
University of Alberta

A Power Evaluation Study for an 802.16e LDPC Encoder Implementation with
Wireless Implantable Medical Devices

by

Samer Chomery

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Electrical and Computer Engineering

Edmonton, Alberta

Fall 2008

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-47190-6
Our file Notre reference
ISBN: 978-0-494-47190-6

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Plntemet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

To My Parents

Abstract

Low-density parity-check (LDPC) codes are forward error control (FEC) codes that

are being increasingly adopted in emerging communication systems due to their ability to

provide capacity approaching coding performance and the availability of practical VLSI

implementations. Low-time-complexity encoding of LDPC block codes has been a

challenge. The LDPC codes supported in the 802.16e (mobile WiMAX) standard are

designed to take advantage of efficient time and circuit encoding techniques. This thesis

explores the design and implementation of an LDPC encoder that is compatible with the

802.16e standard.

Wireless implantable medical devices (IMDs) are an important emerging

communications application. One design challenge of IMDs is the low-power

consumption required to achieve the necessary battery life. This thesis evaluates the

power consumption of the implemented LDPC encoder for use in implant wireless

transmit data links. To achieve the necessary power efficiency we need a lower power

implementation than the FPGA encoder presented.

Acknowledgments

First and foremost, I would like thank the Lord for blessing me and for providing me

with a wonderful life, and especially for the opportunity to pursue my education and

career in Canada.

Second, I am grateful to my parents, Esam and Aysar Chomery, for the love and

support they've given me all my life, and for their sacrifices without which I wouldn't be

where I am today. I thank my brother Ziyad who was always there for me to talk to and

watch sports with. I am very thankful to my fiance Dima Oweis, who stood by me every

step of my graduate program and helped and encouraged me during the difficult times.

Thank you for your love.

Third, I wish to express my immense gratitude to my supervisors, Dr. Stephen Bates

for his guidance, advice, patience, and for sharing his knowledge and technical insights

with me. I am also grateful to my co-supervisor Dr. Duncan Elliott, who provided

guidance and many contributions to my learning experience.

Fourth, I would like to show my appreciation to everyone at TRLabs; Dr. John

Nielsen, Dr. Robert (Bob) Davies, Dr. Grant McGibney, and the support staff at the

Calgary lab who helped introduce me the field of wireless communications and

encouraged me to pursue further research opportunities. I thank everyone at the

Edmonton lab for providing all the learning resources I needed and an excellent working

environment. An additional thank-you goes to Luke Chong for making sure my

computing experience always ran smoothly.

Fifth, my appreciation goes out to all my friends and colleagues at the Department of

Electrical and Computer Engineering at the University of Alberta and TRLabs for the

many helpful discussions and late night work-and-pizza sessions.

I'll finish by giving thanks to the organizations and institutions whose financial aid

has been instrumental in allowing me to do this work. To NSERC, TRLabs, and the

University of Alberta I am humbly grateful.

Table of Contents

1 Introduction and Thesis Overview 1

1.1 Project Overview 1

1.2 Thesis Overview 4

2 Background and Literature Review 6

2.1 Information Theory and Channel Coding 6

2.2 Low-Density Parity-Check Codes 10

2.2.1 Introduction 10

2.2.2 Overview of LDPC codes 11

2.2.2.1 LDPC Code Structure 11

2.2.2.2 Decoding and Current Implementations 15

2.2.2.3 Encoding and Current Implementations 19

2.3 Wireless Communications and Low-Density Parity-Check Codes 25

2.3.1 Brief Overview of Wireless Communications 25

2.3.2 The IEEE 802.16 wireless networking standard (WiMAX) 26

2.3.3 LDPC codes in Wireless Communications 27

2.4 Wireless In-Body Medical Communications 31

2.4.1 Overview of In-Body Medical Communications 31

2.4.2 Design and Implementation Challenges of In-Body Wireless

Communications 33

2.4.3 Current In-body Communication Solutions 44

2.5 Summary 45

3 The 802.16e compatible LDPC Encoder 47

3.1 Introduction 47

3.2 802.16e LDPC Code Structure 47

3.3 802.16e LDPC Code Performance 51

3.4 The 802.16e LDPC Encoder Core 54

3.4.1 Encoding Algorithm 54

3.4.2 Encoder Design and Implementation Flow 57

3.4.3 Encoder Top-Level Design 59

3.4.4 Software Implementation and Modeling 63

3.4.5 Hardware System Components 69

3.4.5.1 The Block Multiplier 72

3.4.5.2 The Full Matrix-Vector Multiplier 78

3.4.5.3 The ET1, T1 Matrix Multiplier 81

3.4.5.4 Memory Storage and Controllers 85

3.4.5.5 The Master Finite State Machine 90

3.5 Summary 94

4 Encoder Verification and Performance Analysis 96

4.1 Encoder IP Core - Description and Usage 96

4.2 Simulation and Testing Method 101

4.3 Behavioral Simulations 103

4.4 Timing Simulations 105

4.5 Resource Utilization and Throughput 108

4.5.1 Hardware Resource Utilization 108

4.5.2 System Throughput 109

4.6 Hardware on-chip Testing 110

4.7 Summary 115

5 LDPC Encoders for In-Vivo RF Communications 116

5.1 Introduction 116

5.2 Power Measurement Tools 116

5.3 Power Measurements of the 802.16e LDPC Encoder 119

5.4 The Convolutional LDPC Encoder 121

5.4.1 Introduction to the Convolutional Encoder Implementation 121

5.4.2 Power Measurements of the Convolutional LDPC Encoder 125

5.5 Power Consumption Comparison of the LDPC-BC and LDPC-CC

encoders 126

5.6 LDPC Encoders Analysis for Wireless Implantable Medical Devices 130

5.6.1 Power Efficiency of LDPC Encoders for Wireless In-Body

Communications 130

5.6.2 Comparisons with Industry Leading IMDs 140

5.7 Power Consumption Improvements 142

5.8 Summary 143

6 Conclusions and Future Work 145

6.1 Project Results and Analysis 145

6.2 Future Work 147

Bibliography 149

A MATLAB Modules for Software Modeling and Processing 161

A.l Encoder.m 161

A.2 fmalEncoder.m 162

A.3 stage2.m 165

A.4 stage6.m 165

A.5 Amult.m 166

A.6 blockmultm 167

A.7 memretrieve.m 167

A.8 Hgenerator.m 169

A.9 Accuracy_driver.m 172

A. 10 verify_accuracy.m 172

A.ll checkallvaluesscript.m 173

A.12 A_firstcol_maker.m 174

A. 13 Aothercolmaker.m 176

A.14 ABmemchecker.m 177

A.l 5 inputgenerate.m 179

A.l 6 packetcompare.m 179

A.17 Encoderscript.m 179

B Testing and Verification VHDL Modules 181

B.l Encodertb.vhd 181

B.2 Encoder_tb_packet.vhd 185

B.3 TopLevel.vhd 187

C Comprehensive Behavioral Simulation Waveforms 194

C.l Waveform of the full behavioral simulation test 194

C.2 Waveform illustrating the encoder working with rate 1/2 194

C.3 Waveform of full packet encoding at code rate 1/2 and block size 36 195

C.4 Waveform of full packet encoding at code rate 5/6 and block size 92 195

C.5 Waveform illustrating the dynamic change of encoding rate 195

C.6 Waveform illustrating the dynamic change of block size 196

C.7 Waveform illustrating a packet-to-packet transition 196

D C++ Hardware Test and Control File 197

List of Tables

Table 3.1: 802.16e supported LDPC code rates and lengths 50

Table 3.2: Three approaches to storing the A, B, and C sub-matrices 66

Table 3.3: Summary of the encoder's Block RAM memory components 86

Table 4.1; System signal pinout 97

Table 4.2: Spartan-3 XC3S1500 device utilization for LUT-based implementation 108

Table 4.3: Spartan-3 XC3S1500 device utilization for multiplier-based implementation

108

Table 4.4: Maximum clock frequency as reported by implementation stages 110

Table 4.5: 802.16e LDPC encoder throughput for all supported packet lengths at 80MHz

clock rate 110

Table 5.1: 802.16e LDPC encoder power estimates, power in (mW) 120

Table 5.2: LDPC-CC encoder power estimates, power in (mW) 125

Table 5.3: LDPC-CC vs. 802.16e LDPC encoder power results for rate 1/2, power in

(mW) 126

Table 5.4: Convolutional encoder power gain (savings) based on dynamic power

consumption 128

Table 5.5: FPGA resource utilization comparison, Spartan 3 - package 3sl500fg320.. 128

Table 5.6: Parameters used in power calculations 135

List of Figures

Figure 2.1: Simplified model of a communication system 8

Figure 2.2: Codeword structure of a systematic block code 12

Figure 2.3: Example of a parity-check matrix [5] 13

Figure 2.4: Parity-Check matrix for (20, 3, 4) LDPC code 14

Figure 2.5: An example of a (2,3) regular LDPC code and its bipartite (Tanner) graph.. 16

Figure 2.6: A matrix in almost lower triangular (ALT) form 21

Figure 2.7: An example of the internal structure of a matrix composed of circulant

identity matrices, modified from [36] 22

Figure 2.8: Spectral efficiency and sector throughput comparison of HSPA, EVDO-Rev.

B, and Mobile WiMAX under the same traffic conditions [52] 27

Figure 2.9: Performance of un-coded and LDPC coded OFDM and spread OFDM

(SOFDM) systems in Typical Urban wireless channel, BPSK, R = 1/2, N = 1024 [54].. 28

Figure 2.10: 802.16e supported FEC codes comparison, R = 1/2, N = 576 [59] 30

Figure 2.11: Measured body attenuation data vs. frequency and distance [69] 35

Figure 3.1: FEC codes comparison, BER, AWGN, R=l/2, N=576 [59] 52

Figure 3.2: FEC codes comparison, BER/FER , TU30, R=3/4, N=576 [59] 52

Figure 3.3: FEC codes comparison, BER, TU30, various code rates and lengths [59].... 53

Figure 3.4: FER performance of WiMAX LDPC decoder implementation from [83] 54

Figure 3.5: The parity-check matrix H in almost lower triangular form 55

Figure 3.6: Block diagram of the encoding algorithm for the block LDPC code [10] 57

Figure 3.7: Encoder design flow chart 57

Figure 3.8: Top-level block diagram of 802.16e LDPC Encoder 59

Figure 3.9: Software model hierarchy for 802.16e LDPC encoder 63

Figure 3.10: The VHDL design flow 70

Figure 3.11: Matrix-vector multiplication illustration [36] 72

Figure 3.12: An identity matrix shifted once, produces a vector that is shifted once 73

Figure 3.13: After the intermediate vectors are shifted, they are compounded through

addition to produce the row result 73

Figure 3.14: Shift-register based block multiplier 74

Figure 3.15: 96-bit register with a circular pointer 75

Figure 3.16: The circular-pointer based block multiplier 77

Figure 3.17: The full matrix-vector multiplier 79

Figure 3.18: Typical shapes of T, E, T" , ET" matrices for code rate 3/4 81

Figure 3.19: Multiplying a vector by each of ET"1 and T"1 82

Figure 3.20: The large-shifter multiplier 83

Figure 3.21: The memory controller component 87

Figure 3.22: 802.16e LDPC Encoder System (top-level) Diagram 91

Figure 4.1: 802.16e LDPC encoder core block diagram 96

Figure 4.2: Behavior of START signal during encoding of a rate 1/2, block size 96 input

packet 98

Figure 4.3: RFD Signal on end of input packet, code rate 1/2, block size 96 99

Figure 4.4: OUTVALID Signal and the 32-cycle latency, code rate 5/6, block size 92

100

Figure 4.5: DONEOUT asserted on end of data output, code rate 1/2, block size 96 .. 100

Figure 4.6: Encoding of one packet with code rate 1/2 and block size 96 101

Figure 4.7: MATLAB testing structure 102

Figure 4.8: Post place-and-route simulation with code rate 1/2 and block size 24 107

Figure 4.9: Post place-and-route simulation with code rate 5/6 and block size 96 107

Figure 4.10: Functional block diagram of the XEM board [88] 111

Figure 4.11: Opal Kelly interface structure 112

Figure 4.12: Hardware testing top-level VHDL module 114

Figure 5.1: 802.16e LDPC encoder power estimates with rates 1/2 and 5/6, block sizes 24

and 96 at several clock frequencies 121

Figure 5.2: Block diagram of LDPC-CC encoder [91] 122

Figure 5.3: Block diagram of termination sequence generation circuit of LDPC-CC

encoder [92] 123

Figure 5.4: 802.16e LDPC-BC vs. LDPC-CC performance example. (Information bit

length = 600 bits), modified from [93] '. 124

Figure 5.5: LDPC-CC encoder power estimates with rates lA at several clock frequencies

126

Figure 5.6: LDPC-CC vs. 802.16e LDPC Encoder power results at rate 1/2 127

Figure 5.7: Minimum transmit energy per bit for 802.16e LDPC encoder (FPGA core)

compared to an uncoded system, at rate 1/2, frequency 50 MHz 136

Figure 5.8: Minimum transmit energy per bit for LDPC-CC encoder (FPGA core)

compared to an uncoded system, at rate 1/2, frequency 50 MHz 136

Figure 5.9: Minimum transmit energy per bit for LDPC-BC encoder (ASIC estimate)

compared to anuncoded system, at rate 1/2, frequency 50 MHz 139

Figure 5.10: Minimum transmit energy per bit for LDPC-CC encoder (ASIC estimate)

compared to an uncoded system, at rate 1/2, frequency 50 MHz 139

List of Abbreviations

Symbol Description
3G

ALT

ANSI-C

API

ARQ

ASIC

AWGN

BAN

BCH

BER

BP

BPL

BRAM

BW

CC

CDMA

CRC

CTC

Third Generation of development in wireless communication

networks, especially mobile phone networks

Almost Lower Triangular Form of a Matrix

The C language programming standard published by the American

National Standards Institute

Application Programming Interface

Automatic Repeat-Request Codes

Application-Specific Integrated Circuit

Additive White Gaussian Noise Information Channel

Body Area Network

Bose-Chaudhuri-Hochquenghem Code

Bit Error Rate

Belief Propagation

Body Path-Loss Factor

Block Read Access Memory

Bandwidth

Convolutional Code

Code-Division Multiple-Access

Cyclic Redundancy Check

Convolutional Turbo Code

DL

DLL

DUT

DVB-S2

ECC

EIRP

EM

EVDO-Rev. B

FCC

FDTD

FEC

FER

FF

FIFO

FPGA

FSM

GF

GUI

HDL

HSPA

IEEE

IMD

IP

Downlink

Dynamic Link Library

Device Under Test

Digital Video Broadcast - Satellite - Second Generation

Error Control Codes

Effective Isotropic Radiation Power

Electromagnetic

Evolution-Data Optimized - Revision B, a 3G wireless standard

Federal Communications Commission

Finite-Difference Time-Domain

Forward Error Correction

Frame Error Rate

Flip-Flop

First-In First-Out

Field-Programmable Gate Array

Finite State Machine

Galois Field

Graphical User Interface

Hardware Description Language

High-Speed Packet Access

Institute of Electrical and Electronics Engineers

Implantable Medical Device

Internet Protocol

ISM

LAN

LDPC

LDPC-BC

LDPC-CC

LLR

LNA

LSB

LUT

MAN

MEMS

METAIDS

MICS

MIMO

MSB

MUX

NCD

NICT

OFDM

PAN

PDA'

PLE

PLL

the Industrial, Scientific and Medical Frequency Band

. Local Area Network

Low-Density Parity-Check Code

Low-Density Parity-Check Block Code

Low-Density Parity-Check Convolutinal Code

Log-Likelihood Ratio

Low-Noise Amplifier

Least-Significant Bit

Lookup Table

Metropolitan Area Network

Microelectromechanical system

Meteorological Aids Service

Medical Implants Communication Service

Multiple-Input Multiple-Output

Most-Significant Bit

Multiplexer

Native Circuit Description File

National Institute of Standards and Technology

Orthogonal Frequency Division Multiplexing

Personal Area Network

Personal Digital Assistance

Path-Loss Exponent

Phase Lock Loop

QC

QoS

QPSK

RAM

RF

RICA

RNF

SNR

TG6

TU30

UL

USB

UWB

VCD

VHDL

VHSIC

VLSI

WAN

WiMAX

WMAN

WPAN

XOR

Qausi-Cyclic

1 Quality of Service

Quadrature Phase-Shi ft Keying

Random Access Memory

Radio Frequency

Reconfigurable Instruction Cell Architecture

Receiver Noise Figure

Signal-to-Noise Ratio

The WPAN Task Group 6 for Body Area Networks

Typical Urban 30 Information Channel

Uplink

Universal Serial Bus

Ultra-Wide Band

Value Change Dump

VHSIC Hardware Description Language

Very High Speed Integrated Circuit

Very Large-Scale Integration

Wide Area Network

Worldwide Interoperability for Microwave Access

Wireless Metropolitan Area Network

Wireless Personal Area Network

Exclusive-OR

Chapter 1

Introduction and Thesis Overview

1.1 Project Overview

Channel coding is a technique used to mitigate the effects of noise on the transfer of

information in communication systems. The development of channel codes that achieve

good coding performance has been the focus of researchers since the late 1940s. Several

code families have been developed that provide effective performance in various

communication systems and applications [3]. In today's expanding market of portable

wireless communications, it is important for communication vendors to develop low-

circuit-complexity channel codes for hardware implementation. Several channel coding

classes have recently emerged as high-performance, low-complexity codes such as turbo

codes and low-density parity-check (LDPC) codes [4]. These codes are quickly becoming

the coding techniques of choice for emerging wireless communication systems.

LDPC codes provide comparable coding performance to the widely adopted turbo

codes while being more suited for high-throughput, low-latency applications. In addition,

LDPC codes offer a wider range of tradeoffs between performance and decoding

complexity [13]. The low-complexity decoding of LDPC codes is one of the main

reasons for their popularity. This is due to the utilization of the belief propagation (BP)

algorithm, which is an iterative decoding algorithm that is well suited for efficient VLSI

implementations.

1

The encoding of the block version of LDPC codes has been criticized because of the

apparent high time complexity involved. Direct encoding of LDPC block codes requires

the multiplication of vectors with dense matrices, and hence is of 0(n) complexity. The

complexity increases further with larger packets (code lengths). However, the code's

performance also improves with larger code lengths. Thus, several code construction

methods and algorithms have been proposed in the literature that aim to achieve linear

time-complexity encoding of LDPC block codes [30, 31, 32, 34]. This issue highlights

one of our project motivations; to gain further insight into efficient encoding algorithms

for LDPC block codes and their hardware implementations.

One approach to investigating LDPC encoding implementation and its practicality is

to explore the use of LDPC codes in a defined communication system. For our project,

we chose the IEEE 802.16e (WiMAX) standard [10]. WiMAX is an emerging wireless

metropolitan area network standard that provides fixed and mobile broadband wireless

access. WiMAX employs several new technologies such as multiple-input multiple-

output (MIMO) antenna arrays, space-time coding, and bandwidth and network

scalability. The mobile version of WiMAX adopts LDPC block codes as optional channel

coding schemes. The standard supports a set of block codes with six code rates and

nineteen code lengths per rate. The supported codes are designed for efficient encoding

and present a suitable technology platform for our LDPC encoder implementation

project.

The above discussion frames the main goal of this project; to design and implement a

low-time-complexity low-circuit-complexity LDPC block encoder, while maintaining

compatibility with the IEEE 802.16e standard. The encoder is implemented as an

2

intellectual property (IP) core on an FPGA device. This provides the ability to use the

encoder as a "drop-in" module for various digital designs, as well as provides a working

hardware platform for future research into new implementation ideas. Several design

challenges exist:

• Taking advantage of the proposed efficient encoding algorithm and the

compact structure of the adopted codes in the standard.

• Incorporating all supported code rates and lengths into a single low-circuit-

complexity encoder design, with the ability to switch between code rates and

lengths during operation.

• Minimizing hardware utilization and memory requirements.

• Developing a low and consistent latency encoder.

Beyond implementation, another research opportunity exists in studying the

performance and suitability of LDPC encoders in emerging applications. One such

application is the use of high performance codes with implantable medical devices

(IMDs). Wireless IMDs are not a new technology; however, the potential treatment

benefits that could be gained through utilizing high-throughput wireless transceivers in

IMDs are significant [60]. An example of such benefits is the ability to produce non­

invasive "swallow-able" imaging devices that are able to capture and transmit images of

a patient's gastrointestinal tract for better diagnosis and treatment. The main challenge

facing implant designers is the requirement to build low-power transceivers that are able

to provide high-throughput with high data reliability [67]. Therefore, another goal for this

project is to characterize the power consumption of the implemented 802.16e encoder, as

well as a convolutional LDPC encoder, and evaluate their suitability for low-power

3

medical implant use. We consider the encoder-only scenario at the implant. Furthermore,

since designs on FPGA devices are known to consume higher power than the same

designs on power-efficient ASICs [101]. We also estimate the power consumption of

these encoders when implemented on ASIC devices. In order to conduct this evaluation

study, several issues must be addressed:

• Identifying a mathematical model for evaluating the power efficiency of

LDPC encoders for medical implant applications.

• Researching reasonable approximations for the scaling of FPGA power

consumption levels to ASIC levels.

• Identifying possible power improvement options for our 802.16e LDPC

encoder.

1.2 Thesis Overview

In Chapter 2, we elaborate on the concepts mentioned in Section 1.1. Key concepts in

information theory and channel coding are briefly reviewed. LDPC codes are introduced

with a discussion of decoding and encoding algorithms and implementations. The IEEE

802.16e standard is introduced with a focus on LDPC codes' performance. The last

section of Chapter 2 discusses the main challenges faced by wireless IMD designers

including low power consumption and the modeling of wave propagation through the

human body.

In Chapter 3, we discuss our implementation of the 802.16e LDPC encoder. The

structure of the supported LDPC codes and the proposed encoding algorithm by the

standard are presented. We describe the design and verification processes applied and

4

expand on the software modeling process. The hardware components of the design are

detailed and they include the matrix-vector multipliers, memory storage and controllers,

and the master Finite State Machine (FSM).

Chapter 4 mainly describes the form and usage of the encoder as an IP core

illustrating the various input/output ports used to interface with it. In addition, Chapter 4

describes the behavioral, timing, and hardware verification processes used to confirm the

functionality of the design. The throughput and hardware utilization of the encoder are

also recorded.

Chapter 5 conducts a wireless medical implant power consumption study. The

software tools used to estimate the power consumption of the encoders are presented. We

also introduce a convolutional LDPC encoder design based on [91]. The power

consumption of both the block and convolutional encoders is estimated and analyzed. We

derive a mathematical model to evaluate the minimum encoder transmit energy required

to achieve a certain coding performance level. The FPGA designs are evaluated against

an uncoded system. ASIC approximations of the same designs are performed and

evaluated for IMD use. Additionally, the encoders' power estimates are compared to

industry-leading devices and possible power improvement options are presented.

Finally, the results are summarized and the future work for this project is discussed in

Chapter 6.

5

Chapter 2

Background and Literature Review

2.1 Information Theory and Channel Coding

In communication systems information is transmitted from a source to a destination.

The transmitter converts the information into a form suitable for transmission through the

physical medium be it a copper wire, a fiber optic link, or radio frequency waves

propagating through space. The receiver detects the transmitted signal and converts it

back to the original information message. These physical media are information channels

that carry the transmitted information messages. Ensuring the integrity of the transmitted

messages in these channels would be a trivial task if it wasn't for the presence of noise

that may corrupt the information during transmission. In this context, noise can be

defined as any unwanted signal or effect in addition to the transmitted signal in the

channel. The sources of noise vary from one channel to the other; interference from other

transmissions, thermal effects generated by the electronic devices being used,

environmental interference, etc. When the transmitted information messages are

corrupted by noise, the receiver may not be able to recover the original information and

may interpret these messages in error. Information Theory and Channel Coding are the

fields of engineering that deal with the definition and analysis of information in

communication systems as well as the various techniques used to combat the effects of

noise on these systems.

6

It was Claude Shannon's revolutionary 1948 paper "A mathematical theory of

communication" [1] that laid the foundations for the field of Information Theory. In his

work, Shannon quantified the information that is transferred from source to destination in

a communication system. He was particularly concerned with defining or measuring the

information-carrying capacity of a channel. Realizing that the presence of noise in a

channel reduces its information-carrying capacity, Shannon presented one of his most

significant contributions; Theorem 17 in his paper, known as the Information Capacity

Theorem. In it he defined the channel's capacity as the rate of discrete information units

(or bits) that can be transmitted reliably (i.e. without error) over the channel measured in

bits per second. While many mathematical models have been developed to describe the

behavior of transmissions through various noisy information channels, the Gaussian

channel is a fundamental and useful channel model for various communication channels

such as wireless links and fiber optic cables [2]. This channel models the noise as a zero-

mean Gaussian random variable, which means that it assumes a Gaussian distribution of

noise amplitude with a constant noise power over a limited channel bandwidth. The

output of the channel is defined to be the addition of the noise and the channel's input.

That is the channel output is perturbed by additive white Gaussian noise (AWGN).

Shannon used the AWGN channel model to state and prove the famous theorem

mentioned above. In it [1], he stated that the information capacity of a channel of

bandwidth W hertz, subjected to AWGN of power N watt, when the average transmitter

power is limited to P watt is given by:

C = Wlog2 1 + —
N

[bits per second] (2.1)

7

P/N is the ratio of the transmitter signal power to the noise power, hence called the

signal-to-noise ratio (SNR), and is one of the most important parameters communication

engineers must consider when designing a communication system. With this closed form

equation, Shannon asserted that it was theoretically possible to reliably transmit

information bits with rates upper-bounded by channel capacity in the presence of noise in

an information channel. However, he gave no constructions of schemes that could

achieve or approach this capacity.

In order to mitigate the effects of noise on the transmitted information,

communication systems use Channel Coding techniques. Figure 2.1 illustrates a

simplified model of a communication system with the channel coding components

highlighted.

Source Modulator

Destination Demodulator

Figure 2.1: Simplified model of a communication system

Channel coding involves the adding of redundancy to the transmitted messages (or

symbols) in order to minimize the probability of interpreting these messages in error at

the receiver. The process of adding redundancy at the transmitter is known as encoding

and is reversed by a decoding process at the receiver. The receiver's failure to interpret a

transmitted symbol correctly is termed a decoding error. Simple addition of redundancy,

8

such as repetition of transmitted symbols, is not the most efficient channel coding

technique as it wastes channel bandwidth and system resources. Hence, channel coding

goes beyond that, and attempts to encode the transmitted messages with the minimum

number of symbols while still providing adequate protection against decoding errors.

Understanding the notion of channel capacity, and channel coding techniques,

Shannon proceeded to state and prove his most famous result: the Channel Coding

Theorem. This is theorem 11 in his 1948 paper [1]. In it he explained that there exist

channel codes that make it possible to achieve reliable transmission, with as small an

error probability as desired, if the rate of transmitted information is less than the channel

capacity. Furthermore, he explained that it is not possible, with any code, to achieve such

a low error probability if the rate of information transmission exceeds the channel

capacity. This bound became known as the Shannon limit.

Finding codes that attempt to achieve channel capacity is only part of the problem of

channel coding. Developing practical algorithms for encoding and decoding such codes is

another challenging part. The search for "good codes" which provide performance

approaching the Shannon limit with reasonable encoding/decoding complexity, has

occupied the research community for years. Many channel code families have been

developed and implemented [3]. However, certain classes of channel codes have emerged

as superior ones in terms of their coding performance and implementation complexity.

Turbo codes are one example of such codes [4]; Low-Density Parity-Check codes are

another example. Both of these codes benefit from the advances of integrated circuits

technology, and can now be constructed and implemented as high-performance and

practical channel coding schemes.

9

2.2 Low-Density Parity-Check Codes

2.2.1 Introduction

Low-Density Parity-Check (LDPC) codes are a class of forward error control codes,

and were first proposed by Gallager in the 1960s [5, 6]. However, in order to be

simulated and implemented, they required processing resources that were impractical at

the time. Despite their coding potential they were largely forgotten until their rediscovery

in 1996 by MacKay and Neal [7]. They noticed that their work with sparse random

matrices reinvented Gallager's codes. In their paper, they also mentioned that the general

assumption regarding concatenated codes' superiority in practical systems may have

contributed to the slow development of LDPC codes. Their results, however, showed that

LDPC codes outperform the classical convolutional and concatenated codes, and provide

performance very close to that achieved by turbo codes.

In recent years, LDPC codes have received a tremendous amount of research focus

and popularity. They have been adopted into several communication standards such as

the Digital Video Broadcasting standard for Satellite Television (DVB-S2) [8], IEEE's

802.3an [9], 802.16e (WiMAX) [10], and 802.1 In [11]. One of the reasons for their

popularity is that LDPC codes are capacity-approaching which means they provide

performance that approaches the Shannon limit. Some studies have shown that LDPC

codes can get to within 0.0045 dB of the Shannon limit [12]. This result far exceeds any

figures achieved with classical forward error control (FEC) codes of the same decoding

complexity. Turbo codes are the other class of FEC codes that provides similar results.

However, as discussed in [13], LDPC codes are more suited for high-throughput low-

latency applications than turbo codes. And LDPC codes offer a wider range of tradeoffs

10

between performance and decoding complexity. In addition, unlike turbo codes which are

heavily patented by France Telecom [14], LDPC codes provide a relatively more open

technology access for both industry and academia. Another reason for LDPCs' popularity

is that they could be decoded with a low-complexity iterative algorithm known as the

Belief Propagation (BP) algorithm, which is suited for efficient VLSI implementations.

Therefore with excellent performance versus costs of implementation, LDPC codes

represent an important option for emerging and next-generation communication systems.

2.2.2 Overview of LDPC codes

2.2.2.1 LDPC Code Structure

There are two different yet related types of LDPC codes, Block and Convolutional

LDPCs. The original LDPC codes proposed by Gallager are block LDPC codes.

Convolutional LDPC codes were proposed in 1999 by Felstrom and Zigangirov [15], and

are receiving increasing research focus. However, since the convolutional codes are out

of the scope of this project, we will focus on the block codes' structure and relevant

encoding and decoding architectures in the following sections.

Before describing the code structure, it is important to define several relevant terms

from information theory. In block FEC codes, the encoder accepts a block of message

bits and generates a block of coded bits at the output. The resultant bit sequence is termed

a codeword. If a user information message of length k bits is to be encoded to generate a

codeword of length n bits, the number of added redundancy bits (termed code bits) is

equal to n - k bits. The code rate (R) can be defined as the ratio of the number of original

information bits to the total number of codeword bits. And since the codeword is always

larger than the un-coded bit-sequence, this number must always be between zero and one.

11

R = - (2.2)

n

A block code is termed systematic if the output codeword contains the original

information bits in an unaltered form. Therefore, the codeword of a systematic block

code may take the form presented in Figure 2.2.

< k bits • » * n-k bits •

Information bits Code bits

n bits

Figure 2.2: Codeword structure of a systematic block code

As the name of LDPC codes indicates, the parity-check is a key concept involved in

their structure. In fact, Gallager introduced them as a special case of the general family of

parity-check codes [5]. To form an LDPC codeword, k information bits are combined

with (n - k) parity bits. Each parity bit is generated by performing a modulo-2 sum

operation (XOR) on several pre-specified information bits. Parity-check works through

detecting and correcting single-bit errors in transmission. Taking Gallager's example,

Figure 2.3 shows a simple parity-check matrix. As indicated on the figure, parity bit 5 is

generated by XOR-ing information bits 1, 2, 3 of a length n = 7 codeword. If bit 3 is

corrupted by noise and arrives in error at the receiver, the decoder will be able to correct

this error knowing the other errorless bits, namely bits 1, 2, and 5. This could be done by

performing another XOR operation on these bits. It could immediately be seen that a

parity-check matrix is a compact way of defining which bits participate in which parity-

check operation according to the position of the ones. This means that the parity-check

matrix defines all the parity-check equations.

12

INFORMATION CHECK
DIGITS DIGITS

, A , / * *
Xj X2 X3 X4 X5 X(, Xj

1
1
1

1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1

<r ->

*5 = Xj © X2 © X3

X6 = Xj © X2 © X4

Xj = Xj © X3 © X4

Figure 2.3: Example of a parity-check matrix, figure taken from [5]

In the previous example if a parity-check operation is considered alone, an error in

more than one transmitted bit could not be corrected and would result in a decoding error.

The parity-check matrix attempts to solve this by specifying each bit to participate in

several parity-check operations so that if one failed the others may not. This greatly

increases the strength of the parity-check code in combating bit errors. Supported by

these concepts, LDPC codes are defined as the set of codewords that satisfy all the parity-

check equations defined by the parity-check matrix. Algebraically, this means that for

any codeword vector x of length n bits, and its parity-check matrix H:

x-HT=0 (2.3)

Where HT is the transposed version of the matrix H. Another matrix could be defined

through manipulations of H as the dual or the null of H, and is called a generator matrix

G satisfying:

GHT=0 (2 . 4)

The generator matrix of a code is used to generate all the codewords of that code.

Therefore, the LDPC encoding process of a user information bit vector u can then be

reduced to the following matrix multiplication:

13

xT =uT G (2.5)

Where x is the transpose of the codeword vector x. So it can be concluded that both

a parity-check matrix and its dual generator matrix, can completely specify an associated

LDPC code. Figure 2.4 illustrates an example of a parity-check matrix. This matrix

defines an (n,j,k) code, where n is the code length, and j and k are the number of ones in

each row and column, respectively. It is important to note that if the number of ones in

each row and column - also termed the weight - stays constant across the matrix, it is

then a regular LDPC code. An irregular LDPC code has a matrix where the number of

ones is not fixed in all rows or columns.

r

H <

1 1 1
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

1
0
0
0
0
0
0
0
1
0
0
0
0
1
0

0
1
0
0
0
1
0
0
0
0
0
0
0
0
1

0
1
0
0
0
0
1
0
0
0
1
0
0
0
0

0
1
0
0
0
0
0
1
0
0
0
1
0
0
0

0
1
0
0
0
0
0
0
0
1
0
0
1
0
0

0
0
1
0
0
1
0
0
0
0
0
0
0
1
0

0
0
1
0
0
0
1
0
0
0
0
0
0
0
1

0
0
1
0
0
0
0
0
1
0
0
1
0
0
0

0
0
1
0
0
0
0
0
0
1
1
0
0
0
0

0
0
0
1
0
1
0
0
0
0
0
0
1
0
0

0
0
0
1
0
0
0
1
0
0
0
0
0
1
0

0
0
0
1
0
0
0
0
1
0
0
0
0
0
1

0
0
0
1
0
0
0
0
0
1
0
1
0
0
0

0
0
0
0
1
0
1
0
0
0
0
0
0
1
0

0 0 0
0 0 0
0 0 0
0 0 0
1 1 1
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1

^

>

J

Figure 2.4: Parity-Check matrix for (20, 3, 4) LDPC code

Sparseness is an important characteristic of an LDPC code's parity-check matrix. A

sparse matrix is one that has a small number of nonzero entries. When dealing with

regular LDPC codes, increasing the block length while keeping the number of ones per

row and column constant lowers the density of the ones. This is where the low-density

part of the name originates. It has been shown that as n is made large, the density of the

ones approaches zero and the performance of the code increases [4, 6]. The sparseness

14

and low-density concepts have their implications on encoding and decoding, and translate

into efficient decoding algorithms, as will be discussed further in section 2.2.2.2.

In order to produce "good codes" that have a low probability of decoding errors,

several construction methods were proposed, and could be categorized as randomly

constructed codes and algebraically structured codes. Randomly constructed LDPC

codes were proposed first, such as the ones in [5, 7, 12, 16], and they work through

randomly placing l's and O's in the parity-check matrix subject to some constraints. For

example the number of l 's in each row and column could be required to be constant.

These studies show that powerful randomly-constructed codes demonstrating excellent

theoretic performance thresholds can be found. However, randomly-constructed LDPC

codes are often hard to implement with low time complexity. Therefore, a wealth of

algebraically-structured LDPC codes have been developed to tackle the complexity issue;

examples include [17]-[20]. These codes use algorithmic structures and aim to strike a

balance between the low-complexity encoding/decoding needed for hardware

implementations and the performance expected from LDPC codes.

2.2.2.2 Decoding and Current Implementations

Decoding of LDPC codes has its roots in the work of Gallager [6]. In particular, he

demonstrated that an iterative algorithm could be used to decode LDPC codes. LDPC

decoding algorithms could be explained more easily with the help of elegant graphical

representations known as bipartite graphs.

A bipartite graph contains two disjoint sets of nodes where there are no connections

(edges) between nodes of the same set. Tanner used bipartite graphs to graphically

represent the parity-check matrix of an LDPC code [21], which is why bipartite graphs

15

for LDPC codes are sometimes referred to as Tanner graphs. A Tanner graph features

two sets of nodes named variable nodes and check nodes. Each bit in the codeword of

length n is represented by a variable node, and each row of the parity-check matrix H is

represented by a check node. An edge exists between the ith variable node and the j t h

check node if and only if the parity-check matrix entry hjj = 1. It can be immediately seen

that the Tanner graph can completely specify an LDPC code. The same sparseness

principle is transferred over from the parity-check matrix to the Tanner graph and allows

for algorithmic efficiency of LDPC codes. Figure 2.5 illustrates an example for a (6, 2, 3)

LDPC code that is graphically represented with a Tanner graph.

H

1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1

Variable Nodes

Check Nodes

Figure 2.5: An example of a (2,3) regular LDPC code and its bipartite (Tanner) graph

The main algorithm used for decoding LDPC codes is the Belief Propagation

Algorithm. The BP algorithm is a subclass of message passing algorithms. To visually

describe the BP algorithm, we use the Tanner graph representation. The BP algorithm

attempts to correctly decode the received codeword through several iterations. During

each iteration of the algorithm, messages are passed between check nodes and variable

nodes along the connecting edges. The passed messages are the probabilities or beliefs of

the logical bit values at the variable nodes. The algorithm takes advantage of the inter-

dependencies that exist in the graph (i.e. the parity-check matrix) and adjusts the beliefs

16

of the values at the variable nodes. Therefore, during each iteration, variable nodes learn

more about their values from other nodes and the parity-check relations.

The algorithm starts by initializing the variable nodes' values with a metric called the

log-likelihood ratio (LLR), The log-likelihood ratio is an advantageous metric since it is

used to quantify the level of confidence in the value of the received bit being a logical 1

or logical 0. So if the probability of the received bit xr being a logical one given the actual

received value y is denoted as P(xr = 1 | y) and the probability of it being a logical zero is

denoted as P(xr = 0 | y), then the LLR A(xr) is defined as the logarithm of the ratio

between these two probabilities:

'p{Xr=\\yy
A(xr) = log (2.6)

P(xr=0\y)

It is noted that the LLR value largely depends on the noise power of the channel. The

higher the noise power, the lesser the confidence we have in the received value.

After the initialization, the rest of the BP algorithm can be divided into two stages.

• Stage 1: The check nodes construct and send their messages to the variable

nodes. The check nodes utilize their knowledge of parity-check relations to

adjust the LLRs and send them back to the participating variable nodes.

