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Abstract

A great deal of effort has been directed towards determining the minimum number of binary
comparisons sufficient to produce various partial orders given some partial order. For example,
the sorting problem considers the minimum number of comparisons sufficient to construct a
total order starting from n elements. The merging problem considers the minimum number of
comparisons sufficient to construct a total order from two total orders. The searching problem
can be seen as a special case of the merging problem in which one of the total orders is a
singleton. The selection problem considers the minimum number of comparisons sufficient to
select the " largest of n elements. Little, however, is known about the minimum number of
comparisons sufficient to produce an arbitrary partial order. In this paper we briefly survey the
known results on this problem and we present some first results on partial orders which can be
produced using either restricted types of comparisons or a limited number of comparisons.

1 Introduction

Many comparison-based problems in the analysis of algorithms can been viewed as questions about
the optimal production of a particular partial order given another partial order using only binary
comparisons. For example, the sorting and merging problems can be seen as questions about the
minimum number of binary comparisons suflicient to produce a total order given either a set of n
elements or two total orders. The Ford-Johnson sorting algorithm ([11]), and its improvements due
to Manacher ([26, 27, 28]), and Bui and Thanh ([7, 40]) yield tight upper bounds on the difficulty
of sorting. The merging problem has received a similar amount of attention (see for example,
[9, 13, 15, 16, 17, 23, 27, 31, 30, 39]). Much effort has also been expended on finding optimal
algorithms to select the i largest of n elements ([2, 4, 19, 22, 32, 35]); to construct heaps ([8, 12]);
to construct priority queues ([6, 41]); to search in a partial or total order ([5, 22, 18, 24, 25]); and
so on. However, except for the work of Schonhage ([34]) and Aigner ([1]) little is known about the
minimum number of comparisons sufficient to produce an arbitrary partial order.

Schonhage investigated the class of partial orders which model the selection problem assuming
an arbitrarily large set of elements to work with. In particular, he investigated the cost of such
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partial orders under “mass production,” that is, the asymptotic cost of a partial order when we
produce arbitrarily many copies of it simultaneously. Aigner investigated the cost of arbitrary
partial orders assuming a set of n elements and, in particular, the cost of a class of partial orders
which generalizes the selection problem. In this paper we are concerned with the cost of arbitrary
partial orders assuming a set of n elements. Since it seems computationally hard to determine the
minimum number of comparisons sufficient to produce an arbitrary partial order we only determine
upper bounds on the cost of arbitrary partial orders using restricted kinds of comparisons. Further,
we investigate a particular class of partial orders, called linear partial orders, which we can construct
optimally.

2 Posets

A partial order > is an irreflexive and transitive (and hence asymmetric) binary relation. A partially
ordered set, or poset is a structure (A, >) with a partial order > defined on the elements of A. For
convenience we refer to the structure (A, >) as just .A. We use the calligraphic letters A, B,C, and
D to stand for posets. All posets discussed are assumed to be finite and their elements are assumed
to be chosen from a totally ordered set, that is, if z # y then either 2 > y or y > z. However,
we do not necessarily know this order initially and can only determine whether z > y or y > x by
comparing © and y. The action of comparing z and y is denoted by z : y.

x and y are said to be related in A if either > y or y > z is in A, otherwise z and y are
unrelated in A. x coversy (¢ = y)in Aif z > yin Aand 2 > z > y in A implies that z = 2 or
z =y. If z and y are unrelated then we write z || y. # € A is said to be a singleton if it is unrelated
to every other element in A. The set of singletons of A is denoted singletons(A). A is said to be
in reduced form if it contains no singletons. Two elements form a pair if they are only related to
each other. The dual of A is the poset A™ for which # > y in A if and only if y > 2 in A*.

x is said to be a maximal element of Aif Ay 3 y > x in A. =z is said to be a minimal element of
Aif Ay 3« > yin A. Observe that a singleton is both maximal and minimal. The set of maximals
(minimals) of A is denoted mazimals(.A) (minimals(A)). A pathin A is a sequence of elements
1,22, ..., Tnq1 such that z; > 2,49 in A for all 1 <i < n. A path consisting of n 4+ 1 elements is
said to have length n. Vo € A, depth(z) is the length of the longest path in A which has z as its
smallest element. 2 is said to be a second mazimal element of A if depth(z) =1in A.

A chain (antichain) is a poset in which all elements are pairwise related (unrelated). The chain
and antichain on n elements is denoted by R, and U, respectively. The length of A is the length
of the longest chain in A. The width of A is the maximum number of elements in any antichain in
A minus one. A linear extension of A is a chain B for which > y in B if # > y in A. The set of
linear extensions of A is denoted extensions(A).

Va,y € A, above(z) is the set of elements which are larger than z in A; above(z-y) is the set
of elements which are larger than z and not y in A; and above(az A y) is the set of elements which
are larger than both 2 and y in A. Similarly, we have below(xz), below(z—y), and below(z A y).
These sets are illustrated for two unrelated elements x and y in figure 1. We will on occasion use
below(z) and above(z) as posets, that is, the elements in below(z) and above(x) with the inherited
partial order.

