University of Alberta

DENSITY-BASED CLUSTERING OF SPATIAL DATA IN THE PRESENCE OF
PavysicAL CONSTRAINTS

by

Chi-Hoon Lee

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Fall 2002

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada

Your fle Volre référence

Our fike Notre référence
The author has granted a non- L’auteur a accordé¢ une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Bel

Canadia

0-612-81433-5

University of Alberta

Library Release Form

Name of Author: Chi-Hoon Lee

Title of Thesis: Density-Based Clustering of Spatial Data in the presence of
Physical Constraints

Degree: Master of Science

Year this Degree Granted: 2002

Permission is hereby granted to the University of Alberta Library to reproduce
single copies of this thesis and to lend or sell such copies for private, scholarly
or scientific research purposes only.

The author reserves all other publication and other rights in association with
the copyright in the thesis, and except as herein before provided, neither the
thesis nor any substantial portion thereof may be printed or otherwise re-
produced in any material form whatever without the author’s prior written
permission.

-

4
£
; a
/’ 2
/ /
i

B 2N j H P
S0 U D e
Chi-Hoon Lee
607F, Michener Park
Edmonton, Alberta
Canada, T6H 5A1

Sy N vy
Date: fi%i, s NN, g T e

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty
of Graduate Studies and Research for acceptance, a thesis entitled Density-
Based Clustering of Spatial Data in the presence of Physical Con-
straints submitted by Chi-Hoon Lee in partial fulfillment of the requirements
for the degree of Master of Science.

Dr. Osmar R. Zalane

ARG Ny S)
Dr. Ignacio Castillo

Dr.VJ 6rg/Sander

Lol

Dr. Terry Caelli

Date: ,—:\lg (Jjb\ nNE aleD 2

Abstract

Clustering spatial data is a well-known problem that has been extensively
studied. Grouping similar data in large 2-dimensional spaces to find hidden
patterns or meaningful sub-groups has many applications such as in satellite
imagery, geographic information systems, medical image analysis, marketing,
computer vision, etc. Although many methods have been proposed in the
literature, very few have considered constraints such as the fact that physical
obstacles and bridges linking clusters may have significant consequences on the
effectiveness of the clustering. Taking into account these constraints during
the clustering process is costly, and the effective modeling of the constraints is
of paramount importance for good performance. In this thesis, we define the
clustering problem in the presence of constraints — obstacles and crossings —
and investigate its efficiency and effectiveness for large databases. In addition,
we introduce a new approach to model these constraints. We propose a strat-
egy to prune the search space and reduce the number of polygons to test during
clustering. Note that the approach minimizes user involvement for automatic
procedures. We devise a density-based clustering algorithm, DBCluC, which
takes advantage of our constraint modeling to efficiently cluster data objects
while considering all physical constraints. The algorithm can detect clusters
of arbitrary shape and is insensitive to noise and the input order. Its average

running complexity is O(NogN) where N is the number of data points.

Acknowledgements

The first person 1 would like to thank is my supervisor Dr. Osmar R. Zaiane. 1
have been with him since 2000 when I started my MSc program. During these
years | have known Dr. Osmar R. Zaiane as a sympathetic and principle-
centered person. His overly enthusiasm and integral view on research and his
mission for providing “only high-quality work and not less”, has made a deep
impression on me. I owe him lots of gratitude for having me shown Data
mining research areas. He could not even realize how much I have learned
from him.

I would like to thank Dr. Ryan Hayward who kept an eye on the progress
of my work and always was available when I needed his advises as a professor
and friend. Besides of being an excellent professor, Dr. Ryan Hayward was a
good friend to me. I am really glad that I have come to get know Dr. Ryan
Hayward in my life.

I would also like to thank the other members of my MSc committee who
took effort in reading and providing me with valuable comments on earlier
versions of this thesis: Dr. Ignacio Castillo, Dr. Jorg Sander, and Dr. Terry
Caelli. I thank you all.

My DB lab colleagues from the Department support me in my research
work. I want to thank them for all their help.

I have to thank my parents for their patience including financial support.
My sister Jung-hi Lee encouraged me to pursue my scholar passion in spite of
some constraints. Especially, I thank my parents, my wife’s parents, my niece
Hyun-Jee Lee, and my brother-in-law for taking care of my lovely son Samuel
Jungsoo Lee. I would not forget their wish and support for my work and my
health in my entire life.

My true heart also goes to my grandmother who has taken care of me for
long time. She has been my best friend. I would like to express great gratitude
to my uncle. Despite his challenged circumstances, he has done great jobs as
a prominent teacher and respectable father.

Especially, I would like to give my special thanks to my wife Meejung
Cheigh whose patient love enables me to complete this work. Her priceless
advice and love encouraged me to go ahead with my thesis. She has provided
me with endless lessons.

To GOD and my family

Contents

1 Introduction

1.1 Clustering in the presence of constraints
1.2 Thesis organization L

Data Clustering

2.1 The Partitioning Approaches
21,1 K-means e
2.1.2 K-medoids: PAM and CLARA
2.1.3 CLARANS o

2.2 The Hierarchical Approaches
221 AGNESand DIANA
222 BIRCH.
223 CURE

2.3 The Density Approaches
2.3.1 DBSCAN
232 OPTICS« o
233 DENCLUE

2.4 The Grid Approaches
241 STING.

2.5 The Graph-Partitioning Approaches
251 CHAMELEON

Data Clustering with Constraints
3.1 AUTOCLUSTH e s
3.2 COD-CLARANS L

Modeling Physical Constraints

4.1 Convexity Test
4.1.1 Turning Directional Approach
4.1.2 Externality Approach

4.2 Polygon Reduction Algorithm

[

4.2.1 Correctness of the Polygon Reduction algorithm
4.3 Modeling Crossing

5 DBCIluC
5.1 DBCIuC Algorithm,
52 Complexity e

6 Experiments and Evaluations
6.1 Experiments
6.2 Evaluations

7 Conclusions and Future work
7.1 Conclusions e
7.2 Futurework
7.2.1 Efficiencyissues
7.2.2 Effectivenessissues

Bibliography

62
65

67
68
72

74
75
77

85
85
86
86
87

89

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11

2.12
2.13
2.14
2.15
2.16
217

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

Clustering data objects with constraints 2
Taxonomy of clustering algorithms 5
An overview of the K-means and K-medoids 11
The overview of the AGNES and DIANA 14
ACFtree e 15
An Overview of BIRCH[52] 16
An Overview of CURE[18] 17
Density-reachable and Density-connected 19
An example of a sorted 4 — dist graph 20
Orderings of data objects in OPTICS from [2] 22
Hierarchical Structure of STING [48] 24
Multi-resolution wavelet representation of the feature space at

(a)scale 1; (b) scale 2; (c) scale 3 from [42] 26
AUTOCLUST Illustration [16] 31
A snapshot of theapplet 33
Clustering results in K-means 34
Clustering results in K-medoids 35
Clustering results in DBSCAN 36
Clustering results in CLIQUE 37
Overview of COD-CLARANS [45] 40
Overview of Modeling Constraints 47
Examplesof polygons, 48
Turning in polygons. 49
Convex and Concave examples 50
Convexity Test 51
A polygon and its visible spaces 53
Steps of Polygon Reduction 55
Steps of the Polygon Reduction algorithm 56
A polygon and its visiblespaces o8
Obstacle free density notions(Eps=2cm and MinPts=4) 60
Examples of non obstacle free density-reachable(Eps=2c¢m and

MinPts=4) 61

4.12 A polygon and an obstruction line 63

4.13 Illustrating modeling a crossing: Entry edges and Entry points 66

51 An overview of DBCIuC 68
6.1 Clustering dataset DS1 78
6.2 Clustering dataset DS2 0. 79
6.3 Clustering dataset DS3 80
6.4 Clustering dataset DS4 81
6.5 Clustering dataset DS5 oL 82
6.6 Clustering dataset DS5(continued) 83
6.7 Algorithm Run Time by varying the number of data points . . 84

6.8 Algorithm Run Time by varying the number obstacles 84

List of Tables

2.1 Measurements of clustering

6.1 Run time varying the number of obstacles

Chapter 1

Introduction

Unsupervised classification, also known as the clustering of objects into groups
such that the similarity of objects in a group is maximized while the similarity
between objects of different groups is minimized, is an interesting and influ-
ential problem that has attracted the attention of statisticians for many years
because of its numerous potential applications. Recently, we have witnessed
a resurgence of interest in new clustering techniques in the data mining com-
munity, and many effective and efficient methods have been proposed in the
machine learning and data mining literature [28, 35, 7, 37, 49, 43, 52, 15, 2,
24, 8, 5, 38, 48, 42, 1, 41, 31]. The rapid increase in the availability of digi-
tized spatial data has prompted considerable research into what is known as
spatial data mining [32, 14]. Clustering analysis in two dimensional space,
that is learning from data, in a two dimensional space, is considered spatial
data mining and has wide range of applications in areas such as geographic in-
formation systems, pattern recognition, medical imaging, marketing analysis,

weather forecasting, and current analysis.

1.1 Clustering in the presence of constraints

Clustering spatial data in two dimensional planar space has been an active re-
search area, with most of the research focusing on effectiveness and scalability.
To cluster data objects in n-dimensions, the closeness or so-called similar-
ity is measured between data objects. There are various metrics [6] to mea-

sure dissimilarity — Manhattan, Euclidean, Maximum, weighted Euclidean,

C4

o

c2 C3

(a) Data objects and constraints (b) Clusters ignoring constraints (c) Clusters with constraints

Figure 1.1: Clustering data objects with constraints

weighted Manhattan, and Ellipsoid. The application determines which met-
ric is employed, depending on its characteristic. The most common metric in
n-dimensional spatial database domains between two data objects o and ¢ is

Fuclidean distance, which is defined as

distance(o, q) = \/Egzl(ok — qi)? (1.1)

The Euclidean distance between two data objects in turn indicates proximity
in the spatial data mining context. Hence, a cluster groups data objects if the
distances between data objects are small.

