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Abstract methods to re-estimate tissue parameters between slices (af-
ter patient-specific training on a single slice). One method
The first section of this paper describes a method for cor- thresholded pixels with high probabilities of containing a
recting inter-slice intensity variations in MR images. The single tissue type, while the other used a least squares esti-
method does not rely on a tissue model or segmentation,mate of the change in tissue parameters. A similar approach
and is not affected by the presence of abnormalities. Thewas used in one of the only systems thus far to incorporate
second section of this work extends this technique to the corthis step for tumor segmentation [4]. This system first used
rection of inter-volume intensity variations in MR images of patient-specific training of a neural network classifier on a
the brain, using a characterization of bi-lateral symmetry single slice. When segmenting an adjacent slice, this neural
to confer robustness to the presence of large abnormalitiesnetwork was first used to classify all pixels in the adjacent
such as tumors or edema. slice. The locations of pixels that received the same label
in both slices were then determined, and these pixels in the
adjacent slice were used as a new training set for the neural
1 Inter-Slice Intensity Variation Reduction network classifier used to classify the adjacent slice. Each
of these approaches require not only a tissue model, but
be- Patient-specific training, making them unsuitable for use in

tween slices in ‘multislice’ acquisition sequences, the two- utomatic systems for detecting and segmenting large ab-

dimensional slices acquired under some MRI acquisition ormalities.
protocols may have a constant slice-by-slice intensity off-  One of the most impressive inter-slice intensity correc-
set [1]. It is noteworthy that these variations have different tion methods to date was presented in [1]. This work pre-
properties than the intensity inhomogeneity observed within sented two methods to incorporate inter-slice variation cor-
slices, or typ|ca||y observed across slices. As opposed torection within an EM Segmentation framework. The first
being slowly varying, these variations are characterized bysimply incorporated slice-by-slice constant intensity off-
sudden intensity changes in adjacent slices. A commonsets into the inhomogeneity estimation, while the second
result of inter-slice intensity variations is an interleaving method computed a two-dimensional inhomogeneity field
between ‘bright’ slices and ‘dark’ slices [2], (the ‘even- ineach slice and used these to produce a three-dimensional
odd’ effect). While most intensity inhomogeneity correc- inhomogeneity field that allowed inter-slice intensity vari-
tion methods can correct for slowly varying intensity varia- ations. The method used by the INSECT system for this
tions, most methods for intensity inhomogeneity reduction step was presented in [5] to improve the segmentation of
do not consider these sudden Changes_ This work, thereMUltiple Sclerosis lesions. This method estimated a linear
fore, presents a simple method to reduce sudden intensityntensity mapping based on pixels at the same location in
variations between adjacent slices. adjacent slices that were of the same tissue type. Unfor-
In comparison to the estimation of slowly varying inten- tunately, despite the lack of patient-specific training, these
sity inhomogeneities, correcting inter-slice intensity varia- methods each still require a tissue model (in each slice) that
tions has received little attention in the medical imaging lit- May be violated in data containing significant pathology.
erature. One early attempt to correct this problem in order A method free of a tissue model was presented in
to improve segmentation was presented in [3]. This work [6]. This method used a median filter to reduce noise,
presented a system for the segmentation of normal brainsand pruned pixels from the intensity estimation by band
using Markov Random Fields, and presented two simple thresholding of histogram, and removing pixels represent-
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ing edges. The histogram was divided into bins and a  Unfortunately, this computation is sensitive to areas
parabola was fit to the heights of the 3 central bins, usedwhere different tissue types are not aligned, since these re-
to determine the intensity mapping. Although model-free, gions are given weight equal to that of pixels where tissue
this method makes major assumptions about the distributiontypes are appropriately aligned in the adjacent slices. The
of the histogram, that may not be true in all modalities or valuew thus simply minimizes the error between the inten-
in images with pathological data. In addition, this method sities at corresponding locations in adjacent slices, irrespec-
ignores spatial information. tive of whether the intensities should be the same (possibly