We represent posets as transitively closed directed graphs A = (V(.A), E(A)), where V(A) is a
set of vertices corresponding to the set of elements in A and (z,y) € F(A) < 2 >y in A. We
depict posets using Hasse diagrams, in which the graph is transitively reduced and a relation (z,y)



above(xz—y) above(z Ay)  above(y—z)

below(z—y) below(z Ay) below(y—z)
Figure 1: above(xz—y) and above(x A y)

is represented by z being above y and connected to it by a line. We use the terms dag and tdag to
refer to directed acyclic graphs and transitively closed directed acyclic graphs, respectively. We say
that A is connected if it is connected when viewed as an undirected graph. The set of connected
components of A is denoted components(A).

3 Operations on Posets

If z = y then A\ (z,y) is the poset obtained by deleting the relation (z,y) from A. A\ z is the
poset obtained by deleting the element z and all relations in which it appears from A.

Suppose that z || y in A. After comparing z and y, if # > y then we denote the outcome poset
by Agzsy, else we denote it by Ays,. That is, for each poset A and Vz || y in A we associate two
posets A,~, and Ay, where, for example,

E(Apsy) = E(A) U {(u,v) | v € {2} Uabove(z—y),v € {y} U below(y—z)}

Given two posets A and B the sum of A and B (denoted A+ B) is the poset obtained by taking
the disjoint union of A and B; the product of A and B (denoted A X B) is the poset obtained from
A+ B by adding the relations (u,v) for all u € A, v € B (see figure 2). We extend sum and product
to finitely many posets via the operators > and [[. A poset describable by a finite sequence of
sums and products of smaller posets is called a series-parallel poset ([38]).

Given two posets A and B for each a € A we define the a-composition of A with respect to B as
follows: replace each b; € B with the poset A;, where A; is isomorphic to A under some bijection
fi, and for each b; < b; in B add the relations f;(a) < f;(a) together with the transitively induced
relations (see figure 2).

AR, B = ZAiU{(fi(a),f]’(a)) | (bi,b;) € B}
U{(u,v) | (b;,b;) € B,u € above( fi(a)),v € below(f;(a))}



We call A the base poset, B the pattern poset and a the pivot. A poset describable by a finite
sequence of compositions of smaller posets is called a factorable posets.

a b
A A % Q ﬂ /@\
A B AxB Bx A A, B B @, A

Figure 2: Operations on Posets

4 The Poset of Posets and Comparison Algorithms

Let P(n) be the set of all posets on n elements. Given two posets A and B in P(n) we say that
A contains B (A > B) if there is an order-preserving injection from B into A. P(n) forms a poset
under containment with R, as unique maximal element and I/, as unique minimal element. If
A > B in P(n) then we say that B is a subposet of A. If there is an order-preserving bijection
between A and B then we say that A and B are isomorphic (A ~ B). If we wish to speak of a
specific bijection f we use the relation A ~; B. We use the notation A < B to mean B > A and
the notation A < B to mean that A < B and A % B. Since P(n) is a poset, we freely use the
notation developed in the previous sections. For example, we say that A covers B (A = B)in P(n)
if A> B andand A > C,C > Bin P(n) implies that C ~ A or C ~ B. Note, however, that there
are some differences in interpretation; for example, if A € P(n) then below(.A) is the set of posets
in P(n) which are subposets of A including A itself.

A poset A is graded if there exists a function f: A — N such that Vo > yin A, = y in A if
and only if f(2)= f(y)+ 1. Aigner ([1]) makes the following observation which we here prove:

Lemma 4.1 P(n) is graded by f(A) = |E(A)|.

Proof: Consider A, B € P(n) where A > B in P(n).

Suppose that A > B in P(n). Consider any injection of B into A. There must be z,y € A >
x> yin A, and x ¥ y in the embedding of B in A else A ~ B. Thus, A > A\ (z,y) > B. Hence,
|E(A)| = |E(A\ (2,9))]+1 > |E(B)|. If there was another cover u > v in A not in the embedding
of B in A then there would exist a poset C = (A\ (2,y))\ (u,v) € P(n) such that A > C > Bin
P(n), which implies that A ¥ B, a contradiction. Hence, there can only be one cover in A not in
any injection of B in A and thus, |E(A)| = [E(B)] + 1.

Conversely, suppose that | E(A)| = |E(B)|+1. Suppose that there exists a C such that A > C > B
in P(n). Then, |E(A)| > |E(C)| > |E(B)|. Which implies that |E(A)| > |E(B)|+1, a contradiction.
Thus, A > Bin P(n). m

Thus, P(n) is graded into levels by the number of relations function and length(P(n)) = (3).
An algorithm, T, on P(n) is a finite, rooted, labeled, complete binary tree. Each node in 7 has
an associated poset in P(n) as its label. If A is the label of a non-leaf node then for some z || y in
A one of the two children of that node is labeled with the poset A, and the other is labeled with

the poset Ays.. Let leaves(T) be the set of leaf labels of 7. Define the output of 7 as follows:

output(T) = [ {below(A) | A € leaves(T)}



7 is said to produce B if B € output(7T). The cost of B given A is the minimum path length of all
possible algorithms on P(n) which produce B and whose roots are labeled with A. We denote this
number by C(A;B). An algorithm on P(n) which produces B given A and which has minimum
path length among all such algorithms on P(n) is said to be optimal for B.