As pointed out earlier, clustering techniques [28, 35, 7, 37, 49, 43, 52, 15,
2, 24, 8, b, 38, 48, 42, 1, 41, 31] introduced in the data mining literature
have focused on performance in terms of effectiveness and efficiency for large
databases. However, almost none of them have taken into account constraints
that may be present in the data or constraints on the clustering procedure.
These constraints have a significant influence on the quality and correctness
of the clustering process of large amount of spatial data. In medical imaging,
for example, while 2 points could be close together according to a distance
measure, they should be restrained from being clustered together due to phys-
ical or biological constraints. In a GIS application studying the movement
of pedestrians to identify optimal bank machine placements, for example, the
presence of a highway hinders the movement of pedestrians and should be con-
sidered as an obstacle, while a pedway over this highway could be considered
as a bridge. Figure 1.1 illustrates an example of a clustering problem in the

presence of constraints.

Two constraint entities in Figure 1.1 — a highway and a river — force natu-
ral clusters to be isolated if the entities are correctly interpreted by clustering
techniques. These entities have a disconnectivity functionality, which discon-
nects the closeness between data objects. The example in Figure 1.1(b) shows
false-clusters in which each false-cluster groups data objects that should have
not belonged to the cluster. In addition, an entity such as a bridge has a
connectivity functionality which groups distant data objects together. Exam-
ples are depicted in Figurel.1(c). Generally, the nearest cluster assignment for
each data object, i.e. close data objects grouped together, is not applicable to
the clustering problem in the presence of constraints.

In this thesis, we propose a clustering algorithm, DBCIuC, in the presence
of constraints. However, large and complicated constraints ultimately degrade
the performance of an algorithm. As a result, this thesis also proposes new
modeling schemes for constraints using simple polygons and new concepts —

Entry points and Entry edges.

1.2 Thesis organization

The remainder of this thesis is organized as follows: in Chapter 2, we briefly
introduce novel clustering algorithms which do not consider constraints accord-
ing to their taxonomy in order to familiarize readers with the state-of-the-art
in clustering techniques. Chapter 2 also presents the notions of reachability
and connectivity needed in the expansion process of DBSCAN [15] since the
same reachability idea is adopted in DBCluC and provides the motivating con-
cepts significant to this study. An educational tool for clustering algorithms
is introduced in the same chapter. In Chapter 3, two clustering algorithms
that take into account physical constraints such as obstacles are presented. In
addition, a study that is focused on operational constraints is introduced. In
Chapter 4, we show how we model the constraints — obstacles and crossings
- using a simple polygon and new concepts — Entry edges and Entry points
- and illustrate how the edges of the polygons are reduced to improve perfor-

mance. The main clustering algorithm, DBCluC, which considers constraints

during the clustering, is introduced. The complexity analysis of DBCluC and
the modeling schemes of constraints is presented in Chapter 5. Chapter 6
shows the performance of this algorithm and its clustering results by vary-
ing the number/difficulty of data objects and constraints. Finally, Section 6

concludes this study with some discussion of future work.

Chapter 2

Data Clustering

In this chapter we discuss clustering, also known in the literature as Unsu-
pervised classification algorithms. Clustering multi-dimensional data objects
is an interesting problem that has attracted the attention of statisticians for
many years due to its valuable applications. Clustering analysis for data in
multi-dimensional spaces is considered to be a form of spatial data mining
and has numerous applications in geographic information systems, pattern
recognition, medical imaging, marketing analysis, weather forecasting, ocean
currents analysis, etc. Clustering approaches in applications are various due
to their deployed methodology to discover interesting clusters. We illustrate
herein algorithms for each approach in detail. Figure 2.1 presents a taxonomy
of clustering algorithms.

The taxonomy in [20, 25] for clustering algorithms is described as in Figure

2.1 except for the constraint-based approach since most clustering algorithms

Data Clustering

[Constraints Based J [Non-Constraints Based

\\

Partitioning Gral?}_‘“ i Density-Based Partitioning [Hierarchical JE&nsily—Based J[Grid-Based J
Partitioning
K-means AGNES DENCLUE
(COD—CLARANSJ [AUTOCLUST+J [DBCIC } Kemedoids | | CEAMELEONY | piana | |ppscan | | STING
BIRCH WaveClust
cLARANS | (AUTOCLUST |4 Bs | [opTics i

Figure 2.1: Taxonomy of clustering algorithms

have not taken into account constraints that may have a bearing on the effec-
tiveness of clusters. Hence, we will also introduce clustering algorithms in the

presence of constraints with a discussion of generalizations about constraints.

2.1 The Partitioning Approaches

In this section, we introduce clustering algorithms that group data objects by
partitioning them in order to maximize intra-cluster similarity, whereas we
maximize inter-cluster dissimilarity. All data objects in a planar space have
their own memberships to a cluster such that noises and outliers are hard
to exclude in clustering. Partitioning approaches require a parameter to start
the partitioning of data objects; the number of clusters which require extensive

prior knowledge.

2.1.1 K-means

The k-means is a well known clustering algorithm and was popular, before
the data mining community started to become interested in it. The k-means
studied in [33] partitions a set of data into k clusters such that members
in a cluster are “close,” while members between clusters are “not so close.”
Each cluster is represented by a centre of gravity which is the “mean” value
representing membership of the cluster. The method to evaluate clustering
results on a planar space is a squared-error function E, where d is the data
object in the database, m; is the mean of cluster C;, and k is the number of

clusters.

k
— 2
b= Zi:l ZVdedatabase ld mll (21)

Initially, the algorithm randomly selects k& points known as “centroids”
from the given set of data objects. It then assigns the rest of each data point
to a “nearest” centroid. After finishing the assignments, it locates new k
centroids for each cluster calculated by the squared error function. Until there

is no change in magnitude centroids, the forced assignment of memberships for

Input : A Database and k

Output: A set of clusters

1 Randomly Select k data objects and set them as k centroids;
2 while there is any change in gravity centroids do

3 for all objects o in Database do

4 compute closeness between o; and k centroids;

5 assign o; to a closest centroids;

6

endfor
7 compute mean values for each cluster and set them as new k cen-
troids;
8
endw

Algorithm 1: K-means Algorithm

newly composed k centroids is iterated. The k-means algorithm is illustrated
as follows.

As described in Algorithm 1, the k-means randomly selects initial k cen-
troids, while an inappropriate selection of centroids weakens the efficiency of
the algorithm requiring unnecessary iterations. By iterating the Lines between
Line 2 and Line 8, k-means algorithm attempts to minimize the square error
E such that if there is no change in the centre of gravity, the algorithm halts.

A principal advantage of k-means is its running time, which is near O(nkl),
where n is the number of data objects and [is the number of iterations.
Since there are n data objects to process, k clusters, [looping, and k¥ < n
and | < n, the complexity could be re-articulated in the order of O(n) . On
the other hand, one of the drawbacks of k-means is that it assumes that the
number of data sets fits in the main memory, while this is not always true
in real applications. k-means is very sensitive to noise and outliers, since
noise and outliers substantially increase the value of the square error function
for clustering. The k-means is not applicable to domains which represent
a centroid with one data object for each cluster since centroids in k-means

indicate the mean values of members in each cluster.

2.1.2 K-medoids: PAM and CLARA

k-medoids [28] is a clustering algorithm extended from k-means. The k-
medoids represents clusters with “.6” number of medoids that are the most
centrally located data objects in each cluster, where k is a user’s param-
eter. Due to the definition of “medoid”-a data object represent a cluster-
k-medoids is less sensitive to outliers than k-means, decreasing the conse-
quence of outliers and noise to the squared error function. The k-medoids
initially selects k medoids from a given set of data objects. It then chooses
a random-medoid from non-medoid data objects by examining whether the
squared error Equation2.1 is reducible by replacing the non-medoid with one
of the k medoids. It follows a forced-assign method which reassigns a data
object to the closest medoid if a random-medoid decreases the square error
function.

There are two typical k-medoids variants: PAM and CLARA. PAM [28]is a
well-known k-medoids algorithm. It initially selects k medoids, then replaces
one of the k medoids with a randomly selected non-medoid from the set of
data objects if there is a non-medoid object that produces the lowest square
error by swapping one of the k medoids with the non-medoid. If there is
no such replacement after all the k clusters without changes in £ have been
looked through, then the algorithm halts with a local optimal. The difference
between k-means and PAM lies in the method to assign data objects to their
nearest centroids. However, the process of PAM is very inefficient because the
comparison of all pairs of a centre and non-centres to examine whether cost
is improved is very expensive. Its complexity is O(k(n-k)?*), where n is the
number of data objects. It is clear that PAM becomes expensive when n is
increased.

CLARA (Clustering LARge Applications) [28] aims to overcome drawbacks
of PAM such as memory management since PAM suffers from lack of scalability
to large databases. CLARA employs a sampling approach rather than access-
ing whole data objects. Once it draws a sample from a database, CLARA
applies the sample to PAM. CLARA performs multiple samples such that it

tries to avoid biased sampling. It then selects the most effective clustering
by deploying PAM. Note that the quality of clustering is demarcated by the
average dissimilarity of all members.

According to the experiments in [28], & samples of 40+2k produce a rea-
sonable quality of clustering. Yet CLARA is very sensitive to the following
parameters: the number of samplings and the size of a sample, both of which
may in turn induce skewed sampling. As seen in Algorithm 2, its complexity
is O(k(40+k)* +k(n-k)). CLARA’s contribution is efficient clustering which
enables it to deal with large databases by employing the sampling approach.

Input : A Database and k
Output: A set of clusters
for 5 loops do
1 Randomly select a sample of 4042k objects from data objects;
2 Apply PAM to discover k centers;
Compute the average dissimilarity of the clustering from the previ-
ous step;
if the average dissimilarity is less than the current minimum then
Set it to the current minimum;
Keep the K medoids discovered in Line 2 for the best medoids
so far;
endif
endfor

Algorithm 2: CLARA Algorithm

While k-medoids’ variant algorithms PAM and CLARA are less sensitive
to outliers than k-means, they suffer from a random selection problem of an
initial centre of gravity and the halt criterion. K-medoids and K-means suffer
from discovering arbitrary shaped clusters, while they well detect spherical
shaped clusters. In general, K-medoids is useful in applications that need
to represent each cluster with one of the data objects respectively. Figure
2.2 illustrates the difference between the k-means and the k-medoids, where

an “x” notion represents each cluster in k-means, while a gray colored point

represents a cluster in k-medoids .