Mathematically, this means all check nodes connected to variable node i send

the adjusted LLR value A; to variable node i:

A, = 2tanh

f / \N

(A ^
|~[tanh ^

2
v J

(2.7)

Here the notation j/i indicates that the product includes all the LLRs except the one of

the target variable node i.

17

• Stage 2: At the variable node, the incoming adjusted LLRs are summed

together and are ready for use by the check node in the following iteration.

The algorithm proceeds until the decoded codeword correctly satisfies all the parity-

check equations or a fixed number of iterations is reached. The BP algorithm is a

powerful algorithm, and its time complexity grows linearly with the block length of the

code [7, 9] which makes it feasible to build decoders for reasonably large code lengths.

High-performance, low-complexity implementations of LDPC decoders have been

achieved and make these codes an increasingly compelling choice for emerging

communications systems. The first published implementation was the Howland and

Blanksby decoder [22] where a 690-mW and 1-Gbps throughput decoder was

implemented on an ASIC chip for a rate-1/2 LDPC code. Since then, a wealth of decoder

architectures and implementations has been published. The decoder proposed in [23] and

implemented on an FPGA chip in [24], utilizes an architecture-aware LDPC code design

approach to achieve various savings in the message-transport interconnect and memory

overhead. A group at Rensselaer Polytechnic Institute, NY, proposed a decoder

architecture that is designed for fast VLSI implementations [25]. Their design utilizes the

partially-parallel decoder structure where a certain number of variable nodes or check

nodes are mapped to single decoding unit. These decoding units are then multiplexed

using time-division to achieve better decoding speed while keeping the decoder

interconnect complexity low. In [26] flexible decoder architectures were proposed for the

family of irregular LDPC codes. While in [27], a decoder architecture for array-code-

based LDPC codes was described. Some implementations have targeted specific channel

types such as magnetic recording channels [28]. Almost all variations of the decoders

18

proposed employ the BP algorithm and offer tradeoffs in throughput, complexity,

scalability, and hardware flexibility.

2.2.2.3 Encoding and Current Implementations

While the decoding of LDPC codes is a major advantage for these codes over other

error-control codes, the encoding side has received criticism because of the apparent high

time complexity involved. In this context, complexity is measured by the number of

mathematical operations required to encode a bit. As noted by equation 2.5, a

straightforward encoding of LDPC codes requires matrix-vector multiplication and hence

is quadratic in the block length. This makes practical hardware implementations of the

encoder almost impossible at large packet lengths (usually on the order of few thousand

bits). By contrast, turbo codes can be encoded in linear time. Another problem with

traditional encoding of LDPC codes is the fact that to encode an information bit which

arrives at time t, the encoder may require an information bit which arrives at time t + A

adding latency to the encoding process. This also means that while the total number of

output codeword bits is constant, the rate of bit production may not be even, requiring the

buffering of output bits.

Early implementations of LDPC encoders, such as the one proposed in [29], used

straight forward techniques, where a vector of information bits is multiplied by a dense

generator matrix resulting in quadratic encoding complexity in the block length of the

code. However, several researchers and information theorists worked through various

algebraic methods to address this issue and several solutions have been proposed.

One approach used the idea of cascaded codes, where several levels of bipartite

graphs are cascaded in a tree structure [30]. By choosing the number of cascaded codes

19

and the size of each code carefully, it is possible to construct codes for which low

complexity encoding and decoding are achievable in linear time. A disadvantage with

this approach is the fact that the individual cascaded stages are codes with smaller lengths

than the overall code. This results in a loss of performance when compared with a

standard LDPC code of the same total length.

In [31] another approach was presented. While constructing the code and in addition

to the normal constraints set for the row and column weights of the parity-check matrix,

another constraint is set that forces the matrix into the lower triangular form. This matrix

leads to faster encoding times. However, since some of the "randomness" of the code is

lost due to this constraint, a loss of performance is present.

Another construction of LDPC codes was presented in [32] that enables low-time-

complexity encoding. In this approach, half the parity-check matrix is generated

randomly while the other half is deterministic; the resulting codes are called semi-random

LDPC codes. The authors of [32] propose a recursive encoding method with complexity

growing linearly with the block length of the code. They further claim that semi-random

LDPC codes perform comparably to fully random regular codes of similar dimensions.

More recently, further research is focusing on studying semi-random LDPC codes for

wireless applications. For instance in [33], methods of constructing semi-random LDPC

codes that support various code rates are investigated, and their application to newer

diversity-based communication systems is explored.

A significant step towards achieving linear-time LDPC encoding was realized

through the work of Richardson and Urbanke [34]. They noted that although direct

encoding seems to have a quadratic complexity, the actual number of operations required

20

is manageable even for long block lengths. Furthermore, they managed to take advantage

of the sparseness of the parity-check matrix through "optimization" steps to achieve

efficient encoding. These steps require preprocessing the parity-check matrix via row and

column permutations to achieve an almost lower triangular (ALT) form. Illustrated in

Figure 2.6, this form is almost lower triangular since the matrix features a distance from

true lower triangular form, and this distance is termed the gap (g). It is important to know

that these preprocessing steps are applied after constructing the code, thereby preserving

the sparseness and randomness of the matrix, and the strength of the code. The detailed

steps of the algorithm are presented in [34].

3

V

Figure 2.6: A matrix in almost lower triangular (ALT) form

The proposed algorithm involves splitting the parity-check matrix into smaller sub-

matrices and performing several matrix multiplication steps. Most of the multiplications

use sparse matrices and have linear time complexity except the multiplication by the

dense sub-matrices O and T 1 (see [34] for details). The complexity of the overall

algorithm is upper bounded by 0(n+g2), and the smaller the gap the better the encoding

time efficiency. In fact, the authors of [34] show that for sufficiently large n, the gap is

21

smaller than v« resulting in linear time complexity. In practical systems, g is usually a

small constant allowing for efficient encoding implementations.

An algebraic structure useful for improving the computational efficiency of LDPC

encoding is Quasicyclic (QC) codes. QC LDPC codes perform very well when decoded

using the BP algorithm [18], and as discussed in [35], these codes have structures that can

achieve computational efficiency and good hardware implementations. A QC code is one

where each codeword is a "quasicyclic" shift of another. That is, if a codeword is

segmented into strings of length z bits, and all segments are circularly shifted by the same

amount, the resulting vector is also a codeword. An ingenious method of constructing QC

LDPC codes is through the use of circulant matrices [17, 18]. A circulant matrix is a z x z

square matrix where each row is a circular shift of the row above it, and the first row is a

circular shift of the last. Therefore, QC LDPC codes may be defined by a parity-check

matrix H that is composed of blocks of circulant matrices and zero matrices, as shown in

Figure 2.7. Such a code is termed a block-circulant LDPC code.

0 1 0
0 0 1
1 0 0

0 0 1
1 0 0
0 10

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0 1
1 0 0
0 1 0

0 0 1
1 0 0
0 10

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

01 0
0 0 1
1 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 1 0
0 O 1
1 O 0

0 1 0
0 0 1
1 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 01
1 0 0
0 1 0

0 1 0
0 0 1
1 0 0

0 0 0
0 0 0
0 0 0

0 0 1
1 0 0
0 1 0

0 0 0
0 0 0
0 0 0

01 0
0 0 1
1 0 0

0 0 0
0 0 0
0 0 0

Figure 2.7: An example of the internal structure of a matrix composed of circulant
identity matrices, figure taken from [36]

Important advantages could be realized by using block-circulant parity-check

matrices. Particularly, the time efficiency of the encoding algorithm of [34] can be

improved. The multiplication with sub-matrix <J>, which is proportional to g2, is made

22

faster by minimizing the size of the gap g while preserving the strength of the code. The

authors of [36] propose that picking g equal to the size of the circulant matrix z is enough

for practically good code performance, while at the same time, the size of g can be made

small to reduce the computational complexity. The block-circulant approach is especially

advantageous in the case of multiplication with sub-matrix T"1. Using this approach, T is

a lower triangular matrix composed of smaller block matrices with the diagonal made of

identity matrices. Thus according to [36], the direct multiplication with T"1 can be

replaced with a multi-stage back substitution operation. This effectively converts the

dense multiplication into a series of sparse vector-matrix multiplications and additions

which significantly reduces the computational complexity.

Unlike the decoding side, where the BP algorithm has become the standard decoding

technique, the encoding side exhibits more variations that incorporate the methods

discussed earlier. In [37] an FPGA implementation of an LDPC encoder based on the

ALT algorithm was created and achieves 44 Mbps output rate running on 143 MHz clock

frequency. Encoder designs based on block-circulant matrices were presented in [35],

along with a hardware implementation achieving a rate of a 100 million symbols/second.

A hardware implementation based on the semi-random technique is presented in [38] and

achieves low computational complexity with 99.5 Mbps output rate.

More recent implementations of LDPC encoders combine both the ALT algorithm

and the block-circulant ideas to achieve high-efficiency high-throughput encoders.

Furthermore, since LDPC codes are quickly becoming the codes of choice in most

emerging communication standards, new implementations focus on building standard-

compliant encoders. In [39], a CMOS implementation of a second-generation digital

23

video broadcast (DVB-S2) compliant codec is presented. This codec supports BCH codes

as well as LDPC codes with code lengths up to 64800 bits and achieves up to 135 Mbps

throughput. Another example is the 480 Mbps throughput LDPC codec built for ultra-

wide band (UWB) transceivers and presented in [40].

A main focus of our work is the implementation of an IEEE 802.16e compatible

LDPC encoder. However, it is worth noting that the next-generation wireless local area

network standard, 802.1 In, features LDPC codes of a somewhat similar structure to those

supported by the 802.16e standard. Therefore, LDPC encoder implementations that

support the 802.1 In standard are of particular importance to our study. In [41] an LDPC

encoder implementation was presented and is compatible with the 802.1 In standard. This

implementation exploits the structure of the supported LDPC code to achieve efficient

encoding with barrel-shifter based multipliers. Another 802.1 In compatible encoder

architecture is presented in [42], where the encoder multiplication steps are handled via

random-access memory (RAM) registers. While not entirely similar to the 802.16e

standard, these implementations provide us with useful insights into techniques

leveraging the efficient structure of the supported LDPC codes.

More directly related to the 802.16e standard, a group at the University of Edinburgh

developed a real-time programmable LDPC encoder for the 802.16e standard [43]. The

encoder is implemented on Reconfigurable Instruction Cell Architecture (RICA)

processor which executes ANSI-C code of the encoding algorithm. This implementation

achieves a throughput of 10 to 19 Mbps. A hardware implementation of a fully

compatible 802.16e encoder is produced by Xilinx Inc. as an Intellectual Property (IP)

core [44]. The Xilinx encoder core's throughput depends on the FPGA chip and the clock

24

frequency used. This IP core targets the Xilinx FPGA chip family only, and the internal

encoder structure is not released for public access.

2.3 Wireless Communications and Low-Density Parity-Check
Codes

2.3.1 Brief Overview of Wireless Communications

Wireless communications are the transfer of information over a distance without the

use of electrical conductors such as copper wires or fiber optic cables. The information is

transferred via the controlled propagation of electromagnetic waves through space. The

distance of transfer may be as little as a few meters and as large as millions of kilometers

depending on the frequency and power of the waves, as well as the technology that

utilizes them.

Due to the open and un-controlled nature of the wireless communication channel,

there exist several sources of interference and effects that tend to disturb the transmission

and processing of wireless signals. The wireless channel experiences large-scale effects

such as path loss (attenuation of signal with distance), and small-scale effects such as

multipath fading and the Doppler Effect (for details see [45, 46, 47]). These effects cause

degradation of the quality of the received signal which leads to higher probability of

transmission errors. The characteristics of the wireless channel, together with additive

noise and interference, need to be mitigated by various techniques such as diversity and

channel coding.

Though there are many types of wireless communications, our focus is on wireless

networking. Modern communication networks, where data is transmitted and accessed by

25

multiple network clients, are categorized based on coverage area to Personal Area

Networks (PANs), Local Area Networks (LANs), Metropolitan Area Networks (MANs),

and Wide Area Networks (WANs) [48]. Wireless versions of such networks exist and

continue to evolve through technology innovations.

2.3.2 The IEEE 802.16 wireless networking standard (WiMAX)

The computer networking industry has many network vendors, carriers, and suppliers.

Typically, various vendors have different ideas and strategies on network

implementations and usage. In order to coordinate technology efforts, many networking

standards have been developed and adopted by industry [48].

IEEE's 802.16 standard (also known as WiMAX) is a wireless metropolitan area

network (WMAN) standard. This standard was first introduced to provide fixed

broadband wireless access, and was ratified by IEEE in 2004 to be formally numbered

802.16-2004 [49]. The standard was later modified to include support for mobile

broadband access in an amendment which was ratified in 2005, and formally numbered

802.16e-2005 [10]. WiMAX employs several new technologies such as multiple-input

multiple-output (MIMO) antenna arrays, space-time and LDPC codes, quality of service

(QoS) algorithms, and channel bandwidth and network scalability. Further details of the

802.16 standard can be found in [49, 50, 51].

The 802.16 standard supports theoretical data rates of 70 Mbps over a distance of 50

Km [49]. However, under typical network traffic conditions these limits are rarely

achieved. In a comparison study done by the WiMAX forum in [52], WiMAX's

performance was compared to existing and evolving third-generation (3G) mobile

networks. Figure 2.8 presents the comparison results where DL is the downlink

26

connection from the base station to the mobile device, and UL is the uplink connection

from the mobile device back to the base station. The study shows the distinct advantage

that WiMAX has over other 3G metropolitan wireless networks in both throughput and

spectral efficiency.

Spectral Efficiency (bps/Hz)

2.5

Ji=fc
Mobile WiMAX HSPA 3xEVDO-RevB

•DL

•UL

Sector Throughput (Mbps)

IDL

IUL

Mobile WiMAX HSPA 3xEVDO-RevB

Figure 2.8: Spectral efficiency and sector throughput comparison of HSPA, EVDO-Rev.
B, and Mobile WiMAX under the same traffic conditions, figure taken from [52]

In our project, we will be implementing an encoder system that is compatible with the

LDPC codes supported in the mobile WiMAX standard.

2.3.3 LDPC codes in Wireless Communications

Several research studies have evaluated aspects of using LDPC codes in wireless

communications. In [53] an information theory approach was taken to study the

performance of LDPC codes in several types of wireless channel models such as a basic

linear Gaussian channel, a partial-band jamming channel, and a Raleigh fast fading

channel. The authors of [53] demonstrated that properly designed LDPC codes can be

used to achieve reliable transmission over these channels making these codes an

appropriate class for various kinds of wireless channels. And in [54] a group at Kansas

State University explored the performance gains obtained from combining LDPC coding

27

with spread spectrum techniques in conventional orthogonal frequency division

multiplexing (OFDM) systems. The authors simulated the performance of an un-coded

OFDM system versus a convolutional coded system as well as an LDPC coded system in

typical outdoor wireless environments including urban, rural and hilly terrain. The effects

of code spreading were considered. Figure 2.9 presents their results in the typical urban

environment. It can be seen that LDPC coded systems require less SNR to achieve a

similar bit error rate (BER) over un-coded ones. Similar coding gains were recorded for

the other environments.

- • ' ' -

-A- OFDM w/o coding
- * - SOFDM w/o coding :

11 i i i i i i i 1
0 2 4 6 8 10 12 14 15

Figure 2.9: Performance of un-coded and LDPC coded OFDM and spread OFDM
(SOFDM) systems in Typical Urban wireless channel, BPSK, R = 1/2, N = 1024, figure

taken from [54]

28

On the wireless networking front, LDPC codes represent a viable option for most

next-generation networks and standards. Hence many studies were conducted to evaluate

the design and performance of LDPC codes for specific networking applications.

Wireless sensor networks is one such application where studies such as [55, 56] have

demonstrated that LDPC codes accomplish their typical coding gains and perform much

better that other channel codes. In addition, LDPC codes provide the appropriate platform

for low power implementations required for these networks. Other studies focused on

wireless LANs such as the next-generation IEEE 802.1 In [11] standard, and WMANs

such as CDMA networks [57].

The use of LDPC codes in WiMAX networks has been studied extensively, and

several designs, variations, and enhancements have been proposed to achieve various

performance targets and tradeoffs. For example the study in [58], compares the

performance of the supported LDPC codes from the 802.16e-2005 standard to a slightly

optimized version. In [59], simulations were carried out to plot the performance of the

802.16e LDPC codes against other important FEC codes supported by the standard,

namely convolutional codes and convolutional turbo codes. Figure 2.10 presents the

study's results, where the code's BER performance was plotted using different

modulation techniques. In part A, a codeword length of 576 bits and a code rate of 1/2

were used to simulate the codes on an AWGN wireless channel model. In part B, the

same parameters were used to simulate the performance on the TU30 channel, modeling

a mobile user in a typical urban environment moving with a velocity of 30 Km/h, while

communicating with a base station on a carrier frequency of 3.5 GHz. Part B also

includes the frame error rate (FER) performance curves.

29

A. AWGN Channel B. TU30 Channel (QPSK)
Figure 2.10: 802.16e supported FEC codes comparison, R = 1/2, N = 576, figure taken

from [59]

It can be seen from the figure that the LDPC code achieved the best performance

results. While comparable to the convolutional turbo code's (CTC) performance, a big

advantage of the LDPC codes over their counterparts is their decoder's low circuit-

complexity. Moreover, increasing the block length would provide further coding gains.

However, long block lengths require more processing time which could prove

challenging for systems requiring low latency codecs. The structure of these standard

supported LDPC codes will be further described in Chapter 3. It is worth noting that these

results correlate well with the results of Figure 2.9 demonstrating the good performance

of LDPC codes in practical wireless systems.

The studies recorded in literature build a solid base for the LDPC coding choice in

wireless networking, and the results encourage further investigation of these codes for

next-generation technologies.

30

2.4 Wireless In-Body Medical Communications

2.4.1 Overview of In-Body Medical Communications

Advances in integrated circuit technology have expanded the options of modern

medicine to provide new and innovative treatments. Such treatments include the use of

sensor devices to monitor a patient's health data (i.e. cardiac data, blood parameters,

etc.), imaging devices to monitor and evaluate parts of a patient's gastrointestinal tract

and other organs, and various other temperature and muscle sensing devices. Monitoring

and sensing devices may require the patient to spend a considerable amount of time in a

medical facility while being treated by health professionals. In addition, expensive and

invasive operations may be required to capture and transfer the data out of the human

body using such links as flexible cables. These reasons were among the motivations

behind the design and implementation of miniaturized portable as well as implantable

medical devices. Implantable medical devices (IMDs) have been widely used in the

treatment of many diseases such as heart diseases and neurological disorders.

Pacemakers, implantable defibrillators, and hearing aids are examples of such devices.

The increasing need for IMDs that can provide ongoing and cost-effective monitoring

and treatment, highlights the need for wireless solutions. Typically, a wireless-enabled

medical implant may be remotely controlled from an external station while transmitting

diagnostic or monitoring data during operation. The integration of wireless

communications with IMDs holds several advantages over wired solutions such as

enhanced patient convenience, ease of data capturing and collection, reduced risk of

infection, lower costs, and enhanced mobility, all of which contribute to an improved

overall healthcare experience. Traditionally, wireless IMDs used inductive RF links to

31

carry the data out of the human body. This required the use of a magnetic wand in the

proximity of the IMD to inductively power-up the device then capture the transmitted

data [60]. These devises typically operated in low-frequency ranges (i.e. 10s to 100s of

kilohertz) providing data rates of less than 50 kb/sec. While proving robust and reliable,

the practical antenna sizes and the inductive structure of these implants provided limited

power ranges resulting in short range RF links; often requiring external receivers to have

contact with the skin of the patient directly on top of the IMD's location.

In order to overcome these limitations, new low-power RF technologies are being

developed to operate at much higher frequencies such as in the 400 MHz range to achieve

high data rates and longer range communication links. The fast development of ultra-low-

power RF transceivers may contribute to a revolution in the wireless IMD industry.

Innovative medical implants could include endoscopic camera capsules that are swallow-

able, heat or acidity sensors that can transmit their data to a base station meters away, and

even miniaturized medication pumps such as insulin pumps for diabetes patients.

Wireless implants are being studied for body area networks (BANs). As part of the larger

field of wireless personal area networks (WPANs), BANs define the wireless

communications of devices in the vicinity or inside the human body. The IEEE 802.15

working group [61] and its BAN task group (TG6) [62] represent the most prominent

committees working on standardizing communications in this space.

Wireless IMDs are designed to operate in the un-licensed Industrial Scientific

Medical (ISM) frequency bands as well as the dedicated Medical Implants

Communication Service (MICS) band. In addition to allocating the MICS band, the

federal communications commission (FCC), as well as European regulators, have applied

32

specific rules and regulations for the operation of IMDs in this spectrum [63, 64]. We

present a summary of these rules.

• The available frequency band is from 402 to 405 MHz for high data rate,

short range (up to 10m) wireless links between an implant and a monitoring

device.

• No voice communications are allowed on this band.

• Up to 10 channels are allowed with a maximum bandwidth (BW) of 300 KHz

per channel.

• The Effective Isotropic Radiated Power (EIRP) is limited to 25 uW or -16

dBm.

The MICS spectrum is shared with the Meteorological Aids Service (METAIDS)

used for weather devices such as weather balloon transmissions [65]. Therefore, MICS

systems are specified as indoors-only. The characteristics of signal propagation through

the human body (as it will be explained further in the next section) in addition to the

international availability of this frequency band makes it well suited for wireless IMD

implementations.

2.4.2 Design and Implementation Challenges of In-Body Wireless
Communications

When designing a medical implant with an on-board RF transceiver for wireless

communications, several requirements and challenges exist.

• Small Form Factor: The total size of the device is an important

consideration. In a medical usage, less obtrusive and more patient-friendly

33

devices are desired. Therefore Designers must strive to integrate as many

components on-chip as possible with minimal external parts and circuitry.

• Low Power Consumption: This is one of the main challenges facing medical

implant designers as some of these devices are expected to operate for

prolonged periods of time (reaching years) without the need to re-charge or

replace their batteries. Replacing the battery is not a trivial process for IMDs.

In addition to battery lifetime issues, wireless transceivers are designed to

consume very low power in order to allow for extra functionality such as

higher data-rates or more sophisticated sensing functions. Low dissipated heat

is also a health concern and a motivation for lower power devices.

Combining the above small size and low power requirements, modern RF

modules/transceivers developed for IMDs have sizes smaller than 5 x 5 x 10

mm [60] and aim to consume less than 10mA of current at 3V during

operation [66]. Moreover, these RF modules are designed to spend most of

their time in an ultra low power state termed deep sleep, while periodically

"sniffing" a wake up signal from an external control station. This duty-cycling

further helps in conserving power and prolonging the battery lifetime.

• Low Cost: while striving to be commercially viable, wireless IMDs face

higher cost challenges than non-medical devices. For example an oscillator

crystal normally costing 25 cents may cost up to 10 dollars when targeting a

medical implant device [67]. The high cost of components used for medical

devices stems from the relatively small number of suppliers willing to be in

the medical market and its strict regulations. These include the various tests,

34

verifications, and documentations that medical components must undergo to

be certified for medical use. Therefore IMD designers aim at integrating as

many components as possible on-chip reducing the size and cost, and

improving device reliability.

• Propagation Through and Out of the Human Body: The human body is

not an ideal medium for RF wave propagation due to several reasons.

- As recorded in initial TG6 studies [68, 69], the partially conductive

nature of the human body results in high attenuation caused by power

absorption. The attenuation effect depends on several factors

including the number and types of tissues traversed by the RF waves.

These tissues consist of materials with different relative permittivity

(also known as the dielectric constant), thickness, and electrical

conductivity. Attenuation also depends on the frequency used, and

decreases exponentially with both distance and frequency. From [69],

Figure 2.11 illustrates this relationship.

Figure 2.11: Measured body attenuation data vs. frequency and distance, figure taken
from [69]

35

Wave distortion is another challenge facing implant designers. RF

waves travel with different velocities in each type of tissue, and

reflect on boundaries of body tissues [69]. These waves may also

experience bone and skin shadowing effects [70]. Such conditions

may result in central frequency shifting and radiation pattern

destruction [68]. Like attenuation, distortion is influenced by the

characteristics of the tissues and the frequency used.

Being a central factor, several studies have focused on studying the best

frequency that minimizes the effects of body attenuation and distortion. The

authors of [71] investigated the radio propagation properties from an implant

at various frequencies; specifically, the 402 MHz and 868 MHz frequencies,

as well as the microwave frequency of 2.4 GHz. Recorded dielectric

properties of human tissues were combined with a human body simulator built

from animal tissues to yield measured as well as simulated propagation

results. These results demonstrated that a higher frequency incurs higher path

loss, and that the choice of an optimum frequency is important to radio range,

device size, and power consumption. Confirming these results, the authors of

[72] determined that path loss would increase rapidly at frequencies higher

than 1 GHz, and that the 300-470 MHz band experiences relatively small loss.

Based on these results and considering practical antenna sizes, the 400 MHz

band represents an appropriate frequency choice for wireless medical

implants.

36

Beside the required small antenna size, other design challenges exist. The

antenna's radiation pattern and performance are affected by its shape and

orientation. These, in turn, depend on the implant's shape and size, as well as

the implant's in-body location. In fact, the exact field that an implant antenna

generates depends on the thickness and type of surrounding tissue. Heating

body tissues from radiated electromagnetic (EM) waves must also be

considered when designing an implant antenna. Therefore, implant antenna

challenges have been the focus of intensive study for years. Several antenna

designs, shapes, and sizes have been proposed such as disk-shaped, helix-

shaped, etc. [67, 68, 73].

As mentioned above, the MICS standard limits the EIRP to 25 uW or -16

dBm. Therefore, characterizing the in-body wireless channel and

understanding the wave propagation model is essential to measuring and

designing the implant's radiated power. Due to the various attenuation and

distortion effects of the transmission medium, along with the variability of the

medium from one person to another, developing an accurate propagation

model for the human body is a difficult and complicated process. As well

there are ethical issues associated with testing implant systems in humans.

Researchers from the Japanese national institute of information and

communication technology (NICT) [69] conducted a propagation

measurement experiment using the body of a pig. They submitted their results

to the IEEE 802.15 BAN task group in which they derived a frequency

response equation for the propagation channel that correlated well with the

37

measured data. They also found that the presence of various tissues results in a

stochastic dispersive factor in the equation. Furthermore, they deduced that

the effect of multipath propagation is negligible.

Channel characterization is an important step towards developing path loss

models with which the radiated power can be specified. However, the lack of

an accurate path loss model for the human body pushed scientists to use

simulation data to characterize the path loss. In his Ph.D. thesis, A. J.

Johansson performed several measurements and analysis of in-body

propagation [74]. A human body torso simulator tool was used and is termed a

phantom. The MICS standard defines a physical phantom as an acrylic plastic

cylinder with a diameter of 30 cm. The standard also defines the thickness of

the phantom and its filling tissue simulating liquid. While being easy to build

and use, the phantom is not very anthropomorphic and certain measurement

inaccuracies are to be expected. Measurements of the path loss from an

implanted antenna in a phantom operating at 403 MHz were recorded.

Simulations of these measurements were also conducted using the finite-

difference time-domain (FDTD) method. In this study, the minimum path loss

was found to be 23 dB with a mean of 34 dB. The maximum path loss figure

was found to be 51 dB for a patient in bed with varying position. An excess

loss margin of 15 dB is applied to the mean in order to cover patient

orientation, antenna misalignment, obstruction of line of sight, and

polarization losses which brings the body path loss figure to 49 dB. These

38

figures compare well with industry accepted body path loss figures of 40-45

dB [75].

In medical implant applications, the uplink (implant to monitor/base

station link) is the power critical path. The monitor contacts the implant

infrequently sending wake-up signals and control commands, or requesting

patient's data. In comparison, the implant contacts the base station frequently

sending relatively larger and more critical blocks of patient data. Therefore,

the radiated power through and out of the human body is a focus when

analyzing path loss. Research studies conducted to characterize the path loss

of in-body medical transceivers point towards modeling the path loss using a

modified version of the well-known Friis transmission formula. As presented

in Equation 2.16, Friis' formula defined the received power PRX at the receiver

antenna based on an unobstructed line-of-sight transmission in free space.

*KX ~*TX^JT*JR
(i Y
y4mi j

(2.16)

Here Pxx is the transmitter power, and Gj and GR are the transmitter and

receiver antenna gains, respectively. X represents the wavelength used and d is

the separation distance between the Tx and the Rx, which is assumed to be

larger than the near field (y~). It could be seen from this equation that the

power losses increase with increasing distance and frequency. To model the

in-body losses into Friis' equation, an in-body path loss factor is introduced to

reflect these additional losses. Presented in [72] is a modified version of Friis'

equation that incorporates this factor.

39

"RX "TX^JT^3R

f x Y
KAltd j

e-laa (2.17)

The body attenuation factor e"2ctd, as included in Equation 2.17, uses the

real part a of a complex figure called the propagation constant y.

y = a + ip (2.18)

The propagation constant is the logarithmic rate of a change of an

electromagnetic wave that varies with time in a sinusoidal fashion. The real

part a is termed the attenuation constant while p is the phase constant. The

dielectric properties: relative permittivity s and the electrical conductivity a of

any medium are used to calculate the attenuation constant of that medium.

Therefore, in order to accurately represent the attenuation of waves inside the

body, a database of human tissue dielectric properties is needed to reference

these constants for a range of useful frequencies. Such a database is kept in

the online records of the FCC and could found in [76]. Other studies further

illustrated the significance of the tissue dielectric properties in modeling the

path loss in the human body. In [77] it was determined that the near-filed loss

is a significant component of the total body loss. However, both the near-field

and far-field loss components depend on the body propagation constant, and

hence, on the tissue dielectric properties. The body path loss equation may

then be modified to reflect the near-field and far-field loss components instead

of the propagation constant.

Accurately modeling the propagation through the human body and its path

loss is a challenging task. In addition to the in-body attenuation and distortion

effects discussed here, other noise sources must also be considered when

40

designing a complete system such as, reflection losses in a crowded

environment, noise at the receiver, thermal noise, and the effect of

incorporating error control codes into the operation of the transceiver. On this

note, we refer the reader to Chapter 5 for a more detailed discussion of power

requirements of implantable medical devices with ECC solutions.

• Reliability of Transmission: Ensuring the reliability of wirelessly transmitted

data is an important design aspect of medical implants. As discussed above,

the implant's RF transmission environment features multiple attenuation,

noise, and interference sources. It is a reasonable design guideline to assume

that a raw wireless data transmission for a typical implant may not achieve a

better BER than 1 x 10"3 errors/bit [60, 67]. Therefore, in order to

accommodate critical medical applications, a form of error correction

mechanism is required which would improve the implant's BER performance.

Automatic repeat request (ARQ) codes are an option, however in poor

wireless channel conditions they result in slowing the data transfer rate due to

multiple packet re-transmissions. Forward Error Control codes are another

suitable option that does not require re-transmission while providing strong

performance. Therefore, a data rate (and power consumption) tradeoff exists

between packet re-transmission and additional coding capability [60].

The design of suitable FEC codes for wireless medical implants involves

tradeoffs of its own. Adding a sophisticated encoder/decoder system to the RF

transceiver increases the total power needed to transmit a data packet while

enhancing the transmission reliability. Therefore, a tradeoff exists between the

41

additional power consumption from extra bit overhead, and the reliability

gains acquired from coding. Typically, a small increase, for example 30%, in

coding bit overhead may result in an order of magnitude improvement in the

BER, for example from 1 x 10"3to 1 x 10"4 errors/bit. Such an improvement

could mean, depending on the data rate used, years added to the average time

between errors. These overhead and power tradeoffs will be studied further in

Chapter 5. The ZL70101 integrated circuit produced by Zarlink Inc. [86] is an

ultra low power transceiver chip that utilizes the Reed-Solomon error control

codes for reliable transmission. Reed-Solomon codes are especially good for

combating burst errors and interference while maintaining low system

overhead and achieving high data rates [60].

Interference is another adversity source affecting transmission reliability.

Immunity against interference from surrounding RF signals as well as other

possible in/on body medical devices is an essential design target. When

considering the analog components of RF transmission, immunity places

several constraints on filters, low-noise amplifiers (LNA), and synthesizers.

These constraints may directly conflict with the low-power design targets of

implants requiring skilled RF design expertise.

Finally, depending on the application of the implant and the associated

data traffic, different levels of QoS may be required. For instance, QoS

requirements are different depending on the data rate used, and whether the

transmission is real-time versus best-effort. The type of data transmitted also

plays a role being general versus emergency data [70]. Therefore a QoS

42

mechanism is a necessary ingredient of the overall reliability of wireless

IMDs.

• Safety: Patient safety is a top design priority for medical implants. One of the

most important concerns regarding safety is the biocompatibility of implant

materials. These materials must be nontoxic and must not react with body

liquids and tissues [67]. Titanium is an example of such material where it

forms a thin layer of passive titanium oxide on its surface that prevents it from

reacting with any body fluid. Passive coatings may also be applied for further

safety. While very low resistivity metals, such as copper and silver, may be

preferred for better RF performance, biocompatibility limits the available

choices of metals. Good choices include platinum or platinum iridium [67].

Other safety aspects, as mentioned in previous design challenges, include

the generated heat from RF radiation and absorption which must be addressed

by implant designers. Interference with other implants or external RF sources

may severely degrade the transmission quality and is a definite safety issue.

A final note about safety is the fact that wireless transmissions are non-

contained, which makes it possible for non-authorized persons to access

private patient data. Therefore a form of data protection, such as encryption,

must be applied in order to preserve patient privacy and enhance the overall

safety of wireless medical implants.

• Regulatory Issues: In addition to the above technical design challenges,

wireless implant developers must deal with the complicated process of

regulatory certification. Implant designs have to pass through multiple testing

43

and approval steps.- Various countries adopt different, and sometimes

conflicting, standards. Therefore, wireless implant developers and designers

must be aware of all applicable standards and requirements in order to build

efficient and useful devices.

2.4.3 Current In-body Communication Solutions

Research into wireless solutions for medical applications has been rapidly increasing.

Current state-of-the-art wireless systems for medical applications utilize various wireless

technologies and architectures. Low data rate applications implement inductive as well as

battery powered implants. High data rate applications resort to various wireless

technologies to implement the wireless link. Ultra Wide Band transceivers show a great

potential in the medical implant area due to their low radiated power, high bandwidth,

and security capabilities. Off-the-shelf transceivers may also be used in medical

applications. Bluetooth-based medical telemetry systems represent examples of this

approach which is known as telemedicine. Data gathered from such devices can be

transferred to PDAs and personal computers for continuous monitoring. Another area

influencing wireless medical communications is micro-electromechanical systems

(MEMS) which have many applications ranging from building medical sensors to ultra

low power RF transceivers. The authors of [79] present a more detailed description of

each of the areas mentioned here and discuss the recent advances and future trends in low

power wireless medical systems.

Our focus in this work is on traditional narrow-band wireless systems. On this front

several implementations have been presented in literature such as in [80, 81]. In addition

a few MICS suitable transceivers are commercially available such as [78, 82]. The

44

transceiver presented in [78] is an ASIC RF device that provides half-duplex

communication with data rates of up to 800 kbps, and operates in the 402-405 MICS

spectrum as well as in the 433-434 MHz ISM spectrum. This device employs the Reed-

Solomon error control codes achieving a BER of less than 1.5 x 10"10 errors/bit, and uses

less than 11 mW of power while in operation mode. Measuring at 7x7x0.85 millimeters

and introduced in 2007, the ZL70101 device represents an excellent example of the

current state-of-the-art wireless transceivers for medical implants.

The wireless medical device revolution continues, promising to provide innovative

solutions that enhance patient treatments and the overall health care experience.

2.5 Summary

In this chapter, we presented a brief overview of the concept of information channels

and the effects of noise on the integrity of the data being transmitted. The pioneering

work of Claude Shannon in the areas of channel capacity and channel coding established

the foundation for the field of information theory. Several channel coding schemes have

aimed to enhance the reliability of data transfer and utilize as much channel capacity as

possible. Turbo and LDPC codes emerged as coding candidates that provide strong

performance with relatively efficient hardware implementations.

We introduced LDPC codes and briefly discussed their structure. The relationship

between the parity-check matrix and the Tanner graph was explored illustrating its effect

on encoding and decoding these codes. The Belief Propagation algorithm was presented

as the standard LDPC decoding algorithm along with several published hardware

implementations. On the encoding side, the apparent complexity of LDPC encoding was

45

discussed showing that direct encoding results in quadratic time complexity. Several

solutions have been proposed in the literature. The encoding algorithm by Richardson

and Urbanke [34] combined with the block-circulant code construction approach

represents an efficient encoding technique that is able to achieve linear time complexity.

Several software and hardware encoding implementations were presented.

A brief overview of wireless communications was presented. In addition, the IEEE

802.16 standard was introduced as the main platform for our encoding project. The

performance of LDPC codes in wireless systems and environments was investigated

showing the superior performance and suitability of these codes for emerging wireless

standards.

The last section of this chapter focused on the modern trend of integrating wireless

solutions into implantable medical devices. The MICS rules governing the operation and

use of such devices were listed. We highlighted the main design challenges facing IMD

designers including small-size, low power, low cost, and in-body propagation challenges.

Despite the difficulty of specifying a definitive wave propagation model for in-body RF

communications, studies have shown that path loss approximations are possible. The

need for channel coding in order to improve the reliability of the wireless link was

discussed. Finally safety, privacy, and regulatory considerations were mentioned.

Today's commercial wireless IMDs are advanced ASIC implementations featuring

implemented solutions for many of the design challenges and targets. The area of low

power wireless IMDs is promising with potential and encouraging for further research

activities.

46

Chapter 3

The 802.16e compatible LDPC Encoder

3.1 Introduction

The low-complexity decoding of LDPC codes is one of their main advantages over

other channel coding schemes, and it has received much research focus in both the theory

and implementation fields. The encoding of LDPC codes is typically less researched and

has received criticism because of its apparent high computational complexity. In Chapter

2, we discussed in details the problems facing LDPC encoder developers including the

0(n2) nature of direct encoding, buffering and latency issues, and the rate of output bit

production. It was also noted that several approaches have been introduced that tackled

these problems and offered various tradeoffs in terms of computational complexity and

performance [30, 31, 32, 34, 35, 36]. These challenges, combined with the expanding

importance of WiMAX in the communications field, provide the foundation of our

interest in implementing an 802.16e LDPC encoder system. In this chapter, we discuss

the LDPC block code structure adopted in the standard, then introduce our encoder

architecture which takes advantage of the code properties and leverages various design

ideas from the literature, to arrive at a flexible and compact encoder design.

3.2 802.16e LDPC Code Structure

The 802.16e-2005 (Mobile WiMAX) standard [10] adopts several channel coding

schemes including convolutional coding, block turbo coding, convolutional turbo coding,

47

and low-density parity-check (LDPC) coding. The LDPC code specified in the 802.16e

standard is based on a set of fundamental systematic linear block codes. These irregular

LDPC codes are designed to accommodate several code rates and code lengths.

Each supported LDPC code is defined by a parity-check matrix H of size m x n where

n is the length of the code (output packet length) and m is the number of the code bits

(parity-check bits) in the codeword. Therefore, the number of input bits (systematic bits)

required to generate the output codeword is k = n - m bits.