In table 3 we phrase many of the selection and sorting problems in terms of the cost function
and series-parallel posets.

Problem | Function to be Determined
Merging C(E; Az B)
Searching C(A+Uq;B)
Partition C(ATL BY)
Selection C(A;BxUy xC)
Sorting C(A;R,)

Figure 3: Sorting Problems

Schénhage investigated the special case of the selection problem—C(U,;U; X Uy X Up—i—1);
Aigner ([1]) investigated the special case of the partition problem—C{(Ux,,,; [1; Uy, ); Linial and
Saks ([24, 25]) investigated the searching problem; Linial ([23]) investigated the sorting problem for
the special case of width(.A) = 1; and Kahn and Saks [18] investigated the general sorting problem.

The following results are straightforward:

Lemma 4.2

A A" = C(A;B) = C(A;B)
A< B = C(C;A) <C(C;B)
A< B = C(B;C) < C(A;C)
C(A;B)>0

C(A; B) > |components(A)| — |components(B)|
C(A;B+C) < C(AB) + CU )3 €)

The bound C(A;B) > |components(A)| — |components(B)| is the “connectivity” lower bound
first mentioned by Kirkpatrick ([19]), from this follows the elementary result that

Vn>1, CU UL XU q)=n—1

With regard to the last upper bound of lemma 4.2 the reader may conjecture that equality
holds in the following relation:

(U5 v (A ZA <D CWU Ay A)

However, the following examples by Paterson ([35]) and Schénhage ([34]), respectively, demonstrate
that this does not hold. In figure 4, C(U7; A) = 8, C(U1;B) = 0, and C(U5;C) = 6; yet C(Us; A+
B) =7 and C(U10;C+C) < 11.

A € P(n) is said to be P(n)-strong if there is no B € P(n) such that C'(U,; A) = C(U,; B) and
for which A < Bin P(n). If A is not P(n)-strong it is said to be P(n)-weak. The smallest example
of a weak poset is A = Uy X Us. This poset is contained in the poset B =U1 X (U1 + R3) in P(4)
yet C(Uy; A) = C(Uyq; B) = 3. In figure 5, A = Uy X Us is a subposet of B = Uy X (U + R2) in
P(5) yet C(Us; A) = C(Us; B) = 5.



SN A
A B C
Figure 4: Additivity Counterexamples

A B
Figure 5: Weak and Strong Posets
5 Previous Work
From the observation that if z || y in A then
lextensions(A)| = |extensions(Aysy )| + |extensions(Aysy )|

Schénhage ([34]) showed that!

C(A; B) > [lg(|extensions(A)|/|extensions(B)|)]

This lower bound generalizes an idea of Hwang and Lin (quoted in [22]).
By observing that

lextensions(A + B)| |[V(A)| + |V(B)]
lextensions(A X B)|

B V(A)

We see that this lower bound gives as corollaries the well-known “information-theoretic” bounds
on sorting, searching, and merging:

CURy) > lgn!]
CUL+ Rn-13Rn) = [lgn]

s > [of?)]

m

In [34] Schénhage also showed that

P P P

C(Zul XUp i RaXUp—p—o+U) > p—1t—-2+ ’VIg(Z 2M — t)-‘ where r = Z(l—l—ni) , t,m; > 0Vi
=1 =1 =1

From this bound we obtain the result first obtained by combining the results of Kislitsyn ([20])
and Schreier ([36]) that

Vn>2, CULRexUy—z)=n+ [lgn] —2

!Throughout this paper we use “lg” to mean the logarithm base 2.



From the observation that
A-B= CU,; A)<CU,;B)+ 1

Aigner ([1]) showed that
CUn; A) < [E(A)

We give a constructive proof of this result later in the paper.
In [1] Aigner also showed that

C(Uy; A) > [3n/2] — |mazimals(A)| — |minimals(A))
This result generalizes Pohl’s result ([32]) that
Vn>1, CU,Uy XxUp—o xUy) = [30/2] =2
and it may in its turn be generalized to
C(A; B) > [mazimals(A)|+|minimals(A)|—|mazimals(B)|—|minimals(B)|— | |singletons(.A)| /2]

5.1 Other Results

In the following section we state the best results known for various selection and sorting problems.
For each result, the first known appearance in print is given after the result.
Optimal Results:

Vn > 2 CUp Uy X Up—3) = n+[lg(n—1)] —2 [37]
0 2Mlan—2<2k

Vn > 6 CUUsXxU,_3) = n+2llgn] =3+ 1 2P <n—2<5262 [2]
2 otherwise
0 28lcpn—1<2k

Vn>6 CUyUyxUy xU,_3) = n+2[lgn] =3+ 1 28 <n—1<5.22 2]
2 otherwise
0 n =2k

Vn > 6 CUp;R3XUp_3) = n+2llgn] -3+ 1 28 <n<5.282 [2]
2 otherwise

Yn > 2 C(Ry+Ru2iRy) = |flg(n—1)] + [Hlg(n —1)] 13, 16]

Ym > 1 CRu+Ru—m;Rn) = n—=1, V2m<n<5m/2+1 [39]

Let M(3,n) be the largest value that can be merged with 3 elements in n steps:

Lolnf2l=2| 2 = 0(3)
M(3,n) = Wiple/3=3] 9 w=1(3) , ¥n>9 [31,15]
[n/3] _
e S B 6)

Ménting ([30]) has optimal results for M(4,n) and very tight bounds for M(5,n).