Input

: A Database, k, numlocal, and maxneighbour

Output: A set of clusters

Get input parameters: numlocal and maxneighbour.;
Set min cost to a large number.;

while ¢ < numlocal do

Set
Set,

|

endw

current to an arbitrary node in Gy, x;
jto 1;

Take a random neighbour S of current;
Calculate the cost differential of the two nodes;
if S has a lower cost then

Set current to S;
Go to Line 2;

endif
J++;
if j

is equal to or less than mazneighbour then
Go to Line 3;

endif
if 7 > mazneighbour then

// compare the cost of current with min cost;
if the cost of current < min cost then

Set min cost to the cost of current;

Set bestnode to current;

endif

endif
i+
if 7 > numlocal then

Qutput bestnode and stop;

endif

Algorithm 3: CLARANS Algorithm

10

@

(@) K- means (a) K~ medoids

Figure 2.2: An overview of the K-means and K-medoids

2.1.3 CLARANS

CLARANS enhanced the k-medoids approach by overcoming disadvantages
of PAM and CLARA such that efficiency and scalability are significantly im-
proved. The performance is improved through building a graph and a sampling
approach. The graph helps CLARANS project its steps to discover k-medoids
by arbitrarily replacing a medoid with one from (n-k) data objects, where a
node corresponds to a collection of k-medoids such that a clustering result
is described by each node. Due to the notion of a graph model, CLARANS
confines its search to a particular subgraph rather than examining all neigh-
bours of a node. Notice that CLARA selects samples from all data objects
in the beginning of the clustering process, whereas CLARANS does a sample
of neighbours in each step. It is possible that CLARANS avoids skewed sam-
pling, as it decreases the number of searches. However, the effectiveness of
clustering is very sensitive to the parametric values mazneighbour and num-
local. “Mazneighbour” determines the maximum number of neighbours of a
node to search. The purpose of “numlocal” is to choose the number of looping
iterations as presented in Algorithm 3.

As seen in Algorithm 3, the performance of CLARANS relies on two input
parameters. Obviously, it is not trivial to select impartial parameter values to
ensure the best clustering quality. A high value of mazneighbour in CLARANS
leads to clustering performance similar to that of PAM and CLARA, as the
selection of numlocal also does. CLARANS may converge to a local optimum

due to the nature of the partitioning approaches.

11

The main contribution of CLARANS is to enhance the efficiency of clus-
tering procedures as proven in [35]. In addition, CLARANS outperforms PAM
and CLARA with respect to effectiveness. Its complexity is reduced to O (n?).
CLARANS still inherits the shortcomings of CLARA and PAM: memory man-
agement to hold large databases, meticulous choice of parametric variables,
arbitrarily initial selection of a node, assumption that clusters are spherical,
etc.

To enhance the performance of CLARANS, [13, 12] discuss “Focusing Tech-
niques” and “Focusing methods”: Focus on Representative Objects, Focus on
Relevant Clusters, and Focus on a Cluster. The focusing methods in [13, 12]
are designed to improve the efficiency of CLARANS. Rather than accessing
all non-medoid data objects, [13] processes the relevant data objects from a

database adopting an indexing scheme R* tree [4].

2.2 The Hierarchical Approaches

Hierarchical clustering algorithms group data objects by constructing a “den-
dogram” based on the similarity between data objects. A dendogram refers to
a tree structure to plot subgroups of data objects for each step in the course of
clustering. A cluster is discovered in a “dendogram” by cutting at an explicit
point.

Hierarchical clustering algorithms mainly follow variants: agglomerative
and divisive. The agglomerative approach starts clustering data objects by
merging similar clusters. In the initial step, each data object is itself a cluster.
Each cluster is then grouped in relation to a pairwise similarity metric which
has been employed by an agglomerative algorithm. Finally, it comes up with
a cluster containing all data objects from a database, unless a halt criterion
is addressed. On the other hand, the divisive approach starts from a cluster
that encloses all data objects. It partitions a cluster into sub-clusters by
evaluating the dissimilarity between intra-cluster members. A cluster in the
divisive approach would be a data object itself as a cluster, unless a specific

halt criteria is provided.

12

The single-link [43], the average-link [20], and the complete-link [30] mea-
sure similarity between clusters by computing the distance between them. The
difference among them is a way how to measure the distance between clusters:
a minimum distance, a distance between centroids, and a maximum distance.
The single-link approach computes the minimum distance between all pairs of
data objects from pairwise clusters, while the complete-link determines max-
imum distance. Note that the average-link measures the distance between
centroids from each cluster. Two clusters are merged by the minimum dis-

tance to constitute a larger cluster.

2.2.1 AGNES and DIANA

AGNES (Agglomerative Nesting) [28] and DIANA (Divisive Analysis) [28] are
well-known hierarchical clustering algorithms using bottom-up and top-down
approach respectively. AGNES starts clustering each data object as a cluster.
Each pair of cluster is merged to form a larger cluster. Its implementation
deploys the Single-link method [43]. The dissimilarity matrix computes the
conceptual correlations between clusters such that two clusters are merged if
they are at least dissimilar. A cluster containing all members of a database
would be composed, unless a specific halt condition is not provided.

DIANA groups data objects in a top-down approach such that one cluster
containing all data objects is split into a subset of clusters. Consequently, each
object forms a distinct cluster, unless a cutting point is cited. The partition
occurs in a larger cluster to compose most dissimilar sub-clusters. It is unlikely
that high dimensional data objects are applicable to DIANA due to the difficult
and expensive problem of sub-dividing a cluster in each step. The following

figure explains general steps in AGNES and DIANA.

2.2.2 BIRCH

BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) [52]
aims to enhance efficient memory management in large databases and to lower
I/O costs by compressing large databases. Note that these issues have been

seriously taken into account by the data mining community. BIRCH collects

13

‘e
A

=
o]
o %
D . & S
E 2
c® 2 g
g =

B

N
B \
A B C b E
(a) A dataset (b) A dendrogram

Figure 2.3: The overview of the AGNES and DIANA

the correlation of data objects by building a special data structure, a CF-
tree (Clustering Feature), in order to minimize the search spaces. The CF
(Clustering Feature) is a triplet summarizing the information about a sub-
cluster of data objects.

Given N d-dimensional data points in a cluster, the Clustering Feature
(CF) entry of data objects in the cluster is represented as a triple CF=(N,
LS, 8S), where LS is the linear sum of the N data objects, i.e. Zfil Xi,
and SS is the square sum of N data objects, i.e., Ef;l X2. A CF-tree is
a height-balanced tree requiring two parameters: a branching factor B and
a threshold T. In addition, a CF-tree is dynamically constructed when the
insertion operation occurs, if the insertion to a node is satisfied with B and
T. The branching factor B determines the number of entries that each node
holds. Each non-leaf node contains at most B of the form [CF;, child;], where
child; is a pointer to its i-th child node. A non-leaf node describes a sub-
cluster composed of all the sub-clusters of its entries. In contrast, a leaf node
contains at most L entries, and each entry is a CF. A threshold T in a CF
indicates the diameter (radius) of each leaf entry, where the diameter of each
leaf should be less than 7. As the value T becomes larger, the tree becomes
smaller. An example of a CF-tree structure is illustrated in Figure 2.4. Due
to the utilization of the CF tree, the measurements in Table 2.1 are efficiently
and incrementally computed to evaluate the closeness between clusters. Note

that the last measurement indicates the quality of clustering.

14

Root

Non-leaf node / \\

1 CF,

~ - w
ﬂg;:x

Leaf node

Prev Next

Figure 2.4: A CF tree

1. Centroids Euclidean(Manhattan) distance between two clusters.
2. Average inter-cluster(intra-cluster) distance.
3. Variance increase distance.

4. Weighted average cluster radius(diameter) square.

Table 2.1: Measurements of clustering

BIRCH is composed of 4 stages: Loading, Optional Condensing, Global
Clustering, and Optional Refining. The first stage is to construct a CF-tree
which fits in the main memory. The second step is the option to compact
the CF-tree constructed in the first stage into a desirable range by building
a smaller CF-tree. The smaller CF-tree where outliers are removed is recon-
structed after scanning leaf entries in the initial CF-tree. In addition, a larger
CF-tree is composed by grouping sub-clusters if the parameters are satisfied
The third stage is to cluster all leaf nodes. Note that BIRCH makes use of
other clustering algorithms in the third stage, while BIRCH adopted an ag-
glomerative hierarchical algorithm as discussed in [52]. After clustering all leaf
nodes, BIRCH tunes the clusters in the fourth step. The tuning is followed
by using the centroids of the clusters produced by the third step as seeds and
redistributing the data points to their closest seed to obtain a set of new clus-

ters. This operation migrates data objects of a cluster as well as ensures that

15

all copies of a given data object are assigned to the same cluster. In addition,

outliers might be discarded in this stage. Figure 2.5 illustrates the BIRCH

algorithm.
Step 1 Step 2 Step 3 Step 4
Load Data into Condense into Global Clustering
memory by desirable range Clustering Refining
constructing a by building a
CF-tree. smaller CF-tree

N

Initial CF-tree Compressed CF-tree Good Clusters

Better Clusters

Figure 2.5: An Overview of BIRCH[52]

The 1/O complexity of BIRCH is O(n) where n is the number of data
objects requiring only one scan of all data objects to construct a CF-tree.
However, the complexity of BIRCH ignores the cost of the step 2, 3, and 4
in Figure 2.5. It is not trivial to select proper parameters: branching factor
B and threshold T due to the sensitivity of clustering quality. Notice that
the contribution of BIRCH is efficient memory management and reduced I/0O

costs by assuming that the CF-tree fits in main memory.