Inter-slice intensity variation correction can be addressedintroducing additional inter-slice intensity variations). The
using the same techniques employed in Intensity Standard-objective must thus be modified to restrict the estimation of
ization, which will be discussed in the next section. How- w to locations that actuallghouldhave the same intensity
ever, most methods for Intensity Standardization employ aafter the intensity transformation is applied. This is dif-
tissue model or a histogram matching method that will be ficult without the use of a tissue model or a segmentation
sensitive to outliers. It was ultimately chosen not to use one of the image. However, an alternate approach to identify-
of the existing histogram matching methods, since real dataing tissues or performing a segmentation is to weight the
may have anisotropic pixels, where the tissue distributionserrors based on the importance of having a small error be-
can change significantly between slices. The methods intween each corresponding locatiQi (¢), Y (¢)). Given a
[5, 4] are more appealing since these methods use spatialveighting of the importance for each pixel to have the same
information to determine appropriate pixels for use in es- intensity between adjacent slicé¥), the calculation of
timation. However, these methods rely on a tissue modelw would focus on computing a value that minimizes the
that could be inappropriate for data with significant pathol- squared error for areas that are likely to be aligned, while
ogy. Although the method of [6] is a histogram matching reducing the effect of areas where tissues are likely mis-
method, removing points from the estimation in a model- aligned. GivenR(i) for eachi, the least squares solution
free way is appealing. We present in this section a simple can be modified to use this weight by performing element-
method to identify good candidates for estimating the inten- wise multiplication of both the vectorX andY with R
sity between slices as in [5, 4], but without an explicit tissue [8]. This scaling of both vectors modifies the error func-
model. tion to be proportional to the values R (using.x to denote

We will assume that the intensity mapping between element-wise multiplication):
slices can be described by a multiplicative scalar valua
model commonly used [5, 1]. If we assume that the slices
are exactly aligned such that each pixel in sliecorre- min D ((X(@). = R(i))w — Y (). % R(i))*> (4
sponds to a pixel in slic¥ of the same tissue type, then the i
scalarw could be estimated by solving the quation below  The value w that minimizes the above relevance-
(whereX andY” are vectors of intensities ari(i) has the \eighted loss function can be computed as before:
same spatial location &5(¢) within the image):

Xw=Y 1) w=((X.*R)(X.+R)"YX.+R)(Y.*R) (5)

However, since there will not be an exact mapping be-  |f the image was segmented into anatomically meaning-
tween tissue types at locations in adjacent slices, an ex+y| regions, computingk(i) would be trivial, it would be
therefore the task becomes to estimate an appropriate valugjices and 0 when the tissue types differ. Without a seg-
forw. One computationally efficient way to estimate a good mentation, this can be approximated. An intuitive approx-

value ofw would be to calculate the value fer that min-  imation would be to weight pixels based on a measure of
imizes the sum of squared errors between the elements ofjmjlarity between their regional intensity distributions. A
XwandY’: method robust to intensity-scaling to perform this approxi-
mation is to compute the (regional) joint entropy of the in-
min Z(X(i)w —-Y(i))? (2) tensity values. The (Shannon) joint entropy is defined as
i follows [9]:

The optimal value forw in this case can be de-
termined by solving forw in the ‘normal equations’ H(Ay, Ag) = — Z p(i, j) log p(i, j) (6)
[7] (we employ the matrix pseudoinverse): icdy,jeds
The valuep(i, j) represents the likelihood that intensity
w=(X'X)"'X'Y 3) i in one slice will be at the same location as intengiiy
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Figure 2. Inter-slice intensity variation reduc-
tion with simulated MR images [10, 11, 12,

Figure 1. Toy example of weighting for inter-
slice intensity variation reduction. The goal
is to transform slice 1 so that its intensities
match those of slice 2. Top row, left to right:
Original slice 1, original slice 2, slice 1 scaled
from unweighted linear regression. Since
the objects in the two slices differ, the un-
weighted linear regression did not estimate a
good transformation. Middle row: elements

13, 14] and an applied linear intensity offset.
Top left: Simulated slice 1. Top right: Simu-
lated slice 2 ( 10mm away from slice 1). Bot-
tom left: Slice 1 with an applied linear off-
set. Bottom right: Slice 2 transformed using
the weighted linear regression between slice
2 and the darkened slice 1. The method suc-
cessfully recovered a scale factor very close
to the one applied.

of the weighting. Left to right: Regional joint
entropy, absolute difference, joint foreground
pixels. Bottom left: Combined weighting
(darker regions receive less weight). Note
that the weighting focuses the estimation on
regions that should have the same intensity.

