzero(@(rmax) funTRmax(rmax)-1./Ro(i),[1e-50,1e10],options);

24 end

25 xm=-rmax.*besselk(0,rmax,1)./besselk(1,rmax,1);

26 end

Listing B.3: Matlab code to calculate and blending trailing length x∗
b of moving line

heat source.
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1 clear;clc;close all;

2 %%
3 options=optimset(’TolX’,1e-50,’MaxIter’,1e10);

4 funTh=@(x) besselk(0,-x,1);

5 funxb=@(Ro)fzero(@(x) funTh(x) -1./Ro,[-1e300,-1e-300],options);

6 fun_xbcal=@(Ro) arrayfun(@(a) funxb(a),Ro);

7 gamma=0.5772;

8 xbI=@(Ro) -pi/2*Ro.ˆ2;

9 xbII=@(Ro)-2*exp(-1./Ro-gamma);

10 Blending_Equation= @(Ro) @(p) -exp(-1./Ro).*((pi/2*Ro.ˆ2)+(2*exp(-gamma)

)+p(1).*Ro.ˆp(2));

11 %% blending
12 Bxb=Blending_Grid_size(fun_xbcal,Blending_Equation,1e-2,1e4,[1,1]);

13 Bxb.Pplot.x_label= ’Ro’;

14 Bxb.Pplot.y_label= ’xb’;

15 Bxb.funy1= xbI;

16 Bxb.funy2= xbII;

17 Bxb.funmodify1= @(Ro) -pi/2*Ro.ˆ2.*exp(-1./Ro);

18 Bxb=Bxb.Blending;

19 Bxb=Bxb.FBlending(1000);

20 %% export latex
21 Bxb.latexRegimeI=’III’; Bxb.latexRegimeII=’IV’;

22 Bxb=Bxb.funWrite(’thin_xb.tex’);

Listing B.4: Matlab code to calculate and blending centerline cooling rate Ṫ ∗
b of

moving line heat source.

1 clear;clc;close all;

2 %%
3 options=optimset(’TolX’,1e-50,’MaxIter’,1e10);

4 funTh=@(x) besselk(0,-x,1);

5 funxb=@(Ro)fzero(@(x) funTh(x) -1./Ro,[-1e300,-1e-300],options);

6 fun_Tbcal=@(Ro) arrayfun(@(Ro) 1./Ro.*(1-besselk(1, -funxb(Ro),1)./

besselk(0, -funxb(Ro),1)),Ro);

7

8 gamma=0.5772;

9 TbIII=@(Ro) -1./(pi*Ro.ˆ3);

10 TbIV=@(Ro) -1/2*exp(1./Ro+gamma);

11 Blending_Equation=@(Ro) @(p) -exp(1./Ro).*((1./(pi*Ro.ˆ3)).ˆ-1+(1/2*exp(

gamma)).ˆ-1+p(1).*Ro.ˆp(2)).ˆ-1;

12 %% blending
13 BTb=Blending_Grid_size(fun_Tbcal,Blending_Equation,1e-2,1e2,[-1,-5]);

14 BTb.Pplot.x_label= ’Ro’;

15 BTb.Pplot.y_label= ’Tb’;

16 BTb.Pplot.figname= ’thin_Tb’;
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17 BTb.funy1= TbIII;

18 BTb.funy2= TbIV;

19 BTb.funmodify1= @(Ro) -1./(pi*Ro.ˆ3).*exp(1./Ro);

20 BTb=BTb.Blending;

21 BTb=BTb.FBlending(1000);

22 %% export latex
23 % BTb.latexRegimeI=’III ’; BTb.latexRegimeII=’IV’;
24 % BTb.funWrite(’thin_Tb.tex’);

Listing B.5: Matlab code to calculate and blending leading length x∗
f of moving line

heat source.

1 clear;clc;close all;

2 %%
3 options=optimset(’TolX’,1e-50,’MaxIter’,1e10);

4 T=@(x) exp(-2*x).*besselk(0,x,1);

5 funxf=@(t) fzero(@(x) T(x)-t,[1e-300,100],options);

6 fun_xfcal=@(Ro) arrayfun(@(a) funxf(1./a),Ro);

7 gamma=0.5772;

8 xfIII=@(Ro) 2*exp(-gamma-Ro.ˆ-1+1.5484*Ro.ˆ1.3878);%’a=1.5484, b=1.3878’
9 xfIV=@(Ro) 1/4*lambertw(2*pi*Ro.ˆ2);

10 Blending_Equation=@(Ro) @(p) ((1/4*lambertw(2*pi*Ro.ˆ2)).ˆ-1+(2*exp(-

gamma-Ro.ˆ-1+p(1)*Ro.ˆp(2))).ˆ-1).ˆ(-1);

11 %% blending
12 Bxf=Blending_Grid_size(fun_xfcal,Blending_Equation,1e-2,1e4,[1,1]);

13 Bxf.Pplot.x_label= ’Ro’;

14 Bxf.Pplot.y_label= ’xf’;

15 Bxf.funy1= xfIII;

16 Bxf=Bxf.Blending;

17 Bxf=Bxf.FBlending(1000);

18 %% export latex
19 Bxf.latexRegimeI=’III’; Bxf.latexRegimeII=’IV’;

20 % Bxf=Bxf.funWrite(’thin_xf.tex ’) ;

Listing B.6: Matlab code to calculate and blending centerline heating rate Ṫ ∗
f of

moving line heat source.

1 clear;clc;close all;

2 %%
3 options=optimset(’TolX’,1e-50,’MaxIter’,1e10);

4 T=@(x) exp(-2*x).*besselk(0,x,1);

5 funxf=@(Tc) fzero(@(x) T(x)-Tc,[1e-300,100],options);

6 fun_Tfcal=@(Ro) arrayfun(@(Ro) 1./Ro.* (1+besselk(1,funxf(1./Ro),1)./

besselk(0,funxf(1./Ro),1)),Ro);

7

8 gamma=0.5772;
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9 TfIII=@(Ro) 2./Ro;

10 TfIV=@(Ro) 1/2*exp(gamma+1./Ro);

11 Blending_Equation=@(Ro) @(p) exp(1./Ro).*((2./Ro).ˆ-1+(1/2*exp(gamma))

.ˆ-1+p(1)*Ro.ˆp(2)).ˆ-1 ;

12 %% blending
13 BTf=Blending_Grid_size(fun_Tfcal,Blending_Equation,1e-2,1e4,[1,-1]);

14 BTf.Pplot.x_label= ’Ro’;

15 BTf.Pplot.y_label= ’Tf’;

16 BTf.funy1= TfIII;

17 BTf.funy2= TfIV;

18 BTf.funmodify1= @(Ro) 2./Ro.*exp(1./Ro);

19 BTf=BTf.Blending;

20 BTf=BTf.FBlending(1000);

21 %% export latex
22 BTf.latexRegimeI=’III’; BTf.latexRegimeII=’IV’;

23 % BTf=BTf.funWrite(’thin_Tf.tex’);

Listing B.7: Matlab code to calculate and blending maximum temperature T ∗
max of

moving line heat source.

1 clear;clc;close all;

2 TmaxIII=@(yc) sqrt(pi/(2*exp(1)))./yc;

3 TmaxIV=@(yc) log(1./yc+2);

4 Blending_Equation=@(yc) @(p) ((sqrt(pi/(2*exp(1)))./yc).ˆp+ log(1./yc+2)

.ˆp).ˆ(1./p);

5 %%
6 BTmax=Blending_Grid_size(@fun_Tmax,Blending_Equation,1e-5,1e5,[-1]);

7 BTmax.Pplot.pvallist=[-2.400;-2.7];

8 BTmax.Pplot.x_label= ’yc’;

9 BTmax.Pplot.y_label= ’Tmax’;

10 BTmax.funy1= TmaxIII;

11 BTmax.funy2= TmaxIV;

12 BTmax=BTmax.Blending;

13 BTmax=BTmax.FBlending(1000);

14 %% export latex
15 BTmax.latexRegimeI=’III’; BTmax.latexRegimeII=’IV’;

16 % BTmax=BTmax.funWrite(’thin_Tmax.tex’);
17

18 %% calculate Tmax
19 function [Tmax]= fun_Tmax(yc)

20 options = optimset(’TolX’,1e-150);

21 xmax = arrayfun(@(yc) fzero(@(x) 1+x./sqrt(x.ˆ2+yc.ˆ2).*besselk(1,sqrt(x

.ˆ2+yc.ˆ2),1)./besselk(0,sqrt(x.ˆ2+yc.ˆ2),1),-yc,options),yc);

22 Tmax= exp(-xmax-sqrt(xmax.ˆ2+yc.ˆ2)).*besselk(0,sqrt(xmax.ˆ2+yc.ˆ2),1);

23 end
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Listing B.8: Matlab code to calculate and blending maximum temperature gradient
dT ∗

max/dy
∗ of moving line heat source.

