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ABSTRACT

Imposing a constraint on the initial wealth may cause the perfect hedging impossible. In this

case, the goal of an investor is to find a strategy that minimize the shortfall under a certain measure,

which leads to the concept of partial hedging. In this thesis, the shortfall risk is measured by Con-

ditional Value-at-Risk , a coherent risk measure. We investigate Conditional Value-at-Risk based

partial hedging and its applications to equity linked life insurance contracts in different markets.

First, we consider a Jump-Diffusion market model with transaction costs. A non-linear partial

differential equation that an option value process inclusive of transaction costs should satisfy is

provided. In addition, we give the closed-form expression of an European call option price in this

market and derive the Conditional Value-at-Risk based partial hedging strategy for it. Our results

are implemented to obtain target clients’ survival probabilities and age of equity-linked life insurance

contracts. Secondly, we deal with a defaultable Jump-Diffusion market. The minimal superhedging

costs of claims with a zero recovery rate are calculated. Moreover, the Conditional Value-at-Risk

minimization problem of such defaultable claims is solved successfully by converting it into a static

optimization problem in the corresponding default free market. Furthermore, our method is imple-

mented to derive minimal shortfall and optimal hedging strategies of defaultable equity-linked life

insurance contracts whose payoffs are equal to the maximum of two risky assets conditioned by the

occurrence of a default event. Thirdly, we take a deep look into the first continuous market model in

mathematical finance – the Bachelier model. We introduce two modifications of such a model which

are based on SDEs with absorption and reflection. They overcome the drawback of the Bachelier

model that is stock prices can take negative values. Comparisons in aspects of perfect hedging

price as well as Conditional Value-at-Risk based hedging among the standard Bachelier model, the

modified Bachlier model and the Black-Scholes model are executed. In the last part, a risk mea-

sure called Range Value-at-Risk that contains Value-at-Risk and Conditional Value-at-Risk as two
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limiting cases is investigated. We solve the Range Value-at-Risk based partial hedging problem

and describe its connections with Value-at-Risk as well as Conditional Value-at-Risk based hedging,

which provides a more comprehensive picture about partial hedging. In addition, a numerical exam-

ple is given to illustrate the application of our methodology in the area of mixed finance/insurance

contracts in the market with long-range dependence.
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CHAPTER 1

Introduction

1.1 Outline

The focus of this thesis is to investigate Conditional Value-at-Risk based partial hedging and its

applications to equity linked life insurance contracts in different markets, for instance, in markets

with jumps, in markets with transaction costs, in markets with defaults and in markets with

long-range-dependence. The dissertation is divided into five chapters.

Chapter 1 introduces the reader to concepts of risk measures, testing statistical hypotheses

theory, the Neyman-Person lemma as well as the connection between the testing statistical

hypotheses theory and the partial hedging problem.

Chapter 2 analyzes CVaR based partial hedging subject to a risk constraint in a

Jump-Diffusion market model with transaction costs. A non-linear partial differential equation

(PDE) that an option value process inclusive of transaction costs should satisfy is provided. In

particular, the closed-form expression of an European call option price is given. Meanwhile, the

CVaR based partial hedging strategy for a call option is derived explicitly. Both the CVaR

hedging price and the weights of the hedging portfolio are based on an adjusted volatility. We

obtain estimated values of expected total hedging errors and total transaction costs by a

simulation method. Furthermore, our results are implemented to derive target clients’ survival

probabilities and age of equity-linked life insurance contracts.

In Chapter 3, we deal with a defaultable Jump-Diffusion market. The minimal superhedging

costs of claims with a zero recovery rate are derived. Meanwhile, we investigate the CVaR
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minimization problem with an initial capital constraint which is converted into a static

optimization problem in the corresponding default free market and the solution of such a problem

is given with the help of the Neyman-Pearson lemma. Furthermore, our method is implemented to

derive minimal values of CVaR and optimal hedging strategies of defaultable equity-linked life

insurance contracts whose payoffs are equal to the maximum of two risky assets conditioned by

the occurrence of a default event.

In Chapter 4, we take a deep look in to the Bachelier model. Mathematically, stock prices

described by a classical Bachelier model are sums of a Brownian motion and an absolute

continuous drift. Hence, stock prices can take negative values, and financially, it is not

appropriate. Such a drawback is overcome by Samuelson who has proposed the exponential

transformation and provided the so-called Geometrical Brownian motion. In this chapter, we

introduce two additional modifications which are based on SDEs with absorption and reflection.

We show that the model with reflection may admit arbitrage, but the model with an appropriate

absorption leads to a better model. Comparisons regarding the option price among the standard

Bachelier model, the Black-Scholes model and the modified Bachelier model with absorption at

zero are executed. Moreover, our main findings are also devoted to the CVaR based partial

hedging in the framework of these models.

In Chapter 5, in order to investigate connections between VaR and CVaR, the two most

commonly employed risk criteria in financial institutions, we pay our attention to a tail risk

measure called Range Value-at-Risk (RVaR) which belongs to a wider class of distortion risk

measures and contains VaR and CVaR as important limiting cases. Explicit forms of such RVaR

based optimal hedging strategies are derived. In addition, we provide a numerical example to

demonstrate how to apply this more comprehensive methodology of partial hedging in the area of

mixed finance/insurance contracts in the market with long-range dependence.
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1.2 Risk measures

Let us consider a complete probability space (Ω,F , P ) and S be the set of real-valued random

variables denoting loss amounts (a negative value represents gains). A risk measure ρ(·) is a

mapping from S to R. We shall start with important properties of risk measures and would like to

give their financial interpretations.

• A risk measure ρ is said to be monotone iff for all L1, L2 ∈ S such that L1 ≤ L2, then it

holds that

ρ(L1) ≤ ρ(L2). (1.1)

The financial interpretation of monotonicity is that if the final losses of the position L2 are

larger than another position L1, then L2 should be riskier than L1.

• A risk functional ρ is called positively homogeneous iff for all L ∈ S and s ∈ R+, the

following equality is satisfied

ρ(sL) = sρ(L). (1.2)

Such a property means the risk of a position increases in a linear way with the size of the

position.

• A risk functional ρ is called convex iff for all L1, L2 ∈ S and λ ∈ (0, 1), the following

inequality holds

ρ(λL1 + (1− λ)L2) ≤ λρ(L1) + (1− λ)ρ(L2). (1.3)

In addition, if the above inequality is strict for L1 6= L2, then ρ is called strictly convex.

Convexity interprets the diversification effect of two positions. The position λL1 and (1− λ)L2

may have offset effects on each other and hence the joint risk would be no more than the sum of

weighted risk of holding L1 and L2 independently.

A similar property is subadditivity.
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• A risk functional ρ is called subadditive iff for all L1, L2 ∈ S, we have

ρ(L1 + L2) ≤ ρ(L1) + ρ(L2). (1.4)

(1.4) also indicates the diversification effect of two positions. Indeed, if ρ is positively

homogeneous and ρ(0) < +∞, then ρ is subadditive iff ρ is convex.

The last property we would like to mention here is the translation invariance.

• A risk measure ρ is said to be translation invariant iff for all L ∈ S and s ∈ R, the

equation

ρ(L+ s) = ρ(L) + s, (1.5)

is satisfied.

The financial explanation of (1.5) is that if the amount s of capital is reduced from the

position (and hence the loss L is increased by the amount s), then the risk of the position is

increased by the same amount.

An important class of risk measures is the coherent risk measure which according to the

definition in Artzner et al. (1999) is a measure that satisfies Monotonicity (1.1), Positively

homogeneity (1.2), Subadditivity (1.4) and Translation invariance (1.5).

In the financial industry, Value-at-Risk (VaR) is a commonly used risk measure which is

defined as

V aRα(L) = inf{v ∈ R : P (L > v) ≤ 1− α}, (1.6)

where α ∈ (0, 1) is the risk level.

However, VaR has some weaknesses. For instance, it is just the upper-α quantile of the loss L

and hence it does not capture the property of extreme losses that excess the α level. Also, VaR is

not subadditive. As a consequence, in the consultative document by Basel Committee on Banking

Supervision, 2012, it is recommended to substitute VaR with the metric Conditional Value-at-Risk

(CVaR) to determine the required regulatory capital. Hence, in this thesis, we focus on the risk

criterion CVaR and will discuss CVaR-based partial hedging strategies.
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Definition 1.1. (Rockafellar and Uryasev 2002) For a risk level α ∈ (0, 1), CV aRα of the loss L

is defined as

CV aRα(L) =
1

1− α

∫ 1

α
V aRs(L)ds. (1.7)

CV aRα is the mean of the α-tail of the loss distribution and it displays the severity of extreme

losses. It is also called as Average VaR (AVaR) or Expected shortfall (ES).

Another prominent property of CVaR is that it is continuous with respect to α regardless of

the underlying loss distribution, while VaR may not be continuous regarding to the risk level α

and hence may have a jump in its value even if α changes by a small amount.

Proposition 1.2. (Acerbi and Tasche 2002) For any real-valued random variable L satisfying

E(|L|) <∞, the mapping α 7→ CV aRα(L) is continuous on (0, 1).

Rockafellar and Uryasev (2002) have indicated that one can derive both V aR and CV aR

simultaneously by solving a one-dimensional convex optimization problem. Their results is

summarized as the following theorem which contributes a lot to solve our CVaR-based partial

hedging problem.

Theorem 1.3. As a function of z, the function

Fα(L, z) = z +
1

1− α
E
(
(L− z)+

)
, (1.8)

where x+ = max(0, x), is finite and convex (hence continuous), and it satisfies

CV aRα(L) = min
z∈R

Fα(L, z), (1.9)

V aRα(L) = min
{
y : y ∈ argminz∈RFα(L, z)

}
. (1.10)

In particular, we have

V aRα(L) ∈ argminz∈RFα(L, z), (1.11)

CV aRα(L) = Fα(L, V aRα(L)). (1.12)
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1.3 Testing statistical hypotheses theory and the generalized

Neyman-Pearson lemma

Let (Ω,F) be a measurable space. Suppose that P is a probability measure in such a space and

there are two families of probability measures Q∗, Q such that any Q∗ ∈ Q∗ and Q ∈ Q are

absolutely continuous with respect to P . Let us denote

ZQ
∗

=
dQ∗

dP
, ZQ =

dQ

dP
,

ZQ∗ = {ZQ∗ : Q∗ ∈ Q∗}, (1.13)

and EQ∗(·), EQ(·) are expectations under measures Q∗, Q respectively.

The problem of test theory is to discriminate the family Q∗, and Q. More specifically, we want

to minimize the probability of accepting Q∗ when it is false (probability of type-II-error) subject

to the constraint that the probability of rejecting Q∗ when it is true (probability of type-I-error)

should be less than a given acceptable significance level α ∈ (0, 1).

To solve such a problem, let us introduce the concept of randomized test ϕ which is a random

variable with values in [0, 1]. It can be interpreted as for a given event ω ∈ Ω, the hypothesis Q∗ is

rejected with the probability ϕ(ω). Hence, the probability of type-I-error is

EQ
∗
(ϕ) =

∫
ϕ(ω)Q∗(dω), (1.14)

and the power of the test can be expressed as

EQ(ϕ) =

∫
ϕ(ω)Q(dω). (1.15)

With the help of above notations, the problem of statistic hypothesis test is to search for a

randomized test ϕ̃ that maximizes the smallest power inf
Q∈Q

EQ(ϕ) over all randomized test of size

no more than a significance level α: sup
Q∗∈Q∗

EQ
∗
(ϕ) ≤ α, i.e.,

sup
ϕ∈R

inf
Q∈Q

EQ(ϕ), (1.16)
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where

R =
{
ϕ ∈ [0, 1] : sup

Q∗∈Q∗
EQ

∗
(ϕ) ≤ α

}
.

We start with the the special case that both Q and Q∗ contain only one element, which

corresponds to a simple hypothesis and hence the problem (1.16) is simplified as

sup
ϕ∈R

EQ(ϕ), (1.17)

where

R =
{
ϕ ∈ [0, 1] : EQ

∗
(ϕ) ≤ α

}
.

The form of the optimal randomized test to the problem (1.17) is given by the classical

Neyman-Pearson lemma (see Föllmer and Leukert 2000).

Theorem 1.4. The optimal randomized test ϕ̃ that solves the problem (1.17) for a level α ∈ (0, 1)

has the form

ϕ̃ = I{ã·ZQ∗<ZQ} + γI{ã·ZQ∗=ZQ}, (1.18)

where

ã = inf
{
a ≥ 0 : Q∗(a · ZQ∗ < ZQ) ≤ α

}
, (1.19)

and

γ =
α−Q∗(ã · ZQ∗ < ZQ)

Q∗(ã · ZQ∗ = ZQ)
. (1.20)

In a more general case, if ZQ∗ is a compact set, the problem (1.16) is solved with the help of

the generalized Neyman-Pearson lemma and such a problem has been discussed in Rudloff and

Karatzas (2010). We summarize their main results as following for readers’ convenience.

Theorem 1.5. Let ZQ∗ be a compact set. Denote the σ − algebra of all Borel sets of ZQ∗ with B,

the set of all finite measures on (ZQ∗ ,B) with Λ+ and the closure of the convex hull of densities

ZQ with respect to the norm topology in L1 with c̄oQ. Then the optimal randomized test ϕ̃ of the

problem (1.16) for any α ∈ (0, 1) has the form

ϕ̃ =

{
0, ZQ̃ <

∫
Q∗ Z

Q∗dλ̃,

1, ZQ̃ >
∫
Q∗ Z

Q∗dλ̃,
(P − a.s.) (1.21)
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such that

EQ
∗
(ϕ̃) = α, λ̃− a.s., (1.22)

where the pair (Q̃, λ̃) solves the problem

min
Q∈c̄oQ,λ∈Λ+

{
E
[
(ZQ −

∫
Q∗
ZQ

∗
dλ)+

]
+ αλ(ZQ∗)

}
. (1.23)

Remark 1.6. The optimal randomized test ϕ̃ in Theorem 1.5 can be rewritten as

ϕ̃ = I{ZQ̃>
∫
Q∗ Z

Q∗dλ̃} + γI{ZQ̃=
∫
Q∗ Z

Q∗dλ̃}, (1.24)

where the random variable γ is chosen such that the condition (1.22) is satisfied.

However, if the set ZQ∗ is not compact, the problem (1.16) is solved based on a duality

approach developed by Kramkov and Schachermayer (1999) and such a method is applied to

option hedging in incomplete markets (see, Rudloff 2006 and Xu 2004). We describe the duality

approach and its application in incomplete markets in the Appendix A.

1.4 Partial hedging

An European contingent claim H with maturity T is a nonnegative FT measurable random

variable which can be thought of as a contract or agreement that pays H at the maturity T .

Option pricing and hedging are important topics in Mathematical Finance and according to the

option pricing theory (see Black and Scholes 1973), in complete markets, for any contingent claim

H, there exists a dynamic trading strategy that replicates the payoff of the claim. Such a

duplication strategy is called the perfect hedging strategy. In addition, the fair price of H is the

expectation of its discounted value with respect to the unique equivalent martingale measure. On

the other hand, if a market is incomplete, given sufficient initial wealth, one can construct a

replicating portfolio whose value at final time T , in any situation, is no less than the payoff of the

claim H. Such a strategy is called a superhedging strategy. The minimal value required to

construct the superhedging strategy is said to be the superhedging costs which turn out to be the
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supremium of expected values of the discounted payoff among all martingale measures and it is

also the upper bound of the arbitrage-free price.

However, if the initial capital that can be invested to construct the hedging strategy is less

than the fair price (in complete markets) or superhedging costs (in incomplete markets), only a

partial hedging strategy can be applied and an investor would bear an intrinsic risk that cannot be

hedged away completely. In this case, the aim is to find a hedging strategy that minimizes the

losses due to the difference between the claim and the hedging portfolio at time T measured by a

suitable risk criterion.

Let

S0
t = ert, t ∈ [0, T ],

be the value process of a riskless asset where the constant r is the risk free interest rate. And

S = (St)t∈[0,T ] denotes the price process of an underlying risky asset on a filtered complete

probability space (Ω,F , P ), where F = FT and let P∗ be the set containing all equivalent

martingale measures with respect to P . We denote the Radon-Nikodym derivative of any

equivalent measure Q with respect to P by ZQ = dQ
dP and the set ZP∗ = {ZP ∗ : P ∗ ∈ P∗} contains

densities of all equivalent martingale measures.

A F-strategy is a F-predictable process π := (π0
t , π

1
t )t∈[0,T ] such that∫ T

0
|π0
t |dt <∞,

∫ T

0
(π1
t St)

2dt <∞, P − a.s,

where π0 and π1 represent units hold in the risk-free and the risky asset correspondingly. Hence,

the value process of the strategy π at time t ∈ [0, T ] is

Vt = π0
t S

0
t + π1

t St. (1.25)

In addition, for a given initial value v ≥ 0, a trading strategy is called self-financing if its value

process satisfies

Vt = v +

∫ t

0
π0
udS

0
u +

∫ t

0
π1
udSu, ∀t ∈ [0, T ], (1.26)

and it is called self-financing admissible if such a value process also satisfies

Vt ≥ 0, ∀t ∈ [0, T ].

9



We denote the set of all admissible self-financing strategies with an initial value v as A(v).

For a contingent claim H, the process

Ũt = Ute
−rt = ess sup

P ∗∈P∗
EP

∗
(e−rTH|Ft), t ∈ [0, T ], (1.27)

is a supermartingale with respect to any P ∗ ∈ P∗ and represents the discounted value process of

the minimal superhedging strategy of the claim H. We assume such superhedging costs are finite,

i.e.,

U0 = sup
P̃ ∗∈P∗

EP
∗
(e−rTH) <∞. (1.28)

According to the optional decomposition theorem (see Kramkov 1996, El Karoui and Quenez

1995), there is an admissible strategy (U0, π) and a discounted optional consumption process C

with C0 = 0 such that

Ũt = U0 +

∫ t

0
π1
udS̃u − Ct, (1.29)

where S̃t = e−rtSt is the discounted value of the risky asset.

Remark 1.7. In a complete market, the equivalent martingale measure is unique, and (U0, π) is

the replication strategy of H, i.e.,

Vte
−rt = EP

∗
(e−rTH|Ft) = U0 +

∫ t

0
π1
udS̃u. (1.30)

If a hedger allocates capitals v0 that are less than the minimum superhedging costs U0, then

there is a possibility of shortfall characterized by L = H − VT . In this case, we look for a

self-financing admissible strategy (v, π) with v ≤ v0 < U0 that minimizes the risk of losses

measured by ρ
(
L
)
, i.e.,

min
(v,π)∈A0

ρ
(
H − VT

)
, (1.31)

where A0 = {(v, π)|(v, π) ∈ A(v), v ≤ v0} is the set of self-financing admissible strategies with the

initial hedging capital no more than v0.

Remark 1.8. If ρ(·) is chosen such that

ρ(L) = E
[
l((H − VT )+)

]
, (1.32)
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where l is an increasing convex function defined on [0,+∞) and satisfies l(0) = 0. Then the

problem (1.31) is the efficient hedging problem described in Föllmer and Leukert (2000).

For a monotonic risk measure ρ, Rudloff (2006) have indicated that the optimal partial

hedging problem

min
(v,π)∈A0

ρ
(
(H − VT )+

)
(1.33)

can be converted to a static optimization problem of finding an optimal randomized test ϕ̃ that

solves

min
ϕ∈R

ρ
(
(1− ϕ)H

)
, (1.34)

where

R =
{
ϕ : Ω→ [0, 1]| FT −measurable, sup

P ∗∈P∗
EP

∗(
e−rTHϕ

)
≤ v0

}
. (1.35)

Theorem 1.9. Assume the risk measure ρ is monotonic and let ϕ̃ be a solution of the problem

(1.34). Then the admissible strategy (v0, π̃) determined by the optional decomposition of the

modified claim ϕ̃H solves the optimal partial hedging problem (1.33) and it holds

min
ϕ∈R

ρ
(
(1− ϕ)H

)
= min

(v,π)∈A0

ρ
(
(H − VT )+

)
. (1.36)

Proof. For any admissible strategy (v, π) with v ≤ v0, let us define the success ratio of it as

ϕ = ϕ(v,π) = I{VT≥H} +
VT
H
I{VT<H}. (1.37)

It is clear that ϕH = VT ∧H and hence the shortfall can be rewritten as

(H − VT )+ = H − VT ∧H = (1− ϕ)H. (1.38)

For any P ∗ ∈ P∗, according to the supermartingale property of the discounted value process,

we have

EP
∗
(e−rTϕH) ≤ EP ∗(e−rTVT ) ≤ v ≤ v0, (1.39)

and as a consequence, we have ϕ ∈ R, which implies

ρ
(
(H − VT )+

)
= ρ
(
(1− ϕ)H

)
≥ ρ
(
(1− ϕ̃)H

)
, (1.40)
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since ϕ̃ is the optimal randomized test that solves (1.34).

On the other hand, let π̃ be the superhedging strategy of the modified claim ϕ̃H determined

by the optional decomposition theorem, i.e.,

Ũt =ess sup
P ∗∈P∗

EP
∗
(e−rT ϕ̃H|Ft)

= Ũ0 +

∫ t

0
π̃1
udS̃u − C̃t, (1.41)

where Ũ0 = sup
P ∗∈P∗

EP
∗(
e−rTHϕ̃

)
≤ v0.

The strategy (Ũ0, π̃) is admissible because of the following relationships

e−rtṼt ≥ e−rtṼt − C̃t = ess sup
P ∗∈P∗

EP
∗
(e−rT ϕ̃H|Ft) ≥ 0. (1.42)

In addition, its success ratio ϕ(Ũ0,π̃) satisfies

ϕ(Ũ0,π̃)H = ṼT ∧H ≥ ϕ̃H. (1.43)

Since ρ is monotonic, we have

ρ
(
(1− ϕ(Ũ0,π̃))H

)
≤ ρ
(
(1− ϕ̃)H

)
. (1.44)

Combing (1.40) and (1.44), we conclude that (Ũ0, π̃) is the optimal strategy and

min
(v,π)∈A0

ρ
(
(H − VT )+

)
= ρ
(
(H − ṼT )+

)
= ρ
(
(1− ϕ(Ũ0,π̃))H

)
= ρ
(
(1− ϕ̃)H

)
= min

ϕ∈R
ρ
(
(1− ϕ)H

)
. (1.45)

Moreover, ϕ̃ coincides with the successful ratio of the optimal hedging strategy. �

As a consequence, the dynamic optimization problem (1.31) can be solved in two steps:

• Static optimization problem: Find the optimal randomized test ϕ̃ that solves (1.34);

• Replication problem: Find a superhedging strategy of the modified claim ϕ̃H.
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Remark 1.10. As mentioned in Rudloff (2006), when ϕ̃ can be solved with the help of the

Neyman-Pearson lemma directly, one can see that Ũ0 = v0 since the optimal test ϕ̃ attains the

bound v0 in (1.35).

Example 1.11. Let us take ρ((H − VT )+) = E((H − VT )+) as an example and consider the case

that ZP∗ = {P ∗} (a complete market). Theorem 1.9 shows that the problem

min
(v,π)∈A0

E
(
(H − VT )+

)
, (1.46)

is equivalent to

max
ϕ∈R

E
(
ϕH
)
. (1.47)

Define two measures Q and Q∗ as

dQ

dP
=

H

E(H)
,
dQ∗

dP ∗
=

H

EP ∗(H)
, (1.48)

and then (1.47) becomes

max
ϕ∈R

EQ(ϕ), (1.49)

subject to the constraint

EQ
∗
(ϕ) ≤ erT v0

EP ∗(H)
. (1.50)

With the help of Theorem 1.4, the optimal randomized test ϕ̃ is given by the Neyman-Pearson

lemma and has the form

ϕ̃ = I{ dP
dP∗>ã}

+ γI{ dP
dP∗=ã}, (1.51)

where

ã = inf{a ≥ 0 : EP
∗
(HI{ dP

dP∗>a}
) ≤ v0e

rT }, (1.52)

and

γ =
v0e

rT − EP ∗(HI{ dP
dP∗>ã}

)

EP ∗(HI{ dP
dP∗=ã})

. (1.53)

Example 1.11 lists the solution of the efficient hedging problem for the special liner loss function

l(x) = x (see Föllmer and Leukert 2000) and plays an important role in following chapters to

derive CVaR based hedging strategies.
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CHAPTER 2

CVaR-hedging and its applications to

equity-linked life insurance contracts

with transaction costs

2.1 Introduction

Since the famous paper of Black and Scholes (1973) , perfect hedging is a standard and powerful

way to the pricing of options. However, when perfect hedging is impossible (for example, when the

initial wealth is not sufficient), a partial hedging strategy that minimizes the shortfall risk should

be considered and applied to the pricing of contracts. Quantile hedging and efficient hedging are

most studied partial hedging methods. In Föllmer and Leukert (1999) (2000), they provided

explicit solutions for the quantile hedging problem and the efficient hedging problem in complete

markets by the Neyman-Pearson lemma. Another reason that makes partial hedging interesting is

that although it has some downside risk, it indeed provides opportunities for companies to gain

benefits. This is important for some financial institutions, such as insurance companies, since they

exploit risk to make profits. Recent book of Melnikov and Nosrati (2017) discussed several partial

hedging methods and their applications in pricing and hedging insurance contracts. In this

chapter, a coherent risk criterion called Conditional Value-at-Risk (CVaR) is employed to measure
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the shortfall which provides information about the average loss that exceeds the Value-at-Risk

(VaR) level.

The most developed theory of partial hedging deals with financial markets that are transaction

costs free. However, transaction costs are common in the real world and in general cannot be

ignored. There is a considerable amount of papers devoted to option pricing and hedging with

transaction costs. Leland (1985) has indicated that with a modified volatility, one can construct a

hedging strategy to replicate the payoff of an European call option almost surely as the length of

the revision period tends to zero. The idea of Leland was to include the expected transaction costs

in the costs of a duplication portfolio. Later, Hoggard et al. (1994) extended Leland’s method to

the pricing of standard options consist of a single asset. Mocioalca (2007) considered options on

several assets and derived a non-linear PDE that a modified option value process should satisfy.

Moreover, similar to the Leland’s hedging volatility, a volatility adjustment is also introduced in

the utility-based hedging strategy which was first designed by Hodges and Neuberger (1989). In

addition, Merton (1990) started to study option pricing in a two-period Binomial market model

with transaction costs. Boyle and Vorst (1992) extended Merton’s analysis to several periods and

constructed a hedging strategy for a call option. Results of Merton, Boyle and Vorst were unified

on the paper by Melnikov and Petrachenko (2005). Recently, Melnikov and Tong (2014)

considered quantile hedging with transaction costs. Leland’s adjusted hedging volatility was

utilized in their paper to rebalance the portfolio. Also, they discussed total hedging errors and

total transaction costs of the quantile hedging method.

All of the above mentioned papers considered option pricing and hedging in the Black-Scholes

model. However, growing number of evidences show that there are jumps in stock prices when

some significant financial or political announcements published, so that pure diffusion models are

not accurate enough to represent real life assets’ dynamics and jump components should be taken

into consideration. A Jump-Diffusion model for financial needs was proposed by Merton (1976),

and now there is a long list of references on this subject. For instance, Cox and Ross (1976)

provided ways to value options in markets with different jump components. Amin (1993) focused
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on the option valuation in discrete time. Mocioalca (2007) as well as Zhou et al. (2015) worked on

option pricing in markets with only one risky asset following the Jump-Diffusion model and in the

case that transaction costs existed.

Our main objective and contributions of this chapter is to implement a coherent risk measure

named CVaR and extend partial hedging method in the complete Black-Scholes market to a

market with jumps as well as transaction costs. This new market model is a more precise

representation of the real life financial market and CVaR is recommended by the Basel committee

as the risk measure applied in financial institutions. Hence, this chapter describes a more practical

and comprehensive implementation of partial hedging. This chapter is organized as follows. In

Section 2.2, we start with a transaction costs free Jump-Diffusion market. With the help of

optimal CVaR-based hedging techniques developed by Melnikov and Smirnov (2012), the optimal

hedging strategy that minimizes hedging costs while still satisfies a CVaR constraint for an

European call option is derived explicitly. In Section 2.3, we take proportional transaction fees

into consideration and show that the adjusted value of an option should satisfy a non-linear PDE.

In particular, an explicit formula for the modified price of an call option is given and the CVaR

hedging costs as well as the weights of the hedging portfolio of such a call option in this market

are recalculated with an adjusted hedging volatility. Further, we investigated the estimated

present values of total hedging errors and total transaction costs by a simulation method. In

Section 2.4, a numerical example is given to illustrate the application of our CVaR-based partial

hedging in finding target clients’ survival probabilities and age for life insurance contracts. Section

2.5 gives a conclusion for the chapter.

2.2 CVaR hedging in the complete Jump-Diffusion market model

2.2.1 Model setup

Let (Ω,F ,F = (Ft)t∈[0,T ], P ) be a standard stochastic basis. Consider a financial market with one

riskless asset (S0
t )t∈[0,T ] and two risky assets, (S1

t )t∈[0,T ], (S2
t )t∈[0,T ], described by a two factor
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Jump-Diffusion model:

dS0
t = rS0

t dt, S0
0 = 1,

dSit = Sit−(µidt+ σidWt − υidNt), i = 1, 2, (2.1)

where r ≥ 0 is the risk-free interest rate. Constants µi ∈ R, σi > 0, υi < 1, (i = 1, 2). W and N are

the independent Wiener process and the Poisson process that generate the filtration

F = (Ft)t∈[0,T ], i.e., Ft = σ(Ws, Ns, s ≤ t), and we assume F = FT .

In the absence of transaction costs, the market (2.1) is complete if the following conditions are

fulfilled (see Melnikov and Skornyakova 2005):

(µ1 − r)σ2 − (µ2 − r)σ1

υ1σ2 − υ2σ1
> 0, υ1σ2 − υ2σ1 6= 0.

Such a market admits an unique martingale measure P ∗ with the following local density:

Zt =
dP ∗

dP
|Ft= exp

[
α∗Wt −

α∗2

2
t+ (λ− λ∗)t+ (lnλ∗ − lnλ)Nt

]
, (2.2)

where λ is the intensity parameter of the Poisson process (Nt)t≥0 under the measure P , and the

pair (α∗, λ∗) satisfies:

λ∗ =
(µ1 − r)σ2 − (µ2 − r)σ1

υ1σ2 − υ2σ1
, α∗ =

(µ1 − r)υ2 − (µ2 − r)υ1

υ1σ2 − υ2σ1
. (2.3)

According to the Girsanov theorem, W ∗t = Wt − α∗t and Nt are again the independent Wiener

process and Poisson process (with intensity λ∗) under the martingale measure P ∗. We denote the

expectation under the measure P ∗ as E∗().

The exponential representation of Sit , i = 1, 2 is:

Sit = Si0 exp
(
σiWt + (µi −

1

2
σi

2)t+Nt ln(1− υi)
)

= Si0 exp
(
σiW

∗
t + (r + υiλ

∗ − 1

2
σi

2)t+Nt ln(1− υi)
)
. (2.4)

A F-strategy is a F-predictable process π := (π0
t , π

1
t , π

2
t )t∈[0,T ] such that∫ T

0
|π0
t |dt <∞,

∫ T

0
(πitS

i
t)

2dt <∞, P − a.s (i = 1, 2).
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At time t ∈ [0, T ], the value process corresponding to the strategy π is

Vt = π0
t S

0
t + π1

t S
1
t + π2

t S
2
t . (2.5)

Moreover, for a given initial value v ≥ 0, the trading strategy is called self-financing admissible

if its value process satisfies

Vt = v +

∫ t

0
π0
udS

0
u +

∫ t

0
π1
udS

1
u +

∫ t

0
π2
udS

2
u, (2.6)

and

Vt ≥ 0, ∀t ∈ [0, T ].

We denote the set of all admissible self-financing strategies with an initial value v as A(v).

According to the option pricing theory, in the complete market (2.1), the fair price of any

contingent claim H(S1
T , S

2
T ) is defined as V (0) = E∗

(
e−rTH(S1

T , S
2
T )
)
. In addition, this claim can

be hedged perfectly if the initial wealth is no less than V (0). The self-financing replication

strategy πt = (π0
t , π

1
t , π

2
t )t∈[0,T ] for it can be determined from:

π1
t S

1
t =

(
VS1S1

t σ1 + VS2S2
t σ2

)
υ2 +

(
V (S1

t−(1− υ1), S2
t−(1− υ2), t)− V (S1

t− , S
2
t− , t)

)
σ2

σ1υ2 − σ2υ1
, (2.7)

π2
t S

2
t =

(
VS1S1

t σ1 + VS2S2
t σ2

)
υ1 +

(
V (S1

t−(1− υ1), S2
t−(1− υ2), t)− V (S1

t− , S
2
t− , t)

)
σ1

σ2υ1 − σ1υ2
, (2.8)

π0
t S

0
t = V (S1

t , S
2
t , t)− π1

t S
1
t − π2

t S
2
t , (2.9)

where V (t) = V (S1
t , S

2
t , t) = e−r(T−t)E∗

(
H(S1

T , S
2
T ) | Ft

)
is the value of H(S1

T , S
2
T ) at time t, and

VS1 =
∂V (S1

t , S
2
t , t)

∂S1
, VS2 =

∂V (S1
t , S

2
t .t)

∂S2
.

Proof. Denote the value of the duplication strategy π of a claim H(S1
T , S

2
T ) at time t as:

V π
t = π0

t S
0
t + π1

t S
1
t + π2

t S
2
t . (2.10)

According to the definition of the self-financing replication strategy, the value process of

portfolio π should satisfy:  dV π
t = π0

t dS
0
t + π1

t dS
1
t + π2

t dS
2
t ,

V π
T = H(S1

t , S
2
T ).

(2.11)
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Denote W ∗t = Wt − α∗t, and Mt = Nt − λ∗t (the martingale associated with the Poisson

process), then dynamics of assets S1
t and S2

t can be represented as

dSit = Sit−(rdt+ σidW
∗
t − υidMt).