Lower Bounds:

C(unvuz—I X ul X un—z)

v

{n+i—3+2§;ﬂlg—”?ﬁﬂ 1<i<n/3 (19

{%J_:& n/3<i<n/2

CUp; Uiy XU X Up—;) > [lg (Z)n Z__:J where j = 2xllg% +3 -3 [4]

Upper Bounds:

C(umR XUy 2) < n—i +Z?:n—i+2 ﬂgﬂ [20]
C(UpiUioy XUy X Upi) < n—i+(i— 1)[lg(n—i+2)] [14]
C(un,U(n 1)/2 X Ui x u (n— 1)/2) < 3n+ o(n) [35]
CthyiRy) < nflg(3n/4)] — 20557 /3] + | L1g 6n) 1]
CRp + Rp—m; R) < m(1+ |lgk]) + [mk/2U8k | — 1, Vo > 2m, k = 2= [17]
Recursions:
C(unvu Xun 2) S C(unvz/[z 1 ><Z/[l Xun 2)
C(un,uz 1 XU xU, 2) < C(UmR Xun_z)
(Rm ‘|‘Rn—m7 ) S C( m—+1 ‘I’Rn van)
C(Rm‘I'Rn—mv ) < C(R —I'RLn m)/2] m+L(n—m)/2J)+m

6 Poset Production Processes

We are interested in efficiently generating upper bound costs for large classes of posets. Suppose
that we have at our disposal three comparisons and a given poset .A. We wish to efficiently determine
a set of posets producible from A within three comparisons. Choose a pair of unrelated elements in
A and attempt to compare them. We shall only retain those posets that are guaranteed (in various
senses to be explained later) to be produced by either outcome of the comparison.

We then repeat this process for each pair of unrelated elements in A, always retaining only
those posets that are guaranteed under our criteria. As a result we will have some set of posets
which we can provably produce in one comparison from A.

We use the idea in the proof of lemma 8.1 to produce posets. For each z || y, compare # and y and
let the poset A, as defined in the proof be the poset produced. If P, is the set of posets produced
in n comparisons, then our algorithm produces the set of posets P11 = U gep, {Az | 2 || y in A}
on the (n + 1)th comparison. This process is called the relation construction process.

We then take each of these posets and perform the same process on each, obtaining a second set
of posets. Note that there may be posets which are producible from A in two comparisons which
will not be in our set of posets. However, we are guaranteed that this set of posets can be produced
in two comparisons starting from A. Finally, using this second set as our input set of posets, we
produce the set of posets which can be produced within three comparisons.

We refer to this process of producing new posets as an Order-1 (Oq) process, because we only
retain information we have generated from one comparison. An O, process would perform two
comparisons before looking for the posets that could be guaranteed.



O, processes are much more complicated than Oy processes in that a and b may be unrelated
in one outcome of a comparison but be related in the other outcome of the same comparison. For
example, if ¢ < ¢ and d < b and we compare ¢ and d then if ¢ < d we can conclude that a < b.
But if ¢ > d then no relationship between a and b can be inferred. In an O, process we can take
advantage of this by specifying the second comparison in terms of the result of the preceding one.
We then select those posets which are guaranteed (in a manner similar to the as yet unspecified O4
results).

It would appear that our results in this case are only defined after an even number of com-
parisons. For example, the set of posets which can be produced in three comparisons starting
from some poset A can be done in two ways. We could produce all the posets possible using one
comparison, then using this as our base set produce all the posets possible using the remaining two
comparisons in an O, manner. Or we could do all possible “double comparisons” first, and find
the set of posets, and then do all the single comparisons on this set. We have no guarantee that
the results would be identical, and so to be complete we define the Os set of posets obtainable in
n comparisons to be the union of the sets obtainable through a “double comparison” from n — 2
comparisons and those obtained from n — 1 comparisons in one comparison.

In general, the complexity for Oy processes rises with k. We use the notation Og(5,n) to mean
the set of posets obtainable from an initial set S in n comparisons using an Oy process. Then,

_J 0,(5,n) 1<n<k
Ok(S,n) = { UK, 0;(Ok(S, n — i),1) n>k

Finally, Ox(S, k) is generated by performing all the possible k-sequences of comparisons, with the
choice of comparisons 2...k depending upon the outcomes of preceding comparisons.