For each code of a certain rate and length, its matrix H can be obtained from a

compact base model matrix Hbm that takes the structure:

bm

p
MO.O)

p

p

P
_ (TOfc-1,0)

P
r(o,i)
P
^(1,1)
p
"M2,1)

P

P

P

P
M2.2)

P
1 (mb-\, 2) •

P
1 (0,22)

P
7 (1,22)
P
1 (2,22)

P
•• 1(mb-\,22)

P
1 (0,23)

P
(1,23)

P
(2,23)

P

(3.1)

Here P(i,j) represents one of a set of z x z permutation matrices or a z x z zero matrix.

This means that Hbm is a compact representation of the code's binary parity-check matrix

H. Alternatively, we may say that H is comprised of smaller square-matrix blocks that

belong to the set of P(i,j) matrices. Therefore z is defined as the block size, and Hbm has a

total size of m^ x 24, where m = nib x z and n = 24 x z. It could be concluded that H can

be directly expanded from the base model matrix Hbm via replacing each of Hbm's entries

with the appropriate permutation or zero matrix.

The permutations used are circular right shifts, and the set of permutation matrices

contains the z x z identity matrix and circular right shifted versions of it. Each

permutation matrix can be represented by a single circular right shift value. This value

represents the size of the shift. Therefore a non-negative entry (P(i,j) > 0) at (i,j)

48

represents a circularly right shifted identity matrix by a value equal to P(i,j). Similarly a

zero entry represents a non-shifted identity matrix. To distinguish them from permutation

matrices, the zero matrices are represented by the value -1.

For each separate code rate, a base model matrix Hbm is defined for the largest

supported block size of 96 bits (which gives a maximum codeword size of n = 2304 bits).

This approach adds another compaction factor to the matrix representation used in the

standard, where all code lengths associated with one code rate are represented by a single

base model matrix. In order to expand the base model matrix to achieve the appropriate

code length, a special scaling technique is utilized. The idea is to adjust the value of the

block size z which changes the dimensions of the z x z blocks, hence changing the total

size of H and achieving the desired code length. Thus, before expanding Hbm, its values

must be scaled within the supported range of block sizes. The equations used to perform

this scaling are provided in [10] and outlined below.

For equations 3.2 and 3.3, let the scaled shift size used at entry (i,j) be P(f,i,j), where f

is the index of the block sizes, f = 0, 1, 2,..., 18. In addition, the selected block size is

denoted by Zf (also known as the expansion factor), and the maximum block size of 96 is

denoted by zo.

For code rates 1/2, 3/4A, 3/4B, 2/3B, and 5/6, the shift sizes, P(f,i,j), for a packet size

corresponding to block size Zf are derived by scaling P(i,j) proportionally.

w,u)H
P(iJ) ,P(i,j)<0
P(iJ)zf

MJ) > 0
(3.2)

49

Where LXJ denotes the floor function. However, for the special case of code rate

2/3A, the shift sizes, P(f,i,j), for a code size corresponding to block size Zf are derived by

scaling P(i,j) using the modulo function.

PUJ,J)
mj) .P(f.j)*0
[mod(P(iJ),zf) ,P(iJ)>0

(3.3)

Thus, by selecting the code rate and the block size, the base model matrices are scaled

to meet the coding requirements producing the appropriate H matrices. This matrix

structure provides flexibility in handling the six different LDPC code rates supported in

the standard, as well as the nineteen different block lengths for each code rate. All

supported rates and lengths, along with input/output packet lengths and block sizes are

presented in Table 3.1.

Output
Packet

Size, n(bits)

576
672
768
864
960
1056
1152
1248
1344
1440
1536
1632
1728
1824
1920
2016
2112
2208
2304

Output Packet
Size, n(bytes)

72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288

Block Size
(bits)

24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84
88
92
96

Input Packet Size, k(bytes)

Rate =
1/2

36
42
48
54
60
66
72
78
84
90
96
102
108
114
120
126
132
138
144

Rate =
2/3 (A/B)

48
56
64
72
80
88
96
104
112
120
128
136
144
152
160
168
176
184
192

Rate =
3/4 (A/B)

54
63
72
81
90
99
108
117
126
135
144
153
162
171
180
189
198
207
216

Rate =
5/6

60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240

Table 3.1: 802.16e supported LDPC code rates and lengths

50

The 802.16e LDPC code structure is designed to facilitate the implementation of

efficient encoding/decoding architectures. This is evident through the properties of the

selected parity-check matrices. All supported matrices are in the almost lower triangular

form which, as discussed in Chapter 2, enables efficient encoding architectures. Another

structure of these matrices is the use of circulant matrices to construct block-circulant

LDPC codes. This property, as we demonstrate in section 2.2.2, can improve the

computational efficiency of the encoding and decoding processes. These properties and

their effects will be explored further in the following sections as we discuss our encoder's

architecture and implementation.

3.3 802.16e LDPC Code Performance

The LDPC codes used in the 802.16e standard are capable of providing high coding

performance. As mentioned in section 2.3.3, the simulation study performed at the

University of Ulm, Germany in conjunction with Siemens Corp. [59] compared the code

performance of the most advanced forward error control (FEC) schemes supported by the

standard, namely convolutional codes (CC), convolutional turbo codes (CTC) and LDPC

codes. The results show that when compared with the traditional convolutional codes,

LDPC codes show significant coding gains and achieve similar performance to the turbo

codes. Figure 3.1 illustrates these BER performance results for these FEC codes over an

AWGN channel using a code rate of 1/2 and length of 576 bits.

When simulated over the TU30 channel, modeling a mobile user in a typical urban

environment moving with a relative velocity of 30 km/h while transmitting on a carrier

frequency of 3.5 GHz, the 802.16e LDPC codes continued to show their superiority to the

CC codes as recorded in Figure 3.2.

51

CCQPSK
CTCQPSK

-+- LDPC.QPSK
-B- CC,16QAM
-* - CTC,16QAM
- 0 - LDPC,16QAM

6 8 10 12 14
SNR [dB]

Figure 3.1: FEC codes comparison, BER, AWGN, R=l/2, N=576, figure taken from [59]

10°

10

DC
UJ

§10
CO

10

10

-3

:??;-: '-:*.*;!-::::::::: :::!:::: ::::::::::::::::: :!:::::::::::
:::::::::::::::::•!*)«;-::::: ::::::::: ::::::::::

:::::::: '*:'$•>,: I::::;:::::::::::::::::::::::::::-:::::::::::::::::::::::::::
.. :

<S>VL '- 'C '*

^ * S ^ ^ : = ii>=X= = = =
:..::::::;: ̂ S»^^5^^ .̂::,«|p::,':v:::::::::::::::::::::

^^(L ^V "̂"*"1""**^* -̂ \
^ ^

-

- 0 - UNC,BER
- H - CC,BER
-x- CQFER

- 1 - CTC,BER
H- CTQFER

- * - LDPC,BER
-«- LDPC.FER

"V v / ' ; \ V •

: : : : : ; ^ ^ : ^ ; ; : \ ; ^ : : : : : : : V :

^NR \. * ^ \
^...v:..\..x» :K

:i:i:i:::i!:iii::::%:*:>+:::iii::*!r:-rU
:::::;::::::::::::::::^:::::>\^::::::::::::::::::::

^ | ^ \

10 15
SNR [dB]

20

Figure 3.2: FEC codes comparison, BER/FER, TU30, R=3/4, N=576, figure taken from

[59]

In Figure 3.3 the simulation results for the TU30 channel model are shown for the

LDPC code with rate 1/2 and multiple code lengths. Multiple code rates and lengths for

the CC coding scheme are shown.

52

0 5 10 15
SNR [dB]

Figure 3.3: FEC codes comparison, BER, TU30, various code rates and lengths, figure

taken from [59]

The performance of codes depends on the implementation of the encoder/decoder

system, and while software simulations provide a good estimate for the expected

performance of codes, a hardware implementation usually reflects a more accurate

picture. In [83] the first published implementation for an 802.16e compatible LDPC

decoder core included a code performance study of that particular decoder. Figure 3.4

depicts the FER results of communication over an AWGN channel for all supported

LDPC code classes. This implementation of the decoder takes advantage of available

code properties (such as the layered decoding approach available for code rates 1/2 and

3/4) to improve decoder throughput. Code length n = 2304 bits was used for all

simulations. These results correlate well with the simulation results discussed earlier.

LDPC codes proved to be a strong choice for the WiMAX standard and stand to gain

increasing popularity in emerging wireless standards.

53

10"

WiMax 802.16e LDPC Codes

-V—2/3A(15it)
0 - 3/4B (10it)

- 0— 3/4A (10it)
- e — 5/6 (10it)

1.5 2.5 3.5 4.5
Eb/N0[dB]

Figure 3.4: FER performance of WiMAX LDPC decoder implementation from [83]

3.4 The 802.16e LDPC Encoder Core

3.4.1 Encoding Algorithm

As shown in Chapter 2, encoding an information block s of length k bits may be done

using the code's generator matrix G such that G x HT = 0, and a codeword x could be

generated via the multiplication xT = sT x G. However, since G is a dense matrix for

LDPC codes, this direct encoding is quite computationally heavy and is quadratic in time.

Therefore, efficient encoding methods were researched and proposed in literature. In

addition, WiMAX's support for multiple code rates and lengths adds a further significant

degree of difficulty to the implementation problem.

54

The 802.16e standard recommends two methods for directly encoding an input packet

using the code's parity-check matrix H. Method 2 from Annex G of the standard [10] is

based on the efficient encoding algorithm originally proposed by Richardson and

Urbanke in [34], which aims to achieve linear encoding complexity. We present a brief

summary of this algorithm next.

The algorithm's idea is to preprocess the code's parity-check matrix H into the ALT

form using only row and column permutations preserving its sparseness and randomness

properties. Fortunately, the standard supplies all six base model (Hbm) matrices in ALT

form removing the need for this preprocessing stage. When in ALT form, the upper right

corner of a matrix is populated by 0s and is some distance from true lower triangular

form as shown in Figure 3.5. This distance is termed the gap (g) and in this case is set

equal to the code's block size z.

A

3

V

<f — rt-m —

A

C

3><^-

1

1

1

1

1

1

1

1

h -

1

1

1

-y-

B

D

> <

- i—

T

m-g

0

E

>

A

3
<6

V

T*

V

n - >

Figure 3.5: The parity-check matrix H in almost lower triangular form

The H matrix has the form

H =
A B T

C D E
(3.4)

55

Here A is an (m-z) x (n-m) sub-matrix, B is (m-z) x z, T is (m-z) x (m-z), C is z x (n-

m), D is z x z, and E is z x(m-z). The output codeword is defined to have the structure x

= [s pi p2], where s is the input packet and pi and p2 are the added parity code bits.

Given the specific structure of the provided H matrices and after a series of mathematical

manipulations (see [34]), we arrive at Equations 3.5 and 3.6

pi =(ET~lA + c)sT (3.5)

P*=T-\(AST +Bp() (3.6)

Thus, the encoding procedure may be summarized using the following steps:

X X

Step 1) Compute As and Cs

Step 2) Compute ET_1(AsT)

Step 3) Compute pi using Equation 3.7 which directly results from Equation 3.5

p? =ET~1(AST)+CST (3.7)

Step 4) Compute p2
T using Equation 3.8 which directly results from Equation 3.6

TpT
1=AsT+Bp[(3.8)

The algorithm steps can be graphically illustrated with the block diagram shown in

Figure 3.6 (from Annex G of the 802.16e standard).

We choose this algorithm for our design of the 802.16e compatible encoder. We aim

at taking advantage of its efficient computational complexity and suitability for hardware

implementations.

56

ET> "*©

-> u

-^ Pi V=[U p1 pj

- &
-*• P2

Figure 3.6: Block diagram of the encoding algorithm for the block LDPC code, figure
taken from [10]

3.4.2 Encoder Design and Implementation Flow

The process we applied to the encoder design and implementation project can be

summarized in Figure 3.7. As illustrated in the figure, the overall process can be divided

into three partly overlapping stages.

Algorithm
Proof of
Concept

Software Processes

Design
Modeling

7^

12
Design

Implementation

Functional
Verification

/ \

12
Behavioral
Verification

7^

12
Behavioral
Simulations

Hardware Processes

Timing
Verification

7^

• • • • f a l Final Circuit

Testing Processes

Timing
Simulations

Real-life
Hardware
Testing

Figure 3.7: Encoder design flow chart

Software Processes: This is the first stage where a direct software implementation of

the LDPC encoder is completed to serve as an algorithm proof of concept, as well as a

57

reference model for the final design. Following that, modeling of the hardware design

commences. Through this, competing design ideas are explored in software. As shown in

the figure, the modeling process overlaps in time and collaborates with the hardware

implementation process. After arriving at the final design, the software model is

complete, and is ready to serve as a comparative testing model for the hardware's

functionality. The functional verification process serves both the behavioral and real-life

hardware testing processes.

Hardware Processes: During this stage, initial hardware models are implemented

and analyzed against their software counterparts. Design tradeoffs such as area, resource

usage, and performance are considered in order to select the most appropriate design

idea. After the final design is selected and implemented, behavioral verification starts for

the individual encoder components then the full system. Finally, the encoder system is

simulated with real-life timing data and test vectors to verify its close-to-completion

behavior. Both behavioral and timing verifications are performed in conjunction with the

corresponding simulation processes from the testing stage. The tests are performed, and

the results are fed back into the hardware stage to modify and improve the

implementation.

Testing Processes: During the first two processes of this stage, the general and the

timed behavior of the implemented hardware circuit are tested. To accomplish this,

software testbenches are developed, and feed the software-prepared test vectors to the

hardware circuits. The results are then captured and studied. After satisfying the

functionality and performance requirements, the design is finalized and the hardware

circuit is generated. The final process involves moving the circuit on-chip to perform the

58

real-life hardware tests that confirm the functionality of the finished system. At various

points in the design flow, verification results may require moving back to an earlier

process to modify the design and/or develop a new design idea. This looping procedure is

not shown on the graph, but it is an essential element of the project's development.

The methodology and results of each of the above three stages will be explored in

more details in later sections of Chapters 3 and 4.

3.4.3 Encoder Top-Level Design

Combining ideas presented in the code structure and encoding algorithm sections, we

developed a top-level design for the encoder system, illustrated below in Figure 3.8.

Input bits (S)

Matrix Data Storage

V Stage 1 X Stage 2 A Stage 3 A. Stage 4 A Stage 5 A

Figure 3.8: Top-level block diagram of 802.16e LDPC Encoder
Stage 6 J

59

This design serves as a plan to divide the overall problem into smaller internal

components. The idea is to focus the design efforts on building blocks which can be

replicated and assembled quickly to construct the full encoder system. The plan also aids

in identifying the needed tools to build and test the system, and the algorithm and/or code

structure features that may be leveraged to produce an efficient final design.

The first step is to identify the target design requirements. Our aim is to develop and

implement an FPGA-based encoder system that functions as an IP core. The term IP core

refers to a hardware module designed to be integrated as a component in a larger digital

design. IP Cores are prime examples of design reuse and hence, must be portable and

able to be inserted into different technologies and systems. We design our encoder with

the ability to digitally interface with other components of a transmitter system. Studying

the encoder's specifications as described in the standard's text [10], we identified the

following essential encoder requirements. The encoder:

• Accepts k-bit input packets and encodes them into n-bit LDPC output

packets (codewords).

• Supports the six LDPC codes, namely 1/2, 3/4A, 3/4B, 2/3A, 2/3B, and 5/6,

as well as all code lengths from 576 - 2304 bits for each code.

• Provides the ability to switch code rates and lengths during operation, albeit

only between packets.

• Provides low and consistent latency in order to prove useful for

communication applications.

• Embodies a low power and small area implementation, initially targeting the

Xilinx Spartan-3 FPGA chip series [84].

60

As depicted in Figure 3.8, the top-level design diagram resembles the structure of the

encoding algorithm presented in Section 3.4.1. The main components in the design are

matrix multipliers, vector adders, memory storage and controllers, and an overseeing

master finite state machine (FSM).

The vector adders are relatively simple components. In software they are binary

additions, while in hardware they are arrays of exclusive-OR (XOR) gates. The matrix

multipliers are, however, the central components in the design and can be further divided

into two classes. The A, B, and C matrix multipliers are the first class. These multipliers

process input bit streams and generate product bit streams while receiving the matrix

contents from the memory controllers. The second class is the ET and T~ matrix

multipliers where no matrix content is required. Upon studying the code structure

provided in the standard, we learned that the ET"1 and T"1 matrices always take the same

non-random structure. This allowed for the design of these multipliers to simulate the

content of these matrices using shift registers and without the need to actually store them.

Design reuse is applied in the development of the multipliers since they feature internal

building blocks that can be replicated to assemble the full multiplier.

The contents of the A, B, and C matrices are stored in memory storage components,

while the memory controller components handle the data transfer between the storage and

the multipliers. Despite them showing in the figure as a single store-controller pair, the

design actually includes a separate pair for each matrix. The internal structure of the

storage and the controllers is another example of design reuse, where one matrix store-

controller pair is designed then replicated with minor size modifications to handle the

other matrices.

61

The master FSM, has several responsibilities. The first of which is to handle the data

transfer between the various stages as they input and output their bit streams. Other FSM

tasks include the buffering of input and parity bits until the output multiplexing process is

ready for them. Finally, the master FSM handles the selection of the appropriate code rate

and length through the negotiation of user-selected encoder parameters.

The most notable design ingredient is the close integration of algorithm and code

features into the design in order to reduce circuit complexity and area, and to improve

performance. As discussed above, the structure of the ET" and T"1 matrices assisted in

reducing the hardware complexity and memory usage for two main multiplier units.

However, the code format and structure goes beyond that and provides the tools

necessary to further reduce the memory space needed to store the rest of the matrices.

This idea will be discussed in further details in Section 3.4.4.

The algorithm structure is also utilized to achieve several hardware complexity gains.

As could be seen from the steps presented in Section 3.4.1, the multiplications of both the

A and the C matrices are done first since their products are needed in later stages of the

algorithm. However, both of these multiplications can be performed at the same time

providing a significant gain of hardware parallelism. All of the following stages happen

in sequence in order to achieve the correct encoding. However, multiplier units that are

finished in earlier stages can be utilized again to perform later multiplications.

Specifically, the A matrix multiplier hardware can be reused for the B matrix

multiplication stage, and being the largest hardware unit, this provides excellent device

utilization and area reduction. The same concept is applied to the ET"1 and T"1 multiplier

62

units. Therefore, even though they show up as separate design entities on Figure 3.8,

these multiplier entities are in fact reutilized at different stages in the arithmetic pipeline.

3.4.4 Software Implementation and Modeling

The first stage of the project's development is software modeling. During this stage,

we completed the initial encoder design and explored its performance. The software

model also assists in the development and initial testing of the hardware modules. At the

end of the project, software was the platform for the comprehensive testing tasks

providing the simulation environment and testing vectors. The tools used at this stage

include MATLAB, Microsoft Excel, and various word processors.

The software modeling stage is best explained through the structure and the

description of the various software modules produced for the project. The actual code of

these modules is available in Appendix A.

In Figure 3.9 below, the hierarchy of the software model of the encoder is presented.

The encoder.m module implements the encoding algorithm of Section 3.4.1 in a straight

forward fashion.

encoder.m n—s finalEncoder.m

A mult.m ^

Hgenerator.m

B mult.m

-> C_mult.m J

-• stage2.m

block mult.m

mem retrieve .m

.*. stage6.m

Figure 3.9: Software model hierarchy for 802.16e LDPC encoder

63

This module serves as a proof of concept and assists in better understanding the

algorithm. Furthermore, the encoder.m module is integrated into the finalEncoder.m

module to become a reference point for the final design's performance.

The finalEncoder.m module implements the master FSM, and controls all the

components necessary to carry on the encoding process. The stagel.m and stage6.m

modules are software implementations of the ET"1 and T" matrix multiplier units,

respectively. The rest of the matrix multiplier units are implemented in the Ajnult.m,

Bmult.m, and Cjnult.m modules. All three of these modules have a similar internal

structure utilizing one or more instances of a block multiplier unit along with a memory

interface function. The block multiplier, implemented in blockjnult.m, is one of the

central modules in our project. The mem_retrieve.m module handles the retrieval of

memory contents used in the multiplication process. The contents of all the required

matrices are generated using the H_generator.m utility. This utility loops through all the

supported combinations of code rates and lengths expanding their model Ht,m matrices

into the full binary H matrices and storing them for later access by finalEncoder.m. And

last but not least, finalEncoder.m performs the various vector additions by binary XOR-

ing the appropriate vectors.

In addition to controlling the data flow of the algorithm, the software encoder is able

to randomly generate input packets for encoding. It also implements several performance

statistics measures such as error counters and a pseudo-clock counter for latency

estimates. Finally, the encoder performs a simple test at the end to verify the integrity of

the produced codewords. This flexible MATLAB implementation provided us with good

design feedback and assisted in speeding up the hardware design process.

64

Testing and functional verification is another main category where software modeling

was utilized. However, this discussion is postponed till Chapter 4 where the full

software/hardware verification process is described along with its results.

Overall, software proved to be a powerful tool for the encoder's modeling, testing,

and verification tasks. But perhaps one of the most significant software contributions was

realized through the design and preparation of the encoder's memory storage.

As discussed in the top-level design section, each of the A, B, C matrix multiplier

units requires access to the contents of these matrices. Since the target encoder supports

all code rates and lengths, a straight forward storage of the expanded binary A, B, C

matrices would require 19 versions of each matrix for each of the 6 code rates. This

brings the total required storage space for the A, B, C matrices to approximately 55566.1

Kb or 54.3 Mb, which is 30 times larger than the maximum available block RAM space of

1872 Kb [85] on the largest chip in the Spartan-3 series. Therefore, it was clear that a

different storage approach is needed.

One possible approach is to only store the matrices in their model base numerical

format. This is possible since all of the information required to perform a single block

multiplication is contained in two elements, the input from the user and the shift value

from the base model matrix (or subset thereof). The details of the multiplication will be

discussed further in Sub-section 3.4.5.1. Using this approach, there are two possible

implementation directions. The first direction is to pre-process the base model matrices

provided by the standard, scaling them to support all 19 possible code lengths. The other

direction is to perform the scaling/expansion on-chip. Obviously, the first direction

requires more memory storage than the second. Therefore a tradeoff exists between the

65

simplicity of the memory controller's circuit and the required memory storage. The

following table presents the memory requirements for all three ideas discussed here.

Bits per Matrix Entry
Total Number of

Matrices
Required Memory

(Kilo Bits)

Fully expanded
Binary A,B,C

Matrices
ZfXZf

342

55566.1

Scaled Base
Model A,B,C

Matrices
7

342

95.3

Non-scaled Base
Model A,B,C

Matrices
11

6

7.9

Table 3.2: Three approaches to storing the A, B, and C sub-matrices

Based on these initial calculations, and the available block memory on the Spartan-3

chips we decided to pursue the memory-conservative on-chip scaling technique. The

matrix multipliers are designed to receive the properly-scaled shift values and use them to

perform the multiplication with the input bits. Thus, in order to supply the multipliers

with the correct shift values, the hardware memory controllers must:

• Access the appropriate matrix corresponding to the selected code rate.

• Divide the retrieved shift values by zo (i.e. 96).

• Multiply the result by the user-selected Zf value

• Perform the flooring function and forward the final values to the multipliers.

These are processing-intensive steps that require several clock cycles to finish. The

double divide-multiply steps may exceed the time available for the encoder's matrix

multiplication, which will add latency clock cycles and conflict with one of the main

design targets of the encoder. In addition, a more complex memory controller requires

more area, and consumes more power. Therefore, we concluded that our design needed to

perform as many processing steps off-chip as possible reducing the circuit complexity of

the on-chip controller. We determined that the division step can be performed ahead of

66

time in software. The rest of the steps depend on user-selected parameters and must be

performed on-chip.

When performing the division in software, the result will be a fraction that needs to

be represented in binary before being stored in chip memory. The resultant fraction is

always less than one since all shift values are less than 96. Therefore we needed to

determine the number of bits, that is the precision, required to represent the fractions.

Adopting the fixed-point binary format, this number must provide enough accuracy to

produce the correct results once the fractions are multiplied with Zf on-chip. We

developed MATLAB scripts (Accuracy_driver.m & verify_accuracy.m) that evaluate the

divide-multiply results with a range of precision bits. The minimum required number of

bits to represent the fractions resulting in no errors was determined to be 54 bits. This

number would result in approximately 56 Kb of storage, but the main problem would be

handling the very wide multiplier and memory bus lines needed on-chip. Therefore, in

order to reduce this number, rounding was introduced. This means that a pre-determined

precision is selected to represent the fractions, and when the division is performed in

software the result is rounded up towards the closest fraction represented by the available

binary bits.

Rounding, however, presented a challenge. If the precision is chosen too large,

memory storage space is wasted. If it's chosen too small, rounding errors will occur. To

illustrate how rounding works, we discuss the following numerical example.

Let the matrix entry (shift value) be 41 and the selected code length is 1632 bits,

which corresponds to Zf = 68. Further let the precision used be 8 bits. Applying Equation

3.2, the expected result after scaling is 29.

67

- 41 is first divided by z0 (96). 41/96 = 0.427083333. When converted to binary

using 8-bit precision the result is 01101101, which is in fact equal to 0.4258.

- The fraction 0.4258 is then multiplied by zf. 0.4258 x 68 = 28.9544.

Finally, performing the flooring function[28.9544J, the result is truncated to 28.

This is the wrong result.

To correct this, a rounding factor is added to the binary representation to adjust the

value. The factor is chosen to be the smallest possible fraction. Therefore:

- After rounding. 00000001 + 01101101 = 01101110, which is equal to 0.4311 in

decimal representation.

- The fraction 0.4311 is then multiplied by zf. 0.4258 x 68 = 29.3148.

Finally, performing the flooring function[29.3148J, the result is 29. This is the

correct result.

However, changing the code length to 672 bits which corresponds to Zf = 28, an over-

rounding error occurs. Applying Equation 3.2, the expected result after scaling is 11.

- After rounding, the fraction 0.4311 is multiplied by zf. 0.4311x28 = 12.0708.

Performing the flooring function [12.0708], the result is 12. This is the wrong

result.

Despite the 8-bit precision being suitable for the 41/96 fraction when Zf is 68, it

produces the wrong result when Zf is 28. Therefore, more precision is needed. Fortunately

our problem is limited to the set of values available in the provided matrices. Thus, we

developed a MATLAB script (checkjxllvalues.m) that performed a trial-and-error run

through a range of precision values while looping through all possible fraction values.

The precision value providing enough accuracy was found to be 11 bits. Therefore all

68

fraction values were converted to 11-bit fixed-point binary representation before porting

to hardware. This division and conversion were performed using the coljnaker.m

modules.

Software tools aided significantly in solving the memory design challenge. In

addition, we developed software scripts that verified the output of the hardware memory

controllers against the output of their software counterparts. These ABjnem_checker.m

and C_mem_checker.m modules can be found along with all the above discussed modules

in Appendix A.

3.4.5 Hardware System Components

Before we describe the hardware structure of the system's components, we will

discuss in more detail the hardware processes presented briefly in Section 3.4.2. In order

to transform ideas or software designs into hardware circuits, a hardware description

language (HDL) may be used. HDLs provide designers with the ability to describe digital

components, their behavior, and their interconnections using software code. The code can

then be transformed into hardware circuits using software synthesizers and routers.

Finally, the design can be programmed into an FPGA device as it assumes the purpose

and function of the programmed hardware design. One of the main widely adopted

hardware description languages is Very-high-speed integrated circuits Hardware

Description Language (VHDL). In our project, we used VHDL for our hardware

implementation purposes, and the Xilinx ISE 8.1i software design suite for our synthesis,

debugging, and routing tasks.

For the design of each system component, we followed the same hardware design

flow, presented here in Figure 3.10.

69

Define Design
Requirements

Implement
Design in

VHDL

This process produces
the Design Netlist

This process produces
the physical circuit
description of the input
design as it applies to
a specific device

This process produces
a file used as input for
bitstream generation

Figure 3.10: The VHDL design flow

After defining the design requirements, the hardware design flow commences with

the following processes:

70

Implement Design in VHDL: In this process a written specification of the design is

implemented in VHDL using a suitable text editing tool. A text editor is provided in ISE.

Synthesize Design: This process checks the code syntax, analyzes the design

hierarchy, and produces a design netlist saved in an NGC file. A design netlist contains

the list of parts and their connections in a circuit. Synthesis is performed using the

software tool Xilinx XST which is part of the ISE software suit.

Translate & Map Design: Translate merges the design netlist and constraints into a

Xilinx design file, while Map fits the produced design into the available resources on the

target FPGA chip. The results are stored in a native circuit description (NCD) file.

Place and Route Design: This process places and routes the mapped design to the

timing constraints, and produces a modified NCD file that is used as an input for

bitstream generation.

As illustrated in Figure 3.10 above, a verification step is performed after each major

design milestone. The hardware circuits are tested using VHDL testbenches. These test

bench modules receive input test vectors and simulate the operation of the design

producing output vectors and/or waveforms. The simulations are performed using the

Mentor Grahics' ModelSim XE III software tool. These verification steps are similar to

the full-system verifications discussed in Chapter 4, therefore a detailed description is

deferred till then.

After all the individual components are implemented and tested, the encoder system

is assembled. The encoder moves into the testing processes before a final hardware

bitstream is generated to program the FPGA chip. The following subsections describe the

structure of the encoder's internal components.

71

3.4.5.1 The Block Multiplier

The encoding algorithm requires that several bit vectors be multiplied by sparse

matrices. These matrices, as we discussed earlier, are comprised of smaller blocks of

circulant square matrices. Therefore when multiplying a bit vector by a sparse matrix, the

vector can be divided temporarily into segments with a length matching the dimension of

the square block matrices. The multiplication process, in turn, can be split into a series of

smaller block multiplications. Figure 3.11 from [36] depicts a helpful example of the

multiplication operation between a larger sparse matrix U and a bit vector X, the result is

the bit vector Y. In the figure, 3 x 3 block matrices are chosen for illustration purposes.

The minimum block size in the 802.16e standard is, however, 24 bits.

0 1 0
0 0 1
1 0 0

0 0 1
1 0 0
0 1 0

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0 1
1 0 0
0 1 0

0 0 1
1 0 0
0 1 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

01 0
0 0 1
1 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 1 0
0 0 1
1 0 0

0 1 0
0 0 1
1 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 01
1 0 0
0 1 0

0 1 0
0 0 1
1 0 0

0 0 0
0 0 0
0 0 0

0 0 1
1 0 0
0 1 0

0 0 0
0 0 0
0 0 0

01 0
0 0 1
1 0 0

0 0 0
0 0 0
0 0 0

X,

Figure 3.11: Matrix-vector multiplication illustration, figure taken from [36]

Figure 3.11 shows that the block matrices are either zero matrices, identity matrices,

or circularly right-shifted versions of the identity matrix. It is then noted that whenever a

vector is multiplied by a shifted identity matrix the result is simply the given vector

shifted the same number of times that the identity matrix is shifted. For example, matrix

Z is circularly right-shifted X times, specifically 1 time in Figure 3.12.

U, 0 U, 0 U, 0 0
U4 0 0"U, 0 0 U6

0 U, 0 U, 0 0 0
U, 0 U,„ 0 U„ Ure U„
0 U„ 0 0 0 U„ 0

x2
 y>

x\ = y,
x5 yt

72

0
0
1

1
0
0

0
1
0

A
B
C

—
B
C
A

Figure 3.12: An identity matrix shifted once, produces a vector that is shifted once

This means that the ' 1 ' bit in the first row is in the X column, the ' 1 ' of the second

row is in the X1 +1 column, and so on. With this in mind, one then realizes that the first

row of the result vector is the Xth element of the original multiplied vector; the 2nd row is

the X1 + element of the original vector and so on. As such it is apparent that, to get the

result vector, we need only circularly shift the original vector the same number of times

as the multiplicand shifted matrix.

But one must also remember that the block matrices that are being multiplied are

building blocks of a larger matrix. Therefore, it is clear that addition is necessary to

produce the result of an entire row. This is done through simply adding every

intermediate shifted vector, as shown in Figure 3.13.

a
d

h

b
e

i

c
f

k

A
B

A shifted' a' times + B shifted 'b' times + .
A shifted 'd' times +B shifted V times + .

. +C shifted 'c' times

. + C shifted T times

A shifted 'h' times +B shifted Y times + .. . + C shifted 'k' times

Figure 3.13: After the intermediate vectors are shifted, they are compounded through

addition to produce the row result

A straight forward attempt at implementing the block multiplier unit may be based on

a shift register design. Since, the 802.16e standard supports 19 different block sizes, the

block multiplier must be able to accommodate all sizes with one implementation. Figure
3.14 illustrates one such design where a 96-bit shift register is used.

73

A
[95]

[27]

[23]

[0]

y \
CLK.—1

h .

* j

S.

19tol
MUX

-<T ,
Control

Shift
Direction

Figure 3.14: Shift-register based block multiplier

The input bits of the multiplicand vector are loaded into the shift register. The bits are

then shifted upwards as many times as the shift value associated with the multiplicand

block matrix. While the shift register is designed to accommodate the maximum block

size of 96, a 19:1 multiplexer (MUX) component is used to create a "variable length"

shift register. As the bits are shifted upwards, the bit slot at location 0 gets constantly

filled with the content of the top-most bit that is selected by the MUX. The multiplexer

selects the top-most bit according to the block size specified by the user, thus effectively

capping the top of the shift register at the right location and creating a looping

mechanism for the bits.

While the shift register design is an effective way to perform the block multiplication,

it suffers from two severe performance problems. The first problem is high latency. Most

encoder implementations, require the input bit stream to arrive serially (i.e. one bit at a

time). The above implementation requires the entire input bit vector to be present before

the multiplication (i.e. shifting) can start, hence it must wait for several clock cycles

before the input is fully loaded into the shift register. This adds a high count of latency

clock cycles to the design. The second problem is variable latency. Since different block

matrices have different associated shift values, the multiplier will need a different number

74

of clock cycles to produce the results. This makes the multiplier's latency highly variable

and affects the overall encoder's latency similarly. Therefore, it is clear that a different

design is required to implement the block multiplier.

In order to build an efficient block multiplier with low and consistent latency, we

developed a design idea inspired by the concept of circular pointers. Circular pointers are

known constructs in the field of computer science. They are based on the idea of

associating a pointer with a storage unit such as a memory block or a register, whose

range of addresses are accessible by the pointer. The pointer traverses the register's

address space in a unidirectional manner. When reaching an end, the pointer loops back

to the other end, thus creating a virtual circular register. Read and/or write operations are

possible at the addresses identified by the pointer. Figure 3.15 explains the idea of the

circular pointer.

o
1
2
3

Z,-1

95

Figure 3.15: 96-bit register with a circular pointer

The above figure shows a 96-bit register designed to support the maximum block size

of the 802.16e LDPC encoder. The pointer traverses the register towards the most

significant bit (MSB), and may start at any bit address. When reaching the address

corresponding to the user-selected block size (Zf), the pointer loops back to address 0.

This mechanism effectively implements the shifting operation required to perform the

Pointer traversal
direction

MSB

75

block multiplication. As the first bit of the multiplicand vector arrives, it is inserted at an

address calculated based on the shift value retrieved from memory. The next bit is

inserted at the following address, and so on. The pointer loops back to address 0 after

reaching the z^l address, all the while the rest of the bits are inserted accordingly. When

the vector's bitstream is done, so is the multiplication (shifting). As such, the

multiplication takes exactly Zf clock cycles to complete. This design achieves constant

multiplication times regardless of the shift value, which significantly reduces and

stabilizes the latency of the encoder.

Our block multiplier design is illustrated below in Figure 3.16. The 7-bit wide shift

value is received from the memory controllers, and used to calculate the starting address

of the pointer. After that, the Address Generation Logic block takes over control of

advancing and looping the pointer's address. The 7-bit address is transformed into a 96-

bit one-hot encoded value via the 96-bit Binary Decoder block, thus activating the single

register location where the input bit is meant to be inserted. When a zero matrix is

encountered, the shift value received from memory is "1111111". This triggers the 7-bit

NAND gate to generate the Zero Flag signal. This flag forces the input low (i.e. zeroes

the input via the AND gate), and disables the binary decoder thus conserving power.

As we mentioned earlier, the results of multiplying a vector with one column of a

matrix have to be added to the product of multiplying the same vector with the next

column, and so on. And as we showed earlier in Figure 3.13, the block multiplication

results have to be compounded through addition. Our design accomplishes this through

the integration of 96 XOR gates into the block multiplier. Each XOR gate always "adds"

the value of the arriving new bit to the current bit value stored at that register location.

76

Therefore, after all of the input is "clocked" in, the output register will hold the row result

of the multiplication.

7

Shift Value

(from Memory)

Address
Generation

Logic

96-bit
Binary

Decoder
Disable

Serial Input bits

ONE-HOT
/ T "

96

H >
M=D-

HD-

H>ti>-r~o^ u

96

^H=$>-
96-bit Output

Register

Corrected Input

Figure 3.16: The circular-pointer based block multiplier

In order to process multiple rows, as is expected with large matrices (such as the A

and B matrices), one must replicate this block multiplier as many times as the matrix has

rows. This leads to the next component of the 802.16e LDPC encoder.

77

3.4.5.2 The Full Matrix- Vector Multiplier

This component is the first type of matrix-vector multipliers required by the encoder

to handle the A, B, and C matrix-vector multiplications as outlined in Section 3.4.3. We

used the block multiplier presented in the previous section as a building block for this

component. The idea is to replicate the block multiplier an appropriate number of times

to handle the multiple rows of the large matrix. This is illustrated in Figure 3.17. The

challenge is, however, that the dimensions of these matrices differ per matrix, code rate,

and code length.

The code length challenge is solved by the flexibility of the block multiplier design.

The block multiplier loops the pointer back limiting the size of the register to the block

size (Zf). As the block size changes, so does the end address accommodating the full

range of block sizes and code lengths.

The code rate and matrix challenge is out of the scope of the block multiplier's

design, and is tackled at the full multiplier level. The three matrices in question range in

row size from 1 to 11, and in column size from 1 to 20. Noting that the C matrix has a

single row at all conditions. The effect of the ranging columns is handled through the re­

use of the block multipliers a number of times equal to the matrix' columns. The results

of the first column are added in the same register to the results of the next column on

route to the full row result. The effect of the ranging rows is handled through the

replication of the block multipliers. At this point, we decided to develop two separate

multiplier components. The first has only one block multiplier unit inside, and handles

the C matrix multiplication. The second, featured below in Figure 3.17, handles the A and

B matrix multiplications, and has 11 block multiplier units inside. Despite supporting the

78

maximum number of rows, only the required number of block multipliers will be in

operation. The excess multipliers are turned off preventing any switching activity and

reducing the total power consumption.

Memory Bus

Input

Zf (Block Size)

Number of
Columns

Figure 3.17: The full matrix-vector multiplier

79

The full matrix-vector multiplier operates according to an internal FSM, briefly

explained in the following steps.

1. The multiplier requests the values of one column of the matrix at hand from the

appropriate memory controller.