Then, the first equation of (2.11) becomes:

dV π
t = r(π1

t S
1
t− + π2

t S
2
t− + π0

t S
0
t )dt+ (π1

t σ1S
1
t− + π2

t σ2S
2
t−)dW ∗t − (π1

t υ1S
1
t− + π2

t υ2S
2
t−)dMt (2.12)

On the other hand, by Itô formula, the value process V (t) of H(S1
T , S

2
T ) should satisfy:

dV (t) =
[
Vt +

1

2
VS1S1S1

t
2
σ1

2 +
1

2
VS2S2S2

t
2
σ2

2 + VS1S2S1
t S

2
t σ1σ2 + r(Vs1S

1
t + Vs2S

2
t )

+
(
V (S1

t−(1− υ1), S2
t−(1− υ2), t)− V (S1

t− , S
2
t− , t) + Vs1S

1
t υ1 + Vs2S

2
t υ2

)
λ∗
]
dt

+ (Vs1S
1
t σ1 + Vs2S

2
t σ2)dW ∗t +

(
V (S1

t−(1− υ1), S2
t−(1− υ2), t)− V (S1

t− , S
2
t− , t)

)
dMt. (2.13)

Since π is the replication strategy, it satisfies V π
t = V (t), ∀t ≤ T . Comparing (2.12) and

(2.13), we have π1
t σ1S

1
t− + π2

t σ2S
2
t− = Vs1S

1
t σ1 + Vs2S

2
t σ2,

π1
t υ1S

1
t− + π2

t υ2S
2
t− = −

(
V (S1

t−(1− υ1), S2
t−(1− υ2), t)− V (S1

t− , S
2
t− , t)

)
,

(2.14)

Solving the above linear system (2.14), we arrive to (2.7) and (2.8).

Moreover, since the discounted value process is also a martingale under P ∗, so the drift term

of (2.13) should be equal to rV (t), which yields

Vt +
1

2

2∑
i=1

2∑
j=1

VSiSjS
i
tS

j
t σiσj + (r + υ1λ

∗)Vs1S
1
t + (r + υ2λ

∗)Vs2S
2
t

+
(
V (S1

t−(1− υ1), S2
t−(1− υ2), t)− V (S1

t− , S
2
t− , t)

)
λ∗ − rV = 0. (2.15)

�

Costs of perfect hedging, however, are often too high for investors, and hence the partial

hedging that allows investors to spend a smaller amount of initial capital while still control the

hedging loss under a certain level is more commonly implemented. In this chapter, we focus on

CVaR-based partial hedging since CVaR is an advanced and widely applied risk criterion in

financial institutions.
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2.2.2 Optimal CVaR hedging strategy

We assume that a hedger is exposed to a future obligation H = H(S1
T , S

2
T ) at maturity time T .

Meanwhile, the hedger constructs a self-financing hedging portfolio π and hence L = H − VT can

be seen as a FT -measurable random variable that characterizes the hedging loss. The CVaR of the

loss L at a confidence level α ∈ (0, 1) is defined as:

CV aRα(L) =
1

1− α

∫ 1

α
V aRs(L)ds,

where α ∈ (0, 1) is the risk level and V aRα = inf{s ∈ R : P (L ≤ s) > α}. CV aRα(L) represents

the expected loss of a hedging strategy given that the loss exceeds its upper α quantile.

We start with the market (2.1) excluding transaction fees and consider the problem of deriving

the optimal hedging strategy that minimizes hedging costs while keeps the hedging loss less than

or equal to a constraint, i.e., { min(Ṽ0,ξ)∈A Ṽ0,

subject to CV aRα(L) ≤ C,
(2.16)

where Ṽ0 represents initial hedging costs, A is the set containing all self-financing admissible

strategies and C is a fixed CVaR constraint.

Melnikov and Smirnov (2012) provided a semi-explicit solution of the problem (2.16) by using

the Neyman-Pearson lemma. The main result of their paper is summarized as following:

A. The optimal hedging strategy of the problem (2.16) is a perfect hedging of a modified

contingent claim (H − ẑ)+[1− ϕ(ẑ)] if conditions

E(H) > C(1− α), E((H − C)+) > 0, (2.17)

hold true, where ϕ(z) is defined as:

ϕ(z) = I{ dP∗
dP

>a(z)} + Γ(z)I{ dP∗
dP

=a(z)}, (2.18)

a(z) = inf
{
a ≥ 0 : E[(H − z)+I{ dP∗

dP
>a(z)}] ≤ (C − z)(1− α)

}
, (2.19)

Γ(z) =
(C − z)(1− α)− E

[
(H − z)+I{ dP∗

dP
>a(z)}

]
E
[
(H − z)+I{ dP∗

dP
=a(z)}

] , (2.20)

21



and ẑ is the solution of

min
z∈[0,C]

E∗
[
e−rT (H − z)+(1− ϕ(z))

]
. (2.21)

B. The optimal hedging strategy of the problem (2.16) is a passive strategy if conditions (2.17) are

not satisfied, that is to say do not hedge at all.

Note that the explicit form of the modified contingent claim would depend on the option and

the financial model of underlying assets. Melnikov and Smirnov (2012) provided the optimal

hedging strategy for a call option in the Black-Scholes model. We extend their methodology to the

market (2.1) and the explicit expression of the optimal CVaR hedging strategy for a call option is

given as following:

Theorem 2.1. Consider an European call option H = (S1
T −K)+ in the market (2.1). Under a

risk restriction CV aRα(L) ≤ C and assume conditions (2.17) are satisfied, the optimal CVaR

hedging strategy and its capital are as follows:

Case (a), α∗ < 0

(a.1) The optimal CVaR hedging strategy π∗ is given by the perfect hedging (2.7)-(2.9) of the

modified contingent claim H∗ =
(
S1
T −K(ẑ)

)+
I{S1

T≥m(ẑ)b∗NT }, where m(z) is the unique solution

of the equation

∑
n∈A(m,z)

[
S1

0(1− υ1)neµ1T
(
Φ(Λ2(n) + σ1

√
T )− Φ(Λ1(m,n) + σ1

√
T )
)

−K(z)
(
Φ(Λ2(n))− Φ(Λ1(m,n))

)]
pn,T = (C − z)(1− α), (2.22)

and ẑ is the solution of

min
z∈[0,C]

∑
A(m(z),z)

p∗n,TCB
(
s1

0,n,K(z), σ1, T
)

+
∑

A(m(z),z)

p∗n,T

[
CB

(
s1

0,n,m(z)b∗n, σ1, T
)

+ e−rT
(
m(z)b∗n −K(z)

)
Φ
(
Λ∗1(m(z), n)

)]
. (2.23)
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(a.2) The initial hedging costs Ṽ0 are

∑
A(m̂,ẑ)

p∗n,TCB
(
s1

0,n,K(ẑ), σ1, T
)

+
∑

A(m̂,ẑ)

p∗n,T

[
CB

(
s1

0,n, m̂b
∗n, σ1, T

)
+ e−rT

(
m̂b∗n −K(ẑ)

)
Φ
(
Λ∗1(m̂, n)

)]
. (2.24)

Case (b), α∗ > 0

(b.1) The optimal CVaR hedging strategy is given by the perfect hedging (2.7)-(2.9) of the

modified contingent claim H∗ =
(
S1
T −K(ẑ)

)+
I{S1

T≤m(ẑ)b∗NT }, where m(z) is the unique solution

of the equation

∑
A(m,z)

pn,T

[
S1

0(1− υ1)neµ1TΦ
(
Λ2(n) + σ1

√
T
)
−K(z)Φ

(
Λ2(n)

)]
+
∑

A(m,z)

pn,T

[
S1

0(1− υ1)neµ1TΦ
(
Λ1(m,n) + σ1

√
T
)
−K(z)Φ

(
Λ1(m,n)

)]
= (C − z)(1− α), (2.25)

and ẑ is the solution of

min
z∈[0,C]

∑
A(m(z),z)

p∗n,T

[
CB

(
s1

0,n,K(z), σ1, T
)
− CB

(
s1

0,n,m(z)b∗n, σ1, T
)

+ e−rT
(
K(z)−m(z)b∗n

)
Φ
(
Λ∗1(m(z), n)

)]
. (2.26)

(b.2) The initial hedging costs Ṽ0 are

∑
A(m̂,ẑ)

p∗n,T

[
CB

(
s1

0,n,K(ẑ), σ1, T
)
− CB

(
s1

0,n, m̂b
∗n, σ1, T

)
+ e−rT

(
K(ẑ)− m̂b∗n

)
Φ
(
Λ∗1(m̂, n)

)]
, (2.27)

where Φ(x) is the distribution function of a standard normal random variable. CB(St,K, σ, T − t)

denotes the Black-Scholes formula, i.e.,

CB(St,K, σ, T − t) = StΦ
(
b+(St,K, σ)

)
−Ke−r(T−t)Φ

(
b−(St,K, σ)

)
,
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and

b±(St,K, σ) =
ln(StK ) + (r ± σ2

2 )(T − t)
σ
√
T − t

, K(z) = K + z,

s1
t,n = S1

t vn,T−t = S1
t (1− υ1)n exp(υ1λ

∗(T − t)), b∗ = (1− υ1)(
λ

λ∗
)

σ1
α∗

,

p∗n,t = exp(−λ∗t)(λ∗t)n

n!
, pn,t = exp(−λt)(λt)n

n!
,

Λ1(m,n) =
ln

S1
0(1−υ1)n

mb∗n + (µ1 − σ12

2 )T

σ1

√
T

, Λ2(n) =
ln

S1
0(1−υ1)n

K(z) + (µ1 − σ12

2 )T

σ1

√
T

,

Λ∗1(m,n) =
ln

s10,n
mb∗n + (r − σ12

2 )T

σ1

√
T

, m̂ = m(ẑ),

A(m, z) = {n : Λ1(m,n) ≥ Λ2(n)} = {n : mb∗n ≤ K(z)}.

Proof. The density of the unique martingale measure in transaction costs free market can be

represented in terms of S1
T and NT . i.e.,

dP ∗

dP
= exp(α∗WT −

α∗2

2
t+ (λ− λ∗)T + (lnλ∗ − lnλ)NT )

=
[
S1

0 exp
(
σ1WT + (µ1 −

σ1
2

2
)T
)
(1− υ1)NT

]α∗σ1
× S1

0
−α
∗
σ1 exp

(
− α∗µ1

σ1
T +

σ1α
∗

2
T − α∗2

2
T + (λ− λ∗)T

)( λ∗

λ(1− υ)
α∗
σ1

)NT ,
= g(S1

T )
α∗
σ1 bNT

where b = λ∗

λ(1−υ)
α∗
σ1

and g = S1
0
−α
∗
σ1 exp(−α∗µ1

σ1
T + σ1α∗

2 T − α∗2

2 T + (λ− λ∗)T ).

Case 1. α∗ < 0

In this case, the set {dP ∗dP > a} can be rewritten as

{dP
∗

dP
> a} = {g(S1

T )
α∗
σ1 bNT > a} = {S1

T < mb∗NT },

P (
dP ∗

dP
= a) = P ∗(

dP ∗

dP
= a) = 0,

where b∗ = b−
σ1
α∗ . m is a constant to be determined.
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And hence, we have

ϕ(z) = I{S1
T<m(z)b∗NT },

m(z) = sup{m > 0 : E[(H − z)+I{S1
T<mb

∗NT }] ≤ (C − z)(1− α)}.

Since z ≥ 0, we have (H − z)+ =
(
S1
T −K(z)

)+, where K(z) = K + z and

E[(H − z)+I{S1
T<mb

∗NT }] = E[(S1
T −K(z))I{S1

T<mb
∗NT }I{S1

T≥K(z)}].

Considering the evolution of S1
T under the measure P and conditioning on each set

{NT = n}, n = 0, 1, 2 . . . , we get

{S1
T < mb∗n} = {S1

0(1− υ1)n exp(σ1WT + (µ1 −
σ2

1

2
)T ) < mb∗n}

= {Y > Λ1(m,n)},

{S1
T ≥ K(z)} = {Y ≤ Λ2(n)},

where Y = −WT√
T
∼ N(0, 1) and

Λ1(m,n) =
ln

S1
0(1−υ1)n

mb∗n + (µ1 − σ12

2 )T

σ1

√
T

, Λ2(n) =
ln

S1
0(1−υ1)n

K(z) + (µ1 − σ12

2 )T

σ1

√
T

.

We need to compare the size of Λ1(m,n) and Λ2(n). Let us denote

A(m, z) = {n : Λ1(m,n) ≥ Λ2(n)} = {n : mb∗n ≤ K(z)}.

Then, E[(S1
T −K(z))I{S1

T<mb
∗n}I{S1

T≥K(z)}] can be calculated as

E[(S1
T −K(z))I{S1

T<mb
∗n}I{S1

T≥K(z)}]

= E[(S1
T −K(z))I{Y >Λ1(m,n)}I{Y≤Λ2(n)}]

=

 0 for n ∈ A(m, z),

f(n) for n ∈ A(m, z),
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where,

f(n) = E[(S1
T −K(z))I{Λ1(m,n)<Y≤Λ2(n)}]

= E[S1
T I{Y≤Λ2(n)}]− E[S1

T I{Y≤Λ1(m,n)}]−K(z)P
(

Λ1(m,n) < Y ≤ Λ2(n)
)

= S1
0(1− υ1)ne(µ1−σ1

2

2
)T
[
E(eσ1WT I{Y≤Λ2(n)})− E(eσ1WT I{Y≤Λ1(m,n)})

]
−K(z)

[
Φ(Λ2(n))− Φ(Λ1(m,n))

]
According to the Multi-asset theorem (see Melnikov and Skornyakova 2005) for the k = 1 case,

we have

E(e−ZI{X<x}) = exp(
σz

2

2
− µz)Φ

(x− µX + cov(Z,X)

σX

)
,

where X ∼ N(µX , σX
2), Z ∼ N(µZ , σZ

2).

And consequently, we arrive to

f(n) = S1
0(1− υ1)neµ1T [Φ(Λ2(n) + σ1

√
T )− Φ(Λ1(m,n) + σ1

√
T )]

−K(z)[Φ(Λ2(n))− Φ(Λ1(m,n))].

Hence, we prove that

E[(H − z)+I{S1
T<mb

∗NT }]

=

∞∑
n=0

P (NT = n)E[(S1
T −K(z))I{Y >Λ1(m,n)}I{Y≤Λ2(n)} | NT = n]

=
∑

A(m,z)

f(n)pn,T . (2.28)

Since equation (2.28) is an increasing function about m, and

E[(H − z)+I{S1
T<0b∗NT }] = 0, E((H − z)+) > (C − z)(1− α),

m(z) is the solution for ∑
A(m,z)

f(n)pn,T = (C − z)(1− α).

Let us calculate the term e−rTE∗((S1
T −K(z))+I{S1

T>m(z)b∗NT }).
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Considering the evolution of S1
T under the measure P ∗ and conditioning on each set

{NT = n}, n = 0, 1, 2, . . . , we have

{S1
T ≥ m(z)b∗n} = {S1

0(1− υ1)neυ1λ
∗T exp(σ1W

∗
T + (r − σ1

2

2
)T ) ≥ m(z)b∗n}

= {Y ∗ ≤ Λ∗1(m(z), n)},

{S1
T ≥ K(z)} = {Y ∗ ≤ Λ∗2(n)},

where Y ∗ = −W ∗T√
T
∼ N(0, 1) under the measure P ∗, and

Λ∗1(m(z), n) =
ln

s10,n
m(z)b∗n + (r − σ12

2 )T

σ1

√
T

, Λ∗2(n) =
ln

s10,n
K(z) + (r − σ12

2 )T

σ1

√
T

.

Then, we have

e−rTE∗
[
(S1
T −K(z))+I{S1

T>m(z)b∗n}
]

= e−rTE∗
[
(S1
T −K(z))I{Y ∗≤Λ∗1(m(z),n)}∩{Y ∗≤Λ∗2(n)}

]
=

 e−rTE∗
[
(S1
T −K(z))I{Y ∗≤Λ∗2(n)}

]
, for n ∈ A(m(z), z),

e−rTE∗
[
(S1
T −K(z))I{Y ∗≤Λ∗1(m(z),n)}

]
, for n ∈ A(m(z), z),

which, again according to the multi-asset theorem can be rewritten as

=

 s1
0,nΦ

(
Λ∗2(n) + σ1

√
T
)
−K(z)e−rTΦ

(
Λ∗2(n)

)
, for n ∈ A(m(z), z),

s1
0,nΦ

(
Λ∗1(m(z), n) + σ1

√
T
)
−K(z)e−rTΦ

(
Λ∗1(m(z), n)

)
, for n ∈ A(m(z), z).

=

 CB
(
s1

0,n,K(z), σ1, T , ) for n ∈ A(m(z), z),

CB
(
s1

0,n,m(z)b∗n, σ1, T
)

+ e−rT
(
m(z)b∗n −K(z)

)
Φ
(
Λ∗1(m(z), n)

)
, for n ∈ A(m(z), z).

And hence, we have

e−rTE∗
(
(S1
T −K(z))+I{S1

T>m(z)b∗NT }
)

=
∞∑
n=0

p∗n,T e
−rTE∗

[
(S1
T −K(z))I{Y ∗≤Λ∗1(m(z),n)}I{Y ∗<Λ∗2(n)} | NT = n

]
=

∑
A(m(z),z)

p∗n,TCB
(
s1

0,n,K(z), σ1, T
)

+
∑

A(m(z),z)

p∗n,T
[
CB(s1

0,n,m(z)b∗n, σ1, T ) + e−rT (m(z)b∗n −K(z))Φ(Λ∗1(m(z), n))
]
. (2.29)
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As a consequence, ẑ is a point of minimum of the function (2.29) over the interval z ∈ [0, C].

Case 2. α∗ > 0

In this case, we have

{dP
∗

dP
> a} = {g(S1

T )
α∗
σ1 bNT > a} = {S1

T > mb∗NT },

and hence, (2.18)-(2.20) becomes

ϕ(z) = I{S1
T>m(z)b∗NT },

m(z) = inf{m > 0 : E[(H − z)+I{S1
T>mb

∗NT }] ≤ (C − z)(1− α)}.

As a consequence,

E[(H − z)+I{S1
T>mb

∗NT }] = E[(S1
T −K(z))I{S1

T>mb
∗NT }I{S1

T≥K(z)}].

Conditioning on each set {NT = n}, n = 0, 1, 2 . . . , we get

{S1
T > mb∗n} = {Y < Λ1(m,n)}, {S1

T ≥ K(z)} = {Y ≤ Λ2(n)}.

Thus, we have

E[(H − z)+I{S1
T>mb

∗n}] = E[(S1
T −K(z))I{Y <Λ1(m,n)}I{Y≤Λ2(n)}]

=

 E((S1
T −K(z))I{Y <Λ2(n)}), for n ∈ A(m, z),

E((S1
T −K(z))I{Y <Λ1(m,n)}), for n ∈ A(m, z),

=

 S1
0(1− υ1)neµ1TΦ(Λ2(n) + σ1

√
T )−K(z)Φ(Λ2(n)) for n ∈ A(m, z),

S1
0(1− υ1)neµ1TΦ(Λ1(m,n) + σ1

√
T )−K(z)Φ(Λ1(m,n)) for n ∈ A(m, z).

(2.30)

Finally, by (2.30), we arrive to

E[(H − z)+1{S1
T>mb

∗NT }]

=

∞∑
n=0

P (NT = n)EP [(S1
T −K(z))I{Y <Λ1(m,n)}1{Y≤Λ2(n)} | NT = n]

=
∑

A(m,z)

pn,T [S1
0(1− υ)neµ1TΦ(Λ2(n) + σ1

√
T )−K(z)Φ(Λ2(n))]

+
∑

A(m,z)

pn,T [S1
0(1− υ)neµ1TΦ(Λ1(m,n) + σ1

√
T )−K(z)Φ(Λ1(m,n))]. (2.31)
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And hence m(z) is the solution of (2.31) = (C − z)(1− α).

Similarly, under the measure P ∗ and conditioning on each set {NT = n}, n = 0, 1, 2, . . . , we

have

{S1
T ≤ m(z)b∗n} = {Y ∗ ≥ Λ∗1(m(z), n)}, {S1

T ≥ K(z)} = {Y ∗ ≤ Λ∗2(n)}.

Hence, we arrive to

e−rTE∗((S1
T −K(z))+I{S1

T≤m(z)b∗n})

= e−rTE∗((S1
T −K(z))I{Y ∗≥Λ∗1(m(z),n)}I{Y ∗≤Λ∗2(n)})

=

 0, for n ∈ A(m(z), z),

e−rTE∗((S1
T −K(z))I{Λ∗1(m(z),n)≤Y ∗≤Λ∗2(n)}), for n ∈ A(m(z), z).

Moreover, by some calculation, we arrive to

e−rTE∗((S1
T −K(z))I{Λ∗1(m(z),n)≤Y ∗≤Λ∗2(n)})

= e−rTE∗(S1
T I{Λ∗1(m(z),n)≤Y ∗≤Λ∗2(n)})− e−rTK(z)[Φ(Λ∗2(n))− Φ(Λ∗1(m(z), n))]

= s1
0,n[Φ(Λ∗2(n) + σ1

√
T )− Φ(Λ∗1(m(z), n) + σ1

√
T )]− e−rTK(z)[Φ(Λ∗2(n))− Φ(Λ∗1(m(z), n))

= CB(s1
0,n,K(z), σ1, T )− CB(s1

0,n,m(z)b∗n, σ1, T ) + e−rT [K(z)−m(z)b∗n]Φ(Λ∗1(m(z), n)).

and consequently, we derive that

e−rTE∗((S1
T −K(z))+I{S1

T≤m(z)b∗NT })

=
∞∑
n=0

p∗n,T e
−rTE∗((S1

T −K(z))I{Y ∗≥Λ∗1(n)}I{Y ∗≤Λ∗2(n)})

=
∑

A(m(z),n)

p∗n,T

[
CB(s1

0,n,K(z), σ1, T )− CB(s1
0,n,m(z)b∗n, σ1, T )

+ e−rT [K(z)−m(z)b∗n]Φ(Λ∗1(m(z), n))
]
. (2.32)

Then, ẑ is a point of minimum of function (2.32) over the interval z ∈ [0, C]. �
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2.3 CVaR hedging in the Jump-Diffusion market with transaction

costs

2.3.1 Option pricing and hedging in the market (2.1) with transaction costs

If transaction costs are taken into account, the continuous replication policy (2.7)-(2.9) would

incur infinite amounts of transaction costs. In this case, hedges should be rebalanced discretely.

Let us assume that buying and selling stocks need to pay transaction fees which are proportional

to trading volumes, i.e.,
∑2

i=1 k|δ4̂
i

t|Sit at time t, where |δ4̂i

t| represents shares of the trading risky

asset Si and k represents a fixed proportion of transaction fees. Following Leland (1985), we

assume that trades can only be executed at certain points of time {t0, t1, . . . , tM}, tM = T . The

time interval δt between successive rehedgings is assumed to be fixed and is much smaller than the

time to expiration.

Intuitively, transaction costs affect prices of options. Leland has indicated that if one applies

delta hedging with an augmented volatility σ̂ = σ
√

1 + 2k
√

2/π/σ
√
δt where σ is the volatility of

the asset in the Black-Scholes model, payoffs of an European call option can be replicated almost

surely as δt→ 0 and the price of a call option inclusive of transaction costs is given by the

Black-Scholes formula with the modified volatility σ̂. The main idea of Leland was to include the

expected amounts of transaction costs to the basic Black-Scholes option price. Here, we would like

to use the same idea as Leland and define the modified value of a claim at time t by the value of

an adjusted delta hedging portfolio at that point.

Lemma 2.2. In the market (2.1) including transaction costs, the modified value process

V (t) = V (S1
t , S

2
t , t) of an option H(S1

T , S
2
T ) satisfies the following non-linear PDE (we drop

dependence on time in order to abbreviate the notation):

V t + (r + λ∗υ1)V S1S1
t + (r + λ∗υ2)V S2S2

t +
1

2

2∑
i=1

2∑
j=1

σiσjS
i
tS

j
t V SiSj

+ λ∗[V (S1
t−(1− υ1), S2

t−(1− υ2), t)− V (S1
t− , S

2
t− , t)]− rV + kΘ = 0, (2.33)
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subject to the boundary condition V (S1
T , S

2
T , T ) = H(S1

T , S
2
T ), where

V t =
∂V (S1

t , S
2
t , t)

∂t
, V Si =

∂V (S1
t , S

2
t , t)

∂Si
, V SiSj =

∂V (S1
t , S

2
t , t)

∂SiSj
,

Θ = (1− λ∗δt)
2∑
i=1

√
2

π
ηiS

i
tδt
− 1

2 + λ∗
2∑
i=1

[√ 2

π
ηie
− ζ2i

2ηi
2δt δt

1
2 + ζi

(
1− 2Φ(− ζi

ηiδt
1
2

)
)]
Sit ,

ζi =
2∑
j=1

−V SiSj (t)S
j
t υj , ηi = |

2∑
j=1

V SiSj (t)σjS
j
t |, (i = 1, 2).

Proof. We shall set up the model in a discrete time framework. The time interval between two

transactions is assumed to be fixed and equal to δt.

The number of jumps during the time interval [t, t+ δt) satisfies:

Nt+δt −Nt =


0 with probability 1− λδt+ o(δt),

1 with probability λδt+ o(δt),

others with probability o(δt).

When δt is small, it is reasonable to assume there is at most 1 jump during the time interval

and the underlying assets follow the model described by Cox and Ross (1976), i.e.,

δSit
Sit

= µiδt+ σiδWt, if jump dose not happen,

δSit
Sit

= µiδt+ σiδWt − υi, if one jump occurs,

where δSit = Sit+δt − Sit represents the small change in the stock price during the time interval

t− t+ δt.

Denote the option value inclusive of transaction costs as V (t) = V (S1
t , S

2
t , t). Consider a

portfolio with 4̂i

t shares of stock Si, (i = 1, 2) and a short position in the option at time t. Its

value is:

Πt = 4̂1

tS
1
t + 4̂2

tS
2
t − V (t).

The change in the value of the portfolio from t to t+ δt is:

δΠt = 4̂1

t δS
1
t + 4̂2

t δS
2
t − δV (t)− k|δ4̂1

t |S1
t+δt − k|δ4̂

2

t |S2
t+δt,
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where δ4̂i

t = 4̂i

t+δt − 4̂
i

t.

Also, let us expand V (t) using Itô formula, such that

δV (t) = (V t + V S1µ1S
1
t + V S2µ2S

2
t )δt+ (V S1σ1S

1
t + V S2σ2S

2
t )δWt

+
1

2

2∑
i=1

2∑
j=1

σiσjS
i
tS

j
t V SiSjδt+ [V (S1

t−(1− υ1), S2
t−(1− υ2), t)− V (S1

t− , S
2
t− , t)]δNt. (2.34)

Since we apply the Leland delta hedging method, shares of asset i are

4̂i

t =
∂V (S1

t , S
2
t , t)

∂Si
= V Si , (i = 1, 2).

Apply Taylor extension to δ4̂i

t, we obtain for the leading order

δ4̂1

t = V S1S1δS1
t + V S1S2δS2

t ,

δ4̂2

t = V S2S1δS1
t + V S2S2δS2

t .

Let us consider cases that there is no jump and one jump separately.

a. No jump—δNT = 0

In this case, the portfolio value changes by the amount

δΠt = V S1S1
t (µ1δt+ σ1δWt) + V S2S2

t (µ2δt+ σ2δWt)

−
[
(V t + V S1µ1S

1
t + V S2µ2S

2
t )δt+ (V S1σ1S

1
t + V S2σ2S

2
t )δWt

+
1

2

2∑
i=1

2∑
j=1

σiσjS
i
tS

j
t V SiSjδt

]
− k|δ4̂1

t |S1
t+δt − k|δ4̂

2

t |S2
t+δt

= −V tδt−
1

2

2∑
i=1

2∑
j=1

σiσjS
i
tS

j
t V SiSjδt− k|δ4̂

1

t |S1
t+δt − k|δ4̂

2

t |S2
t+δt. (2.35)

b.One jump—δNT = 1
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In this case, the portfolio value changes by the amount

δΠt = V S1S1
t (µ1δt+ σ1δWt − υ1) + V S2S2

t (µ2δt+ σ2δWt − υ2)

−
[
(V t + V S1µ1S

1
t + V S2µ2S

2
t )δt+ (V S1σ1S

1
t + V S2σ2S

2
t )δWt

+
1

2

2∑
i=1

2∑
j=1

σiσjS
i
tS

j
t V SiSjδt

]
+
[
V (S1

t−(1− υ1), S2
t−(1− υ2), t)− V (S1

t− , S
2
t− , t)

]
− k|δ41

t |S1
t+δt − k|δ42

t |S2
t+δt

= −V tδt− V S1S1
t υ1 − V S2S2

t υ2 −
1

2

2∑
i=1

2∑
j=1

σiσjS
i
tS

j
t V SiSjδt

−
[
V (S1

t−(1− υ1), S2
t−(1− υ2), t)− V (S1

t− , S
2
t− , t)

]
− k|δ4̂1

t |S1
t+δt − k|δ4̂

2

t |S2
t+δt. (2.36)

In Hoggard et al. (1994), they assumed the return of the portfolio was equal to the risk free

rate under the measure P , that is, E(δΠt) = rΠtδt. This is because in the Black-Scholes model,

delta hedging eliminates all systematic risk. However, in the Jump-Diffusion case, risk caused by

jumps is not eliminated. Notice that the expected return of risky assets and the risk free asset are

both equal to r under measure P ∗ which means investors are risk neutral and the expected return

for the portfolio under P ∗ should also be r. As a consequence, in this chapter, different from

Hoggard et al., we assume E∗(δΠt) = rΠtδt.

As the next step, let use consider the expected value of transaction costs. In Leland (1985), an

important step in his proof is that he assumed that δS/S was normally distributed with mean zero

and variance σ
√
δt, then according to the expectation of the absolute value of a normal random

variable, i.e., E(|δWt|) =
√

2/πδt, the expected transaction costs during δt were

k | V SS | St2
√

2/πσ
√
δt. Similarly, we would like to derive the expression of E(|X|), where
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X ∼ N(µx, σ
2
x). i.e.,

E(|X|) =

∫ 0

−∞
−xn(x)dx+

∫ ∞
0

xn(x)dx.

= −
∫ 0

−∞
(x− µx)

1√
2πσx2

e
− (x−µx)2

2σx2 dx+

∫ ∞
0

(x− µx)
1√

2πσx2
e
− (x−µx)2

2σx2 dx

−
∫ 0

−∞
µx

1√
2πσx2

e
− (x−µx)2

2σx2 dx+

∫ ∞
0

µx
1√

2πσx2
e
− (x−µx)2

2σx2 dx

=
σx√
2π

(e
− (x−µx)2

2σx2 |0−∞)− σx√
2π

(e
(x−µx)2

2σx2 |∞0 ) + µx(P (X ≥ 0)− P (X ≤ 0))

=

√
2

π
σxe
− µ2

2σ2x + µx
(
1− 2Φ(−µx

σx
)
)
. (2.37)

a. δNT = 0

The expected transaction costs (disregarding the higher power of δt) are

k

2∑
i=1

E∗(|
2∑
j=1

V SiSjδS
j
t |)Sit = k

2∑
i=1

E∗(|
2∑
j=1

V SiSjσjS
j
t δt

1/2ε|)Sit ,

where ε ∼ N(0, 1).

Note that
∑2

j=1 V SiSjσjS
j
t δt

1
2 ε ∼ N(0, ηi

2δt), where ηi = |
∑2

j=1(V SiSjσjS
j
t )|, and

consequently, by (2.37), the expected transaction costs can be written as

k

2∑
i=1

√
2

π
ηiS

i
tδt

1
2 . (2.38)

b. δNT = 1.

The expected transaction costs (disregarding the higher power of δt) are

k
2∑
i=1

E∗(|
2∑
j=1

V SiSjδS
j
t |)Sit = k

2∑
i=1

E∗(|
2∑
j=1

V SiSjS
j
t (σjδt

1
2 ε − υj)|)Sit . (2.39)

Also, we have
∑2

j=1 V SiSjS
j
t (σjδt

1
2 ε − υj) ∼ N(ζi, ηi

2δt) where ζi =
∑2

j=1−V SiSjS
j
t υj .

Consequently, the expected transaction costs are rewritten as

k
2∑
i=1

[

√
2

π
ηie
− ζ2

2ηi
2δt δt

1
2 + ζi(1− 2Φ(− ζi

ηiδt
1
2

))]Sit . (2.40)
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Combine (2.35)-(2.40), we arrived to

E∗(δΠt)

= E∗(δΠt | δNT = 0)P ∗(δNT = 0) + EP ∗(δΠt | δNT = 1)P ∗(δNT = 1)

= (1− λ∗δt)
[
− V tδt−

1

2

2∑
i=1

2∑
j=1

σiσjS
i
tS

j
t V SiSjδt− k

2∑
i=1

√
2

π
ηiS

i
tδt

1
2
]

+ λ∗δt
[
− V tδt− V S1S1

t υ1 − V S2S2
t υ2 −

1

2

2∑
i=1

2∑
j=1

σiσjS
i
tS

j
t V SiSjδt

−
[
V (S1

t−(1− υ1), S2
t−(1− υ2), t)− V (S1

t− , S
2
t− , t)

]
− k

2∑
i=1

[√ 2

π
ηie
− ζ2

2ηi
2δt δt

1
2 + ζi(1− 2Φ(− ζi

ηiδt
1
2

))
]
Sit

]
= −V tδt−

1

2

2∑
i=1

2∑
j=1

σiσjS
i
tS

j
t V SiSjδt− λ∗δtV S1S1

t υ1 − λ∗δtV S2S2
t υ2

− λ∗δt
[
V (S1

t−(1− υ1), S2
t−(1− υ2), t)− V (S1

t− , S
2
t− , t)

]
− k
{

(1− λ∗δt)
2∑
i=1

√
2

π
ηiS

i
tδt

1
2 + λ∗δt

2∑
i=1

[

√
2

π
ηie
− ζ2

2ηi
2δt δt

1
2 + ζi(1− 2Φ(− ζi

ηiδt
1
2

))]Sit

}
= −V tδt−

1

2

2∑
i=1

2∑
j=1

σiσjS
i
tS

j
t V SiSjδt− λ∗δtV S1S1

t υ1 − λ∗δtV S2S2
t υ2

− λ∗δt
[
V (S1

t−(1− υ1), S2
t−(1− υ2), t)− V (S1

t− , S
2
t− , t)

]
− kΘδt, (2.41)

where Θ = (1− λ∗δt)
∑2

i=1

√
2
πηiS

i
tδt
− 1

2 + λ∗
∑2

i=1[
√

2
πηie

− ζ2

2ηi
2δt δt

1
2 + ζi(1− 2Φ(− ζi

ηiδt
1
2

))]Sit .