This paper is restricted to an examination of O processes only. Clearly, if a poset is accepted
after an O comparison then it will be accepted after an O; comparison sequence for any ¢ > 2.
Our aim is to derive upper bounds on the cost of producing an arbitrary poset. The O;-cost of an n
element poset A is the minimum number of O;-comparisons necessary to produce A starting from
U,. Since a poset on n elements can only contain at most (g) relations then if we were to perform

an O(n) process starting on U,, we would produce all possible posets on n elements in the minimum
2

number of comparisons possible.

7 The Full Containment Process

The first poset production process we consider is the full containment process defined as follows:
A comparison x : y on a poset A is accepted if either A5, > Aysy or Aysy > Ags,y. Otherwise,
we say the comparison did not produce any new poset and we do not count it. Clearly, if x and y
belong to two disjoint isomorphic components of A then A;», ~ Ay, and the comparison 2 : y is
always accepted.

Lemma 7.1 If A ~; A where [ is a non-trivial automorphism then then Vo in A, Apsj) =~
As(@)>e-
Proof: Trivial. m

We call these last comparisons equal environment comparisons. Note that in general A and B
need not necessarily be disjoint.



Initially, we start with ¢,. The outcomes of a comparison between any two singletons are
isomorphic, and the resulting poset consists of a pair and n — 2 singletons. Now we may compare
a singleton with another singleton; the maximal element; or the minimal element. In each case the
comparison is accepted, that is, there is an outcome which contains the other (the second row of
figure 13 gives the three outcomes ignoring a dual poset).

For each of these three posets we may compare any two unrelated elements. The comparison
may be between two non-singletons; a singleton and a non-singleton; or two singletons. There are
nine posets added at this step (see the third row of figure 13). In the fourth and fifth comparison
we produce 27 and 81 new posets, respectively. This sequence 1, 3, 9, 27, 81 is very suggestive.
Unfortunately, in the sixth comparison we produce 283 not 243 new posets. Surprisingly, there are
precisely 1, 3, 9, 29, and 92 posets which cost 1, 2, 3, 4 and 5 comparisons, respectively. Thus of
the first 134 posets ordered by cost starting from U, the O4 full containment process produces all
but 15 optimally (seven of these are duals of others).

The algorithm illustrated in figure 6 produces the first two posets for which the Oy full con-
tainment process does not give the exact cost. Neither of the two outcomes of the first comparison
(top dashed line) in figure 6 is contained in the other yet poset A in figure 7 is contained in both
outcomes. Thus, this poset is producible in 4 comparisons (and this is optimal), yet it cannot be
produced by an Oy full containment process in less than 5 comparisons.

Further, in one more comparison on both of the two leaves of this algorithm (bottom two
dashed lines in the figure), we have another algorithm which produces poset B in figure 7. Thus,
this poset is producible in 5 comparisons (and this is optimal), yet it cannot be produced by an Oy
full containment process in less than 6 comparisons. However, in the Oy full containment process
B can be produced optimally in 5 comparisons.

/ /\Ii\
Y

Figure 6: A Simple Algorithm

N

A B
Figure 7: The First Two Failures of O; Full Containment

THEOREM 7.1 Let x be unrelated to y in A.
If above(x) = above(x A y) and below(y) = below(x A y) then Aysy < Aysy.

Proof: If above(z) = above(xz Ay) and below(y) = below(z Ay) then the poset produced from A,
by deleting (u,v) for all u € {z}Uabove(y), v € below(x-y), and u € above(y),v € {y}Ubelow(z—y),

10



is isomorphic to Ags,. Thus Azsy < Aysy. m

Corollary 7.1 If z and y are mazimal and minimal elements of A where x || y in A then Ays, <

Ayse.

Proof: Since y is minimal, below(y) = below(z Ay) = O. m

Corollary 7.1 has been independently discovered by Atkinson ([3]).

Corollary 7.2 If x is a mazimal element and y is a singleton in A then Ay, < Ayso.
Dually, if x is a minimal element and y is a singleton in A then Aysy < Apsy.

Proof: A singleton may be treated as a maximal or minimal element. m

THEOREM 7.2 Let x be a maximal element of A and let y be an element unrelated to x in A.
If below(y) ~ below(z) then Aysy < Ayse.
Dually, if x is a minimal element and above(y) ~ above(x) then Aysy < Apsy.

Proof: m

Thus, under the full containment process, we can always make progress by comparing equal
environment elements; maximals and minimals; or maximals and minimals with various classes of
elements. We now show that we are guaranteed to produce every poset using the Oy full containment
process starting from U ,.

Lemma 7.2 In any connected non-singleton poset A, there exists x,y, where x is maximal and
z =y in A, such that A\ (z,y) is either

1. a connected poset, or

2. a connected poset and a singleton.

Proof: The proof is by induction on |E(A)].

Basis: The lemma is clearly true for |[E(A)| = 1.

Induction: Assume that the lemma is false for some connected poset A with |E(A)| > 1. Select
any (x,y) where z is maximal and z > y. Suppose that deleting (2, y) disconnects A into connected
components B and C with z and y in separate components, where neither B nor C are singletons.

Consider any (u,v), where u is maximal and u > v in C. However, u is maximal and u > v in
A also, otherwise deleting (z,y) could not disconnect A. Also, y must be minimal in A, otherwise
the deletion of (z,y) could not disconnect A. Thus, re-inserting (z,y) will not change the depth of
U or v.

