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Abstract 

Low-density parity-check (LDPC) codes are forward error control (FEC) codes that 

are being increasingly adopted in emerging communication systems due to their ability to 

provide capacity approaching coding performance and the availability of practical VLSI 

implementations. Low-time-complexity encoding of LDPC block codes has been a 

challenge. The LDPC codes supported in the 802.16e (mobile WiMAX) standard are 

designed to take advantage of efficient time and circuit encoding techniques. This thesis 

explores the design and implementation of an LDPC encoder that is compatible with the 

802.16e standard. 

Wireless implantable medical devices (IMDs) are an important emerging 

communications application. One design challenge of IMDs is the low-power 

consumption required to achieve the necessary battery life. This thesis evaluates the 

power consumption of the implemented LDPC encoder for use in implant wireless 

transmit data links. To achieve the necessary power efficiency we need a lower power 

implementation than the FPGA encoder presented. 
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Chapter 1 

Introduction and Thesis Overview 

1.1 Project Overview 

Channel coding is a technique used to mitigate the effects of noise on the transfer of 

information in communication systems. The development of channel codes that achieve 

good coding performance has been the focus of researchers since the late 1940s. Several 

code families have been developed that provide effective performance in various 

communication systems and applications [3]. In today's expanding market of portable 

wireless communications, it is important for communication vendors to develop low-

circuit-complexity channel codes for hardware implementation. Several channel coding 

classes have recently emerged as high-performance, low-complexity codes such as turbo 

codes and low-density parity-check (LDPC) codes [4]. These codes are quickly becoming 

the coding techniques of choice for emerging wireless communication systems. 

LDPC codes provide comparable coding performance to the widely adopted turbo 

codes while being more suited for high-throughput, low-latency applications. In addition, 

LDPC codes offer a wider range of tradeoffs between performance and decoding 

complexity [13]. The low-complexity decoding of LDPC codes is one of the main 

reasons for their popularity. This is due to the utilization of the belief propagation (BP) 

algorithm, which is an iterative decoding algorithm that is well suited for efficient VLSI 

implementations. 
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The encoding of the block version of LDPC codes has been criticized because of the 

apparent high time complexity involved. Direct encoding of LDPC block codes requires 

the multiplication of vectors with dense matrices, and hence is of 0(n ) complexity. The 

complexity increases further with larger packets (code lengths). However, the code's 

performance also improves with larger code lengths. Thus, several code construction 

methods and algorithms have been proposed in the literature that aim to achieve linear 

time-complexity encoding of LDPC block codes [30, 31, 32, 34]. This issue highlights 

one of our project motivations; to gain further insight into efficient encoding algorithms 

for LDPC block codes and their hardware implementations. 

One approach to investigating LDPC encoding implementation and its practicality is 

to explore the use of LDPC codes in a defined communication system. For our project, 

we chose the IEEE 802.16e (WiMAX) standard [10]. WiMAX is an emerging wireless 

metropolitan area network standard that provides fixed and mobile broadband wireless 

access. WiMAX employs several new technologies such as multiple-input multiple-

output (MIMO) antenna arrays, space-time coding, and bandwidth and network 

scalability. The mobile version of WiMAX adopts LDPC block codes as optional channel 

coding schemes. The standard supports a set of block codes with six code rates and 

nineteen code lengths per rate. The supported codes are designed for efficient encoding 

and present a suitable technology platform for our LDPC encoder implementation 

project. 

The above discussion frames the main goal of this project; to design and implement a 

low-time-complexity low-circuit-complexity LDPC block encoder, while maintaining 

compatibility with the IEEE 802.16e standard. The encoder is implemented as an 
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intellectual property (IP) core on an FPGA device. This provides the ability to use the 

encoder as a "drop-in" module for various digital designs, as well as provides a working 

hardware platform for future research into new implementation ideas. Several design 

challenges exist: 

• Taking advantage of the proposed efficient encoding algorithm and the 

compact structure of the adopted codes in the standard. 

• Incorporating all supported code rates and lengths into a single low-circuit-

complexity encoder design, with the ability to switch between code rates and 

lengths during operation. 

• Minimizing hardware utilization and memory requirements. 

• Developing a low and consistent latency encoder. 

Beyond implementation, another research opportunity exists in studying the 

performance and suitability of LDPC encoders in emerging applications. One such 

application is the use of high performance codes with implantable medical devices 

(IMDs). Wireless IMDs are not a new technology; however, the potential treatment 

benefits that could be gained through utilizing high-throughput wireless transceivers in 

IMDs are significant [60]. An example of such benefits is the ability to produce non­

invasive "swallow-able" imaging devices that are able to capture and transmit images of 

a patient's gastrointestinal tract for better diagnosis and treatment. The main challenge 

facing implant designers is the requirement to build low-power transceivers that are able 

to provide high-throughput with high data reliability [67]. Therefore, another goal for this 

project is to characterize the power consumption of the implemented 802.16e encoder, as 

well as a convolutional LDPC encoder, and evaluate their suitability for low-power 
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medical implant use. We consider the encoder-only scenario at the implant. Furthermore, 

since designs on FPGA devices are known to consume higher power than the same 

designs on power-efficient ASICs [101]. We also estimate the power consumption of 

these encoders when implemented on ASIC devices. In order to conduct this evaluation 

study, several issues must be addressed: 

• Identifying a mathematical model for evaluating the power efficiency of 

LDPC encoders for medical implant applications. 

• Researching reasonable approximations for the scaling of FPGA power 

consumption levels to ASIC levels. 

• Identifying possible power improvement options for our 802.16e LDPC 

encoder. 

1.2 Thesis Overview 

In Chapter 2, we elaborate on the concepts mentioned in Section 1.1. Key concepts in 

information theory and channel coding are briefly reviewed. LDPC codes are introduced 

with a discussion of decoding and encoding algorithms and implementations. The IEEE 

802.16e standard is introduced with a focus on LDPC codes' performance. The last 

section of Chapter 2 discusses the main challenges faced by wireless IMD designers 

including low power consumption and the modeling of wave propagation through the 

human body. 

In Chapter 3, we discuss our implementation of the 802.16e LDPC encoder. The 

structure of the supported LDPC codes and the proposed encoding algorithm by the 

standard are presented. We describe the design and verification processes applied and 
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expand on the software modeling process. The hardware components of the design are 

detailed and they include the matrix-vector multipliers, memory storage and controllers, 

and the master Finite State Machine (FSM). 

Chapter 4 mainly describes the form and usage of the encoder as an IP core 

illustrating the various input/output ports used to interface with it. In addition, Chapter 4 

describes the behavioral, timing, and hardware verification processes used to confirm the 

functionality of the design. The throughput and hardware utilization of the encoder are 

also recorded. 

Chapter 5 conducts a wireless medical implant power consumption study. The 

software tools used to estimate the power consumption of the encoders are presented. We 

also introduce a convolutional LDPC encoder design based on [91]. The power 

consumption of both the block and convolutional encoders is estimated and analyzed. We 

derive a mathematical model to evaluate the minimum encoder transmit energy required 

to achieve a certain coding performance level. The FPGA designs are evaluated against 

an uncoded system. ASIC approximations of the same designs are performed and 

evaluated for IMD use. Additionally, the encoders' power estimates are compared to 

industry-leading devices and possible power improvement options are presented. 

Finally, the results are summarized and the future work for this project is discussed in 

Chapter 6. 
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Chapter 2 

Background and Literature Review 

2.1 Information Theory and Channel Coding 

In communication systems information is transmitted from a source to a destination. 

The transmitter converts the information into a form suitable for transmission through the 

physical medium be it a copper wire, a fiber optic link, or radio frequency waves 

propagating through space. The receiver detects the transmitted signal and converts it 

back to the original information message. These physical media are information channels 

that carry the transmitted information messages. Ensuring the integrity of the transmitted 

messages in these channels would be a trivial task if it wasn't for the presence of noise 

that may corrupt the information during transmission. In this context, noise can be 

defined as any unwanted signal or effect in addition to the transmitted signal in the 

channel. The sources of noise vary from one channel to the other; interference from other 

transmissions, thermal effects generated by the electronic devices being used, 

environmental interference, etc. When the transmitted information messages are 

corrupted by noise, the receiver may not be able to recover the original information and 

may interpret these messages in error. Information Theory and Channel Coding are the 

fields of engineering that deal with the definition and analysis of information in 

communication systems as well as the various techniques used to combat the effects of 

noise on these systems. 
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It was Claude Shannon's revolutionary 1948 paper "A mathematical theory of 

communication" [1] that laid the foundations for the field of Information Theory. In his 

work, Shannon quantified the information that is transferred from source to destination in 

a communication system. He was particularly concerned with defining or measuring the 

information-carrying capacity of a channel. Realizing that the presence of noise in a 

channel reduces its information-carrying capacity, Shannon presented one of his most 

significant contributions; Theorem 17 in his paper, known as the Information Capacity 

Theorem. In it he defined the channel's capacity as the rate of discrete information units 

(or bits) that can be transmitted reliably (i.e. without error) over the channel measured in 

bits per second. While many mathematical models have been developed to describe the 

behavior of transmissions through various noisy information channels, the Gaussian 

channel is a fundamental and useful channel model for various communication channels 

such as wireless links and fiber optic cables [2]. This channel models the noise as a zero-

mean Gaussian random variable, which means that it assumes a Gaussian distribution of 

noise amplitude with a constant noise power over a limited channel bandwidth. The 

output of the channel is defined to be the addition of the noise and the channel's input. 

That is the channel output is perturbed by additive white Gaussian noise (AWGN). 

Shannon used the AWGN channel model to state and prove the famous theorem 

mentioned above. In it [1], he stated that the information capacity of a channel of 

bandwidth W hertz, subjected to AWGN of power N watt, when the average transmitter 

power is limited to P watt is given by: 

C = Wlog2 1 + — 
N 

[bits per second] (2.1) 
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P/N is the ratio of the transmitter signal power to the noise power, hence called the 

signal-to-noise ratio (SNR), and is one of the most important parameters communication 

engineers must consider when designing a communication system. With this closed form 

equation, Shannon asserted that it was theoretically possible to reliably transmit 

information bits with rates upper-bounded by channel capacity in the presence of noise in 

an information channel. However, he gave no constructions of schemes that could 

achieve or approach this capacity. 

In order to mitigate the effects of noise on the transmitted information, 

communication systems use Channel Coding techniques. Figure 2.1 illustrates a 

simplified model of a communication system with the channel coding components 

highlighted. 

Source Modulator 

Destination Demodulator 

Figure 2.1: Simplified model of a communication system 

Channel coding involves the adding of redundancy to the transmitted messages (or 

symbols) in order to minimize the probability of interpreting these messages in error at 

the receiver. The process of adding redundancy at the transmitter is known as encoding 

and is reversed by a decoding process at the receiver. The receiver's failure to interpret a 

transmitted symbol correctly is termed a decoding error. Simple addition of redundancy, 

8 



such as repetition of transmitted symbols, is not the most efficient channel coding 

technique as it wastes channel bandwidth and system resources. Hence, channel coding 

goes beyond that, and attempts to encode the transmitted messages with the minimum 

number of symbols while still providing adequate protection against decoding errors. 

Understanding the notion of channel capacity, and channel coding techniques, 

Shannon proceeded to state and prove his most famous result: the Channel Coding 

Theorem. This is theorem 11 in his 1948 paper [1]. In it he explained that there exist 

channel codes that make it possible to achieve reliable transmission, with as small an 

error probability as desired, if the rate of transmitted information is less than the channel 

capacity. Furthermore, he explained that it is not possible, with any code, to achieve such 

a low error probability if the rate of information transmission exceeds the channel 

capacity. This bound became known as the Shannon limit. 

Finding codes that attempt to achieve channel capacity is only part of the problem of 

channel coding. Developing practical algorithms for encoding and decoding such codes is 

another challenging part. The search for "good codes" which provide performance 

approaching the Shannon limit with reasonable encoding/decoding complexity, has 

occupied the research community for years. Many channel code families have been 

developed and implemented [3]. However, certain classes of channel codes have emerged 

as superior ones in terms of their coding performance and implementation complexity. 

Turbo codes are one example of such codes [4]; Low-Density Parity-Check codes are 

another example. Both of these codes benefit from the advances of integrated circuits 

technology, and can now be constructed and implemented as high-performance and 

practical channel coding schemes. 
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2.2 Low-Density Parity-Check Codes 

2.2.1 Introduction 

Low-Density Parity-Check (LDPC) codes are a class of forward error control codes, 

and were first proposed by Gallager in the 1960s [5, 6]. However, in order to be 

simulated and implemented, they required processing resources that were impractical at 

the time. Despite their coding potential they were largely forgotten until their rediscovery 

in 1996 by MacKay and Neal [7]. They noticed that their work with sparse random 

matrices reinvented Gallager's codes. In their paper, they also mentioned that the general 

assumption regarding concatenated codes' superiority in practical systems may have 

contributed to the slow development of LDPC codes. Their results, however, showed that 

LDPC codes outperform the classical convolutional and concatenated codes, and provide 

performance very close to that achieved by turbo codes. 

In recent years, LDPC codes have received a tremendous amount of research focus 

and popularity. They have been adopted into several communication standards such as 

the Digital Video Broadcasting standard for Satellite Television (DVB-S2) [8], IEEE's 

802.3an [9], 802.16e (WiMAX) [10], and 802.1 In [11]. One of the reasons for their 

popularity is that LDPC codes are capacity-approaching which means they provide 

performance that approaches the Shannon limit. Some studies have shown that LDPC 

codes can get to within 0.0045 dB of the Shannon limit [12]. This result far exceeds any 

figures achieved with classical forward error control (FEC) codes of the same decoding 

complexity. Turbo codes are the other class of FEC codes that provides similar results. 

However, as discussed in [13], LDPC codes are more suited for high-throughput low-

latency applications than turbo codes. And LDPC codes offer a wider range of tradeoffs 
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between performance and decoding complexity. In addition, unlike turbo codes which are 

heavily patented by France Telecom [14], LDPC codes provide a relatively more open 

technology access for both industry and academia. Another reason for LDPCs' popularity 

is that they could be decoded with a low-complexity iterative algorithm known as the 

Belief Propagation (BP) algorithm, which is suited for efficient VLSI implementations. 

Therefore with excellent performance versus costs of implementation, LDPC codes 

represent an important option for emerging and next-generation communication systems. 

2.2.2 Overview of LDPC codes 

2.2.2.1 LDPC Code Structure 

There are two different yet related types of LDPC codes, Block and Convolutional 

LDPCs. The original LDPC codes proposed by Gallager are block LDPC codes. 

Convolutional LDPC codes were proposed in 1999 by Felstrom and Zigangirov [15], and 

are receiving increasing research focus. However, since the convolutional codes are out 

of the scope of this project, we will focus on the block codes' structure and relevant 

encoding and decoding architectures in the following sections. 

Before describing the code structure, it is important to define several relevant terms 

from information theory. In block FEC codes, the encoder accepts a block of message 

bits and generates a block of coded bits at the output. The resultant bit sequence is termed 

a codeword. If a user information message of length k bits is to be encoded to generate a 

codeword of length n bits, the number of added redundancy bits (termed code bits) is 

equal to n - k bits. The code rate (R) can be defined as the ratio of the number of original 

information bits to the total number of codeword bits. And since the codeword is always 

larger than the un-coded bit-sequence, this number must always be between zero and one. 
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R = - (2.2) 

n 

A block code is termed systematic if the output codeword contains the original 

information bits in an unaltered form. Therefore, the codeword of a systematic block 

code may take the form presented in Figure 2.2. 

< k bits • » * n-k bits • 

Information bits Code bits 

n bits 

Figure 2.2: Codeword structure of a systematic block code 

As the name of LDPC codes indicates, the parity-check is a key concept involved in 

their structure. In fact, Gallager introduced them as a special case of the general family of 

parity-check codes [5]. To form an LDPC codeword, k information bits are combined 

with (n - k) parity bits. Each parity bit is generated by performing a modulo-2 sum 

operation (XOR) on several pre-specified information bits. Parity-check works through 

detecting and correcting single-bit errors in transmission. Taking Gallager's example, 

Figure 2.3 shows a simple parity-check matrix. As indicated on the figure, parity bit 5 is 

generated by XOR-ing information bits 1, 2, 3 of a length n = 7 codeword. If bit 3 is 

corrupted by noise and arrives in error at the receiver, the decoder will be able to correct 

this error knowing the other errorless bits, namely bits 1, 2, and 5. This could be done by 

performing another XOR operation on these bits. It could immediately be seen that a 

parity-check matrix is a compact way of defining which bits participate in which parity-

check operation according to the position of the ones. This means that the parity-check 

matrix defines all the parity-check equations. 
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INFORMATION CHECK 
DIGITS DIGITS 

, A , / * * 
Xj X2 X3 X4 X5 X(, Xj 

1 
1 
1 

1 1 0 1 0 0 
1 0 1 0 1 0 
0 1 1 0 0 1 

<r -> 

*5 = Xj © X2 © X3 

X6 = Xj © X2 © X4 

Xj = Xj © X3 © X4 

Figure 2.3: Example of a parity-check matrix, figure taken from [5] 

In the previous example if a parity-check operation is considered alone, an error in 

more than one transmitted bit could not be corrected and would result in a decoding error. 

The parity-check matrix attempts to solve this by specifying each bit to participate in 

several parity-check operations so that if one failed the others may not. This greatly 

increases the strength of the parity-check code in combating bit errors. Supported by 

these concepts, LDPC codes are defined as the set of codewords that satisfy all the parity-

check equations defined by the parity-check matrix. Algebraically, this means that for 

any codeword vector x of length n bits, and its parity-check matrix H: 

x-HT=0 (2.3) 

Where HT is the transposed version of the matrix H. Another matrix could be defined 

through manipulations of H as the dual or the null of H, and is called a generator matrix 

G satisfying: 

GHT=0 ( 2 . 4 ) 

The generator matrix of a code is used to generate all the codewords of that code. 

Therefore, the LDPC encoding process of a user information bit vector u can then be 

reduced to the following matrix multiplication: 
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xT =uT G (2.5) 

Where x is the transpose of the codeword vector x. So it can be concluded that both 

a parity-check matrix and its dual generator matrix, can completely specify an associated 

LDPC code. Figure 2.4 illustrates an example of a parity-check matrix. This matrix 

defines an (n,j,k) code, where n is the code length, and j and k are the number of ones in 

each row and column, respectively. It is important to note that if the number of ones in 

each row and column - also termed the weight - stays constant across the matrix, it is 

then a regular LDPC code. An irregular LDPC code has a matrix where the number of 

ones is not fixed in all rows or columns. 

r 
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J 

Figure 2.4: Parity-Check matrix for (20, 3, 4) LDPC code 

Sparseness is an important characteristic of an LDPC code's parity-check matrix. A 

sparse matrix is one that has a small number of nonzero entries. When dealing with 

regular LDPC codes, increasing the block length while keeping the number of ones per 

row and column constant lowers the density of the ones. This is where the low-density 

part of the name originates. It has been shown that as n is made large, the density of the 

ones approaches zero and the performance of the code increases [4, 6]. The sparseness 
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and low-density concepts have their implications on encoding and decoding, and translate 

into efficient decoding algorithms, as will be discussed further in section 2.2.2.2. 

In order to produce "good codes" that have a low probability of decoding errors, 

several construction methods were proposed, and could be categorized as randomly 

constructed codes and algebraically structured codes. Randomly constructed LDPC 

codes were proposed first, such as the ones in [5, 7, 12, 16], and they work through 

randomly placing l's and O's in the parity-check matrix subject to some constraints. For 

example the number of l 's in each row and column could be required to be constant. 

These studies show that powerful randomly-constructed codes demonstrating excellent 

theoretic performance thresholds can be found. However, randomly-constructed LDPC 

codes are often hard to implement with low time complexity. Therefore, a wealth of 

algebraically-structured LDPC codes have been developed to tackle the complexity issue; 

examples include [17]-[20]. These codes use algorithmic structures and aim to strike a 

balance between the low-complexity encoding/decoding needed for hardware 

implementations and the performance expected from LDPC codes. 

2.2.2.2 Decoding and Current Implementations 

Decoding of LDPC codes has its roots in the work of Gallager [6]. In particular, he 

demonstrated that an iterative algorithm could be used to decode LDPC codes. LDPC 

decoding algorithms could be explained more easily with the help of elegant graphical 

representations known as bipartite graphs. 

A bipartite graph contains two disjoint sets of nodes where there are no connections 

(edges) between nodes of the same set. Tanner used bipartite graphs to graphically 

represent the parity-check matrix of an LDPC code [21], which is why bipartite graphs 
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for LDPC codes are sometimes referred to as Tanner graphs. A Tanner graph features 

two sets of nodes named variable nodes and check nodes. Each bit in the codeword of 

length n is represented by a variable node, and each row of the parity-check matrix H is 

represented by a check node. An edge exists between the ith variable node and the j t h 

check node if and only if the parity-check matrix entry hjj = 1. It can be immediately seen 

that the Tanner graph can completely specify an LDPC code. The same sparseness 

principle is transferred over from the parity-check matrix to the Tanner graph and allows 

for algorithmic efficiency of LDPC codes. Figure 2.5 illustrates an example for a (6, 2, 3) 

LDPC code that is graphically represented with a Tanner graph. 

H 

1 1 1 0 0 0 

1 0 0 1 1 0 

0 1 0 1 0 1 

0 0 1 0 1 1 

Variable Nodes 

Check Nodes 

Figure 2.5: An example of a (2,3) regular LDPC code and its bipartite (Tanner) graph 

The main algorithm used for decoding LDPC codes is the Belief Propagation 

Algorithm. The BP algorithm is a subclass of message passing algorithms. To visually 

describe the BP algorithm, we use the Tanner graph representation. The BP algorithm 

attempts to correctly decode the received codeword through several iterations. During 

each iteration of the algorithm, messages are passed between check nodes and variable 

nodes along the connecting edges. The passed messages are the probabilities or beliefs of 

the logical bit values at the variable nodes. The algorithm takes advantage of the inter-

dependencies that exist in the graph (i.e. the parity-check matrix) and adjusts the beliefs 
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of the values at the variable nodes. Therefore, during each iteration, variable nodes learn 

more about their values from other nodes and the parity-check relations. 

The algorithm starts by initializing the variable nodes' values with a metric called the 

log-likelihood ratio (LLR), The log-likelihood ratio is an advantageous metric since it is 

used to quantify the level of confidence in the value of the received bit being a logical 1 

or logical 0. So if the probability of the received bit xr being a logical one given the actual 

received value y is denoted as P(xr = 1 | y) and the probability of it being a logical zero is 

denoted as P(xr = 0 | y), then the LLR A(xr) is defined as the logarithm of the ratio 

between these two probabilities: 

'p{Xr=\\yy 
A(xr) = log (2.6) 

P(xr=0\y) 

It is noted that the LLR value largely depends on the noise power of the channel. The 

higher the noise power, the lesser the confidence we have in the received value. 

After the initialization, the rest of the BP algorithm can be divided into two stages. 

• Stage 1: The check nodes construct and send their messages to the variable 

nodes. The check nodes utilize their knowledge of parity-check relations to 

adjust the LLRs and send them back to the participating variable nodes. 

Mathematically, this means all check nodes connected to variable node i send 

the adjusted LLR value A; to variable node i: 

A, = 2tanh 

f / \N 

(A ^ 
|~[tanh ^ 

2 
v J 

(2.7) 

Here the notation j/i indicates that the product includes all the LLRs except the one of 

the target variable node i. 
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• Stage 2: At the variable node, the incoming adjusted LLRs are summed 

together and are ready for use by the check node in the following iteration. 

The algorithm proceeds until the decoded codeword correctly satisfies all the parity-

check equations or a fixed number of iterations is reached. The BP algorithm is a 

powerful algorithm, and its time complexity grows linearly with the block length of the 

code [7, 9] which makes it feasible to build decoders for reasonably large code lengths. 

High-performance, low-complexity implementations of LDPC decoders have been 

achieved and make these codes an increasingly compelling choice for emerging 

communications systems. The first published implementation was the Howland and 

Blanksby decoder [22] where a 690-mW and 1-Gbps throughput decoder was 

implemented on an ASIC chip for a rate-1/2 LDPC code. Since then, a wealth of decoder 

architectures and implementations has been published. The decoder proposed in [23] and 

implemented on an FPGA chip in [24], utilizes an architecture-aware LDPC code design 

approach to achieve various savings in the message-transport interconnect and memory 

overhead. A group at Rensselaer Polytechnic Institute, NY, proposed a decoder 

architecture that is designed for fast VLSI implementations [25]. Their design utilizes the 

partially-parallel decoder structure where a certain number of variable nodes or check 

nodes are mapped to single decoding unit. These decoding units are then multiplexed 

using time-division to achieve better decoding speed while keeping the decoder 

interconnect complexity low. In [26] flexible decoder architectures were proposed for the 

family of irregular LDPC codes. While in [27], a decoder architecture for array-code-

based LDPC codes was described. Some implementations have targeted specific channel 

types such as magnetic recording channels [28]. Almost all variations of the decoders 
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proposed employ the BP algorithm and offer tradeoffs in throughput, complexity, 

scalability, and hardware flexibility. 

2.2.2.3 Encoding and Current Implementations 

While the decoding of LDPC codes is a major advantage for these codes over other 

error-control codes, the encoding side has received criticism because of the apparent high 

time complexity involved. In this context, complexity is measured by the number of 

mathematical operations required to encode a bit. As noted by equation 2.5, a 

straightforward encoding of LDPC codes requires matrix-vector multiplication and hence 

is quadratic in the block length. This makes practical hardware implementations of the 

encoder almost impossible at large packet lengths (usually on the order of few thousand 

bits). By contrast, turbo codes can be encoded in linear time. Another problem with 

traditional encoding of LDPC codes is the fact that to encode an information bit which 

arrives at time t, the encoder may require an information bit which arrives at time t + A 

adding latency to the encoding process. This also means that while the total number of 

output codeword bits is constant, the rate of bit production may not be even, requiring the 

buffering of output bits. 

Early implementations of LDPC encoders, such as the one proposed in [29], used 

straight forward techniques, where a vector of information bits is multiplied by a dense 

generator matrix resulting in quadratic encoding complexity in the block length of the 

code. However, several researchers and information theorists worked through various 

algebraic methods to address this issue and several solutions have been proposed. 

One approach used the idea of cascaded codes, where several levels of bipartite 

graphs are cascaded in a tree structure [30]. By choosing the number of cascaded codes 
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and the size of each code carefully, it is possible to construct codes for which low 

complexity encoding and decoding are achievable in linear time. A disadvantage with 

this approach is the fact that the individual cascaded stages are codes with smaller lengths 

than the overall code. This results in a loss of performance when compared with a 

standard LDPC code of the same total length. 

In [31] another approach was presented. While constructing the code and in addition 

to the normal constraints set for the row and column weights of the parity-check matrix, 

another constraint is set that forces the matrix into the lower triangular form. This matrix 

leads to faster encoding times. However, since some of the "randomness" of the code is 

lost due to this constraint, a loss of performance is present. 

Another construction of LDPC codes was presented in [32] that enables low-time-

complexity encoding. In this approach, half the parity-check matrix is generated 

randomly while the other half is deterministic; the resulting codes are called semi-random 

LDPC codes. The authors of [32] propose a recursive encoding method with complexity 

growing linearly with the block length of the code. They further claim that semi-random 

LDPC codes perform comparably to fully random regular codes of similar dimensions. 

More recently, further research is focusing on studying semi-random LDPC codes for 

wireless applications. For instance in [33], methods of constructing semi-random LDPC 

codes that support various code rates are investigated, and their application to newer 

diversity-based communication systems is explored. 

A significant step towards achieving linear-time LDPC encoding was realized 

through the work of Richardson and Urbanke [34]. They noted that although direct 

encoding seems to have a quadratic complexity, the actual number of operations required 
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is manageable even for long block lengths. Furthermore, they managed to take advantage 

of the sparseness of the parity-check matrix through "optimization" steps to achieve 

efficient encoding. These steps require preprocessing the parity-check matrix via row and 

column permutations to achieve an almost lower triangular (ALT) form. Illustrated in 

Figure 2.6, this form is almost lower triangular since the matrix features a distance from 

true lower triangular form, and this distance is termed the gap (g). It is important to know 

that these preprocessing steps are applied after constructing the code, thereby preserving 

the sparseness and randomness of the matrix, and the strength of the code. The detailed 

steps of the algorithm are presented in [34]. 

3 

V 

Figure 2.6: A matrix in almost lower triangular (ALT) form 

The proposed algorithm involves splitting the parity-check matrix into smaller sub-

matrices and performing several matrix multiplication steps. Most of the multiplications 

use sparse matrices and have linear time complexity except the multiplication by the 

dense sub-matrices O and T 1 (see [34] for details). The complexity of the overall 

algorithm is upper bounded by 0(n+g2), and the smaller the gap the better the encoding 

time efficiency. In fact, the authors of [34] show that for sufficiently large n, the gap is 
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smaller than v« resulting in linear time complexity. In practical systems, g is usually a 

small constant allowing for efficient encoding implementations. 

An algebraic structure useful for improving the computational efficiency of LDPC 

encoding is Quasicyclic (QC) codes. QC LDPC codes perform very well when decoded 

using the BP algorithm [18], and as discussed in [35], these codes have structures that can 

achieve computational efficiency and good hardware implementations. A QC code is one 

where each codeword is a "quasicyclic" shift of another. That is, if a codeword is 

segmented into strings of length z bits, and all segments are circularly shifted by the same 

amount, the resulting vector is also a codeword. An ingenious method of constructing QC 

LDPC codes is through the use of circulant matrices [17, 18]. A circulant matrix is a z x z 

square matrix where each row is a circular shift of the row above it, and the first row is a 

circular shift of the last. Therefore, QC LDPC codes may be defined by a parity-check 

matrix H that is composed of blocks of circulant matrices and zero matrices, as shown in 

Figure 2.7. Such a code is termed a block-circulant LDPC code. 

0 1 0 
0 0 1 
1 0 0 

0 0 1 
1 0 0 
0 10 

0 0 0 
0 0 0 
0 0 0 

1 0 0 
0 1 0 
0 0 1 

0 0 0 
0 0 0 
0 0 0 

0 0 0 
0 0 0 
0 0 0 

0 0 0 
0 0 0 
0 0 0 

1 0 0 
0 1 0 
0 0 1 

0 0 0 
0 0 0 
0 0 0 

0 0 1 
1 0 0 
0 1 0 

0 0 1 
1 0 0 
0 10 

0 0 0 
0 0 0 
0 0 0 

0 0 0 
0 0 0 
0 0 0 

01 0 
0 0 1 
1 0 0 

0 0 0 
0 0 0 
0 0 0 

0 0 0 
0 0 0 
0 0 0 

0 1 0 
0 O 1 
1 O 0 

0 1 0 
0 0 1 
1 0 0 

0 0 0 
0 0 0 
0 0 0 

0 0 0 
0 0 0 
0 0 0 

1 0 0 
0 1 0 
0 0 1 

0 0 0 
0 0 0 
0 0 0 

0 0 0 
0 0 0 
0 0 0 

1 0 0 
0 1 0 
0 0 1 

0 0 0 
0 0 0 
0 0 0 

0 0 0 
0 0 0 
0 0 0 

0 0 0 
0 0 0 
0 0 0 

0 0 0 
0 0 0 
0 0 0 

0 01 
1 0 0 
0 1 0 

0 1 0 
0 0 1 
1 0 0 

0 0 0 
0 0 0 
0 0 0 

0 0 1 
1 0 0 
0 1 0 

0 0 0 
0 0 0 
0 0 0 

01 0 
0 0 1 
1 0 0 

0 0 0 
0 0 0 
0 0 0 

Figure 2.7: An example of the internal structure of a matrix composed of circulant 
identity matrices, figure taken from [36] 

Important advantages could be realized by using block-circulant parity-check 

matrices. Particularly, the time efficiency of the encoding algorithm of [34] can be 

improved. The multiplication with sub-matrix <J>, which is proportional to g2, is made 
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faster by minimizing the size of the gap g while preserving the strength of the code. The 

authors of [36] propose that picking g equal to the size of the circulant matrix z is enough 

for practically good code performance, while at the same time, the size of g can be made 

small to reduce the computational complexity. The block-circulant approach is especially 

advantageous in the case of multiplication with sub-matrix T"1. Using this approach, T is 

a lower triangular matrix composed of smaller block matrices with the diagonal made of 

identity matrices. Thus according to [36], the direct multiplication with T"1 can be 

replaced with a multi-stage back substitution operation. This effectively converts the 

dense multiplication into a series of sparse vector-matrix multiplications and additions 

which significantly reduces the computational complexity. 

Unlike the decoding side, where the BP algorithm has become the standard decoding 

technique, the encoding side exhibits more variations that incorporate the methods 

discussed earlier. In [37] an FPGA implementation of an LDPC encoder based on the 

ALT algorithm was created and achieves 44 Mbps output rate running on 143 MHz clock 

frequency. Encoder designs based on block-circulant matrices were presented in [35], 

along with a hardware implementation achieving a rate of a 100 million symbols/second. 

A hardware implementation based on the semi-random technique is presented in [38] and 

achieves low computational complexity with 99.5 Mbps output rate. 

More recent implementations of LDPC encoders combine both the ALT algorithm 

and the block-circulant ideas to achieve high-efficiency high-throughput encoders. 

Furthermore, since LDPC codes are quickly becoming the codes of choice in most 

emerging communication standards, new implementations focus on building standard-

compliant encoders. In [39], a CMOS implementation of a second-generation digital 
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video broadcast (DVB-S2) compliant codec is presented. This codec supports BCH codes 

as well as LDPC codes with code lengths up to 64800 bits and achieves up to 135 Mbps 

throughput. Another example is the 480 Mbps throughput LDPC codec built for ultra-

wide band (UWB) transceivers and presented in [40]. 