a sign reversal and normalization to the raf@d], the re-
gional joint entropy of the image regions could be used as
values forR(:), that would encourage regions that are more
homogeneous and correlated between the slices to receive
Bottom right: Linear regression using the more weight in the estimation af than heterogeneous and

combined weighting estimates a near-optimal uncorrelated regions.
linear scaling. Joint entropy provides a convenient measure for the de-
gree of spatial correlation of intensities, which is not depen-
dent on the values of the intensities as in many correlation
the adjacent slice, based on an image region. We use a 2geasures. However, the values of the intensities in the same
pixel square window to compute the valy€s, j) forare-  regions in adjacent slices should also be considered, since
gion, and divide the intensities into 10 equally spaced bins pixels of very different intensity values should receive de-
to make this Computation. The frequencies of the 25 inten- creased We|ght in the estimation, even if they are both lo-
sity combinations in the resulting 100 bins are used for the cated in relatively homogeneous regions. Thus, in addition
p(i, j) values (smoothing these estimates could give a lessto assessing the spatial correlation of regional intensities,
biased estimate). The joint entropy computed over thesenigher weight should be assigned to areas that have simi-
values ofp(i, j) has several appealing properties. In ad- |ar intensity values before transformation, and the weight
dition to being insensitive to scaling of the intensities, it should be dampened in areas where intensity values are dif-
is lowest when the pixel region is homogeneous in both ferent. The most obvious measure of the intensity similarity
slices, will be higher if the intensities are not homogeneous petween two pixels is the absolute value of their intensity
in both slices but are Spatially correlated, and will be hlgh- difference. This measure is Computed for each set of cor-
est when the intensities are not spatially correlated. After responding pixeis between the slices, and normalized to be



Figure 4. Inter-slice intensity variation reduc-
tion for an image series. Top, original image
series (the even slices are noticeably brighter
than the odd slices). Bottom, the same series
after reduction of inter-slice intensity varia-

tions. The variations have not been com-
pletely corrected, but their effects have been
reduced.

Figure 3. Inter-slice intensity variation reduc-
tion for real data. Top, left to right: Slice with
an unknown intensity offset, adjacent slice,
difference between the adjacent slices (mul-
tiplied by 10). Middle row, left to right: En-
tropy weighting, difference weighting, joint
foreground pixels. Bottom, left to right: Com-
bined weighting, slice 1 after transformation,
difference between slice 1 after transforma-
tion and slice 2. The effect has not been com-
pletely removed, but has been noticeably re-
duced.

Figure 5. Inter-slice intensity variation reduc-

tion from a different angle. Left: Sagittal view
of the original slices from the series in the

figure above. Right: The same view after
inter-slice intensity variation reduction. The

brain area in the input image clearly shows
the ‘even-odd’ offset effect, which has been
noticeably reduced in the output image.

of the estimation being applied to simulated MR images to

in the rangel0, 1] (after a sign reversal). Values fdt(i) correct for an applied linear offset, while Figure 3 presents
that reflect both spatial correlation and intensity difference "€Sults on real data.

can be computed by multiplying these two measures. As a
further refinement to this measure, the threshold selection
algorithm from [15] (and morphological filling of holes) is
used to distinguish foreground (air) pixels from background
(head) pixels, andk() is set to zero for pixels representing
background areas in either slice (since they are not relevan
to this calculation). Thus, each value R{(i) is computed

as follows (whereN; and N, are normalizing constants,
H(X(4),Y(4)) is the regional joint entropy centered it
and Py, is an indicator function that returns 1 if the pixel
is part of the foreground and O otherwise):

In our implementation, the weighted least squares esti-
mation computes the linear mapping to the median slice in
the sequence from each of the two adjacent slices. The
implemented algorithm then proceeds to transform these
Plices, and then estimates the intensity mappings of their
adjacent slices, continuing until all slices have been trans-
formed. Figure 4 shows the results of this process, while
Figure 5 shows the same results viewed from an orthogonal
angle.

Future implementations could expand on this method
by computing a non-linear intensity mapping between the

) (N, — H(X(4),Y (1)) (N2 — | X (1) = Y(2)]) slices. Our experiments with non-linear mappings showed
r(i) = N Ny Prore (X(&Hﬁfme%ﬁé}é difficult to work with, since non-linear trans-

) formations tended to reduce image contrast. This process
Figure 1 demonstrates the advantage of weighting thewould thus need to be subject to more advanced regulariza-
estimation on a toy example. Figure 2 shows an exampletion measures.