Thus deleting (u,v) from C will disconnect C, since, deleting (u, v), by assumption, disconnects
A.

Deleting (u,v) from C, and replacing (z,y) will join exactly one of the components from C to
B. Thus, deleting (u,v) from A results in two components B and C’, with [V(C")| < |[V(C)|. We
repeat this argument on B’ and C’. Eventually, since |V (.A)| is finite, we must find a C” such that
[V(C")| < 2, a contradiction. m
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THEOREM 7.3 The O full containment process produces every poset.

Proof: For each connected component of the poset to be produced delete its covers one at a time
without violating the conditions of lemma 7.2. To construct each connected component, do the
comparisons in reverse order. m

The posets in figure 7 demonstrate that although every poset is guaranteed to be produced,
they may not be produced optimally. Poset A costs 4 comparisons yet can only be built in 5 Oy
full containment comparisons. Similarly, poset B costs 5 comparisons yet can only be built in 6 O
full containment comparisons.

8 The Relation Construction Process

The following lemma demonstrates how to construct a poset with at least one more relation than
a given poset by comparing any two unrelated elements.

Lemma 8.1 Ifz ||y in A then 3B 3 B < Aysy N Ays, and |[E(B)| = |[E(A)| + 1.

Proof: Compare z and y and form the poset A, from A, by replacing (u,z) with (u,y) for all
u € above(z—y) and (y,v) with (z,v) for all v € below(y—z). Similarly, form the poset A, from
Ayse. Thus, for example,

E(Az) = E(Apsy) \ ({(w, 2) [ u € above(z=y)} U{(y, v) | v € below(y—z)})

We demonstrate in lemma 8.2 below that A, and A, are posets. That is, the above construction
process is not inconsistent. The Hasse diagram of A, for figure 1 is shown in figure 8.

Figure 8: Comparing Unrelated Elements Always Adds A Relation

It is straightforward to show that: A, ~ A,; A, < Ay NAys,; and, that |[E(A)| = |[E(A)|+1.

Note that more than one new relation may be in a subposet of the two outcomes. For example,
when comparing the maxima of two pairs we gain two relations since the outcomes are isomorphic
without removing any relations (this is an equal environment comparison). However, the above
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relation construction process does not take this into account. Observe also that although A and
A, will appear on adjacent levels of P(n) (P(n) is graded by |E(A)|) we cannot then conclude that
A < A; in P(n). Similarly, if A < B in P(n) we cannot then conclude that |E(A)| > |E(B)| + 1.

As an example of the utility of the relation construction process note that the following recursion,
first observed by Sobel ([37]), follows immediately:

C(“nv“z X un—z) < C(un—l;ui—l X ul X un—i—l) +1
Several results follow from this algorithm.
Lemma 8.2 A, is a poset.

Proof: The proof is by induction on |V (A)].

Basis: The lemma is easily checked for |V (A)| < 4.

Induction: We are concerned with what the algorithm does when changing the relations of .A.
For all (u,z) € I(A), the algorithm adds (u,y) and deletes (u, ), unless (u,y) € E(A). Similarly,
for all (y,u) € E(A) the algorithm adds (z,u) and deletes (y,u), unless (z,u) € E(A). Finally,
(z,y) is added. No other changes are made. We need to show that if (u,v),(v,w) € F(A;) then
(u,w) € E(A;).

First, consider (z,y). If (u,2) € E(A;), then u € above(x A y) and thus (u,y) € E(A;). The
argument is similar for the relations (y, u).

Second, we consider the deletion of relations (u,z). Suppose that such a deletion leaves
(u,v),(v,2) € E(A;). If (v,2) € E(A;) then v € above(x A y) and thus (v,y) € E(A). This
implies that (u,y) € E(A) and so u € above(z A y). But then (u,z) would not be deleted, a
contradiction. A similar argument holds for the deletion of relations (y, u).

Finally, consider the addition of relations (u, y). First, if there is a relation (v, u) then there must
have existed (v, 2). Then either (v,y) is added or v € above(z A y). In either case (v,y) € E(A;).
Second, if there is a relation (y,v) € E(A;), then there must be a relation (z,v) € E(A;) by an
argument symmetric to the argument for the deletion of relations (u, ) above. A similar argument
holds for the addition of relations (z,u). m

TueOREM 8.1 The relation construction process produces all posets with n relations in n compar-
1S0ns.

Proof: The proof is by induction on |E(A)].

Basis: The lemma is easily checked for |F(A)| < 4.

Induction: Assume that poset A with n relations is the smallest poset not produced in n
comparisons. Since A is finite it must have at least one maximal element z. Let y be one of the
elements z covers. Since A is a smallest counterexample, A\ (z,y) is produced by the algorithm
in at most » — 1 comparisons.