A main focus of our work is the implementation of an IEEE 802.16e compatible 

LDPC encoder. However, it is worth noting that the next-generation wireless local area 

network standard, 802.1 In, features LDPC codes of a somewhat similar structure to those 

supported by the 802.16e standard. Therefore, LDPC encoder implementations that 

support the 802.1 In standard are of particular importance to our study. In [41] an LDPC 

encoder implementation was presented and is compatible with the 802.1 In standard. This 

implementation exploits the structure of the supported LDPC code to achieve efficient 

encoding with barrel-shifter based multipliers. Another 802.1 In compatible encoder 

architecture is presented in [42], where the encoder multiplication steps are handled via 

random-access memory (RAM) registers. While not entirely similar to the 802.16e 

standard, these implementations provide us with useful insights into techniques 

leveraging the efficient structure of the supported LDPC codes. 

More directly related to the 802.16e standard, a group at the University of Edinburgh 

developed a real-time programmable LDPC encoder for the 802.16e standard [43]. The 

encoder is implemented on Reconfigurable Instruction Cell Architecture (RICA) 

processor which executes ANSI-C code of the encoding algorithm. This implementation 

achieves a throughput of 10 to 19 Mbps. A hardware implementation of a fully 

compatible 802.16e encoder is produced by Xilinx Inc. as an Intellectual Property (IP) 

core [44]. The Xilinx encoder core's throughput depends on the FPGA chip and the clock 
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frequency used. This IP core targets the Xilinx FPGA chip family only, and the internal 

encoder structure is not released for public access. 

2.3 Wireless Communications and Low-Density Parity-Check 
Codes 

2.3.1 Brief Overview of Wireless Communications 

Wireless communications are the transfer of information over a distance without the 

use of electrical conductors such as copper wires or fiber optic cables. The information is 

transferred via the controlled propagation of electromagnetic waves through space. The 

distance of transfer may be as little as a few meters and as large as millions of kilometers 

depending on the frequency and power of the waves, as well as the technology that 

utilizes them. 

Due to the open and un-controlled nature of the wireless communication channel, 

there exist several sources of interference and effects that tend to disturb the transmission 

and processing of wireless signals. The wireless channel experiences large-scale effects 

such as path loss (attenuation of signal with distance), and small-scale effects such as 

multipath fading and the Doppler Effect (for details see [45, 46, 47]). These effects cause 

degradation of the quality of the received signal which leads to higher probability of 

transmission errors. The characteristics of the wireless channel, together with additive 

noise and interference, need to be mitigated by various techniques such as diversity and 

channel coding. 

Though there are many types of wireless communications, our focus is on wireless 

networking. Modern communication networks, where data is transmitted and accessed by 
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multiple network clients, are categorized based on coverage area to Personal Area 

Networks (PANs), Local Area Networks (LANs), Metropolitan Area Networks (MANs), 

and Wide Area Networks (WANs) [48]. Wireless versions of such networks exist and 

continue to evolve through technology innovations. 

2.3.2 The IEEE 802.16 wireless networking standard (WiMAX) 

The computer networking industry has many network vendors, carriers, and suppliers. 

Typically, various vendors have different ideas and strategies on network 

implementations and usage. In order to coordinate technology efforts, many networking 

standards have been developed and adopted by industry [48]. 

IEEE's 802.16 standard (also known as WiMAX) is a wireless metropolitan area 

network (WMAN) standard. This standard was first introduced to provide fixed 

broadband wireless access, and was ratified by IEEE in 2004 to be formally numbered 

802.16-2004 [49]. The standard was later modified to include support for mobile 

broadband access in an amendment which was ratified in 2005, and formally numbered 

802.16e-2005 [10]. WiMAX employs several new technologies such as multiple-input 

multiple-output (MIMO) antenna arrays, space-time and LDPC codes, quality of service 

(QoS) algorithms, and channel bandwidth and network scalability. Further details of the 

802.16 standard can be found in [49, 50, 51]. 

The 802.16 standard supports theoretical data rates of 70 Mbps over a distance of 50 

Km [49]. However, under typical network traffic conditions these limits are rarely 

achieved. In a comparison study done by the WiMAX forum in [52], WiMAX's 

performance was compared to existing and evolving third-generation (3G) mobile 

networks. Figure 2.8 presents the comparison results where DL is the downlink 
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connection from the base station to the mobile device, and UL is the uplink connection 

from the mobile device back to the base station. The study shows the distinct advantage 

that WiMAX has over other 3G metropolitan wireless networks in both throughput and 

spectral efficiency. 

Spectral Efficiency (bps/Hz) 

2.5 

Ji=fc 
Mobile WiMAX HSPA 3xEVDO-RevB 

•DL 

•UL 

Sector Throughput (Mbps) 

IDL 

IUL 

Mobile WiMAX HSPA 3xEVDO-RevB 

Figure 2.8: Spectral efficiency and sector throughput comparison of HSPA, EVDO-Rev. 
B, and Mobile WiMAX under the same traffic conditions, figure taken from [52] 

In our project, we will be implementing an encoder system that is compatible with the 

LDPC codes supported in the mobile WiMAX standard. 

2.3.3 LDPC codes in Wireless Communications 

Several research studies have evaluated aspects of using LDPC codes in wireless 

communications. In [53] an information theory approach was taken to study the 

performance of LDPC codes in several types of wireless channel models such as a basic 

linear Gaussian channel, a partial-band jamming channel, and a Raleigh fast fading 

channel. The authors of [53] demonstrated that properly designed LDPC codes can be 

used to achieve reliable transmission over these channels making these codes an 

appropriate class for various kinds of wireless channels. And in [54] a group at Kansas 

State University explored the performance gains obtained from combining LDPC coding 
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with spread spectrum techniques in conventional orthogonal frequency division 

multiplexing (OFDM) systems. The authors simulated the performance of an un-coded 

OFDM system versus a convolutional coded system as well as an LDPC coded system in 

typical outdoor wireless environments including urban, rural and hilly terrain. The effects 

of code spreading were considered. Figure 2.9 presents their results in the typical urban 

environment. It can be seen that LDPC coded systems require less SNR to achieve a 

similar bit error rate (BER) over un-coded ones. Similar coding gains were recorded for 

the other environments. 

- • ' ' -
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- * - SOFDM w/o coding : 
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Figure 2.9: Performance of un-coded and LDPC coded OFDM and spread OFDM 
(SOFDM) systems in Typical Urban wireless channel, BPSK, R = 1/2, N = 1024, figure 

taken from [54] 
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On the wireless networking front, LDPC codes represent a viable option for most 

next-generation networks and standards. Hence many studies were conducted to evaluate 

the design and performance of LDPC codes for specific networking applications. 

Wireless sensor networks is one such application where studies such as [55, 56] have 

demonstrated that LDPC codes accomplish their typical coding gains and perform much 

better that other channel codes. In addition, LDPC codes provide the appropriate platform 

for low power implementations required for these networks. Other studies focused on 

wireless LANs such as the next-generation IEEE 802.1 In [11] standard, and WMANs 

such as CDMA networks [57]. 

The use of LDPC codes in WiMAX networks has been studied extensively, and 

several designs, variations, and enhancements have been proposed to achieve various 

performance targets and tradeoffs. For example the study in [58], compares the 

performance of the supported LDPC codes from the 802.16e-2005 standard to a slightly 

optimized version. In [59], simulations were carried out to plot the performance of the 

802.16e LDPC codes against other important FEC codes supported by the standard, 

namely convolutional codes and convolutional turbo codes. Figure 2.10 presents the 

study's results, where the code's BER performance was plotted using different 

modulation techniques. In part A, a codeword length of 576 bits and a code rate of 1/2 

were used to simulate the codes on an AWGN wireless channel model. In part B, the 

same parameters were used to simulate the performance on the TU30 channel, modeling 

a mobile user in a typical urban environment moving with a velocity of 30 Km/h, while 

communicating with a base station on a carrier frequency of 3.5 GHz. Part B also 

includes the frame error rate (FER) performance curves. 
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A. AWGN Channel B. TU30 Channel (QPSK) 
Figure 2.10: 802.16e supported FEC codes comparison, R = 1/2, N = 576, figure taken 

from [59] 

It can be seen from the figure that the LDPC code achieved the best performance 

results. While comparable to the convolutional turbo code's (CTC) performance, a big 

advantage of the LDPC codes over their counterparts is their decoder's low circuit-

complexity. Moreover, increasing the block length would provide further coding gains. 

However, long block lengths require more processing time which could prove 

challenging for systems requiring low latency codecs. The structure of these standard 

supported LDPC codes will be further described in Chapter 3. It is worth noting that these 

results correlate well with the results of Figure 2.9 demonstrating the good performance 

of LDPC codes in practical wireless systems. 

The studies recorded in literature build a solid base for the LDPC coding choice in 

wireless networking, and the results encourage further investigation of these codes for 

next-generation technologies. 
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2.4 Wireless In-Body Medical Communications 

2.4.1 Overview of In-Body Medical Communications 

Advances in integrated circuit technology have expanded the options of modern 

medicine to provide new and innovative treatments. Such treatments include the use of 

sensor devices to monitor a patient's health data (i.e. cardiac data, blood parameters, 

etc.), imaging devices to monitor and evaluate parts of a patient's gastrointestinal tract 

and other organs, and various other temperature and muscle sensing devices. Monitoring 

and sensing devices may require the patient to spend a considerable amount of time in a 

medical facility while being treated by health professionals. In addition, expensive and 

invasive operations may be required to capture and transfer the data out of the human 

body using such links as flexible cables. These reasons were among the motivations 

behind the design and implementation of miniaturized portable as well as implantable 

medical devices. Implantable medical devices (IMDs) have been widely used in the 

treatment of many diseases such as heart diseases and neurological disorders. 

Pacemakers, implantable defibrillators, and hearing aids are examples of such devices. 

The increasing need for IMDs that can provide ongoing and cost-effective monitoring 

and treatment, highlights the need for wireless solutions. Typically, a wireless-enabled 

medical implant may be remotely controlled from an external station while transmitting 

diagnostic or monitoring data during operation. The integration of wireless 

communications with IMDs holds several advantages over wired solutions such as 

enhanced patient convenience, ease of data capturing and collection, reduced risk of 

infection, lower costs, and enhanced mobility, all of which contribute to an improved 

overall healthcare experience. Traditionally, wireless IMDs used inductive RF links to 
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carry the data out of the human body. This required the use of a magnetic wand in the 

proximity of the IMD to inductively power-up the device then capture the transmitted 

data [60]. These devises typically operated in low-frequency ranges (i.e. 10s to 100s of 

kilohertz) providing data rates of less than 50 kb/sec. While proving robust and reliable, 

the practical antenna sizes and the inductive structure of these implants provided limited 

power ranges resulting in short range RF links; often requiring external receivers to have 

contact with the skin of the patient directly on top of the IMD's location. 

In order to overcome these limitations, new low-power RF technologies are being 

developed to operate at much higher frequencies such as in the 400 MHz range to achieve 

high data rates and longer range communication links. The fast development of ultra-low-

power RF transceivers may contribute to a revolution in the wireless IMD industry. 

Innovative medical implants could include endoscopic camera capsules that are swallow-

able, heat or acidity sensors that can transmit their data to a base station meters away, and 

even miniaturized medication pumps such as insulin pumps for diabetes patients. 

Wireless implants are being studied for body area networks (BANs). As part of the larger 

field of wireless personal area networks (WPANs), BANs define the wireless 

communications of devices in the vicinity or inside the human body. The IEEE 802.15 

working group [61] and its BAN task group (TG6) [62] represent the most prominent 

committees working on standardizing communications in this space. 

Wireless IMDs are designed to operate in the un-licensed Industrial Scientific 

Medical (ISM) frequency bands as well as the dedicated Medical Implants 

Communication Service (MICS) band. In addition to allocating the MICS band, the 

federal communications commission (FCC), as well as European regulators, have applied 
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specific rules and regulations for the operation of IMDs in this spectrum [63, 64]. We 

present a summary of these rules. 

• The available frequency band is from 402 to 405 MHz for high data rate, 

short range (up to 10m) wireless links between an implant and a monitoring 

device. 

• No voice communications are allowed on this band. 

• Up to 10 channels are allowed with a maximum bandwidth (BW) of 300 KHz 

per channel. 

• The Effective Isotropic Radiated Power (EIRP) is limited to 25 uW or -16 

dBm. 

The MICS spectrum is shared with the Meteorological Aids Service (METAIDS) 

used for weather devices such as weather balloon transmissions [65]. Therefore, MICS 

systems are specified as indoors-only. The characteristics of signal propagation through 

the human body (as it will be explained further in the next section) in addition to the 

international availability of this frequency band makes it well suited for wireless IMD 

implementations. 

2.4.2 Design and Implementation Challenges of In-Body Wireless 
Communications 

When designing a medical implant with an on-board RF transceiver for wireless 

communications, several requirements and challenges exist. 

• Small Form Factor: The total size of the device is an important 

consideration. In a medical usage, less obtrusive and more patient-friendly 
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devices are desired. Therefore Designers must strive to integrate as many 

components on-chip as possible with minimal external parts and circuitry. 

• Low Power Consumption: This is one of the main challenges facing medical 

implant designers as some of these devices are expected to operate for 

prolonged periods of time (reaching years) without the need to re-charge or 

replace their batteries. Replacing the battery is not a trivial process for IMDs. 

In addition to battery lifetime issues, wireless transceivers are designed to 

consume very low power in order to allow for extra functionality such as 

higher data-rates or more sophisticated sensing functions. Low dissipated heat 

is also a health concern and a motivation for lower power devices. 

Combining the above small size and low power requirements, modern RF 

modules/transceivers developed for IMDs have sizes smaller than 5 x 5 x 10 

mm [60] and aim to consume less than 10mA of current at 3V during 

operation [66]. Moreover, these RF modules are designed to spend most of 

their time in an ultra low power state termed deep sleep, while periodically 

"sniffing" a wake up signal from an external control station. This duty-cycling 

further helps in conserving power and prolonging the battery lifetime. 

• Low Cost: while striving to be commercially viable, wireless IMDs face 

higher cost challenges than non-medical devices. For example an oscillator 

crystal normally costing 25 cents may cost up to 10 dollars when targeting a 

medical implant device [67]. The high cost of components used for medical 

devices stems from the relatively small number of suppliers willing to be in 

the medical market and its strict regulations. These include the various tests, 
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verifications, and documentations that medical components must undergo to 

be certified for medical use. Therefore IMD designers aim at integrating as 

many components as possible on-chip reducing the size and cost, and 

improving device reliability. 

• Propagation Through and Out of the Human Body: The human body is 

not an ideal medium for RF wave propagation due to several reasons. 

- As recorded in initial TG6 studies [68, 69], the partially conductive 

nature of the human body results in high attenuation caused by power 

absorption. The attenuation effect depends on several factors 

including the number and types of tissues traversed by the RF waves. 

These tissues consist of materials with different relative permittivity 

(also known as the dielectric constant), thickness, and electrical 

conductivity. Attenuation also depends on the frequency used, and 

decreases exponentially with both distance and frequency. From [69], 

Figure 2.11 illustrates this relationship. 

Figure 2.11: Measured body attenuation data vs. frequency and distance, figure taken 
from [69] 
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Wave distortion is another challenge facing implant designers. RF 

waves travel with different velocities in each type of tissue, and 

reflect on boundaries of body tissues [69]. These waves may also 

experience bone and skin shadowing effects [70]. Such conditions 

may result in central frequency shifting and radiation pattern 

destruction [68]. Like attenuation, distortion is influenced by the 

characteristics of the tissues and the frequency used. 

Being a central factor, several studies have focused on studying the best 

frequency that minimizes the effects of body attenuation and distortion. The 

authors of [71] investigated the radio propagation properties from an implant 

at various frequencies; specifically, the 402 MHz and 868 MHz frequencies, 

as well as the microwave frequency of 2.4 GHz. Recorded dielectric 

properties of human tissues were combined with a human body simulator built 

from animal tissues to yield measured as well as simulated propagation 

results. These results demonstrated that a higher frequency incurs higher path 

loss, and that the choice of an optimum frequency is important to radio range, 

device size, and power consumption. Confirming these results, the authors of 

[72] determined that path loss would increase rapidly at frequencies higher 

than 1 GHz, and that the 300-470 MHz band experiences relatively small loss. 

Based on these results and considering practical antenna sizes, the 400 MHz 

band represents an appropriate frequency choice for wireless medical 

implants. 
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Beside the required small antenna size, other design challenges exist. The 

antenna's radiation pattern and performance are affected by its shape and 

orientation. These, in turn, depend on the implant's shape and size, as well as 

the implant's in-body location. In fact, the exact field that an implant antenna 

generates depends on the thickness and type of surrounding tissue. Heating 

body tissues from radiated electromagnetic (EM) waves must also be 

considered when designing an implant antenna. Therefore, implant antenna 

challenges have been the focus of intensive study for years. Several antenna 

designs, shapes, and sizes have been proposed such as disk-shaped, helix-

shaped, etc. [67, 68, 73]. 

As mentioned above, the MICS standard limits the EIRP to 25 uW or -16 

dBm. Therefore, characterizing the in-body wireless channel and 

understanding the wave propagation model is essential to measuring and 

designing the implant's radiated power. Due to the various attenuation and 

distortion effects of the transmission medium, along with the variability of the 

medium from one person to another, developing an accurate propagation 

model for the human body is a difficult and complicated process. As well 

there are ethical issues associated with testing implant systems in humans. 

Researchers from the Japanese national institute of information and 

communication technology (NICT) [69] conducted a propagation 

measurement experiment using the body of a pig. They submitted their results 

to the IEEE 802.15 BAN task group in which they derived a frequency 

response equation for the propagation channel that correlated well with the 
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measured data. They also found that the presence of various tissues results in a 

stochastic dispersive factor in the equation. Furthermore, they deduced that 

the effect of multipath propagation is negligible. 

Channel characterization is an important step towards developing path loss 

models with which the radiated power can be specified. However, the lack of 

an accurate path loss model for the human body pushed scientists to use 

simulation data to characterize the path loss. In his Ph.D. thesis, A. J. 

Johansson performed several measurements and analysis of in-body 

propagation [74]. A human body torso simulator tool was used and is termed a 

phantom. The MICS standard defines a physical phantom as an acrylic plastic 

cylinder with a diameter of 30 cm. The standard also defines the thickness of 

the phantom and its filling tissue simulating liquid. While being easy to build 

and use, the phantom is not very anthropomorphic and certain measurement 

inaccuracies are to be expected. Measurements of the path loss from an 

implanted antenna in a phantom operating at 403 MHz were recorded. 

Simulations of these measurements were also conducted using the finite-

difference time-domain (FDTD) method. In this study, the minimum path loss 

was found to be 23 dB with a mean of 34 dB. The maximum path loss figure 

was found to be 51 dB for a patient in bed with varying position. An excess 

loss margin of 15 dB is applied to the mean in order to cover patient 

orientation, antenna misalignment, obstruction of line of sight, and 

polarization losses which brings the body path loss figure to 49 dB. These 
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figures compare well with industry accepted body path loss figures of 40-45 

dB [75]. 

In medical implant applications, the uplink (implant to monitor/base 

station link) is the power critical path. The monitor contacts the implant 

infrequently sending wake-up signals and control commands, or requesting 

patient's data. In comparison, the implant contacts the base station frequently 

sending relatively larger and more critical blocks of patient data. Therefore, 

the radiated power through and out of the human body is a focus when 

analyzing path loss. Research studies conducted to characterize the path loss 

of in-body medical transceivers point towards modeling the path loss using a 

modified version of the well-known Friis transmission formula. As presented 

in Equation 2.16, Friis' formula defined the received power PRX at the receiver 

antenna based on an unobstructed line-of-sight transmission in free space. 

*KX ~*TX^JT*JR 
( i Y 
y4mi j 

(2.16) 

Here Pxx is the transmitter power, and Gj and GR are the transmitter and 

receiver antenna gains, respectively. X represents the wavelength used and d is 

the separation distance between the Tx and the Rx, which is assumed to be 

larger than the near field (y~ ). It could be seen from this equation that the 

power losses increase with increasing distance and frequency. To model the 

in-body losses into Friis' equation, an in-body path loss factor is introduced to 

reflect these additional losses. Presented in [72] is a modified version of Friis' 

equation that incorporates this factor. 
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The body attenuation factor e"2ctd, as included in Equation 2.17, uses the 

real part a of a complex figure called the propagation constant y. 

y = a + ip (2.18) 

The propagation constant is the logarithmic rate of a change of an 

electromagnetic wave that varies with time in a sinusoidal fashion. The real 

part a is termed the attenuation constant while p is the phase constant. The 

dielectric properties: relative permittivity s and the electrical conductivity a of 

any medium are used to calculate the attenuation constant of that medium. 

Therefore, in order to accurately represent the attenuation of waves inside the 

body, a database of human tissue dielectric properties is needed to reference 

these constants for a range of useful frequencies. Such a database is kept in 

the online records of the FCC and could found in [76]. Other studies further 

illustrated the significance of the tissue dielectric properties in modeling the 

path loss in the human body. In [77] it was determined that the near-filed loss 

is a significant component of the total body loss. However, both the near-field 

and far-field loss components depend on the body propagation constant, and 

hence, on the tissue dielectric properties. The body path loss equation may 

then be modified to reflect the near-field and far-field loss components instead 

of the propagation constant. 

Accurately modeling the propagation through the human body and its path 

loss is a challenging task. In addition to the in-body attenuation and distortion 

effects discussed here, other noise sources must also be considered when 
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designing a complete system such as, reflection losses in a crowded 

environment, noise at the receiver, thermal noise, and the effect of 

incorporating error control codes into the operation of the transceiver. On this 

note, we refer the reader to Chapter 5 for a more detailed discussion of power 

requirements of implantable medical devices with ECC solutions. 

• Reliability of Transmission: Ensuring the reliability of wirelessly transmitted 

data is an important design aspect of medical implants. As discussed above, 

the implant's RF transmission environment features multiple attenuation, 

noise, and interference sources. It is a reasonable design guideline to assume 

that a raw wireless data transmission for a typical implant may not achieve a 

better BER than 1 x 10"3 errors/bit [60, 67]. Therefore, in order to 

accommodate critical medical applications, a form of error correction 

mechanism is required which would improve the implant's BER performance. 

Automatic repeat request (ARQ) codes are an option, however in poor 

wireless channel conditions they result in slowing the data transfer rate due to 

multiple packet re-transmissions. Forward Error Control codes are another 

suitable option that does not require re-transmission while providing strong 

performance. Therefore, a data rate (and power consumption) tradeoff exists 

between packet re-transmission and additional coding capability [60]. 

The design of suitable FEC codes for wireless medical implants involves 

tradeoffs of its own. Adding a sophisticated encoder/decoder system to the RF 

transceiver increases the total power needed to transmit a data packet while 

enhancing the transmission reliability. Therefore, a tradeoff exists between the 
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additional power consumption from extra bit overhead, and the reliability 

gains acquired from coding. Typically, a small increase, for example 30%, in 

coding bit overhead may result in an order of magnitude improvement in the 

BER, for example from 1 x 10"3to 1 x 10"4 errors/bit. Such an improvement 

could mean, depending on the data rate used, years added to the average time 

between errors. These overhead and power tradeoffs will be studied further in 

Chapter 5. The ZL70101 integrated circuit produced by Zarlink Inc. [86] is an 

ultra low power transceiver chip that utilizes the Reed-Solomon error control 

codes for reliable transmission. Reed-Solomon codes are especially good for 

combating burst errors and interference while maintaining low system 

overhead and achieving high data rates [60]. 

Interference is another adversity source affecting transmission reliability. 

Immunity against interference from surrounding RF signals as well as other 

possible in/on body medical devices is an essential design target. When 

considering the analog components of RF transmission, immunity places 

several constraints on filters, low-noise amplifiers (LNA), and synthesizers. 

These constraints may directly conflict with the low-power design targets of 

implants requiring skilled RF design expertise. 

Finally, depending on the application of the implant and the associated 

data traffic, different levels of QoS may be required. For instance, QoS 

requirements are different depending on the data rate used, and whether the 

transmission is real-time versus best-effort. The type of data transmitted also 

plays a role being general versus emergency data [70]. Therefore a QoS 
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mechanism is a necessary ingredient of the overall reliability of wireless 

IMDs. 

• Safety: Patient safety is a top design priority for medical implants. One of the 

most important concerns regarding safety is the biocompatibility of implant 

materials. These materials must be nontoxic and must not react with body 

liquids and tissues [67]. Titanium is an example of such material where it 

forms a thin layer of passive titanium oxide on its surface that prevents it from 

reacting with any body fluid. Passive coatings may also be applied for further 

safety. While very low resistivity metals, such as copper and silver, may be 

preferred for better RF performance, biocompatibility limits the available 

choices of metals. Good choices include platinum or platinum iridium [67]. 

Other safety aspects, as mentioned in previous design challenges, include 

the generated heat from RF radiation and absorption which must be addressed 

by implant designers. Interference with other implants or external RF sources 

may severely degrade the transmission quality and is a definite safety issue. 

A final note about safety is the fact that wireless transmissions are non-

contained, which makes it possible for non-authorized persons to access 

private patient data. Therefore a form of data protection, such as encryption, 

must be applied in order to preserve patient privacy and enhance the overall 

safety of wireless medical implants. 

• Regulatory Issues: In addition to the above technical design challenges, 

wireless implant developers must deal with the complicated process of 

regulatory certification. Implant designs have to pass through multiple testing 
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and approval steps.- Various countries adopt different, and sometimes 

conflicting, standards. Therefore, wireless implant developers and designers 

must be aware of all applicable standards and requirements in order to build 

efficient and useful devices. 

2.4.3 Current In-body Communication Solutions 

Research into wireless solutions for medical applications has been rapidly increasing. 

Current state-of-the-art wireless systems for medical applications utilize various wireless 

technologies and architectures. Low data rate applications implement inductive as well as 

battery powered implants. High data rate applications resort to various wireless 

technologies to implement the wireless link. Ultra Wide Band transceivers show a great 

potential in the medical implant area due to their low radiated power, high bandwidth, 

and security capabilities. Off-the-shelf transceivers may also be used in medical 

applications. Bluetooth-based medical telemetry systems represent examples of this 

approach which is known as telemedicine. Data gathered from such devices can be 

transferred to PDAs and personal computers for continuous monitoring. Another area 

influencing wireless medical communications is micro-electromechanical systems 

(MEMS) which have many applications ranging from building medical sensors to ultra 

low power RF transceivers. The authors of [79] present a more detailed description of 

each of the areas mentioned here and discuss the recent advances and future trends in low 

power wireless medical systems. 

Our focus in this work is on traditional narrow-band wireless systems. On this front 

several implementations have been presented in literature such as in [80, 81]. In addition 

a few MICS suitable transceivers are commercially available such as [78, 82]. The 
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transceiver presented in [78] is an ASIC RF device that provides half-duplex 

communication with data rates of up to 800 kbps, and operates in the 402-405 MICS 

spectrum as well as in the 433-434 MHz ISM spectrum. This device employs the Reed-

Solomon error control codes achieving a BER of less than 1.5 x 10"10 errors/bit, and uses 

less than 11 mW of power while in operation mode. Measuring at 7x7x0.85 millimeters 

and introduced in 2007, the ZL70101 device represents an excellent example of the 

current state-of-the-art wireless transceivers for medical implants. 

The wireless medical device revolution continues, promising to provide innovative 

solutions that enhance patient treatments and the overall health care experience. 

2.5 Summary 

In this chapter, we presented a brief overview of the concept of information channels 

and the effects of noise on the integrity of the data being transmitted. The pioneering 

work of Claude Shannon in the areas of channel capacity and channel coding established 

the foundation for the field of information theory. Several channel coding schemes have 

aimed to enhance the reliability of data transfer and utilize as much channel capacity as 

possible. Turbo and LDPC codes emerged as coding candidates that provide strong 

performance with relatively efficient hardware implementations. 

We introduced LDPC codes and briefly discussed their structure. The relationship 

between the parity-check matrix and the Tanner graph was explored illustrating its effect 

on encoding and decoding these codes. The Belief Propagation algorithm was presented 

as the standard LDPC decoding algorithm along with several published hardware 

implementations. On the encoding side, the apparent complexity of LDPC encoding was 
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discussed showing that direct encoding results in quadratic time complexity. Several 

solutions have been proposed in the literature. The encoding algorithm by Richardson 

and Urbanke [34] combined with the block-circulant code construction approach 

represents an efficient encoding technique that is able to achieve linear time complexity. 

Several software and hardware encoding implementations were presented. 

A brief overview of wireless communications was presented. In addition, the IEEE 

802.16 standard was introduced as the main platform for our encoding project. The 

performance of LDPC codes in wireless systems and environments was investigated 

showing the superior performance and suitability of these codes for emerging wireless 

standards. 

The last section of this chapter focused on the modern trend of integrating wireless 

solutions into implantable medical devices. The MICS rules governing the operation and 

use of such devices were listed. We highlighted the main design challenges facing IMD 

designers including small-size, low power, low cost, and in-body propagation challenges. 

Despite the difficulty of specifying a definitive wave propagation model for in-body RF 

communications, studies have shown that path loss approximations are possible. The 

need for channel coding in order to improve the reliability of the wireless link was 

discussed. Finally safety, privacy, and regulatory considerations were mentioned. 

Today's commercial wireless IMDs are advanced ASIC implementations featuring 

implemented solutions for many of the design challenges and targets. The area of low 

power wireless IMDs is promising with potential and encouraging for further research 

activities. 
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Chapter 3 

The 802.16e compatible LDPC Encoder 

3.1 Introduction 

The low-complexity decoding of LDPC codes is one of their main advantages over 

other channel coding schemes, and it has received much research focus in both the theory 

and implementation fields. The encoding of LDPC codes is typically less researched and 

has received criticism because of its apparent high computational complexity. In Chapter 

2, we discussed in details the problems facing LDPC encoder developers including the 

0(n2) nature of direct encoding, buffering and latency issues, and the rate of output bit 

production. It was also noted that several approaches have been introduced that tackled 

these problems and offered various tradeoffs in terms of computational complexity and 

performance [30, 31, 32, 34, 35, 36]. These challenges, combined with the expanding 

importance of WiMAX in the communications field, provide the foundation of our 

interest in implementing an 802.16e LDPC encoder system. In this chapter, we discuss 

the LDPC block code structure adopted in the standard, then introduce our encoder 

architecture which takes advantage of the code properties and leverages various design 

ideas from the literature, to arrive at a flexible and compact encoder design. 

3.2 802.16e LDPC Code Structure 

The 802.16e-2005 (Mobile WiMAX) standard [10] adopts several channel coding 

schemes including convolutional coding, block turbo coding, convolutional turbo coding, 
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and low-density parity-check (LDPC) coding. The LDPC code specified in the 802.16e 

standard is based on a set of fundamental systematic linear block codes. These irregular 

LDPC codes are designed to accommodate several code rates and code lengths. 

Each supported LDPC code is defined by a parity-check matrix H of size m x n where 

n is the length of the code (output packet length) and m is the number of the code bits 

(parity-check bits) in the codeword. Therefore, the number of input bits (systematic bits) 

required to generate the output codeword is k = n - m bits. 

For each code of a certain rate and length, its matrix H can be obtained from a 

compact base model matrix Hbm that takes the structure: 

bm 
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(3.1) 

Here P(i,j) represents one of a set of z x z permutation matrices or a z x z zero matrix. 

This means that Hbm is a compact representation of the code's binary parity-check matrix 

H. Alternatively, we may say that H is comprised of smaller square-matrix blocks that 

belong to the set of P(i,j) matrices. Therefore z is defined as the block size, and Hbm has a 

total size of m^ x 24, where m = nib x z and n = 24 x z. It could be concluded that H can 

be directly expanded from the base model matrix Hbm via replacing each of Hbm's entries 

with the appropriate permutation or zero matrix. 

The permutations used are circular right shifts, and the set of permutation matrices 

contains the z x z identity matrix and circular right shifted versions of it. Each 

permutation matrix can be represented by a single circular right shift value. This value 

represents the size of the shift. Therefore a non-negative entry (P(i,j) > 0) at (i,j) 
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represents a circularly right shifted identity matrix by a value equal to P(i,j). Similarly a 

zero entry represents a non-shifted identity matrix. To distinguish them from permutation 

matrices, the zero matrices are represented by the value -1. 

For each separate code rate, a base model matrix Hbm is defined for the largest 

supported block size of 96 bits (which gives a maximum codeword size of n = 2304 bits). 

This approach adds another compaction factor to the matrix representation used in the 

standard, where all code lengths associated with one code rate are represented by a single 

base model matrix. In order to expand the base model matrix to achieve the appropriate 

code length, a special scaling technique is utilized. The idea is to adjust the value of the 

block size z which changes the dimensions of the z x z blocks, hence changing the total 

size of H and achieving the desired code length. Thus, before expanding Hbm, its values 

must be scaled within the supported range of block sizes. The equations used to perform 

this scaling are provided in [10] and outlined below. 

For equations 3.2 and 3.3, let the scaled shift size used at entry (i,j) be P(f,i,j), where f 

is the index of the block sizes, f = 0, 1, 2,..., 18. In addition, the selected block size is 

denoted by Zf (also known as the expansion factor), and the maximum block size of 96 is 

denoted by zo. 

For code rates 1/2, 3/4A, 3/4B, 2/3B, and 5/6, the shift sizes, P(f,i,j), for a packet size 

corresponding to block size Zf are derived by scaling P(i,j) proportionally. 

w,u)H 
P(iJ) ,P(i,j)<0 
P(iJ)zf 

MJ) > 0 
(3.2) 
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Where LXJ denotes the floor function. However, for the special case of code rate 

2/3A, the shift sizes, P(f,i,j), for a code size corresponding to block size Zf are derived by 

scaling P(i,j) using the modulo function. 