2. The multiplier receives one matrix column of shift values on the memory bus.

3. The multiplier enters a loop for Zf clock cycles supplying the input bits to the

individual block multipliers in parallel. The block multipliers perform the shifting.

4. After finishing a column multiplication, the multiplier checks the total number of

columns required for the matrix at hand. If the maximum number is reached, the

multiplier goes to step 4, otherwise it goes back to step 1 where it requests the

next matrix column values.

5. Upon finishing all columns, the row results of the final vector are now ready in

the block multiplier register segments. These segments make up the complete

output register highlighted in Figure 3.17.

In addition to the buses and signals shown in the figure, other hand-shaking signals,

reset signals, and the clock are not shown for clarity.

80

rl rp-l
3.4.5.3 The ET', T' Matrix Multiplier

In section 3.4.3, we alluded to the second type of matrix-vector multipliers required in

the encoder system to handle the multiplication with the ET1 and T 1 matrices. Unlike the

previous matrix-vector multiplier, this component requires no matrix contents to perform

the multiplication. Instead, it employs an efficient hardware design idea that mimics the

contents of the ET"1 and T 1 matrices producing the correct multiplication results.

The design of this component is based on an observation made at the matrix structure

level. It is observed that for all supported code rates in the standard, the T, E, T" , ET"

matrices always take specific shapes, illustrated below in Figure 3.18 for a code rate 3/4.

A\

A\
0

0

0

0

\ j \
\ j \

0

0

0

0

\ j \
\X

0

0

0

0

Xj\

0

0

0

0

0 0 0 0 1

A. Typical shape of a T
matrix

B. Typical shape of an E
matrix

1

1

1

1

0

1

1

1

0

0

1

1

0

0

0

1

0

0

0

0

C. Typical shape of a T"
matrix

D. Typical shape of an ET"
matrix

Figure 3.18: Typical shapes of T, E, T"1, ET"1 matrices for code rate 3/4

81

The Is in Figure 3.18 represent identity block matrices, while the Os represent zero

block matrices. The T matrix is a square matrix with a dual diagonal of identity block

matrices. The inverse of this, shown in part C of the figure, is a true lower triangular

matrix where all elements below the diagonal are identity block matrices. Similarly, the E

matrix always takes the shape of a vector of zero block matrices with the exception of an

identity matrix at the last location. And when multiplying the E and T"1 matrices, the

result is a vector of identity matrices matching in dimensions with the E matrix.

These matrix shapes are important to the design of their multipliers. When

multiplying the ET1 matrix with a vector X, the result is the sum of the block-size

segments of X as shown in Figure 3.19 A. Following the same concept, the multiplication

of T"1 with X results in a vector whose every segment holds the sum of the corresponding

segment from X and all previous X segments. Figure 3.19 B.

B.

V.

1 1

0

1

1

1

1

E T - 1

1

r1

0

0

1

1

1

1

0

0

0

1

1

1

0

0

0

0

1

X

Xl

x2

X4

x5

Xl

x2

x3

x4

x5

—

zzz

X(+ X2 + X3 + X4 + X5

Xl

Xi + X2

X! + X 2 + X 3

X] + X2 + X3 + X4

Xl + X2 + X3 + X4 + x5

Figure 3.19: Multiplying a vector by each of ET" and T"

82

It is evident from the above observations that the multiplication process can be

reduced to a series of additions. We designed a multiplier component that takes

advantage of this concept utilizing XOR adders and shift registers. Figure 3.20 shows our

design, termed the large-shifter multiplier which can be used for both the ET" and the T"

multiplications.

1056

Input Vector
(loaded in parallel)

LSB

MSB

0 / s

93^

96-bit
XOR

•e-
0 A

9sJ/

96

96

1056
£

Shift direction - each bit is
shifted 96 bits per clock cycle

Result Vector

Register is accessible
to master FSM

Figure 3.20: The large-shifter multiplier

The multiplicand input vector is loaded into the internal large shift register in a

parallel fashion. During each following clock cycle, the input vector is shifted towards

the LSB 96 bits at a time. This means that bit 96 becomes bit 0, bit 97 becomes bit 1, and

so on. In addition, the most significant segment gets loaded with the contents of the least

83

significant segment creating a large circular shift register. This feature helps conserve the

input values for future access by the master FSM. During each clock cycle, the 96 bits

stored in the first segment (bits 0-95) of the large register are added to the contents of the

small register via a 96-bit XOR array. The use of the XOR gates for addition here, as is

the case for all additions in the encoder, is clue to the fact that we are working with the

binary system or GF(2). The small register is initialized with 0s and thus the very first

addition (XOR) operation results in the input segment itself. It is noted that the segments,

and hence the registers, are designed to accommodate the largest block size of 96 bits.

However, smaller block sizes are processed similarly since the shifting operations do not

alter the bit order. After 11 shift-add clock cycles, the small register holds the sum of all

segments of the large shift register. This is essentially the result of the ET"1 multiplication

as presented in Figure 3.19 A. While the number of columns of the ET1 matrix range

from 3 to 11 depending on the code rate, 11 cycles of shift-add operations are always

performed in order to keep the encoder's latency constant. The extra vector segments are

forced low (i.e. filled with zeros) in order not to alter the result.

The same hardware design can be used to perform the T"1 multiplication. The only

difference is that the intermediate addition results make up the segments of the overall

resulting vector, see Figure 3.19 B. Therefore the small register is made accessible to the

master state machine, which captures each intermediate result and stores it into an

external large register. After 11 shift-add clock cycles, the external large register holds

the result of the T"1 multiplication.

A key code structure exploit and the component's re-use, position this efficient design

to achieve significant memory storage gains as well as resource and area reductions.

84

3.4.5.4 Memory Storage and Controllers

We demonstrated in Section 3.4.4 that the most memory efficient approach to storing

the contents of the A, B, and C matrices is the on-chip scaling method. We discussed that

in order to compute the correctly scaled shift values on-chip, we need to store the division

fractions in memory using an 11-bit fixed point representation. See Section 3.4.4 for

details. Finally, we calculated the total number of bits to be stored in memory using this

approach to be 8074 bits or 7.9 Kb.

The design of the full matrix-vector multiplier requires access to the memory contents

in a column-by-column fashion. Therefore, the memory controllers transfer the column

shift values via the memory bus as requested by the corresponding multipliers. However,

the memory values are not ready to be transferred until the memory access,

multiplication, and scaling operations are complete. By contrast, the multiplier

components are ready to start the multiplication operations as soon as the input bits start

arriving at the encoder (i.e. on the next clock cycle). Therefore, the multiplier must wait

until the memory processing steps have completed and the values are ready on the

memory bus. This waiting delay can be up to 10 clock cycles and adds to the total latency

of the encoder, violating one of our main design targets.

We developed a solution for the memory controller latency challenge through

redesigning the memory storage scheme. One realizes that only the first column shift

values from the A and C matrices experience this latency delay. The rest of the columns,

including the single column of the B matrix, do not necessarily need to add any latency to

the design. This is possible, because the shortest block multiplication needs at least 24

clock cycles to finish, while the memory controller processing steps need less than 24

85

clock cycles. Therefore, one can hide the memory processing costs by asking the

controller to start preparing the next memory column values while using (multiplying) the

current ones. Thus, with the rest of the columns and the B matrix not being a latency

factor, there must be a mechanism to make the first column shift values of A and C scaled

and ready within one cycle from the input's arrival at the encoder.

We are able to achieve this goal by employing two separate approaches to memory

storage. The first columns of A and C are stored in a fully processed format, and scaled to

support all code lengths of the standard. This way, these values are ready for immediate

access by the multipliers. The rest of the columns along with the B matrix are stored in a

non-scaled format and require processing from the memory controllers. This solution is

in essence a combination between the second and the third storage approaches presented

in Section 3.4.4 and summarized on Table 3.2. In that table, we noted that a rally scaled

storage approach requires 95.3 Kb of memory space, while a fully non-scaled approach

requires 7.9 Kb of space. This combination solution requires a minimum of 13.1 Kb of

space, which is a small storage tradeoff when compared to the 24% of latency gains

obtained. With this solution, the total system latency can be reduced from 42 to 32 clock

cycles.

For storage, we utilized the available block RAM space on the target FPGA device.

Four block RAM components are instantiated. The following table presents their

information.

Component Name

C first column
C other columns

A first column
AB other columns

Dimensions

9 5 x 7
79 x 11
95x77

84 x 121

Total bit count

665
869
7315
10164

Table 3.3: Summary of the encoder's Block RAM memory components

86

Adding the bit counts from the above table, the total is 19013 bits or 18.6 Kb. Forcing

the increase from the 13.1 Kb figure mentioned earlier, is the internal structure of the

block RAMs. With current technology, it is not possible to instantiate a variable-width

RAM, which would be ideal to store the various differently sized matrices. For example.

The second column from the A matrix with code rate 1/2 is 11 elements, whereas the

same column with code rate 2/3 is only 7 elements. Therefore the largest size of 11

elements is used for the block RAM width, and the extra spaces are filled with zeros for

shorter columns. A final note regarding the memory storage is the fact that for our

particular encoder implementation, code rate 2/3A is not included, accordingly the

corresponding matrix information are not stored in memory. The total block RAM space

with the 2/3 A code rate would be 22710 bits or 22.2 Kb.

The 802.16e encoder includes two memory controller components. One to manage

the A and B memory storage and busses, and one to manage the smaller C matrix. The

design of the memory controller component is presented in Figure 3.21.

Memory Bus

Figure 3.21: The memory controller component

87

Rate<£ Z,

First Column
Storage

Number of Columns
Memory Request

Other Columns
Storage

First Column
Y** Controller

Control Logic

r—
[*> Zf Multiplier

1* 1

Subtracter

The memory controller processes and prepares the memory values using the

following steps:

.1. The controller starts by initializing the memory bus to the values supplied by the

first column controller. One clock cycle after the code rate and length parameters

become available to the encoder, the first column controller accesses the first

column storage, and produces the correctly scaled values of that column on the

memory bus.

2. The controller enters a wait state, until a memory request is received from the

associated multiplier.

3. When a memory request is received, the appropriate non-scaled column values are

retrieved from the other columns storage and forwarded to the internal Zf

multiplier.

4. The Zf multiplier performs the multiplication between the 11 -bit retrieved fraction

and the 7-bit user-selected Zf value. The result is an 18-bit product in a "7.11"

fixed-point format.

5. The fractional portion represented by the least significant 11 bits of the product is

truncated leaving the 7-bit integer portion. This is equivalent to the floor function.

At this stage, the result represents the correctly scaled value from memory.

6. The last processing step includes subtracting the shift value from Zf, to produce

the starting address used by the matrix multiplier's circular pointer to insert the

first bit. This is explained with the following example.

Let the block size (zf) be 5, which makes the block matrix a 5 x 5 matrix.

Assume that this matrix is a circularly right-shifted identity matrix by 2, hence

88

0
1

2 =
3
4

2
3

: 4
0
1

the associated shift value is 2. When multiplying this block matrix by a vector

segment A, the result is the vector A shifted twice as shown below. Further

assume that the vector holds the illustrated values that match the values of its

addresses (i.e. bit 0 holds the value 0, bit 1 holds the value 1, and so on).

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1 X - - • c • **A

1 0 0 0 0 ° n " ing A d d r e s s

0 1 0 0 0

It can be seen in the result, that the A vector's bits are shifted upwards (in

address space) twice, and bit 0 is wrapped around to take the address 3.

Therefore, when subtracting the original shift value of 2 from the block size 5,

we get the correct address of 3. This value can then be used as the starting

address for the circular pointer implementation.

7. After each memory request signal, the column count is checked. When the last

column is reached, the controller's task is over, and it defaults back to the starting

state.

Both memory controllers use these steps to process the memory contents in a similar

fashion. The AB memory controller receives one more memory request than the C

controller in order to retrieve B's only column.

89

3.4.5.5 The Master Finite State Machine

The master FSM is the top-level VHDL component that ties all other components

together and controls the flow of the encoding process. It has two main tasks:

• Managing the flow of data between memory and multipliers, as well as

controlling the flow of the bitstream along the encoding chain of multipliers

and adders.

• Controlling the inputs and outputs of the encoder. This includes configuring

the encoder to work according to user parameters, buffering intermediate bit

vector results, and producing the output bitstream and signals.

In order to accomplish the above tasks, the top-level module is comprised of two

actual FSMs. The first is the encpding FSM which handles the encoding data flow,

hardware re-use, and output flags. The second is the latency FSM which mainly handles

the buffering of intermediate vector results and the switching of the output bitstream

among the input, pi , and p2 streams. The control logic required to implement these FSMs

is contained inside the control logic block in Figure 3.22.

In addition to the FSMs, the top-level module contains the 3:1 output multiplexer

component, several registers including the pi and p2 registers, and the latency buffers.

The latency buffers are shift registers of different lengths used to delay the arrival of the

input and pi bit streams to the output MUX. This helps in maintaining the serial output of

the encoder. Many other less significant components exist in the top-level design but are

not shown in Figure 3.22.

90

Input
-£Ylnput Latencyljuffer (LBT) "

Pi,

AB
Multiplier

.*6nZ}
96-bit .

Large
Shifter

96-bit

r) P1LB Y

3:1
MUX

Output

B?

p i
register

AB
Multiplier

1056-bit
XOR

• e

96-bit m
Large
Shifter

Output MUX control

Component control

Figure 3.22: 802.16e LDPC Encoder System (top-level) Diagram

The encoding FSM manages the flow of the encoding algorithm utilizing the user-

selected parameters such as the code rate and the block size, as well as the internal

components' control flags. The following steps detail the encoding FSM's states:

1. The encoder system waits for the start signal from the user design. All signals will

be explained in Chapter 4. When the signal is received, the full matrix-vector

multiplier components start processing the serial input bits and performing the

multiplications. At this stage, the C multiplier, and the larger AB multiplier

components are working simultaneously. This is an example of hardware

parallelism.

91

2. When the multipliers are done, a flag signal is raised and the system moves to the

second stage. In the second stage, the large shifter component loads the result of

the AB multiplier and starts the ET" multiplication operation.

3. When the large shifter is done, the system moves to the third stage. This is a one

clock cycle stage where the C multiplier result and the ET" multiplier result are

added (XOR-ed) to produce the pi bits. The result is stored into the pi register.

And the system moves to the 4l stage.

4. While switching from the 3rd to the 4th stage, the encoding FSM switches the input

sources for both the AB multiplier and the large shifter components. This is done

via two multiplexer components (not shown in Figure 3.22) that select the input

busses to be connected to the aforementioned components. This is an example of

hardware re-use.

5. The 4th stage is a dual-purpose stage. The pi register is a shift register used to

input the bits into the AB multiplier in order to perform the B matrix

multiplication. At the same time, the pi bits are shifted (transferred) into the pi

latency buffer to be eventually outputted by the encoder system.

6. When the AB multiplier is done, the system moves into the 5 stage. This a one

clock cycle stage where the A matrix multiplication (saved in the large shifter) is

added to the output of the B matrix multiplication (in the AB multiplier) via the

1056-bit XOR array. The system moves into the 6th stage.

7. During the 6 stage the final multiplication with T" matrix is performed. The

output of the previous addition is loaded into the large shifter component which is

re-used for this stage. As the shifter is working, the intermediate addition results

92

are captured by the FSM and stored into an external register. When the large

shifter is finished, the p2 bits are ready to output and stored in the p2 register.

8. Despite the algorithm needing only 6 stages to finish, the encoder system needs a

final 7l stage to output the p2 bits. By this stage, the system had already outputted

the input bits and the pi bits and is ready for the p2 bitstream. Providing that bit

stream is the encoding FSM through shifting the p2 register contents to the output

MUX. Upon finishing all output, the FSM sets the values of several external

signals (flags) to indicate the encoding completion to the user design.

While the encoding FSM controls most components and handles the flow of the

algorithm, the latency FSM performs a more focused task. This FSM tracks the various

stages of encoding, and switches the output MUX at exactly the right clock cycles to

preserve a continuous flow of serially outputted bits. The latency buffers are designed to

make the input bits finish outputting in time for the arriving pi bits, and the pi bits in

turn for the ready p2 bits. Specifically the input buffer is a 32-bit shift register while the

pi buffer is a 17-bit one. Since latency is defined to be the number of clock cycles from

the arrival of the first input to the production of the first output, the total encoder's

latency is dominated by the input's buffer and is equal to 32 clock cycles. This is a low

latency design suitable for many communication applications.

This ends our discussion of the components of the 802.16e encoder system. The

system is designed, tested, and implemented in hardware as an intellectual property core

ready for use with larger digital designs. For further usage and testing details, the reader

is referred to the Core's datasheet [86] and Chapter 4.

93

3.5 Summary

In this chapter, we presented our 802.16e LDPC encoder design. We started with the

supported LDPC codes in the mobile WiMAX standard highlighting their compact

structure. The use of almost lower triangular and circulant matrices in these codes allows

for efficient encoding/decoding hardware architectures. Through various studies, LDPC

codes were shown to exhibit good coding performance in mobile WiMAX systems.

For our encoder design, we adopted the second method, as proposed by the standard,

as our encoding algorithm [10]. Our encoder design and implementation flow was

discussed, and included three main processes: software, hardware, and testing processes.

The encoder top-level design served as a plan to divide the overall problem into smaller

design components and allowed for design re-use and hardware parallelism. We focused

on the software processes as a development and testing platform. In addition, we

illustrated how software was used to design and prepare the encoder's memory storage.

We determined that a fair hardware utilization is to store the parity-check matrices'

contents in memory as semi-scaled fixed-point values with 11 -bit precision.

The hardware components of the encoder system were developed using the VHDL

language and a standard VHDL design flow. The main design component is the block

multiplier unit. The block multiplier uses a circular pointer solution to implement a

vector-matrix multiplication. This design provides constant multiplication times

regardless of the input value, which in turn achieves low and consistent latency to the

overall encoder. This unit is replicated 11 times to construct the full multiplier component

which supports the various code rates in the standard. This multiplier handles the A and B

matrix multiplications while the ET"1 and the T"1 multiplications are handled using a large

94

shifter design. The large shifter component exploits the specific forms of the ET" and T"

matrices to do away with matrix storage and perform the required multiplications.

The memory storage-controller pair design was presented next. The controller

accesses the memory contents and completes the scaling process before transferring the

shift values to the multipliers on the memory bus.

Finally, the master FSM was introduced. Internally, it is comprised of two FSMs; one

to handle the I/O and the latency buffers; and one to handle the rest of encoder operations

including memory-multiplier interaction and algorithm control. The complete design,

presented in Figure 3.22, satisfies all design targets and implements an 802.16e LDPC

encoder IP core with latency of 32 clock cycles.

95

Chapter 4

Encoder Verification and Performance Analysis

4.1 Encoder IP Core - Description and Usage

The 802.16e compatible LDPC encoder discussed in Chapter 3 is implemented in an

Intellectual Property (IP) core form. This core is designed to interface with other digital

cores in applications such as digital transmitters. Figure 4.1 depicts the block diagram for

the core illustrating the input/output interfacing signals.

•> DATA OUT

*- OUT VALID

> DONE OUT

Figure 4.1: 802.16e LDPC encoder core block diagram

The core's signals include data busses where the user design supplies input data, and

receives output data. It also incorporates control signals which facilitate interfacing and

provide the user control over the operation of the encoder core. Except for the multi­

valued RATE and BLOCKSIZE signals, all other control signals are active high, which

means they are considered on when their value is logical ' 1 ' . Table 4.1 provides a

summary of the signals (a.k.a ports) featured in this design.

DATA IN

RATE

BLOCK SIZE

START

RESET

RFD +•

CLOCK —

802.16e
LDPC

Encoder

96

Port Name

DATAJN

RATE

BLOCK_SIZE

START

RESET

RFD

CLOCK

DATA_OUT

OUT_VALID

DONE_OUT

Port
Width

1

3

7

Direction

INPUT

INPUT

INPUT

INPUT

INPUT

OUTPUT

INPUT

OUTPUT

OUTPUT

OUTPUT

Active
State

High

High

High

Rising
Edge

High

High

Description

Data Input, serially presented
packet to be encoded
Rate to be used to encode the
packet
Block Size to be used to encode
the packet
Start, to start the encoding
process
Synchronous Reset

Ready For Data, to indicate the
system is accepting input bits

Clock

Data Output, encoded packet
output provided serially
Output Valid, to indicate the
presence of valid output bits on
DATA OUT
Done Output, to indicate the end
of the output bit stream.

Table 4.1: System signal pinout

The operation and usage of this core is best described using its ports and how they are

utilized, we start with the data and parameter busses:

DATA_IN: On this input bus, the user design supplies the uncoded data input bits to

the system in a serial fashion starting with the first bit to be encoded.

DATA_OUT: This is an output bus, on which the system outputs the encoded packet

bits serially.

RATE: Using this input bus, the user design supplies the code rate run-time

parameter to the system. The encoder uses the value on this bus to select the appropriate

coding matrix and code rate for encoding. This bus is read by the system on the start of

encoding when the START and RFD signals are asserted. The allowed values for this bus

and their definitions can be found in [86].

BLOCKJSIZE: Using this input bus, the user design supplies the block size (Zf) run­

time parameter to the system The encoder uses the value on this bus to select the

97

appropriate block size, and the input and output packet lengths. This bus is read by the

system on the start of encoding when the START and RFD signals are asserted. The

allowed values for this bus and their definitions can be found in [86].

The user design communicates with, and manages the operation of the encoder core

using the following control signals:

START: The encoder core starts the encoding process when the start signal is

asserted by the source of the uncoded bits. When START is asserted, the first input bit is

consumed by the system. All subsequent input bits will be consumed by the system on

the following clock cycles until the end of the input bitstream. The encoder assumes a

non-interrupted sequence of input bits. Figure 4.2 is a snapshot of post place-and-route

simulation illustrating a typical behavior of the start signal.

data in

start

reset —1

clock

rate "II
clock size TF

data out

data_out_vec TF
done_out

out_valid

rfd

i -
10

1
1
1

1

1
Hoi
I«

1
1

1

1

1

1

"

1

.

'
.
•

Figure 4.2: Behavior of START signal during encoding of a rate 1/2, block size 96 input

packet

RFD: Prior to the start of encoding, the ready for data (RFD) signal is asserted by the

system to indicate that it is ready to accept data on DATA FN. RFD is initially asserted

but the input bit stream will not start to be consumed until START is asserted for at least

one clock cycle. RFD will remain asserted until the entire input packet is consumed, after

98

that it will remain deasserted while the system is processing and outputting the encoded

packet. Figure 4.2 above, shows the initial condition of RFD, and Figure 4.3 illustrates

the end of input packet consumption by the system.

data in 1

start

reset

clock |

rate 101

clock size 96

data out

data out vec i
done_out

outvalid

rfd

I

I I

1
P

1

J
P__

1

1

1
W "

1 1

Figure 4.3: RFD Signal on end of input packet, code rate 1/2, block size 96

OUT_VALID: This output signal is asserted by the system to indicate the presence

of valid output bits on DATAOUT. This signal is first asserted 32 cycles after the start

of encoding and remains asserted until the end of the output packet. Figure 4.4 illustrates

the 32-cycle latency mentioned above.

DONE_OUT: The system asserts DONEOUT for one clock cycle to indicate the

end of the output packet. This signal also indicates the end of the encoding process.

When DONEOUT is asserted, RFD is asserted and OUTJVALID is de-asserted

indicating the system's readiness to start encoding another packet.

99

clock J

rate OM

clock size 92

data out

data out vec 0

done out

out valid

rfd

r~
r L_ L_ J _r~L r~ "~~i_r L_ n

r

Figure 4.4: OUTVALID Signal and the 32-cycle latency, code rate 5/6, block size 92

DONEOUT's behavior is shown in Figure 4.5. Figure 4.6 illustrates a complete

encoding waveform for a packet using code rate 1/2, block size 96 and an encoded packet

length of 2304 bits.

datajn

start

reset

clock |

rate 101

clock size 96

data out

data out vec -I

done_out

out_vahd

rfd

I

1
|D

I

J
fi

I

r

I

L

J

I

•

I

Figure 4.5: DONE_OUT asserted on end of data output, code rate 1/2, block size 96

CLOCK: This pin supplies the clock frequency signal to the design. All components

in the encoder core are synchronous to the CLOCK input. This means that all finite state

machines, registers, etc. in the design change state only on the rising edge of the clock

signal.

RESET: When asserted, this input signal causes all registers to be forced low (zero)

and all state machines to be reset. The system returns to the initial reset state one cycle

later.

100

datajn ^ ^ y g

start |
reset]

rate 1101

clocK size J3b
data-out _ • • •

done out

out_valid J

rfd

• " • " •Mil SI
L_

™ •5 mi una

i
L
I

20 us 40 us

Figure 4.6: Encoding of one packet with code rate 1/2 and block size 96

4.2 Simulation and Testing Method

Testing and verification is the third stage of the overall design flow of the project. As

described in Chapter 3, this stage consists of three processes, the first of which is

behavioral simulations. The second and third processes are timing simulations and real-

life hardware testing. The next three sections will detail these processes.

Each of the encoder's internal components is passed through behavioral and timing

simulations as mentioned in Section 3.4.5. However, since the method and tools applied

here are the same, we will limit our discussion to the overall system for brevity.

All simulation and testing processes utilize the same general structure presented in

Figure 4.7. Software modeling as well as hardware modeling tools are employed. On the

software front, we used MATLAB, Excel, and word processors. We developed several

modules to automate the testing process. The input_generate.m module generates a user-

defined random sequence of input bits. The input packets are then fed into both the

hardware implementation and the software model. The output of the software encoder is

compared with the output of the hardware implementation. The packet compare.m (See

101

Appendix A) module performs the comparison and reports the number and location of

encoding errors encountered as well as several other useful statistics. In order to run the

test for several code rates and lengths, not to mention multiple input packets, the

Encoder_script.m module loops through the required number of times altering the

encoder's parameters as needed. The finalEncoder.m module, discussed in Chapter 3,

behaves as a function that can be invoked by this test script.

i *

Hardware ;
•Testing Modules C-Hxtfile

input_generate.m <<<^ ">a packetcompare.m

Text file

Encoderscript.m

p. finalEncoder.m

Figure 4.7: MATLAB testing structure

On the hardware front, we used different testing modules and tools depending on the

simulation/test being performed. For behavioral and timing simulations we used the

ModelSim XE III simulation tool, while real-life testing was performed on the XEM3010

hardware prototyping platform provided by Opal Kelly [87]. The details of the hardware

testing modules are presented according to the corresponding simulation/testing process

in the following three sections.

102

4.3 Behavioral Simulations

The aim of this process is to analyze the general behavior of the system and identify

any defects or re-design requirements. Behavioral simulations do not include the timing

information of the system, rather they focus on whether or not the system produces the

correct results in an ideal environment. They are performed in conjunction with the

hardware behavioral verification process, as well as the software functional verification

process (see Section 3.4.2).

Using the ModelSim software tool, we developed several testbenches as our hardware

testing modules. Testbenches are VHDL modules designed to act as a user for the design

under test (DUT). They provide sources for all the ports necessary to operate and

interface with the DUT. It is also possible to capture the output data and store it into text

files for later processing. One of the most useful features of simulation software is the

ability to examine the waveforms generated by the testbench modules and the DUT. This

provides the ability to track the changes on every signal, bus, and register in order to

verify the functionality of the design.

For our behavioral simulation purposes, we developed the Encoder Jb.vhd testbench,

available in Appendix B. This module interfaces with the encoder's top-level VHDL

module; and together with ModelSim, it simulates its behavior over a comprehensive set

of run-time conditions and input values. We used a total of 100 input packets to be

encoded with all supported code lengths and rates. The largest possible input packet

occurs at rate 5/6 and block size 96, and is equal to 1920 bits. The resulting output

encoded packet length is 2304 bits. Using the largest input packet length helps

accommodate all other possible lengths. Therefore, the total input bit sequence required is

103

1920 bits/packet * 100 packets = 192000 input bits (4.1)

Both the Encoder script.m script and the Encoder tb.vhd testbench include a code

loop that feeds the encoder the generated 100 packets for each code length and rate. The

following MATLAB pseudo code illustrates the idea:

% loop through all code rates
for i = 1:4,

if (i == 1)
R = 1/2;

elseif (1 == 2)
R = 2/3;

elseif (i == 3)
R = 3/4;

else
R = 5/6;

end

% loop through all block sizes in steps of 4
for zf = 24:4:96

% loop through all 100 input packets
for i = 1:100

%%% Encoding %%%

end
end

end

While the MATLAB implementation is relatively direct, dealing with a large input

sequence for a VHDL testbench provided a challenge. There are several approaches to

accomplishing this. One involves creating an ultra large shift register initialized with the

values of the 192000 input bits. Then, the bits can be shifted into the encoder during

operation. However, the Xilinx ISE tools experienced difficulty handling this large

testbench implementation. Another approach involves storing the input bits in an external

text file. The bits can be read and shifted into the design during operation. However, the

high count of text file accesses and the limited VHDL text file interaction tools make this

approach less than ideal. Our solution involved creating a separate block RAM entity that

104

houses the entire input bits vector. The block RAM is not synthesized with the design and

is strictly for testing purposes. This provided a simple and fast way of accessing the input

bits multiple times while operating the encoder.

Initial behavioral simulation runs uncovered several design defects. We used the

information provided by the simulation waveforms to refine the design. The final

encoder design passed all behavioral simulation runs correctly. The figures presented in

Appendix C depicts several captured waveforms of the comprehensive behavioral

simulation discussed above, highlighting different aspects of the encoder's operation.

Specifically, they present:

1. The waveform of the full behavioral simulation test.

2. A zoomed waveform illustrating the encoder working with rate 1/2.

3. A waveform of a full packet encoded with code rate 1/2 and block size 36.

4. A waveform of a full packet encoded with code rate 5/6 and block size 92.

5. A waveform illustrating the dynamic change of encoding rate.

6. A waveform illustrating the dynamic change of block size.

7. A waveform illustrating a packet-to-packet transition.

4.4 Timing Simulations

The aim of this process is to analyze the timing performance of the system. Timing

simulations consider the effects of clock frequency, components mapping, and routing.

They provide a fairly accurate idea of the performance of the design with a particular

clock frequency, and assist in estimating the system's throughput and power

consumption. Timing simulations are performed in conjunction with the hardware timing

verification process (see section 3.4.2).

105

Unlike behavioral simulations, timing simulations are complex calculations that

involve many parameters including the target device timing parameters, routing

information, gate fan-out and fan-in, setup times, and hold times. Therefore, timing

simulations require a considerably longer period of time to complete. It is not feasible to

conduct the same comprehensive simulation runs used in behavioral mode. For our

timing simulation purposes, we developed the EncoderJb_packet.vhd testbench,

available in Appendix B. This testing module interfaces with the encoder's top-level

VHDL module; and together with ModelSim, it simulates timing behavior while

encoding an input packet. The encoded output packet is captured and verified against the

software model's results.

Our initial timing tests revealed a few errors. Most of them were fixed through

ensuring some input signals are registered in the design. Adding the registers shortens the

critical path and enhances the timing performance. We also dealt with several issues

unique to timing simulations:

a. Unlike behavioral ones, timing testbenches must incorporate an artificial delay

time when changing an input signal. This is necessary in order not to violate

device hold times. We picked a delay of 1 ns for all changing input signals to

the encoder.

b. It is necessary to define all signals from time zero. If not done, this will result

in later undefined signal values, and hence simulation errors.

c. Setting constraints on the clock period may help the routing software achieve

better timing results.

106

After making the minor modifications to the design and testbench, the final encoder

passed the timing tests. Figure 4.8 depicts the waveforms generated by simulating the

encoder running on a 50 MHz clock frequency with code rate 1/2 and block size 24.

Figure 4.9 depicts the waveforms generated using code rate 5/6 and block size 96 with

the same clock frequency. In addition, Figures 4.2 to 4.6 above represent further

examples of timing simulations for the 802.16e LDPC encoder.

data in
start
reset

clock

rate
block size

data out

done out

out valid

input bit

mraLuifi
i

i

IPJ» _.
-[0011000

n

r
'
'112

iiMnjimn

nnuLuimuv

IMJWLTIMJ

rirniiMr

imjuiuui iLuunmu tmnmiiiinr

iiiJiHirau OEJiMim i i ^ ^
rnxxmsm mamaa t r a i O T B i r a ^

i

i:

hinmf—

i
i

i*

Figure 4.8: Post place-and-route simulation with code rate 1/2 and block size 24

data in WMIMiUBIIIl
start 1

rate ooo
block size 11100000

dataout L_
data out vec (0)

done out
out valid _ J

rfd i

niTimdiifiira HBBSIJUHDT.ILIIF Hll U M l M M l l l J T f l i iiBitiimunisB] r«ninnii[B™

JEEE

B U M iMUinmnL^

Tii l !;: ' '"f IIIHPI!;I;I .' j';!r' ^'(""IM'F '•

1

1 |3

. 1 n -i W
fo"

L

r
i«

Figure 4.9: Post place-and-route simulation with code rate 5/6 and block size 96

Through analyzing the timing simulations and the various timing reports generated by

the ISE suite, we determined that 80 MHz is the maximum clock frequency possible for

the encoder design. Clock frequency figures and a brief discussion on the encoder's

throughput are presented in the next section.

107

4.5 Resource Utilization and Throughput

4.5.1 Hardware Resource Utilization

The 802.16e LDPC encoder is implemented in two versions. The first implements the

memory controller Zf multipliers using look-up tables (LUT), while the other version

implements these multipliers using the available on-chip 18x18 dedicated multiplier

units. The following two tables summarize the device utilization of the two versions on a

Spartan-3 XC3S1500 FPGA chip.

Logic Utilization
Number of Slice Flip Flops

Number of 4 input LUTs

Used Available Utilization
5,266

12,143

26,624

26,624

19%

45%

Logic Distribution |

Number of occupied Slices

Number of Slices containing only related logic

|Number of Slices containing unrelated logic

Total Number 4 input LUTs
Number of Block RAMs

Number of MULT18X18s

INumbeTofGCLKs
Total equivalent gate count for design

6,587
6,587

r o
12,217

6

\ o]
1

13,312

6,587

6,587

26,624

32

32

8

49%
100%

0%

45%

18%

0%
12%

519,213[[

Table 4.2: Spartan-3 XC3S1500 device utilization for LUT-based implementation

Logic Utilization
Number of Slice Flip Flops

Number of 4 input LUTs

Used
4,366

11,169

Logic Distribution [
Number of occupied Slices
Number of Slices containing only related logic

Number of Slices containing unrelated logic
Total Number 4 input LUTs
Number of Block RAMs

JNumber of MULT18X18s
iNumberofGCLKs

Total equivalent gate count for design
ible 4.3: Spartan-3 XC3S1500 device utilization f

6,032

6,032

0
11,183

6
12

1

547,221
or multip

Available | Utilization
26,624

26,624

16%

41%

13,312

6,032

6,032
26,624

32
32

8

45%

100%

0%
42%
18%

37%
12%

ier-based im] jlementati

108

The multiplier-based encoder uses less device flip-flops, LUTs, and overall occupied

slices. However, the total equivalent gate count is higher than the LUT-based encoder

due to the use of dedicated multipliers. These optimized multipliers result in a slight

speed increase as will be illustrated in the following sub-section.

4.5.2 System Throughput

The throughput of the encoder, can be measured in terms of bits per second or

packets per second. It depends on three factors: the time to input a packet, the time to

process a packet, and the minimum time to output a packet for a particular clock-rate.

However, the coding algorithm dictates that the output packet is always longer than the

input packet. And when the system is generating the parity bits, it cannot accept any

input. Therefore, the rate at which packets can be input is the same as the output rate.

The encoder produces the output packet in two stages: first, the systematic bits are

passed, unaltered, to the output after 32 latency clock cycles and, second, the parity bits

are appended to the end of the systematic bits to create the output packet. The output

packet is produced in one contiguous block. While the time to output a packet is equal to

the length of the packet, the time to encode and output a packet is equal to the packet

length plus 32 clock cycles. The latter affects the throughput of the system.

In order to calculate the maximum throughput of the system, the maximum possible

clock frequency must be used. Table 4.4 presents the maximum clock frequency as

reported by the various implementation stages. These figures reflect the fully routed

design including input/output pins. It is expected that a higher clock frequency can be

used for the encoder core when in "normal use" as an internal core of a larger design (i.e.

excluding I/O pads and similar routes).

109

Process Name

Synthesis
Map

Place and Route

LUT-based Encoder

Clock Frequency (MHz)

102.365
82.864
79.962

Multiplier-based Encoder

Clock frequency (MHz)

102.365
87.374
80.263

Table 4.4: Maximum clock frequency as reported by implementation stages

Based on Table 4.4, we can average the maximum frequency to be 80 MHz. In this

case the minimum time to output a maximum size packet (block size = 96) is

(2304 bits + 32) / (80x106) = 29.2 u.s (4.2)

The associated maximum throughput rate is 78.9 Mbits/s or 34246 packets/s. The

throughput, however, varies with the packet length as illustrated in Table 4.5.

Output Packet

Length (bits)

576
672
768
864
960
1056
1152
1248
1344
1440
1536
1632
1728
1824
1920
2016
2112
2208
2304

Table 4.5: 802.16e LI

Time to encode and

output packet (us)

7.6
8.8
10.0
11.2
12.4
13.6
14.8
16.0
17.2
18.4
19.6
20.8
22.0
23.2,
24.4
25.6
26.8
28.0
29.2

DPC encoder throughp

Throughput

(M bits/second)

75.8
76.4
76.8
77.1
77.4
77.6
77.8
78.0
78.1
78.3
78.4
78.5
78.55
78.6
78.7

78.75
78.8
78.85
78.9

ut for all supported pa<

Throughput

(packets/second)

131578
113636
100000
89285
80645
73529
67567
62500
58139
54347
51020
48076
45454
43103
40983
39062
37313
35714
34246

± e t lengths at 80MHz
clock rate

4.6 Hardware on-chip Testing

The aim of this process is to confirm the operation of the system in hardware. As

such, this is not a simulation process, rather a real-life on-chip test. After the timing

110

simulations are completed, the final circuit is generated into a bit file that is ready to be

programmed unto an FPGA device for testing.

Our hardware testing module is the Opal Kelly XEM3010 experimentation board

[87]. The board houses the Spartan-3 XC3S1500 FPGA chip along with a USB 2.0

micro-controller that allows high speed data communications with the chip. The board

also features 32 MB of SDRAM and a phase lock loop (PLL) that is a multi-output clock

generator. As shown in [88], Figure 4.10 depicts the block diagram for the XEM board

showing the FPGA chip, the USB micro-controller, and the PLL among other

components. The identifiers between brackets are the IC model numbers used.