1 clear;clc;close all;

2 gamma=0.5772;

3 TmaxIII=@(Ro) -sqrt(2*exp(1)./(pi))./Ro.ˆ2;

4 TmaxIV=@(Ro) -1/2*exp(gamma+1./Ro);

5 Blending_Equation=@(Ro) @(p) -exp(1./Ro).* ((sqrt(2*exp(1)./(pi))./Ro

.ˆ2).ˆ-1+(1/2*exp(gamma)).ˆ-1+p(1).*Ro.ˆp(2)).ˆ-1;

6 %%
7 BdTmdy=Blending_Grid_size(@fun_dTmdy,Blending_Equation,1e-2,1e4,[1,1]);

8 BdTmdy.Pplot.x_label= ’Ro’;

9 BdTmdy.Pplot.y_label= ’dTmdy’;

10 BdTmdy.funy1= TmaxIII;

11 BdTmdy.funy2= TmaxIV;

12 BdTmdy.funmodify1= @(Ro) -sqrt(2*exp(1)./(pi))./Ro.ˆ2.*exp(1./Ro);

13 BdTmdy=BdTmdy.Blending;

14 BdTmdy=BdTmdy.FBlending(1000);

15 %% export latex
16 BdTmdy.latexRegimeI=’III’; BdTmdy.latexRegimeII=’IV’;

17 BdTmdy=BdTmdy.funWrite(’thin_dTmdy.tex’);

18

19 %% calculate dTmaxdy
20 function [dTmaxdy]= fun_dTmdy(Ro)

21 funTRmax=@(rmax) exp(rmax.*besselk(0,rmax,1)./besselk(1,rmax,1)-rmax).*

besselk(0,rmax,1);

22 options = optimset(’TolX’,1e-50);

23 rmax=zeros(size(Ro));

24 for i=1:max(size(Ro))

25 rmax(i)= fzero(@(rmax) funTRmax(rmax)-1./Ro(i),[1e-50,1e10],options)

;

26 end

27 ym=rmax.*sqrt(1-(besselk(0,rmax,1)./besselk(1,rmax,1)).ˆ2);

28 xm=-rmax.*besselk(0,rmax,1)./besselk(1,rmax,1);

29 dTmaxdy=-exp(-xm-sqrt(xm.ˆ2+ym.ˆ2)).*ym.*besselk(1,sqrt(xm.ˆ2+ym.ˆ2),1)

./sqrt(xm.ˆ2+ym.ˆ2);

30 end

Listing B.9: Matlab code to calculate and blending isotherm aspect ratioA of moving
line heat source.

1 clear;clc;close all;

2 ARIII=@(Ro) sqrt(pi*exp(1)./8).*Ro;

3 ARIV=@(Ro) Ro./Ro;

4 Blending_Equation=@(Ro) @(p) (1+( sqrt(pi*exp(1)./8).*Ro).ˆp(1)).ˆ(1./p

(1));
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5 %% blending
6 BAR=Blending_Grid_size(@fun_AR,Blending_Equation,1e-2,1e2,1);

7 BAR.Pplot.pvallist=[1.8;2.1];

8 BAR.Pplot.x_label= ’Ro’;

9 BAR.Pplot.y_label= ’AR’;

10 BAR.funy1= ARIII;

11 BAR.funy2= ARIV;

12 BAR=BAR.Blending;

13 BAR=BAR.FBlending(1000);

14 %% export latex
15 BAR.latexRegimeI=’III’; BAR.latexRegimeII=’IV’;

16 % BAR=BAR.funWrite(’thin_AR.tex’);
17

18 %% calculate function
19 function [AR]= fun_AR(Ro)

20 funTRmax=@(rmax) exp(rmax.*besselk(0,rmax,1)./besselk(1,rmax,1)-rmax).*

besselk(0,rmax,1);

21 options = optimset(’TolX’,1e-50);

22 rmax=zeros(size(Ro));

23 for i=1:max(size(Ro))

24 rmax(i)= fzero(@(rmax) funTRmax(rmax)-1./Ro(i),[1e-50,1e10],options)

;

25 end

26 ym=rmax.*sqrt(1-(besselk(0,rmax,1)./besselk(1,rmax,1)).ˆ2);

27 xm=-rmax.*besselk(0,rmax,1)./besselk(1,rmax,1);

28 options=optimset(’TolX’,1e-50,’MaxIter’,1e10);

29 T=@(x) exp(-2*x).*besselk(0,x,1);

30 funxf=@(t) fzero(@(x) T(x)-t,[1e-300,100],options);

31 xf= arrayfun(@(a) funxf(1./a),Ro);

32 funTh=@(x) besselk(0,-x,1);

33 funxb=@(Ro)fzero(@(x) funTh(x) -1./Ro,[-1e300,-1e-300],options);

34 xb= arrayfun(@(a) funxb(a),Ro);

35 AR=(xf-xb)./(2*ym);

36 end
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B.3 Supporting figures for blending results in Chap-

ter 3

B.3.1 x∗
max
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Figure B.1: Location of isotherm width x∗
max changes with Ro number.
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Figure B.2: Relative error changes with Ro for scaling laws of x∗
max.
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Figure B.3: Optimizing parameters for blending of x∗
max.
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Figure B.5: x∗
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Figure B.6: Relative error changes with Ro for scaling laws of x∗
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Figure B.10: Relative error changes with Ro for scaling laws of Ṫ ∗
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Figure B.13: x∗
b changes with Ro number.
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Figure B.14: Relative error changes with Ro for scaling laws of x∗
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Figure B.15: Optimizing parameters for blending of x∗
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Figure B.17: Ṫ ∗
b changes with Ro number.
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Figure B.18: Relative error changes with Ro for scaling laws of Ṫ ∗
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Figure B.19: Optimizing parameters for blending of Ṫ ∗
b .
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fṪ ∗

bIV

RoIIIRoIV

Roc

Figure B.20: Correction factors for engineering expressions for Ṫ ∗
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Figure B.26: Relative error changes with Ro for scaling laws of dT ∗
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Figure B.30: Relative error changes with Ro for scaling laws of A.
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Figure B.31: Optimizing parameters for blending of A.
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Figure B.32: Correction factors for engineering expressions for A.
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Appendix C: Supplementary
materials for the moving line heat
source under convection

C.1 Matlab codes for isotherm trailing length and

centerline cooling rate of moving heat source

under surface heat loss in Chapter 4

C.1.1 Calculation of isotherm trailing length x∗
b
of moving

line heat source under surface heat loss

Listing C.1: Calculation of trailing length x∗
b of moving line heat source under surface

heat loss.

1 function main

2 %%
3 % Numerical result of xb for Rosenthal model for thin plate with surface
4 % convection
5 % The mathematical solution is
6 % $T^∗=\exp(−x^∗) K_0 (r^∗ \sqrt{1+h^∗})$
7 clear;clc;close all;

8 global PROGRESS_COUNTER PROGRESS_MAX options bar

9 %% Initialization
10 vRo=logspace(-5,5,1000);

11 vh=logspace(-5,5,999);

12

13 [mRo,mh]=meshgrid(vRo,vh);

14

15 PROGRESS_COUNTER=0;

16 PROGRESS_MAX = 999*1e3;

17 options = optimset(’TolX’,1e-305);

18 bar = waitbar(0,’Please wait...’);

19

20 %% Calculation
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21 xb=arrayfun(@(Ro,h)funxb(Ro,h),mRo,mh)

22 bar = waitbar(1,’Finished’);

23

24 %% export solution
25 save thin2_xb_result.mat vh vRo xb

26 %%
27

28 function xb=funxb(Ro,h)

29 %%
30 funT=@(x,h) exp(-x+x*sqrt(1+h)).*besselk(0,-x*sqrt(1+h),1);

31 %%
32 % determination of the valid range of x for each h
33 % calculate form funT=@(x,h) exp(−x+x∗sqrt(1+h)).∗besselk(0,−x∗sqrt(1+

h),1);
34 % −700<x∗(sqrt(1+h)−1) % => x>−700/(sqrt(1+h)−1)
35 % x∗(sqrt(1+h)−1)<700 % => automatically satisfied because x<0 h>0
36 % 1e−300<−x∗sqrt(1+h)<1e300 % => −1e300/sqrt(1+h)<x<1e−300/sqrt

(1+h)
37 x1=-700./(sqrt(1+h)-1);

38 x2= -1e-300;

39 Ro1=1./funT(x1,h);

40 Ro2=1./funT(x2,h);

41

42 PROGRESS_COUNTER = PROGRESS_COUNTER + 1;

43 waitbar(PROGRESS_COUNTER / PROGRESS_MAX,bar);

44

45 if Ro>Ro1 || Ro<Ro2

46 xb=nan;

47 else

48 xb= fzero(@(x) funT(x,h)-1./Ro,[x1,x2],options);

49 end

50 end

51

52 end

C.1.2 Blending of isotherm trailing length x∗
b
of moving line

heat source under surface heat loss

Listing C.2: Blending of trailing length x∗
b of moving line heat source under surface

heat loss.

1 clear;clc;close all

2 load(’thin2_xb_result.mat’)

3 [Ro,h]=meshgrid(vRo,vh);
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4 Ro(isnan(xb))=nan;

5

6 PI= pi*(1-1./sqrt(1+h)).*Ro.ˆ2;

7

8 xbest=@(p) -pi* Ro.ˆ2./(2*sqrt(1+h)).* 1./PI.*( 1./PI+log(PI+p(5)).ˆ-1+p

(3).*PI.ˆp(4) ).ˆ-1.*...

9 exp(-1./Ro).*(1+4./pi*exp(-0.5772).*Ro.ˆ-2+2*p(1)./pi.*Ro.ˆ(p(2)-2))

;

10

11 E=@(p) log(xbest(p)./xb);

12 disp(’Original parameters’)

13 pseed=[0.7659 1.541 0.08568 -0.1028 2.586]

14 max(max(abs(E(pseed))))

15

16 disp(’2D Optimizing parameters’)

17 [P,fval]=fminsearch(@(p) max(max(abs(E(p)))),pseed)

18

19 figure

20 ErrorXb = E(P)

21 surf(vRo,vh,ErrorXb);

22 set(gca,’xscale’,’log’,’yscale’,’log’)

23 shading interp

24 xlabel(’Ro’); ylabel(’h’)

25 axis([0.0014527,1e3,1e-5,1e5,-inf,inf])

C.1.3 Blending of centerline cooling rate Ṫ ∗
b
of moving line

heat source under surface heat loss

Listing C.3: Blending of centerline cooling rate Ṫ ∗
b of moving line heat source under

surface heat loss.