Finally, the equation E∗(δΠt) = rΠtδt can be rewritten as

− V tδt−
1

2

2∑
i=1

2∑
j=1

σiσjS
i
tS

j
t V SiSjδt− λ∗δtV S1S1

t υ1 − λ∗δtV S2S2
t υ2−

λ∗δt[V (S1
t−(1− υ1), S2

t−(1− υ2), t)− V (S1
t− , S

2
t− , t)]− kΘδt

= r
(
V S1S1

t + V S2S2
t − V (t)

)
δt (2.42)
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Rearranging the above equation we arrive to

V t + (r + λ∗υ1)V S1S1
t + (r + λ∗υ2)V S2S2

t +
1

2

2∑
i=1

2∑
j=1

σiσjS
i
tS

j
t V SiSj

+ λ∗[V (S1
t−(1− υ1), S2

t−(1− υ2), t)− V (S1
t− , S

2
t− , t)]− rV (t) + kΘ = 0,

which is the equation (2.33).

In the special case that the option consists of only one asset (assume S1), we have

V S2 = V S1S2 = V S2S1 = V S2S2 = 0,

η1 = |V S1S1 |σ1S
1
t , ζ1 = −V S1S1S1

t υ1, η2 = 0, ζ2 = 0,

and hence Θ can be simplified as

Θ = (1− λ∗δt)
√

2

π
|V S1S1 |σ1S

1
t

2
δt−

1
2 + λ∗

√
2

π
e
− υ1

2

2σ1
2δt |V S1S1 |σ1S

1
t

2
δt

1
2

+ V S1S1S1
t

2
υ1λ

∗(2Φ(
V S1S1υ1

|V S1S1 |σ1δt
1
2

)− 1)

= |V S1S1 |σ1S
1
t

2
[

√
2

πδt
(1− λ∗δt+ λ∗δte

− υ1
2

2σ1
2δt )

+
υ1

σ1
λ∗sign(V S1S1)(2Φ(sign(V S1S1)

υ1

σ1δt
1
2

)− 1)]

= |V S1S1 |σ1S
1
t

2
[

√
2

πδt
(1− λ∗δt+ λ∗δte

− υ1
2

2σ1
2δt ) +

υ1

σ1
λ∗(2Φ(

υ1

σ1δt
1
2

)− 1)]

= |V S1S1 |σ1S
1
t

2
θ1, (2.43)

where θ1 =
√

2
πδt(1− λ

∗δt+ λ∗δte
− υ1

2

2σ1
2δt ) + υ1

σ1
λ∗(2Φ( υ1

σ1δt
1
2

)− 1).

Consequently, equation (2.42) is reduced to

V t + (r + λ∗υ1)V S1S1
t +

1

2
σ1

2S1
t

2
V S1S1 + λ∗[V (S1

t−(1− υ1), t)− V (S1
t− , t)]

− rV (t) + kV S1S1σ1S
1
t

2
sign(V S1S1)θ1 = 0→

V t + (r + λ∗υ1)V S1S1
t +

1

2
σ̂2

1S
1
t

2
V S1S1 + λ∗[V (S1

t−(1− υ1), t)− V (S1
t− , t)]

− rV (t) = 0, (2.44)

where σ̂2
1 = σ2

1(1 + sign(V S1S1)2k
σ1
θ1). �
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Remark 2.3. Because of transaction fees, the market (2.1) is no longer complete and in this case,

as indicated in Dewynne et al. (1994), one can define the value of an option according to the

hedging strategy that is applied. In our paper, we implement Leland adjusted delta hedging method.

Remark 2.4. Similar non-linear PDE also exists in the Black-Scholes model including transaction

costs (see Dewynne et al. 1994). In particular, in Leland single asset model, such a non-linear

PDE can be reduced to a liner PDE. However, in the two assets case, (2.33) can never be reduced

to a linear PDE and can only be solved numerically. Also, similar to the conclusion in Zakamulin

(2008) based on the Black-Scholes model, with two underlying assets, it may not be reasonable to

explain the option hedging strategy as hedging with an adjusted volatility as Leland.

In our case, we focus on hedging a call option whose payoff only depends on the first risky

asset, i.e., H(S1
T , S

2
T ) = (S1

T −K)+, so (2.33) can be reduced to:

V t + (r + λ∗υ1)V S1S1
t +

1

2
σ̂2

1S
1
t

2
V S1S1 + λ∗[V (S1

t−(1− υ1), t)− V (S1
t− , t)]− rV = 0, (2.45)

subject to the condition V̄ (T ) = H(S1
T ), where

σ̂2
1 = σ2

1(1 + sign(V S1S1)
2k

σ1
θ1),

θ1 =

√
2

πδt

(
1− λ∗δt+ λ∗δte

− υ1
2

2σ1
2δt
)

+
υ1

σ1
λ∗
(
2Φ(

υ1

σ1δt
1
2

)− 1
)
.

On the other hand, in a Jump-Diffusion model excluding transaction fees, according to the Itô

formula and martingale property of the discounted value process, the option value

V (t) = E∗(e−r(T−t)H(S1
T ) | Ft) satisfies :

Vt + (r + λ∗υ1)VS1S1
t +

1

2
σ1

2S1
t

2
VS1S1 + λ∗[V (S1

t−(1− υ1), t)− V (S1
t− , t)]− rV = 0, (2.46)

subject to the condition V (T ) = H(S1
T ), where Vt = ∂V (t)

∂t .

Formulas (2.45) and (2.46) indicate that the modified value of an option that consists of only

one asset (S1 or S2) and whose sign of gamma is a constant has the same form as that in the

corresponding complete market, but such a value process is based on an adjusted volatility. It is

worth to mention that, unlike Leland’s adjusted volatility which depends on the transaction costs
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rate k and the revision period δt, our adjusted volatility σ̂1 also depends on the jump size υ1 and

Poisson intensity λ∗.

Remark 2.5. If λ∗ = 0 (without the jump), σ̂1 is just the Leland’s adjusted volatility. Meanwhile,

if k = 0 (without transaction costs), (2.45) is consistent with (2.46).

Proposition 2.6. In the market (2.1), the modified price inclusive of transaction costs of a call

option H = (S1
T −K)+ is

V (0) =

∞∑
n=0

p∗n,TCB(s1
0,n,K, σ̂1, T ), (2.47)

where σ̂2
1 = σ2

1(1 + 2k
σ1
θ1).

Proof. V (0) = e−rTE∗
(
(S1
T −K)

+)
=
∑∞

n=0 p
∗
n,TCB(s1

0,n,K, σ1, T ) is the fair price of a call

option in the transaction costs free complete market (2.1). Substituting σ1 in the Black-Scholes

formula with σ̂1 gives (2.47). �

2.3.2 CVaR hedging method in the market (2.1) with transaction costs

Theorem 2.1 provides the modified claim as well as the initial hedging costs of CVaR partial

hedging in the complete market (2.1). However, with transaction fees, the CVaR hedging costs of

the call option should be recalculated with the adjusted hedging volatility σ̂1.

Proposition 2.7. In the market (2.1) including transaction costs, at each revision point

tm, m = 0, 1, . . . ,M − 1, the CVaR price (value of the CVaR hedging portfolio) Xtm of the call

option H = (S1
T −K)+ is defined by:

(a) For α∗ < 0

∑
A(Mtm ,ẑ)

p∗n,TmCB
(
s1
tm,n,K(ẑ), σ̂1, Tm

)
+

∑
A(Mtm ,ẑ)

p∗n,Tm

[
CB

(
s1
tm,n,Mtmb

∗n, σ̂1, Tm
)

+ e−rTm
(
Mtmb

∗n −K(ẑ)
)
Φ
(
Λ̂∗−(Mtmb

∗n, n, Tm)
)]

; (2.48)
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(b) For α∗ > 0∑
A(Mtm ,ẑ)

p∗n,Tm

[
CB

(
s1
tm,n,K(ẑ), σ̂1, Tm

)
− CB

(
s1
tm,n,Mtmb

∗n, σ̂1, Tm
)

+ e−rTm
(
K(ẑ)−Mtmb

∗n)Φ(Λ̂∗−(Mtmb
∗n, n, Tm)

)]
, (2.49)

where

Tm = T − tm, Mt = m̂b∗Nt , Λ̂∗±(x, n, t) =
ln

s1T−t,n
x + (r ± σ̂2

1
2 )t

σ̂1

√
t

.

In addition, according to the fact

∂CB(St,K, σ, T − t)
∂St

= Φ
((ln St

K + (r + σ2

2 )(T − t)
σ
√
T − t

)
and equations (2.48)-(2.49), over the hedging period tm − tm+1 , shares of stock S1, i.e.,

∆̂1
tm = ∂Xtm/∂S

1, in the hedging portfolio are

(a) For α∗ < 0∑
A(Mtm ,ẑ)

p∗n,Tmvn,TmΦ
(

Λ̂∗+(K(ẑ), n, Tm)
)

+
∑

A(Mtm ,ẑ)

[
Φ
(

Λ̂∗+(Mtmb
∗n, n, Tm)

)
+ e−rTm

Mtmb
∗n −K(ẑ)

s1
tm,nσ̂1

√
Tm

φ
(

Λ̂∗−(Mtmb
∗n, n, Tm)

)]
p∗n,Tmvn,Tm ; (2.50)

(b) For α∗ > 0∑
A(Mtm ,ẑ)

p∗n,Tmvn,Tm

[
Φ
(

Λ̂∗+(K(ẑ), n, Tm)
)
− Φ

(
Λ̂∗+(Mtmb

∗n, n, Tm)
)

+ e−rTm
K(ẑ)−Mtmb

∗n

s1
tm,nσ̂1

√
Tm

φ
(

Λ̂∗−(Mtmb
∗n, n, Tm)

)]
, (2.51)

where φ(x) is the density function of a standard normal random variable.

Amounts B̂tm invested in the risk free asset during this period are given by

B̂tm = Xtm − ∆̂1
tmS

1
tm . (2.52)

2.3.3 Total hedging errors and total transaction costs of CVaR hedging

method

At each revision point tm (m = 0, ..,M − 1), the hedging portfolio includes ∆̂1
tm shares of the risky

asset and B̂tm amounts of the risk free bond, while at the next point tm+1, the hedging strategy
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should be rebalanced such that it consists ∆̂1
tm+1

units of the risky asset, and B̂tm+1 amounts of

the risk free asset. Toft (1996) showed that the hedging position cannot be self-adjusted.

Moreover, he defined the hedging errors at time tm+1 (m = 0, ..,M − 1) as differences between the

value of the hedging portfolio before and after rebalancing, i.e.,

HEtm+1 = ∆̂1
tmS

1
tm+1

+ erδtB̂tm − (∆̂1
tm+1

S1
tm+1

+ B̂tm+1)

= ∆̂1
tmS

1
tm+1

+ erδtB̂tm −Xtm+1 . (2.53)

Such amounts represent benefits from rehedging at time tm+1 and the present value of the

total hedging errors during the whole hedging period are

HE =
M−1∑
m=0

e−rtm+1HEtm+1 . (2.54)

On the other hand, at each revision point tm+1 (m = 0, ..,M − 1), the hedger needs to pay

proportional transaction fees which equal to TCtm+1 = kS1
tm+1

| ∆̂1
tm+1

− ∆̂1
tm | and the present

value of the total transaction costs during the whole contract period are

TC =
M−1∑
m=0

e−rtm+1TCtm+1 . (2.55)

Hedging errors are cash inflows from the CVaR hedging strategy, while transaction costs are

cash outflows, and hence differences between HE and TC can be considered as the net income for

the hedger during the whole CVaR hedging period. Toft (1996) provided explicit formulas of

expected total hedging errors and total transaction costs for Leland delta hedging strategy of a

call option. Later on, Melnikov and Tong (2014) derived closed-form expressions of HE and TC

for the quantile hedging method with Leland’s adjusted volatility. Both of them indicated that

with Leland’s volatility, hedging errors would offset transaction costs and hence the present value

of net cash flows during the whole hedging period would be nearly zero if δt→ 0. Above authors

considered the Black-Scholes model, however, in our case, since the form of ∆̂1
tm are intricate, the

closed-form expression of the present value of expected total hedging errors and total transaction

costs would be too complicated. Instead, we would like to implement the time-based simulation

method that described in Boyle and Hardy (1997) to investigate estimations of HE and TC. Note
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that in Boyle and Hardy (1997), hedges were based on the original volatility instead of the

Leland’s adjusted volatility. In our case, for comparison, we obtain estimated values of HE and

TC for delta hedging with the original volatility σ1 and with the adjusted volatility σ̂1 separately.

First, according to the exponential representation of the risky asset, i.e.,

S1
tm+1

= S1
tm exp

[
σ1(Wtm+1 −Wtm) + (µ1 −

σ2
1

2
)δt+ (Ntm+1 −Ntm) ln(1− υ1)

]
, (2.56)

where Wtm+1 −Wtm
iid∼ N(0, δt), and Ntm+1 −Ntm

iid∼ Poisson(λδt), m = 0, 1, . . . ,M − 1, we

generate sequences of values of independent Normal as well as Poisson random variables and

consequently, a series of stock price at each revision point is simulated. Then, by equations

(2.54)-(2.55), total hedging errors and total transaction costs can be computed. Repeat such a

process for N=2000 times and calculate average values of HE and TC. Such average values are

estimations of present values of expected total hedging errors and total transaction costs.

In Melnikov and Skornyakova (2005), they considered the financial indices of Russell 2000

(RUT-I) and the Dow Jones Industrial Average (DJIA) as S1 and S2. They estimated

(µi, σi) (i = 1, 2) for those two risky assets using daily observations. In our paper, we assume

underlying risky assets with same drifts and volatilities as Melnikov and Skornyakova, but with

additional jump components. Parameters are listed as following:

µ1 = 0.0481, σ1 = 0.2232, µ2 = 0.0417, σ2 = 0.2089, S1
0 = S2

0 = 100,

υ1 = −0.05, υ2 = −0.1, λ = 0.1, r = 0.03.

We assume there are 26 bi-weeks, 52 weeks, and 252 business days in one year. An investor

would like to construct CVaR hedging for a call option (S1
T −K)

+ with the strike price

K = 1.1S1
0 . One way transaction costs rate is k = 0.5%.

For a fixed risk constraint C = 5, Table 2.1 shows estimated present values of total hedging

errors and total transaction costs for CVaR hedging of call options with different maturities and

with various revision periods based on the adjusted volatility σ̂1. Table 2.2 displays corresponding

results for hedging with the original volatility σ1. It is observed that the total hedging errors

implied by σ̂1 are positive and are not negligible, while, for the original volatility σ1, they are very

41



Table 2.1 Estimated present values of total hedging errors and total transaction costs with
the adjusted volatility σ̂1. C=5

Maturity T(years) Revision period CVaR price HE TC HE-TC

Biweekly 5.46 0.808 0.7688 0.0392
T=1 Weekly 5.7489 1.0306 1.0588 -0.0282

Daily 6.8641 2.2084 2.2208 -0.0124
Biweekly 14.6754 1.4408 1.3929 0.0479

T=3 Weekly 15.1997 1.8731 1.9117 -0.0386
Daily 17.1948 3.9429 3.9721 -0.0292
Biweekly 21.8367 1.6432 1.7092 -0.066

T=5 Weekly 22.488 2.3572 2.3839 -0.0267
Daily 34.958 4.9192 4.9291 -0.0099
Biweekly 35.6998 2.0476 2.083 -0.0354

T=10 Weekly 36.5054 2.9219 2.93 -0.0081
Daily 39.5508 5.9992 5.9938 0.0054
Biweekly 46.291 2.1415 2.1668 -0.0253

T=15 Weekly 47.1447 3.0194 3.0096 0.0098
Daily 50.3664 6.2761 6.2833 -0.0073

small for all maturities and decrease in absolute values if hedges happen more frequently. Also, for

a fixed maturity and a fixed revision period, total transaction costs are smaller if one hedges with

the adjusted hedging volatility. Both transaction costs and hedging errors from σ̂1 increase as the

revision period or the maturity time increase because more hedges occur and the differences

between them are nearly zero especially under the daily rebablancing condition. However, the

differences between total hedging errors and total transaction costs implied by σ1 are significant

and increase with respect to rebanlancing frequency. Those observations are consistent with

results in Toft (1996) as well as Melnikov and Tong (2014) which pointed out that with a carefully

chosen hedging volatility, hedging errors generate by it would almost offset total transaction costs

during the whole hedging period.

Simulation results also indicate that the modified price of an option is close to the sum of its

fair price in the transaction costs free market and the total transaction costs which confirms that

our modified option value adjusts the fair price by including the total transaction fees.
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Table 2.2 Estimated present values of total hedging errors and total transaction costs with
the original volatility σ1. C=5

Maturity T(years) Revision period CVaR price HE TC HE-TC

Biweekly 4.7298 -0.0298 0.8092 -0.839
T=1 Weekly 4.7298 0.0177 1.104 -1.0863

Daily 4.7298 -0.0041 2.4556 -2.4597
Biweekly 13.3329 0.0305 1.4584 -1.427

T=3 Weekly 13.3329 0.0182 2.0448 -2.0266
Daily 13.3329 -0.0018 4.4939 -4.4957
Biweekly 20.1652 -0.0288 1.7894 -1.8182

T=5 Weekly 20.1652 -0.0108 2.5308 -2.5416
Daily 20.1652 -0.0029 5.5339 -5.5368
Biweekly 33.6293 -0.022 2.1664 -2.1884

T=10 Weekly 33.6293 0.0215 3.0789 -3.0574
Daily 33.6293 0.0053 6.7483 -6.743
Biweekly 44.0962 -0.0259 2.2768 -2.3027

T=15 Weekly 44.0962 0.0081 3.2585 -3.2504
Daily 44.0962 0.0035 6.9676 -6.9641

Table 2.3 Estimated present values of total hedging errors and total transaction costs with
adjusted volatility σ̂1 for different levels of CVaR constraint. T=1

Revision period CV aR 0.95 ≤ 5 CV aR 0.95 ≤ 7.5 CV aR 0.95 ≤ 10

HE TC HE − TC HE TC HE − TC HE TC HE − TC

Biweekly 0.808 0.7688 0.0392 0.7154 0.7505 -0.0351 0.6769 0.7228 -0.0459
Weekly 1.0306 1.0588 -0.0282 1.0291 1.0622 -0.0331 0.9786 1.0173 -0.0387
Daily 2.2084 2.2208 -0.0124 2.13 2.1519 -0.0219 2.0485 2.065 -0.0165

Table 2.4 Estimated present values of total hedging errors and total transaction costs with
original volatility σ1 for different levels of CVaR constraint. T=1

Revision period CV aR 0.95 ≤ 5 CV aR 0.95 ≤ 7.5 CV aR 0.95 ≤ 10

HE TC HE − TC HE TC HE − TC HE TC HE − TC

Biweekly -0.0298 0.8092 -0.839 -0.0064 0.7919 -0.7983 -0.0166 0.7383 -0.7549
Weekly 0.0177 1.104 -1.0863 0.0169 1.0956 -1.0787 0.0281 1.0077 -0.9796
Daily -0.0041 2.4556 -2.4597 0.0042 2.3388 -2.3346 0.021 2.255 -2.234
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Furthermore, we would like to investigate effects of the CVaR constraint on HE and TC. For

a fixed time to maturity T = 1, Table 2.3 displays total hedging errors and total transaction costs

for CVaR hedging with an adjusted volatility while Table 2.4 shows corresponding results for

hedging with σ1. One thing we would like to point out is that, for the same revision period, values

of HE − TC implied by σ1 would increase if the risk constraint increases. This can be explained

by the fact that on the one hand, for all levels of the risk constraint, HE are almost zero if one

hedges with σ1, while on the other hand, TC would decrease as the risk constraint increases,

because the value of the hedging portfolio would decrease so do the transaction fees paid to

rebalance it. But there is no clear relationship between the risk constraint and values of HE − TC

implied by σ̂1 since both HE and TC decrease if the risk constraint C increases.

2.4 CVaR-hedging of equity-linked life insurance contracts

One important application of partial hedging is to deal with the pricing of equity-linked life

insurance contracts, an innovative area of life insurance. In Melnikov and Skornyakova (2005) as

well as Kirch and Melnikov (2005), authors discussed the application of quantile hedging and

efficient hedging on life insurance contracts. Here, we would like to implement CVaR-based partial

hedging to this area.

Following actuarial traditions, let a random variable T (x) on an “actuarial” probability space

(Ω, F̃ , P̃ ) denote the remaining life time of a person of current age x and T px = P̃ (T (x) > T ) be

the survival probability for the next T years of an insured. Since usually the insurance risk

reflected by the insured mortality and the financial market risk have no effect on each other, we

would take a natural assumption that (Ω,F , P ) and (Ω, F̃ , P̃ ) can be treated as independent.

Consider a pure endowment contract with a fixed guarantee K which will pay an insured

H = max{S1
T ,K} at time T if the insured is still alive. Notice that,

H = max{S1
T ,K} = K + (S1

T −K)+, the payoff of the contract is determined by a call option plus

a constant guarantee, so it is sufficient to only consider the embedded call option H = (S1
T −K)+

for our purpose.
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Let us start with the transaction costs free and complete market (2.1). Since the mortality risk

is essentially independent from the financial market, the premium for such a contract is defined as

(see Brennan and Schwartz 1976):

TUx = E∗(e−rTH)EP̃ (I{T (x)>T}) = T pxV (0), (2.57)

where x is the insured’s age, T is the maturity time of the contract and V (0) is the fair price of

the embedded call option. Notice that TUx < V (0), which means the premium that the insurance

company can collect would be less than the initial wealth needed to hedge perfectly. Therefore,

only a partial hedging strategy can be constructed. Here, we assume the insurance company would

implement the CVaR-based partial hedging strategy that is described in Section 2.2 and accept

some financial risk. The CVaR hedging costs Ṽ0 can be derived from the equation (2.24) or (2.27)

which intuitively should be equal to the premium of the contract, i.e., TUx = Ṽ0. Hence, we have

TUx = T pxV (0) = Ṽ0, T px =
Ṽ0

V (0)
. (2.58)

The equation (2.58) is called a balance equation. It can be used to determine the survival

probability of insureds for which the contract is suitable corresponding to a specified level of risk.

Then, according to the most recently published United States 2015 Life Table (National Vital

Statistics Reports volume 67, Number 7), target clients’ age can also be found.

However, if transaction costs exist, both the price of the embedded call option and CVaR

partial hedging costs should be based on the adjusted volatility. As a consequence, the balance

equation in this case becomes:

T px =
X0

V (0)
, (2.59)

where V (0) is given by (2.47) and X0 is given by (2.48) or (2.49).

For comparison, we calculate the survival probabilities and age of target clients for contracts

with different maturities and under different risk constraints in the market (2.1) with and without

transaction costs separately. Table 2.5 shows results in the market with transaction costs, while

Table 2.6 displays results in the complete market. We assume rebalances occur daily. As expected,

for contracts with the same maturity, target clients for the insurance company are older for a
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Table 2.5 Survival probabilities and age of insured in the market with transaction costs
CV aR 0.95 ≤ 5 CV aR 0.95 ≤ 10

T px age T px age

T=3 0.9078 75 0.8237 82
T=5 0.9359 64 0.8762 72
T=10 0.9633 45 0.9284 53
T=15 0.9749 31 0.9507 41

Table 2.6 Survival probabilities and age of insured in the complete market
CV aR 0.95 ≤ 5 CV aR 0.95 ≤ 10

T px age T px age

T=3 0.8806 78 0.7741 84
T=5 0.9166 67 0.8398 75
T=10 0.9516 48 0.9058 57
T=15 0.9665 36 0.9343 44

higher CVaR constraint, that is, the increment of financial risk is compensated by the decrements

of insurance risk. Also, insurance company can trade long term contracts among younger clients.

It is worth to mention that, for contracts with the same maturity and under the same risk

constraint, target clients’ survival probability is higher if transaction costs exist, which may be

explained by the fact that, with transaction fees, CVaR hedging costs increase more significantly

compared to the adjusted price of the call option, in other words, X0 − Ṽ0 ≥ V̄ (0)− V (0).

We further investigate effects of revision frequency and the level of risk constraint on the

target clients’ survival probability. Results are displayed in Figure 2.1 which indicates that for a

fixed contract maturity T = 5 and under the same risk threshold, target clients’ survival

probability of an insurance contract increases as the revision frequency increases. This is because

the CVaR hedging price inclusive of transaction costs increase to a larger extend if hedges occur

more frequently and the increasing trend is more significant than that of the perfect hedging price

which is the denominator in the balance equation (2.59). Also, we notice that differences among

survival probabilities for various reversion periods are more obvious if the CVaR constraint is
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larger, since the CVaR price would decrease if C increases and therefore the effect of transaction

costs (which can be measured by TC/X0) would be more significant.

Figure 2.1 Survival Probability vs CVaR for Life insurance contracts for different revision
frequency, T=5.

2.5 Conclusion

This chapter considers option pricing and CVaR partial hedging in the Jump-Diffusion financial

market model with transaction costs. According to results presented in Melnikov and Smirnov

(2012), we first derived a closed-form solution of optimal CVaR hedging strategy for a call option

in the transaction costs free market (2.1). Then, we take transaction fees into consideration and
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prove that the modified option value process is a solution of a non-linear PDE which can only be

solved numerically if options consist of two assets. However, for options based on a single asset

and whose sign of gamma is a constant, their modified prices can be explained as pricing with an

adjusted volatility which is consistent with the conclusion in Toft (1996). Note that, unlike the

Leland’s adjusted volatility in the Black-Scholes model, our adjusted volatility also depends on the

jump size and Poisson intensity. In particular, an explicit formula of a call option price is given. In

addition, the CVaR hedging costs as well as the weights of the hedging portfolio are then based on

such an adjusted volatility σ̂1. Furthermore, estimated values of total hedging errors as well as

total transaction costs are obtained by a simulation method and results indicate that, with such

an adjusted hedging volatility σ̂1, differences between them are nearly zero which means total

hedging errors generated by this carefully chosen hedging volatility can almost offset transaction

costs. Finally, CVaR hedging is implemented into the area of equity-linked life insurance contracts

to find target clients’ survival probabilities and age. Our observations show that, with transaction

costs, insurance companies can trade the same contract with younger clients.

For future studies, there are several possible directions worth exploring. First, other options

can be considered. For instance, Melnikov and Skornyakova (2005) discussed quantile hedging for

the option named change of assets, i.e, (S1
T − S2

T )+, which we can also apply CVaR hedging

method to. Another interesting extension is to investigate CVaR hedging method in more

complicated financial models. Since our research also focuses on the application of partial hedging

to equity-linked life insurance contracts, which usually have long maturities (5, 10 or even 20

years), it is reasonable to consider a financial market with long-range dependence which is

presented with the help of the fractional Brownian motion and its mixture with the standard

Brownian Motion (MFBM). Bratyk and Mishura (2008) investigated quantile hedging in such a

model. We can further study CVaR hedging in this financial market.
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CHAPTER 3

CVaR hedging in defaultable

Jump-Diffusion markets

3.1 Introduction

Hedging and risk management are crucial topics in financial mathematics. In a complete market,

any contingent claim can be replicated given sufficient initial wealth. However, if a market is

incomplete, the initial costs of superhedging are often too high. In this case, a hedger usually

allocates initial capitals that are less than the superhedging costs while accepts the possibility of

shortfall. Such a hedging strategy is called partial hedging. Föllmer and Leukert are pioneers in

this filed. They studied quantile hedging and efficient hedging (see Föllmer and Leukert 1999;

2000) in seimimartingale financial market models. In their papers, explicit solutions in complete

markets were provided with the help of the classical Neyman-Pearson lemma while solutions in

incomplete markets were given according to the convex duality approach. In this chapter, we

consider the partial hedging problem in defaultable markets which may be incomplete. There is a

list of references in this area. For instance, Nakano (2011) solved problems of optimal quantile

hedging and efficient hedging with a linear loss function for claims with a single default time.

Later, Melnikov and Nosrati (2015) focused on the efficient hedging problem with more general

loss functions for claims with several independent default times and provided a closed form

solution in the special case that recovery rates were zeros. Here, we would discuss partial hedging

by employing a coherent risk measure called Conditional Value-at-Risk (CVaR) which provides
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information about the average loss that exceeds the Value-at-Risk (VaR). Melnikov and Smirnov

(2012) studied partial hedging with such a measure and provided a semi-explicit solution in

complete markets.

Aforementioned papers dealt with option pricing and hedging in Brownian market models.

However, growing number of evidences show that pure diffusion models are not accurate enough to

represent real life assets’ dynamics. It is not rare to observe jumps in stock prices when some

significant financial or political announcements are published. In order to address this drawback, a

Jump-Diffusion model was proposed by Merton (1976). Melnikov and Skornyakova (2005), Kirch

and Melnikov (2005) discussed quantile hedging and efficient hedging problems respectively in a

two factor Jump-Diffusion model. However, to our knowledge, a Jump-Diffusion market model

with defaults has not been well studied and CVaR hedging problems have not been discussed in

this literature.

Our main objective in this chapter is to derive a hedging strategy that minimizes CVaR of the

hedging loss subject to a constraint on the initial wealth in a Jump-Diffusion defaultable market.

This chapter is organized as follows. In Section 3.2, we introduce our financial model. Several

useful properties regarding the default time are listed. Most importantly, similar to the discussion

about martingales in a defaultable Brownian market in Bielecki and Rutkowski (2004), we derive

densities of martingale measures in our model. Furthermore, utilizing properties of equivalent

martingale measures, we show that the minimal superhedging costs of a defaultable claim with a

zero recovery rate coincide with the perfect hedging costs of the corresponding non-defaultable

claim. In Section 3.3, the explicit form of the optimal CVaR hedging strategy in our incomplete

market is derived. We prove that the CVaR minimization problem of a zero-recovery rate

defaultable claim can be converted to a problem of finding the optimal randomized test in the

default free complete market and the optimal strategy is then given by the option decomposition

of a modified claim. In Section 3.4, a numerical example is provided to illustrate the

implementation of our method in life insurance contracts that have stochastic guarantees. Section

3.5 gives a conclusion for the chapter.
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3.2 Model set up and preliminaries

Let (Ω,G, P ) be a standard probability space. Consider a financial market with the terminal time

T ∈ (0,∞) consisting one riskless asset (S0
t )t∈[0,T ] and two risky assets, (S1

t )t∈[0,T ] , (S2
t )t∈[0,T ],

described by a two factor Jump-Diffusion model:

dS0
t = rS0

t dt, S0
0 = 1,

dSit = Sit−(µidt+ σidWt − υidNt), S
i
0 > 0, i = 1, 2, (3.1)

where r ≥ 0 is the risk-free interest rate. Constants µi ∈ R, σi > 0, υi < 1 are drifts, volatilities

and jump parameters. W and N are independent Wiener process and Poisson process with a

filtration F = (Ft)t≥0, Ft = σ(Ns,Ws; s ≤ t). Here, we assume σ1 > σ2 (otherwise, we can define

the stock with a higher volatility as S1) and the intensity of the Poisson process is a nonnegative

constant λ.

In addition, let a positive random variable τ denote the default time such that P (τ = 0) = 0

and P (τ > t) > 0, ∀t ≥ 0. The default indicator process is defined as

Ht = I{τ≤t}, t ≥ 0,

and the corresponding filtration generated by it is H = (Ht)t≥0, Ht = σ(Hs; s ≤ t).

Let us specify that τ is independent of W and N . Moreover, let G = (Gt)t≥0 be a joined

filtration, i.e, G = H ∨ F. For simplicity, we assume G = GT . It is worth to mention that since H

and F are independent, any F-martingale is also a G-martingale (see, Bielecki and Rutkowski 2004

Section 6.1.1).

In this chapter, credit risk is modeled with the help of a hazard process, that is, the survival

probability is defined by

P (τ > t) = e−Γt , (3.2)

where (Γt)t≥0 is the hazard process such that Γt =
∫ t

0 βudu and βu is a nonnegative deterministic

function called the hazard rate of the random time τ .

Let us summarize some crucial results regarding the default time and the default indicator

process from Bielecki and Rutkowski (2004) for the reader convenience:
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1. The process

Mt = Ht −
∫ t∧τ

0
βuds = Ht −

∫ t

0
βu(1−Hu)du, (3.3)

is both a H-martingale and a G-martingale; (Proposition 5.1.3);

2. The process Qt = (1−Ht)e
Γt , t ≥ 0 follows a G-martingale with the dynamic

dQt = −Qt−dMt. Moreover, for any bounded F-martingale m the product Qm and the quadratic

covariation [Q,m] are G-martingales; (Lemma 5.1.7);

3. For any Gt-measurable random variable Y , there is a Ft-measurable random variable

Ỹ =
E(I{τ>t}Y |Ft)
P (τ > t)

, (3.4)

such that Y I{τ>t} = Ỹ I{τ>t}, P − a.s. (Lemma 5.1.2).