Observe that below(y) = below(z Ay) and that 2 is maximal in A\ (z,y), therefore by theorem
7.1 if we compare z, and y then A will be produced in no more than n comparisons, a contradiction.
[

The relation construction process provides a constructive proof of Aigner’s result ([1]) that

U A) < |E(A).
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9 The Top-Down Construction Process

THEOREM 9.1 FEvery connected poset with n relations can be produced in n comparisons using the
relation construction process, all of which involve a maximal element and either another maximal
element or a second maximal element. Further, both elements must be in the same component or
at least one is a singleton.

Proof: Following lemma 7.2, delete the relations one at a time without violating the conditions.
To construct the poset, do the comparisons in reverse order. m

This theorem leads to the top-down process, in which we only construct connected posets using
connected posets at each stage of the construction, and, our comparisons are restricted to being
comparisons between maximals and maximals or maximals and second maximals. It is an interesting
exercise to work back from R,,, and observe the order in which the comparisons are done to produce
this poset. This is just sorting by repeatedly finding the minimum of the remaining elements.

Observe that this is a very restrictive construction process. For example, we cannot produce
U1 x (U1 +R3) in 3 comparisons using this process since we are not allowed to compare the maxima
of two pairs (at least one must be a singleton if there are to be two components).

CONJECTURE 9.1 FEvery connected poset with n relations can be produced using the relation con-
struction process in n comparisons under the following conditions:

1. all comparisons involve a mazimal element and either another mazximal element or a second
mazimal element,

2. the compared elements are in the same component or at least one is a singleton,
3. there is an initial phase in which every comparison involves at least one singleton, and,

4. there is a final phase in which no comparison involves any singletons.

What this means is that we first do comparisons between singletons and non-singletons until
we have added the correct number of elements to form the target poset, then we restrict ourselves
to comparisons between non-singletons. All of these comparisons obey the above rules.

This can be stated as a two phase algorithm. To produce all connected posets with m relations
and n elements:

1. Produce all posets with n — 1 relations and n elements.

2. Perform depth 0 and 1 comparisons as above until m relations have been created.

10 The Maximal Subposet Process

Call two posets unrelatedin P(n) if neither is contained in the other in P(n). The algorithm in figure
9 shows that there can be distinct posets A, 5,C such that B and C are unrelated maximal subposets
of AysyNAys, for some 2 || yin A. Here, A =U; XUy +U1 X (U1+R2), B =Uy X (Us+U1 XxU3),
C=Uy X (Uz+ Ry + Ry3) (see figure 10).

Observations: Let D be the “one relation added” poset. Clearly, D < A, N Ay, but
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Figure 9: Producing Distinct Maximal Posets
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Figure 10: Two Distinct Maximal Subposets

1. D is not necessarily maximal in the intersection (a counterexample is A = Ry + Ry,D =

Z/{l X U3) and,
2. D is not necessarily a subposet of A (a counterexample is A = R34+ U1, D = Uz x Us).

Note that this last observation is also true of B and C, for example, the counterexample also
applies to maximal elements of the intersection, since for that example D is the unique maximal
element of the intersection. As a converse, observe that we also cannot assume that A < B or
A < C as the same counterexample shows.

CONJECTURE 10.1 D<BnNC

We now pose the following related question: Given an integer k and two unrelated posets A
and B each on n elements such that:

o C(Uy; A)=C(UB),

e A produces outcome posets Ay, Ay, ..., in k comparisons
e 5B produces outcome posets By, Bs,..., in k comparisons
o VA, 1B; 3 B; > A,

e IB, 3 VA, A; ¥ B,

then we say B is k-fecund with respect to A. Are there any fecund posets?

11 Linear and Max-Min Posets

A connected poset on n elements is said to be linear if it costs n — 1 comparisons to build starting
from U,. Observe that it costs at least n — 1 comparisons to produce a connected poset on n
nodes. Surprisingly, when viewed as an undirected graph, the Hasse diagram of a linear poset is
not necessarily a tree. Poset A in figure 7 is the first example of this, since C(U5;.A) = 4 yet it is
a connected poset on 5 elements.
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Lemma 11.1 Any length 0 or length 1 poset on n elements with n — 1 relations, is a linear poset.

Proof: Straightforward. m

Linear posets have the following linearity property with respect to the cost function:

Lemma 11.2 If {A;} is any set of linear posets then

CUS Ay 224D = 2 Clpya i A)

Proof: The lemma follows from the fifth and the sixth results of lemma 4.2. m

This lemma has the important consequence that it is unnecessary to determine the exact cost
of disconnected posets whose separate components are all linear. Thus, some of the posets listed
in figure 13 are redundant since we may deduce their cost directly from their components.

The following construction scheme produces all factorable linear posets: Make k£ > 2 copies of
any linear poset on n elements. Construct a linear poset on any k equal environment elements
chosen from each of the k posets. By the above lemma the resultant poset on kn elements is linear.

Observe that we may use the same construction scheme to produce posets without first starting
with a linear poset. Indeed, the initial poset which we duplicate may even be disconnected, all that
is necessary is that all comparisons involve equal environment elements within one component.

A poset is said to be a maz-min poset if it has a unique maximal element and a unique minimal
element and it costs [3n/2] — 2 comparisons to build starting from U,,.

Max-min posets share a decomposability property with linear posets, in that, two max-min
posets on n elements can be combined to yield a new max-min poset (for n even).