' • • • • • I I l | J W • • • •

f , .,— . — *

PROM
(XCF08P)

I
SDRAM

(MT48LC16M16)

PLL
(CY22393)

Spartan-3 FPGA
(XC3S1000-4FG320

orXC3S1500-4FG320)

1PLLCLK

581/0
2GCLK

10 I/O

58 I/O
2GCLK

2 Pushbuttons

'8LEDs

1 PLL CLK

XBUS(JP2)

YBUS(JP3)

Figure 4.10: Functional block diagram of the XEM board, figure taken from [88]

In addition to the hardware, the XEM board supports a flexible software application

programmer's interface (API) available in C++, Python, Java, and a Windows dynamic

link library (DLL) versions. This API facilitates the communication between the host PC

and the user's FPGA design. On the PC, one can develop a program that controls and

transfers data to the FPGA design using any of the above languages. On the FPGA, Opal

111

Kelly provides several VHDL modules to handle the USB protocol and hide its details

from the end user. Specifically, a host interface module is provided which communicates

with the USB micro-controller at one end and a shared bus at the other. The bus connects

to several entities named endpoints. Endpoints are VHDL modules that connect the

shared bus to the user design's signals to be controlled or observed. According to their

functionality, endpoints are classified into:

a. Wires that asynchronously transfer a signal's state into the design

b. Triggers that transfer a one-shot signal into the design synchronized to a

particular clock.

c. Pipes that synchronously transfer multi-byte values into the design.

Figure 4.11 is a visual representation of the interface's structure. It is noted that the

endpoint components are designated directions as IN or OUT depending on the user

design signals they interact with.

PC

Software
API and
Drivers

USB
M Controller

i USB
Cable

FPGA
Host Interface

Endpoint (Wire In)

Endpoint (Wire Out) •*-
User
Design

Endpoint (Trigger Out)-*

H Endpoint (Pipe In)

W-* Endpoint (...)

Figure 4.11: Opal Kelly interface structure

For our purposes we leveraged the XEM's flexibility to develop a software/hardware

testing solution. Our testing platform can be divided into two sides:

112

• On the PC side, we developed the following:

1. Text files holding the input test vectors (generated by MATLAB scripts).

We used a similar input vector to the one used in the comprehensive

behavioral simulations.

2. A C++ controller file, provided in Appendix D, which handles the

connection to the board, programming the device, supplying the test

inputs, capturing the resulting encoded packets, and storing them into text

files for verifications.

3. A Makefile that compiles our C++ code with the rest of the API and

produces the final software testing program.

• On the FPGA side, we developed a send/receive top-level VHDL module.

The encoder does not provide buffering for input and output bits. Therefore

we needed an extra VHDL module to store the input supplied by the C++

code and feeds it to the encoder, as well as capturing the serial output and

buffering it before transfer back to the PC. The TopLevel.vhd file in Appendix

B performs these tasks. Two extra block RAMs are used to host the incoming

and outgoing packets.

In addition, this top-level module connects several endpoints to the encoder. It

is worth noting that Opal Kelly designed their components to use minimal

resources, hence making a minimal impact on the user design's performance.

Figure 4.12 presents the design of the top level module as described here.

113

Pipe
IN ' <= D From PC T o P C < I

Pipe
OUT

I *) Wire IN Yrf
From PC

16-Bit

RATE

BLOCK SIZE

I
DATA IN

START

From PC

C J Trigger
r. IN

RESET

^
From PC

Wire IN

CLOCK

802.16e
LDPC

Encoder

OUT VALID

RFD }^>
To
Internal
FSM

DATA OUT

DONE OUT

Trigger _)
OUT To PC

• Trigger
IN

. Input/Output
" RAM Reset

Figure 4.12: Hardware testing top-level VHDL module

The top-level module was synthesized, mapped, and routed before the final circuit is

generated. The bit file was programmed unto the Spartan-3 chip via the C++ controller

file. The encoder passed all hardware tests and perfectly matched the expected behavior

of the software models. These tests concluded our testing and verification processes and

provided a measure of confidence in the working encoder design.

114

4.7 Summary

In this chapter, we described the structure of the 802.16e LDPC encoder as an IP

core. The usage of the core was explained by detailing the function and operation of the

various data and control signals.

In order to verify the functionality of the encoder, we passed it through three testing

processes; behavioral simulation, timing simulation, and hardware testing. Both

simulation processes confirmed the expected functionality and provided insight into the

encoder's resource utilization and performance. While the encoder's throughput depends

on the selected code length, the maximum throughput was calculated to be 78.9 Mbps at

a code length of 2304 bits and a maximum clock frequency of 80 MHz.

The Opal Kelly XEM3010 hardware prototyping platform was used to implement the

design on an FPGA chip. The design passed all hardware tests and matched the operation

of the software reference model.

115

Chapter 5

LDPC Encoders for In-Vivo RF Communications

5.1 Introduction

As introduced in Chapter 2, wireless implantable medical devices (IMDs) are part of

a revolution of innovative patient treatment and monitoring solutions. One of the main

challenges faced by wireless IMD designers is the low power consumption requirement.

Driving this requirement is the desired lengthy operation without the need for recharging,

the ability to incorporate multiple functions, and patient health considerations. This

chapter explores the suitability of LDPC encoder implementations for in-body

communications. We focus on our 802.16e LDPC encoder, as well as a convolutional

LDPC encoder, and contrast the power results with industry leading implantable devices.

Finally, options for improving the 802.16e encoder's power consumption to better fit

these applications are presented.

5.2 Power Measurement Tools

To evaluate the LDPC encoders' power consumption, the following power

measurement tools and methodology are utilized.

The LDPC encoders under study are implemented using Xilinx design tools and

target Xilinx FPGA devices. Therefore, the integrated "Xilinx XPower - Power

Analyzer" tool is a natural choice to perform power measurements. Furthermore, the

116

802.16e LDPC encoder utilizes specific Xilinx components which can only be evaluated

with their tools.

XPower is part of the Xilinx ISE software suite and can be used to estimate the power

consumption of a VHDL design post place-and-route. According to [89] the XPower tool,

reports the total power as:

Total Power = Static Power + Dynamic Power (5.1)

Here static power is the power consumed by the chip in quiescent state, that is, with

no signals toggling, and it is due to leakage currents of the transistors on the chip.

Quiescent power depends on the power supply, junction temperature, die size, and

process variation, and therefore is probabilistic with a typical value [90]. Power

estimation software usually reports the typical static power value for a set of device

parameters, and this value remains constant for all designs on the device. Dynamic power

is the additional power consumption caused by the switching activity of the signals in the

design and the associated capacitive loads charging and discharging. XPower reports the

static (quiescent) power as well as the dynamic power of the design.

XPower calculates power based on the concept that dynamic power consumption in

CMOS circuits is primarily due to switching activity. Each element (LUT, FF, BRAM,

routing segment) that can switch has a capacitance model associated with it. Clock

signals and primary input signals are assigned specific frequencies by the designer.

Synchronous elements are assigned activity (or toggle) rates relative to their associated

clock. User-supplied activity rates combine with device-specific capacitance models,

static power, and other data to produce a power estimate for a design.

117

The accuracy of the switching activity data is crucial in obtaining an accurate

estimate of power consumption. XPower calculates power as a summation of the power

consumed by each element in the design, which is given by:

P = CxV2xExF (5.2)

where P is the power in Watt, C is the capacitance in Farads, V is the voltage in Volts, E

is the switching activity (i.e. average number of rising transitions per clock cycle), and F

is the frequency in Hz. Here the capacitance is determined for the specific design that is

implemented on a specific device, and it is usually fixed during the characterization of

the routing resources of the design. The voltage is a fixed value for a specific device set

by default in the XPower interface. F x E is the total number of transitions for a specific

element; where frequency, or the activity rate of each signal in a design, is the most

variable element of the above equation. XPower incorporates the switching activity of

elements in the design through using any of the following data supplied by the user:

• Global default activity rate.

• Simulation results stored in a value change dump (VCD) file.

• Activity rates manually entered through XPower's graphical user interface

(GUI).

After the VHDL designs are synthesized and routed using the Xilinx ISE suite, place-

and-route simulation models are generated. These models are then used with Mentor

Graphics' "ModelSim" software to simulate the place-and-route behavior of the design.

The simulations record the switching behavior of all signals and components involved in

the design and in VCD files. The VCD files are then supplied to XPower yielding the

design's power estimate.

118

In order to evaluate and compare power estimates of encoder implementations, the

measurement environment was made as fixed as possible. This could be summarized

with:

Input: Randomly generated input.

FPGA device: Spartan-3 FPGA package 3sl500fg320.

HDL: VHDL.

Synthesis Tool: Xilinx XST (part of the ISE suite).

Routing Tool: Xilinx ISE suite.

Simulation Tool: Mentor Graphics ModelSim.

Simulation Frequency: 50 MHz.

Power Estimation Tool: Xilinx XPower.

The XPower interface can be used to modify the clock frequency to obtain more

measurement points. 100MHz and 250MHz clocks were used. In addition a single

measurement with a 50% global activity rate as a default value for all unspecified signals

was also recorded.

5.3 Power Measurements of the 802.16e LDPC Encoder

As presented in Chapter 3, the 802.16e LDPC encoder supports 6 code rates with 19

block sizes each. The minimum codeword length is 576 bits and corresponds to a block

size of 24 bits, while the maximum codeword length is 2304 bits and corresponds to a

block size of 96 bits. The largest amount of user information per packet is encoded using

the largest code rate (5/6), while the least amount is encoded with the smallest supported

119

code rate (1/2). Therefore, code rates 1/2 and 5/6 along with block sizes 24 and 96 were

used for the power estimates in order to capture the minimum and maximum.

\ > . Code Rate

Frequency\^
(MHz) ^ \

50
100
250

50 MHz with 50%
default activity rate

1/2
Block size =

24
(n = 576)

177
204
286

235

Block size =
96

(n = 2304)
175
203
285

233

5/6
Block size =

24
(n = 576)

181
212
306

239

Block size =
96

(n = 2304)
180
212
307

238

Table 5.1: 802.16e LDPC encoder power estimates, power in (mW)

The quiescent power reported by XPower was 142mW for this FPGA device. This

value remained constant for all block sizes, rates, and clock frequencies. As observed in

Table 5.1, the dynamic power increases as the clock frequency is increased. This is

expected as all elements in the design toggle faster at high frequency adding to the total

power consumption. However, the dynamic power varied slightly between the block

sizes. This is because XPower calculates the switching activity of all elements including

input and output ports as percentages relative to clock frequency, which results in slightly

different activity rates.

An increase in power was observed with the higher code rate. This is because the

larger amount of input processed by the system at a higher code rate results in higher

switching activity, hence higher dynamic power consumption. Despite the fact that higher

code rates require less system resources, the larger input processing effect is more visible

on the overall power consumption. These trends are illustrated in Figure 5.1.

120

320

100

Clock Frequency (MHz)

Figure 5.1: 802.16e LDPC encoder power estimates with rates 1/2 and 5/6, block sizes 24

and 96 at several clock frequencies

From the results above, it could be concluded that the system's power consumption is

between the rate 1/2 values and the rate 5/6 values. For example at 50 MHz and under

normal conditions the average is 178 mW. Finally, an observation is made regarding

setting the global activity rate to 50% of the clock frequency. XPower uses this default

value for elements not specified by the VCD file, increasing the total activity rate and

power consumption of the system. This is a pessimistic rate that was observed to be

higher than normal operation and is an approximated indicative of a worst case power

usage at that particular frequency.

5.4 The Convolutional LDPC Encoder

5.4.1 Introduction to the Convolutional Encoder Implementation

The convolutional encoder used for this study is based on the design presented in

[91]. As per a classic convolutional code, any output code bit is generated using previous

121

input bits and previous code bits. Hence, an important aspect of the convolutional LDPC

(LDPC-CC) encoder is its memory, which indicates how many previously generated bits

the encoder can store (and hence remember) to generate the current code bit. The

performance and circuit complexity of the encoder increase as the memory increases.

This particular design is a rate 1/2 encoder with memory M = 128. Figure 5.2 illustrates

the architecture of the encoder.

Figure 5.2: Block diagram of LDPC-CC encoder, figure taken from [91]

From [91], the LDPC-CC code-bit generation equation, for a rate 1/2 code, at time t :

nM + <j> can be written as:

v{nM + (p) = v((n - \)M + <p) + v(nM - SM (</>)) + ^ u(nM - S}u) (0)) (5.3)

Here, n >0, <p is the phase and can take a value in {0, 1, 2, • • •, M - 1}, 8 (.) and

£/"'(.) are functions of the code which can take values in {1, 2, • • • ,M - 1} and are

related to its parity-check matrix. The (+) sign implies an XOR operation. u(t) represents

the information bit at time t. For further details on LDPC convolutional codes see [4].

The LDPC convolutional encoder system described above, is implemented using

VHDL. XOR gates are utilized to perform all parity-check operations and shift registers

implement the memory functionality. The final system is synthesized for Xilinx FPGA

122

devices and is placed and routed targeting the Spartan-3 chip series. Behavioral

simulations and post place-and-route simulations were performed to provide basis for

power estimation.

LDPC-CCs have a disadvantage when comparing them to the block ones; that is the

need for termination. Like traditional convolutional codes, any encoded sequence needs

to be terminated, returning the encoder to the initial (known) state. This is usually done

by transmitting a special termination bit sequence that does not convey any user

information. The necessary termination sequence circuit adds to the circuit complexity

and hardware overhead of the overall LDPC-CC encoder. The above convolutional

encoder does not include the termination circuit necessary to generate a termination

sequence. A solution for such circuit was described in [92] and could be implemented

efficiently on FPGA devices. Figure 5.3 illustrates the proposed termination circuit

around the original encoder. At the time of this study the VHDL implementation for the

encoder with termination was not available, therefore power measurements are performed

using the original encoder, and reported resource and area data are used to estimate the

termination circuit's effect on the overall power consumption.

u(t)

u(t)

m

v2(t).

Termintate

Original LDPC-CC Encoder

"(t-M^

v2(t-M)
*\ D J D

IXI from 4M

MD

it i t « t*

•HD

—*\D

Figure 5.3: Block diagram of termination sequence generation circuit of LDPC-CC
encoder, figure taken from [92]

123

1.E+00

1.E-01

$ 1.E-02
CO

o

u5 1.E-03

1 .E-04

1.E-05

0 1 2 3 4
Eb/No [dB]

Figure 5.4: 802.16e LDPC-BC vs. LDPC-CC performance example. (Information bit
length = 600 bits), figure taken from [93]

Before comparing the power consumption of the two encoders it is beneficial to

briefly present the coding performance of 802.16e LDPC-BC codes compared to

convolutional counterparts. The authors of [93] argue the benefits of including LDPC-CC

codes into the currently under-development 802.16m standard, and they use the LDPC-

BC codes supported in the 802.16e standard as examples. The performance of the

802.16e codes, as reported by [94], is compared to LDPC-CC versions derived from the

block ones using the literature and method proposed by Ali Pusane, et al. [95]. As

observed in Figure 5.4 above, The LDPC-CC codes perform better than the LDPC-BC

ones for the simulated range. The authors of [93] further conclude that in addition to

providing comparable performance, LDPC-CC codes hold important decoding and

encoding complexity advantages and, therefore, are good 802.16 FEC candidates.

124

LDPC-CC WER

€>- LDPC-CC BER

\ LDPC-BC[4] WER

5.4.2 Power Measurements of the Convolutional LDPC Encoder

The convolutional encoder used for this study is a (128,3,6) encoder. Where 128 is

the memory of the system and (3,6) indicate code rate 1/2. Therefore only rate 1/2

measurements were possible. In order to facilitate comparison with the block encoder,

two input vector lengths were used, specifically 288 bits for n = 576, and 1152 bits for n

= 2304. The results are summarized in Table 5.2.

^ > . Code Rate

F r e q u e n c y \ ^
(MHz) ^ \

50
100
250

50 MHz with 50%
default activity rate

1/2

n = 576

160
174
216

160

n = 2304

162
178
225

162

Table 5.2: LDPC-CC encoder power estimates, power in (mW)

As with the block encoder, the quiescent power reported by XPower was 142 mW for

this FPGA device. This value remained constant for all measurements. The dynamic

power followed a similar trend as in the block encoder, increasing as the clock frequency

increased and varying slightly between the code lengths.

From these results, we could characterize the system's average power consumption.

For example at 50 MHz and under normal conditions the average is 161 mW. When

setting the global activity rate to 50 % of the clock frequency, XPower uses this value for

elements not specified by the VCD file. Unlike the block encoder which has to support

many code rates, this encoder uses one code rate and an array of XOR gates to implement

the parity-check operations, and these gates are all in use during regular encoding

operation. Therefore, there are very few un-specified signals and elements. And setting a

125

default activity rate does not contribute any significant extra power consumption. The

LDPC convolutional encoder's power measurements are graphed in Figure 5.5.

230

220

210

200

| 190

I 180
a.

170

160

150

140

/

-»-R=1/2, n = 576
-A- • R = 1/2. n = 2304

50 100

Clock Frequency (MHz)

250

Figure 5.5: LDPC-CC encoder power estimates with rates Vi at several clock frequencies

5.5 Power Consumption Comparison of the LDPC-BC and
LDPC-CC encoders

In this section, we will compare the power estimates obtained for the 802.16e LDPC

encoder and the convolutional LDPC encoder. Table 5.3 below combines the power

results for the two encoders at rate 1/2.

^ > ^ Encoder

Frequenc^^.
(MHz) ^ \

50
100
250

50 MHz with 50%
default activity rate

LDPC Block Encoder

R = 1/2,
n = 576

177
204
286

235

R = 1/2,
n = 2304

175
203
285

233

LDPC Convolutional Encoder

R = 1/2,
n = 576

160
174
216

160

R = 1/2,
n = 2304

162
178
225

162

Table 5.3: LDPC-CC vs. 802.16e LDPC encoder power results for rate 1/2, power in
(mW)

126

It is evident that the power consumption of the convolutional encoder is lower than

that of the block encoder at all frequencies. Figure 5.6 illustrates this power difference.

300

100

Clock Frequency (MHz)

Figure 5.6: LDPC-CC vs. 802.16e LDPC Encoder power results at rate 1/2

Given that the static power component of both encoders is the same at 142 mW,

power gains are achieved entirely with the dynamic component. We could define the

power gain achieved with the convolutional encoder as the percentage reduction of

dynamic power consumed by the convolutional encoder relative to that consumed by the

block encoder. Therefore, looking only at the dynamic power, the convolutional encoder

power gain can be defined by Equation 5.4:

C. E. Power Gain = [(B. E. Dyn. Power - C. E. Dyn. Power) •*- B. E. Dyn. Power] x 100

(5.4)

where C.E. is the convolutional encoder and B.E. is the block one. The convolutional

encoder achieves 40-49 % power gain over the 802.16e encoder as presented in Table

5.4.

127

^ s . Encoder

Frequency^^
(MHz) \

50
100
250

LDPC Block
Encoder

R = 1/2,
n = 576

35mW
62mW
144mW

R = 1/2,
n = 2304

33mW
61mW
143mW

LDPC Conv.
Encoder

R = 1/2,
n = 576

18mW
32mW
74mW

R = 1/2,
n = 2304

20mW
36mW
83mW

Conv. Encoder
Power Gain

R = 1/2,
n = 576

49%
48%
49%

R = 1/2,
n = 2304

39%
4 1 %
42%

Table 5.4: Convolutional encoder power gain (savings) based on dynamic power
consumption

These results are further supported by the hardware resource utilization for both

designs. As reported by the ISE tools, the block encoder uses 19% of available Slice flip-

flops and 45% of 4-input lookup tables occupying 49% of available slices on the Spartan-

3 device. This is a much higher hardware usage than the convolutional encoder which

posts 1% for all of the above three categories. Table 5.5 is a comparison of the resource

utilization for the two designs.

" ~ \ ^ ^ Encoder

Category ^ ^ - \
Slice Flip-Flops

4-input LUTs
Occupied Slices

Block RAMs
Total equivalent

gate count

LDPC Block Encoder

5,266 of 26,624 (19%)
12,143 of 26,624 (45%)
6,587 of 13,312 (49%)

6 of 32 (18%)

519,213

LDPC Convolutional Encoder

268 of 26,624 (1%)
220 of 26,624 (1%)
252 of 13,312 (1%)

Oof 32(0%)

3,663

Table 5.5: FPGA resource utilization comparison, Spartan 3 - package 3sl500fg320

The circuit complexity of the block encoder comes from its compatibility with the

IEEE 802.16e standard. The full support of all code rates and block lengths specified in

the standard along with the ability to switch between rates and lengths on-the-fly requires

a high degree of flexibility from the design. The design is an intricate network of

components such as FIFO buffers, shift registers, circular-pointers, XOR adders, memory

controllers, etc. Furthermore, each code rate is associated with a corresponding parity-

check matrix. These matrices are further split into sub-matrices and stored in the chip's

128

block RAM units which in turn require hardware resources to implement and route their

bus inputs and outputs. But perhaps the most resource consuming aspect of the design is

explained by the very definition of block encoders. The 802.16e LDPC encoder must

receive the fixed length input and build the output code word using all the information

bits. This means processing large numbers of bits during operation. The largest input

packet length in this design is 1152 bits, requiring matching length shift and storage

registers as well as XOR adders.

By contrast, the LDPC-CC encoder is a relatively simple design. It is a uniform bank

of XOR gates with phase-controlled multiplexing. The encoded output is produced on a

separate output port using the equations specified above and with no buffering. Since the

encoder supports one code rate and no specific packet length, no flexibility complexity is

incurred. The design implements the parity-check matrix with the multiplexed XOR

gates, therefore no block RAM storage is required either.

At a first glance, the simpler convolutional encoder with low hardware usage and low

power consumption is an obviously more attractive solution for low power applications

than the block encoder. However, it is important to include the termination circuit

discussed in Section 5.4.1 to obtain a more accurate comparison. The VHDL

implementation of the LDPC-CC encoder with termination was not available for this

report. However from [92] and experimental results, estimates could be extrapolated. As

tabulated in [92], the LDPC-CC encoder with termination requires approximately 7 times

the hardware resources required by the encoder alone. ASIC implementations of this

design show similar area scaling with the terminated encoder occupying 8 times the area

of the un-terminated one. However, power consumption may not scale with the same

129

ratio, rather from several results obtained at the VLSI lab in the University of Alberta, the

terminated ASIC encoder consumes 2-3 times more power than the un-terminated one. If

these ratios are applied to the dynamic power component of the above FPGA designs, the

convolutional encoder's power results will approach those of the block encoder.

5.6 LDPC Encoders Analysis for Wireless Implantable Medical
Devices

5.6.1 Power Efficiency of LDPC Encoders for Wireless In-Body
Communications

The high attenuation and varying nature of the wireless channel through the human

body presents the need for integrating error correction mechanisms to enhance the

reliability of transmitted data. As mentioned in Chapter 2, it is safe to assume that a raw

wireless data transmission for a typical implant may not achieve a better BER than 1 x

10" . However, a power tradeoff exists. The integration of ECC encoders/decoders adds

to the circuit complexity of the implant and increases power consumption levels. While

coding results in lowering the signal-to-noise ratio required at the receiver to achieve

reliable transmissions. This means to achieve a similar BER, coding lowers the required

transmit signal power, thus ultimately resulting in lower overall power consumption. This

tradeoff presents a couple of questions:

• How power-efficient is a certain ECC code for in-vivo wireless links?

• What is the minimum transmit power required to achieve reliable in-vivo

transmission with a certain ECC code?

We will attempt to answer these questions concentrating on the encoders discussed in

this chapter.

130

A typical wireless medical implant communicates with an external monitor. MICS

rules specify that implant transmitters must operate in the 402-405 MHz band while

maintaining an effective isotropic power level less than 25uW (or -16dBm). This is a

limit to the radiated power out of the human body, not necessarily the transmit power of

the implant. In addition, this restriction suggests that the uplink, from the implant to the

monitor, is the power consumption critical path. In section 2.4.2, we mentioned that the

minimum path loss through the human body was approximately 23 dB with a maximum

of 50 dB. This implies that maximum implant transmit power should range between 5mW

to 2.5W in order not to exceed the MICS limit. However the minimum implant transmit

power (not exceeding the MICS limit) required to achieve reliable communications is a

more important factor to this study. We will derive a formula to evaluate the minimum

transmit power of an implant with and without the use of ECC codes. This method is

based on the studies carried out in [96] and [97].

There are several sources of signal loss that may encounter a transmission from the

transmitter to the receiver:

• Body path loss: This is the attenuation of the signals through the human body

as discussed in Chapter 2. A definitive in-body path loss model does not exist,

however simulation studies could approximate the body path loss factor. As

per [96], we will use 50 dB as the body path loss (BPL) factor at 403 MHz.

• Free-space path loss: Attenuation through free-space in a line-of-sight can be

modeled with Friis' formula:

(x Y
"BX ~ "TX^T^R

K4nd j
[W] (5.5)

131

Where PRX and PTX are the power at the receiver and transmitter respectively,

and GT and GR are the transmitter and receiver antenna gains respectively. X

represents the wavelength used and d is the separation distance between the

Tx and the Rx which is assumed to be larger than the far field (%_)•

Reflections losses: These are the extra losses due to reflections and non-line-

of-sight transmission. These losses can be modeled through the inclusion of a

path loss exponent to the separation distance in Friis' formula. The power at

the receiver according to the modified Friis' formula becomes:

P - P G G
1 RX 1TXKJTKJR

(x Y i
K4*J

[W] (5.6)
d"

• Noise at the receiver: This noise originates from two sources:

o Thermal noise, which is equal to kxTxB, where k is Boltzman's

constant, T is the temperature in Kelvin, and B is the signal bandwidth,

o Receiver noise figure (RNF), which is receiver dependent.

The total noise at the receiver (N) becomes:

N = kxTxBx\0{RNFno) [W] (5.7)

After identifying the noise sources, we can define the signal power to noise power

ratio (S/N) keeping in mind that S/N is different than, but related to, SNR. The later is a

quantity used frequently in coding theory and is equal to 101ogio(Eb/N0).

A ^ i L i L ^ Q - ™ (5.8)
N N0

Where r\ is the spectral efficiency measured in bits/Hz, Eb is the energy per bit, and

N0 is the noise power spectral density.

132

The signal power at the receiver can be used with the noise at the receiver to re-write

Equation 5.8. Thus, substituting Equations 5.6 and 5.7 we get:

S_ Pnx _Jll0SNnn0 (5 9)

N kTBlO RNF/10

Adding the body path loss factor ioBP1710 and re-arranging Equation 5.9 (assuming GT

and GR to be unity), we get the minimum transmit power that achieves SNR at the

receiver:

P -
1 TX

f4jrY

V X J
d"kTBT]lO^K+mp+B'L>,w [W] (5.10)

To compute the energy per bit, we divide the transmit power by the data throughput

R. However since rj = R/B, the energy per bit equation reduces to:

J-IT 'TX R

dnkTWSm+™F+EPLVn [J / b i t] (5 n)

If the transmitted data is uncoded, it would require an SNR of 10.4 dB to achieve a

BER of 10~6 [96]. Therefore using this SNR value with the above equations provides a

measure of the minimum required transmit power, or energy per bit, to achieve this BER

level. However, if an ECC code is employed, the SNR required (SNRC) will be lower, and

the coded spectral efficiency becomes r\c = RCR/B where Re is the code rate. Thus from

Equation 5.10, the minimum required transmit power for a coded system with code rate

RAs:

s2

P
1 TX,C

I d"kTB n io (5 M c + w + S P i) / 1°
V '* J

And consequently, the transmit energy per bit becomes

d"kTBcfjclO
{sm^mF+BPL)m [W] (5.12)

133

E - TX'C PTV r- (ATT ̂

KA j
dnm()(SNRc,RNF,BPLyW [w] {$ j 3)

ReR

Or

ETX,c=ETx^
SNRc~sm")m [J/bit] (5.14)

Where ETX,U is the same quantity defined through Equation 5.11, SNRu is the

uncoded SNR, and The term SNRc-SNRy is called the coding gain.

A final step to this derivation is accounting for the extra power cost of the

encoder/decoder at the implant. For the purposes of our study, we will consider the

scenario where only an encoder is integrated at the implant. It has been shown that

including the decoder hampers the energy efficiency requiring 10-100 times more power

at short distances, as the decoder typically consumes 2-3 orders of magnitude more power

than the encoder [96]. Furthermore, the monitoring device rarely transmits and, unlike the

implant, is not power constrained. Thus the monitor's signal power may be raised more

freely to counter the effects of noise. A very simple wake-up receiver circuit may be

included in the implant to accommodate for the monitor's commands. To get the total

minimum transmit energy per bit we add the extra power cost of the encoder (Penc) to

Equation 5.14:

ETolal=Em<u\0
(SNRc-SNRu)m^ [J/bit] (5.15)

RcK

Equation 5.15 can be used with Equation 5.11 to evaluate the power efficiency of

ECC codes compared to uncoded systems at various distances. We performed this

evaluation for the LDPC-CC and LDPC-BC encoders discussed in previous sections.

In addition to the power consumption of the encoder, we need to specify several other

parameters required in Equations 5.11 and 5.15. The values are chosen similar to the ones

134

used in [96] and [97], and are presented in Table 5.6. It is noted that while the encoders

actually run at much higher frequencies of 50MHz or 100MHz, the data throughput rate

is limited by the MICS bandwidth to only 300 kbps, therefore it is assumed the encoders

run for 0.6% of the time (at 50 MHz). In Table 5.6, PLE stands for the path loss

exponent.

T, K°
300

B, kHz
300

R, kbps 1 RNF, dB
300 5

BPL, dB
50

f, MHz
403

PLEn

3
Table 5.6: Parameters used in power calculations

The SNR values at BER of 10~6 for both encoders are also required to reflect the

coding gain achieved using the LDPC-CC or the LDPC-BC code. Without an exact

hardware testing result for an encoder/decoder pair, approximation is needed. The SNR

performance of a certain LDPC code depends on several factors including code rate, code

length, modulation technique, channel model, decoder implementation and iteration

count, etc. However for the purposes of this study, we use approximate SNR results for

systems presented in literature and show relevant resemblance to our LDPC codes. For

the block encoder, we approximate the SNR to be 3.8 dB for rate 5/6 and 2.1 dB for rate

1/2. These values reflect the 802.16e code performance by the systems presented in [98,

99, 100]. For the convolutional encoder, we approximate the SNR value to be 3.2 dB

[96]. We initially evaluate the energy efficiency of the encoders in their current state as

FPGA cores. The XPower estimates summarized in Table 5.3 are used with the

appropriate SNR values to plot the minimum transmit energy for the coded system

compared to the uncoded one versus varying distance from 25 cm to 10 m. Figure 5.7

compares the block encoder FPGA core, at code rate 1/2, to the uncoded system. Figure

5.8 evaluates the convolutional encoder's energy efficiency at the same code rate.

135

" 1 0 I 1 1 1 1 i i i i i I

0 1 2 3 4 5 6 7 8 9 10
Distance in m

Figure 5.7: Minimum transmit energy per bit for 802.16e LDPC encoder (FPGA core)
compared to an uncoded system, at rate 1/2, frequency 50 MHz, BER of 10"6

-14 I I I I I l l l l
1 0 i i i i i i i i i i I

0 1 2 3 4 5 6 7 8 9 10
Distance in m

Figure 5.8: Minimum transmit energy per bit for LDPC-CC encoder (FPGA core)
compared to an uncoded system, at rate 1/2, frequency 50 MHz, BER of 10"6

136

As expected, when compared to an uncoded system, the FPGA implementations of

both encoders are energy inefficient at all distances. While the encoders provide

significant improvements in data reliability, their high power cost on the FPGA platform

conflicts with IMD requirements rendering them as inefficient encoder choices.

ASIC devices provide significant power reductions over FPGA devices. This is due to

the FPGA's programmability, where designs on such devices are known to consume

much higher power than the same designs implemented on power-efficient ASICs. For

instance, the static power component consumed in the FPGA device would be greatly

reduced as ASICs can be made to use little to no power while in wait or sleep modes.

Therefore, focusing on the dynamic power component, the figures recorded in Table 5.4

show 33 mW and 20 mW for the block and convolutional encoders at 50 MHz

respectively. These figures are in the range of reasonable power consumption for wireless

IMDs and warrant a further investigation of ASIC as the underlying technology for these

encoders.

The gap between FPGA and ASIC technologies has been studied in literature. In

[101] it is reported that the area of an FPGA design which uses LUT-only logic can be

reduced 35 times when implemented on a similar process ASIC. The area gap is lowered

to 18 times when the design utilizes hard blocks of memories, multipliers, and

accumulators. When it comes to power, the authors of [101] report that the gap is on

average 14 times for dynamic power consumption. Static power reduction is harder to

quantify. Static power, which is predominantly due to transistor leakage currents, is

process dependant, and other factors such as worst case leakage estimates and maturity of

the process play a main role in characterizing the static power. However, the authors did

137

find a correlation between the area and the static power where the correlation coefficient

of the static power gap to the area gap is 0.8. This is a reasonable correlation since the

transistor width is normally proportional to the static power consumption, and the total

area reduction partially reflects a total transistor width reduction between FPGAs and

ASICs. If these scaling factors are applied to the encoder designs under study, the static

power consumption of 142 mW would scale down to 9.9 mW. The block encoder's

dynamic power at 50 MHz would be reduced to a mere 2.4 mW making the total power

consumption 12.3 mW. The convolutional encoder would consume 11.3 mW. With these

figures, the encoders would perform efficiently in wireless IMD applications. Another

study shows that, considering all of the power saving options, FPGA to ASIC design

conversion could save up to 20-50% on power consumption [102]. This would bring the

power figures to 35.2 mW and 32.2 mW for the block and convolutional encoders

respectively. These might be over estimates as a hardware implementation of the

convolutional encoder based on the design discussed above was able to achieve 8.6 mW

at 250 MHz frequency [91]. With the normalized power being 0.034 mW/MHz, this

ASIC implementation would consume 1.7 mW during operation at 50 MHz. This

measurement is much closer to the estimate obtained using the gap technique provided in

[101].

Figure 5.9 re-evaluates the energy per bit efficiency for the 802.16e LDPC encoder

using the 12.3 mW power estimate. Similarly, Figure 5.10 re-evaluates the energy per bit

for the convolutional encoder of [91] using the supplied power estimate of 1.7 mW.

138

- | 0 I i i i i i i ' 1 i I

0 1 2 3 4 5 6 7 8 9 10
Distance in m

Figure 5.9: Minimum transmit energy per bit for LDPC-BC encoder (ASIC estimate)
compared to an uncoded system, at rate 1/2, frequency 50 MHz, BER of 10"6

-10 I i i i i i i i i i I
0 1 2 3 4 5 6 7 8 9 10

Distance in m

Figure 5.10: Minimum transmit energy per bit for LDPC-CC encoder (ASIC estimate)
compared to an uncoded system, at rate 1/2, frequency 50 MHz, BER of 10"6

139

It can be concluded from the figures that ASIC implementations of the encoders

under study are more energy efficient options for wireless in-body communications than

their FPGA counterparts. The block encoder becomes more energy efficient than the

uncoded system at distances of 5 m and above. The lower power convolutional encoder

becomes efficient earlier around 3 m. And in the case of a terminated LDPC-CC encoder,

that consumes 2-3 times more power, the crossover point will be pushed towards the 4 m

mark. These are encouraging results and show that low power construction of LDPC

encoders can provide high reliability of data transmission while maintaining acceptable

low power consumption.

The above results agree with the conclusions reached in [96]. In that study, several

ECC coding options and their encoders were evaluated with the LDPC convolutional

encoder consuming the least power for distances above 4 m.

5.6.2 Comparisons with Industry Leading IMDs

In order to gain a practical perspective into using LDPC encoders for in-body medical

applications, it is important to mention industrial achievements to date and discuss their

encoders' capabilities and limitations.

One of the industry leaders in medical implant communication services is Ottawa-

based Zarlink Inc. In May of 2007, they introduced the world's highest performance

implantable grade radio chip for in-body wireless communication systems, namely the

ZL70101 chip [78].

The ZL70101 is an ASIC RF device that provides half-duplex communication with

high data rates of up to 800 kbps, and operates in the 402-434 MHz frequency spectrum.

Using a minimum of 2.1 Volts power supply, it needs only 5 mA of electrical current

140

while in continuous transmit/receive mode and down to 1 mA in low power mode. This

translates into 11 mW of power consumption while in operation mode. It is expected that

the encoder/decoder pair consumes even less power than the overall device. This device

employs Reed-Solomon error control codes together with cyclic redundancy check

(CRC) error detection for reliable wireless transmission.

In comparison, the block and convolutional LDPC encoders presented in our study

are implemented on an FPGA device, and on average consume 178 mW and 161 mW at

50 MHz respectively. It is evident that, in their current form, these encoders operate at

much higher power consumption levels than the industry's leading device, and are not

ready for implant applications. However, as we presented in the previous section, ASIC

implementations of these encoders may achieve comparable power consumption.

As per performance, LDPC codes are known to outperform Reed-Solomon codes.

When the circuit complexity of the encoder and the SNR performance were considered in

[96] and [97], it was shown that the LDPC-CC code consumes less energy per bit than

the selected Reed-Solomon code at all distances. Our 802.16e LDPC-BC codes show

comparable SNR performance to the LDPC-CC code presented in those studies, and the

estimated 12 mW power consumption of the ASIC encoder compares well to industry

standards.

With high throughput, superior code performance, and estimated low power

consumption, ASIC implementations of the 802.16e LDPC encoder and the LDPC-CC

encoder stand to make viable choices for wireless in-body transceiver devices.

141

5.7 Power Consumption Improvements

Aside from the substantial power gains achieved from transferring the encoder

designs from FPGAs into ASICs, There are several possible approaches that may help

improve the power gains further:

• The block encoder under study is designed for compatibility with the IEEE

802.16e standard. This involves high hardware overhead due to the multi-rate and

multi-mode support. Compatibility with the standard is not a requirement for

IMDs, and this overhead may be minimized via tailoring the encoder for a

specific rate and/or length to a specific application. Eliminating extra code rates

and the supporting control circuitry will lower the hardware usage and area, and

consequently lower the overall power consumption.

For example, if the 5/6 code rate and the 576 code length are exclusively selected,

the block encoder's hardware usage may be lowered by a factor of 15 times.

• The choice ofFPGA devices may affect the power consumption level. The Xilinx

Spartan-3L devices offer 60% reduction in quiescent power consumption (99% in

hibernate mode) compared to the regular Spartan-3 chips [103]. These reductions

bring the FPGA-based encoders' power levels much closer to implant

requirements and close to ASIC levels.

• The implementation of sleep power states on the chip-level can reduce the power

cost of the encoder significantly. As we mentioned earlier, due to the MICS

limitations on data rates the encoders will be running for 0.3-0.6 % of the time.

Therefore, integrating mechanisms for shutting down the encoder when not in

142

operation will improve the overall power consumption of the implant and enhance

battery life.

The results and estimates recorded in the previous sections provide encouraging

conclusions regarding the use of LDPC encoders in wireless medical implant

applications. And the improvement ideas presented here provide feasible directions for

future investigation and research work.

5.8 Summary

In this chapter, we investigated the suitability of our 802.16e LDPC encoder with

wireless implantable medical devices. A convolutional LDPC encoder design was also

introduced. The FPGA designs' power consumption was categorized using Xilinx'

XPower tool, which uses signal switching activity rates as a basis for determining the

dynamic power consumption. Upon comparing the power estimates, the LDPC-CC

encoder showed a 40-49 % dynamic power gain over the LDPC-BC encoder.