2 Intensity Standardization intensities using histogram derivatives. An intensity stan-
dardization method that was used as a preprocessing step in
a tumor segmentation system was presented in [23]. This
method thresholded background pixels, and used the mean
and variance of foreground pixels to standardize intensities.

Intensity standardization is a vital step that allows the
intensity values between volumes of the same or different

individuals to approximate an anatomical meaning. This A similar method was used in [24], comparing it to no stan-

subject has not received as significant of a focus in the lit- o . ) . )
i o . : dardization, scaling based on the intensity maximum, and
erature as intensity inhomogeneity correction, but research

T . scaling based on the intensity mean.

effort in this direction has grown in the past several years.
This is primarily due to the fact that it can remove the need ~ The methods discussed above are relatively simple and
for patient specific training or the reliance on tissue models straightforward. Each method (with the exception of [5])
in segmentation, which may not be available for some tasksUses a histogram matching method that assumes either a
or for some areas of the body. This section will survey the simple distribution or at least a close correspondence be-
literature relating to intensity standardization, before pre- tween histograms. These assumptions can be valid for con-
senting our approach. Although EM-based methods that usdrolled situations, where the protocols and equipment used
spatial priors are an effective method of intensity standard-are relatively similar, and only minor differences exist be-
ization, they will not be discussed here, since these methodgween the image to be standardized and the template his-
can be sensitive to areas of abnormality [16], a case that welogram. However, in practice this may not be the case, as
are interested in addressing. histograms can take forms that are not well characterized

The intensity standardization method used by the IN- py simple distribution_s, in addition to potgntial differences
SECT system [17] was (briefly) outlined in [5], in the con- I 'Fhe shapes of th'e input and template image histograms.
text of improving Multiple Sclerosis lesions segmentation, 1NiS relates to the idea that a term like ‘T1-weighted’ does
and was discussed earlier in this document in the context of 0t have a correspondence with absolute intensity values,
inter-slice intensity variation reduction. This method esti- SINCe there are a multitude of different ways of generating a
mates a linear coefficient between the image and template! 1-Weighted image, and the resulting images can have dif-
based on the distribution of ‘local correction’ factors. An- ferenttypes of histograms. Furthermore, one ‘T1-weighted’
other study focusing on intensity standardization for Mul- 'Maging method may be measuring a slightly different sig-
tiple Sclerosis lesion segmentation was presented in [1g],n@ than another, meaning that tissues could appear with
that compared four methods of intensity standardization. different intensity properties on the image, altering the his-
The first method simply normalized based on the ratio of togram.
the mean intensities between images. The second method A more sophisticated recent method was presented in
scaled intensities linearly based on the average white mattef25]. This method used the Kullback-Leibler (KL) diver-
intensity (with patient-specific training). The third method gence as a measure of relative entropy between an image
computed a global scale factor using a “machine parameteiintensity distribution and the template intensity distribu-
describing coil loading according to reciprocity theorem”, tion. This method computed an inhomogeneity field that
computing a transformation based on the voltage needed taninimized this entropy measure, and thus simultaneously
produce a particular ‘nutation angle’ (that was calibrated for corrected for intensity inhomogeneity and performed inten-
the particular scanner that was used). The final method ex-sity standardization. Relative entropy confers a degree of
amined was a simple histogram matching technique basedobustness to the histogram matching, but even this pow-
on a non-linear minimization of squared error applied to erful method fundamentally relies on a histogram match-
‘binned’ histogram data, after the removal of air pixels out- ing scheme and ignores potentially relevant spatial infor-
side the head (this outperformed the other three). In [19], mation. Without the use of spatial information to ‘ground’
another histogram matching method was presented (latethe matching by using the image-specific characteristics of
made more robust in [20]), that computed a piecewise inten-tissues, standardizing the histograms does not necessarily
sity scaling based on ‘landmarks’ in the histogram. Similar guarantee a standardization of the intensities of the differ-
to previous works on intensity standardization, this study ent tissue types. The EM-based approaches (that use spa-
also demonstrated that intensity standardization could aid intial priors) can perform a much more sophisticated inten-
the segmentation of Multiple Sclerosis lesions. This method sity standardization, since the added spatial information in
was later used in a study that evaluated the effects of in-the form of priors allows individual tissue types to be well
homogeneity correction and intensity standardization [21], characterized. By using spatial information to locate and
finding that these steps complemented each other, but thatharacterize the different tissue types, the standardization
inhomogeneity correction should be done prior to intensity method is inherently standardizing the intensities based on
standardization. Another method of intensity standardiza- actual tissue characteristics in the image modalities, rather
tion was presented in [22], that normalized white matter than simply aligning elements of the histograms. Further-