2.2.3 CURE

CURE integrates hierarchical and partitioning approaches [18]. The advan-
tages of CURE are its ability to detect arbitrary shaped clusters, its decreased
sensitivity to outliers, its linear storage requirements, and its efficient time
complexity. CURE employs a novel hierarchical clustering approach that
makes use of a middle ground between the centroids-based and the all-point
extremes. A cluster is represented by a set of well scattered data objects.
Based on a constant number ¢ of well scattered data objects, a cluster shape
and extent are captured, while it is shrunk to a centroid of the cluster by a frac-
tion a. Due to the ¢ representative approach, CURE is good at discovering a

non-spherical shaped cluster. Note that a small value of ¢ does not capture the

16

Draw random sample s Partition Sample Partially cluster
from data objects P into p partitions —> partitions

v

Eliminate outliers Cluster partial clusters Label data in disk

Figure 2.6: An Overview of CURE[18]

geometry of clusters properly. The deployment of a shrinking fraction « also
alleviates the effects of outliers. As CURE pursues an agglomerative approach
from the hierarchical method that starts with a data object as a distinct clus-
ter, the clusters with the closest pair of representative data objects are merged
at each stage. The similarity is calculated between ¢ representatives from each
cluster. An overview of CURE is presented in Figure 2.6.

CURE employs a random sampling and partitioning scheme that improves
the quality of clustering through the filtering of outliers. As denoted in Figure
2.6, CURE partitions sample data objects and groups the partitions. Although
CURE performs very well on a large database owing to its sampling method,
it is sensitive to a possibly biased sampling and the parameters; a, ¢, s and
p, where « is fraction,c is the number of well scattered data objects, s is the
size of a sample, and p is the number of partitions for a sample space . For
instance, if a=1, the clustering results are similar to those of BIRCH. The
complexity of CURE is O(s*) for low dimensional data, where s is a number

of random sample size from a database.

2.3 The Density Approaches

A controversial issue in partitioning and hierarchical approaches of clustering
algorithms is how to provide the number of clusters and halt criteria respec-
tively. Without knowledge about a database, it is not trivial to provide the

number of clusters. In some cases, a natural cluster might be partitioned by a

17

user’s parameter. Two non-similar clusters might be merged by a halt condi-
tion. These problems may be caused by ineffective a priori knowledge about
the correlations between data objects. In this context, the partitioning and hi-
erarchical methods are not very applicable to real applications. We will herein
introduce algorithms that employ a notion “Density.” It has been proven that
a Density approach is very efficient at discovering natural correlations between
data objects since a cluster has a high density distribution than noise or out-
liers do. In order to evaluate efficiently the correlations between data objects,

a spatial index is useful to retrieve neighbours in a density-based approach.

2.3.1 DBSCAN

DBSCAN is a density-based clustering algorithm with two parameters, Eps
and MinPts, both of which in turn determine clustering quality [15]. In order
for data points to be grouped, there must be at least a minimum number of
points MinPts in Eps-neighbourhood, Ngy,(p), from a data point p, given a
radius Eps. Its purpose is to detect natural clusters among data objects, as
it discriminates noise and outliers from clusters. In DBSCAN, the following

definitions are denoted.

Definition 1. (Directly density-reachable) A point p is directly density-reachable
from a point ¢ with respect to Eps, MinPts if

(1) p € Nips (g) and

(2) |Ngps (g)| = MinPts, where | Ngys(g)| denotes the number of points in the

circle of radius Eps and centre p.

Definition 2. (Density-reachable) A point p is density-reachable from a point
q with respect to Eps and MinPts if there is a chain of points py, .., pp, p1 =
4, , Pn = p such that p;; is directly density-reachable from p;.

Definition 3. (Density-connected) A point p is density-connected to a point
g with respect to Eps and MinPts, if there is a point o such that both p and

q are density-reachable from o with respect to Eps and MinPts.

18

p is density-reachable from

g, not ¢ from p P pand qis density-
® connected by O

®

®
@ MinPts: 4

Figure 2.7: Density-reachable and Density-connected

Definition 4. (Cluster) Let D be a database of points. A cluster C' with
respect to Eps and MinPts is a non-empty subset of D satisfying the following

conditions:

(1) Maximality: V¥ p, ¢ if p € C and ¢ is density-reachable from p with respect
to Eps and MinPts, then q € C.

(2) Connectivity: V p, ¢ € C, p is density-connected to ¢ with respect to Eps
and MinPts.

Definition 5. (Noise) Let a data point p € D. p is noise, if p ¢ C;, where C;

is " cluster, 0 < i < n. And n is the number of clusters in D.

Figure 2.7 illustrates the above definitions. The detailed figures and discussion
are found in [15].

Once two parameters Eps and MinPts are defined, DBSCAN starts to
group data points from an arbitrary point. If a cluster cannot be expanded
with respect to the notions density reachable and density-connected, it starts
clustering data points for a new cluster. This procedure is iterated until there
is no data point to be expanded and all data points in the dataset are clustered
or labeled as a noise.

DBSCAN contributes to scalability, memory management for large databases,
minimization of required domain knowledge, and effective clustering discov-
ery while distinguishing clusters from noise or outliers, etc. One major issue

with DBSCAN is sensitivity to the parameters Eps and MinPts. Even though

19

Sk istaneer| SR e =10

warning: Applet Window

Figure 2.8: An example of a sorted 4 — dist graph

DBSCAN requires minimized domain knowledge, it is not trivial to learn cor-
relations between data objects. [50] illustrates the variant clustering results
by changing the parameter values. In order to overcome the shortcoming an
effective heuristic approach k — dist graph is developed [15]. The observation
of k — distgraph is to define a k — dist function from a data domain mapping
every data object in the data domain to the distance from its k-nearest neigh-
bour. If an arbitrary data object p is selected by setting Eps to k — dist(p)
and MinPts to k, all points with an equal to or smaller than k — dist value
will be core points, where a point is a core point if there are at least MinPts
neighbour points within its Eps. Figure 2.8 illustrates the observation of the
heuristic to determine the parametric values in DBSCAN. The other issue is
the problem of the high dimensionality of data objects when looking for range
queries to quickly identify points in the neighbourhood of another point. In
[15], the authors indexed data objects using the R*tree [4], but this structure
has a dimensionality limitation of 16 dimensions with respect to efficiency. As
[9] reports, most of the running time O(nlogn) in [15] is spent in searching

neighbours with n data objects.

20

2.3.2 OPTICS

The idea behind OPTICS (Ordering Points to Identify the Clustering Struc-
ture) is extended from DBSCAN [15]. OPTICS presents an ordering of data
objects rather than discovering a set of clusters given two parameters [2]. In
DBSCAN, there are two users’ parameters Eps and MinPts. As illustrated in
[26], it is not trivial to find a “best” parameters for a large database without
domain knowledge. Therefore, OPTICS allows users to choose the “best” pa-
rameters that represent correlations of data objects. OPTICS introduces the

terms core-distance and reachability-distance.

(1) Core-distance (¢') of an data object p is the smallest value such that it
makes p a core object that is defined in DBSCAN [15]. In other words,
given a range of €’ from p, the number of neighbours of p is equal to or
larger than MinPts. €’ is always smaller than e, since €’ is not defined

unless p is a core object.

(2) Reachability distance between two data objects p and ¢ is the greater
distance of the core-distance of p and the Euclidean distance between p
and ¢. Therefore, the reachability distance is not defined if p is not a

core object.

OPTICS creates an ordering of all data objects as it computes core-distance
and a proper reachability distance for every data object. Note that OPTICS
does not produce a set of clusters. Rather, it constructs a visualization plot
such that a user is allowed to interact with the parameters to acquire expli-
cable correlation information concerning data objects. This feature enables
OPTICS to discover clusters with different densities and arbitrary shapes of
clusters. OPTICS overcomes the shortcoming of DBSCAN, which is limited
to discovering a globally dense area, and its performance is less sensitive to
user inputs than DBSCAN. Figure 2.9 illustrated the result of OPTICS using
two user inputs. However, the OPTICS still requires a parameter that may

have influence on the clustering quality.

21

Reachability
distance

Undefined

Cluster-order
of the objects

Figure 2.9: Orderings of data objects in OPTICS from [2]

OPTICS complexity is O(nlogn), which is equivalent to that of DBSCAN,

where n is the number of data objects.

2.3.3 DENCLUE

DENCLUE (DENsity-based CLUstering) is designed to model the overall data
object density, which is analytically determined by computing the sum of
influence functions from data objects, where the influence function implies
the impact of a data object on its neighbor [23]. A cluster in DENCLUE
is determined by introducing density-atiractors, which are local maxima of
the overall density function and are determined by a hill-climbing procedure
instructed by the gradient of the overall density function. The overall function
is the sum of the influence functions for all data objects. Due to the fact that
all data objects do not have an influence on the function, DENCLUE adopts
a local density function to take into account data objects that contribute to
the overall function. The influence function for y € F% is a function f§ : Fi—

R, which is defined with respect to a basic influence function fp as

f5(@) = fBy (2:2)

The density function is defined as the sum of influence functions of all data

objects. Given n data objects with a set of feature vectors D = {xy, .., x,} C

22

F? the density function is defined as
fRe) =) f§ (@) (23)
i=1

Note that DENCLUE is able to arbitrarily select an influence function: parabolic,
square wave, or Gaussian function. The following are examples of the influence

functions in [23].

1. Square Wave Influence Function

0 if d(z,y) >0

Fsquare(®,y) = { 1 otherwise (2:4)
2. Gaussian Influence Function
n —d(z,m-)2 '
fGaussian(xa y) = Z € 2 (25)
i=1

In DENCLUE, two types of clusters are defined based on density-attractors:
the Center-Defined cluster and the Arbitrary-shape cluster. For a density-
attractor x*, a center-defined cluster which is density-attracted by x* and
f2(z*) > € is a subset of D, where € is a threshold. Meanwhile, an arbitrary-
shape cluster is a subset such that the density function for the set of density-
attractors is no less than the threshold € and there is a path P from zj to 2}
satisfying the requirement that the density function for all data points on the
path is no less than e. Outliers are determined if f B (2}) < €, where x{ is a
local maximum.

