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Abstract

Nonlinearities in quantum systems provide some of the most intriguing physics to be

exploited for quantum technologies and for quantum simulations. In this thesis, we

explore quantum nonlinearities in two different contexts: The first is an experimental

demonstration of coherent microwave-to-optical conversion using a warm 87Rb atomic

vapor located inside a cylindrical microwave cavity. Frequency conversion is essential

for transferring quantum information generated in the microwave domain to optical

frequencies, where it can be transmitted and networked with minimal propagation

loss. A hybrid, second-order nonlinear susceptibility in the vapor enables coherent

frequency conversion of single- and multi-channel microwave signals. This conversion

is tunable over a large 550(30) MHz range of output optical frequencies due to the

thermal Doppler broadening of the excited atomic state. This system also permits

phase-correlated amplitude control of select frequency channels, providing an analog

to a frequency domain beam splitter across five orders of magnitude in frequency.

The second context is a computational approach for accelerating computational

solutions of the nonlinear Schrödinger equation. We employ open-source code and

readily available graphics processing unit hardware. This allows us to simulate a

quasi-2D version of the Gross-Pitaevskii equation, a specific type of the nonlinear

Schrödinger model, where the nonlinearity arises from density-dependent scattering

interactions. The equation describes a trapped, interacting, two-component Bose-

Einstein condensate (BEC) subject to a spatially dependent interspin coupling. This

computational approach lets us probe high-resolution spatial features—revealing an

interaction-dependent phase transition—all in a reasonable amount of time.
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Preface

The experimental and computational work presented in this thesis is the product of

more than seven years as a member of Prof. Lindsay J. LeBlanc’s Ultracold Quantum

Gases Laboratory at the University of Alberta. Like the physics and experiments pre-

sented therein, my Ph.D. journey has been a case study of taking things apart and

putting them back together in nonlinear, unexpected ways. For the first five years of

this journey, I worked on all aspects of the ultracold Bose-Einstein condensate exper-

iment, with the goal of spin-orbit coupling quantum simulations. Despite the effort

invested, two unrelated—but equally devastating—laboratory floods and the grip of

a global pandemic prompted a research change. Fortunately, a new door opened: ex-

periments with warm atoms inside a 3D microwave cavity; with the support of Prof.

LeBlanc, and the extraordinary help of fellow student Bahar Babaei and visiting Prof.

Andal Narayanan, I walked through. Taking that unforeseeable redirection with their

help has made all the difference for me personally. I cannot say enough of these three

incredible women!

Although my journey has traversed and wound through many topics and endeav-

ors, this thesis will primarily focus on research in the warm-atoms arena; still, I have

reserved one chapter to describe a computational effort supporting ultracold experi-

ments.

Clearly, this thesis is not the result of one person, but has relied upon the partic-

ipation of many people. I wish to recognize and highlight their contributions to the

following core chapters:
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Chapter 6: Theory of sum-frequency generation in neutral
atoms

Prof. Andal Narayanan and I developed the coherent amplitude control theory, and

Prof. Andal Narayanan provided the broad-tunable nonlinear optics model.

Chapter 7: Experimental setup and methods

Scott Wilson and Tian Ooi produced the customized, Python-based cycle control pro-

gram discussed in Section 7.2. Scott began in 2017 to port an equivalent LabVIEW-

based program to Python, which Tian completed in 2020 and installed it on our warm

atoms control computer. This version of the program is a marvelous improvement

over the old one.

Michelle Sullivan and Taras Hrushevskyi assembled components of a hybrid cold-

atoms-quantum system in a new laboratory space [1]. They installed the control

computer and devices described in Section 7.2; assembled the laser and optics system

described in Section 7.3.2; and installed the current supplies and cables used for

magnetic field control [see Section 7.2.1]. Although their envisaged experiment has

not yet materialized, this thesis benefitted from their preparations. Additionally,

technician James Chaulk designed and manufactured the dark acrylic plastic enclosure

for the preparation optics table.

Andrei Tretiakov, Brittany (Ying-Ying) Lu, and Timothy Lee performed the first

experiments in the LeBlanc group using this microwave cavity and a warm atom cell

consisting of a vacuum system with rubidium dispensers [2–4]. Brittany and Andrei

designed and ordered the sealed vapor cell we use today, which provides improved

reliability and consistency over the vacuum system.

Dr. Clinton Potts machined the microwave cavity used in this work. Various
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research groups at the University of Alberta generously loaned us equipment for

the duration of this work: The Prof. John Davis group loaned us their Anapico

APSIN12G microwave source, Keysight E5063A vector network analyzer, and sundry

microwave/RF components; the Prof. Vadim Kravchinsky group loaned us their 1-

meter square, three-axis Helmholtz coil set; and the Prof. Robert Wolkow group

loaned us their Tektronix RSA5100B spectrum analyzer. The Prof. Mark Freeman

group also periodically loaned us their Keysight N9020B MXA spectrum analyzer

and gaussmeter.

Helpful conversations with Dr. Clinton Potts, Marvin Hirschel, and Dr. Yunhu

Huang shed light on microwave engineering techniques. Also, Dr. Yunhu Huang

shared the Python fitting routine used to extract the cavity quality factors from S11

resonance data.

Bahar Babael and I worked closely together to set up and test the power feedback

servo loop; we also assembled and calibrated the magnetic Helmholtz coils. Bahar

also performed the COMSOL simulations shown in Section 7.6.3, provided the key

insight into the 87Rb metalization, and repeatedly executed skillful alignments of the

microwave cavity and its coupler pin. Jichu Shi assisted Bahar and I in setting up the

experiment table optics and characterizing the polarization optics. Bahar and Jichu

also assembled the home-built AOM driver electronics box used in this experiment.

Finally, I designed and machined the water cooling block for the vapor cell stem, and

wrote the code for automating spectrum analyzer measurements.

Chapter 8: Broad-tunable and multimode microwave-to-optical
conversion in a warm atomic vapor

Prof. Andal Narayanan and Bahar Babaei worked together with me on experimental

characterizations and data collection. I performed the data analysis with input from
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Andal Narayanan. Prof. Ray DeCorby read an early manuscript and provided helpful

feedback on this work.

Chapter 9: Accelerating simulations of the pseudospinor Gross-
Pitaevskii equation

Prof. Lindsay LeBlanc provided the original simulation code, which was modified by

Dr. Logan Cooke and myself. Dr. Logan Cooke then produced a GPU-compatible

code version and implemented a spinor model. Next, I verified the computations

and modified the code to produce a fully packaged, open-source code version. I also

benchmarked the code’s performance on various devices and performed the example

spin Hall simulations. In this work, we were supported by NVIDIA Corporation with

their grant of the Titan V GPU. The NVIDIA grant proposal was written by Dr.

Logan Cooke, myself, and Prof. Lindsay LeBlanc. Zaheen Farraz Ahmad graciously

provided insight on GPU computing, benchmarking, and the various Python libraries

available.

* * *

The publication “Smith, B.D., Babaei, B., Narayanan, A., & LeBlanc, L.J.Microwave-

to-optical conversion in a room-temperature 87Rb vapor for frequency-division multi-

plexing control, Commun. Phys. 6 338 (2023)” [5] forms the basis for certain sections

in Chapters 6 and Chapter 8. The text and notation have been modified for consis-

tency and to support the format and scope of this thesis. Sections 8.1, 6.2.2, 6.2.4,

8.2.4, 8.3, 8.6, and 8.7 uses material directly from [5]. Sections 8.2.3, 8.2.5, 8.2.6,

8.4, 8.5, 8.2.8 include text and figures modified from [5]. All other sections in these

chapters are unique to this thesis. The data and analysis files that support their

findings are available at [6].
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Chapter 9 is taken directly from the publication “Smith, B. D., Cooke, L. W., &

LeBlanc, L. J. GPU-accelerated solutions of the nonlinear Schrödinger equation for

simulating 2D spinor BECs, Comput. Phys. Commun. 275 (2022): 108314” [7].
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“...That the trial of your faith,

being much more precious than of gold that perisheth,

though it be tried with fire,

might be found unto praise and honour and glory

at the appearing of Jesus Christ.”

1 Peter 1:7, The Holy Bible: King James Version
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To my Father in Heaven.
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And he lighted upon a certain place...

Genesis 28:11, The Holy Bible:
King James Version

Chapter 1

Introduction

1.1 Reductionism and emergence

The physical universe is a complex place. It features many types of matter with

their respective environments and interactions. In developing an understanding of

the universe, science often takes a two-pronged strategy. The first accepts a hypoth-

esis of the universe’s structure called reductionism1, which may be summarized as

“small is beautiful” [11, 12]. Reductionism assumes that we can understand the uni-

verse in terms of smaller, simpler, and more “fundamental” particles and interactions.

Reductionist physical theories have been so successful because they possess great ex-

planatory power. Developing such theories has been a continuous program of physics

1This has been called “one of the most used and abused terms” in philosophy [11]. In the context
of this thesis, we specifically consider methodological reductionism.
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for at least the last 130 years since the discovery of the electron [13], however, its

underpinnings may be traced back even further [14–16].

However, we don’t live in a universe of “just” fundamental particles and interac-

tions2. Smaller objects tend to aggregate into larger, more complex structures and

generally display qualitatively new properties, behaviors, states, or dynamics not

found in their smaller-scale constituents. For example, superfluidity, turbulence, and

surface tension do not make sense for isolated atoms; they are emergent properties.

Therefore, emergence, the second approach of science, states in a nutshell: “more

is different” [17]. While it accepts the hypothesis that novel behavior is (at least

in principle) determined by the properties and laws of the underlying components,

that connection may not be straightforward3. Emergence typically arises among a

large number of interacting, microscopic constituents in a way that breaks funda-

mental symmetries or produces topological order; irreversible processes that increase

the entropy of a system are also emergent [17, 19]. Thus, science begins with reduc-

tionism [17] to understand the fundamental, and then proceeds to reconstruct the

emergent complexity in our universe.

1.2 Linearity and emergent nonlinearity

To understand physical phenomena, physicists often seek models and regimes that

are linear. Linear systems obey the superposition principles [22], which states that

2For example, a knowledge of the Standard Model is not useful for predicting the spread of an
infectious disease through a population.

3It is challenging to find a single, widely-accepted definition of emergence [18, 19]. In this thesis,
we are using the more commonly accepted notion of weak emergence. In contrast, Nobel laureate
Philip Anderson had the viewpoint that there are properties of a complex system that may not be
derived from the constituents, even in principle [17]. His views aligns closely with the notion of
strong emergence [20, 21].
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the sum, or linear combination, of individual linear states/solutions

h(x) = f(x) + g(x). (1.1)

is also a linear state/solution of the system. We typically treat classical waves linearly,

and their superposition leads to, for example, constructive and destructive interfer-

ence [23]. Similarly, quantum mechanics is based on the evolution of de Broglie

waves [24, 25], the linearity of which is taken as one of the postulates of quantum

mechanics [26]. Because of the superposition principle, linear systems are relatively

easy to develop theoretically and their dynamics can be readily solved analytically or

computationally.

Systems that are initially linear and quite simple in isolation display complex-

ity, richness, and unexpected behaviors in aggregate. In the presence of interactions

between many constituent objects, we should no longer expect the superposition

principle to hold. For example, even though quantum mechanics is a linear theory,

a Bose-Einstein condensate is governed by a nonlinear Schrödinger equation. This

emergent nonlinearity [27] arises from collisional interactions among the constituent

atoms [see Chapter 9]. Similarly, a stream of photons interacting with numerous

atoms in a symmetry-broken material produces emergent photons with different en-

ergies; the superposition of electromagnetic waves breaks down and gives way to

nonlinear optical properties.

Emergent nonlinearities are being increasingly integrated into practical and useful

technology. Nonlinear interactions are even now routinely engineered among single

photons [28, 29] and atoms [30–33] for applications in quantum computing and secure

quantum communication.
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1.3 Outline of this thesis

This thesis focuses on two different systems with emergent nonlinearities, having dis-

tinct constituents, environments, and interactions. The first (and the largest) com-

ponent of this thesis describes a nonlinear optical experiment: optical and microwave

radiation fields interact with a room-temperature gaseous vapor of elemental metal

rubidium atoms to produce a new source of light at the sum-frequency of the input

fields. It demonstrates the coherent conversion of information from microwave to

optical frequencies, a desired tool for networking quantum devices [34]. The prop-

erties of room-temperature atoms also provide an advantage of increased conversion

flexibility. Warm atoms systems are technologically relevant due to their significantly

reduced technical demands compared to laser-cooled atomic systems.

In organizing this part of the thesis, we have taken a “reductionism-emergence”-like

approach. We begin by outlining the basic theoretical principles: Chapter 2 explains

the emergence of the quantized electronic structure of the rubidium atoms; Chap-

ter 3 describes how light induces transitions among the atomic structure; Chapter 4

considers unique properties of room-temperature atoms; and Chapter 5 provides a

high-level overview of nonlinear optical processes.

From this basic groundwork, we construct an understanding of the theory, oper-

ation, and results of the experiment: Chapter 6 explains theoretically the emer-

gence and properties of the microwave-to-optical process; Chapter 7 outlines how

the experimental apparatus was constructed, characterized, and calibrated; finally,

Chapter 8 presents the experimental procedure and results.

We close this thesis by considering computationally a different physical model

with emergent nonlinearity: the nonlinear Schrödinger equation (NLSE). Obtaining

numeric solutions is generally much more intensive for nonlinear equations than linear

4



Chapter 1. Introduction 1.3. OutlineChapter 1. Introduction 1.3. OutlineChapter 1. Introduction 1.3. Outline

ones. Chapter 9 describes a process to significantly accelerate computations to the

NLSE using simple programming tools and graphics hardware. This flexible approach

may be applied for solving similar nonlinear equations.

Together, these two parts provide experimental and computational perspectives for

emergent nonlinear systems involving neutral atoms. These contribute to the larger

work of understanding complex physical systems.
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...and he took of the stones of that place,
and put them for his pillows,

and lay down in that place to sleep.
And he dreamed,

and behold a ladder set up on the earth...

Genesis 28:11-12, The Holy Bible:
King James Version

Chapter 2

The structure of alkali atoms

2.1 Introduction

Atomic physics is concerned with the study of isolated atoms. Atoms are composed

of a charged nucleus and oppositely charged surrounding electrons that are organized

in a specific structure [35]. This electronic structure is produced by interactions

among the electrons and the nucleus, and their motion. The principles of quantum

mechanics can determine, with high accuracy, the rich nature of this structure and

how it changes in response to external perturbations.

We restrict our attention to the electrically-neutral rubidium atom with an ap-

proximate mass of 87 atomic units, notated as 87Rb. This isotope is an alkali atom,

which means it has a single valence electron outside the filled lower shells. The elec-

tronic structure of alkali atoms is relatively simple compared to other multivalent
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atoms. While the theoretical techniques and methods presented in this and subse-

quent chapters apply to all alkali atoms, 87Rb is discussed because it is employed in

the experiments of this thesis.

2.2 The atomic Hamiltonian

In this chapter, we will first briefly describe the emergence of the fixed, discrete

energy level structure of the valence electron. This description is based–but will

tread as lightly as possible–on the well-worn path of the hydrogen atom solutions [36,

37].

Energy levels are abstractions of the electron’s quantized states |ψξ⟩ and their

structure (indexed by ξ) is responsible for the discrete optical transmission/absorption

spectra produced by atomic gases [35, 38]. The states are solutions of the time-

independent Schrödinger equation [37]

Ĥat|ψξ⟩ = Eξ|ψξ⟩, (2.1)

where Eξ is one of the corresponding energy eigenvalues of the isolated atom Hamil-

tonian Ĥat. This operator can be decomposed into several different terms1 as

Ĥat =
[︂
Ĥ0 + V̂ (r)

]︂
+ ĤSO + ĤHF + ĤZ. (2.2)

The terms in the brackets are analogous to the classical kinetic and potential energies

of the electron, where V̂ (r) represents the effect of the central nucleus’ electrostatic

Coulomb potential on the electron, where r = |r|. The final three terms represent

the spin-orbit ĤSO, hyperfine ĤHF, and Zeeman ĤZ perturbing interactions. The

1This Hamiltonian does not include the relativistic kinetic energy correction and Darwin terms;
they generally affect the energies of the states, but a description of their origin goes beyond the
scope of this thesis, and they are not included for brevity. This expression also does not consider the
quantized electromagnetic field, fluctuations of which are responsible for spontaneous de-excitation
and emission from higher energy atomic states.

7



Chapter 2. Atomic Structure 2.3. Gross structureChapter 2. Atomic Structure 2.3. Gross structureChapter 2. Atomic Structure 2.3. Gross structure

following sections describe how each interaction affects the structure of electron states

in the atom.

In general, the electron states |ψξ⟩ depend on spatial coordinates and various com-

binations of angular momenta. To simplify the description, these variables can be

abstracted further to a set of quantum numbers, e.g. ξ = {nℓmℓ . . . }, that emerges

due to physical constraints and conditions. Thus the state can be alternatively no-

tated as |ψξ⟩ ≡ |ξ⟩ ≡ |nℓmℓ . . . ⟩.

The left-to-right order of the three perturbations in 2.2 reflects a weakening hierar-

chy of their interaction strengths. Each perturbation splits electron energy levels into

new levels that are separated by the interaction energy. This splitting hierarchy can

be seen in Figure 2.1. The splitting is experimentally discernible via various forms of

atomic spectroscopy [39]. The split levels are described by additional quantum num-

bers in ξ. The use of a particular set of quantum numbers also reflects a choice of basis

(i.e. Hilbert space) in which to express the Hamiltonian. A “good” choice of ξ [40]

will make the eigenstates of Ĥat stationary, meaning they do not evolve in time [35];

both the unperturbed and perturbing Hamiltonians will satisfy Equation 2.1 for the

same choice of |ξ⟩.

2.3 Gross structure

The gross (or coarse) structure of the electron states emerges from the kinetic and

potential energy terms in 2.2 and thus depends on spatial coordinates. These terms

significantly influence the electron’s energy. If we temporarily ignore the three other

perturbing terms, then the resulting eigenstates of this Hamiltonian have the form

|nℓmℓ⟩ ≡ Rnℓ(r)Y
mℓ
ℓ (θ, ϕ), composed of radial Rnℓ and angular Y mℓ

ℓ components,

with radial r, polar θ, and azimuthal ϕ spherical coordinates [37]. The n, ℓ, and

8
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(a) (b) (c) (d)

Figure 2.1: Energy level diagram of the rubidium 87 valence electron. The (a) gross,
(b) fine, (c) hyperfine, and (d) Zeeman structures emerge from corresponding in-
teractions in Ĥat. The horizontal lines represent the electron energy levels, and the
number above each level is the respective quantum number. Characteristic level split-
ting magnitudes are provided for each interaction. This level diagram is not to scale.
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m quantum numbers come from physical boundary conditions at r = 0 (|Rnℓ(r)|2 is

finite) and r → ∞ (|Rnℓ(r)|2 → 0), and also because the states are single-valued at

every point in space.

The principle quantum number n ∈ N determines the splitting of the gross electron

structure. For alkali atoms, the energies of levels in this structure are approximately

given by [40]

Enℓ = −hcR∞

n∗2 , (2.3)

where an effective principle quantum number n∗ accounts for interactions between

the valence and core electrons2. Using Equation 2.3, we estimate the lowest gross

structure splitting for 87Rb, using n∗ = 1.81 for the S (ℓ = 0) states [40, 41], to

be h × 600 THz. This is a decent order-of-magnitude estimate for the h × 980 THz

measured 5S− 6S level separation in 87Rb [38].

The Y mℓ
ℓ angular components are spherical harmonic functions. They are inher-

ently linked to the quantized orbital angular momentum operator

L̂= L̂xêx + L̂yêy + L̂z êz ≡ (L̂x, L̂y, L̂z), (2.4)

where êi are Cartesian unit vectors. The Y mℓ
ℓ functions are characterized by two

quantum numbers ℓ ∈ Z0+ : ℓ ≤ n − 1 and mℓ ∈ Z : |mℓ| ≤ ℓ. In fact, Y mℓ
ℓ are

eigenfunctions in the position basis of the squared angular momentum operator L̂
2

and the z-component L̂z,

L̂
2
Y mℓ
ℓ (θ, ϕ) = ℏ2ℓ(ℓ+ 1) Y mℓ

ℓ (θ, ϕ) (2.5a)

L̂z Y
mℓ
ℓ (θ, ϕ) = ℏmℓ Y

mℓ
ℓ (θ, ϕ). (2.5b)

These spherical harmonic functions are quantized in R3 space [42] along a particular

quantization axis; in this thesis, they are quantized along the z-axis. The eigenvalue

2In this definition, n∗ = n − δℓ, where the angular momentum-dependent quantum defect δℓ is
an empirical correction to n.
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ℏmℓ is the atomic angular momentum projected along that axis [26, 37]. The use

of a particular quantization axis represents an arbitrary choice of basis. However,

there are often specific directions where the states and operators take on a simple

form. For example, it is usually convenient to choose a quantization axis along the

direction of an externally applied magnetic field. In the absence of an external field,

the propagation direction of a polarized, interacting light beam is also an appropriate

choice.

2.4 Interlude: Treatment of angular momentum

operators

Beyond the gross structure, most of the interesting electronic structure emerges due

to interactions between various sources of quantized angular momentum inside the

atom. These include the electron’s orbital angular momentum, the electron’s intrinsic

spin angular momentum, and the nucleus’ intrinsic spin angular momentum. Angular

momentum, in the quantum sense, is described by operators [e.g. see Equation 2.4].

The nature of these operators and what “interactions” between them mean are the

subjects of this brief interlude.

2.4.1 Spherical Vector Operators

Consider the difference between classical scalar and vector quantities. What differ-

entiates the two is the answer to the question: “If I tilt my head, does the quantity

change?” For scalar quantities such as energy, temperature, and mass, the answer is

no. The components of vector quantities such as acceleration, electric field, or angular

momentum clearly do change when either the vector or coordinate system is rotated3.

3Technically, angular momentum is a pseudovector ; it transforms under rotations just like proper
vectors, but the components do not invert under parity operations. However, since this discussion

11



Chapter 2. Atomic Structure 2.4. Angular momentum operatorsChapter 2. Atomic Structure 2.4. Angular momentum operatorsChapter 2. Atomic Structure 2.4. Angular momentum operators

In quantum mechanics, continuous quantities are replaced by operators, thus it

is possible to define both scalar and vector operators. Scalar operators, such as

the kinetic and potential energy4 operators are invariant under rotations. Vector

operators, such as L̂ [Equation. 2.4], are generalizations of scalar operators with unique

rotational properties. Even further generalizations are called tensor operators, with

elements Tfgh.... A tensor is characterized by its rank k, which is equal to the number

of subindices. Scalar operators have k = 0, while vector operators have k = 1. In the

context of this thesis, we will limit the discussion to scalar and vector operators.

When a vector operator is rotated in 3D space, its components transform into each

other, as encapsulated in the commutation relation[︂
L̂i, L̂j

]︂
= iℏϵijkL̂k, (2.6)

where ϵijk is the antisymmetric Levi-Civita symbol. In fact, we may consider Equa-

tion 2.6 as the definition of a vector operator [41]. For the discussion of rotations,

it is sometimes more convenient to convert the vector operators from the Cartesian

basis to the so-called spherical basis. The spherical and Cartesian unit vectors are

related as [43]

ê± ≡ 1√
2
(∓êx − iêy) (2.7a)

ê0 ≡ êz. (2.7b)

This may be used to re-express the vector operator as

L̂= L̂1ê+ + L̂0ê0 + L̂−1ê−, (2.8)

focuses on rotations instead of inversions, for fixed reference frames, the term vector is used to
describe both quantities.

4This is only true when the potential is central, meaning V (r) = V (|r|).

12



Chapter 2. Atomic Structure 2.4. Angular momentum operatorsChapter 2. Atomic Structure 2.4. Angular momentum operatorsChapter 2. Atomic Structure 2.4. Angular momentum operators

where

L̂±1 ≡
1√
2

[︂
∓L̂x − iL̂y

]︂
(2.9a)

L̂0 ≡ L̂z. (2.9b)

In this form, L̂ is a spherical vector operator. There is a deep connection between

spherical vector operators and spherical harmonics. For example, the position vector

operator r in the spherical basis has components rq = r
√︂

4π
3
Y q
1 (θ, ϕ), where q ∈

{+1, 0,−1}. This says that the vector operator components have the same form and

transform under rotations exactly like spherical harmonic elements Y q
1 . This is true

generally for all spherical vector operators [43]. Figure 2.2 shows the cubic (Cartesian)

harmonics P 1
i functions with the corresponding spherical harmonics Y 1

q . The two sets

of functions are related via the basis transformation Equation 2.7 [44].

Figure 2.2: Comparison of the cubic and spherical harmonic components. For ℓ = 1,
the cubic P 1

i and spherical Y 1
q harmonic functions are related to each other by the

transformation Equation 2.7. The colors reflect the functions’ complex phase.

2.4.2 Addition of spherical vector operators

We now consider the addition of two vector operators. For simplicity, assume we have

two generic angular momentum vector operators Ĵ1 and Ĵ2. Each of these acts on

13
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distinct basis states |jimi⟩ as5

Ĵ
2

1|j1m1⟩ = ℏ2j1(j1 + 1)|j1m1⟩ (2.10a)

Ĵ 1z|j1m1⟩ = ℏm1|j1m1⟩ (2.10b)

and

Ĵ
2

2|j2m2⟩ = ℏ2j2(j2 + 1)|j2m2⟩ (2.11a)

Ĵ 2z|j2m2⟩ = ℏm2|j2m2⟩. (2.11b)

When these operators combine to form the total angular momentum operator Ĵ =

Ĵ1 + Ĵ2, the new relations become

Ĵ
2
|jm⟩ = ℏ2j(j + 1)|jm⟩ (2.12a)

Ĵ z|jm⟩ = ℏm|jm⟩ (2.12b)

where the possible values of j are “triangle” combinations of j1 and j2

j ∈ {|j1 − j2|, |j1 − j2 + 1|, . . . , j1 + j2 − 1, j1 + j2}. (2.13)

This triangle condition will be notated compactly as △(j; j1j2).

These new basis states |jm⟩ are composed of certain combinations of the original

states |j1m1; j2,m2⟩. This can be seen by projecting with the unity operator onto the

new states.

|jm⟩ =
∑︂

m1,m2

|j1m1; j2,m2⟩⟨j1m1; j2,m2|jm⟩. (2.14)

The inner product in the above expression is a real6 constant called a Clebsch-Gordan

(CG) coefficient. It states how strongly two angular momentum states couple to give

5Note the distinction between an operator Ĵ (capital, with a ˆ hat), its eigenstate |j⟩ (lowercase,
bra-ket), and its numerical eigenvalue factor j (lowercase).

6According to the common Condon-Shortly convention [45].
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a third. Because of this, |jm⟩ is known as the coupled basis, and |j1m1; j2,m2⟩ as the

uncoupled basis. We can alternatively express the CG coefficient as [41]

⟨j1m1; j2m2|jm⟩ = (−1)−j1+j2−m
√︁

2j + 1

⎛⎝ j1 j2 j

m1 m2 −m

⎞⎠ , (2.15)

where the 2x3 matrix of values within the parentheses is called the Wigner 3j-symbol.

Like the CG coefficient, the 3j-symbol is a real constant that expresses the coupling

between two angular momenta. The explicit forms of the CG coefficient and 3j-symbol

are quite complicated, but they can be read from tables [36], or readily calculated

using computer algebra systems such as Mathematica [46], or from Python packages

such as SymPy [47] and Alkali Rydberg Calculator [48]. The value of the 3j-symbol is

zero unless the elements in the bottom row sum to zero, i.e. m1 +m2 = m; it is also

zero unless the triangle condition △(j; j1j2) is satisfied. Furthermore, the 3j-symbol is

invariant under even permutations of the columns and picks up a factor of (−1)j1+j2+j

under odd permutations.

If we desire to add three arbitrary angular momenta
(︂
Ĵ1, Ĵ2, Ĵ3

)︂
together, the

situation becomes more complicated. There is no longer a unique way to combine

three angular momenta to get a fourth: one could choose to first define an intermediate

Ĵa = Ĵ1+Ĵ2, and then define Ĵ = Ĵa+Ĵ3; alternatively, one could choose to first define

an intermediate Ĵb = Ĵ2 + Ĵ3, and then define Ĵ = Ĵ1 + Ĵb. In other words, angular

momenta vector operators do not have the same additive associativity property as

real numbers. The proper way to combine all these components using the so-called

Wigner 6j-symbol ⎧⎨⎩j3 j ja

j1 j2 jb

⎫⎬⎭ , (2.16)

a 2x3 matrix within curly brackets. Like the 3j-symbol, it is a real number. Its

explicit form is a nontrivial combination (i.e. sums and products) of CG coefficients
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of the constituent angular momenta states; however, it can be readily calculated

with computer software. It has the properties that it is invariant under (1) any

permutation of the columns, and (2) the exchange of upper and lower elements in

any two columns [49]. It is equal to zero unless the triangle condition 2.13 is satisfied

for all the following combinations of elements:

△ (j; j1, jb), (2.17a)

△ (j; j3, ja), (2.17b)

△ (ja; j1, j2), (2.17c)

△ (jb; j2, j3). (2.17d)

These triangle conditions are preserved for the permutation operations stated above.

While we have defined the CG coefficient, 3j-, and 6j-symbols in terms of angular

momentum vector operators, they can be generally applied to represent the addition

of any two or three spherical vector operators.

There is an important and useful theorem for computing the matrix elements of

spherical vector operator components. The Wigner-Eckart theorem can be stated as

⟨j′m′|T 1
q |jm⟩ = ⟨jm; q1|j′m′⟩⟨j′||T||j⟩, (2.18)

where T 1
q is the qth component of a spherical vector operator T (i.e. a spherical

tensor operator of rank k = 1)7. Specifically, this theorem relates the matrix element

of a vector operator component to the product of a CG coefficient and ⟨j′||T||j⟩,

a reduced matrix element of the vector operator. The matrix element is “reduced”

in the sense that the details and character of the specific qth component have been

factored out into the CG coefficient. The resulting reduced matrix element is simply

7In the spherical harmonics Y m
ℓ , ℓ is the rank and m is the element index. Notice that the order

of the super/subscripts has been reversed for the element of the general spherical tensor operator
T k
q compared to the spherical harmonics.
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a number, one which can be calculated either as a complicated integral or determined

from independent physical quantities [50].

Sometimes in atomic physics, the T 1
q of interest is a component of the electromag-

netic dipole operator (dq for electric dipole or µq for magnetic dipole) that induces

transitions from states |jm⟩ → |j′m′⟩. In this context, the qth component refers to

the polarization component (in the spherical basis) of the electromagnetic field “seen”

by the atomic dipole. The power of the Wigner-Eckart theorem is that once ⟨j′||T||j⟩

is calculated, it is easy to compute the matrix elements of any T 1
q with the appropriate

CG coefficient. As will be discussed in Section 3.2.3, the familiar selection rules of

atomic transitions are simply manifestations of the properties of the electromagnetic

dipole CG coefficients.

2.5 Fine structure

The fine structure of the electron is a correction that splits the gross structure levels.

It emerges from a coupling between the electron’s orbital angular momentum L̂ and

its intrinsic spin angular momentum Ŝ. Hence, it is called the spin-orbit interaction,

and its scalar Hamiltonian has the form

ĤSO = βnℓL̂ · Ŝ, (2.19)

where βnℓ is a constant that depends on the orbital angular momentum and the

principle quantum number. The new states split by this interaction are therefore

combinations of the gross and electron spin states, |nℓmℓ; sms⟩. The expectation

value of ĤSO

∆ESO = ⟨nℓmℓ; sms|βnℓL̂ · Ŝ|nℓmℓ; sms⟩ (2.20)

gives the energy shift of the split sub-levels.
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It turns out that separate orbital and spin angular momentum bases is a bad choice

of basis in which to compute ∆ESO. It is better to work in the coupled basis |njmj⟩8

formed by the total electron angular momentum vector operator

Ĵ = L̂+ Ŝ. (2.21)

The square of Ĵ is a scalar operator with the form

Ĵ
2
= L̂

2
+ Ŝ

2
+ 2L̂ · Ŝ, (2.22)

which we rearrange to obtain

L̂ · Ŝ =
1

2

(︂
Ĵ
2
− L̂

2
− Ŝ

2
)︂
. (2.23)

Thus the spin-orbit Hamiltonian is proportional to the difference of three scalar oper-

ators that each commute with the unperturbed Hamiltonian. Thus, the basis change

to |jmj⟩ keeps the Hamiltonian diagonal with stationary eigenstates.

To project onto the |jmj⟩ basis, we substitute Equations 2.23 and 2.19 into Equa-

tion 2.20 and insert “resolutions of unity” on either side of ĤSO to obtain

∆ESO =
∑︂
jj′

mjm
′
j

⟨ℓmℓ; sms|j′m′
j⟩⟨j′m′

j|
βnℓ
2

(︂
Ĵ
2
− L̂

2
− Ŝ

2
)︂
|jmj⟩⟨jmj|ℓmℓ; sms⟩. (2.24)

We identify the inner products on the left and right of the R.H.S. as Clebsch-Gordan

coefficients and replace the operators with their eigenvalues

∆ESO =
∑︂
jj′

mjm
′
j

δjj′δmjm′
j
⟨ℓmℓ; sms|j′m′

j⟩⟨jmj|ℓmℓ; sms⟩

× βnℓℏ2

2
[j(j + 1)− ℓ(ℓ+ 1)− s(s+ 1)]

=
βnℓℏ2

2
|⟨ℓmℓ; sms|jmj⟩|2 [j(j + 1)− ℓ(ℓ+ 1)− s(s+ 1)] .

(2.25)

8The principle quantum number n modifies the strength of the spin-orbit interaction in multi-
electron atoms. However, because the fundamental physics of the coupling is unchanged, n will be
suppressed in subsequent basis state labels.
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The quantum numbers ξ = {nℓsjmj} are abstractions of the electronic states.

Another common way to label the states split by ĤSO is called spectroscopic notation.

In this form, the states are depicted by a symbol of the form9

n 2s+1X
(ℓ)
j , (2.26)

where X(ℓ) is a letter corresponding the value of ℓ: S for ℓ = 0; P for ℓ = 1; D for

ℓ = 2; F for ℓ = 3, etc. For example, s = 1
2
in alkali atoms, therefore j takes on only

two values j = ℓ± 1
2
for ℓ > 0 [see Equation 2.13]. The ground state of the rubidium

valence electron (n = 5) has ℓ = 0 and j = 1
2
, and thus can be notated as 5 2S1/2;

the first excited state with ℓ = 1 is split into two levels, 5 2P1/2 and 5 2P3/2. This

fine structure doublet has an energy separation of h× 7.1 THz, more than a hundred

times smaller than the lowest gross structure separation. The transition lines from the

ground state are sometimes denoted respectively as D1 and D2. The optical-domain

wavelengths of these two transitions are 794.978 nm and 780.241 nm [38, 50], and are

probed by optical spectroscopy.

2.6 Hyperfine structure

The hyperfine structure of the electron is an additional correction that splits the

fine structure levels. It emerges from a coupling between the total electron angu-

lar momentum Ĵ and the intrinsic spin angular momentum of the nucleus Î. The

Hamiltonian for the hyperfine interaction has the form

ĤHF = AnℓsÎ · Ĵ, (2.27)

9Sometimes the n and 2s+ 1 values are self-evident and omitted from the spectroscopic symbol.
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where Anℓs is a constant. The states split by this interaction are therefore a com-

bination of the electron and nuclear angular momentum states, |jmj; ImI⟩, where10

Î
2
|ImI⟩ = ℏ2I(I + 1)|ImI⟩ (2.28a)

Îz|ImI⟩ = ℏmI |ImI⟩. (2.28b)

The value of I depends on the specific atomic isotope; for example, I = 3/2 in 87Rb,

while I = 5/2 in 85Rb.

We next apply the exact same procedure as for computing the fine structure by

changing to the coupled basis |fmf⟩ determined by the total atomic angular momen-

tum operator

F = Ĵ + Î. (2.29)

Next, the energy shift of the coupled basis states is found to be

∆EHF =
Anℓsℏ2

2
|⟨jmj; ImI |fmf⟩|2 [f(f + 1)− j(j + 1)− I(I + 1)] . (2.30)

The electron levels of 87Rb experience this hyperfine splitting in the ground and

excited states. In the electronic ground S1/2 state, f takes on two values f ∈ |j±3/2| =

{1, 2}. The energy difference between these two ground state hyperfine levels is

h× 6.835 GHz, about 1000 times smaller than the fine structure doublet separation.

This separation is typically probed with microwave spectroscopy.

2.7 Zeeman structure

The Zeeman effect is the final, and smallest correction to the structure of the electron

states that we will consider. It emerges due to the interaction of the atom’s magnetic

10To avoid confusing usage of the lowercase i, the eigenstate |I⟩ and eigenvalue factor I both use
the capital letter I.
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dipole µ̂ with an external magnetic field B. The Hamiltonian describing this effect

is given by

ĤZ = −µ̂ ·B, (2.31)

where the magnetic dipole has contributions from all sources of angular momentum

in the atom [50]

µ̂ = −µB

ℏ

(︂
gℓL̂+ gsŜ+ gI Î

)︂
. (2.32)

and where µB is the Bohr magneton and the g-factors relate the angular momenta to

their respective magnetic moments11

We will consider the situation when the magnetic field is relatively weak, i.e. the

energy shift from ĤZ is small compared to the hyperfine splitting [43]. In this case,

|f,mf⟩ is a good basis to evaluate the expectation values of ĤZ. By projecting µ̂ onto

the total angular momentum vector F, we can derive the expression for the Zeeman

energy shift of hyperfine levels [26, 40, 43]

∆EZ = µBgfmfB, (2.33)

where gf is the Landé g-factor. This interaction splits a hyperfine level into 2f + 1

separate levels, each indexed by a distinct mf ∈ {−f,−f + 1, . . . , f − 1, f}. For the

ground state hyperfine levels of 87Rb, gf = −1/2 for f = 1 and gf = 1/2 for f = 2.

The gyromagnetic ratio γg ≡ µBgf = 7.0 kHz/µT [50]. For a typical geomagnetic

field of 60 µT, this splits the levels by about ∆EZ = 420 kHz. This separation is

typically probed by radio-frequency spectroscopy.

11The experimental values for 87Rb are gs = 2.002 319 304 373 7(80) and gI =
−0.000 995 141 4(10). A good approximation of gℓ is gℓ ≃ 1−me/m87 [50].
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And Isaac called Jacob, and blessed him,
and charged him, and said unto him...

Arise, go to Padan-aram...

Genesis 28:1-2, The Holy Bible:
King James Version

Chapter 3

Transitions in alkali atoms

3.1 Transitions in two-level atoms

3.1.1 Introduction

After establishing the rich structure of electrons in alkali atoms, we now consider

a simplified, idealized model for inducing transitions between electron states. This

semiclassical model [40, 51] consists of two quantized electron states and a classical,

monochromatic electromagnetic (EM) wave (e.g. optical, microwave, or radio fre-

quency radiation) that stimulates transitions between the states. In this “two-level

approximation” of real atoms, the basis states are denoted as |1⟩ and |2⟩, with ener-

gies E1 = 0 and E2 = ℏω0. The elements |1⟩ and |2⟩ are orthonormal, meaning their

inner product ⟨i|j⟩ = δij. The atom’s electron may interact with the magnetic B(z, t)
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or electric E(z, t) component of an electromagnetic field, assumed to propagate in one

direction along the z-axis and oscillating with angular frequency ω. A plane, uniform

electric wave, for example, has the form E(z, t) = E0êx
[︁
1
2
ei(kz−ωt) +H.C.

]︁
. We can

simplify later calculations by expanding the spatial part of the exponential as

eikz ≈ 1 + (ikz) +
1

2!
(ikz)2 + . . . (3.1)

and retaining only the lowest order of this expression. This “dipole” or “long-

wavelength” approximation [43] effectively removes the spatial-dependence of the

wave; the field amplitude E0 is considered constant over the region occupied by the

atom. This approximation is valid when λ≫ a0, where λ = c/2πω is the wavelength

of the incoming radiation and a0 is the Bohr radius, the characteristic atomic size.

A magnetic dipole (M1) transition occurs when B(t) = B0êz cos(ωt) reorients the

electron’s magnetic moment µ̂. In contrast, E(t) = E0êz cos(ωt) physically displaces

an atom’s bound electron to produce an electric dipole d = −er, where −e is the

charge of the electron; this induced dipole then interacts again with E(t) in an electric

dipole (E1) transition. In the dipole approximation, the magnetic and electric dipole

interaction Hamiltonians1 are Ĥ
(M1)

int (t) = −µ̂·B(t) and Ĥ
(E1)

int (t) = er·E(t). Magnetic

dipole transitions are much weaker than electric ones. Their relative strength is given

by the ratio of matrix elements [26]

⟨ψ2|Ĥ
(M1)

int |ψ1⟩

⟨ψ3|Ĥ
(E1)

int |ψ1⟩
≃ a0
λ0

∼ 5× 10−5. (3.2)

In the treatments that follow, we determine the time evolution of the electron’s

state subject to an E1 perturbation2. We first examine a closed two-level system,

perfectly isolated from its environment where the state is represented as a normalized

1Two-photon electric and quadrupole (E2) transitions [26] are also possible and have the same
strength as M1 transitions. Their treatment goes beyond the scope of this thesis.

2These methods also pertain to M1 transitions.
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vector in the two-dimensional basis. In the second approach, we examine an open

system, where an interacting environment induces spontaneous decay and relaxation

of the electron. When dissipation cannot be neglected, the electron state is best

represented as a Hermitian density matrix. Both techniques can be generalized to

an arbitrary number of basis elements. Each assumes that the atomic density is low

enough to ignore absorption, and that the radiation field is weak enough to neglect

nonlinear optical effects [51].

3.1.2 Closed quantum system

Figure 3.1: Energy level diagram of driven two-level system. A classical electromag-
netic wave of frequency ω drives transitions between |1⟩ and |2⟩. The Rabi frequency
Ω0 and detuning δ0 are defined in the text.

We first consider the time-evolution of the electron state |ψ(t)⟩ in a closed two-level

quantum system [26, 40, 43] driven by an oscillating electromagnetic field. In this

idealized model depicted in Figure 3.1, the electron state is generally a superposition
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of the basis element kets |1⟩ and |2⟩ as

|ψ(t)⟩ = c1(t)|1⟩+ c2(t)|2⟩, (3.3)

where ci are complex, time-dependent amplitude coefficients, and |ci|2 are the basis

populations. Because the system is free of dissipation from environmental perturba-

tions, |ψ(t)⟩ is normalized for all t such that |c1(t)|2 + |c2(t)|2 = 1. The state evolves

according to the time-dependent Schrödinger equation

iℏ
∂

∂t
|ψ(t)⟩ = Ĥ(t)|ψ(t)⟩, (3.4)

where the total Hamiltonian operator

Ĥ(t) = Ĥat + Ĥ
(E1)

int (t) (3.5)

is composed of the bare atomic Ĥat = ℏω0|2⟩⟨2| and E1 interaction terms. Analytical

solutions to Equation 3.4 are initially complicated by the time-dependence of Ĥ
(E1)

int (t).

In the following, we show how a unitary transformation (i.e. change of basis) can

approximately remove the time dependence from Ĥ, allowing for analytical solutions.

While unitary transformations change the basis elements, they leave the eigenvalues

unchanged. Thus, we are guaranteed the same spectrum and probabilities.

We begin by seeking concrete representations of Ĥ and |ψ(t)⟩ in the two-level basis.

We do this by first plugging Equation 3.3 and 3.5 into Equation 3.4 to obtain

iℏ
(︃
∂c1
∂t

|1⟩+ ∂c2
∂t

|2⟩
)︃

= ℏω0|2⟩ − d0E0 cos(ωt) (c1|1⟩+ c2|2⟩) , (3.6)

where d0 ≡ −er · êz = −er0 is an E1 dipole operator element in the spherical basis.

(The explicit time dependence of ci(t) has been suppressed here and going forward.)