To evaluate an encoder's power/energy efficiency for in-vivo communications, we

presented a mathematical model that defines the minimum required transmit

power/energy to achieve a target BER. The FPGA designs were evaluated and showed

their inefficiency for IMD applications. However, a further investigation into transferring

these designs to ASIC technology proved promising. ASIC power estimates appear to be

in the desired low-power range for medical implants. We conclude that LDPC codes'

strong performance along with a low power encoder implementation can be a practical

choice for wireless IMDs.

143

The final section provided several ideas that aim to improve the power consumption

of the encoders and include: limiting the code rate/length support on the block encoder,

utilizing low-power FPGA devices, and implementing deep sleep power states on implant

transceiver chips.

144

Chapter 6

Conclusions and Future Work

6.1 Project Results and Analysis

The main goal of this project was to design and implement an IP core of an 802.16e

compatible LDPC encoder. To accomplish this goal a number of issues had to be

addressed.

First, computationally-effecient block LDPC encoding algorithms were researched.

Second, the compact structure of the supported LDPC codes was utilized to achieve a

low-complexity implementation. The compact representation of the parity-check matrices

in the 802.16e standard provided the opportunity to minimize memory storage

requirements. This was accomplished by the selection of a minimal fixed-point number

representation to store the semi-scaled shift-values of the parity-check matrices. Third,

the encoding algorithm was implemented using parallelism and hardware re-use in order

to minimize the FPGA resource requirements. Further memory savings were achieved by

implementing the specific forms of the T"1 and ET"1 sub-matrices as hardware multiplier

units not requiring any memory storage.

The final design, as presented in Figure 3.22, was implemented in VHDL as an IP

core. The system passed all software verification steps. Additionally, a real-life hardware

implementation on the Opal Kelly XEM3010 hardware prototyping platform was

confirmed to work correctly. The maximum clock speed of the design was determined to

145

be 80 MHz with a maximum throughput of 78.9 Mbps or 34246 packets per second. The

design occupied 49% of the available slices on a Spartan-3 XC3S1500 FPGA chip and

18% of the block RAM resources.

Another goal for this project has been to study the power consumption of our LDPC

block encoder, and to evaluate its suitability for low-power wireless implantable medical

devices. While it is possible to integrate an encoder/decoder solution on an implant, It has

been shown that the decoder typically consumes 2-3 orders of magnitude more power

than the encoder [96]. Moreover, monitoring devices are not power-constrained and are

able to adjust their transmit power levels more freely to achieve reliable transmission.

Therefore, we considered the scenario where only the encoder is included at the implant.

The power consumption of the 802.16e encoder, and a convolutional LDPC encoder

design from [91], was estimated and compared. The 802.16e LDPC core averaged at 178

mW of total power while the relatively less-complex LDPC-CC averaged at 161 mW.

The static power on the FPGA device measured at 142 mW, while the rest of the power

cost was due to the dynamic power caused by the switching activity of the signals in the

designs.

In order to evaluate the power efficiency of these encoders for wireless IMD

applications, a mathematical model was developed to calculate the minimum transmit

power required to achieve a target BER. The method used is based on the work presented

in [96] and [97]. When compared to an uncoded system, it was evident that the encoder

FPGA IP cores faired worse than the uncoded system over the target communication

distance of 25 cm to 10 m. However, ASIC implementations are known to be more

power-efficient, hence approximations were made to estimate the encoders' power

146

consumption if they were to be implemented on ASIC devices. The ASIC estimates were

re-evaluated and the results showed that the 802.16e LDPC encoder is energy-efficient

for distances of 5 m and above, while the lower power LDPC-CC encoder becomes

efficient starting at 3 m. These results are based on reported approximation figures and

are not as accurate as measuring the power on actual ASIC designs. However, they do

provide encouraging results and illustrate that, if implemented on power-efficient ASICs,

these encoders can be suitable choices for wireless implant applications.

When compared with industry-leading devices, the estimated ASIC power

consumption of less than 15 mW makes both these encoders feasible choices for medical

implants and warrant further investigation into the design and implementation of LDPC

codes for these devices.

6.2 Future Work

The design process of the implemented encoder targeted compatibility with the

802.16e standard, low hardware utilization, and low latency. Future work may include re­

visiting the design process to target more efficient hardware implementations. Ideas such

as pipelining and parallelism may be investigated further to try and improve the encoders

speed and throughput. The next version of this encoder core should include support for

the 2/3A code rate. The scaling operation for this code rate requires a modulo function

implementation instead of the divide and truncate approach used in the other rates.

As per power, it would be interesting to revisit the design with power consumption in

mind and investigate power saving options. Another idea would be to investigate the

power consumption of the encoder on low-power FPGA devices such as the Spartan-3L

147

chip series and others from competing vendors. Additionally, separating the various

supported code rates and lengths into individual LDPC encoders would sacrifice the

compatibility with the standard, while improving the power consumption for each

encoder through eliminating extra control circuitry and resources. This would provide the

opportunity to evaluate each code rate for use with wireless medical implants.

Lastly, to further this research towards a definite answer, implementing the 802.16e

encoder on ASIC should be considered. An ASIC implementation would provide the

means to measure the actual power consumption, and may possibly be suitable for real-

life implant experimentation.

148

Bibliography

[1] C. E. Shannon, "A mathematical theory of communications: Parts I and II," Bell
Syst. Tech. J., vol. 27, pp. 379-^23, 623-656, 1948

[2] R. Togneri, C. J. S. deSilva, Fundamentals of Information Theory and Coding
Design, Chapman and Hall/CRC, 2002

[3] S. Lin and D. J. Costello, Jr., Error Control Coding. Englewood Cliffs, NJ:
Prentice-Hall, 2nd ed., 2004

[4] C. Schlegel and L. Perez, Trellis and Turbo Coding, IEEE/Wiley, Piscataway, NJ,
2004

[5] R.G. Gallager, "Low-density parity-check codes," IEEE Trans. Inform. Theory,
vol. 8, pp. 21-28, Jan. 1962.

[6] R.G. Gallager, Low-Density Parity-Check Codes. MIT Press, Cambridge, MA,
1963

[7] D. J. C. MacKay and R. M. Neal, "Near Shannon limit performance of low
density parity check codes," Electronics Letters, vol. 32, pp. 1645-1646, Aug.
1996

[8] Digital video broadcasting (DVB); Second generation framing structure, channel
coding and modulation systems for broadcasting, interactive services, news
gathering and other broad-band satellite applications, EN 302 307, European
Telecommunications Standards Institute (ETSI)

[9] "IEEE Standard for Information technology-Telecommunications and information
exchange between systems-Local and metropolitan area networks-Specific
requirements Part 3: Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) Access Method and Physical Layer Specifications," IEEE Std
802.3an-2006 (Amendment to IEEE Std 802.3-2005) , vol., no., pp.0_l-167, 2006

149

[10] "IEEE Standard for Local and metropolitan area networks Part 16: Air Interface
for Fixed and Mobile Broadband Wireless Access Systems Amendment 2:
Physical and Medium Access Control Layers for Combined Fixed and Mobile
Operation in Licensed Bands and Corrigendum 1," IEEE Std 802.16e-2005 and
IEEE Std 802.16-2004/Cor 1-2005 (Amendment and Corrigendum to IEEE Std
802.16-2004) , vol., no., pp. 01-822, 2006

[11] "Draft Standard for Information Technology-Telecommunications and
information exchange between systems—Local and metropolitan area networks-
Specific requirements— Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) specifications: Amendment 4: Enhancements for
Higher Throughput," IEEE Unapproved Draft Std P802.11 n_D3.00, Sep 2007,
vol., no., pp.-, 2007

[12] S.-Y. Chung, G. D. Forney, Jr., T. J. Richardson, and R. Urbanke, "On the design
of low-density parity-check codes within 0.0045 dB of the Shannon limit," IEEE
Commun. Lett, vol. 5, pp. 58-60, Feb. 2001

[13] S.Bates and T.Zhang, "An introduction to low-density parity-check codes and
their implementations," Semiconductor Research Corporation internal paper,
2005

[14] France Telecom Inc., "France Telecom announces Turbo Codes Licensing
Program (TCLPf\ October, 2001, Available:
http://www.spectralicensing.com/pdfs/FT-TCLP.pdf, last visited on April 9, 2005

[15] Jimenez Felstrom, A.; Zigangirov, K.S., "Time-varying periodic convolutional
codes with low-density parity-check matrix," Information Theory, IEEE
Transactions on , vol.45, no.6, pp.2181-2191, Sep 1999

[16] Richardson, T.J.; Shokrollahi, M.A.; Urbanke, R.L., "Design of capacity-
approaching irregular low-density parity-check codes," Information Theory, IEEE
Transactions on , vol.47, no.2, pp.619-637, Feb 2001

[17] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and D. J. Costello, "LDPC
block and convolutional codes based on circulant matrices," IEEE Trans. Inform
Theory, vol. 50, pp. 2966-2984, Dec. 2004

150

http://www.spectralicensing.com/pdfs/FT-TCLP.pdf

[18] Fossorier, M.P.C., "Quasicyclic low-density parity-check codes from circulant
permutation matrices," Information Theory, IEEE Transactions on , vol.50, no.8,
pp. 1788-1793, Aug. 2004

[19] Kou, Y.; Lin, S.; Fossorier, M.P.C., "Low-density parity-check codes based on
finite geometries: a rediscovery and new results," Information Theory, IEEE
Transactions on, vol.47, no.7, pp.2711-2736, Nov 2001

[20] Prabhakar, A.; Narayanan, K., "Pseudorandom construction of low-density parity-
check codes using linear congruential sequences," Communications, IEEE
Transactions on , vol.50, no.9, pp. 1389-1396, Sep 2002

[21] R. M. Tanner, "A recursive approach to low complexity codes," IEEE Trans.
Inform. Theory, vol. IT-42, pp. 533-547, 1981

[22] Blanksby, A.J.; Howland, C.J., "A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density
parity-check code decoder," Solid-State Circuits, IEEE Journal of, vol.37, no.3,
pp.404-412, Mar 2002

[23] M. M. Mansour and N. R. Shanbhag, "High-throughput LDPC decoders," Trans,
on VLSI Systems, vol. 11, no. 6, Dec 2003

[24] Mansour, M.M.; Shanbhag, N.R., "A 640-Mb/s 2048-bit programmable LDPC
decoder chip," Solid-State Circuits, IEEE Journal of, vol.41, no.3, pp. 684-698,
March 2006

[25] Hao Zhong; Tong Zhang, "Design of VLSI implementation-oriented LDPC
codes," Vehicular Technology Conference, 2003. VTC 2003-Fall. 2003 IEEE 58th
, vol.1, no., pp. 670-673 Vol.1, 6-9 Oct. 2003

[26] Hocevar, D.E., "LDPC code construction with flexible hardware
implementation," Communications, 2003. ICC '03. IEEE International
Conference on , vol.4, no., pp. 2708-2712 vol.4, 11-15 May 2003

[27] Olcer, S., "Decoder architecture for array-code-based LDPC codes," Global
Telecommunications Conference, 2003: GLOBECOM '03. IEEE, vol.4, no., pp.
2046-2050 vol.4, 1 -5 Dec. 2003

151

[28] Engling Yeo; Pakzad, P.; Nikolic, B.; Anantharam, V., "VLSI architectures for
iterative decoders in magnetic recording channels," Magnetics, IEEE
Transactions on , vol.37, no.2, pp.748-755, Mar 2001

[29] G. Mehta and H. Lee. An FPGA implementation of the graph encoder-decoder for
regular ldpc codes. In CRL Technical Report. Communications Research
Laboratory, University of Pittsbugh, 2002

[30] Luby, M. G., Mitzenmacher, M., Shokrollahi, M. A., Spielman, D. A., and
Stemann, "Practical loss-resilient codes," in Proceedings of the Twenty-Ninth
Annual ACM Symposium on theory of Computing, 1997, pp. 150-159

[31] MacKay, D.J.C.; Wilson, S.T.; Davey, M.C., "Comparison of constructions of
irregular Gallager codes," Communications, IEEE Transactions on , vol.47,
no. 10, pp. 1449-1454, Oct 1999

[32] Li Ping; Leung, W.K.; Nam Phamdo, "Low density parity check codes with semi-
random parity check matrix ," Electronics Letters , vol.35, no.l, pp.38-39, 7 Jan
1999

[33] Shaikh Faisal Zaheer, "Improved Rate-Compatible Low-Density Parity-Check
Codes with Applications to Wireless Channels," M.Sc. Thesis, King Fahd
University of Petroleum and Minerals , Dhahran, Saudi Arabia, May 2006

[34] Richardson, T.J.; Urbanke, R.L., "Efficient encoding of low-density parity-check
codes," Information Theory, IEEE Transactions on , vol.47, no.2, pp.638-656,
Feb 2001

[35] Andrews, K.; Dolinar, S.; Thorpe, J., "Encoders for block-circulant LDPC codes,"
Information Theory, 2005. ISIT 2005. Proceedings. International Symposium on ,
vol., no., pp. 2300-2304, 4-9 Sept. 2005

[36] Hao Zhong; Tong Zhang, "Block-LDPC: a practical LDPC coding system design
approach," Circuits and Systems I: Regular Papers, IEEE Transactions on
[Circuits and Systems I: Fundamental Theory and Applications, IEEE
Transactions on] , vol.52, no.4, pp. 766-775, April 2005

152

[37] Lee, D.-U.; Luk, W.; Wang, C ; Jones, C , "A flexible hardware encoder for low-
density parity-check codes," Field-Programmable Custom Computing Machines,
2004. FCCM2004. 12th Annual IEEE Symposium on , vol., no., pp. 101-111, 20-
23 April 2004

[38] Lee C , "Design of Encoder and Decoder for LDPC Codes Using Hybrid H-
Matrix," ETR1Journal, vol.27, no.5, pp.557-562, October 2005

[39] Urard, P.; Yeo, E.; Paumier, L.; Georgelin, P.; Michel, T.; Lebars, V.;
Lantreibecq, E.; Gupta, B., "A 135Mb/s DVB-S2 compliant codec based on
64800b LDPC and BCH codes," Solid-State Circuits Conference, 2005. Digest of
Technical Papers. ISSCC. 2005 IEEE International, vol., no., pp. 446-609 Vol. 1,
6-10 Feb. 2005

[40] Hsuan-Yu Liu; Chien-Ching Lin; Yu-Wei Lin; Ching-Che Chung; Kai-Li Lin;
Wei-Che Chang; Lin-Hung Chen; Hsie-Chia Chang; Chen-Yi Lee, "A 480Mb/s
LDPC-COFDM-based UWB baseband transceiver," Solid-State Circuits
Conference, 2005. Digest of Technical Papers. ISSCC. 2005 IEEE International,
vol., no., pp. 444-609 Vol. 1,6-10 Feb. 2005

[41] Yang Sun; Marjan Karkooti; Joseph R. Cavallaro, "High Throughput, Parallel,
Scalable LDPC Encoder/Decoder Architecture for OFDM Systems," Design,
Applications, Integration and Software, 2006 IEEE Dallas/CAS Workshop on ,
vol., no., pp.39-42, Oct. 2006

[42] Cai, Z.; Hao, J.; Tan, P.H.; Sun, S.; Chin, P.S., "Efficient encoding of IEEE
802.1 In LDPC codes," Electronics Letters , vol.42, no.25, pp.1471-1472,
December 7 2006

[43] Khan Z., and Arslan T., "Implementation of a Real Time Programmable Encoder
for Low Density Parity Check Code on a Reconfigurable Instruction Cell
Architecture", 2007, Available:
http://www.aspdac.com/aspdac2007/pdf/archive/6B-3.pdf, last visited on April 9,
2005

[44] Xilinx Inc., "802.16 LDPC Encoder vl.0- Xilinx LogiCore Datasheet and
Product Specification", 2006, Available:
http://www.xilinx.com/bvdocs/ipcenter/data_sheet/ldpc_802_16_enc_vl_0.pdf,
last visited on April 9, 2005

153

http://www.aspdac.com/aspdac2007/pdf/archive/6B-3.pdf
http://www.xilinx.com/bvdocs/ipcenter/data_sheet/ldpc_802_16_enc_vl_0.pdf

[45] S. Haykin, Communication Systems. John Wiley & Sons, 4 ed., 2000

[46] A, Paulraj, R. Nabar, D. Gore, Introduction to Space-Time Wireless
Communications. Cambridge University Press, 2005

[47] J. Proakis, Digital Communications. McGraw-Hill, 4 ed., 2001

[48] A.S. Tanenbaum, Computer Networks. Prentice Hall PTR, 4th ed., 2003

[49] "IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface
for Fixed Broadband Wireless Access Systems," IEEE Std 802.16-2004 (Revision
oflEEEStd 802.16-2001) , vol., no., pp. 01-857, 2004.

[50] WiMAX Forum, "-Mobile WiMAX- Part I: A Technical Overview and
Performance Evaluation", Aug. 2006, Available:
http://www.wimaxforum.org/technology/downloads/Mobile_WiMAX_Partl_Ove
rview_and_Performance.pdf, last visited on April 9, 2005

[51] Institute of Electrical and Electronics Engineers, Inc., "The IEEE 802.16 Working
Group on Broadband Wireless Access Standards", Available:
http://www.ieee802.org/16/, last visited on April 9, 2005

[52] WiMAX Forum, "Mobile WiMAX- Part II: A Comparative Analysis", May 2006,
Available:
http://www.wimaxforum.org/technology/downloads/Mobile_WiMAX_Part2_Co
mparative_Analysis.pdf, last visited on April 9, 2005

[53] Jones, C; Matache, A.; Tian, T.; Villasenor, J.; Wesel, R., "The universality of
LDPC codes on wireless channels," Military Communications Conference, 2003.
MILCOM2003. IEEE, vol.1, no., pp. 440-445 Vol.1, 13-16 Oct. 2003

[54] Serener, A.; Natarajan, B.; Gruenbacher, D.M., "Performance of spread OFDM
with LDPC coding in outdoor environments," Vehicular Technology Conference,
2003. VTC 2003-Fall. 2003 IEEE 58th , vol.1, no., pp. 318-321 Vol.1, 6-9 Oct.
2003

154

http://www.wimaxforum.org/technology/downloads/Mobile_WiMAX_Partl_Ove
http://www.ieee802.org/16/
http://www.wimaxforum.org/technology/downloads/Mobile_WiMAX_Part2_Co

[55] Sartipi, M.; Fekri, F., "Source and channel coding in wireless sensor networks
using LDPC codes," Sensor and Ad Hoc Communications and Networks, 2004.
IEEE SECON 2004. 2004 First Annual IEEE Communications Society
Conference on , vol., no., pp. 309-316, 4-7 Oct. 2004

[56] Sadeghi, N.; Howard, S.; Kasnavi, S.; Iniewski, K.; Gaudet, V.C.; Schlegel, C ,
"Analysis of error control code use in ultra-low-power wireless sensor networks,"
Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE International
Symposium on , vol., no., pp. 4 pp.-, 21-24 May 2006

[57] Jia Hou, Yu Yi, and Moon Ho Lee, "Multilevel LDPC Codes Design for
Multimedia Communication CDMA System," EURASIP Journal on Wireless
Communications and Networking, vol. 2004, no. 1, pp. 141-148, 2004

[58] Salmon, B.P.; Olivier, J.C., "Performance Analysis of Low Density Parity-Check
Codes on a WiMAX Platform," Wireless Communications and Networking
Conference, 2007.WCNC 2007. IEEE, vol., no., pp.569-571, 11-15 March 2007

[59] Baumgartner, B.; Reinhardt, M; Richter, G; Bossert, M, "Performance of
Forward Error Correction for IEEE 802.16e," in Proceedings of 10th
International OFDM-Workshop, Hamburg, Germany, Aug. 2005

[60] Bradley P., "The Ultra Low-Power Wireless Medical Device Revolution", April
2005, Available:
http://news.zarlink.com/assetsAVireless_Revolution_WP_Apr05.pdf, last visited
on April 9, 2005

[61] Institute of Electrical and Electronics Engineers, Inc., "IEEE 802.15 Working
Group for WPAN\ Available: http://www.ieee802.org/15/, last visited on April 9,
2005

[62] Institute of Electrical and Electronics Engineers, Inc., "IEEE 802.15 WPAN Task
Group 6 Body Area Networks (BAN)", Available:
http://www.ieee802.org/15/pub/TG6.html, last visited on April 9, 2005

[63] Federal Communications Commission, "MedicalImplant Communications",
Available:

155

http://news.zarlink.com/assetsAVireless_Revolution_WP_Apr05.pdf
http://www.ieee802.org/15/
http://www.ieee802.org/15/pub/TG6.html

http://wireless.fcc.gov/services/index.htm?job=service_home&id=medical_impla
nt, last visited on April 9, 2005

[64] Federal Communications Commission, "Title 47—Telecommunication CHAPTER
I-FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) PART 95-
PERSONAL RADIO SERVICES", Available:
http://www.access.gpo.gov/nara/cfr/waisidx_06/47cfr95_06.html, last visited on
April 9, 2005

[65] International Telecommunication Union, "OPINIONITU-R 98 - SPECTRUM
REQUIREMENTS OF METEOROLOGICAL AIDS IN THE FREQUENCY
RANGE FROM 400.15 TO 406 MHz", 1997, Available:
http://www.itu.int/dms_pub/itu-r/opb/op/R-OP-R.98-l 997-PDF-E.pdf, last visited
on April 9, 2005

[66] Zarlink Semiconductor Inc., "Ultra Low-Power Wireless Medical Devices "
January 2005, Available: http://news.zarlink.com/assets/CIE_ulp_article.pdf, last
visited on April 9, 2005

[67] P. Bradley; P. Chadwick; H. Higgins; A. Sivard, "The challenge of designing in-
body communications'''' October 2004, Available:
http://www.embedded.eom/columns/technicalinsights/51200651 ?_requestid=280
643, last visited on April 9, 2005

[68] K.Y. Yazdandoost; R. Kohno, "Antenna for Medical Implanted Communications
System'' July 2007, Available: https://mentor.ieee.org/802.15/file/07/15-07-0785-
O0-0ban-antenna-medical-implanted-communications-system.pdf

[69] K.Y. Yazdandoost; R. Kohno, "Channel Modeling and Signaling of medical
Implanted Communication Systems'" July 2007, Available:
https://mentor.ieee.org/802.15/file/07/l 5-07-0787-00-0ban-channel-modeling-
and-signaling-medical-implanted-communication-systems.pdf, last visited on
April 9, 2005

[70] F. Kim; S. Yang; D. Shim, "Open issues on the BAN' January 2007, Available:
https://mentor.ieee.org/802.15/file/07/15-07-0534-00-0ban-open-issues-ban.ppt,
last visited on April 9, 2005

156

http://wireless.fcc.gov/services/index.htm?job=service_home&id=medical_impla
http://www.access.gpo.gov/nara/cfr/waisidx_06/47cfr95
http://www.itu.int/dms_pub/itu-r/opb/op/R-OP-R.98-l
http://news.zarlink.com/assets/CIE_ulp_article.pdf
http://www.embedded.eom/columns/technicalinsights/5
https://mentor.ieee.org/802.15/file/07/15-07-0785-
https://mentor.ieee.org/802
https://mentor.ieee.org/802.15/file/07/15-07-0534-00-0ban-open-issues-ban.ppt

[71] Alomainy, A.; Hao, Y.; Yuan, Y.; Liu, Y., "Modelling and Characterisation of
Radio Propagation from Wireless Implants at Different Frequencies," Wireless
Technology, 2006. The 9th European Conference on , vol., no., pp.119-122, 10-12
Sept. 2006

[72] H. Lee; C. Lee; J. Kim; K. Kwak; S. Nam, "Relationship between Power Loss and
Frequency Band for Medical Implanted Communications'''' November 2007,
Available: https://mentor.ieee.org/802.15/file/07/l 5-07-0926-00-0ban-
relationship-between-power-loss-and-frequency-band-medical-implanted-
communications.ppt, last visited on April 9, 2005

[73] K. Yazdandoost, "Channel Model for Body Area Networks (BAN)" November
2007, Available: https://mentor.ieee.org/802.15/file/07/l 5-07-0943-00-0ban-ban-
draft-channel-model.doc, last visited on April 9, 2005

[74] A.J. Johansson, "Wireless Communication with Medical Implants: Antennas and
Propagation," PH.D. Thesis, Lund University, Lund, Sweden, June 2004

[75] P. Bradley, "Implantable ultralow-power radio chip facilitates in-body
communications" June 2007, Available:
http://rfdesign.com/next_generation_wireless/short_range_wireless/706RFDFl.pd
f, last visited on April 9, 2005

[76] Federal Communications Commission, "Tissue Dielectric Properties'", Available:
http://www.fcc.gov/fcc-bin/dielec.sh, last visited on April 9, 2005

[77] Gupta, S.K.S.; Lalwani, S.; Prakash, Y.; Elsharawy, E.; Schwiebert, L., "Towards
a propagation model for wireless biomedical applications," Communications,
2003. ICC '03. IEEE International Conference on , vol.3, no., pp. 1993-1997
vol.3,11-15 May 2003

[78] Zarlink Semiconductor Inc., "Medical Implantable RF Transceiver - Datasheet"
May 2007, Available:
http://assets.zarlink.com/DS/zarlink_ZL70101_APR_07.pdf, last visited on April
9, 2005

[79] Townsend, K.A.; Haslett, J.W.; Tsang, T.K.K.; El-Gamal, M.N.; Iniewski, K.,
"Recent advances and future trends in low power wireless systems for medical

157

https://mentor.ieee.org/802
https://mentor.ieee.org/802
http://rfdesign.com/next_generation_wireless/short_range_wireless/706RFDFl.pd
http://www.fcc.gov/fcc-bin/dielec.sh
http://assets.zarlink.com/DS/zarlink_ZL70101_APR_07.pdf

applications," System-on-Chip for Real-Time Applications, 2005. Proceedings.
Fifth International Workshop on , vol., no., pp. 476-481, 20-24 July 2005

[80] B. Lewis and P. Swain, "Capsule endoscopy in the evaluation of patients with
suspected small intestinal bleeding: the results of a pilot study," Gastrointestinal
Endoscopy, vol. 56, no. 3, pp. 349-353, Sept. 2002

[81] Lorincz, K.; Malan, D.J.; Fulford-Jones, T.R.F.; Nawoj, A.; Clavel, A.; Shnayder,
V.; Mainland, G.; Welsh, M.; Moulton, S., "Sensor networks for emergency
response: challenges and opportunities," Pervasive Computing, IEEE, vol.3, no.4,
pp. 16-23, Oct-Dec. 2004

[82] AMI Semiconductor Inc., "AMIS-53000 frequency Agile Transceiver" January
2008, Available: http://www.amis.com/pdf/transceivers/amis53000_ds.pdf, last
visited on April 9, 2005

[83] Torben Brack; Matthias Alles; Frank Kienle; Norbert Wehn, "A Synthesiz'able IP
Core for WIMAX 802.16E LDPC Code Decoding," Personal, Indoor and Mobile
Radio Communications, 2006 IEEE 17th International Symposium on , vol., no.,
pp. 1-5, Sept. 2006

[84] Xilinx Inc., "Spartan-3 Generation FPGAs", Available:
http://www.xilinx.com/products/silicon_solutions/fpgas/spartan_series/index.htm,
last visited on April 9, 2005

[85] Xilinx Inc., "Spartan-3 Overview, The World's Lowest Cost Per I/O - Optimized
for I/O-centric designs", Available:
http://www.xilinx.com/products/silicon_solutions/fpgas/spartan_series/spartan3_f
pgas/overview.htm#s3table, last visited on April 9, 2005

[86] TRLabs, (2007, May). 802.16e LDPC Encoder vl .0 - Datasheet and System
Specification, Internal Document, TRLabs, Canada

[87] Opal Kelly Inc., "XEM3010 - Xilinx Spartan-3 FPGA Integration Module ",
Available: http://opalkelly.com/products/xem3010/, last visited on April 9,2005

[88] Opal Kelly Inc., "XEM3010 User's Manual", November 2007, Available:
http://opalkelly.com/library/XEM3010-UM.pdf, last visited on April 9, 2005

158

http://www.amis.com/pdf/transceivers/amis53000_ds.pdf
http://www.xilinx.com/products/silicon_solutions/fpgas/spartan_series/index.htm
http://www.xilinx.com/products/silicon_solutions/fpgas/spartan_series/spartan3_f
http://opalkelly.com/products/xem3010/
http://opalkelly.com/library/XEM3010-UM.pdf

[89] Xilinx Inc., "XPower Tutorial - FPGA Design", July 2002, Available:
ftp://ftp.xilinx.com/pub/documentation/tutorials/xpowerfpgatutorial.pdf, last
visited on April 9, 2005

[90] Altera Inc., "FPGA Power Management and Modeling Techniques — White
Paper", November 2007, Available: http://www.altera.com/literature/wp/wp-
01044.pdf, last visited on April 9, 2005

[91] Swamy, R.; Bates, S.; Brandon, T., "Architectures for ASIC implementations of
low-density parity-check convolutional encoders and decoders," Circuits and
Systems, 2005. ISCAS 2005. IEEE International Symposium on , vol., no., pp.
4513-4516 Vol. 5, 23-26 May 2005

[92] Bates, S.; Elliott, D.G.; Swamy, R., "Termination Sequence Generation Circuits
for Low-Density Parity-Check Convolutional Codes," Circuits and Systems I:
Regular Papers, IEEE Transactions on [Circuits and Systems I: Fundamental
Theory and Applications, IEEE Transactions on] , vol.53, no.9, pp. 1909-1917,
Sept. 2006

[93] T. Kishigami; Y. Murakami; I. Yoshii, "LDPC-Convolutional Codes for 802.18m
FEC Scheme ", January 2008, Available:
http://wirelessman.org/tgm/contrib/C80216m-08_074rl.pdf, last visited on April
9, 2005

[94] B. Classon; Y. Blankenship; K. Chung; et al, "LDPC Coding for OFDMA PHY",
January 2005, Available: http://wirelessman.org/tge/contrib/C80216e-
05_066r3.pdf, last visited on April 9, 2005

[95] Pusane, A.; Smarandache, R.; Vontobel, P; Costello Jr., D. J., "On deriving good
LDPC convolutional codes from QC LDPC block codes," Information Theory,
2007. ISIT2007. Proceedings. International Symposium on, vol., no., pp.1221-
1225, Jun. 2007

[96] Howard, S.L.; Alimohammad, A.; Chambers, G.; Iniewski, K.; Schlegel, C ;
Cockburn, B.; Eikenbroek, J; Mensink, C , "Error-Correcting Codes for In-Vivo
RF Wireless Links," 2007

159

ftp://ftp.xilinx.com/pub/documentation/tutorials/xpowerfpgatutorial.pdf
http://www.altera.com/literature/wp/wp-
http://wirelessman.org/tgm/contrib/C80216m-08_074rl.pdf
http://wirelessman.org/tge/contrib/C80216e-

[97] Howard, S., "Energy Efficiency of Error-Correcting Coding in Low-Power
Wireless Links," CMOS Emerging Technologies Workshop 2007, Whistler,
British Columbia, Canada, Jul. 2007

[98] Zhiyong He; Roy, S.; Fortier, P., "Powerful LDPC Codes for Broadband Wireless
Networks: High-performance Code Construction and High-speed
Encoder/Decoder Design," Signals, Systems and Electronics, 2007. ISSSE '07.
International Symposium on , vol., no., pp.173-176, July 30 2007-Aug. 2 2007

[99] Xin-Yu Shih; Cheng-Zhou Zhan; Cheng-Hung Lin; An-Yeu Wu, "A 19-mode
8.29mm2 52-mW LDPC Decoder Chip for IEEE 802.16e System," VLSI Circuits,
2007 IEEE Symposium on , vol., no., pp.16-17, 14-16 June 2007

[100] TurboBest Inc., "IEEE 802.16e LDPC Encoder/Decoder Core", Available:
http://www.turbobest.comAVhitePaper80216eLDPC.pdf, last visited on April 9,
2005

[101] Kuon, I.; Rose, J., "Measuring the Gap Between FPGAs and ASICs," Computer-
AidedDesign of Integrated Circuits and Systems, IEEE Transactions on , vol.26,
no.2, pp.203-215, Feb. 2007

[102] V. Hopkin, "FPGA~to-ASIC conversion a crucial concern", September 2004,
Available: http://www.us.design-reuse.com/articles/article8664.html, last visited
on April 9, 2005

[103] Xilinx Inc., "SpartanSL Low Power FPGA Family", September 2005, Available:
http://www.xilinx.com/support/documentation/data_sheets/ds313.pdf, last visited
on April 9, 2005

160

http://www.turbobest.comAVhitePaper80216eLDPC.pdf
http://www.us.design-reuse.com/articles/article8664.html
http://www.xilinx.com/support/documentation/data_sheets/ds3

Appendix A

MATLAB Modules for Software Modeling and Processing

This Appendix presents the MATLAB code for the modules used the software

modeling of the 802.16e LDPC encoder and the memory preparation.

A. 1 Encoder.m

This module implements the encoding algorithm of Section 3.4.1 in a straight forward

fashion.

% This program encodes a randomly generated user bit sequence into an
% 802.16e compliant LDPC codeword according to specified code length and
% rate. The program generates codewords for all supported code rates and
% lengths.
%

% for User Input version, un-comment the following lines and eleminate the
% loops
for x = 1:4

i f (x = l)
R = l / 2 ;

elseif (x == 2)
R = 2/3;

elseif (x == 3)
R = 3/4;

else
R = 5/6;

end
n = 576;

fory=l:19

% Selecting the appropriate stored H matrix
if(R = 0.5)

codelength = num2str(n);
filename = strcatChmatrixl2_',codelength);
load (filename);

elseif(R==2/3)
codelength = num2str(n);
filename = strcatChmatrix23_',codelength);
load (filename);

elseif (R = 3/4)
codelength = num2str(n);
filename = strcatChmatrix34_',codelength);
load (filename);

else
codelength = num2str(n);
filename = strcat('hmatrix56_',codelength);
load (filename);

161

end

% the following line is commented out for testing purposes
u = round(rand([l ,(n*R)])); % Radomly generated user bits

nb = 24; % Base-matrix size
zf = n/nb; % expansion factor for specified code length
m = ceil((24*(1 -R))*zf); % Number of Rows
g = zf; % m-g is the number of zeros in the ALT

% Spliting the H matrix into the required sub-matrices
A = H(l:(m-g),l:(n-m));
B = H(1 :(m-g),(n-m+1):(n-m+g));
C = H(m-g+l:m,l:(n-m));
D = H(m-g+l :m,(n-m+l):(n-rn+g));
E = H((m-g+l :m),n-(m-g)+l:n);
T = H(l:(m-g),n-(m-g)+l:n);

% Encoding

% Step 1
AuT = A*(u');
CuT = C*(u');
AResult = mod(AuT,2); % in binary
CResult = mod(CuT,2); % in binary

% Step 2
ET = (E*inv(T))*AuT;
EResult = mod(ET,2); % in binary

% Step 3
plT = ET+CuT;
P 1 = p l T ;
PIResult = mod(pl ,2); % in binary

% Step 4
p2T = -(inv(T)*(AuT+(B*plT)));
p2 = p2T;
P2_Result = mod(p2,2); % in binary

% The codeword
v = [u PI Result P2_Result];

% Testing the codeword and saving the results
a = H*(V);
a = mod(a,2); % in binary
codeword_test = sum(a);
testmtx (x,y) = codewordtest;

n = n + 96;
end

end

A.2 finalEncoder.m

This module implements the encoding algorithm of Section 3.4.1 using the design we

proposed in Chapter 3. This module serves as a reference point for the final hardware

design.

% 802.16e LDPC Encoder Program
%
% This program encodes a randomly generated user bit sequence into an

162

% 802.16e compliant LDPC codeword according to specified code length and
% rate. The program generates codewords for all supported code rates and
% lengths.
%
% This program simulates a circular-pointer based architecture

% for User Input version, un-comment the following lines and eliminate the
% loops
% n = input('Enter code length(n) value:'); % user input code length value
% R = input('Enter code rate(R) value:'); % user input code rate

% 2 loops to cover all code rates and lengths
for x = 1:4

i f (x = l)
R = l / 2 ;
numRows =11;
numCols = 12;

elseif(x==2)
R = 2/3;
numRows = 7;
numCols = 16;

elseif (x = 3)
R = 3/4;
numRows = 5;
numCols= 18;

else
R=5/6;
numRows = 3;
numCols = 20;

end
n = 576;

fory=l:19

% Loading the appropriate stored "BINARY" H matrix
if(R = 0.5)

codelength = num2str(n);
filename = strcatChmatrixl2_',codelength);
load (filename);

elseif(R==2/3)
codelength = num2str(n);
filename = strcat('hmatrix23_',codelength);
load (filename);

elseif(R==3/4)
codelength = num2str(n);
filename = strcatChmatrix34_',codelength);
load (filename);

else
codelength = num2str(n);
filename = strcatChmatrix56_',codelength);
load (filename);

end

% The following line could be commented out for testing purposes
u = round(rand([1 ,(n*R)])); % Radomly generated user bits
u t r = u';

% Setting universal constants and variables
nb = 24; % Base-matrix size
max_z = 96; % maximum z factor value
zf = n/nb; % expansion factor for specified code length
m = ceil((24*(1 -R))*zf); % total number of Rows in bits
g = zf; % m-g is the number of zeros in the ALT
% clocks
clock_pt = 0; % pointer system clock
dummy = 0; % non-critical path clock

%

% The following section is the encoder section and each step is

163

% split into 2 sub-sections:
% 1 - The pseudo-code
% 2- The circular-pointer encoder

% Encoding

% STEP ONE
% AuT = A*(u');
% CuT = C*(u');
% A_Result = mod(AuT,2); % in binary
% CResult = mod(CuT,2); % in binary

[clock_pt regl_pt reg lbu cleanregl] = A_mult(u_tr, R, zf, numRows, numCoIs, clock_pt);
[dummy reg2_pt clean_reg2] = C_mult(u_tr, R, zf, 1, numCols, dummy);

% STEP TWO
% ET = (E*inv(T))*AuT;
% E_Result = mod(ET,2); % in binary

[clock_pt reg3_pt clean_reg3] = stage2(regl_bu, 11, zf, clock_pt);

% STEP THREE
% plT = ET+CuT;
% p l = p l T ;
% PIResult = mod(pl ,2); % in binary

plout_tr_pt = xor(reg2 jjt,reg3 jr t) ;
clock_pt = clockjpt + 1;
p!out_tr_pt = plout_tr_pt((l :zf), 1); % cleaning and resizing for testing purposes
plout_pt = plout_trj)t';

% STEP FOUR
% P2T = -(inv(T)*(AuT+(B*plT)));
% p2 = p2T;
% P2_Result = mod(p2,2); % in binary

[clbck_pt reg4_pt clean_reg4] = B_mult(pl out__trj>t, R, zf, numRows, 1, clock_pt);
reg5_pt = xor(regl_pt,reg4_pt);
clockjrt = clock_pt + 1; % Accounting for latency
[clock_pt p2out_tr_pt clean_p2] = stage6(reg5jpt, numRows, zf, clockjrt);
p2outjpt = clean_p2';
[p2_cycles, dummy] = size(clean_p2);
clockjrt = clockjpt + p2_cycles; % Adding P2 output clock cycles

% The codeword
% v = [u Pl_Result P2_Result];

vjpt = [u ploutjpt p2outjpt];

o End of Encoding

%%% Storing Statistics %%%
% The following section stores the test statistics and results.
% The codeword test is performed by multiplying the codeword
% by the parity-check matrix(H). Correct encoding results
% in a zero word. Clocks and latency are also stored. The
% stored matrices are:
% testjptmtx, clockjptmtx, latencyjptmtx

% Testing the codeword

a_pt = H*(v_pt');
a jpt = mod(ajpt,2); % in binary
codewordtest = sum(ajpt);
testjpt_mtx(x,y) = codewordtest;
clock_pt_mtx(x,y) = clockjpt;
latencyjpt_mtx(x,y) = clockjpt - n;

n = n + 96;
end

end

164

A.3 stage2.m

This module implements the ET" matrix multiplier.