Since DENCLUE requires user inputs o and €, extensive domain knowledge
is required in advance. Although the clustering quality is sensitive depend-
ing on the inputs, it results in high-quality clusters in the presence of noise.
Examples of clustering results are illustrated in [23]. Although DENCLUE
is engaged in a grid-based approach, it discovers natural shaped clusters de-
pending on a resolution of a grid. The complexity of DENCLUE is O(n logn),
where n is the number of data objects. Even though the complexity of DEN-
CLUE is equivalent to that of DBSCAN, DENCLUE is faster than DBSCAN
by a factor of up to 45 thanks to its utilization of a grid-based approach.

23

1st layer

4
1st level(top leveljcould /I

I
have only one cell. i
1

A T (i-1)th layer
| A A T)
| i ,”"T v e i
) Tt 4 [
T N [
[I T CE g [
[T ' S I | I : ‘ ; .
Acellof (i-1)th level 1 | (P . d—frr s ithlayer
cor.responds to 4 cells : Vr" i /,/
of ith level.

Figure 2.10: Hierarchical Structure of STING [48]

2.4 The Grid Approaches

In general, a Grid approach creates a finite number of cells for a given planar
space. It attempts to induce correlations of data objects grid by grid. The
clustering is done on the cells, not directly on data objects. Quantization
of data objects enhances the efficiency of procedures. The efficiency is then

determined by the resolution the grid approach quantizes.

2.4.1 STING

STING (STatistical INformation Grid-based method) deploys hierarchical and
grid-based approaches to group data objects within a quantized cell [48]. Its
conceptual idea is to compute query independent statistical information asso-
ciated with each spatial grid(cell) in order to reduce the number of scans of
data objects. The quantized grids are decomposed into a set of deeper layers.
Each grid in a layer is associated with a different resolution. The resolution
in turn decides the clustering efficiency. Statistical information for each grid
is calculated and stored for further processing. Figure 2.10 illustrates the cell
structure of STING.

As seen in Figure 2.10, a grid in level 1 corresponds to the union of the areas
of its lower level i+1. The root grid, which is 1%¢ level, covers the whole spatial
data plane. Each grid except for the leaves has 4 children, and each child is
associated with one quadrant of the upper grid storing attribute-dependent and

attribute-independent parameters such as n, m, s, min, mazx, and distribution,

24

where n is the number of objects in the grid,m is mean of all values in the cell,
s is the standard deviation of all values of the attribute in a cell, min(maz) is
the minimum(maximum) value of the attribute in a cell, and distribution is the
type of distribution that the attribute value in a cell. Note that distribution
is a type of enumeration: normal, uniform, exponential, and so on. The
parameters, except for distribution, are generated directly by the data objects
whereas the distribution parameter is obtained by a user or by hypothesis tests
such as the x? test. Instead of examining all grids, STING queues the grids that
are labeled as “relevant.” The labeling of either “relevant” or “not relevant”
is evaluated by the confidence interval (the estimated ranges), which implies
how relevant a grid is to a given query. If a grid is labeled as “not relevant,”
then it is further computed. The detailed calculation of the confidence interval
(the estimated ranges) are discussed in [48].

The contributions of STING are the following: Statistical information al-
lows STING to scan whole data objects only once; the computation speed of
queries in n grid data structures is O(n); and the independence of grid re-
lations suits parallel processing. In spite of its multi-resolution approach, its
clustering quality is not effective, since STING does not consider correlations
between a child node and its neighbour nodes. As a result, clusters discov-
ered by STING do not have diagonal boundaries, but are either horizontal or

vertical.

2.4.2 WaveCluster

WaveCluster is a multi-resolution clustering approach such that multi-dimensional
signals represent dense-regions in a planar space [42]. The 2-dimensional data
in WaveCluster are converted into the frequency domain by employing signal
processing techniques called wavelet transforms. The idea behind the tech-
niques observes that 2-dimensional data objects can be represented in an n-
dimensional feature space with feature vectors that are data objects in a feature
space.

Wavelet transforms decomposes a signal into different frequency sub-bands

utilized to discover the dense regions, which are considered as clusters in the

25

.
|
1
.-.‘)

Thooe Tl .‘ ,"; i] Fit

- . - R

. . kR | . r, .2

’ 1 . ' i I (.

s e‘l R P L ;! ,"I
s RV :

(a) (b) (c)

Figure 2.11: Multi-resolution wavelet representation of the feature space at
(a)scale 1; (b) scale 2; (c) scale 3 from [42]

feature space. The clustering problem in WaveCluster is to find the distri-
bution of patterns of feature vectors to represent the feature space with high
frequency and low frequency areas of an n-dimensional signal.

Wavelet transform deployment has the following advantages: unsupervised
clustering; effective removal of outliers; a multi-resolution approach; and cost
efficiency. For instance, the hat-shape filters make regions distinct by hin-
dering minor information in their boundaries. In other words, clusters in
the feature space are automatically projected and represent regions excluding
noises (outliers). The multi-resolution approach iteratively computes a coarser
approximation of the one dimensional input signal using a low pass filter and
down sampling that skips every other signal sample at different scales.

Figure 2.11 illustrates the iterative multi-resolution processes from a fine
resolution (a) to a coarser resolution (b). For each resolution representation,
4 sub-bands are depicted: an average signal(LL) and & detailed signals (LH,
HL, and HH), where LL (wavelet approzimation of original image) is shown
in the upper left quadrant, LH (horizontal edges) is shown in the upper right
quadrant, HL (vertical edges) is presented in the lower left quadrant, HL (ver-
tical edges) is presented in the lower right quadrant. By applying this multi-
resolution process to feature vectors of data objects multiple times, a set of
clusters is discovered. Notice that the performance of clustering is mainly in-
fluenced by the quantized feature space since the number of intervals that are

quantized from the feature space are different at variant scales of transform.

26

Input : A Database, resolution degree, and signal threshold
Output: A set of clusters

Quantize feature space, then assign objects to the units;

Apply wavelet transform on the feature space;

Find the connected components(clusters) in the sub-bands of trans-
formed feature space, at different levels;

Assign label to the units;

Make the lookup table;

Map the objects to the clusters;

Algorithm 4: Algorithm of WaveCluster [42]

In Algorithm 4, the first step is to quantize the feature space into a set of
intervals that have influence on the performance of clustering. Discrete wavelet
transform is then applied to the quantized space. The third step maps data
objects in the transformed feature space to data objects in the original feature
space by labeling data objects and creating a Look up table.

While WaveCluster satisfies the primary requirements of a good cluster-
ing algorithm- the detection of the arbitrary shapes of clusters; automatic
clustering processes; and efficient time management with large databases— its
employment of convolved and down sampled images with a low pass filter in-
terprets the bridge-like set of data objects as a strong signal. In addition, the
parameters such as degree of resolution and signal threshold have significant

effects on clustering performance.

2.5 The Graph-Partitioning Approaches

The Graph-partitioning approaches employ a graph to model data objects and
to represent the “closeness” of neighbours as an edge. The “close” neighbours
have connectivity determined by weighted edges that are dynamically collected
in the course of clustering. As a result, the correlations of data objects are
automatically evaluated. However, due to the deployment of a graph that

requires high processing costs, the clustering procedure is usually inefficient.

27

2.5.1 CHAMELEON

CHAMELEON |[26] is a hierarchical clustering algorithm adopting dynamic
modeling to merge sub-clusters. Whether two clusters are merged is deter-
mined by the similarity between the inter-connectivity and proximity of the
merged cluster and the inter-connectivity and proximity of the two clusters
before merging. CHAMELEON models data objects as a k-nearest neighbour
graph Gy (V, E), where V is a set of vertices and E is a set of edges. Each vertex
in G is a data object in a database, and each edge is constructed between two
vertices v; and v, if one of the k-nearest neighbours of v; is v;. Since the weight
on an edge represents the closeness between two vertices, the edge weight of
dense regions in Gy, is large, whereas the edge weight of sparse regions is small.
Using the k-nearest neighbour graph, operations to evaluate correlation from
data objects are efficiently performed. For instance, extremely distant data
objects in the k-nearest neighbour graph are naturally disconnected, whereas
it captures correlations between neighborhoods dynamically and the density
region is recorded as the weights of its edges.

The similarity between two clusters C; and C; is computed by two criteria-
Relative Inter-Connectivity(RI) and Relative Closeness (RC). RI is defined by
the absolute inter-connectivity between C; and C; normalized with respect to
the internal inter-connectivity of the two clusters, where the absolute inter-
connectivity is the weighted sum of the cut between C; and C;. It is formalized
as follows. Note that EC(C;, C;) is the weighted sum of the cut between C;
and C;. EC(C;) is the weighted sum of edges being cut in the graph that
describes a cluster C; to generate two bisector. RI allows CHAMELEON to
consider the differences in shapes of the clusters and the degree of connectivity

of different clusters.

B EC(C;, C))
RI(C;,Cy) = 0.5(EC(Cy) + EC(C;))

RC is defined as the absolute closeness between C; and C; normalized with

(2.6)

respect to the internal closeness of two clusters. The closeness of two clusters
is measured by computing the average similarity between data objects in C;

that are connected to C; in order to alleviate the effects of outliers and noises.

28

RC is computed as,

EEC(Ci,Cj)

RO(C, Cy) = (2.7)

G < ICil <@
BiRiESFe©) + GG ECE)

Note that gf)g(ci’cj) is the average weight of edges that connect vertices in
C; to vertices in C; prior to the partition and —§EC(Q) is the average weight
of the minimum number of edges that need to be cut to create bisectors with
C;. RC helps CHAMELEON merge clusters whose merged cluster shows a
consistency in the degree of closeness between data objects in the cluster if
both the relative inter-connectivity and the relative closeness are high. This

is formalized to maximize the function as follows:
RI(C;, Cj) - RC(C;, ;) (2.8)

The value « is a user parameter to distribute the magnitude ratio between
RI and RC. Due to considerations of inter-connectivity and relative closeness,
CHAMELEON provides better performance than other hierarchical methods
such as CURE. Notice that CHAMELEON deploys a dynamic model such
that clustering procedures are being automatically adjusted, whereas other hi-
erarchical clustering method cannot interfere with clustering operations, once
started. [26] has compared the experimental performance of CHAMELEON
with CURE and DBSCAN, and found that CHAMELEON outperforms CURE
with respect to detecting the natural shapes of clusters. However, its time
complexity is not efficient. Its worst time complexity is O(n?), where n is the
number of data objects. Besides, effectiveness is dependent on the requested

parameters.