1 clear;clc;close all

2 BlendFourRegimes = false ;

3 BlendIV_IVh = true;

4 BlendIIIh_IVh= true;

5 %%
6 load(’thin2_xb_result.mat’)

7 [Ro,h]=meshgrid(vRo,vh);

8 Ro(isnan(xb))=nan;

9 fun_Tb=@(h,Ro,xb) 1./Ro.*(1- sqrt(h+1).*besselk(1,-xb.*sqrt(h+1),1)./

besselk(0,-xb.*sqrt(h+1),1));

10 Tb=fun_Tb(h,Ro,xb);

11 %% four regime blending
12 if BlendFourRegimes
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13 PI= pi*(1-1./sqrt(1+h)).*Ro.ˆ2;

14 TbIIIiiih = 1./Ro.*(1-sqrt(1+h)).*(1+1./lambertw(pi*(1-1./sqrt(1+h))

.*Ro.ˆ2));

15 a0=3.839; b0=2.108;

16 Tbest=@(p) - sqrt(1+h)./(pi*Ro.ˆ3).* PI.*(1+1./PI+log(PI+p(5)).ˆ-1+p

(3).*PI.ˆp(4) ).*exp(1./Ro).*(1+2./pi*exp(-0.5772).*Ro.ˆ-3+p(1)./

pi.*Ro.ˆ(p(2)-3)).ˆ-1;

17

18 E=@(p) log(Tbest(p)./Tb);

19 pseed = [3.839 2.108 0.08568 -0.1028 2.586]

20

21 Xiii = logspace(-5,5,1000);

22 EIIIIIIH = @(p) log( (Xiii.*(1+1./Xiii+log(Xiii+p(5)).ˆ-1+p(3).*Xiii

.ˆp(4) ))./(Xiii.*(1+1./lambertw(Xiii))));

23

24 ME=@(p) max([max(max(abs(E(p)))),max(max(abs(EIIIIIIH(p))))]);

25 [P,fval] = fminsearch(@(p) ME(p),pseed)

26 % 3.6524 1.9708 0.0641 −0.1004 6.2523
27 PnotBlending= [3.839 2.108 0.08568 -0.1028 2.586];

28

29 ME(PnotBlending)

30

31 figure

32 ErrorTb = E(P);

33 surf(vRo,vh,ErrorTb);

34 set(gca,’xscale’,’log’,’yscale’,’log’)

35 shading interp

36 xlabel(’Ro’); ylabel(’h’);

37 axis([0.0014527,1e3,1e-5,1e5,-inf,inf])

38 end

39 %% Regime IV IVh
40 if BlendIV_IVh

41 Tbiv= - Tb(:,220)’./(1./2*exp(0.5772+1./vRo(220)));

42 funTbivest=@(n) (1+sqrt(vh).ˆn).ˆ(1./n);

43 E=@(n) log(funTbivest(n)./Tbiv);

44 [P,fval]=fminsearch(@(p) max(max(abs(E(p)))),1)

45 end

46 %% Regime IIIh IVh
47 if BlendIIIh_IVh

48 Tbh= - Tb(end,:)./(sqrt(vh(end)));

49 loglog(Tbh,’k’); hold on

50 loglog(1./vRo.*exp(1./vRo)); hold on

51 loglog(1./2*exp(1./vRo+0.5772)); hold on

52 funTbh=@(p) exp(1./vRo)./( 2*exp( - 0.5772) + vRo+p(1).*vRo.ˆp(2));

53 E=@(n) log(funTbh(n)./Tbh);
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54 [P,fval]=fminsearch(@(p) max(max(abs(E(p)))),[1,1])

55 end

C.1.4 Critical values of convection coefficients to neglect ef-
fects of surface heat loss for trailing length and cooling

rate

Listing C.4: Critical values of convection coefficients to neglect effects of surface heat
loss.

1 clear;clc;close all

2 % calculate the negeligible convection area
3 %% Load data
4 load(’thin2_xb_result.mat’)

5 [mRo,mh]=meshgrid(vRo,vh);

6 mRo(isnan(xb))=nan;

7 fun_Tb=@(h,Ro,xb) 1./Ro.*(1- sqrt(h+1).*besselk(1,-xb.*sqrt(h+1),1)./

besselk(0,-xb.*sqrt(h+1),1));

8 Tb=fun_Tb(mh,mRo,xb);

9 %
10 funTh0=@(x) besselk(0,-x,1);

11 options = optimset(’TolX’,1e-100);

12 funxb0=@(Ro) fzero(@(x) funTh0(x)-1./Ro,[-1e300,-1e-300],options);

13

14 xbesth0=nan*vRo;

15

16 for j=1:size(vRo,2)

17 if vRo(j) > 1e-2

18 xbesth0(j)= funxb0(vRo(j));

19 end

20 end

21

22 Tbesth0=1./vRo.*(1- besselk(1,-xbesth0,1)./besselk(0,-xbesth0,1));

23 [xbesth0,˜]=meshgrid(xbesth0,vh);

24 [Tbesth0,˜]=meshgrid(Tbesth0,vh);

25

26 figure

27 error_xbesth0=log(xbesth0./xb);

28 error_Tbesth0=log(Tbesth0./Tb);

29 contour(vRo,vh,error_xbesth0,[-0.1,0.1],’--k’,’linewidth’,2); hold on

30 contour(vRo,vh,error_Tbesth0,[-0.1,0.1],’-k’,’linewidth’,2); hold on

31 set(gca,’xscale’,’log’,’yscale’,’log’)

32

33 axis([1e-2,1e2,1e-2,1e2])
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34 xlabel(’Ro’)

35 ylabel(’h’)

36 DefaultGca

37

38

39 a=0.7659; b=1.541;

40 AE=0.1;

41 Rolist=logspace(-2,5,1000);

42 xbest0= -exp(-1./Rolist) .*(2*exp(-0.5772)+pi/2.*Rolist.ˆ2+a.*Rolist.ˆb)

;

43

44 hcrxb=-((2*(besselk(0, -xbest0,1)- besselk(1, -xbest0,1)))./ besselk(1,

-xbest0,1)).* AE;

45 hcrtb=-((2*AE*(besselk(0,-xbest0,1) - besselk(1,-xbest0,1)).ˆ2)./(

xbest0.*besselk(0,-xbest0,1).ˆ2 - besselk(1,-xbest0,1).ˆ2 - xbest0.*

besselk(1,-xbest0,1).ˆ2));

46 plot(Rolist,hcrxb,’--k’,’linewidth’,1); hold on

47 plot(Rolist,hcrtb,’-k’,’linewidth’,1); hold on

48 legend(’hc for xb for\newline 10% accepted error’,...

49 ’hc for Tb for \newline 10% cooling rate’,...

50 ’estimated hc for xb for\newline 10% accepted error’,...

51 ’estimated hc for Tb for\newline 10% accepted error’)

C.2 Matlab codes for isotherm width and its loca-

tion of moving line heat source under surface

heat losses in Chapter 5

C.2.1 Calculation of isotherm width y∗max and its location x∗
max

of moving line heat source under surface heat loss

Listing C.5: Calculation of y∗max and x∗
max for moving line heat source under surface

heat loss.

1 %% Thin plate with heat disspation :
2 clear;clc;close all;

3 % Calculating the width and it ’ s location
4 %% Functions used according to original equation and dimensional analysis
5 fun_T=@(x,r,h) exp(-x-r.*sqrt(1+h)).*besselk(0,r.*sqrt(1+h),1);

6 fun_xm=@(r,h) -r.*besselk(0,r.*sqrt(1+h),1)./(sqrt(h+1).*besselk(1,r.*

sqrt(1+h),1));

7 fun_ym=@(r,h) r.*sqrt(1-(besselk(0,r.*sqrt(1+h),1)./(sqrt(h+1).*besselk

(1,r.*sqrt(1+h),1))).ˆ2);

8 fun_Tm=@(r,h) fun_T(fun_xm(r,h),r,h);
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9 options = optimset(’TolX’,1e-305);

10 % Simplify this function : fun_rm=@(T,h,a,b) fzero(@(r) T−fun_Tm(r,h),[a,b],
options) ;

11 fun_rm=@(T,h,a,b) fzero(@(r) T-(exp(r.*(besselk(0,r.*sqrt(1+h),1)./(sqrt

(h+1).*besselk(1,r.*sqrt(1+h),1))-sqrt(1+h))).*besselk(0,r.*sqrt(1+h

),1)),[a,b],options);

12 %% Setting values
13 % To make sure @fun_Tm make sense in MATLAB, must be in [1e−308,1e308], and

must be in[−700,700]
14 % increase with by plotting
15 h_val=logspace(-7,7,900);

16 r0=1e-300*h_val./h_val;r1=arrayfun(@(h) fzero( @(r) -fun_xm(r,h)-r*sqrt

(1+h) +700,[1e-300,1e300]),h_val);

17 RANGE_T=[max(fun_Tm(r1,h_val)),min(fun_Tm(r0,h_val))];

18 T_val=logspace(-3,log10(300),1000);

19 [T,h]=meshgrid(T_val,h_val); [˜,r0]=meshgrid(T_val,r0);[˜,r1]=meshgrid(

T_val,r1);

20 %% Calculating with disspation
21 tic

22 rm=arrayfun(@(T,h,a,b) fun_rm(T,h,a,b),T,h,r0,r1);

23 toc

24 xm=fun_xm(rm,h);

25 ym=fun_ym(rm,h);

26

27 rm0= arrayfun(@(T) fun_rm(T,0,1e-300,1e300),T_val);

28 xm0=fun_xm(rm0,0);

29 ym0=fun_ym(rm0,0);

30 save THIN_RES_XM_YM T h T_val h_val xm ym rm xm0 ym0 rm0

C.2.2 Blending of isotherm width y∗max and its location x∗
max

of moving line heat source under surface heat loss

Listing C.6: Blending x∗
max for moving line heat source under surface heat loss.