Note that the market (3.1) with default may be incomplete due to the additional random

source τ , so that there is a set of martingale measures. Let us start with the structure of

martingales in our setting.

Theorem 3.1. For a G-measurable integrable random variable XT , we define a G-measurable

martingale Xt = E(XT |Gt), t ∈ [0, T ]. Then, it admits the following representation:

Xt = X0 +

∫ t

0
ξWu dWu +

∫ t

0
ξNu dN̂u +

∫ t

0
ξMu dMu +

∫ t

0
ξMN
u d[M, N̂ ]u, (3.5)

where N̂t = Nt − λt is the compensated Poisson process and ξW , ξN , ξMN , ξM are G-predictable

processes.

Proof. Since GT=HT ∨ FT , according to Bielecki and Rutkowski (2004), it is sufficient to consider

a random variable XT = (1−Hs)Y
′ for some fixed s ≤ T and some FT -measurable random

variable Y ′.

We introduce a notation Ȳ = e−ΓsY ′ and hence

XT = (1−Hs)Y
′ = (1−Hs)e

Γs Ȳ = QsȲ .

Let us define a F-martingale m:

mt = E(Ȳ |Ft) = E(Ȳ ) +

∫ t

0
ξudWu +

∫ t

0
ζudN̂u,
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where ξ and ζ are F-predictable processes. The second equality is because of the martingale

representation property in the filtration F.

Since Q is a process with finite variation, we have

[Q,m]t =
∑
u≤t

∆Qu∆mu =
∑
u≤t
−Qu−ζu∆Mu∆N̂u = −

∫ t

0
Qu−ζud[M, N̂ ]u.

Obviously, mT = Ȳ and according to the integration by parts formula, we get

XT = QsmT = Q0m0 +

∫ T

0
Qu−dmu +

∫ T

0
mu−I[0,s](u)dQu + [Q,m]s

= E(Ȳ ) +

∫ T

0
Qu−ξudWu +

∫ T

0
Qu−ζudN̂u −

∫ T

0
mu−I[0,s](u)Qu−dMu

−
∫ T

0
ζuQu−I[0,s](u)d[M, N̂ ]u.

With the choice ξWu = Qu−ξu, ξNu = Qu−ζu, ξMt = −mu−I[0,s](u)Qu−, ξMN = −ζuQu−I[0,s](u),

(3.5) is proved. �

A simple modification of Theorem 3.1 implies that the Radon-Nikodym density of a

martingale measure P̃ which is equivalent to P on (Ω,G) has the form

Ẑt =
dP̃

dP
|Gt = 1 +

∫ t

0
Zu−(θudWu + ψudN̂u + kudMu + γud[M, N̂ ]u), (3.6)

where θ, ψ, k, γ are G-predictable processes.

In addition, the solution of (3.6) is

Ẑt = Et(
∫ ·

0
θudWu +

∫ ·
0
ψudN̂u +

∫ ·
0
kudMu +

∫ ·
0
γud[M, N̂ ]u), (3.7)

where Et(·) is the Doléans exponential.

Note that, in order for Ẑ to be a positive martingale, we have to impose the following

restrictions:

(a) kt > −1, ψt > −1, kt + ψt + γt > −1, ∀t ∈ [0, T ];

(b) E(Ẑt) = 1, ∀t ∈ [0, T ].

With the help of Girsanov theorem, we conclude that processes

W ∗t = Wt −
∫ t

0
θudu, Ñt = Nt −

∫ t

0
(1 + ψu)λdu,
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are martingales under the measure P̃ defined by (3.6).

Furthermore, we have to derive processes θ, ψ, k and γ. Let us consider discounted value

processes S̃it = e−rtSit , (i = 1, 2) which can be rewritten as

dS̃it = S̃it−
[
(µi − r)dt+ σidWt − vidNt

]
= S̃it−

[
(µi − r + σiθt − vi(1 + ψt)λ)dt+ σidW

∗
t − vidÑt

]
, (i = 1, 2). (3.8)

They are martingales under the measure P̃ if drift terms vanish, i.e., µ1 − r + σ1θt − v1(1 + ψt)λ = 0,

µ2 − r + σ2θt − v2(1 + ψt)λ = 0,
(3.9)

which implies

θ =
(µ1 − r)v2 − (µ2 − r)v1

σ2v1 − σ1v2
, ψ =

(µ1 − r)σ2 − (µ2 − r)σ1

(σ2v1 − σ1v2)λ
− 1. (3.10)

However, processes k and γ cannot be determined uniquely and hence the market (3.1) with

default is incomplete. We denote P∗ as the set containing all martingale measures and Z∗ is the

set of Radon-Nikodym densities of martingale measures.

In particular, since N̂ and M are purely discontinuous martingales, their quadratic covariation

is [M, N̂ ]t =
∑
u≤t

∆Mu∆N̂u =
∑
u≤t

∆Hu∆Nu and hence [M, N̂ ]tI{τ>T} is 0 for all t ∈ [0, T ].

Therefore, we arrive to

ẐT I{τ>T} = ET (θW + ψN̂ +

∫ ·
0
kudMu)I{τ>T}

= ET (θW )ET (ψN̂ +

∫ ·
0
kudMu)I{τ>T}

= ET (θW )ET (ψN̂)ET (

∫ ·
0
kudMu)I{τ>T}

= exp
(
θWT −

θ2

2
T + (λ− λ∗)T + (lnλ∗ − lnλ)NT

)
exp

(∫ T

0
ln(1 + ku)dHu −

∫ T∧τ

0
kuβudu

)
I{τ>T} = Z∗TZ

k
T I{τ>T}, (3.11)

where

λ∗ = (1 + ψ)λ =
(µ1 − r)σ2 − (µ2 − r)σ1

(σ2v1 − σ1v2)
,
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Z∗T = exp
(
θWT −

θ2

2
T + (λ− λ∗)T + (lnλ∗ − lnλ)NT

)
,

ZkT = exp
(
−
∫ T

0
kuβudu

)
.

The second and third equalities are both due to the multiplication rule of Doléans exponential

and the fact [W,M ]t = 0, [W, N̂ ]t = 0, [N̂ ,M ]tI{τ>T} = 0, ∀t ≤ T .

Remark 3.2. The probability measure P ∗ defined by dP ∗

dP = Z∗T that satisfies ψ > −1 and

σ2v1 − σ1v2 6= 0 is the unique martingale measure in the non-defaultable market (3.1) on the

probability space (Ω,FT , P ). Moreover, W ∗ and N are independent Wiener process and Poisson

process (with the intensity λ∗) under this measure . We denote E∗(·) as the expectation under the

measure P ∗.

With notations introduced above, Sit , i = 1, 2, can be rewritten as

Sit = Si0 exp
(
σiWt + (µi −

1

2
σi

2)t+Nt ln(1− υi)
)

= Si0 exp
(
σiW

∗
t + (r + υiλ

∗ − 1

2
σi

2)t+Nt ln(1− υi)
)
. (3.12)

A G-strategy is a G-predictable process π := (π0
t , π

1
t , π

2
t )t∈[0,T ] such that∫ T

0
|π0
t |dt <∞,

∫ T

0
(πitS

i
t)

2dt <∞, P − a.s (i = 1, 2),

and the value process corresponding to the strategy π at time t ∈ [0, T ] is

Vt = π0
t S

0
t + π1

t S
1
t + π2

t S
2
t . (3.13)

In addition, for a given initial value v ≥ 0, a trading strategy is called self-financing admissible

if its value process satisfies

Vt = v +

∫ t

0
π0
udS

0
u +

∫ t

0
π1
udS

1
u +

∫ t

0
π2
udS

2
u,

and

Vt ≥ 0, ∀t ∈ [0, T ]. (3.14)

We denote the set of all admissible self-financing strategies with an initial value v as A(v).
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Remark 3.2 indicates that the default free market (3.1) is complete with the filtration F and

hence the fair price of any contingent claim with payoff C which is nonnegative FT -measurable is

defined as E∗(e−rTC) and there is a self-financing strategy π that duplicates it which is

determined by:

π1
t S

1
t =

(VS1S1
t σ1 + VS2S2

t σ2)υ2 + (V (S1
t−(1− υ1), S2

t−(1− υ2, t))− V (S1
t−, S

2
t−, t))σ2

σ1υ2 − σ2υ1
, (3.15)

π2
t S

2
t =

(VS1S1
t σ1 + VS2S2

t σ2)υ1 + (V (S1
t−(1− υ1), S2

t−(1− υ2, t))− V (S1
t−, S

2
t−, t))σ1

σ2υ1 − σ1υ2
, (3.16)

π0
t S

0
t = V (t)− π1

t S
1
t − π2

t S
2
t , (3.17)

where V (t) = V (S1
t , S

2
t , t) = e−r(T−t)E∗(C | Ft) is the value of C at time t and

VS1 =
∂V (S1

t , S
2
t , t)

∂S1
, VS2 =

∂V (S1
t , S

2
t , t)

∂S2
.

(see the proof for (2.7)-(2.9)).

However, we would like to investigate the hedging problem of a defaultable claim

C0 = CI{τ>T} in the enlarged filtration G described before. As we know from the option pricing

theory in incomplete markets, the minimal initial superhedging costs of such a claim is defined as

U0 = sup
P̃∈P∗

EP̃ (e−rTC0). (3.18)

Let us denote

Ũt = Ute
−rt = ess sup

P̃∈P∗
EP̃ (e−rTC0|Gt), t ∈ [0, T ], (3.19)

which is a supermartingale with respect to any P̃ ∈ P∗ and represents the discounted value process

of the minimal superhedging strategy of the claim C0.

According to the optional decomposition theorem (see El Karoui and Quenez 1995, Kramkov

1996), there is an admissible strategy (U0, π) and a discounted optional consumption process D

with D0 = 0 such that

Ũt = U0 +

∫ t

0
π1
udS̃

1
u +

∫ t

0
π2
udS̃

2
u −Dt. (3.20)

In our setting, the minimal superhedging costs U0 can be derived explicitly.
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Lemma 3.3. Assume E∗(C) < +∞. In the market (3.1) with default, the discounted superhedging

value process of C0 satisfies

Ũt = ess sup
P̃∈P∗

EP̃
(
e−rTC0|Gt

)
= E∗

(
e−rTC|Ft

)
I{τ>t}, ∈ [0, T ]. (3.21)

In particular, U0 = Ũ0 = E∗(e−rTC), i.e., the minimal superhedging costs equal to the fair price of

the contingent claim C in the non-defaultable market.

Proof. For a given martingale measure P̃ with a density ẐT , we know that

Ũt = ess sup
P̃∈P∗

EP̃ [e−rTCI{τ>T}|Gt] = ess sup
Ẑ∈Z∗

E[e−rT ẐTCI{τ>T}|Gt]
Ẑt

.

Moreover, by (3.11), we have

E[ẐTCI{τ>T}|Gt] = e−
∫ t
0 kuβuduE[Z∗T e

−
∫ T
t kuβuduCI{τ>T}|Gt].

Furthermore, according to (3.4), the Ft-measurable random variable

E
[
E[Z∗T e

−
∫ T
t kuβuduCI{τ>T}|Gt]I{τ>t}|Ft

]
e
∫ t
0 βudu

= E
(
Z∗T e

−
∫ T
t kuβuduCI{τ>T}|Ft

)
e
∫ t
0 βudu

satisfies

E
(
Z∗T e

−
∫ T
t kuβuduCI{τ>T}|Ft

)
e
∫ t
0 βuduI{τ>t} = E

(
Z∗T e

−
∫ T
t kuβuduCI{τ>T}|Gt

)
I{τ>t}.

Thus, Ũt can be rewritten as

Ũt = ess sup
Ẑ∈Z∗

e−
∫ t
0 kuβuduE

(
e−rTZ∗T e

−
∫ T
t kuβuduCI{τ>T}|Ft

)
e
∫ t
0 βuduI{τ>t}

Ẑt

= ess sup
Ẑ∈Z∗

E(e−rTZ∗T e
−

∫ T
t kuβuduCI{τ>T}|Ft)
Z∗t

e
∫ t
0 βuduI{τ>t}.

In particular, choosing k constant and k ↘ −1, we have

Ũt ≥ lim
k↘−1

e−
∫ T
t kβuduE(e−rTZ∗TCI{τ>T}|Ft)

Z∗t
e
∫ t
0 βuduI{τ>t} = E∗(e−rTC|Ft)I{τ>t}, (3.22)

where the second equality is due to the independence of τ and FT .
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On the other hand, since kt > −1, we get

Ũt ≤
E(e−rTZ∗T e

∫ T
t βuduCI{τ>T}|Ft)
Z∗t

e
∫ t
0 βuduI{τ>t} = E∗

(
e−rTC|Ft

)
I{τ>t}. (3.23)

Combing (3.22) and (3.23), we arrive to

Ũt = E∗
(
e−rTC|Ft

)
I{τ>t}. (3.24)

�

3.3 CVaR hedging

If a hedger allocates less capitals than the minimum superhedging costs U0, there is a possibility of

shortfall characterized by L = C0 − VT , where VT is the value of a hedging portfolio at T .

Our goal is to find a self-financing admissible strategy with an initial budget constraint

v0 < U0 that minimizes hedging losses under the measure CVaR, i.e.,

min
(v,π)∈A0

CV aRα(L), (3.25)

where A0 = {(v, π)|(v, π) ∈ A(v), v ≤ v0} is the set of self-financing admissible strategies with the

initial hedging capital no more than v0.

With the help of the alternative representation of CVaR (1.3), the problem (3.25) becomes

min
(v,π)∈A0

CV aRα(L) = min
(v,π)∈A0

min
z∈R

[
z +

1

1− α
E
(
(C0 − VT − z)+

)]
. (3.26)

Melnikov and Smirnov (2012) have indicated that we can interchange the order of two

minimization problems:

min
(v,π)∈A0

CV aRα(L) = min
(v,π)∈A0

min
z∈R

[
z +

1

1− α
E
(
(C0 − VT − z)+

)]
= min

z∈R

[
z +

1

1− α
min

(v,π)∈A0

E
(
(C0 − VT − z)+

)]
. (3.27)

and if the inner minimization problem in (3.27) for each z is solved, then the initial problem (3.27)

is reduced to a one-dimensional optimization problem over z.
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Thus, for a fixed z, let us consider the problem

min
(v,π)∈A0

E
(
(C0 − VT − z)+

)
. (3.28)

We focus on z ≥ 0, because z is corresponding to the V aRα of the hedging loss and it is

nonnegative when α is close to 1. Consequently, we have

(C0 − VT − z)+ = ((C0 − z)+ − VT )+ = (C0(z)− VT )+,

where C0(z) = (C0 − z)+ = (C − z)+I{τ>T} = C(z)I{τ>T} with C(z) = (C − z)+.

Obviously, C0(z) is a GT -measurable non-negative random variable, so it can be treated as a

contingent claim and thus the problem (3.28) is equivalent to an optimal efficient hedging problem

of the contingent claim C0(z). Föllmer and Leukert (2000) studied this kind of problem (also see

Chapter 1.4) and proved that if a random variable ϕ′ solves

max
ϕ∈R

E
(
ϕC0(z)

)
, (3.29)

where R = {ϕ : Ω→ [0, 1]| GT −measurable, sup
P̃∈P∗

EP̃
(
e−rTC0(z)ϕ

)
≤ v0}, then the optimal

hedging strategy π is obtained from the optional decomposition (3.20) for the modified claim

ϕ′C0(z). However, usually the optimal randomized test does not admit an explicit form in

incomplete markets. To address such a difficulty, we transfer the optimization problem (3.29)

which is in the enlarged filed GT into a problem in the filed FT .

Lemma 3.4. If a FT -measurable random variable ϕ̃ ∈ R̃ solves the problem

max
ϕ∈R̃

E
(
ϕC(z)

)
, (3.30)

where R̃ = {ϕ : Ω→ [0, 1]| FT −measurable, E∗
(
e−rTC(z)ϕ

)
≤ v0}, then ϕ′ = ϕ̃I{τ>T} is the

solution of the problem (3.29).

Proof. Suppose ϕ̃ is the solution for (3.30). Let us define ϕ′ = ϕ̃I{τ>T}. Obviously ϕ′ ∈ [0, 1] and

is GT -measurable.

Also, by Lemma 3.3, we know that

sup
P̃∈P∗

EP̃
(
e−rTC0(z)ϕ′

)
= sup

P̃∈P∗
EP̃
(
e−rTC(z)ϕ̃I{τ>T}

)
= E∗

(
e−rTC(z)ϕ̃

)
≤ v0,
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and hence we have ϕ′ ∈ R.

On the other hand, for any other ϕ ∈ R, define ϕ0 = E(I{τ>T}ϕ|FT )e
∫ T
0 βudu and by (3.4), we

conclude that ϕI{τ>T} = ϕ0I{τ>T}. Thus, E∗(e−rTC(z)ϕ0) = sup
P̃∈P∗

EP̃ (e−rTC0(z)ϕ) ≤ v0 which

indicates that ϕ0 ∈ R̃.

Furthermore,

E
(
ϕC0(z)

)
= E

(
ϕC(z)I{τ>T}

)
= E

(
ϕ0C(z)I{τ>T}

)
= E

(
ϕ0C(z)

)
E(I{τ>T}) ≤ E

(
ϕ̃C(z)

)
E
(
I{τ>T}

)
= E

(
ϕ′C0(z)

)
, (3.31)

where the last line is due to the independence of FT and τ and the optimal property of ϕ̃.

The inequality (3.31) indicates that ϕ′ is the solution of (3.29) and hence this Lemma is

proved. �

The solution of the problem (3.30) is given with the help of the classical Neyman-Pearson

lemma (see Föllmer and Leukert 2000) such that the optimal randomized test has the form

ϕ∗(z) = I{ã(z)<Z∗T
−1} + Γ(z)I{ã(z)=Z∗T

−1} (3.32)

ã(z) = inf{a ≥ 0, E∗(C(z)I{a<Z∗T
−1}) ≤ v0e

rT }, (3.33)

Γ(z) =
v0e

rT − E∗(C(z)I{ã(z)<Z∗T
−1})

E∗(C(z)I{ã(z)=Z∗T
−1})

. (3.34)

Here, Γ(z) = 0 if P (ã(z) = Z∗T
−1) = 0 and such a condition is satisfied in our setting.

Theorem 3.5. A. The optimal hedging strategy (v0, π̂) of the problem (3.25) is given by the

optional decomposition of the modified contingent claim ϕ∗(ẑ)C(ẑ)I{τ>T}, where ϕ∗(z) is given by

(3.32)-(3.34) and ẑ is the point of minimum of the function

d(z) = z +
1

1− α
· E
[
C(z)(1− ϕ∗(z))I{τ>T}

]
,

in the interval [0, z∗], where z∗ is the solution of the equation

sup
P̃∈P∗

EP̃
(
e−rTC0(z)

)
= E∗

(
e−rTC(z)

)
= v0.
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In addition, the value d(ẑ) is the minimal CVaR.

B. The optimal hedging strategy π̂ = (π̂0
t , π̂

1
t , π̂

2
t )t∈[0,T ] satisfies

π̂it = π′
i
tI{τ≥t}, (i = 1, 2);

and

π̂0
t =

 π′0t , for t ∈ [0, τ ∧ T ],

V ′τe
−rτ , for t ∈ (τ, T ],

where π′ = (π′0t , π
′1
t , π

′2
t )t∈[0,T ] is the duplication strategy of the nondefaultable claim ϕ∗(ẑ)C(ẑ)

derived from (3.15)-(3.17) and

V ′t = π′0t S
0
t + π′1t S

1
t + π′2t S

2
t , t ∈ [0, T ],

is the value process of such a strategy.

Proof. For a fixed z, from Lemma 3.4 and equations (3.32)-(3.34), we know that the optimal

hedging strategy of the efficient hedging problem (3.29) is a superhedging strategy of the modified

claim ϕ∗(z)C(z)I{τ>T} and hence the shortfall is

(C0(z)− VT )+ = C0(z)− VT ∧ C0(z)

= C0(z)− ϕ∗(z)C(z)I{τ>T}

=
(
1− ϕ∗(z)

)
C(z)I{τ>T}.

Thereby,

CV aR(L) = min
z∈R

[
z +

1

1− α
E
(
C(z)

(
1− ϕ∗(z)

)
I{τ>T}

)]
.

With the notation

d(z) = z +
1

1− α
E
(
C(z)

(
1− ϕ∗(z)

)
I{τ>T}

)
,

it is clear that CV aR(L) = d(ẑ), where ẑ is the point of minimum of the function d(z).

Furthermore, applying Lemma 3.3, the discounted value process of the superhedging strategy

of the modified claim ϕ∗(ẑ)C(ẑ)I{τ>T} is

Ũt = E∗
(
e−rTϕ∗(ẑ)C(ẑ)|Ft

)
I{τ>t}

= E∗
(
e−rTϕ∗(ẑ)C(ẑ)|Ft

)
− E∗

(
e−rTϕ∗(ẑ)C(ẑ)|Ft

)
I{τ≤t}. (3.35)
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Let us define

V ′t e
−rt = E∗(e−rTϕ∗(ẑ)C(ẑ)|Ft),

which is the discounted value process for ϕ∗(ẑ)C(ẑ) in the default free market and this

non-defaultable claim has a replication strategy π′ such that

V ′t e
−rt = v0 +

∫ t

0
π′1u dS̃

1
u +

∫ t

0
π′2u dS̃

2
u,

where π′i, i = 1, 2 are F predictable.

Applying the integration by parts formula for E∗(e−rTϕ∗(ẑ)C(ẑ)|Ft)I{τ≤t} = V ′t e
−rtHt and

because Ht has finite variation, we get

V ′t e
−rtHt =

∫ t

0
Hu−π

′1
u dS̃

1
u +

∫ t

0
Hu−π

′2
u dS̃

2
u +

∫ t

0
V ′ue
−rudHu.

Notice that Hu− = lim
t↗u

I{τ≤t} = I{τ<u} and consequently we have

Ũt = v0 +

∫ t

0
π′1u I{τ≥u}dS̃

1
u +

∫ t

0
π′2u I{τ≥u}dS̃

2
u − V ′τe−rτHt. (3.36)

Comparing (3.36) with the form of option decomposition, we conclude

π̂it = π′it I{τ≥t}, (i = 1, 2) and Dt = V ′τe
−rτHt. (3.37)

Note that, for τ ≥ t, we have

π̂0
t S

0
t = (V ′t − π′1t S1

t − π′2t S2
t ) = π′0t S

0
t ,

which implies π̂0
t = π′0t , while for τ < t, we get

π̂0
t = V ′τe

−rτ .

The proof is completed. �

Remark 3.6. The reason why we focus on z ≤ z∗ is that, with the initial capital v0, for z ≥ z∗,

C0(z) can be hedged perfectly, which means min
(π,v)∈A0

E
(
(C0(z)− VT )+

)
= 0 and d(z) = z. d(z) is

increasing after z∗ and hence it achieves its minimum during [0, z∗].
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Remark 3.7. The optimal hedging strategy can be explained as constructing the perfect hedging of

the modified claim ϕ∗(ẑ)C(ẑ) during [0, τ ]. However, if a default event happens, the investor

should hold zero positions in risky assets and deposit all cash into the risk free account. Also he

can consume up to that amount.

3.4 Applications to equity-linked life insurance contracts

One important application of partial hedging is to deal with pricing and hedging of equity-linked

life insurance contracts. In this section, we will calculate the minimal CVaR and provide the

optimal CVaR hedging strategy of defaultable equity linked life insurance contracts.

Following actuarial traditions, let a random variable T (x) on an “actuarial” probability space

(Ω,G2, P2) denote the remaining life time of a person of current age x and T px = P2(T (x) > T ) be

the survival probability for the next T years of an insured. There are two sources of risk. The first

one is market risk associated with underline assets prices as well as the default time and another

one is insurance risk reflected by the insured mortality. Since usually the insurance risk and the

financial market risk have no effect on each other, we would take a natural assumption that

(Ω,G, P ) and (Ω,G2, P2) are independent.

Instead of simple call or put options, we consider a pure endowment life insurance contract

with payoff C0 = max(S1
T , S

2
T )I{τ>T} provided that an insured is alive at T . This kind of contract

has a flexible guarantee S2 and a potential for future gains associated with S1. It is popularly

traded in insurance companies. According to Brennan and Schwartz (1976), the premium for such

a contract is defined as

TUx = sup
P̃∈P∗

EP̃ (e−rTC0)EP2(I{T (x)>T}) = T pxU0, (3.38)

where x is the insured’s age, T is the maturity time of the contract and U0 is the minimal

superhedging costs of the defaultable claim C0. Notice that TUx < U0, which means the premium

that the insurance company collects would be less than the minimal superhedging costs and

therefore only a partial hedging strategy can be constructed. In our setting, we assume that the
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insurance company constructs the optimal hedging strategy described in Section 3.3 with the

premium v0 = T pxU0.

Theorem 3.8. A. The minimal superhedging costs U0 of the defaultable claim

C0 = max(S1
T , S

2
T )I{τ>T} is

U0 =

∞∑
n=0

p∗n,T

[
s1

0,nΦ(Λ1(n) + σ1

√
T ) + s2

0,nΦ(−Λ1(n)− σ2

√
T )
]
. (3.39)

B. The optimal CVaR hedging strategy for C0 = max(S1
T , S

2
T )I{τ>T} is given by the perfect hedging

of the modified contingent claim (max(S1
T , S

2
T )− ẑ)+I{Z∗T−1>ã(ẑ)} during [0, τ ] while holding zero

positions in risky assets after the default, where ã(z) is the unique solution of

e−rTE∗(C(z)I{a<Z∗T
−1}) = v0, that is

∞∑
n=0

p∗n,T

[
s1

0,nΦ2
(
Λ1,3(z, n) + σ1

√
T ,Λ2(a, n)− σ1sign(θ)

√
T ,Σ1

)
+ s2

0,nΦ3
(
− Λ1(n)− σ2

√
T ,Λ2(a, n)− σ2sign(θ)

√
T ,Λ4(z, n) + σ2

√
T ,Σ2

)
− ze−rT (Φ2

(
Λ1,3(z, n),Λ2(a, n),Σ1

)
+ Φ3

(
− Λ1(n),Λ2(a, n),Λ4(z, n),Σ2

)]
= v0. (3.40)

ẑ is the point of minimum of the function

d(z) = z +
1

1− α
· f(z) (3.41)

in the interval [0, z∗], where f(z) = E[C(z)(1− ϕ∗(z))I{τ>T}], i.e.,

f(z) = e−
∫ T
0 βudu

∞∑
n=0

pn,T
[
S1

0(1− v1)neµ1TΦ2(Λ5,6(n) + σ1

√
T ,Λ7(n) + σ1sign(θ)

√
T ,Σ3)

+ S2
0(1− v2)neµ2TΦ3(−Λ6(n)− σ2

√
T ,Λ7(n) + σ2sign(θ)

√
T ,Λ8(n) + σ2

√
T ,Σ4)

− z
(
Φ2(Λ5,6(n),Λ7(n),Σ3) + Φ3(−Λ6(n),Λ7(n),Λ8(n),Σ4)

)]
. (3.42)

Meanwhile, d(ẑ) is the corresponding value of minimal CVaR.

The parameter z∗ is determined from E∗(e−rtC(z)) = v0, that is
∞∑
n=0

p∗n,T

[
s1

0,nΦ(Λ1,3(z, n) + σ1

√
T ) + s2

0,nΦ2(−Λ1(n)− σ2

√
T ,Λ4(z, n) + σ2

√
T ,Σ5)

− ze−rT
(
Φ(Λ1,3(z, n)) + Φ2(−Λ1(n),Λ4(z, n),Σ5)

)]
= v0. (3.43)
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Here, Φ(·) is the distribution function of a standard normal random variable and ΦJ(·,Σ)

denotes the distribution function of J jointly normally distributed random variables with zero

means, unit variances and the correlation matrix Σ and

sit,n = Site
viλ
∗(T−t)(1− vi)n,

Λ1(n) =
ln(

s10,n
s20,n

) +
σ2
2−σ2

1
2 T

(σ1 − σ2)
√
T

, Λ2(a, n) =
− ln(aZ∗t )− ( θ

2

2 + λ− λ∗)T − (lnλ∗ − lnλ)n

|θ|
√
T

,

Λ3(z, n) =
ln

s10,n
z + (r − σ2

1
2 )T

σ1

√
T

, Λ4(z, n) =
ln

s20,n
z + (r − σ2

2
2 )T

σ2

√
T

,

Λ5(n) =
ln

S1
0(1−v1)n

z + (µ1 −
σ2
1
2 )T

σ1

√
T

, Λ6(n) =
ln

S1
0(1−v1)n

S2
0(1−v2)n

+ (µ1 − µ2 +
σ2
2−σ2

1
2 )T

(σ1 − σ2)
√
T

,

Λ7(n) =
ln ã(z)− θ2

2 T + (λ− λ∗)T + (lnλ∗ − lnλ)n

|θ|
√
T

, Λ8(n) =
ln

S2
0(1−v2)n

z + (µ2 −
σ2
2
2 )T

σ2

√
T

,

Λ1,3(z, n) = min{Λ1(n),Λ3(z, n)}, Λ5,6(n) = min{Λ5(n),Λ6(n)},

pn,T = exp(−λT )
(λT )n

n!
, p∗n,T = exp(−λ∗T )

(λ∗T )n

n!
,

Σ1 =

 1 −sign(θ)

−sign(θ) 1

 , Σ2 =


1 sign(θ) −1

sign(θ) 1 −sign(θ)

−1 −sign(θ) 1

 ,

Σ3 =

 1 sign(θ)

sign(θ) 1

 , Σ4 =


1 −sign(θ) −1

−sign(θ) 1 sign(θ)

−1 sign(θ) 1

 ,

Σ5 =

 1 −1

−1 1

 .

Proof. By Lemma 3.3, the minimal superhedging costs of C0 = max(S1
T , S

2
T )I{τ>T} are

U0 = sup
P̃∈P∗

EP̃ (e−rTCI{τ>T}) = E∗(e−rTC)

= e−rT
[
E∗(S1

T I{S1
T≥S

2
T }

) + E∗(S2
T I{S2

T>S
1
T }

)
]

= e−rT
∞∑
n=0

[(
E∗(S1

T I{S1
T≥S

2
T }
|NT = n) + E∗(S2

T I{S2
T>S

2
T }
|NT = n)

)
P ∗(NT = n)

]
. (3.44)
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Conditioning on {NT = n}, we have

{S1
T ≥ S2

T } = {S1
0(1− v1)nev1λ

∗T exp[σ1W
∗
T + (r − σ2

1

2
)T ] ≥ S2

0(1− v2)nev2λ
∗T exp[σ2W

∗
T + (r − σ2

2

2
)T ]}

= {Y1 ≤ Λ1(n)},

where Y1 = −W ∗T√
T
∼ N(0, 1), Λ1(n) =

ln(
S10(1−v1)

nev1λ
∗T

S20(1−v2)
nev2λ

∗T )+
σ22−σ

2
1

2
T

(σ1−σ2)
√
T

.

{S2
T > S1

T } = {Y1 > Λ1(n)} = {−Y1 < −Λ1(n)} = {Y2 < −Λ1(n)},

where Y2 =
W ∗T√
T
∼ N(0, 1).

According to the multi-asset theorem (see Melnikov and Romanyuk 2008) equation (3.44) can

be rewritten as

U0 = e−rT
∞∑
n=0

p∗n,T [s1
0,ne

(r−σ
2
1
2

)TE∗(eσ1W
∗
T I{Y1≤Λ1(n)}) + s2

0,ne
(r−σ

2
2
2

)TE∗(eσ2W
∗
T I{Y2<−Λ1(n)})]

=
∞∑
n=0

p∗n,T [s1
0,nΦ(Λ1(n) + σ1

√
T ) + s2

0,nΦ(−Λ1(n)− σ2

√
T )],

where p∗n,T = P ∗(NT = n) = exp(−λ∗T ) (λ∗T )n

n! , and hence part A of this Theorem is proved.

Let us start to prove the part B. Firstly, for a fixed z, we have

E∗(C(z)I{a<Z∗T−1}) = E∗((S1
T − z)+I{S1

T≥S
2
T }
I{a<Z∗T−1}) + E∗((S2

T − z)+I{S1
T<S

2
T }
I{a<Z∗T−1})

= E∗((S1
T − z)I{S1

T>z}
I{S1

T≥S
2
T }
I{a<Z∗T−1}) + E∗((S2

T − z)I{S2
T>z}

I{S1
T<S

2
T }
I{a<Z∗T−1}).

Conditioning on {NT = n}, we get

{Z∗T
−1 > a} = {exp(−θW ∗T −

θ2

2
T − (λ− λ∗)T − (lnλ∗ − lnλ)n) > a}

= {Y3 < Λ2(a, n)},

where Y3 = sign(θ)
W ∗T√
T
∼ N(0, 1), Λ2(a, n) =

− ln aZ∗t −( θ
2

2
+(λ−λ∗)+(lnλ∗−lnλ)n)T

|θ|
√
T

.

{S1
T > z} = {S1

0(1− v1)nev1λ
∗T exp[σ1W

∗
T + (r − σ2

1

2
)T ] > z} = {Y1 < Λ3(z, n)},

where Λ3(z, n) =
ln
s10,n
z

+(r−σ
2
1
2

)T

σ1
√
T

.

{S2
T > z} = {S2

0(1− v2)nev2λ
∗T exp[σ2W

∗
T + (r − σ2

2

2
)T ] > z} = {Y1 < Λ4(z, n)},
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where Λ4(z, n) =
ln
s20,n
z

+(r−σ
2
2
2

)T

σ2
√
T

.