2.5.2 AUTOCLUST

AUTOCLUST [16] is a graph partitioning algorithm that does not require any
user parameter such as the number of clusters, halt criteria, and density ar-
guments. The parametric resources for a database are automatically collected
by Delaunay diagram without a prior: knowledge. In the Delaunay diagram,

data objects residing in the boundary of a cluster imply a greater standard

29

deviation in the length of their incident edges since the boundary objects have
both short edges and long edges. Short edges indicate the closeness of the data
objects that are to be clustered together, whereas long edges correspond to a
relation between clusters or between a cluster and noise.

AUTOCLUST involves three steps: finding boundaries, restoring and re-
attaching, and detecting second-order inconsistency. Each phase performs an
edge correction to adjust proximity between data objects. The connectivity
between data objects in each step is determined by the following features: Lo-
cal_Mean(p) and Mean_St_Dev(P), where P is a set of data object and p €
P; Local_Mean(p) is the average length of edges incident to a data object p;
and Mean_St_Dev(P) is the average of the standard deviations in the length
of incident edges for all points in P. Initially, AUTOCLUST constructs gran-
ular clusters from the Delaunay diagram. It then removes edges from the
Delaunay diagram. The elimination of edges as the first step is done by the
proximity (closeness) derived from Long_-Edges(p) and Short.Edges(p). The
Long_Edges(p) indicates that the edges are two long joining data objects from
different clusters, while Short_FEdges(p) connects two close data objects within
a cluster. The second step is to recover edges in Short_Edges(p) that are
intra-cluster links. The third step recalculates the local variation to remove
inappropriate edges evaluated by the new indicator Local_Mean, ¢ (p) which is
the average length of edges whose paths are 2 neighbourhoods starting at p.
Figure 2.12 presents the Delaunay structure and phases of AUTOCLUST.

The contributions of AUTOCLUST facilitate automatic clustering in the
absence of a priori knowledge and detection of locally dense areas. However, it
suffers from dimensionality problems as a result of its data modeling method.
If data objects whose dimension is higher than 2-dimension are applied to
AUTOCLUST, its performance is much degraded. For example, d-dimensional

data objects require O(n logn + n%), which is almost a polynomial increment.

30

(b) After Phase 1

(c) After Phase 2 (d) After Phase 3

Figure 2.12: AUTOCLUST Illustration [16]

2.6 An Educational Applet of clustering algo-
rithms

For experimental and educational purposes, a Java applet has been imple-
mented to illustrate the performance of clustering algorithms in a two dimen-
sional space. The algorithms coded in the applet are K-means, K-medoids,
DBSCAN, and CLIQUE. The first two algorithms are typical partitioning al-
gorithms, the second one is based on a density notion, and the last is based
on a grid notion. A number of synthetic data sets are available in the applet
such that it is easy for users to compare clustering quality by testing different
algorithms on a data set. In the first row in the applet(see Figure 2.13), some
parameters can be selected. The first choice option allows users to select the
number of clusters for K-means and K-medoids algorithms. Hence, users can
realize how hard it is to select k£ values, that is, the number of clusters without
a priori domain knowledge. The second choice option is the list of datasets.
The applet also accepts a dataset provided by users. A user simply clicks the

panel to generate his own dataset. The third option controls the execution

31

interval of an algorithm. It is possible for users to see the process of an algo-
rithm in detail. A user can select an algorithm from the last option choice.
The three buttons- “Copy frame”, “Restart”, and “Show”- on the right side of
the applet allow a user to store a clustering result (“Copy Frame”), to restart
the applet after changing options (“Restart”) and to show a clustering result
after finishing the procedures of an algorithm(“Show”). The text field at the
bottom of the applet is designed to show the pseudo code of each algorithm.
As well, each line of a pseudo code is highlighted as the line is executed by
an algorithm. The following snapshots show the structure of the applet and
examples of clustering results. Note that each cluster centre is represented by
a red point in the K-means and K-medoids algorithms. In addition, noise is

represented by a red point in DBSCAN and CLIQUE/1] algorithms.

32

¥

ZRapplet ::;Clsl:.ei ’ - A ,@1@ mj

IPaussoption v | Chaose an Algorithm -~

Y L ERM AT .. M
R

Shcv‘{u]

Figure 2.13: A snapshot of the applet

33

=101]

pplet : Clustering/

AT RIS

§3 = E"‘-A-"yeb__logsw _;'j gPause 0.3sec Jj E»K-Means) R

ts Copy Frame !

of vis

of purchase

Arbitrarily choose K objects as the ininital cluster centers

Repeat

re) Assign each object to the cluster to which the object is most simila
ibased on the mean value of the objects in the clusters;

Lpdate the cluster means

Figure 2.14: Clustering results in K-means

34

{3] lweblogs xl|W/Opause »i|[KMedoids x|

of visjts Copy Frams
f%;f’
* ‘;%v S Restart
¢ e L R
+2 % @4

of purchase

|Arbitraily choose k objects as the initial medoids

|Repeat

Assign each remaining object to the cluster with nearest medoids
Randomly select a non-medeoids object, O random;

Compute the total cost,5, of swapping O with O random;

if 5<0 then swap O] with O random to form the new set of K medoids;
juntil no change;

Figure 2.15: Clustering results in K-medoids

35

o x|}

K] o =] [Wiopame =] [BBSCAN =]

of visjts Capy Frame ‘

Restart

i Show !

of purchase

Clusterld = nextid(NOISE); 2
FOR | FROM 1 TO SetOfPoints.size DO
Point = SetOfPoints.get(i)
IF Point.Clid = UNCLASSIFED THEN
IF ExpandCluster (SetOfPoints, Point, Clusterld, Eps, MinPts) THEM
musterld = nextid{Clusterid)

< |]

Figure 2.16: Clustering results in DBSCAN

36

ol x|

1K =] [web_jogs ~] [chaue b

of visits Enpy Ffam?

,;,uj i‘w’x‘ﬂ pause

* e Restart

,'%:'%4?@ PR |

of purchase

Scan ¥ axis counting number of points -
Remove all points not in dense ranges

Scan y axis counting only peoints not removed
Remove all points not in those ranges

ICount number of points in each square
Remave any squares with too few points

{Put all adjacent sgquares in the same cluster
DONE CLUSTERING

Figure 2.17: Clustering results in CLIQUE

37

Chapter 3

Data Clustering with
Constraints

We have shown clustering algorithms that have focused on efficiency and ef-
fectiveness in clustering data objects in a planar space. Those algorithms
principally describe the performance enhancement required to achieve better
quality in a linear time, in order to handle large spatial multi-dimensional
databases. However, none of the algorithms that have been introduced so far
takes into account possible physical or operational constraints that may sig-
nificantly influence the accuracy of the clustering of data objects, as well as
the efficiency of clustering procedures, since such consideration in the course
of clustering is very expensive. For example, when a company groups cus-
tomers based on the distance to its branches, it may want to have a set of
clusters such that each cluster should have a certain number of customers, in
the presence/absence of physical constraints. In a GIS application studying
the movement of pedestrians to identify optimal bank machine placements, for
example, the presence of a highway hinders the movement of pedestrians and
should be considered as an obstacle, whereas a pedway over this highway could
be considered as a bridge. Hence, ignoring the constraints will significantly
change the accuracy of clustering. It is imperative that we take into account
constraints on clustering problems. In addition, [21] introduces a framework
that integrates constraint-based and multidimensional mining scheme for ef-
fective and efficient data mining.

In this section, we shall show three clustering algorithms [46, 45, 17] that

38

focus on operational and physical constraints.

3.1 AUTOCLUST+

AUTOCLUST+ [17] has been proposed as an extension of the clustering algo-
rithm, AUTOCLUST [16]. Due to the natural property of AUTOCLUST such
as a special data structure to model data objects “Delaunay diagram”, AU-
TOCLUST+ efficiently discovers clusters in the presence of obstacles. Notice
that AUTOCLUST constructs clusters by means of a self-tuning procedure,
that is, the essential parameters to evaluate correlations of data objects are
generated automatically.

In AUTOCLUST+, an obstacle has been modeled by a set of simple line
segments such that obstacles obstruct the edges from the Delaunay diagram,
where each incident edge in the Delaunay diagram represents the closeness of
data objects. The disconnectivity for each obstacle is applied to the Delaunay
diagram by removing edges that are impeded by a line segment from an obsta-
cle. A removed edge is replaced in the Delaunay diagram with a detour path
that is defined as the shortest path between two data objects. The following
summarizes the procedures of AUTOCLUST+:

Input : A Database
Output: A set of clusters
Construct Delaunay Diagram;
Compute Mean_ST Dev(P) ;
for all edges do
if an edge intersects some obstacles then
replace it with a detour path;
endif

endfor
Apply AUTOCLUST;

Algorithm 5: Algorithm of AUTOCLUST+

The complexity of AUTOCLUST+ is O(n log n + [m+R] log n), where
n is the number of data objects, m is the number of line segments from all

obstacles, and R is the number of edges removed from Delaunay diagram.

39

Thanks to the utilization of the Delaunay diagram structure, it is possible
to efficiently validate if a line segment from an obstacle is intersected with
edges from the Delaunay diagram. However, reconstructing the diagram after
the removal of edges is not explicitly taken into account in the complexity
computation. The Delaunay diagram searches a detour path for every line
segment intersected with the diagram. This eventually degrades the perfor-
mance of the algorithm. In addition, the effect of noise that is depicted by
a set of close data objects limits the effectiveness of AUTOCLUST+ in real
applications. The direct evaluation of correlations between data objects from

a database will avoid biased clustering results.