Taking inner products of both sides of Equation 3.6 with each of the basis element

bras ⟨i| produces two coupled, first-order differential equations of the amplitudes ci.
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Based on the orthogonality of the basis elements and the fact that the dipole oper-

ator’s symmetry only admits nonzero off-diagonal matrix elements (i.e. the diagonal

matrix elements ⟨i|d0|i⟩ = 0), we obtain

iℏ
∂c1
∂t

= −c2E0 cos(ωt)⟨2|d0|1⟩, (3.7a)

iℏ
∂c2
∂t

= ℏω0c2 − c1E0 cos(ωt)⟨1|d0|2⟩. (3.7b)

We define the Rabi frequency as Ω0 ≡ E0⟨2|d0|1⟩/ℏ, which is real by convention [see

footnote 6 on page 14]. Thus we can express the coupled differential equation in

matrix form as

iℏ
∂

∂t

⎛⎝c1
c2

⎞⎠ = −ℏ

⎛⎝ 0 Ω0 cos(ωt)

Ω0 cos(ωt) −ω0

⎞⎠⎛⎝c1
c2

⎞⎠ , (3.8)

where we notice

ψ(t) =

⎛⎝c1
c2

⎞⎠ , (3.9)

a vector representation of |ψ(t)⟩, and

H = −ℏ

⎛⎝ 0 Ω0 cos(ωt)

Ω0 cos(ωt) −ω0

⎞⎠ , (3.10)

a matrix representation3 of Ĥ, both in the two-level basis.

3In quantum mechanics, an operator is an abstract algebraic object. The representation of
an operator is a more concrete, matrix form of the operator, grounded in a particular choice of
basis [37, 52]. Usually the operator and its matrix representation can be used interchangeably.
This thesis distinguishes between the operator Ô (with a ˆ hat) and its representation O (without).
Representations are useful because they allow us to work with operators using the familiar machinery
of linear algebra.
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The state vector and the Hamiltonian matrix transform4 according to [43, 49]

ψ̃ = Uψ, (3.11a)

H̃ = UHU † + iℏ
∂U

∂t
U †, (3.11b)

where U is a unitary transformation matrix. By choosing the unitary matrix

U =

⎛⎝1 0

0 eiωt

⎞⎠ (3.12)

oscillating at the drive frequency ω, transforming Equation 3.10 according to Equa-

tion 3.11b gives

H̃ = −ℏ
2

⎛⎝ 0 Ω0 (1 + e−2iωt)

Ω0 (1 + e2iωt) 2δ0

⎞⎠ , (3.13)

where the cosines have been expanded as complex exponentials and simplified. We

have also defined the detuning δ0 = ω − ω0.

In this “rotating frame”, we have transferred some of the time-dependence of H

onto ψ̃. Yet, there are frequency components of H̃ oscillating at 2ω. In the following

“rotating wave approximation,” valid when Ω0/ω0 ≪ 1 (weak coupling) and δ0/ω0 ≪

1 (near resonance) [53], we discard the twice-rotating terms. Because they are far from

resonance, the fast oscillations time-average to zero without significantly perturbing

the state. Finally, we obtain the approximately-time-independent Hamiltonian matrix

4To derive this transformation, operate on both sides of Equation 3.4 by a unitary transformation
matrix U and insert a U†U = 1 on the R.H.S. to get

iℏU
∂ψ

∂t
= UHU†Uψ.

Then substitute into this an expression from the chain rule

U
∂ψ

∂t
=

∂

∂t
(Uψ)− ∂U

∂t
ψ,

rearranging and simplifying to form an equivalent Schrödinger equation for the transformed vector
ψ̃ [Equation 3.11a] and Hamiltonian H̃ [Equation 3.11b].
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in the rotating frame5

H̃ ≈ −ℏ
2

⎛⎝ 0 Ω0

Ω0 2δ0

⎞⎠ . (3.14)

Given Equation 3.14 and some initial conditions, we can determine the evolution

of the level populations using the Schrödinger equation. For example, with ψ̃(0) =(︂
c̃1(0) c̃2(0)

)︂
=
(︂
1 0

)︂
, we obtain

|c̃1(t)|2 = cos2
(︃
Ωt

2

)︃
+
δ20
Ω2

sin2

(︃
Ωt

2

)︃
(3.15a)

|c̃2(t)|2 =
Ω2

0

Ω2
sin2

(︃
Ωt

2

)︃
, (3.15b)

where Ω ≡
√︁

Ω2
0 + δ20 is the generalized Rabi frequency of oscillation. These popula-

tions are displayed in Figure 3.2(a) as a function of t for various parameters. When

δ0 = 0, the populations oscillate entirely back and forth at the Rabi frequency Ω0;

this scenario is known as Rabi flopping.

3.1.3 Open quantum system

The second part considers an open quantum system, where dissipation due to the

environment may be present. In this situation, the electron state Equation 3.3 is not

generally normalized, and it becomes necessary to study the time-evolution of the

density operator ρ̂, which is represented in the two-level basis by the matrix

ρ(t) =

⎛⎝ρ11(t) ρ12(t)

ρ21(t) ρ22(t)

⎞⎠ . (3.16)

5By adding a constant energy shift to the Hamiltonian matrix, i.e. H̃′
= H̃ + δ0

2 1, it can be
expressed more symmetrically as

H̃′ ≈ ℏ
2

⎛⎝ δ0 −Ω0

−Ω0 −δ0

⎞⎠ = −Ω0Ŝx + δ0Ŝz,

where Ŝi are the respective Cartesian spin vector operator components. This modified Hamiltonian
gives the same dynamics as H̃, up to a global phase.
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The density matrix is a more general description of the state of the atom, one that

incorporates degrees of incoherence and can even be used to describe ensembles of

atoms. It has the important property that its trace is equal to one, i.e. Tr[ρ(t)] =

ρ11(t) + ρ22(t) = 1, which is a statement of conservation of probability. Another

property is that ρ is Hermitian, hence ρ12 = ρ∗21. The diagonal elements are often

called “populations” and the off-diagonal elements are called “coherences,” implying

the existence of phase relationships between basis element pairs.

The density operator has a characteristic called purity, defined as Tr[ρ̂2]. In the

absence of dissipation, this value equals 1, and ρ̂ is called a pure state. A pure state

is constructed as the outer product of the state vector with itself

ρ̂(t) = |ψ(t)⟩⟨ψ(t)|, (3.17)

and represented by the matrix

ρ(t) =

⎛⎝ |c1(t)|2 c1(t)c
∗
2(t)

c2(t)c
∗
1(t) |c2(t)|2

⎞⎠ . (3.18)

In realistic, dissipative situations, the purity of ρ̂ is less than 1, and ρ̂ is called a

mixed, or statistical, state; it is constructed as the statistical average of multiple pure

states,

ρ̂(t) =
∑︂
i

pi|ψi(t)⟩⟨ψi(t)|, (3.19)

where i indexes over the statistical components (e.g. atom in an ensemble, basis

components6), and pi is the statistical weight of each component, such that
∑︁
i

pi = 1.

We continue the treatment of the same two-level system, but now where it is ex-

posed to dissipative perturbations from the environment7. Knowing the exact details

6Single atoms can be in mixed states, too.
7For example, we can consider the spontaneous de-excitation of the electron from the excited

state caused by fluctuations of the electromagnetic vacuum field [51, 54, 55].
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of this process is not necessary; we can assume that the electron decays from the ex-

cited to ground state with an exponential, phenomenological decay rate γ0, analogous

to the classical damping of a harmonic oscillator. In realistic atoms, the decay rate

is inversely proportional to the natural, homogeneous linewidth, ∆ν = 2π/γ0 [40].

As described above, the state of open quantum systems must be described by a

density matrix ρ. Because we transformed our quantum system to a basis rotating

at the drive frequency, we redefine the density operator as

σ̂(t) = Û ρ̂Û
†
, (3.20)

represented by the matrix

σ(t) = UρU † =

⎛⎝σ11 σ12

σ21 σ22

⎞⎠ . (3.21)

In the absence of any damping, the time evolution of the density matrix can be

determined by the Liouville-von Neumann equation [49, 56]

d

dt
σ(t) =

1

iℏ

[︂
H̃, σ(t)

]︂
, (3.22)

where the square brackets are the commutator. This equation8 represents four, cou-

pled time-differential equations, one for each element of the 2×2 density matrix σ, and

it is exactly equivalent to the time-dependent Schrödinger equation [Equation 3.4].

Actually, since σ is Hermitian, two of these equations are equivalent. The remaining

three unique equations are solved together, either analytically or numerically.

In the presence of spontaneous decay or dissipation, additional terms need to be

added to the R.H.S. of Equation 3.22, resulting in the Lindblad master equation [57,

8Except for a minus sign, Equation 3.22 has a very similar form to the Heisenberg equation;
however, note that this equation is for the evolution of the density matrix instead of observable
operators.
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58]

d

dt
σ(t) =

1

iℏ
[H̃, σ(t)] +

∑︂
i

Liσ(t)L
†
i −

1

2

{︂
L†
iLi, σ(t)

}︂
, (3.23)

The Li are matrix representations of the corresponding collapse [57, 59] (or “jump” [58])

operators, indexed over various dissipation channels, and the curly brackets are the

anti-commutator. In the case of an exponential decay rate γ0 in the two-level system,

the collapse operator is represented by the matrix

L0 =
√
γ0

⎛⎝0 1

0 0

⎞⎠ , (3.24)

which produces an instantaneous jump from |2̃⟩ → |1̃⟩. We can now substitute L0 and

H̃ [Equation 3.14] into Equation 3.23 to obtain three coupled differential equations,

also known as the optical Bloch equations [40, 56, 60]

σ̇11 = i
Ω0

2
(σ21 − σ12) + γ0σ22, (3.25a)

σ̇22 = −iΩ0

2
(σ21 − σ12)− γ0σ22, (3.25b)

σ̇12 = σ̇∗
21 = i

Ω0

2
(σ22 − σ11) + (γ0/2− iδ0)σ12. (3.25c)

Given initial conditions, the time-dependence of σ(t) can be numerically integrated

with a Runge-Kutta method, or with dedicated software packages like QuTiP [57, 61].

Figure 3.2 illustrates the evolution of the populations σii(t) for various values of δ0

and γ0, given the initial conditions σ11(0) = 1;σ22(0) = σ12(0) = σ21(0) = 0. The

purity of the state is also plotted as a function of time. When γ0 = 0, the populations

follow exactly the analytical expressions of Equation 3.15a and 3.15b, and the purity

is constant at 1.

With damping, the populations eventually relax to a stationary steady-state. We

can calculate these by setting all the time derivatives in Equation 3.25a-3.25c to zero.
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Figure 3.2: Two-level population evolution. (a) The evolution of a closed quantum
system, where γ0 = 0, for δ0 = 0 (solid) and δ0 = 1.5 (dashed-dotted). In the later
case, the system oscillates at the generalized Rabi frequency Ω =

√
13/2. (b-d) The

evolution of an open quantum system. (b) The decay rate γ0 = 0.2, for δ0 = 0. (c)
γ0 = 0.75, for δ0 = 0. In panels (a-c), the purity of the rotated density matrix Tr[σ2]
is displayed a gray dashed curve. (d) The steady-state populations as a function of
γ0. All quantities are given in terms of the Rabi frequency Ω0.

By solving algebraically for the populations, we get

σ11(∞) = 1− σ22(∞), (3.26a)

σ22(∞) =
Ω2

0

γ20 + 4δ20 + 2Ω2
0

, (3.26b)

which are shown in Figure 3.2(d) as a function of γ0.

The density matrix and its associated formalism are indispensable tools for de-

termining the evolution of realistic quantum systems, especially in the presence of

dissipation, such as spontaneous de-excitation.
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3.2 Transitions in multi-level atoms

We have seen that the density matrix can accurately represent the state and evo-

lution of an electron among two basis states in the presence of dissipation. More

generally, the density matrix can represent atoms and ensembles with multiple elec-

tron states. In such cases, evolution among a complicated level structure is composed

of transitions that individually approximate two-level systems [62, 63]. This “two-

level approximation” is valid when the levels are well-separated and the radiation is

approximately resonant [64]. We leave computing the density matrix evolution for a

system with an arbitrary number of levels as a task that can be done in principle9.

In this section, we restrict our attention to the problem of calculating the matrix

elements, and hence the Rabi frequencies, that go into such calculations.

Transitions in a multilevel atom are produced between selected pairs of electron

states. Each transition has a unique E1 or M1 matrix element (but not both! [26])

that depends on: (1) the angular momentum of the initial |fmf⟩ and final |f ′mf ′⟩

states involved in the transition, and (2) the amplitude and (3) the polarization (i.e

spin angular momentum) of the electromagnetic field inducing the transition. In

the treatment of the two-level atom, we did not strictly consider the polarization of

the light. However, in Section 2.4.2, we stated that dipole operators are spherical

vector operators; in general, their components will add -1, 0, or +1 quanta of angular

momentum to the state of the electron, with distinct interaction strengths. These

angular momentum-sensitive transitions are also called σ−, π, and σ+ transitions,

respectively.

9In practice, the number of coupled equations in the optical Bloch equations increase quadrat-
ically with the basis size. Computations are also hindered by intensive averaging techniques that
account for Doppler-broadening in thermal atomic vapors [60, 65]. Computations that depend on
finite difference integration may benefit [66] from similar GPU acceleration techniques presented in
Chapter 9, especially when the Hamiltonian and collapse operators are time-independent.
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The purpose of this section is to derive the dipole matrix elements for 87Rb. This

derivation rightly assumes that the spin-orbit interaction is relatively weak, the hy-

perfine levels are well-resolved, and any applied magnetic field is weak, all such that

f and mf are good quantum numbers [26].

3.2.1 Magnetic dipole matrix elements

We will focus here on the M1 matrix elements within the 5 2S1/2 ground state hyperfine

levels where ℓ = 0, the most experimentally relevant M1 transitions in alkali atoms10;

the ground-state microwave transitions employed in Chapters 6 and 8 are of this

character.

In the ground state, the component of the magnetic moment [see Equation 2.32]

associated with L̂ vanishes since ℓ = 0. Furthermore, the nuclear magnetic moment is

small compared to the spin where the electron’s magnetic moment (i.e. gI/gs ≪ 1).

Therefore, the magnetic moment simplifies to

µ̂ ≈ −gsµB

ℏ
Ŝ (3.27)

and the magnetic field vector may be expressed in the spherical basis and in the

rotating frame as B(t) = B1
q êq, giving an M1 matrix element of

⟨f ′mf ′|Ĥ
(M1)

|fmf⟩ =
µBgSB1

q

ℏ
⟨f ′mf ′ |Ŝ · êq|fmf⟩ (3.28)

We now apply the Wigner-Eckart theorem [Equation 2.18] to reduce and evaluate

the matrix element as [50]

⟨f ′mf ′ |Ŝq|fmf⟩ = ⟨f ′||Ŝ||f⟩⟨f ′mf ′|fmf ; 1q⟩

= ⟨f ′||Ŝ||f⟩(−1)−f+1−mf ′
√︁

2f ′ + 1

⎛⎝ f 1 f ′

mf q −mf ′

⎞⎠ .
(3.29)

10Recalling the relative weakness of M1 transitions [see Section 3.1.1], an electron in the excited
state will usually decay to the ground state before an excited-state M1 transition might occur. Even
in long-lived Rydberg levels, the stronger electric dipole transitions are more experimentally and
technologically relevant, e.g. in electric field sensing [67, 68].
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By expressing the |f⟩ basis as |jIf⟩, and noting that Ŝ does not act on the |I⟩

subspace, the reduced matrix element may be reduced further with additional appli-

cations of the Wigner-Eckart theorem [43, 50], yielding

⟨f ′||Ŝ||f⟩ = ⟨j′I ′f ′||S||jIf⟩

= δII′⟨j′||Ŝ||j⟩(−1)f+j′+1+I
√︁
(2f + 1)(2j′ + 1)

×

⎧⎨⎩j′ j 1

f f ′ I

⎫⎬⎭ ,

(3.30)

where δII′ is a Kronecker delta. We simplify ⟨j′||Ŝ||j⟩ = ⟨s′||Ŝ||s⟩, since ℓ = 0. This

reduced matrix element can be evaluated [see Appendix C] to

⟨s′||Ŝ||s⟩ = ⟨s||Ŝ||s⟩ = ℏ
√︁
s(s+ 1). (3.31)

Putting everything together, the M1 matrix element is [48]

⟨f ′mf ′ |Ĥ
(M1)

|fmf⟩ =µBgSB1
q(−1)s

′+I−mf ′
√︁
(2f ′ + 1)(2f + 1)(2s′ + 1)s(s+ 1)

×

⎛⎝ f 1 f ′

mf q −mf ′

⎞⎠⎧⎨⎩s′ s 1

f f ′ I

⎫⎬⎭ ,

(3.32)

where values of j, j′ have been replaced with s, s′. The form of this expression can be

understood intuitively: it depends on a 3j-symbol because the polarization of the light

only connects certain pairs of hyperfine Zeeman levels; it also depends on a 6j-symbol

because there are three coupled angular momenta, the nuclear (I), the electron spin

(s), and the electromagnetic radiation (q = 1), where f is the “intermediate” angular

momentum.

Figure 3.3 depicts all possible M1 transitions in the 87Rb ground state. Table 3.1

lists the matrix elements of microwave-frequency M1 transitions between the |f =

1, mf⟩ → |f ′ = 2, mf ′⟩ levels, computed with the Alkali Rydberg Calculator, a
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Figure 3.3: Energy level diagram depicting M1 transitions in the rubidium ground
state. The blue and red curves represent microwave-frequency and RF transitions.
The curve weight is proportional to the absolute value of the dipole matrix elements
listed in Tables 3.1 and 3.2.

useful Python package for computing atomic properties and transition strengths [48].

We also compute and list in Table 3.2 the matrix elements of the radio-frequency M1

transitions within a single hyperfine level between the |f, mf⟩ → |f, mf ′⟩ Zeeman

levels. While this table only provides the matrix elements for the q = +1 transitions,

the reversed circular transitions (i.e. Hermitian conjugated matrix elements) acquire

a -1 phase factor [41].

3.2.2 Electric dipole matrix elements

The Wigner-Eckart theorem may be similarly employed to reduce the electric dipole

matrix elements that connect ground and excited states. Since these values have been

previously tabulated [50] and can be readily calculated [48], we will simply quote the

explicit form of the electric dipole matrix elements [48, 50] given by
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Label (mf ,mf ′ , q) ⟨2 mf ′ |Ĥ
(M1)

|1 mf⟩

a (-1, -2, -1) −
√︁

3/2 ≈ −1.22

b (-1, -1, 0)
√
3/2 ≈ 0.87

c (-1, 0, 1) −1/2

d (0, -1, -1) −
√
3/2 ≈ −0.87

e (0, 0, 0) 1

f (0, 1, 1) −
√
3/2 ≈ −0.87

g (1, 0, -1) −1/2

h (1, 1, 0)
√
3/2 ≈ 0.87

i (1, 2, 1) −
√︁
3/2 ≈ −1.22

Table 3.1: Magnetic dipole matrix elements for microwave-frequency transitions in
the rubidium ground state. The label in each row corresponds to a specific transition
displayed in Figure 3.3. Transitions occur between a lower-energy |f = 1 mf⟩ state
and a higher energy |f ′ = 2 mf ′⟩ state. q refers to the spherical component (i.e.
polarization) of the incident microwave field. The matrix elements are given in units
of µBgsB1

q .

Label (f,mf ,mf ′), q = +1 ⟨2 mf ′|Ĥ
(M1)

|1 mf⟩

i (1, -1, 0) −1/2

ii (1, 0, 1) −1/2

iii (2, -2, -1) 1/
√
2 ≈ 0.71

iv (2, -1, 0)
√
3/2 ≈ 0.87

v (2, 0, 1)
√
3/2 ≈ 0.87

vi (2, 1, 2) 1/
√
2 ≈ 0.71

Table 3.2: Magnetic dipole matrix elements for radio-frequency transitions in the
rubidium ground state. The label in each row corresponds to a specific transition
displayed in Figure 3.3. Transition occur between states |mf⟩ and |mf ′ within a
single hyperfine level. The RF field is taken to be right-circularly polarized (q = +1).
The matrix elements are given in units of µBgsB1

+1.
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⟨f ′mf ′ |Ĥ
(E1)

|fmf⟩ = E1
q ⟨f ′mf ′ |er · êq|fmf⟩

= E1
q (−1)j

′+I−mf ′
√︁
(2f ′ + 1)(2f + 1)(2j′ + 1)

×

⎛⎝ f 1 f ′

mf q −mf ′

⎞⎠⎧⎨⎩f 1 f ′

j′ I j

⎫⎬⎭ ⟨j′||er||j⟩.

(3.33)

The value of the reduced matrix element may be determined from independent ex-

periments. For transitions on the D1 (j′ = 1/2) and D2 (j′ = 3/2) lines, the reduced

matrix element⟨j′||er||j = 1/2⟩ has values of 2.992(3) and 4.227(5) ea0 [50]. Addi-

tionally, this reduced matrix element can be reduced further to obtain

⟨j′||er||j⟩ = ⟨ℓ′||er||ℓ⟩(−1)j+ℓ′+1+s′
√︁

(2j + 1)(2ℓ′ + 1)

⎧⎨⎩j 1 j′

ℓ′ s ℓ

⎫⎬⎭ , (3.34)

where [see Appendix C]

⟨ℓ′||er||ℓ⟩ ∝

⎛⎝ℓ′ 1 ℓ

0 0 0

⎞⎠ . (3.35)

3.2.3 Selection Rules

Using the explicit forms of the M1 and E1 matrix elements, we are prepared to identify

selection rules that specify if a transition between two electron states is “allowed”

according to a particular interaction. These rules emerge from the addition of angular

momenta; they are a direct consequence of the symmetry properties of the Wigner

3j- and 6j-symbols. The selection rules for M1 and E1 transitions are summarized in

Table 3.3 [26, 40].

We will first explain how the M1 selection rules emerge:

1. The ∆ℓ = 0 rule comes from the ⟨j′||Ŝ||j⟩ term in Equation 3.30; the Ŝ vector

operator does not act on the |ℓ⟩ subspace. Therefore, reducing this matrix

element further for ℓ ̸= 0 produces a Kronecker delta δℓℓ′ coefficient.
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M1 E1

∆ℓ = 0 ∆ℓ = ±1

∆j = 0,±1∗

∆f = 0,±1†

∆mf = 0,±1‡

Table 3.3: Summary of allowed selection rules for M1 and E1 transitions. Some of the
selection rules are shared between the two dipole interactions, but the ∆ℓ rules are
distinct. These rules have three caveats that render the transitions forbidden (↮):
∗ |j = 0⟩ ↮ |j′ = 0⟩; † |f = 0⟩ ↮ |f ′ = 0⟩; ‡ |mf = 0⟩ ↮ |mf ′ = 0⟩ when
∆f = 0.

2. The ∆j = 0,±1 rule comes from the triangle condition 2.17b for the 6j-symbol

found in Equation 3.30.

� The caveat to this rule is that transitions cannot be made between |j =

0⟩ ↔ |j′ = 0⟩; this rule emerges from the triangle condition 2.17b on the

6j-symbol in Equation 3.30.

3. The ∆f = 0,±1 rule comes from the triangle condition 2.17c for the 6j-symbol

found in Equation 3.30.

� The caveat to this rule is that transitions cannot be made between |f =

0⟩ ↔ |f ′ = 0⟩; this rule emerges from the triangle condition on the 3j-

symbol found in Equation 3.29.

4. The ∆mf = 0,±1 comes from the property of the 3j-symbol in Equation 3.29

that all the bottom row elements must sum to zero, and the fact that q = 0,±1.

� The caveat to this rule is that transitions cannot be made between |mf =

0⟩ ↔ |mf ′ = 0⟩ when ∆f = 0 [40, 69]; this rule emerges because the
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3j-symbol in Equation 3.29, ⎛⎝f 1 f

0 0 0

⎞⎠ , (3.36)

always equals zero when the sum of the top elements is odd [41].

Similar statements can be made for the E1 transitions. In that case, however, the

∆ℓ = ±1 rule emerges because the 3j-symbol in Equation 3.35 can only be nonzero if

the sum of its top row elements is even [41]. This is a statement of parity, or inversion

symmetry [40]: since the er operator is parity-odd, it can only connect ℓ states of

opposite parity–those that differ by |∆ℓ| = 1. The magnetic moment µ̂, in contrast,

is parity-even and not does change the parity of the electron state.
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Your [Jacob’s] descendants will be
as numerous as the dust of the earth!
They will spread out in all directions–

to the west and the east,
to the north and the south.

Genesis 28:14, The Holy Bible:
New Living Translation

Chapter 4

Warm atomic vapor spectroscopy

We turn now to understanding the optical frequency spectrum of warm atomic va-

pors. A warm alkali vapor is a collection of untrapped alkali atoms inside a sealed

(usually glass) cell at temperatures near room temperature. In many cases, the ther-

mal motion of the atoms in the vapor resembles that of an ideal gas. This vapor

is mostly transparent to the naked eye; it only absorbs or scatters light at discrete

“lines” occurring at specific electromagnetic wave frequencies [35]. Each line is formed

by electron transitions between pairs of low- and high-energy levels. The energy dif-

ferences between a level pair ℏωij determines the central frequencies of the spectral

lines; these are well-known for many transitions in atoms and ions [38, 70]. Some

lines are very narrow in the frequency domain while others are relatively broad. In
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this chapter, we will focus on the question: What determines the shape and breadth

of each line?

4.0.1 Natural linewidth

We start by noting that a collection of identical, isolated atoms at rest (e.g. laser-

cooled) will all have the same spectrum. As described previously [see Section 3.1.3],

the probability of an electron in an excited state |ψi⟩ generally decays exponentially

in time as it relaxes to a ground state |ψj⟩ at a rate γij. This decay is caused by

interactions of the electron and the quantized electromagnetic vacuum1 [51, 54, 55].

In the Fourier frequency domain, this decay results in a normalized Lorentzian line

profile given by

gγ,ij(ω) =
1

2π

γij
(ω − ωij)2 + (γij/2)2

, (4.1)

broadened to a “natural” full-width at half-maximum (FWHM) of γij, with an in-

tegrated profile area of 1. This profile is an example of homogeneous broadening, a

mechanism that is the same for every atom in the collection [39, 40]. It is also helpful

to define the non-normalized Lorentzian profile

g∗γ,ij(ω) =
(γij/2)

2

(ω − ωij)2 + (γij/2)2
, (4.2)

which has a value of 1 on-resonance and an integrated profile area of πγij/2.

The shape and breadth of spectral lines are strongly affected by other mechanisms,

particularly thermal motion, in which the atoms in the vapor move with a wide

range of speeds and directions. The Doppler effect, caused by the relative motion of

atoms and the interacting light, strongly broadens the spectral profile. Because the

1While the natural Lorentzian width and lineshape is the same for identical atoms, there are
methods that modify the natural exponential decay of an electron inside an atom. For example, the
Purcell effect occurs when an atom is placed inside a high-finesse resonant cavity; the cavity modifies
the electromagnetic vacuum environment [54]. The decay rate can also be modified through collective
effects between other nearby excited atoms in processes known as superradiance and subradiance [71].
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Doppler effect is not the same for each atom, it produces what is called inhomogeneous

broadening. In this chapter, we will explore the influence of the Doppler effect and

additional homogeneous and inhomogeneous mechanisms on the profile of atomic

spectral lines.

4.1 The Doppler effect and thermal broadening

We begin by considering an atom moving with velocity v through an infinite, plane

electromagnetic wave. The wave propagates along the z-direction defined by the

k = kêz = 2πêz/λ = ωêz/c wavevector. If nothing interacts with an atom initially

at position r0, its position at future times t will be r(t) = r0 + vt. In the reference

frame of the atom2, the electric field has the time-dependence

E(t) ∝ sin [ωt− k · r(t)]

= sin [(ω − k · v)t− k · r0] ,
(4.3)

where the temporal frequency “seen” by the atoms is

ω′ ≡ ω − k · v ≡ ω +∆v, (4.4)

and ∆v is the non-relativistic Doppler shift [49]. (Going forward, we will consider

only v and k, the parallel z-components of v and k.) This means that the electron

will be resonantly excited by the electromagnetic wave when

ωij − ω
(︂
1− v

c

)︂
= 0. (4.5)

In a thermal vapor, the probability density function3 of finding an atom with

velocity v is given by the one-dimensional Maxwell-Boltzmann (MB) distribution [49,

2This discussion assumes that the electromagnetic wave is detected and its frequency determined
in a stationary lab frame of reference, and that |v|/c≪ 1.

3The probability of finding an atom between v0 and v0 + dv is fu(v0)dv.
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72]

fu(v) =

√︃
m87

π2kBT
exp

(︃
−m87v

2

2kBT

)︃
≡ 1√

πu2
exp

(︃
−v

2

u2

)︃
, (4.6)

where u =
√︁
2kBT/m87 is the “most probable speed” of the atoms4; for 87Rb atoms

at a typical room temperature (20◦C), u = 237 m/s. This normalized density distri-

bution function is Gaussian and centered at v = 0.

Because of the Doppler effect, we can re-express the MB distribution in terms of

the Doppler shift as

fu(∆v) =
1√
πk2u2

exp

(︃
− ∆2

v

k2u2

)︃
. (4.7)

The Doppler-broadened FWHM of this distribution is

ΓD = 2ku
√︁

ln(2). (4.8)

The subset of atoms moving with the same velocity (i.e. between v and v + dv) all

experience the same Doppler shift (between ∆v and ∆v + d∆v) and interact with the

light in the same way. This subset constitutes what is called a velocity class. The

average occupation of this class is fu(∆v)d∆v.

For a given average velocity, the magnitude of the Doppler shift is inversely pro-

portional to the wavelength λ of the light. This means that atoms experience a

larger Doppler shift for light at optical versus microwave frequencies. The Doppler

broadening for optical (λopt = 780.241 nm) frequencies is Γopt
D = 304 MHz, while the

corresponding microwave (λMW = 4.38 cm) broadening is comparatively small, only

ΓMW
D = 5.4 kHz.

In general, atoms experience both homogeneous (natural) and inhomogeneous

(Doppler) broadening. The total shape of the resonance line is therefore the con-

4Additionally, the “average speed” can be computed from the MB speed distribution to be ⟨v⟩ =
2u/

√
π. The “root-mean-squared speed” can be similarly computed to be

√︁
⟨v2⟩ =

√︁
3/2u.
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volution of the Lorentzian and Gaussian MB distributions [49]

hγ,u(ω) =

+∞∫︂
−∞

gγ(ω − kv)× fu(v)dv (4.9)

and is called a Voigt profile. The widths of the two input distributions define the

shape of hγ,u(ω). While this distribution is generally calculated numerically [73], the

FWHM of the Voigt profile width can be approximated as [74]

ΓV ≈ γ/2 +
√︂
γ2/4 + Γ2

D. (4.10)

In the limit where ku≫ γ, the most relevant regime for warm alkali vapors, ΓV ≈ ΓD.

4.2 The transmission spectrum of warm atomic

gases

One of the most natural ways for measuring the spectrum of an atomic vapor is to

illuminate it with monochromatic light5 of a known intensity I(ω, 0) and a frequency

ω that varies near an atomic resonance ωij. When the probe light frequency is on-

resonance (i.e. ω ≃ ωij), the atom absorbs a fraction of the light, and the light

intensity is reduced after passing through the atomic vapor. The equation describing

this absorption of light as a function of position z through the vapor is

dI(ω, z)

dz
= −κ(ω)I(ω, z), (4.11)

where κ is the absorption coefficient. This equation is the well-known Beer-Lambert

law, which is valid for relatively weak optical intensities, with uniformly distributed

5In practice, it is very difficult to produce perfectly monochromatic light; the light source itself
generally always has some finite spectral width. We assume in this section, however, that this width
is much narrower than any atomic spectral features.
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and independently absorbing atoms6. The light intensity will therefore decrease ex-

ponentially as it passes through the vapor

I(ω, z) = I(ω, 0) exp [−α(ω)z] . (4.12)

When most of the atoms are in the ground state, the absorption coefficient can be

expressed as α(ω) = Nσ(ω), the product of the atomic density N , a function of the

vapor temperature [50], and the absorption cross-section σ(ω) [40]. This cross-section

is a measure of how strongly an atom will interact with and absorb the light; it is

frequency-dependent and largest near the atomic resonance. Near resonance, this

absorption cross-section is proportional to (1) the Voigt line profile—which is also a

function of temperature; (2) the degeneracy of the ground state; and (3) the strength

of the transition dipole matrix element [39, 75]. When these quantities are known,

the transmission profile

T (ω) ≡ I(ω, d)/I(ω, 0) = exp [−Nσ(ω)d] (4.13)

through a cell of width d can be calculated and then compared to measured trans-

mission curves [see, for example, Figure 8.2.8(b)]. Following the approach of [75],

Figure 4.1 shows the calculated transmission spectrum for multiple transitions of

87Rb in vapor cell of width d = 1 cm held at 25◦C. Again, this calculation is valid

for weak probe intensities, and also does not include effects such as optical pumping,

spontaneous emission, or laser noise–all of which will modify the spectrum.

6Deviations from this law occur at higher intensities during nonlinear optical processes; for ex-
ample, when the atoms’ electrons are already in the excited state and cannot continue to absorb
light, thereby saturating the absorption [See Section 4.3.1].
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Figure 4.1: Calculated Doppler-broadened spectrum of D2 transitions in 87Rb. The
colored curves represent Doppler transmission profiles for individual transitions to
excited hyperfine levels where f ′ is equal to f − 1 (dashed-dotted), f (dashed), and
f + 1 (solid). The depth of each curve is indicative of its transition strength. The
black solid curve is the combined (i.e. product) transmission profile for all transitions.

4.3 Additional broadening mechanisms

In the following section, we will briefly consider additional mechanisms that broaden

spectral lines in warm or hot atomic vapors. Since the Doppler effect is much stronger

than those discussed here, it will be temporarily set aside. The residual effects are

organized into two categories: those that alter radiative decay rates from excited levels

(generally more relevant for E1 transitions), and those that produce relaxation and

dephasing of ground-state spin states (usually relevant for M1 transitions). Each will

affect the measured width of spectral lines, probed either by an E1 or M1 transition.

4.3.1 Radiative broadening

Power broadening

This effect occurs at higher probe intensities when the Rabi frequency Ωij connecting

two levels becomes comparable or greater than the corresponding decay rate γij. Thus
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at any given time, there exists a non-negligible fraction of the atoms’ electrons in the

excited state, and the ability of the atoms to absorb light degrades. In this situation,

the absorption coefficient from Equation 4.11 becomes intensity-dependent according

to [39, 40]

α(ω, I) =
Nσ(ω)

1 + I/Is(ω)
, (4.14)

where Is(ω) = ℏωγij/2σ(ω) is an atom-specific intensity parameter. Near resonance,

Is(ω) has its minimum value called the saturation intensity Isat,ij ≡ Is(ωij). In this

regime, we assume that the absorption cross-section can be expressed as σ(ω) =

σ0g
∗
γ,ij(ω), proportional to the non-normalized Lorentzian function and scaled by the

resonant scattering cross-section σ0. By substituting all the frequency-dependent

terms into Equation 4.14, we obtain

α(ω, I) = Nσ0
γ2ij/4

(ω − ω0)2 + (Γsat,ij/2)2
, (4.15)

where the width

Γsat,ij = γij

(︃
1 +

I

Isat,ij

)︃1/2

. (4.16)

This shows that the width of the resonance equals the natural value for vanishing

probe intensity and increases monotonically for increasing intensities. This is another

example of homogeneous broadening. The D2 transition in 87Rb has a typical value7

of Isat ≃ 3 mW/cm2 [50], which corresponds to a laser beam8 with 47 µW of power

and a waist of w0 = 1 mm.

Transit-time broadening

This effect occurs due to the atoms transiting a probe beam of finite diameter. When

this transit time is shorter than the excited state lifetime, the natural transition

7In general, Isat depends on the specific transition matrix element, and also the relative orientation
of the probe polarization and the atomic dipole [50].

8The power in a Gaussian beam is P = πw2
0I0/2, where I0 is the peak intensity and w0 is the

beam waist.
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linewidth is broadened [39, 69]. Let’s consider the perspective of an atom mov-

ing transversely through a Gaussian beam. It experiences a “pulse” of light with a

Gaussian temporal electric field envelope of width ∆t1/e = w/u. Taking the Fourier

transform of this envelope and squaring it produces a Gaussian spectral intensity

profile with a 1/e angular frequency width of ∆ω1/e =
√
2u/w, or a FWHM (in Hz)

of

ΓT/2π =

√︁
ln(2)

π

u

w
. (4.17)

For room-temperature atoms and the beam radius w0 given above, this gives a ∆ΓT =

63.3 kHz. Because this effect depends on the atoms’ velocity, it broadens the transition

line inhomogeneously.

The estimate above is valid when the atoms move ballistically. In the presence of

a buffer gas–an additional, higher-pressure noble atom or inert molecule, the alkali

atoms will move diffusively and dwell longer in the beam. Reducing transit-time

broadening is a primary motivation for employing a buffer gas.

Pressure broadening

In alkali atoms, pressure, or collisional, broadening is due to an induced dipole-

dipole (i.e. van der Waals) interaction between the atomic nucleus and a nearby

buffer gas atom/molecule. As the buffer and alkali atom approach each other, this

interaction causes differential shifts in its ground and excited energy levels [39, 51].

For alkali atoms, this may be modeled as an effective hyperfine interaction [76], which

homogeneously affects the atoms’ linewidths.

The collision rate from ideal kinetic gas theory is [39, 76]

Γ = Nuσ, (4.18)

where σ is the collisional cross-section and N = pB/kT is the buffer gas density. We
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can then define the collisional broadening rate as

Γcol =

(︃
σcolu

kBT

)︃
pB ≡ apB, (4.19)

where pB is the buffer gas pressure and T is its temperature. The cross-section σcol, or

the broadening factor a, are empirically determined for different atomic and buffer gas

combinations and are tabulated in sources such as [39]. In addition to this broadening,

the extra kinetic energy involved in the collision creates a positive or negative shift in

the transition line frequency. The degree of pressure broadening and the magnitude

and sign of the frequency shift are specific to the alkali and buffer gas species, as well

as the buffer gas pressure.

4.3.2 Spin-related broadening

Wall depolarization

Inelastic collisions with the cell walls strongly affect the coherence time of an atomic

spin. In a collision, atoms temporarily adsorb onto the wall surface, where they

experience an induced dipole-dipole (effective hyperfine) interaction with the wall’s

constituent molecules. By the time the atom desorbs again, the spin state is lost.

Precisely determining the effect of wall collisions and dwell times is an involved cal-

culation [76, 77], but an upper-bound estimate is possible. We define a characteristic

cell length

ϱ = V/S, (4.20)

as the ratio of the cell’s volume V to its surface area S [77]; it represents the average

distance between wall collisions. If we assume that every collision with the wall relaxes

the spin, then the upper limit of the wall relaxation rate is approximately

Γwall/2π ≲ u/ϱ. (4.21)
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For a room-temperature cell with ϱ = 1 cm, this gives Γwall/2π ∼ 20 kHz. Again, this

upper bound does not consider dwell times or adsorption binding energies [76].

The wall dwell time can be reduced or practically eliminated by using an anti-

relaxation coating on the cell wall. This coating is often composed of paraffin wax

or another hydrocarbon molecule, such as alkene [78]. A good coating can provide

about 104 [79, 80] to 106 [81] bounces before the spin relaxes. Coated cells are em-

ployed in warm atom experiments for quantum memories [81, 82], atomic clocks [83],

magnetometry, and fundamental physics searches [84]. It is important to carefully

monitor the temperature of a coated cell; elevated temperatures can melt and damage

the coatings9.

Spin-exchange collisions

Additional relaxation can occur from collisions between spin-polarized and -unpolarized

atoms. The potential energy of the collision is highly dependent on the spin states of

the atoms and can lead to an exchange of spin angular momentum, although the total

spin is conserved [76]. The spin-exchange collision rate ΓSE can be defined the same

as in Equation 4.18, but where now we employ a spin-exchange cross-section σSE.

Cross-sections are experimentally determined; for alkali atoms, they are typically on

the order of σSE ≃ 10−14 cm2 [76]. Colliding pairs of 87Rb atoms at room temperature

have ΓSE/2π ≃ 1.4 Hz.

Spin exchange does not always increase spin decoherence. When ΓSE is larger than

the Larmour frequency ωL = γgB, where B is the static magnetic field and γg is

the gyromagnetic ratio, spin-exchange collisions with a buffer gas counter-intuitively

preserve the spin state of the target atoms [85, 86]. This spin-exchange relaxation-free

(SERF) regime usually occurs at high buffer gas pressure (i.e. 102 − 103 torr) and

9For example, paraffin coatings degrade at temperatures above 60-80◦C [80].
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very low background magnetic fields (≲ 10−3 G [87]). For this reason, SERF-based

experiments often have 3 or 4 layers of magnetic shielding.

Magnetic fields

Magnetic fields can also be the source of relaxation or dephasing among the spin

levels [76]. This can arise due to fluctuations or spatial gradients in the external

magnetic field. In the atom’s frame of reference, both sources of decoherence produce

an effective precession of the spin state [69, 76].
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[Rachel] gave birth to a son...
And she named him Joseph, for she said,

“May the LORD add...”.

Genesis 30:23-24, The Holy Bible:
New Living Translation

Chapter 5

Nonlinear optical processes in
neutral atoms

5.1 Linear optics

In Chapter 3, we examined the effect of coherent, monochromatic light on the elec-

tronic state of atoms. We now consider the opposite perspective and examine the

effect of the atomic vapor, treated as a polarizable dielectric material, on the tran-

siting, monochromatic light. When the light is relatively weak, the atoms’ dielectric

polarization1 P is linearly proportional to the incident light’s oscillating electric field

E [89, 90] as

P (ω, t) = ϵ0χ
(1)(ω)E(ω, t). (5.1)

1P has units of electric dipole per unit volume, or Coulombs per meter squared [88].
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The first-order electric susceptibility χ(1) is a unitless, complex number that accounts

for the different phase between P and E, both taken here as scalar quantities. The

arguments2 of P and E convey that each quantity depends on time t and oscillates

at an angular frequency ω. The susceptibility is related to the complex index of

refraction [89]

n(ω) =
√︂
1 + χ(1)(ω) = n′(ω) + iκ(ω), (5.2)

where its real n′(ω) part governs the phase accumulation inside the medium, and its

imaginary part κ(ω) governs the absorption and decay of the electric field amplitude.

Once polarized, the material can re-radiate at the same frequency ω, although gener-

ally with a different phase; when κ = 0, the incident and emitted light are identical.

In linear optics (i.e. materials that follow Equation 5.1), electric fields inside the ma-

terial of different frequencies follow the superposition principle. For example, fields

with two distinct frequencies, ω1 and ω2, create the combined polarization

P (1)(ω1, ω2, t) = P
(1)
1 (ω1, t) + P

(1)
2 (ω2, t)

= ϵ0
[︁
χ(1)(ω1)E1(ω1, t) + χ(1)(ω2)E2(ω2, t)

]︁ (5.3)

that re-radiates separately at the original two frequencies.

5.2 Nonlinear optics

We next turn our attention to contexts where the material affects the light in a non-

linear fashion. Nonlinear optics (NLO) is the study of processes where the dielectric

polarization of the material does not obey the superposition principle, rather it is gen-

erally proportional to products of the incident fields. Nonlinear optical effects occur

at high optical intensities or involve strong atomic resonances [88]. The polarization

2In this context, we have assumed the dipole approximation to remove the spatial-dependence of
P and E [see Section 3.1.1].
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can be expressed as a power series of incident fields [51]

P (ω, t) = ϵ0
[︁
χ(1)(ω)E(ω, t) + χ(2)(ω)E2(ω, t) + χ(3)(ω)E3(ω, t) + . . .

]︁
= P (1)(ω, t) + P (2)(ω, t) + P (3)(ω, t) + . . . ,

(5.4)

where each term is characterized by a nonlinear susceptibility3 χ(i) of order i ∈ N.

Higher-order NLO processes are weaker and therefore only observable with large input

field intensities [55, 88]. Additionally, the physical symmetry of the material imposes

constraints on whether certain NLO orders are permissible [see Section 5.4] [39, 51,

88]. A distinguishing feature of NLO processes is that the polarization [Equation 5.4]

acts as a source for electric fields with frequencies not originally present in the incident

waves; specifically, it can re-radiate at sums and differences of the input frequencies.

The power series of Equation 5.4 gives the accurate sense that NLO is a broad

discipline; it touches many aspects of photonics and atomic physics. Since a full

summary of this field is impossible, this section is limited to discussing NLO processes

with a second-order susceptibility χ(2).