And thus, we have

E∗(C(z)I{a<Z∗T−1}) =
∞∑
n=0

E∗(C(z)I{a<Z∗T−1}|NT = n)P ∗(NT = n)

=

∞∑
n=0

p∗n,T
[
E∗((s1

0,n exp[σ1W
∗
T + (r − σ2

1

2
)T ]− z)I{Y1<Λ1(n)}I{Y3<Λ2(a,n)}I{Y1<Λ3(z,n)})

+ E∗((s2
0,n exp[σ1W

∗
T + (r − σ2

1

2
)T ]− z)I{Y2<−Λ1(n)}I{Y3<Λ2(a,n)}I{Y1<Λ4(z,n)})

]
=
∞∑
n=0

p∗n,T
[
E∗((s1

0,n exp[σ1W
∗
T + (r − σ2

1

2
)T ]− z)I{Y1<Λ1,3(z,n)}I{Y3<Λ2(a,n)})

+ E∗((s2
0,n exp[σ2W

∗
T + (r − σ2

2

2
)T ]− z)I{Y2<−Λ1(n)}I{Y3<Λ0

2(a,n)}I{Y1<Λ4(z,n)})
]
, (3.45)

where Λ1,3(z, n) = min{Λ1(n),Λ3(z, n)}.

Again, according to the multi-asset theorem, (3.45) becomes

=
∞∑
n=0

p∗n,T
[
s1

0,ne
(r−σ

2
1
2

)TE∗(eσ1W
∗
T I{Y1<Λ1,3(z,n)}I{Y3<Λ2(a,n)})− zP ∗(Y1 < Λ1,3(z, n), Y3 < Λ2(a, n))

+ s2
0,ne

(r−σ
2
2
2

)TE∗(eσ2W
∗
T I{Y2<−Λ1(n)}I{Y3<Λ2(a,n)}I{Y1<Λ4(z,n)}))

− zP ∗(Y2 < −Λ1(n), Y3 < Λ2(a, n), Y1 < Λ4(z, n))
]

=
∞∑
n=0

p∗n,T
[
s1

0,ne
rTΦ2(Λ1,3(z, n) + σ1

√
T ,Λ2(a, n)− σ1sign(θ)

√
T ,Σ1)− zΦ2(Λ1,3(z, n),Λ2(a, n),Σ1)

+ s2
0,ne

rTΦ3(−Λ1(n)− σ2

√
T ,Λ2(a, n)− σ2sign(θ)

√
T ,Λ4(z, n) + σ2

√
T ,Σ2)

− zΦ3(−Λ1(n),Λ2(a, n),Λ4(z, n),Σ2)
]
,

where the correlation matrix Σ1, Σ2 are

Σ1 =

 1 −sign(θ)

−sign(θ) 1

 , Σ2 =


1 sign(θ) −1

sign(θ) 1 −sign(θ)

−1 −sign(θ) 1

 .

Thus, the equation E∗(e−rTC(z)I{a<Z∗T−1}) = v0 is (3.40) and for a fixed z ∈ [0, z∗] and

0 ≤ a1 < a2, we have

E∗
(
C(z)I{a1<Z∗T−1}

)
≥ E∗

(
C(z)I{a2<Z∗T−1}

)
. (3.46)
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However, the equality holds if and only if C(z)I{a1<Z∗T−1} = C(z)I{a2<Z∗T−1}, a.s., i.e.,

P ∗
(
C(z)I{a1<Z∗T−1} = C(z)I{a2<Z∗T−1}

)
= 1→ P ∗

(
C(z)I{a1<Z∗T−1≤a2} = 0

)
= 1,

which is not true. Hence E∗(e−rTC(z)I{a<Z∗T−1}) is a strictly decreasing function regarding to a.

On the other hand, for z ∈ [0, z∗], we have

E∗
(
C(z)I{0<Z∗T−1}

)
= E∗

(
C(z)

)
≥ v0, (because of the initial value constraint) (3.47)

and

lim
a→∞

E∗
(
C(z)I{a<Z∗T−1}

)
= 0. (3.48)

Consequently, we can conclude that there is a root for (3.40) and it is unique.

As for E(C(z)I{ã(z)≥Z∗T−1}I{τ>T}), we have

E(C(z)I{ã(z)≥Z∗T−1}I{τ>T}) = E(C(z)I{ã(z)≥Z∗T−1})e
−

∫ T
0 βudu

= e−
∫ T
0 βudu

[
E((S1

T − z)I{S1
T≥S

2
T }
I{S1

T>z}
I{ã(z)≥Z∗T−1})

+ E((S2
T − z)I{S2

T>S
1
T }
I{S2

T>z}
I{ã(z)≥Z∗T−1})

]
. (3.49)

Conditioning on {NT = n}, n = 0, 1..., and under the measure P , we can represent

{S1
T ≥ S2

T }, {S1
T > z},{ã(z) ≥ Z∗T−1}, {S2

T > S1
T }, {S2

T > z} as follows:

{S1
T > z} = {S1

0(1− v1)n exp(σ1WT + (µ1 −
σ2

1

2
)T ) > z} = {Y4 < Λ5(n)},

where Y4 = −WT√
T
∼ N(0, 1), and Λ5(n) =

ln
S10(1−v1)

n

z
+(µ1−

σ21
2

)T

σ1
√
T

.

{S1
T ≥ S2

T } = {S1
0(1− v1)n exp(σ1WT + (µ1 −

σ2
1

2
)T ) ≥ S2

0(1− v2)n exp(σ2WT + (µ2 −
σ2

2

2
)T )}

= {Y4 ≤ Λ6(n)},

where Λ6(n) =
ln
S10(1−v1)

n

S20(1−v2)
n+(µ1−µ2+

σ22−σ
2
1

2
)T

(σ1−σ2)
√
T

.

{S1
T < S2

T } = {−Y4 < −Λ6(n)} = {Y5 < −Λ6(n)},
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where Y5 = WT√
T
∼ N(0, 1).

{ã(z) ≥ Z∗T−1} = {exp(−θWT +
θ2

2
T − (λ− λ∗)T − (lnλ∗ − lnλ)n) < ã(z)}

= {Y6 ≤ Λ7(n)},

where Y6 = −sign(θ)WT√
T
∼ N(0, 1) and Λ7(n) =

ln ã(z)− θ
2

2
T+(λ−λ∗)T+(lnλ∗−lnλ)n

|θ|
√
T

.

{S2
T > z} = {S2

0(1− v2)n exp(σ2WT + (µ2 −
σ2

2

2
)T ) > z} = {Y4 < Λ8(n)},

where Λ8(n) =
ln
S20(1−v2)

n

z
+(µ2−

σ22
2

)T

σ2
√
T

.

Thus, the equation (3.49) can be rewritten as

= e−
∫ T
0 βudu

∞∑
n=0

pT,n

[
E((S1

T − z)I{Y4<Λ5(n)}I{Y4≤Λ6(n)}I{Y6≤Λ7(n)})

+ E((S2
T − z)I{Y5<−Λ6(n)}I{Y6≤Λ7(n)}I{Y4≤Λ8(n)})

]
= e−

∫ T
0 βudu

∞∑
n=0

pT,n

[
S1

0(1− v1)neµ1TΦ2(Λ5,6(n) + σ1

√
T ,Λ7(n) + σ1sign(θ)

√
T ,Σ3)

− zΦ2(Λ5,6(n),Λ7(n),Σ3)

+ S2
0(1− v2)neµ2TΦ3(−Λ6(n)− σ2

√
T ,Λ7(n) + σ2sign(θ)

√
T ,Λ8(n) + σ2

√
T ,Σ4)

− zΦ3(−Λ6(n),Λ7(n),Λ8(n),Σ4)
]
,

where pn,T = exp(−λT ) (λT )n

n! , Λ5,6 = min{Λ5(n),Λ6(n)}, and

Σ3 =

 1 sign(θ)

sign(θ) 1

 , Σ4 =


1 −sign(θ) −1

−sign(θ) 1 sign(θ)

−1 sign(θ) 1

 .

Consequently, the equation (3.41) is established.
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According to Lemma 3.3, we have

sup
P̃∈P∗

EP̃ (e−rTC0(z)) = sup
P̃∈∈P∗

EP̃ (e−rTC(z)I{τ>T}) = E∗(e−rTC(z))

= e−rT [E∗((S1
T − z)I{S1

T>z}
I{S1

T≥S
2
T }

) + E∗((S2
T − z)I{S2

T>z}
I{S2

T>S
1
T }

)]

= e−rT
∞∑
n=0

p∗n,T

[
s1

0,ne
(r−σ

2
1
2

)TE∗(eσ1W
∗
T I{Y1≤Λ1(n)}I{Y1<Λ3(z,n)})− zP ∗(Y1 ≤ Λ1(n), Y1 < Λ3(z, n))

+ s2
0,ne

(r−σ
2
2
2

)TE∗(eσ2W
∗
T I{Y2<−Λ1(n)}I{Y1<Λ4(z,n)})− zP ∗(Y2 < −Λ1(n), Y1 < Λ4(z, n))

]
=
∞∑
n=0

p∗n,T

[
s1

0,nΦ(Λ1,3(z, n) + σ1

√
T )− ze−rTΦ(Λ1,3(z, n))

+ s2
0,nΦ2(−Λ1(n)− σ2

√
T ,Λ4(z, n) + σ2

√
T ,Σ5)− ze−rTΦ2(−Λ1(n),Λ4(z, n),Σ5)

]
,

where Σ5 =

 1 −1

−1 1

 .

Since C(z) = (C − z)+ =
(

max(S1
T , S

2
T )− z

)+ is decreasing regarding to z and hence

E∗(e−rTC(z1)) ≥ E∗(e−rTC(z2)) for any 0 ≤ z1 < z2.

The inequality is strict, because we have

E∗(e−rTC(z1)) = E∗(e−rTC(z2))→ C(z1) = C(z2), a.s.

→ (C − z1)+I{C>z2} = (C − z2)+I{C>z2}, a.s.

→ (z2 − z1)I{C>z2} = 0, a.s.→ P ∗
(
C > z2

)
= 0,

which is not true because of C = max(S1
T , S

2
T )+ ∈ (0,∞) and the probability that C is bigger than

a given constant is positive. Hence, E∗(e−rTC(z)) is strictly decreasing regarding to z.

Moreover, we have

E∗
(
C(0)

)
= E∗

(
C
)
> v0, lim

z→∞
E∗
(
C(z)

)
= 0,

and consequently, we conclude that there is a root for the equation E∗(e−rTC(z)) = v0 which is

(3.43) and it is unique. �
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Remark 3.9. Note that distribution functions Φ2(x, y,Σ±2 ) and Φ2(x, y, z,Σ±3 ) can be expressed in

terms of Φ(·):

Φ2(x, y,Σ+
2 ) = Φ

(
min(x, y)

)
; (3.50)

Φ2(x, y,Σ−2 ) =
{ Φ(x)− Φ(−y), if x > −y,

0, otherwise;
(3.51)

Φ3(x, y, z,Σ+
3 ) =

{ Φ
(
min(x, y)

)
− Φ(−z), if min(x, y) > −z,

0, otherwise;
(3.52)

Φ3(x, y, z,Σ−3 ) =
{ Φ(x)− Φ(max(−y,−z)), if x > max(−y,−z),

0, otherwise;
(3.53)

where

Σ±2 =

 1 ±1

±1 1

 , Σ±3 =


1 ±1 −1

±1 1 ∓1

−1 ∓1 1

 .

Example 3.10. We consider the Russell 2000 (RUT-I) and the Dow Jones Industrial Avergae

(DJIA) as S1 and S2. Melnikov and Skornyakova (2005) estimated (µi, σi) (i = 1, 2) for those two

risky assets using daily observations and assume υ1 = υ2 = 0, i.e., the Black-Scholes model. In our

case, we assume underlying risky assets with same drifts and volatilities as Melnikov and

Skornyakova (2005) but with non-zero jump components. Values of parameters are given as

following:

µ1 = 0.0481, σ1 = 0.2232, µ2 = 0.0417, σ2 = 0.2089, S1
0 = S2

0 = 100,

υ1 = −0.05, υ2 = −0.1, λ = 0.1, r = 0.

We assume the hazard rate β is constant. The insured’s age, contract maturities and levels of

β would differ in this example. According to the most recently published United States 2015 Life

Table (National Vital Statistics Reports volume 67, Number 7), the survival probability T px of a

given insured can be found and then for a fixed confidence level α = 0.95, utilizing results in the
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Theorem 3.8, we can derive the minimal CVaR that can be achieved with the hedging capital

T pxU0. Results are displayed in the Table 3.1. It is observed that the minimal CVaR increases as

the insured’s age or the contract maturity increases. This is because for an older client and a long

term contract, the survival probability of the insured would decrease so as the premium which

leads to an increase of hedging losses. Moreover, for a given insured and a contract maturity time,

the minimal CVaR decreases as the hazard rate increases. In addition, the decreasing trend is

more significant for long term contracts. This can be explained by the fact that there is a higher

chance that contracts would mature with a zero payoff if the hazard rate increases and for long

term contracts, there is an even higher possibility that a default event would occur during contract

periods, which reduces the shortfall risk further.

Table 3.1 Minimal CV aR0.95 for contracts with different maturities, insured’s age and

levels of β

Age=20 Age=30 Age=40

T=10 T=15 T=20 T=10 T=15 T=20 T=10 T=15 T=20

T px 0.9902 0.9839 0.9764 0.9860 0.9758 0.9609 0.97462 0.9509 0.9166

β = 0 0.996 1.6431 2.4136 1.4318 2.4745 4.017 2.5966 5.0477 8.6448

β = 0.01 0.9958 1.6378 2.3884 1.4316 2.4698 3.9978 2.5964 5.045 8.6394

β = 0.015 0.9956 1.6337 2.3684 1.4314 2.4662 3.9818 2.5963 5.0427 8.6335

β = 0.02 0.9954 1.6283 2.3411 1.4312 2.4613 3.9596 2.5961 5.0395 8.624

3.5 Conclusion

This chapter focuses on the problem of CVaR based partial hedging in a defaultable

Jump-Diffusion model. We first provide the set of martingale measures in this incomplete market

which admit the special form Z∗Zk conditioned on {τ > T} and then by their properties, the

minimal superhedging costs of a defautable claim with a zero recovery rate are given that coincide

74



with the initial wealth required for perfectly hedging the non-defaultable claim. Most importantly,

we prove that the optimal CVaR hedging problem in the defaultable market can be converted to a

problem of finding an optimal randomized test in the corresponding default free market. The

hedging strategy can be explained as constructing the perfect hedging of a modified

nondefaultable claim during [0, τ ] while investing nothing in risky assets and depositing all cash

into the saving account after the default. Furthermore, our method is applied to the area of life

insurance. Numerical results show that for a given insured and a contract maturity time the

minimal CVaR decreases as the hazard rate increases.
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CHAPTER 4

CVaR hedging in the Bachelier model

and its modifications

4.1 Introduction

Bachelier was the pioneer who studied the continuous time process called now as the Brownian

motion and who developed the first option pricing theory (see, Bachelier 1900). Since then, many

scientists are inspired by the work of Bachelier developing the theory of stochastic processes and

its applications in different areas including Mathematical Finance (see, Taqqu 2001). Speaking

about the impact of Bachelier, Kolmogorov (1931) wrote "Here we note only that Bachelier’s

contributions are by no means mathematically rigorous". However, the main drawback of the

standard Bachelier model is that stock prices can turn negative which is unappealing in the

financial literature. That is why Samuelson (1965) proposed the exponential transformation of the

Bachelier model and introduced the so-called Geometrical Brownian motion (the Black-Scholes

model).

In this work, we investigate two more approaches to modify the Bachelier model. The first one

is by considering a SDE with absorption. Going in this way, we introduce a stopping time which is

the first time the stock price hits zero and once it becomes zero it stays there forever. This

adjustment ensures that stock prices are always non-negative and also resolves a problem with

limiting behavior of volatility and time to maturity pertaining to the classical Bachelier model. In

Goldenberg (1991), he considered arithmetic Brownian motion absorbed at zero and provided the
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option pricing formula of a call option with the help of transition density for such an absorbed

process. Instead, in this chapter, we derive the price of a call option by a straightforward

application of the reflection principle of a Brownian motion which is more intuitive and

convenient. The second modification method describes the evolution of the risky asset as a

solution of a SDE with a reflection boundary at zero. SDEs with reflection were introduced by

Skorokhod (1961). He also proved the existence and uniqueness of the solution for those equations

under some assumptions (see Pilipenko 2014). In summary, such a stock price process is

nonnegatively defined and when it hits zero, it would be compensated by a process l which is

non-decreasing and only increases at points when the stock price is zero. We show that such a

modified Bachelier market with reflection may admit arbitrage and hence it is not an appropriate

financial model. Thus, in this chapter, our attention is paid to the standard Bachelier model, the

Black-Scholes model and the modified Bachelier model with absorption at zero (called below as

the modified Bachelier model).

Option pricing is one of the main research areas of Mathematical Finance. The famous

Bachelier formula and the Black-Scholes formula describe fair prices of call options in the standard

Bachelier model and the Black-Scholes model correspondingly. Schachermayer and Teichmann

(2008) have indicated that for small values of volatility and short contract periods, those two

formulas give close price values. We extend their research and prove that price differences between

an at-the-money call option in the modified Bacherlier model and another one with the same

strike price and the time to maturity in the Black-Scholes model are even smaller.

Also, option pricing theory points out that a contingent claim can be perfectly hedged if the

initial hedging capital is no less than its fair price (in complete markets) or its minimal

superhedging price (in incomplete markets). However, with insufficient wealth, a hedger can only

construct a partial hedging strategy while accepts the possibility of shortfall. Föllmer and Leukert

(1999), (2000) are pioneers in the field of partial hedging. They studied quantile hedging and

efficient hedging in seimimartingale financial market models. They derived explicit solutions in

complete markets by using the classical Neyman-Pearson lemma while solutions in incomplete
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markets were given with the help of the convex duality approach. Although the Bachelier model

and its modifications attract a certain interest in the filed of general option pricing, these

modifications remain a relatively unexplored area for partial hedging. A related article is

Glazyrina and Melnikov (2020) where the problem of quantile hedging in the Bachelier model with

a stopping time was discussed. In this chapter, we employ the Conditional Value-at-Risk (CVaR)

to measure hedging losses. Such a measure provides information about the average losses that

exceeds the Value-at-Risk (VaR) level and is widely used in financial institutions. Melnikov and

Smirnov (2012) studied CVaR hedging in complete markets and they provided the derivation of

the optimal CVaR hedging strategy as well as its illustrations in the Black-Scholes model. Inspired

by them, we derive explicit solutions for the problem of optimal CVaR hedging in both the

standard Bachelier model and the modified Bachelier model.

The main aim of this chapter is to introduce new modifications of the Bachelier model and

compare them in aspects of the option pricing and the CVaR hedging. This chapter is organized

as follows. In Section 4.2, basic properties of the standard Bachelier model and the Black-Scholes

model are described. In addition, we introduce two modified models: the one with absorption and

another one with reflection. The meaning behind those two modifications is that once the stock

price reaches zero, the company issuing such a stock either go bankrupt and hence the stock price

becomes zero forever (which corresponds to the modified Bachelier model with absorption) or the

company takes actions to improve its financial situation quickly and effectively to make the stock

price bounce back (which corresponds to the SDE with reflection). In Section 4.3, firstly, we derive

the set containing all martingale measures in the modified Bachelier model with absorption.

Although this market may be incomplete, the arbitrage free price of a call option can be uniquely

determined and an explicit form of such a price is derived. Then, we compare fair prices of

at-the-money call options in the standard Bachelier model, the Black-Scholes model and the

modified Bachelier model. In Section 4.4, we discuss CVaR hedging problem in the classical

Bachelier model which is complete while, in Section 4.5, CVaR hedging in the incomplete modified
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Bachelier model is investigated. In Section 4.6, numerical examples are provided to illustrate

results derived in previous sections. Section 4.7 gives a conclusion for the chapter.

4.2 The Bachelier model and its modifications

Let (Ω,F , P ) be a probability space. The first financial model that describes the evolution of a

stock price with the help of a Brownian motion is called the Bachelier model. There are two assets

(S0
t , St)0≤t≤T in such a model, where the bank account S0

t = 1, ∀t ∈ [0, T ], (i.e, we assume the

interest rate r = 0) and the stock price process is described as

St = S0 + µt+ σWt, S0 > 0, t ∈ [0, T ]. (4.1)

Here, constants σ > 0, µ > 0 are called the volatility and the drift. The process (Wt)t∈[0,T ] is a

Brownian motion with its natural filtration F = (Ft)t∈[0,T ], Ft = σ(Ws, s ≤ t). We assume

F = FT .

It is well known that the stock price process (4.1) is a martingale with respect to a unique

martingale measure P ∗ defined by the relation

Z∗t =
dP ∗

dP
|Ft= exp

(
− µ

σ
Wt −

1

2
(
µ

σ
)2t
)
. (4.2)

Moreover, by the Girsanov theorem, the process W ∗t = Wt + µ
σ t is a Brownian motion under

the measure P ∗.

However, the drawback of the standard Bachelier model is that the stock price can take

negative values. The famous Geometrical Brownian motion (the Black-Scholes model) proposed by

Samuelson (1965) overcomes such a drawback. The price process of the risky asset in this market

is given by

SBSt = S0 exp
(
(µBS − (σBS)2

2
)t+ σBSWt

)
, S0 > 0, t ∈ [0, T ]. (4.3)

Here, constants σBS > 0, µBS denote the volatility and the drift in the Black-Scholes model.

The density of the unique martingale measure P ∗BS in the market (4.3) is

ZBSt =
dP ∗BS
dP

|Ft= exp
(
− µBS

σBS
Wt −

1

2
(
µBS

σBS
)2t
)
. (4.4)
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Now, we would like to introduce two additional modifications that adjust stock prices to be

nonnegative and thereby may provide better models to fit real market data than the standard

Bachelier model.

The first intuitive way to make the price process (4.1) nonnegative is to introduce a stopping

time τ and consider the risky asset with the evolution

St∧τ = S0 + µ(t ∧ τ) + σWt∧τ , S0 > 0, t ∈ [0, T ], (4.5)

where τ is defined as follows:

τ = inf{t : St = 0}. (4.6)

Such a modified stock price process is always nonnegative and once the price hits zero, it stays

at zero forever. It can be seen as a special case of a process with absorption at the lower boundary

zero. In the modified Bachelier model with absorption, we consider the stopped stock price

process {St∧τ}t∈[0,T ] in the filtration F that is generated by the Brownian motion as before.

The stopping time τ might be treated as a default time of the company issuing the stock. Let

us investigate properties of such a stopping time.

According to Le Gall (2016), for any constants c and a > 0, define a stopping time

Ua = inf{t : Wt + ct = a}.

The density function of Ua is

fUa(t) =
a

σ
√

2πt3
exp

(
− 1

2t
(a− ct)2

)
. (4.7)

Integrating this density, we obtain the probability that the stopping time Ua is finite:

P (Ua <∞) =

 1, if c ≥ 0,

e2ca, if c < 0.
(4.8)

Furthermore, the relation (4.6) can be rewritten as

inf{t : St = 0} = inf{t : S0 + µt+ σWt = 0}

= inf{t :
µ

σ
t+Wt = −S0

σ
}

= inf{t : −µ
σ
t−Wt =

S0

σ
}.
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Substituting a = S0
σ and c = −µ

σ < 0 into (4.7), (4.8), we find the following expression of the

density function of τ :

fτ (t) =
S0

σ
√

2πt3
exp

(
− 1

2t
(
S0

σ
+
µ

σ
t)2
)
.

Therefore, the probability that the stock price will attain zero during a finite time horizon is

P (τ <∞) = exp
(
− 2µS0

σ2

)
. (4.9)

The equation (4.9) indicates that for a small σ, the possibility that the stock price will drop to

zero within a fixed time interval is quite low, and hence the modified Bachelier model with

absorption is very close to the standard Bachelier model. However, such a possibility increases as

σ increases, so that the model (4.5) provides a better fit to stock prices by avoiding negative

values in this case. In section 4.6, we would discuss properties of the model (4.5) in the case that

σ is large and in the case it is small respectively.

The second method we may utilize is to consider a stock price process with reflection at zero

which is described by the SDE:

dS∗t = µdt+ σdWt + dlt, S∗0 = S0 > 0, (4.10)

where

1) l is nondecreasing and l0 = 0;

2)
∫ t

0 I{S∗s>0}dls = 0, ∀t ∈ [0, T ];

3) S∗t ≥ 0, ∀t ∈ [0, T ].

It turns out that there is a unique pair of continuous adapted processes (S∗, l) that solves

(4.10). More specifically, the continuous process lt which only increases at points S∗t = 0 equals

the local time of S∗ at zero (see, for instance, Pilipenko 2014 Theorem 1.3.1), i.e.,

lt =

∫ t

0
lim
ε→0+

(2ε)−1I[−ε,ε](S
∗
s )d < S∗, S∗ >s

=

∫ t

0
δ(S∗s )σ2ds. (4.11)
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Here, we use the notation δ(S∗s ) = lim
ε→0+

(2ε)−1I[−ε,ε](S
∗
s ) and the second equality is due to the

property:

< S∗, S∗ >s=< S∗C , S∗C >s=< σW,σW >s= σ2s,

where S∗C is the continuous martingale part of S∗.

The model (4.10) indeed overcomes the shortcoming of the Bachelier model. However, no an

equivalent martingale measure exists in this market, which indicates the existence of arbitrage. To

show this, we suppose that there is an equivalent martingale measure Q with respect to P in the

market (4.10). Then, according to the property of the filtration generated by the Brownian

motion, the density of Q can be represented as the solution of the equation:

dZQt = φtZ
Q
t dWt, ZQ0 = 1,

for a predictable process {φt}t∈[0,T ].

In addition, by the Girsanov theorem, the process WQ
t = Wt −

∫ t
0 φsds is a Brownian motion

under Q.

The SDE (4.10) can be rewritten as

dS∗t = µdt+ σdWt + dlt,

= (µ+ σφt + δ(S∗t )σ2)dt+ σdWQ
t .

It is a martingale under the measure Q if and only if µ+ σφt + δ(S∗t )σ2 = 0, ∀t ∈ [0, T ], and

therefore the stock price process is

S∗t = σWQ
t , t ∈ [0, T ].

On one hand side, such a stock price S∗t satisfies

P (S∗t < 0) = 0, ∀t ∈ [0, T ].

On the other hand, we have

Q(S∗t < 0) = Q(σWQ
t < 0) = 0.5, ∀t ∈ [0, T ],
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which contradicts the assumption that Q and P are equivalent. Thus, there is no an equivalent

martingale measure in the market (4.10).

Since the market (4.10) admits arbitrage, in the following, we only consider models (4.1),

(4.3), (4.5), and call the Bachelier model with absorption (4.5) as the modified Bachelier model.

4.3 Comparison of models through perfect hedging prices

It is well known that markets (4.1) and (4.3) are complete with the unique martingale measure

given by (4.2) and (4.4) correspondingly. Let us investigate martingale measures in the market

(4.5).

By the martingale property in the filtration F, the density of any martingale measure P̃ in the

market (4.5) can be written as

dZP̃t = ZP̃t θtdWt, ZP̃0 = 1, (4.12)

where θ is a predictable process.

According to the Girsanov theorem the process

W̃t = Wt −
∫ t

0
θsds,

is a Brownian motion under the measure P̃ .

The dynamic of the risky asset (4.5) can be rewritten as

dSt∧τ = µI{τ≥t}dt+ σI{τ≥t}dWt,

= µI{τ≥t}dt+ σI{τ≥t}(dW̃t + θtdt)

= (µ+ σθt)I{τ≥t}dt+ σI{τ≥t}dW̃t.

Such a process is a martingale under P̃ if and only if

(µ+ σθt)I{τ≥t} = 0, (4.13)

which implies that conditioning on {τ ≥ t}, we have

θt = −µ
σ
. (4.14)
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However, on the set {τ < t}, θt can be arbitrary which means the martingale measure is not

unique and hence the market (4.5) is not complete. Let us denote the set containing all martingale

measures in the modified Bachelier market as P∗. Note that P ∗ defined by (4.2) belongs to P∗, if

we choose θt = −µ
σ on the set {τ < t}.

For simplicity of notations, let us use S̃t to denote St in the model (4.1) and to denote St∧τ in

the model (4.5).

A strategy π is a F-predictable process π := (π0
t , π

1
t )t∈[0,T ] such that∫ T

0
|π0
t |dt <∞,

∫ T

0
(π1
t S̃t)

2dt <∞, P − a.s.

At time t ∈ [0, T ], the value process corresponding to the strategy π is

Vt = π0
t + π1

t S̃t.

For a given initial value v ≥ 0, the trading strategy is called self-financing if its value process

satisfies

Vt = v +

∫ t

0
π1
udS̃u,

and is called admissible, if such a process also satisfies

Vt ≥ 0, ∀t ∈ [0, T ].

We denote the set of all admissible self-financing strategies with an initial value v as A(v).

According to the option pricing theory, in complete markets (eg, the model (4.1)), for a given

claim H, there is an admissible strategy that duplicates H, i.e.,

Vt = EM (H|Ft) = v +

∫ t

0
π1
udS̃u, (4.15)

for some predictable process π1. And Vt is the unique price of the claim H at time t. Here, EM (·)

represents the expectation under the unique martingale measure in such a market.

It is well known that the fair price of an European call option (ST −K)+ in the complete

market (4.1) is given by the Bachelier formula (see, for example, Schachermayer and Teichmann

2008):

V B
0 = E∗

(
(ST −K)+

)
= (S0 −K)Φ(

S0 −K
σ
√
T

) + σ
√
Tφ(

S0 −K
σ
√
T

), (4.16)
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where E∗(·) is the expectation under the unique martingale measure P ∗ in the market (4.1).

And the fair price of an European call option (SBST −K)+ in the market (4.3) is given by the

Black-Scholes formula:

V BS
0 = EP

∗
BS
(
(SBST −K)+

)
= S0Φ(d+)−KΦ(d−), (4.17)

where d± =
ln(

S0
K

)± (σBS)2

2
T

σBS
√
T

and EP ∗BS (·) is the expectation under the measure P ∗BS .

However, in incomplete markets (eg, the model (4.5)), not every contingent claim admits a

unique arbitrage free price and can be duplicated. In this case, we define

Ut = ess sup
P̃∈P∗

EP̃ (H|Ft), t ∈ [0, T ], (4.18)

which is a supermartingale with respect to any P̃ ∈ P∗ and represents the value process of the

minimal superhedging strategy of the claim H. According to the optional decomposition theorem

(see El Karoui and Quenez 1995, Kramkov 1996), there is an admissible strategy (v, π) and a

nonnegative consumption process C with C0 = 0 such that

Ut = v +

∫ t

0
π1
udS̃u − Ct. (4.19)

Such a strategy π is then called the superhedging strategy.

Now, let us investigate superhedging costs of a call option in the modified model (4.5).

Theorem 4.1. The superhedging costs of an European call option (ST∧τ −K)+ in the market

(4.5) is

VMB
0 = sup

P̃∈P∗
EP̃
(
(ST∧τ −K)+

)
= (S0 −K)Φ(

S0 −K
σ
√
T

) + (S0 +K)Φ(
−S0 −K
σ
√
T

) + σ
√
T
[
φ(
S0 −K
σ
√
T

)− φ(
S0 +K

σ
√
T

)
]
, (4.20)

where K > 0 is the strike price and T is the time to maturity of the option. Φ(·), φ(·) represent the

cumulative distribution function and the density function of a standard normal random variable.
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Proof. For any martingale measure P̃ ∈ P∗, we have

EP̃
(
(ST∧τ −K)+

)
= EP̃

(
(ST −K

)+
I{τ>T}) + EP̃

(
(Sτ −K

)+
I{τ≤T})

= EP̃
(
(ST −K

)+
I{τ>T})

= E
(
ZP̃T (ST −K)+I{τ>T}

)
= E

(
exp

(
− µ

σ
WT −

1

2
(
µ

σ
)2T
)
(ST −K)+I{τ>T}

)
= E∗

(
(ST −K)+I{τ>T}

)
= E∗

(
(ST −K)+

)
− E∗

(
(ST −K)+I{τ≤T}

)
. (4.21)

The above equation indicates that the price of the call option would not be affected by the

choice of the martingale measure. In other words, the arbitrage free price of a call option is unique

and equals to E∗
(
(ST∧τ −K)+

)
.

Moreover, according to the reflection principle of the Brownian motion, the following equation

holds

E∗
(

(ST −K)+I{τ≤T}

)
= E∗

(
(S0 + σW ∗T −K)+I{τ≤T}

)
= E∗

(
(−S0 + σW ∗T −K)+

)
. (4.22)

By (4.16), (4.21) and (4.22), for any P̃ ∈ P∗, we arrive to

EP̃
(
(ST∧τ −K)+

)
= (S0 −K(z))Φ(

S0 −K
σ
√
T

) + σ
√
Tφ(

S0 −K
σ
√
T

)

− (−S0 −K)Φ(
−S0 −K
σ
√
T

)− σ
√
Tφ(
−S0 −K
σ
√
T

)

= (S0 −K)Φ(
S0 −K
σ
√
T

) + (S0 +K)Φ(
−S0 −K
σ
√
T

)

+ σ
√
T
[
φ(
S0 −K
σ
√
T

)− φ(
S0 +K

σ
√
T

)
]
,

and hence this theorem is proved. �

Remark 4.2. If σ
√
T → 0 or S0 is very large, both Φ(−S0−K

σ
√
T

) and φ(S0+K
σ
√
T

) in the equation (4.20)

tend to zero which implies that the price of a call option in the modified Bachelier model is close to

the price of a call option that has the same strike and time to maturity in the Bachelier model.
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Theorem 4.1 indicates that even though the market (4.5) is incomplete, the value of a call

option is uniquely determined and hence we can call such a value as the fair price.

Schachermayer and Teichmann (2008) showed that for fixed σ > 0, T > 0 and with

relationships σ
S0

= σBS , S0 = K, the difference between V B
0 and V BS

0 satisfies the following

inequality:

0 ≤ V B
0 − V BS

0 ≤ S0

24
√

2π
σBS

3
T

3
2 . (4.23)

One step further, we would like to compare perfect hedging prices of at-the-money call options

in the modified Bachelier model and in the Black-Scholes model.