Also, there is a restricted version of the same linearity property with respect to the cost function:

Lemma 11.3 If {A;} is any set of maz-min posets each on an even number of elements then

Us v 240 = 20 CWUpy a1 A)

Proof: Straightforward. m

Lemma 11.4 If A is a linear or maz-min poset on n elements then length(A) < |lgn].

Proof: m

The advantage of characterizing special classes of posets whose cost is known is that these
characterizations can then be used to infer bounds on the cost of arbitrary posets. For example,
given a connected poset on n elements whose length is greater than |lgn| we know immediately
that this poset must cost at least n comparisons to build starting from ,,.

Atkinson ([3]) has independently shown that any sequence of n — 1 comparisons which results
in a connected poset on n elements has length no more than [lgn].
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12

1.

Open Questions

We have shown that each of the production processes produces the poset A in at most | E(A)]
comparisons. However, this is a very crude upper bound; improve this bound to something
which is O(lg(n!/|extensions(A)l)).

How does the structure of M(n) determine which posets can be produced after ¢ comparisons
using either of the construction schemes we have given?

. Find a relation between C(A), C(A\ (z,y)) and C(A\ z) where 2 > y and z is maximal or

minimal in A.

. Table 12 lists the numbers of reduced posets on n elements which cost ¢ comparisons to build

for small » and c.

Is the sequence of trailing digits 1, 2, 8, 28, ... related to the number of reduced posets of
each cost (1, 3,9, 29, ...)7 Are there at least 3°~! posets of cost ¢? Is each column and row
unimodal? If so, does the row mode always occur at c =n — 17

How many strong, linear, and strong linear posets are there on n elements? How many
reduced posets are there on n elements which cost ¢ comparisons to build starting from 4,7

. If a connected poset costs ¢ comparisons and, among all connected posets of cost ¢ it has the

maximum number of relations, is it necessarily linear? As a special case we ask a question
that belongs to folklore and was first posed by Aigner ([1]). If we wish to build a partic-
ular connected poset does there always exist an optimal algorithm which starts with [n/2]
comparisons between singletons?
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Appendix 1—Enumeration Results

Table 11 was created for each n by starting with R,, and systematically removing covers to create
the next level of posets. Once these are all generated the next level is generated by systematically
removing covers from each of the posets in the current level. This process is repeated until U, is
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generated. Mohring [29] gives |P(n)| for n < 10. Combining results from [33, 21] and [38] (ex. 3,
pg. 154) we see that

A n
|P(n)| ~ — (E) 27 /4302 where A & 0.80587793(n even)
n \n

Observe that there are: (') posets with (7) relations; ("]") posets with (%) — 1 relations; (")

posets with (5) — 2 relations; (”51) + 2n — 5 posets with (3) — 3 relations; (”Zl) +2n% —10n + 11
posets with (Z) — 4 relations. Dhar [10] presents some asymptotic results on the number of posets
on n elements with a fixed fraction of (g) relations. Note that, for n > 10, there are 1, 1, 3, 7, 19

and 47, posets with 0, 1, 2, 3, 4, and 5 relations respectively.
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r\n[1 2 3 4 5 6 7 ) 9 10
0 T 1 1 1 1 1 1 1 1 1
1 11 1 1 1 1 1 1 1
2 2 3 3 3 3 3 3 3
3 1 4 6 7 7 7 7 7
4 3 10 16 18 19 19 19
5 3 10 25 38 44 46 47
6 1 12 36 74 107 124 130
7 9 43 113 208 287 329
8 6 46 167 381 636 841
9 4 44 209 619 1257 1946
10 1 35 243 915 2311 4251
11 28 249 1219 3830 8526
12 17 239 1506 5891 15891
13 10 204 1705 8294 27259
14 5 168 1792 10921 43572
15 1 123 1767 13363 64851
16 83 1621 15419 90614
17 54 1402 16687 119179
18 29 1136 17119 148255
19 15 874 16578 174838
20 6 629 15309 196135
21 1 434 13421 209729
22 274 11253 214283
23 166 8999 209692
24 94 6897 196824
25 46 5054 177576
26 21 3551 154148
27 7 2386 128998
28 1 1528 104101
29 939 81200
30 541 61145
31 300 44566
32 153 31401
33 69 21414
34 28 14096
35 8 8974
36 1 5492
37 3240
38 1836
39 986
40 506
41 237
42 99
43 36
44 9
45 21 1

I 2 5 16 63 318 2045 16999 183231 2567284




\n[2 3 4 5 6 7 ) 9 10 11 12 13 14
1 |1 1
2 1 3
3 1 5 2 1 9
4 4 14 8 2 1 29
5 1 15 41 24 8 2 1 92
6 11 >61 >124 >82 >28 8 2 1 >317
7 5 >28 8 2 1
1 3 11 47 255 1727 14954

Figure 12: Number of Reduced Posets On n Elements Which Cost ¢ Comparisons
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14 Appendix 2—Lists of Posets
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Figure 13: The 134 Reduced Posets Which Cost Less Than 6 Comparisons (Ignoring Duals)
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