We begin by considering the second-order polarization for an input wave with two

frequency components,

P (2)(ω1, ω2, t) = ϵ0χ
(2)(ω1, ω2) [E1 cos(ω1t) + E2 cos(ω2t)]

2 . (5.5)

Using trigonometric identities, we expand this as

P (2)(ω1, ω2, t)

2ϵ0χ(2)(ω1, ω2)
=
(︁
E2
1 + E2

2

)︁
+ E2

1 cos(2ω1t) + E2
2 cos(2ω2t)

+ 2E1E2 cos [(ω1 + ω2)t] + 2E1E2 cos [(ω1 − ω2)t] ,

(5.6)

where the terms on the R.H.S. represent emissions at distinct frequencies. The first

term is called optical rectification, and it creates a non-radiating DC polarization

3Electric susceptibilities of order i > 1 have units of (V/m)−(i−1) and are also frequency-
dependent.
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(a) (c)

(b) (d)

Figure 5.1: Energy level diagrams showing parametric χ(2) processes. The solid hor-
izontal lines represent real quantum eigenstates of the material, e.g. the ground
electron level, while the dashed horizontal lines represent either a real or virtual level.
Each arrow represents a photon with energy ℏωi. Upward arrows are the input pho-
tons, and downward arrows are the generated photons. Arrows with dashed tails
indicate that the photon emission rates are small. (a) Sum-frequency generation. (b)
Difference-frequency generation. (c) Second harmonic generation. (d) Spontaneous
parametric down-conversion is a nonlinear quantum optics effect in which the emitted
photons are much weaker than the pump [88, 91].

in the material; the second and third terms are called second-harmonic generation

(SHG) or frequency doubling, where the material produces light at twice the input

frequencies; the fourth and fifth terms represent sum-frequency (SFG) and difference-

frequency generation (DFG). SHG is a special case of SFG, where the two input waves

have degenerate frequencies. Spontaneous parametric downconversion [Figure 5.1(d)]

is a time-reversed case of SHG (for degenerate photon frequencies) or SFG (for non-

degenerate photon frequencies). Although it is a nonlinear optical process, it cannot
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be described by the same classical description above, relying instead on a quantum

optics description involving fluctuations of the electromagnetic vacuum field. Down-

conversion is useful for creating pairs of entangled photons [92, 93].

Usually, no more than one of the χ(2) processes in Equation 5.6 is observed si-

multaneously: this is because the phase-matching conditions [see Section 5.3] are not

always satisfied for multiple frequencies at the same time [88]. The example above

also demonstrates that multiple input fields are unnecessary for nonlinear effects such

as SHG. Because three waves are present in every χ(2) process, they are also known

as three-wave mixing (TWM).

We employ “photon energy level” diagrams to visualize these different processes [88].

For example, in the SFG process shown in Figure 5.1(a), two photons of energy ℏω1

and ℏω2 are destroyed and one photon of energy ℏω3 is created. This figure also

shows other examples of so-called parametric χ(2) processes where the energy of all

radiation fields is conserved [94]. Parametric NLO processes have completely real

susceptibilities, and the material has identical initial and final quantum states4.

5.3 Phase matching

In addition to energy conservation in a parametric χ(2) processes, another important

requirement for efficient nonlinear generation is the conservation of radiation mo-

mentum, otherwise known in this context as phase matching. Good phase matching

is achieved when all the atoms distributed throughout the material emit coherently

in-phase with each other [39]. When this occurs, the vector sum of the input wavevec-

tors equals the output wavevector. Figure 5.2(a) shows the phase matching diagram

4In contrast, non-parametric processes generally have complex susceptibilities (implying absorp-
tion) and distinct initial and final states. Saturated absorption is an example of a non-parametric
process [51, 88].
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(a) (b)

Figure 5.2: Phase matching diagram for one-dimensional sum-frequency generation.
(a) When the fields propagate colinearly through the matrial, ∆k = 0 and the ampli-
tude of the SFG field E3 is maximized. (b) Reversing the direction of one input fields
creates a large phase mismatch and suppresses the SFG amplitude.

for the SFG process depicted in Figure 5.1(a) where all beams propagate colinearly5

through the material. Figure 5.2(b) shows the situation where one of the beams enters

from the opposite direction, giving a phase mismatch

∆k = k1 + k2 − k3 (5.7)

that is no longer zero. Hence, the intensity of the generated light is strongly sup-

pressed by the phase-matching function [39, 88, 95, 96]

Φ(ω1, ω2) ∝ sinc2
(︃
∆kL

2

)︃
, (5.8)

where L is the length of the material. The generated intensity has its maximum value

when ∆k = 0 and is generally lower as ∆kL increases.

5The phase matching can become more complicated when the participating fields propagate
through the material along multiple axes. Additionally, the conservation of angular momentum, i.e.
the polarization of the light (not to be confused with the material polarization, Equation 5.4), is
also an important factor in a nonlinear optical process.
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5.4 Symmetry and allowed processes

In Section 3.2.3, we observed that the odd parity symmetry of electric fields dictates

the selection rules of electric dipole transitions in multilevel atoms. There is a similar

“selection rule” of NLO materials to determine whether certain processes are observ-

able. We first define a heuristic parity function Π that acts on electromagnetic waves

and material susceptibilities and polarizations; the function returns a +1 or -1 if the

field/material has inversion symmetry (even parity) or not (odd parity).

Inversion symmetry6 in the bulk of a material is defined by the property that

the transformation of the position r → −r leaves the material unchanged. Materials

such as liquids, gases/vapors, and amorphic solids, such as glass, possess this property.

Some crystalline solids, such as diamond and silicon, also possess inversion symmetry,

while other crystals, like quartz, do not.

The first observation of a NLO process was performed by Franken, et al. in 1961,

shortly after the invention of the laser. They observed SHG after focusing their laser

beam onto a sample of quartz; no SHG was observed using glass [97]. The absence of

inversion symmetry is generally seen as a requirement for second-order NLO, which

can be seen by examining the parities of the SHG terms from Equation 5.6

Π{P (2)} = Π{χ(2)} × Π{E}2 = (±1)(−1)2 = ±1, (5.9)

where the ± sign reflects the material’s inversion symmetry property. Since parity is

conserved in a nonlinear optical process, the electric polarization can only radiate a

SHG electric field if the material is parity-odd, or Π{χ(2)} = −1. This is also true for

the case of conventional SFG, where both input waves interact with a material via

their electric fields.

6Equivalent terms are centrosymmetry and isotropy.
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In this thesis, we consider another case of SFG, a process where one of the waves

interacts with the material via an electric dipole interaction and the other wave via

a magnetic dipole interaction. This situation is possible in an atomic gas where

both types of transitions are present. This hybrid combination of fields alters the

inversion symmetry requirement, allowing for SFG emission of light in an isotropic

(parity-even) atomic gas. The parity of this SFG polarization

Π{P (2)} = Π{χ(2)} × Π{E1} × Π{B2} = (+1)(−1)(+1) = (−1) (5.10)

shows that this hybrid process can radiate an electric field at angular frequency ω3 =

ω1 + ω2.
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And Jacob was left alone;
and there wrestled a man with him

until the breaking of the day.

...And he said,
Let me go, for the day breaketh.

And [Jacob] said,
I will not let thee go, except thou bless me.

Genesis 32:24 & 29, The Holy Bible:
King James Version

Chapter 6

Theory of sum-frequency
generation in neutral atoms

6.1 Introduction

After a general background in atomic transitions [Chapter 3], warm atom spectroscopy

[Chapter 4], and nonlinear optics [Chapter 5], we are now prepared to theoretically

examine the emergence of the unique SFG process alluded to in Section 5.4. In

this chapter, we explore how this process allows for microwave-to-optical frequency

conversion1 with a large frequency-tunability and multi-frequency compatibility. The

theory presented here is directly relevant to the experimental results of Chapter 8.

This chapter is organized into two parts. First, we follow the approach described

1See Chapter 8 for a discussion of the technological importance of microwave-to-optical frequency
conversion and a review of other conversion techniques.
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in Section 3.1.2 to derive the total Hamiltonian of a three-level atom influenced by

electromagnetic idler, pump, and signal fields. Following previous work [98], we

introduce the thermal, one-dimensional Doppler shift to the transitions, to derive an

expression of SFG arising in a room-temperature atomic vapor sample. We show that

the SFG spectrum follows the thermal Maxwell-Boltzmann distribution and examine

the assumptions and phase-matching condition that pertain to this derivation.

Second, we describe the properties of analog-modulated waves and show how the

separate modulations of the two input fields in the SFG process combine to generate

spectral components with phase-dependent amplitudes.

6.2 Model of sum-frequency generation

6.2.1 Derivation of the three-level Hamiltonian

We begin by expressing the total Hamiltonian, composed of the bare atomic energy

levels and the magnetic and electric dipole interactions

Ĥ(t) = Ĥat + Ĥ int(t), (6.1)

in the basis2 {|b⟩, |c⟩, |a⟩}. The zero of energy has been set to the |b⟩ level, and the |c⟩

and |a⟩ levels have energies of ℏωc and ℏωa, resulting in a bare atomic Hamiltonian

of

Ĥat = ℏωc|c⟩⟨c|+ ℏωa|a⟩⟨a|. (6.2)

The interaction Hamiltonian is composed of two terms Ĥ int = Ĥ
(M1)

int + Ĥ
(E1)

int pro-

duced by three electromagnetic fields. In the two-level approximations, the idler field

BI connects |b⟩ ↔ |c⟩, the pump field EP connects |c⟩ ↔ |a⟩, and the signal field

ES connects |b⟩ ↔ |a⟩, as depicted in Figure 6.1. The magnetic dipole interaction

2Labeled as such for “bottom”, “center”, and “above”.
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Figure 6.1: Three-level energy diagram showing the cyclical transition scheme. The
idler (ωI) and pump (ωP) fields combine coherently in the vapor to produce the signal
field (ωS). The frequencies shown are for 87Rb; in a room-temperature vapor, the
excited state addressed by the pump field is Doppler-broadened by approximately
550 MHz.

induced by the idler field is

Ĥ
(M1)

int = −µ ·BI(t)|b⟩⟨c|+H.C.

= −µIBI cos(ωIt+ φI)|b⟩⟨c|+H.C.,

(6.3)

where BI is the idler field amplitude and µI is the component of the magnetic dipole

moment along the idler polarization. The electric dipole interaction induced by the

pump and signal fields is

Ĥ
(E1)

int = −d · [EP(t)|c⟩⟨a|+ ES(t)|b⟩⟨a|+H.C.]

=− dPEP cos(ωPt+ φP)|c⟩⟨a|

− dSES cos(ωSt+ φS)|b⟩⟨a|+H.C.,

(6.4)
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where EP and ES are the pump and signal amplitudes, and dP and dS are the com-

ponents of the electric dipole moment along their respective polarizations. In these

expressions, we have already invoked the dipole approximation [see Section 3.1.1].

Using the same steps as in Section 3.1.2 we can obtain a representation of the total

Hamiltonian

H = −ℏ

⎛⎜⎜⎜⎝
0 ΩI cos(ωIt+ φI) ΩS cos(ωSt+ φS)

ΩI cos(ωIt+ φI) −ωc ΩP cos(ωPt+ φP)

ΩS cos(ωSt+ φS) ΩP cos(ωPt+ φP) −ωa

⎞⎟⎟⎟⎠ , (6.5)

where the Rabi frequencies are defined as

ΩI ≡
BI⟨c|µI|b⟩

ℏ
, (6.6a)

ΩP ≡ EP⟨a|dP|c⟩
ℏ

, (6.6b)

ΩS ≡ ES⟨a|dS|b⟩
ℏ

. (6.6c)

We then choose the unitary matrix

U(t) =

⎛⎜⎜⎜⎝
1 0 0

0 ei[(ωS−ωP)t+φS−φP] 0

0 0 ei(ωSt+φS)

⎞⎟⎟⎟⎠ (6.7)

to transform the Hamiltonian and the basis states into a rotating frame according

to Equation 3.11. Expanding the cosines as complex exponentials and simplifying

results in

H̃(t) = −ℏ
2

⎛⎜⎜⎜⎜⎜⎜⎜⎝
0

ΩI

(︂
1 + e−2i[ωIt+φI]

)︂
×

ei[(ωI+ωP−ωS)t+φI+φP−φS]
ΩS(1+e−2i[ωSt+φS])

ΩI

(︂
1 + e2i[ωIt+φI]

)︂
×

e−i[(ωI+ωP−ωS)t+φI+φP−φS]
−2(ωc+ωP−ωS) ΩP(1+e−2i[ωPt+φP])

ΩS(1+e2i[ωSt+φS]) ΩP(1+e2i[ωPt+φP]) −2(ωa−ωS)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (6.8)
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The twice-rotating exponential terms time-average to zero and are discarded in the

rotating wave approximation. Additionally, since nonlinear processes require energy

conservation, i.e. ℏ(ωI+ωP) = ℏωS, we can simplify this expression further to get the

final, time-independent Hamiltonian

H̃ ≈ −ℏ
2

⎛⎜⎜⎜⎝
0 ΩIe

i∆φ ΩS

ΩIe
−i∆φ 2(δS − δP) ΩP

ΩS ΩP 2δS

⎞⎟⎟⎟⎠ , (6.9)

where we have defined the relative phase difference between all three fields as ∆φ ≡

φI+φP−φS. We have also defined δS ≡ ωS−ωa and δP = ωP−(ωa−ωc) as the single-

photon detunings in the lab frame [Figure 6.1 & Figure 6.2(a)], and δP − δS ≡ ωc +

ωP − ωS as the two-photon detuning. When ΩI = 0, Equation 6.9 is the conventional

Λ-EIT Hamiltonian [65, 99].

6.2.2 Steady-state solutions of generation

In this one-dimensional model, the Rabi frequencies of the idler ΩI(z), pump ΩP(z),

and signal ΩS(z) fields are functions of position z through the vapor sample. Unlike in

[98], however, we do not input signal light resonant with the signal transition, hence

ΩS(0) = 0. In this context, the Hamiltonian operator in the rotating frame, under

the rotating wave approximation [from Equation 6.9] can be expressed asˆ︁H̃(v, z)/ℏ =−∆S(v)|a⟩⟨a| − [∆S(v)−∆P(v)] |c⟩⟨c|

− ΩP(z)

2
|a⟩⟨c| − ΩI(z)e

i∆φ

2
|c⟩⟨b|+H.C..

(6.10)

As seen in the atom frame, the Doppler-shifted detunings of the pump and the SFG

signal fields [Figure 6.2 (c-e)] are ∆P = δP−kP ·v and ∆S = δS−kS ·v. The microwave

idler field has negligible Doppler shift for all velocities [see Section 6.2.3]. The natural

decay rates from |a⟩ to |c⟩ and |b⟩ are γP and γS, while the decay rate from |c⟩ to |b⟩

is γI [Figure 6.1(c)].
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Figure 6.2: (a-b) Lab-frame depiction of multiple pump frequency channels (central-
green, upper-purple, lower-organge) combining with a single idler to produce multi-
ple signal channels. (b) These pump frequencies access independent atomic velocity
classes from a thermal MB distribution. (c-e) In their reference frame, atoms in these
velocity classes see their respective pump Doppler-shifted to resonance. Generation
occurs in the velocity class for which the three-photon resonance condition (i.e. en-
ergy conservation) is satisfied.

We now seek steady-state solutions of the time evolution of the system. As dis-

cussed in Section 3.1.3, since dissipation channels are present in the system, we use the

Lindblad equation [Equation 3.23] to solve for the dynamics of the density operator

σ̂ in the rotating frame [Equation 3.20]. The master equation takes the form

∂σ̂(v, z, t)

∂t
=− i

[︂ˆ︁H̃(v, z), σ̂(v, z, t)
]︂

+
5∑︂

k=1

L̂iσ̂(v, z, t)L̂
†
i −

1

2

{︂
L̂
†
i L̂i, σ̂(v, z, t)

}︂
,

(6.11)

66



Chapter 6. Warm atom generation 6.2. Model of sum-frequency generationChapter 6. Warm atom generation 6.2. Model of sum-frequency generationChapter 6. Warm atom generation 6.2. Model of sum-frequency generation

where the five collapse operators are defined as

L̂1 ≡
√︁

(n̄+ 1)γI|b⟩⟨c|, (6.12a)

L̂2 ≡
√
n̄γI|c⟩⟨b|, (6.12b)

L̂3 ≡
√
γS|b⟩⟨a|, (6.12c)

L̂4 ≡
√
γP|c⟩⟨a|, (6.12d)

L̂5 ≡
√
γcav (|b⟩⟨b| − |c⟩⟨c|) . (6.12e)

The decay rate γcav is related to the finite microwave cavity linewidth. The quantity

n̄ is the average number of thermal microwave photons. If we had sufficiently sen-

sitivity, we would observe repopulation of the |c⟩ state and power-broadening of the

idler transition’s natural linewidth due to these photons; in practice, thermal power

broadening is relatively small compared to other mechanisms [see Section 6.2.3]. By

assuming n̄≪ 1 and γcav ≪ γP, γS, we reduce the total number of collapse operators

to three.

We can solve for the density matrix coherence σab corresponding to the signal

transition at steady-state [98] to obtain

σab =
−Γ3ΩP(z)ΩI(z)e

i∆φ

4Γ1Γ2Γ3 + Γ3|ΩP(z)|2 + Γ2|ΩI(z)|2
, (6.13)

where

Γ1 =
γS
2

+
γP
2

− i∆S(v) (6.14a)

Γ2 =
γI
2
− i [∆S(v)−∆P(v)] (6.14b)

Γ3 =
γS
2

+
γP
2

+
γI
2
− i∆P(v). (6.14c)

The slowly-varying-envelope approximation [see Section 6.2.3] can be used to sim-

plify and reduce the second-order Maxwell wave equation [88, 89]

∂2E(z, t)

∂z2
− 1

c2
∂2E(z, t)

∂t2
= µ0

∂2P(z, t)

∂t2
(6.15)
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to a first-order propagation equation [88, 98, 100]

∂ΩS(z)

∂z
= iηSσab, (6.16)

which relates the coherence σab to the corresponding SFG field amplitude envelope

ΩS(z) = ES(z)dab/ℏ. The signal-field coupling constant is ηS = d2
abωSN(v)/2ϵ0cℏ [98,

101], where N(v) is the Maxwell-Boltzmann density of atoms in the velocity class v =

|v|. The dielectric polarization of the |a⟩ ↔ |b⟩ transition of interest is proportional

to the density matrix coherence, i.e. Pab = N(v)dabσab.

We ignore the propagation of the microwave field because the relevant mode is

a standing wave, and because µcb and ωI are so much smaller than their optical

(electric) counterparts. We also assume that the absorption and depletion of the

pump are negligible throughout the vapor cell; this is called the undepleted pump

approximation and allows us to replace ΩP(z) → ΩP(0) [See Section 6.2.3]. This

also presumes that the pump and idler fields have no spatial dependence and act

as uniform plane waves. Although our pump field is a laser beam with a Gaussian

cross-sectional profile, the plane-wave approximation is appropriate near the center

of the beam.

After passing through length ℓ of the vapor, the SFG signal Rabi frequency is

ΩS(ℓ) =
iΩP(0)ΩI(0)e

i∆φ

2Γ2

(e−ζℓ − 1), (6.17)

where the constant

ζ =
2ηSΓ2Γ3

4Γ1Γ2Γ3 + Γ3|ΩP(0)|2 + Γ2|ΩI(0)|2
. (6.18)

To maximize the SFG signal field, sufficiently high input pump and idler field inten-

sities and a small value for Γ2 [Equation (6.17)] are required. From Equation (6.14b),

this occurs at the two-photon resonance condition, or

∆S(v)−∆P(v) ≈ δS − δP = 0. (6.19)
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6.2.3 Assumptions

Here we summarize the assumptions made in this derivation, and comment on their

relevance and validity to this system.

Negligible thermal microwave photon broadening

The occupation of microwave photons at temperature T and at the idler frequency

ωI is given by the Bose distribution,

n̄(T, ω) =
1

exp(ℏω/kBT )− 1
, (6.20)

which has a value of n̄ = 914 at T = 300 K. The intensity of this thermal photon

bath is its energy divided by the speed of light c

Ith =
n̄ℏωI

c
≈ 1.4× 10−29 Wm−2 (6.21)

We compare this value to an estimate of the radiative saturation intensity of the

ground state F = 1 → F = 2 transition [40]

Isat =
π

3

h∆νf 2
I

c2
, (6.22)

where ∆ν is the natural radiative linewidth of the F = 2 state. In practice, ∆ν is chal-

lenging to measure because the hyperfine ground states have extremely weak radiative

coupling. Many values in the literature give ∆ν in the order of 10−102 Hz [102–104],

but these figures are dominated by pressure or optical broadening mechanisms [see

Section 4.3], so we expect the intrinsic ∆ν ≪ 102 Hz. With a conservative ∆ν ∼ 1 Hz

and the ground state separation of fI = 6.834 GHz, we get a saturation intensity of

Isat = 2.4× 10−21 Wm−2, over eight orders of magnitude higher than Ith. Even with

the uncertainty of the idler linewidth, with these estimates, we can confidently neglect

thermal microwave photon power broadening.
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Negligible idler Doppler shift

We consider the Doppler shift caused by the 1D motion of an atom with respect to an

electromagnetic wave traveling along the k direction. In a room temperature vapor,

the most probable velocity of the atoms is u =
√︁
2kBT/m ≃ 239 ms−1. In 1D, the

Doppler shift is ∆D = |k|u = (ωI/c)u ≃ 2π × 5.5 kHz. This shift is much smaller

than the corresponding optical Doppler shift, the ground state decoherence rate γI,

and the cavity linewidth.

Undepleted pump approximation

The undepleted pump approximation treats the pump field as an unlimited reservoir

from which to extract energy for creating signal photons. This means that atomic

absorption and spatial variations of the pump field can be ignored, i.e. ∂ΩP(z)/∂z →

0 [88]. In Section 7.7.3, we characterize the optical depth of the vapor cell to be

about 0.05(1). This implies that only 1 − e−0.05 = 5% of the input pump power

is lost from the beam due to absorption, and we can reasonably treat the pump as

undepleted [96].

Slowly-varying envelope approximation

E(z, t) is the amplitude envelope function of an input field E(z, t) = E(z, t)êx cos(kz−

ωt). The slowly-varying envelope approximation is valid when E doesn’t change

significantly over a wavelength [88, 101], or

|∂zzE(z, t)| ≪ k|∂zE(z, t)|, (6.23a)

|∂ttE(z, t)| ≪ ω|∂tE(z, t)|. (6.23b)
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This also applies to the amplitude envelope function P(z, t) of the dielectric polar-

ization P(z, t)

|∂zzP| ≪ k|∂zP|, (6.24a)

|∂ttP| ≪ ω|∂tP|, (6.24b)

|∂tP| ≪ ω|P|, (6.24c)

having the additional condition that we can neglect the first derivative of P . Together,

these provide a way to simplify, or reduce, the second-order Maxwell wave equation of

the vector fields to a first-order differential equation of the slowly-varying amplitudes.

This approximation would not be valid for ultrafast pulses of idler or pump fields.

However, in this thesis, we operate this experiment in the continuous-wave regime at

steady-state.

6.2.4 Phase matching and velocity classes

In the Λ-type 3-level system, the optical wavelengths are similar, such that |kS| ≈

|kP| ≫ |kI|, in which case Equation (6.19) reduces to (δS − δP) = 0. Since the

signal and pump fields travel in the same direction, the phase-matching condition

kI + kP = kS is automatically satisfied for all atomic velocity classes.

Because the maximum SFG signal is obtained when the signal-field detuning δS

is the same as the pump-field detuning δP, we conclude that distinct velocity classes

participate in the maximum signal-field generation at different pump/signal-field de-

tunings. Therefore, changing the laboratory pump frequency within the Doppler-

broadened width to ω′
P = ωP+δ gives rise to a corresponding signal field at ω′

S = ωS+δ,

thus enabling a large-tunable generation bandwidth. This is depicted numerically in

Figure 6.2(b) for atoms at T = 300◦C. The shape of the SFG signal profile is primarily

determined by the MB velocity distribution.
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(b)

(c)

(a)

Figure 6.3: (a) An amplitude-modulated idler field spectrum showing sidebands
(SBs). The idler carrier and SBs combine with the pump to produce a multichannel
signal spectrum. (b) When the idler and pump are both modulated at the same
frequency, multiple generation pathways interfere, producing upper and lower signal
SBs. The input fields each have lower (▲), central (●), and upper (■) spectral peaks.
(c) Calculated curves showing correlated signal SB amplitudes, which vary coherently
with the relative phase of the amplitude and phase modulations. Here, both the AM
depth and PM index are 0.2.
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The broad Doppler width at room temperature, together with the guaranteed

phase-matching for sum-frequency generation [Equation (6.19)], make possible the si-

multaneous conversion of multi-channel microwave or pump field inputs–obtained via

amplitude or phase modulation–to multi-channel optical signal outputs, as depicted

in Figure 6.3.

6.3 Wave modulation

In this section, we examine the effect of modulations on the input idler and pump

fields, and how those coherently transduce to modulations of the output signal field.

We begin introducing several modulation methods, how they are represented mathe-

matically, and how combinations of them manifest in the three-wave mixing process.

Electromagnetic waves, such as optical light, are perhaps the best carrier of in-

formation. Not only do they travel at the speed of light, but they also have many

different degrees of freedom in which to encode a message. For example, information

can be encoded in the amplitude, phase, or frequency of a wave for transmitting ana-

log or digital signals [105, 106]. Encodings are also possible using the polarization

(spin-angular momentum) [107, 108], orbital angular momentum [106, 109, 110], and

arrival times of single photons [111]. While the following section focuses on analog

modulation of classical waves, photonic encodings are routinely used with quantum

light sources.

6.3.1 Analog modulations

Modulations are low-frequency signals that are imprinted onto a high-frequency elec-

tromagnetic wave called a carrier. In the absence of any modulations, the carrier
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Figure 6.4: Calculated time-domain waveforms of a 10 kHz carrier wave (a) amplitude-
modulated with a modulation depth m = 0.8, and (c) phase-modulated at 1 kHz with
a modulation index β = 3.0 rad. In both time-domain plots, the dashed grey curve
is the modulating wave. (b) The frequency spectrum of the (b) AM and (d) PM
waves are shown for various modulation depths/indices. Unlike in the AM case, in
PM the carrier amplitude depends on the modulation index. For visibility of the
spectral peaks, the modulated carrier waves occur within a Gaussian envelope with
∆tFWHM ≈ 5 ms [not shown in (a) and (c)].
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frequency spectrum is a delta function3 at the carrier frequency ωcar. Modulating

the wave’s degrees of freedom creates additional spectral features around ωcar. The

simplest modulation of a carrier wave is a sine wave at a low-frequency ωm.

First, we consider the case of sine amplitude modulation (AM). Mathematically,

the wave takes the form

B(t) = [1 +m sin(ωmt)] [A sin(ωcart)] , (6.25)

where A is the original carrier amplitude. The modulation depth m represents the

strength of the modulation. Figure 6.4(a) shows an AM wave with a m = 0.8 or 80%;

the modulating sine wave is displayed as a grey dashed line. Using trigonometric

identities, Equation 6.25 can be expanded to obtain

B(t) = A
(︂
sin(ωcart) +

m

2
cos [(ωcar − ωm)t]−

m

2
cos [(ωcar + ωm)t]

)︂
. (6.26)

This expression shows that this wave possesses frequency components at {ωcar, ωcar±

ωm} which are seen in the frequency spectrum of the wave [Figure 6.4(b)]. The

positive and negative peaks are also called sidebands. Theoretically, sine AM has only

a single upper and lower sideband; in practice, nonlinear elements in the electrical or

optical system produce higher order sidebands ωcar ± nωm at additional harmonics

n ∈ N : n ≥ 2 of the modulation frequency [see, for example, Figure 7.23]. Amplitude

modulation is the simplest of the modulation schemes. The microwave source used

in this thesis’ experiments supports amplitude modulation of the idler wave.

We also consider sine phase modulation (PM) of the form:

E(t) = A sin[ωcart+ β sin(ωmt)], (6.27)

where the modulation index β, unlike m, has units of radians. Modulating the phase

of the wave has the effect of accelerating or decelerating the phase winding of the

3Chopping this wave into a short pulse of temporal width ∆t broadens this narrow spectral
feature into a peak with width 1/∆t.
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wave. Figure 6.4(c) shows a PM wave with β = 3 and the modulating wave as a

grey dashed line. When the modulating wave’s slope is most positive, the PM wave

experiences faster winding of the phase; conversely, when its slope is most negative,

the PM wave experiences slower phase winding.

Section 7.3.5 will show how a PM wave like Equation 6.27 can be expanded into

frequency components ω ± nωm with amplitudes Jn(β), for n ∈ N. These frequency

components can be seen in Figure 6.4(d), where the amplitude of the nth sideband

is proportional to the corresponding Bessel function of the modulation index, Jn(β).

Expanding out Equation 7.11 to second order in n gives4

E(t) = A [J0(β) sin(ωcart) + J1(β) sin([ωcar + ωm]t)− J1(β) sin([ωcar − ωm]t)

+J2(β) sin([ωcar + 2ωm]t) + J2(β) sin([ωcar − 2ωm]t)] .
(6.28)

Frequency modulation (FM) is another possible scheme that is not employed in the

experiments of this thesis. Like PM, FM modifies the carrier wave function’s argu-

ment. If we consider a simple wave A sin(Φ(t)) = A sin(ωt), the frequency ω is the

time-derivative of the overall time-dependent phase Φ(t). Thus, a sine FM appears

in the carrier wave function’s argument as the integral of the modulating wave, or

F (t) = A sin

(︃
ωcart+ f∆

∫︂ t

0

sin(ωmτ)dτ

)︃
= A sin

(︃
ωcart− f∆

cos(ωmt)

ωm

)︃
,

(6.29)

where the modulation deviation f∆ has units of frequency. In this situation, the

phase accelerates the most when the value of the modulation wave is maximum, and

the phase decelerates the most when the modulation wave is minimum. This is in

4The minus sign in Equation 6.28 arises due to the following properties of Bessel functions

J−n(x) = (−1)nJn(x),

Jn(−x) = (−1)nJn(x).
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contrast to PM where the phase advances depending on the slope of the modulation

wave.

6.3.2 Sum-frequency of two modulated waves

In this section, we examine a specific case of the sum-frequency process where a PM

pump combines with an AM idler. These fields are modulated with a sine wave at

the same frequency ωPM = ωAM ≡ ∆m. The two sine modulations have a well-defined

relative phase ϕ that can be varied between 0 and 2π. We examine this specific case

theoretically, beginning with expressions for the two fields as derived previously. The

idler field is similar to the AM wave from Equation 6.25, with the inclusion of ϕ:

ΩI(t) = ΩI0 [1 +m sin(∆mt+ ϕ)] sin(ωIt). (6.30)

As above, this expression can be expanded into frequency components, highlighting

the carrier and two sidebands

ΩI(t) = ΩI0

{︂
sin(ωIt) +

m

2
cos[(ωI −∆m)t− ϕ]− m

2
cos[(ωI +∆m)t+ ϕ]

}︂
. (6.31)

The expression for the pump field is similar to the PM wave derived in Equation 6.28,

here expanded to second-order in the sideband index.

ΩP(t) = ΩP0

{︃
J0(β) sin(ωPt) + J1(β) sin[(ωP +∆m)t]− J1(β) sin[(ωP −∆m)t]

+J2(β) sin[(ωP + 2∆m)t] + J2(β) sin[(ωP − 2∆m)t]

}︃
.

(6.32)

Going forward, we will suppress the arguments of the Bessel functions. Now, accord-

ing to Equation 6.17, the amplitude of the signal field ΩS(t) is proportional to the

product of ΩP(t) × ΩI(t). Thus, with 3 frequency components of the idler wave and

5 of the pump wave, the signal field possesses 15 cross-terms:
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ΩS(t) ∝
ΩP0ΩI0

2

{︃
2J0 sin(ωPt) sin(ωIt)

+2J1 sin[(ωP +∆m)t] sin(ωIt)

−2J1 sin[(ωP −∆m)t] sin(ωIt)

+2J2 sin[(ωP + 2∆m)t] sin(ωIt)

+2J2 sin[(ωP − 2∆m)t] sin(ωIt)

+mJ0 sin(ωPt) cos[(ωI −∆m)t− ϕ]

+mJ1 sin[(ωP +∆m)t] cos[(ωI −∆m)t− ϕ]

−mJ1 sin[(ωP −∆m)t] cos[(ωI −∆m)t− ϕ]

+mJ2 sin[(ωP + 2∆m)t] cos[(ωI −∆m)t− ϕ]

+mJ2 sin[(ωP − 2∆m)t] cos[(ωI −∆m)t− ϕ]

+mJ0 sin(ωPt) cos[(ωI +∆m)t+ ϕ]

+mJ1 sin[(ωP +∆m)t] cos[(ωI +∆m)t+ ϕ]

−mJ1 sin[(ωP −∆m)t] cos[(ωI +∆m)t+ ϕ]

+mJ2 sin[(ωP + 2∆m)t] cos[(ωI +∆m)t+ ϕ]

+mJ2 sin[(ωP − 2∆m)t] cos[(ωI +∆m)t+ ϕ]

}︃
.

(6.33)

We simplify these terms using product-to-sum trigonometric identities. Oscillating

terms emerge at frequencies near ωS ≡ ωP+ωI (sum-frequency), but also at frequencies

near ωD ≡ ωP −ωI (difference-frequency). These difference terms are discarded given

that we do not have an atomic density of states near ωD for the transitions selected

in this experiment.

We group these terms according to the sideband index n ∈ {0,±1,±2,±3} and, for

simplicity, consider only |n| ≤ 2. Additional sum-difference trigonometric identities

isolate the phase ϕ. We are left with expressions of the SFG wave oscillating at

ωS + n∆m having the form

ΩS,n(t) = In(m,β, ϕ) cos[(ωS + n∆m)t] +Qn(m,β, ϕ) sin[(ωS + n∆m)t], (6.34)

where In and Qn are the in-phase and quadrature parts of the nth component. These
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parts are given for each n as

(In, Qn) ∝
ΩP0ΩI0

4
×

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(−2J0, 2mJ1 cosϕ) , n = 0

(∓2J1 −m[J2 + J0] sinϕ, ±m[J2 − J0] cosϕ) , n = ±1

(−2J2 ∓mJ1 sinϕ, −mJ1 cosϕ) . n = ±2

(6.35)

The amplitude of each frequency component is

An(m,β, ϕ) ∝
√︁
I2n +Q2

n =
ΩP0ΩI0

4
an(m,β, ϕ), (6.36)

where

an =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2
√︁
J2
0 +m2J2

1 cos
2 ϕ, n = 0√︁

4J2
1 ± 4mJ1(J2 + J0) sinϕ+m2(J2

2 + J2
0 )± 2m2J0J2 cos 2ϕ, n = ±1√︁

4J2
2 ± 4mJ1J2 sinϕ+m2J2

1 , n = ±2

(6.37)

and the quadrature phase Θn(m,β, ϕ) is defined according to tan(Θn) = Qn/In, where

tan (Θn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−mJ1
J0

cosϕ, n = 0

− m(J2 − J0) cosϕ

2J1 ±m(J2 ± J0)
, n = ±1

mJ1 cosϕ

2J2 ±mJ1 sinϕ
. n = ±2

(6.38)

The power, or amplitude-squared, of the five frequency components are plotted

in Figure 6.5(a), and the quadrature phases are shown in (b), with m = β = 0.2.

The positive and negative sidebands are exactly out of phase with each other. The

±1 sidebands have a relative visibility of 100%, taken with respect to their maximum

value, while the ±2 sidebands have 80% visibility, as seen in the inset of Figure 6.5(a).
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Figure 6.5: Sideband power and phase vs. modulation phase for sum-frequency gener-
ation via AM/PM mixing. (a) The power in the |n| ≤ 2 mixed frequency components,
Pn ∝ |An(m,β, ϕ)|2, where m = β = 0.2. The inset shows the relative power, where
each frequency component is independently normalized. (b) The phase of each fre-
quency component as a function of ϕ ∈ [−π, π). The legend in (a) also serves (b).

The visibility is highest when m and β are equal. In the limit of β ≪ 1, the Bessel

functions can be approximated as:

J0(β) ≈ 1 +O(β2)

J1(β) ≈
β

2
+O(β3)

J2(β) ≈ 0 +O(β2).

(6.39)

When m = β ≪ 1, the ±1 frequency component amplitudes simplify to A±1 =

m
√︁

2(1± sinϕ), and their quadrature phases become tan(Θ±1) = cosϕ/(1± sinϕ).

In conclusion, this AM/PM mixing scheme shows a method for controlling the am-

plitude and phase of SFG sidebands via a relative modulation phase ϕ. The powers

of the n = ±1 components vary sinusoidally with ϕ, but out of phase, qualitatively

similar to the experimental results of Section 8.5.3. The experimental optical hetero-

dyne technique is not able to detect the quadrature phase Θ±1. However, in principle
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this can be measured by mixing the detected signal with an independent microwave

signal possessing a well-defined phase.
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...by small and simple things
are great things brought to pass...

Alma 37:6, The Book of Mormon:
Another Testament of Jesus Christ

Chapter 7

Experimental setup and methods

7.1 Introduction

This chapter will describe the experimental setup, equipment, and measurement

techniques employed in the microwave-to-optical conversion experiments presented

in Chapter 8. At the heart of this setup is a vapor cell of enriched 87Rb suspended

inside a heated, cylindrical copper microwave cavity. However, there are several other

peripheral subsystems that all must work together: a laser and optics system, along

with various electronics, carefully prepares and detects the resonant light; magnetic

coils null the external field and apply a calibrated, directed magnetic field to the vapor;

the cavity and cell are temperature-controlled to regulate interdependent properties

of the warm vapor cell and the microwave cavity mode. This chapter attempts to
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describe each of these subsystems, their components, workings, and connections with

sufficient, reproducible detail.

Along the way, we have refined our understanding of cavity characterization using

vector network analyzers, and small signal measurements using spectrum analyzers.

Background understanding and procedures for the effective use of these instruments

are included in this chapter for the hopeful benefit of future group members.

7.2 Cycling Program

This warm atom experimental setup has a peculiarity that it was developed in a lab-

oratory space using equipment originally intended for experiments with laser-cooled

neutral atoms. The equipment itself and the manner in which it has been repurposed

reflect this fact.

This is especially evident in the control program running on computer workstations.

This specialized program is an interface to three hardware devices that respectively

produce analog, radio-frequency (RF), and digital logic signals. The analog signals

are generated by a 32-channel National Instruments PCIe-6738 card with SCB-68A

shielded connector block; the RF signals are generated by a 4-channel Novatech 409B

digital synthesizer; the digital logic signals are generated by a 24-channel Pulseblaster

PB24-100-4k-USB-RM. The control program is an ordered sequence of user-defined

time intervals, wherein each output channel of the three devices can be configured

independently. For example, a certain analog output channel might correspond physi-

cally to a current flowing through a magnetic coil; throughout different time intervals,

the current might be set to zero, positive values, negative values, or a time-series func-

tion of values.

After all the time intervals are completed, the sequence repeats in a cycle. This
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type of program is particularly useful for cold atom experiments consisting of mul-

tiple cooling, trapping, and imaging stages. This sequence structure also allows for

scanning individual channel parameters for optimizing a measured quantity.

7.2.1 Connections

In the microwave-to-optical conversion experiment, we use only analog (National In-

struments) and RF signals (Novatech), as shown in Figure 7.1. Three analog voltages

control the current output of three bipolar Kepco BOP 20-20DL power supplies; these

currents flow through the three orthogonal Helmholtz coils. An RF signal at a fre-

quency of 76.6 MHz and user-defined power is passed to the home-built AOM driver

where it is amplified and then passed to the AOM. The RF power sent to this AOM

determines how much laser light is diffracted into the first order and coupled into an

optical fiber en route to the experiment. After the fiber, a beamsplitter directs a small

fraction of the light into a photodiode. Polarization fluctuations in the fiber produce

unwanted power fluctuations measured in the photodiode voltage. We correct for

these fluctuations using a Newport New Focus proportional-integral servo controller.

The controller compares the photodiode voltage with a fourth analog signal, giving

an error output signal that passes back to the AM input of the AOM driver. As will

be discussed further in Section 7.3.2, a variable voltage attenuator inside the driver

regulates the input RF signal to stabilize these fluctuations and significantly reduce

noise.

In this manner, the cycle control program controls the magnetic field amplitudes

in three directions and the stabilized power of the laser beam. In future sections, we

will describe and characterize these subsystems in more detail. Given that we operate

all experimental parameters and measurements continuously at steady-state, only a

single time interval with constant parameters is required in the control sequence.
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INAMDIG OUT

A -B
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0123

Novatech
RF source

New Focus Servo Controller

Home-built AOM driver

Kepco BOP 20-20M Bipolar power supplies

3-Axis Helmholtz coil set

Python cycle
control program

0th

1st

National Instruments
Analog source

Figure 7.1: A Python cycling program running on a PC controls the main experi-
mental parameters. It programs the National Instrument board to produce analog
voltages for regulating the output current of three Helmholtz coil power supplies, one
for each axis; it also provides the optical power setpoint for the New Focus servo con-
troller. Additionally, the cycle program configures the Novatech device to produce a
76.6 MHz RF signal. This signal is modulated and amplified in the homebuilt AOM
driver [see Section 7.3.2] and then sent to the main experimental AOM.
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However, timed sequence control may be beneficial for anticipated experiments in the

future.

7.3 Laser and Optics

In this section, we describe the steps and equipment used to prepare the polarization,

frequency, and amplitude of the laser beam used to address the atomic transition of

interest. We also describe the scheme used to detect and measure the converted light.

7.3.1 Diode laser

The laser light originates from a commercial MOGLabs tunable cateye diode laser

(CEL). This is a novel type of tunable, external cavity diode laser (ECDL). Lasers

in Littrow or Littman-Metcalf configurations use a diffraction grating to form the

external laser cavity and to select a particular lasing wavelength. The CEL, by

comparison, uses a fixed cavity formed by the diode surface and a reflective output

coupler mirror. Interposed between the cavity mirrors is an interference filter whose

angle is piezo-tunable. This filter provides both tunability and wavelength selectivity.

We can scan the laser frequency over a range of 20 GHz with a variable repetition

rate.

For a typical operating current of 240 mA and temperature of 23.75 ◦C, we get

an output power (after the isolator) of 101 mW. Beams emerging from diode lasers

are generally well-polarized, but not well-collimated. Usually, the beam profile has

a “fast” axis of rapid divergence and an orthogonal “slow” axis of more moderate

divergence. The divergence of this laser is uncorrected by the optics; this fact is

noticeable throughout the optics system but is not a crucial issue.

This laser has a relatively small footprint, with a Faraday isolator mounted to

86



Chapter 7. Experiment 7.3. Laser and OpticsChapter 7. Experiment 7.3. Laser and OpticsChapter 7. Experiment 7.3. Laser and Optics

the optics table outside of the laser chassis. This laser was originally intended to

be a “repump” beam for a laser-cooled rubidium magneto-optical trap and has a

wavelength of about 780.246 nm.

7.3.2 Preparation Optics Table

In this section, we describe the laser beam paths that are relevant to the experiments

discussed in this thesis. The preparation optics, as shown in Figure 7.2, are mounted

to an optics table. The table is covered by a dark acrylic plastic enclosure to maintain

the laser’s temperature stability and reduce air currents near the optics.

The light from the laser is expanded 4:1 by a telescope and then is split into

two paths via a half-waveplate and a polarizing beamsplitter. The transmitted path

is compressed by another 4:1 telescope and is then diffracted by an AOM with a

drive frequency of fAOM = 76.6 MHz; the zeroth diffracted order is blocked, but

the upshifted, 1st-order beam is attenuated by a neutral density filter and coupled

into an optical fiber. This is the primary “pump” beam for the experiment and has

about 1.5 mW of optical power, as measured on the fiber output. This power is

controlled via the AOM drive power. Other beams are separated and directed to the

“Local Oscillator” fiber coupler (for heterodyne detection), and to additional optics

for saturated absorption spectroscopy laser locking.

Saturated absorption spectroscopy frequency locking

The basics of saturation absorption spectroscopy and locking are described else-

where [40, 112]; however, since an understanding of its spectrum is essential for the

experiments, we will briefly review this topic.