PUJ,J) 
mj) .P(f.j)*0 
[mod(P(iJ),zf) ,P(iJ)>0 

(3.3) 

Thus, by selecting the code rate and the block size, the base model matrices are scaled 

to meet the coding requirements producing the appropriate H matrices. This matrix 

structure provides flexibility in handling the six different LDPC code rates supported in 

the standard, as well as the nineteen different block lengths for each code rate. All 

supported rates and lengths, along with input/output packet lengths and block sizes are 

presented in Table 3.1. 

Output 
Packet 

Size, n(bits) 

576 
672 
768 
864 
960 
1056 
1152 
1248 
1344 
1440 
1536 
1632 
1728 
1824 
1920 
2016 
2112 
2208 
2304 

Output Packet 
Size, n(bytes) 

72 
84 
96 
108 
120 
132 
144 
156 
168 
180 
192 
204 
216 
228 
240 
252 
264 
276 
288 

Block Size 
(bits) 

24 
28 
32 
36 
40 
44 
48 
52 
56 
60 
64 
68 
72 
76 
80 
84 
88 
92 
96 

Input Packet Size, k(bytes) 

Rate = 
1/2 

36 
42 
48 
54 
60 
66 
72 
78 
84 
90 
96 
102 
108 
114 
120 
126 
132 
138 
144 

Rate = 
2/3 (A/B) 

48 
56 
64 
72 
80 
88 
96 
104 
112 
120 
128 
136 
144 
152 
160 
168 
176 
184 
192 

Rate = 
3/4 (A/B) 

54 
63 
72 
81 
90 
99 
108 
117 
126 
135 
144 
153 
162 
171 
180 
189 
198 
207 
216 

Rate = 
5/6 

60 
70 
80 
90 
100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 

Table 3.1: 802.16e supported LDPC code rates and lengths 
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The 802.16e LDPC code structure is designed to facilitate the implementation of 

efficient encoding/decoding architectures. This is evident through the properties of the 

selected parity-check matrices. All supported matrices are in the almost lower triangular 

form which, as discussed in Chapter 2, enables efficient encoding architectures. Another 

structure of these matrices is the use of circulant matrices to construct block-circulant 

LDPC codes. This property, as we demonstrate in section 2.2.2, can improve the 

computational efficiency of the encoding and decoding processes. These properties and 

their effects will be explored further in the following sections as we discuss our encoder's 

architecture and implementation. 

3.3 802.16e LDPC Code Performance 

The LDPC codes used in the 802.16e standard are capable of providing high coding 

performance. As mentioned in section 2.3.3, the simulation study performed at the 

University of Ulm, Germany in conjunction with Siemens Corp. [59] compared the code 

performance of the most advanced forward error control (FEC) schemes supported by the 

standard, namely convolutional codes (CC), convolutional turbo codes (CTC) and LDPC 

codes. The results show that when compared with the traditional convolutional codes, 

LDPC codes show significant coding gains and achieve similar performance to the turbo 

codes. Figure 3.1 illustrates these BER performance results for these FEC codes over an 

AWGN channel using a code rate of 1/2 and length of 576 bits. 

When simulated over the TU30 channel, modeling a mobile user in a typical urban 

environment moving with a relative velocity of 30 km/h while transmitting on a carrier 

frequency of 3.5 GHz, the 802.16e LDPC codes continued to show their superiority to the 

CC codes as recorded in Figure 3.2. 
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CTCQPSK 

-+- LDPC.QPSK 
-B- CC,16QAM 
-* - CTC,16QAM 
- 0 - LDPC,16QAM 

6 8 10 12 14 
SNR [dB] 

Figure 3.1: FEC codes comparison, BER, AWGN, R=l/2, N=576, figure taken from [59] 
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Figure 3.2: FEC codes comparison, BER/FER, TU30, R=3/4, N=576, figure taken from 

[59] 

In Figure 3.3 the simulation results for the TU30 channel model are shown for the 

LDPC code with rate 1/2 and multiple code lengths. Multiple code rates and lengths for 

the CC coding scheme are shown. 
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Figure 3.3: FEC codes comparison, BER, TU30, various code rates and lengths, figure 

taken from [59] 

The performance of codes depends on the implementation of the encoder/decoder 

system, and while software simulations provide a good estimate for the expected 

performance of codes, a hardware implementation usually reflects a more accurate 

picture. In [83] the first published implementation for an 802.16e compatible LDPC 

decoder core included a code performance study of that particular decoder. Figure 3.4 

depicts the FER results of communication over an AWGN channel for all supported 

LDPC code classes. This implementation of the decoder takes advantage of available 

code properties (such as the layered decoding approach available for code rates 1/2 and 

3/4) to improve decoder throughput. Code length n = 2304 bits was used for all 

simulations. These results correlate well with the simulation results discussed earlier. 

LDPC codes proved to be a strong choice for the WiMAX standard and stand to gain 

increasing popularity in emerging wireless standards. 
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Figure 3.4: FER performance of WiMAX LDPC decoder implementation from [83] 

3.4 The 802.16e LDPC Encoder Core 

3.4.1 Encoding Algorithm 

As shown in Chapter 2, encoding an information block s of length k bits may be done 

using the code's generator matrix G such that G x HT = 0, and a codeword x could be 

generated via the multiplication xT = sT x G. However, since G is a dense matrix for 

LDPC codes, this direct encoding is quite computationally heavy and is quadratic in time. 

Therefore, efficient encoding methods were researched and proposed in literature. In 

addition, WiMAX's support for multiple code rates and lengths adds a further significant 

degree of difficulty to the implementation problem. 
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The 802.16e standard recommends two methods for directly encoding an input packet 

using the code's parity-check matrix H. Method 2 from Annex G of the standard [10] is 

based on the efficient encoding algorithm originally proposed by Richardson and 

Urbanke in [34], which aims to achieve linear encoding complexity. We present a brief 

summary of this algorithm next. 

The algorithm's idea is to preprocess the code's parity-check matrix H into the ALT 

form using only row and column permutations preserving its sparseness and randomness 

properties. Fortunately, the standard supplies all six base model (Hbm) matrices in ALT 

form removing the need for this preprocessing stage. When in ALT form, the upper right 

corner of a matrix is populated by 0s and is some distance from true lower triangular 

form as shown in Figure 3.5. This distance is termed the gap (g) and in this case is set 

equal to the code's block size z. 
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Figure 3.5: The parity-check matrix H in almost lower triangular form 

The H matrix has the form 

H = 
A B T 

C D E 
(3.4) 
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Here A is an (m-z) x (n-m) sub-matrix, B is (m-z) x z, T is (m-z) x (m-z), C is z x (n-

m), D is z x z, and E is z x(m-z). The output codeword is defined to have the structure x 

= [s pi p2], where s is the input packet and pi and p2 are the added parity code bits. 

Given the specific structure of the provided H matrices and after a series of mathematical 

manipulations (see [34]), we arrive at Equations 3.5 and 3.6 

pi =(ET~lA + c)sT (3.5) 

P*=T-\(AST +Bp() (3.6) 

Thus, the encoding procedure may be summarized using the following steps: 

X X 

Step 1) Compute As and Cs 

Step 2) Compute ET_1(AsT) 

Step 3) Compute pi using Equation 3.7 which directly results from Equation 3.5 

p? =ET~1(AST)+CST (3.7) 

Step 4) Compute p2
T using Equation 3.8 which directly results from Equation 3.6 

TpT
1=AsT+Bp[ (3.8) 

The algorithm steps can be graphically illustrated with the block diagram shown in 

Figure 3.6 (from Annex G of the 802.16e standard). 

We choose this algorithm for our design of the 802.16e compatible encoder. We aim 

at taking advantage of its efficient computational complexity and suitability for hardware 

implementations. 
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Figure 3.6: Block diagram of the encoding algorithm for the block LDPC code, figure 
taken from [10] 

3.4.2 Encoder Design and Implementation Flow 

The process we applied to the encoder design and implementation project can be 

summarized in Figure 3.7. As illustrated in the figure, the overall process can be divided 

into three partly overlapping stages. 

Algorithm 
Proof of 
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Software Processes 

Design 
Modeling 

7^ 
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Implementation 
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12 
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Verification 
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Simulations 

Hardware Processes 

Timing 
Verification 

7^ 

• • • • f a l Final Circuit 

Testing Processes 

Timing 
Simulations 

Real-life 
Hardware 
Testing 

Figure 3.7: Encoder design flow chart 

Software Processes: This is the first stage where a direct software implementation of 

the LDPC encoder is completed to serve as an algorithm proof of concept, as well as a 
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reference model for the final design. Following that, modeling of the hardware design 

commences. Through this, competing design ideas are explored in software. As shown in 

the figure, the modeling process overlaps in time and collaborates with the hardware 

implementation process. After arriving at the final design, the software model is 

complete, and is ready to serve as a comparative testing model for the hardware's 

functionality. The functional verification process serves both the behavioral and real-life 

hardware testing processes. 

Hardware Processes: During this stage, initial hardware models are implemented 

and analyzed against their software counterparts. Design tradeoffs such as area, resource 

usage, and performance are considered in order to select the most appropriate design 

idea. After the final design is selected and implemented, behavioral verification starts for 

the individual encoder components then the full system. Finally, the encoder system is 

simulated with real-life timing data and test vectors to verify its close-to-completion 

behavior. Both behavioral and timing verifications are performed in conjunction with the 

corresponding simulation processes from the testing stage. The tests are performed, and 

the results are fed back into the hardware stage to modify and improve the 

implementation. 

Testing Processes: During the first two processes of this stage, the general and the 

timed behavior of the implemented hardware circuit are tested. To accomplish this, 

software testbenches are developed, and feed the software-prepared test vectors to the 

hardware circuits. The results are then captured and studied. After satisfying the 

functionality and performance requirements, the design is finalized and the hardware 

circuit is generated. The final process involves moving the circuit on-chip to perform the 
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real-life hardware tests that confirm the functionality of the finished system. At various 

points in the design flow, verification results may require moving back to an earlier 

process to modify the design and/or develop a new design idea. This looping procedure is 

not shown on the graph, but it is an essential element of the project's development. 

The methodology and results of each of the above three stages will be explored in 

more details in later sections of Chapters 3 and 4. 

3.4.3 Encoder Top-Level Design 

Combining ideas presented in the code structure and encoding algorithm sections, we 

developed a top-level design for the encoder system, illustrated below in Figure 3.8. 

Input bits (S) 

Matrix Data Storage 

V Stage 1 X Stage 2 A Stage 3 A. Stage 4 A Stage 5 A 

Figure 3.8: Top-level block diagram of 802.16e LDPC Encoder 
Stage 6 J 
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This design serves as a plan to divide the overall problem into smaller internal 

components. The idea is to focus the design efforts on building blocks which can be 

replicated and assembled quickly to construct the full encoder system. The plan also aids 

in identifying the needed tools to build and test the system, and the algorithm and/or code 

structure features that may be leveraged to produce an efficient final design. 

The first step is to identify the target design requirements. Our aim is to develop and 

implement an FPGA-based encoder system that functions as an IP core. The term IP core 

refers to a hardware module designed to be integrated as a component in a larger digital 

design. IP Cores are prime examples of design reuse and hence, must be portable and 

able to be inserted into different technologies and systems. We design our encoder with 

the ability to digitally interface with other components of a transmitter system. Studying 

the encoder's specifications as described in the standard's text [10], we identified the 

following essential encoder requirements. The encoder: 

• Accepts k-bit input packets and encodes them into n-bit LDPC output 

packets (codewords). 

• Supports the six LDPC codes, namely 1/2, 3/4A, 3/4B, 2/3A, 2/3B, and 5/6, 

as well as all code lengths from 576 - 2304 bits for each code. 

• Provides the ability to switch code rates and lengths during operation, albeit 

only between packets. 

• Provides low and consistent latency in order to prove useful for 

communication applications. 

• Embodies a low power and small area implementation, initially targeting the 

Xilinx Spartan-3 FPGA chip series [84]. 
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As depicted in Figure 3.8, the top-level design diagram resembles the structure of the 

encoding algorithm presented in Section 3.4.1. The main components in the design are 

matrix multipliers, vector adders, memory storage and controllers, and an overseeing 

master finite state machine (FSM). 

The vector adders are relatively simple components. In software they are binary 

additions, while in hardware they are arrays of exclusive-OR (XOR) gates. The matrix 

multipliers are, however, the central components in the design and can be further divided 

into two classes. The A, B, and C matrix multipliers are the first class. These multipliers 

process input bit streams and generate product bit streams while receiving the matrix 

contents from the memory controllers. The second class is the ET and T~ matrix 

multipliers where no matrix content is required. Upon studying the code structure 

provided in the standard, we learned that the ET"1 and T"1 matrices always take the same 

non-random structure. This allowed for the design of these multipliers to simulate the 

content of these matrices using shift registers and without the need to actually store them. 

Design reuse is applied in the development of the multipliers since they feature internal 

building blocks that can be replicated to assemble the full multiplier. 

The contents of the A, B, and C matrices are stored in memory storage components, 

while the memory controller components handle the data transfer between the storage and 

the multipliers. Despite them showing in the figure as a single store-controller pair, the 

design actually includes a separate pair for each matrix. The internal structure of the 

storage and the controllers is another example of design reuse, where one matrix store-

controller pair is designed then replicated with minor size modifications to handle the 

other matrices. 
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The master FSM, has several responsibilities. The first of which is to handle the data 

transfer between the various stages as they input and output their bit streams. Other FSM 

tasks include the buffering of input and parity bits until the output multiplexing process is 

ready for them. Finally, the master FSM handles the selection of the appropriate code rate 

and length through the negotiation of user-selected encoder parameters. 

The most notable design ingredient is the close integration of algorithm and code 

features into the design in order to reduce circuit complexity and area, and to improve 

performance. As discussed above, the structure of the ET" and T"1 matrices assisted in 

reducing the hardware complexity and memory usage for two main multiplier units. 

However, the code format and structure goes beyond that and provides the tools 

necessary to further reduce the memory space needed to store the rest of the matrices. 

This idea will be discussed in further details in Section 3.4.4. 

The algorithm structure is also utilized to achieve several hardware complexity gains. 

As could be seen from the steps presented in Section 3.4.1, the multiplications of both the 

A and the C matrices are done first since their products are needed in later stages of the 

algorithm. However, both of these multiplications can be performed at the same time 

providing a significant gain of hardware parallelism. All of the following stages happen 

in sequence in order to achieve the correct encoding. However, multiplier units that are 

finished in earlier stages can be utilized again to perform later multiplications. 

Specifically, the A matrix multiplier hardware can be reused for the B matrix 

multiplication stage, and being the largest hardware unit, this provides excellent device 

utilization and area reduction. The same concept is applied to the ET"1 and T"1 multiplier 
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units. Therefore, even though they show up as separate design entities on Figure 3.8, 

these multiplier entities are in fact reutilized at different stages in the arithmetic pipeline. 

3.4.4 Software Implementation and Modeling 

The first stage of the project's development is software modeling. During this stage, 

we completed the initial encoder design and explored its performance. The software 

model also assists in the development and initial testing of the hardware modules. At the 

end of the project, software was the platform for the comprehensive testing tasks 

providing the simulation environment and testing vectors. The tools used at this stage 

include MATLAB, Microsoft Excel, and various word processors. 

The software modeling stage is best explained through the structure and the 

description of the various software modules produced for the project. The actual code of 

these modules is available in Appendix A. 

In Figure 3.9 below, the hierarchy of the software model of the encoder is presented. 

The encoder.m module implements the encoding algorithm of Section 3.4.1 in a straight 

forward fashion. 

encoder.m n—s finalEncoder.m 

A mult.m ^ 

Hgenerator.m 

B mult.m 

-> C_mult.m J 

-• stage2.m 

block mult.m 

mem retrieve .m 

.*. stage6.m 

Figure 3.9: Software model hierarchy for 802.16e LDPC encoder 
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This module serves as a proof of concept and assists in better understanding the 

algorithm. Furthermore, the encoder.m module is integrated into the finalEncoder.m 

module to become a reference point for the final design's performance. 

The finalEncoder.m module implements the master FSM, and controls all the 

components necessary to carry on the encoding process. The stagel.m and stage6.m 

modules are software implementations of the ET"1 and T" matrix multiplier units, 

respectively. The rest of the matrix multiplier units are implemented in the Ajnult.m, 

Bmult.m, and Cjnult.m modules. All three of these modules have a similar internal 

structure utilizing one or more instances of a block multiplier unit along with a memory 

interface function. The block multiplier, implemented in blockjnult.m, is one of the 

central modules in our project. The mem_retrieve.m module handles the retrieval of 

memory contents used in the multiplication process. The contents of all the required 

matrices are generated using the H_generator.m utility. This utility loops through all the 

supported combinations of code rates and lengths expanding their model Ht,m matrices 

into the full binary H matrices and storing them for later access by finalEncoder.m. And 

last but not least, finalEncoder.m performs the various vector additions by binary XOR-

ing the appropriate vectors. 

In addition to controlling the data flow of the algorithm, the software encoder is able 

to randomly generate input packets for encoding. It also implements several performance 

statistics measures such as error counters and a pseudo-clock counter for latency 

estimates. Finally, the encoder performs a simple test at the end to verify the integrity of 

the produced codewords. This flexible MATLAB implementation provided us with good 

design feedback and assisted in speeding up the hardware design process. 
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Testing and functional verification is another main category where software modeling 

was utilized. However, this discussion is postponed till Chapter 4 where the full 

software/hardware verification process is described along with its results. 

Overall, software proved to be a powerful tool for the encoder's modeling, testing, 

and verification tasks. But perhaps one of the most significant software contributions was 

realized through the design and preparation of the encoder's memory storage. 

As discussed in the top-level design section, each of the A, B, C matrix multiplier 

units requires access to the contents of these matrices. Since the target encoder supports 

all code rates and lengths, a straight forward storage of the expanded binary A, B, C 

matrices would require 19 versions of each matrix for each of the 6 code rates. This 

brings the total required storage space for the A, B, C matrices to approximately 55566.1 

Kb or 54.3 Mb, which is 30 times larger than the maximum available block RAM space of 

1872 Kb [85] on the largest chip in the Spartan-3 series. Therefore, it was clear that a 

different storage approach is needed. 

One possible approach is to only store the matrices in their model base numerical 

format. This is possible since all of the information required to perform a single block 

multiplication is contained in two elements, the input from the user and the shift value 

from the base model matrix (or subset thereof). The details of the multiplication will be 

discussed further in Sub-section 3.4.5.1. Using this approach, there are two possible 

implementation directions. The first direction is to pre-process the base model matrices 

provided by the standard, scaling them to support all 19 possible code lengths. The other 

direction is to perform the scaling/expansion on-chip. Obviously, the first direction 

requires more memory storage than the second. Therefore a tradeoff exists between the 
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simplicity of the memory controller's circuit and the required memory storage. The 

following table presents the memory requirements for all three ideas discussed here. 

Bits per Matrix Entry 
Total Number of 

Matrices 
Required Memory 

(Kilo Bits) 

Fully expanded 
Binary A,B,C 

Matrices 
ZfXZf 

342 

55566.1 

Scaled Base 
Model A,B,C 

Matrices 
7 

342 

95.3 

Non-scaled Base 
Model A,B,C 

Matrices 
11 

6 

7.9 

Table 3.2: Three approaches to storing the A, B, and C sub-matrices 

Based on these initial calculations, and the available block memory on the Spartan-3 

chips we decided to pursue the memory-conservative on-chip scaling technique. The 

matrix multipliers are designed to receive the properly-scaled shift values and use them to 

perform the multiplication with the input bits. Thus, in order to supply the multipliers 

with the correct shift values, the hardware memory controllers must: 

• Access the appropriate matrix corresponding to the selected code rate. 

• Divide the retrieved shift values by zo (i.e. 96). 

• Multiply the result by the user-selected Zf value 

• Perform the flooring function and forward the final values to the multipliers. 

These are processing-intensive steps that require several clock cycles to finish. The 

double divide-multiply steps may exceed the time available for the encoder's matrix 

multiplication, which will add latency clock cycles and conflict with one of the main 

design targets of the encoder. In addition, a more complex memory controller requires 

more area, and consumes more power. Therefore, we concluded that our design needed to 

perform as many processing steps off-chip as possible reducing the circuit complexity of 

the on-chip controller. We determined that the division step can be performed ahead of 
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time in software. The rest of the steps depend on user-selected parameters and must be 

performed on-chip. 

When performing the division in software, the result will be a fraction that needs to 

be represented in binary before being stored in chip memory. The resultant fraction is 

always less than one since all shift values are less than 96. Therefore we needed to 

determine the number of bits, that is the precision, required to represent the fractions. 

Adopting the fixed-point binary format, this number must provide enough accuracy to 

produce the correct results once the fractions are multiplied with Zf on-chip. We 

developed MATLAB scripts (Accuracy_driver.m & verify_accuracy.m) that evaluate the 

divide-multiply results with a range of precision bits. The minimum required number of 

bits to represent the fractions resulting in no errors was determined to be 54 bits. This 

number would result in approximately 56 Kb of storage, but the main problem would be 

handling the very wide multiplier and memory bus lines needed on-chip. Therefore, in 

order to reduce this number, rounding was introduced. This means that a pre-determined 

precision is selected to represent the fractions, and when the division is performed in 

software the result is rounded up towards the closest fraction represented by the available 

binary bits. 

Rounding, however, presented a challenge. If the precision is chosen too large, 

memory storage space is wasted. If it's chosen too small, rounding errors will occur. To 

illustrate how rounding works, we discuss the following numerical example. 

Let the matrix entry (shift value) be 41 and the selected code length is 1632 bits, 

which corresponds to Zf = 68. Further let the precision used be 8 bits. Applying Equation 

3.2, the expected result after scaling is 29. 
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- 41 is first divided by z0 (96). 41/96 = 0.427083333. When converted to binary 

using 8-bit precision the result is 01101101, which is in fact equal to 0.4258. 

- The fraction 0.4258 is then multiplied by zf. 0.4258 x 68 = 28.9544. 

Finally, performing the flooring function[28.9544J, the result is truncated to 28. 

This is the wrong result. 

To correct this, a rounding factor is added to the binary representation to adjust the 

value. The factor is chosen to be the smallest possible fraction. Therefore: 

- After rounding. 00000001 + 01101101 = 01101110, which is equal to 0.4311 in 

decimal representation. 

- The fraction 0.4311 is then multiplied by zf. 0.4258 x 68 = 29.3148. 

Finally, performing the flooring function[29.3148J, the result is 29. This is the 

correct result. 

However, changing the code length to 672 bits which corresponds to Zf = 28, an over-

rounding error occurs. Applying Equation 3.2, the expected result after scaling is 11. 

- After rounding, the fraction 0.4311 is multiplied by zf. 0.4311x28 = 12.0708. 

Performing the flooring function [12.0708], the result is 12. This is the wrong 

result. 

Despite the 8-bit precision being suitable for the 41/96 fraction when Zf is 68, it 

produces the wrong result when Zf is 28. Therefore, more precision is needed. Fortunately 

our problem is limited to the set of values available in the provided matrices. Thus, we 

developed a MATLAB script (checkjxllvalues.m) that performed a trial-and-error run 

through a range of precision values while looping through all possible fraction values. 

The precision value providing enough accuracy was found to be 11 bits. Therefore all 
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fraction values were converted to 11-bit fixed-point binary representation before porting 

to hardware. This division and conversion were performed using the coljnaker.m 

modules. 

Software tools aided significantly in solving the memory design challenge. In 

addition, we developed software scripts that verified the output of the hardware memory 

controllers against the output of their software counterparts. These ABjnem_checker.m 

and C_mem_checker.m modules can be found along with all the above discussed modules 

in Appendix A. 

3.4.5 Hardware System Components 

Before we describe the hardware structure of the system's components, we will 

discuss in more detail the hardware processes presented briefly in Section 3.4.2. In order 

to transform ideas or software designs into hardware circuits, a hardware description 

language (HDL) may be used. HDLs provide designers with the ability to describe digital 

components, their behavior, and their interconnections using software code. The code can 

then be transformed into hardware circuits using software synthesizers and routers. 

Finally, the design can be programmed into an FPGA device as it assumes the purpose 

and function of the programmed hardware design. One of the main widely adopted 

hardware description languages is Very-high-speed integrated circuits Hardware 

Description Language (VHDL). In our project, we used VHDL for our hardware 

implementation purposes, and the Xilinx ISE 8.1i software design suite for our synthesis, 

debugging, and routing tasks. 

For the design of each system component, we followed the same hardware design 

flow, presented here in Figure 3.10. 
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Design in 
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the Design Netlist 
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description of the input 
design as it applies to 
a specific device 

This process produces 
a file used as input for 
bitstream generation 

Figure 3.10: The VHDL design flow 

After defining the design requirements, the hardware design flow commences with 

the following processes: 
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Implement Design in VHDL: In this process a written specification of the design is 

implemented in VHDL using a suitable text editing tool. A text editor is provided in ISE. 

Synthesize Design: This process checks the code syntax, analyzes the design 

hierarchy, and produces a design netlist saved in an NGC file. A design netlist contains 

the list of parts and their connections in a circuit. Synthesis is performed using the 

software tool Xilinx XST which is part of the ISE software suit. 

Translate & Map Design: Translate merges the design netlist and constraints into a 

Xilinx design file, while Map fits the produced design into the available resources on the 

target FPGA chip. The results are stored in a native circuit description (NCD) file. 

Place and Route Design: This process places and routes the mapped design to the 

timing constraints, and produces a modified NCD file that is used as an input for 

bitstream generation. 

As illustrated in Figure 3.10 above, a verification step is performed after each major 

design milestone. The hardware circuits are tested using VHDL testbenches. These test 

bench modules receive input test vectors and simulate the operation of the design 

producing output vectors and/or waveforms. The simulations are performed using the 

Mentor Grahics' ModelSim XE III software tool. These verification steps are similar to 

the full-system verifications discussed in Chapter 4, therefore a detailed description is 

deferred till then. 

After all the individual components are implemented and tested, the encoder system 

is assembled. The encoder moves into the testing processes before a final hardware 

bitstream is generated to program the FPGA chip. The following subsections describe the 

structure of the encoder's internal components. 

71 



3.4.5.1 The Block Multiplier 

The encoding algorithm requires that several bit vectors be multiplied by sparse 

matrices. These matrices, as we discussed earlier, are comprised of smaller blocks of 

circulant square matrices. Therefore when multiplying a bit vector by a sparse matrix, the 

vector can be divided temporarily into segments with a length matching the dimension of 

the square block matrices. The multiplication process, in turn, can be split into a series of 

smaller block multiplications. Figure 3.11 from [36] depicts a helpful example of the 

multiplication operation between a larger sparse matrix U and a bit vector X, the result is 

the bit vector Y. In the figure, 3 x 3 block matrices are chosen for illustration purposes. 

The minimum block size in the 802.16e standard is, however, 24 bits. 
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Figure 3.11: Matrix-vector multiplication illustration, figure taken from [36] 

Figure 3.11 shows that the block matrices are either zero matrices, identity matrices, 

or circularly right-shifted versions of the identity matrix. It is then noted that whenever a 

vector is multiplied by a shifted identity matrix the result is simply the given vector 

shifted the same number of times that the identity matrix is shifted. For example, matrix 

Z is circularly right-shifted X times, specifically 1 time in Figure 3.12. 
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Figure 3.12: An identity matrix shifted once, produces a vector that is shifted once 

This means that the ' 1 ' bit in the first row is in the X column, the ' 1 ' of the second 

row is in the X1 +1 column, and so on. With this in mind, one then realizes that the first 

row of the result vector is the Xth element of the original multiplied vector; the 2nd row is 

the X1 + element of the original vector and so on. As such it is apparent that, to get the 

result vector, we need only circularly shift the original vector the same number of times 

as the multiplicand shifted matrix. 

But one must also remember that the block matrices that are being multiplied are 

building blocks of a larger matrix. Therefore, it is clear that addition is necessary to 

produce the result of an entire row. This is done through simply adding every 

intermediate shifted vector, as shown in Figure 3.13. 
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A shifted 'h' times +B shifted Y times + .. . + C shifted 'k' times 

Figure 3.13: After the intermediate vectors are shifted, they are compounded through 

addition to produce the row result 

A straight forward attempt at implementing the block multiplier unit may be based on 

a shift register design. Since, the 802.16e standard supports 19 different block sizes, the 

block multiplier must be able to accommodate all sizes with one implementation. Figure 
3.14 illustrates one such design where a 96-bit shift register is used. 
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Figure 3.14: Shift-register based block multiplier 

The input bits of the multiplicand vector are loaded into the shift register. The bits are 

then shifted upwards as many times as the shift value associated with the multiplicand 

block matrix. While the shift register is designed to accommodate the maximum block 

size of 96, a 19:1 multiplexer (MUX) component is used to create a "variable length" 

shift register. As the bits are shifted upwards, the bit slot at location 0 gets constantly 

filled with the content of the top-most bit that is selected by the MUX. The multiplexer 

selects the top-most bit according to the block size specified by the user, thus effectively 

capping the top of the shift register at the right location and creating a looping 

mechanism for the bits. 

While the shift register design is an effective way to perform the block multiplication, 

it suffers from two severe performance problems. The first problem is high latency. Most 

encoder implementations, require the input bit stream to arrive serially (i.e. one bit at a 

time). The above implementation requires the entire input bit vector to be present before 

the multiplication (i.e. shifting) can start, hence it must wait for several clock cycles 

before the input is fully loaded into the shift register. This adds a high count of latency 

clock cycles to the design. The second problem is variable latency. Since different block 

matrices have different associated shift values, the multiplier will need a different number 
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of clock cycles to produce the results. This makes the multiplier's latency highly variable 

and affects the overall encoder's latency similarly. Therefore, it is clear that a different 

design is required to implement the block multiplier. 

In order to build an efficient block multiplier with low and consistent latency, we 

developed a design idea inspired by the concept of circular pointers. Circular pointers are 

known constructs in the field of computer science. They are based on the idea of 

associating a pointer with a storage unit such as a memory block or a register, whose 

range of addresses are accessible by the pointer. The pointer traverses the register's 

address space in a unidirectional manner. When reaching an end, the pointer loops back 

to the other end, thus creating a virtual circular register. Read and/or write operations are 

possible at the addresses identified by the pointer. Figure 3.15 explains the idea of the 

circular pointer. 
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Figure 3.15: 96-bit register with a circular pointer 

The above figure shows a 96-bit register designed to support the maximum block size 

of the 802.16e LDPC encoder. The pointer traverses the register towards the most 

significant bit (MSB), and may start at any bit address. When reaching the address 

corresponding to the user-selected block size (Zf), the pointer loops back to address 0. 

This mechanism effectively implements the shifting operation required to perform the 

Pointer traversal 
direction 

MSB 
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block multiplication. As the first bit of the multiplicand vector arrives, it is inserted at an 

address calculated based on the shift value retrieved from memory. The next bit is 

inserted at the following address, and so on. The pointer loops back to address 0 after 

reaching the z^l address, all the while the rest of the bits are inserted accordingly. When 

the vector's bitstream is done, so is the multiplication (shifting). As such, the 

multiplication takes exactly Zf clock cycles to complete. This design achieves constant 

multiplication times regardless of the shift value, which significantly reduces and 

stabilizes the latency of the encoder. 

Our block multiplier design is illustrated below in Figure 3.16. The 7-bit wide shift 

value is received from the memory controllers, and used to calculate the starting address 

of the pointer. After that, the Address Generation Logic block takes over control of 

advancing and looping the pointer's address. The 7-bit address is transformed into a 96-

bit one-hot encoded value via the 96-bit Binary Decoder block, thus activating the single 

register location where the input bit is meant to be inserted. When a zero matrix is 

encountered, the shift value received from memory is "1111111". This triggers the 7-bit 

NAND gate to generate the Zero Flag signal. This flag forces the input low (i.e. zeroes 

the input via the AND gate), and disables the binary decoder thus conserving power. 

As we mentioned earlier, the results of multiplying a vector with one column of a 

matrix have to be added to the product of multiplying the same vector with the next 

column, and so on. And as we showed earlier in Figure 3.13, the block multiplication 

results have to be compounded through addition. Our design accomplishes this through 

the integration of 96 XOR gates into the block multiplier. Each XOR gate always "adds" 

the value of the arriving new bit to the current bit value stored at that register location. 
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Therefore, after all of the input is "clocked" in, the output register will hold the row result 

of the multiplication. 
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Figure 3.16: The circular-pointer based block multiplier 

In order to process multiple rows, as is expected with large matrices (such as the A 

and B matrices), one must replicate this block multiplier as many times as the matrix has 

rows. This leads to the next component of the 802.16e LDPC encoder. 
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3.4.5.2 The Full Matrix- Vector Multiplier 

This component is the first type of matrix-vector multipliers required by the encoder 

to handle the A, B, and C matrix-vector multiplications as outlined in Section 3.4.3. We 

used the block multiplier presented in the previous section as a building block for this 

component. The idea is to replicate the block multiplier an appropriate number of times 

to handle the multiple rows of the large matrix. This is illustrated in Figure 3.17. The 

challenge is, however, that the dimensions of these matrices differ per matrix, code rate, 

and code length. 

The code length challenge is solved by the flexibility of the block multiplier design. 

The block multiplier loops the pointer back limiting the size of the register to the block 

size (Zf). As the block size changes, so does the end address accommodating the full 

range of block sizes and code lengths. 

The code rate and matrix challenge is out of the scope of the block multiplier's 

design, and is tackled at the full multiplier level. The three matrices in question range in 

row size from 1 to 11, and in column size from 1 to 20. Noting that the C matrix has a 

single row at all conditions. The effect of the ranging columns is handled through the re­

use of the block multipliers a number of times equal to the matrix' columns. The results 

of the first column are added in the same register to the results of the next column on 

route to the full row result. The effect of the ranging rows is handled through the 

replication of the block multipliers. At this point, we decided to develop two separate 

multiplier components. The first has only one block multiplier unit inside, and handles 

the C matrix multiplication. The second, featured below in Figure 3.17, handles the A and 

B matrix multiplications, and has 11 block multiplier units inside. Despite supporting the 
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maximum number of rows, only the required number of block multipliers will be in 

operation. The excess multipliers are turned off preventing any switching activity and 

reducing the total power consumption. 