more, we are not aware of any existing methods that incor-ing symmetry is computing the absolute intensity difference
porate a means to reduce the effects of tumors and edemaetween each pixel and the corresponding pixel on the op-
pixels (that are not present in the template image) on the esposite side of the known line of symmetry. Since this esti-
timation of the standardization parameters without the usemation is noisy and only reflects pixel-level symmetry, the
of a tissue model. Thus, for this implementation, a sim- second step is to smooth this difference image with a5 by 5
ple method of intensity standardization was developed thatGaussian kernel filter (the standard deviation is set to 1.25),
is related to the proposed approach for inter-slice intensity resulting in a smoothly varying regional characterization of
variation reduction discussed earlier. The advantages of ussymmetry. Although symmetry is clearly insufficient to dis-
ing this method are that it uses spatial information to ensuretinguish normal from abnormal tissues since normal areas
that similar tissue types are being matched, and that it usesnay also be asymmetric, this weighting is included to de-
symmetry to reduce the effects of tumors and edema on thecrease the weight of potentially bad areas from which to
estimation. estimate the mapping, and thus it is not important if a small

Our method for inter-slice intensity variation reduction number of tumor pixels are symmetric or if a normal area is
uses spatial information between adjacent slices to estimatéSymmetric.
a linear mapping between the intensities of adjacent slices, The final factor that is considered in the weighting of pix-
but used Simp|e measures to We|ght the contribution of eachels for the iﬂtenSity standardization parameter estimation is
corresponding pixel location to this estimation. For inten- the spatial prior ‘brain mask’ probability in the template’s
sity standardization, the problems that complicate the di- coordinate system (provided by the SPM2 software [26]).
rect application of this approach are determining the corre- This additional weight allows pixels that have a high proba-
sponding locations between the input image and the tem-bility of being part of the brain area to receive more weight
p|ate image, and accounting for outliers (tumor, edema, andthan those that are Unlikely to be part of the brain area. This
areas of mis-registration) that will interfere in the estima- additional weight ensures that the estimation focuses on ar-

tion. Determining the corresponding locations between the €as within the brain, rather than standardizing the intensities
input image and the template was trivial for inter-slice cor- Of structures outside the brain area, that are not as relevant
rection, since we assumed that adjacent slices would in gent0 the eventual segmentation task.
eral have similar tissues at identical image locations. This The weighted linear regression is performed between the
is not trivial for intensity standardization. For this stage, we image and the template in each modality. The different
used the non-linear regularized registration algorithm im- Weights used are the regional joint entropy, the absolute
plemented in [26], and described in [27, 28, 29]. After this difference in pixel intensities, the regional symmetry mea-
alignment, we assume that locations in the input image andsured in each modality, and the brain mask prior probability.
the template will have approximately similar tissues. These are each normalized to be in the range [0,1], and the
In inter-slice intensity correction, the contribution of final weightis computed by multiplying each of the weights
each pixel pair was weighted in the parameter estimation09ether (assuming mdepen(_:lence).. The va_lueﬁ’,(@)r are
based on a measure of regional spatial correlation and thdhuS computed as follows (withi(X (i)) denoting the mea-
absolute intensity difference, which made the technique ro-SUre of symmetry at pixelinimage X, Py qin (i) being the
bust to areas where the same tissue type was not alignedsPatial prior probability that the pixel is part of the brain,
Since the input image will not be exactly aligned with andH(X(i),Y (i)) defined as before):
the template image in the case of intensity standardization,

these weights can also be used to make the intensity stan- (N, — H(X (i), Y (d))) (N2 — | X (i) — Y(i)]) (N3 — S(X(i)))
dardization more robust. However, intensity standardiza- (i) = N, N, N Phra
tion is complicated by the presence of tumors and edema, (8) 3