1 clear;clc;close all;

2 %% load calculation results
3 path = pwd;

4 cd ../../

5 load(’THIN_RES_XM_YM.mat’); cd(path)

6 vRo=1./T_val; Ro=1./T; vh=h_val; e= exp(1);

7 clear T_val h_val rm rm0 T xm0 ym0

8 %% Corner III
9 x_omega = pi*h.*Ro.ˆ2./(exp(1./(1+h)).*(1+h));

309



10 omega = (x_omega.ˆ-1+log(x_omega+2.585).ˆ-1+0.08568*x_omega.ˆ(-0.1028))

.ˆ-1;

11 f_III_IV = exp(-2./Ro).*(1+ 8*e/(pi*exp(2*0.5772))*Ro.ˆ-3 +2*1.427*e/pi*

Ro.ˆ(1.077-2));

12 f_III_IIIa = e./(pi*Ro.ˆ2.*h).*omega;

13 xmax_III_IV_IIIA = - pi/(2*exp(1))*Ro.ˆ2.* f_III_IV.*f_III_IIIa;

14 %% Opposite corner
15 g = xm./xmax_III_IV_IIIA;

16 g2 = 1./g ;

17 G_IVa = e-1 ;

18 gest =@(p) (1+ G_IVa.*(1 + p(1).*Ro.ˆp(2)).ˆ(p(3)) .*(1+ p(4).*h.ˆp(5))

.ˆp(6)).ˆ-1 ;

19 E=@(p) log(gest(p)./g);

20 options = optimset(’MaxFunEvals’,1e10);

21 ME=@(p) max(max(abs(E(p))));

22 pseed=[3.143 0.8608 -0.5360 0.3143 -0.7133 -2.645];

23 ME(pseed)

24 [P,fval] = fminsearch(@(p) ME(p) ,pseed)

25 %% Plot errormap
26 EC= E(P);

27 surf(Ro,h,100*EC)

28 shading interp

29 set(gca,’xscale’,’log’,’yscale’,’log’)

30 xlabel(’Ro’) ; ylabel(’h’)

Listing C.7: Blenidng y∗max for moving line heat source under surface heat loss.

1 clear;clc;close all;

2 cd ../../

3 load(’THIN_RES_XM_YM.mat’)

4 cd ./Blending/Blending_ymax

5 vRo=1./T_val; Ro=1./T; vh=h_val;

6 e=exp(1);

7 %% Corner III
8 x_omega = pi*h.*Ro.ˆ2./(exp(1./(1+h)).*(1+h));

9 omega = (x_omega.ˆ-1+log(x_omega+2.585).ˆ-1+0.08568*x_omega.ˆ(-0.1028))

.ˆ-1;

10

11 f_III_IV = exp(-1./Ro).*(1+(sqrt(8*exp(1)/pi).*exp(-0.5772)./Ro)

.ˆ(1.407)).ˆ(1./1.407) ;

12 f_III_IIIa = sqrt(e./(2*pi*h)).*omega./Ro.*sqrt(1+2./((1+h).*omega));

13 ymax_III_IV_IIIA = sqrt(pi/(2*exp(1))).*Ro.* f_III_IV.*f_III_IIIa;

14 %% Opposite corner
15 g = ym./ymax_III_IV_IIIA;

16 % G_IVa = Ro./omega.∗1./sqrt(e/(2∗pi).∗(1+(2./((1+h).∗omega)))) − 1
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17 % pseed=[5.929 1.829 −0.5464 0.06783 −0.6749 −19.76];
18 G_IVa = sqrt(2./(pi*e*Ro.ˆ2+2*e./(1+h))) ;

19 gest =@(p) (1+ (G_IVa.*(1 +p(1).*Ro.ˆp(2)).ˆ(p(3)) .*(1+ p(4).*h.ˆp(5))

.ˆp(6))) ;

20 E=@(p) log(gest(p)./g);

21 ME=@(p) max(max(abs(E(p))));

22 set(gca,’xscale’,’log’,’yscale’,’log’)

23 %% Optimization
24 pseed=[16.09 1.438 -0.2508 0.05885 -0.3583 -24.44];

25 ME(pseed)

26 options = optimset(’MaxFunEvals’,1e5);

27 [P,fval] = fminsearch(@(p) ME(p) ,pseed,options)

28 %%
29 EC = E(P);

30 surf(Ro,h,100*EC)

31 shading interp

32 set(gca,’xscale’,’log’,’yscale’,’log’)

33 xlabel(’Ro’) ; ylabel(’h’)

C.2.3 Critical values of convection coefficients to neglect ef-
fects of surface heat loss for isotherm width and its

location

Listing C.8: Critical values of h∗
c to neglect effects of convection within 10 % relative

eror for y∗max and x∗
max.

1 clear;clc;close all;

2 %%
3 load(’THIN_RES_XM_YM.mat’)

4 %%
5 [Mym0,˜]= meshgrid(ym0,h_val);

6 Eym = abs(log(ym./Mym0));

7 contour(1./T_val,h_val,Eym,[0.1,0.1],’-k’,’linewidth’,2); hold on

8

9 [Mxm0,˜]= meshgrid(xm0,h_val);

10 Exm = abs(log(xm./Mxm0));

11 contour(1./T_val,h_val,Exm,[0.1,0.1],’--k’,’linewidth’,2); hold on

12

13 Roval=1./T_val; hcym = 0.2*(1+(pi/(2*exp(1))*Roval.ˆ2).ˆ0.9405)

.ˆ(-1./0.9405);

14 plot(Roval,hcym,’-k’,’linewidth’,1); hold on

15 hcxm = 0.1.*((exp(1)./(Roval.ˆ2*pi)).ˆ(-1.296)+1).ˆ(-1./1.296)

16 plot(Roval,hcxm ,’--k’,’linewidth’,1); hold on

17
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18 set(gca,’xscale’,’log’,’yscale’,’log’)

19 axis([-inf,inf,-inf,1])

20 xlabel(’Ro’)

21 ylabel(’hc’)

22 legend(’hcym’,’hcxm’,’hcymest’,’hcxmest’)

23 DefaultGca
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Appendix D: Supplementary
materials for moving Gaussian heat
source model

D.1 Matlab codes for isotherm width under a mov-

ing Gaussian heat source in Chapter 6

D.1.1 Calculation of isotherms with two peaks under a mov-

ing Gaussian heat source

Listing D.1: Example of an isotherm with two peaks under a moving Gaussian heat
source.

1 clear;clc; close all

2 xv=[-40:1:-26,-25:0.1:-4,-3:-1]; yv=[9.5:0.01:10.5];

3 Ry=110;T0 =1./Ry; % 0.009 ;
4 sigma=4;

5 funT=@(x,y,s) 1/sqrt(2*pi)*integral(@(t) t.ˆ(-0.5)./(t+sˆ2).*exp(-((x+t)

.ˆ2+yˆ2)./(2*t+2*sˆ2)),0,inf);

6 [x,y]=meshgrid(xv,yv);

7 s=sigma*(x./x);

8 T2=arrayfun(@(x,y,s) funT(x,y,s),x,y,s);

9 xlabel(’x’);

10 ylabel(’y’);

11 text(-15,10.1,’Ry=110,sigma=4’); hold on

12 contour(xv,yv,T2,T0*[1,1],’k’,’linewidth’,2);

13 DefaultGca

14 % savefigures (1,’ gaussian_bipeak_example’)

Listing D.2: Calculation of isotherms with two peaks under a moving Gaussian heat
source.