Theorem 4.3. A. Let σ
S0

= σBS. For fixed σ > 0, T > 0, fair prices of at-the-money European

call options with the same maturity in the market (4.5) and (4.3) satisfy the relation

VMB
0 − V BS

0 ≤ S0√
2π

[(σBS
√
T )3

24
− (σBS

√
T ) exp(− 2

(σBS
√
T )2

)

+ 2
√

2(arctan(−
√

2

σBS
√
T

) +
π

2
)
]
. (4.24)

B. Moreover, the absolute value of differences between V B
0 and V BS

0 are bigger than that

between VMB
0 and V BS

0 , i.e.,

|VMB
0 − V BS

0 | ≤ |V B
0 − V BS

0 |.

In other words, the modified Bachelier formula (4.20) provides a closer fit to the Black-Scholes

formula (4.17).

Proof. For S0 = K, according to (4.20) and (4.17), we have

VMS
0 = 2S0Φ(− 2

σBS
√
T

) + S0σ
BS
√
T
[
φ(0)− φ(

2

σBS
√
T

)
]
.

V BS
0 = S0

[
Φ(
σBS
√
T

2
)− Φ(−σ

BS
√
T

2
)
]
.
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Hence, differences between them are

VMS
0 − V BS

0 = S0

( x√
2π

+ 2Φ(−2

x
)− xφ(

2

x
)− Φ(

x

2
) + Φ(−x

2
)
)
|x=σBS

√
T

=
S0√
2π

(∫ x
2

−x
2

(1− exp(−y
2

2
))dy + 2

∫ − 2
x

−∞
exp(−y

2

2
)dy − x exp(− 2

x2
)
)
|x=σBS

√
T

≤ S0√
2π

(∫ x
2

−x
2

y2

2
dy + 2

∫ − 2
x

−∞

1

1 + y2

2

dy − x exp(− 2

x2
)
)
|x=σBS

√
T

=
S0√
2π

(x3

24
+ 2
√

2(arctan(−
√

2

x
) +

π

2
)− x exp(− 2

x2
)
)
|x=σBS

√
T .

The above inequality is due to the fact ey ≥ 1 + y,∀y ∈ R as well as ey ≤ 1
1−y , for y < 1 and,

in the last equation, we utilize the relation (arctan(y))′ = 1
1+y2

.

Let us denote

∆1 = V B
0 − V BS

0 = S0

( x√
2π
− Φ(

x

2
) + Φ(−x

2
)
)
|x=σBS

√
T≥ 0,

∆2 = −E∗
(
(ST −K(z))+1{τ≤T}

)
= S0

(
2Φ(−2

x
)− xφ(

2

x
)
)
|x=σBS

√
T≤ 0.

With above notations, we have VMB
0 − V BS

0 = V B
0 + ∆2 − V BS

0 = ∆1 + ∆2.

Consider the function

f(x) = −∆2 − 2∆1

= S0

(
xφ(

2

x
)− 2Φ(−2

x
)− 2

( x√
2π
− Φ(

x

2
) + Φ(−x

2
)
))
,

and we have f(x)→ 0 as x→ 0.

Moreover, by taking derivative, we get the following inequality

f ′(x) = S0

(
φ(

2

x
) + 2φ(

x

2
)− 2φ(0)

)
≤ 0, x > 0,

and hence f(x) ≤ 0.

Consequently, we arrive to the relation

0 ≤ −∆2 ≤ 2∆1,
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which implies

−∆1 ≤ −∆1 −∆2 ≤ ∆1;

|∆1 + ∆2| ≤ ∆1;

|VMB
0 − V BS

0 | ≤ |V B
0 − V BS

0 |.

The proof is completed. �

Remark 4.4. We only compare prices of at-the-money call options, because Schachermayer and

Teichmann (2008) have mentioned that for the case S0 6= K, as σBS
√
T → 0, the Bachelier price

and the Black-Scholes price tend to (S0−K)+ of order higher than (σBS
√
T )n for every n ≥ 1 and

the functional dependence of the prices on σBS
√
T is not analytical.

4.4 CVaR hedging in the standard Bachelier model

Perfect hedging requires sufficient initial wealth and this is one reason for the implementation of

partial hedging when the initial capital is not enough. We assume that a hedger is exposed to a

future obligation H at the maturity time T . Meanwhile, the hedger constructs a hedging portfolio

π with the initial capital v0 that is less than the perfect hedging costs. In this case, perfect

hedging is impossible and L = H − VT is a FT -measurable random variable that characterizes

hedging losses.

In this chapter, we would like to employ CVaR to measure the hedging loss, that is

CV aRα(L) =
1

1− α

∫ 1

α
V aRs(L)ds, (4.25)

where α ∈ (0, 1) is the risk level and V aRα(L) = inf{s ∈ R : P (L ≤ s) ≥ α} is the α-quantile of L.

CV aRα(L) measures the expected loss of a hedging strategy given that the loss exceeds its

α-quantile. According to Rockafellar and Uryasev (2002), CVaR can be represented as

CV aRα(L) = inf
{
z +

1

1− α
E((L− z)+) : z ∈ R

}
, (4.26)
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and they also indicated that V aRα(L) satisfies

V aRα(L) = min
{
y|y ∈ argmin

z∈R

(
z +

1

1− α
E
(
(L− z)+

))}
.

The purpose of the hedger is to minimize the CVaR among all admissible strategies with the

initial wealth no more than v0, i.e.,

min
(v,π)∈A0

CV aRα(L), (4.27)

where A0 = {(v, π)|(v, π) ∈ A(v), v ≤ v0}.

Melnikov and Smirnov (2012) discussed such a problem in complete markets and provided a

semi-explicit solution using the Neyman-Pearson Lemma. The main result of their paper is

summarized as following:

In a complete market, the optimal CVaR hedging strategy for a claim H is a perfect hedge of

the modified contingent claim (H − ẑ)+ϕ∗(ẑ), where

ϕ∗(z) = I{ã(z)<ZMT
−1} + Γ(z)I{ã(z)=ZMT

−1}, (4.28)

ã(z) = inf{a ≥ 0, EM
(
(H − z)+I{a<ZMT

−1}
)
≤ v0}, (4.29)

Γ(z) =
v0 − EM

(
(H − z)+I{ã(z)<ZMT

−1}
)

EM
(
(H − z)+I{ã(z)=ZMT

−1}
) , (4.30)

where ZM is the density of the unique martingale measure in such a market. In particular,

Γ(z) = 0 if P (ZMT
−1 = ã(z)) = 0.

And the parameter ẑ is the point of minimum of the function

d(z) =

{
z + 1

1−α · E
[
(H − z)+(1− ϕ∗(z))

]
, 0 ≤ z < z∗,

z, z = z∗.
(4.31)

where z∗ is the solution of the equation

EM
(
(H − z)+

)
= v0. (4.32)

Applying the above result to the complete market (4.1), the optimal CVaR hedging strategy of a

call option is given in the following theorem.
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Theorem 4.5. A. Consider an European call option (ST −K)+ in the Bachelier market (4.1).

Under an initial capital constraint v0 < V B
0 , the optimal CVaR hedging strategy is a perfect hedge

for the modified claim (ST −K(ẑ))+I{ST>b(ẑ)}, where, for a given z ∈ [0, z∗), b(z) is the unique

solution of the the equation E∗
[
(ST −K(z))+I{ST>b}

]
= v0, i.e.,

(
S0 −K(z)

)
Φ(
S0 − b
σ
√
T

) + σ
√
Tφ(

S0 − b
σ
√
T

) = v0, (4.33)

that satisfies b(z) ≥ K(z) and ẑ is the solution of

min
z∈[0,z∗]

d(z) =
{ z + 1

1−ακ1(z), 0 ≤ z < z∗,

z∗, z = z∗,
(4.34)

where, κ1(z) = E
[
(ST −K(z))+I{ST≤b(z)}

]
, i.e.,

κ1(z) =
(
S0 + µT −K(z)

)[
Φ(
b(z)− S0 − µT

σ
√
T

)− Φ(
K(z)− S0 − µT

σ
√
T

)
]

+ σ
√
T
[
φ(
K(z)− µT − S0

σ
√
T

)− φ(
b(z)− µT − S0

σ
√
T

)
]
. (4.35)

And d(ẑ) is the value of the minimal CVaR.

The parameter z∗ is determined from E∗
[
(ST −K(z))+

]
= v0, i.e.,

(
S0 −K(z)

)
Φ(
S0 −K(z)

σ
√
T

) + σ
√
Tφ(

S0 −K(z)

σ
√
T

) = v0, (4.36)

where K(z) = K + z.

In particular, b(z∗) = −∞.

B. The value of the optimal CVaR hedging strategy at time t < T is

Vt =
(
St −K(ẑ)

)
Φ(
St − b(ẑ)
σ
√
T − t

) + σ
√
T − tφ(

b(ẑ)− St
σ
√
T − t

). (4.37)

Moreover, components of the optimal hedging strategy are

π0
t = −K(ẑ)Φ(

St − b(ẑ)
σ
√
T − t

) +
(
Stσ
√
T − t− b(ẑ)−K(ẑ)

σ
√
T − t

)
φ(
St − b(ẑ)
σ
√
T − t

), (4.38)

π1
t = Φ(

St − b(ẑ)
σ
√
T − t

) +
b(ẑ)−K(ẑ)

σ
√
T − t

φ(
St − b(ẑ)
σ
√
T − t

). (4.39)
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Proof. Let us rewrite the density Z∗T = dP
dP ∗ as follows:

dP

dP ∗
= exp (

µ

σ
W ∗T −

1

2
(
µ

σ
)2T )

= exp(
µ

σ2
(S0 + σW ∗T )− 1

2
(
µ

σ
)2T − µ

σ2
S0)

= exp(
µ

σ2
ST )const,

where const = exp(−1
2(µσ )2T − µ

σ2S0) is positive.

Hence, the set { dPdP ∗ > a} can be rewritten as

{ dP
dP ∗

> a} = {exp(
µ

σ2
ST )const > a} = {ST > b},

for some constant b.

Moreover, P
(
dP
dP ∗ = a

)
= 0 is satisfied because of the continuous distribution. Thereby,

Γ(z) = 0.

Applying above results to (4.28)-(4.30), we arrive to

ϕ∗(z) = I{ST>b(z)}, (4.40)

b(z) = inf{b ∈ R, E∗
(
(H − z)+I{ST>b}

)
≤ v0}. (4.41)

Also, for z ≥ 0, we have ((ST −K)+ − z)+ = (ST −K(z))+, where K(z) = K + z.

Note that, in our case, the infimum in (4.41) is always attained since we deal with an atomless

measure and thus we need to find b that solves E∗
(
(ST −K(z))+I{ST>b}

)
= v0.

Consider the case z ∈ [0, z∗), since otherwise we have d(z∗) = z∗.

If b < K(z), we have

E∗
(
(ST −K(z))+I{ST>b}

)
= E∗

(
(ST −K(z))+

)
> E∗

(
(ST −K(z∗))+

)
= v0.

Hence, the root b(z) of E∗
(
(ST −K(z))+I{ST>b}

)
= v0 is in the interval [K(z),∞).
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Further, in this interval, we have

E∗
(
(ST −K(z))+I{ST>b}

)
= E∗

(
(S0 + σW ∗T −K(z))I{ST>b}

)
=
(
S0 −K(z)

)
E∗(I{S0+σW ∗T>b}) + σE∗(W ∗T I{S0+σW ∗T>b})

=
(
S0 −K(z)

)
Φ(
S0 − b
σ
√
T

) + σ
√
T

∫ ∞
b−S0
σ
√
T

x
1√
2π
e−

x2

2 dx

=
(
S0 −K(z)

)
Φ(
S0 − b
σ
√
T

) + σ
√
Tφ(

b− S0

σ
√
T

).

For b ≥ K(z), the above expectation is strictly decreasing regarding to b, and thereby b(z) is

the unique root of the equation (4.33).

Now, let us deal with E
[(
ST −K(z)

)+(
1− ϕ∗(z)

)]
= E

[(
ST −K(z)

)+
I{ST≤b(z)}

]
. We find

that

E
[
(ST −K(z))+I{ST≤b(z)}

]
= E

[
(ST −K(z)

)
I{K(z)<ST≤b(z)}

]
= E

[
(S0 + µT + σWT −K(z))I{K(z)<ST≤b(z)}

]
=
(
S0 + µT −K(z)

)
E
(
I{K(z)−µT−S0

σ
<WT≤

b(z)−S0−µT
σ

}

)
+ σE

(
WT I{K(z)−µT−S0

σ
<WT≤

b(z)−S0−µT
σ

}

)
= (S0 + µT −K(z))

[
Φ(
b(z)− S0 − µT

σ
√
T

)− Φ(
K(z)− S0 − µT

σ
√
T

)
]

+ σ
√
T
[
φ(
K(z)− S0 − µT

σ
√
T

)− φ(
b(z)− S0 − µT

σ
√
T

)
]
.

Hence, we conclude that the function d(z) admits the form (4.34). And the parameter ẑ is the

point of minimum of d(z) over the interval [0, z∗], where z∗ is the root of the equation

E∗
(

(ST −K(z))+
)

= v0.

The value of E∗
(

(ST −K(z))+
)
can be given by substituting K in (4.16) with K(z), and

hence we arrive to the equation (4.36).

In particular, E∗
(

(ST −K(z∗))+
)

= E∗
(

(ST −K(z∗))+I{ST>−∞}

)
= v0, which implies

b(z∗) = −∞.
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At time t < T the value of the optimal hedging strategy is

Vt = E∗
(
(ST −K(ẑ))I{ST>b(ẑ)}

∣∣Ft) = E∗
(
(St + σW ∗T−t −K(ẑ))I{St+σW ∗T−t>b(ẑ)}

)
=
(
St −K(ẑ)

)
E∗(I{St+σW ∗T−t>b(ẑ)}) + σE∗(W ∗T−tI{St+σW ∗T−t>b(ẑ)})

=
(
St −K(ẑ)

)
Φ(
St − b(ẑ)
σ
√
T − t

) + σ
√
T − tφ(

b(ẑ)− St
σ
√
T − t

).

Assume (π0, π1) is the duplication strategy of the modified claim, such that

dVt = π1
t dSt,

and by Itô’s formula, we have

dVt =
∂Vt
∂S

dSt +
(∂Vt
∂t

+
1

2

∂2Vt
∂S2

)
dt.

Taking into account both these equations we find components of the optimal hedging strategy

satisfy

π1
t =

∂Vt
∂S

= Φ(
St − b(ẑ)
σ
√
T − t

) +
St −K(ẑ)

σ
√
T − t

φ(
St − b(ẑ)
σ
√
T − t

)

− St − b(ẑ)
σ
√
T − t

φ(
St − b(ẑ)
σ
√
T − t

)

= Φ(
St − b(ẑ)
σ
√
T − t

) +
b(ẑ)−K(ẑ)

σ
√
T − t

φ(
St − b(ẑ)
σ
√
T − t

),

and

π0
t = Vt − Stπ1

t = −K(ẑ)Φ(
St − b(ẑ)
σ
√
T − t

) +
(
Stσ
√
T − t− b(ẑ)−K(ẑ)

σ
√
T − t

)
φ(
St − b(ẑ)
σ
√
T − t

).

The proof of theorem 4.5 is completed. �

4.5 CVaR hedging in the modified Bachelier model

In the modified Bachelier model (4.5) which may be incomplete, we have to discuss CVaR hedging

problem of a call option H = (ST∧τ −K)+ in more detail.

According to (4.26), the CVaR minimization problem can be rewritten as

min
(v,π)∈A0

CV aRα(L) = min
(v,π)∈A0

min
z∈R

{
z +

1

1− α
E
(
(H − VT − z)+

)}
= min

z∈R

{
z +

1

1− α
min

(v,π)∈A0

E
(
(H − VT − z)+

)}
. (4.42)
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Since VT ≥ 0, we have (H − VT − z)+ = ((H − z)+ − VT )+. Furthermore, H(z) = (H − z)+ is

non-negative, so that it can be considered as a contingent claim. Hence, for a fixed z the inner

minimization problem in (4.42) is an efficient hedging problem of the claim H(z). It is worth to

mention that we can focus on z ∈ [0, z∗], where z∗ is the solution of the equation

sup
P̃∈P∗

EP̃
(
H(z)

)
= v0.

This is because, on the one hand, for z > z∗, v0 is bigger than the minimal superhedging price

of the claim H(z). In other words, min
(v,π)∈A0

E((H(z)− VT )+) = 0 and hence,

z +
1

1− α
min

(v,π)∈A0

E((H − VT − z)+) = z > z∗ for z > z∗,

which is increasing after z∗. Consequently, the infimum of (4.42) would not be attained in the

interval (z∗,+∞).

On the other hand, because z is corresponding to the V aRα of the hedging loss L, it is

nonnegative when α is close to 1.

Since we only consider z ≥ 0, it is true that H(z) = ((ST∧τ −K)+ − z)+ = (ST∧τ −K(z))+

and the efficient hedging problem for it is

min
(v,π)∈A0

E
[(

(ST∧τ −K(z))+ − VT
)+]

. (4.43)

Föllmer and Leukert (2000) studied the efficient hedging problem for general European claims.

According to their results, if a random variable ϕ′ ∈ R solves

max
ϕ∈R

E
[
ϕ
(
ST∧τ −K(z)

)+]
, (4.44)

where R = {ϕ : Ω→ [0, 1]| FT −measurable, sup
P̃∈P∗

EP̃ ((ST∧τ −K(z))+ϕ) ≤ v0}, then the optimal

hedging strategy π is obtained from the optional decomposition of the modified claim

ϕ′(ST∧τ −K(z))+.

In summary, the problem of finding the optimal CVaR hedging strategy of a call option in the

market (4.5) can be solved in three steps:
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1) For a fixed z ∈ [0, z∗], derive the optimal randomized test ϕ′(z) for (4.44), in particular,

ϕ′(z∗) = 1;

2) Derive the point of minimum ẑ of the function

d1(z) = z +
1

1− α
· E
[
(ST∧τ −K(z))+(1− ϕ′(z))

]
,

on the interval [0, z∗];

3) The optimal hedging strategy is given by optional decomposition (4.19) of the modified

claim H(ẑ)ϕ′(ẑ).

Usually it is hard to provide an explicit form of the randomized test ϕ′(z) in incomplete

markets. However, in our case

sup
P̃∈P∗

EP̃
(
ϕ(ST∧τ −K)+

)
= sup

P̃∈P∗
EP̃
(
ϕ(ST −K(z))+I{τ>T}

)
= sup

P̃∈P∗
E
(
ZP̃T ϕ(ST −K(z))+I{τ>T}

)
= E

(
exp

(
− µ

σ
WT −

1

2
(
µ

σ
)2T
)
ϕ(ST −K(z))+I{τ>T}

)
= E∗

(
ϕ(ST −K(z))+I{τ>T}

)
= E∗

(
ϕ(ST∧τ −K(z))+

)
,

and hence R can be rewritten as

R = {ϕ : Ω→ [0, 1]| FT −measurable, E∗[(ST∧τ −K(z))+ϕ
]
≤ v0}.

The problem (4.44) becomes a problem of finding the optimal randomized test of a simple

hypothesis. Such an optimal randomized test ϕ′(z) can be derived with the help of the classical

Neyman-Pearson lemma (see Föllmer and Leukert 2000) and again is given by (4.28)-(4.30) with

(H − z)+ = (ST∧τ −K(z))+ and ZMT = Z∗T defined by (4.2).

Theorem 4.6. A. Consider an European call option (ST∧τ −K)+ in the modified Bachelier

market (4.5). Under an initial capital constraint v0 < VMB
0 , the optimal CVaR hedging strategy is

given by the optional decomposition of the modified claim (ST∧τ −K(ẑ))+I{ST>b̃(ẑ)}, where, for a
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fixed z ∈ [0, z∗), b̃(z) is the unique solution of the the equation E∗
[
(ST∧τ −K(z))+I{ST>b}

]
= v0,

i.e.,

(
S0 −K(z)

)
Φ(
S0 − b
σ
√
T

) +
(
S0 +K(z)

)
Φ(
−S0 − b
σ
√
T

) + σ
√
T
[
φ(
S0 − b
σ
√
T

)− φ(
S0 + b

σ
√
T

)
]

= v0, (4.45)

that satisfies b̃(z) ≥ K(z) and ẑ is the solution of

min
z∈[0,z∗]

d1(z) =

 z + 1
1−ακ2(z), 0 ≤ z < z∗,

z∗, z = z∗,
(4.46)

where κ2(z) = E
[
(ST∧τ −K(z))+I{ST≤b̃(z)}

]
that is

κ2(z) =
(
S0 + µT −K(z)

)[
Φ(
b̃(z)− S0 − µT

σ
√
T

)− Φ(
K(z)− S0 − µT

σ
√
T

)
]

+ σ
√
T
[
φ(
K(z)− S0 − µT

σ
√
T

)− φ(
b̃(z)− S0 − µT

σ
√
T

)
]

+ (S0 − µT +K(z)) exp(−2S0µ

σ2
)
[
Φ(
b̃(z) + S0 − µT

σ
√
T

)− Φ(
K(z) + S0 − µT

σ
√
T

)
]

− σ
√
T exp(−2S0µ

σ2
)
[
φ(
K(z) + S0 − µT

σ
√
T

)− φ(
b̃(z) + S0 − µT

σ
√
T

)
]
. (4.47)

And d1(ẑ) is the value of the minimal CVaR.

The parameter z∗ is the root of the equation sup
P̃∈P∗

EP̃
[
(ST∧τ −K(z))+

]
= v0, i.e.,

(
S0 −K(z)

)
Φ(
S0 −K(z)

σ
√
T

) +
(
S0 +K(z)

)
Φ(
−S0 −K(z)

σ
√
T

)

+ σ
√
T
[
φ(
S0 −K(z)

σ
√
T

)− φ(
S0 +K(z)

σ
√
T

)
]

= v0. (4.48)

In particular, b̃(z∗) = −∞.

B. The value of the optimal CVaR hedging portfolio at time t < T is

Ṽt =



(
St −K(ẑ)

)
Φ( St−b̃(ẑ)

σ
√

(T−t)
) +

(
St +K(ẑ)

)
Φ(− St+b̃(ẑ)

σ
√

(T−t)
)

+σ
√

(T − t)
[
φ( b̃(ẑ)−St

σ
√

(T−t)
)− φ( St+b̃(ẑ)

σ
√

(T−t)
)
]
, t ∈ [0, τ ∧ T );

0, t ∈ [τ, T ).

(4.49)
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Moreover, weights in the hedging portfolio satisfy

π̃0
t =



K(ẑ)
[
Φ(− St+b̃(ẑ)

σ
√

(T−t)
)− Φ( St−b̃(ẑ)

σ
√

(T−t)
)
]

+σ
√

(T − t)
[
φ( b̃(ẑ)−St

σ
√

(T−t)
)− φ( St+b̃(ẑ)

σ
√

(T−t)
)
]

−St
(
b̃(ẑ)−K(ẑ)

)
σ
√

(T−t)

[
φ( St−b̃(ẑ)

σ
√

(T−t)
) + φ( St+b̃(ẑ)

σ
√

(T−t)
)
]
, t ∈ [0, τ ∧ T );

0, t ∈ [τ, T ).

(4.50)

π̃1
t =


Φ( St−b̃(ẑ)

σ
√

(T−t)
) + Φ(−St−b̃(ẑ)

σ
√

(T−t)
)

+ b̃(ẑ)−K(ẑ)

σ
√

(T−t)

[
φ( St−b̃(ẑ)

σ
√

(T−t)
) + φ( St+b̃(ẑ)

σ
√

(T−t)
)
]
, t ∈ [0, τ ∧ T );

0, t ∈ [τ, T ).

(4.51)

Proof. Similar to the discussion in the proof of Theorem 4.5, for a fixed 0 ≤ z < z∗, if b < K(z),

we have

E∗
(
(ST∧τ −K(z))+I{ dP

dP∗>a}
)

= E∗
(
(ST∧τ −K(z))+I{ST>b}

)
= E∗

(
(ST −K(z))I{ST>b}I{ST>K(z)}I{τ>T}

)
= E∗

(
(ST −K(z))I{ST>K(z)}I{τ>T}

)
= E∗

(
(ST∧τ −K(z))+

)
> E∗

(
(ST∧τ −K(z∗))+

)
= v0.

Thus, the root of the equation E∗
(
I{ST>b}(ST∧τ −K(z))+) = v0 is in the interval [K(z),∞).
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In addition, E∗
(
I{ST>b}(ST∧τ −K(z))+) can be calculated as

E∗
(
I{ST>b}(ST∧τ −K(z))+) = E∗

[
(ST −K(z))I{ST>b}I{τ>T}

]
= E∗

[
(S0 + σW ∗T −K(z))I{S0+σW ∗T>b}I{τ>T}

]
=
(
S0 −K(z)

)
P ∗
(
S0 + σW ∗T > b, min

0≤t≤T
S0 + σW ∗t > 0

)
+ σE∗

(
W ∗T I{S0+σW ∗T>b}I{ min

0≤t≤T
S0+σW ∗t >0}

)
=
(
S0 −K(z)

) ∫ ∞
b−S0
σ

∫ 0∧x

−S0
σ

2(x− 2y)

T
√

2πT
e−

(2y−x)2
2T dydx

+ σ

∫ ∞
b−S0
σ

x

∫ 0∧x

−S0
σ

2(x− 2y)

T
√

2πT
e−

(2y−x)2
2T dydx

=
(
S0 −K(z)

) ∫ ∞
b−S0
σ

1√
2πT

(
e−

x2

2T − e−
(x+

2S0
σ )2

2T

)
dx

+ σ

∫ ∞
b−S0
σ

x
1√
2πT

(
e−

x2

2T − e−
(x+

2S0
σ )2

2T

)
dx

=
(
S0 −K(z)

)
Φ(
S0 − b
σ
√
T

) +
(
S0 +K(z)

)
Φ(−S0 + b

σ
√
T

)

+ σ
√
T
[
φ(
b− S0

σ
√
T

)− φ(
S0 + b

σ
√
T

)
]
,

where we apply the joint density of a driftless Brownian motion and its minimum (see, Privault

2014):

fW ∗T , min
0≤t≤T

W ∗t

(
x, y
)

= I{x≥y}I{y≤0}
2(x− 2y)

T
√

2πT
exp

{
− (2y − x)2

2T

}
.

Therefore, b̃(z) is the solution of the equation (4.45).
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As for E
(
(ST∧τ −K(z))+(1− ϕ′(z))

)
= E

(
(ST∧τ −K(z))+I{ST≤b̃(z)}

)
, we have

E
(
(ST∧τ −K(z))+I{ST≤b̃(z)}

)
= E((ST −K(z))+I{τ>T}I{ST≤b̃(z)})

= E
[
(ST −K(z))I{τ>T}I{K(z)<ST≤b̃(z)}

]
= E

[
(S0 + µT + σWT −K(z))I

{K(z)−S0
σ

<µ
σ
T+WT≤

b̃(z)−S0
σ

}
I{ min

0≤t≤T
S0+µt+σWt>0}

]
=
(
S0 −K(z)

)
P
(K(z)− S0

σ
< W ∗T ≤

b̃(z)− S0

σ
, min

0≤t≤T
W ∗t > −

S0

σ

)
+ σE

(
W ∗T I{K(z)−S0

σ
<W ∗T≤

b̃(z)−S0
σ

}
I{ min

0≤t≤T
W ∗t >−

S0
σ
}
)

=
(
S0 + µT −K(z)

)[
Φ(
b̃(z)− S0 − µT

σ
√
T

)− Φ(
K(z)− S0 − µT

σ
√
T

)
]

+
(
S0 − µT +K(z)

)
exp(−2S0µ

σ2
)
[
Φ(
b̃(z) + S0 − µT

σ
√
T

)− Φ(
K(z) + S0 − µT

σ
√
T

)
]

− σ
√
T exp(−2S0µ

σ2
)
[
φ(
K(z) + S0 − µT

σ
√
T

)− φ(
b̃(z) + S0 − µT

σ
√
T

)
]

+ σ
√
T
[
φ(
K(z)− S0 − µT

σ
√
T

)− φ(
b̃(z)− S0 − µT

σ
√
T

)
]
,

where in the last equation we utilize the joint density of a drifted Brownian motion with mean µ
σ t

and its minimum (see, Privault 2014):

fW ∗T , min
0≤t≤T

W ∗t

(
x, y
)

= I{x≥y}I{y≤0}
2(x− 2y)

T
√

2πT
exp

{
− (

µ

σ
)2T

2
+
µ

σ
x− (2y − x)2

2T

}
.

Thus, the function d1(z) admits the form (4.46).

Also, according to Theorem 4.1, we know that

sup
P̃∈P∗

EP̃ ((ST∧τ −K(z))+) = E∗((ST∧τ −K(z))+)

= (S0 −K(z))Φ(
S0 −K(z)

σ
√
T

) + σ
√
Tφ(

S0 −K(z)

σ
√
T

)

− (−S0 −K(z))Φ(
−S0 −K(z)

σ
√
T

)− σ
√
Tφ(
−S0 −K(z)

σ
√
T

)

= (S0 −K(z))Φ(
S0 −K(z)

σ
√
T

) + (S0 +K(z))Φ(
−S0 −K(z)

σ
√
T

)

+ σ
√
T
[
φ(
S0 −K(z)

σ
√
T

)− φ(
S0 +K(z)

σ
√
T

)
]
,

and thus z∗ is the root of the equation (4.48).
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As for the value of CVaR hedging strategy at time t < T , we have, for any P̃ ∈ P∗,

EP̃
(
(ST −K(ẑ))I{ST>b̃(ẑ)}I{τ>T}|Ft

)
=
E
(
Z̃T (ST −K(ẑ))I{ST>b̃(ẑ)}I{τ>T}|Ft

)
Z̃t

=
E
(
Z̃T (ST −K(ẑ))I{ST>b̃(ẑ)}I{τ>T}|Ft

)
I{τ>t}

Z̃t

=
E
(
Z∗T (ST −K(ẑ))I{ST>b̃(ẑ)}I{τ>T}|Ft

)
I{τ>t}

Z∗t

= E∗
(
(ST −K(ẑ))I{ST>b̃(ẑ)}I{τ>T}|Ft

)
I{τ>t}

= E∗
(
(ST −K(ẑ))I{ST>b̃(ẑ)}I{τ>T}|Ft

)
.

Therefore, the arbitrage free value of the modified claim is unique and hence it can be

replicated, i.e., ∃π̃ and a consumption process Ct = 0, ∀t ∈ [0, T ], such that

Ut = E∗
(
(ST −K(ẑ))I{ST>b̃(ẑ)}I{τ>T}|Ft

)
= π̃0

t + π̃1
t St∧τ = Ṽt,

and

dṼt = π̃1
t dSt∧τ = π̃1

t I{τ≥t}dSt.
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In addition, by some calculations, we have

E∗
(
(ST −K(ẑ))I{ST>b̃(ẑ)}I{τ>T}|Ft

)
= E∗

[
(St + σ(W ∗T −W ∗t )−K(ẑ))I{St+σ(W ∗T−W

∗
t )>b̃(ẑ)}I{ min

s∈[0,T ]
Ss>0}|Ft

]
= E∗

[
(St + σ(W ∗T −W ∗t )−K(ẑ))I{St+σ(W ∗T−W

∗
t )>b̃(ẑ)}I{ min

s∈[0,t]
Ss>0}I{ min

s∈[t,T ]
Ss>0}|Ft

]
= E∗

[
(St + σW ∗T−t −K(ẑ))I{St+σW ∗T−t>b̃(ẑ)}

I{ min
s∈[t,T ]

σW ∗s−t>−St}
]
I{τ>t}

=

[(
St −K(ẑ)

) ∫ ∞
b̃(ẑ)−St

σ

∫ 0∧x

−St
σ

2(x− 2y)

T
√

2π(T − t)
e
− (2y−x)2

2(T−t) dydx

+ σ

∫ ∞
b̃(ẑ)−St

σ

x

∫ 0∧x

−St
σ

2(x− 2y)

(T − t)
√

2π(T − t)
e
− (2y−x)2

2(T−t) dydx

]
I{τ>t}

=

[(
St −K(ẑ)

) ∫ ∞
b̃(ẑ)−St

σ

1√
2π(T − t)

(
e
− x2

2(T−t) − e−
(x+

2St
σ )2

2(T−t)
)
dx

+ σ

∫ ∞
b̃(ẑ)−St

σ

x
1√
2πT

(
e
− x2

2(T−t) − e−
(x+

2St
σ )2

2T

)
dx

]
I{τ>t}

=

[(
St −K(ẑ)

)
Φ(

St − b̃(ẑ)
σ
√

(T − t)
) +

(
St +K(ẑ)

)
Φ(− St + b̃(ẑ)

σ
√

(T − t)
)

+ σ
√

(T − t)
[
φ(

b̃(ẑ)− St
σ
√

(T − t)
)− φ(

St + b̃(ẑ)

σ
√

(T − t)
)
]]
I{τ>t}.

Thus, the value of the CVaR hedging strategy at time t is

Ṽt =



(
St −K(ẑ)

)
Φ( St−b̃(ẑ)

σ
√

(T−t)
) +

(
St +K(ẑ)

)
Φ(− St+b̃(ẑ)

σ
√

(T−t)
)

+σ
√

(T − t)
[
φ( b̃(ẑ)−St

σ
√

(T−t)
)− φ( St+b̃(ẑ)

σ
√

(T−t)
)
]
, t ∈ [0, τ ∧ T );

0, t ∈ [τ, T ).
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For t < τ , unites of the stock in the hedging portfolio are

π̃1
t =

dṼt
dS

= Φ(
St − b̃(ẑ)
σ
√

(T − t)
) + Φ(

−St − b̃(ẑ)
σ
√

(T − t)
) +

St −K(ẑ)

σ
√

(T − t)
φ(

St − b̃(ẑ)
σ
√

(T − t)
)

− St +K(ẑ)

σ
√

(T − t)
φ(

St + b̃(ẑ)

σ
√

(T − t)
)− St − b̃(ẑ)

σ
√

(T − t)
φ(

St − b̃(ẑ)
σ
√

(T − t)
)

+
St + b̃(ẑ)

σ
√

(T − t)
φ(

St + b̃(ẑ)

σ
√

(T − t)
)

= Φ(
St − b̃(ẑ)
σ
√

(T − t)
) + Φ(

−St − b̃(ẑ)
σ
√

(T − t)
)

+
b̃(ẑ)−K(ẑ)

σ
√

(T − t)
[
φ(

St − b̃(ẑ)
σ
√

(T − t)
) + φ(

St + b̃(ẑ)

σ
√

(T − t)
)
]
,

and values of the riskless asset in the portfolio are given by

π̃0
t = Ṽt − π̃1

t St.