Memory Bus 

Input 

Zf (Block Size) 

Number of 
Columns 

Figure 3.17: The full matrix-vector multiplier 
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The full matrix-vector multiplier operates according to an internal FSM, briefly 

explained in the following steps. 

1. The multiplier requests the values of one column of the matrix at hand from the 

appropriate memory controller. 

2. The multiplier receives one matrix column of shift values on the memory bus. 

3. The multiplier enters a loop for Zf clock cycles supplying the input bits to the 

individual block multipliers in parallel. The block multipliers perform the shifting. 

4. After finishing a column multiplication, the multiplier checks the total number of 

columns required for the matrix at hand. If the maximum number is reached, the 

multiplier goes to step 4, otherwise it goes back to step 1 where it requests the 

next matrix column values. 

5. Upon finishing all columns, the row results of the final vector are now ready in 

the block multiplier register segments. These segments make up the complete 

output register highlighted in Figure 3.17. 

In addition to the buses and signals shown in the figure, other hand-shaking signals, 

reset signals, and the clock are not shown for clarity. 
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3.4.5.3 The ET', T' Matrix Multiplier 

In section 3.4.3, we alluded to the second type of matrix-vector multipliers required in 

the encoder system to handle the multiplication with the ET1 and T 1 matrices. Unlike the 

previous matrix-vector multiplier, this component requires no matrix contents to perform 

the multiplication. Instead, it employs an efficient hardware design idea that mimics the 

contents of the ET"1 and T 1 matrices producing the correct multiplication results. 

The design of this component is based on an observation made at the matrix structure 

level. It is observed that for all supported code rates in the standard, the T, E, T" , ET" 

matrices always take specific shapes, illustrated below in Figure 3.18 for a code rate 3/4. 

A\ 

A\ 
0 

0 

0 

0 

\ j \ 
\ j \ 

0 

0 

0 

0 

\ j \ 
\X 

0 

0 

0 

0 

Xj\ 

0 

0 

0 

0 

0 0 0 0 1 

A. Typical shape of a T 
matrix 

B. Typical shape of an E 
matrix 

1 

1 

1 

1 

0 

1 

1 

1 

0 

0 

1 

1 

0 

0 

0 

1 

0 

0 

0 

0 

C. Typical shape of a T" 
matrix 

D. Typical shape of an ET" 
matrix 

Figure 3.18: Typical shapes of T, E, T"1, ET"1 matrices for code rate 3/4 

81 



The Is in Figure 3.18 represent identity block matrices, while the Os represent zero 

block matrices. The T matrix is a square matrix with a dual diagonal of identity block 

matrices. The inverse of this, shown in part C of the figure, is a true lower triangular 

matrix where all elements below the diagonal are identity block matrices. Similarly, the E 

matrix always takes the shape of a vector of zero block matrices with the exception of an 

identity matrix at the last location. And when multiplying the E and T"1 matrices, the 

result is a vector of identity matrices matching in dimensions with the E matrix. 

These matrix shapes are important to the design of their multipliers. When 

multiplying the ET1 matrix with a vector X, the result is the sum of the block-size 

segments of X as shown in Figure 3.19 A. Following the same concept, the multiplication 

of T"1 with X results in a vector whose every segment holds the sum of the corresponding 

segment from X and all previous X segments. Figure 3.19 B. 
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Figure 3.19: Multiplying a vector by each of ET" and T" 
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It is evident from the above observations that the multiplication process can be 

reduced to a series of additions. We designed a multiplier component that takes 

advantage of this concept utilizing XOR adders and shift registers. Figure 3.20 shows our 

design, termed the large-shifter multiplier which can be used for both the ET" and the T" 

multiplications. 
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Figure 3.20: The large-shifter multiplier 

The multiplicand input vector is loaded into the internal large shift register in a 

parallel fashion. During each following clock cycle, the input vector is shifted towards 

the LSB 96 bits at a time. This means that bit 96 becomes bit 0, bit 97 becomes bit 1, and 

so on. In addition, the most significant segment gets loaded with the contents of the least 
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significant segment creating a large circular shift register. This feature helps conserve the 

input values for future access by the master FSM. During each clock cycle, the 96 bits 

stored in the first segment (bits 0-95) of the large register are added to the contents of the 

small register via a 96-bit XOR array. The use of the XOR gates for addition here, as is 

the case for all additions in the encoder, is clue to the fact that we are working with the 

binary system or GF(2). The small register is initialized with 0s and thus the very first 

addition (XOR) operation results in the input segment itself. It is noted that the segments, 

and hence the registers, are designed to accommodate the largest block size of 96 bits. 

However, smaller block sizes are processed similarly since the shifting operations do not 

alter the bit order. After 11 shift-add clock cycles, the small register holds the sum of all 

segments of the large shift register. This is essentially the result of the ET"1 multiplication 

as presented in Figure 3.19 A. While the number of columns of the ET1 matrix range 

from 3 to 11 depending on the code rate, 11 cycles of shift-add operations are always 

performed in order to keep the encoder's latency constant. The extra vector segments are 

forced low (i.e. filled with zeros) in order not to alter the result. 

The same hardware design can be used to perform the T"1 multiplication. The only 

difference is that the intermediate addition results make up the segments of the overall 

resulting vector, see Figure 3.19 B. Therefore the small register is made accessible to the 

master state machine, which captures each intermediate result and stores it into an 

external large register. After 11 shift-add clock cycles, the external large register holds 

the result of the T"1 multiplication. 

A key code structure exploit and the component's re-use, position this efficient design 

to achieve significant memory storage gains as well as resource and area reductions. 
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3.4.5.4 Memory Storage and Controllers 

We demonstrated in Section 3.4.4 that the most memory efficient approach to storing 

the contents of the A, B, and C matrices is the on-chip scaling method. We discussed that 

in order to compute the correctly scaled shift values on-chip, we need to store the division 

fractions in memory using an 11-bit fixed point representation. See Section 3.4.4 for 

details. Finally, we calculated the total number of bits to be stored in memory using this 

approach to be 8074 bits or 7.9 Kb. 

The design of the full matrix-vector multiplier requires access to the memory contents 

in a column-by-column fashion. Therefore, the memory controllers transfer the column 

shift values via the memory bus as requested by the corresponding multipliers. However, 

the memory values are not ready to be transferred until the memory access, 

multiplication, and scaling operations are complete. By contrast, the multiplier 

components are ready to start the multiplication operations as soon as the input bits start 

arriving at the encoder (i.e. on the next clock cycle). Therefore, the multiplier must wait 

until the memory processing steps have completed and the values are ready on the 

memory bus. This waiting delay can be up to 10 clock cycles and adds to the total latency 

of the encoder, violating one of our main design targets. 

We developed a solution for the memory controller latency challenge through 

redesigning the memory storage scheme. One realizes that only the first column shift 

values from the A and C matrices experience this latency delay. The rest of the columns, 

including the single column of the B matrix, do not necessarily need to add any latency to 

the design. This is possible, because the shortest block multiplication needs at least 24 

clock cycles to finish, while the memory controller processing steps need less than 24 
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clock cycles. Therefore, one can hide the memory processing costs by asking the 

controller to start preparing the next memory column values while using (multiplying) the 

current ones. Thus, with the rest of the columns and the B matrix not being a latency 

factor, there must be a mechanism to make the first column shift values of A and C scaled 

and ready within one cycle from the input's arrival at the encoder. 

We are able to achieve this goal by employing two separate approaches to memory 

storage. The first columns of A and C are stored in a fully processed format, and scaled to 

support all code lengths of the standard. This way, these values are ready for immediate 

access by the multipliers. The rest of the columns along with the B matrix are stored in a 

non-scaled format and require processing from the memory controllers. This solution is 

in essence a combination between the second and the third storage approaches presented 

in Section 3.4.4 and summarized on Table 3.2. In that table, we noted that a rally scaled 

storage approach requires 95.3 Kb of memory space, while a fully non-scaled approach 

requires 7.9 Kb of space. This combination solution requires a minimum of 13.1 Kb of 

space, which is a small storage tradeoff when compared to the 24% of latency gains 

obtained. With this solution, the total system latency can be reduced from 42 to 32 clock 

cycles. 

For storage, we utilized the available block RAM space on the target FPGA device. 

Four block RAM components are instantiated. The following table presents their 

information. 

Component Name 

C first column 
C other columns 

A first column 
AB other columns 

Dimensions 

9 5 x 7 
79 x 11 
95x77 

84 x 121 

Total bit count 

665 
869 
7315 
10164 

Table 3.3: Summary of the encoder's Block RAM memory components 
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Adding the bit counts from the above table, the total is 19013 bits or 18.6 Kb. Forcing 

the increase from the 13.1 Kb figure mentioned earlier, is the internal structure of the 

block RAMs. With current technology, it is not possible to instantiate a variable-width 

RAM, which would be ideal to store the various differently sized matrices. For example. 

The second column from the A matrix with code rate 1/2 is 11 elements, whereas the 

same column with code rate 2/3 is only 7 elements. Therefore the largest size of 11 

elements is used for the block RAM width, and the extra spaces are filled with zeros for 

shorter columns. A final note regarding the memory storage is the fact that for our 

particular encoder implementation, code rate 2/3A is not included, accordingly the 

corresponding matrix information are not stored in memory. The total block RAM space 

with the 2/3 A code rate would be 22710 bits or 22.2 Kb. 

The 802.16e encoder includes two memory controller components. One to manage 

the A and B memory storage and busses, and one to manage the smaller C matrix. The 

design of the memory controller component is presented in Figure 3.21. 

Memory Bus 

Figure 3.21: The memory controller component 
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The memory controller processes and prepares the memory values using the 

following steps: 

.1. The controller starts by initializing the memory bus to the values supplied by the 

first column controller. One clock cycle after the code rate and length parameters 

become available to the encoder, the first column controller accesses the first 

column storage, and produces the correctly scaled values of that column on the 

memory bus. 

2. The controller enters a wait state, until a memory request is received from the 

associated multiplier. 

3. When a memory request is received, the appropriate non-scaled column values are 

retrieved from the other columns storage and forwarded to the internal Zf 

multiplier. 

4. The Zf multiplier performs the multiplication between the 11 -bit retrieved fraction 

and the 7-bit user-selected Zf value. The result is an 18-bit product in a "7.11" 

fixed-point format. 

5. The fractional portion represented by the least significant 11 bits of the product is 

truncated leaving the 7-bit integer portion. This is equivalent to the floor function. 

At this stage, the result represents the correctly scaled value from memory. 

6. The last processing step includes subtracting the shift value from Zf, to produce 

the starting address used by the matrix multiplier's circular pointer to insert the 

first bit. This is explained with the following example. 

Let the block size (zf) be 5, which makes the block matrix a 5 x 5 matrix. 

Assume that this matrix is a circularly right-shifted identity matrix by 2, hence 
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0 
1 

2 = 
3 
4 

2 
3 

: 4 
0 
1 

the associated shift value is 2. When multiplying this block matrix by a vector 

segment A, the result is the vector A shifted twice as shown below. Further 

assume that the vector holds the illustrated values that match the values of its 

addresses (i.e. bit 0 holds the value 0, bit 1 holds the value 1, and so on). 

0 0 1 0 0 
0 0 0 1 0 
0 0 0 0 1 X - - • c • **A 

1 0 0 0 0 ° n " ing A d d r e s s 

0 1 0 0 0 

It can be seen in the result, that the A vector's bits are shifted upwards (in 

address space) twice, and bit 0 is wrapped around to take the address 3. 

Therefore, when subtracting the original shift value of 2 from the block size 5, 

we get the correct address of 3. This value can then be used as the starting 

address for the circular pointer implementation. 

7. After each memory request signal, the column count is checked. When the last 

column is reached, the controller's task is over, and it defaults back to the starting 

state. 

Both memory controllers use these steps to process the memory contents in a similar 

fashion. The AB memory controller receives one more memory request than the C 

controller in order to retrieve B's only column. 

89 



3.4.5.5 The Master Finite State Machine 

The master FSM is the top-level VHDL component that ties all other components 

together and controls the flow of the encoding process. It has two main tasks: 

• Managing the flow of data between memory and multipliers, as well as 

controlling the flow of the bitstream along the encoding chain of multipliers 

and adders. 

• Controlling the inputs and outputs of the encoder. This includes configuring 

the encoder to work according to user parameters, buffering intermediate bit 

vector results, and producing the output bitstream and signals. 

In order to accomplish the above tasks, the top-level module is comprised of two 

actual FSMs. The first is the encpding FSM which handles the encoding data flow, 

hardware re-use, and output flags. The second is the latency FSM which mainly handles 

the buffering of intermediate vector results and the switching of the output bitstream 

among the input, pi , and p2 streams. The control logic required to implement these FSMs 

is contained inside the control logic block in Figure 3.22. 

In addition to the FSMs, the top-level module contains the 3:1 output multiplexer 

component, several registers including the pi and p2 registers, and the latency buffers. 

The latency buffers are shift registers of different lengths used to delay the arrival of the 

input and pi bit streams to the output MUX. This helps in maintaining the serial output of 

the encoder. Many other less significant components exist in the top-level design but are 

not shown in Figure 3.22. 
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Figure 3.22: 802.16e LDPC Encoder System (top-level) Diagram 

The encoding FSM manages the flow of the encoding algorithm utilizing the user-

selected parameters such as the code rate and the block size, as well as the internal 

components' control flags. The following steps detail the encoding FSM's states: 

1. The encoder system waits for the start signal from the user design. All signals will 

be explained in Chapter 4. When the signal is received, the full matrix-vector 

multiplier components start processing the serial input bits and performing the 

multiplications. At this stage, the C multiplier, and the larger AB multiplier 

components are working simultaneously. This is an example of hardware 

parallelism. 
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2. When the multipliers are done, a flag signal is raised and the system moves to the 

second stage. In the second stage, the large shifter component loads the result of 

the AB multiplier and starts the ET" multiplication operation. 

3. When the large shifter is done, the system moves to the third stage. This is a one 

clock cycle stage where the C multiplier result and the ET" multiplier result are 

added (XOR-ed) to produce the pi bits. The result is stored into the pi register. 

And the system moves to the 4l stage. 

4. While switching from the 3rd to the 4th stage, the encoding FSM switches the input 

sources for both the AB multiplier and the large shifter components. This is done 

via two multiplexer components (not shown in Figure 3.22) that select the input 

busses to be connected to the aforementioned components. This is an example of 

hardware re-use. 

5. The 4th stage is a dual-purpose stage. The pi register is a shift register used to 

input the bits into the AB multiplier in order to perform the B matrix 

multiplication. At the same time, the pi bits are shifted (transferred) into the pi 

latency buffer to be eventually outputted by the encoder system. 

6. When the AB multiplier is done, the system moves into the 5 stage. This a one 

clock cycle stage where the A matrix multiplication (saved in the large shifter) is 

added to the output of the B matrix multiplication (in the AB multiplier) via the 

1056-bit XOR array. The system moves into the 6th stage. 

7. During the 6 stage the final multiplication with T" matrix is performed. The 

output of the previous addition is loaded into the large shifter component which is 

re-used for this stage. As the shifter is working, the intermediate addition results 
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are captured by the FSM and stored into an external register. When the large 

shifter is finished, the p2 bits are ready to output and stored in the p2 register. 

8. Despite the algorithm needing only 6 stages to finish, the encoder system needs a 

final 7l stage to output the p2 bits. By this stage, the system had already outputted 

the input bits and the pi bits and is ready for the p2 bitstream. Providing that bit 

stream is the encoding FSM through shifting the p2 register contents to the output 

MUX. Upon finishing all output, the FSM sets the values of several external 

signals (flags) to indicate the encoding completion to the user design. 

While the encoding FSM controls most components and handles the flow of the 

algorithm, the latency FSM performs a more focused task. This FSM tracks the various 

stages of encoding, and switches the output MUX at exactly the right clock cycles to 

preserve a continuous flow of serially outputted bits. The latency buffers are designed to 

make the input bits finish outputting in time for the arriving pi bits, and the pi bits in 

turn for the ready p2 bits. Specifically the input buffer is a 32-bit shift register while the 

pi buffer is a 17-bit one. Since latency is defined to be the number of clock cycles from 

the arrival of the first input to the production of the first output, the total encoder's 

latency is dominated by the input's buffer and is equal to 32 clock cycles. This is a low 

latency design suitable for many communication applications. 

This ends our discussion of the components of the 802.16e encoder system. The 

system is designed, tested, and implemented in hardware as an intellectual property core 

ready for use with larger digital designs. For further usage and testing details, the reader 

is referred to the Core's datasheet [86] and Chapter 4. 

93 



3.5 Summary 

In this chapter, we presented our 802.16e LDPC encoder design. We started with the 

supported LDPC codes in the mobile WiMAX standard highlighting their compact 

structure. The use of almost lower triangular and circulant matrices in these codes allows 

for efficient encoding/decoding hardware architectures. Through various studies, LDPC 

codes were shown to exhibit good coding performance in mobile WiMAX systems. 

For our encoder design, we adopted the second method, as proposed by the standard, 

as our encoding algorithm [10]. Our encoder design and implementation flow was 

discussed, and included three main processes: software, hardware, and testing processes. 

The encoder top-level design served as a plan to divide the overall problem into smaller 

design components and allowed for design re-use and hardware parallelism. We focused 

on the software processes as a development and testing platform. In addition, we 

illustrated how software was used to design and prepare the encoder's memory storage. 

We determined that a fair hardware utilization is to store the parity-check matrices' 

contents in memory as semi-scaled fixed-point values with 11 -bit precision. 

The hardware components of the encoder system were developed using the VHDL 

language and a standard VHDL design flow. The main design component is the block 

multiplier unit. The block multiplier uses a circular pointer solution to implement a 

vector-matrix multiplication. This design provides constant multiplication times 

regardless of the input value, which in turn achieves low and consistent latency to the 

overall encoder. This unit is replicated 11 times to construct the full multiplier component 

which supports the various code rates in the standard. This multiplier handles the A and B 

matrix multiplications while the ET"1 and the T"1 multiplications are handled using a large 
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shifter design. The large shifter component exploits the specific forms of the ET" and T" 

matrices to do away with matrix storage and perform the required multiplications. 

The memory storage-controller pair design was presented next. The controller 

accesses the memory contents and completes the scaling process before transferring the 

shift values to the multipliers on the memory bus. 

Finally, the master FSM was introduced. Internally, it is comprised of two FSMs; one 

to handle the I/O and the latency buffers; and one to handle the rest of encoder operations 

including memory-multiplier interaction and algorithm control. The complete design, 

presented in Figure 3.22, satisfies all design targets and implements an 802.16e LDPC 

encoder IP core with latency of 32 clock cycles. 
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Chapter 4 

Encoder Verification and Performance Analysis 

4.1 Encoder IP Core - Description and Usage 

The 802.16e compatible LDPC encoder discussed in Chapter 3 is implemented in an 

Intellectual Property (IP) core form. This core is designed to interface with other digital 

cores in applications such as digital transmitters. Figure 4.1 depicts the block diagram for 

the core illustrating the input/output interfacing signals. 

•> DATA OUT 

*- OUT VALID 

> DONE OUT 

Figure 4.1: 802.16e LDPC encoder core block diagram 

The core's signals include data busses where the user design supplies input data, and 

receives output data. It also incorporates control signals which facilitate interfacing and 

provide the user control over the operation of the encoder core. Except for the multi­

valued RATE and BLOCKSIZE signals, all other control signals are active high, which 

means they are considered on when their value is logical ' 1 ' . Table 4.1 provides a 

summary of the signals (a.k.a ports) featured in this design. 
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Port Name 

DATAJN 

RATE 

BLOCK_SIZE 

START 

RESET 

RFD 

CLOCK 

DATA_OUT 

OUT_VALID 

DONE_OUT 

Port 
Width 

1 

3 

7 

Direction 

INPUT 

INPUT 

INPUT 

INPUT 

INPUT 

OUTPUT 

INPUT 

OUTPUT 

OUTPUT 

OUTPUT 

Active 
State 

High 

High 

High 

Rising 
Edge 

High 

High 

Description 

Data Input, serially presented 
packet to be encoded 
Rate to be used to encode the 
packet 
Block Size to be used to encode 
the packet 
Start, to start the encoding 
process 
Synchronous Reset 

Ready For Data, to indicate the 
system is accepting input bits 

Clock 

Data Output, encoded packet 
output provided serially 
Output Valid, to indicate the 
presence of valid output bits on 
DATA OUT 
Done Output, to indicate the end 
of the output bit stream. 

Table 4.1: System signal pinout 

The operation and usage of this core is best described using its ports and how they are 

utilized, we start with the data and parameter busses: 

DATA_IN: On this input bus, the user design supplies the uncoded data input bits to 

the system in a serial fashion starting with the first bit to be encoded. 

DATA_OUT: This is an output bus, on which the system outputs the encoded packet 

bits serially. 

RATE: Using this input bus, the user design supplies the code rate run-time 

parameter to the system. The encoder uses the value on this bus to select the appropriate 

coding matrix and code rate for encoding. This bus is read by the system on the start of 

encoding when the START and RFD signals are asserted. The allowed values for this bus 

and their definitions can be found in [86]. 

BLOCKJSIZE: Using this input bus, the user design supplies the block size (Zf) run­

time parameter to the system The encoder uses the value on this bus to select the 
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appropriate block size, and the input and output packet lengths. This bus is read by the 

system on the start of encoding when the START and RFD signals are asserted. The 

allowed values for this bus and their definitions can be found in [86]. 

The user design communicates with, and manages the operation of the encoder core 

using the following control signals: 

START: The encoder core starts the encoding process when the start signal is 

asserted by the source of the uncoded bits. When START is asserted, the first input bit is 

consumed by the system. All subsequent input bits will be consumed by the system on 

the following clock cycles until the end of the input bitstream. The encoder assumes a 

non-interrupted sequence of input bits. Figure 4.2 is a snapshot of post place-and-route 

simulation illustrating a typical behavior of the start signal. 
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Figure 4.2: Behavior of START signal during encoding of a rate 1/2, block size 96 input 

packet 

RFD: Prior to the start of encoding, the ready for data (RFD) signal is asserted by the 

system to indicate that it is ready to accept data on DATA FN. RFD is initially asserted 

but the input bit stream will not start to be consumed until START is asserted for at least 

one clock cycle. RFD will remain asserted until the entire input packet is consumed, after 
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that it will remain deasserted while the system is processing and outputting the encoded 

packet. Figure 4.2 above, shows the initial condition of RFD, and Figure 4.3 illustrates 

the end of input packet consumption by the system. 
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Figure 4.3: RFD Signal on end of input packet, code rate 1/2, block size 96 

OUT_VALID: This output signal is asserted by the system to indicate the presence 

of valid output bits on DATAOUT. This signal is first asserted 32 cycles after the start 

of encoding and remains asserted until the end of the output packet. Figure 4.4 illustrates 

the 32-cycle latency mentioned above. 

DONE_OUT: The system asserts DONEOUT for one clock cycle to indicate the 

end of the output packet. This signal also indicates the end of the encoding process. 

When DONEOUT is asserted, RFD is asserted and OUTJVALID is de-asserted 

indicating the system's readiness to start encoding another packet. 
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Figure 4.4: OUTVALID Signal and the 32-cycle latency, code rate 5/6, block size 92 

DONEOUT's behavior is shown in Figure 4.5. Figure 4.6 illustrates a complete 

encoding waveform for a packet using code rate 1/2, block size 96 and an encoded packet 

length of 2304 bits. 
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Figure 4.5: DONE_OUT asserted on end of data output, code rate 1/2, block size 96 

CLOCK: This pin supplies the clock frequency signal to the design. All components 

in the encoder core are synchronous to the CLOCK input. This means that all finite state 

machines, registers, etc. in the design change state only on the rising edge of the clock 

signal. 

RESET: When asserted, this input signal causes all registers to be forced low (zero) 

and all state machines to be reset. The system returns to the initial reset state one cycle 

later. 
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Figure 4.6: Encoding of one packet with code rate 1/2 and block size 96 

4.2 Simulation and Testing Method 

Testing and verification is the third stage of the overall design flow of the project. As 

described in Chapter 3, this stage consists of three processes, the first of which is 

behavioral simulations. The second and third processes are timing simulations and real-

life hardware testing. The next three sections will detail these processes. 

Each of the encoder's internal components is passed through behavioral and timing 

simulations as mentioned in Section 3.4.5. However, since the method and tools applied 

here are the same, we will limit our discussion to the overall system for brevity. 

All simulation and testing processes utilize the same general structure presented in 

Figure 4.7. Software modeling as well as hardware modeling tools are employed. On the 

software front, we used MATLAB, Excel, and word processors. We developed several 

modules to automate the testing process. The input_generate.m module generates a user-

defined random sequence of input bits. The input packets are then fed into both the 

hardware implementation and the software model. The output of the software encoder is 

compared with the output of the hardware implementation. The packet compare.m (See 
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Appendix A) module performs the comparison and reports the number and location of 

encoding errors encountered as well as several other useful statistics. In order to run the 

test for several code rates and lengths, not to mention multiple input packets, the 

Encoder_script.m module loops through the required number of times altering the 

encoder's parameters as needed. The finalEncoder.m module, discussed in Chapter 3, 

behaves as a function that can be invoked by this test script. 

i * 

Hardware ; 
•Testing Modules C-Hxtfile 

input_generate.m <<<^ ">a packetcompare.m 

Text file 

Encoderscript.m 

p. finalEncoder.m 

Figure 4.7: MATLAB testing structure 

On the hardware front, we used different testing modules and tools depending on the 

simulation/test being performed. For behavioral and timing simulations we used the 

ModelSim XE III simulation tool, while real-life testing was performed on the XEM3010 

hardware prototyping platform provided by Opal Kelly [87]. The details of the hardware 

testing modules are presented according to the corresponding simulation/testing process 

in the following three sections. 
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4.3 Behavioral Simulations 

The aim of this process is to analyze the general behavior of the system and identify 

any defects or re-design requirements. Behavioral simulations do not include the timing 

information of the system, rather they focus on whether or not the system produces the 

correct results in an ideal environment. They are performed in conjunction with the 

hardware behavioral verification process, as well as the software functional verification 

process (see Section 3.4.2). 

Using the ModelSim software tool, we developed several testbenches as our hardware 

testing modules. Testbenches are VHDL modules designed to act as a user for the design 

under test (DUT). They provide sources for all the ports necessary to operate and 

interface with the DUT. It is also possible to capture the output data and store it into text 

files for later processing. One of the most useful features of simulation software is the 

ability to examine the waveforms generated by the testbench modules and the DUT. This 

provides the ability to track the changes on every signal, bus, and register in order to 

verify the functionality of the design. 

For our behavioral simulation purposes, we developed the Encoder Jb.vhd testbench, 

available in Appendix B. This module interfaces with the encoder's top-level VHDL 

module; and together with ModelSim, it simulates its behavior over a comprehensive set 

of run-time conditions and input values. We used a total of 100 input packets to be 

encoded with all supported code lengths and rates. The largest possible input packet 

occurs at rate 5/6 and block size 96, and is equal to 1920 bits. The resulting output 

encoded packet length is 2304 bits. Using the largest input packet length helps 

accommodate all other possible lengths. Therefore, the total input bit sequence required is 
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1920 bits/packet * 100 packets = 192000 input bits (4.1) 

Both the Encoder script.m script and the Encoder tb.vhd testbench include a code 

loop that feeds the encoder the generated 100 packets for each code length and rate. The 

following MATLAB pseudo code illustrates the idea: 

% loop through all code rates 
for i = 1:4, 

if (i == 1) 
R = 1/2; 

elseif (1 == 2) 
R = 2/3; 

elseif (i == 3) 
R = 3/4; 

else 
R = 5/6; 

end 

% loop through all block sizes in steps of 4 
for zf = 24:4:96 

% loop through all 100 input packets 
for i = 1:100 

%%% Encoding %%% 

end 
end 

end 

While the MATLAB implementation is relatively direct, dealing with a large input 

sequence for a VHDL testbench provided a challenge. There are several approaches to 

accomplishing this. One involves creating an ultra large shift register initialized with the 

values of the 192000 input bits. Then, the bits can be shifted into the encoder during 

operation. However, the Xilinx ISE tools experienced difficulty handling this large 

testbench implementation. Another approach involves storing the input bits in an external 

text file. The bits can be read and shifted into the design during operation. However, the 

high count of text file accesses and the limited VHDL text file interaction tools make this 

approach less than ideal. Our solution involved creating a separate block RAM entity that 
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houses the entire input bits vector. The block RAM is not synthesized with the design and 

is strictly for testing purposes. This provided a simple and fast way of accessing the input 

bits multiple times while operating the encoder. 

Initial behavioral simulation runs uncovered several design defects. We used the 

information provided by the simulation waveforms to refine the design. The final 

encoder design passed all behavioral simulation runs correctly. The figures presented in 

Appendix C depicts several captured waveforms of the comprehensive behavioral 

simulation discussed above, highlighting different aspects of the encoder's operation. 

Specifically, they present: 

1. The waveform of the full behavioral simulation test. 

2. A zoomed waveform illustrating the encoder working with rate 1/2. 

3. A waveform of a full packet encoded with code rate 1/2 and block size 36. 

4. A waveform of a full packet encoded with code rate 5/6 and block size 92. 

5. A waveform illustrating the dynamic change of encoding rate. 

6. A waveform illustrating the dynamic change of block size. 

7. A waveform illustrating a packet-to-packet transition. 

4.4 Timing Simulations 

The aim of this process is to analyze the timing performance of the system. Timing 

simulations consider the effects of clock frequency, components mapping, and routing. 

They provide a fairly accurate idea of the performance of the design with a particular 

clock frequency, and assist in estimating the system's throughput and power 

consumption. Timing simulations are performed in conjunction with the hardware timing 

verification process (see section 3.4.2). 
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Unlike behavioral simulations, timing simulations are complex calculations that 

involve many parameters including the target device timing parameters, routing 

information, gate fan-out and fan-in, setup times, and hold times. Therefore, timing 

simulations require a considerably longer period of time to complete. It is not feasible to 

conduct the same comprehensive simulation runs used in behavioral mode. For our 

timing simulation purposes, we developed the EncoderJb_packet.vhd testbench, 

available in Appendix B. This testing module interfaces with the encoder's top-level 

VHDL module; and together with ModelSim, it simulates timing behavior while 

encoding an input packet. The encoded output packet is captured and verified against the 

software model's results. 

Our initial timing tests revealed a few errors. Most of them were fixed through 

ensuring some input signals are registered in the design. Adding the registers shortens the 

critical path and enhances the timing performance. We also dealt with several issues 

unique to timing simulations: 

a. Unlike behavioral ones, timing testbenches must incorporate an artificial delay 

time when changing an input signal. This is necessary in order not to violate 

device hold times. We picked a delay of 1 ns for all changing input signals to 

the encoder. 

b. It is necessary to define all signals from time zero. If not done, this will result 

in later undefined signal values, and hence simulation errors. 

c. Setting constraints on the clock period may help the routing software achieve 

better timing results. 
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After making the minor modifications to the design and testbench, the final encoder 

passed the timing tests. Figure 4.8 depicts the waveforms generated by simulating the 

encoder running on a 50 MHz clock frequency with code rate 1/2 and block size 24. 

Figure 4.9 depicts the waveforms generated using code rate 5/6 and block size 96 with 

the same clock frequency. In addition, Figures 4.2 to 4.6 above represent further 

examples of timing simulations for the 802.16e LDPC encoder. 
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Figure 4.8: Post place-and-route simulation with code rate 1/2 and block size 24 
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Figure 4.9: Post place-and-route simulation with code rate 5/6 and block size 96 

Through analyzing the timing simulations and the various timing reports generated by 

the ISE suite, we determined that 80 MHz is the maximum clock frequency possible for 

the encoder design. Clock frequency figures and a brief discussion on the encoder's 

throughput are presented in the next section. 
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4.5 Resource Utilization and Throughput 

4.5.1 Hardware Resource Utilization 

The 802.16e LDPC encoder is implemented in two versions. The first implements the 

memory controller Zf multipliers using look-up tables (LUT), while the other version 

implements these multipliers using the available on-chip 18x18 dedicated multiplier 

units. The following two tables summarize the device utilization of the two versions on a 

Spartan-3 XC3S1500 FPGA chip. 

Logic Utilization 
Number of Slice Flip Flops 

Number of 4 input LUTs 

Used Available Utilization 
5,266 

12,143 

26,624 

26,624 

19% 

45% 

Logic Distribution | 

Number of occupied Slices 

Number of Slices containing only related logic 

|Number of Slices containing unrelated logic 

Total Number 4 input LUTs 
Number of Block RAMs 

Number of MULT18X18s 

INumbeTofGCLKs 
Total equivalent gate count for design 

6,587 
6,587 

r o 
12,217 

6 

\ o] 
1 

13,312 

6,587 

6,587 

26,624 

32 

32 

8 

49% 
100% 

0% 

45% 

18% 

0% 
12% 

519,213[ [ 

Table 4.2: Spartan-3 XC3S1500 device utilization for LUT-based implementation 

Logic Utilization 
Number of Slice Flip Flops 

Number of 4 input LUTs 

Used 
4,366 

11,169 

Logic Distribution [ 
Number of occupied Slices 
Number of Slices containing only related logic 

Number of Slices containing unrelated logic 
Total Number 4 input LUTs 
Number of Block RAMs 

JNumber of MULT18X18s 
iNumberofGCLKs 

Total equivalent gate count for design 
ible 4.3: Spartan-3 XC3S1500 device utilization f 

6,032 

6,032 

0 
11,183 

6 
12 

1 

547,221 
or multip 

Available | Utilization 
26,624 

26,624 

16% 

41% 

13,312 

6,032 

6,032 
26,624 

32 
32 

8 

45% 

100% 

0% 
42% 
18% 

37% 
12% 

ier-based im] jlementati 
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The multiplier-based encoder uses less device flip-flops, LUTs, and overall occupied 

slices. However, the total equivalent gate count is higher than the LUT-based encoder 

due to the use of dedicated multipliers. These optimized multipliers result in a slight 

speed increase as will be illustrated in the following sub-section. 