1 clear;clc;close all

2 % The start value of Ry and sigma, that two peak conditions exist
3 % If $d (X^2)/d(R^2) = 1$, two peaks exsits
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4 % ∗IMPORTANT∗ , the varable x or r here is modified by X = X−\sigma^2, R =
sqrt((x−sigma^2)^2+y^2)

5 %% calculate the maximum value of $d (X^2)/d(R^2)$ for a given $\sigma$
6 tola=1e-20; tolb=1e-16;

7 funTstar=@(x,sigma) 1/sqrt(2*pi)*integral(@(t) t.ˆ(-1/2)./(t+sigma.ˆ2).*

exp(-0.5*(x.ˆ2+t.ˆ2+2.*t.*x)./(t+sigma.ˆ2)),0,inf,’RelTol’,1e-100,’

AbsTol’,1e-100);

8 funxm=@(sigma) fminsearch(@(x) -funTstar(x,sigma),-3,optimset(’TolFun’,1

e-80,’TolX’,1e-80,’MaxFunEvals’,10000,’MaxIter’,5000));

9 funtm=@(r,sigma) acos(min(sigma/sqrt(r),1));

10 funp=@(r,n,sigma) integral(@(t) cos(t).ˆn.*exp(-0.5*(r/sigma*cos(t)-

sigma./cos(t)).ˆ2),0,funtm(r,sigma),’RelTol’,tola,’AbsTol’,tolb)+

integral(@(t) cos(t).ˆn.*exp(-0.5*(r/sigma*cos(t)-sigma./cos(t)).ˆ2)

,funtm(r,sigma),pi/2,’RelTol’,tola,’AbsTol’,tolb);

11 % $d (X^2)/d(R^2)$
12 fundx2r2=@(r,sigma) sigmaˆ2*funp(r,0,sigma)./funp(r,2,sigma).*(funp(r,0,

sigma).*funp(r,4,sigma)./funp(r,2,sigma).ˆ2-1);

13 % minimal value of R =sqrt((x−sigma^2)^2+y^2), location of center maximum
temperature

14 funrmin = @(sigma) abs(funxm(sigma)-sigma.ˆ2);

15 %% minimal Ry has two peaks
16 fun_Rval_dx2dr2_Max=@(sigma) fminsearch(@(r) -fundx2r2(r,sigma),sigma+

abs(funxm(sigma)-sigma.ˆ2));

17 fval_dx2dr2_Max =@(sigma) fundx2r2(fun_Rval_dx2dr2_Max(sigma),sigma);

18 % find sigma $d (X^2)/d(R^2) = 0 $
19 [bipeak_min_sigma] = fzero(@(sigma) fval_dx2dr2_Max(sigma) -1,[2,5]);

20 R_bipeak_min_sigma= fun_Rval_dx2dr2_Max(bipeak_min_sigma);

21 [Tc_bipeak_min_sigma,xm_bipeak_min_sigma,ym_bipeak_min_sigma] = tm_rm(

bipeak_min_sigma,R_bipeak_min_sigma)

22 Ry_min_bipeak = 1./Tc_bipeak_min_sigma;

23 %% plot $d (X^2)/d(R^2)$ vs R
24 sigmalist = [1,2,bipeak_min_sigma,5,10];

25 for i = 1: max(size(sigmalist))

26 sigma = sigmalist(i);

27 rlist = abs(funxm(sigma)-sigma.ˆ2)*logspace(0,1,100);

28 dx2r2_list =arrayfun(@(r) fundx2r2(r,sigma),rlist);

29 semilogx(rlist,dx2r2_list,’k’,’linewidth’,2,’DisplayName’,num2str(

sigma)); hold on

30 end

31 plot([1,1e3],[1,1],’--k’,’linewidth’,1,’HandleVisibility’,’off’)

32 axis([1,1e3,0,1.2])

33 xlabel(’r’)

34 ylabel(’dx2r2’)

35 legend

36 DefaultGca
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37 % savefigures (1,’ gaussian_bipeak_dX2dR2_R’)
38 % bipeak_min_sigma = 2.8931;
39 % Ry_min_bipeak = 58.2030;
40 %% Area of two peak existing
41 % rmin is the minimal vlaue of $R = sqrt((x−sigma^2)^2+y^2)$ for a given

$sigma$
42 % rmax is $R = sqrt((x−sigma^2)^2+y^2)$ for the maximum value of $d (X^2)/d(R

^2) = 1$
43 % r_root_1 and r_root_2 are the two roots of $ d (X^2)/d(R^2) = 1 $ for $sigma$

larger than bipeak_min_sigma
44 % Between r_root_1 and r_root_2, ymax decrease with R; and there are two peaks
45 Sigma = logspace(log10(bipeak_min_sigma),log10(500),1e3); Sigma = Sigma

(2:end);

46 Rmax = arrayfun(@(x) fun_Rval_dx2dr2_Max(x) ,Sigma);

47 Rmin = arrayfun(@(sigma) funrmin(sigma), Sigma) ;

48 for i=1:max(size(Sigma))

49 R_root_1(i)=fzero(@(x) fundx2r2(x,Sigma(i))-1,[Rmin(i), Rmax(i)],

optimset(’TolFun’,1e-80,’TolX’,1e-80,’MaxFunEvals’,10000,’MaxIter’

,5000));

50 R_root_2(i)=fzero(@(x) fundx2r2(x,Sigma(i))-1,[Rmax(i), 2*Rmax(i)],

optimset(’TolFun’,1e-200,’TolX’,1e-100,’MaxFunEvals’,10000,’MaxIter

’,5000));

51 [Tc_min_bipeak(i),˜,˜] = tm_rm(Sigma(i),R_root_1(i));

52 [Tc_max_bipeak(i),˜,˜] = tm_rm(Sigma(i),R_root_2(i));

53 end

54 figure

55 funSigmaMax=@(Ry) ((1.0140*Ry.ˆ(2/3)).ˆ-2.3975+(sqrt(pi/2)*Ry).ˆ-2.3975)

.ˆ(1/-2.3975);

56 plot(Sigma./funSigmaMax(1./Tc_min_bipeak),1./Tc_min_bipeak); hold on

57 plot(Sigma./funSigmaMax(1./Tc_max_bipeak),1./Tc_max_bipeak); hold on

58 axis([1e-3,1e0,1e-3,1e6])

59 xlabel(’sigma/sigmamax’)

60 ylabel(’Ry’)

61 set(gca,’xscale’,’log’,’yscale’,’log’)

62 DefaultGca

63 % savefigures (2,’ gaussian_bipeak_area’)
64 %%
65 save(’gaussian_bipeak.mat’,’R_root_1’, ’R_root_2’, ’Rmax’, ’Rmin’, ’

Sigma’, ’Tc_max_bipeak’, ’Tc_min_bipeak’, ’bipeak_min_sigma’, ’

Ry_min_bipeak’)

D.1.2 Calculation of isotherm width y∗max under a moving

Gaussian heat source
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Listing D.3: Calculation of y∗max and x∗
max under a moving Gaussian heat source.

1

2 clear;clc;close all;

3

4 sz1 = 1e3; sz2 = 900;

5 VRy = logspace(-3,3,sz1);

6 Vmul = logspace(-3,log10(0.9),sz2);

7 [MRy,Mmul] = meshgrid(VRy,Vmul);

8 %% $\sigma_{max}$ and $\sigma$
9 % Temperature field function

10 fun_maxintegrand=@(x,y,sigma) acos(min([sigma.*((sigma.ˆ2-x).ˆ2+y.ˆ2)

.ˆ(-0.25),1]));

11 fun_T=@(x,y,sigma) 1/sqrt(2*pi)*2./sigma.* (integral(@(z) exp(-0.5*(cos(

z).ˆ2*(sigma.ˆ2+(x.ˆ2+y.ˆ2)./sigma.ˆ2-2*x)+sigma.ˆ2./(cos(z).ˆ2+1e

-100)+2.*x-2.*sigma.ˆ2)),0,fun_maxintegrand(x,y,sigma) ,’RelTol’,1e

-6,’AbsTol’,1e-21)+ ...

12 integral(@(z) exp(-0.5*(cos(z).ˆ2*(sigma.ˆ2+(x.ˆ2+y.ˆ2)./sigma.ˆ2-2*

x)+sigma.ˆ2./(cos(z).ˆ2+1e-100)+2.*x-2.*sigma.ˆ2)),

fun_maxintegrand(x,y,sigma),pi/2,’RelTol’,1e-6,’AbsTol’,1e-21));

13

14 % function maximum temperature and its location
15 fun_xm=@(sigma) fminbnd(@(x) -fun_T(x,0,sigma),5*max(-0.7650*sigma,-

sigma.ˆ2),0.2*max(-0.7650*sigma,-sigma.ˆ2) ,optimset(’MaxFunEvals’

,10000,’MaxIter’,5000));

16 fun_Tmaxcenter = @(sigma) fun_T(fun_xm(sigma),0,sigma);

17

18 % Rmin = sqrt((xmax_center−sigma^2)^2+0)
19 fun_rmin = @(sigma) abs(fun_xm(sigma)-sigma.ˆ2);

20

21 % maximum sigma for Ry
22 fun_Sigmamax_blending=@(Ry) ((1.0140*Ry.ˆ(2/3)).ˆ-2.3975+(sqrt(pi/2)*Ry)

.ˆ-2.3975).ˆ(1/-2.3975);

23 % fun_Sigmamax = @(Ry) fzero(@(sigma) fun_Tmaxcenter(sigma)−1./Ry,
fun_Sigmamax_blending(Ry),optimset(’MaxFunEvals’,1e5,’MaxIter’,5000));

24 Vsigmamax = arrayfun(@(Ry) fun_Sigmamax_blending(Ry),VRy);

25 [Msigmamax,˜] = meshgrid(Vsigmamax,Vmul);

26 Msigma = Msigmamax.*Mmul;

27

28 %% Calculation ymax and xmax
29 load(’gaussian_bipeak.mat’)

30 Mxmax = nan*MRy; Mymax = nan*MRy;

31 Mxb = nan*MRy; Mxf = nan*MRy;

32 parfor i=1:sz2

33 for j=1:sz1
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34 % location of maximum temperature
35 xmax_center_loop = fun_xm(Msigma(i,j));

36 % leading and trailing length of isotherm
37 [Mxb(i,j),Mxf(i,j)]=fun_xbf(Msigma(i,j),xmax_center_loop,1./MRy(i

,j),fun_T);

38 % lower limit of R
39 r0_lim_loop=fun_rmin(Msigma(i,j));

40 % upper limit of R
41 r3_lim_loop = 3*abs(Mxb(i,j)-Msigma(i,j).ˆ2);

42

43 if Msigma(i,j) > bipeak_min_sigma

44 % range of T, two peak exists , for a sigma
45 TmaxBipeak = interp1(Sigma,Tc_max_bipeak,Msigma(i,j),’pchip’)