At the center of this locking scheme is a rubidium reference vapor cell (Thorlabs

GC25075-RB) covered by a heater/temperature-control assembly (Thorlabs GCH25-
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Figure 7.2: The beam emitted from the diode laser is split into three paths: The first beam is fiber-coupled and is
the local oscillator reference used in the experiment; the second beam is split again and directed through a reference
vapor cell for saturated absorption spectroscopy laser locking [see Section 7.3.2]; the third beam is frequency-shifted
by an AOM before it is fiber-coupled and sent to the experiment table [see Section 7.3.3]. Typical optical powers at
various points throughout the laser system are notated. AOM - acousto-optic modulator; ND - neutral density filter;
PBS - polarization beam splitter; Amp - RF amplifier.
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75) and an aluminum foil oven wrap (not shown in Figure 7.2). Despite the presence of

the heater assembly, we have never heated the reference cell during the experiments,

leaving the cell at room temperature. A weak “probe” beam passes through the

reference cell and impinges on a photodiode. As the laser’s frequency is scanned

through the Doppler-broadened atomic resonance, the probe is absorbed in proportion

to the Maxwell-Boltzman-distributed density of states [see Section 4.2].

A “pump” spectroscopy beam propagates against the probe, overlapping the other

beam inside the cell. The frequency of this beam is also scanning. Since it comes

from the opposite direction as the probe, it interrogates atoms of the opposite veloc-

ity class and negative Doppler shift. Because of this fact, only the zero velocity class

(ZVC) having zero Doppler shift permits both the pump and probe to be simultane-

ously resonant. When this occurs, the pump burns a “spectral hole” and the probe

experiences less absorption. In the transmission spectra, the increased transmission

appears as a small, narrow bump superimposed on a broad Doppler transmission

dip. This sub-Doppler feature precisely marks the atomic resonance of the ZVC;

these features are visible in the spectrum in Figure 7.3(a). On top of each peak, the

slope of the spectrum is approximately zero: the “derivative” of the spectrum there-

fore has a dispersive zero-crossing that can be used for negative feedback control of

the laser frequency. Retrieving this error signal is the goal of saturation absorption

spectroscopy.

What we have described is the case for a probe and pump beam with the exact

same frequency. In actuality, the pump beam encounters a double-pass AOM before

traversing the cell. This AOM has two functions:

1. It shifts the pump beam up in frequency by 160 MHz (80 MHz per pass1).

1This frequency is an arbitrary choice, however, the AOM devices used in our lab work optimally
at 80 MHz.
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Figure 7.3: Saturated absorption spectroscopy and error signal for laser frequency
stabilization. (a) The saturated absorption spectrum for the 87Rb D2, f = 2 → f ′

transitions. The saturated absorption peaks are superimposed on the broad Doppler
transmission dip. Each peak is labeled with the excited state f ′ value. The labels
in parentheses are the transitioned level due to the self-pumping of the probe beam
reflected from the far edge of the vapor cell. (b) The error signal produced by the
laser controller. The grey trace is a single shot, and the red curve is averaged 64x.
The laser can be locked at points where the dispersive error signal crosses zero. In
this thesis, we typically lock the laser on the f = 2 → f ′ = 2 ↔ 3 crossover transition.

The double pump-probe resonance now occurs on atoms with a velocity of

2π × −80 MHz/(2π/780.24 nm) = −62.4 m/s relative to the probe propaga-

tion, or, alternatively with a Doppler shift of 80 MHz below the ZVC atomic

resonance [112]. In a laser-cooling scheme, it is convenient to lock the laser

below the ZVC resonance; additional AOMs used to switch on the derived

cooling/repump beams also shift their beam’s frequencies back up to the ZVC

resonance.

2. The double-pass AOM is also a key tool for generating the derivative error signal
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needed for laser locking. The laser controller uses a lock-in detection technique:

A 250 kHz “dither” from the laser controller frequency-modulates the 80 MHz

AOM drive signal, making the pump frequency jitter back and forth as it sweeps

through the saturated absorption peaks. This jittering is imprinted onto the

spectrum signal, and is demodulated by the controller at the dither frequency.

The result: the frequency jitter modifies the spectrum at every frequency point

in proportion to its slope. This is the error signal. An example of this signal is

shown in Figure 7.3(b).

Using the error signal, the PI-feedback loop in the laser controller adjusts the

diode current and interference filter’s piezo voltage to maintain the error signal at

zero2. When this occurs, the laser is successfully locked. The lock can be adjusted by

potentiometer knobs that adjust the gain parameters of the feedback loop, thereby

scaling the amplitude of the error signal. This gain must be tuned so that the error

signal is large enough to provide a clean zero crossing, but not too large so that

the feedback loop oscillates. In practice, the gain is increased until the onset of

oscillations, and then reduced slightly until they disappear.

In many atoms, there are multiple nearby hyperfine levels in the excited state. For

example, in 87Rb on the D2 line, there are four such levels, |f ′ = 0, 1, 2, 3⟩. Optical

electric dipole transitions from one of the ground states (say, from |f = 2⟩) may excite

up to three of these (to |f ′ = 1, 2, 3⟩). In general, there is one saturated absorption

peak for each of the excited levels. There are also so-called “crossover resonances”

that appear exactly between each pair of individual resonances. In the example above,

there are |f ′ = 1 ↔ 2⟩, |f ′ = 1 ↔ 3⟩, and |f ′ = 2 ↔ 3⟩ crossover resonances. For

certain velocity classes, the pump burns a “spectral hole” with one excited level, while

2This can only occur when the laser sweep range is reduced to zero.
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the probe is absorbed by a separate level [40]. Between the individual and crossover

resonances, we should expect a total of six saturated absorption resonances. Some

of these resonances are seen in Figure 7.3(a). The largest peak is the |f ′ = 2 ↔ 3⟩

crossover, and this resonance produces the strongest dispersive zero crossing in the

error signal. In the experiments, we typically lock onto this peak; recall that because

of the double-pass AOM, this lock is 80 MHz below the ZVC resonance [112]. In

Figure 7.3, the transitions marked in parentheses correspond to saturated absorption

peaks of the ZVC. These are caused by the probe back-reflecting off the far inner

surface of the vapor cell and “self-pumping” the atoms. This set of saturated absorp-

tion peaks is shifted upwards relative to those produced by the shifted pump beam.

When this cell was originally mounted to the table, it was oriented with surfaces

perpendicular to the pump and probe beams. This type of self-pumping artifact is

easily removed by giving a slight horizontal tilt to the vapor cell.

Home-built AOM driver

We primarily used Intraaction AOM deflectors (ATM-801A2). We have learned by

experience that their accompanying drivers (IntraAction DE-801-6) have quite un-

acceptable frequency noise, both from the voltage-controlled oscillator and from the

internal amplifier. This noise is imprinted onto the pump laser beam and appears

in detection. In addition, we have noticed that the amplifiers on these commercial

drivers often fail prematurely. To resolve this issue, we constructed home-built AOM

drivers that amplify a low-noise RF signals sourced from a programmable Novatech

synthesizer device. Two of these drivers were used in another ultracold atom experi-

ment. Images and a schematic of one of the ultracold units are shown in Figure 7.4.

We assembled a third driver for this warm atoms experiment; except for lacking a

fast RF switch, it is identical to the former two.
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Figure 7.4: Schematic and images of the homebuilt AOM driver. (a) There are three
main components of this device: a fast RF switch (green), a variable attenuator
(blue), and a high-power RF amplifier (orange). This box has three input ports [an
RF signal input (purple); a digital signal input (green); and an amplitude modulation
input (red)] and one output RF port (orange). Because the attenuator is current-
controlled, the circuit in the dotted red box converts the AM signal from a voltage
to a proportional current. The amplifier output is delivered to the AOM. (b) A top
image of the inside of the AOM box. The lumped elements shown in the schematic
are outlined in color. The box also contains a 24 V power supply, shown in its upper
right corner. (c) The front panel of the AOM box with the BNC input ports circled
in color. The colors in (b) and (c) refer to the same elements as those in (a).
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These devices are composed of a fast RF switch (Mini-Circuits ZYSWA-2-50DR+),

a variable attenuator (Mini-Circuits ZAS-3+), and a high power amplifier (Mini-

Circuits ZHL-1-2W+). The switch has a delayed response of about 800 ns and a

rise time of 40 ns. The attenuator is current-controlled, so an intermediate circuit

of resistors and capacitors converts the AM voltage to a current. The response of

the attenuator to various positive voltages is nonlinear, saturating after about 8V; if

desired, the response can be calibrated and linearized3. As described in Section 7.2,

the attenuator is essential for stabilizing the power of the pump beam. The amplifier

gives about 29 dB of gain. It has a dedicated 24 V power supply that draws up to

1 A of current. The amplitude of the input RF signal is set from the cycle control

program and has typical values around -11 dBm.

7.3.3 Experiment Table

The fiber-coupled pump light passes in an overhead rack from the preparation optics

table to an experiment table. This table is a 24” x 20” aluminum optics breadboard

mounted on 43 cm-long posts at the center of three, square magnetic Helmholtz coils

(see Section 7.4). The optics and equipment mounted to this table are depicted in

Figure 7.5(a). The microwave cavity and vapor cell are located at the center of all

three magnetic coils where the field is most uniform.

As the pump light exits the fiber, its polarization is immediately filtered by a PBS.

As described in Section 7.2, the polarization of the pump light in the fiber fluctuates

randomly due to fiber motion, thermal gradients, or air currents. The PBS eliminates

polarization fluctuations but introduces unwanted power fluctuations. To solve this

problem, a clear microscope slide reflects a small fraction of the beam power to a

3Because of the additional power feedback on the AOM, confusion was avoided by leaving the
attenuator response uncalibrated.

94



Chapter 7. Experiment 7.3. Laser and OpticsChapter 7. Experiment 7.3. Laser and OpticsChapter 7. Experiment 7.3. Laser and Optics

TE011

87Rb SG1 SG2 (opt.)

SCOPE

PD2

Reference

To 
PID

50:50

87
R

b 
+

 85
R

b

6.834 682 610  GHz

EOM (opt.)

100.000  kHz

Pump In

Pump/Signal
Out

(a)

SA

VNA

Pump/Signal 
Out

Local Oscillator

2
1

(b)

50:50 BS

50:50 BS

Cooling Laser 
(unused)

Figure 7.5: Diagram of the beam paths on the experiment table and the detection
system. (a) Central to the experiment is the microwave cavity supporting a TE011

mode, supplied by a signal generator (SG1), and polarized along the y-axis. The
pump light first passes through an optional electro-optic modulator (EOM), where
the phase-modulating signal is provided by a second signal generator (SG2). The light
is decoupled from the fiber, its polarization is purified by a PBS, and then a small
fraction of power is sampled by a piece of glass and a photodiode. The polarization
state is prepared along the z-axis by three waveplates before passing through the
cavity along the x-axis. The vapor cell inside the cavity contains enriched 87Rb. A
50:50 BS placed directly before the cavity sends half of the light through a separate
vapor cell with natural rubidium abundance. (b) Unshifted light from the diode
laser (ECDL) is used as a local oscillator for heterodyne detection; it is combined
with the other beam in a fiber 50:50 beam splitter (BS), producing two beat signals
which are detected by the fast photodiode at fhet,P and fhet,S and measured by the
spectrum analyzer (SA). In certain measurements [see Section 8.2.5], port 1 of the
vector network analyzer (VNA) drives the microwave cavity and port 2 detects. See
Figure 7.2 for a legend of the optical components.
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gain-switchable photodiode (Thorlabs PDA36A). The measured photosignal is used

for power stabilization feedback of the pump (see Section 7.2). When the feedback

loop is locked, the pump light has a constant, actively-stabilized polarization and

power. The pump optical power, measured immediately before the cavity, has a

typical value of 75 µW.

The mirrors before the cavity impart a slight phase shift to the pump light,

making the light slightly elliptically polarized. Two zero-order quarter waveplates

(OptiSource QWPO-780-10-4-AR/AR), and a multi-order half-waveplate (Thorlabs

WPMH055M-780) correct the ellipticity and prepare the light vertically polarized as

it enters the cavity. After exiting the cavity, the generated light is copropagating

with the pump but has orthogonal polarization. Before these beams are coupled into

an optical fiber, a half- and quarter-waveplate maximizes the coupling efficiency, as

described in Section 8.2.2.

We have verified that the pump beam is collimated over a distance of 3 meters.

We have also measured the pump beam profile with a scanning slit beam profiler

(Thorlabs BP209-VIS) to be approximately Gaussian with 1/e2 radii of (rx, ry) =

(870, 872) µm, or an average 1/e2 radius of r0 = 0.87 mm.

The interaction volume is defined as the region inside the vapor cell illuminated

by the pump laser beam. We assume that the microwave cavity mode is uniform

over this volume. Due to the cavity aperture radius rh = 1.5 mm, about 95% of the

incident light passes through. The effective uniform beam has an area of:

Aeff =

∫︂ rh

0

re−(r/r0)2dr = πr20

(︂
1− e−(rh/r0)

2
)︂

≃ 0.95× πr20

= 2.21(4) mm2

(7.1)

A calculated 2D and 1D cross-sections of the hole-clipped beam, and the effective
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Figure 7.6: Pump beam profile and effective beam radius. (a) The calculated 2D
cross-section intensity profile of the pump laser beam, which is based on measured
beam parameters. The red circle shows the extent of the beam 1/e2 radius of 0.86
mm; the rh = 1.5 mm cavity aperture is shown as a grey circle. The dashed black
circle shows the effective radius (0.84 mm) of a flat-top beam with the same integrated
power as the aperture-clipped beam. (b) A linear 1D slice of the beam profile in (a).

flat-top beam area are shown in Figure 7.6. Given that the cell has an internal width

of 10.4 mm, the volume overlapping with the atoms is Vint = 23.0(6) mm3.

We mention briefly that a 50:50 beamsplitter before the cavity samples a portion

of the beam and directs it through a separate rubidium reference vapor cell. As

discussed in Section 8.2.8, this vapor cell is used to calibrate the frequency of the

laser during a frequency sweep.
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7.3.4 Polarization characterization

In this section, we describe how to prepare specific and accurate polarizations of the

pump beam prior to its entrance into the vapor cell. Even though the polarization

of the pump beam has been feedback-stabilized against fluctuations in the fiber (see

Section 7.2), we still require a sequence of three waveplates—λ/4 followed by a λ/2,

followed by another λ/4—to prepare an arbitrary desired polarization state [113,

114]4. The Poincaré sphere provides an intuitive visualization of why three waveplates

are necessary:

1. The first quarter waveplate takes an arbitrary state on the sphere and rotates

it to the equatorial plane;

2. The half waveplate rotates the state around the equator;

3. The final quarter waveplate rotates the state to a desired point on the upper or

lower hemisphere.

We would like to find the relationship between specific waveplate angles and optical

polarization states. To do this, we first remove all the waveplates and then place a

PBS immediately before the microwave cavity, measuring the transmitted power with

a Thorlabs S121C power meter head. We mount the half-waveplate followed by one

of the quarter waveplates in front of the Thorlabs PBS122, and iteratively rotate the

waveplates’ angles until the transmitted power is maximally extinguished. We typi-

cally obtain a 1000:1 extinction ratio in the transmitted mode5. With transmission

minimized, we know that the light is linear and vertically polarized to a high degree.

We then mount the final quarter waveplate and likewise rotate it to minimize the

4This same sequence is used in paddle fiber polarization controllers. It also applies to arbitrary
rotations of spherical vectors in 3D space, as detailed in Appendix A.

5The PBS optics we use usually have better extinction in transmission versus reflection.
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transmitted power. The angle of this last quarter waveplate is locked and will remain

unchanged going forward; as described in step (1) above, this waveplate provides

the initial preparation from elliptical to linear. Next, the other quarter waveplate is

rotated in equal angle increments, and the transmitted power is recorded and nor-

malized to the input power. As shown in Figure 7.7(a), the power varies sinusoidally

as a function of angle. This scan is repeated for the half waveplate, and which data

are displayed in (b).
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Figure 7.7: Waveplate calibrations for the pump beam. The transmitted intensity of
the pump laser through a polarizing beam splitter upon rotations of the (a) quarter-
and (b) half-waveplates. In (a), the half-waveplate angle was fixed at 45◦ in its
rotation mount; in (b) the quarter-waveplate angle was fixed at 161◦ in its rotation
mount. A Jones matrix model was fit to the data and certain special polarization
states were identified. these special states are marked with yellow stars, and are
summarized further in Table 7.1.

We fit a Jones matrix model to each of these data: An input vertical polarization

vector

|V ⟩ =

⎛⎝0

1

⎞⎠ (7.2)

is transformed by a general linear phase retarder matrix W (θ, θ0, η) and analyzed by
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a horizontal polarizer matrix PH , where θ is the rotation angle, θ0 is an offset angle,

and η is a the retardation phase. [See Appendix B for tables of these matrices.] The

output polarization amplitude is then

|S⟩ = P̌H W̌ (θ, θ0, η) |V ⟩ (7.3)

When comparing the model to the data, it’s important that the angles θ advance

relative to the same axis direction. In the Jones calculus convention described in

Appendix A.1.2, the waveplate rotation angles are taken from the perspective of the

receiver, meaning positive angles advance CW around the optical axis when viewed

against the propagation axis to the source. Inconveniently, we oriented the wave-

plate rotation mounts so that the angles advanced CCW when seen from the same

perspective. Therefore the measured angles had to be flipped as θ → θ′ = −θ + 2π.

State λ/4 (◦)

|L⟩ 26

|V ⟩ 71 (26 + 45)

|R⟩ 116 (26 + 90)

|V ⟩ 161 (26 + 135)

State λ/2 (◦)

|H⟩ 0

|V ⟩ 45

|H⟩ 90

|V ⟩ 135

Table 7.1: Special polarization states of the pump beam. The left table shows the
states identified from rotations of the quarter-waveplate [Figure 7.7(a)], where the
half-waveplate angle is fixed at 45◦ in its rotation mount. The right table does the
same for rotations of the half-waveplate [Figure 7.7(b)], where the quarter-waveplate
is fixed at 161◦ in its rotation mount. The tables only display the first four special
polarization states. The subsequent four states for each waveplate repeat in the same
pattern, at 45◦ increments. |V ⟩ - vertical; |H⟩ - horizontal; |R⟩ - right circular; |L⟩ -
left circular.

We then fit the transmitted intensity I(θ, θ0, η) = ⟨S|S⟩ to the data, and the

results are visible in Figure 7.7. The quarter waveplate fit a retardation phase of

η = 1.553(7) rad, slightly lower than π/2 = 1.571 rad. The half waveplate fit a
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retardation phase of η = 3.20(9) rad. This fit shows that the waveplates have the

expected retardation phase, despite slight manufacturing errors in the optics. The

fits allow us to identify which specific angles produce special linearly (|V ⟩ and |H⟩) or

circularly (|R⟩ and |L⟩) polarized states. These angles are marked with yellow stars

and are summarized in Table 7.1.

7.3.5 Fiber Electro-optic phase modulator

As seen in Figure 7.5(a), we have the option to insert a fiber electro-optic modulator

(EOM) into the light’s path before going to the experiment table. The device is

a lithium niobate (LiNbO3) phase modulator (EOSpace PM-0S5-20-PFA-PFA-780).

This particular material is host to a type of electro-optic process called the Pockels

effect, whereby the material’s index of refraction changes linearly6 in response to

an applied electric field amplitude [88]. This effect is described by a second-order

susceptibility in non-centrosymmetric materials.

The optical phase change experienced by a change in the refractive index is

∆ϕ = ∆n
ωL

c
, (7.4)

where, L is the length of the crystal, ω is the angular frequency of the optical wave,

and c is the speed of light. In the Pockels regime,

∆n = κE, (7.5)

where E is the applied electric field, and κ is a material-dependent parameter. When

E is applied longitudinally to the beam propagation, E = V/L and equation 7.4

becomes

∆ϕ = κ
ωV

c
. (7.6)

6In contrast, the Kerr effect refers to nonlinear changes of the index of refraction with the elec-
tric field amplitude, which are described by higher-order susceptibilities in centrosymmetric materi-
als [88].
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We can then define the half-wave voltage, or the voltage required to change the optical

phase by π radians:

Vπ =
πc

κω
=

λ

2κ
. (7.7)

Crucially, this half-wave voltage depends on the optical wavelength. The phase change

then becomes

∆ϕ =
πV

Vπ
(7.8)

We might modulate the applied voltage as V (t) = V0 sin(ωmt), where ωm is the

angular modulation frequency and V0 is the amplitude. Due to the Pockels effect,

this modulates the phase of the optical electric field as

E(t) = E0 sin[ωt+ β sin(ωmt)], (7.9)

where ω is the optical angular frequency, and β ≡ πV0/Vπ is called the “modulation

index” [115]. We note that in practice, Vπ also depends on ωm [116]. EOSpace

specified Vπ = 2.7 V at ωm/2π = 1 GHz for this device.

Equation 7.9 can be expanded in complex exponentials and expanded further using

the Jacobi-Anger identity,

eiβ sin(ωmt) =
∞∑︂

n=−∞

Jn(β)e
inωmt, (7.10)

to get

E(t) =
E0

2i

∞∑︂
n=−∞

Jn(β)
[︁
ei(ωcar+nωm)t − (−1)ne−i(ωcar−nωm)t

]︁
, (7.11)

where Jn(β) are Bessel functions of the first kind7. Each of the terms in the sum

represents different frequency components separated by integer multiples of ωm. In

7Had we expressed Equation 7.9 (6.27) with a cosine in the argument, we would simply replace
ωmt→ ωmt+ π/2 to obtain

E(t) =
E0

2i

∞∑︂
n=−∞

inJn(β)
[︂
ei(ωcar+nωm)t − (−1)ne−i(ωcar−nωm)t

]︂
.

See also footnote 4 on page 76.
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the spectral domain, these components appear as sidebands on the carrier separated

by a spacing of ωm, as illustrated in Section 6.3.1. The fractional power in the nth

sideband is proportional to |Jn(β)|2, as shown in Figure 7.8 for the central and first

three sideband orders.
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Figure 7.8: Amplitudes of the phase-modulated (PM) frequency components [i.e.
carrier (solid) and the first (dashed), second (dashed-dotted), and third (dotted)
harmonics] as a function of modulation depth β. The nth component powers are
proportional to |Jn(β)|2, where Jn is the Bessel function of the first kind. These
Bessel functions emerge from the constraint that the combined power of the carrier
and sidebands equal 100% for every β.

EOM sideband frequency response

We characterize the amplitudes of the first upper and lower sideband relative to the

carrier as a function of ωm/2π, as shown in Figure 7.9, for a drive power of 0 dBm.

Using the half-wave voltage quoted above, the modulation index is β = 0.12. The data

is not consistent with an expected power difference of 10× log[ |J1(β)|2 / |J0(β)|2 ] ≃
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−24.6 dB; this might mean that the half-wave voltage is perhaps up to four times

smaller than specified.
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Figure 7.9: EOM first-order sideband power as a function of modulation frequency for
a fixed modulation depth. The powers are displayed in dBc, relative to the carrier.
We observe that the device’s response is fairly flat over 300 MHz. The variations
might be due to drifting optical polarization in the detection fibers.

Safety

Lithium niobate modulators can easily experience photorefractive damage at higher

optical powers. This is a phenomenon whereby the light generates mobile charge

carriers in the material that locally change the refractive index [117]. Damage may

be partially remedied by heating the crystal, however, the wavefront distortions of

the beam usually remain a significant issue [118]. Given that power specifications are

absent for this EOM, to be on the safe side, we keep the input optical power below

500 µW. This has considerably limited the modulated pump powers we can access.
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7.3.6 Detection

Next, we describe the optics, equipment, and methods used for measuring optical

signals. This relies on beamsplitters, a photodetector, and RF amplifiers intended for

beat-note frequency stabilization of a separate laser [112]. For these experiments, we

combine the light to be measured (i.e. from the cavity) with another beam (called

“local oscillator”) derived from the same laser. As depicted in Figure 7.5(b), this

combination occurs within the second of two 50:50 fiber beamsplitters (Thorlabs

TN785R5A2). The first beamsplitter was installed for the beat-note locking, and

does not affect the experiment, except to reduce the local oscillator power by 1/2.

The combined light then impinges on a fiber-coupled, high-bandwidth photodetector

(EOT ET-4000AF), and the interference of the two beams produces an AC wave os-

cillating at fhet, the difference of the two input frequencies. Detecting the frequency

and amplitude of this oscillating beat tone is the essence of optical heterodyne detec-

tion [119].

After the signal is amplified by up to two Mini-Circuits (ZJL-7G+) RF amplifiers,

it is transmitted by a 50-inch Mini-Circuits (141-50SM+) coaxial cable to a spectrum

analyzer or a vector network analyzer. To get good interference and a strong signal,

the polarizations of the two input beams must be closely matched. This is another

reason for the half- and quarter-waveplate sets before the “Pump/Signal Out” and

“Local Oscillator” fiber couplers. In practice, the signal strength is optimized by

manually adjusting the angles of these waveplates.

The beat signal frequencies of interest lie within DC-7.5 GHz, comfortably within

the 10 GHz bandwidth of the photodiode. However, we should consider if the photo-

diode, amplifiers, and coaxial cables, have a response/loss that varies as a function of

frequency. This becomes important when we try to compare the heterodyne ampli-
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tudes at two different frequencies for calculating the microwave-to-optical conversion

efficiency [see Section 8.4].

We therefore characterize the frequency response of the detection system in two

ways. First, we take the segment of the RF circuit located between the photodiode

and the spectrum analyzer and place it between ports 1 and 2 of the VNA. By driving

and measuring with the VNA in S21 mode, we obtain the negative of the insertion

loss of this circuit subset in the frequency ranges of interest. Figure 7.10(a) and (b)

show the insertion loss near fAOM and fhet, with the two frequencies clearly marked.

The difference between the two is -4.2(3) dB.
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Figure 7.10: Photodetector circuit frequency response. The insertion loss (S21) of the
amplifiers and coaxial cables around (a) fAOM = 76.6 MHz and (b) fhet = 6.911 GHz,
as measured on the VNA. (c) The relative frequency response of the fast photodiode
as a function of beat frequency. This measurement comes from the interference of
the frequency-locked local oscillator (LO) and a separate frequency-tuned reference
(Ref.) laser. There is -4.9 dB difference between fAOM and fhet. (d) The percent
power variation of the two interfering lasers during the frequency scan of (c).

The second method uses a separate laser, designated “cooling” and used for the

cold-atom system. When this is mixed with the local oscillator beam from the primary
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laser, we observe a clear heterodyne signal on the spectrum analyzer. If the primary

laser is locked, the cooling laser’s frequency is tuned such that fhet varies between DC

and 7 GHz, The power of the heterodyne signal is recorded at these frequencies, and

is shown in Figure 7.10(c). Because laser power is slightly coupled to frequency, we

also record the power variation of the two beams, as shown in (d). These variations

represent about 5% of the total power. While tuning the cooling laser, we found

that its frequency would suddenly mode hop. These mode hops are visible near 2

and 5 GHz. When this occurred, the diode current had to be adjusted to bring the

beat signal back. Because of power variations and mode hops, this characterization

method may not be ideal. However, we can still get a rough idea of the frequency

response of the detection circuit that includes the detector. The response difference

between the two frequencies of interest is about -5(1) dB.

7.4 Magnetic Coils

One of the original motivations for this experimental setup (one we still hope to

pursue) is optical magnetometry. For these experiments, we require three-dimensional

control of the magnetic field direction and amplitude experienced by the atoms. We

also require high uniformity of the magnetic field across the cell. To this end, we

borrowed a set of large square Helmholtz coils from Prof. Vadim Kravchinsky and

installed them around the microwave cavity. These coils work marvelously. While

not directly related to magnetometry, the microwave-to-optical conversion experiment

described in Chapter 8 benefits greatly from magnetic field control.
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7.4.1 Construction

The coils were made out of aluminum u-channel that is 1” wide and 0.5” thick. The

u-channel was formed and welded into six square frames, two for each axis. The

three pairs nest inside each other. 20 AWG copper wire is wound around the coils

and soldered at banana terminals. The three coils have effective side lengths of of

L{x,y,z} = {1.027, 0.990, 0.954} m, measured center-to-center on each side; therefore

they require an optimal separation of 0.545L{x,y,z} ≃ {56, 54, 52} cm [120]. The x-

and y-axis coils are clamped vertically onto the optics table, while the z-axis coils are

secured to the y-axis pair using zip ties. This is seen in Figure 7.11. The experiment

table is positioned inside the coils such that the cavity and vapor cell are centered in

all three coil pairs and aligned to the coils’ axes. With a gaussmeter borrowed from

the Prof. Mark Freeman lab and a handheld ammeter, the proper Helmholtz wiring

configurations for the coils were found and rough current-to-field calibrations were

determined.

We did not initially know the number of turns in each coil. From the coil perimeter

4L{x,y,z}, resistance R{x,y,z} = {5.6, 5.4, 5.2} Ω, and the expected resistance per unit

length σ = 34 mΩ/m for 20 AWG wire at room temperature [121], we calculate

N = R/4Lσ = 40 turns in each coil.

7.4.2 Safety

At all costs, we want to avoid passing too much current through these coils, which

could melt and short catastrophically. The National Electric Code gives a 20 AWG

ampacity of I0 = 7.5 A for a temperature rating of 105◦C [122], or about ∆T0 = 85

degrees above room temperature. Assuming that the coil behaves ohmic, ∆T0 ∝ I20 .

Therefore, by derating the maximum current to 1.5 A, we expect the temperature
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(b)(a)

Figure 7.11: The magnetic coils and experiment table. (a) Image of the 3-axis square
Helmholtz coils used in this experiment. The largest coil has about a 1-meter side
length. (b) Top image of the experiment table. In the center is the oven with the
endcap translation stage (above) and stem cooling block (below). The reference vapor
cell is in the top right. The laser light enters from the bottom right fiber coupler, is
directed through the cavity, and exits from the bottom left fiber coupler.

of the wires to only rise about 3.4 degrees. In practice, the air and coil frames will

dissipate much of the heat generated in the coils, and the temperature increase may

not be noticeable to the touch. We program limits to the cycle control program,

restricting the current through each coil pair to between ±1.5 A. Note that the

current these coils need to null the 0.65 G geomagnetic field is about 1.02 A [120], so

these limits still give us much to work with.

7.4.3 Calibration

For a more accurate and precise current-magnetic field calibration, we use the rubid-

ium atoms as magnetic field sensors in a double-resonance spectroscopy technique [2,

39, 123]. This method involves a frequency-scanning microwave field and an optical

pump beam resonant with the D2 f = 2 → f ′ transition. This beam initially optically
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pumps the electron to the f = 1 ground state. In a magnetic field, the f = 2 and

f = 1 ground state hyperfine levels each experience Zeeman splitting, with a linear

gyromagnetic ratio of γg = ±0.7 MHz/G [50]. This splitting creates seven unique mi-

crowave transitions that are separated in energy by the Larmour frequency fL = γgB.

By scanning the microwave frequency, there are certain frequencies in the sweep that

are resonant with one of these transitions, thereby transitioning the electron from the

f = 1 to the f = 2 state. The atom then immediately absorbs light from the resonant

pump laser beam, and its transmission, as monitored by a photodiode, experiences a

dip.

With an arbitrary field direction, all seven dips may be visible during a given scan.

Operationally, however, the number of dips depends on the direction of the mag-

netic field. If it is oriented along the axis of the cavity or parallel to the microwave

polarization, only three dips emerge [Figure 7.12(a)]; when the field is oriented trans-

verse, four dips emerge [Figure 7.12(b-c)]. In these two special cases, the peaks are

separated by twice the Larmor frequency, and the spacing depends linearly on the

magnetic field strength.

The first step of calibration is to null the magnetic field. Zero magnetic field is

determined by the combination of x, y, and z currents, i.e. (-0.125, 0.15, -0.385) [A],

that collapse all seven dips to a single dip with minimum width. The width of this

single peak is about 150 kHz, and we take this as an estimate for the ground state

decoherence rate γI/2π.

Next, we apply fields along each of the three axes in turn, scanning from negative to

positive field directions and monitoring the spacing between the dips [Figure 7.12(d-

f)]. Converting from ∆f to B, a linear fit of B(I) = aI + b [mG] determines the coil

calibration parameters given in Table 7.2.
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(c)

(f)

(a)

(d)

(b)

(e)

Microwave detuning (MHz)

Figure 7.12: Magnetic field-current calibrations using double-resonance microwave-
optical spectroscopy. (a-c) Sample spectra from a magnetic field applied along the
(a) x-, (b) y-, and (c) z-axes, for a fixed microwave power. As explained in the text,
the average spacing between the dips (marked with red stars) is proportional to the
magnetic field. (d-f) In the weak-field Zeeman regime, the average peak separation
is proportional to the magnetic field strength and the current in the Helmholtz coils.
The results of linear fits to these data, their slopes a and intercepts b, are summarized
in Table 7.2. The vertical error bars, representing the standard deviation, are smaller
than the markers.

a (mG/A) b (mG)

X 645(2) 83(1)

Y 644.7(3) -95.6(2)

Z 686.2(4) 257.3(4)

Table 7.2: Calibration parameters for the Helmholtz coils. Slope a and intercept
b parameters for the linear calibration from current to magnetic field, i.e. B(I) =
aI + b [mG], corresponding to the fits shown in Figure 7.12(d-f).

The field uniformity was never measured for these coils. Based on the coil size,

we assume that the uniformity is quite good. We previously saw the effect of field
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inhomogeneity caused by a steel translation stage used for tuning the cavity endcap.

When magnetized, it produced a noticeable broadening of the zero-field double res-

onance dip; we replaced this stage with a less magnetic one. To avoid magnetized

hardware, we used, with a few exceptions, non-magnetic (316 stainless steel) bolts

and washers on the experiment table near the cavity and vapor cell.

7.5 Vector network analyzer

The work described in this thesis relies on measurements using a vector network

analyzer (VNA). We and other members of the LeBlanc research group had not

had much prior experience using VNAs as quantitative instruments. We therefore

made many inappropriate interpretations of its measurements. Members of the Davis

research group, especially Dr. Clinton Potts, Marvin Hirschel, and Dr. Yunhu Huang,

helped us tremendously to get on the right track. The purpose of this section is to

summarize the lessons we have learned for using and interpreting VNAs properly, in

hopes it will benefit future members of the LeBlanc group.

7.5.1 Scattering parameters

Consider a device-under-test (DUT) with two electrical ports. This device accepts an

input voltage signal at one of the ports (V +
i , for i ∈ {1, 2}), transforms the signal’s

amplitude and/or phase, and emits the signal at the original port (V −
i , reflection) or

the opposite port (V −
j , transmission). A convenient way to express the transformation

is by using a matrix of complex S-parameters [124], or⎛⎝V −
1

V −
2

⎞⎠ =

⎛⎝S11 S12

S21 S22

⎞⎠⎛⎝V +
1

V +
2

⎞⎠ . (7.12)
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When V +
2 = 0, we can define the forward reflection coefficient

S11 =
V −
1

V +
1

≡ Γ (7.13)

and the transmission coefficient

S21 =
V −
2

V +
1

. (7.14)

In general, the coefficients Γ(f) and S21(f) are functions of frequency f . The return

loss quantifies the relative reflection of a signal produced by an impedance disconti-

nuity and is defined (in dB) as

RL = −20 log |Γ| = −10 log

⃓⃓⃓⃓
P−
1

P+
1

⃓⃓⃓⃓
, (7.15)

while the insertion loss quantifies the relative transmission of a signal and is defined

as

IL = −20 log |S21| = −10 log

⃓⃓⃓⃓
P−
2

P+
1

⃓⃓⃓⃓
, (7.16)

where the P x
i are the power in each signal, assuming the port impedances are identical.

The parameters S22 and S12 are the reflection and transmission coefficients for the

reverse direction.

7.5.2 VNA operation

Using a VNA, the S-parameters of a device are measured as a function of frequency.

Since any arbitrary voltage signal may be decomposed as a sum of sines and cosines,

it is sufficient to use a single main oscillator that sweeps over a range of frequencies;

the parameters are determined for every point during the sweep. As shown in the

block diagram of Figure 7.13, the VNA has two ports that connect to the two DUT

ports. At a given time, a switch sends the sweeping main oscillator to either Port 1 to

measure the forward parameters or to Port 2 to measure the reverse parameters. The
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Figure 7.13: Schematic of a two-port vector network analyzer (VNA). A VNA measures the frequency-dependent
RF/microwave reflection or transmission coefficients of a given device under test (DUT). The instrument consists
of a main swept-frequency oscillator that is amplified and switched between one of two ports of the DUT. The
transmitted and reflected signals on each port are sampled by an RF directional coupler and down-mixed with a fixed
intermediate frequency (IF) reference signal. After filtering the mixer outputs, the signals’ amplitudes and phases
are digitized, processed, and displayed on the front panel screen. The common user-defined settings are labeled in
red, and described in Section 7.5.3.
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S-parameters are obtained by comparing the amplitudes and phases of the voltages

that exit and enter the two ports. Figure 7.13 shows a pair of directional couplers

on each port line: one directional coupler samples the outgoing wave, and the other

samples the ingoing one. The sampled signals are individually down-mixed with a

swept IF/local oscillator signal. The frequency of the local oscillator is such that

the output frequency coincides with the center frequency of an IF bandpass filter.

The filtered signal is digitized, processed, and the desired scattering parameters are

displayed on the screen.

7.5.3 Key Parameters

The signal generation and processing of a VNA are largely self-contained. It re-

ports S-parameters of the DUT referenced against internal signals. This means there

are relatively few user-defined parameters. The following describes four configurable

parameters that users should be aware of:

� Span and center frequency: These parameters adjust the extent and center

of the main oscillator frequency sweep. These parameters typically take values

in MHz to GHz.

� IF Bandwidth: This is the width in frequency of the bandpass IF filter, with

typical values in Hz to kHz. The narrower the bandwidth, the less spectral

noise is averaged with the desired signal. However, there is a trade-off between

lower noise and longer sweep times.

� Power: The S-parameters of linear devices will not usually depend on the power

of the main oscillator signal. However, nonlinear devices may be sensitive to

this power. The power may be adjusted manually and takes values between -20

and 0 dBm.
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� Sweep Points: This has typical values between 201 and 10001. More points

increase the total sweep time.

7.5.4 Display modes & coupling
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Figure 7.14: A critically-coupled S11 VNA trace in three different display modes. (a)
Linear magnitude (reflection coefficient). (b) Logarithmic magnitude (return loss,
measured in dB). (c) Polar (the real and imaginary parts of the reflection coefficient).
It also includes separate over-coupled (black, dashed) and under-coupled (red, dashed-
dot) traces for comparison.

While the VNA can display S-parameters in a number of different ways, we want

to highlight only three: linear magnitude, logarithmic magnitude, and polar (real

& imaginary). In Figure 7.14, the same critically-coupled cavity resonance signal is

displayed in each of these modes. For simplicity, we consider the S11 parameter.

� Linear Mag.: This mode displays the absolute value of the reflection coefficient

|Γ(f)| versus the swept frequency f . These values are unitless. This mode is

useful for getting a rough measure of the cavity resonance width.

� Log. Mag.: This mode displays the return loss (RL; see Equation 7.15) versus

the swept frequency f . These values are in dB. Because of the large dynamic

range, the Log. Mag. mode is useful for precisely tuning the cavity resonance

frequency f0 to a desired frequency.
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� Polar: This mode displays the imaginary part ℑ[Γ(f)] versus the real part

ℜ[Γ(f)]. Far from any cavity resonance, the polar trace forms circular loops,

roughly centered around the origin. These loops are caused by phase delay in

the coaxial cable. (The VNA has a calibration routine to remove variations

in this phase delay.) As the scanning frequency approaches the cavity resonant

frequency, the trace dips within the outside circle, forming an additional circular

loop approaching the origin. This resonant circle clearly shows the extra phase

change experienced by a wave near a DUT resonance [125]. The polar display

mode is useful for determining the coupling into the cavity: if the small loop

passes through the origin, then the cavity is what’s called critically coupled; if

the loop encloses the origin, it is over-coupled; if it does not enclose or pass

through the origin, the cavity is under-coupled.

The energy decay rate due to internal dielectric or resistive dissipation inside the

cavity is κint; the decay rate due to dissipation from external connections and circuitry

is κext. The total decay rate κtot = κint + κext. The relative strengths of the loss

channels in the cavity system are related to the coupling, as listed in Table 7.3.

The decay rate κi is related to a device-specific quantity called the quality factor

or Qi = 2πf0/κi. This figure of merit can be thought of as the number of oscillations

undergone by a resonator before it damps out. Equivalently, it can be defined as [124]

Q = 2πf0
(average energy stored)

(energy loss/second)
(7.17)

near the resonant frequency. The higher the Q for a given f0, the narrower the

resonance and the smaller the loss. In accordance with the total decay rate definition,

the total quality factor is defined as

1

Qtot

=
1

Qint

+
1

Qext

. (7.18)
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Because of the loading to external connections and circuitry, Qtot is also known as

the “loaded Q”; Qint is sometimes known as the “unloaded Q” [124, 126].

Table 7.3: Table showing cavity coupling relationships.

Critical κint = κext Qint = Qext

Over κint < κext Qint > Qext

Under κint > κext Qint < Qext

7.5.5 Quality factor measurements

The internal and external quality factors are determined using the full complex S11

data from the polar display mode. (The internal quality factor cannot be determined

from a transmission measurement, because a reference baseline is absent [126].) We

can fit to the reflection data a general model for a notch resonator [126, 127]

S11(f) = aeiαe−2πifτ⏞ ⏟⏟ ⏞
environment

[︃
1− (Qtot/|Qext|eiϕ

1 + 2iQtot(f/f0 − 1)

]︃
⏞ ⏟⏟ ⏞

ideal resonator

, (7.19)

where the first part of the equation represents the response of factors external to the

cavity; a, α, and τ are the amplitude, phase shift, and electronic delay of the cable.

The second term is a model for an ideal resonator, where the phase shift ϕ is caused

by the cable-cavity impedance mismatch. After fitting, Qint is determined from the fit

parameters and Equation 7.18. A successful fit to a cavity resonance trace is shown

in Figure 7.15.

One early, repeated mistake was attempting to estimate the cavity quality factor

using the linear or log magnitude display modes. In the linear mode, we would find

the full width at half-maximum (FWHM) of the |Γ| resonance dip. The issue with

this approach is that the information contained within the complex phase is absent.
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Figure 7.15: Cavity resonance S11 reflection coefficient trace and fit as a function of
the idler detuning δI. The resonance spectral dip sits on a sloping background due to
the coaxial cable “environment.” By fitting Equation 7.19 to the trace, the resonance
and background parameters are independently determined. The trace shown here
has a fitted Qtot = 10 185(6) and Qext = 19 315(9), from which we compute Qint =
21 550(30).

Additionally, the resonance dip sits on a sloping background, making the full depth

of the dip an ill-defined quantity. Usually, estimates of Qtot using the linear mode are

up to 20% off the true value. Using the log magnitude mode has similar difficulties,

not to mention the different units and logarithmic scaling.

7.6 Microwave Cavity

7.6.1 Waveguides and cavities

Freely propagating electromagnetic waves have wave solutions where both the electric

and magnetic field components are orthogonal to each other and to the ẑ propagation

direction; these are called transverse electro-magnetic (TEM) waves. In confined

waveguides with conducting walls, the components of a traveling electromagnetic

field are not generally transverse. One of the components sometimes has a non-
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zero longitudinal component: waves with Ez = 0 are called “transverse electric”

(TE) and those with Bz = 0 are called “transverse magnetic” (TM) waves [90]. By

terminating the two open ends of a waveguide, a resonant cavity may be formed. In

this enclosed, confined space, electromagnetic energy exists as oscillating, standing

waves. The conducting boundary conditions produce a set of TE and TM modes with

various resonant frequencies and unique field distributions. Maxwell’s equations can

be solved to determine the modes and their properties.

7.6.2 Design & Construction

Our microwave cavity was designed and machined by Dr. Clinton Potts. The di-

mensions of the microwave cavity are shown in Figure 7.16, having a fixed, internal

radius a = 29 mm, and length d = 53(2) mm that is adjustable over a finite range

with an endcap attached to a micrometer translation stage [2, 59]. The cavity is not

a perfect cylinder. A thin ring of 2 mm height and 2 mm width is machined onto

the endcap. This ring breaks the degeneracy between the TE011 mode and the lossier

TM111 mode [128–130]. By breaking this degeneracy, almost all of the microwave

energy is coupled into the desired, high-Q mode. Additionally, the TE011 mode has

no current flowing through metal seams of the cavity, giving a higher quality factor.

This fact allows for optical access holes in the cavity walls.

The quartz vapor cell resides in the center of the cavity, aligned along the x-axis,

with the rectangular sides square to the y- and z-axes. The dielectric properties of the

quartz tend to draw in and concentrate the magnetic mode component inside the cell

volume, making the microwave power more spatially uniform than without the cell.