4.5.2 System Throughput 

The throughput of the encoder, can be measured in terms of bits per second or 

packets per second. It depends on three factors: the time to input a packet, the time to 

process a packet, and the minimum time to output a packet for a particular clock-rate. 

However, the coding algorithm dictates that the output packet is always longer than the 

input packet. And when the system is generating the parity bits, it cannot accept any 

input. Therefore, the rate at which packets can be input is the same as the output rate. 

The encoder produces the output packet in two stages: first, the systematic bits are 

passed, unaltered, to the output after 32 latency clock cycles and, second, the parity bits 

are appended to the end of the systematic bits to create the output packet. The output 

packet is produced in one contiguous block. While the time to output a packet is equal to 

the length of the packet, the time to encode and output a packet is equal to the packet 

length plus 32 clock cycles. The latter affects the throughput of the system. 

In order to calculate the maximum throughput of the system, the maximum possible 

clock frequency must be used. Table 4.4 presents the maximum clock frequency as 

reported by the various implementation stages. These figures reflect the fully routed 

design including input/output pins. It is expected that a higher clock frequency can be 

used for the encoder core when in "normal use" as an internal core of a larger design (i.e. 

excluding I/O pads and similar routes). 
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Process Name 

Synthesis 
Map 

Place and Route 

LUT-based Encoder 

Clock Frequency (MHz) 

102.365 
82.864 
79.962 

Multiplier-based Encoder 

Clock frequency (MHz) 

102.365 
87.374 
80.263 

Table 4.4: Maximum clock frequency as reported by implementation stages 

Based on Table 4.4, we can average the maximum frequency to be 80 MHz. In this 

case the minimum time to output a maximum size packet (block size = 96) is 

(2304 bits + 32) / (80x106) = 29.2 u.s (4.2) 

The associated maximum throughput rate is 78.9 Mbits/s or 34246 packets/s. The 

throughput, however, varies with the packet length as illustrated in Table 4.5. 

Output Packet 

Length (bits) 

576 
672 
768 
864 
960 
1056 
1152 
1248 
1344 
1440 
1536 
1632 
1728 
1824 
1920 
2016 
2112 
2208 
2304 

Table 4.5: 802.16e LI 

Time to encode and 

output packet (us) 

7.6 
8.8 
10.0 
11.2 
12.4 
13.6 
14.8 
16.0 
17.2 
18.4 
19.6 
20.8 
22.0 
23.2, 
24.4 
25.6 
26.8 
28.0 
29.2 

DPC encoder throughp 

Throughput 

(M bits/second) 

75.8 
76.4 
76.8 
77.1 
77.4 
77.6 
77.8 
78.0 
78.1 
78.3 
78.4 
78.5 
78.55 
78.6 
78.7 

78.75 
78.8 
78.85 
78.9 

ut for all supported pa< 

Throughput 

(packets/second) 

131578 
113636 
100000 
89285 
80645 
73529 
67567 
62500 
58139 
54347 
51020 
48076 
45454 
43103 
40983 
39062 
37313 
35714 
34246 

± e t lengths at 80MHz 
clock rate 

4.6 Hardware on-chip Testing 

The aim of this process is to confirm the operation of the system in hardware. As 

such, this is not a simulation process, rather a real-life on-chip test. After the timing 
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simulations are completed, the final circuit is generated into a bit file that is ready to be 

programmed unto an FPGA device for testing. 

Our hardware testing module is the Opal Kelly XEM3010 experimentation board 

[87]. The board houses the Spartan-3 XC3S1500 FPGA chip along with a USB 2.0 

micro-controller that allows high speed data communications with the chip. The board 

also features 32 MB of SDRAM and a phase lock loop (PLL) that is a multi-output clock 

generator. As shown in [88], Figure 4.10 depicts the block diagram for the XEM board 

showing the FPGA chip, the USB micro-controller, and the PLL among other 

components. The identifiers between brackets are the IC model numbers used. 

' • • • • • I I l | J W • • • • 

f , .,— . — * 

PROM 
(XCF08P) 

I 
SDRAM 

(MT48LC16M16) 

PLL 
(CY22393) 

Spartan-3 FPGA 
(XC3S1000-4FG320 

orXC3S1500-4FG320) 

1PLLCLK 

581/0 
2GCLK 

10 I/O 

58 I/O 
2GCLK 

2 Pushbuttons 

'8LEDs 

1 PLL CLK 

XBUS(JP2) 

YBUS(JP3) 

Figure 4.10: Functional block diagram of the XEM board, figure taken from [88] 

In addition to the hardware, the XEM board supports a flexible software application 

programmer's interface (API) available in C++, Python, Java, and a Windows dynamic 

link library (DLL) versions. This API facilitates the communication between the host PC 

and the user's FPGA design. On the PC, one can develop a program that controls and 

transfers data to the FPGA design using any of the above languages. On the FPGA, Opal 
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Kelly provides several VHDL modules to handle the USB protocol and hide its details 

from the end user. Specifically, a host interface module is provided which communicates 

with the USB micro-controller at one end and a shared bus at the other. The bus connects 

to several entities named endpoints. Endpoints are VHDL modules that connect the 

shared bus to the user design's signals to be controlled or observed. According to their 

functionality, endpoints are classified into: 

a. Wires that asynchronously transfer a signal's state into the design 

b. Triggers that transfer a one-shot signal into the design synchronized to a 

particular clock. 

c. Pipes that synchronously transfer multi-byte values into the design. 

Figure 4.11 is a visual representation of the interface's structure. It is noted that the 

endpoint components are designated directions as IN or OUT depending on the user 

design signals they interact with. 

PC 

Software 
API and 
Drivers 

USB 
M Controller 

i USB 
Cable 

FPGA 
Host Interface 

Endpoint (Wire In) 

Endpoint (Wire Out) •*-
User 
Design 

Endpoint (Trigger Out)-* 

H Endpoint (Pipe In) 

W-* Endpoint (...) 

Figure 4.11: Opal Kelly interface structure 

For our purposes we leveraged the XEM's flexibility to develop a software/hardware 

testing solution. Our testing platform can be divided into two sides: 
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• On the PC side, we developed the following: 

1. Text files holding the input test vectors (generated by MATLAB scripts). 

We used a similar input vector to the one used in the comprehensive 

behavioral simulations. 

2. A C++ controller file, provided in Appendix D, which handles the 

connection to the board, programming the device, supplying the test 

inputs, capturing the resulting encoded packets, and storing them into text 

files for verifications. 

3. A Makefile that compiles our C++ code with the rest of the API and 

produces the final software testing program. 

• On the FPGA side, we developed a send/receive top-level VHDL module. 

The encoder does not provide buffering for input and output bits. Therefore 

we needed an extra VHDL module to store the input supplied by the C++ 

code and feeds it to the encoder, as well as capturing the serial output and 

buffering it before transfer back to the PC. The TopLevel.vhd file in Appendix 

B performs these tasks. Two extra block RAMs are used to host the incoming 

and outgoing packets. 

In addition, this top-level module connects several endpoints to the encoder. It 

is worth noting that Opal Kelly designed their components to use minimal 

resources, hence making a minimal impact on the user design's performance. 

Figure 4.12 presents the design of the top level module as described here. 
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Figure 4.12: Hardware testing top-level VHDL module 

The top-level module was synthesized, mapped, and routed before the final circuit is 

generated. The bit file was programmed unto the Spartan-3 chip via the C++ controller 

file. The encoder passed all hardware tests and perfectly matched the expected behavior 

of the software models. These tests concluded our testing and verification processes and 

provided a measure of confidence in the working encoder design. 

114 



4.7 Summary 

In this chapter, we described the structure of the 802.16e LDPC encoder as an IP 

core. The usage of the core was explained by detailing the function and operation of the 

various data and control signals. 

In order to verify the functionality of the encoder, we passed it through three testing 

processes; behavioral simulation, timing simulation, and hardware testing. Both 

simulation processes confirmed the expected functionality and provided insight into the 

encoder's resource utilization and performance. While the encoder's throughput depends 

on the selected code length, the maximum throughput was calculated to be 78.9 Mbps at 

a code length of 2304 bits and a maximum clock frequency of 80 MHz. 

The Opal Kelly XEM3010 hardware prototyping platform was used to implement the 

design on an FPGA chip. The design passed all hardware tests and matched the operation 

of the software reference model. 
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Chapter 5 

LDPC Encoders for In-Vivo RF Communications 

5.1 Introduction 

As introduced in Chapter 2, wireless implantable medical devices (IMDs) are part of 

a revolution of innovative patient treatment and monitoring solutions. One of the main 

challenges faced by wireless IMD designers is the low power consumption requirement. 

Driving this requirement is the desired lengthy operation without the need for recharging, 

the ability to incorporate multiple functions, and patient health considerations. This 

chapter explores the suitability of LDPC encoder implementations for in-body 

communications. We focus on our 802.16e LDPC encoder, as well as a convolutional 

LDPC encoder, and contrast the power results with industry leading implantable devices. 

Finally, options for improving the 802.16e encoder's power consumption to better fit 

these applications are presented. 

5.2 Power Measurement Tools 

To evaluate the LDPC encoders' power consumption, the following power 

measurement tools and methodology are utilized. 

The LDPC encoders under study are implemented using Xilinx design tools and 

target Xilinx FPGA devices. Therefore, the integrated "Xilinx XPower - Power 

Analyzer" tool is a natural choice to perform power measurements. Furthermore, the 
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802.16e LDPC encoder utilizes specific Xilinx components which can only be evaluated 

with their tools. 

XPower is part of the Xilinx ISE software suite and can be used to estimate the power 

consumption of a VHDL design post place-and-route. According to [89] the XPower tool, 

reports the total power as: 

Total Power = Static Power + Dynamic Power (5.1) 

Here static power is the power consumed by the chip in quiescent state, that is, with 

no signals toggling, and it is due to leakage currents of the transistors on the chip. 

Quiescent power depends on the power supply, junction temperature, die size, and 

process variation, and therefore is probabilistic with a typical value [90]. Power 

estimation software usually reports the typical static power value for a set of device 

parameters, and this value remains constant for all designs on the device. Dynamic power 

is the additional power consumption caused by the switching activity of the signals in the 

design and the associated capacitive loads charging and discharging. XPower reports the 

static (quiescent) power as well as the dynamic power of the design. 

XPower calculates power based on the concept that dynamic power consumption in 

CMOS circuits is primarily due to switching activity. Each element (LUT, FF, BRAM, 

routing segment) that can switch has a capacitance model associated with it. Clock 

signals and primary input signals are assigned specific frequencies by the designer. 

Synchronous elements are assigned activity (or toggle) rates relative to their associated 

clock. User-supplied activity rates combine with device-specific capacitance models, 

static power, and other data to produce a power estimate for a design. 
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The accuracy of the switching activity data is crucial in obtaining an accurate 

estimate of power consumption. XPower calculates power as a summation of the power 

consumed by each element in the design, which is given by: 

P = CxV2xExF (5.2) 

where P is the power in Watt, C is the capacitance in Farads, V is the voltage in Volts, E 

is the switching activity (i.e. average number of rising transitions per clock cycle), and F 

is the frequency in Hz. Here the capacitance is determined for the specific design that is 

implemented on a specific device, and it is usually fixed during the characterization of 

the routing resources of the design. The voltage is a fixed value for a specific device set 

by default in the XPower interface. F x E is the total number of transitions for a specific 

element; where frequency, or the activity rate of each signal in a design, is the most 

variable element of the above equation. XPower incorporates the switching activity of 

elements in the design through using any of the following data supplied by the user: 

• Global default activity rate. 

• Simulation results stored in a value change dump (VCD) file. 

• Activity rates manually entered through XPower's graphical user interface 

(GUI). 

After the VHDL designs are synthesized and routed using the Xilinx ISE suite, place-

and-route simulation models are generated. These models are then used with Mentor 

Graphics' "ModelSim" software to simulate the place-and-route behavior of the design. 

The simulations record the switching behavior of all signals and components involved in 

the design and in VCD files. The VCD files are then supplied to XPower yielding the 

design's power estimate. 
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In order to evaluate and compare power estimates of encoder implementations, the 

measurement environment was made as fixed as possible. This could be summarized 

with: 

Input: Randomly generated input. 

FPGA device: Spartan-3 FPGA package 3sl500fg320. 

HDL: VHDL. 

Synthesis Tool: Xilinx XST (part of the ISE suite). 

Routing Tool: Xilinx ISE suite. 

Simulation Tool: Mentor Graphics ModelSim. 

Simulation Frequency: 50 MHz. 

Power Estimation Tool: Xilinx XPower. 

The XPower interface can be used to modify the clock frequency to obtain more 

measurement points. 100MHz and 250MHz clocks were used. In addition a single 

measurement with a 50% global activity rate as a default value for all unspecified signals 

was also recorded. 

5.3 Power Measurements of the 802.16e LDPC Encoder 

As presented in Chapter 3, the 802.16e LDPC encoder supports 6 code rates with 19 

block sizes each. The minimum codeword length is 576 bits and corresponds to a block 

size of 24 bits, while the maximum codeword length is 2304 bits and corresponds to a 

block size of 96 bits. The largest amount of user information per packet is encoded using 

the largest code rate (5/6), while the least amount is encoded with the smallest supported 
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code rate (1/2). Therefore, code rates 1/2 and 5/6 along with block sizes 24 and 96 were 

used for the power estimates in order to capture the minimum and maximum. 

\ > . Code Rate 

Frequency\^ 
(MHz) ^ \ 

50 
100 
250 

50 MHz with 50% 
default activity rate 

1/2 
Block size = 

24 
(n = 576) 

177 
204 
286 

235 

Block size = 
96 

(n = 2304) 
175 
203 
285 

233 

5/6 
Block size = 

24 
(n = 576) 

181 
212 
306 

239 

Block size = 
96 

(n = 2304) 
180 
212 
307 

238 

Table 5.1: 802.16e LDPC encoder power estimates, power in (mW) 

The quiescent power reported by XPower was 142mW for this FPGA device. This 

value remained constant for all block sizes, rates, and clock frequencies. As observed in 

Table 5.1, the dynamic power increases as the clock frequency is increased. This is 

expected as all elements in the design toggle faster at high frequency adding to the total 

power consumption. However, the dynamic power varied slightly between the block 

sizes. This is because XPower calculates the switching activity of all elements including 

input and output ports as percentages relative to clock frequency, which results in slightly 

different activity rates. 

An increase in power was observed with the higher code rate. This is because the 

larger amount of input processed by the system at a higher code rate results in higher 

switching activity, hence higher dynamic power consumption. Despite the fact that higher 

code rates require less system resources, the larger input processing effect is more visible 

on the overall power consumption. These trends are illustrated in Figure 5.1. 
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Clock Frequency (MHz) 

Figure 5.1: 802.16e LDPC encoder power estimates with rates 1/2 and 5/6, block sizes 24 

and 96 at several clock frequencies 

From the results above, it could be concluded that the system's power consumption is 

between the rate 1/2 values and the rate 5/6 values. For example at 50 MHz and under 

normal conditions the average is 178 mW. Finally, an observation is made regarding 

setting the global activity rate to 50% of the clock frequency. XPower uses this default 

value for elements not specified by the VCD file, increasing the total activity rate and 

power consumption of the system. This is a pessimistic rate that was observed to be 

higher than normal operation and is an approximated indicative of a worst case power 

usage at that particular frequency. 

5.4 The Convolutional LDPC Encoder 

5.4.1 Introduction to the Convolutional Encoder Implementation 

The convolutional encoder used for this study is based on the design presented in 

[91]. As per a classic convolutional code, any output code bit is generated using previous 
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input bits and previous code bits. Hence, an important aspect of the convolutional LDPC 

(LDPC-CC) encoder is its memory, which indicates how many previously generated bits 

the encoder can store (and hence remember) to generate the current code bit. The 

performance and circuit complexity of the encoder increase as the memory increases. 

This particular design is a rate 1/2 encoder with memory M = 128. Figure 5.2 illustrates 

the architecture of the encoder. 

Figure 5.2: Block diagram of LDPC-CC encoder, figure taken from [91] 

From [91], the LDPC-CC code-bit generation equation, for a rate 1/2 code, at time t : 

nM + <j> can be written as: 

v{nM + (p) = v((n - \)M + <p) + v(nM - SM (</>)) + ^ u(nM - S}u) (0)) (5.3) 

Here, n >0, <p is the phase and can take a value in {0, 1, 2, • • •, M - 1}, 8 (.) and 

£/"'(.) are functions of the code which can take values in {1, 2, • • • ,M - 1} and are 

related to its parity-check matrix. The (+) sign implies an XOR operation. u(t) represents 

the information bit at time t. For further details on LDPC convolutional codes see [4]. 

The LDPC convolutional encoder system described above, is implemented using 

VHDL. XOR gates are utilized to perform all parity-check operations and shift registers 

implement the memory functionality. The final system is synthesized for Xilinx FPGA 
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devices and is placed and routed targeting the Spartan-3 chip series. Behavioral 

simulations and post place-and-route simulations were performed to provide basis for 

power estimation. 

LDPC-CCs have a disadvantage when comparing them to the block ones; that is the 

need for termination. Like traditional convolutional codes, any encoded sequence needs 

to be terminated, returning the encoder to the initial (known) state. This is usually done 

by transmitting a special termination bit sequence that does not convey any user 

information. The necessary termination sequence circuit adds to the circuit complexity 

and hardware overhead of the overall LDPC-CC encoder. The above convolutional 

encoder does not include the termination circuit necessary to generate a termination 

sequence. A solution for such circuit was described in [92] and could be implemented 

efficiently on FPGA devices. Figure 5.3 illustrates the proposed termination circuit 

around the original encoder. At the time of this study the VHDL implementation for the 

encoder with termination was not available, therefore power measurements are performed 

using the original encoder, and reported resource and area data are used to estimate the 

termination circuit's effect on the overall power consumption. 

u(t) 

u(t) 

m 

v2(t). 

Termintate 

Original LDPC-CC Encoder 

"(t-M^ 

v2(t-M) 
*\ D J D 

IXI from 4M 

MD 

it i t « t* 

•HD 

—*\D 

Figure 5.3: Block diagram of termination sequence generation circuit of LDPC-CC 
encoder, figure taken from [92] 
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Figure 5.4: 802.16e LDPC-BC vs. LDPC-CC performance example. (Information bit 
length = 600 bits), figure taken from [93] 

Before comparing the power consumption of the two encoders it is beneficial to 

briefly present the coding performance of 802.16e LDPC-BC codes compared to 

convolutional counterparts. The authors of [93] argue the benefits of including LDPC-CC 

codes into the currently under-development 802.16m standard, and they use the LDPC-

BC codes supported in the 802.16e standard as examples. The performance of the 

802.16e codes, as reported by [94], is compared to LDPC-CC versions derived from the 

block ones using the literature and method proposed by Ali Pusane, et al. [95]. As 

observed in Figure 5.4 above, The LDPC-CC codes perform better than the LDPC-BC 

ones for the simulated range. The authors of [93] further conclude that in addition to 

providing comparable performance, LDPC-CC codes hold important decoding and 

encoding complexity advantages and, therefore, are good 802.16 FEC candidates. 
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5.4.2 Power Measurements of the Convolutional LDPC Encoder 

The convolutional encoder used for this study is a (128,3,6) encoder. Where 128 is 

the memory of the system and (3,6) indicate code rate 1/2. Therefore only rate 1/2 

measurements were possible. In order to facilitate comparison with the block encoder, 

two input vector lengths were used, specifically 288 bits for n = 576, and 1152 bits for n 

= 2304. The results are summarized in Table 5.2. 

^ > . Code Rate 

F r e q u e n c y \ ^ 
(MHz) ^ \ 

50 
100 
250 

50 MHz with 50% 
default activity rate 

1/2 

n = 576 

160 
174 
216 

160 

n = 2304 

162 
178 
225 

162 

Table 5.2: LDPC-CC encoder power estimates, power in (mW) 

As with the block encoder, the quiescent power reported by XPower was 142 mW for 

this FPGA device. This value remained constant for all measurements. The dynamic 

power followed a similar trend as in the block encoder, increasing as the clock frequency 

increased and varying slightly between the code lengths. 

From these results, we could characterize the system's average power consumption. 

For example at 50 MHz and under normal conditions the average is 161 mW. When 

setting the global activity rate to 50 % of the clock frequency, XPower uses this value for 

elements not specified by the VCD file. Unlike the block encoder which has to support 

many code rates, this encoder uses one code rate and an array of XOR gates to implement 

the parity-check operations, and these gates are all in use during regular encoding 

operation. Therefore, there are very few un-specified signals and elements. And setting a 
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default activity rate does not contribute any significant extra power consumption. The 

LDPC convolutional encoder's power measurements are graphed in Figure 5.5. 
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Figure 5.5: LDPC-CC encoder power estimates with rates Vi at several clock frequencies 

5.5 Power Consumption Comparison of the LDPC-BC and 
LDPC-CC encoders 

In this section, we will compare the power estimates obtained for the 802.16e LDPC 

encoder and the convolutional LDPC encoder. Table 5.3 below combines the power 

results for the two encoders at rate 1/2. 

^ > ^ Encoder 

Frequenc^^. 
(MHz) ^ \ 

50 
100 
250 

50 MHz with 50% 
default activity rate 

LDPC Block Encoder 

R = 1/2, 
n = 576 

177 
204 
286 

235 

R = 1/2, 
n = 2304 

175 
203 
285 

233 

LDPC Convolutional Encoder 

R = 1/2, 
n = 576 

160 
174 
216 

160 

R = 1/2, 
n = 2304 

162 
178 
225 

162 

Table 5.3: LDPC-CC vs. 802.16e LDPC encoder power results for rate 1/2, power in 
(mW) 
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It is evident that the power consumption of the convolutional encoder is lower than 

that of the block encoder at all frequencies. Figure 5.6 illustrates this power difference. 

300 

100 

Clock Frequency (MHz) 

Figure 5.6: LDPC-CC vs. 802.16e LDPC Encoder power results at rate 1/2 

Given that the static power component of both encoders is the same at 142 mW, 

power gains are achieved entirely with the dynamic component. We could define the 

power gain achieved with the convolutional encoder as the percentage reduction of 

dynamic power consumed by the convolutional encoder relative to that consumed by the 

block encoder. Therefore, looking only at the dynamic power, the convolutional encoder 

power gain can be defined by Equation 5.4: 

C. E. Power Gain = [(B. E. Dyn. Power - C. E. Dyn. Power) •*- B. E. Dyn. Power] x 100 

(5.4) 

where C.E. is the convolutional encoder and B.E. is the block one. The convolutional 

encoder achieves 40-49 % power gain over the 802.16e encoder as presented in Table 

5.4. 
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^ s . Encoder 

Frequency^^ 
(MHz) \ 

50 
100 
250 

LDPC Block 
Encoder 

R = 1/2, 
n = 576 

35mW 
62mW 
144mW 

R = 1/2, 
n = 2304 

33mW 
61mW 
143mW 

LDPC Conv. 
Encoder 

R = 1/2, 
n = 576 

18mW 
32mW 
74mW 

R = 1/2, 
n = 2304 

20mW 
36mW 
83mW 

Conv. Encoder 
Power Gain 

R = 1/2, 
n = 576 

49% 
48% 
49% 

R = 1/2, 
n = 2304 

39% 
4 1 % 
42% 

Table 5.4: Convolutional encoder power gain (savings) based on dynamic power 
consumption 

These results are further supported by the hardware resource utilization for both 

designs. As reported by the ISE tools, the block encoder uses 19% of available Slice flip-

flops and 45% of 4-input lookup tables occupying 49% of available slices on the Spartan-

3 device. This is a much higher hardware usage than the convolutional encoder which 

posts 1% for all of the above three categories. Table 5.5 is a comparison of the resource 

utilization for the two designs. 

" ~ \ ^ ^ Encoder 

Category ^ ^ - \ 
Slice Flip-Flops 

4-input LUTs 
Occupied Slices 

Block RAMs 
Total equivalent 

gate count 

LDPC Block Encoder 

5,266 of 26,624 (19%) 
12,143 of 26,624 (45%) 
6,587 of 13,312 (49%) 

6 of 32 (18%) 

519,213 

LDPC Convolutional Encoder 

268 of 26,624 (1%) 
220 of 26,624 (1%) 
252 of 13,312 (1%) 

Oof 32(0%) 

3,663 

Table 5.5: FPGA resource utilization comparison, Spartan 3 - package 3sl500fg320 

The circuit complexity of the block encoder comes from its compatibility with the 

IEEE 802.16e standard. The full support of all code rates and block lengths specified in 

the standard along with the ability to switch between rates and lengths on-the-fly requires 

a high degree of flexibility from the design. The design is an intricate network of 

components such as FIFO buffers, shift registers, circular-pointers, XOR adders, memory 

controllers, etc. Furthermore, each code rate is associated with a corresponding parity-

check matrix. These matrices are further split into sub-matrices and stored in the chip's 
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block RAM units which in turn require hardware resources to implement and route their 

bus inputs and outputs. But perhaps the most resource consuming aspect of the design is 

explained by the very definition of block encoders. The 802.16e LDPC encoder must 

receive the fixed length input and build the output code word using all the information 

bits. This means processing large numbers of bits during operation. The largest input 

packet length in this design is 1152 bits, requiring matching length shift and storage 

registers as well as XOR adders. 

By contrast, the LDPC-CC encoder is a relatively simple design. It is a uniform bank 

of XOR gates with phase-controlled multiplexing. The encoded output is produced on a 

separate output port using the equations specified above and with no buffering. Since the 

encoder supports one code rate and no specific packet length, no flexibility complexity is 

incurred. The design implements the parity-check matrix with the multiplexed XOR 

gates, therefore no block RAM storage is required either. 

At a first glance, the simpler convolutional encoder with low hardware usage and low 

power consumption is an obviously more attractive solution for low power applications 

than the block encoder. However, it is important to include the termination circuit 

discussed in Section 5.4.1 to obtain a more accurate comparison. The VHDL 

implementation of the LDPC-CC encoder with termination was not available for this 

report. However from [92] and experimental results, estimates could be extrapolated. As 

tabulated in [92], the LDPC-CC encoder with termination requires approximately 7 times 

the hardware resources required by the encoder alone. ASIC implementations of this 

design show similar area scaling with the terminated encoder occupying 8 times the area 

of the un-terminated one. However, power consumption may not scale with the same 
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ratio, rather from several results obtained at the VLSI lab in the University of Alberta, the 

terminated ASIC encoder consumes 2-3 times more power than the un-terminated one. If 

these ratios are applied to the dynamic power component of the above FPGA designs, the 

convolutional encoder's power results will approach those of the block encoder. 

5.6 LDPC Encoders Analysis for Wireless Implantable Medical 
Devices 

5.6.1 Power Efficiency of LDPC Encoders for Wireless In-Body 
Communications 

The high attenuation and varying nature of the wireless channel through the human 

body presents the need for integrating error correction mechanisms to enhance the 

reliability of transmitted data. As mentioned in Chapter 2, it is safe to assume that a raw 

wireless data transmission for a typical implant may not achieve a better BER than 1 x 

10" . However, a power tradeoff exists. The integration of ECC encoders/decoders adds 

to the circuit complexity of the implant and increases power consumption levels. While 

coding results in lowering the signal-to-noise ratio required at the receiver to achieve 

reliable transmissions. This means to achieve a similar BER, coding lowers the required 

transmit signal power, thus ultimately resulting in lower overall power consumption. This 

tradeoff presents a couple of questions: 

• How power-efficient is a certain ECC code for in-vivo wireless links? 

• What is the minimum transmit power required to achieve reliable in-vivo 

transmission with a certain ECC code? 

We will attempt to answer these questions concentrating on the encoders discussed in 

this chapter. 
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A typical wireless medical implant communicates with an external monitor. MICS 

rules specify that implant transmitters must operate in the 402-405 MHz band while 

maintaining an effective isotropic power level less than 25uW (or -16dBm). This is a 

limit to the radiated power out of the human body, not necessarily the transmit power of 

the implant. In addition, this restriction suggests that the uplink, from the implant to the 

monitor, is the power consumption critical path. In section 2.4.2, we mentioned that the 

minimum path loss through the human body was approximately 23 dB with a maximum 

of 50 dB. This implies that maximum implant transmit power should range between 5mW 

to 2.5W in order not to exceed the MICS limit. However the minimum implant transmit 

power (not exceeding the MICS limit) required to achieve reliable communications is a 

more important factor to this study. We will derive a formula to evaluate the minimum 

transmit power of an implant with and without the use of ECC codes. This method is 

based on the studies carried out in [96] and [97]. 

There are several sources of signal loss that may encounter a transmission from the 

transmitter to the receiver: 

• Body path loss: This is the attenuation of the signals through the human body 

as discussed in Chapter 2. A definitive in-body path loss model does not exist, 

however simulation studies could approximate the body path loss factor. As 

per [96], we will use 50 dB as the body path loss (BPL) factor at 403 MHz. 

• Free-space path loss: Attenuation through free-space in a line-of-sight can be 

modeled with Friis' formula: 

( x Y 
"BX ~ "TX^T^R 

K4nd j 
[W] (5.5) 

131 



Where PRX and PTX are the power at the receiver and transmitter respectively, 

and GT and GR are the transmitter and receiver antenna gains respectively. X 

represents the wavelength used and d is the separation distance between the 

Tx and the Rx which is assumed to be larger than the far field (%_)• 

Reflections losses: These are the extra losses due to reflections and non-line-

of-sight transmission. These losses can be modeled through the inclusion of a 

path loss exponent to the separation distance in Friis' formula. The power at 

the receiver according to the modified Friis' formula becomes: 

P - P G G 
1 RX 1TXKJTKJR 

(x Y i 
K4*J 

[W] (5.6) 
d" 

• Noise at the receiver: This noise originates from two sources: 

o Thermal noise, which is equal to kxTxB, where k is Boltzman's 

constant, T is the temperature in Kelvin, and B is the signal bandwidth, 

o Receiver noise figure (RNF), which is receiver dependent. 

The total noise at the receiver (N) becomes: 

N = kxTxBx\0{RNFno) [W] (5.7) 

After identifying the noise sources, we can define the signal power to noise power 

ratio (S/N) keeping in mind that S/N is different than, but related to, SNR. The later is a 

quantity used frequently in coding theory and is equal to 101ogio(Eb/N0). 

A ^ i L i L ^ Q - ™ (5.8) 
N N0 

Where r\ is the spectral efficiency measured in bits/Hz, Eb is the energy per bit, and 

N0 is the noise power spectral density. 
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The signal power at the receiver can be used with the noise at the receiver to re-write 

Equation 5.8. Thus, substituting Equations 5.6 and 5.7 we get: 

S_ Pnx _Jll0SNnn0 ( 5 9 ) 

N kTBlO RNF/10 

Adding the body path loss factor ioBP1710 and re-arranging Equation 5.9 (assuming GT 

and GR to be unity), we get the minimum transmit power that achieves SNR at the 

receiver: 

P -
1 TX 

f4jrY 

V X J 
d"kTBT]lO^K+mp+B'L>,w [W] (5.10) 

To compute the energy per bit, we divide the transmit power by the data throughput 

R. However since rj = R/B, the energy per bit equation reduces to: 

J-IT 'TX R 

dnkTWSm+™F+EPLVn [ J / b i t ] ( 5 n ) 

If the transmitted data is uncoded, it would require an SNR of 10.4 dB to achieve a 

BER of 10~6 [96]. Therefore using this SNR value with the above equations provides a 

measure of the minimum required transmit power, or energy per bit, to achieve this BER 

level. However, if an ECC code is employed, the SNR required (SNRC) will be lower, and 

the coded spectral efficiency becomes r\c = RCR/B where Re is the code rate. Thus from 

Equation 5.10, the minimum required transmit power for a coded system with code rate 

RAs: 

s2 

P 
1 TX,C 

I d"kTB n io ( 5 M c + w + S P i ) / 1° 
V '* J 

And consequently, the transmit energy per bit becomes 

d"kTBcfjclO
{sm^mF+BPL)m [W] (5.12) 
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E - TX'C PTV r- ( ATT ̂  

KA j 
dnm()(SNRc,RNF,BPLyW [ w ] {$ j 3) 

ReR 

Or 

ETX,c=ETx^
SNRc~sm")m [J/bit] (5.14) 

Where ETX,U is the same quantity defined through Equation 5.11, SNRu is the 

uncoded SNR, and The term SNRc-SNRy is called the coding gain. 

A final step to this derivation is accounting for the extra power cost of the 

encoder/decoder at the implant. For the purposes of our study, we will consider the 

scenario where only an encoder is integrated at the implant. It has been shown that 

including the decoder hampers the energy efficiency requiring 10-100 times more power 

at short distances, as the decoder typically consumes 2-3 orders of magnitude more power 

than the encoder [96]. Furthermore, the monitoring device rarely transmits and, unlike the 

implant, is not power constrained. Thus the monitor's signal power may be raised more 

freely to counter the effects of noise. A very simple wake-up receiver circuit may be 

included in the implant to accommodate for the monitor's commands. To get the total 

minimum transmit energy per bit we add the extra power cost of the encoder (Penc) to 

Equation 5.14: 

ETolal=Em<u\0
(SNRc-SNRu)m^ [J/bit] (5.15) 

RcK 

Equation 5.15 can be used with Equation 5.11 to evaluate the power efficiency of 

ECC codes compared to uncoded systems at various distances. We performed this 

evaluation for the LDPC-CC and LDPC-BC encoders discussed in previous sections. 