;

46 TminBipeak = interp1(Sigma,Tc_min_bipeak,Msigma(i,j),’pchip’)

;

47

48 if (1/MRy(i,j) < TmaxBipeak) && (1/MRy(i,j) > TminBipeak)

49 % intervals of r for two peak existing
50 r1_lim_loop=interp1(Sigma,R_root_1,Msigma(i,j),’pchip’);

51 r2_lim_loop=interp1(Sigma,R_root_2,Msigma(i,j),’pchip’);

52 % peak 1
53 r1_loop=fzero(@(r) tm_rm(Msigma(i,j),r)-1./MRy(i,j),[

r0_lim_loop,r1_lim_loop]);

54 [˜,xm1_loop,ym1_loop]=tm_rm(Msigma(i,j),r1_loop);

55 % peak 2
56 r2_loop=fzero(@(r) tm_rm(Msigma(i,j),r)-1./MRy(i,j),[

r2_lim_loop,r3_lim_loop]);

57 [˜,xm2_loop,ym2_loop]=tm_rm(Msigma(i,j),r2_loop);

58 % maximum width
59 Mymax(i,j) = max([ym1_loop,ym2_loop]);

60 Mxmax(i,j) = sum([xm1_loop,xm2_loop].*([ym1_loop,ym2_loop

]==Mymax(i,j)));

61 continue;

62 end

63 end

64 % one peak exists
65 r_loop=fzero(@(r) tm_rm(Msigma(i,j),r)-1./MRy(i,j),[r0_lim_loop,

r3_lim_loop]);

66 [˜,Mxmax(i,j),Mymax(i,j)]=tm_rm(Msigma(i,j),r_loop);

67 end

68 i

69 end

70 %%
71 ycal= fun_ymax_Gaussian(MRy,Msigma);
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72 E= 100*log(ycal./Mymax);

73 max(max(abs(E)))

74 save gaussian_ymax

75

76

77

78 function [xb,xf]=fun_xbf(sigma,xmax_center,Tc,funTstar)

79 % calculate leading and trailing length xf and xb of isotherm
80

81 nmax=300;

82 % domain sorted : aa <xb<a<xmax_center<b<xf<bb
83 aa=xmax_center;

84 bb=xmax_center;

85 flaga=0;

86 flagb=0;

87 % search the domain contains xf&xb
88 for i=1:nmax

89 if flaga<0.5

90 faa=funTstar(aa,0,sigma);

91 aa=(10.*aa-1+xmax_center)*(faa>Tc)+(10.*aa-1+xmax_center)*(faa==

Tc)+aa*(faa<Tc);

92 flaga=1*(faa<=Tc);

93 end

94

95 if flagb<0.5

96 fbb=funTstar(bb,0,sigma);

97 bb=(bb-xmax_center+1)*(fbb>Tc)+(bb-xmax_center+1)*(fbb==Tc)+bb*(

fbb<Tc);

98 flagb=1*(fbb<=Tc);

99 end

100

101 if flaga && flagb

102 break

103 end

104 end

105 % bisection xb
106 if flaga>0.5

107 xb=fzero(@(x) funTstar(x,0,sigma)-Tc,[aa,(aa+1-xmax_center)./10],

optimset(’TolFun’,1e-18,’TolX’,1e-13));

108 else

109 xb= nan;

110 fprintf(’Fail to find xb\n’);

111 return;

112 end

113 % bisection xf
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114 if flagb>0.5

115 xf=fzero(@(x) funTstar(x,0,sigma)-Tc,[bb-1+xmax_center,bb],optimset(

’TolFun’,1e-18,’TolX’,1e-13));

116 else

117 xf = nan;

118 fprint(’Fail to find xf\n’)

119 return;

120 end

121 end

1 function [Tc,xm,ym] = tm_rm(sigma,rm)

2 %TM_RM Calculate Tm xm ym as a function of Rm
3 % xm,ym,zm are maximum width $\partial T/\partial x (xm,ym)=0$
4 % rm= \sqrt((xm−sigma^2)^2+ym^2)
5

6 tola=1e-16;tolb=1e-16;

7 tm=acos(min(sigma/sqrt(rm),1));

8 p=@(n) integral(@(t) cos(t).ˆn.*exp(-0.5*(rm/sigma*cos(t)-sigma./cos(t))

.ˆ2),0,tm,’RelTol’,tola,’AbsTol’,tolb)...

9 +integral(@(t) cos(t).ˆn.*exp(-0.5*(rm/sigma*cos(t)-sigma./cos(t))

.ˆ2),tm,pi/2,’RelTol’,tola,’AbsTol’,tolb);

10 Xm=-sigma.ˆ2.*p(0)./p(2);

11 Ym=sqrt(rm.ˆ2-Xm.ˆ2);

12 Tc=2/(sqrt(2*pi)*sigma)*exp(-Xm-rm).*p(0);

13 if nargout>1

14 xm=Xm+sigmaˆ2;ym=Ym;

15 end

16 end

D.1.3 Blending of isotherm width under a moving Gaussian

heat source

Listing D.4: Partial blending on side Regime II – VI.

1 clear;clc;close all

2 path = pwd;

3 cd ../

4 load(’result.mat’,’Vmul’, ’VRy’, ’Mmul’, ’MRy’, ’Mymax’, ’Msigma’)

5 cd(path) ;

6 %% Blending Regime II − VI
7 X= Vmul;

8 Y = Mymax(:,1)./(MRy(:,1)); Y =Y’;

9 fun_f_II_VI = @(mul) interp1(X,Y,mul);

10 cfII=@(mul) 1.*mul./mul;
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11 cfVI=@(mul) sqrt(2*pi).*mul .*sqrt(log(1./(mul)));

12 % method 1
13 % Blending_Equation=@(mul) @(p) ((1−mul).^p+ (sqrt(2∗pi).∗mul .∗sqrt(log(1./(

mul)))) .^p) .^(1./p);
14 % method 2
15 Blending_Equation=@(mul) @(p) ( (exp(p(2)*mul.ˆp(3))).ˆp(1)+ (sqrt(2*pi)

.*mul.*sqrt(log(1./(mul)))) .ˆp(1)) .ˆ(1./p(1));

16 %% blending
17 Bcf=Blending_Grid_size(fun_f_II_VI,Blending_Equation,1e-3,0.9,[4.1117

-1.5609 4.4647]);

18 Bcf.Pplot.x_label= ’mul’;

19 Bcf.Pplot.y_label= ’cf’;

20 Bcf.Pplot.figname= ’gaussian_side_partial_blending_VI_II’;

21 Bcf.funy1= cfII;

22 Bcf.funy2= cfVI;

23 Bcf.funmodify1= @(mul) exp( -1.5609*mul.ˆ 4.4647);

24 Bcf=Bcf.Blending;

25 Bcf=Bcf.FBlending(1000);

26 Bcf.funWrite(’gaussian_ymax_cf_partial_blending_II_VI_method2.tex’)

27 %%
28 figure(4)

29 plot(logspace(-3,log10(0.9),1e3),Bcf.BP.Result.estimation,’-k’,’

linewidth’,1)

30 axis([1e-3,1e0,1e-1,2])

31 %%
32 savefigures(1,’gaussian_ymax_cf_partial_blending_II_VI_method2’)

Listing D.5: Partial blending on side Regime V – VI.

1 clear;clc;close all

2 path = pwd;

3 load(’gaussian_ymax_s_smax_1.mat’,’Vmul’, ’VRy’, ’Mmul’, ’MRy’, ’Mymax’,

’Msigma’)

4 %% Blending Regime V VI
5 X= VRy;

6 i=3;

7 Y = Mymax(i,:)./(Vmul(:,i).*sqrt(log(1./Vmul(:,i)))); %Y =Y’;
8 cfV=@(Ry) sqrt(3)*(sqrt(2/pi)*1.280)ˆ(2/3).*Ry.ˆ(2/3);

9 cfVI=@(Ry) sqrt(2*pi)*Ry;

10 % loglog(X,Y); hold on
11 % loglog(X,cfV(X)); hold on
12 % loglog(X,cfVI(X)); hold on
13 fun_f_V_VI = @(Ry) interp1(X,Y,Ry);

14 Blending_Equation=@(Ry) @(p) ((sqrt(3)*(sqrt(2/pi)*1.280)ˆ(2/3).*Ry

.ˆ(2/3)).ˆp+ (sqrt(2*pi)*Ry ) .ˆp) .ˆ(1./p);
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15 %% blending
16 Bcf=Blending_Grid_size(fun_f_V_VI,Blending_Equation,1e-3,1e3,-1);

17 Bcf.Pplot.x_label= ’Ry’;

18 Bcf.Pplot.y_label= ’cf’;

19 Bcf.Pplot.figname= ’gaussian_side_partial_blending_v_vi’;

20 Bcf.funy1= cfV;

21 Bcf.funy2= cfVI;

22 % Bcf.funmodify1= @(mul) exp( −1.5609∗mul.^ 4.4647);
23 Bcf=Bcf.Blending;

24 Bcf=Bcf.FBlending(1000);

25 Bcf.funWrite(’gaussian_ymax_cf_partial_blending_V_VI.tex’)

26 %%
27 savefigures(1,’gaussian_ymax_cf_partial_blending_V_VI’)

Listing D.6: 2-D blending of y∗max under a moving Gaussian heat source.