3.2 COD-CLARANS

COD-CLARANS (Clustering with Obstructed Distance) [45] was introduced
by A. K. H. Tung et al. in 2001. The goal of COD-CLARANS is to discover
clusters from large databases by minimizing the sum of distance-error, such
that data objects stay in their “closest” centres in the presence of obstacles.

Note that the “closest” denotes the closest distance that detour obstacles.

[Pre—-Processed Information }
[Main Function J
Computation of E Pruning Function E’

— =

(Focusing Information]

Figure 3.1: Overview of COD-CLARANS [45]

COD-CLARANS has been derived from CLARANS [35], which is a variant
of k-medoids approach to ameliorate deficiency of PAM [28] and CLARA [28].
CLARANS constructs a graph to project steps to discover k-medoids (cen-

40

troids). In the graph, a node corresponds to a collection of k-medoids such
that a clustering result is described by each node. Therefore, a cost for each
node is computed by the dissimilarity between every object and the medoid of
its cluster. The cost is re-calculated whenever a centroid changes. This ulti-
mately degrades the performance of the algorithm. COD-CLARANS examines
the obstacles by integrating an optimization scheme into the distance-error
function in the course of the algorithm.

COD-CLARANS is composed of four phases: pre-processing, the main
algorithm, computation of the distance-error FE, and a pruning function £
Each step is illustrated in Figure 3.1.

Obstacles in COD-CLARANS are modeled with a vistbility graph, VG =
(V, E), such that each vertex of the obstacles has a corresponding node in
V, and two nodes (v; and vy in V) are connected by an edge in E, if and
only if the corresponding vertices they represent are visible to each other. The
visibility graph is pre-processed to compute the obstructed distance between
two data objects in a given planar space. The obstructed distance lies in a
detoured distance between two data objects via the visibility graph. Once
the visibility graph is constructed, COD-CLARANS applies Micro-clustering
approach to all data objects. Micro-clustering represents a cluster with a set
of data objects from an intra-cluster. The advantage of the micro-clustering
approach is to minimize the number of data objects to be processed and to
fit into the main memory, which is not available in CLARA. To overcome a
drawback of the micro-clustering method, such as information loss of data
objects, a user’s parameter, radius of a micro-cluster, is required. Note that
an imprudent selection of the parameter results in a cluster that contains only
one data object.

The visibility graph construction and micro-clustering are considered a
pre-processing phase in COD-CLARANS. After the pre-processing, COD-
CLARANS randomly selects the centres of &£ clusters from the micro-clusters.
It then iterates for a randomly selected centre out of non-centre data ob-
jects, to replace a current centres. If the k£ clusters remain unchanged after

iterating MazNeighbour times, then COD-CLARANS maintains the sum of

41

distance-error value and cluster assignment. The procedure is repeated up
to NumOQfLocal times, as the minimized square-error is assessed. Note that
MazNeighbour and NumOfLocal are the input parameters. The exploratory
time and the clustering results are extremely sensitive to those parameters.
The contribution of COD-CLARANS is to consider obstacles modeled by
a visibility graph for efficient processing of the clustering problem. In addi-
tion, an optimization technique is adopted in the course of deploying COD-
CLARANS: a pruning function £°. E”is computed by the distance between
Orandom and the micro-clusters, where the distance is a direct Euclidean dis-
tance, not an obstructed distance, and O,4n40m i8 @ randomly selected centre,
to be replaced with one of the current centres. The pruning function £ “prunes
searching costs by inspecting the lower bound of the distance-error E. Further-
more, the pruning function addresses focusing information for efficient com-
putation of E. On the other hand, COD-CLARANS inherits the shortcomings
of CLARANS such as sensitivity to noise and to parameter choice, significant
a prior knowledge of data objects and obstacles, the loss of clustering quality,

etc.

3.3 Constraint-based clustering in large databases

While physical constraints such as obstacles or crossings are important in this
performance of clustering algorithms, the operational requirements are also
critical to clustering effectiveness. For this purpose, a scalable constraint-
clustering algorithm [46] that is a variant of k-means is introduced, presenting
the taxonomy of constraints in clustering issues according to the nature of

constraints and application domains, as follows:

1. Constraints on individual objects

2. Obstacle objects as constraints.

3. Clustering parameters as constraints.
4

. Constraints imposed on each individual cluster.

The goal of [46] is to satisfy existential constraints, that is, to discover a set

of k clusters, such that each cluster has at least ¢ pivot objects minimizing a

42

given distance-error function to k centroids, where pivot objects are specified
via constraints or other predicates, through input parameters. Therefore, the
NRP (Nearest Representative Property) is not compromised in the constraint-
clustering context. Even though objects are close to a centroid, they cannot
be assigned to the centroids due to the existential constraints.

[46] develops an algorithm called cluster refinement under an existential
constraint.The cluster refinement algorithm in the constraint space is modeled
by a clustering locality graph. A node in clustering locality graph represents a
set of k clusters. An edge between two nodes of the graph lies in if and only
if they are different by only one pivot object. Note that there are two classes
of labeled nodes: walid and invalid, where the former satisfies an existential
constraint and the latter does not. Since the decision problem corresponding
to the k-means algorithm is NP-complete, the graph is designed to discover a
local optimum by a node movement that gives the greatest decrease in distance-
error function. This movement, called cluster refinement process, is iterated
until no node of lower distance-error is found.

In brief, the algorithm consists of two phases: pivot movement and dead-
lock resolution. The algorithm constructs a Pivot Movement Graph to search
the best-optimized pivot movement that minimizes distance-error function,
where a Piwot Movement Graph is a directed graph in which each cluster is
represented by a node. Given a Pivot Movement Graph, a pivot movement is
converted to a problem by computing a schedule of movements for the pivot
objects in the graph, such that the distance-error function is minimized. The
purpose of deadlock resolution phase is to solve a deadlock-cycle, when a given
existential constraint is too tight to be satisfied. Some heuristics, such as
random-heuristic and a look-ahead, are employed because two steps are NP-
complete.

As demonstrated in both phases, it is very expensive to perform this al-
gorithm with large databases. To overcome the high cost, the algorithm has
adopted a micro-clustering approach [45]. The micro-clustering method, how-
ever, may not be properly efficient due to the movement of micro-clusters,

rather than a pivot object in order to satisfy an existential constraint.

43

Discussion of an ezistential constraint examines the possible extension of
constraints: existential-like, universal, averaging, and summation. Universal
constraints are constraints in which a specific condition must be satisfied by
all objects in a cluster. Existential-like constraints are very similar to existen-
tial constraints, as the existential-like constraints moves “hole” to minimize
the distance-error function to clusters. The averaging and summation con-
straints are constraints that require average and sum arithmetics for numeric

attributes. This computation is a NP-hard problem.

Most recently a survey [50] on the Data clustering has been published. It
discusses the latest clustering algorithms comparing their clustering qualities.
In addition, [50] generalizes the validation of the clustering quality. One major
contribution of [50] is to compare the performance of each clustering algorithm
based on the same data sets. Hence it is very clear for readers to evaluate the
performance, especially the sensitivity of parametric values that are required

by each clustering algorithm.

44

Chapter 4

Modeling Physical Constraints

Many research areas such as spatial data mining, computational geometry,
computer graphics, robot navigations, etc, have employed polygons for object
generalization. Applications in research contexts model a polygon with simpler
components such as a set of edges, decomposed triangles, etc. One of the dom-
inant modeling schemes for polygons is “Polygon Decomposition”, which has
also been actively discussed in the literature of computational geometry and
various other disciplines [29, 34, 11]. However, ideas in the current literature
of the polygon decomposition do not explicitly enhance the performance of
applications which describe polygons as constraints and evaluate correlations
among data objects in the presence of the constraints by checking visibilities
between data objects. For instance, traversing a data domain to find a target
destination in the presence of constraints demands the shortest path between
a starting point and a destination point in order to minimize tour costs under
specified constraints. Of course, the evaluation of the constraints has substan-
tial effects on the efficiency of the navigation. Another example is exploring
correlations between data objects from a very large database in the presence
of obstacles [45, 17, 51].

The main purpose of the scheme that this thesis addresses — to model
an obstacle using a polygon — is to cut search spaces of the applications,
as the scheme converts a polygon to a set of primitive lines. Indeed, the
set of primitive lines generated by the polygon reduction algorithm preserves

correlations between objects in an applied domain. Notice that there are two

45

classes of polygons with respect to mathematical context, as illustrated in [22]:
a simple polygon and a crossing polygon. A simple polygon is a polygon in
which every point on the boundary in the polygon belongs only to one edge of
the polygon, whereas a crossing polygon has some point of its boundary that
belong to several edges shown in Figure 4.2. In this thesis, we will describe a
simple polygon as a polygon since it is a dominant object in spatial applications
and a crossing polygon is simply disintegrated into a set of simple polygons.
We also present convexity test techniques to determine whether a polygon
is convex or concave since it is essential for an application to automatically
process procedures in order to minimize user involvement. In addition, the
convexity tests determine the type of each point in a polygon. Such tests, in
turn, have a key role in representing a polygon with a set of primitive edges.

Before we address clustering problems in the presence of constraints, we
present some definitions to formalize correlations between data objects and a

polygon(an obstacle).

Definition 6. (Visibility) Let P(V, E) be a polygon with V vertices and E
edges. Visibility is the relation between two vertices in a planar space, if
an edge drawn from one vertex to the other is not intersected by P. Given a
database D of n data objects D={d;, dg, d3, ..., d,}, an edge [joining vertices
d; and d; where d;, d; € D, i#j, and i and j € [1..n], d; is visible to d;, if [is
not intersected by any e, €E.