% This program simulates the operation of stage 2 of the circular-pointer
% based encoder. It performs the multiplication of [AuT] vector by
% [E*inv(T)] matrix.
% This architecture exploit the characteristics of the [E*inv(T)] matrix:
% - The [E*inv(T)] matrix is always a row of zeros.
% - Therefore the result of the multiplication is simply the
% accumulation of all blocks of [AuT].
% The program uses a 96-bit shift register to aid in the
% accumulation/addition

function [clock, outreg, cleanout] = stage2(input, numRows, zf, clock)

outreg = zeros(96,l);

for shiftcount = 1 :numRows

outreg = xor(out_reg, input(1:96,1)); % 96-bit accumulator
input(l :96*(numRows-l),l) = input(97:96*(numRows),l); % shifting 96-bits up
clock = clock + 1;

end
% Cleaning up the result from invalid bits

cleanout = out_reg((1 : zf), 1);

A.4 stage6.m

This module implements the T 1 matrix multiplier.

% This program simulates the operation of stage 6 of the circular-pointer
% based encoder. It performs the multiplication of [AuT+BplT] vector by
% [inv(T)] matrix.
% This architecture exploit the characteristics of the [inv(T)] matrix:
% - The [inv(T)] matrix is an ALT matrix with all elements on the
% diagonal and lower being zero identity matrices. All elements above
% the digonal are zero matrices.
% - Therefore the result of the multiplication is a vector of blocks,
% where each block is a accumulation of itself with the all previous
% blocks. This vector is also the p2 parity bits vector.
%
% The program uses 2 96-bit shift registers to aid in the
% accumulation/addition and storing of p2 blocks

function [clock, out_reg, cleanout] = stage6(input, numRows, zf, clock)

maxRows = 1 1 ; % fixed at 11 simulating hardware

tempreg = zeros(96,l);
outreg = zeros(maxRows*96,l);

for shiftcount = 1 :maxRows

temp_reg = xor(temp_reg, input(1:96, 1)); % 96-bit accumulator
input(l :96*(maxRows-l),l) = input(97:96*(maxRows),l); % shifting 96-bits up

% Storing each intermidiate block result in the output register
out_reg(96*(maxRows-l)+l:96*maxRows, 1) = tempreg;
if (shiftcount < maxRows) % the final register is shifted only 10 times

out_reg(l :96*(maxRows-l), 1) = out_reg(97:96*maxRows, 1); % shifting 96-bits up
end
clock = clock + 1;

165

end

clock = clock + 1; % accounting for latnecy

% Cleaning up the result from invalid bits
maxz = 96;
for i = 1 :numRows

if (i ===== 1)
cleanout = out_reg((1 : zf), 1);

else
cleanout = [cleanout; out_reg((((i-l)*max_z)+l): (((i-l)*max z)+zf), 1)];

end
end

A.5 A mult.m

This module implements the A matrix multiplier (Only the A matrix module is

shown).

% This program simulates the hardware implementation of a cicular-pointer
% based multiplier. It performs the (A * u) vector-matrix multiplication
% required at stage 1 of the 802.16e encoder. This architecture utilizes
% the circular-pointer concept explained in detail in the block mult
% function

function [clock, regl, reg2, cleanreg] = A_mult(input, R, zf, numRows, numCols, clock)

maxRows = 1 1 ; % fixed at 11 rows simulating hardware
dummy = 0;
regl = zeros(maxRows*96,l); % 1st output register
reg2 = zeros(maxRows*96,l); % 2nd output register (holds copy of 1st)
zeroflag = zeros(numRows,l); % flag to indicate zero identity matrix
ACLR= zeros(numRows,l); % Asynchronous clear for binary decoder

for colcount = 1 mumCols

% retrieving the starting-location values for all rows in a specific
% column
pointer = memretrieve ('A', R, 24, colcount, numRows, numCols, zf);

for i = 1 :numRows
if(pointer(i)==127)

zeroflag(i) = 0;
ACLR(i)=l;

else
zeroflag(i) = 1;
ACLR(f) = 0;

end
end

% Selecting the right segment of [input] to be used
input_slice = input((((col_count-l)*zf)+l) : (col_count*zf), 1);

[clock reg 1 (1 ;96,1)] = block_mult(input_slice, pointed 1), zero_flag(1), ACLR(1), reg 1 (1:96,1), clock, zf);
[dummy regl(97:192, 1)] = block_mult(input_slice, pointer(2), zero_flag(2), ACLR(2), regl(97:192, 1), dummy, zf);
[dummy regl(193:288,1)] = block_mult(input_slice, pointer(3), zero_flag(3), ACLR(3), regl(193:288, 1), dummy, zf);

if (R = 1/2 || R == 2/3 || R == 3/4)
[dummy regl(289:384, 1)] = block_mult(input_slice, pointer(4), zero_flag(4), ACLR(4), regl(289:384, 1), dummy, zf);
[dummy regl(385:480, 1)] = block_mult(input_slice, pointer(5), zero_flag(5), ACLR(5), regl(385;480, 1), dummy, zf);

end

i f (R==l /2 | | R==2/3)
[dummy regl(481:576, 1)] = block_mult(input_slice, pointer(6), zero_flag(6), ACLR(6), regl(481:S76, 1), dummy, zf);
[dummy regl(577:672, 1)] = block_mult(input_slice, pointer(7), zero_flag(7), ACLR(7), regl(577:672,1), dummy, zf);

166

end

if(R==l/2)
[dummy regl(673:768, 1)] = block_mult(input_slice, pointer(8), zerojlag(8), ACLR(8), regl(673:768, 1), dummy, zf);
[dummy regl(769:864,1)] = block_mult(input_slice, pointer^), zero flag(9), ACLR(9), regl(769:864,]), dummy, zf);
[dummy regl(865:960, 1)] = block_mult(input_sIice, pointer(10), zeroJlag(10), ACLR(10), regl(865:960, 1), dummy, zf);
[dummy regl(961:1056, 1)] = block_mult(input_slice, pointer(l 1), zero_flag(11), ACLR(11), regl(961:1056, 1), dummy, zf);

end
end

clock = clock + 1; % accounting for register latency
reg2 = regl;
clock = clock + 1; % accounting for register latency

% Cleaning up the result from invalid bits
maxz = 96;
for i = 1 :numRows

i f (i== l)
clean_reg = regl((l : zf), 1);

else
clean_reg = [cleanreg; regl((((i-l)*max_z)+l) : (((i-l)*max_z)+zf), 1)];

end
end

A.6 block mult.m

This module implements the block multiplier.

% This function performs the matrix-vector multiplication at the block
% level, and adds the results of the block to the next one in colum sequence
%
% The following steps are performed to produce the shifted vector-block

function [clock, storedblock] = block_mult(input_slice, pointer, zeroflag, ACLR, storedblock, clock, zf)

for i = 1 :zf
% 1 - Binary decoder translates pointer to a one-hot 96-bit value
decoderout = zeros(96,l);
% if-1 flag is HIGH the ACLR signal is HIGH too forcing decoder output
% to all zero
if(ACLR = 0)

decoderout(pointer) = 1; % simulating the one-hot output of decoder
end

% 2- Assiging the input bit value to the one-hot output bit
% 3- Adding the new bit to the already stored vector by XORing
inputbit = and(input_slice(i),zero_flag);
storedblock = xor(and(decoder_out,input_bit),stored_block);

clock = clock + 1;

% If pointer is at end of block, rotate back to beginning
if (pointer ==zf)

pointer = 1;
else

pointer = pointer + 1;
end

end

A. 7 mem retrieve.m

This module handles the retrieval of the memory contents used in the multiplications.

% This program simulates the hardware memory retrieval function. It returns

167

% the requested column of starting-locations from the requested sub-matrx
% after scaling down to the apropriate code length.
% The starting-location value is defined as follows:
/o
% [starting-location] = {0 if shiftvalue is 0
% zf-[shift-value] if shift_value is+ve
% 127 if shift value is-1
% }
% ** startinglocation is also adjusted for matlab index purposes

function col = memretrieve (MTX, R, nb, colNumber, numRows, numCols, zf)

%numCols and numRows is the number of columns and rows OF THE DESIRED
%MATRIX, not the overall matrix

% Rate 1/2 Model Base-Matrix (from Standard)
H 1 2 = [[-1 94 73 -1 -1 -1 -1 -1 55 83 -1-17 0 -1 -1 -I -1 -1 -1 -1 -1 -1 -1]

[-127-1 -1 -1 22 79 9-1 -1 -1 12-10 0-1 -1 -1 -1 -1 -1 -1 -1 -1]
[-1 -1 -1 24 22 81 -1 33 -1 -1 - 1 0 - 1 - 1 0 0 -1 -1 -1 -1 -1 -1 -1 -1]
[61 -1 47 -1 -1 -1 -1 -1 65 25 -1 -1 -1 -1-10 0 -1 -1 -1 -1 -1 -1 -1]
[-1 -1 39-1 -1 -1 84-1 -14172-1 -1-1-1 -100-1 -1 -1 -1 -1 -1]
[_1 -l -l -i 46 40 -1 82 -1 -1 -1 79 0 -1 -1 -1-10 0 -1 -1 -1 -1 -1]
[-1 -1 95 53 -1 -1 -1 -1 -1 14 18 -1 -1 -1 -1 -1 -1-10 0 -1 -1 -1 -1]
[-1 11 73 -1 -1 -1 2 -1 -1 47 -1 -1 -1 -1 -1 -1 -1 -1-10 0 -1 -1 -1]
[12-1 -1-1 83 24-143-1 -1 -151 -1 -1 -1 -1 -1-1 -1 -10 0-1-1]
[_1 -l -l -i _i 94 -1 59 -1 -1 70 72 -1 -1 -1 -1 -1 -1 -1 -1-10 0-1]
[-1 -1 7 65 -1 -I -1 -1 39 49 -1 -1 -1-1-1 -1 -1 -1 -1 -1 -1 -1 0 0]
[43 -1 -1 -1 -1 66 -1 41 -1 -1 -1 26 7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0]];

% Rate 2/3A Model Base-Matrix (from Standard)
H_23A = [[3 0 - 1 - 1 2 0 - 1 3 7 -1 1 1-1-1-1-1 10-1-1-1-1-1-1]

[_1 _i i . j 36-1 -1 34 10-1 -1 18 2-1 3 0 - 1 0 0 - 1 -1 -1 -1-1]
[-1 -1 12 2 -115 -1 40 -1 3 -1 15 -1 2 13 -1 -1-10 0 -1 -1 -1 -1]
[-1 -1 1924-1 3 0 - 1 6 - 1 17-1 -1 -1 839-1 -1 -1 00 -1 -1 -1]
[20-1 6-1 -1 10 29-1 -128-1 14-138-1 -1 0-1 -1 -10 0-1 -1]
[-1 -1 10 -1 28 20 -1 -1 8 -1 36 -1 9 -1 21 45 -1 -1 -1 -1-10 0 -1]
[35 25 -1 37 -1 21 -1 -1 5 - 1 - 1 0 - 1 4 20 -1 -1 -1 -1 -1 -1 -1 0 0]
[-1 6 6-1-1-14 -1 14 30 -1 3 36 -1 14 -1 1 -1 -1 -1 -1 -1 -1 0]];

% Rate 2/3B Model Base-Matrix (from Standard)
H 23B = [[2-1 19-147-148-1 36-1 82-147-1 15-1 95 0-1-1-1 -1 -1 -1]

[-1 69 -1 88 -1 33 -1 3 -1 16 -1 37 -1 40 -1 48 -1 0 0 -1 -1 -1 -1 -1]
[10-1 86-1 62-128-1 85-1 16-134-1 73-1 -1-10 0-1 -I-1 -1]
[-1 28 -1 32 -1 81 -1 27 -1 88 -1 5 -1 56 -1 37 -1 -1-10 0 -1 -1 -1]
[23-129-1 15-130-1 66-124-1 50-1 62-1-1-1 -1 -10 0-1-1]
[-1 30 -1 65 -1 54 -1 14 -1 0 -1 30 -1 74 -1 0 -1 -1 -1 -1-10 0-1]
[32 -10-115-1 56 -1 85 -15 -16 -1 52 -1 0 -1 -1 -1 -1 -1 0 0]
[-1 0 -1 47 -1 13 -1 61 -1 84 -1 55 -1 78 -1 41 95 -1 -1 -1 -1 -1 -1 0]];

% Rate 3/4A Model Base-Matrix (from Standard)
H 3 4 A = [[6 38 3 93 -1 -1 -1 30 70 -1 86 -1 37 38 4 11 -1 46 48 0 -1 -1 -1 -1]

[62 94 19 84 -1 92 78 -1 15 -1 -1 92 -1 45 24 32 30 -1-10 0 -1 -1 -1]
[71 -1 55 -1 12 66 45 79 -1 78 -1 -1 10 -1 22 55 70 82 -1-10 0 -1 -1]
[38 61 -1 66 9 73 47 64 -1 39 61 43 -1 -1 -1 -1 95 32 0 -1 -1 0 0 -1]
[-1 -1 -1 -1 32 52 55 80 95 22 6 51 24 90 44 20 -1 -1 -1 -1 -1 -1 0 0]
[-163 31 88 20-1-1-16 40 56 16 7153-1-127 2648-1 -1 -1 -10]];

% Rate 3/4B Model Base-Matrix (from Standard)
H_34B = [[-1 81 -1 28 -1 -1 14 25 17 -1 -1 85 29 52 78 95 22 92 0 0 -1 -1 -1 -1]

[42-1 14 68 32-1 -1 -1 -1 70 43 II 36 40 33 57 38 24-1.0 0-1 -1 -1]
[-1 -1 20 -1 -1 63 39 -1 70 67 -1 38 4 72 47 29 60 5 80 -1 0 0 -I -1]
[64 2-1-163-1-1 3 51-181 15 94 9 85 3614 19-1-1-10 0-1]
[-1 53 60 80-126 75-1-1-1-1 86 77 13 72 6025-1-1 -1-10 0]
[77 -1 -1 -1 15 28 -1 35 -1 72 30 68 85 84 26 64 11 89 0 -1 -1 -1 -1 0]];

% Rate 5/6 Model Base-Matrix (from Standard)
H_56 = [[1 25 55 -1 47 4 -1 91 84 8 86 52 82 33 5 0 36 20 4 77 80 0 -1 -I]

[-1 6-1 36 4047 12 79 47-141 21 12 71 14 72 0 44 49 0 0 00-1]
[5181 83 4 67-121-13124 9161 81 9 86 78 60 88 67 15-1-I 00]
[50 -1 50 15 -1 36 13 1011 20 53 90 29 92 57 30 84 92 11 66 80 -1 -1 0]];

168

%-

% Selecting the appropriate "NUMERICAL" H matrix
% g = l ;
% n = 24; %number of columns in the overall matrix (is constant)

if(R==0.5)
m=12;
A_num = H J 2(1 :(m-1), 1 :(24-m));
B_num = H_12(l:(m-l),(24-m+l):(24-m+l));
Cnum = H_12(m-l+l:m,l :(24-m));

elseif(R==2/3)
m=8;
Anum = H_23B(1 :(m-l),1 :(24-m));
B_num = H_23B(1 :(m-l),(24-rn+l):(24-m+l));
C_num = H_23B(m-l+l :m,l :(24-m));

elseif(R==3/4)
m=6;
Anum = H_34A(1 :(m-l),l :(24-m));
Bnum = H_34A(1 :(m-l),(24-m+l):(24-m+l));
C_num = H_34A(m-l+l :m,l :(24-m));

else
m=4;
A_num = H_56(1 :(m-1), 1 :(24-m));
Bnum = H_56(l:(m-l),(24-m+I):(24-m+l));
Cnum = H_56(m-1+1 :m,l :(24-m));

end

if (MTX == 'A')
col = A_num(:, colNumber);

elseif(MTX=='B')
col = B_num(:, colNumber);

elseif(MTX=='C)
col = C_num(:, colNumber);

end

% Performing scaling-down according to requested code length
for i = 1 :numRows

ifcol(i)>=0
col(i) = zf -(floor(col(i) * (zf/96))) + 1; %
% The following check protects against:
% 1 - an original zero shift value
% 2- a zero shift value appearing after scaling down.
if(col(i) = zf+l)%

col(i)=l;
end

else
col(i)=127;

end
end

A.8 Hgenerator.m

This module generates the binary versions of all the H (parity-check) matrices.

% This is a MATLAB script to generate the expanded binary H matrix to be
% used in the WiMAX LDPC encoder project.
% Input(s): code length, code rate
% Output(s): complete(expanded) binary H matrix in .mat format

% Model Base Matrices
%

% Rate 1/2 Model Base-Matrix (from Standard)
H 1 2 = [[-1 94 73 -1 -1 -1 -1 -1 55 83 -1-17 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1]

[-1 27 -1 -1 -1 22 79 9 -1 -1 -1 12 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1-1]
[-1 -1 -1 24 22 81 -1 33 -1 -1 - 1 0 - 1 - 1 0 0 -1 -1 -1 -1 -1 -1 -1 -1]

169

[61 -1 47-1 -1 -1 -1-165 25-1 -1 -1 -1 -1 0 0-1 -1 -1 -1-1 -1 -1]
[-1-139-1 -1 -1 84 -1 -14172-1 -1 -1 -1 -100-1 -1-1-1-1 -1]
[-1 -1 -1 -1 46 40 -1 82 -1 -1 -1 79 0 -1 -1 -1-10 0 -1 -1 -1 -1 -1]
[-1 -1 95 53 -1 -1 -1 -1 -1 14 18-1 -1 -1 -1 -1 -1-10 0 -1 -1 -1 -1]
[-1 11 73 -1 -1 -1 2 -1 -1 47 -1 -1 -1-1-1-1-1-1-10 0 -1 -1 -1]
[12-1-1-1 83 24 -1 43 -1 -1-151 -1 -1 -1 -1 -1 -1 -1-10 0 -1 -1]
[-1 -1 -1 -1 -1 94 -1 59 -1 -1 70 72 -1 -1 -1 -1 -1 -1 -1 -1-10 0 -1]
[-1 -1 7 65 -1 -1 -1 -1 39 49 -1 -1 -1 -1 -1 -1 -1 -1-1-1 -I -1 0 0]
[43 -1 -1 -1 -1 66 -1 41 -1 -1 -1 26 7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0]];

% Rate 2/3A Model Base-Matrix (from Standard)
H_23A = [[3 0 - 1 - 1 2 0 - 1 3 7 - 1 1 1 - 1 -1 -1 -110 -1 -1 -1 -1 -1 -1]

[-1 -1 1 -1 36 -1 -1 34 10 -1 -1 18 2 -1 3 0 -1 0 0 -1 -1 -1 -1 -1]
[-1 -1 12 2 -1 15 -1 40 -13 -115-12 13 -1 -1-10 0 -1 -1 -1 -1]
[-1 -1 19 24 -1 3 0 -1 6 -1 17 -1 -1 -1 8 39 -1 -1-10 0 -1 -1 -1]
[20 -1 6 -1 -1 10 29 -1 -1 28 -1 14 -1 38 -1 -1 0 - 1 - 1 - 1 0 0 -1 -1]
[-1 -1 10 -1 28 20 -1 -1 8 -1 36 -1 9 -1 21 45 -1 -1 -1 -1-10 0-1]
[35 25 -1 37 -1 21 -1 -1 5 -1 -10-14 20 -1 -1 -1 -1 -1 -1 -1 0 0]
[-1 6 6-1-1-14 -1 14 30 -1 3 36 -1 14 -1 1 -1 -1 -1 -1 -1 -1 0]];

% Rate 2/3B Model Base-Matrix (from Standard)
H23B = [[2 -1 19 -1 47 -1 48 -1 36 -1 82 -1 47-1 15 -1 95 0 -1 -1 -1 -1 -1 -1]

[-1 69 -1 88 -I 33 -1 3 -1 16 -1 37 -1 40 -1 48 -1 0 0 -1 -1 -1 -1 -1]
[10 -1 86 -1 62 -1 28 -1 85 -116-1 34 -1 73 -1 -1-10 0 -1 -1 -1 -1]
[-1 28 -1 32 -1 81 -1 27 -1 88 -1 5 -1 56 -1 37 -1 -1-10 0 -1 -1 -1]
[23 -1 29 -1 15 -1 30 -1 66 -1 24 -1 50 -1 62 -1 -1 -1 -1-10 0 -1 -1]
[-1 30 -1 65 -1 54 -1 14 -1 0 -1 30 -1 74 -1 0 -1 -1 -1 -1-10 0-1]
[32-10-1 15-1 56-1 85-1 5-1 6-152-10-1 -1 -1 -1-10 0]
[-1 0 -1 47 -1 13 -1 61 -1 84 -1 55 -1 78 -1 41 95 -1 -1 -1 -1 -1 -1 0]];

% Rate 3/4A Model Base-Matrix (from Standard)
H 34A = [[6 38 3 93 -1 -1 -1 30 70 -1 86 -1 37 38 4 11 -1 46 48 0 -1 -1 -1 -1]

[62 94 19 84 -1 92 78 -1 15 -1 -1 92 -1 45 24 32 30 -1-10 0 -1 -1 -1]
[71 -1 55 -1 12 66 45 79 -1 78 -1 -1 10 -1 22 55 70 82 -1-10 0 -1 -1]
[38 61 -166 9 73 47 64-1 39 6143-1 -1 -1 -1 95 32 0-1 -10 0-1]
[-1 -1 -1 -1 32 52 55 80 95 22 6 51 24 90 44 20 -1 -1 -1 -1 -1 -1 0 0]
[-163 31 88 20-1 -1-1 6 40 56 16 71 53-1-127 26 48-1 -1 -1 -10]];

% Rate 3/4B Model Base-Matrix (from Standard)
H34B = [[-1 81 -1 28 -1 -1 14 25 17 -1 -1 85 29 52 78 95 22 92 0 0 -1 -1 -1 -1]

[42 -1 14 68 32 -1 -1 -1 -1 70 43 11 36 40 33 57 38 24 -1 0 0 -1 -1 -1]
[-1 -1 20 -1 -1 63 39 -1 70 67 -1 38 4 72 47 29 60 5 80 -1 0 0 -1 -1]
[64 2 -1 -1 63 -1 -1 3 51 -1 81 15 94 9 85 36 14 19 -1 -1-10 0-1]
[-1 53 60 80 -1 26 75 -1 -1 -1 -1 86 77 1 3 72 60 25 -1 -1 -1 -1 0 0]
[77-1 -1 -1 15 28-1 35-172 30 68 85 84 26 64 11 89 0-1 -1 -1 -1 0]];

% Rate 5/6 Model Base-Matrix (from Standard)
H_56 = [[1 25 55 -1 47 4 -1 91 84 8 86 52 82 33 5 0 36 20 4 77 80 0 -1 -1]

[-1 6 -1 36 40 47 12 79 47 -1 41 21 12 71 14 72 0 44 49 0 0 0 0 -1]
[51 81 83 4 67 -1 21 -1 31 24 91 61 81 9 86 78 60 88 67 15 -1 -1 0 0]
[50 -1 50 15 -1 36 13 10 11 20 53 90 29 92 57 30 84 92 11 66 80 -1 -1 0]];

%

% for User Input version, un-comment the following lines and eleminate the
% loops
% n = input('Enter code length(n) value:'); % user input code length value
% R = input('Enter code rate(R) value:'); % user input code rate

% 2 loops to cover all code rates and lengths
for x = 1:4

if(x = l)
R = l / 2 ;

elseif (x = 2)
R = 2/3;

elseif(x==3)
R = 3/4;

else
R=5/6;

end

170

for n = 576:96:2304

w=setdiff(who,{,n', 'R', 'H_12', 'H_23A', 'H23B', 'H34A', 'HJ4B' , 'H_56'}); clean> {:}>');

%constants
nb = 24; % Base-matrix size
nmax = 2304; % max code length (number of bits)

zO = nmax/nb; % expansion factor for nmax code length
zf = n/nb; % expansion factor for other code lengths
rows = ceil(24*(l-R));

perm = ey e(zf); % identity matrix of Zf x Zf size
zeromatrix = zeros(zfzf); % zeros matrix of Zf x Zf size

%

% Constructing the Binary H Matrix

% Selecting the appropriate model bade matrix
if(R = 0.5)

H_bm=H_12;
elseif(R==2/3)

H b m = H23B;
elseif(R==3/4)

H_bm = H_34A;
else

H b m = H 5 6 ;
end

% scaling for code length
scaled = floor(H_bm.*(zf/zO)); %multiplies input matrix by

for row = 1 rows,

% Initialize temp_row
if(scaled(row,l)<0)

temprow = zeromatrix; %set temprow to first input matrix for row
else

temprow = circshift(perm, [0, scaled(row,l)]);
end

% after initializing for the first entry in the column, we con-cat the
% rest of the columns to the row.
for col = 2 : 24,

if (scaled(row,col) < 0)
temprow = [temp row,zeromatrix];

else
temprow = [temprow, circshift(perm, [0, scaled(row,col)])];

end
end

% add rows to the H matrix.
if(row== 1)

H = temprow;
else

H = [H; temprow];
end

end

% Saving the completed H matrix
if(R = 0.5)

codelength = num2str(n);
filename = strcatChmatrixl2_',codelength);
save (filename, 'H')

elseif(R==2/3)
codelength - num2str(n);
filename = strcat('hmatrix23_',codelength);

171

save (filename, 'H')
elseif(R==3/4)

codelength = num2str(n);
filename = strcat('hmatrix34_',codelength);
save (filename, 'H')

else
codelength = num2str(n);
filename = strcat('hmatrix56_',codelengfh);
save (filename, 'H')

end
end

end

A.9 Accuracydriver.m

This module, in conjunction with verify_accuracy.m, evaluates the required precision

for the semi-scaled matrix values.

fori = 1:60
Error_present = verify_accuracy(i);
if Error_present == 0

NoErrors = 1
Accuracy = i
break;

end
end

A. 10 verifyaccuracy.m

This module, in conjunction with Accuracy_driver.m, evaluates the required precision

for the semi-scaled matrix values.

function Error_present = verify_accuracy(bitAccuracy)
Error_present = 0;
maxfloatval = 0;

for H = 0:95 %A11 possible values in the H matrix
zf = 24;
for j =1:19 %all possible zf values

%The value that is actually stored in memory
fraction = zf/96;

%The floating, i.e. high-accuracy value
floatval = zf - floor(H*fraction);

%The binary approximation - Convert, then convert back
binaryfraction = convdecimal (fraction, bitAccuracy);
approxfraction = convfraction (binaryfraction);
approxval = zf - floor(H*approx_fraction);

if floatval ~= approxval
if floatval > maxfloatval

maxfloatval = floatval;
end
[floatval approxval H zf zf-H];
Error_present = 1;

end

172

zf=zf+4;
end

end

A. 11 check_allvalues_scriptm

This module performs a trial-and-error run through a range of precision values while

looping through all possible values.

before_mod_errors = 0; % num of errors before correction
aftermod errors = 0; % num of errors after correction

% Prececion
n = l l
corr_factor= 0.0005

for H = 0:95 %A11 possible values in the H matrix
errors = 0;
%The accurate fraction to be stored in memory
fraction = H/96;

for zf = 24:4:96 %all possible zf values

%The floating, i.e. high-accuracy value
floatval = zf - floor(zf*fraction);

%The binary approximation - Convert, then convert back
binaryfraction = convdecimal (fraction, n);
approxfraction = convfraction (binaryfraction);
%The low-accuracy floating value
approx_val = zf - floor(zf*approx_fraction);

% Checking for errors before correction
if floatval ~= approxval

errors = errors + 1;
% if you un-comment the following line it will show that
% the difference between the approximated and accurate values
% is just a factor of 1.0, this happens due to lack of rounding
% in our initial approach.
% floatval - approxval

end
end %zf loop

if (errors ~=0)

% If (errors != 0) then this (input) caused an error on at least one
%zf value
errors; % How many Zf values (or scaling operations cause errors)
H; % The H value in question
beforemoderrors = beforemoderrors + errors; % accumulating errors

% Correction Routine
0/.0/0/o/ 0 /0 /0 / 0 /0 /0 /0 / 0/0/ o/ o/ o/ o/ o/ o/ o/ 0/ o/ o/o/ o/ o/ o/ o/ o/ 0/o/ o/ o/ o/ 0/ 0/ 0/ o/ o/ o/ 0/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ /o
fraction = H/96; % value causing errors
newfraction = H/96 + corrfactor; % corrected value

newerrors = 0;
for zf = 24:4:96 %all possible zf values

%The floating, i.e. high-accuracy value
floatval = zf - floor(zf*fraction);

%The binary approximation - Convert, then convert back
% USING THE NEW CORRECTED FRACTION %

173

binaryfraction = convdecimal (newfraction, n);
approxfraction = convfraction (binaryfraction);
%The low-accuracy floating value
approxval = zf - floor(zf*approx fraction);

% Checking for errors
if floatval ~= approxval

newerrors = newerrors + 1;
zf;
% floatval - approxval

end

end %zf loop
new_errors
aftermoderrors = aftermod errors + newerrors; % accumulating errors
0/0/0/ 0/0/ 0/ 0/0/0/0/ 0 /0 /0 /0 /0 / 0/ 0/ 0/0/0/ 0/0/0/ 0/ 0/ 0 /0 /0 /0 /0 /0 /0 /0 /0 / 0/ 0/ 0 /0/0/0/0/ 0 /0 /0 /0 /0 /0 /0 /0 /0 /0 /0 /0 / /O /O /O /O /0 /O /O /O /O /O /O /0 /O /O /O /O /O /O /O /O /O /O /(> /O /O /O /O /O /O /0 / 0 /O /O /O /O /O /0 /O /O /0 /0 /O /O /O /O /O /O /O /0 / 0 / 0 /O /O

end % if errors exist
end % H loop

beforemod errors
afterrnoderrors

A. 12 A firstcol maker.m

This module performs the full scaling operations required to prepare the first column

of matrix A for storage in RAM (Only the A matrix module is shown).

% Model Base Matrices
%

* Deleted in this Appendix for brevity
%

k=l;
raterow = 0;

for x = 1:5
i f (x = l)

R = l / 2 ;
numRows= 11;
numCols= 12;
H_num = H_12;

elseif(x = 2)
R = 2/3;
numRows = 7;
numCols = 16;
Hnum = H_23B;

elseif(x== 3)
R = 3/4;
numRows = 5;
numCols= 18;
H_num = H_34A;

elseif (x==4)
R = 3/4;
numRows = 5;
numCols =18;
Hnum = H34B;

else
R=5/6;
numRows = 3;
numCols = 20;
H_num = H_56;

end
[Hrows Hcols] = size(H_num);
A = H_num(l:numRows, l:numCols)';

174

[Arows Acols] = size(A); %note that A was transposed

% Work only on the first original column in A (first row after transp)!
fori = 1: Acols

zf=24;
A(U);
forj = 1:19

ifA(l,i) = -l
A_firstCol(rate_row+j,i) = -1;

elseifA(l,i)==0
A_firstCol(rate_row+j,i) = 0;

else
A firstCol(rate_row+j,i) = zf - floor(A(1 ,i)*zf/96);

end

% Detecting the after-scaling Zeros
if (A_firstCol(rate_row+j,i) == zf)

A_firstCol(rate_row+j,i) = 0;
end

z f=zf+4;

end % end of j
end % end of i

% ..
%This section added to ensure that the 'blank', i.e. unused
%sections of the A matrix are -1 , not zero as they would be
%otherwise.
%
[AfirstColrows AfirstColcols] = size(AfirstCol);
for n = Acols+1 :A_firstCol cols

form=l:19
A_firstCol(rate_row+m,n) = -1;

end
end
raterow = rate row +19;

end % end for x

[AfirstColrows AfirstColcols] = size(AfirstCol);
AfirstColbin = [];

for n = 1 :A_firstCol_rows
A_firstCol_bin_row = [];
for m = 1 :A_firstCol_coIs

ifA_firstCol(n,m) = -l
AfirstColbininsert = '1111111';

else
AfirstColbininsert = dec2bin(A_firstCol(n,m), 7);

end

% Storing the resulting values in a matrix of strings (one row)
AfirstColbinrow = [AfirstColbinrow A firstColbininsert];
colseperate = sprintf ('\t');% Column seperator character
AfirstColbinrow = [AfirstColbinrow colseperate];

end % end m

% Storing the results in a matrix of strings
if (11=1)

AfirstColbin = A_firstCol_bin_row;
else

rowseperate = repmat('', 1, 88); %1 Icols *8-bits + 11 tabs
AfirstColbin = [AfirstColbin; rowseperate];
AfirstColbin = [AfirstColbin; AfirstColbinrow];

end

end % end n

175

A. 13 A other col maker.m

This module performs all the operations required to semi-scale the matrix values in

preparation for storage in RAM. All columns of the matrix except for the first are

processed (Only the A matrix module is shown).

% Model Base Matrices
%

* Deleted in this Appendix for brevity
%

k=l;
for x = 1:5

i f (x = l)
R = l / 2 ;
numRows =11;
mimCols =12;
H_mim=H_12;

elseif (x = 2)
R = 2/3;
numRows = 7;
numCols= 16;
Hnum = H23B;

elseif (x == 3)
R = 3/4;
numRows = 5;
numCols= 18;
H_num=H_34A;

elseif (x == 4)
R=3/4;
numRows = 5;
numCols = 18;
H_num=H_34B;

else
R = 5/6;
numRows = 3;
numCols = 20;
H_num=H_56;

end
[Hrows Hcols] = size(H_mim);
A = H_num(1 :numRows, 1 :numCols)';
[Arows Acols] = size(A); %note that A was transposed

for i = 2:Arows
forj = l:Acols

A(i);
ifA(ij)==-l

A_Col(kj) = - l ;
elseifA(ij)==0

ACol(kj) = 0;
else

ACol(kj) = A(i j) ; %zf - ftoor(B(i j)*zf/96);
end

end
%
%This section added to ensure that the Wank', i.e. unused
%sections of the A matrix are -1 , not zero as they would be
%otherwise.
%
[AColrows AColco l s] = size(A_Col);
forj = Acols+l:A_Col_cols

A_Col(kj)=-l;

176

end

%Note: k is the counter for the row of BCol . It is incremented
%once for every new B matrix, or every new column in the C/A
%ma trices.
%j is the counter that runs along the row of B.
%i is always one, in the case of B. It will have use in the A
%case.

k = k + l ;
%end

end
end
A Col;

[AColrows AColco l s] = size(A_Col);
A C o l b i n = [];
A_ColJ>inJext = [];

for i = 1 :A_Col_rows
A C o l b i n r o w = [];
for j = 1 :A_Col_cols

if ACol(i j) == -1
A_ColJ>injnsert = [l 1 1 1 1 1 1 1 1 1 1] ;

else
A Colbininsert = ConvAndRound_decimal(A Col(ij), 11); %11 bit precision

end
for k = 1 :length(A_Col_bin_insert)

A_Col_bin(i,I l*0'-l)+k) = A_Col_bin_insert(k);
end
textvalue = num2str(A_Col_bin_insert);
% Storing the resulting values in a matrix of strings (one row)
A Colbinrow = [A C o l b i n r o w text value];
colseperate = sprintf ('\t');% Column seperator character
A C o l b i n r o w = [A C o l b i n r o w colseperate];

end
% Storing the results in a matrix of strings
i f (i==l)

A C o l b i n t e x t = A C o l b i n r o w ;
else

rowseperate = repmat('', 1, 352);
A C o l b i n t e x t = [AColb in tex t ; rowseperate];
A C o l b i n t e x t = [A_Col_bin_text; A C o l b i n r o w] ;

end
end
A C o l b i n ;

A.14AB mem checker.m

This module verifies the output of the AB hardware memory controller against the

output of its software counterpart (Only the AB matrix module is shown).

% Model Base Matrices
%

* Deleted in this Appendix for brevity
%

R = input ('Enter the target code RATE:', V);

errors = 0;

if(strcmp(R,'l/2'))
%R=l /2 ;

177

numRows =11;
numCols= 12;
H_num=HJ2;

elseif(strcmp(R,'2/3b'))
%R = 2/3;
numRows = 7;
numCols= 16;
Hjium = H23B;

elseif (strcmp(R,'3/4a'))
%R = 3/4;
numRows = 5;
numCols= 18;
H_num = H J 4 A ;

elseif (strcmp(R,'3/4b'))
%R = 3/4;
numRows = 5;
numCols =18;
Hjium = H34B;

else
%R = 5/6;
numRows = 3;
numCols = 20;
Hnum = H 5 6 ;

end

[Hrows Hcols] = size(H_num);

AB = H_num(l mumRows, 1 :numCols+l); % including B

[AB_rows AB_cols] = size (AB);

vhdl_file = fopen ('E^ROJECTSMVIemory^WorkWHDnABCONTROLLERMesting^andResuItsVabcontroller out.txt', 'r');

for zf= 24:4:96
for i = 1 :AB_cols

data_line = fgets(vhdlfile);
for j = 1 :AB_rows

% Detecting -1
if(AB(j,i) = -l)

accurateresult = -1;
else

accurateresult = zf - floor((AB(j,i)/96)*zf);
end

% Detetcting Zeros
if (accurateresult == zf)

accurateresult = 0;
end

if (data_line(((j*7)-6):j*7) == '1111111')
vhdl_result = -1 ;

else
vhdlresult = bin2dec(data_line(((j*7)-6):j*7));

end

if (accurateresult ~= vhdlresult)
AB_val = AB(j,i)
zf
accurateresult
vhdlresult
errors = errors + 1;

end
end

end
end

178

A. 15 input_generate.m

This module generates a user-defined random sequence of input bits.

numofbi ts = input ('How many input bits ? : ');

% Generate Input
u = round(rand([l,num_of_bits]));

save savedu u;

A. 16 packetcompare.m

This module performs the comparison between the output packets produced from the

software model and the hardware implementation.

mat seq = fopen ('E:\PROJECTS\WiMAX_Encoder\Matlab\Encoder\VHDL_Testing\encoded_seq_mat.txt', V);
vhdlseq = fopen ('E:\PROJECTS\WiMAX_Encoder\Matlab\EncoderWHDL_Testing\encoded_seq_mult_hw.txt', Y);

packeterrors = 0;

% Full Version
num_of_packets = 100 * 19 * 4;

% Short version
% num of_packets = 3 * 1 9 * 4 ;

for i = 1 :num_of_packets
matline = fgets(matseq);
vhdlline = fgets(vhdl seq);
[dummy length] = size(vhdlline); % removing the extra \n char

encodingerrors = 0;
forj=l:(length-2)

if (mat_line(j) ~= vhdl_line(j))
j ;
encoding_errors = encodingerrors + 1;

end
end

if (encodingerrors ~ 0)
i
encodingerrors
packeterrors = packeterrors + 1;

end
end

closingsuccess = fclosefall')

A. 17 Encoder_script.m

This module performs the comprehensive behavioral simulations looping through the

required number of times while altering the encoder's parameters as needed. This module

invokes the finalEncoder.m module presents up as a function.