In addition to the power consumption of the encoder, we need to specify several other 

parameters required in Equations 5.11 and 5.15. The values are chosen similar to the ones 
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used in [96] and [97], and are presented in Table 5.6. It is noted that while the encoders 

actually run at much higher frequencies of 50MHz or 100MHz, the data throughput rate 

is limited by the MICS bandwidth to only 300 kbps, therefore it is assumed the encoders 

run for 0.6% of the time (at 50 MHz). In Table 5.6, PLE stands for the path loss 

exponent. 

T, K° 
300 

B, kHz 
300 

R, kbps 1 RNF, dB 
300 5 

BPL, dB 
50 

f, MHz 
403 

PLEn 

3 
Table 5.6: Parameters used in power calculations 

The SNR values at BER of 10~6 for both encoders are also required to reflect the 

coding gain achieved using the LDPC-CC or the LDPC-BC code. Without an exact 

hardware testing result for an encoder/decoder pair, approximation is needed. The SNR 

performance of a certain LDPC code depends on several factors including code rate, code 

length, modulation technique, channel model, decoder implementation and iteration 

count, etc. However for the purposes of this study, we use approximate SNR results for 

systems presented in literature and show relevant resemblance to our LDPC codes. For 

the block encoder, we approximate the SNR to be 3.8 dB for rate 5/6 and 2.1 dB for rate 

1/2. These values reflect the 802.16e code performance by the systems presented in [98, 

99, 100]. For the convolutional encoder, we approximate the SNR value to be 3.2 dB 

[96]. We initially evaluate the energy efficiency of the encoders in their current state as 

FPGA cores. The XPower estimates summarized in Table 5.3 are used with the 

appropriate SNR values to plot the minimum transmit energy for the coded system 

compared to the uncoded one versus varying distance from 25 cm to 10 m. Figure 5.7 

compares the block encoder FPGA core, at code rate 1/2, to the uncoded system. Figure 

5.8 evaluates the convolutional encoder's energy efficiency at the same code rate. 
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0 1 2 3 4 5 6 7 8 9 10 
Distance in m 

Figure 5.7: Minimum transmit energy per bit for 802.16e LDPC encoder (FPGA core) 
compared to an uncoded system, at rate 1/2, frequency 50 MHz, BER of 10"6 

-14 I I I I I l l l l 
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0 1 2 3 4 5 6 7 8 9 10 
Distance in m 

Figure 5.8: Minimum transmit energy per bit for LDPC-CC encoder (FPGA core) 
compared to an uncoded system, at rate 1/2, frequency 50 MHz, BER of 10"6 
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As expected, when compared to an uncoded system, the FPGA implementations of 

both encoders are energy inefficient at all distances. While the encoders provide 

significant improvements in data reliability, their high power cost on the FPGA platform 

conflicts with IMD requirements rendering them as inefficient encoder choices. 

ASIC devices provide significant power reductions over FPGA devices. This is due to 

the FPGA's programmability, where designs on such devices are known to consume 

much higher power than the same designs implemented on power-efficient ASICs. For 

instance, the static power component consumed in the FPGA device would be greatly 

reduced as ASICs can be made to use little to no power while in wait or sleep modes. 

Therefore, focusing on the dynamic power component, the figures recorded in Table 5.4 

show 33 mW and 20 mW for the block and convolutional encoders at 50 MHz 

respectively. These figures are in the range of reasonable power consumption for wireless 

IMDs and warrant a further investigation of ASIC as the underlying technology for these 

encoders. 

The gap between FPGA and ASIC technologies has been studied in literature. In 

[101] it is reported that the area of an FPGA design which uses LUT-only logic can be 

reduced 35 times when implemented on a similar process ASIC. The area gap is lowered 

to 18 times when the design utilizes hard blocks of memories, multipliers, and 

accumulators. When it comes to power, the authors of [101] report that the gap is on 

average 14 times for dynamic power consumption. Static power reduction is harder to 

quantify. Static power, which is predominantly due to transistor leakage currents, is 

process dependant, and other factors such as worst case leakage estimates and maturity of 

the process play a main role in characterizing the static power. However, the authors did 
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find a correlation between the area and the static power where the correlation coefficient 

of the static power gap to the area gap is 0.8. This is a reasonable correlation since the 

transistor width is normally proportional to the static power consumption, and the total 

area reduction partially reflects a total transistor width reduction between FPGAs and 

ASICs. If these scaling factors are applied to the encoder designs under study, the static 

power consumption of 142 mW would scale down to 9.9 mW. The block encoder's 

dynamic power at 50 MHz would be reduced to a mere 2.4 mW making the total power 

consumption 12.3 mW. The convolutional encoder would consume 11.3 mW. With these 

figures, the encoders would perform efficiently in wireless IMD applications. Another 

study shows that, considering all of the power saving options, FPGA to ASIC design 

conversion could save up to 20-50% on power consumption [102]. This would bring the 

power figures to 35.2 mW and 32.2 mW for the block and convolutional encoders 

respectively. These might be over estimates as a hardware implementation of the 

convolutional encoder based on the design discussed above was able to achieve 8.6 mW 

at 250 MHz frequency [91]. With the normalized power being 0.034 mW/MHz, this 

ASIC implementation would consume 1.7 mW during operation at 50 MHz. This 

measurement is much closer to the estimate obtained using the gap technique provided in 

[101]. 

Figure 5.9 re-evaluates the energy per bit efficiency for the 802.16e LDPC encoder 

using the 12.3 mW power estimate. Similarly, Figure 5.10 re-evaluates the energy per bit 

for the convolutional encoder of [91] using the supplied power estimate of 1.7 mW. 
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Figure 5.9: Minimum transmit energy per bit for LDPC-BC encoder (ASIC estimate) 
compared to an uncoded system, at rate 1/2, frequency 50 MHz, BER of 10"6 
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Figure 5.10: Minimum transmit energy per bit for LDPC-CC encoder (ASIC estimate) 
compared to an uncoded system, at rate 1/2, frequency 50 MHz, BER of 10"6 
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It can be concluded from the figures that ASIC implementations of the encoders 

under study are more energy efficient options for wireless in-body communications than 

their FPGA counterparts. The block encoder becomes more energy efficient than the 

uncoded system at distances of 5 m and above. The lower power convolutional encoder 

becomes efficient earlier around 3 m. And in the case of a terminated LDPC-CC encoder, 

that consumes 2-3 times more power, the crossover point will be pushed towards the 4 m 

mark. These are encouraging results and show that low power construction of LDPC 

encoders can provide high reliability of data transmission while maintaining acceptable 

low power consumption. 

The above results agree with the conclusions reached in [96]. In that study, several 

ECC coding options and their encoders were evaluated with the LDPC convolutional 

encoder consuming the least power for distances above 4 m. 

5.6.2 Comparisons with Industry Leading IMDs 

In order to gain a practical perspective into using LDPC encoders for in-body medical 

applications, it is important to mention industrial achievements to date and discuss their 

encoders' capabilities and limitations. 

One of the industry leaders in medical implant communication services is Ottawa-

based Zarlink Inc. In May of 2007, they introduced the world's highest performance 

implantable grade radio chip for in-body wireless communication systems, namely the 

ZL70101 chip [78]. 

The ZL70101 is an ASIC RF device that provides half-duplex communication with 

high data rates of up to 800 kbps, and operates in the 402-434 MHz frequency spectrum. 

Using a minimum of 2.1 Volts power supply, it needs only 5 mA of electrical current 
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while in continuous transmit/receive mode and down to 1 mA in low power mode. This 

translates into 11 mW of power consumption while in operation mode. It is expected that 

the encoder/decoder pair consumes even less power than the overall device. This device 

employs Reed-Solomon error control codes together with cyclic redundancy check 

(CRC) error detection for reliable wireless transmission. 

In comparison, the block and convolutional LDPC encoders presented in our study 

are implemented on an FPGA device, and on average consume 178 mW and 161 mW at 

50 MHz respectively. It is evident that, in their current form, these encoders operate at 

much higher power consumption levels than the industry's leading device, and are not 

ready for implant applications. However, as we presented in the previous section, ASIC 

implementations of these encoders may achieve comparable power consumption. 

As per performance, LDPC codes are known to outperform Reed-Solomon codes. 

When the circuit complexity of the encoder and the SNR performance were considered in 

[96] and [97], it was shown that the LDPC-CC code consumes less energy per bit than 

the selected Reed-Solomon code at all distances. Our 802.16e LDPC-BC codes show 

comparable SNR performance to the LDPC-CC code presented in those studies, and the 

estimated 12 mW power consumption of the ASIC encoder compares well to industry 

standards. 

With high throughput, superior code performance, and estimated low power 

consumption, ASIC implementations of the 802.16e LDPC encoder and the LDPC-CC 

encoder stand to make viable choices for wireless in-body transceiver devices. 
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5.7 Power Consumption Improvements 

Aside from the substantial power gains achieved from transferring the encoder 

designs from FPGAs into ASICs, There are several possible approaches that may help 

improve the power gains further: 

• The block encoder under study is designed for compatibility with the IEEE 

802.16e standard. This involves high hardware overhead due to the multi-rate and 

multi-mode support. Compatibility with the standard is not a requirement for 

IMDs, and this overhead may be minimized via tailoring the encoder for a 

specific rate and/or length to a specific application. Eliminating extra code rates 

and the supporting control circuitry will lower the hardware usage and area, and 

consequently lower the overall power consumption. 

For example, if the 5/6 code rate and the 576 code length are exclusively selected, 

the block encoder's hardware usage may be lowered by a factor of 15 times. 

• The choice ofFPGA devices may affect the power consumption level. The Xilinx 

Spartan-3L devices offer 60% reduction in quiescent power consumption (99% in 

hibernate mode) compared to the regular Spartan-3 chips [103]. These reductions 

bring the FPGA-based encoders' power levels much closer to implant 

requirements and close to ASIC levels. 

• The implementation of sleep power states on the chip-level can reduce the power 

cost of the encoder significantly. As we mentioned earlier, due to the MICS 

limitations on data rates the encoders will be running for 0.3-0.6 % of the time. 

Therefore, integrating mechanisms for shutting down the encoder when not in 
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operation will improve the overall power consumption of the implant and enhance 

battery life. 

The results and estimates recorded in the previous sections provide encouraging 

conclusions regarding the use of LDPC encoders in wireless medical implant 

applications. And the improvement ideas presented here provide feasible directions for 

future investigation and research work. 

5.8 Summary 

In this chapter, we investigated the suitability of our 802.16e LDPC encoder with 

wireless implantable medical devices. A convolutional LDPC encoder design was also 

introduced. The FPGA designs' power consumption was categorized using Xilinx' 

XPower tool, which uses signal switching activity rates as a basis for determining the 

dynamic power consumption. Upon comparing the power estimates, the LDPC-CC 

encoder showed a 40-49 % dynamic power gain over the LDPC-BC encoder. 

To evaluate an encoder's power/energy efficiency for in-vivo communications, we 

presented a mathematical model that defines the minimum required transmit 

power/energy to achieve a target BER. The FPGA designs were evaluated and showed 

their inefficiency for IMD applications. However, a further investigation into transferring 

these designs to ASIC technology proved promising. ASIC power estimates appear to be 

in the desired low-power range for medical implants. We conclude that LDPC codes' 

strong performance along with a low power encoder implementation can be a practical 

choice for wireless IMDs. 
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The final section provided several ideas that aim to improve the power consumption 

of the encoders and include: limiting the code rate/length support on the block encoder, 

utilizing low-power FPGA devices, and implementing deep sleep power states on implant 

transceiver chips. 
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Chapter 6 

Conclusions and Future Work 

6.1 Project Results and Analysis 

The main goal of this project was to design and implement an IP core of an 802.16e 

compatible LDPC encoder. To accomplish this goal a number of issues had to be 

addressed. 

First, computationally-effecient block LDPC encoding algorithms were researched. 

Second, the compact structure of the supported LDPC codes was utilized to achieve a 

low-complexity implementation. The compact representation of the parity-check matrices 

in the 802.16e standard provided the opportunity to minimize memory storage 

requirements. This was accomplished by the selection of a minimal fixed-point number 

representation to store the semi-scaled shift-values of the parity-check matrices. Third, 

the encoding algorithm was implemented using parallelism and hardware re-use in order 

to minimize the FPGA resource requirements. Further memory savings were achieved by 

implementing the specific forms of the T"1 and ET"1 sub-matrices as hardware multiplier 

units not requiring any memory storage. 

The final design, as presented in Figure 3.22, was implemented in VHDL as an IP 

core. The system passed all software verification steps. Additionally, a real-life hardware 

implementation on the Opal Kelly XEM3010 hardware prototyping platform was 

confirmed to work correctly. The maximum clock speed of the design was determined to 
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be 80 MHz with a maximum throughput of 78.9 Mbps or 34246 packets per second. The 

design occupied 49% of the available slices on a Spartan-3 XC3S1500 FPGA chip and 

18% of the block RAM resources. 

Another goal for this project has been to study the power consumption of our LDPC 

block encoder, and to evaluate its suitability for low-power wireless implantable medical 

devices. While it is possible to integrate an encoder/decoder solution on an implant, It has 

been shown that the decoder typically consumes 2-3 orders of magnitude more power 

than the encoder [96]. Moreover, monitoring devices are not power-constrained and are 

able to adjust their transmit power levels more freely to achieve reliable transmission. 

Therefore, we considered the scenario where only the encoder is included at the implant. 

The power consumption of the 802.16e encoder, and a convolutional LDPC encoder 

design from [91], was estimated and compared. The 802.16e LDPC core averaged at 178 

mW of total power while the relatively less-complex LDPC-CC averaged at 161 mW. 

The static power on the FPGA device measured at 142 mW, while the rest of the power 

cost was due to the dynamic power caused by the switching activity of the signals in the 

designs. 

In order to evaluate the power efficiency of these encoders for wireless IMD 

applications, a mathematical model was developed to calculate the minimum transmit 

power required to achieve a target BER. The method used is based on the work presented 

in [96] and [97]. When compared to an uncoded system, it was evident that the encoder 

FPGA IP cores faired worse than the uncoded system over the target communication 

distance of 25 cm to 10 m. However, ASIC implementations are known to be more 

power-efficient, hence approximations were made to estimate the encoders' power 
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consumption if they were to be implemented on ASIC devices. The ASIC estimates were 

re-evaluated and the results showed that the 802.16e LDPC encoder is energy-efficient 

for distances of 5 m and above, while the lower power LDPC-CC encoder becomes 

efficient starting at 3 m. These results are based on reported approximation figures and 

are not as accurate as measuring the power on actual ASIC designs. However, they do 

provide encouraging results and illustrate that, if implemented on power-efficient ASICs, 

these encoders can be suitable choices for wireless implant applications. 

When compared with industry-leading devices, the estimated ASIC power 

consumption of less than 15 mW makes both these encoders feasible choices for medical 

implants and warrant further investigation into the design and implementation of LDPC 

codes for these devices. 

6.2 Future Work 

The design process of the implemented encoder targeted compatibility with the 

802.16e standard, low hardware utilization, and low latency. Future work may include re­

visiting the design process to target more efficient hardware implementations. Ideas such 

as pipelining and parallelism may be investigated further to try and improve the encoders 

speed and throughput. The next version of this encoder core should include support for 

the 2/3A code rate. The scaling operation for this code rate requires a modulo function 

implementation instead of the divide and truncate approach used in the other rates. 

As per power, it would be interesting to revisit the design with power consumption in 

mind and investigate power saving options. Another idea would be to investigate the 

power consumption of the encoder on low-power FPGA devices such as the Spartan-3L 
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chip series and others from competing vendors. Additionally, separating the various 

supported code rates and lengths into individual LDPC encoders would sacrifice the 

compatibility with the standard, while improving the power consumption for each 

encoder through eliminating extra control circuitry and resources. This would provide the 

opportunity to evaluate each code rate for use with wireless medical implants. 

Lastly, to further this research towards a definite answer, implementing the 802.16e 

encoder on ASIC should be considered. An ASIC implementation would provide the 

means to measure the actual power consumption, and may possibly be suitable for real-

life implant experimentation. 
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Appendix A 

MATLAB Modules for Software Modeling and Processing 

This Appendix presents the MATLAB code for the modules used the software 

modeling of the 802.16e LDPC encoder and the memory preparation. 

A. 1 Encoder.m 

This module implements the encoding algorithm of Section 3.4.1 in a straight forward 

fashion. 

% This program encodes a randomly generated user bit sequence into an 
% 802.16e compliant LDPC codeword according to specified code length and 
% rate. The program generates codewords for all supported code rates and 
% lengths. 
% 

% for User Input version, un-comment the following lines and eleminate the 
% loops 
for x = 1:4 

i f ( x = l ) 
R = l / 2 ; 

elseif (x == 2) 
R = 2/3; 

elseif (x == 3) 
R = 3/4; 

else 
R = 5/6; 

end 
n = 576; 

fory=l:19 

% Selecting the appropriate stored H matrix 
if(R = 0.5) 

codelength = num2str(n); 
filename = strcatChmatrixl2_',codelength); 
load (filename); 

elseif(R==2/3) 
codelength = num2str(n); 
filename = strcatChmatrix23_',codelength); 
load (filename); 

elseif (R = 3/4) 
codelength = num2str(n); 
filename = strcatChmatrix34_',codelength); 
load (filename); 

else 
codelength = num2str(n); 
filename = strcat('hmatrix56_',codelength); 
load (filename); 
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end 

% the following line is commented out for testing purposes 
u = round(rand([l ,(n*R)])); % Radomly generated user bits 

nb = 24; % Base-matrix size 
zf = n/nb; % expansion factor for specified code length 
m = ceil((24*( 1 -R))*zf); % Number of Rows 
g = zf; % m-g is the number of zeros in the ALT 

% Spliting the H matrix into the required sub-matrices 
A = H(l:(m-g),l:(n-m)); 
B = H( 1 :(m-g),(n-m+1 ):(n-m+g)); 
C = H(m-g+l:m,l:(n-m)); 
D = H(m-g+l :m,(n-m+l):(n-rn+g)); 
E = H((m-g+l :m),n-(m-g)+l:n); 
T = H(l:(m-g),n-(m-g)+l:n); 

% Encoding 

% Step 1 
AuT = A*(u'); 
CuT = C*(u'); 
AResult = mod(AuT,2); % in binary 
CResult = mod(CuT,2); % in binary 

% Step 2 
ET = (E*inv(T))*AuT; 
EResult = mod(ET,2); % in binary 

% Step 3 
plT = ET+CuT; 
P 1 = p l T ; 
PIResult = mod(pl ,2); % in binary 

% Step 4 
p2T = -(inv(T)*(AuT+(B*plT))); 
p2 = p2T; 
P2_Result = mod(p2,2); % in binary 

% The codeword 
v = [u PI Result P2_Result]; 

% Testing the codeword and saving the results 
a = H*(V); 
a = mod(a,2); % in binary 
codeword_test = sum(a); 
testmtx (x,y) = codewordtest; 

n = n + 96; 
end 

end 

A.2 finalEncoder.m 

This module implements the encoding algorithm of Section 3.4.1 using the design we 

proposed in Chapter 3. This module serves as a reference point for the final hardware 

design. 

% 802.16e LDPC Encoder Program 
% 
% This program encodes a randomly generated user bit sequence into an 
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% 802.16e compliant LDPC codeword according to specified code length and 
% rate. The program generates codewords for all supported code rates and 
% lengths. 
% 
% This program simulates a circular-pointer based architecture 

% for User Input version, un-comment the following lines and eliminate the 
% loops 
% n = input('Enter code length(n) value:'); % user input code length value 
% R = input('Enter code rate(R) value:'); % user input code rate 

% 2 loops to cover all code rates and lengths 
for x = 1:4 

i f ( x = l ) 
R = l / 2 ; 
numRows =11; 
numCols = 12; 

elseif(x==2) 
R = 2/3; 
numRows = 7; 
numCols = 16; 

elseif (x = 3) 
R = 3/4; 
numRows = 5; 
numCols= 18; 

else 
R=5/6; 
numRows = 3; 
numCols = 20; 

end 
n = 576; 

fory=l:19 

% Loading the appropriate stored "BINARY" H matrix 
if(R = 0.5) 

codelength = num2str(n); 
filename = strcatChmatrixl2_',codelength); 
load (filename); 

elseif(R==2/3) 
codelength = num2str(n); 
filename = strcat('hmatrix23_',codelength); 
load (filename); 

elseif(R==3/4) 
codelength = num2str(n); 
filename = strcatChmatrix34_',codelength); 
load (filename); 

else 
codelength = num2str(n); 
filename = strcatChmatrix56_',codelength); 
load (filename); 

end 

% The following line could be commented out for testing purposes 
u = round(rand([ 1 ,(n*R)])); % Radomly generated user bits 
u t r = u'; 

% Setting universal constants and variables 
nb = 24; % Base-matrix size 
max_z = 96; % maximum z factor value 
zf = n/nb; % expansion factor for specified code length 
m = ceil((24*( 1 -R))*zf); % total number of Rows in bits 
g = zf; % m-g is the number of zeros in the ALT 
% clocks 
clock_pt = 0; % pointer system clock 
dummy = 0; % non-critical path clock 

% 

% The following section is the encoder section and each step is 
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% split into 2 sub-sections: 
% 1 - The pseudo-code 
% 2- The circular-pointer encoder 

% Encoding 

% STEP ONE 
% AuT = A*(u'); 
% CuT = C*(u'); 
% A_Result = mod(AuT,2); % in binary 
% CResult = mod(CuT,2); % in binary 

[clock_pt regl_pt reg lbu cleanregl] = A_mult(u_tr, R, zf, numRows, numCoIs, clock_pt); 
[dummy reg2_pt clean_reg2] = C_mult(u_tr, R, zf, 1, numCols, dummy); 

% STEP TWO 
% ET = (E*inv(T))*AuT; 
% E_Result = mod(ET,2); % in binary 

[clock_pt reg3_pt clean_reg3] = stage2(regl_bu, 11, zf, clock_pt); 

% STEP THREE 
% plT = ET+CuT; 
% p l = p l T ; 
% PIResult = mod(pl ,2); % in binary 

plout_tr_pt = xor(reg2 jjt,reg3 jr t) ; 
clock_pt = clockjpt + 1; 
p!out_tr_pt = plout_tr_pt((l :zf), 1); % cleaning and resizing for testing purposes 
plout_pt = plout_trj)t'; 

% STEP FOUR 
% P2T = -(inv(T)*(AuT+(B*plT))); 
% p2 = p2T; 
% P2_Result = mod(p2,2); % in binary 

[clbck_pt reg4_pt clean_reg4] = B_mult(pl out__trj>t, R, zf, numRows, 1, clock_pt); 
reg5_pt = xor(regl_pt,reg4_pt); 
clockjrt = clock_pt + 1; % Accounting for latency 
[clock_pt p2out_tr_pt clean_p2] = stage6(reg5jpt, numRows, zf, clockjrt); 
p2outjpt = clean_p2'; 
[p2_cycles, dummy] = size(clean_p2); 
clockjrt = clockjpt + p2_cycles; % Adding P2 output clock cycles 

% The codeword 
% v = [u Pl_Result P2_Result]; 

vjpt = [u ploutjpt p2outjpt]; 

o End of Encoding 

%%% Storing Statistics %%% 
% The following section stores the test statistics and results. 
% The codeword test is performed by multiplying the codeword 
% by the parity-check matrix(H). Correct encoding results 
% in a zero word. Clocks and latency are also stored. The 
% stored matrices are: 
% testjptmtx, clockjptmtx, latencyjptmtx 

% Testing the codeword 

a_pt = H*(v_pt'); 
a jpt = mod(ajpt,2); % in binary 
codewordtest = sum(ajpt); 
testjpt_mtx(x,y) = codewordtest; 
clock_pt_mtx(x,y) = clockjpt; 
latencyjpt_mtx(x,y) = clockjpt - n; 

n = n + 96; 
end 

end 
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A.3 stage2.m 

This module implements the ET" matrix multiplier. 

% This program simulates the operation of stage 2 of the circular-pointer 
% based encoder. It performs the multiplication of [AuT] vector by 
% [E*inv(T)] matrix. 
% This architecture exploit the characteristics of the [E*inv(T)] matrix: 
% - The [E*inv(T)] matrix is always a row of zeros. 
% - Therefore the result of the multiplication is simply the 
% accumulation of all blocks of [AuT]. 
% The program uses a 96-bit shift register to aid in the 
% accumulation/addition 

function [clock, outreg, cleanout] = stage2(input, numRows, zf, clock) 

outreg = zeros(96,l); 

for shiftcount = 1 :numRows 

outreg = xor(out_reg, input( 1:96,1)); % 96-bit accumulator 
input(l :96*(numRows-l),l) = input(97:96*(numRows),l); % shifting 96-bits up 
clock = clock + 1; 

end 
% Cleaning up the result from invalid bits 

cleanout = out_reg(( 1 : zf), 1); 

A.4 stage6.m 

This module implements the T 1 matrix multiplier. 

% This program simulates the operation of stage 6 of the circular-pointer 
% based encoder. It performs the multiplication of [AuT+BplT] vector by 
% [inv(T)] matrix. 
% This architecture exploit the characteristics of the [inv(T)] matrix: 
% - The [inv(T)] matrix is an ALT matrix with all elements on the 
% diagonal and lower being zero identity matrices. All elements above 
% the digonal are zero matrices. 
% - Therefore the result of the multiplication is a vector of blocks, 
% where each block is a accumulation of itself with the all previous 
% blocks. This vector is also the p2 parity bits vector. 
% 
% The program uses 2 96-bit shift registers to aid in the 
% accumulation/addition and storing of p2 blocks 

function [clock, out_reg, cleanout] = stage6(input, numRows, zf, clock) 

maxRows = 1 1 ; % fixed at 11 simulating hardware 

tempreg = zeros(96,l); 
outreg = zeros(maxRows*96,l); 

for shiftcount = 1 :maxRows 

temp_reg = xor(temp_reg, input( 1:96, 1)); % 96-bit accumulator 
input(l :96*(maxRows-l),l) = input(97:96*(maxRows),l); % shifting 96-bits up 

% Storing each intermidiate block result in the output register 
out_reg(96*(maxRows-l)+l:96*maxRows, 1) = tempreg; 
if (shiftcount < maxRows) % the final register is shifted only 10 times 

out_reg(l :96*(maxRows-l), 1) = out_reg(97:96*maxRows, 1); % shifting 96-bits up 
end 
clock = clock + 1; 
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end 

clock = clock + 1; % accounting for latnecy 

% Cleaning up the result from invalid bits 
maxz = 96; 
for i = 1 :numRows 

if (i ===== 1) 
cleanout = out_reg(( 1 : zf), 1); 

else 
cleanout = [cleanout; out_reg((((i-l)*max_z)+l): (((i-l)*max z)+zf), 1)]; 

end 
end 

A.5 A mult.m 

This module implements the A matrix multiplier (Only the A matrix module is 

shown). 

% This program simulates the hardware implementation of a cicular-pointer 
% based multiplier. It performs the (A * u) vector-matrix multiplication 
% required at stage 1 of the 802.16e encoder. This architecture utilizes 
% the circular-pointer concept explained in detail in the block mult 
% function 

function [clock, regl, reg2, cleanreg] = A_mult(input, R, zf, numRows, numCols, clock) 

maxRows = 1 1 ; % fixed at 11 rows simulating hardware 
dummy = 0; 
regl = zeros(maxRows*96,l); % 1st output register 
reg2 = zeros(maxRows*96,l); % 2nd output register (holds copy of 1st) 
zeroflag = zeros(numRows,l); % flag to indicate zero identity matrix 
ACLR= zeros(numRows,l); % Asynchronous clear for binary decoder 

for colcount = 1 mumCols 

% retrieving the starting-location values for all rows in a specific 
% column 
pointer = memretrieve ('A', R, 24, colcount, numRows, numCols, zf); 

for i = 1 :numRows 
if(pointer(i)==127) 

zeroflag(i) = 0; 
ACLR(i)=l; 

else 
zeroflag(i) = 1; 
ACLR(f) = 0; 

end 
end 

% Selecting the right segment of [input] to be used 
input_slice = input((((col_count-l)*zf)+l) : (col_count*zf), 1); 

[clock reg 1 (1 ;96,1)] = block_mult(input_slice, pointed 1), zero_flag( 1), ACLR( 1), reg 1 (1:96,1), clock, zf); 
[dummy regl(97:192, 1)] = block_mult(input_slice, pointer(2), zero_flag(2), ACLR(2), regl(97:192, 1), dummy, zf); 
[dummy regl(193:288,1)] = block_mult(input_slice, pointer(3), zero_flag(3), ACLR(3), regl(193:288, 1), dummy, zf); 

if (R = 1/2 || R == 2/3 || R == 3/4) 
[dummy regl(289:384, 1)] = block_mult(input_slice, pointer(4), zero_flag(4), ACLR(4), regl(289:384, 1), dummy, zf); 
[dummy regl(385:480, 1)] = block_mult(input_slice, pointer(5), zero_flag(5), ACLR(5), regl(385;480, 1), dummy, zf); 

end 

i f (R==l /2 | | R==2/3) 
[dummy regl(481:576, 1)] = block_mult(input_slice, pointer(6), zero_flag(6), ACLR(6), regl(481:S76, 1), dummy, zf); 
[dummy regl(577:672, 1)] = block_mult(input_slice, pointer(7), zero_flag(7), ACLR(7), regl(577:672,1), dummy, zf); 
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end 

if(R==l/2) 
[dummy regl(673:768, 1)] = block_mult(input_slice, pointer(8), zerojlag(8), ACLR(8), regl(673:768, 1), dummy, zf); 
[dummy regl(769:864,1)] = block_mult(input_slice, pointer^), zero flag(9), ACLR(9), regl(769:864, ]), dummy, zf); 
[dummy regl(865:960, 1)] = block_mult(input_sIice, pointer(10), zeroJlag( 10), ACLR(10), regl(865:960, 1), dummy, zf); 
[dummy regl(961:1056, 1)] = block_mult(input_slice, pointer(l 1), zero_flag( 11), ACLR(11), regl(961:1056, 1), dummy, zf); 

end 
end 

clock = clock + 1; % accounting for register latency 
reg2 = regl; 
clock = clock + 1; % accounting for register latency 

% Cleaning up the result from invalid bits 
maxz = 96; 
for i = 1 :numRows 

i f ( i== l ) 
clean_reg = regl((l : zf), 1); 

else 
clean_reg = [cleanreg; regl((((i-l)*max_z)+l) : (((i-l)*max_z)+zf), 1)]; 

end 
end 

A.6 block mult.m 

This module implements the block multiplier. 

% This function performs the matrix-vector multiplication at the block 
% level, and adds the results of the block to the next one in colum sequence 
% 
% The following steps are performed to produce the shifted vector-block 

function [clock, storedblock] = block_mult(input_slice, pointer, zeroflag, ACLR, storedblock, clock, zf) 

for i = 1 :zf 
% 1 - Binary decoder translates pointer to a one-hot 96-bit value 
decoderout = zeros(96,l); 
% if-1 flag is HIGH the ACLR signal is HIGH too forcing decoder output 
% to all zero 
if(ACLR = 0) 

decoderout(pointer) = 1; % simulating the one-hot output of decoder 
end 

% 2- Assiging the input bit value to the one-hot output bit 
% 3- Adding the new bit to the already stored vector by XORing 
inputbit = and(input_slice(i),zero_flag); 
storedblock = xor(and(decoder_out,input_bit),stored_block); 

clock = clock + 1; 

% If pointer is at end of block, rotate back to beginning 
if (pointer ==zf) 

pointer = 1; 
else 

pointer = pointer + 1; 
end 

end 

A. 7 mem retrieve.m 

This module handles the retrieval of the memory contents used in the multiplications. 