With the cell in place, we precisely move the endcap to tune the resonance frequency of

the cavity TE011 mode to the 87Rb ground state transition, ∆EHF/h = 6.834 682 GHz.
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Figure 7.16: The geometry of the cylindrical microwave cavity in cylindrical coor-
dinates. The cavity’s radius a and length d determine the frequency and shape of
the TE011 mode. The thin ring at z = 0 breaks the degeneracy between the TE011

and TM111 modes. The magnetic component B dwells primarily in the center of the
cavity, overlapping with the 87Rb vapor cell, and oscillating along the z-axis.

As the ground state magnetic-dipole transition is weak, the cavity mode enhances this

transition probability.

Microwave power to the cavity is supplied by a low-noise signal generator (SG1,

AnaPico APSIN12G) via 2 m-long coaxial cable (Mini-Circuits 141-2MSM+). This

cable attaches to a coupler pin that penetrates into the cavity and radiates the electric

field of the microwave signal parallel to the TE011 mode’s circulating electric field [128].

To do this, the pin enters the cavity along an axis that is 8 mm offset from the radial

plane.

The TE011 mode and performance of this vapor cell/cavity design were first sim-

ulated using COMSOL software using the geometry and dielectric properties of the

quartz vapor cell and stem. The results are shown in Figure 7.17(b-e); panels (b-c)

represent the powers of the magnetic component and (d-e) the electric component.

The simulation gives a resonant frequency of around 6.8 GHz and an internal quality
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factor of Q ∼ 27 000 [59]. With the simulation results, we calculated a mode volume

of 9.19 cm3 according to the equation [34]

Vm =

∫︁
Vcav

|B(r)|2/µ(r)
max (|B(r)|2/µ(r))

, (7.20)

where Vcav is the internal volume of the microwave cavity. Based on this design, the

cavity was machined out of low-oxygen copper, and the internal surface was given a

high-quality, polished finish.

7.6.3 Cavity mode solutions

The electromagnetic modes functions of a cylindrical cavity are well-known [124].

We won’t repeat these derivations; however, we will provide some intuition for the

symmetry of the modes, quote the form of the functions, and then plot the TE011

mode of interest.

All modes have the same cylindrical symmetry as the cavity and are characterized

by three “quantum” numbers imposed by the boundary conditions and corresponding

to the three separable cylindrical variables: n (azimuthal ϕ); m (radial ρ); and ℓ (axial

z). Since the atoms respond to the magnetic component of the mode, we restrict our

attention to TEnmℓ modes that have magnetic fields overlapping the cell. The quality

factor of these modes is Qnm ∼ 1− (n/p′nm)
2, where p′nm is one of the roots of the J ′

n

Bessel function; this means that greater field enhancement is possible when n = 0, or

for the TE011 mode.

Because the fields are single-valued, they must be periodic in ϕ, i.e. Fi(ρ, ϕ, z) =

Fi(ρ, ϕ+ 2π, z), where Fi represents the ith component of the electric E or magnetic

B fields. The azimuthal part will therefore be a sine or cosine of nϕ, and the field

will have 2n azimuthal nodes. Along the axial direction, the terminating boundaries

produce an analogous infinite square well scenario. The axial parts will therefore be a
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sine or cosine of πℓz/d, where ℓ ≥ 1. Solutions to the radial part are Bessel functions,

owing to the cylindrical symmetry of the cavity, analogous to the modes of a vibrating

circular drumhead. The field is finite at ρ = 0, so only Jn Bessel functions of the first

kind (or its derivative) are permitted. The conducting walls require that the electric

field goes to zero at ρ = a, enforcing the (p′nmρ/a) argument of the Bessel functions.

The magnetic and electric components of the TEnmℓ modes of a cylindrical cavity

are [124]

Bz = B0Jn

(︃
p′nmρ

a

)︃
cos(nϕ) sin

(︃
ℓπz

d

)︃
, (7.21a)

Bρ =
βaB0

p′nm
J ′
n

(︃
p′nmρ

a

)︃
cos(nϕ) cos

(︃
ℓπz

d

)︃
, (7.21b)

Bϕ =
−βa2nB0

(p′nm)
2ρ

Jn

(︃
p′nmρ

a

)︃
sin(nϕ) cos

(︃
ℓπz

d

)︃
, (7.21c)

Eρ =
ikηa2nB0

(p′nm)
2ρ

Jn

(︃
p′nmρ

a

)︃
sin(nϕ) sin

(︃
ℓπz

d

)︃
, (7.21d)

Eϕ =
ikηaB0

p′nm
J ′
n

(︃
p′nmρ

a

)︃
cos(nϕ) sin

(︃
ℓπz

d

)︃
, (7.21e)

Ez = 0, (7.21f)

where the propagation constant

βnm =

√︄
k2 −

(︃
p′nm
a

)︃2

(7.22)

is like a generalized wavenumber, B0 is the amplitude, and where η =
√︁
µ0/ϵ0 and

k = ω/c. The resonant frequency of the cavity is determined from βnm to be

fnmℓ =
c

2π

√︄(︃
p′nm
a

)︃2

+

(︃
ℓπ

d

)︃2

, (7.23)

where c is the speed of light in vacuum. In the TE011 mode, Hϕ = Eρ = Ez = 0.

Figure 7.17(a) shows the magnitude squared of the magnetic field B2
tot = B2

ρ +B2
z for

a 2D slice along the axis of the cavity; the pump laser beam and vapor cell regions are
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also highlighted. By substituting the physical cavity dimensions into Equation 7.23,

we calculate a resonant frequency of 6.910 05 GHz, reasonably close to the target

frequency. Of course, this model does not capture the dielectric properties of the

vapor cell, which are accurately considered in the COMSOL simulations.

(a) (b) (c)

(d) (e)

Figure 7.17: Cavity TE011 mode structure. (a) A 2D axial cross-section of the cavity’s
magnetic power distribution, proportional toB2

tot and calculated from Equations 7.21a
and 7.21b. The vector field shows the direction and amplitude of the instantaneous
magnetic field. The rectangular cross-sections of the vapor cell and pump laser beam
are outlined. (b-e) Calculations of the cavity TE011 mode power performed in COM-
SOL, considering the geometry and dielectric constants of the quartz cell. The images
show the transverse and axial cross-sections of the magnetic (b & c) and electric (d
& e) field powers. Images courtesy of Bahar Babaei.

7.6.4 Characterization

As described in Section 7.5.5, the cavity’s internal, external, and total quality factors

are determined by fitting to the complex S11 reflection data. One such fit is shown

in Figure 7.15. As will be discussed in Section 7.7.2, the internal quality factor

depends on atomic deposition on the cell inner wall, which is controlled by the cell’s

temperature. The external quality factor depends on the position and dimensions of

the coupler pin that penetrates the cavity [131]. Power transmission into the cavity
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is maximized when it is critically coupled, or Qint ≈ Qext [124]. Therefore, we use a

bench grinder to make small adjustments to the length of the coupler pin until this

condition is satisfied. We measure internal and external quality factors of ∼ 20k.

The coaxial transmission line connecting the signal generator to the cavity also

introduces some power loss. We directly measure the S21 insertion loss of this cable

to be about 3 dB. This is consistent with the -6.3 dB background return loss - there

and back again - obtained from the cavity S11 resonance fits.

7.7 Atomic vapor cell

7.7.1 Cell description

Inside the cavity is a sealed, rectangular quartz cell manufactured by Precision Glass-

blowing. It has external dimensions of 30 x 12.5 x 12.5 mm (1 mm thick walls) and

contains enriched 87Rb. It has a long cylindrical stem with a diameter of 4.1 mm

that protrudes out of the center of one of the small faces; the stem is gently clamped

in place by a support structure that is water-cooled to about 16◦C. In addition, the

cavity is wrapped with silicone thermal heating pads and a thermal enclosure; the

cavity region is temperature-stabilized at 37◦C.

Temperature is a key parameter of any warm alkali atom system. Specifically,

rubidium has a melting temperature of 39.31◦C; the vapor pressure, and hence the

atomic density and optical depth, increase exponentially with temperature [50].

7.7.2 Influence on the cavity

Because the vapor cell is sealed, colder atoms condense out of the gas phase onto

the inner cell wall. A thin metallic film of rubidium forms on the wall, interacting

with and scattering the microwave cavity mode. This reduces the cavity’s internal

125



Chapter 7. Experiment 7.7. Atomic vapor cellChapter 7. Experiment 7.7. Atomic vapor cellChapter 7. Experiment 7.7. Atomic vapor cell

-2 0 2
Idler detuning I/2  (MHz)

60

40

20

0
Re

tu
rn

 lo
ss

 (-
dB

)
(a)

30 40 50 60
Temperature C

0

10

20

30

Ca
vi

ty
 Q

 (×
10

3 )

(b)

Qint

Qext

30

40

50

60

Te
m

pe
ra

tu
re

 C

Figure 7.18: The influence of the vapor cell temperature on the microwave resonance.
(a) Return loss traces for the cavity held at temperatures between 30◦ and 65◦C.
The traces are vertically offset in -5 dB increments. (b) The extracted Qint and Qext

parameters for the traces in (a) as a function of temperature. The vertical error
bars are smaller than the marker points. At low temperatures, the cavity is under-
coupled but becomes over-coupled at higher temperatures. The external coupling is
unaffected by temperature. The blue (dashed, Qint) parabolic and magenta (dashed-
dotted, Qext) linear fits are “guides to the eye”, and intersect at about 43◦C, where
the cavity is critically-coupled.

quality factor. At higher temperatures, however, the atoms are less likely to dwell on

the cell wall and form a film8. By heating the cavity and water-cooling the stem, we

encourage atoms to condense in the stem outside of the cavity, thus preserving the

cavity resonance.

The effect of temperature on the cavity resonance is seen in Figure 7.18(a). The

width of the cavity resonance narrows and then broadens again, as the tempera-

ture is varied between 30◦ and 65◦C. By fitting these resonances as described in

Section 7.5.5, we extract the internal and external quality factors as a function of

temperature [Figure 7.18(b)]. The external quality factor is almost independent of

temperature. Due to the dissipation of the metallic film, the internal quality factor

8High intensity microwave power (e.g. 30 dBm) also encourage desorption of the atomic film.
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increases monotonically with temperature over this range. The internal and external

Qs coincide at roughly 43◦C, at which point the cavity is critically coupled.

7.7.3 Optical Depth

As mentioned above, the optical depth and atomic density also vary with temperature.

The optical depth of a material is defined as [132]

OD = − ln

(︃
Pout

Pin

)︃
, (7.24)

determined from the input (Pin) and output (Pout) optical powers. In the case of the

atomic vapor cell, the transmitted optical power of the pump beam is reduced due to

resonant atomic absorption (Pabs), but also from scattering off the cell glass walls and

the hole aperture (Pscat). The atomic density may be determined by the optical depth

due only to absorption, or ODabs. To determine this from experimental parameters,

we begin with a statement of energy conservation, or

Pout, on = Pin − Pabs − Pscat. (7.25)

When the laser is off-resonance,

Pout, off = Pin − Pscat. (7.26)

Using Equation 7.24, this gives us two optical depth equations, both on- and off-

resonance:

exp(−ODon) =
Pout, on

Pin

= 1− Pabs

Pin

− Pscat

Pin

, (7.27)

exp(−ODoff) =
Pout, off

Pin

= 1− Pscat

Pin

. (7.28)

By subtracting these two equations and adding one, the Pscat terms cancel, and we

obtain

1 + e−ODon − e−ODoff = 1− Pabs

Pin

=
Pout, abs

Pin

≡ e−ODabs , (7.29)
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where Pout, abs is the output power only considering absorption. This can be alterna-

tively expressed as

ODabs = − ln
(︁
e−ODon − e−ODoff + 1

)︁
, (7.30)

or, in terms of measured optical powers,

ODabs = − ln

[︃
Pin − (Pout, off − Pout, on)

Pin

]︃
. (7.31)
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Figure 7.19: Measured and theoretical optical depth versus temperature. The mea-
sured optical depth is independent of the cavity temperature, with an average value
of 0.05 shown by the dashed horizontal line. In equilibrium with the heat source, the
optical depth of a theoretical 87Rb vapor rises exponentially with temperature. From
these data, we conclude that the cold cell stem temperature primarily determines the
atomic density and optical depth.

We measure a constant absorption optical depth as a function of temperature,

as shown in Figure 7.19, with an average value of 0.05(1), meaning only about 5%

of the input resonant light is absorbed. This behavior is quite different from the

exponentially rising optical depth of a uniformly heated vapor cell [50, 75]. The

critical difference here is due to the water-cooled stem: the rubidium vapor pressure

is ultimately set by the temperature of the coldest part of the cell through a “reservoir”
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effect [133]. Because the laser’s frequency is stabilized during these measurements,

the 0.05(1) value represents the optical depth of only the resonant velocity class.

The optical depth is related to the atomic density N as

ODabs = NσL, (7.32)

where σ is the Doppler-broadened atom-photon cross-sectional area [see Section 4.2],

and L is the width of the cell. We calculate a number density for the resonant velocity

class of N = 3(1)× 1017 m−3, about 100 times higher than the expected density for

a rubidium vapor at 16◦C, Nexp = 3.65× 1015 m−3 [50, 75]. Although the cold stem

regulates the density, this discrepancy may imply that the main cell body and stem

are not in thermal equilibrium.

7.7.4 Temperature Control

(a) (b)

Figure 7.20: Images of the 3D-printed ABS oven. Images of the 3D-printed ABS
oven, showing (a) the assembled oven from the outside, and (b) the inside, which is
coated with foil tape for thermal insulation. The oven has holes for the pump laser
and grooved panels for easy removal of the oven without disturbing the cavity end cap
and cell stem. The red silicone heating pads are also visible in (b). Photos courtesy
of Prof. Andal Narayanan.
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This section describes how we regulate the temperature of the cavity-vapor cell sys-

tem using a combination of heating and cooling elements with temperature shielding

and feedback control.

To control the cavity-cell temperature, we form a closed feedback control loop

composed of a heating element, a thermocouple, a temperature controller, and an

electrical relay. Silicone electrical heating strips are wrapped around the cavity and

secured to the aluminum clamps using Kapton tape9. A K-type thermocouple is taped

to the top of the microwave cavity. An Omega CN740 temperature controller reads

the thermocouple temperature value and compares it to a set temperature value. If

the actual temperature is lower, the controller sends a high logic pulse to the electrical

relay, which opens the heating elements to a 120 VAC drive10. The Omega device has

a pre-programmed routine to automatically test and tune the P, I, and D parameters

of the controller.

The first thermal enclosure for the cavity was formed from a layer of aluminum

foil, leaving holes for the laser beam, the coaxial cable, heater wires, the cold stem,

and the endcap post. It was difficult to create an effective foil enclosure with so many

access points. With (at least) daily adjustment of the cavity endcap, the foil was

regularly disturbed, producing large gaps in the enclosure where heat could escape

convectively. We then designed and 3D-printed an oven with precisely placed and

sized holes. This oven, seen in Figure 7.20, features tongue-and-groove slots that

mate from above and below the endcap and cold stem; this allows the oven to be

9We have since discovered that loops of copper wire with the ends twisted tightly together holds
the heating elements in place much better than tape.

10The downside of electrical vapor cell heating is the introduction of additional 60 Hz magnetic
field noise [134]. We have observed broadening and reduction of our generated signals when the
relay is open. These deleterious effects can be averaged out or sidestepped if the relay cycle period is
long and the duty cycle is as low as possible. A superior solution, however, is to use hot air heating
of the cell and cavity [134].
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easily lifted off the cavity and replaced as a single piece without disturbing the cavity

and heating elements underneath11.

Because of the elevated operating temperatures, it was necessary to make the oven

out of a more durable ABS plastic. The durability advantage also makes ABS a more

difficult material to print compared to more malleable plastics such as PLA. Multiple

printing trials failed due to delamination between the layers of the thin oven walls.

These issues were remedied by (1) operating the 3D printer inside an enclosure; this

keeps the entire print at a higher temperature, helping the layers bond better; and

(2) increasing the wall thickness from 1.5 to 3 mm. As a safety note, printing ABS is

known to release noxious, irritating fumes. To reduce this risk, we placed a soldering

fume extraction snorkel arm near the door of the printing enclosure. After printing,

the oven’s interior was coated with metallic adhesive tape.

7.8 Spectrum Analyzer

7.8.1 Principle of operation

Important information about a signal can be gleaned from the spectral frequency

components that compose it. The purpose of a spectrum analyzer is to measure the

frequency and strength of these components in an electrical signal. Mathematically,

the way to do this is with a Fourier transform [135, 136]. In practice, a device samples

and digitizes the input analog waveform with a sampling rate fs, and then a digital

processor computes the discrete Fourier transform. This is how “real-time” spectrum

analyzers operate. For this to work, fs must be greater than the Nyquist frequency

of the signal, or twice the highest frequency component in the signal. Real-time

11Despite somewhat reducing convective thermal dissipation, this oven still conducts heat away
to the environment via the copper endcap mount, the aluminum base plate, and even the oven
walls. Future oven designs should also consider and eliminate these sources of conductive thermal
dissipation.
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Figure 7.21: Schematic of a swept-tuned spectrum analyzer. The input signal is preconditioned with a preamplifier
and a variable attenuator. Frequency scanning is achieved by combining the conditioned signal with a frequency-
sweeping, IF/local oscillator signal on a mixer. The IF gain stage brings the scanning mixed signal into a usable
dynamic range. After passing through the IF filter, the signal is further conditioned before being digitized and
displayed. The common user-defined settings are labeled in red, and described in Section 7.8.3.
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spectrum analyzers have the advantage that they capture a spectrum in a single shot,

making them ideal for capturing transient signals. In addition to the amplitude, they

also contain the phase information at each frequency. The disadvantage of real-time

analyzers, however, is that analog-to-digital converters (ADCs) have historically had

sampling rates limited to a few GSa/s; this is not enough to measure signals around

6.8 GHz in our lab. Faster ADCs are becoming available, but they are expensive,

particularly when combined with an adequate digital processor.

A more economical approach is called a “swept-tuned” spectrum analyzer. To

understand its operation, first imagine a hypothetical narrow bandpass filter with a

tunable central frequency. Only the signal frequency components that lie within the

filter bandwidth are transmitted to and averaged by a power detector. By sweeping

the filter’s central frequency across the frequency region of interest, the transmitted

power as a function of the filter frequency can be mapped out, with a spectral resolu-

tion set by the filter bandwidth. A filter with a narrower bandwidth will more closely

approximate the true spectrum but at the expense of longer sweep times. Because

the filter is swept, this method is better suited for measuring continuous or periodic

signals. A disadvantage of this method is that the phase information of the spectral

components is lost.

In reality, a bandpass filter’s central frequencies cannot be readily scanned. It’s

much easier to have a fixed filter and to sweep the frequency of the signal. The input

signal frequency is down-mixed such that the frequency of interest always coincides

with a fixed frequency—but tunable bandwidth—bandpass filter. This scheme is

depicted in the block diagram of Figure 7.21, an adaptation of figures found in [136,

137].
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7.8.2 Safety

Spectrum analyzers are very sensitive to DC voltages which can easily damage the

mixers and attenuator. Some instruments have an AC-coupling mode: a blocking

capacitor eliminates any DC offset, but also attenuates low-frequency signals. Our

Rohde & Schwarz instrument is AC coupled by default but can be switched to DC

coupling if sensitive low-frequency measurements are required. In this case, it is

important to be vigilant against DC signals entering the instrument.

7.8.3 Key Parameters

A modern spectrum analyzer is generally quite flexible and sophisticated in the signals

it can measure. There are many user-defined device measurement parameters that

enable this flexibility. We will briefly summarize and explain the most important

parameters that the user should be aware of:

� Span & Center: The span (∆f) and center (f0) control the local oscillator

frequency sweep range and thus the range of frequencies in the sweep.

� Preamplifier: An additional amplifying gain is sometimes applied to the input

signal for improving the instrument’s sensitivity. It is mostly beneficial for weak

signal measurements. In general, this gain is frequency-dependent, which should

be considered for precise level measurements [136]. Our Rohde & Schwarz

spectrm analyzer has nominal preamp gain values of 0, 15, and 30 dB.

� Reference level & vertical scale: These parameters control the IF gain

stage. The reference level is the maximum power level (in dBm) read by the

ADC and displayed on the instrument. Overload occurs when the signal power

exceeds the reference level. While a spectrum analyzer can measure the power
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of signals across a large dynamic range, it cannot measure the entire range at

once [136]. The vertical scale (set in dB) selects a range of powers below the

reference level to be recorded and displayed.

� Attenuation: The input variable attenuator is used to prevent overloading of

the ADC, gain compression, and harmonic distortion [137]. When measuring

weak signals, the attenuation should be 0 dB for maximum sensitivity. For

strong signals, at least 10-30 dB of attenuation may be necessary.

� RBW: This is the bandwidth of the IF filter and therefore the smallest spectral

resolution that can be measured with the instrument. If two narrow spectral

peaks are separated by a frequency less than the RBW, they will not be resolved.

On a good instrument, the RBW can be tuned between 0.1 Hz to around 10

MHz. Measurements with a smaller RBW more closely approximate the true

signal’s spectrum; it also reduces the noise in the signal.

� VBW: The video low-pass filter helps smooth the noise in the measured trace.

In general, the level of noise smoothing depends on the VBW and the RBW.

� Sweep time: Usually the sweep time takes values according to

tsweep ≥ k
∆f

RBW × VWB
, (7.33)

where k is a device-specific parameter [136]. The inequality shows that the

sweep time may be manually adjusted longer than the minimum value, which

is often set automatically.

� Sweep Points: The number of frequency points displayed in the trace. The

trace resolution, or the pixel width on the display, is unrelated to the RBW.
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7.8.4 Detectors

Digital spectrum analyzers show the measured signal power within discrete frequency

bins. This discreteness is artificial, and there may be significant power variation

within a single bin [136, 137], especially due to noise. The chosen “detector” option

determines which value should be shown on the display for a given frequency bin.

� Max./Min. peak: Displays the largest/smallest power value within the fre-

quency bin. The Max. peak detector is useful for measuring upper limits.

� Auto: Displays both the max and min peak values simultaneously.

� Sample: Displays the power value at the bin edge.

� RMS: Displays the root-mean-squared value of all the powers measured within

the frequency bin. This detector is especially useful for revealing weak signals

buried in the noise.

7.8.5 Measurement Optimization

When measuring very weak, narrowband signals, a number of parameters generally

need to be adjusted and optimized. Figure 7.22 shows a sequence of optimizations

made on the same signal. Panel (a) shows the input signal peak using the default

instrument parameters. To illustrate small signal measurement optimization, 75 dB

input attenuation was applied in subsequent panels to hide the signal below the noise

floor. This figure then shows how the signal-to-noise ratio is improved with reduced

RBW, increased preamp gain, RMS detector, narrower span, reference level and scale

adjustment, and finally trace averaging. More details are found in the figure caption.

In practice, there are trade-offs when optimizing signal measurements. For example, a

smaller RBW provides better resolution, but increases the measurement sweep time.
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Figure 7.22: Optimization sequence of a small signal measurement on a spectrum analyzer. (a) The input signal
spectrum, using the default instrument settings: 0 dB attenuation and preamplifier; 10 kHz RBW; “Auto” detector;
1 MHz span; 0 dBm reference level, and 140 dB vertical scale. (b) An input attenuation of 75 dB raises the noise
floor to artificially hide the signal. Subsequent adjustments to other settings will reduce the noise again and reveal
the signal peak. (c) The spectra of various RBW settings, offset horizontally by 20 kHz; a 1 Hz RBW is selected.
(d) The spectra of various preamplifier gains, offset horizontally by 20 kHz; a 30 dB preamp gain is selected. (e) The
spectra of various detectors, offset horizontally by 20 kHz; detector “RMS” is selected. (f) Decreasing the span to
1 kHz. (g) Reducing the reference level to -40 dBm and the vertical scale to 70 dB. (h) Reducing the noise further
by trace averaging 64 times. Each sweep takes about 4.2 seconds, meaning the entire average requires almost 4.5
minutes.
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7.8.6 Zero-span mode

Up to this point, we have primarily described the spectrum analyzer operating in

spectral mode. “Zero-span” is another display mode that is especially useful for time-

dependent signals. This mode shows temporal variations of the detected power at and

around a given frequency. As the name suggests, in this mode, the span is reduced to

zero and the IF/local oscillator no longer scans around the center frequency. Instead,

the detector averages all frequency components that lie within the RBW. If the RBW

is too large, then it will sample and average over too much noise, thereby reducing

the signal-to-noise ratio and changing the offset. If the RBW is too small, then it may

not capture the temporal dynamics of the signal. To “freeze” the time-varying signal

on the display, the spectrum analyzer may be triggered off an external TTL pulse or

the time trace itself. In Figure 7.23, we show the same 10 kHz amplitude-modulated

signal in spectral and zero span. The zero-span panel reveals the result of various

RBW values.

7.8.7 Programming

In typical operation, instrument parameters are manually set from the front panel of

the spectrum analyzer; trace data is similarly saved to file. In measurements that

involve scanning certain experimental parameters, this process of setting instrument

parameters and saving traces becomes very tedious and time-consuming. Fortunately,

the parameters and operations of modern spectrum analyzers can be programmed

remotely using the Standard Commands for Programmable Instruments (SCPI) pro-

tocol. SCPI commands are ASCII strings that are sent to the instrument via a serial

port or LAN connection. Every front-panel operation has a corresponding SCPI com-

mand, therefore the instrument can be programmed in spectral or zero-span modes.
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Figure 7.23: Comparing the spectral and zero-span modes of a signal amplitude-
modulated at 10 kHz. (a) In spectral mode with an RBW of 20 Hz, adjacent spectral
peaks are highly resolved. (b) In zero-span mode, the instrument filters out all fre-
quency components around the carrier that lie outside of the RBW range. For a 3
kHz RBW, only the carrier is measured, and the trace is constant. A 100 µs period
oscillation is revealed when the RBW is equal to or greater than the spectral peak
separation. For large RBW values, the cumulative noise of a large frequency range
raises the zero-span noise floor.

This can automate measurements and greatly accelerate data collection. Further

explanations of the programming setup and process are described in Appendix D.

Examples of Python scripts are also provided.
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...I will not leave thee...
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Chapter 8

Broad-tunable and multimode
microwave-to-optical conversion in
a warm atomic vapor

8.1 Introduction

Quantum information processing using solid-state qubits, such as superconducting

qubits or spins associated with defects in solid state systems, has shown rapid progress

in the field of quantum information technology [138, 139]. The typical operation fre-

quency of these devices is ∼1-10 GHz, in the microwave region of the electromagnetic

spectrum. Due to the inherent room-temperature thermal-photon occupation of ca-

bles and components at GHz frequencies manifesting as signal noise, practical imple-

mentation of scalable and distributed quantum networks at these frequencies poses
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a formidable challenge [140]. In recent years, progress has been made in addressing

coherent conversion of signals from the microwave to optical regimes [34, 141]. At

optical frequencies, not only are the thermal noise photons negligible at room temper-

ature, but there exist efficient single-photon detectors and technologies for quantum

state storage and reconstruction.

Several physical platforms have been used to coherently convert signals at mi-

crowave frequencies to the optical regime. These include electro- and magneto-optical

devices [142, 143], opto-mechanical structures, [144] and atoms with suitable internal

energy level spacings [145–148]. Impressive progress on improving the efficiency of

the conversion process led to efficiency near 80% [147], and the largest conversion

bandwidths reported for magnetically-coupled systems are 15 to 16 MHz [148–150],

and 100s of MHz for a superconducting resonator/quantum dot system [151]. Along

with conversion bandwidth, a transducer that can accommodate several channels of

input and output frequencies is advantageous, and tunability over input microwave

frequencies across 3 GHz width was recently reported [152]. Yet transducers that

operate over multiple optical output frequencies have not been demonstrated to date.

In this chapter, we show that a limited bandwidth input microwave signal can be

converted to a large tunable range of output optical frequencies, across 550(30) MHz.

This capacity enables information encoded in a narrow-bandwidth microwave field to

be mapped to several frequencies in the optical domain, achieving coherent frequency-

division multiplexing (FDM). The ability to tune the optical signal output over such a

large frequency range arises because of the presence of a large inhomogeneous optical

Doppler width for Rb atoms at room temperature. The Doppler width also enables an

input multiple-channel microwave idler to be simultaneously and coherently converted

to a multiple-channel optical-signal output. In addition, we demonstrate correlated
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Signal

Pump

Idler

Figure 8.1: Schematic of the atomic frequency-division multiplexing scheme. The
microwave cavity-vapor cell system acts analogously to an RF mixer, and information
encoded in idler (yellow) channels (▲, ●, ■) is combined coherently with multiple
pump (red) channels to produce many output signal (blue) channels over a range of
optical frequencies.

amplitude control of the converted multi-channel optical field with the ability to

selectively extinguish a desired output frequency channel. This action is very similar

to the frequency domain beam-splitting operation for frequency bins, demonstrated

using electro-optic modulators (EOMs) and pulse shapers [153].

Coherent frequency-division multiplexing enables qubits encoded in a microwave

frequency to be placed in any desired output optical channel within the ∼ 500 MHz

tunable range. Multiple qubits in different input microwave channels can also be

coherently mapped to the optical domain. With a channel linewidth of about 30 Hz,

this results in a large channel capacity of about 107 channels over the output tunable
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range. Thus, neutral atom systems are promising candidates as quantum frequency

processor platforms for quantum information encoded in frequency-bin qubits [154].

Microwave-to-optical conversion in a room-temperature 87Rb atomic vapor is pos-

sible through the SFG process shown in Figure 6.1, and is analogous to an RF mixer,

as illustrated in Figure 8.1. The nonlinear process uses a hybrid, magneto-optical

second-order [χ(2)] susceptibility induced in the vapor by the interaction of three

energy levels with an optical pump (electric-dipole transition) and a microwave idler

(magnetic-dipole transition) fields. (Isotropic atomic systems with only electric-dipole

transitions have a χ(2) of zero [see Section 5.4].) The idler field with frequency ωI is

supported by the TE011 mode of a cylindrical copper microwave cavity [2, 155] [Fig-

ure 8.2] and connects the |b⟩ ≡ |5S1/2, f = 1⟩ and |c⟩ ≡ |5S1/2, f = 2⟩ ground state

levels. The pump frequency ωP is chosen anywhere within the Doppler width [Fig-

ure 8.9] and connects the |c⟩ and |a⟩ ≡ |5P3/2, f
′ = 1, 2⟩ levels. We define δ as the

detuning of the pump field from the the mid-energy point between the |f ′ = 1⟩ and

|f ′ = 2⟩ excited levels. In SFG, the pump combines coherently with the idler to

generate a new optical signal field at frequency ωS = ωP + ωI [see Section 6.2.2].

8.2 Experimental characterizations & optimizations

In this section, we describe various characterizations and optimizations of the broad-

tunable SFG experiment. It builds upon the description of the experimental setup

and characterizations found in Chapter 7.

A cut-away rendering of the sum-frequency experiment is shown in Figure 8.2. The

copper cylinder supports the microwave idler mode, depicted as yellow surfaces inside

the cavity; the magnetic field of the idler mode is polarized and oscillates axially to

the cavity [2, 155], along the y-axis. The pump beam, shown in red, enters from
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5
8
 m
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Figure 8.2: Microwave cavity and the generation process. The optical pump beam
passes transversely through the cavity and cell and is polarized along the z-axis,
parallel to a weak magnetic field (not shown). The cavity’s TE011 mode (yellow)
overlaps with the pump interaction region inside the quartz vapor cell (light blue).
The double-headed arrows transverse to the beam direction show the polarization of
the pump (red) and signal (blue) beams.

the back through a small hole and propagates through the cavity and internal vapor

cell. As shown by the double-headed arrows, the pump beam is polarized along the

vertical z-axis. The interaction between the idler field, the pump field, and the atoms

generates a signal field that is polarized along the y-axis, shown by the blue double-

headed arrow. Since the signal and pump fields are automatically phase-matched,

they co-propagate out of the cavity, represented here as a purple beam.

8.2.1 Measurement process

Because the pump and signal beams co-propagate, we must discriminate the power

found in each beam. Given that the beams exit orthogonally polarized [156], a natural

option might be to use a polarizing beam splitter (PBS) to separate the components,

measuring the power in each path. In practice, the signal beam power is 60 dB weaker
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than the pump; an excellent PBS obtained from Thorlabs can only provide 34 dB of

extinction, assuming, of course, that the beam polarizations are very pure. Neverthe-

less, the signal beam would still be swamped by residual pump light. Additionally,

the maximum power of the signal beam is several hundred picowatts; it is difficult for

conventional commercial photodetectors to resolve such small powers.

Instead, to accurately determine the power in both the pump and the signal beams

we use an optical heterodyne method. We combine the two beams with a third, strong

beam with a nearby, but distinct, frequency. The frequency of this local oscillator

(LO) beam is offset from the pump by an AOM shift, fAOM = 76.6 MHz. When all

three beams impinge on the photodetector, the detector produces interference beat

notes between the pump and LO at fhet,P = fAOM, and between the signal and LO

at fhet,S = ωµ/2π + fAOM = 6.911 282 GHz. These electronic signals are amplified

(Mini-Circuits ZJL-7G+) and measured by a spectrum analyzer (Rohde & Schwarz

FSV3013).

8.2.2 Fiber coupling and waveplates

The pump-signal beams are fiber-coupled, mixed with the LO in a 50:50 fiber beam-

splitter (Thorlabs TN785R5A2), and then measured by a fiber-coupled, high-bandwidth

photodetector (EOT ET-4000AF). We use single-mode, polarization-maintaining fibers;

these have a specific axis that preferentially transmits the parallel polarization com-

ponent. Thus the fibers also act like polarizing-filtering elements. When the light’s

linear polarization angle is not precisely aligned with the fiber axis, the polarization

inside the fiber fluctuates due to temperature gradients and mechanical movemen-

t/vibration of the fiber. Therefore, we place a multi-order half-waveplate (HWP)

and a quarter-waveplate (QWP) between the cavity and the output fiber coupler

and select waveplate angles that align the pump and signal beams to the fiber axis,

145



Chapter 8. Microwave-to-optical conversion 8.2. CharacterizationChapter 8. Microwave-to-optical conversion 8.2. CharacterizationChapter 8. Microwave-to-optical conversion 8.2. Characterization

thus optimizing their respective beat signal amplitudes. Since the two beams are or-

thogonally polarized, the HWP angles that produce optimal beat interference are 45

degrees apart and must be manually alternated between measurements of each beam.

The need to always adjust the waveplates prevents us from faithfully measuring the

pump’s and signal’s beat note amplitudes in a single shot.

There is also a set of HWP and QWP before the LO beam injection fiber coupler.

The beat amplitudes also depend on the LO polarization, and all the polarizations

must match for good interference. If the LO polarization is not aligned to the fiber

axis, we observe additional, long-term fluctuations in the beat amplitudes, as large

as 10-12 dB.

8.2.3 Generated signal & linewidth

(a) (b)

Figure 8.3: Close-up heterodyne spectra of the unmodulated (b) LO-Pump line at
fhet,P and the (b) LO-Signal generated line at fhet,S, revealing a FWHM of 26(2) Hz
for both lines.

Next, we consider characteristics of the light generated on the |a⟩ → |b⟩ transition.

We see in measurements of the beat signal at fhet,S that the SFG peak has a FWHM

of 26(2) Hz, as shown in Figure 8.3(b). This peak was initially indiscernible on the

spectrum analyzer until we used a very fine RBW of ≤ 20 Hz. The narrowness of
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the line suggests that this nonlinear generation process is phase coherent; fluctua-

tions in a signal’s phase disrupt its temporal coherence and lead to a broader spectral

linewidth. Energy conservation also requires that the linewidth of the generated light

is determined by the narrowest of the input field linewidths, which, in our case, is

the microwave idler field, with a FWHM of < 2 Hz. The presence of additional

perturbations broadens or modulates the generated signal. The width of the signal

is influenced by 60 Hz modulations from the electrical heating elements, noise from

the AOM drivers’ oscillators and amplifiers, and the inherent linewidth of the laser.

The beat note peak at fhet,P has a FWHM identical to that of the signal peak [Fig-

ure 8.3(a)]. This linewidth cannot be taken as the intrinsic laser linewidth, which

is likely closer to ∼ 100 kHz. Rather, this result demonstrates that this experiment

occurs within the coherence length of the laser beam. Residual phase noise in the

generated process is similar, but somewhat less than the initial pump light itself.

The generated peak measured on the spectrum analyzer has a typical optimized

power of -70 dBm, significantly weaker than the -10 dBm pump peak power. To

ensure that the generated signal is indeed coming from the atoms, we look for a gen-

erated signal when the pump laser frequency is far-detuned from the atomic Doppler

resonance: the LO signal is present, but the generated signal is absent.

8.2.4 Magnetic field direction & amplitude

As explained in Section 7.4, orthogonal Helmholtz coils null the external magnetic

field along the x and y-axes, and provide a weak DCmagnetic field B⃗z along the z-axis.

The magnetic field strength makes a striking impact on the conversion efficiency. As

shown in Figure 8.4, conversion is strongly suppressed (by > 30 dB) at zero magnetic

field and reaches maxima at approximately ±200 mG. This behavior is well-described

by a symmetric, generalized Fano lineshape [157] that has the simplified form
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Figure 8.4: The generated signal’s response to a variable magnetic field strength B⃗z

along the z-axis. We operate at 209 mG for maximum generation. We fit a symmetric
Fano profile [Equation (8.1)] to these data, with fit parameters η′0 = 0.95(2), γB =
200(4) mG and B0 = −5(3) mG. This behavior might indicate the interaction and
interference of multiple Zeeman level resonances within the atomic decoherence width.
Error bars represent the standard deviation.

η(Bz) = η′0

[︃
2γB(Bz −B0)

γ2B + (Bz −B0)2

]︃2
. (8.1)

This expression generically represents the response of three coupled, resonant oscil-

lators with slightly different decoherence rates [157]. We determine the fit parameter

γB = 200(4) mG, and observe that γB × γg = 140 kHz ∼ γI 2π, the ground state

decoherence rate, recalling that γg is the ground state gyromagnetic ratio of 87Rb [50].

The magnetic field dependence points to the participation and interaction of mul-

tiple Zeeman levels in the generation process. At Zeeman degeneracy (i.e. zero

magnetic field), generation pathways may destructively interfere. The possibility of

multiple interfering paths is particularly interesting. We believe these effects could

be better understood by extending the theoretical model to include additional levels

with appropriate transition strengths, which will be the subject of future work [see

Section 10.2.5].
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8.2.5 Conversion bandwidth

We characterize the conversion bandwidth of the microwave-to-optical conversion

process, defined as the range of input idler frequencies that can be converted to signal

photons. To determine this, we operature a vector network analyzer (VNA, Keysight

E5063A) in S21 mode at the idler frequency: the VNA drives the microwave cavity

from Port 1 and detects the amplified photodetector beat signal from the combined

pump and signal light on Port 2. In this configuration, the LO beam does not play

a role. To see a discernible signal on the VNA, the IF bandwidth was reduced to

20 Hz, similar to the RBW values used for the spectrum analyzer. We also added a

second amplifier following the photodetector. The VNA scanned over a 10 MHz span

around the idler frequency and averaged the trace over many samples.

No generation is apparent when the laser is off resonance. When the laser is locked

on resonance and the background magnetic field is fixed at the optimal value of 209

mG along the z-direction, a peak in the S21 signal is visible with FWHM of 910(20)

kHz, as shown in Figure 8.5(a). These data also reveal two barely-resolved side

peaks. We fit to these data a model of three superimposed Gaussians, with a common

separation and width. The fit results give a FWHM of each single-Gaussian subpeak

as 478(1) kHz, which is comparable to the κtot/h = 417 kHz width of the cavity

resonance, suggesting that the microwave cavity’s linewidth limits the conversion

bandwidth of the generation process.

We also examine how the conversion bandwidth varies as a function of applied mag-

netic field, as shown in Figure 8.5(b). As the magnetic field increases, the sidelobes

separate from the main peak, while the overall amplitude of the peaks decreases. In

the higher-field case, generation is still discernible at idler frequencies far outside of

the cavity linewidth. The splitting has similarities to a Zeeman interaction. However,
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(a) (b)

Figure 8.5: (a) The raw SFG signal during a scan of δI , as driven and measured
with a vector network analyzer in S21 mode. We measure a conversion bandwidth
(FWHM) of 910(20) kHz when the laser is locked on-resonance and with an optimal z-
magnetic field of 209 mG. The dashed line is a smoothing spline used to determine the
bandwidth. No generation is visible when the laser is off-resonance (red trace). The
cavity resonance (yellow trace), as measured with the VNA in S11 mode, has a FWHM
of 417 kHz. (b) The same SFG trace as in (a), but for various z-magnetic fields:
{0.238, 0.652, 1.021, 1.390} G. The generated line splits and decreases in amplitude
as the magnetic field strength increases.

it does not match those expected by the 87Rb Larmor frequencies: the measured peak

separation varies with magnetic field as 2.7γgB. This effect is interesting, warranting

further theoretical and experimental investigation.

8.2.6 Idler and pump power

We characterize the effects of pump and idler intensities on the generation efficiency,

as shown in Figures 8.6(a) and (b). These data can be compared to Figure 5(b)

in [146], where the generated signal power increases linearly with the pump power

before eventually saturating. We assume that the idler power coupled to the cavity is

evenly distributed over the cell cross-section area. As a function of this idler intensity,

the generated power increases linearly, then saturates, exactly as in Figure 5(a) of

[146]. Figure 8.6(b) shows the efficiency exponentially decrease, since the idler power
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appears in the denominator of the conversion efficiency expression [see Equation 8.3;

also see Section 8.4 for more details on the conversion efficiency calculation].

Due to the limited dynamic range of the power stabilization control loop, we typi-

cally operate with a pump power near 76 µW, well below 500 µW to avoid photore-

fractive damage to the EOM. The 3 mm diameter pump beam gives an intensity of

∼ 3 mW/cm2, near the 87Rb saturation intensity [50]. We do not explore as large

a range in the pump intensity as in [146] (referred to as “coupling intensity” in that

reference); our data lies in the linear regime, far away from its saturation. Working

without the EOM, or with a free-space device, together with an improved power servo

loop, would permit exploration of a larger parameter space.

(a) (b)

Figure 8.6: (a) The generated signal conversion efficiency responds roughly linearly to
increased pump optical intensity in the regime below and near the saturation intensity
[see Section 4.3.1]. (b) The generated signal conversion efficiency response for various
idler intensities, as supplied from SG1. Error bars represent the standard deviation.
The largest pump and idler powers measured correspond to intensities of about 3 &
7 mW/cm2.
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8.2.7 Cavity temperature

We also characterize the SFG process at various cavity temperatures. These mea-

surements were taken over several days using a previous oven formed from a layer of

aluminum foil. The temperature was measured by a thermocouple placed inside the

oven, adhered to the top of the microwave cavity with Kapton tape. We find that the

efficiency depends weakly on temperature, as shown in Figure 8.7. In Section 7.7.3,

we observe that the atomic density (obtained from the optical depth measurements)

is very low and independent of temperature. This result is due to the vapor cell’s

stem that is water-cooled to a constant 16◦C.

The weakness of this measurement is our ignorance of the temperature of the

glass cell walls inside the cavity. Despite waiting several hours between subsequent

measurements for good thermalization, the aluminum-foil oven had large openings

around the endcap; these gaps may have produced large temperature gradients across

the cavity.
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Figure 8.7: Generation efficiency responds only weakly as a function of cavity temper-
ature. The dashed line is a linear fit to the data. We did not observe strong increase
in the SFG efficiency, which we attribute to the cold, fixed-temperature vapor cell
stem.
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8.2.8 Pump frequency scan

In addition to scanning the idler frequency as in Section 8.2.5, a key part of this exper-

iment involves scanning the pump frequency. A controlled variation of this frequency

allows us to sample the generation process across many different velocity classes of

the Doppler profile. Our primary approach was to unlock the pump laser and scan

its frequency. Because this process scans both the pump and LO frequencies con-

currently, the interference beat note frequencies are stationary. To observe temporal

variations in the SFG signal, we measure the generated peak on the spectrum ana-

lyzer in zero-span mode, synchronizing the spectrum analyzer with the sweep trigger

from the laser controller. To reduce distortion in the measured signal, we reduced

the laser sweep rate to about 18 Hz, and increased the RBW of the laser controller to

2 kHz. Using these settings, we sample the entire Doppler profile in a single sweep,

with high frequency resolution. As expected, the generation efficiency is proportional

to the velocity class occupation density and follows a roughly Gaussian profile, as

shown in Figure 8.8(b).