1 clear;clc;close all

2 load(’gaussian_ymax.mat’,’Vmul’, ’VRy’, ’Mmul’, ’MRy’, ’Mymax’, ’Msigma’

)

3 % Mymax(MRy>1e3) = nan;
4 % Vmul =Vmul(1:3:end);
5 % VRy =VRy(1:3:end);
6 % Mmul =Mmul(1:3:end,1:3:end);
7 % MRy =MRy(1:3:end,1:3:end);
8 % Mymax =Mymax(1:3:end,1:3:end);
9 % Msigma =Msigma(1:3:end,1:3:end);

10 n1=-2.398;

11 sigmax = ((1.014*MRy.ˆ(2/3)).ˆn1 + (sqrt(pi/2)*MRy).ˆn1).ˆ( 1/n1);

12 mul = Msigma ./ sigmax;

13 %%
14 format shortG

15 pseed = [ 3.7706 -0.56369 -0.80637 0.016902 -2.1993

-2.2414 -2.6528 -1.7954 4.5359 -3.5726 13.107 ]

16 for i = 1:5

17 error = @(p) log(blending_equation(MRy,Msigma,p)./Mymax);

18 max_error = @(p) max(max(abs(error(p))));

19 max_error(pseed)

20 opts = optimset(’MaxFunEvals’,1e8);

21 [pval,eval ] = fminsearch(@(p) max_error(p),pseed,opts)

22 pseed = pval;

23 pseed = round(pseed,4,’significant’)

24 end

25 %%
26 figure

27 E=error(pval);
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28 surf(VRy,Vmul,error(pval));

29 axis([1e-3,1e3,1e-2,1,-inf,inf])

30 set(gca,’xscale’,’log’,’yscale’,’log’)

31 shading interp

32

33 %%
34 function y = blending_equation(Ry,sigma,p)

35 % n1=−2.398;
36 % n2= −1.731;
37 % pIIVI= [4.112 −1.560 4.463];
38 n1 = p(7);

39 n2 = p(8);

40 pIIVI = p(9:11);

41

42 B = sqrt(3)*(sqrt(2/pi)*1.280).ˆ(2/3)./(2*sqrt(pi/exp(1))) ;

43

44 sigmax = ((1.014*Ry.ˆ(2/3)).ˆn1 + (sqrt(pi/2)*Ry).ˆn1).ˆ( 1/n1);

45 mul = sigma ./ sigmax;

46

47 y = Ry.*...

48 (1+(sqrt(2./(exp(1).*Ry))).ˆn2 ) .ˆ(1./n2).*...

49 ( (exp(pIIVI(2)*mul.ˆpIIVI(3))).ˆpIIVI(1)+ (sqrt(2*pi).*mul.*sqrt(

log(1./(mul)))) .ˆpIIVI(1)) .ˆ(1./pIIVI(1)) .*...

50 (1 + ((B*Ry.ˆ(1/6) -1 ).*(1+p(1).*Ry.ˆp(2)).ˆ(p(3)).*(1+p(4).*(mul)

.ˆp(5)).ˆ(p(6)))) ;

51 end
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Figure D.1: Partial blending of y∗max in side Regime II – VI. y∗max/Ry changes with
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Figure D.2: Error of partial blending in Side Regime II – VI for y∗max (Equation 6.26)
when a = −1.560, b = 4.463, n = 4.112 for σ∗/σ∗

max ≤ 0.9.
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D.2 Supporting figures for partial blending of y∗max

D.2.1 Supporting figures for partial blending in side Regime
II – VI

D.2.2 Supporting figures for partial blending in side Regime
V – VI
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Figure D.4: Error of partial blending of y∗max in side Regime V – VI (Equation 6.27)
when n = −3.055.
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Figure D.5: Maximum error changes with blending parameter n for partial blending
of y∗max in side Regime V – VI.
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Appendix E: Catchment efficiency
of Gaussian distributed powder
cloud under moving Gaussian heat
source

E.1 Engineering expression

This appendix illustrated the catchment efficiency of Gaussian distributed powder
cloud of diameter σp under moving the temperature field σh. The temperature field
is assumed not affected by powder. Two catchment efficiencies factor are studied in
this appendix, the catchment efficiency wl representing portion of powder deposited
in the melt pool, and the catchment efficiency ws representing the portion of powder
deposited ahead of the melt pool.

For an isotherm with thermal features isotherm width ymax (studied in Chapter 6),
location of width xmax, trailing length xb and leading length xf , the catchment effi-
ciencies can be calculated with

wl =

∫ xf

xb

dx

∫ yi

−yi

dy
1

2πσ2
p

exp

(
−x2 + y2

2σ2
p

)
(E.1)

=

√
π

2

1

πσp

∫ xf

xb

dx exp

(
− x2

2σ2
p

)
erf

(
yi√
2σp

)
(E.2)

and

ws = 2

∫ xmax

∞
dx

∫ ymax

yi

dy
1

2πσ2
p

exp

(
−x2 + y2

2σ2
p

)
(E.3)

=

√
π

2

1

πσp

∫ xmax

∞
dx exp

(
− x2

2σ2
p

)[
erf

(
ymax√
2σp

)
− erf

(
yi√
2σp

)]
(E.4)

Where yi is a function of x representing the shape of isotherm.
When the distribution size of heat source equals it of powder cloud, the catchment

efficiencies can be further investigated. Similar to the analysis of isotherm width in
Chapter 6, the catchment efficiencies depend on two dimensionless groups, the Ry
number and σ∗/σ∗

max.
This appendix attempts to develop engineering expressions of catchment efficien-

cies for typical laser cladding processes, not 2-D blending for the whole domain. It
generates more practical expressions of more simplicity by curve fitting and does not
involve asymptotic analysis. However, it only covers part of the domain for certain
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processes, lacking of generality to extend to all possible cases. For typical cases of
laser cladding, the Ry is between 5 ∼ 100. For the given range of Ry numbers, the
catchment efficiencies are in a band as illustrated in the shadow area of Figure E.1
and E.2. The catchment efficiencies change with σ∗/σ∗

max. The engineering expres-
sions can be achieved by curve fitting. For catchment efficiency of the melt pool wl,
the engineering expression for 5 ≤ Ry ≤ 100 is:

ŵl =

[
1 + 0.1322

(
1− σ∗

σ̂∗+
max

)−6.155
]−0.1591

(E.5)

as illustrated in Figure E.1.
For catchment efficiency of ahead of the melt pool ws, the engineering expression

for 5 ≤ Ry ≤ 100 is:

ŵs =

[
0.9015

(
σ∗

σ̂∗+
max

)−0.6428

+ 0.3040

(
1− σ∗

σ̂∗+
max

)−0.3731
]−2.824

(E.6)

as illustrated in Figure E.2.
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Figure E.1: The catchment efficiency of melt pool wl change with σ∗
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for 5 ≤ Ry ≤

100.
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E.2 Matlab code

Listing E.1: Calculation of numerical values of catchment efficiencies wl and ws.

1 clear;clc;close all

2 warning off

3 Ry=[1:1:19,20:10:100]; mul=[0.1:0.05:0.9,0.91:0.01:1];

4 szmul=max(size(mul));

5 sigmam= ((((2*1.2798)./(sqrt(2*pi))*Ry).ˆ(2/3)).ˆ(-2.3975)+(sqrt(pi/2)*

Ry).ˆ(-2.3975)).ˆ(-1./2.3975);

6 [Ry,˜]=meshgrid(Ry,ones(1,szmul-1));

7 sigma=bsxfun(@times,sigmam,mul(1:end-1)’);

8 [sz1,sz2]=size(Ry);

9 Ry=reshape(Ry,1,sz1*sz2);

10 sigma=reshape(sigma,1,sz1*sz2);

11 wL=Ry*nan;

12 wS=Ry*nan;

13 parfor i=1:sz1*sz2

14 try

15 wL(i) = funEtaDualGaussian(Ry(i),sigma(i),sigma(i));

16 wS(i) = funEtaDualGaussianS(Ry(i),sigma(i),sigma(i));

17 catch
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18 end

19 disp([’Loop ’,’ ’,num2str(i)])

20 end

21

22 %%
23 wL=reshape(wL,sz1,sz2);

24 wS=reshape(wS,sz1,sz2);

25 Ry=reshape(Ry,sz1,sz2);

26 sigma=reshape(sigma,sz1,sz2);

27 close all

28 figure

29 surf(Ry(1,:),mul(1:end-1),wL)

30 figure

31 surf(Ry(1,:),sigma,wS)

32

33 %%
34 save res.mat

Listing E.2: Function to calculate catchment efficiency wl.

1 function [eta] = funEtaDualGaussian(Ry,sigmah,sigmap)

2 %FUNETADUALGAUSSIAN Summary of this function goes here
3 % Detailed explanation goes here
4 [Tmax,xmax] = fun_Tmax_sigma(sigmah);

5 if 1/Ry>Tmax

6 disp(’The maximum temperature does not reach required temperature’)

7 eta=0;

8 return

9 end

10 [xb,xf]=fun_xbf(sigmah,xmax,1/Ry);

11 yc =@(x)arrayfun(@(x) fym(sigmah,1/Ry,x,xb,xf),x);

12 eta=sqrt(pi/2)/(pi*sigmap)*integral(@(x) exp(-x.ˆ2./(2*sigmap.ˆ2)).*erf(

yc(x)./(sqrt(2)*sigmap)),xb,xf);

13

14 end

Listing E.3: Function to calculate catchment efficiency ws.