% This program simulates the hardware memory retrieval function. It returns 
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% the requested column of starting-locations from the requested sub-matrx 
% after scaling down to the apropriate code length. 
% The starting-location value is defined as follows: 
/o 
% [starting-location] = {0 if shiftvalue is 0 
% zf-[shift-value] if shift_value is+ve 
% 127 if shift value is-1 
% } 
% ** startinglocation is also adjusted for matlab index purposes 

function col = memretrieve (MTX, R, nb, colNumber, numRows, numCols, zf) 

%numCols and numRows is the number of columns and rows OF THE DESIRED 
%MATRIX, not the overall matrix 

% Rate 1/2 Model Base-Matrix (from Standard) 
H 1 2 = [[-1 94 73 -1 -1 -1 -1 -1 55 83 -1-17 0 -1 -1 -I -1 -1 -1 -1 -1 -1 -1] 

[-127-1 -1 -1 22 79 9-1 -1 -1 12-10 0-1 -1 -1 -1 -1 -1 -1 -1 -1] 
[-1 -1 -1 24 22 81 -1 33 -1 -1 - 1 0 - 1 - 1 0 0 -1 -1 -1 -1 -1 -1 -1 -1] 
[61 -1 47 -1 -1 -1 -1 -1 65 25 -1 -1 -1 -1-10 0 -1 -1 -1 -1 -1 -1 -1] 
[-1 -1 39-1 -1 -1 84-1 -14172-1 -1-1-1 -100-1 -1 -1 -1 -1 -1] 
[_1 -l -l -i 46 40 -1 82 -1 -1 -1 79 0 -1 -1 -1-10 0 -1 -1 -1 -1 -1] 
[-1 -1 95 53 -1 -1 -1 -1 -1 14 18 -1 -1 -1 -1 -1 -1-10 0 -1 -1 -1 -1] 
[-1 11 73 -1 -1 -1 2 -1 -1 47 -1 -1 -1 -1 -1 -1 -1 -1-10 0 -1 -1 -1] 
[12-1 -1-1 83 24-143-1 -1 -151 -1 -1 -1 -1 -1-1 -1 -10 0-1-1] 
[_1 -l -l -i _i 94 -1 59 -1 -1 70 72 -1 -1 -1 -1 -1 -1 -1 -1-10 0-1] 
[-1 -1 7 65 -1 -I -1 -1 39 49 -1 -1 -1-1-1 -1 -1 -1 -1 -1 -1 -1 0 0] 
[43 -1 -1 -1 -1 66 -1 41 -1 -1 -1 26 7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0]]; 

% Rate 2/3A Model Base-Matrix (from Standard) 
H_23A = [ [ 3 0 - 1 - 1 2 0 - 1 3 7 -1 1 1-1-1-1-1 10-1-1-1-1-1-1] 

[_1 _i i . j 36-1 -1 34 10-1 -1 18 2-1 3 0 - 1 0 0 - 1 -1 -1 -1-1] 
[-1 -1 12 2 -115 -1 40 -1 3 -1 15 -1 2 13 -1 -1-10 0 -1 -1 -1 -1] 
[-1 -1 1924-1 3 0 - 1 6 - 1 17-1 -1 -1 839-1 -1 -1 00 -1 -1 -1] 
[20-1 6-1 -1 10 29-1 -128-1 14-138-1 -1 0-1 -1 -10 0-1 -1] 
[-1 -1 10 -1 28 20 -1 -1 8 -1 36 -1 9 -1 21 45 -1 -1 -1 -1-10 0 -1] 
[35 25 -1 37 -1 21 -1 -1 5 - 1 - 1 0 - 1 4 20 -1 -1 -1 -1 -1 -1 -1 0 0] 
[-1 6 6-1-1-14 -1 14 30 -1 3 36 -1 14 -1 1 -1 -1 -1 -1 -1 -1 0]]; 

% Rate 2/3B Model Base-Matrix (from Standard) 
H 23B = [[2-1 19-147-148-1 36-1 82-147-1 15-1 95 0-1-1-1 -1 -1 -1] 

[-1 69 -1 88 -1 33 -1 3 -1 16 -1 37 -1 40 -1 48 -1 0 0 -1 -1 -1 -1 -1] 
[10-1 86-1 62-128-1 85-1 16-134-1 73-1 -1-10 0-1 -I-1 -1] 
[-1 28 -1 32 -1 81 -1 27 -1 88 -1 5 -1 56 -1 37 -1 -1-10 0 -1 -1 -1] 
[23-129-1 15-130-1 66-124-1 50-1 62-1-1-1 -1 -10 0-1-1] 
[-1 30 -1 65 -1 54 -1 14 -1 0 -1 30 -1 74 -1 0 -1 -1 -1 -1-10 0-1] 
[32 -10-115-1 56 -1 85 -15 -16 -1 52 -1 0 -1 -1 -1 -1 -1 0 0] 
[-1 0 -1 47 -1 13 -1 61 -1 84 -1 55 -1 78 -1 41 95 -1 -1 -1 -1 -1 -1 0]]; 

% Rate 3/4A Model Base-Matrix (from Standard) 
H 3 4 A = [[6 38 3 93 -1 -1 -1 30 70 -1 86 -1 37 38 4 11 -1 46 48 0 -1 -1 -1 -1] 

[62 94 19 84 -1 92 78 -1 15 -1 -1 92 -1 45 24 32 30 -1-10 0 -1 -1 -1] 
[71 -1 55 -1 12 66 45 79 -1 78 -1 -1 10 -1 22 55 70 82 -1-10 0 -1 -1] 
[38 61 -1 66 9 73 47 64 -1 39 61 43 -1 -1 -1 -1 95 32 0 -1 -1 0 0 -1] 
[-1 -1 -1 -1 32 52 55 80 95 22 6 51 24 90 44 20 -1 -1 -1 -1 -1 -1 0 0] 
[-163 31 88 20-1-1-16 40 56 16 7153-1-127 2648-1 -1 -1 -10]]; 

% Rate 3/4B Model Base-Matrix (from Standard) 
H_34B = [[-1 81 -1 28 -1 -1 14 25 17 -1 -1 85 29 52 78 95 22 92 0 0 -1 -1 -1 -1] 

[42-1 14 68 32-1 -1 -1 -1 70 43 II 36 40 33 57 38 24-1.0 0-1 -1 -1] 
[-1 -1 20 -1 -1 63 39 -1 70 67 -1 38 4 72 47 29 60 5 80 -1 0 0 -I -1] 
[64 2-1-163-1-1 3 51-181 15 94 9 85 3614 19-1-1-10 0-1] 
[-1 53 60 80-126 75-1-1-1-1 86 77 13 72 6025-1-1 -1-10 0] 
[77 -1 -1 -1 15 28 -1 35 -1 72 30 68 85 84 26 64 11 89 0 -1 -1 -1 -1 0]]; 

% Rate 5/6 Model Base-Matrix (from Standard) 
H_56 = [[1 25 55 -1 47 4 -1 91 84 8 86 52 82 33 5 0 36 20 4 77 80 0 -1 -I] 

[-1 6-1 36 4047 12 79 47-141 21 12 71 14 72 0 44 49 0 0 00-1] 
[5181 83 4 67-121-13124 9161 81 9 86 78 60 88 67 15-1-I 00] 
[50 -1 50 15 -1 36 13 1011 20 53 90 29 92 57 30 84 92 11 66 80 -1 -1 0]]; 
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%-

% Selecting the appropriate "NUMERICAL" H matrix 
% g = l ; 
% n = 24; %number of columns in the overall matrix (is constant) 

if(R==0.5) 
m=12; 
A_num = H J 2( 1 :(m-1), 1 :(24-m)); 
B_num = H_12(l:(m-l),(24-m+l):(24-m+l)); 
Cnum = H_12(m-l+l:m,l :(24-m)); 

elseif(R==2/3) 
m=8; 
Anum = H_23B( 1 :(m-l ),1 :(24-m)); 
B_num = H_23B(1 :(m-l),(24-rn+l):(24-m+l)); 
C_num = H_23B(m-l+l :m,l :(24-m)); 

elseif(R==3/4) 
m=6; 
Anum = H_34A(1 :(m-l),l :(24-m)); 
Bnum = H_34A( 1 :(m-l ),(24-m+l ):(24-m+l)); 
C_num = H_34A(m-l+l :m,l :(24-m)); 

else 
m=4; 
A_num = H_56( 1 :(m-1), 1 :(24-m)); 
Bnum = H_56(l:(m-l),(24-m+I):(24-m+l)); 
Cnum = H_56(m-1+1 :m,l :(24-m)); 

end 

if (MTX == 'A') 
col = A_num(:, colNumber); 

elseif(MTX=='B') 
col = B_num(:, colNumber); 

elseif(MTX=='C) 
col = C_num(:, colNumber); 

end 

% Performing scaling-down according to requested code length 
for i = 1 :numRows 

ifcol(i)>=0 
col(i) = zf -(floor(col(i) * (zf/96))) + 1; % 
% The following check protects against: 
% 1 - an original zero shift value 
% 2- a zero shift value appearing after scaling down. 
if(col(i) = zf+l)% 

col(i)=l; 
end 

else 
col(i)=127; 

end 
end 

A.8 Hgenerator.m 

This module generates the binary versions of all the H (parity-check) matrices. 

% This is a MATLAB script to generate the expanded binary H matrix to be 
% used in the WiMAX LDPC encoder project. 
% Input(s): code length, code rate 
% Output(s): complete(expanded) binary H matrix in .mat format 

% Model Base Matrices 
% 

% Rate 1/2 Model Base-Matrix (from Standard) 
H 1 2 = [[-1 94 73 -1 -1 -1 -1 -1 55 83 -1-17 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1] 

[-1 27 -1 -1 -1 22 79 9 -1 -1 -1 12 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1-1] 
[-1 -1 -1 24 22 81 -1 33 -1 -1 - 1 0 - 1 - 1 0 0 -1 -1 -1 -1 -1 -1 -1 -1] 

169 



[61 -1 47-1 -1 -1 -1-165 25-1 -1 -1 -1 -1 0 0-1 -1 -1 -1-1 -1 -1] 
[-1-139-1 -1 -1 84 -1 -14172-1 -1 -1 -1 -100-1 -1-1-1-1 -1] 
[-1 -1 -1 -1 46 40 -1 82 -1 -1 -1 79 0 -1 -1 -1-10 0 -1 -1 -1 -1 -1] 
[-1 -1 95 53 -1 -1 -1 -1 -1 14 18-1 -1 -1 -1 -1 -1-10 0 -1 -1 -1 -1] 
[-1 11 73 -1 -1 -1 2 -1 -1 47 -1 -1 -1-1-1-1-1-1-10 0 -1 -1 -1] 
[12-1-1-1 83 24 -1 43 -1 -1-151 -1 -1 -1 -1 -1 -1 -1-10 0 -1 -1] 
[-1 -1 -1 -1 -1 94 -1 59 -1 -1 70 72 -1 -1 -1 -1 -1 -1 -1 -1-10 0 -1] 
[-1 -1 7 65 -1 -1 -1 -1 39 49 -1 -1 -1 -1 -1 -1 -1 -1-1-1 -I -1 0 0] 
[43 -1 -1 -1 -1 66 -1 41 -1 -1 -1 26 7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0]]; 

% Rate 2/3A Model Base-Matrix (from Standard) 
H_23A = [ [ 3 0 - 1 - 1 2 0 - 1 3 7 - 1 1 1 - 1 -1 -1 -110 -1 -1 -1 -1 -1 -1] 

[-1 -1 1 -1 36 -1 -1 34 10 -1 -1 18 2 -1 3 0 -1 0 0 -1 -1 -1 -1 -1] 
[-1 -1 12 2 -1 15 -1 40 -13 -115-12 13 -1 -1-10 0 -1 -1 -1 -1] 
[-1 -1 19 24 -1 3 0 -1 6 -1 17 -1 -1 -1 8 39 -1 -1-10 0 -1 -1 -1] 
[20 -1 6 -1 -1 10 29 -1 -1 28 -1 14 -1 38 -1 -1 0 - 1 - 1 - 1 0 0 -1 -1] 
[-1 -1 10 -1 28 20 -1 -1 8 -1 36 -1 9 -1 21 45 -1 -1 -1 -1-10 0-1] 
[35 25 -1 37 -1 21 -1 -1 5 -1 -10-14 20 -1 -1 -1 -1 -1 -1 -1 0 0] 
[-1 6 6-1-1-14 -1 14 30 -1 3 36 -1 14 -1 1 -1 -1 -1 -1 -1 -1 0]]; 

% Rate 2/3B Model Base-Matrix (from Standard) 
H23B = [[2 -1 19 -1 47 -1 48 -1 36 -1 82 -1 47-1 15 -1 95 0 -1 -1 -1 -1 -1 -1] 

[-1 69 -1 88 -I 33 -1 3 -1 16 -1 37 -1 40 -1 48 -1 0 0 -1 -1 -1 -1 -1] 
[10 -1 86 -1 62 -1 28 -1 85 -116-1 34 -1 73 -1 -1-10 0 -1 -1 -1 -1] 
[-1 28 -1 32 -1 81 -1 27 -1 88 -1 5 -1 56 -1 37 -1 -1-10 0 -1 -1 -1] 
[23 -1 29 -1 15 -1 30 -1 66 -1 24 -1 50 -1 62 -1 -1 -1 -1-10 0 -1 -1] 
[-1 30 -1 65 -1 54 -1 14 -1 0 -1 30 -1 74 -1 0 -1 -1 -1 -1-10 0-1] 
[32-10-1 15-1 56-1 85-1 5-1 6-152-10-1 -1 -1 -1-10 0] 
[-1 0 -1 47 -1 13 -1 61 -1 84 -1 55 -1 78 -1 41 95 -1 -1 -1 -1 -1 -1 0]]; 

% Rate 3/4A Model Base-Matrix (from Standard) 
H 34A = [[6 38 3 93 -1 -1 -1 30 70 -1 86 -1 37 38 4 11 -1 46 48 0 -1 -1 -1 -1] 

[62 94 19 84 -1 92 78 -1 15 -1 -1 92 -1 45 24 32 30 -1-10 0 -1 -1 -1] 
[71 -1 55 -1 12 66 45 79 -1 78 -1 -1 10 -1 22 55 70 82 -1-10 0 -1 -1] 
[38 61 -166 9 73 47 64-1 39 6143-1 -1 -1 -1 95 32 0-1 -10 0-1] 
[-1 -1 -1 -1 32 52 55 80 95 22 6 51 24 90 44 20 -1 -1 -1 -1 -1 -1 0 0] 
[-163 31 88 20-1 -1-1 6 40 56 16 71 53-1-127 26 48-1 -1 -1 -10]]; 

% Rate 3/4B Model Base-Matrix (from Standard) 
H34B = [[-1 81 -1 28 -1 -1 14 25 17 -1 -1 85 29 52 78 95 22 92 0 0 -1 -1 -1 -1] 

[42 -1 14 68 32 -1 -1 -1 -1 70 43 11 36 40 33 57 38 24 -1 0 0 -1 -1 -1] 
[-1 -1 20 -1 -1 63 39 -1 70 67 -1 38 4 72 47 29 60 5 80 -1 0 0 -1 -1] 
[64 2 -1 -1 63 -1 -1 3 51 -1 81 15 94 9 85 36 14 19 -1 -1-10 0-1] 
[-1 53 60 80 -1 26 75 -1 -1 -1 -1 86 77 1 3 72 60 25 -1 -1 -1 -1 0 0] 
[77-1 -1 -1 15 28-1 35-172 30 68 85 84 26 64 11 89 0-1 -1 -1 -1 0]]; 

% Rate 5/6 Model Base-Matrix (from Standard) 
H_56 = [[1 25 55 -1 47 4 -1 91 84 8 86 52 82 33 5 0 36 20 4 77 80 0 -1 -1] 

[-1 6 -1 36 40 47 12 79 47 -1 41 21 12 71 14 72 0 44 49 0 0 0 0 -1] 
[51 81 83 4 67 -1 21 -1 31 24 91 61 81 9 86 78 60 88 67 15 -1 -1 0 0] 
[50 -1 50 15 -1 36 13 10 11 20 53 90 29 92 57 30 84 92 11 66 80 -1 -1 0]]; 

% 

% for User Input version, un-comment the following lines and eleminate the 
% loops 
% n = input('Enter code length(n) value:'); % user input code length value 
% R = input('Enter code rate(R) value:'); % user input code rate 

% 2 loops to cover all code rates and lengths 
for x = 1:4 

if(x = l) 
R = l / 2 ; 

elseif (x = 2) 
R = 2/3; 

elseif(x==3) 
R = 3/4; 

else 
R=5/6; 

end 
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for n = 576:96:2304 

w=setdiff(who,{,n', 'R', 'H_12', 'H_23A', 'H23B', 'H34A', 'HJ4B' , 'H_56'}); clean> {:}>'); 

%constants 
nb = 24; % Base-matrix size 
nmax = 2304; % max code length (number of bits) 

zO = nmax/nb; % expansion factor for nmax code length 
zf = n/nb; % expansion factor for other code lengths 
rows = ceil(24*(l-R)); 

perm = ey e(zf); % identity matrix of Zf x Zf size 
zeromatrix = zeros(zfzf); % zeros matrix of Zf x Zf size 

% 

% Constructing the Binary H Matrix 

% Selecting the appropriate model bade matrix 
if(R = 0.5) 

H_bm=H_12; 
elseif(R==2/3) 

H b m = H23B; 
elseif(R==3/4) 

H_bm = H_34A; 
else 

H b m = H 5 6 ; 
end 

% scaling for code length 
scaled = floor(H_bm.*(zf/zO)); %multiplies input matrix by 

for row = 1 rows, 

% Initialize temp_row 
if(scaled(row,l)<0) 

temprow = zeromatrix; %set temprow to first input matrix for row 
else 

temprow = circshift(perm, [0, scaled(row,l)]); 
end 

% after initializing for the first entry in the column, we con-cat the 
% rest of the columns to the row. 
for col = 2 : 24, 

if (scaled(row,col) < 0) 
temprow = [temp row,zeromatrix]; 

else 
temprow = [temprow, circshift(perm, [0, scaled(row,col)])]; 

end 
end 

% add rows to the H matrix. 
if(row== 1) 

H = temprow; 
else 

H = [H; temprow]; 
end 

end 

% Saving the completed H matrix 
if(R = 0.5) 

codelength = num2str(n); 
filename = strcatChmatrixl2_',codelength); 
save (filename, 'H') 

elseif(R==2/3) 
codelength - num2str(n); 
filename = strcat('hmatrix23_',codelength); 
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save (filename, 'H') 
elseif(R==3/4) 

codelength = num2str(n); 
filename = strcat('hmatrix34_',codelength); 
save (filename, 'H') 

else 
codelength = num2str(n); 
filename = strcat('hmatrix56_',codelengfh); 
save (filename, 'H') 

end 
end 

end 

A.9 Accuracydriver.m 

This module, in conjunction with verify_accuracy.m, evaluates the required precision 

for the semi-scaled matrix values. 

fori = 1:60 
Error_present = verify_accuracy(i); 
if Error_present == 0 

NoErrors = 1 
Accuracy = i 
break; 

end 
end 

A. 10 verifyaccuracy.m 

This module, in conjunction with Accuracy_driver.m, evaluates the required precision 

for the semi-scaled matrix values. 

function Error_present = verify_accuracy(bitAccuracy) 
Error_present = 0; 
maxfloatval = 0; 

for H = 0:95 %A11 possible values in the H matrix 
zf = 24; 
for j =1:19 %all possible zf values 

%The value that is actually stored in memory 
fraction = zf/96; 

%The floating, i.e. high-accuracy value 
floatval = zf - floor(H*fraction); 

%The binary approximation - Convert, then convert back 
binaryfraction = convdecimal (fraction, bitAccuracy); 
approxfraction = convfraction (binaryfraction); 
approxval = zf - floor(H*approx_fraction); 

if floatval ~= approxval 
if floatval > maxfloatval 

maxfloatval = floatval; 
end 
[floatval approxval H zf zf-H]; 
Error_present = 1; 

end 
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zf=zf+4; 
end 

end 

A. 11 check_allvalues_scriptm 

This module performs a trial-and-error run through a range of precision values while 

looping through all possible values. 

before_mod_errors = 0; % num of errors before correction 
aftermod errors = 0; % num of errors after correction 

% Prececion 
n = l l 
corr_factor= 0.0005 

for H = 0:95 %A11 possible values in the H matrix 
errors = 0; 
%The accurate fraction to be stored in memory 
fraction = H/96; 

for zf = 24:4:96 %all possible zf values 

%The floating, i.e. high-accuracy value 
floatval = zf - floor(zf*fraction); 

%The binary approximation - Convert, then convert back 
binaryfraction = convdecimal (fraction, n); 
approxfraction = convfraction (binaryfraction); 
%The low-accuracy floating value 
approx_val = zf - floor(zf*approx_fraction); 

% Checking for errors before correction 
if floatval ~= approxval 

errors = errors + 1; 
% if you un-comment the following line it will show that 
% the difference between the approximated and accurate values 
% is just a factor of 1.0, this happens due to lack of rounding 
% in our initial approach. 
% floatval - approxval 

end 
end %zf loop 

if (errors ~=0) 

% If (errors != 0) then this (input) caused an error on at least one 
%zf value 
errors; % How many Zf values (or scaling operations cause errors) 
H; % The H value in question 
beforemoderrors = beforemoderrors + errors; % accumulating errors 

% Correction Routine 
0/.0/0/o/ 0 /0 /0 / 0 /0 /0 /0 / 0/0/ o/ o/ o/ o/ o/ o/ o/ 0/ o/ o/o/ o/ o/ o/ o/ o/ 0/o/ o/ o/ o/ 0/ 0/ 0/ o/ o/ o/ 0/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o 
fraction = H/96; % value causing errors 
newfraction = H/96 + corrfactor; % corrected value 

newerrors = 0; 
for zf = 24:4:96 %all possible zf values 

%The floating, i.e. high-accuracy value 
floatval = zf - floor(zf*fraction); 

%The binary approximation - Convert, then convert back 
% USING THE NEW CORRECTED FRACTION % 
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binaryfraction = convdecimal (newfraction, n); 
approxfraction = convfraction (binaryfraction); 
%The low-accuracy floating value 
approxval = zf - floor(zf*approx fraction); 

% Checking for errors 
if floatval ~= approxval 

newerrors = newerrors + 1; 
zf; 
% floatval - approxval 

end 

end %zf loop 
new_errors 
aftermoderrors = aftermod errors + newerrors; % accumulating errors 
0/0/0/ 0/0/ 0/ 0/0/0/0/ 0 /0 /0 /0 /0 / 0/ 0/ 0/0/0/ 0/0/0/ 0/ 0/ 0 /0 /0 /0 /0 /0 /0 /0 /0 / 0/ 0/ 0 /0/0/0/0/ 0 /0 /0 /0 /0 /0 /0 /0 /0 /0 /0 /0 / /O /O /O /O /0 /O /O /O /O /O /O /0 /O /O /O /O /O /O /O /O /O /O /(> /O /O /O /O /O /O /0 / 0 /O /O /O /O /O /0 /O /O /0 /0 /O /O /O /O /O /O /O /0 / 0 / 0 /O /O 

end % if errors exist 
end % H loop 

beforemod errors 
afterrnoderrors 

A. 12 A firstcol maker.m 

This module performs the full scaling operations required to prepare the first column 

of matrix A for storage in RAM (Only the A matrix module is shown). 

% Model Base Matrices 
% 

* Deleted in this Appendix for brevity 
% 

k=l; 
raterow = 0; 

for x = 1:5 
i f ( x = l ) 

R = l / 2 ; 
numRows= 11; 
numCols= 12; 
H_num = H_12; 

elseif(x = 2) 
R = 2/3; 
numRows = 7; 
numCols = 16; 
Hnum = H_23B; 

elseif(x== 3) 
R = 3/4; 
numRows = 5; 
numCols= 18; 
H_num = H_34A; 

elseif (x==4) 
R = 3/4; 
numRows = 5; 
numCols =18; 
Hnum = H34B; 

else 
R=5/6; 
numRows = 3; 
numCols = 20; 
H_num = H_56; 

end 
[Hrows Hcols] = size(H_num); 
A = H_num(l:numRows, l:numCols)'; 
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[Arows Acols] = size(A); %note that A was transposed 

% Work only on the first original column in A (first row after transp)! 
fori = 1: Acols 

zf=24; 
A(U); 
forj = 1:19 

ifA(l,i) = -l 
A_firstCol(rate_row+j,i) = -1; 

elseifA(l,i)==0 
A_firstCol(rate_row+j,i) = 0; 

else 
A firstCol(rate_row+j,i) = zf - floor(A( 1 ,i)*zf/96); 

end 

% Detecting the after-scaling Zeros 
if (A_firstCol(rate_row+j,i) == zf) 

A_firstCol(rate_row+j,i) = 0; 
end 

z f=zf+4; 

end % end of j 
end % end of i 

% .. 
%This section added to ensure that the 'blank', i.e. unused 
%sections of the A matrix are -1 , not zero as they would be 
%otherwise. 
% 
[AfirstColrows AfirstColcols] = size(AfirstCol); 
for n = Acols+1 :A_firstCol cols 

form=l:19 
A_firstCol(rate_row+m,n) = -1; 

end 
end 
raterow = rate row +19; 

end % end for x 

[AfirstColrows AfirstColcols] = size(AfirstCol); 
AfirstColbin = []; 

for n = 1 :A_firstCol_rows 
A_firstCol_bin_row = []; 
for m = 1 :A_firstCol_coIs 

ifA_firstCol(n,m) = -l 
AfirstColbininsert = '1111111'; 

else 
AfirstColbininsert = dec2bin(A_firstCol(n,m), 7); 

end 

% Storing the resulting values in a matrix of strings (one row) 
AfirstColbinrow = [AfirstColbinrow A firstColbininsert]; 
colseperate = sprintf ('\t');% Column seperator character 
AfirstColbinrow = [AfirstColbinrow colseperate]; 

end % end m 

% Storing the results in a matrix of strings 
if (11=1) 

AfirstColbin = A_firstCol_bin_row; 
else 

rowseperate = repmat('', 1, 88); %1 Icols *8-bits + 11 tabs 
AfirstColbin = [AfirstColbin; rowseperate]; 
AfirstColbin = [AfirstColbin; AfirstColbinrow]; 

end 

end % end n 
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A. 13 A other col maker.m 

This module performs all the operations required to semi-scale the matrix values in 

preparation for storage in RAM. All columns of the matrix except for the first are 

processed (Only the A matrix module is shown). 

% Model Base Matrices 
% 

* Deleted in this Appendix for brevity 
% 

k=l; 
for x = 1:5 

i f ( x = l ) 
R = l / 2 ; 
numRows =11; 
mimCols =12; 
H_mim=H_12; 

elseif (x = 2) 
R = 2/3; 
numRows = 7; 
numCols= 16; 
Hnum = H23B; 

elseif (x == 3) 
R = 3/4; 
numRows = 5; 
numCols= 18; 
H_num=H_34A; 

elseif (x == 4) 
R=3/4; 
numRows = 5; 
numCols = 18; 
H_num=H_34B; 

else 
R = 5/6; 
numRows = 3; 
numCols = 20; 
H_num=H_56; 

end 
[Hrows Hcols] = size(H_mim); 
A = H_num( 1 :numRows, 1 :numCols)'; 
[Arows Acols] = size(A); %note that A was transposed 

for i = 2:Arows 
forj = l:Acols 

A(i); 
ifA(ij)==-l 

A_Col(kj) = - l ; 
elseifA(ij)==0 

ACol(kj) = 0; 
else 

ACol(kj) = A(i j ) ; %zf - ftoor(B(i j)*zf/96); 
end 

end 
% 
%This section added to ensure that the Wank', i.e. unused 
%sections of the A matrix are -1 , not zero as they would be 
%otherwise. 
% 
[AColrows AColco l s ] = size(A_Col); 
forj = Acols+l:A_Col_cols 

A_Col(kj)=-l; 
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end 

%Note: k is the counter for the row of BCol . It is incremented 
%once for every new B matrix, or every new column in the C/A 
%ma trices. 
%j is the counter that runs along the row of B. 
%i is always one, in the case of B. It will have use in the A 
%case. 

k = k + l ; 
%end 

end 
end 
A Col; 

[AColrows AColco l s ] = size(A_Col); 
A C o l b i n = []; 
A_ColJ>inJext = []; 

for i = 1 :A_Col_rows 
A C o l b i n r o w = []; 
for j = 1 :A_Col_cols 

if ACol(i j) == -1 
A_ColJ>injnsert = [l 1 1 1 1 1 1 1 1 1 1 ] ; 

else 
A Colbininsert = ConvAndRound_decimal(A Col(ij), 11); %11 bit precision 

end 
for k = 1 :length(A_Col_bin_insert) 

A_Col_bin(i,I l*0'-l)+k) = A_Col_bin_insert(k); 
end 
textvalue = num2str(A_Col_bin_insert); 
% Storing the resulting values in a matrix of strings (one row) 
A Colbinrow = [ A C o l b i n r o w text value]; 
colseperate = sprintf ('\t');% Column seperator character 
A C o l b i n r o w = [ A C o l b i n r o w colseperate]; 

end 
% Storing the results in a matrix of strings 
i f ( i==l ) 

A C o l b i n t e x t = A C o l b i n r o w ; 
else 

rowseperate = repmat('', 1, 352); 
A C o l b i n t e x t = [AColb in tex t ; rowseperate]; 
A C o l b i n t e x t = [A_Col_bin_text; A C o l b i n r o w ] ; 

end 
end 
A C o l b i n ; 

A.14AB mem checker.m 

This module verifies the output of the AB hardware memory controller against the 

output of its software counterpart (Only the AB matrix module is shown). 

% Model Base Matrices 
% 

* Deleted in this Appendix for brevity 
% 

R = input ('Enter the target code RATE:', V); 

errors = 0; 

if(strcmp(R,'l/2')) 
%R=l /2 ; 
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numRows =11; 
numCols= 12; 
H_num=HJ2; 

elseif(strcmp(R,'2/3b')) 
%R = 2/3; 
numRows = 7; 
numCols= 16; 
Hjium = H23B; 

elseif (strcmp(R,'3/4a')) 
%R = 3/4; 
numRows = 5; 
numCols= 18; 
H_num = H J 4 A ; 

elseif (strcmp(R,'3/4b')) 
%R = 3/4; 
numRows = 5; 
numCols =18; 
Hjium = H34B; 

else 
%R = 5/6; 
numRows = 3; 
numCols = 20; 
Hnum = H 5 6 ; 

end 

[Hrows Hcols] = size(H_num); 

AB = H_num(l mumRows, 1 :numCols+l); % including B 

[AB_rows AB_cols] = size (AB); 

vhdl_file = fopen ('E^ROJECTSMVIemory^WorkWHDnABCONTROLLERMesting^andResuItsVabcontroller out.txt', 'r'); 

for zf= 24:4:96 
for i = 1 :AB_cols 

data_line = fgets(vhdlfile); 
for j = 1 :AB_rows 

% Detecting -1 
if(AB(j,i) = -l) 

accurateresult = -1; 
else 

accurateresult = zf - floor((AB(j,i)/96)*zf); 
end 

% Detetcting Zeros 
if (accurateresult == zf) 

accurateresult = 0; 
end 

if (data_line( ((j*7)-6):j*7 ) == '1111111') 
vhdl_result = -1 ; 

else 
vhdlresult = bin2dec(data_line( ((j*7)-6):j*7 )); 

end 

if (accurateresult ~= vhdlresult) 
AB_val = AB(j,i) 
zf 
accurateresult 
vhdlresult 
errors = errors + 1; 

end 
end 

end 
end 
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A. 15 input_generate.m 

This module generates a user-defined random sequence of input bits. 

numofbi ts = input ('How many input bits ? : '); 

% Generate Input 
u = round(rand([l,num_of_bits])); 

save savedu u; 

A. 16 packetcompare.m 

This module performs the comparison between the output packets produced from the 

software model and the hardware implementation. 

mat seq = fopen ('E:\PROJECTS\WiMAX_Encoder\Matlab\Encoder\VHDL_Testing\encoded_seq_mat.txt', V); 
vhdlseq = fopen ('E:\PROJECTS\WiMAX_Encoder\Matlab\EncoderWHDL_Testing\encoded_seq_mult_hw.txt', Y); 

packeterrors = 0; 

% Full Version 
num_of_packets = 100 * 19 * 4; 

% Short version 
% num of_packets = 3 * 1 9 * 4 ; 

for i = 1 :num_of_packets 
matline = fgets(matseq); 
vhdlline = fgets(vhdl seq); 
[dummy length] = size(vhdlline); % removing the extra \n char 

encodingerrors = 0; 
forj=l:(length-2) 

if (mat_line(j) ~= vhdl_line(j)) 
j ; 
encoding_errors = encodingerrors + 1; 

end 
end 

if (encodingerrors ~ 0) 
i 
encodingerrors 
packeterrors = packeterrors + 1; 

end 
end 

closingsuccess = fclosefall') 

A. 17 Encoder_script.m 

This module performs the comprehensive behavioral simulations looping through the 

required number of times while altering the encoder's parameters as needed. This module 

invokes the finalEncoder.m module presents up as a function. 
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% ******* Comprehensive Behavioral Simulation Script *********** 
% Script to run through the randomly generated 100 packets of user bits 
% and encode them using all possible code rates and ZFs. 
% 100 codewords produced for each R and Zf 

% close all; 
clear all; 
clc; 

% Loading the randomly generated user bits 
load('inputvector.mat'); % The input will be in a vector called (u) 

% Output file 
outfile = fopen('encoded_seq_mat.txt','w'); 

% loop to cover all code rates 
for x = 1:4 

if(x = l) 
R= l /2 ; 

elseif (x == 2) 
R = 2/3; 

elseif (x == 3) 
R = 3/4; 

else 
R=5/6; 

end 

% loop to cover all Z factors 
for zf= 24:4:96 

% loop to cover all 100 packets 
fori = 1:100 

inputlength = zf*24*R; 

% Input packet 
u_vec = u( ((input_length*(i-I))+l) : (input_Iength*i) ); 

% Calling the Encoder 
[codeword] = Encoder_func(R, zf, uvec); 

% Output codeword 
x = num2str(codeword); % converting vector to a single string 
[blah, lengths] = size(x); 
% Eleminating white spaces 
forj= ldengthx 

if 0 —1> 
codewordstr = x(j); 

else 
if(x(j)~=") 

codewordstr = [codewordstr x(j)]; 
end 

end 
end 

iprintf (outfile, '%s\n', codewordstr); 

end 
end 

end 

closingresult = fclose ('all') 
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Appendix B 

Testing and Verification VHDL Modules 

This Appendix presents the VHDL code for the modules used in the behavioral and 

timing simulations as well as hardware testing. 

B. 1 Encodertb. vhd 

This module interfaces with the encoder's top-level VHDL module, and simulates its 

behavior over a comprehensive set of run-time conditions and input packets. 