A 50:50 beamsplitter placed immediately before the cavity divides the pump beam

into two. The reflected beam passes through a separate rubidium vapor cell at ambient

21.6(3)◦C, and we detect the transmission through this reference cell on a photodi-

ode, as seen in Figure 8.8(a). Although there are laser power/polarization variations

through the sweep, they are relatively small compared to the depth of the Doppler

profiles. We compare this transmission signal to a rubidium transmission model [75,

158] to calibrate the sweep detuning rate: 17.24(1) MHz/ms. The uncertainty in

absolute frequency is relatively large; however, many of the final results are frequency

ranges, and systematic uncertainties generally cancel out.
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(a)

(b)

Figure 8.8: Scanning the pump laser frequency across the Doppler background. (a)
The Doppler-broadened transmission spectrum of a room-temperature rubidium ref-
erence vapor cell (outside the microwave cavity), recorded on an oscilloscope while
sweeping the pump laser frequency. The dotted line shows a transmission model curve
with good agreement to the measured trace. The laser sweep is assumed to be linear,
with the positions of the two Doppler peaks calibrating the horizontal frequency scale,
where zero frequency is taken as the midpoint between the f ′ = 1&2 levels. (b) The
generated signal measured on the spectrum analyzer in zero-span mode. This trace
was taken simultaneously with (a).
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8.3 Spin decoherence estimates

In this work, we group all decoherence effects—including transit-time decoherence ΓT ,

spin-exchange collision ΓSE, and wall depolarization Γwall—into a single decoherence

rate γI = ΓT +ΓSE+Γwall, which we estimate from double-resonance measurements to

be γI/2π ≃ 130(30) kHz. As seen in the denominator of Equation 6.17, the strength

of the generated signal is suppressed by a factor of γI, implying that greater efficiency

is possible by reducing decoherence.

The individual decoherence components are estimated for room temperature: the

transit-time decoherence rate is ΓT/2π ∼ u/4πreff for a uniform beam profile [69]

[see also Section 4.3.1 for a Gaussian profile estimate], where the most probable

thermal velocity u ≃ 240 m/s and the effective beam radius reff = 0.85 mm, giving

ΓT/2π ≃ 20 kHz. Next, the spin-exchange collision rate is ΓSE/2π = Nuσ
(Rb−Rb)
SE

[see Section 4.3.2], where N is the atomic density and σ
(Rb−Rb)
SE = 1.9× 10−14 cm2 is

the spin-exchange cross-section between two rubidium atoms [77], giving ΓSE/2π ≃

100 Hz. This value is relatively small, implying that the atoms have a mean free path

of λmfp = 1/Nσ
(Rb−Rb)
SE ≃ 2 m before experiencing a spin-flip collision with another

atom. This distance is much larger than any cell dimension, implying that the atoms

are mostly ballistic, with wall collisions dominating decoherence. With the average

distance between wall collisions

ϱ = V/S ≃ 3 cm3/14 cm2 ≃ 0.2 cm, (8.2)

the average wall collision rate is Γwall/2π ≃ 120 kHz [see Section 4.3.2].

In evaluating ways to reduce decoherence, consider, for example, adding 5 torr of

neon buffer gas and a high-quality, alkene anti-relaxation wall coating to the vapor

cell. The rubidium atoms in the buffer gas have a mean free path of∼ 100 µm, putting
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them in a diffusive regime. Wall effects are effectively eliminated by the coating and

the slower atomic diffusion. The spin-exchange and relaxation cross sections between

the rubidium and the neon are much smaller, σ
(Rb−Ne)
SE ∼ 10−23 cm2 [159], and do not

contribute significantly. However, without entering the SERF regime, it is impossible

to eliminate the rubidium-rubidium spin-exchange collisions [69]. For an equivalent

atomic density, this effect will dominate γI/2π, with an ultimate value of ∼ 100 Hz.

8.4 Conversion efficiency

The microwave-to-optical conversion efficiency is defined as the ratio of the SFG

photon production rate to the rate of available microwave photons in the cavity

mode [145, 146]

η ≡ PS/ℏωS

PI/ℏωI

. (8.3)

PS is the power of the generated signal light, and PI is the power of the idler field

involved in the transition. This expression is valid for the continuous (CW) fields

employed. Here, we derive an expression for the efficiency in terms of experimental

parameters.

The generated optical power PS is weaker than the residual pump optical power

PP by a factor determined by the relative amplitudes of the two heterodyne peaks

Phet,P and Phet,S measured (in dBm) on the spectrum analyzer:

PS = PP 10(Phet,S−Phet,P+ζ)/10. (8.4)

The correction term ζ accounts for any differential response of the photodetector

and amplifier between the two heterodyne frequencies. The detector should have a

fairly flat frequency response, but, in practice, there is some dependence. Failure to
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account for these factors would make the efficiency appear smaller than it really is. We

characterize a 3.6(3) dB differential detector response by measuring the amplitude of

the beating note signal of the LO light (locked laser) mixed with light from a separate

tunable diode laser. The amplifier also responds stronger at fhet,P compared to fhet,S

by 4.3(7) dB. We measure the insertion loss of the isolated amplifier and coaxial cable

with the VNA in S21 mode, giving a total correction of ζ = 7.9(8) dB.

To estimate the available microwave photon rate, we first determine the fraction

of the supplied source power Pcav/P0 that is coupled into the cavity, residing there in

steady-state. With a S21 measurement of the microwave coaxial cable, we measure

its insertion loss IL = 2.928(3) dB. The cavity absorbs ∆RL = 23 dB beyond this

(from an S11 measurement of the cavity), meaning that all but 0.5% of the power

delivered to the end of the coaxial cable is transmitted to the cavity. In total, the

expression for the coupled power fraction is

Pcav/P0 = 10−IL/10 − 10−∆RL/10. (8.5)

Now Pcav is scaled by the ratio of the interaction to magnetic mode volumes. This

scaling gives the fraction of the microwave power that transitions the atoms between

the two ground states. Therefore, the microwave power involved in the conversion is

PI = P0
Vint
Vm

(︁
10−IL/10 − 10−∆RL/10

)︁
(8.6)

A critical difference between this efficiency calculation and the previous work [146]

is that those authors divided by Vcav instead of the more accurate Vm [34]. Were we

to calculate in their terms, the efficiency values would increase by a factor of about

14.

Finally, we calculate the efficiency by inserting Equations 8.4 and 8.6 into Equa-
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tion 8.3 to get

η =
PP

P0

Vm
Vint

ωI

ωS

10(Phet,S−Phet,P+ζ)/10

(10−IL/10 − 10−∆RL/10)
. (8.7)

For typical experimental parameters, we determine a maximum conversion efficiency

of η0 = 1.5(1) × 10−9. Efficiency in our system is primarily limited by a very low

optical depth of 0.05(1). In comparison, cold-atom conversion experiments have em-

ployed optical depths of up to 15 [145] and 120 [147]. The measured optical depth

corresponds to a number density of about 4× 1016 cm−3, with 8.7(1)× 108 atoms in

the interaction region. This atom number is ∼ 109 times lower than the 3.2(1)× 1018

available microwave photons in the same volume. At room temperature, the thermal

noise is at the level of 900 photons, which is negligible compared to the signals used

here. We note that it is this noise, determined by the temperature of the microwave

electronics and transmission components (rather than of the conversion medium),

that sets the limit of low-photon-number operation. Moving toward true quantum

transduction requires reducing the noise in these components by operating them at

cryogenic temperatures [160]. The maximum temperature required to enter the ther-

mal microwave photon ground state is approximately T ≃ ∆EHF/kB = 0.33 K.

Increasing the number of atoms would certainly increase the conversion efficiency.

This fact can be seen by estimating the microwave cavity-atom cooperativity C, or

the ratio of the atom-cavity coupling to their respective losses. It is defined as [161,

162]

C =
Ng20
κtotγI

, (8.8)

where g0 is the single-atom-photon coupling strength/single-photon Rabi frequency,

κtot is the cavity decay rate, and γI is the atomic decay/decoherence rate. We estimate

that we have about N ∼ 109 atoms inside the interaction region. To determine g0, we

start by calculating the magnetic field amplitude produced by a single idler photon
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inside the cavity [161],

B0
I =

√︃
µ0ℏωI

2Vm
, (8.9)

where Vm is the cavity mode volume. The corresponding single-photon Rabi frequency

is:

g0 = µcbµBB
0
I , (8.10)

where µB is the Bohr magneton, and µcb is the transition matrix element [see Sec-

tion 3.2.1]. For the |1, 1⟩ → |2, 2⟩ transition, this evaluates to g0 = 0.0190 Hz. The

estimated cooperativity is then:

C ∼ 109 (0.0190 Hz)2

(417 kHz)(130 kHz)
= 6.7× 10−6 (8.11)

This cooperativity is almost four orders of magnitude larger than the 10−9 ratio

of atoms to available microwave photons in the interaction region. This fact suggests

that increasing the atom number 104 times would proportionally increase the effi-

ciency; also that the cooperativity would increase if we used a buffer gas to reduce

the atomic decoherence rate γI.

In principle, increasing the cavity temperature, and hence the optical depth, is

experimentally straightforward. However, during this chapter’s data collection, we

were still using the former aluminum foil oven [see Section 7.7.4]. The large gaps

in the foil enclosure prevented us from accurately reaching high cavity temperatures

(i.e. T ≳ 60◦C); with low temperatures came the requirement to water-cool the cell

stem [see Section 7.7.2], thus restricting the atomic density. Follow-up measurements

should be undertaken using the improved oven without the stem cooling.
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8.5 Results

The following sections will describe and present the results of three different experi-

ments undertaken using the nonlinear SFG process described theoretically in Chap-

ter 6 and characterized in Section 8.2. They will establish the frequency tunability

and amplitude control of generated light.

8.5.1 Broad-tunability

Figure 8.9: The generated signal measured with the spectrum analyzer in zero-span
mode, showing a FWHM of 550(25) MHz The dashed curve shows the calculated
Doppler-broadened absorption coefficient of the pump light; the individual compo-
nents due to the f ′ = 1 and f ′ = 2 excited hyperfine levels are shown as dotted
curves. The SFG signal data is proportional to the MB absorption distribution of the
pump transitions without any fitting or free parameters.

In microwave-to-optical conversion, tunability of the input and output frequencies

is a desirable feature. In the emerging subject of quantum networks, quantum devices

operating at a variety of frequencies may be interconnected for quantum information

transmission, storage, and processing. Flexibility in the input and output frequencies

allows interconnection between different types of devices, as well as accommodates

manufacturing differences. In Section 8.2.5, we characterized the conversion band-
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width of the system: the input idler frequency tunability for coherent transduction

to optical. In this section, we consider the output frequency tunability, i.e. for a fixed

input idler frequency, what are the possible output optical frequencies, or optical

channels, that it can be transduced into? In this SFG scenario, the output frequency

tunability is controlled by the frequency of the pump laser.

To probe this behavior, we scan the pump laser frequency across the Doppler

width as described above. At any instant during the scan, the pump field interacts

with one velocity class of atoms, which “see” this frequency on-resonance with the

pump transition. As described in Sections 6.2, the atoms in this velocity class will

dominate the generation process at that moment. The generated signal follows a

roughly Gaussian profile throughout the sweep, as shown in Figure 8.9. The generated

signal reaches a maximum amplitude between the f = 2 → f ′ = 1 and f ′ = 2

transitions, with a full width at half maximum (FWHM) of 550(25) MHz. This

generated profile is almost exactly proportional to the combined Doppler-dependent

absorption coefficients for the f = 1 → f ′ = 1, 2 transitions, which together have a

FWHM of 540 MHz. The f ′ = 3 state does not participate in this nonlinear process,

since selection rules prohibit an electric-dipole transition to the f = 1 ground state.

Similarly, the pump transition from f = 2 → f ′ = 0 is electric-dipole forbidden.

These absorption coefficient curves are independently calculated, and do not represent

a fit to the data.

8.5.2 Multichannel

The ability to convert microwaves into various frequency channels, or into multiple

channels simultaneously, may be useful for the purposes of frequency(/wavelength)

division multiplexing—a scheme employed in optical telecommunications. In this

section, we explore the multi-channel potential of the conversion process. We consider
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(a)

(b)

Figure 8.10: (a) Multichannel generation using a fixed microwave amplitude modula-
tion frequency of ωAM/2π = 50 kHz and a variable pump phase modulation frequency
ωPM/2π of 10 (blue), 50 (red) and 100 (black) MHz. The relative sideband amplitude
decreases for increased ωPM because the pump light accesses velocity classes with
decreased occupation. (b) Zoomed-in data revealing AM sidebands flanking each of
the central and SB EOM peaks.

the effects of multiple input idler and multiple input pump frequencies interacting and

combining in the nonlinear atomic medium.

For this measurement, the pump laser is tuned and locked halfway between the

f = 2 → f ′ = 2 & 3 transitions. We generate a multichannel optical signal field in

two different ways: First, the signal generator supplying the idler field (SG1, AnaPico

APSIN12G) is amplitude-modulated at a variable ωAM; the idler carrier and sidebands

combine with the pump to produce peaks in the signal spectrum at {ωS, ωS ± ωAM}.

Due to the finite microwave cavity resonance, ωAM/2π can be tuned up to 455(10)
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kHz before the sidebands become significantly suppressed. The amplitudes of the

signal sidebands depend on the idler modulation depth m.

Second, we modulate the pump light by using a fiber electro-optic phase-modulator

(EOSPACE PM-0S5-20-PFA-PFA-780) inserted into the pump light optical path. We

drive the EOM with a second signal generator (SG2, SRS SG384) at a variable ωPM.

This produces sidebands in the pump optical spectrum, and corresponding sidebands

in the generated spectrum at {ωS, ωS±ωPM, , ωS±2ωPM, . . . }. For a fixed modulation

index β, the MB width and density determine the bandwidth and amplitudes of the

pump-modulated generated sidebands.

Both types of sideband generation, idler AM and pump PM, are simultaneously

illustrated in Figure 8.10. In the three cases depicted, ωAM/2π = 50 kHz is fixed

with m = 0.25, and ωPM/2π is varied from 10 MHz to 100 MHz with β = 1.65 rad.

The spectrum analyzer and SG2 are both phase-locked to the internal 10 MHz clock

reference of SG1. These data show that we can coherently transduce multiple input

idler frequencies to multiple output signal frequencies, even simultaneously. The

tunability of the pump frequency permits wider frequency access.

8.5.3 Coherent sideband control

We have shown remarkable tunability and control of the generated optical frequencies.

We will briefly describe here an additional method for coherently manipulating the

amplitudes of generated sidebands.

When the pump and idler are modulated at the same frequency, ωPM = ωAM ≡ ∆m,

then we have the scenario described and calculated in Section 6.3.2: Multiple idler-

pump sideband combinations produce overlapping and interfering signal frequency

peaks [see also Figure 6.3(b)]. By tuning the relative phase of the modulating waves,

one sideband or the other is constructively enhanced or destructively eliminated. The
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modulation depth (m = 0.075) and index (β = 0.041 rad) are empirically chosen to

optimize this interference. These variations are recorded by the spectrum analyzer

at each of the signal sideband frequencies in zero-span mode. As in the other exper-

iments, it is especially important here that the spectrum analyzer and modulation

sources are reference locked to a common 10 MHz clock source. We measure a rel-

ative visibility of 97% [Figure 8.11(b)] for the upper and lower sidebands, in good

agreement with the calculated variation shown in Figure 6.3(c). The two SB ampli-

tude have a phase offset of 2.76 radians. The difference of the phase offset from π

is not a function of magnetic field, pump power, or polarization and requires further

investigation.

(a) (b)

Figure 8.11: When the two modulation frequencies are equal, i.e. ωPM = ωAM, the
EOM and AM sidebands overlap and interfere. The relative phase difference ∆ϕ
between the modulating waves controls the height of the two correlated generated
sidebands. (a) The generated spectrum at zero relative phase. (b) The power ampli-
tude response of the peaks have a relative visibility of 97%, while the central peak is
independent of the relative phase. The two SB amplitude curves are offset from each
other by (π − 0.38) radians of phase. The dashed lines show independent fits to a
cosine.

This phase control of the sideband amplitudes makes the generation process akin to

a tunable frequency beam splitter [123, 153, 163]. We’ll point out that this tunability

comes at the summed frequency. When the phase is chosen to eliminate one of the

sidebands, this is equivalent to a single-sideband modulator [164].
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8.6 Discussion

The frequency tunability of the generated signal field results from the existence of a

large Doppler width at room temperature. While this work uses a warm vapor cell of

enriched 87Rb without an anti-relaxation coating or a buffer gas, a buffer gas would

provide additional tunability due to collisional broadening [165–167]. This tunability

may be limited to the order of the ground-state hyperfine splitting of the atoms used.

Although other conversion schemes display degrees of tunability of the output fre-

quency [145, 147, 150, 152], these are often restricted by natural atomic or optical

cavity resonance frequencies. In the warm-atom system, continuous tunability over

the entire Doppler width is possible. While Doppler effects are often undesirable

and eliminated through laser cooling techniques, ironically in this conversion system,

they are a resource. This frequency multiplexing capability enables multiple mi-

crowave sources to be interfaced with a single atomic transducer, and the conversion

can be used to place differing sources in distinct optical frequency domains. Switch-

ing between different optical frequencies for a single source is also possible. This

scheme features a conversion bandwidth of 910(20) kHz [see Figure 8.5(a)], which is

primarily limited by the cavity linewidth. As previously demonstrated in a different

context [168], the reverse optical-to-microwave conversion process is achievable in an

atomic three-wave mixing system.

The high-contrast amplitude control of signal sidebands, enabled by simultaneous

pump and idler modulation [Figure 8.10], is equivalent to a tunable beam-splitter

operating in the frequency domain [153]. The modulation indices and the relative

phase act together as reflection and transmission coefficients. For particular values

of these coefficients, we can selectively generate a chosen sideband channel in the

165



Chapter 8. Microwave-to-optical conversion 8.7. ConclusionChapter 8. Microwave-to-optical conversion 8.7. ConclusionChapter 8. Microwave-to-optical conversion 8.7. Conclusion

optical domain while completely suppressing the other, resulting in single-sideband

conversion.

Thus, this neutral atom system is capable of performing as a “quantum frequency

processor” [154, 169, 170] with particularly low input-field intensities. This allows

us not only to encode and manipulate information in multiplexed frequency bins but

also to convert it from microwave to optical frequency domains.

The measured conversion efficiency is comparable with magnon-based microwave-

to-optical conversion schemes [150, 152]. The warm-atom efficiency is limited by

the intrinsic weakness of the magnetic-dipole microwave transition, as well as the

ground-state spin decoherence γI which includes wall-collisions, transit-time decoher-

ence, and Rb-Rb spin-exchange collisions. A larger optical beam, combined with a

buffer gas [65, 171] and anti-relaxation coating on the cell walls [78, 81, 172, 173],

would help reduce spin decoherence from the dark state and boost conversion ef-

ficiency. For example, we expect that a high-quality anti-relaxation coating and a

modest 5 torr of neon would significantly reduce transit-time and wall effects, and

reduce γI/2π by a factor of 103 to 100 Hz, limited by Rb-Rb spin-exchange [See Sec-

tion 8.3]. Everything else being equal, this would provide a 106-fold improvement to

the generation efficiency. Furthermore, based on [146], we expect that increased pump

powers will produce a moderate 4-fold efficiency gain before the efficiency saturates

due to absorption and incoherent scattering of the pump.

8.7 Conclusion

In this proof-of-concept demonstration, we have shown that inhomogeneous Doppler

broadening in a warm vapor cell provides significant tunability of the output optical

frequency in a microwave-optical transduction, resulting in frequency division multi-
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plexing. The inhomogeneous width also enables simultaneous frequency up-conversion

of multi-channel microwave inputs. Amplitude control of up-converted optical chan-

nels demonstrates analogous frequency domain beam splitting action across five orders

of frequency. The frequency division multiplexing capability, combined with ampli-

tude control, can make neutral atoms as quantum processors for information encoded

in frequency-bin qubits.
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Haste ye, and go up...

Genesis 45:9, The Holy Bible:
King James Version

Chapter 9

Accelerating simulations of the
pseudospinor Gross-Pitaevskii
equation

9.1 Introduction

There are many problems in physics for which the only realistic approach to a solu-

tion is through numerical techniques. The nonlinear Schrödinger equation (NLSE)

is one such mathematical model with widespread applications throughout physics.

Notably, this equation explains superfluid and magnetic properties of dilute Bose-

Einstein condensates (BECs) [174, 175], but it also successfully describes plasma

Langmuir waves [176], soliton dynamics [177], the propagation of light in nonlinear

media [178–180], surface gravity water waves [181] and rogue waves [182], supercon-
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ductivity [183], and even certain financial situations [184]. The connecting thread be-

tween these disparate physical phenomena is the slowly-varying evolution of a weakly

nonlinear, complex wave packet in a dispersive environment [183].

A NLSE can take many forms [185], but many physical phenomena can be ade-

quately described with a cubic nonlinearity. For a complex scalar function ψ, the

NLSE can be written in the general form:

i
∂ψ

∂t
= −a∇2ψ + bψ + c|ψ|2ψ, (9.1)

where the parameter a > 0, and where c (which can be positive or negative) represents

the strength of the nonlinearity. It is worthy to note that as c goes to zero, the NLSE

reduces to the familiar Schrödinger equation.

While very few analytical solutions of the NLSE exist, the literature is replete with

techniques for finding numerical solutions [185–190]. Usually these methods involve

direct time-integration of the equation. Throughout the last decade, these techniques

have been maturing and growing more accessible, evidenced by self-contained solver

packages, such as the GPELab toolbox for MATLAB® [191, 192], BEC2HPC [193], and

GPUE [194]. Despite the wealth of numerical techniques, the NLSE’s nonlinear term

makes it quite computationally intensive to solve [195]. Representing small features,

such as superfluid BEC vortices, often requires small mesh spacings [190], and hence

large grid sizes.

A computer’s central processing unit (CPU) operates on grid points one at a time

as a “serial processor.” Although serial devices are optimized for low-latency, in many

cases they cannot reasonably meet the demands of integrating the NLSE across large

grid sizes. This results in very long computational run-times [185], which, in extreme

cases, can span days to weeks [196].

For certain operations and algorithms, graphics processing units (GPUs) offer a
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significant increase in computational power via parallelism. There are two notable

types of parallel computing: (1) In task-parallelism, akin to vehicles on an assem-

bly line, distinct and independent sets of data are operated on concurrently. (2) In

data-parallelism, all elements of a single data collection are operated on at the same

time. The Hadamard product, or element-wise matrix multiplication (represented as

A ◦ B, where A and B are matrices of identical size), is an example of an operation

that is exceedingly data-parallel [197]. With access to anywhere from hundreds to

thousands of multiprocessors and shared memory, GPUs can leverage both types of

parallelism to accelerate computations far beyond the capacity of a CPU. “Speedup”

is a relative metric for hardware performance enhancement; it is defined as τCPU/τGPU,

where τCPU is the time per iteration on a CPU, and τGPU is the time per iteration the

GPU. GPU accelerations of NLSE problems have ranged from tens [198, 199] to hun-

dreds [182, 200] of times. We also acknowledge that several third-party modules for

GPU-accelerating the NLSE already exist [197, 201], however, these are not amenable

to all highly-specialized research problems.

In this chapter, we introduce a general approach for GPU-accelerating numerical

computations of the NLSE. Using NVIDIA graphics hardware and tools from the

open-source Python community, we demonstrate how CPU-based computations with

power-law scaling in grid size can scale linearly using GPU hardware. We also pro-

vide a packaged version of our accelerated code titled spinor-gpe. While this code

does not claim to be generally applicable, it serves as an example of our approach

for hardware-accelerating NLSE code, and as a resource to the physics community.

In our particular hardware configurations, we observed 6×, 36×, and 85× speedup

of the pseudospinor NLSE code. This required no detailed knowledge of our GPUs’

architectures, and it demonstrates that a substantial computational speedup is pos-
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sible using high-level programming tools like those found in the Python ecosystem.

This is particularly important for numerical calculations that make predictions for

or comparisons to experimental results; rapid calculations allow for timely parameter

iterations and optimizations.

This chapter is organized as follows. Section 9.2 gives a basic introduction to

NVIDIA GPU operation. Section 9.3 introduces a physically-motivated form of the

NSLE and the algorithm for solving it. Section 9.4 describes the GPU-accelerating

implementation, and Section 9.5 shows a performance comparison of the implemen-

tation across different CPU and GPU devices. Section 9.6 discusses the physics and

results from an example calculation: a simulation of a spin-dependent gauge poten-

tial that produces quantized vortices in the spin-Hall regime. Finally, Section 9.7

discusses the broader significance of our approach, before concluding with Section

9.8.

9.2 General-purpose graphics processing unit com-

putation

In this section, we give a high-level introduction to GPUs, pointing out essential

features and concepts, and leave details of their use in general-purpose computing to

other excellent reviews [202, 203].

9.2.1 Basic operation

Graphics cards and GPUs were originally developed to render virtual 3D graphics

in real-time, a task which is highly data- and task-parallel in nature [203]. While

early GPUs were exceptionally good for rendering graphics, they worked with strict

fixed-function pipelines. Recognizing the utility of general-purpose GPU comput-
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ing, graphics card manufacturers soon developed programming interface frameworks

to directly program almost all of their GPUs’ resources. There are two predomi-

nant frameworks for this: OpenCL (open source, maintained by Khronos Group) and

CUDA (proprietarily developed by NVIDIA Corporation). In this work, we will re-

strict the discussion to CUDA and NVIDIA hardware. Similar to other frameworks,

CUDA is a low-level interface to the GPU and using it requires a detailed knowledge

of the GPU layout and resources [203]. Alternatively, the Python community has

developed accessible packages with high-level “pythonic” access to back-end CUDA

computing libraries, such as cuBLAS (linear algebra) and cuFFT (fast-Fourier trans-

forms). While often used for machine learning, these packages provide a user-friendly

platform for GPU-accelerating conventional scientific computations.

In general-purpose GPU computing, one should also be aware of a device’s architec-

ture, or the particular hardware version. Architecture includes the layout design and

techniques implementing the operations, instructions, data types, registers, memory

hierarchies, control units, and processors 1 that are key factors for performance. Each

NVIDIA device has a compute capability (CC) metric to describe the CUDA comput-

ing features available therein. To illustrate, CC > 6.x (Pascal) devices can natively

perform 64-bit addition operations, whereas CC ≤ 5.x (Maxwell) ones cannot [205].

When comparing the performance of different GPU devices, it is important to note

that, within a certain architecture, performance scales with processing core numbers,

memory, and clock rates. Between architectures, however, the vastly different hard-

ware and instruction sets make this relationship not so simple. A rigorous perfor-

mance analysis requires a detailed understanding of how the algorithm maps onto

a given architecture, and is beyond the scope of this chapter. Instead, benchmark-

1Although companies market this as “architecture”, this definition technically refers to a device’s
microarchitecture [204].
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ing the execution time of a particular task provides a simple relative performance

comparison [185, 200].

9.2.2 Implementation

This section describes how we adapted our previously-existing simulation code for

GPU acceleration. The original (non-GPU-compatible) implementation of the GPE

exclusively employed the NumPy scientific computing library. The algorithm relied

heavily on the FFT and Hadamard product, both of which have the potential to be

highly data-parallel operations. In search of accelerated execution times, we consid-

ered both the software and hardware computational aspects.

Several established CUDA-compatible Python packages, such as Tensorflow, pro-

vide wrappers of the needed cuFFT library [206]. However, we settled on PyTorch,

a relatively newer package, because it has a “native Python” interface and is inten-

tionally designed to have similar, if not identical, syntax to NumPy. This implies

a short learning curve and minimal changes to our original code [207]; most of the

changes we made to our code while migrating were drop-in replacements. As with

other machine learning packages, PyTorch code can execute on either a CPU or a

CUDA-enabled GPU, with a simple software switch between the two; this made it

convenient to develop and test our code on a CPU before scaling it up to run on a

GPU workstation. Our GPU code also takes advantage of the complex data type

recently released for PyTorch.

On the hardware side, we constructed two different computer workstations with

NVIDIA graphics cards. Our first workstation contains a GeForce 980 Ti (Maxwell

arch., C.C. 5.2), a common commercial gaming graphics card. Our second workstation

contains a Titan V (Volta arch., C.C. 7.0). In addition to the two workstations, we also

had a commercial Acer Aspire laptop with an integrated NVIDIA GeForce MX150
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GPUs
GeForce GeForce TITAN

MX150 980 Ti V

Architecture Pascal Maxwell Volta

Compute Capability 6.1 5.2 7.0

# CUDA Cores 384 2816 5120

Clock (Boost) [GHz] 1.47 (1.53) 1.0 (1.07) 1.2 (1.45)

VRAM Mem. [GB] 2.0 6.0 12.0

Mem. Bandwidth [Gbps] 48.06 336.6 651.3

Mem. bus width [bits] 64 384 3072

CPUs
Intel i5- AMD FX- Intel i9-

7200U 6300 9900K

Clock (Boost) [GHz] 2.5 (3.1) 3.5 (4.1) 3.7 (5.0)

Available RAM [GB] 8 16 32

Table 9.1: GPU and CPU hardware specifications. Our PyTorch implementation can
execute on any of our CUDA-enabled NVIDIA graphics cards (top) and our CPUs
(bottom). The corresponding GPU/CPU hardware pairs are installed on a commer-
cial laptop and two custom-built workstations, respectively. Key specifications of
these devices are given. While RAM is not a property of CPUs, it’s included here as
a computational resource for the devices.

graphics card (Pascal arch, C.C. 6.1). Specifications for these three devices, along

with their corresponding CPUs, are summarized in Table 9.1.

9.3 GPE Model

To demonstrate GPU acceleration, we investigate the Gross-Pitaevskii equation (GPE),

a form of the NLSE which benefits from the GPU’s features. The GPE is is used

to model weakly interacting superfluids in the mean-field regime, and it is especially
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well-suited to describe a dilute neutral-atom BEC [175]. The GPE is well-studied in

this context. Significant work has improved the path to solutions [186, 187, 189, 208,

209], and illuminated a variety of physical phenomena, including vortex creation and

dynamics, [174, 210–217] and the many-body states of spinor systems [187, 216, 218–

222]. Here, we take the opportunity provided by the GPU to move beyond the stan-

dard GPE: we study the physical consequences of spin- and momentum-dependent

coupling, and exploit the power of the GPU to render high-resolution solutions that

would otherwise be prohibitively time-expensive. GPU-based calculations can sim-

ulate realistic experimental conditions in a reasonable amount of time, allowing for

numerically informed optimizations of experimental procedures.

9.3.1 GPE Derivation

9.3.2 The coupled pseudospinor Gross-Pitaevskii equation

A standard approach to studying trapped neutral-atom BECs uses the GPE, where

a single-component order parameter ψ(r) =
√︁
ρ(r)eiϕ(r) represents the state of the

system, where ρ(r) is the real-space density and ϕ(r) is the phase profile. For a

trapped gas of atoms, the GPE describes this order parameter as

iℏ
∂

∂t
ψ(r) =

[︃
− ℏ2

2m
∇2 + V (r) + g|ψ(r)|2

]︃
ψ(r), (9.2)

where the first term in the right-hand bracket represents the kinetic energy with

atomic mass m; the second is the trapping potential energy; and the third term is the

interaction energy, where an interaction parameter g = 4πℏa2sc/m is characterized by

the interatomic scattering length asc.

Moving beyond this single-component model, we next consider the spinor con-

densate: a two- (or more-) component system where a higher-dimensional order pa-

rameter describes the density of atoms in two (or more) spin states. In describing
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experimental systems with alkali metal atoms, these spin states are pseudospins whose

real identities are defined by mF levels in the ground state manifold. In the case of a

two-spinor, or pseudospinor, the order parameter takes the form ψ → Ψ = {Ψ↑,Ψ↓}.

The interaction terms of the spinor GPE model must also account for the possibility

of distinct inter- and intra-spin scattering lengths. Indeed, pseudospinors have three

unique interaction strengths: g↑↑, g↓↓, and g↑↓ = g↓↑ ≡ g↕.

Next, we introduce external fields that are carefully chosen to give a spin-dependent

coupling between the pseudospins. These yield “artificial gauge fields” [223, 224]

that can mimic the effects of magnetic fields, electric fields, and/or spin-momentum

coupling in these atomic systems. We consider here the case where two lasers with

opposite propagation directions (±x̂) effect a two-photon Raman transition, thereby

producing a spatially-periodic spin-wave in the BEC along the x̂ recoil direction2.

This spatial-periodicity can be removed via a unitary transformation, resulting in the

two bare spin dispersion relations shifting opposite directions in k̂x momentum space.

In this rotated picture, this system is described by the effective single-particle energy

Hamiltonian [174, 227]:

Ĥ =

[︃
ℏ2k2

2m
+ V (r)

]︃
1̌− ℏ2kLk̂x

m
σ̌z +

ℏΩ(r)
2

σ̌x +
ℏδ(r)
2

σ̌z, (9.3)

where kL is the magnitude of the lasers’ wavevector, δ(r) is the two-photon Raman

detuning and {1̌, σ̌x, σ̌y, σ̌z} are the identity and Pauli matrices in the spinor basis.

The Raman coupling between the ground states is generated via two electric fields

having an equally far detuning ∆e from some excited level. In this regime, the excited

state can be adiabatically eliminated, and the total coupling strength takes the form

Ω(r) = Ω1(r)Ω2(r)/2∆e, where the Ωi are the Rabi frequencies, a measure of the

2In this work, we limit the discussion to a spin wave, and thus momentum transfer, along one
dimension, but this type of interaction can be extended to additional dimensions [225, 226]
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electric dipole couplings between the excited and individual ground states [50]. The

characteristic energy scale of this Hamiltonian is EL = ℏ2k2L/2m, the kinetic energy

imparted to an atom by a single-photon recoil. Experimentally, spatial dependence in

the detuning and Raman coupling can readily be achieved with a spatially-dependent

magnetic field (via the Zeeman effect) or a spatially-varying optical intensity (via the

ac Stark effect), respectively. Spatial-dependence in the optical field can be obtained

using, for example, a spatial light modulator device.

Finally, we incorporate the last three terms of Equation 9.3 into the GPE pseu-

dospinor Hamiltonian [Equation 9.2], taking into account the appropriate signs of the

detuning and the momentum shift. We interpret the spinor components {Ψ↑(r),Ψ↓(r)}

as bare spins that have undergone a spin-dependent momentum shift {| ↑,−kL⟩, | ↓

,+kL⟩} [223]. After converting all quantities to dimensionless ones (denoted by tildes),

the NLSE equation describing ˜︁Ψ is

− i
∂

∂t̃
˜︁Ψ =

[︁
H(1) +H(2) +H(3)

]︁ ˜︁Ψ+H(4)˜︁Ψ, (9.4)

where

H(1) = −1
2
k̃
2
1̌+ k̃Lk̃xσ̌z (9.5)

H(2) = ˜︁V (r̃)1̌+ 1
2
δ̃(r̃)σ̌z (9.6)

H(3) =

⎛⎝g↑↑|Ψ̃↑(r̃)|2 + g↕|Ψ̃↓(r̃)|2 0

0 g↓↓|Ψ̃↓(r̃)|2 + g↕|Ψ̃↑(r̃)|2

⎞⎠ (9.7)

H(4) = 1
2
Ω̃(˜︁r)σ̌x (9.8)

represent the kinetic [Equation 9.5], potential [Equation 9.6], interaction [Equa-

tion 9.7], and the Raman coupling [Equation 9.8] energies. This pseudospinor GPE

describes the emergence of both superfluid effects (e.g. quantized vortices [174]) as

well as magnetic structures (e.g. stripes, spin domains [221]).
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Figure 9.1: Flow diagram of the time-splitting spectral algorithm. Starting from some
initial order parameter Ψ(r̃), we propagate in time by applying evolution operators
Ui [see Equations 9.5-9.9] and fast Fourier transforms F . The operations applied
sequentially in the loop represent those for a single propagation time step ∆t̃. In our
Python code, the operations for a single time step are organized into a function that
is called in a loop M times. After the loop terminates, the final order parameter is
available.

9.4 Simulation algorithm

In this section, we describe the basic elements of the algorithm for integrating solu-

tions to the GPE of Equation 9.4. We begin by assuming that the BEC is confined

to the x−y plane by a strong harmonic trapping potential in the transverse direction

with frequency ωz. Out-of-plane excitations are suppressed, and the dimensionless
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order parameter along this dimension takes on a Gaussian profile with unit norm. If

the energy level spacing ℏωz is larger than the interaction energy, we can approximate

the system as quasi-2D [174, 228] and represent the order parameters and operators

on 2D grids.

The method for integrating solutions to the pseudospinor GPE relies on the well-

established time splitting spectral (TSSP) method [229] [see Figure 9.1]. Solutions

are evenly discretized in space on Nx × Ny grids. The real-space grid extends over

(±xmax,±ymax), with spacings (∆x,∆y); the momentum space grid extends over

(±π/∆x,±π/∆y) with spacings (∆kx,∆ky) = (π/xmax, π/ymax). The solutions are

propagated through time by repeatedly applying time-evolution operators to the pre-

vious time step’s order parameter. The time-evolution operators are given by

U (n)(∆t̃) = exp(iH(n) ∆t̃), (9.9)

where ∆t̃ is a unitless discrete time step smaller than any relevant time scales of the

system. Propagation in real-time yields the dynamics of the spinor system, while

propagation in imaginary-time (∆t̃ → i∆τ̃) asymptotically approaches ground state

solutions. “Applying” an evolution operator amounts to Hadamard multiplication of

the complex operator array and the order parameter array. In the TSSP method,

a Fourier transform takes the order parameter to momentum space where H(1) is

diagonal, i.e. ∇2 → −k̃
2
. In this way, we perform two 2D FFTs to avoid the more

computationally-expensive finite-difference Laplacian in the U (1) operator.

Starting from an initial spinor order parameter, we propagate the GPE in a loop

over M discrete time steps of length ∆t̃. We pre-compute and store the evolution

operators [Equation 9.9] corresponding to the potential Ṽ (r̃)1̌, kinetic H(1), Raman

coupling H(4), and Raman detuning δ̃(r̃)σ̌z energy components, since they are con-

stant throughout the propagation loop; the nonlinear mean-field terms g̃ij|˜︁Ψi(r̃)|2
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depend on the densities, and therefore are calculated at each time step. As shown

in Figure 9.1, we apply the U (1), U (3), and U (4) operators with the familiar Strang

splitting for stability and to reduce errors induced by the various non-commuting

U (i) operators [188]; because the 2D operators additionally live in spin space, the

real-space evolution operators U (2,3,4) do not necessarily commute and should be split

to second-order [230, 231]. Previous demonstrations using higher-order splitting

have further improved spatial accuracy, but the form of these splittings as applied to

spinor systems was not straightforward [231]. Within a single time-step loop, four 2D

FFTs and ≳ 20 Hadamard products are performed. Since probability density is not

conserved in imaginary-time propagation, we normalize the order parameters to the

total atom number at each time step.

While the individual operations are highly data-parallel, they must be applied

sequentially. Hence in this case, it was advantageous to maintain data on a single

device, avoiding the additional transfer times between various devices in so-called

“heterogenous” or distributed computing configurations [185]. This way, the data

does not leave the device until the entire simulation is complete.

9.5 Performance Benchmarking

In this section, we show and analyze the benchmark results of timing the propagation

stepping function [see the caption of Figure 9.1]: we compare the performance and

scaling of our three GPUs and three CPUs with increasing grid sizes. Note that these

benchmarks only compare the performance of our PyTorch code on different devices,

one device at a time.

To make a fair comparison between GPU and CPU performance, we transferred the

order parameter and energy grids to the GPU’s memory before running the bench-
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Figure 9.2: Performance and speedup comparison of the propagation step on various
devices. (a) Performance comparison benchmark of the propagation step function for
the six devices across various grid sizes, shown here on a log-10/log-2 plot. The points
represent the median evaluation time of many trials, and the error bars represent the
median absolute deviation. The CPU and GPU evaluation times were fit by power
law [open symbols, κ = 1.03(3)] and linear [filled symbols, θ = 9.7(1) × 10−8 s]
models, respectively. (b) Speedup of the hardware pairs as a function of grid size.
The black dashed line represents the break-even performance for the hardware pairs.
For comparison and reference, the files used to generate these data are found in the
repository subdirectory /spinor gpe/benchmarks.

marks on those devices, thereby avoiding the relatively slow data transfer rate between

computer RAM and GPU VRAM [182]. We exclusively employ complex double-

precision floats (torch.complex128) in the simulations and benchmarks.

We measured the propagation function evaluation times using the Python timeit

module. We separately timed many different evaluations of the propagation step-

ping function, and repeated this process on each device for various 2D grid sizes

N = Nx×Ny = 2η, where η ∈ N and N is the size of a single spinor component. Due

to concurrent system processes that we could not eliminate, the distributions of evalu-
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ation times were highly non-Gaussian. Although there exist sophisticated benchmark

analysis techniques for understanding these types of distributions [232, 233], the me-

dian and median absolute deviation provided a simple and interpretable statistic and

uncertainty for our purposes. With each GPU device, there was a maximum grid

size above which the data could no longer fit into VRAM, and the benchmark halted.

The results of evaluation time versus η are plotted in Figure 9.2(a) and the speedup

between particular CPU/GPU pairs is given in Figure 9.2(b); both plots represented

on log-10 vs. log-2 scales. At the smallest grid sizes (η = 12), the performance of

the GPUs and CPUs were comparable. The largest speedups we measured for each

device pair (from smallest to largest) were 6.3, 36, and 85.

The CPU evaluation time data are well-described by a power-law function of the

form fC(N) = λNκ. The three CPU evaluation times scale vary similarly, and, on

average, κ = 1.03(3). The GPUs, in contrast, scaled linearly as f(N) = θN + ξ, with

θ = 9.7(1) × 10−8 s and a device-dependent offset ξ. The scaling difference between

the two device classes highlights the power of GPU data parallelism. This linear

scaling means that doubling of smaller grid sizes makes negligible difference to the

evaluation times. The GPUs basically provided increased resolution for free.

As mentioned previously, it is generally difficult to interpret benchmarks for GPUs

from different device architectures. There are some insights, however, that we can

gain from testing the performance of the atomistic 2D FFT and Hadamard functions

that compose the algorithm. Figure 9.3(a) shows evaluation times for each of these

functions on the i9 CPU and the Titan V GPU. The times measured on the i9 all

display a power-law scaling with increasing grid size. The Titan V data show an

entirely different behavior: at small grid sizes, the Hadamard and FFT times are

all constant, but begin to rise near η = 19 to 20. We interpret this inflection point
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Figure 9.3: Performance and speedup comparison of the 2D FFT and Hadamard
operations on various devices. (a) The evaluation times for individual forward and
inverse 2D FFT and Hadamard product (A ◦ B) function calls over various grid
sizes, computed on the i9 CPU (open symbols) and the Titan V graphics card (filled
symbols). The points represent the median evaluation time over many trials, and
the error bars represent the median absolute deviation. The CPU function times are
well-described by a power-law, with an average exponent of κ = 1.0154(2). (b) The
speedup of the three function evaluation times as a function of grid size.

as the Titan V’s limit for simultaneous data operations; at grid sizes larger than

this, the device must batch the data and operate on those batches sequentially. The

use of GPU computing for our algorithm is supported by the improved scaling of

the functions’ evaluation time by the Titan V device for grid sizes smaller than the

inflection point.

9.6 Simulation example: spin Hall system

In this section, we demonstrate our GPU-accelerating method by simulating the

ground states of a spin Hall system. In such a system, the spin-up and spin-down
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constituents experience effective magnetic fields of equal magnitude but opposite di-

rection. The spin Hall effect has been investigated theoretically [234, 235] and ex-

perimentally [236] using Raman-induced spin-orbit coupling in ultracold atoms; the

presence of a spatial gradient in the Raman coupling and an effective “electric” force

(a role played by gravity) generate transverse spin Hall currents. Other work showed

that interspin interactions can greatly alter the properties of spin Hall states [237,

238]. In the simulations that follow, we investigate the mean-field ground states of

a two-component BEC subject to a spatially varying spin-dependent gauge poten-

tial, considering various interspin interaction strengths. Similar to the proposal given

in [236], these states are generated in situ in the absence of any effective electric

force and reside in the classical spin Hall regime; this occurs when the filling factor

ν = N/Nϕ ≫ 1, where N is the number of atoms and Nϕ is the number of flux quanta

penetrating the system [237].