1 function [eta] = funEtaDualGaussianS(Ry,sigmah,sigmap)

2 %FUNETADUALGAUSSIAN Catchment effciency for Gaussian cloud on
3 %Gaussian heat source
4 [Tmax,xmax] = fun_Tmax_sigma(sigmah);

5 if 1/Ry>Tmax

6 disp(’The maximum temperature does not reach required temperature’)

7 eta=0;

8 return
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9 end

10 [xb,xf]=fun_xbf(sigmah,xmax,1/Ry);

11 [ym,Tm,xm] = fun_width(sigmah,Ry);

12 yc =@(x)arrayfun(@(x) fym(sigmah,1/Ry,x,xb,xf),x);

13 eta=1/(pi*sigmap.ˆ2)*(integral(@(x) sqrt(pi/2)*sigmap .*exp(-x.ˆ2./(2*

sigmah.ˆ2)).*(erf(ym./(sqrt(2)*sigmah))-erf(yc(x)./(sqrt(2)*sigmah))

),xm,xf)...

14 +integral(@(x) sqrt(pi/2)*sigmap .*exp(-x.ˆ2./(2*sigmah.ˆ2)).*(erf(

ym./(sqrt(2)*sigmah))-erf(0)),xf,inf));

15

16 end

Listing E.4: Function to calculate maximum centerline temperature and its location.

1 function [Tmax,xm] = fun_Tmax_sigma(sigma)

2 %FUN_TMAX_SIGMA calculating the maximum temperature for certain sigma
3 % sigma is the half width of Gaussian distributed heat source
4 % Tmax is the corresponding maximum temperature
5 % xm is the location of maximum temperature
6

7 Tstar=@(x,o) 1/sqrt(2*pi)*integral(@(t) t.ˆ(-1/2)./(t+o.ˆ2).*exp(-0.5*(x

.ˆ2+t.ˆ2+2.*t.*x)./(t+o.ˆ2)),0,inf,’RelTol’,1e-100,’AbsTol’,1e-100);

8

9 xm1=-0.7650*sigma; xm2=-sigma.ˆ2;

10 seed=[10*min(xm1,xm2),0.1*max(xm1,xm2)];

11

12 [xm,Tmax]=fminbnd(@(x) -Tstar(x,sigma),seed(1),seed(2),optimset(’TolFun’

,1e-80,’TolX’,1e-80,’MaxFunEvals’,10000,’MaxIter’,5000));

13 Tmax=-Tmax;

14 end

Listing E.5: Function to calculate trailing and leading length.

1 function [xb,xf]=fun_xbf(sigmma,Xm,T)

2 % calculate xf and xb of pool
3 % %
4 nmax=300;

5 % domain sorted : aa <xb<a<xmid<b<xf<bb
6 aa=Xm;

7 bb=Xm;

8 flaga=0;

9 flagb=0;

10 % search the domain contains xf&xb
11 for i=1:nmax

12 if flaga<0.5

13 faa=Tstar(aa,0,sigmma);
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14 aa=(10.*aa-1+Xm)*(faa>T)+(10.*aa-1+Xm)*(faa==T)+aa*(faa<T);

15 flaga=1*(faa<=T);

16 end

17

18 if flagb<0.5

19 fbb=Tstar(bb,0,sigmma);

20 bb=(bb-Xm+1)*(fbb>T)+(bb-Xm+1)*(fbb==T)+bb*(fbb<T);

21 flagb=1*(fbb<=T); %yaojia
22 end

23

24 if flaga && flagb

25 break

26 end

27 end

28 % bisection xb
29

30 if flaga>0.5

31 xb=fzero(@(x) Tstar(x,0,sigmma)-T,[aa,(aa+1-Xm)./10],optimset(’

TolFun’,1e-20,’TolX’,1e-20));

32 else

33 fprintf(’didnot find interval\n’);

34 return;

35 end

36 %bisection xf
37 if flagb>0.5

38 xf=fzero(@(x) Tstar(x,0,sigmma)-T,[bb-1+Xm,bb],optimset(’TolFun’

,1e-20,’TolX’,1e-20));

39 else

40 fprint(’didnot find interval\n’)

41 return;

42 end

43 end

Listing E.6: Function to calculate isotherm width and its location.

1 function [ym,Tm,xm] = fun_width(SIGMA,RY)

2 %FUN_WIDTH calculating dimensionless value of the half width and maximum
temperature

3 % SIGMA and RY are dimensionless
4 % Half width
5 TC=1./RY; ym=nan;Tm=nan;xm=nan;

6 if RY< 0.0172

7 disp(’If Ry<0.0172, there might be two peaks. TODO on that’);

8 end

9
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10 [Tmax_centerline,xmax_centerline]=fun_Tmax_sigma(SIGMA);

11 r0=abs(xmax_centerline-SIGMA.ˆ2);

12

13 list=[0,logspace(-5,50,56)];temp_T=list-list;

14

15 for i=1:size(list,2)

16 temp_T(i)=tm_rm(SIGMA,r0+list(i));

17 end

18 rm_range=r0+[0,list(temp_T==min(temp_T))];

19 if TC<=min(temp_T)

20 disp(’the range of rm should be reset’)

21 end

22 %%
23 options=optimset(’TolX’,1e-30);

24 if Tmax_centerline>=TC

25 if temp_T>TC

26 disp(’pick right range for R’)

27 else

28 rm=fzero(@(r) tm_rm(SIGMA,r)-TC,rm_range,options);

29 [t,xm,ym]=tm_rm(SIGMA,rm);

30 if ˜isreal(ym)

31 disp(’error in calcuation’);

32 end

33 end

34 else

35 disp(’The set maximum temperature is higher than maximum temeprature

of sigma’)

36 end

37 Tm=Tmax_centerline;

38

39 % max_temperature=preheat+(Tmax_centerline∗heat_input∗velocity)./(4∗pi∗
conductivity∗ diffusitivity ) ;

40 % width=2∗2∗ diffusitivity ∗ym/velocity ;
41 % disp ([’ Maximum temperature is’,num2str(max_temperature)])
42 % disp ([’ width is ’, num2str(width)])
43

44 end

Listing E.7: Curve fitting of catchment efficiency wl.

1 clear;clc;close all

2 load(’res.mat’)

3 wL=wL(1:end-1,5:28);

4 wS=wS(:,5:28);

5 Ry=Ry(:,5:28);
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6 minwL=min(wL’);

7 maxwL=max(wL’);

8 minwS=min(wS’);

9 maxwS=max(wS’);

10

11 %%
12 figure

13 fill([(mul(1:end-2)),fliplr((mul(1:end-2)))],[minwL,fliplr(maxwL)],[.9

.9 .9],’linestyle’,’none’); hold on

14 XL=[(1-mul(1:17))]; YL=[wL(1:17,16)];

15 xval = mul(1:end-2)’;

16 xval= xval*ones(1,24);

17

18 [xData, yData] = prepareCurveData( xval, wL );

19

20 ft = fittype( ’(1+a*(1-x).ˆb).ˆn’, ’independent’, ’x’, ’dependent’, ’y’

);

21 opts = fitoptions( ’Method’, ’NonlinearLeastSquares’ );

22 opts.Display = ’Off’;

23 opts.StartPoint = [0.0790611899385143 -1 -1];

24 [fitresult, gof] = fit( xData, yData, ft, opts )

25

26 plot(xval,(1+ 0.1322*(1-xval).ˆ -6.1550).ˆ -0.1591,’-k’,’linewidth’,1)

27 xlabel(’mul’)

28 ylabel(’wL’)

29 axis([0.1,1,0,1])

30 DefaultGca

Listing E.8: Curve fitting of catchment efficiency ws.

1 clear;clc;close all

2 load(’res.mat’)

3 wL=wL(1:end-1,5:28);

4 wS=wS(1:end-1,5:28);

5 Ry=Ry(:,5:28);

6 minwL=min(wL’);

7 maxwL=max(wL’);

8 minwS=min(wS’);

9 maxwS=max(wS’);

10

11 %%
12 figure

13 fill([(mul(1:end-2)),fliplr((mul(1:end-2)))],[minwS,fliplr(maxwS)],[.9

.9 .9],’linestyle’,’none’); hold on

14
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15 xval = mul(1:end-2)’;

16 xval= xval*ones(1,24);

17

18

19

20 [xData, yData] = prepareCurveData( xval, wS );

21 ft = fittype( ’((a1*x.ˆb1)+(a2*(1-x).ˆb2)).ˆ(n)’, ’independent’, ’x’, ’

dependent’, ’y’ );

22 opts = fitoptions( ’Method’, ’NonlinearLeastSquares’ );

23 opts.Display = ’Off’;

24 opts.Lower = [0 0 -inf -Inf -Inf];

25 opts.StartPoint = [0.5 -0.5 0.5 -0.5 -0.5];

26 opts.Upper = [Inf Inf 0 0 0];

27 [fitresult, gof] = fit( xData, yData, ft, opts );

28 % figure( ’Name’, ’ untitled fit 1’ ) ;
29 % h = plot( fitresult , xData, yData );
30 % legend( h, ’wS vs. xval ’, ’ untitled fit 1’, ’ Location ’, ’NorthEast ’, ’

Interpreter ’, ’none’ ) ;
31 xlabel( ’xval’, ’Interpreter’, ’none’ );

32 ylabel( ’wS’, ’Interpreter’, ’none’ );

33 grid on

34

35

36 figure(1)

37 plot(xval,((0.9015*xval.ˆ-0.6428 )+( 0.304*(1-xval).ˆ-0.3731 ) ).ˆ(

-2.824 ),’-k’)

38 xlabel(’mul’)

39 ylabel(’wS’)

40 axis([0.1,1,0,0.3])

41 DefaultGca
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