179

file://'E:/PROJECTS/WiMAX_Encoder/Matlab/Encoder/VHDL_Testing/encoded_seq_mat.txt'
file://'E:/PROJECTS/WiMAX_Encoder/Matlab/EncoderWHDL_Testing/encoded_seq_mult_hw.txt'

% ******* Comprehensive Behavioral Simulation Script ***********
% Script to run through the randomly generated 100 packets of user bits
% and encode them using all possible code rates and ZFs.
% 100 codewords produced for each R and Zf

% close all;
clear all;
clc;

% Loading the randomly generated user bits
load('inputvector.mat'); % The input will be in a vector called (u)

% Output file
outfile = fopen('encoded_seq_mat.txt','w');

% loop to cover all code rates
for x = 1:4

if(x = l)
R= l /2 ;

elseif (x == 2)
R = 2/3;

elseif (x == 3)
R = 3/4;

else
R=5/6;

end

% loop to cover all Z factors
for zf= 24:4:96

% loop to cover all 100 packets
fori = 1:100

inputlength = zf*24*R;

% Input packet
u_vec = u(((input_length*(i-I))+l) : (input_Iength*i));

% Calling the Encoder
[codeword] = Encoder_func(R, zf, uvec);

% Output codeword
x = num2str(codeword); % converting vector to a single string
[blah, lengths] = size(x);
% Eleminating white spaces
forj= ldengthx

if 0 —1>
codewordstr = x(j);

else
if(x(j)~=")

codewordstr = [codewordstr x(j)];
end

end
end

iprintf (outfile, '%s\n', codewordstr);

end
end

end

closingresult = fclose ('all')

180

Appendix B

Testing and Verification VHDL Modules

This Appendix presents the VHDL code for the modules used in the behavioral and

timing simulations as well as hardware testing.

B. 1 Encodertb. vhd

This module interfaces with the encoder's top-level VHDL module, and simulates its

behavior over a comprehensive set of run-time conditions and input packets.

LIBRARY ieee;
USE ieee.stdjogicj 164.ALL;
USE ieee.std_logic_unsigned.all;
USE ieee.numeric_std.ALL;
USE std.textio.all;

ENTITY Encoder_tb_vhd IS
END Encoder tbvhd;

ARCHITECTURE behavior OF Encodertbvhd IS

— Component Declaration for the Unit Under Test (UUT)
COMPONENT Encoder
PORT(

DATAIN : IN stdjogic;
RATE : IN std_logic_vector(2 downto 0);
BLOCKSIZE : IN std logic_vector(6 downto 0);
START: IN stdjogic;
RESET: IN stdjogic;
CLOCK: IN stdjogic;
DATA_OUT: OUT stdjogic;
DONEOUT: OUT stdjogic;
OUTJVALID: OUT stdjogic;
RFD: OUT stdjogic
);

END COMPONENT;

— Component declaration for the input bits RAM
component testram
port(

addr: IN std_logic_VECTOR(17 downto 0);
elk: IN stdjogic;
dout: OUT stdJogic_VECTOR(0 downto 0));

end component;

—Inputs
SIGNAL DATAJN : stdjogic :='0';
SIGNAL START : stdjogic := '0';

181

http://ieee.std_logic_unsigned.all
http://ieee.numeric_std.ALL

SIGNAL RESET : stdjogic := T ;
SIGNAL CLOCK : stdjogic := '0';
SIGNAL RATE : stdJogic_vectoi(2 downto 0):= "000";
SIGNAL BLOCK_SIZE : std_logic_vector(6 downto 0):= "0000000";
—Outputs
SIGNAL DATAOUT : stdjogic; SIGNAL DATAOUTvec : stdJogic_vector(0 downto 0);
SIGNAL DONE_OUT: stdjogic;
SIGNAL OUTVALID: stdjogic;
SIGNAL RFD: stdjogic;

-INPUT RAM
SIGNAL addr : stdJogic_vector(17 downto 0);= (others => '0');
SIGNAL inputbit ; std logic_vector(0 downto 0);

— Testing Constants and Variables
-SIGNAL inputvector : std logicvector (0 to 191999):= (others => '0');

Flag FSM States

-constant STATE0 : stdlogicvector (2 downto 0) := "000";
constant STATE J ; stdlogicvector (2 downto 0)
constant STATE2 : stdlogicvector (2 downto 0)
constant STATE3 : std logicvector (2 downto 0)
constant STATE4 : std logic vector (2 downto 0)
constant STATE5 : stdlogicvector (2 downto 0)
signal STATE : stdlogicvector (2 downto 0);

= "001":
= "010
= "011":
= "100":
= "101"

- TEXT FILE(S)
file OUTDATA : text open writemode is

"E:\PROJECTS\WiMAX_Encoder\VHDL\WiMAX_Encoder\Testing_and_Results\encoded_seq_vhdl_short.txt"

— Function to change the type on a unsigned value to a bitvector value
function Unsigned2Bit(Dataln ; unsigned) return bitvector is

variable Temp : bit_vector(DataIn'range);
begin

for k in Dataln'range loop
if(DataIn(k) = T)then

Temp(k) ;='!':
else

end if;
Temp(k) := '0';

BEGIN

end loop;
return Temp;

end function;

- Instantiate the Unit Under Test (UUT)
uut: Encoder PORT MAP(

DATAJN => DATAJN,
DATAOUT => DATAOUT,
RATE => RATE,
BLOCKSIZE => BLOCK_SIZE,
START - > START,
RESET => RESET,
DONE_OUT => DONEJXJT,
OUTVALID => OUTJVALID,
RFD => RFD,
CLOCK => CLOCK

);

- Provides Input Data
inputdata : testram port map (

addr => addr,

182

elk => CLOCK,
dout => inputbit

);

- CLOCK
CLOCK <= not CLOCK after 10 ns; -- 50MHz
RESET <='0' after 151ns;

— Hardwiring
DATAIN <= input bit(O) after 1 ns;
DATAOUTvec(O) <= DATAOUT;

Testing: process (CLOCK)
variable OUTLINE : line; - line variable
variable RATEut : integer := 1;
variable BLOCKSlZEut : integer := 24;
variable packetnumber : integer := 1;

begin
if (risingjidge(CLOCK)) then

if(RESET=T)then
addr <= (others => '0');
BLOCKJSIZE <= BLOCKSIZE;
RATE <= RATE;
START <= START;
STATE <=STATE_1;

else
case STATE is

when STATEJ =>
if(RFD = T)then

BLOCKSIZE <= stdlogic vector(to_unsigned(BLOCK_SIZE_ut,7)) after 1 ns;
if(RATE_ut=l)then

RATE <= "101 "after Ins;
elsif(RATE_ut = 2)then

RATE <= "Oil "after Ins;
elsif(RATE_ut = 3)then

RATE <= "010" after 1 ns;
else

RATE <= "000" after 1 ns;
end if;
START < = T after Ins ;
addr <= addr + "000000000000000001";
STATE <= STATE2;
else

BLOCKSIZE <= BLOCKSIZE;
RATE <= RATE;
START <= START;
addr <= addr;
STATE <= STATE!;

end if;

when STATE2 =>
BLOCK_SIZE <= BLOCK_SIZE;
RATE <= RATE;
START <= '0' after 1 ns;

- OUTPUT
if (OUTVALID = T) then

write(OUT_LINE, Unsigned2Bit(unsigned(DATA_OUT_vec)), left, 1);
end if;
if(RFD = '0')then

addr <= addr- "000000000000000001";
STATE <= STATEJ;

else

183

addr <=addr+ "000000000000000001";
STATE <= STATEJ;

end if;

when STATEJ =>
BLOCK_SIZE <= BL0CK_S1ZE;
RATE <= RATE;
START <= '0';
- OUTPUT
if (OUTVALID = T) then

write(OUT_LINE, Unsigned2Bit(unsigned(DATA_OUT_vec)), left, 1);
end if;
if(DONE_OUT = T)then

writeline(OUT DATA, OUTLINE);
if (packet_number = 3) then

if (BlOCKSIZEut = 96) then
if(RATE_ut = 4)then

RATEut := RATEut;
BLOCKSlZEut := BLOCKSlZEut;
packetnumber := packetnumber;
addr <=addr;
STATE <= STATE4;

else

RATE_ut:=RATE_ut+l;
BLOCK_SIZE_ut := 24;
packet number := 1;
addr <= (others => '0');
STATE <= STATE J ;

end if;
else

RATEut := RATEut;
BLOCK_SlZE ut := BLOCK_SIZE ut + 4;
packetnumber := 1;
addr <= (others => '0');
STATE <= STATEJ;

end if;
else

RATE_ut := RATE_ut;
BLOCK_SIZE_ut := BLOCK_SIZE_ut;
packetnumber := packetnumber + 1;
addr <= addr;
STATE <= STATEJ;

end if;
else

addr <= addr;
STATE <= STATE3;

end if;

when STATE4 =>
BLOCKJS1ZE <= BLOCK_SIZE;
RATE <=RATE;
START <= START;
addr <= addr;
STATE <= STATE_4;

when others =>
BLOCKSIZE <= (others => '0');
RATE <= (others => '0');
START <= '0';
addr <= addr;
STATE <= STATEJ;

end case;
end if;

end if;
end process testing;

END;

184

B.2 Encoder_tb_packet.vhd

This module interfaces with the encoder's top-level VHDL module, and simulates its

timing behavior while encoding one packet for a particular code rate and code length.

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_unsigned.all;
USE ieee.numeric_std.ALL;
USE std.textio.all;

ENTITY Encoder tb_vhd IS
END Encodertbvhd;

ARCHITECTURE behavior OF EncoderJb_vhd IS

- Component Declaration for the Unit Under Test (UUT)
COMPONENT Encoder
PORT(

DATAIN : IN stdjogic;
RATE : IN std_logic_vector(2 downto 0);
BLOCK_SIZE : IN stdJogic_vectoi<6 downto 0);
START : IN stdjogic;
RESET: IN stdjogic;
CLOCK : IN stdjogic;
DATA OUT : OUT stdjogic;
DONEJDUT: OUT stdjogic;
OUTVALID : OUT stdjogic;
RFD: OUT stdjogic
);

END COMPONENT;

—Inputs
SIGNAL DATAIN : stdjogic := '0';
SIGNAL START : stdjogic := '0';
SIGNAL RESET ; stdjogic :=T;
SIGNAL CLOCK : stdjogic := '0';
SIGNAL RATE : std_logic_vector(2 downto 0):= "000";
SIGNAL BLOCK_SlZE : stdJogic_vector(6 downto 0):= "0000000";

—Outputs
SIGNAL DATA_OUT: stdjogic; SIGNAL DATA_OUT_vec : std_logic_vector(0 downto 0);
SIGNAL D O N E O U T : stdjogic;
SIGNAL O U T V A L I D : stdjogic;
SIGNAL RFD; stdjogic;

—Testing Constants
— Input generated for n = 1920.

SIGNAL input_vector : stdJogicvector (0 to 1919) :=
"1010110010111100110100100001000101001101101011100001010101110111110001101101101II11101001100100100011010001
111001101101000101111000101101001101100110100000010011000100111000001110100110010110000101001000001000110010
111100101110000010100001000111100110001111011011101101011001100111110011110010011111001010111110110111011101
010101000011011111001100000110010111011100001101011011100000010010101101100000011000001100111010110011100000
011110111011110001001100101110001100100001010101011010001001000111100001101110101101110101111100101100001011
100001011111101100111111000001001011101010101110011010101010111000001100011011011000001001100011010101111101
011100010011000000100001010010110111001000011010111111111110100110101000111110010001101111001111010011111111
111010000001001011100001101000101001101101111011011011101101000001100011110011110010001001001100001010011101
111101010110001101101000001010110000001101000000010100011011100000010001110000010111100011111111110110101001
101010010000001101111110100110000100011110101011011000000100010100011101000001001100011111100010100110010001
101000011111010110001100010111000000011101000101100010010100110101101110110101100101111001101001000010001010
011011010111000010101011101111100011011011011111101001100100100011010001111001101101000101111000101101001101
100110100000010011000100111000001110100110010110000101001000001000110010111100101110000010100001000111100110
0011110110111011010110011001 111 10011110010011111001010111110110111011101010101000011011111001100000110010111
011100001101011011100000010010101101100000011000001100111010110011100000011110111011110001001100101110001100

185

http://ieee.std_logic_1164.ALL
http://ieee.std_logic_unsigned.all
http://ieee.numeric_std.ALL

100001010101011010001001000111100001101110101101110101111100101100001011100001011111101100111111000001001011
101010101110011010101010111000001100011011011000001001100011010101111101011100010011000000100001010010110111
0010000110101111111111101001101010001111100100011011110011110100111111111110100000010";

— Modify the following two parameters for target Code Rate and Block Size.
— Available values:
- Rates - (000=5/6), (00I=3/4b), (010=3/4A), (01 l=2/3b), (I00=2/3a), (101=1/2)
- Sizes - (0011000=24),...., (1100000=96)
CONSTANT RATE_ut : std_logic_vector(2 downto 0):= "000";
CONSTANT BLOCKSIZEut: std_logic_vector(6 downto 0):= "0011000"; - zf

— Input length under test (set according to Block Size)
CONSTANTk : integers 480; - input length (k = n * R)
SIGNAL statecounter : integer— 1;
SIGNAL inputcounter : integer:= 0;

- TEXT FILES
file INDATA : text open readmode is

"E:\PROJECTS\WiMAX_Encoder\VHDL\WiMAX^Encoder\Testing_and_Results\Encoder_in.txt";
file OUTDATA : text open writemode is

"E:\PROJECTS\WiMAX_EncoderWHDL\WiMAX_Encoder\Testing_and_Results\Encoder_out.txt";

— Function to change the type on a signed value to a bitvector value
function Unsigned2Bit(DataIn : unsigned) return bit vector is

variable Temp : bitvectorfDataln'range);
begin

for k in Dataln'range loop
if(DataIn(k) = T)then

Temp(k) := T ;
else

Temp(k) := '0';
end if;

end loop;
return Temp;

end function;

BEGIN

- Instantiate the Unit Under Test (UUT)
uut; Encoder PORT MAP(

DATAIN => DATA IN,
DATAOUT => DATA OUT,
RATE => RATE,
BLOCKSIZE => BLOCK SIZE,
START => START,
RESET => RESET,
DONEOUT => DONE_OUT,
OUT_VALID => OUT_VALID,
RFD=>RFD,
CLOCK=>CLOCK

);

CLOCK <= not CLOCK after 10 ns; - 50MHz
RESET <='0' after 151 ns;

DATAIN <= input_vector(0);
DATA_OUT_vec(0) <= DATA_OUT;

testing: process (CLOCK)
variable OUTLINE : line; — line variable

begin
if (rising_edge(CLOCK) and (RESET = '0')) then

if (statecounter = 1) then
BLOCKJS1ZE <= BLOCK_SIZE_ut after 1 ns;

RATE <= RATEut after 1 ns;
START < = T after Ins;
- INPUT
— We should be loading input at this clock

186

file://E:/PROJECTS/WiMAX_EncoderWHDL/WiMAX_Encoder/Testing_and_Results/Encoder_out.txt

input counter <= inputcounter + 1;
state_counter <= 2;

elsif (state_counter= 2) then
BLOCKSIZE <= BLOCKSIZE;
RATE <= RATE;

START <= '0' after 1 ns;
- INPUT
for iii in 0 to (k-2) loop

input_vector(iii) <= input_vector(iii+l) after 1 ns;
end loop;
- OUTPUT
if (OUTVALID = T) then
write(OUT LINE, Unsigned2Bit(unsigned(DATA_OUT_vec)), left, 1);
end if;
if (inputcounter = k) then — counter = k already

inputcounter <= 0; — we are reading bit n and shifting it out
state_counter<=3;

else
inputcounter <= inputcounter + 1;
state_counter <= 2;

end if;

elsif (statecounter = 3) then
BLOCKSIZE <= BLOCKSIZE;
RATE <= RATE;
START <= '0';
inputvector <= inputvector;
input_counter<= inputcounter;
-- OUTPUT
if (OUTVALID = '!') then
write(OUT_LINE, Unsigned2Bit(unsigned(DATA_OUT_vec)), left, 1);
end if;
if(DONE_OUT = T)then

writeline(OUT_DATA, OUTLINE);
statecounter <= 4;

else
statecounter <= 3;

end if;

elsif (statecounter = 4) then
BLOCKSIZE <= BLOCKSIZE;
RATE <= RATE;
START <= '0';
inputvector <= inputvector;
input_counter<= inputcounter;
state counter <= 4;

end if;
end if;

end process testing;

END;

B.3 TopLevel.vhd

This is a send/receive module that interfaces with the encoder and buffers inputs and

outputs during the hardware testing process. It also interacts with the Opal Kelly Bus

modules.

187

— WiMAX_Encoder, An LDPC Encoder for 802.16e wireless standard

- Engineer: Samer Chomery
- Create Date: 25th/06/07
- Design Name: 802.16e Encoder
- Module Name: TopLevel
- Project Name: WiMAXEncoder
- Target Device: Spartan HI
- Tool versions: ISE 8.1.03i
- Description: This is the top-level module used to interface with the Opal Kelly

boards. It connects both the interface with the Encoder system and
facilitates communication with the PC

— Dependencies: None - This is the Top-Level module

- Sub modules: Encoder.vhd
okLibrary.vhd
various .ngc files suuplied by OK

• Revision:
- Revision 0.01 - File Created
• Additional Comments:

library IEEE;
use 1EEE.STDLOG1C1164.ALL;
use 1EEE.STD_L0G1C_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

— Uncomment the following library declaration if instantiating
— any Xilinx primitives in this code,
-library UNISIM;
-use UNISIM.VComponents.all;

entity TopLevel is
Port (h i in : in STDLOGIC VECTOR (7 downto 0);

hiout : out STDJLOGICJVECTOR (1 downto 0);
hiinout : inout STDLOGICVECTOR (15 downto 0);
clkl :in STDLOGIC;
i2c_sda : out stdlogic;
i2c_scl : out std_logic;
himuxsel : out stdlogic);

end TopLevel;

architecture Behavioral of TopLevel is

— Host Interface Component
component okHostlnterface is

port(
- U S B links
h i i n : in std logic_vector(7 downto 0);
h iout : out std_logic_vector(l downto 0);
hiinout : inout std_logic_vector(15 downto 0);
— Internal (host interface) Bus links
t ic lk : out stdlogic;
okl : out std_logic_vector(30 downto 0);
ok2 : in std_logic_vector(16 downto 0)

);
end component;

— User Design
component Encoder is

Port (DATAIN : in STDLOGIC;
DATA_OUT: out STD_LOGIC;
RATE :in STDLOGICVECTOR (2 downto 0);
BLOCKSIZE : in STDLOGICVECTOR (6 downto 0);

188

http://1EEE.STD_L0G1C_ARITH.ALL
http://IEEE.STD_LOGIC_UNSIGNED.ALL

START : in STD_LOGIC;
RESET : in STDLOGIC;

DONEOUT : out STDLOGIC;
OUTVAL1D: out STDLOGIC;

RED : out STD LOGIC; — See documentation regarding this signal
CLOCK: in STDLOGIC);

end component;

— RAM to receive from Pipeln
component inputram

Port (addra: IN stdJogic_VECTOR(10 downto 0);
addrb: IN std_logic_VECTOR(10 downto 0);
clka: IN stdlogic;
clkb: IN stdlogic;
dinar IN stdJogic_VECTOR(0 downto 0);
doutb: OUT std_Iogic_VECTOR(0 downto 0);

wea: IN stdlogic);
end component;

— RAM to send to PipeOut
component outputram

Port (addra: IN std logic_VECTOR(l 1 downto 0);
addrb: IN stdJogicJVECTOR(11 downto 0);
clka: IN stdlogic;
clkb: IN stdlogic;

dina: IN stdJogic_VECTOR(0 downto 0);
doutb: OUT std_logic_VECTOR(0 downto 0);
wea: IN stdlogic);

end component;

Endpoint Components used
component okWireln is

port(
okl : in std_logic_vector(30 downto 0);
ok2 : out std_logic_vector(16 downto 0);
ep_addr : in std_logic_vector(7 downto 0);
epdataout: out std_logic_vector(15 downto 0));

end component;

component okTriggerln is
port(

end component;

okl : in std_logic_vector(30 downto 0);
ok2 : out std_logic_vector(16 downto 0);
epaddr : in std_logic_vector(7 downto 0);
epclk : in stdlogic;
eptrigger : out std_logic_vector(15 downto 0));

component okTriggerOut is
port(

end component;

okl : in std_logic_vector(30 downto 0);
ok2 : out std_logic_vector(16 downto 0);
epaddr : in std_logic_vector(7 downto 0);
epclk : in stdlogic;
eptrigger : in std_logic_vector(15 downto 0));

component okPipeln is
port(

end component;

okl : in std_logic_vector(30 downto 0);
ok2 : out std_logic_vector(16 downto 0);
epaddr : in stdjogic_vector(7 downto 0);
epwrite : out stdlogic;
epdataout: out std_logic_vector(15 downto 0));

component okPipeOut port (
okl : in std_logic_vector(30 downto 0);
ok2 : out std_logic_vector(16 downto 0);
epaddr : in std_logic_vector(7 downto 0);

189

epread : out stdlogic;
epdatain : in std_logic_vector(15 downto 0));
end component;

ENCODER FSM STATES
constant SIDLE : stdlogicvector (1 downto 0) := "01";
constant INPUTLOAD : stdjogicvector (1 downto 0) := "11"
constant FTNISHJXJTPUT : std_logic_vector (1 downto 0) := "10";
signal STATE : stdlogicvector (1 downto 0);

SIGNALS

signal wireOldata : std_logic_vector(15 downto 0);
signal triggerO 1 : std_logic_vector(15 downto 0);
signal trigger_02 : std_logic_vector(15 downto 0);
signal trigger_03 : std_logic_vector(15 downto 0);
signal PipelnWrite : stdlogic;
signal PipelnData : std_logic_vector(15 downto 0);
signal PipeOutRead : stdlogic;
signal PipeOutData : std_logic_vector(15 downto 0);
signal ti elk
signal okl
signal ok2

stdlogic;
std_logic_vector(30 downto 0);
std_logic_vector(16 downto 0);

signal ramladdra : std_logic_vector(10 downto 0);
signal ramladdrb : std_logic_vector(10 downto 0);
signal ramOaddra : std_logic_vector(l 1 downto 0);
signal ramOaddrb : stdlogicvectoifl 1 downto 0);
signal ramI_out : std_logic_vector(0 downto 0);
signal ramOin : stdlogic vector(0 downto 0);
signal ramOwea : stdlogic;

signal encoderstart: stdlogic;
signal outvalid : stdlogic;
signal rfd : std_logic;

begin

-- Hardwiring (must be done according to documentation)
— These are pins specified in the .ucf file
himuxsel <= '0';
i2cj;cl <='Z';
i2c sda <= 'Z';

- RAMFSM
RAM_FSM: process (ticlk) - clocked by the host interface closk (48 MHz)
begin

if (rising_edge(ti_clk)) then
if (trigger_02(0) = '1') then - RAM reset

ramladdra <= (others => '0');
ramOaddrb <= (others => '0');

else
if (PipelnWrite = T) then

rami addra<= ramladdra + "00000000001";
end if;

if (PipeOutRead = '1') then
ramO_addrb <= ramO_addrb + "000000000001"

end if;
end if;

end if;
end process;

— EncoderFSM
EncoderCommunication: process (clkl)
begin

if (risingedge(clkl)) then
if (wireOldata(O) = '1') then

190

else

encoderstart <= '0';
ramOaddra <= (others => '0');
ramladdrB <= (others => '0');
ramOwea <= '0';
STATE <= SIDLE;

case STATE is

when SIDLE =>
ramOaddra <= (others => '0');
ramO wea <= '0';
if (trigger_01 (0) = '1') then -- start

encoderstart <= T ;
raml_addrb <= ramladdrb + "00000000001"
STATE <= INPUT LOAD;

else

end if;

encoderstart <= '0';
raml_addrb <= (others => '0');
STATE <= SJDLE;

when INPUT_LOAD=>
encoderstart <= '0';
ramO wea < = T ;
if(rfd = T)then

raml_addrb <= ramladdrb + "00000000001";
STATE <= 1NPUT_L0AD;

else
ramladdrb <= (others => '0');
STATE <= FINISHOUTPUT;

end if;
if (out_valid = '1') then

ramOaddra <= ramOaddra + "000000000001"
else

ramOaddra <= (others => '0');
end if;

when FlNISH_OUTPUT =>
encoderstart <= '0';
ramladdrb <= (omers => '0');
if (out valid = '1') then

ramOwea <='] ' ;
ramOaddra <= ramO_addra + "000000000001"
STATE <= FINISH OUTPUT;

else

end if;

ramO_wea <= '0';
ramOaddra <= (others => '0');
STATE <=S IDLE;

when others =>
encoderstart <= '0';
ramOaddra <= (others => '0');
ramladdrB <= (others => '0');
ramOwea <= '0';
STATE <=S IDLE;

end case;
end if;

end if;
end process;

— Host Interface Instance
Hostlnterface: okHostlnterface

port map(
hi in=>hi in.

191

hiout => hiout,
hiinout => hiinout,
t ic lk => ticlk,
okl => okl,
ok2 => ok2);

— My design (Encoder) instance
WiMAXEncoder: Encoder

port map(
DATAJN => ram]_put(0),
DATAOUT => ramOin(O),
RATE => wire01data(15 downto 13),
BLOCK SIZE => wire01data(7 downto 1),

START => encoderstart, — trigger in
RESET => wireOldata(O),
DONE_OUT => trigger_03(0), - trigger out
OUTVALID => outvalid,
RFD => rfd,
CLOCK =>clkl);

— Input RAM instance
inputblockram : inputram

port map (
addra => ramladdra,
addrb => ramladdrb,
clka => ticlk,
clkb=>clkl,
dina => PipelnData(0 downto 0),
doutb => rami out,
wea => PipelnWrite);

— Output RAM instance
outputblockram: outputram

port map (
addra => ramOaddra,
addrb => ramOaddrb,
clka=>clkl,
clkb => ticlk,
dina => ramOin,
doutb => PipeOutData(0 downto 0),
wea => ramOwea);

Endpoint Instances —
WirelnOl : okWireln

port map (
okl =>okl,
ok2 => ok2,
ep_addr => x"00",
epdataout => wireOldata);

TriggerlnOl : okTriggerln
port map (

okl =>okl,
ok2 => ok2,
epaddr => x"40",
epclk => clkl,
^- tr igg6 1 = > triggerOl);

Triggerln_02 : okTriggerln
port map (

okl => okl,
ok2 => ok2,
epaddr =>x"41",
epclk => ticlk,
eptrigger => trigger_02);

TriggerOut: okTriggerOut
port map (

192

okl =>okl,
ok2 => ok2,
epaddr => x"60",
epclk =>clkl,
ep_trigger => trigger_03);

Pipeln : okPipeto
port map (

okl =>okl,
ok2 => ok2,
epaddr => x"80",
epwrite => PipelnWrite,
ep_dataout => PipelnData);

PipeOut: okPipeOut
port map (

okl =>okl,
ok2 => ok2,
epaddr => x"A0",
epread => PipeOutRead,
epdatain => PipeOutData);

end Behavioral,-

193

Appendix C

Comprehensive Behavioral Simulation Waveforms

This Appendix presents several waveforms captured during comprehensive

behavioral simulations of the 802.16e LDPC encoder.

C. 1 Waveform of the full behavioral simulation test
data_in

start

reset

clock

rate
block size

done_out

rfd

i n p u t b i t

!

• < i 3 » a a a i 3 £

1 1 !

Dps

a j u j r j r j i

i i i

BH

a u u ' - j t i i

1 1 1

i

5 3 0 3 3 3 3 3 l J t J u j a Z l [

1 1 1 ' ' '«

WHO

J!21L_1HI5C

1 1 1
m&

taaaaaa

i I i

j a a c i L i i

I I i

lino

J I J I I I 1 9 0 .

i i i

TC3 3 J J u l i

' ' W

3CJC1C1Q1

1 1 1
res

i

St^SfsnoofSsgJbjm AHmitecsyrebeftavJor D^:MOTM^i.ia«sS5SAMMc«ii^moa>^rrtiiTire2007 Row:iPage:i

C.2 Waveform illustrating the encoder working with rate 1/2
datain

start 1
reset
clock

rate 34
block size 1&

data out
data out vec

doneout 1
out_valid T

rfd
addr

input bit

£i^«ic«terlbvtiit AnHtedurKtaftavtor Dale: MonMayU10:13:111AM Mountain Daylight Time 2BB7 Row; 1 Page: 1

I I 111 I I I I t t

194

C.3 Waveform of full packet encoding at code rate 1/2 and block
size 36

data_in
start
reset

clock
rate

block size
data_out

data outvec

out valid
rfd

addr

1

1

u uutnunn unnmi WUHIWI yMwtnvi JU
i

•]

»

ii
i

• m m •KIWI juiuin mwm ir

iniMiMriiiiiimiiiiMnnfMiMMiiiiiiiiirBiiiiii^

i i

-

445

L
1

J

i i i i 1 t i i i

i

1 ' wL ' ' i * i i i i i i i

L J

n

ID

1 ' U I ts

*

1 1 1

•lUMMiimniMii

i i i > i i

L

1
i

fia^««iKiefJbjiM Afl8Wt&e&ire:Beh3vtor Date: Mm May 1410:29:03 AM Motintam DsySgm "TWte 2BG7 sc#: 1 Page: t

C.4 Waveform of full packet encoding at code rate 5/6 and block
size 92

data in
start
reset

block size

dataout vec
done out

out_vahd
rfd

addr
input bit

uuu

92

1 1 1 1 1 1 1 1 1

• M
1

1

U
_ 1

)»iu

111 111 I I i i i I I 1 1 1 1 1 " " " b y . « i y " " " i 111 II111 111111 i n " " " ydi

L

BUS
I I I ! 1 t 1 [1 t 11 1

t

1

u 1

WHO

t 1 1 l l I 1 1 1 1 1 1 I t I 1

£R%XfK9deJ&jtiHi ATBiftKSurebetsvtor Date: Mori Mag 14 10:33:18 AM Mountem Daylight Time 2307 Row: 1 Page: 1

C.5 Waveform illustrating the dynamic change of encoding rate
data_in

start
reset

clock
rate

bIock_size
data_out

dataoutvec

doneout
out valid

rfd
addr

input_bit

mi
56

D11

"MA

i

i

u
i

^ i i . i i i . . 11 I I i M i l

L

10

I I11 I t I I I

i

m.my. • 11111111
res

1

mi
m

i

u
_ j

UM

1II I I 1 1 1 1

1

i :

u

• i II111 I I

i

i

u

s
l i n i n g

I

1

U

1 J

J I 1111111

i

I IBM

1 1 I I I 1111

1

1

u
J

•HID

1 1 I I

L

y

1 1 l l l l

enft^enewwajiiwi Anaiteaiwc:befi3M»or Date: MMi^i«ia30LMMiMDunta»D^flg«'rai»ajD7 Ho*: 1 Paget

195

C.6 Waveform illustrating the dynamic change of block size
data in ^

start
reset
clock

rate w
blocksize

data out
dataoutvec

doneout
out_valid

rfd
addr

inputbit
state

11 I I i i >11111

ElS8y»neMe_Ssj9ld AK3ifeeSure:tffiflavtor Date: Mon Kay 14 10:3142AM wxzfcm Dayisjia urate 2007 HO*: 1 Page 1

C.7 Waveform illustrating a packet-to-packet transition
data in

start
reset

clock
rate

blocksize
dataout

dataoutvec
done__out
outvalid

rfd
addr

input bit
state

w
1

.]i

/3I

1)1

III

]

l l l l l l l l l

L
[0

l l l l l l l l l

p

l l l l l l l l l

10
r
L

r

"<m

r~

1

(Hi to i l

JMii"1

W» [M* fa

[1

l l l l l l l l l

,)m\m

IB

l l l l l l l l l

M im l«

i

l l l l l l l l l

1_

>|wlw
10

l l l l l l l l l

mt [*» [h

l l l l l l l l l

J

> |atM |m*

11

l l l l l l l l l

n r~

m *» JM » (MM [tta

0 l i ID H

i i i m i i t i i u m i i i

m \m [« pm]M»

IB 11 ID

'""iiyLu"'"

n

iSTpiTi
11

[m^rn

10

l l l l l l l l l l l l l l l l l l l

~1

__r
Ml g*

1 ID

M l l l l l l

&&gxm»tes,JbJM ArertfiKSureBetHViar Date: Mao May 14 30:34:2? AM Mountain Daylight i*ms 2D07 How: 1 Page: 1

196

Appendix D

C++ Hardware Test and Control File

This Appendix presents the C++ code that was used to connect, control, and program

the FPGA device on the Opal Kelly XEM3010 board. The code also runs a test of the

encoder design.

#include <iostream>
#include <fstream>
#include <okCUsbFrontPanel.h>
#include <string>
#include <stdlib.h>
using namespace std;

#defineWIRElN_RESET_MASK 0x0001
#defme WIREINRATEMASK OxEOOO
#define WIRE1N ZFMASK OxOOFE
#defineRATE_12_BITS OxAOOO
#define RATE_23_BITS 0x6000
#define RATE_34_BITS 0x4000
#define RATE56BITS 0x0000

// Function to convert the bit value stored in a byte into an ascii character
char bitTochar (unsigned char x);

int main ()
{

// ****************** Variables *******************

// XEM Device Variable
int devicecount = 0;
string serial;
int major_ver = 0; //firmware major version
int minorver = 0; //firmware minor version
int devicemodel = 0;
double freq = 0; // PLL output frequency
long errorCode;

// File Variables
char inchar;
char outchar;
unsigned char inbuf [3840]; //1920 * 2
unsigned char outbuf [4608]; // 2304 * 2

// LDPC Code related Variables
short int zf; //zf as loop index
short int zfbits;
int rate ; // rate as loop index
double coderate; // rate in double format
short int ratebits;
int codelength ; // code length (output length)
int inputlength ; // input length
int packet; // packet number as loop index

197

II ***************** Input/Output Files ******************
ifstream in file;
inJile.openCinput_vector.txt");
ofstream out_file;
out_file.openCencoded_seq_hw.txt");

II **************** F P G A Communication *******************
// — Creating a pointer to a FrontPanel object

okCUsbFrontPanel *xem;
xem = new okCUsbFrontPanel();

// — Counting the devices attached to the USB bus
devicecount = xem->GetDeviceCount();
c o u t « "Where are (" « dev icecount« ") devices attached to USB b u s " « endl;

// — Opening USB communication with Board
if (xem->OpenBySerial() != 0) {

printf("\nError opening device W);
return-1;

}
else {

serial = xem->GetSerialNumber();
c o u t « "\nDevice with serial number (" « serial « ") Opened Successfully !!" «endl ;

}

// — Version Checks
if (!(xem->lsFrontPanel3Supported())) {

cout « "FrontPanel 3 is Not Supported on this board ! ! " « endl;
if (!(xem->IsFrontPanelEnabled())) // Is any Front Panel running on board ?

cout « " But FrontPanel is enabled!!" « endl;

}
else {

major_ver = xem->GetDeviceMajorVersion();
minorver = xem->GetDeviceMinorVersion();
c o u t « " The firmware's version number is: " « majorver « "." « minorver « endl;
devicemodel = xem->GetBoardModel();
if (devicemodel == 3) // enumerated type

c o u t « " Device Model: XEM 3010 " « endl;
>

// — Setting up Frequency of PLL
okCPLL22393 *pll = new okCPLL22393;
pll->SetReference(48.0f);
pll->SetPLLParameters(0,400,48);
pll->SetOutputSource(0, okCPLL22393: :ClkSrc_PLLO_0);
pll->SetOutputDivider(0, 8);
pll->SetOutputEnable(0, true);

xem->SetPLL22393Configuration(*pll);

freq = pll->GetOutputFrequency(0);
cout « " PLL output freq. = " « freq « " MHz" « endl;

// — Loading design file to FPGA
errorCode = xem->ConfigureFPGA("wimax_encoder_mult.bit");
if(errorCode<0)

c o u t « "Configuring Device Failed!!, Error Code: "«errorCode«endl;

// — Reseting FPGA Design
xem->SefWireInVarue(Ox0O, Oxffff, WIREINRESETMASK);
xem->UpdateWireIns();
xem->SetWirelnValue{0x00,0x0000, WIREINRESETMASK);
xem->UpdateWireIns();
// — The Design-Test loop —
for (rate = 1; rate <= 4; rate++) {

i f (r a t e = l) {
code_rate= 1/2.0;
rate_bits = RATEJ2BITS;}

elseif(rate==2){

198

file:///nDevice

code_rate = 2/3.0;
rate_bits = RATE23BITS;}

else if (rate == 3){
code_rate = 3/4.0;
ratebits = RATE34BITS;}

else{
coderate = 5/6.0;
ratebits = RATE56BITS;}

for (zf = 24; zf <= 96; zf = zf + 4) {
codelength = int(zf * 24);
inputjength = int(code_length * coderate);
zfbits = z f « l ;

for (packet = 1; packet <= 100; packet++) {
// > Sending Data
// Setup rate and block length

xem->SetWirelnValue(0x00, ratebits, WIREINRATEJvlASK);
xem->UpdateWireIns();
xem->SetWirelnValue(0x00,zfbits,WIRE1N ZFMASK);
xem->UpdateWireIns();
// Read bits from in file
for (int i = 0; i < (input_length*2); i+=2) {

infile.get(inchar);
in_buf[i] = atoi(&in_char);
in_buf[i+l] = 0;

}
// Reset RAM address pointers
xem->ActivateTriggerln(0x41, 0);
// Send bits to Pipeln
errorCode = xem->WriteToPipeIn(0x80, (input_length*2), inbuf);
if(errorCode<0)

c o u t « "Writing data to Pipeln failed!!, ErrorCode: "«errorCode«endl;
// start FSM
xem->ActivateTriggerln(0x40, 0);

// > Waiting for DONEOUT signal from design
xem->UpdateTriggerOuts();
while (!(xem->IsTriggered(0x60,0x0001)))
{

xem->UpdateTriggerOuts();
}
/ / c o u t « "Encoding Packet Done!! !\n";

// > Receiving Data
// Receive bits from PipeOut
xem->ReadFromPipeOut(0xA0, (code_length*2), out_buf);
// Write bits to out file
for (int i = 0; i < (code_length*2); i+=2){

outchar = bitTochar(out_buf[i]);
out_file.put(out_char);

}
out_file.put('\n');

}
// returning the reading cursor to beginning of input file stream
in_file.seekg(0, ios::beg);

}
}
in_file.close();
out_iile.close();
return 0;

}

char bitTochar (unsigned char x)
{

i f (x = l)
return T ;

else
return '0';

}

199