Meanwhile, for τ ≤ t, the option is worthless and hence it is hedged with a void strategy, i.e.,

π̃0
t = 0, π̃1

t = 0.

�

4.6 Illustrative numerical examples

In this section, numerical examples are provided to compare models (4.1), (4.3), (4.5) in aspects of

perfect option pricing as well as CVaR based partial hedging.

We assume models (4.1), (4.3), (4.5) with following parameters:

S0 = 100, µBSS0 = µ = 4.

As we have mentioned in Section 4.2, σ directly affects the property of the stopping time τ ,

and thus in the following, we would assume different levels of the volatility σ and the time to

maturity T to investigate their impacts. Through the rest of this chapter, we assume σBSS0 = σ

and K = S0.
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Table 4.1 Fair prices of at-the-money call options in the standard Bachelier model, the

Black-Scholes model and the modified Bachelier model.

Bahelier Modified Bachelier Black-Scholes difference difference

(1) (2) (3) (1)-(3) (2)-(3)

T=1/12 σ=2.4 0.2764 0.2764 0.2764 5.5279·10−7 5.5279·10−7

T=10 σ=2.4 3.0278 3.0278 3.0270 7.2651·10−4 7.2651·10−4

T=1/12 σ=10 1.1516 1.1516 1.1516 3.9986·10−5 3.9986·10−5

T=10 σ=10 12.6157 12.6157 12.5633 0.0524 0.0524

T=1/12 σ=30 3.4549 3.4549 3.4539 0.0011 0.0011

T=10 σ=30 37.8470 37.2471 36.4744 1.3726 0.7727

Table 4.1 lists perfect hedging costs of call options in those three models. It is observed that

for small values of σ and T , both V B
0 − V BS

0 and VMB
0 − V BS

0 are negligible. This conclusion is

consistent with the result in Schachermayer and Teichmann (2008) which has indicated that the

Bachelier option pricing formula (4.16) coincides closely with the Black-Scholes formula (4.17) if

σBS
√
T is small. Moreover, the Bachelier price V B

0 and the price in the modified Bachelier model

VMB
0 are the same. This is because for such small σ and T , the possibility that the stock price

would attach zero is extremely low. However, as σ and T increase, both V B
0 − V BS

0 and

VMB
0 − V BS

0 become noticeable and such differences are smaller between the modified Bachelier

model and the Black-Scholes model, which is supported by the Theorem 4.3. Meanwhile, in this

case, VMB
0 is lower than V B

0 , since even if the stock price hits zero, it still can bounce back in the

standard Bachelier model, while in the modified Bachelier market, once the stock price hits 0, it

stays there forever, which lowers the probability of payouts.

Moreover, Figure 4.1 displays prices of at-the-money call options as functions of σBS
√
T in

those three models and Figure 4.2 shows differences between V B
0 and V BS

0 as well as differences

between VMB
0 and V BS

0 as functions of σBS
√
T . Again, they satisfy the relation

|VMB
0 − V BS

0 | ≤ |V B
0 − V BS

0 |. Meanwhile, according to the equation (4.23), V B
0 is always lower
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Figure 4.1 Comparison through fair price.

Figure 4.2 Difference between fair prices.

106



Figure 4.3 Minimal CVaR for varying levels of initial wealth T = 10, σ = 10.

Figure 4.4 Difference between the minimal CVaR in the Bachelier model and the modified
Bachelier model.
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than V BS
0 , however, as the Figure 4.2 shows, VMB

0 can be lower than or higher than V BS
0

depending on the size of σBS
√
T . When it is large, we have the relation VMB

0 < V BS
0 , which is

because of the high chance that the payoff in the modified Bachelier model is 0. Here, we only

show the part σBS
√
T ≤ 2 that is the usual case in reality.

Furthermore, let us compare models (4.1), (4.3), (4.5) through the CVaR partial hedging. For

fixed α = 0.95, T = 10, and σ = 10, Figure 4.3 displays the minimal CVaR for different initial

wealth (as a fraction of the fair price) in those three models. It is observed that the minimal CVaR

is larger in the Black-Scholes model. In order to compare the standard and the modified Bachelier

model more clearly, we display the difference between minimal CVaR in those two models in

Figure 4.4. Assume T = 10, for a small σ (σ = 10), minimal values of CVaR are the same in those

two models. But, when σ is large (σ = 30), the minimal CVaR is smaller in the standard Bachelier

model if the same fraction of the initial wealth is allocated. The smaller value of the optimal CVaR

can be explained by the fact that the fair price in the modified Bachelier model is lower than that

in the standard Bachelier model (for σ = 30, T=10, we have VMB
0 = 37.24, V B

0 = 37.84), and thus

the initial hedging capital is higher in the later model. On the other hand, if the same amount of

initial capital is invested, for example v0 = 28, the minimal CVaR in the standard Bachelier model

is 21.6580 and it is larger than that in the modified Bachelier model which is 20.8808.

4.7 Conclusion

The drawback of the standard Bachelier model is that stock prices can take negative values. The

Black-Scholes model overcomes such a shortcoming due to its exponential property. Our main

objective of this part is to provide two additional modifications and compare those models from

points of view of the perfect hedging price as well as the CVaR hedging strategy. The first

modified model is the one with absorption and another one is the model with reflection. However,

there is no an equivalent martingale measure in the market model with reflection and thus we only

focus on the standard Bachelier model, the Black-Scholes model and the modified Bachelier model

with absorption. Comparisons of at-the-money call options’ fair prices among those three models
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are implemented. Results indicate that when the volatility and the time to maturity are small, fair

prices in those three models are quite close, while as the volatility and the time to maturity

increase, differences among them are no longer negligible. An important finding is that differences

of prices between the standard Bachelier model and the Black-Scholes model are larger than that

between the modified Bachelier model and the Black-Scholes model. Moreover, the partial hedging

problem is also investigated in this paper by employing a coherent risk measure called CVaR.

Explicit forms of the optimal CVaR hedging strategy are provided with the help of the

Neyman-Pearson Lemma and conclusions in Melnikov and Smirnov (2012).

For future research, one can extend approaches in this chapter to modify the class of Levy

processes which gain attentions in the last two decades and are exploited in Mathematical Finance

to model stock prices in the form of their exponent (see, for instance, Cont and Tankov 2004).
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CHAPTER 5

On RVaR based optimal partial hedging

5.1 Introduction

Control of risk is a main and permanent research topic of modern mathematical finance. It gives a

perfect motivation for theoretical developments and is vitally important for practice. According to

the option pricing theory, any contingent claim can be hedged perfectly if the initial wealth is no

less than the fair price of the claim in complete markets or if it is no less than the minimal

superhedging costs in incomplete markets. However, perfect hedging costs are usually too high to

be of practical interest in most cases and that is why the partial hedging comes out. During such

hedging processes, investors allocate initial capitals less than perfect hedging costs and would like

to construct strategies that minimize their shortfall under certain risk measures. Another reason

that makes the partial hedging interesting is that although it has some downside risk, it brings

opportunities to gain benefits. Some financial institutions such as insurance companies indeed

exploit risk to make profits. Föllmer and Leukert are pioneers in the filed of optimal partial

hedging. They studied quantile hedging (see Föllmer and Leukert 1999) and efficient hedging (see

Föllmer and Leukert 2000) in seimimartingale financial market models. Moreover, partial hedging

problems have been discussed in more sophisticated markets. For example, Spivak and Cvitanić

(1999) investigated quantile hedging in markets with partial information and in markets with large

investors. Nakano (2011) solved problems of optimal quantile hedging and efficient hedging with

linear loss functions for claims with a single default time. The book of Melnikov and Nosrati
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(2017) discussed several partial hedging methods and their applications in pricing and hedging of

insurance contracts.

One important component that investors need to consider when they construct a partial

hedging is the risk criterion employed. The theory of risk measures was discussed in Artzner et al.

(1999) and was applied to pricing and hedging of contingent claims by Xu (2006), where the

associated optimal portfolio is determined by minimizing a convex measure of risk. We also note

some other works: Bernard et al. (2015) for Law-Invariance risk measures, Madan and Schoutens

(2016) for risk measures generated by distortion functions. In financial institutions, Value-at-risk

(VaR) and Conditional Value-at-Risk (CVaR) are most commonly used risk measures and there is

a long list of references regarding them. For instance, Melnikov and Smirnov (2012) studied

partial hedging with the measure CVaR where the semi-explicit solution of the optimal CVaR

hedging problem in complete markets was given. Cong et al. (2013) discussed VaR based optimal

hedging while, in Cong et al. (2014), the CVaR based optimal hedging problem was solved without

the restriction regarding the completeness of markets. In this part, we would like to implement a

more general tail risk measure named Range Value-at-Risk (RVaR) which was applied to hedging

problems by Cont et al. (2010) and Embrechts et al. (2018). Such a measure includes VaR and

CVaR as two limiting cases and hence it provides insights into connections between these two

other measures and it is more customized since investors can set their risk appetite by choosing

two risk level parameters α as well as β. Meanwhile, Cont et al. (2010) have indicated that a risk

measure can not be both robust and coherent, but RVaR constitutes a tradeoff between the

sensitivity of CVaR and the robustness of VaR nonetheless.

The main objective of this chapter is to derive an optimal hedging strategy that minimizes the

RVaR of a hedger’s risk exposure subject to an initial wealth constraint and compare it with VaR

and CVaR based optimal hedging strategies to investigate relationships among them. Similar to

the procedure in Cong et al. (2013) and Cong et al. (2014), the optimization problem is solved in

two steps. First, we search for an optimal partition between the hedged loss which is the part to

be hedged with the initial capital and the retained loss that can not be hedged. Then, a hedging
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strategy of the hedged loss should be constructed. It is worth to emphasize that the method in

this chapter can be applied to any arbitrage free market even if it is incomplete and hence our

methodology has some advantages since as was mentioned in Föllmer and Leukert (1999) that

deriving explicit solutions of optimal partial hedging in incomplete markets was extremely hard.

In addition, the structure of our optimal partial hedging is independent of the dynamic of the

underlying asset and such a strategy can be easily derived even though the financial model is

complex. Furthermore, as an application, we construct optimal RVaR hedging strategies of life

insurance contracts in Mixed Fractional Brownian motion (MFBM) markets which have the

property of a long-range dependence. Melnikov and Mishura (2011) investigated the quantile

hedging problem in such markets and pointed out that explicit solutions of partial hedging

problems were rather difficult to be derived because of the complicated structure of the martingale

measure. Such a difficulty is overcome by our method. In our opinion, MFBM markets are not

used yet in Equity-linked life insurance, but they may bring better modelling and pricing

properties in actuarial calculations.

The rest of the chapter is organized as follows. In Section 5.2, we provide the definition of

RVaR and introduce some properties of it . In Section 5.3, we begin with the formalization of our

RVaR based hedging problem and then we derive two explicit solutions of it depending on the size

of the initial wealth. Most importantly, in Section 5.3.2, we show that VaR based hedging and

CVaR based hedging can be seen as two special cases of RVaR hedging. In Section 5.4, a

numerical example is provided to explain our method and to describe how it can be implemented

to hedge life insurance contracts in sophisticated markets. Section 5.5 concludes the chapter.

5.2 Range Value-at-Risk

Let (Ω,F , P ) be an probability space and S be the set of real-valued random variables denoting

loss amounts (a negative value represents gains). A risk measure ρ(x) is a mapping from S to R.

For instance, VaR and CVaR are commonly used risk measures in the financial industry which are

defined as
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V aRα(L) = inf{v ∈ R : P (L > v) ≤ 1− α}, (5.1)

and

CV aRα(L) =
1

1− α

∫ 1

α
V aRs(L)ds, (5.2)

where α ∈ (0, 1) is the risk level and the random variable L ∈ S.

In this chapter, we would like to investigate a measure called Range Value-at-Risk (RVaR)

that can be seen as a bridge between VaR and CVaR.

The RVaR at the level (α, β) such that 0 < α ≤ α+ β < 1 is defined as

RV aRα,β(L) =

{ 1
β

∫ α+β
α V aRs(L)ds, if β > 0,

V aRα(L), if β = 0,
(5.3)

which is the average value of VaR among specific risk levels [α, α+ β].

As we have introduced in Section 1.2, a risk measure is called coherent if it satisfies

Monotonicity (1.1), Positively homogeneity (1.2), Subadditivity (1.4) and Translation

invariance (1.5). CVaR is a coherent risk measure, however, Embrechts et al. (2018) have proved

that both VaR and RVaR only satisfy monotonicity, positively homogeneity and translation

invariance while they do not satisfy subadditivity. Instead, for all L1, L2 ∈ S, the following

inequalities hold true:

V aRα1+α2(L1 + L2) ≤ V aRα1(L1) + V aRα2(L2), (5.4)

RV aRα̃+β̃(L1 + L2) ≤ RV aRα1,β1(L1) +RV aRα2,β2(L2), (5.5)

where α̃ = α1 + α2 and β̃ = max{β1, β2}. (5.4) and (5.5) are called the special form of

subadditivity.

Desired properties of RVaR are that it is robust and it is a general tail risk measure which

includes VaR as well as CVaR as two limiting cases, i.e.,

RV aRα,0(L) = V aRα(L) = lim
β→0+

RV aRα,β(L), (5.6)

RV aRα,1−α(L) = CV aRα(L). (5.7)

114



Additionally, all three measures belong to a wide class of distortion risk measures, such that

ρ(L) =

∫ 1

0
V aRs(L)dh(s), (5.8)

where h(s) called a distortion function is a non-decreasing and left-continuous function from [0, 1]

to [0, 1] satisfying h(0) = 0 and h(1) = 1. Specifically, for α ∈ (0, 1), β ∈ [0, 1), the distortion

function of RV aRα,β is

hα,β(s) =

{
min

{
I{s>α}

s−α
β , 1

}
, if β > 0,

I{s>α}, if β = 0.
(5.9)

As we know that while VaR and CVaR have some common properties, they are still quite

different and consequently investigating RVaR which is a bridge between them helps us to

understand their connections and to gain a more integrated picture regarding risk criteria.

5.3 Optimal RVaR based hedging and connection with CVaR and

VaR hedging

5.3.1 Optimal RVaR based hedging

Assume that a financial market is arbitrage free but does not have to be complete. In this case,

arbitrage free price of a claim may not be unique and a popular option pricing approach in

incomplete markets is the utility based indifference pricing (UBIP). The idea behind this pricing

method is that all investors’ risk appetite can be fully described by an utility function and all

investors are presumed to maximize their expected utility of wealth. Then, the utility based

indifference price of a claim is the amount that makes no difference to investors’ expected utility

no matter whether they include the claim into their portfolio or not. One important property of

utility based indifference price is that it does not depend on the completeness of the market and in

the special case that a market is complete, it coincides with the fair price of that claim (see

Henderson and Hobson 2009 for more properties regarding UBIP).

Suppose a hedger is exposed to a future obligation X at time T . Option pricing theorem

points out that a claim can be hedged perfectly if the initial hedging capital is no less than its

115



minimal super-hedging price (or fair price in complete markets). However, if the initial hedging

capital ṽ0 is not enough, the hedger is exposed to some downside risk. The main goal of this part

is to find an optimal hedging strategy that achieves the minimal risk under the measure RVaR

subject to an initial wealth constraint.

We start with a partition of the contingent claim X such that X = f(X) +Rf (X). f(X)

named hedged loss function represents the part that would be hedged with the initial capital ṽ0

and Rf (X) called the retained loss function is the payout the hedger retains. Thus, the problem of

optimal hedging can be solved in two steps: first, find the optimal partition f∗(X), Rf∗(X)

satisfying the initial capital constraint and some assumptions regarding hedged loss functions;

second, hedge the payout f∗(X) perfectly. Cong et al. (2013, 2014) considered VaR and CVaR

hedging problems with some restrictive assumptions regarding the hedged loss functions.

Assumptions they imposed are

(a) Not globally over-hedged: f(x) ≤ x for all x ≥ 0;

(b) Not locally over-hedged: f(x2)− f(x1) ≤ x2 − x1 for all 0 ≤ x1 ≤ x2;

(c) Nonnegativity of the hedged loss: f(x) ≥ 0 for all x ≥ 0.

Assumption (a) ensures that the hedged loss would be bounded from above by the original risk

to be hedged. Assumption (b) indicates that the increment of the hedged part should be no more

than the increment of the risk itself. Although adding the assumption (b) makes hedged loss

functions less general, it indeed brings advantages. For instance, as we will show later, the

resulting optimal hedged loss function does not depend on the underlying market model if we have

the assumption (b). Assumption (c) is commonly imposed that ensures hedging strategies take

positive values and Cong et al. (2014) mentioned that without the assumption (c) the optimal

partial hedging problem might be ill-posed.

Hence, the admissible set D of the hedged loss function is represented as

D =
{

0 ≤ f(x) ≤ x : Rf (x) = x− f(x) (5.10)

is a non-decreasing and left continuous function
}
.

116



Based on the above considerations, the RVaR hedging problem in our setting is

{ min
f∈D

RV aRα,β(Rf (X)),

s.t Π
(
f(X)

)
≤ ṽ0 < Π

(
X
)
,

(5.11)

where Π(X) denotes the utility indifference price of X at time 0.

Depending on the size of the initial capital ṽ0, we represent optimal hedged loss functions of

the problem (5.11) in Theorem 5.1 and Theorem 5.4 correspondingly.

Theorem 5.1. If Π
(
XI{X≤V aRα+β(X)}

)
≤ ṽ0, the optimal hedged loss function satisfies

f∗(x) = xI{x≤vα+β}, (5.12)

where vα+β = V aRα+β(X).

Moreover, the minimal value of RVaR is zero, i.e.,

RV aRα,β(Rf∗(X)) = 0.

Proof. For f∗(x) defined as (5.12) , the retained loss function is

Rf∗(x) = x− f∗(x) = x− xI{x≤vα+β} = xI{x>vα+β},

which is non-decreasing and left continuous regarding to x and hence the hedged loss function

f∗(x) ∈ D and f∗(X) satisfies the wealth constraint.

Notice that, for any s ≤ α+ β, we have

P
(
XI{X>vα+β} > 0

)
≤ P

(
X > vα+β

)
≤
(
1− (α+ β)

)
≤ 1− s,

and consequently, we get

V aRs

(
XI{X>vα+β}

)
= 0, ∀s ≤ α+ β,

which implies

RV aRα,β
(
Rf∗(X)

)
= RV aRα,β

(
XI{X>vα+β}

)
=

1

β

∫ α+β

α
V aRs

(
XI{X>vα+β}

)
ds

= 0.
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Furthermore, for any f ∈ D, we have RV aRα+β

(
Rf (X)

)
≥ 0 = RV aRα+β

(
Rf∗(X)

)
and hence

we conclude that f∗ is the optimal hedged loss function. �

Let us now consider the second case: ṽ0 < Π
(
XI{X≤V aRα+β(X)}

)
. To begin with, we need to

recall the definition of stop loss ordering between two random variables X1 and X2:

Suppose X1 and X2 are two random variables with finite means under a probability measure

P . We say X1 is smaller than X2 in stop-loss order under P , if

E
(
(X1 −m)+

)
≤ E

(
(X2 −m)+

)
, ∀m ∈ R. (5.13)

Such a relationship is denoted as X1 ≤Psl X2.

Lemma 5.2. For a given random variable X and any function f ∈ D, let

gf (x) = min
{

(x− d)+, ū
}
I{x≤vα+β}, (5.14)

where vα = V aRα(X), d = vα − f(vα) and ū is chosen such that

RV aRα,β(Rf (X)) = RV aRα,β(Rgf (X)). (5.15)

Then, we have

1) gf is well defined and gf ∈ D;

2) gf (X) is smaller than f(X) in stop-loss order under the measure P , i.e., gf (X) ≤Psl f(X).

Proof. First of all, we note that RV aRα,β(Rgf (X)) is continuous and non-increasing as a function

of ū and for ū = 0, we have

Rgf (X) = X ≥ Rf (X).

Thereby, the following inequality holds:

RV aRα,β
(
Rgf (X)

)
≥ RV aRα,β

(
Rf (X)

)
.

Moreover, for ū = vα+β + f(vα)− vα, we get

(x− d)+I{x≤vα+β} ≤ (vα+β − d)+ = ū, (5.16)
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which implies

gf (x) = (x− d)+I{x≤vα+β}.

In this case, we have following inequalities

RV aRα,β
(
Rgf (X)

)
= RV aRα,β

(
X − (X − d)+I{x≤vα+β}

)
= RV aRα,β

(
(X − (X − d)+)I{X≤vα+β} +XI{X>vα+β}

)
≤ RV aR0,β

(
(X − (X − d)+)I{X≤vα+β}

)
+RV aRα,β

(
XI{X>vα+β}

)
= RV aR0,β

(
min{X, d}I{X≤vα+β}

)
≤ d, (5.17)

where the first inequality is due to (5.5) and the last inequality is because of the monotonicity of

RVaR.

On the other hand, since Rf (x) is nondecreasing and left continuous regarding to x, by

Theorem 1 in Dhaene et al. (2002), we have Rf (V aRα(X)) = V aRα(Rf (X)) and hence

RV aRα,β
(
Rf (H)

)
≥ V aRα(Rf (X)) = Rf (V aRα(X))

= V aRα(X)− f(V aRα(X))

= d. (5.18)

Combining (5.17) and (5.18), we arrive to RV aRα,β
(
Rf (X)

)
≥ RV aRα,β

(
Rgf (X)

)
when

ū = vα+β − d and hence there is a ū ∈ [0, vα+β − d] that solves the equation

RV aRα,β(Rf (X)) = RV aRα,β(Rgf (X)).

Meanwhile, by the definition of gf (x), Rgf (x) is non-decreasing and left continuous as a

function of x and therefore we have proved gf (x) ∈ D.

In order to show that gf (X) ≤Psl f(X), let us introduce a new random variable uβα that is

uniformly distributed on [α, α+ β] and is independent of all other random variables involved in

this chapter.

If

gf
(
V aR

uβα
(X)

)
≤Psl f

(
V aR

uβα
(X)

)
, (5.19)
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holds true, we have, for any m ∈ R, that

E
[(
gf (X)−m

)+]
=

∫ 1

0

(
gf (V aRs(X))−m

)+
ds

=

∫ α

0

(
gf (V aRs(X))−m

)+
ds+

∫ α+β

α

(
gf (V aRs(X))−m

)+
ds

+

∫ 1

α+β

(
gf (V aRs(X))−m

)+
ds

=

∫ α

0

(
gf (V aRs(X))−m

)+
ds+ βE

[(
gf (V aR

uβα
(X))−m

)+]
+

∫ 1

α+β

(
−m

)+
ds

≤
∫ α

0

(
f(V aRs(X))−m

)+
ds+ βE

[(
f(V aR

uβα
(X))−m

)+]
+

∫ 1

α+β

(
f(V aRs(X))−m

)+
ds

= E
[(
f(X)−m

)+]
,

where the inequality is due to the non-decreasing property of Rf (x) which leads to

V aRs(X)− f(V aRs(X)) ≤ V aRα(X)− f(V aRα(X)),

for s ≤ α and hence

gf
(
V aRs(X)

)
≤
(
V aRs(X)− V aRα(X) + f(V aRα(X))

)+ ≤ f(V aRs(X)
)
.

Thus, in order to prove gf (X) ≤Psl f(X), it is sufficient to show (5.19).

Rolski et al. (1999) indicated that for two random variables X1 and X2 with finite means, a

sufficient condition for the stop-loss order X1 ≤Psl X2 is as follows:

(i) E(X1) ≤ E(X2), and

(ii) there exists t0 ∈ R such that P (X1 ≤ t) ≤ P (X2 ≤ t) for t < t0 while

P (X1 ≤ t) ≥ P (X2 ≤ t) for t > t0.

Let us now put that X1 = gf (V aR
uβα

(X)), X2 = f(V aR
uβα

(X)) and prove that these random

variables satisfy above two conditions.
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According to Theorem 1 in Dhaene et al. (2002), we have

RV aRα,β
(
Rf (X)

)
=

1

β

∫ α+β

α
V aRs

(
Rf (X)

)
ds

=
1

β

∫ α+β

α
Rf
(
V aRs(X)

)
ds

=
1

β

∫ α+β

α
V aRs(X)− f

(
V aRs(X)

)
ds

= RV aRα,β(X)− E
[
f
(
V aR

uβα
(X)

)]
.

Similarly, it is true that

RV aRα,β
(
Rgf (X)

)
= RV aRα,β(X)− E

[
gf
(
V aR

uβα
(X)

)]
.

Since RV aRα,β
(
Rgf (X)

)
= RV aRα,β

(
Rf (X)

)
, we conclude that

E
[
gf
(
V aR

uβα
(X)

)]
= E

[
f
(
V aR

uβα
(X)

)]
, (5.20)

which is the desired property (i).

Notice that V aR
uβα

(X) ≥ V aRα(X) and therefore we have

V aR
uβα

(X)− f(V aR
uβα

(X)) ≥ V aRα(X)− f(V aRα(X)),

which implies that, for any t < ū,

P
(
gf (V aR

uβα
(X)) ≤ t

)
= P

(
V aR

uβα
(X)− V aRα(X) + f

(
V aRα(X)

)
≤ t
)

≤ P
(
f(V aR

uβα
(X)) ≤ t

)
. (5.21)

On the other hand, for t > ū, we have

P
(
gf (V aR

uβα
(X)) ≤ t

)
= 1 ≥ P

(
f(V aR

uβα
(X)) ≤ t

)
. (5.22)

Combining (5.21) and (5.22), we arrive to the property (ii).

As a consequence, we have proved that gf (V aR
uβα

(X)) ≤Psl f(V aR
uβα

(X)) which implies

gf (X) ≤Psl f(X). �
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Remark 5.3. Let us denote u = d+ ū. Since ū ∈ [0, vα+β − d], and d = vα − f(vα) ≥ 0, we have

d ≤ u ≤ vα+β. Consequently, gf (x) can be rewritten as

gf (x) = min
{

(x− d)+, u− d
}
I{x≤vα+β}

=
[
(x− d)+ − (x− u)+

]
I{x≤vα+β}, (5.23)

where 0 ≤ d ≤ vα and d ≤ u ≤ vα+β.

According to Cong et al. (2014), the utility based indifference price preserves the stop-loss

order, i.e., Π(X1) ≤ Π(X2), if X1 ≤Psl X2 and therefore Lemma 5.2 indicates that for any f ∈ D,

there is a gf ∈ D such that

RV aRα,β
(
Rf (X)

)
= RV aRα,β

(
Rgf (X)

)
;

Π
(
gf (X)

)
≤ Π

(
f(X)

)
.

Thereby, we can focus on hedged loss functions with the form (5.23). Let us formulate another

theorem about the problem (5.11).

Theorem 5.4. If ṽ0 < Π
(
XI{X≤vα+β}

)
, the optimal hedged loss function that solves the RVaR

minimization problem (5.11) is

f∗(x) =
[
(x− d∗)+ − (x− u∗)+

]
I{x≤vα+β}, (5.24)

where (d∗, u∗) is the solution to the following 2-dimensional optimization problem

{ min
0≤d≤vα,d≤u≤vα+β

d+ 1
β

∫ α+β
α (V aRs(X)− u)+ds,

s.t. Π
([

(X − d)+ − (X − u)+
]
I{X≤vα+β}

)
≤ ṽ0.

(5.25)
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Proof. By Remark 5.3, we know that the optimal hedged loss function admits the form (5.23) and

hence the objective function in (5.11) becomes

RV aRα+β

(
Rgf (X)

)
=

1

β

∫ α+β

α
V aRs

(
Rgf (X)

)
ds

=
1

β

∫ α+β

α
Rgf

(
V aRs(X)

)
ds

=
1

β

∫ α+β

α
V aRs(X)− gf (V aRs(X))ds

=
1

β

∫ α+β

α
V aRs(X)− (V aRs(X)− d) + (V aRs(X)− u)+ds

= d+
1

β

∫ α+β

α
(V aRs(X)− u)+ds,

such that d ∈ [0, vα] and u ∈ [d, vα+β].

Hence, (5.11) is rewritten as (5.25) and Theorem 5.4 is proved. �

Theorem 5.4 shows that the optimal strategy is to long a knock-out call option on the payout

X with a strike price d∗ and a barrier vα+β while short another knock-out call option with a

higher strike price u∗ but with the same barrier. If those knock-out call options are available in

the market, our optimal partial hedging is to buy (sell) and hold those options. Otherwise, it is to

dynamically hedge those knock-out call options with the initial capital ṽ0. It is worth to mention

that both Theorem 5.1 and Theorem 5.4 indicate that the optimal strategy does not cover the

extreme loss that exceeds vα+β . This is because we only focus on the risk between levels [α, α+ β].

5.3.2 Connection among RVaR, CVaR and VaR optimal hedging

As discussed in Section 5.2, VaR and CVaR can be seen as two limiting cases of RVaR. In this

subsection, we want to discuss connections among optimal RVaR hedging, optimal VaR hedging

and optimal CVaR hedging.

By the definition of CVaR, we have

CV aRα(X) = RV aRα,1−α(X), (5.26)
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i.e., β = 1− α and hence we get

I{X≤vα+β} = 1; P − a.s.

According to (5.24), the optimal hedged loss function satisfies the form

f∗(x) =
(
(x− d)+ − (x− u)+

)
I{x≤vα+β}

= (x− d)+ − (x− u)+. (5.27)

Cong et al. (2014) considered the optimal CVaR hedging and showed the optimal hedged loss

function f∗CV aR admitted the form

f∗CV aR(x) = (x− d)+ − (x− u)+, (5.28)

which is consistent with (5.27). Therefore, the optimal CVaR hedging can be seen as a special case

of the RVaR based hedging.

As for VaR, we have

V aRα(X) = RV aRα,0(X),

i.e., β = 0. In this case, (5.23) becomes

gf (x) = min
{

(x− d)+, ū
}
I{x≤vα}.

On the one hand, we know that

RV aRα,0
(
Rf (X)

)
= V aRα

(
Rf (X)

)
= V aRα(X)− f

(
V aRα(X)

)
. (5.29)

On the other hand, we have

RV aRα,0
(
Rgf (X)

)
= V aRα

(
Rgf (X)

)
= V aRα(X)− gf

(
V aRα(X)

)
= V aRα(X)−min

{
(V aRα(X)− d)+, ū

}
= V aRα(X)−min

{
f
(
V aRα(X)

)
, ū
}
. (5.30)
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Since ū is derived from the equation

RV aRα,0
(
Rgf (X)

)
= RV aRα,0

(
Rf (X)

)
,

comparing (5.29), (5.30), we have ū ≥ f
(
V aRα(X)

)
, while, from the previous discussions, we

know ū ≤ V aRα+β(X) + f
(
V aRα(X)

)
− V aRα(X). The right hand side is f

(
V aRα(X)

)
when

β = 0, and hence ū = f
(
V aRα(X)

)
.

Meanwhile, the following relationship(
x+ f

(
V aRα(X)

)
− V aRα(X)

)+
I{x≤V aRα(X)} ≤ f

(
V aRα(X)

)
= ū,

implies that the optimal hedged loss function has the form

f∗(x) = min
{

(x− d)+, ū
}
I{x≤vα}

= (x− d)+I{x≤vα}. (5.31)

This result is consistent with the conclusion in Cong et al. (2013) that the optimal hedged loss

function f∗V aR of the VaR based hedging problem has the form

f∗V aR(x) = (x− d)+I{x≤vα}. (5.32)

and thereby the optimal VaR hedging can be seen as a special case of the RVaR hedging.

5.4 Application to equity-linked life insurance contracts

One important application of partial hedging is to deal with pricing and hedging of equity-linked

life insurance contracts. Well-known papers are Melnikov and Skornyakova (2005), Kirch and

Melnikov (2005), where authors discussed the implementation of quantile hedging and efficient

hedging in this area. In this section, we focus on the RVaR based optimal hedging of life insurance

contracts and would compare RVaR, CVaR and VaR hedging results.

Let (Ω,F , P ) be a standard probability space. Consider a financial market with a terminal

time T ∈ (0,∞) consisting two assets. One is the riskless asset

S0
t = ert, t ∈ [0, T ], (5.33)
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where r is the constant risk-free interest rate. Another one is the risky asset, (St)t∈[0,T ], described

by a Mixed Fractional Brownian motion (MFBM) model:

St = S0 exp(µt+ σ1Bt + σ2B
H
t ), S0 > 0, (5.34)

where B is a Brownian motion (BM) independent of a Fraction Brownian motion BH (FBM).

Here H is a real number in (0, 1), called the Hurst parameter. The constant µ is the drift, σ1 > 0

is the volatility of the Brownian motion B and σ2 > 0 is the volatility of BH .

The reason why we assume the risky asset follows MFBM model is that, for H > 1
2 , this model

has the property of long range dependence. Since Equity-linked life insurance contracts usually

have long term maturities, the factor of long-term dependence should be included in the list of key

factors having a certain influence on pricing and hedging.