We consider a harmonically confined, pseudospinor BEC of 104 atoms, where the

trapping frequencies ωz ≫ ωx = ωy ≡ ω⊥. The harmonic oscillator length a0 =√︁
ℏ/mω⊥ and energy E = ℏω⊥ set the characteristic length and energy scales of the

system. The intraspin interaction parameters are g↑↑ = g↓↓ ≡ g.

The single-particle physics of this problem can be analysed by diagonalizing the

Hamiltonian [Equation 9.3]. For weak coupling (0 < ℏΩ < 4EL), the lower-energy

band of the dispersion relation takes on a double-well shape [227]; as Ω → 0, the

two minima reside at ±kL. The eigenstates in this band vary across k, with | ↓⟩

dominating the state near +kL, and | ↑⟩ dominating the state near −kL (even for

nonzero Ω). If the atoms are confined to the lowest energy band, this amounts to

a spin-dependent Abelian gauge potential, and the following effective Hamiltonian
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applies:

Ĥeff,x =
ℏ2

2m
(kx +A∗

xσ̌z)
2 , (9.10)

where the magnitude of the artificial gauge potential A∗
x multiplies the Pauli matrix

in the dressed-spin basis, and scales as

A∗
x = kL

[︄
1−

(︃
ℏΩ
4EL

)︃2
]︄1/2

(9.11)

for ℏΩ ≤ 4EL and δ = 0 [227]. A spatially-varying Ω(y), and hence A∗
x(y), produces

a synthetic magnetic field for each spin

B∗
↑(↓)ẑ = ±

(︃
ℏ
q

)︃
∇×A∗

x(y) (9.12)

that is equal in magnitude, but opposite in direction. q is the synthetic electric charge

of the atoms.

We imposed a spatially-varying Raman coupling profile of the form

ℏΩ(y)
EL

=
√︁

8y − y2 (9.13)

to linearize A∗
x(y). As shown in Figure 9.4(b), this created two degenerate spin-

dependent wells in k-space that moved inward from kx = ±1 → 0 as y increased.

The induced uniform, synthetic spin-dependent magnetic field had a magnitude of

|B∗
↑(↓)| = 0.369 ℏ/qa20 across the region of the BEC. Before each simulation trial,

we seeded each order-parameter component with 50 randomly-placed vortices hav-

ing a spin-dependent winding. Due to the spin-dependent nature of the magnetic

field, we expected the components to acquire opposite angular momentum. We then

propagated the solution in imaginary time over two segments of 60,000 steps each.

In the first segment, we periodically “annealed” the system with Gaussian noise to
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Figure 9.4: A BEC in a spin- and spatially-dependent artificial gauge potential. (a) A
pair of counter-propagating Raman lasers couple two atomic levels of a harmonically-
confined BEC. A spatial light modulator device (not shown) tailors the laser intensity
to vary proportional to Ω(y) [Equation 9.13] along the yellow dashed line. (b) The
Raman momentum-energy dispersion as a function of y-position due to the spatially-
tailored Raman coupling profile shown in on the left 3D wall. This coupling is assumed
to be uniform along the x-direction. The solid red and blue curves indicate the double-
well minima, or the gauge potentials A∗

x(y)σ̂z.

more quickly find the ground state; second, we propagated without annealing. Good

convergence to the ground state could typically be obtained following this method.

We simulated and characterized ground state solutions of this system for different

values of g↕. From the real space densities ρ↑(↓)(r) = |Ψ↑(↓)(r)|2, we calculated the

system-averaged phase separation parameter [227],

s =
∑︂
r

⎡⎣1− ⟨ρ↑(r)ρ↓(r)⟩√︂
⟨ρ2↑(r)⟩⟨ρ2↓(r)⟩

⎤⎦ , (9.14)

where the sum runs over all points r = (x, y) in the 2D region. For small interspin

interactions, stable vortex configurations arose with high vortex eccentricity along the

y-direction [239]. From the phase profile ϕ↑(↓)(r) of each order parameter component,

we calculated the total average angular momentum, or circulation, of the pseudospinor
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Figure 9.5: Spin-Hall simulation results. (a) Enlarged detail of the calculated real-
space (top, 2.6× mag.) and k-space (bottom, 9.8× mag.) ground state densities on a
1024 x 1024 grid for g↕ = 0.1. The trapping frequencies are (ω⊥, ωz)/2π = (50, 2000)
Hz. The smooth central regions of each real-space density correspond to momentum
components near kx = 0. (b) The spatial phase profiles ϕ↑(↓)(x, y) of the solutions from
(a), showing opposite vortex windings in each component. (c) The phase separation
of the two components as a function of the interspin interaction strength g↕/g. Error

bars indicate the standard deviation of several trials. (d) The absolute value of ⟨L̂z⟩↑(↓)
averaged for both components, as a function of g↕/g. We expected that the circulation,
and hence the magnitude of the B∗

↑(↓), experienced by each spin component would be
the same, however, interactions and the initial random seeding generally tended to
imbalance the respective angular momenta for a given simulation trial. For values
of g↕/g larger than ∼ 0.5, the spins were completely phase-mixed with no angular
momentum present in either component.
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components,

⟨L̂z⟩↑(↓) =
∮︂
C
∇ϕ↑(↓)(r) · dℓ =

2πℏ
m

n↑(↓), (9.15)

where C is a closed, counter-clockwise contour enclosing 99% of the total atom popu-

lation [the thick black line in Figure 9.5(d)]; the total number of 2π-phase windings

n↑(↓) takes on integer values since the components are single-valued. In both the phase

separation and the average angular momentum characterizations, we see a clear phase

transition in the ground state at g↕/g ≈ 0.5 [Figure 9.5(e-f)].

Some obvious continuations of this work would investigate negative g↕ values,

as well as various synthetic magnetic field strengths. Field strengths are limited

to a maximum value of |B∗
↑,↓| ≈ 0.700 ℏ/qa20 by the possible gauge potentials (i.e.

|A∗/kL| ∈ [0, 1]) and by the physical size of the BEC. It would also be interesting to

search for edge effects in a 2D uniform disk BEC [236, 240].

Throughout all this, the acceleration of our GPU method is extremely evident: a

single trial typically executed in about 45 minutes on the Titan V GPU versus an

estimated ∼ 1 day on the i9 CPU. Moreover, all the results presented in Figure 9.5

would have taken almost 3 months of continuous computation on the i9, a highly

performant device [see Table 9.1].

9.7 Discussion

We have described a GPU-based approach for solving the NLSE that provided a

significant speed-up, and which let us investigate details of a system that would

have been otherwise inaccessible. Our computational approach was motivated by

the specifics of the GPE: while some of the terms are best calculated in real space,

others are better suited to momentum space, motivating FFTs between real and

momentum space representations; mean field interactions and direct coupling between
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Year Source Problem Language/Interface GPU Speedup

float32 float64 complex128

2010 [195] 1D dark solitons CUDA 75× 25× -

2011 [200] BEC in exiton semiconductor CUDA 19× - -

2013 [177] 1D dark solitons MATLAB® CUDA MEX 37× 31× -

2013 [241] Non-linear optical Bloch equations CUDA 23× 11× -

2014 [182] Rogue waves CUDA - >400× -

2015 [199] Dipolar solitons in driven BEC - 10×†

2017 [198] Dipolar BEC CUDA - - 21 & 25×

2016 [178] Optical pulse propagation in fibers CUDA - 50× -

2020 [180] Multimode optical fiber transmission - 93× 71× -

2021 This work Pseudospinor BEC Python/PyTorch - - 36 & 85×
† Precision was not specified.

Table 9.2: Research works demonstrating GPU accelerated solutions to nonlinear
Schrödinger equations. Almost all the works cited here were conducted in CUDA,
while ours used Python. Although speedup is a relative metric, this table highlights
the growing accessibility of GPU-accelerating NLSE solutions.

spinor components demanded sequential calculations. The GPU architecture and its

excellent handling of FFTs is well-suited to this algorithm.

For realistic modeling of experimental systems, it often becomes necessary to sim-

ulate in three dimensions. Our code is not designed for 3D, and, due to hardware

memory limitations, we note that extending our procedure to 3D using a single GPU

device could remain quite challenging: even storing a complex scalar order parameter

on a cubic 3D mesh of size 10243 would require over 17 GB of memory, exceeding

the VRAM capacity of most graphics cards on the market today. Although better

graphics cards are becoming available, solving the 3D NLSE with high resolution

would certainly require more advanced hardware and sophisticated computational

techniques than those presented here. Distributed GPU computing of the 3D NLSE

has been demonstrated previously using CUDA, OpenMP, and MPI [242]; similar
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multi-device computations may be possible with PyTorch and other machine learn-

ing libraries, albeit with additional code complexity.

The conversion of the existing TSSP implementation has yielded excellent per-

formance gains; many other successful algorithms may stand to benefit from GPU

acceleration in a very similar way. For instance, the previously demonstrated nonlin-

ear conjugate-gradient technique [193, 243] also relies heavily on FFTs for both the

main propagation and preconditioning steps. Additionally, derivative operations can

also be implemented on GPUs, so other techniques such as forward/backward-Euler

finite-difference or Crank-Nicholson finite-difference [244] may yield faster results as

well. Regardless, it is also possible to pair the presented work with an existing ground-

state solver [191–194]; ground-state solutions found with the preferred technique can

later be propagated in real-time using the presented package for faster results.

With the availability and specifications of GPU hardware continuing to improve,

we anticipate the approach taken here becoming even more widespread throughout

the physics and scientific communities: without needing to know or manipulate details

of the hardware architecture, one can access the advantages of GPUs while working

with high-level programming tools and relatively inexpensive hardware. Though here

we worked within the Python community, this approach is broadly applicable to other

similarly high-level frameworks. Within the open-source Python ecosystem, we found

that many tools available through packages like Numpy and PyTorch worked well for

us. We anticipate that recent updates to other packages like Numba and CuPy will

offer advantages for future work in this area.
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9.8 Conclusion

In this chapter, we demonstrated a straightforward approach to accelerate Python

code solving the 2D pseudospinor nonlinear Schrödinger/Gross-Pitaevskii equation.

CPU-based calculations having a power-law scaling in grid size became linear by

moving to a GPU-compatible system. We accomplished this with NVIDIA hard-

ware upgrades, and with relatively minimal changes to our previous code, migrating

from NumPy to PyTorch for the heavy calculations. Furthermore, we demonstrated

their performance by simulating a spin Hall system with a spatially-varying Raman

coupling. This work is a first step in the development process towards hardware-

accelerated code. Even greater speedups are possible by rigorously optimizing the

algorithm and computing resources. The grid sizes during the benchmarks were pri-

marily limited by memory; larger grid sizes could be probed by carefully managing

pre-loaded arrays and reusing temporary arrays [198]. Nonetheless, the approach and

spinor-gpe package presented in this chapter illustrate the simplicity and accessi-

bility of high-performance GPU computing for solving computationally expensive,

nonlinear differential equations; these tools and methods are increasingly accessible

for “everyday” scientific computing. This approach is especially relevant for exper-

imental research groups who routinely work with custom-built simulation code that

is not optimized on a low level.
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And He said, “Your name
shall no longer be called Jacob, but Israel;

for you have struggled with God...,
and have prevailed.”

Genesis 32:28, The Holy Bible:
New King James Version

Chapter 10

Conclusion

10.1 Summary

In this thesis, we have explored two different types of physical systems with emergent

nonlinearities. These nonlinearities produce solutions and dynamics that were not

present in their microscopic constituents. The first is an experimental demonstration

of nonlinear microwave-to-optical conversion in an upgraded warm atom/microwave

cavity system. To understand this process, we have explained the relevant electronic

structure of the 87Rb atoms [Chapter 2] and provided a semiclassical description for

transitions among the quantized energy levels [Chapter 3]; we have shown how the

thermal properties of the atoms influence their interactions with light [Chapter 4], and

provided an overview of second-order nonlinear optical processes [Chapter 5]. With

this foundation, we constructed a theoretical model for this unique nonlinear SFG oc-
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curring in an isotropic atomic material [Chapter 6]. After detailing the construction

and calibration of our apparatus [Chapter 7], we presented the experimental results

[Chapter 8], reporting a conversion efficiency of 1.5×10−9, comparable to other warm

atom [148] and magnon [143, 150, 164] conversion platforms. The significant contri-

butions of this work included the consideration of the thermal Doppler-broadened

resonance to extend the tunability of the output frequency over a 550 MHz range.

Independent velocity classes of atoms provided an opportunity for independent con-

version of multiple frequencies simultaneously. We demonstrated the coherent nature

of this conversion process and phase control of modulation sideband amplitudes.

Second, we considered a model of interacting, pseudospin-1/2 atoms in an ultracold

Bose-Einstein condensate [Chapter 9], where the evolution of the collective wavefunc-

tion is described by a nonlinear Schrödinger equation. The primary contribution was

the development of a procedure to significantly accelerate computed solutions of this

equation using simple programming tools and readily available graphics hardware.

To demonstrate the power of this approach, we observed an 80-100× computational

speedup and numerically studied a spin-Hall system with spatially varying Raman

coupling.

10.2 Future outlook

This section will focus on the future of the warm atom/cavity system, for which there

are abundant potential research opportunities, both fundamental and applied.

10.2.1 Conversion efficiency improvements

The most straightforward research direction is the improvement of the microwave-

to-optical conversion efficiency. This can first be done with higher pump power, as
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was shown in [146]. As described in Section 8.4, we expect that a higher optical

depth/atomic density will increase the generation efficiency. Halting the cell stem

water-cooling and heating the cavity and cell to higher temperatures are experimen-

tally simple ways to achieve this.

An obvious technical improvement is the use of an inert buffer gas inside the

cell. Because of collisions with the buffer atoms, the rubidium atoms move diffusively

through the cell, and the transit broadening is reduced [see Section 4.3.1]. This lowers

the effective ground state atomic decoherence rate γI and extends the coherence time

considerably. The buffer gas will pressure-broaden the atomic Doppler spectrum [see

Section 4.3.1] leading to even greater tunability of output frequency conversion. Of

course, broadening comes at the cost of reduced atomic density in a given velocity

class, so there will be a trade-off with efficiency. In anticipation of these improvements,

we have already begun tests with an identical vapor cell, containing 5 torr of Neon

buffer gas and an internal alkene anti-relaxation coating.

Another interesting research direction would be to work in the SERF regime where

spin decoherence is virtually eliminated [see Section 4.3.2]. This regime has been

shown to be beneficial for spin-based quantum memories [245], and could produce a

significant enhancement of conversion efficiency. Necessary upgrades would include a

high buffer-gas pressure cell, proper magnetic shielding, heating, and field cancellation

coils.

10.2.2 Difference frequency generation

By tuning the pump laser to the f = 1 → f ′ transition, light is produced in a

difference-frequency generation (DFG) configuration. To our knowledge, DFG has

not previously been observed for this hybrid nonlinear process in thermal neutral
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atoms. Preliminary experimental evidence of this process is shown in Figure 10.1,

but should be examined more systematically and compared to the SFG process.

(a) (b)
(c)

(d)

Figure 10.1: Preliminary data showing the generated signal for the pump laser fre-
quency sweep across all rubidium Doppler peaks. Energy level diagrams for (a) sum-
and (b) difference frequency generation. (c) The Doppler transmission spectrum of
the reference vapor cell. The spectrum has been normalized, with a linear slope
subtracted off. (d) Sum- and difference-frequency generation signals. When the
pump frequency sweeps over the f = 2 Doppler peak, the atom responds in a non-
linear sum-frequency process and generates light detected via optical heterodyne at
fhet,S = fI+ fAOM; when swept over the f = 1 Doppler peak, the difference-frequency
process occurs and the generated light is detected at fhet,D = fI − fAOM.

10.2.3 Time-dependent SFG

This thesis only presents SFG experiments with continuous wave fields, however, we

believe that many research opportunities exist for generation in a pulsed regime.

For example, a recent theoretical proposal has shown that it should be possible to

observe a generated pulse group delay time t(2) that varies with the intensity of the

input idler pulse [246]. Pulse delays t(1) in linear atomic media, even under EIT

conditions, depend on the real part of the first-order susceptibility ℜ
{︂
χ
(1)
S

}︂
, which

is proportional to the total atomic density [247]. In contrast, the t(2) delay time

depends on the phase of the complex, second-order susceptibility ϕ(2) = arg
[︂
χ
(2)
S

]︂
and is therefore density-independent. Measuring this group delay would allow for the
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generation and controllable group delay of pulses using a second-order nonlinearity,

particularly in miniturized, dilute atomic media.

More generally, we would be able to study SFG pulse propagation, Rabi-like oscilla-

tions, and optical precursors [248–251] for a second-order nonlinear process. Further-

more, some initial tests, both experimental and numerical simulations of the Maxwell-

Bloch equation [101], suggest the formation of a spin-wave excitation during the SFG

process. A controllable temporal separation between the idler and pump pulses will

allow us to probe the nature of this hypothetical spin wave. If confirmed, this spin

wave would integrate naturally with other warm-atom quantum memories [82, 245,

252].

All of these research avenues require the capability to properly pulse the idler

and pump fields at high-enough temporal resolution, ideally on a time scale much

faster than the ground-state decoherence time 2π/γI ≃ 7 µs. The pump pulses can

be shaped by AOMs1 or intensity EO modulators [253, 254]. The common archi-

tecture for producing fast microwave pulses for superconducting quantum processors

involves mixing a continuous microwave source with a fast digitally-generated RF

waveform [255].

10.2.4 SFG involving single photons

With higher conversion efficiencies and pulsed control, SFG involving single photons

becomes a possibility. Future work will be able to address open questions such as

how the quantum statistics of the generated photons differ from the coherent in-

put fields [55]. If the system displays quantum statistics, it could be operated as

an on-demand single-photon source. With larger efficiencies and cooperativities, it

1The pulse rise time depends on the acoustic wave speed and the diameter of the laser beam.
Faster pulse rise times are achieved by focusing the beam into/out of the AOM. The collimating
lens’ focal length should be long enough to spatially separate the diffracted orders.
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may also be possible to detect conversion using a single-photon pump source. These

opportunities are strengthened by the current construction and testing of a rubidium-

compatible, heralded single-photon source and superconducting single-photon detec-

tors in our lab space.

Because the SFG signal and pump emerge from the cavity co-linearly, they must

first be spatially separated (or the pump light must be sufficiently filtered) before

detection; it is essential to not overwhelm the single-photon-counting modules with

pump light. An atomic spectral filter [256] based on 85Rb may be helpful [257, 258],

but the most practical filtering option may be any or a combination of polarization2

and optical filters3.

10.2.5 Multilevel modeling for magnetometry

The strong SFG suppression at zero magnetic field [see Section 8.2.4] can only be

understood as a multi-level effect, and its understanding requires more detailed the-

oretical modeling. An accurate model would involve a Zeeman-dependent density

matrix solution with a total of sixteen participating levels; together with Doppler av-

eraging [100], this easily becomes computationally intensive. We suggest approaching

this problem incrementally. The relevant multilevel physics of our experiment could

be captured with the five-level model, shown in Figure 10.2, at steady-state and with

equal transition strengths. One could then build toward a more realistic model that

includes Doppler averaging, all levels (including both f ′ = 1 & 2 excited hyperfine

manifolds), the correct transition strengths, and the vector magnetic field. We believe

2Glan polarizers can achieve extinctions of 100,000:1, or 50 dB. Using these polarizers requires
upgrading to zero-order waveplates for precise polarization control.

3Examples include Fabry-Perot cavities [259] with extinctions of ∼ 45 dB [260], or fiber Bragg
gratings with extinctions of ∼ 30 dB.
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-1 0 +1

Figure 10.2: A simplified, multilevel microwave-to-optical conversion scheme for stud-
ies of zero-field SFG suppression. We assume two ground hyperfine states f = 0 & 1
and an excited hyperfine state f ′ = 1, with their respective Zeeman sublevels. In
an external DC magnetic field, the Zeeman levels split by ωZ. Not shown are the
decoherence rates from excited levels (|2⟩ through |5⟩) to lower ones. The yellow, red,
and blue lines show the idler, pump, and signal transitions. Given the same quantiz-
ing magnetic field and field polarizations from our main experiment, the SFG forms
two closed loops involving five levels; the upper mf = 0 levels do not couple and are
greyed out. We hypothesize that these two looped paths destructively interfere when
ωZ → 0.

this nonlinear process has potential for sensitive optical magnetometry, both in the

continuous and time-domain modes [261].

10.2.6 Frequency-bin processing

A final, interesting direction to pursue, as was alluded to in Section 8.6, is frequency-

bin information processing. In Section 6.3.2, we showed how the frequency compo-

nents of a PM pump beam and an AM idler field interact: the relative modulation
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phase imparts a change in the sideband amplitudes and quadrature phases of the SFG

light. We might consider encoding information in the sidebands of the pump, analo-

gous to that of a qubit; the AM idler acts like a “gate” to transform the amplitude

and phase of the “state”. We see from the calculations of Figure 6.5 that there is hope

for spanning a significant portion of a hypothetical “Bloch sphere” representation of

the sideband basis with AM idler operations.

While these experiments initially employ classical fields, the capability for single-

photon experiments opens up possibilities for quantum information processing [123,

153, 154, 169, 262]. In that case, the challenge will be to spatially separate the

photons from the various frequency bins. This separation process is typically achieved

with commercial spectral demultiplexers, however, they typically operate with mode

spacings around 10-25 GHz [105], much larger than the 100 kHz mode spacings used

in the amplitude phase-control experiment. Pressure broadening in the SERF regime

may permit larger frequency-bin separations.

10.3 Closing remarks

The physical universe is indeed a complex place, but the topics of this thesis show

that complexity can be tamed through a combination of reductionist and emergent

perspectives. Certainty, there is much more work to do in order to understand emer-

gent nonlinear complexity, and it is possible that the universe continues to surprise

us for a long time yet. I certainly hope so.

This thesis exemplifies the “nonlinear” path that my Ph.D. program has taken.

Although many unexpected events and aspects have emerged along the way, they

have combined to generate a cherished richness and depth of growth and learning.

For that privilege, I stand in wonder and gratitude.
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gauge potentials for neutral atoms,” Reviews of Modern Physics, vol. 83, no. 4,
pp. 1523–1543, 2011. doi: 10.1103/RevModPhys.83.1523.
{p. 176}

[225] Z. Wu et al., “Realization of two-dimensional spin-orbit coupling for Bose-
Einstein condensates,” Science, vol. 354, no. 6308, pp. 83–88, 2016. doi: 10.
1126/science.aaf6689.
{p. 176}
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[252] M. Dujić, D. Buhin, N. Šantić, D. Aumiler, and T. Ban, “Comparative study of
light storage in antirelaxation-coated and buffer-gas-filled alkali vapor cells,”
2023. arXiv: 2310.03726.
{p. 196}

[253] E. Saglamyurek, T. Hrushevskyi, A. Rastogi, L. W. Cooke, B. D. Smith, and
L. J. LeBlanc, “Storing short single-photon-level optical pulses in Bose–Einstein
condensates for high-performance quantum memory,” New Journal of Physics,
vol. 23, no. 4, p. 043 028, 2021. doi: 10.1088/1367-2630/abf1d9.
{pp. 196, 230}

[254] A. Rastogi, E. Saglamyurek, T. Hrushevskyi, and L. J. Leblanc, “Superradiance-
mediated photon storage for broadband quantum memory,” Physical Review
Letters, vol. 129, no. 12, p. 120 502, 2022. doi: 10.1103/PhysRevLett .129.
120502. arXiv: 2112.09261.
{p. 196}

[255] J. C. Bardin, D. H. Slichter, and D. J. Reilly, “Microwaves in Quantum Com-
puting,” IEEE Journal of Microwaves, vol. 1, no. 1, pp. 403–427, 2021. doi:
10.1109/JMW.2020.3034071. arXiv: 2011.01480.
{p. 196}

[256] D. Uhland, H. Dillmann, Y. Wang, and I. Gerhardt, “How to build an optical
filter with an atomic vapor cell,” 2023. arXiv: 2305.00570.
{p. 197}

227

https://doi.org/10.1103/PhysRevLett.114.093601
https://doi.org/10.1364/ol.33.002149
https://doi.org/10.1103/PhysRevLett.103.093602
https://doi.org/10.1103/PhysRevLett.103.093602
https://doi.org/10.1007/s40509-019-00210-9
https://arxiv.org/abs/2310.03726
https://doi.org/10.1088/1367-2630/abf1d9
https://doi.org/10.1103/PhysRevLett.129.120502
https://doi.org/10.1103/PhysRevLett.129.120502
https://arxiv.org/abs/2112.09261
https://doi.org/10.1109/JMW.2020.3034071
https://arxiv.org/abs/2011.01480
https://arxiv.org/abs/2305.00570


[257] D. T. Stack, P. J. Lee, and Q. Quraishi, “Simple and efficient absorption filter
for single photons from a cold atom quantum memory,” Optics Express, vol. 23,
no. 5, p. 6822, 2015. doi: 10.1364/OE.23.006822. arXiv: 1405.6117.
{p. 197}

[258] M. Bashkansky, F. K. Fatemi, and I. Vurgaftman, “Quantum memory in warm
rubidium vapor with buffer gas,” Optics Letters, vol. 37, no. 2, p. 142, 2012.
doi: 10.1364/ol.37.000142.
{p. 197}

[259] J. A. Boyd and T. Lahaye, “A basic introduction to ultrastable optical cavities
for laser stabilization,” American Journal of Physics, vol. 92, no. 1, pp. 50–58,
2024. doi: 10.1119/5.0161369. arXiv: 2308.08015.
{p. 197}

[260] P. Palittapongarnpim, A. MacRae, and A. I. Lvovsky, “Note: A monolithic
filter cavity for experiments in quantum optics,” Review of Scientific Instru-
ments, vol. 83, no. 6, p. 66 101, 2012. doi: 10.1063/1.4726458. arXiv: 1203.4843.
{p. 197}

[261] S. S. Sahoo, S. R. Mishra, G. Rajalakshmi, and A. K. Mohapatra, “Nonlinear
magnetoelectric effect in atomic vapor and its application to precision radio-
frequency magnetometry,” Physical Review A, vol. 105, no. 6, p. 063 509, 2022.
doi: 10.1103/PhysRevA.105.063509.
{p. 198}

[262] H.-H. Lu, J. M. Lukens, N. A. Peters, B. P. Williams, A. M. Weiner, and
P. Lougovski, “Quantum interference and correlation control of frequency-bin
qubits,” Optica, vol. 5, no. 11, p. 1455, 2018. doi: 10.1364/OPTICA.5.001455.
{p. 199}

[263] R. C. Jones, “I . Description and discussion of the calculus,” Journal of the
Optical Society of America, vol. 31, no. 7, pp. 488–493, 1941.
{pp. 232, 233}

[264] E. Hecht, Optics, 5th. Pearson, 2017.
{pp. 232, 233}

[265] R. A. Chipman, “Mechanics of polarization ray tracing,” Optical Engineering,
vol. 34, no. 6, p. 1636, 1995. doi: 10.1117/12.202061.
{p. 234}

[266] G. Yun, K. Crabtree, and R. A. Chipman, “Three-dimensional polarization
ray-tracing calculus I: Definition and diattenuation,” Applied Optics, vol. 50,
no. 18, pp. 2855–2865, 2011. doi: 10.1364/AO.50.002855.
{p. 234}

228

https://doi.org/10.1364/OE.23.006822
https://arxiv.org/abs/1405.6117
https://doi.org/10.1364/ol.37.000142
https://doi.org/10.1119/5.0161369
https://arxiv.org/abs/2308.08015
https://doi.org/10.1063/1.4726458
https://arxiv.org/abs/1203.4843
https://doi.org/10.1103/PhysRevA.105.063509
https://doi.org/10.1364/OPTICA.5.001455
https://doi.org/10.1117/12.202061
https://doi.org/10.1364/AO.50.002855


[267] M. Weissbluth, Atoms and Molecules. New York, NY, USA: Academic Press,
1978.
{pp. 234, 237}

[268] J. J. Sakuri, Modern Quantum Mechanics, S. F. Tuan, Ed. Addison-Wesley
Publishing Company, 1994.
{pp. 234, 235}

[269] M. A. Morrison and G. A. Parker, “A guide to rotations in quantum me-
chanics,” Australian Journal of Physics, vol. 40, no. 4, p. 465, 1987. doi:
10.1071/PH870465.
{p. 235}

[270] I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A sub-
femtotesla multichannel atomic magnetometer,” Nature, vol. 422, no. 6932,
pp. 596–599, 2003. doi: 10.1038/nature01484.
{p. 240}

229

https://doi.org/10.1071/PH870465
https://doi.org/10.1038/nature01484


Appendix A

Optical polarization & rotation

Many experimental apparatuses in atomic physics include a multi-level atomic sample,

at least one polarized laser beam, and a controllable external magnetic field for set-

ting a quantization axis. It is well-known that changing the input beam’s polarization

drives different multi-level transitions. To drive a specific transition in a multi-level

atom, experimentalists usually take one of two approaches: (1) select polarization

states with a high level of symmetry, given their quantization and beam geometry;

or (2) empirically alter the polarization or magnetic field until only the desired tran-

sition appears [112, 253]. Each approach has shortcomings. The drawback of the

first approach is that symmetric configurations may not always be possible given

optical access or other experimental constraints. In the second approach, the appara-

tus becomes characterized in terms of apparatus-specific parameters (e.g. waveplate
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rotation angles) instead of universal quantities, such as polarization states. In this

appendix, we break free from the limitations of both approaches. We answer the

question, “For an arbitrary beam geometry and given local input polarization, which

polarization does the atom “see”? We begin with an overview of optical polarization

and matrix methods for transforming the polarization state. Then we briefly discuss

rotations of spherical vectors and operators in three-dimensional space. These two

sections are combined in the final section to answer the question just posed.

Note that in this appendix, we refer to the polarization of a propagating beam

of light; however, this approach also applies to the polarization of non-propagating

electromagnetic waves, such as the TE011 microwave cavity mode used in this thesis.

We also emphasize that this method applies only to multi-level atoms [see Section 3.2];

this discussion is not sensible for two-level atoms because they lack the same rotational

properties in 3D space.

A.1 Optical polarization

A freely propagating electromagnetic wave is a transverse, oscillating vector field with

orthogonal electric and magnetic components. Transverse waves possess a property

called polarization, which is the spatial pattern of propagating oscillations. The

wave may, for example, oscillate along a vertical plane or in a circular pattern. By

convention, the polarization of an electromagnetic wave is defined according to the

electric field component; Poynting’s theorem then constrains the orthogonal magnetic

field component.
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A.1.1 Polarization vectors

We begin by considering a classical plane wave electric field of the form

E(z, t) =
(︁
|Ex|eiϕx êx + |Ey|eiϕy êy

)︁
ei(kz−ωt), (A.1)

oscillating at a frequency ω and propagating along the z-axis with a wavenumber

k = ω/c [89]. The field has vector components along the êx,y axes with their respective

amplitudes |Ex,y| and phases ϕx,y. We factor out the global phase factor and normalize

by the total field amplitude E0 =
√︁

|Ex|2 + |Ey|2 to get the expression

E(z, t) = Eeff(z, t)
[︁
Aêx +Beiδêy

]︁
, (A.2)

where Eeff(z, t) = E0ei(kz−ωt+ϕx), the amplitudes A ≡ |Ex|/E0 and B ≡ |Ey|/E0, and

the relative phase δ = ϕy − ϕx. The expression in the square brackets is a complex

unit vector in the êx-êy plane. This vector describes the general polarization state of

the light |ψ⟩1 and can be also represented as a column Jones vector [263]

|ψ⟩ =

⎡⎣ A

Beiδ

⎤⎦ . (A.3)

If either A or B equals 1, then the electric field oscillates purely along the êx or êy

axes, respectively. These are examples of so-called linear polarization states. Real (i.e.

δ = 0) linear combinations of both axes produce linearly polarized light oscillating

along a diagonal plane. Circular and elliptical polarizations are constructed from

complex linear combinations (i.e. δ ̸= 0).

A.1.2 Convention

When performing calculations of optical polarizations, it is extremely important to be

aware of the conventions employed by various sources [264]. In this thesis, we employ

1Here, we are describing classical states of light; bra-ket notation can also be used for single-
photon polarization states.
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the convention used in Hecht [264], where the phase of an electromagnetic wave is

(kz−ωt) 2. Any additional phase δ > 0 in one of the polarization components delays

the phase by a time δ/ω. Likewise, the phase is advanced when δ < 0.

We also employ the “handedness” convention used by Hecht: when δ = −π/2,

the êy-component of Equation A.2 is advanced by a quarter wave ahead of the êx-

component. If a screen is placed between the light source and an observer, the

total electric field vector would be seen on the screen by the observer (looking back

toward the source) to rotate clockwise. In the convention, this is called right-circularly

polarized light. Similarly, when δ = π/2, the êy-component is delayed by a quarter

wave. The observer would see the electric field vector rotating counter-clockwise and

is called left-circularly polarized light3.

A.1.3 Matrix transformations of polarization vectors

Certain types of optical elements change the polarization state of the light. For

example, waveplates produce unitary transformations of |ψ⟩ and polarizers project

the state along a certain axis. Transformations of |ψ⟩ are calculated using a matrix

multiplication method called Jones calculus [263]. In this approach, the action of

optical elements are represented by 2x2 matrices J̌ applied to the left of the |ψ⟩ in

the order that the light encounters them, or

|ψ′⟩ = J̌ N . . . J̌ 3J̌ 2J̌ 1|ψ⟩. (A.4)

Jones calculus is defined in the local coordinates of the beam. It is suitable for

calculations where the light travels paraxially through the optical elements along a

2In contrast, some sources define the wave phase as (ωt− kz).
3Note that in this convention, the “right-hand rule”—where the thumb points along the propa-

gation axis—is reversed: clockwise rotating field seen by a receiver (left hand) is called right circular
polarized light. This convention is often specified as “from the point of view of the receiver.” The
opposite convention is called “from the point of view of the source” and is also widely used. Caveat
lector !
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single axis. This was the approach used in Section 7.3.4 to calibrate the angles of the

experimental waveplates.

In the discussion that follows, we want to consider how an atom experiences the

polarization state of a beam of light coming from different directions in the global

laboratory coordinates. To do this, we may define a cartesian polarization vector by

extending the Jones vector along a third cartesian axis [265, 266]

|Ψ⟩ =

⎡⎢⎢⎢⎣
cx

cy

cz

⎤⎥⎥⎥⎦ , (A.5)

where the ci are complex values such that
√︁
c2x + c2y + c2z = 1. For a beam propagating

along the z-axis, cz = 0 and we recover the Jones calculus form. Propagation along

an arbitrary axis will have three non-zero components. In Section A.3, we transform

this vector to the spherical basis and consider its rotations in 3D space.

For reference, Appendix B lists the cartesian vectors for several special polarization

states of a beam propagating along the êz-axis. It also includes the 3x3 matrices for

polarizers P̌ and waveplate W̌ optical elements.

A.2 Rotations of spherical vectors

The spherical harmonics and vector operators defined in Section 2.4 are represented in

a specific three-dimensional coordinate system. In this section, we will consider how

these functions and operators transform under physical rotations. While the rotation

occurs in R3 space, the result is typically manifested in the internal Hilbert space.

This discussion will be a brief overview of rotations of spherical vectors in quantum

mechanics; in-depth treatments are found in many other sources [26, 41, 267, 268].

A general rotation operator can be decomposed into three rotation operations about
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certain axes. There is no one unique way to define these rotations, but typically a

combination of three axes is chosen. In the ZYZ convention—commonly employed in

the rotation of angular momentum operators [49, 268]— we first rotate by an angle

α about the êz-axis, then by an angle β about the êy-axis, and finally by an angle γ

about the êz-axis. The angles α, β, and γ are called Euler angles; they describe the

orientation of objects in a fixed local coordinate frame4. When considered relative to

fixed laboratory reference frame axes, the order of these rotation operations reverses,

giving the general rotation operator [269]

R̂(α, β, γ) = R̂z(α)R̂y(β)R̂z(γ). (A.6)

The individual rotation operators about the êi-axis are defined as [26, 52, 269]

R̂i(θ) = exp(−iϕĴ · êi/ℏ), (A.7)

where Ĵ = Ĵ xêx + Ĵ yêy + Ĵ z êz is the angular momentum operator5.

To see how the total rotation operator R̂(α, β, γ) influences the internal state of

the spherical vector, we take its matrix element to obtain the complex-valued Wigner

4The ZYZ rotation matrix acting on a cartesian vector in R3 takes the form [269]

Ř(α, β, γ) =

⎛⎜⎜⎜⎝
cosα − sinα 0

sinα cosα 0

0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
cosβ 0 sinβ

0 1 0

sinβ 0 cosβ

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
cos γ − sin γ 0

sin γ cos γ 0

0 0 1

⎞⎟⎟⎟⎠ .

5This operator is constructed by breaking down the operator for the full rotation angle θ into
an infinite product of infinitesimal rotations; in essence: “Do what you have to do a little bit at a
time” [52]. The infinitesimal rotation operator is [26]

R̂i(dθ) = 1̂− idθĴ · êi/ℏ,

where dθ = θ/N , for some large integer N . By applying this infinitesimal rotation N → ∞ times,
we construct the full rotation operator [49, 52],

R̂i(θ) = lim
N→∞

[1̂− i
θ

N
Ĵ · n̂/ℏ]N = exp(−iθĴ · êi/ℏ).
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D-matrix in the spherical basis [49]

D
(j)

m′
jmj

= ⟨jm′
j|R̂z(α)R̂y(β)R̂z(γ)|jmj⟩. (A.8)

This is evaluated to

D
(j)

m′
jmj

= e−i(αm′+γm)d
(j)

m′
jmj

(β), (A.9)

where d
(j)

m′
jmj

(β) is a non-trivial matrix, but which is be readily calculated with soft-

ware [46, 47]. For j = 1 and mj,m
′
j ∈ {−1, 0, 1}, this matrix takes the explicit form

of [49]

d
(1)

m′
jmj

(β) =

⎛⎜⎜⎜⎝
cos2 β

2
− sinβ√

2
sin2 β

2

sinβ√
2

cos β − sinβ√
2

sin2 β
2

sinβ√
2

cos2 β
2

⎞⎟⎟⎟⎠ . (A.10)

D
(j)
m′m(α, β, γ) multiplies an arbitrary spherical vector to transform its components

under the rotation. Notice that due to the non-commutativity of 3D rotations, two

individual, sequential rotationsD
(j)
m′m(0, β, 0)D

(j)
m′m(α, 0, 0) are not the same as a single

D
(j)
m′m(α, β, 0) rotation.

Users of the D-matrix should be aware that d
(j)

m′
jmj

(0) = δm′
jmj

. In this case, when

operations on certain spherical vectors (e.g. [0 1 0]T ) lose sensitivity to certain

rotation directions (e.g. γ). This is the spherical basis form of gimbal lock, a universal

pathology of conventional 3D Euler rotation matrices. When this occurs, it is helpful

to provide an initial rotation of the state D
(j)
m′m(0, β, 0), followed by a second rotation

D
(j)
m′m(α,−β, γ).

A.3 What the atom “sees”: Rotations of polariza-

tion states

As explained in Section 3.1.1, the electric field of light interacts with the multi-level

atom’s induced electric dipole moment to change the electron’s quantum state. Recall
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that the matrix element for the E1 interaction is ⟨m′|er̂ · E|m⟩. Because the atomic

states are represented in spherical |jmj⟩ notation, it is helpful to represent the electric

field vector asE = [c− c0 c+]
T and the position vector operator as r̂ = [r̂− r̂0 r̂+]

T

in the spherical basis. Following Equation 2.7, the matrix equation⎡⎢⎢⎢⎣
c−

c0

c+

⎤⎥⎥⎥⎦ =
1√
2

⎛⎜⎜⎜⎝
1 −i 0

0 0
√
2

−1 −i 0

⎞⎟⎟⎟⎠
⎡⎢⎢⎢⎣
cx

cy

cz

⎤⎥⎥⎥⎦ (A.11)

shows the change-of-basis transformation of the electric field polarization vector from

the cartesian to the spherical basis, where the quantization axis is chosen to lie along

the z-axis [49]. In this form, the E1 matrix element becomes

⟨m′|er̂ · E|m⟩ = ⟨m′|e (c−r̂− + c0r̂0 + c+r̂+) |m⟩

= c−⟨m− 1|d̂−|m⟩+ c0⟨m|d̂0|m⟩+ c+⟨m+ 1|d̂+|m⟩,
(A.12)

where the dipole operator d̂q = er̂q can only connect states |m⟩ to |m + q⟩. The

relative Rabi frequency of the qth transition is Ωq = cq⟨m+ q|d̂q|m⟩/ℏ.

How are these complex-valued cq coefficients determined for a given ex-

perimental configuration?

In general, the cq coefficients depend on (1) the input light’s polarization state

defined in local coordinates, measured experimentally using a polarizer and rotating

waveplates [see Section 7.3.4], and (2) the relative angles between a beam’s prop-

agation axis and the atom’s quantization axis, typically furnished by an externally

applied magnetic field. Since a transverse vector field, in the spherical basis, has

the same rotational properties as a spherical vector operator operator [267], we can

use the Wigner D-matrix to rotate the spherical polarization state vector in 3D. Fig-

ure A.1(a) shows a coordinate system and Euler rotation angles of a linearly polarized

beam.

237



Appendix A. Polarization rotations A.3. What the atom “sees”Appendix A. Polarization rotations A.3. What the atom “sees”Appendix A. Polarization rotations A.3. What the atom “sees”

Once the beam’s local polarization state is identified (usually vertical/horizontal

linear or right-/left-circular), the procedure begins by first initializing the propaga-

tion direction along an axis that makes the polarization coefficients simple [49]. For

example:

� An initial propagation direction along the quantization axis produces polar-

ization vectors |σ+⟩ = [0 0 1]T for right-circular polarization and |σ−⟩ =

[1 0 0]T for left-circular polarization.

� Linearly polarized light propagating orthogonal to the quantization axis, with

the polarization plane parallel to the quantization axis, produces the polariza-

tion vector |π⟩ =
[︂
0 1 0

]︂T
. For consistency, and to avoid gimbal-lock issues,

it is often helpful to rotate this state to also point along the quantization axis,

producing

|π′⟩ = D
(1)

m′
jmj

(0, π/2, 0)|π⟩ = [1 0 1]
T/

√
2. (A.13)

Next, the Wigner D-matrix—with Euler angles chosen to rotate the initial axis

to the real propagation axis—multiplies the initial polarization vector. In general,

the resulting vector has complex coefficients. In Figure A.1, we demonstrate this

procedure for two special cases: (c) shows the result of D
(1)

m′
jmj

(0, π/2, γ)|π′⟩ as γ is

varied from 0 to 2π, and (d) shows the result of D
(1)

m′
jmj

(0, β, 0)|σ−⟩ as β is varied from

0 to 2π. The diagrams depict these rotations in the fixed coordinates. The associated

plots show how the norm squared of the coefficients |cq|2 vary with rotation angle.

These plots may be interpreted as the polarization component fraction “seen” by the

atom6. Notice that the phase information is not represented.

6The plot in Figure A.1(c) shows that the fractions in each polarization component are equal,
i.e. |cq|2 = 1/3 when γ = 54.7◦ and 125.3◦. There are many combinations of input polarization and
rotation angles that produce this interesting scenario.
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(a) (b)

(c)

(d)

Figure A.1: Rotations of electromagnetic polarization states relative to a quantization
axis. (a) The 3D coordinate system in which rotations are defined, with an atom
(yellow) placed at the origin. The large yellow arrow is the atom’s quantization axis,
chosen to lie along the z-axis. The polarized light’s electric field is shown as a blue
sine wave, whose propagation direction toward the atom is shown by the blue arrow.
The angles α, β, and γ indicate the heading, pitch, and roll angles of the electric
field, all defined from an initial orientation along the quantization axis. Because the
γ rotation is applied before the others, the gray plane is identical to the êx-êy plane.
The boxed inset shows transitions from a f = 0 state to three f = 1 Zeeman sublevels,
with the transition matrix elements ci indicated. (b) For every β, rotating circularly
polarized light by angles α or γ does not affect the spherical dipole matrix element
amplitudes; it does, however, alter their phase. This is also true for α rotations
of linearly polarized light. (c) A γ rotation of linearly-polarized light propagating
along the x-axis. The graph shows the squared matrix elements as a function of
rotation angle in degrees. Note that the |c±|2 curves completely overlap. (d) The
squared matrix elements for different angles throughout a β rotation of left-circularly
polarized light.
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Certain rotations of polarization vectors change the coefficients’ complex phase but

leave their amplitudes unaffected. Two examples of such rotations are depicted in

Figure A.1(b). In many experimental configurations, a global phase change of the

rotated polarization vector may be factorable and produce no change whatsoever in

the measured atomic populations. However, in an interferometer scheme, or when

multiple phase-coherent beams interact with the same atoms, these phase changes

may be measurable and significant.