LIBRARY ieee; 
USE ieee.stdjogicj 164.ALL; 
USE ieee.std_logic_unsigned.all; 
USE ieee.numeric_std.ALL; 
USE std.textio.all; 

ENTITY Encoder_tb_vhd IS 
END Encoder tbvhd; 

ARCHITECTURE behavior OF Encodertbvhd IS 

— Component Declaration for the Unit Under Test (UUT) 
COMPONENT Encoder 
PORT( 

DATAIN : IN stdjogic; 
RATE : IN std_logic_vector(2 downto 0); 
BLOCKSIZE : IN std logic_vector(6 downto 0); 
START: IN stdjogic; 
RESET: IN stdjogic; 
CLOCK: IN stdjogic; 
DATA_OUT: OUT stdjogic; 
DONEOUT: OUT stdjogic; 
OUTJVALID: OUT stdjogic; 
RFD: OUT stdjogic 
); 

END COMPONENT; 

— Component declaration for the input bits RAM 
component testram 
port( 

addr: IN std_logic_VECTOR(17 downto 0); 
elk: IN stdjogic; 
dout: OUT stdJogic_VECTOR(0 downto 0)); 

end component; 

—Inputs 
SIGNAL DATAJN : stdjogic :='0'; 
SIGNAL START : stdjogic := '0'; 
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SIGNAL RESET : stdjogic := T ; 
SIGNAL CLOCK : stdjogic := '0'; 
SIGNAL RATE : stdJogic_vectoi(2 downto 0):= "000"; 
SIGNAL BLOCK_SIZE : std_logic_vector(6 downto 0):= "0000000"; 
—Outputs 
SIGNAL DATAOUT : stdjogic; SIGNAL DATAOUTvec : stdJogic_vector(0 downto 0); 
SIGNAL DONE_OUT: stdjogic; 
SIGNAL OUTVALID: stdjogic; 
SIGNAL RFD: stdjogic; 

-INPUT RAM 
SIGNAL addr : stdJogic_vector( 17 downto 0);= (others => '0'); 
SIGNAL inputbit ; std logic_vector(0 downto 0); 

— Testing Constants and Variables 
-SIGNAL inputvector : std logicvector (0 to 191999):= (others => '0'); 

Flag FSM States 

-constant STATE0 : stdlogicvector ( 2 downto 0 ) := "000"; 
constant STATE J ; stdlogicvector ( 2 downto 0 ) 
constant STATE2 : stdlogicvector ( 2 downto 0 ) 
constant STATE3 : std logicvector ( 2 downto 0 ) 
constant STATE4 : std logic vector ( 2 downto 0 ) 
constant STATE5 : stdlogicvector ( 2 downto 0 ) 
signal STATE : stdlogicvector ( 2 downto 0 ); 

= "001": 
= "010 
= "011": 
= "100": 
= "101" 

- TEXT FILE(S) 
file OUTDATA : text open writemode is 

"E:\PROJECTS\WiMAX_Encoder\VHDL\WiMAX_Encoder\Testing_and_Results\encoded_seq_vhdl_short.txt" 

— Function to change the type on a unsigned value to a bitvector value 
function Unsigned2Bit(Dataln ; unsigned) return bitvector is 

variable Temp : bit_vector(DataIn'range); 
begin 

for k in Dataln'range loop 
if(DataIn(k) = T)then 

Temp(k) ;='!': 
else 

end if; 
Temp(k) := '0'; 

BEGIN 

end loop; 
return Temp; 

end function; 

- Instantiate the Unit Under Test (UUT) 
uut: Encoder PORT MAP( 

DATAJN => DATAJN, 
DATAOUT => DATAOUT, 
RATE => RATE, 
BLOCKSIZE => BLOCK_SIZE, 
START - > START, 
RESET => RESET, 
DONE_OUT => DONEJXJT, 
OUTVALID => OUTJVALID, 
RFD => RFD, 
CLOCK => CLOCK 

); 

- Provides Input Data 
inputdata : testram port map ( 

addr => addr, 
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elk => CLOCK, 
dout => inputbit 

); 

- CLOCK 
CLOCK <= not CLOCK after 10 ns; -- 50MHz 
RESET <='0' after 151ns; 

— Hardwiring 
DATAIN <= input bit(O) after 1 ns; 
DATAOUTvec(O) <= DATAOUT; 

Testing: process (CLOCK) 
variable OUTLINE : line; - line variable 
variable RATEut : integer := 1; 
variable BLOCKSlZEut : integer := 24; 
variable packetnumber : integer := 1; 

begin 
if (risingjidge(CLOCK)) then 

if(RESET=T)then 
addr <= (others => '0'); 
BLOCKJSIZE <= BLOCKSIZE; 
RATE <= RATE; 
START <= START; 
STATE <=STATE_1; 

else 
case STATE is 

when STATEJ => 
if(RFD = T)then 

BLOCKSIZE <= stdlogic vector(to_unsigned(BLOCK_SIZE_ut,7)) after 1 ns; 
if(RATE_ut=l)then 

RATE <= "101 "after Ins; 
elsif(RATE_ut = 2)then 

RATE <= "Oil "after Ins; 
elsif(RATE_ut = 3)then 

RATE <= "010" after 1 ns; 
else 

RATE <= "000" after 1 ns; 
end if; 
START < = T after Ins ; 
addr <= addr + "000000000000000001"; 
STATE <= STATE2; 
else 

BLOCKSIZE <= BLOCKSIZE; 
RATE <= RATE; 
START <= START; 
addr <= addr; 
STATE <= STATE!; 

end if; 

when STATE2 => 
BLOCK_SIZE <= BLOCK_SIZE; 
RATE <= RATE; 
START <= '0' after 1 ns; 

- OUTPUT 
if (OUTVALID = T) then 

write(OUT_LINE, Unsigned2Bit(unsigned(DATA_OUT_vec)), left, 1); 
end if; 
if(RFD = '0')then 

addr <= addr- "000000000000000001"; 
STATE <= STATEJ; 

else 
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addr <=addr+ "000000000000000001"; 
STATE <= STATEJ; 

end if; 

when STATEJ => 
BLOCK_SIZE <= BL0CK_S1ZE; 
RATE <= RATE; 
START <= '0'; 
- OUTPUT 
if (OUTVALID = T) then 

write(OUT_LINE, Unsigned2Bit(unsigned(DATA_OUT_vec)), left, 1); 
end if; 
if(DONE_OUT = T)then 

writeline(OUT DATA, OUTLINE); 
if (packet_number = 3) then 

if (BlOCKSIZEut = 96) then 
if(RATE_ut = 4)then 

RATEut := RATEut; 
BLOCKSlZEut := BLOCKSlZEut; 
packetnumber := packetnumber; 
addr <=addr; 
STATE <= STATE4; 

else 

RATE_ut:=RATE_ut+l; 
BLOCK_SIZE_ut := 24; 
packet number := 1; 
addr <= (others => '0'); 
STATE <= STATE J ; 

end if; 
else 

RATEut := RATEut; 
BLOCK_SlZE ut := BLOCK_SIZE ut + 4; 
packetnumber := 1; 
addr <= (others => '0'); 
STATE <= STATEJ; 

end if; 
else 

RATE_ut := RATE_ut; 
BLOCK_SIZE_ut := BLOCK_SIZE_ut; 
packetnumber := packetnumber + 1; 
addr <= addr; 
STATE <= STATEJ; 

end if; 
else 

addr <= addr; 
STATE <= STATE3; 

end if; 

when STATE4 => 
BLOCKJS1ZE <= BLOCK_SIZE; 
RATE <=RATE; 
START <= START; 
addr <= addr; 
STATE <= STATE_4; 

when others => 
BLOCKSIZE <= (others => '0'); 
RATE <= (others => '0'); 
START <= '0'; 
addr <= addr; 
STATE <= STATEJ; 

end case; 
end if; 

end if; 
end process testing; 

END; 
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B.2 Encoder_tb_packet.vhd 

This module interfaces with the encoder's top-level VHDL module, and simulates its 

timing behavior while encoding one packet for a particular code rate and code length. 

LIBRARY ieee; 
USE ieee.std_logic_1164.ALL; 
USE ieee.std_logic_unsigned.all; 
USE ieee.numeric_std.ALL; 
USE std.textio.all; 

ENTITY Encoder tb_vhd IS 
END Encodertbvhd; 

ARCHITECTURE behavior OF EncoderJb_vhd IS 

- Component Declaration for the Unit Under Test (UUT) 
COMPONENT Encoder 
PORT( 

DATAIN : IN stdjogic; 
RATE : IN std_logic_vector(2 downto 0); 
BLOCK_SIZE : IN stdJogic_vectoi<6 downto 0); 
START : IN stdjogic; 
RESET: IN stdjogic; 
CLOCK : IN stdjogic; 
DATA OUT : OUT stdjogic; 
DONEJDUT: OUT stdjogic; 
OUTVALID : OUT stdjogic; 
RFD: OUT stdjogic 
); 

END COMPONENT; 

—Inputs 
SIGNAL DATAIN : stdjogic := '0'; 
SIGNAL START : stdjogic := '0'; 
SIGNAL RESET ; stdjogic :=T; 
SIGNAL CLOCK : stdjogic := '0'; 
SIGNAL RATE : std_logic_vector(2 downto 0):= "000"; 
SIGNAL BLOCK_SlZE : stdJogic_vector(6 downto 0):= "0000000"; 

—Outputs 
SIGNAL DATA_OUT: stdjogic; SIGNAL DATA_OUT_vec : std_logic_vector(0 downto 0); 
SIGNAL D O N E O U T : stdjogic; 
SIGNAL O U T V A L I D : stdjogic; 
SIGNAL RFD; stdjogic; 

—Testing Constants 
— Input generated for n = 1920. 

SIGNAL input_vector : stdJogicvector (0 to 1919) := 
"1010110010111100110100100001000101001101101011100001010101110111110001101101101II11101001100100100011010001 
111001101101000101111000101101001101100110100000010011000100111000001110100110010110000101001000001000110010 
111100101110000010100001000111100110001111011011101101011001100111110011110010011111001010111110110111011101 
010101000011011111001100000110010111011100001101011011100000010010101101100000011000001100111010110011100000 
011110111011110001001100101110001100100001010101011010001001000111100001101110101101110101111100101100001011 
100001011111101100111111000001001011101010101110011010101010111000001100011011011000001001100011010101111101 
011100010011000000100001010010110111001000011010111111111110100110101000111110010001101111001111010011111111 
111010000001001011100001101000101001101101111011011011101101000001100011110011110010001001001100001010011101 
111101010110001101101000001010110000001101000000010100011011100000010001110000010111100011111111110110101001 
101010010000001101111110100110000100011110101011011000000100010100011101000001001100011111100010100110010001 
101000011111010110001100010111000000011101000101100010010100110101101110110101100101111001101001000010001010 
011011010111000010101011101111100011011011011111101001100100100011010001111001101101000101111000101101001101 
100110100000010011000100111000001110100110010110000101001000001000110010111100101110000010100001000111100110 
0011110110111011010110011001 111 10011110010011111001010111110110111011101010101000011011111001100000110010111 
011100001101011011100000010010101101100000011000001100111010110011100000011110111011110001001100101110001100 
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100001010101011010001001000111100001101110101101110101111100101100001011100001011111101100111111000001001011 
101010101110011010101010111000001100011011011000001001100011010101111101011100010011000000100001010010110111 
0010000110101111111111101001101010001111100100011011110011110100111111111110100000010"; 

— Modify the following two parameters for target Code Rate and Block Size. 
— Available values: 
- Rates - (000=5/6), (00I=3/4b), (010=3/4A), (01 l=2/3b), (I00=2/3a), (101=1/2) 
- Sizes - (0011000=24),...., (1100000=96) 
CONSTANT RATE_ut : std_logic_vector(2 downto 0):= "000"; 
CONSTANT BLOCKSIZEut: std_logic_vector(6 downto 0):= "0011000"; - zf 

— Input length under test (set according to Block Size) 
CONSTANTk : integers 480; - input length (k = n * R ) 
SIGNAL statecounter : integer— 1; 
SIGNAL inputcounter : integer:= 0; 

- TEXT FILES 
file INDATA : text open readmode is 

"E:\PROJECTS\WiMAX_Encoder\VHDL\WiMAX^Encoder\Testing_and_Results\Encoder_in.txt"; 
file OUTDATA : text open writemode is 

"E:\PROJECTS\WiMAX_EncoderWHDL\WiMAX_Encoder\Testing_and_Results\Encoder_out.txt"; 

— Function to change the type on a signed value to a bitvector value 
function Unsigned2Bit(DataIn : unsigned) return bit vector is 

variable Temp : bitvectorfDataln'range); 
begin 

for k in Dataln'range loop 
if(DataIn(k) = T)then 

Temp(k) := T ; 
else 

Temp(k) := '0'; 
end if; 

end loop; 
return Temp; 

end function; 

BEGIN 

- Instantiate the Unit Under Test (UUT) 
uut; Encoder PORT MAP( 

DATAIN => DATA IN, 
DATAOUT => DATA OUT, 
RATE => RATE, 
BLOCKSIZE => BLOCK SIZE, 
START => START, 
RESET => RESET, 
DONEOUT => DONE_OUT, 
OUT_VALID => OUT_VALID, 
RFD=>RFD, 
CLOCK=>CLOCK 

); 

CLOCK <= not CLOCK after 10 ns; - 50MHz 
RESET <='0' after 151 ns; 

DATAIN <= input_vector(0); 
DATA_OUT_vec(0) <= DATA_OUT; 

testing: process (CLOCK) 
variable OUTLINE : line; — line variable 

begin 
if (rising_edge(CLOCK) and (RESET = '0')) then 

if (statecounter = 1) then 
BLOCKJS1ZE <= BLOCK_SIZE_ut after 1 ns; 

RATE <= RATEut after 1 ns; 
START < = T after Ins; 
- INPUT 
— We should be loading input at this clock 
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input counter <= inputcounter + 1; 
state_counter <= 2; 

elsif (state_counter= 2) then 
BLOCKSIZE <= BLOCKSIZE; 
RATE <= RATE; 

START <= '0' after 1 ns; 
- INPUT 
for iii in 0 to (k-2) loop 

input_vector(iii) <= input_vector(iii+l) after 1 ns; 
end loop; 
- OUTPUT 
if (OUTVALID = T) then 
write(OUT LINE, Unsigned2Bit(unsigned(DATA_OUT_vec)), left, 1); 
end if; 
if (inputcounter = k) then — counter = k already 

inputcounter <= 0; — we are reading bit n and shifting it out 
state_counter<=3; 

else 
inputcounter <= inputcounter + 1; 
state_counter <= 2; 

end if; 

elsif (statecounter = 3) then 
BLOCKSIZE <= BLOCKSIZE; 
RATE <= RATE; 
START <= '0'; 
inputvector <= inputvector; 
input_counter<= inputcounter; 
-- OUTPUT 
if (OUTVALID = '!') then 
write(OUT_LINE, Unsigned2Bit(unsigned(DATA_OUT_vec)), left, 1); 
end if; 
if(DONE_OUT = T)then 

writeline(OUT_DATA, OUTLINE); 
statecounter <= 4; 

else 
statecounter <= 3; 

end if; 

elsif (statecounter = 4) then 
BLOCKSIZE <= BLOCKSIZE; 
RATE <= RATE; 
START <= '0'; 
inputvector <= inputvector; 
input_counter<= inputcounter; 
state counter <= 4; 

end if; 
end if; 

end process testing; 

END; 

B.3 TopLevel.vhd 

This is a send/receive module that interfaces with the encoder and buffers inputs and 

outputs during the hardware testing process. It also interacts with the Opal Kelly Bus 

modules. 
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— WiMAX_Encoder, An LDPC Encoder for 802.16e wireless standard 

- Engineer: Samer Chomery 
- Create Date: 25th/06/07 
- Design Name: 802.16e Encoder 
- Module Name: TopLevel 
- Project Name: WiMAXEncoder 
- Target Device: Spartan HI 
- Tool versions: ISE 8.1.03i 
- Description: This is the top-level module used to interface with the Opal Kelly 

boards. It connects both the interface with the Encoder system and 
facilitates communication with the PC 

— Dependencies: None - This is the Top-Level module 

- Sub modules: Encoder.vhd 
okLibrary.vhd 
various .ngc files suuplied by OK 

• Revision: 
- Revision 0.01 - File Created 
• Additional Comments: 

library IEEE; 
use 1EEE.STDLOG1C1164.ALL; 
use 1EEE.STD_L0G1C_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 

— Uncomment the following library declaration if instantiating 
— any Xilinx primitives in this code, 
-library UNISIM; 
-use UNISIM.VComponents.all; 

entity TopLevel is 
Port ( h i in : in STDLOGIC VECTOR (7 downto 0); 

hiout : out STDJLOGICJVECTOR (1 downto 0); 
hiinout : inout STDLOGICVECTOR (15 downto 0); 
clkl :in STDLOGIC; 
i2c_sda : out stdlogic; 
i2c_scl : out std_logic; 
himuxsel : out stdlogic); 

end TopLevel; 

architecture Behavioral of TopLevel is 

— Host Interface Component 
component okHostlnterface is 

port( 
- U S B links 
h i i n : in std logic_vector(7 downto 0); 
h iout : out std_logic_vector(l downto 0); 
hiinout : inout std_logic_vector(15 downto 0); 
— Internal (host interface) Bus links 
t ic lk : out stdlogic; 
okl : out std_logic_vector(30 downto 0); 
ok2 : in std_logic_vector( 16 downto 0) 

); 
end component; 

— User Design 
component Encoder is 

Port ( DATAIN : in STDLOGIC; 
DATA_OUT: out STD_LOGIC; 
RATE :in STDLOGICVECTOR (2 downto 0); 
BLOCKSIZE : in STDLOGICVECTOR (6 downto 0); 
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START : in STD_LOGIC; 
RESET : in STDLOGIC; 

DONEOUT : out STDLOGIC; 
OUTVAL1D: out STDLOGIC; 

RED : out STD LOGIC; — See documentation regarding this signal 
CLOCK: in STDLOGIC); 

end component; 

— RAM to receive from Pipeln 
component inputram 

Port ( addra: IN stdJogic_VECTOR( 10 downto 0); 
addrb: IN std_logic_VECTOR( 10 downto 0); 
clka: IN stdlogic; 
clkb: IN stdlogic; 
dinar IN stdJogic_VECTOR(0 downto 0); 
doutb: OUT std_Iogic_VECTOR(0 downto 0); 

wea: IN stdlogic); 
end component; 

— RAM to send to PipeOut 
component outputram 

Port ( addra: IN std logic_VECTOR(l 1 downto 0); 
addrb: IN stdJogicJVECTOR( 11 downto 0); 
clka: IN stdlogic; 
clkb: IN stdlogic; 

dina: IN stdJogic_VECTOR(0 downto 0); 
doutb: OUT std_logic_VECTOR(0 downto 0); 
wea: IN stdlogic); 

end component; 

Endpoint Components used 
component okWireln is 

port( 
okl : in std_logic_vector(30 downto 0); 
ok2 : out std_logic_vector( 16 downto 0); 
ep_addr : in std_logic_vector(7 downto 0); 
epdataout: out std_logic_vector(15 downto 0)); 

end component; 

component okTriggerln is 
port( 

end component; 

okl : in std_logic_vector(30 downto 0); 
ok2 : out std_logic_vector( 16 downto 0); 
epaddr : in std_logic_vector(7 downto 0); 
epclk : in stdlogic; 
eptrigger : out std_logic_vector(15 downto 0)); 

component okTriggerOut is 
port( 

end component; 

okl : in std_logic_vector(30 downto 0); 
ok2 : out std_logic_vector( 16 downto 0); 
epaddr : in std_logic_vector(7 downto 0); 
epclk : in stdlogic; 
eptrigger : in std_logic_vector(15 downto 0)); 

component okPipeln is 
port( 

end component; 

okl : in std_logic_vector(30 downto 0); 
ok2 : out std_logic_vector(16 downto 0); 
epaddr : in stdjogic_vector(7 downto 0); 
epwrite : out stdlogic; 
epdataout: out std_logic_vector(15 downto 0)); 

component okPipeOut port ( 
okl : in std_logic_vector(30 downto 0); 
ok2 : out std_logic_vector( 16 downto 0); 
epaddr : in std_logic_vector(7 downto 0); 
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epread : out stdlogic; 
epdatain : in std_logic_vector( 15 downto 0)); 
end component; 

ENCODER FSM STATES 
constant SIDLE : stdlogicvector ( 1 downto 0 ) := "01"; 
constant INPUTLOAD : stdjogicvector ( 1 downto 0 ) := "11" 
constant FTNISHJXJTPUT : std_logic_vector ( 1 downto 0 ) := "10"; 
signal STATE : stdlogicvector ( 1 downto 0 ); 

SIGNALS 

signal wireOldata : std_logic_vector( 15 downto 0); 
signal triggerO 1 : std_logic_vector( 15 downto 0); 
signal trigger_02 : std_logic_vector(15 downto 0); 
signal trigger_03 : std_logic_vector( 15 downto 0); 
signal PipelnWrite : stdlogic; 
signal PipelnData : std_logic_vector( 15 downto 0); 
signal PipeOutRead : stdlogic; 
signal PipeOutData : std_logic_vector( 15 downto 0); 
signal ti elk 
signal okl 
signal ok2 

stdlogic; 
std_logic_vector(30 downto 0); 
std_logic_vector( 16 downto 0); 

signal ramladdra : std_logic_vector( 10 downto 0); 
signal ramladdrb : std_logic_vector( 10 downto 0); 
signal ramOaddra : std_logic_vector(l 1 downto 0); 
signal ramOaddrb : stdlogicvectoifl 1 downto 0); 
signal ramI_out : std_logic_vector(0 downto 0); 
signal ramOin : stdlogic vector(0 downto 0); 
signal ramOwea : stdlogic; 

signal encoderstart: stdlogic; 
signal outvalid : stdlogic; 
signal rfd : std_logic; 

begin 

-- Hardwiring (must be done according to documentation) 
— These are pins specified in the .ucf file 
himuxsel <= '0'; 
i2cj;cl <='Z'; 
i2c sda <= 'Z'; 

- RAMFSM 
RAM_FSM: process (ticlk) - clocked by the host interface closk (48 MHz) 
begin 

if (rising_edge(ti_clk)) then 
if (trigger_02(0) = '1') then - RAM reset 

ramladdra <= (others => '0'); 
ramOaddrb <= (others => '0'); 

else 
if (PipelnWrite = T) then 

rami addra<= ramladdra + "00000000001"; 
end if; 

if (PipeOutRead = '1') then 
ramO_addrb <= ramO_addrb + "000000000001" 

end if; 
end if; 

end if; 
end process; 

— EncoderFSM 
EncoderCommunication: process (clkl) 
begin 

if (risingedge(clkl)) then 
if (wireOldata(O) = '1') then 
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else 

encoderstart <= '0'; 
ramOaddra <= (others => '0'); 
ramladdrB <= (others => '0'); 
ramOwea <= '0'; 
STATE <= SIDLE; 

case STATE is 

when SIDLE => 
ramOaddra <= (others => '0'); 
ramO wea <= '0'; 
if (trigger_01 (0) = '1') then -- start 

encoderstart <= T ; 
raml_addrb <= ramladdrb + "00000000001" 
STATE <= INPUT LOAD; 

else 

end if; 

encoderstart <= '0'; 
raml_addrb <= (others => '0'); 
STATE <= SJDLE; 

when INPUT_LOAD=> 
encoderstart <= '0'; 
ramO wea < = T ; 
if(rfd = T)then 

raml_addrb <= ramladdrb + "00000000001"; 
STATE <= 1NPUT_L0AD; 

else 
ramladdrb <= (others => '0'); 
STATE <= FINISHOUTPUT; 

end if; 
if (out_valid = '1') then 

ramOaddra <= ramOaddra + "000000000001" 
else 

ramOaddra <= (others => '0'); 
end if; 

when FlNISH_OUTPUT => 
encoderstart <= '0'; 
ramladdrb <= (omers => '0'); 
if (out valid = '1') then 

ramOwea <='] ' ; 
ramOaddra <= ramO_addra + "000000000001" 
STATE <= FINISH OUTPUT; 

else 

end if; 

ramO_wea <= '0'; 
ramOaddra <= (others => '0'); 
STATE <=S IDLE; 

when others => 
encoderstart <= '0'; 
ramOaddra <= (others => '0'); 
ramladdrB <= (others => '0'); 
ramOwea <= '0'; 
STATE <=S IDLE; 

end case; 
end if; 

end if; 
end process; 

— Host Interface Instance 
Hostlnterface: okHostlnterface 

port map( 
hi in=>hi in. 
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hiout => hiout, 
hiinout => hiinout, 
t ic lk => ticlk, 
okl => okl, 
ok2 => ok2); 

— My design (Encoder) instance 
WiMAXEncoder: Encoder 

port map( 
DATAJN => ram]_put(0), 
DATAOUT => ramOin(O), 
RATE => wire01data(15 downto 13), 
BLOCK SIZE => wire01data(7 downto 1), 

START => encoderstart, — trigger in 
RESET => wireOldata(O), 
DONE_OUT => trigger_03(0), - trigger out 
OUTVALID => outvalid, 
RFD => rfd, 
CLOCK =>clkl); 

— Input RAM instance 
inputblockram : inputram 

port map ( 
addra => ramladdra, 
addrb => ramladdrb, 
clka => ticlk, 
clkb=>clkl, 
dina => PipelnData(0 downto 0), 
doutb => rami out, 
wea => PipelnWrite); 

— Output RAM instance 
outputblockram: outputram 

port map ( 
addra => ramOaddra, 
addrb => ramOaddrb, 
clka=>clkl, 
clkb => ticlk, 
dina => ramOin, 
doutb => PipeOutData(0 downto 0), 
wea => ramOwea); 

Endpoint Instances — 
WirelnOl : okWireln 

port map ( 
okl =>okl, 
ok2 => ok2, 
ep_addr => x"00", 
epdataout => wireOldata); 

TriggerlnOl : okTriggerln 
port map ( 

okl =>okl, 
ok2 => ok2, 
epaddr => x"40", 
epclk => clkl, 
^- tr igg6 1 = > triggerOl); 

Triggerln_02 : okTriggerln 
port map ( 

okl => okl, 
ok2 => ok2, 
epaddr =>x"41", 
epclk => ticlk, 
eptrigger => trigger_02); 

TriggerOut: okTriggerOut 
port map ( 
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okl =>okl, 
ok2 => ok2, 
epaddr => x"60", 
epclk =>clkl, 
ep_trigger => trigger_03); 

Pipeln : okPipeto 
port map ( 

okl =>okl, 
ok2 => ok2, 
epaddr => x"80", 
epwrite => PipelnWrite, 
ep_dataout => PipelnData); 

PipeOut: okPipeOut 
port map ( 

okl =>okl, 
ok2 => ok2, 
epaddr => x"A0", 
epread => PipeOutRead, 
epdatain => PipeOutData); 

end Behavioral,-
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Appendix C 

Comprehensive Behavioral Simulation Waveforms 

This Appendix presents several waveforms captured during comprehensive 

behavioral simulations of the 802.16e LDPC encoder. 

C. 1 Waveform of the full behavioral simulation test 
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C.2 Waveform illustrating the encoder working with rate 1/2 
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C.3 Waveform of full packet encoding at code rate 1/2 and block 
size 36 
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C.4 Waveform of full packet encoding at code rate 5/6 and block 
size 92 
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C.5 Waveform illustrating the dynamic change of encoding rate 
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C.6 Waveform illustrating the dynamic change of block size 
data in ^ 

start 
reset 
clock 

rate w 
blocksize 

data out 
dataoutvec 

doneout 
out_valid 

rfd 
addr 

inputbit 
state 

11 I I i i >11111 

ElS8y»neMe_Ssj9ld AK3ifeeSure:tffiflavtor Date: Mon Kay 14 10:3142AM wxzfcm Dayisjia urate 2007 HO*: 1 Page 1 

C.7 Waveform illustrating a packet-to-packet transition 
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Appendix D 

C++ Hardware Test and Control File 

This Appendix presents the C++ code that was used to connect, control, and program 

the FPGA device on the Opal Kelly XEM3010 board. The code also runs a test of the 

encoder design. 

#include <iostream> 
#include <fstream> 
#include <okCUsbFrontPanel.h> 
#include <string> 
#include <stdlib.h> 
using namespace std; 

#defineWIRElN_RESET_MASK 0x0001 
#defme WIREINRATEMASK OxEOOO 
#define WIRE1N ZFMASK OxOOFE 
#defineRATE_12_BITS OxAOOO 
#define RATE_23_BITS 0x6000 
#define RATE_34_BITS 0x4000 
#define RATE56BITS 0x0000 

// Function to convert the bit value stored in a byte into an ascii character 
char bitTochar (unsigned char x); 

int main () 
{ 

// ****************** Variables ******************* 

// XEM Device Variable 
int devicecount = 0; 
string serial; 
int major_ver = 0; //firmware major version 
int minorver = 0; //firmware minor version 
int devicemodel = 0; 
double freq = 0; // PLL output frequency 
long errorCode; 

// File Variables 
char inchar; 
char outchar; 
unsigned char inbuf [3840]; //1920 * 2 
unsigned char outbuf [4608]; // 2304 * 2 

// LDPC Code related Variables 
short int zf; //zf as loop index 
short int zfbits; 
int rate ; // rate as loop index 
double coderate; // rate in double format 
short int ratebits; 
int codelength ; // code length (output length) 
int inputlength ; // input length 
int packet; // packet number as loop index 
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II ***************** Input/Output Files ****************** 
ifstream in file; 
inJile.openCinput_vector.txt"); 
ofstream out_file; 
out_file.openCencoded_seq_hw.txt"); 

II **************** F P G A Communication ******************* 
// — Creating a pointer to a FrontPanel object 

okCUsbFrontPanel *xem; 
xem = new okCUsbFrontPanel(); 

// — Counting the devices attached to the USB bus 
devicecount = xem->GetDeviceCount(); 
c o u t « "Where are ( " « dev icecount« ") devices attached to USB b u s " « endl; 

// — Opening USB communication with Board 
if (xem->OpenBySerial() != 0) { 

printf("\nError opening device W); 
return-1; 

} 
else { 

serial = xem->GetSerialNumber(); 
c o u t « "\nDevice with serial number ( " « serial « ") Opened Successfully !!" «endl ; 

} 

// — Version Checks 
if (!(xem->lsFrontPanel3Supported())) { 

cout « "FrontPanel 3 is Not Supported on this board ! ! " « endl; 
if (!(xem->IsFrontPanelEnabled())) // Is any Front Panel running on board ? 

cout « " But FrontPanel is enabled!!" « endl; 

} 
else { 

major_ver = xem->GetDeviceMajorVersion(); 
minorver = xem->GetDeviceMinorVersion(); 
c o u t « " The firmware's version number is: " « majorver « "." « minorver « endl; 
devicemodel = xem->GetBoardModel(); 
if (devicemodel == 3) // enumerated type 

c o u t « " Device Model: XEM 3010 " « endl; 
> 

// — Setting up Frequency of PLL 
okCPLL22393 *pll = new okCPLL22393; 
pll->SetReference(48.0f); 
pll->SetPLLParameters(0,400,48); 
pll->SetOutputSource(0, okCPLL22393: :ClkSrc_PLLO_0); 
pll->SetOutputDivider(0, 8); 
pll->SetOutputEnable(0, true); 

xem->SetPLL22393Configuration(*pll); 

freq = pll->GetOutputFrequency(0); 
cout « " PLL output freq. = " « freq « " MHz" « endl; 

// — Loading design file to FPGA 
errorCode = xem->ConfigureFPGA("wimax_encoder_mult.bit"); 
if(errorCode<0) 

c o u t « "Configuring Device Failed!!, Error Code: "«errorCode«endl; 

// — Reseting FPGA Design 
xem->SefWireInVarue(Ox0O, Oxffff, WIREINRESETMASK); 
xem->UpdateWireIns(); 
xem->SetWirelnValue{0x00,0x0000, WIREINRESETMASK); 
xem->UpdateWireIns(); 
// — The Design-Test loop — 
for (rate = 1; rate <= 4; rate++) { 

i f ( r a t e = l ) { 
code_rate= 1/2.0; 
rate_bits = RATEJ2BITS;} 

elseif(rate==2){ 
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code_rate = 2/3.0; 
rate_bits = RATE23BITS;} 

else if (rate == 3){ 
code_rate = 3/4.0; 
ratebits = RATE34BITS;} 

else{ 
coderate = 5/6.0; 
ratebits = RATE56BITS;} 

for (zf = 24; zf <= 96; zf = zf + 4) { 
codelength = int(zf * 24); 
inputjength = int(code_length * coderate); 
zfbits = z f « l ; 

for (packet = 1; packet <= 100; packet++) { 
// > Sending Data 
// Setup rate and block length 

xem->SetWirelnValue(0x00, ratebits, WIREINRATEJvlASK); 
xem->UpdateWireIns(); 
xem->SetWirelnValue(0x00,zfbits,WIRE1N ZFMASK); 
xem->UpdateWireIns(); 
// Read bits from in file 
for (int i = 0; i < (input_length*2); i+=2) { 

infile.get(inchar); 
in_buf[i] = atoi(&in_char); 
in_buf[i+l] = 0; 

} 
// Reset RAM address pointers 
xem->ActivateTriggerln(0x41, 0); 
// Send bits to Pipeln 
errorCode = xem->WriteToPipeIn(0x80, (input_length*2), inbuf); 
if(errorCode<0) 

c o u t « "Writing data to Pipeln failed!!, ErrorCode: "«errorCode«endl; 
// start FSM 
xem->ActivateTriggerln(0x40, 0); 

// > Waiting for DONEOUT signal from design 
xem->UpdateTriggerOuts(); 
while (!(xem->IsTriggered(0x60,0x0001))) 
{ 

xem->UpdateTriggerOuts(); 
} 
/ / c o u t « "Encoding Packet Done!! !\n"; 

// > Receiving Data 
// Receive bits from PipeOut 
xem->ReadFromPipeOut(0xA0, (code_length*2), out_buf); 
// Write bits to out file 
for (int i = 0; i < (code_length*2); i+=2){ 

outchar = bitTochar(out_buf[i]); 
out_file.put(out_char); 

} 
out_file.put('\n'); 

} 
// returning the reading cursor to beginning of input file stream 
in_file.seekg(0, ios::beg); 

} 
} 
in_file.close(); 
out_iile.close(); 
return 0; 

} 

char bitTochar (unsigned char x) 
{ 

i f ( x = l ) 
return T ; 

else 
return '0'; 

} 
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