Let us denote the mixed process Mσ
t = Bt + σBH

t , t ∈ [0, T ] , where σ = σ2
σ1
. It is well known

that except for H = 1
2 , B

H is neither a Markov process nor a semimartingale and thus the mixed

process is also not a semimartingale with respect to the filtration generated by the BM and the

FBM. However, Cheridito (2001) has proved that in the case H ∈ (3
4 , 1), the process Mσ is a

semimartingale with respect to its natural filtration: FM = {FMt 0 < t < T},

FMt = σ{Mσ
u , 0 ≤ u ≤ t}. Moreover, it is equivalent in measure to a Brownian motion. In this

chapter, we consider the filtration FM and assume H ∈ (3
4 , 1), F = FMT and hence there is a

Brownian motion {Wt}t∈[0,T ] and a unique real-valued Volterral kernal rσ ∈ L2([0, T ]2) such that

the following relationship holds:

Mσ
t = Wt +

∫ t

0

∫ s

0
rσ(s, u)dWuds, t ∈ [0, T ], (5.35)

where rσ is the unique solution of the equation:

σ2H(2H − 1)(t− s)2H−2 = rσ(t, s) +

∫ s

0
rσ(t, x)rσ(s, x)dx, 0 ≤ s < t ≤ T.
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The MFBM market is complete and the unique martingale measure P ∗ is defined by the

relation (see, Melnikov and Mishura 2011):

Z∗t =
dP ∗

dP
|FMt = exp

{
−
∫ t

0

(µ− r
σ1

+
σ1

2
+

∫ s

0
rσ(s, u)dWu

)
dWs (5.36)

− 1

2

∫ t

0

(µ− r
σ1

+
σ1

2
+

∫ s

0
rσ(s, u)dWu

)2
ds

}
.

Note that, in this complete market, the utility indifference price of a claim is equivalent to its

fair price, i.e., Π(X) = e−rTE∗(X), where E∗(·) is the expectation under the martingale measure

P ∗.

According to the Girsanov theorem, the process

W̃t = Wt + (
µ− r
σ1

+
σ1

2
)t+

∫ t

0

∫ s

0
rσ(s, u)dWuds, (5.37)

is a Wiener process under the measure P ∗.

With the help of (5.35) and (5.37) the stock price process can be rewritten as

St = S0 exp
{
µt+ σ1

(
Wt +

∫ t

0

∫ s

0
rσ(s, u)dWuds

)}
(5.38)

= S0 exp
{
σ1W̃t + (r − σ2

1

2
)t
}
.

For equity linked life insurance contracts, there are two sources of risk: market risk associated

with the underlying asset price and insurance risk reflected by the insureds’ mortality and hence,

besides characteristics of the financial market, we also need to describe mortality properties of

insureds. Following actuarial traditions, let a random variable T (x) on an “actuarial” probability

space (Ω, F̃ , P̃ ) denote the remaining life time of a person of current age x and

T px = P̃ (T (x) > T ) be the survival probability for the next T years of the insured. Since usually

the insurance risk and the financial market risk have no effect on each other, we would take a

natural assumption that (Ω,F , P ) and (Ω, F̃ , P̃ ) can be treated as independent.

Let us consider a pure endowment life insurance contract with the payoff X = max(ST ,K)

provided that an insured is alive at T , where K is a constant guarantee amount. Since the

mortality risk is essentially independent of the financial market, according to Brennan and
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Schwartz (1976), the premium of such a contract is defined as

TUx = E∗(e−rTX)EP̃ (I{T (x)>T}) = T pxV0, (5.39)

where x is the insured’s age, T is the maturity time of the contract and V0 is perfect hedging costs

of the claim X. According to the most recently published United States 2015 Life Table (National

Vital Statistics Reports volume 67, Number 7), the survival probability T px of a given insured can

be found. Obviously, T pxV0 < V0 and thus a perfect hedge of the option is impossible and a

partial hedging strategy should be constructed. With the help of methodologies in Section 5.3, we

derive the minimal value of RVaR that can be achieved with the initial wealth ṽ0 = T pxV0.

Proposition 5. The fair price of the claim X = max{ST ,K} is

V0 = e−rTE∗(X)

= S0Φ
(
Λ+(K)

)
+Ke−rTΦ

(
− Λ−(K)

)
, (5.40)

where Φ is the distribution function of a standard normal random variable and

Λ±(x) =
ln S0

x + (r ± σ2
1
2 )T

σ1

√
T

.

Proof. In the complete MFBM market, the utility indifference price of the claim X = max{ST ,K}

is equal to its fair price, i.e.,

Π(X) = e−rTE∗(X) = e−rT
[
E∗(ST I{ST>K}) + E∗(KI{ST≤K})

]
.

Note that

{ST > K} = {S0e
σ1W̃T+(r−σ

2
1
2

)T > K}

= {W̃T >
ln K

S0
− (r − σ2

1
2 )T

σ1
}

= {Z1 < Λ−(K)}, (5.41)

where Z1 = −W̃T√
T
∼ N(0, 1) under the measure P ∗ and Λ−(K) =

ln
S0
K

+(r−σ
2
1
2

)T

σ1
√
T

.
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With the help of the "Multi-asset Theorem" (see Melnikov and Romanyuk 2008), the price of

the claim can be rewritten as:

Π(X) = e−rT
[
E∗(S0e

σ1W̃T+(r−σ
2
1
2

)T I{Z1<Λ−(K)}) +KP ∗
(
Z1 ≥ Λ−(K)

)]
= S0e

−σ
2
1
2
TE∗(eσ1W̃T I{Z1<Λ−(K)}) +Ke−rTΦ

(
− Λ−(K)

)
= S0Φ

(
Λ+(K)

)
+Ke−rTΦ

(
− Λ−(K)

)
,

where Λ+(K) = Λ−(K) + σ1

√
T =

ln
S0
K

+(r+
σ21
2

)T

σ1
√
T

. �

In addition, applying Theorem 5.1 and Theorem 5.4 to a claim X = max{ST ,K}, we arrive to

the following results.

Theorem 5.5. (a) If ṽ0 ≥ V α+β = e−rTE∗(XI{X≤vα+β}), the optimal hedging strategy is a perfect

hedge of the claim XI{X≤vα+β} and the minimal value of risk under the measure RV aRα,β is 0.

(b) If ṽ0 < V α+β, the optimal hedging strategy is a perfect hedge of the claim

[
(X − d∗)+ − (X − u∗)+

]
I{X≤vα+β},

such that (d∗, u∗) are points of minimum of the system

{ min
0≤d≤vα,d≤u≤vα+β

d+ 1
β

∫ α+β
α (vs − u)+ds,

s.t. C(d)− C(u) ≤ ṽ0,

(5.42)

where

V α+β = e−rTE∗(XI{X≤vα+β})

= S0Φ(2)
(
Λ+(K),−Λ+(vα+β),−1

)
+ e−rTKΦ

(
− Λ−(K)

)
,

σ2
M = σ2

1T + σ2
2T

2H ,

vs =
{ K, if Φ(

ln
S0
K

+µT

σM
) ≤ 1− s,

S0e
µT−σMz1−s , otherwise;

Λd,K = min{Λ−(d),Λ−(K)}, Λu,K = min{Λ−(u),Λ−(K)},
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C(x) = S0Φ(2)
(
Λx,K + σ1

√
T ,−Λ+(vα+β),−1

)
− xe−rTΦ(2)

(
Λx,K ,−Λ−(vα+β),−1

)
+ e−rT (K − x)+Φ

(
− Λ−(K)

)
,

Here, z1−s is the (1− s) quantile of a standard normal random variable. Φ(2)(z1, z2, ρ) denotes

the cumulative distribution function of two jointly normally distributed random variables (Z1, Z2)

with zero means, unit variances and the correlation ρ.

Proof. By the definition of VaR, we have

vs = V aRs(X) = inf
{
v : P (max{ST ,K} > v) ≤ 1− s

}
, s ∈ (0, 1).

Note that, if v < K, we get

P (max{ST ,K} > v) = 1,

and hence vs satisfies vs ≥ K.

For v ≥ K, the above probability can be calculated as

P (max{ST ,K} > v) = P
(
ST > v

)
= P

(
S0e

µT+σ1Mσ
T > v

)
= P

(
σ1M

σ
T > ln

v

S0
− µT

)
= Φ(

ln S0
v + µT

σM
), (5.43)

where in the last equation we use the fact σ1M
σ
T ∼ N(0, σ2

M ) with σ2
M = σ2

1T + σ2
2T

2H , under the

measure P .

If

Φ(
ln S0

K + µT

σM
) ≤ 1− s,

we conclude vs = K. Otherwise, since the equation (5.43) is a decreasing function regarding v, vs

is the unique solution of the equation

Φ(
ln S0

v + µT

σM
) = 1− s,
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in the interval [K,+∞), which can be rewritten as

vs = S0e
µT−σMz1−s ,

where z1−s is the 1− s quantile of a standard normal random variable.

Let us start with the calculation of V α+β :

V α+β = Π
(
XI{X≤vα+β}

)
= e−rTE∗(XI{X≤vα+β})

= e−rT
[
E∗(ST I{ST≥K}I{ST≤vα+β}) + E∗(KI{ST<K}I{K≤vα+β})

]
= e−rT

[
E∗(ST I{ST≥K}I{ST≤vα+β}) + E∗(KI{ST<K})

]
,

where in the last equation we utilize the fact that K ≤ vα+β .

As for {ST ≤ vα+β}, we have

{ST ≤ vα+β} = {S0e
σ1W̃T+(r−σ

2
1
2

)T ≤ vα+β}

= {W̃T ≤
ln

vα+β
S0
− (r − σ2

1
2 )T

σ1
}

= {Z2 ≤ −Λ−(vα+β)},

where Z2 = W̃T√
T
∼ N(0, 1) under the measure P ∗ and Λ−(vα+β) =

ln
S0

vα+β
+(r−σ

2
1
2

)T

σ1
√
T

.

Hence, with the help of multi-asset theorem, we arrive to

V α+β = e−rT
[
S0e

(r−σ
2
1
2

)TE∗(eσ1W̃T I{Z1≤Λ−(K)}I{Z2≤−Λ−(vα+β)})

+KP ∗
(
Z1 ≥ Λ−(K)

)]
= S0Φ(2)

(
Λ+(K),−Λ+(vα+β),−1

)
+Ke−rTΦ

(
− Λ−(K)

)
,

where Λ+(vα+β) =
ln

S0
vα+β

+(r+
σ21
2

)T

σ1
√
T

.

Now, let us move to

Π
([

(X − d)+ − (X − u)+
]
I{X≤vα+β}

)
= E∗

(
e−rT

[
(X − d)+ − (X − u)+

]
I{X≤vα+β}

)
.

Similar to the derivation of (5.41), we have

{ST > d} = {Z1 < Λ−(d)},
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where Λ−(d) =
ln
S0
d

+(r−σ
2
1
2

)T

σ1
√
T

.

And therefore

E∗
(
(max{ST ,K} − d)+I{X≤vα+β}

)
= E∗

(
(ST − d)+I{ST>K}I{ST≤vα+β}

)
+ E∗

(
(K − d)+I{ST≤K}I{K≤vα+β}

)
= E∗

(
(ST − d)I{ST>d}I{ST>K}I{ST≤vα+β}

)
+ E∗

(
(K − d)+I{ST≤K}

)
= E∗

(
ST I{Z1<Λd,K}I{Z2≤−Λ−(vα+β)}

)
− dP ∗

(
Z1 < Λd,K , Z2 ≤ −Λ−(vα+β)

)
+ (K − d)+P ∗

(
ST ≤ K

)
= S0e

(r−σ
2
1
2

)TE∗
(
eσ1
√
TZ2I{Z1<Λd,K}I{Z2≤−Λ−(vα+β)}

)
− dΦ(2)

(
Λd,K ,−Λ−(vα+β),−1

)
+ (K − d)+

(
1− Φ

(
Λ−(K)

))
= S0e

rTΦ(2)
(
Λd,K + σ1

√
T ,−Λ+(vα+β),−1

)
− dΦ(2)

(
Λd,K ,−Λ−(vα+β),−1

)
+ (K − d)+Φ

(
− Λ−(K)

)
,

where Λd,K = min{Λ−(d),Λ−(K)}, and Λ+(vα+β) =
ln

S0
vα+β

+(r+
σ21
2

)T

σ1
√
T

.

With similar calculations, it is clear that

E∗
(
(max{ST ,K} − u)+I{X≤vα+β}

)
= S0e

rTΦ(2)
(
Λu,K + σ1

√
T ,−Λ+(vα+β),−1

)
− uΦ(2)

(
Λu,K ,−Λ−(vα+β),−1

)
+ (K − u)+Φ

(
− Λ−(K)

)
,

where Λu,K = min{Λ−(u),Λ−(K)}.

Consequently, we arrive to

E∗
(
e−rT

[
(X − d)+ − (X − u)+

]
I{X≤vα+β}

)
= e−rT

[
E∗
(
(max{ST ,K} − d)+I{X≤vα+β}

)
− E∗

(
(max{ST ,K} − u)+I{X≤vα+β}

)]
= C(d)− C(u),
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where

C(x) = S0Φ(2)
(
Λx,K + σ1

√
T ,−Λ+(vα+β),−1

)
− xe−rTΦ(2)

(
Λx,K ,−Λ−(vα+β),−1

)
+ e−rT (K − x)+Φ

(
− Λ−(K)

)
.

The proof is completed. �

We illustrate our results with the following numerical example.

Example: Assume a MFBM market with following parameters:

µ = 0.1, σ1 = 0.15, σ2 = 0.1, S0 = 100, H = 0.8, r = 0.05.

An insured at age 40 buys a 10 years contract X = max {ST ,K} with the guarantee amount

K = 110. By the United States 2015 Life Table, the survival probability of the insured is

10p40 = 0.97462 and hence according to equations (5.39) and (5.40) the premium that the

insurance company can receive is TUx = 0.97462 ∗ 104.16 = 101.521. For a fixed α = 0.95, Table

5.1 shows optimal hedged loss functions and corresponding minimal values of RVaR for different

levels of β.

Table 5.1 Optimal hedged loss and minimal RVaR for different levels of β

f∗(X) RV aR0.95,β

β = 10−6 (X − 4.3584)+I{X≤1641.8} 4.3584

β = 0.025 (X − 4.35847)+I{X≤2105.5} 4.358

β=0.04 (X − 4.3588)+I{X≤2811.6} 4.3588

β=0.05 (X − 4.3588)+ 4.3625

Meanwhile, subject to the same initial capital constraint, we provide optimal hedged loss

functions of VaR based hedging and CVaR based hedging correspondingly.

For VaR based hedging at the level 95%, with the help of the method in Cong et al. (2013), we

derive the optimal hedged loss function which is

f∗V aR(X) = (X − 4.3584)+I{X≤1641.8}. (5.44)
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For CVaR based hedging at the level 95%, according to the method in Cong et al. (2014), we

arrive to the conclusion that the optimal hedged loss function is

f∗CV aR(X) = (X − 4.3588)+. (5.45)

Comparing (5.44) and (5.45) with results in Table 5.1, it is not hard to find that, as β → 0,

the optimal hedged loss function of RVaR hedging coincides with f∗V aR(X), while in another

extreme case β = 1− α, it coincides with f∗CV aR(X). Such results are consistent with conclusions

in Section 5.3.2. Moreover, for a small value of β, the optimal RVaR hedging is close to the

optimal VaR based hedging while for a big value of β, it is closer to the optimal CVaR hedging,

which indicates that the measure RVaR is a bridge between VaR and CVaR.

5.5 Conclusion

In this chapter, explicit forms of optimal hedging strategies that minimize RVaR of a hedger’s risk

exposure subject to an initial wealth constraint are derived. We show that for sufficiently large

hedging budget
(
Π(X) > ṽ0 ≥ Π(XI{X<vα+β})

)
the optimal strategy is to hedge the entire risk up

to the level vα+β . On the other hand, if ṽ0 < Π(XI{X<vα+β}), the optimal strategy is to hedge a

bull call spread on the claim itself with a knock out barrier vα+β . In both cases, it is optimal not

to hedge at all on the set {X > vα+β}. Our RVaR based partial hedging method has some

advantages. First, it can be applied in incomplete markets and the solution can be easily derived.

Furthermore, the optimal strategy is model independent. Most importantly, we demonstrate that

CVaR hedging and VaR hedging can be seen as two limiting cases of RVaR hedging and hence our

RVaR hedging method is more general and it is more customized since investors can set their risk

appetite by choosing two risk level parameters α and β. Finally, a numerical example is provided

to explain how such a method can be implemented to the area of life insurance even if the

financial model is sophisticated.

134



5.6 References

Artzner, P., Delbaen, F., Eber, J.-M., and Heath, D. (1999). Coherent measures of risk.
Mathematical Finance, 9(3):203–228.

Bernard, C., Moraux, F., Rüschendorf, L., and Vanduffel, S. (2015). Optimal payoffs under
state-dependent preferences. Quantitative Finance, 15(7):1157–1173.

Brennan, M. J. and Schwartz, E. S. (1976). The pricing of equity-linked life insurance policies
with an asset value guarantee. Journal of Financial Economics, 3(3):195 – 213.

Cheridito, P. (2001). Mixed fractional brownian motion. Bernoulli, 7(6):913–934.

Cong, J., Tan, K. S., and Weng, C. (2013). Var-based optimal partial hedging. ASTIN Bulletin,
43(3):271–299.

Cong, J., Tan, K. S., and Weng, C. (2014). Cvar-based optimal partial hedging. The Journal of
Risk, 16(3):49–83.

Cont, R., Deguest, R., and Scandolo, G. (2010). Robustness and sensitivity analysis of risk
measurement procedures. Quantitative Finance, 10(6):593–606.

Dhaene, J., Denuit, M., Goovaerts, M., Kaas, R., and Vyncke, D. (2002). The concept of
comonotonicity in actuarial science and finance: theory. Insurance: Mathematics and
Economics, 31(1):3 – 33.

Embrechts, P., Liu, H., and Wang, R. (2018). Quantile-based risk sharing. Operations Research,
66(4):936–949.

Föllmer, H. and Leukert, P. (1999). Quantile hedging. Finance and Stochastics, 3(3):251–273.

Föllmer, H. and Leukert, P. (2000). Efficient hedging: Cost versus shortfall risk. Finance and
Stochastics, 4(2):117–146.

Henderson, V. and Hobson, D. (2009). Utility indifference pricing: An overview. Indifference
Pricing:Theory and Applications, Princeton University Press, pages 44–74.

Kirch, M. and Melnikov, A. (2005). Efficient hedging and pricing of life insurance policies in a
jump-diffusion model. Stochastic Analysis and Applications, 23(6):1213–1233.

Madan, D. and Schoutens, W. (2016). Applied Conic Finance. Cambridge University Press.

Melnikov, A. and Mishura, Y. (2011). On pricing and hedging in financial markets with long-range
dependence. Mathematics and Financial Economics, 5:29–46.

135



Melnikov, A. and Nosrati, A. (2017). Equity-Linked Life Insurance Partial Hedging Methods.
ImprintChapman and Hall/CRC.

Melnikov, A. and Romanyuk, Y. (2008). Efficient Hedging And Pricing Of Equity-Linked Life
Insurance Contracts On Several Risky Assets. International Journal of Theoretical and Applied
Finance, 11(03):295–323.

Melnikov, A. and Skornyakova, V. (2005). Quantile hedging and its application to life insurance.
Statistics and Decisions, 23(4):301–316.

Melnikov, A. and Smirnov, I. (2012). Dynamic hedging of conditional value-at-risk. Insurance:
Mathematics and Economics, 51(1):182 – 190.

Nakano, Y. (2011). Partial hedging for defaultable claims. Advances in Mathematical Economics,
pages 127–145.

Rolski, T., Schmidli, H., Schmidt.V, and Teugels, J. L. (1999). Stochastic processes for insurance
and finance., volume 6. John Wiley and Sons.

Spivak, G. and Cvitanić, J. (1999). Maximizing the probability of a perfect hedge. The Annals of
Applied Probability, 9(4):1303–1328.

Xu, M. (2006). Risk measure pricing and hedging in incomplete markets. Annals of Finance,
2:57–71.

136



BIBLIOGRAPHY

Acerbi, C. and Tasche, D. (2002). On the coherence of expected shortfall. Journal of Banking
Finance, 26(7):1487 – 1503.

Amin, K. I. (1993). Jump diffusion option valuation in discrete time. The Journal of Finance,
48(5):1833–1863.

Artzner, P., Delbaen, F., Eber, J.-M., and Heath, D. (1999). Coherent measures of risk.
Mathematical Finance, 9(3):203–228.

Bachelier, L. (1900). Théorie de la spéculation. Annales scientifiques de l’École Normale
Supérieure, 3e série, 17:21–86.

Bernard, C., Moraux, F., Rüschendorf, L., and Vanduffel, S. (2015). Optimal payoffs under
state-dependent preferences. Quantitative Finance, 15(7):1157–1173.

Bielecki, T. R. and Rutkowski, M. (2004). Credit Risk: Modeling, Valuation and Hedging. Berlin,
Heidelberg: Springer Berlin Heidelberg.

Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of
Political Economy, 81(3):637–654.

Boyle, P. P. and Hardy, M. R. (1997). Reserving for maturity guarantees: Two approaches.
Insurance: Mathematics and Economics, 21(2):113 – 127.

Boyle, P. P. and Vorst, T. (1992). Option replication in discrete time with transaction costs. The
Journal of Finance, 47(1):271–293.

Bratyk, M. and Mishura, Y. (2008). The generalization of the quantile hedging problem for price
process model involving finite number of brownian and fractional brownian motions. Theory of
Stochastic Processes, 14.

Brennan, M. J. and Schwartz, E. S. (1976). The pricing of equity-linked life insurance policies
with an asset value guarantee. Journal of Financial Economics, 3(3):195 – 213.

Cheridito, P. (2001). Mixed fractional brownian motion. Bernoulli, 7(6):913–934.

Cong, J., Tan, K. S., and Weng, C. (2013). Var-based optimal partial hedging. ASTIN Bulletin,
43(3):271–299.

137



Cong, J., Tan, K. S., and Weng, C. (2014). Cvar-based optimal partial hedging. The Journal of
Risk, 16(3):49–83.

Cont, R., Deguest, R., and Scandolo, G. (2010). Robustness and sensitivity analysis of risk
measurement procedures. Quantitative Finance, 10(6):593–606.

Cont, R. and Tankov, P. (2004). Financial modelling with jump processes. Boca Raton: Chapman
Hall/CRC.

Cox, J. C. and Ross, S. A. (1976). The valuation of options for alternative stochastic processes.
Journal of Financial Economics, 3(1):145 – 166.

Dewynne, J. N., Whalley, A. E., and Wilmott, P. (1994). Path-dependent options and transaction
costs. Philosophical Transactions of the Royal Society of London. Series A: Physical and
Engineering Sciences, 347(1684):517–529.

Dhaene, J., Denuit, M., Goovaerts, M., Kaas, R., and Vyncke, D. (2002). The concept of
comonotonicity in actuarial science and finance: theory. Insurance: Mathematics and
Economics, 31(1):3 – 33.

El Karoui, N. and Quenez, M.-C. (1995). Dynamic programming and pricing of contingent claims
in an incomplete market. SIAM Journal on Control and Optimization, 33(1):29–66.

Embrechts, P., Liu, H., and Wang, R. (2018). Quantile-based risk sharing. Operations Research,
66(4):936–949.

Föllmer, H. and Leukert, P. (1999). Quantile hedging. Finance and Stochastics, 3(3):251–273.

Föllmer, H. and Leukert, P. (2000). Efficient hedging: Cost versus shortfall risk. Finance and
Stochastics, 4(2):117–146.

Glazyrina, A. and Melnikov, A. (2020). Bachelier model with stopping time and its insurance
application. Insurance: Mathematics and Economics, 93:156 – 167.

Goldenberg, D. H. (1991). A unified method for pricing options on diffusion processes. Journal of
Financial Economics, 29(1):3 – 34.

Henderson, V. and Hobson, D. (2009). Utility indifference pricing: An overview. Indifference
Pricing:Theory and Applications, Princeton University Press, pages 44–74.

Hodges, S. D. and Neuberger, A. (1989). Optimal replication of contingent claims under
transaction costs. Review Futures Market, 8:222–239.

Hoggard, T., Whalley, A., and Wilmott, P. (1994). Option portfolios in the presence of
transaction costs. Advances in Futures and Options Research, 7:21–35.

138



Kirch, M. and Melnikov, A. (2005). Efficient hedging and pricing of life insurance policies in a
jump-diffusion model. Stochastic Analysis and Applications, 23(6):1213–1233.

Kolmogorov, A. (1931). On the analytic methods of probability theory. Math. Ann,
104(1):415–458.

Kramkov, D. (1996). Optional decomposition of supermartingales and hedging contingent claims
in incomplete security markets. Probability Theory and Related Fields, 105:459–479.

Kramkov, D. and Schachermayer, W. (1999). The asymptotic elasticity of utility functions and
optimal investment in incomplete markets. Ann. Appl. Probab., 9(3):904–950.

Le Gall, J.-F. (2016). Brownian Motion, Martingales, and Stochastic Calculus. Springer, Cham.

Leland, H. E. (1985). Option pricing and replication with transactions costs. The Journal of
Finance, 40(5):1283–1301.

Madan, D. and Schoutens, W. (2016). Applied Conic Finance. Cambridge University Press.

Melnikov, A. and Mishura, Y. (2011). On pricing and hedging in financial markets with long-range
dependence. Mathematics and Financial Economics, 5:29–46.

Melnikov, A. and Nosrati, A. (2015). Efficient hedging for defaultable securities and its
application to equity-linked life insurance contracts. International Journal of Theoretical and
Applied Finance, 18:1–28.

Melnikov, A. and Nosrati, A. (2017). Equity-Linked Life Insurance Partial Hedging Methods.
ImprintChapman and Hall/CRC.

Melnikov, A. and Petrachenko, Y. G. (2005). On option pricing in binomial market with
transaction costs. Finance and Stochastics, 9(1):141–149.

Melnikov, A. and Romanyuk, Y. (2008). Efficient Hedging And Pricing Of Equity-Linked Life
Insurance Contracts On Several Risky Assets. International Journal of Theoretical and Applied
Finance, 11(03):295–323.

Melnikov, A. and Skornyakova, V. (2005). Quantile hedging and its application to life insurance.
Statistics and Decisions, 23(4):301–316.

Melnikov, A. and Smirnov, I. (2012). Dynamic hedging of conditional value-at-risk. Insurance:
Mathematics and Economics, 51(1):182 – 190.

Melnikov, A. and Tong, S. (2014). Quantile hedging on equity-linked life insurance contracts with
transaction costs. Insurance: Mathematics and Economics, 58:77 – 88.

139



Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous. Journal of
Financial Economics, 3(1):125 – 144.

Merton, R. C. (1990). Continous-time finance. Cambridge: Basil-Blackwell.

Mocioalca, O. (2007). Jump diffusion options with transaction costs. Rev. Roumaine Math. Pures
Appl., 52(3):349–366.

Nakano, Y. (2011). Partial hedging for defaultable claims. Advances in Mathematical Economics,
pages 127–145.

Pilipenko, A. (2014). An introduction to stochastic differential equations with reflection.
Universitätsverlag Potsdam.

Privault, N. (2014). Stochastic finance : an introduction with market examples. ImprintChapman
and Hall/CRC.

Rockafellar, R. and Uryasev, S. (2002). Conditional value-at-risk for general loss distributions.
Journal of Banking Finance, 26:1443–1471.

Rolski, T., Schmidli, H., Schmidt.V, and Teugels, J. L. (1999). Stochastic processes for insurance
and finance., volume 6. John Wiley and Sons.

Rudloff, B. (2006). Hedging in incomplete markets and testing compound hypotheses via convex
duality.

Rudloff, B. and Karatzas, I. (2010). Testing composite hypotheses via convex duality. Bernoulli,
16(4):1224–1239.

Samuelson, P. (1965). Rational theory of warrant pricing. Industrial Management Review, 6:13–39.

Schachermayer, W. and Teichmann, J. (2008). How close are the option pricing formulas of
bachelier and black–merton–scholes? Mathematical Finance, 18(1):155–170.

Skorokhod, A. (1961). Stochastic equations for diffusion processes in a bounded region. Theory of
Probability and Its Applications, 6(3):264–274.

Spivak, G. and Cvitanić, J. (1999). Maximizing the probability of a perfect hedge. The Annals of
Applied Probability, 9(4):1303–1328.

Taqqu, M. S. (2001). Bachelier and his times: A conversation with bernard bru. Finance and
Stochastics, 5:3–32.

Toft, K. B. (1996). On the mean-variance tradeoff in option replication with transactions costs.
Journal of Financial and Quantitative Analysis, 31(2):233–263.

140



Xu, M. (2004). Minimizing shortfall risk using duality approach—an application to partial
hedging in incomplete markets.

Xu, M. (2006). Risk measure pricing and hedging in incomplete markets. Annals of Finance,
2:57–71.

Zakamulin, V. (2008). Option pricing and hedging in the presence of transaction costs and
nonlinear partial differential equations. pages 23–64.

Zhou, S., Han, L., Li, W., Zhang, Y., and Han, M. (2015). A positivity-preserving numerical
scheme for option pricing model with transaction costs under jump-diffusion process.
Computational and Applied Mathematics, 34(3):881–900.

141



APPENDIX A

An application of the duality method in

partial hedging in incomplete markets

In this appendix, we suppose r = 0 to simplify the notations.

In incomplete markets, the set of densities of equivalent martingale measures is never compact,

and hence the solution of

min
(v,π)∈A0

E
(
(H − VT )+

)
, (A.1)

where

A0 = {(v, π)|(v, π) ∈ A(v), v ≤ v0},

can not be derived by the generalized Neyman-Pearson lemma directly. Such a problem is solve by

Rudloff (2006) as well as Xu (2004) and we would like to summarize their main results here.

Let V(x) be the set of admissible self-financing value processes with initial capital x > 0

V(x) =
{
V : Vt = x+

∫ t

0
π1
sdSs ≥ 0, t ∈ [0, T ]

}
, (A.2)

and the set of all contingent claims that can be super-replicated by some admissible self-financing

strategies with initial capital x is denote as

C(x) =
{
g ∈ L0(Ω,F , P ) : 0 ≤ g ≤ VT for some V ∈ V(x)

}
, (A.3)

where L0(Ω, F, P ) is the set of all random variables on (Ω,F , P ).

Define the state dependent utility function U : R+ × Ω 7→ R+ as

U(x, ω) = H(ω)− (H(ω)− x)+ = H(ω) ∧ x, (A.4)
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and the primal problem for x > 0 is

u(x) = sup
V ∈V(x)

E
[
U(VT (ω), ω)

]
= sup

g∈C(x)
E
[
U(g(ω), ω)

]
= sup

g∈C(x)
E
[
H ∧ g

]
. (A.5)

As in Xu (2004), we define the dual space as a set of processes Y such that

Y(y) =
{
Y ≥ 0 : Y0 = y and V Y is a P -supermartingale ∀V ∈ V(1)

}
(A.6)

and the dual extended set D of random variables h is

D(y) =
{
h ∈ L0(Ω,F , P ) : 0 ≤ h ≤ YT for some Y ∈ Y(y)

}
. (A.7)

Let us consider the stochastic conjugate function W : R+ × Ω 7→ R+ such that

W (y, ω) = sup
x≥0

{
U(x, ω)− xy

}
. (A.8)

By the property of U (A.4) and the fact that W (0, ω) ≥ U(0, ω), we arrive to

W (y, ω) = (1− y)+H(ω). (A.9)

Consider the following dual problem

w(y) = inf
Y ∈Y(y)

E[W (YT (ω), ω)]

= inf
h∈D(y)

E[W (hT (ω), ω)]

= inf
h∈D(y)

E[(1− h)+H]. (A.10)

The utility function U(·, ω) and the value function u are concave, continuous and increasing,

while the functions W (·, ω) and w are convex, continuous and decreasing. For a fixed ω, we

defined the function U : R+ → R+ by U(g) = U(g(ω), ω) for g ∈ C(x) and ∂U(g) is the

subdifferential of U at g. W (h) : R+ → R+ for h ∈ D(y) and ∂W (h) are defined analogously.

Then the following duality theorem holds true.
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Theorem A.1. (1) For x > 0 and y > 0 an optimal solution g̃(x) ∈ C(x) of the prime problem

(A.5) exists and an optimal solution h̃(y) ∈ D(y) of the dual problem (A.10) exists.

(2) The value functions u and w satisfy

w(y) = sup
x>0
{u(x)− xy}, ∀y > 0,

u(y) = inf
y>0
{w(x) + xy}, ∀x > 0. (A.11)

(3) For x > 0 and y > 0 such that y ∈ ∂u(x). Then, the relationships

E(g̃h̃) = xy and

h̃ ∈ ∂U(g̃) or g̃ ∈ −∂W (g̃) P − a.s. (A.12)

hold true iff g̃ solves (A.5) and h̃ solves (A.10).

In addition, the structure of a primal solution with respect to a dual solution is given by the

following theorem.

Theorem A.2. Let x > 0 and y > 0 such that y ∈ ∂u(x). Let h̃ be an optimal solution to the dual

problem (A.10). Then the optimal solution g̃ of (A.5) satisfies

g̃ =
(
I{0≤h̃<1} + δI{h̃=1}

)
H

and

E(g̃h̃) = xy,

where δ is a [0, 1] valued random variable.

With the choice x = v0, and ϕ̃ = I{0≤h̃<1}+ δI{h̃=1}, the optimal solution g̃(v0) of (A.5) can be

represented as g̃(v0) = ϕ̃H.

Finally, the optimal strategy of the problem (A.1) is provided in the following theorem.

Theorem A.3. The optimal strategy (v0, π) of the problem (A.1) is a superhedging strategy for

the modified claim ϕ̃H where

ϕ̃ = I{0≤h̃<1} + δI{h̃=1}, (A.13)
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such that

E(ϕ̃Hh̃) = v0ỹ, (A.14)

where ỹ ∈ ∂u(v0) and h̃ ∈ ∂D(ỹ) solves

inf
h∈D(ỹ)

E((1− h)+H). (A.15)
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