What determines the quantization axis when the magnetic field is zero?

There are specific experimental configurations where the magnetic field is nullified

at the location of the atoms [270]. As before, the experimenter is free to choose any

axis upon which to quantize the atom’s angular momentum. In this case, however, a

convenient axis is the propagation axis of the light. The situation becomes slightly

more complicated when multiple beams interact with the atoms. One of the beam

axes may be chosen as the quantization axis, and the polarization vectors of the other

beams are related to that axis by the same rotation procedure described above.
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Polarization vectors and matrices

This appendix lists special examples of three-component, cartesian polarization vec-

tors |Ψ⟩ used to describe the polarization state of light traveling along the êz-axis [see

Table B.1]. It also lists several 3x3 matrices that operate on |Ψ⟩: Table B.2 gives the

projecting matrices for a polarizing beam splitter P̌ , which can be used to analyze the

polarization components; Table B.3 gives the unitary matrices for waveplates/phase

retarders W̌ that can be used to transform between the states given in Table B.1.

The states and matrices in this appendix are equivalent to those used in the Jones

calculus introduced in Section A.1 and follow the phase convention defined in Sec-

tion A.1.2.

Waveplates are typically manufactured from a crystal, such as quartz, that hosts

birefringence. This means that transmitting light experiences different indices of re-
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fraction along orthogonal crystal axes. The axis with the lower (higher) index of

refraction has a faster (slower) wave speed and is called the fast (slow) axis. The

phase of light polarized along the slow axis will be delayed from that of the fast axis.

For this reason, waveplates are also called phase retarders. A specific phase delay

η can be engineered by carefully controlling the thickness of the crystal. A quarter

waveplate has η = π/2, while a half waveplate has η = π.

Name State Form

Horizontal Linear |H⟩
[︂
1 0 0

]︂T

Vertical Linear |V ⟩
[︂
0 1 0

]︂T

Angled Linear |θ⟩
[︂
cos θ sin θ 0

]︂T

Right Circular |R⟩
[︂
1 −i 0

]︂T
/
√
2

Left Circular |L⟩
[︂
1 i 0

]︂T
/
√
2

Table B.1: Special polarization state vectors for a z-axis propagating beam. θ is the
angle between the x-axis and the rotated linear polarization axis.
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Name State Form

Polarizer,
Transmitted

P̌ T

⎡⎢⎢⎢⎣
1 0 0

0 0 0

0 0 0

⎤⎥⎥⎥⎦

Polarizer,
Reflected

P̌R

⎡⎢⎢⎢⎣
0 0 0

0 1 0

0 0 0

⎤⎥⎥⎥⎦

Polarizer,
Transmitted (Rotated)

P̌ (θ)

⎡⎢⎢⎢⎣
cos2 θ sin θ cos θ 0

sin θ cos θ sin2 θ 0

0 0 0

⎤⎥⎥⎥⎦
Table B.2: Polarizer matrices for a z-axis propagating beam. These are specifically
for a polarizing beam splitter (PBS), where the transmitted beam is |H⟩ and the
reflected beam is |V ⟩. θ is the angle between the x-axis and the polarizer axis.
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Name State Form

General linear
phase retarder

W̌ (η, θ) e−
iη
2

⎡⎢⎢⎢⎣
cos2 θ + eiη sin2 θ (1− eiη) cos θ sin θ 0

(1− eiη) cos θ sin θ sin2 θ + eiη cos2 θ 0

0 0 1

⎤⎥⎥⎥⎦

Quarter WP W̌Q(θ) e−
iπ
4

⎡⎢⎢⎢⎣
cos2 θ + i sin2 θ sin θ cos θ − i sin θ cos θ 0

sin θ cos θ − i sin θ cos θ sin2 θ + i cos2 θ 0

0 0 1

⎤⎥⎥⎥⎦

Half WP W̌H(θ) e−
iπ
2

⎡⎢⎢⎢⎣
cos 2θ sin 2θ 0

sin 2θ − cos 2θ 0

0 0 1

⎤⎥⎥⎥⎦
Table B.3: Waveplate/phase retarder matrices for a z-propagating beam. θ is the
angle between the x-axis and the crystal fast axis, while η is the relative phase delay
between the fast and slow axes.
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Evaluating reduced angular
momentum matrix elements

In this appendix, we evaluate certain reduced matrix elements [41], starting with

⟨J ||Ĵ||J ′⟩. First, note that Ĵ =
(︂
Ĵ x, Ĵ y, Ĵ z

)︂
is a vector of angular momentum

operators with spherical components Ĵ
(1)

0 = Ĵ z and Ĵ
(1)

± = ∓
(︂
Ĵ x ± iĴ y

)︂
/
√
2. We

can thus evaluate

⟨Jm|Ĵ
(1)

0 |J ′m′⟩ = mℏ⟨Jm|J ′m′⟩ = mℏδJJ ′δmm′ . (C.1)

This same matrix element can also be evaluated using the Wigner-Eckart theorem

[Equation 2.18] to give
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⟨Jm|Ĵ
(1)

0 |J ′m′⟩ = ⟨J ′m′; 10|Jm⟩⟨J ||Ĵ||J ′⟩

= (−1)−J ′+1−m
√
2J + 1

⎛⎝J ′ 1 J

m′ 0 −m

⎞⎠ ⟨J ||Ĵ||J⟩.
(C.2)

Since Equation C.1 is equal to Equation C.2, we can make the early simplification J =

J ′ and m = m′. The 3j-symbol is then evaluated explicitly using Mathematica [46]

to obtain ⎛⎝J 1 J

m 0 −m

⎞⎠ = (−1)−J+1−m m√︁
J(2J + 1)(J + 1)

. (C.3)

Substituting this result into Equation C.2 gives us

⟨Jm|Ĵ
(1)

0 |Jm′⟩ = (−1)−J+1−m × (−1)−J+1−m m
√
2J + 1√︁

J(2J + 1)(J + 1)
δmm′⟨J ||Ĵ||J⟩.

(C.4)

Since J +m is an integer, (−1)−2(J+m−1) = 1, producing

⟨Jm|Ĵ
(1)

0 |Jm′⟩ = m√︁
J(J + 1)

δmm′⟨J ||Ĵ||J⟩. (C.5)

This also equals Equation (1), hence

mℏδmm′ =
m√︁

J(J + 1)
δmm′⟨J ||Ĵ||J⟩. (C.6)

Finally, we obtain

⟨J ||Ĵ||J⟩ = ℏ
√︁
J(J + 1). (C.7)

We can interpret this result as the average expectation value of ⟨Ĵ⟩ ≡
√︂

⟨Ĵ
2
⟩.

Next, to evaluate ⟨ℓ′||r||ℓ⟩, we notice that r is a spherical vector operator, whose

reduced matrix element can be determined using a similar process as above. The

Wigner-Eckart theorem allows us to relate ⟨ℓ′||r||ℓ⟩ to the matrix element ⟨ℓ′mℓ′ |r1q |ℓmℓ⟩,

which itself can be evaluated via an integration of a product of spherical harmonics.
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By equating the two, we obtain the result

⟨ℓ′||r||ℓ⟩ = (−1)ℓ
′

√︃
3

4π
(2ℓ′ + 1)(2ℓ+ 1)

⎛⎝ℓ′ 1 ℓ

0 0 0

⎞⎠ . (C.8)

The 3j-symbol is only nonzero for ℓ = ℓ′ ± 1, according to the triangle inequality

Equation 2.13.
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Spectrum analyzer programming
and examples

D.1 Introduction

The Rohde & Schwartz FSV3013 spectrum analyzer is a self-contained instrument.

Its functionalities and operation are described in Section 7.8. All of its functionalities

are accessible through the front-panel touchscreen and soft key interfaces. However,

the user frequently changes many parameters and controls during a given measure-

ment; especially when many repeated measurements are needed, entering commands

one by one can quickly grow tedious. To automate the measurement and data storage

process, we developed several Python code listings for sending command sequences

to the spectrum analyzer. The underlying class structure listing and several exam-
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ple script listings are included in this appendix. The code listings are thoroughly

commented for clarity.

The code communicates with the spectrum analyzer via a LAN ethernet connection

using PyVISA, a Python package wrapper of the National Instruments’s VISA library.

VISA is a free library and must be downloaded and installed onto the computer for

PyVISA to operate. PyVISA creates a resource object (rs) that connects with the

spectrum analyzer at its preset IP address. This address can be read from a front

panel menu.

The Python program sends SCPI commands to the instrument to configure its

various functionalities. A SCPI command has a specific syntax. A list of all the

SCPI commands available to the spectrum analyzer can be found in its user man-

ual. It’s helpful to think of each command as accessing a specific memory register

on the instrument; it can either query the data on that register or write a new value

for it. For example, the command to query the RBW value ends with a question

mark (‘‘[SENSe:]BANDwidth[:RESolution]?’’), while the write command ends

with a space, a value, and unit (‘‘[SENSe:]BANDwidth[:RESolution] 1 MHz’’).

(The quotes indicate this is an ASCII text string.) In these examples, the square

brackets are not part of the command string: the characters inside the brackets are

optional—they can be included for clarity, or omitted for brevity. The full form of the

command indicates a hierarchical structure of memory registers in the instrument.

Additionally, the lowercase characters in the command can also be safely omitted.

Thus the following SCPI commands are all equivalent:

� ‘‘SENSe:BANDwidth:RESolution 1 MHz’’

� ‘‘SENS:BAND:RES 1 MHz’’

� ‘‘BANDwidth 1 MHz’’
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� ‘‘BAND:RES 1 MHz’’

� ‘‘BAND 1 MHz’’

Always consult the user manual for the proper commands and syntax when program-

ming.

D.2 Class structure

The main class structure is shown in Listing D.1. The parent SpectrumChannel

class is used for spectrum traces. From the initialization parameters, it configures the

channel settings (i.e. number and name), directory settings (i.e. save directory and file

formats), and spectrum settings (e.g. center freq., span, RBW). It also has methods

to mark spectral peaks and save data files. The daughter TimeChannel class inherits

from the parent class and programs other instrument parameters that are specific to

a time trace in zero-span mode. Both classes use public methods to run continuous

measurements of a single channel or to run a sequence of measurements from multiple

channels. There are also methods to save PNG files of front-panel screenshots; saving

images along with their CSV files allows for easy visual identification of file contents.

1 import pyvisa

2 from datetime import datetime as dt

3

4

5 class SpectrumChannel:

6 """ Define the attributes and methods of a spectral channel."""

7

8 def __init__(self , res , name , idx , sdir , cfreq , span , rlev ,

9 vran =100, npts =1001, navg=0, rbw=10, vbw=None ,

10 atten=30, preamp=None , det=’RMS’, mode=’AVER’,

11 ftag=’’, subdir=’’):

12 self.res = res # VISA resource reference

13 self.name = name # Channel name

14 self.idx = idx # Channel index

15 self.sdir = sdir # Top directory save path

16 self.cfreq = cfreq # Center frequency , in Hz

17 self.span = span # Span , in Hz

18 self.rlev = rlev # Reference level , in dBm

19 self.vran = vran # Vertical range , in dB

20 self.npts = npts # Number of points

21 self.navg = navg # Number of trace averages
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22 self.atten = atten # Internal attenuation

23 self.preamp = preamp # Preamplifier value , in dB; off if None

24 self.det = det # Detector setting

25 self.mode = mode # Measurement mode

26 self.ftag = ftag # File tag

27 self.subdir = subdir # Subdirectory

28 self.rbw = rbw # Resolution bandwidth , in Hz

29 if vbw is None: # Video bandwidth

30 self.vbw = self.rbw

31 self.res.write(’SENS:BWID:VID:AUTO ON’) # RBW -VBW coupling on

32 self.res.write(’SENS:BWID:VID:RAT 1’) # RBW -VBW ratio equal.

33 else:

34 self.vbw = vbw

35

36 self.channel_settings ()

37 self.dir_settings ()

38 self.spectrum_settings ()

39

40 def dir_settings(self):

41 """ Set directory settings."""

42 self.day = dt.today ().strftime(’%y%m%d’) # Today ’s date , ’YYMMDD ’

43 self.res.write(f’MMEM:CDIR "{self.sdir}"’) # Sets cwd to sdir

44 contents = self.res.query(’MMEM:CAT?’) # Reads the contents of sdir

45 if self.day not in contents:

46 print(’Day not found. Creating ...’)

47 self.res.write(f’MMEM:MDIR "{self.day}"’) # Creates today ’s dir

48 folder = self.sdir + self.day + "\\"

49

50 if self.subdir != "": # FIXME?: Treat subdirectory paths better

51 self.subdir = self.subdir + "\\"

52 self.res.write(f’MMEM:CDIR "{ folder }"’)

53 self.res.write(’FORM:DEXP:CSEP COMM’) # Comma -delimiting

54 self.res.write(’FORM:DEXP:DSEP POIN’) # Point as a decimal separator

55 self.res.write(’FORM:DEXP:FORM CSV’) # Set CSV format for trace files

56 self.res.write(’FORM:DEXP:XDIS STAR’) # Set x-value def.: start -end

57 self.res.write(’FORM:DEXP:TRAC SING’) # Export a single trace

58

59 def channel_settings(self):

60 """ Set channel name and other settings."""

61 if self.idx == 1: # FIXME: I don’t like that it depends on user entry

62 # Renames the first default spectrum channel

63 ch_names = self.res.query(’INST:LIST?’) # Query channel name

64 ch_names = ch_names.strip(’\n’).split(’,’)[1::2] # Split to list

65 self.res.write(f’INST:REN {ch_names[self.idx -1]}, "{self.name}"’)

66 else:

67 # Creates and renames a new channel

68 self.res.write(f’INST:CRE:NEW SANALYZER , "{self.name}"’)

69

70 def spectrum_settings(self):

71 """ Set spectrum analyzer measurement settings."""

72 self.res.write(f’INST:SEL "{self.name }"; *WAI’)

73

74 self.res.write(’INIT:CONT OFF’)

75 self.res.write(f’SENS:WIND1:DET:FUNC {self.det}’) # Channel detector

76 self.res.write(f’DISP:WIND1:SUBW:TRAC1:MODE {self.mode}’) # Sets mode

77 self.res.write(f’SENS:SWE:COUN {self.navg}’) # Sets trace average num.

78 self.res.write(f’SENS:SWE:WIND{self.idx}:POIN {self.npts}’) # Pts num.

79

80 self.res.write(f’FREQ:CENT {self.cfreq}Hz’) # Sets center frequency

81 self.res.write(f’FREQ:SPAN {self.span}Hz’) # Sets span

82

83 self.res.write(f’DISP:WIND1:TRAC:Y:SCAL:RLEV {self.rlev}’) # Ref. lev.
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84 self.res.write(f’DISP:WIND1:TRAC:Y:SCAL {self.vran}’) # Dynamic range

85 self.res.write(f’INP:ATT {self.atten}dB’) # Input attenuator value

86 if self.preamp in [15, 30]:

87 self.res.write(’INP:GAIN:STAT ON’) # Turns on preamp

88 self.res.write(f’INP:GAIN:VAL {self.preamp}’) # Sets preamp value

89

90 self.res.write(’SENS:BWID:RES:AUTO OFF’) # RBW -Span coupling off

91 self.res.write(f’SENS:BWID:RES {self.rbw}Hz’) # Sets the RBW

92

93 def mark_peak(self , cent=False):

94 """ Switches to channel , turns on marker , returns auto peak search."""

95 self.res.write(f’INST:SEL "{self.name }";* WAI’)

96 self.res.write(’CALC1:MARK1:STAT ON;*WAI’) # Marker on; peak search

97 if cent: # Marker to central frequency

98 self.res.write(f’CALC1:MARK1:X {self.cfreq}Hz’)

99

100 pos = float(self.res.query(’CALC1:MARK1:X?; *WAI’)) # Marker X-pos.

101 amp = float(self.res.query(’CALC1:MARK1:Y?; *WAI’)) # Marker Y-pos.

102 return pos , amp

103

104 def save_trace(self , fn, ss=False):

105 """ Save trace data to USB file."""

106 self.res.write(f’INST:SEL "{self.name }";* WAI’) # Select channel

107 file_path = self.subdir + fn + self.ftag # File path

108 file_path_csv = file_path + ".CSV"

109 self.res.write(f’MMEM:STOR1:TRAC 1, "{ file_path_csv }"’) # Saves file

110

111 if ss: # save screenshot of individual trace

112 self.res.write(’DISP:FORM SING’) # Display single channel

113 screenshot(self.res , file_path)

114

115

116 class TimeChannel(SpectrumChannel):

117 """ Define the attributes and methods of a time -domain channel."""

118

119 def __init__(self , res , name , idx , sdir , cfreq , span , rlev ,

120 vran =100, npts =1001, navg=0, rbw=10, vbw=None ,

121 atten=30, preamp=None , det=’RMS’, mode=’AVER’,

122 ftag=’’, subdir=’’, swtime=None):

123 SpectrumChannel.__init__(self , res , name , idx , sdir , cfreq , span ,

124 rlev , vran=vran , npts=npts , navg=navg ,

125 rbw=rbw , vbw=vbw , atten=atten , preamp=preamp ,

126 det=det , mode=mode , ftag=ftag , subdir=subdir)

127

128 self.swtime = swtime # Sweep time , in seconds

129 self.res.write(’FREQ:SPAN 0Hz’) # Sets zero span mode

130 self.res.write(’SENS:SWE:TIME:AUTO OFF’) # Turns off auto sweep time

131 self.res.write(f’SENS:SWE:TIME {self.swtime}s’)

132

133 self.res.write(’TRIG:SEQ:SOUR EXT2’)

134 self.res.write(’TRIG:LEV:EXT2 1.4V’)

135 self.res.write(’TRIG:HOLD: 0s’)

136

137

138 def screenshot(res , fn):

139 """ Save a single screenshot."""

140 cwd = res.query(’MMEM:CDIR?’).strip(’\n’).strip(’\’’) # Read cwd

141 file_path_png = cwd + fn + ".PNG" # file path

142 res.write(f’MMEM:NAME "{ file_path_png }"’) # Configure the PNG file

143 res.write(’HCOP:CMAP:DEF4’) # Same colors as the screen

144 res.write(’HCOP:IMM’) # Save the screenshot

145
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146

147 def multi_screenshot(res , fn):

148 """ Save screenshot in MultiView."""

149 res.write(’DISP:FORM SPL’) # Display split MultiView

150 screenshot(res , fn)

151

152

153 def run_sequence(res):

154 """ Run a sequence measurement."""

155 res.write(’DISP:FORM SPL’)

156 res.write(’SYST:SEQ ON’) # Enables sequencer

157 res.write(’INIT:SEQ:MODE SING’) # Single sequence

158 res.write(’INIT:SEQ:IMM;*OPC?’) # Runs sequence

159

160

161 def run_continuous(res , name=’’):

162 """ Run a continuous measurement."""

163 res.write(’DISP:FORM SING’)

164 res.write(f’INST:SEL "{name }";* WAI’) # Select channel

165 res.write(’INIT:CONT ON’) # Single sequence

166

167 def stop_continuous(res):

168 res.write(’INIT:CONT OFF’) # Single sequence

Listing D.1: The class description of the code used for programming the R&S
spectrum analyzer.

D.3 Example scripts

Listing D.2 demonstrates how to program the basic spectral trace functionality of

the instrument. The SETUP block forms a new connection with the instrument and

resets it to a default state. The CHANNEL PARAMETERS block creates variables of

the various spectral channel parameters. The RUN MEASUREMENT block initializes a

SpectrumChannel object named gen ch using the parameter variables and begins a

measurement sequence. The final block saves the data trace and screenshot.

Listing D.3 demonstrates how to program the measurement of a zero-span time

trace at a given frequency. Specifically, this code was used to measure signal amplitude

drifts over about 1.4 hours. The code samples 1000 traces separated by 5 seconds,

marking and saving the time and amplitude of a target peak. Because the SETUP and

PARAMETERS blocks are largely identical to those in Listing D.2, these are omitted.

Finally, Listing D.4 demonstrates how to initialize multiple channels and measure

253



Appendix D. Spectrum analyzer programming D.3. Example scriptsAppendix D. Spectrum analyzer programming D.3. Example scriptsAppendix D. Spectrum analyzer programming D.3. Example scripts

each in a sequence. Specifically, we create a spectrum (gen s ch1) and zero-span

(gen z ch2) channel objects, and then save their trace data. In this listing, the

SETUP and PARAMETERS blocks are included for clarity.
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1 import pyvisa

2 import numpy as np

3 from sanalyzer import (SpectrumChannel , run_sequence , save_trace)

4

5

6 # SETUP

7 rm = pyvisa.ResourceManager ()

8 rs = rm.open_resource(’TCPIP0 ::169.254.32.226:: inst0 :: INSTR’)

9 rs.timeout = 25000 # Set the timeout to 25 seconds

10 idn = rs.query(’*IDN?’)

11 print(idn)

12 rs.write(’*RST’) # Resets to default state

13 rs.write(’*CLS’) # Clears status

14 psc = int(rs.query(’*PSC?’)) # Checks power -on-status -clear

15 if psc != 1:

16 raise SystemError("Power -on -status -clear is False.")

17 rs.write(’SYST:DISP:UPD ON’) # Enables display during remote control

18

19 rs.write(’SENS:ROSC:EXT:FALL ON’) # FIXME: Ref. fallback

20 rs.write(’SENS:ROSC:EXT:SOUR EXT’) # Sets clock reference to external

21

22

23 # CHANNEL PARAMETERS

24 CH_NAME = ’Gen Spectrum ’

25 IDX = 1

26 SAVE_DIR = "D:\\ spectrum analyzer \\"

27 SUB_DIR = "test"

28 FILE_NAME = "all_screens_"

29 num = ’0’

30 tag = ’’

31

32 CLOCK_FREQ = 6834682612.904 # Atomic transition frequency , in Hz

33 LO_FREQ = 76.6e6 # AOM shift frequency for the LO beam , in Hz

34 gen_freq = CLOCK_FREQ + LO_FREQ # Central generated frequency

35 SPAN = 50e3 # Span , in Hz

36 RLEV = -80 # Reference level , in dBm

37 VRAN = 50 # The vertical dynamic range , in dB

38 ATTEN = 0 # Attenuation , in dB

39 RBW = 20 # Resolution bandwidth , in Hz

40 NPTS = 1001 # Number of sweep points

41 NAVG = 8 # Number of averages

42 LO_RLEV = -80 # Ref. level for LO signals

43 GEN_RLEV = -110 # Ref. level for generated signals

44

45

46 # RUN MEASUREMENT

47 gen_ch = SpectrumChannel(rs, CH_NAME , IDX , SAVE_DIR ,

48 gen_freq , SPAN , GEN_RLEV , vran=VRAN ,

49 rbw=RBW , npts=NPTS , navg=NAVG , atten=0,

50 preamp =15, det=’RMS’, mode=’AVER’,

51 subdir=SUB_DIR , ftag=tag)

52 run_sequence(rs)

53

54

55 # SAVE TRACE DATA & SCREENSHOT

56 gen_ch.save_trace(’gentrace_ ’ + num , ss=True)

57 print(’Operation Complete!’)

Listing D.2: Code used to collect and save a spectrum trace with a span of 50 kHz
around the generated frequency 6.911 GHz, an RBW of 20 Hz, averaged 8 times.
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53 NSAMPLES = 1000

54

55 # This initializes a channel in zero -span mode.

56 gen_zs_ch = TimeChannel(rs , NAME , 1, SAVE_DIR ,

57 sum_freq , SPAN , GEN_RLEV , vran=GEN_VRAN ,

58 rbw=RBW , npts=NPTS , navg=NAVG , atten=ATTEN ,

59 preamp=None , det=’RMS’, mode=’AVER’,

60 subdir=SUB_DIR , swtime=SWTIME)

61

62 poss , amps , times = [], [], []

63 # Start a continuous measurement. This is generally not recommended in remote

64 # mode because you don’t know a priori when a sweep will termninate.

65 # We can get around it by averaging for a long time; shot -to -shot variations

66 # are more negligible.

67 run_continuous(rs , NAME)

68 sleep (10) # Average for enough time , in s.

69 for i in tqdm(range(NSAMPLES)):

70 time = dt.now()

71 pos , amp = gen_zs_ch.mark_peak () # Measure the height of the peak

72 poss.append(pos)

73 amps.append(amp)

74 times.append(time)

75 sleep (5) # Wait a certain amount of time , in s.

76

77 stop_continuous(rs)

78 poss = np.array(poss)

79 amps = np.array(amps)

80 times = np.array(times)

Listing D.3: Excerpt from code used to collect and save the peak power of an averaged
pulse in zero-span mode at the generated frequency 6.911 GHz with an RBW of 2
MHz, a sweep time of 20 µs. This is repeated 1000 times over 1.4 hours. This helps
identify and characterize long-term drifts in the signal amplitude.
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1 import pyvisa

2 from sanalyzer import (SpectrumChannel , run_sequence , multi_screenshot ,

3 TimeChannel)

4

5 rm = pyvisa.ResourceManager ()

6 # rm.list_resources ()

7 rs = rm.open_resource(’TCPIP0 ::169.254.32.226:: inst0 :: INSTR’)

8 rs.timeout = None # Set the timeout to infinty seconds

9 idn = rs.query(’*IDN?’)

10 print(idn)

11

12 rs.write(’*RST’) # Resets to default state

13 rs.write(’*CLS’) # Clears status

14 psc = int(rs.query(’*PSC?’)) # Checks power -on-status -clear

15 if psc != 1:

16 raise SystemError("Power -on -status -clear is False.")

17 rs.write(’SYST:DISP:UPD ON’) # Enables display during remote control

18

19 rs.write(’SENS:ROSC:EXT:FALL ON’) # FIXME: Ref. fallback

20 rs.write(’SENS:ROSC:EXT:SOUR EXT’) # Sets clock reference to external

21

22 CH_NAME = ’Gen Spectrum ’

23 # IDX = 1

24 SAVE_DIR = "D:\\ spectrum analyzer \\"

25 SUB_DIR = "sweep"

26 FILE_NAME = "all_screens_"

27 num = ’01’ # FIXME: Make file update automatic

28 num = num.zfill (2) # Make sure file num. is zero -padded

29

30 EOM_FREQ = 0.0e3 # EOM drive frequency , in Hz

31 CLOCK_FREQ = 6834682612.904 # Atomic transition frequency , in Hz

32 LO_FREQ = 76.6e6 # AOM shift frequency for the LO beam , in Hz

33

34 sum_freq = CLOCK_FREQ + LO_FREQ

35 # diff_freq = CLOCK_FREQ - LO_FREQ

36

37 SPAN_s = 1e6 # Span for spectrum channel , in Hz

38 SPAN_z = 0e3 # Span for zero -span channel , in Hz

39 ATTEN = 0 # Attenuation , in dB

40 RBW_s = 20 # Resolution bandwidth for spectrum channel , in Hz

41 RBW_z = 2e6 # Resolution bandwidth for zero -span channel , in Hz

42

43 NPTS = 1001 # Number of sweep points

44 NAVG_s = 10 # Number of averages for spectrum channel

45 NAVG_z = 1000 # Number of averages for zero -span channel

46 SWTIME = 20e-6 # Sweep time , in s

47

48

49 RLEV_s = -74 # Ref. level for spectrum channel , in dBm

50 RLEV_z = -74 # Ref. level for zero -span channel , in dBm

51 VRAN_s = 20 # The vertical dynamic range for spectrum channel , in dB

52 VRAN_z = 6 # The vertical dynamic range for zero -span channel , in dB

53 NAME_s = ’Gen (spectrum)’

54 NAME_z = ’Gen (zero -span)’

55 NSAMPLES = 1

56

57 # This initializes a channel in zero -span mode.

58 gen_s_ch1 = SpectrumChannel(rs , NAME_s , 1, SAVE_DIR ,

59 sum_freq , SPAN_s , RLEV_s , vran=VRAN_s ,

60 preamp=None , det=’RMS’, mode=’AVER’, navg=NAVG_s ,

61 subdir=SUB_DIR)

62
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63 gen_z_ch2 = TimeChannel(rs , NAME_z , 2, SAVE_DIR ,

64 sum_freq , SPAN_z , RLEV_z , vran=VRAN_z ,

65 preamp=None , det=’RMS’, mode=’AVER’, navg=NAVG_z ,

66 subdir=SUB_DIR , swtime=SWTIME)

67

68

69 run_sequence(rs)

70

71 gen_s_ch1.save_trace(’spectrum_ ’ + num , ss=True)

72 gen_z_ch2.save_trace(’zspan_ ’ + num , ss=True)

73 multi_screenshot(rs, SUB_DIR + ’\\’ + FILE_NAME + num)

74 print(’Operation Complete!’)

Listing D.4: Code to capture spectral and time traces of the generated signal in two
chanels in a sequence.
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Non-dimensionalization of the
Gross-Pitaevskii equation

Nonlinear systems are notoriously difficult or impossible to solve using the same an-

alytical techniques developed for linear ones, and generally numerical methods are

employed. This is true for a Gross-Pitaevskii equation that describes a trapped

Bose-Einstein condensate with Raman coupling. In this appendix, we outline the

steps taken to express the GPE in a way that can be readily solved with numerics,

as demonstrated in Chapter 9. This involves reducing the number of dimensions,

discretizing real and momentum space, and recasting physical quantities into dimen-

sionless units. Although this construction is eventually applied to a two-component

spinor condensate in Chapter 9, we consider here only a scalar BEC wavefunction.

259



Appendix E. Dimensionless GPE E.1. Reduction to 2DAppendix E. Dimensionless GPE E.1. Reduction to 2DAppendix E. Dimensionless GPE E.1. Reduction to 2D

E.1 Reduction to 2D

The GPE is most naturally an equation of a complex-valued BEC wavefunction

Φr(x, y, z) in real three-dimensional space. The BEC is composed of atoms with

mass m and generally resides in a 3D trapping potential of the form

V (x, y, z) =
1

2
m
(︁
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)︁
, (E.1)

where the trap frequencies along the three axes are (ωx, ωy, ωz) ≡ ω × (1, γ, η). Ac-

curately representing Φ on a 3D grid is very resource-intensive. We can simplify the

problem by reducing the dimensionality to 2D. If we assume that η ≫ 1, the BEC

will be confined tightly in a “pancake-shaped” trap in the x-y plane, equivalent to

the trapping potential produced by a 1D optical lattice [174]. We assume that no

dynamics occur along the z-direction and the wavefunction can be separated as

Φr(x, y, z) = ϕr(x, y)⊗ ψr(z), (E.2)

where the ansatz for the z-component is

ψr(z) =
(︂mωz

πℏ

)︂1/4
e−z2/2a2z . (E.3)

This Gaussian profile is the ground state wavefunction of a 1D quantum harmonic

oscillator with frequency ωz = ηω, where the harmonic oscillator length along the êi

axis is ai =
√︁
ℏ/mωi. When the kinetic energy of the BEC is negligibly small, the

analytic solution ϕ(x, y) of the scalar GPE is the usual Thomas-Fermi wavefunction,

ϕ(TF)
r (x, y) =

√︄
µ− V (x, y, 0)

g2D
, (E.4)

where

g2D =
g3D
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(E.5b)
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is the two-dimensional scattering coupling strength, and asc is the s-wave scattering

length [174]. The chemical potential µ is the energy that normalizes Φr(x, y, z) to the

atom number N for a given V (x, y, z).

E.2 Dimensionless scales

We identify characteristic energy, time, and length scales for non-dimensionalizing the

energies and wavefunctions. The potential energy definition of Equation E.1 lends a

natural energy scale of ℏω. Its inverse gives the time scale τ = 2π/ω; for a typical

trap frequency of ω = 2π × 100 Hz, τ = 10 ms. The natural length scale is the

corresponding harmonic oscillator length

a =

√︃
ℏ
mω

≈ 1 µm. (E.6)

In subsequent sections, dimensionless quantities are identified by a tilde ∼ accent.

For example, the Raman recoil momentum kL is rescaled as k̃L ≡ kLa, and the

recoil energy EL = ℏ2k2L/2m becomes ẼL ≡ k̃
2

L/2. Other unitless Raman frequency

parameters, such as the Rabi frequency Ω̃, detuning δ̃, and quadratic Zeeman shift ϵ̃,

are expressed in units of the natural trap frequency ω. Additionally, if the detuning

energy exhibits a spatial gradient as

ℏδ(x) ≡ ℏδ′x, (E.7)

its dimensionless form is

δ̃(x̃) ≡ ℏδ′x
ℏω

a

a
= δ̃

′
x̃, (E.8)

where δ̃
′
has units of ω/a.
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E.3 Position and momentum coordinates

The spinor wavefunction ϕr is numerically approximated on 2D grids of [Nx, Ny] =

[2n, 2m] : n,m ∈ Z points in real position space and momentum space. Throughout

the computation algorithm described in Section 9.4, we repeatedly Fourier transform

ϕr between the two to avoid gradients in the time-evolution operators. This requires

we maintain two sets of grid arrays for the wavefunction in each domain. All real-

space coordinates r = (x, y, z) are rescaled such that r̃ ≡ r/a. Additionally, we rescale

the momentum-space coordinates k = (kx, ky, kz) as k̃ ≡ ka. Since the position

and momentum space coordinates are scaled oppositely, the Fourier transforms are

unaffected.

E.4 Normalization of the wavefunctions

We observe that ψr(z) in Equation E.3 has units of m−1/2. To make it unitless, we

multiply ψr by a
1/2, using the fact that

az = aη−1/2 (E.9)

and z̃ ≡ z/a, to obtain

ψ̃r(z̃) =
(︂η
π

)︂1/4
e−ηz̃2/2. (E.10)

As expected, the probability density of ψ̃r is properly normalized,∫︂ ∞

−∞
|ψ̃r(z̃)|2dz̃ = 1. (E.11)

The Fourier transform of ψr,

F{ψ̃r(z̃)} ≡ ψ̃k(k̃z) =

∫︂ ∞

−∞

(︂η
π

)︂1/4
e−ηz̃2/2e−2πiz̃k̃zdz̃, (E.12a)

=
(︂η
π

)︂1/4√︃2π

η
e−2π2/η k̃

2
z , (E.12b)
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has a probability density that is also properly normalized,∫︂ ∞

−∞
|ψ̃k(k̃z)|2dk̃z = 1. (E.13)

During the numerical propagation steps, the non-commutivity of evolution oper-

ators introduce non-unitary errors on ϕ̃r and ϕ̃k. Normalization to the total atom

number is enforced at each step by summing over the square of the position wave-

function grids and multiplying by the grid spacings

∑︂
x̃i

∑︂
ỹj

|ϕ̃r(x̃i, ỹj)|2∆x̃∆ỹ
!
= N. (E.14)

In reciprocal space, the sum is multiplied by ∆k̃x∆k̃y and also by (NxNy)
2, due to

the way the way the 2D discrete-FFTs are computed, to get the condition

∑︂
k̃x i

∑︂
k̃y j

|ϕ̃k(k̃x i, k̃y j)|2(NxNy)
2∆k̃x∆k̃y

!
= N. (E.15)

E.5 Dimensionless energies

Potential

We first consider the potential energy components of Equation E.1 in the x-y plane.

The dimensionless potential energy is obtained by dividing this by ℏω and substituting

x = x̃a. Factors of a2 cancel to produce

Ṽ (x̃, ỹ) =
1

2

(︁
x̃2 + γ2ỹ2

)︁
. (E.16)

Kinetic

In the momentum basis, the kinetic energy term of the GPE Hamiltonian takes the

form

K(k) =
ℏ2k2

2m
. (E.17)
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Similarly, by substituting k = k̃/a, and dividing by ℏω, we find that factors of a2 also

cancel, leaving the dimensionless kinetic energy

K̃(k̃) =
1

2
k̃
2
. (E.18)

If we instead began with the Raman kinetic energy term

KR(kx) =
ℏ2

2m
(kx ± kL)

2, (E.19)

its dimensionless form is

K̃(k̃x) =
1

2
k̃
2

x ± k̃Lk̃x, (E.20)

where the constant energy offset k̃
2

L has been removed.

Interaction

The GPE Hamiltonian also has a nonlinear scattering interaction term with energy

g2D|ϕ(x, y)|2, (E.21)

where we notice that the scattering coupling strength has units of [J ·m2]. Its dimen-

sionless form is obtained by substituting Equation E.9 into E.5b, dividing by ℏω · a2,

and simplifying to get

g̃2D = ãsc
√︁

8ηπ, (E.22)

where ãsc ≡ asc/a.
87Rb has a scattering length of asc = 100.4 a0, where a0 is the

Bohr radius, giving ãsc ≃ 4.9× 10−3.

Chemical potential

Finally, we are in a position to determine the dimensionless chemical potential µ̃ for

the particular trapping geometry and atom number N in the Thomas-Fermi approx-

imation. This is done by evaluating the integral of the Thomas-Fermi probabilty
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density
⃓⃓⃓
Φ̃

(TF)
⃓⃓⃓2

over all space and equating it to the atom number.

N =

∫︂ ⃓⃓⃓
Φ̃r(x̃, ỹ, z̃)

⃓⃓⃓2
dṼ =

∫︂ ⃓⃓⃓⃓
⃓ µ̃− Ṽ (x̃, ỹ)

g̃2D

⃓⃓⃓⃓
⃓ ⃓⃓⃓ψ̃r(z̃)

⃓⃓⃓2
dx̃ dỹ dz̃ (E.23)

The integral over z̃ evaluates to 1, and we substitute Equations E.16 and E.22 to

obtain

N =
1

2ãsc
√
8ηπ

∫︂ [︁
2µ̃− (x̃2 + γ2ỹ2)

]︁
dx̃ dỹ. (E.24)

With the substitutions 2µ̃→ A2, x̃→ u, γỹ → v, the integral becomes

N =
1

2ãscγ
√
8ηπ

∫︂ [︁
A2 − (u2 + v2)

]︁
du dv, (E.25)

where the integrand is the equation of a circle with radius A. Making an additional

substitution u2 + v2 → r2, we integrate along r from 0 to A (the wavefunction is zero

outside of the Thomas-Fermi profile) as

N =
π

ãscγ
√
8ηπ

∫︂ A

0

dr r
(︁
A2 − r2

)︁
=

√︃
π

8η

(︃
1

ãscγ

)︃(︃
1

4
A4

)︃
. (E.26)

Replacing the substituted value for A2, we obtain the expression

N =
1

2

√︃
π

2η

(︃
µ̃2

ãscγ

)︃
, (E.27)

or rearranging to get

µ̃ =
1

2

(︄
16Nãsc

√︃
ηγ2

2π

)︄1/2

. (E.28)

The factor of
√
2π comes from our transforming the 3D scattering coupling strength

to a two-dimensional form; the ηγ2 term comes from the asymmetry of the trapping

potential; the power of 1/2 reflects the two-dimensional character of our problem, in

contrast to the 2/5 power found in [175] arising from a 3D trap. We also define the

Thomas-Fermi radius x̃rad as the distance along the x̃-axis where the Thomas-Fermi
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profile terminates at zero, or

x̃rad ≡ A =
√︁
2µ̃ =

(︄
16Nãsc

√︃
ηγ2

2π

)︄1/4

. (E.29)

In general, the calculated BEC wavefunctions will not have the same form as the

Thomas-Fermi one. However, this chemical potential and radius give rough esti-

mates of the energy and size of the BEC for a given trapping geometry and atom

number.
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Appendix F

Open-source spinor-gpe Python
package

spinor-gpe is high-level, object-oriented Python package for numerically solving the

quasi-2D, psuedospinor (two component) Gross-Piteavskii equation (GPE), for both

ground state solutions and real-time dynamics. This project grew out of a desire

to make high-performance simulations of the GPE more accessible to the entering

researcher.

While this package is primarily built on NumPy, the main computational heavy-

lifting is performed using PyTorch, a deep neural network library commonly used

in machine learning applications. PyTorch has a NumPy-like interface, but a back-

end that can run either on a conventional processor or a CUDA-enabled NVIDIA(R)
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graphics card. Accessing a CUDA device will provide a significant hardware acceler-

ation of the simulations.

This package has been tested on Windows, Mac, and Linux systems.

F.1 Installation

F.1.1 Dependencies

The dependencies for spinor-gpe can be installed directly into a new conda virtual

environment spinor using the environment.yml file included with the package:

1 conda env create --file environment.yml

This installation may take a while.

Note: The version of CUDA used in this package does not support macOS. Users

on these computers may still install PyTorch and run the examples on their CPU.

To install correctly on macOS, remove the ‘‘- cudatoolkit=11.1’’ line from the

environment.yml file. After installation, you will need to modify the example code

to run on the cpu device instead of the cuda device.

The above dependencies can also be installed manually using conda into a virtual

environment:

1 conda activate <new_virt_env_name >

2 conda install pytorch torchvision torchaudio cudatoolkit =11.1 -c

pytorch -c conda -forge

3 conda install numpy matplotlib tqdm scikit -image ffmpeg spyder

For more information on installing PyTorch, see its installation instructions page.

To verify that Pytorch was installed correctly, you should be able to import it:

1 import torch

2 >>> x = torch.rand(5, 3)

3 >>> print(x)

4 tensor ([[0.2757 , 0.3957 , 0.9074] ,

5 [0.6304 , 0.1279 , 0.7565] ,

6 [0.0946 , 0.7667 , 0.2934] ,

7 [0.9395 , 0.4782 , 0.9530] ,
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Name Version Purpose

Primary Packages

Numpy

PyTorch ≥ 1.8.0

cudatoolkit ≥ 11.1

Additional Packages

matplotlib Visualizing results

tqdm Progress messages

scikit-image Matrix signal processing

ffmpeg = 4.3.1 Animation generation

Table F.1: Python package dependencies for installing the spinor-gpe package.

8 [0.2400 , 0.0020 , 0.9569]])

Listing F.1: Verify PyTorch installation

Also, if you have an NVIDIA GPU, you can test that it is available for GPU com-

puting:

1 >>> torch.cuda.is_available ()

2 True

Listing F.2: Verify PyTorch installation

F.2 Basic Operation

This package has a simple, object-oriented interface for imaginary- and real-time

propagations of the pseudospinor-GPE. While there are other operations and features

to this package, all simulations will have the following basic structure:

1. Setup: Data path and PSpinor object

1 >>> import pspinor as spin
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2 >>> DATA_PATH = ’<project_name >/ Trial_XXX ’

3 >>> ps = spin.PSpinor(DATA_PATH)

Listing F.3: Setup example

The program will create a new directory DATA PATH, in which the data and results

from this simulation trial will be saved. If DATA PATH is a relative path, as shown

above, then the trial data will be located in the /data/ folder. When working with

multiple simulation projects, it can be helpful to specify a <project name> directory;

furthermore, the form Trial XXX is convenient, but not strictly required.

2. Run: Begin Propagation

The example below demonstrates imaginary-time propagation. The method

PSpinor.imaginary performs the propagation loop and returns a PropResult object.

This object contains the results, including the final wavefunctions and populations,

and analysis and plotting methods (described below).

1 >>> DT = 1/50

2 >>> N_STEPS = 1000

3 >>> DEVICE = ’cuda’

4 >>> res = ps.imaginary(DT , N_STEPS , DEVICE , is_sampling=True ,

n_samples =50)

Listing F.4: Run example

For real-time propagation, use the method PSpinor.real.

3. Analyze: Plot the results

PropResult provides several methods for viewing and understanding the final results.

The code block below demonstrates several of them:

1 >>> res.plot_spins () # Plots the spin -dependent densities and

phases.

2 >>> res.plot_total () # Plots the total densities and phases.

3 >>> res.plot_pops () # Plots the spin populations throughout the

propagation.
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4 >>> res.make_movie () # Generates a movie from the sampled

wavefunctions.

Listing F.5: Analysis example

Note that PSpinor also exposes methods to plot the spin and total densities. These

can be used independent of PropResult:

1 >>> ps.plot_spins ()

4. Repeat

Likely you will want to repeat or chain together different segments of this structure.

F.3 Examples

Examples of this package demonstrating evolution in imaginary (ground-state so-

lutions) and real time (dynamics) can be found at the package documentation at

https://spinor-gpe.readthedocs.io/en/latest/source/auto examples/index.html.
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