areas that may be homogeneous and similar in intensity to  This method was implemented in Matlab [32], and is ap-
the corresponding region in the template, but that should notpjied to each slice rather than computing a global factor to
Significantly influence the estimation. To account for thiS, ease Computationa| costs. The results of app|y|ng this tech-
we use a measure of regional symmetry as an additionahjque to toy data and data with a synthetic tumor to recover
factor in computing the weights used in the regression. Thea known intensity offset are shown in Figures 6 and 7, re-
motivation behind this is that regions containing tumor and spectively. The application of this technique to real data
edema will typically be asymmetric [30, 31]. Thus, giving (from different sites) to standardize the intensities between
less weight to asymmetric regions reduces the influence thaimages is demonstrated in Figure 8.
abnormalities will have on the estimation. There are several methods that could be explored to im-
A simple measure of symmetry is used, since the im- prove this step in future implementations. Different loss
ages have been non-linearly warped to the template wherdunctions could be examined, since loss functions such as
the line of symmetry is known. The first step in comput- the absolute error and the Huber loss are more robust to out-



Figure 6. Intensity Standardization of a toy
volume. Top left: Toy template image (con-
sisting of gray matter, white matter, CSF, and
fiducial markers. Top middle: Toy image
to be standardized, that is slightly different
anatomically, has fat visible outside of the
skull, a large tumor, and no fiducial markers.
Top right: The (poor) results obtained by un-
weighted linear regression. Middle row: Dif-
ferent elements of the pixel weighting. Left to
right: Regional joint entropy, absolute differ-

ence, and brain area prior probability. The en-
tropy and absolute difference have the same
effect as before, but the brain probability al-
lows restriction of the estimation to the brain

area, rather than all foreground pixels. Bot-
tom left: Symmetry weighting (note the low
weight assigned to the tumor). Bottom mid-
dle: Combined weighting, indicating the esti-

mation will place the largest weight on com-
mon gray matter, white matter, and csf re-
gions. Bottom right: The results of weighted

linear regression with the combined weight-
ing for intensity standardization.

Figure 7. Intensity Standardization with a syn-
thetic tumor to recover a known intensity off-
set. Top, left to right: Template image, im-
age to be standardized with a synthetic tu-
mor and an applied intensity offset, results
of unweighted linear regression. Middle, left
to right: Regional joint entropy weighting,
absolute difference weighting, spatial brain
prior weighting. Bottom, left to right: Sym-
metry weighting, combined weighting, re-
sult of weighted linear regression for inten-
sity standardization. Note that the weight-
ing makes the estimation primarily based on
shared white matter regions, and reduces the
tumor area’s effect on the estimation.

ods that incorporate regularization to allow non-linear in-
tensity standardization that is constrained to preserve im-
age contrast. Although we have purposely avoided a tissue
model in our inter-slice correction method, this may be a
step that could benefit from a tissue model, especially if the
technique will be applied for large data sets where intensity
standardization will be a larger problem. One direction to
explore with respect to this idea could be to use a method
similar to the tissue estimation performed in [34], that used

liers than the squared error measure used here [33], thougl¢Patial prior probabilities for gray matter, white matter, and

at a higher computational expense. In general, we foundCSF to build a tissue model, but used an outlier detection
that non-linear transformations could further reduce the av-scheme to make the estimation more robust. The weighting
erage error between the images, but this came at the cost ofethods discussed in this section, and symmetry in partic-
reduced contrast in the images. This occurred even wherilar, could be incorporated into an approach similar to this
using a simple additive factor in addition to the linear scale Strategy to potentially achieve more effective intensity stan-
factor. Future work could further explore non-linear meth- dardization.



Figure 8. Intensity Standardization of real
data. Top row: T1-weighted images from 5
patients. Second row: Intensity Standardiza-
tion based on unweighted linear regression.

Third row: Symmetry weighting based on T1-
weighted and (coregistered) T2-weighted im-
age. The three abnormal regions have clearly
had their weight reduced. Fourth row: Com-
bined weighting. The estimation for most of

the images is primarily based on white mat-
ter regions, although some images also have
high weights assigned to csf and gray matter

regions. Bottom row: The results of Intensity

Standardization. It is obvious that the differ-

ences in intensity between images have been
significantly reduced.
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