Definition 7. (Visible Space) Given a set D of n data objects with a polygon
P(V, E), a visible space S is a space that has a set D’ of data objects satisfying
the following

(1) Space S is defined by three edges: the first edge(edges) e€E connects two
minimal convex points v;, v; €V, the second edge f is the extension of the line
connecting v; and its other adjacent point v, €V, and the third edge g is the

extension of the line connecting v; and its other adjacent point v; €V.
(2) ¥V p,q €D, p and g are visible from each other in S. Thus, D'CD.

(3) S is not visible to any other visible space S’. Thus, SNS =0.

46

Modeling
constraints

— T

Modeling Obstacle Modeling Crossings

: l

Convexity test
¢ Raster modeling
by “Entry point
Polygon (edges)”
Reduction

Figure 4.1: Overview of Modeling Constraints

This chapter is organized as follows. In the next section, the convexity
test techniques are introduced with definitions to formalize the Polygon Re-
duction algorithm, and the following section presents the Polygon Reduction
algorithm. Note that the Polygon Reduction algorithm is post-stage since con-
vex or concave types of points form different correlations with relations to data
objects in two dimensional planar space. An overview of modeling constraint

phases is illustrated in Figure. 4.1

4.1 Convexity Test

An obstacle is described as a polygon in many applications. A polygon is
represented by a set of simple components such as edges. The set of edges in
a polygon forms a set of visible spaces (Definition 7) in accordance with the
shape and type of the polygon associated with data domains. Thus, a polygon
with its visible spaces is decomposed into a set of primitive lines called a set
of “ obstruction lines.” The modeling procedure “Polygon Reduction” does
not compromise Definition 6. It enables applications that adopt the polygon
reduction algorithm to augment their efficiency.

Prior to the deployment of the Polygon Reduction algorithm, the Convexity

47

Test is executed to categorize the type of a given polygon since the number
of obstruction lines depends on the type of the polygon. In addition, we
need to label the type of each vertex in a polygon through the convexity test.
This in turn gives advantages to the Polygon Reduction algorithm to improve
efficiency.

An applicable approach to determine the type of a polygon is the Convez
Hull algorithms [29, 34, 3, 11] which can retrieve a set of points that enclose
a given finite set of points. They are, however, limited in that they only label
the type of polygon, while the type of each vertex is also required for further
investigation. We herein show two methods to perform the Convexity test —

the Turning Directional Approach and the Externality Approach.

4.1.1 Turning Directional Approach

The “Turning Directional” approach has already been introduced in [44]. The
Turning directional approach is to evaluate the convexity of a polygon using
the definition of a polygon. A polygon is classified as either a simple polygon
or a crossing polygon. A simple polygon is one such that every edge in the
polygon is not intersected by other edges from the polygon. A crossing polygon
is one such that there is an edge that is intersected by other edges from the

polygon. Examples of polygons are illustrated in Figure 4.2.

JO Rk

a) Simple polygons b) Crossing polygons

Figure 4.2: Examples of polygons

We claim that a polygon is a convex polygon if and only if all vertices from
the polygon make the same directional turn. This claim can be easily proved.

Suppose a polygon P does not satisfy the claim. It is obvious then that P is

48

not convex. As shown in Figure 4.3 (a), vertices b and c are concave vertices
that make P concave. Note that the arrows in Figure 4.3 indicate the direction
of each angle for each vertex.

Let P be a convex polygon. Then all possible line segment that join two
non-consecutive vertices from P should be interior to P. Hence, vertex f in
Figure 4.3(b) must be pulled out at least up to the line / in order for P to be
convex. If the vertex f lies on the line [, then a convex polygon is composed
by removing vertex f. Note that a different shape of a polygon is drawn if f

lies on the line L

(a) A concave polygon (b) Turning directions

Figure 4.3: Turning in polygons

In order to test a turning direction for 3 consecutive vertices, the sign of
the triangle area of 3 vertices is examined by computing a determinant. As
a result, the sign of the determinant evaluates the turning direction as either
clockwise or counterclockwise. Note that we assume that all vertices in a
polygon are enumerated in either clockwise or counterclockwise order. Hence,
we can easily identify the type of a polygon as well as the type of each vertex
in the polygon in a linear time O(n), where n is the number of vertices in a

polygon. Algorithm 6 illustrates the Turning Direction procedure.

4.1.2 Externality Approach

Observe that the property of a convex or a concave vertex using a line segment
called an assessment edge whose two end vertices respectively lie in two adja-
cent lines of a vertex from a polygon. A vertex v is convex, if its assessment

edge is interior, or concave if it is exterior to the polygon of the vertex.

49

Input : Three consecutive vertices X, Y, and Z from a polygon
Output: A direction: Clockwise, Counterclockwise, or SameLine
determinant = (X.x-Y.x)*(Y.y-Z.y)-(X.y-Y.y)*(Y.x-Z.x);

if determinant < 0 then

l Return Clockwise;

endif

if determinant > 0 then

1 Return Counterclockwise;

endif

if determinant == 0 then

l Return Sameline;

endif

Algorithm 6: Convexity Test Algorithm [44]

Figure 4.4: Convex and Concave examples

As illustrated in Figure 4.4, a vertex P is a convex vertex since its edge I
whose two end vertices are respectively on two adjacent edges of P is always
interior to a polygon. In contrast, a vertex () is a concave vertex since its edge
l is exterior to a polygon.

Note that there are three possible affiliations in the course of the convexity
test between a given polygon and “an assessment edge” which is drawn from
two end vertices which respectively lie in two adjacent edges of a query vertex:
interior, exterior, or intersected to the polygon. We must ensure that an
intersected instance does not occur in the course of the convexity test to avoid
an incorrect classification of a type of a vertex from a polygon. The intersected

instance occurs if any vertex from a polygon exists in the triangular area that

50

is composed by three vertices: a tested query point and its two neighbours. In
order to compute a correct assessment edge for the purpose of testing for the
type of a vertex, we need to set a value «. Value « directs the convexity test
for a vertex in a polygon to calculate an assessment edge that is not intersected
with the polygon. Once an assessment edge for a query vertex in a polygon is

found, it is trivial to identify a type of the query vertex in the polygon.

n

n;

Figure 4.5: Convexity Test

Figure 4.5 illustrates the convexity test that categorizes a type of a vertex
for a polygon without the enumeration of each vertex. In order to test whether
the query vertex P in Fig.4.5 is convex or concave, we first need to examine
whether there is a vertex @ from a given polygon in the triangular area (P, ny,
ng) that is composed of P and its two neighbour n; and ny. If there is a vertex
@) in the triangle area, then we can find the perpendicular distance between
P and @), which induces an assessment edge for P. Note that if there are more
than one vertices found in the triangle area, then the closest one to the query
vertex is evaluated to induce value «. Value « is the distance between the query
vertex and the closest vertex in the triangle area. The triangle area then allows
the value « to induce an assessment edge, avoiding an “intersected” incident.
Note that the assessment edge | is therefore constructed whose perpendicular
distance to P is less than the value a.

Observe that the status of an assessment edge either interior or exterior
to a given polygon is extended from the Point Location problem, which is

discussed in [47, 22, 36]. Since an assessment edge is either interior or exterior

ol

to a polygon, if any point on an assessment edge is interior (exterior), the edge
is interior (exterior) to a polygon.

By examining all vertices from a given polygon, we can classify the type of
a given polygon. If there is a concave vertex in a given polygon, then it is a
concave polygon. Otherwise, it is convex. Algorithm 7 is illustrated to explain

the External approach.

Input : A Polygon
Output: The type of the polygon and the type of each vertex in the
polygon
for all vertices queryVertex; in the polygon do
GetNeighbours_Storeinto(queryVertex;, neigh;, neigh,);
if there is any vertezr inside of the triangle area of queryVertes;,
neighy, and neighs then
vertex = findClosestVertexTotheQueryVertexInTriangleArea
(queryVertex;, neighy, neigh,);
alpha = getDistanceBetween (queryVertex;, vertex);
line = build AssessmentEdge(alpha);

endif
else
line = drawLine(neigh;, neighs);

endif
if assessmentEdgelsExterior(point) then
l query Vertex;=CONCAVE;

endif
else
| query Vertex;=CONVEX;

endif
endfor

Algorithm 7: Convexity Test Algorithm

4.2 Polygon Reduction Algorithm

In order to model a polygon with a set of primitive edges, we have initially
categorized the type of the polygon by the convexity test we presented in the
previous section. Once we have labeled the type of a polygon as well as the
type of vertex for all vertices, we construct a set of primitive edges to maintain

visible spaces (Definition 6). It is clear that a convex polygon has the same

52

number of visible spaces (Definition 7) as the number of vertices in the convex
polygon since each convex vertex blocks visibility against its adjacent visible
spaces. In contrast, a concave vertex does not create two visible spaces, only

one visible space.

Figure 4.6: A polygon and its visible spaces

Given a polygon P(V,E) with V vertices and E edges, Figure 4.6 shows
how two adjacent edges e¢; € E and e; € F from a convex point v € V obstruct
visibility between visible spaces A, and A, where A; and A, are visible spaces
that are created by the convex vertex v, j and k € [1..n], j # k, and n is the
number of visible spaces from the polygon. Figure 4.6 demonstrates that two
edges e; and ey are replaceable with obstruction edges [and [’.

We observe the fact that two adjacent edges sharing a convex vertex in a
polygon are interchangeable with two edges such that one of them obstructs
visibility in a dimension between two adjacent visible spaces that are created by
the convex vertex and the other impedes visibility between two adjacent visible
spaces and the rest of visible spaces created by the polygon. As a consequence,
the initial polygon is to be represented as a loss-less set of primitive edges with

respect to visibility (Definition 6).

Lemma 1 Let P (V, E) be a polygon with a set V of n points and a set E
of n edges. An edge | one of whose end vertices is a convezr vertex v €V that
creates two wvisible spaces A; and Ay from two adjacent edges e¢; € E and e,
€ E obstructs visible spaces A; and Ay, for a dimension, if the projected length
of | onto the dimension is longer or at least equal to the sum of the projected

length of e; and e, 7 # k.
The proof for Lemma 1 is trivial since every line that is intersected with e;

53

and e, in a dimension, both of which share one convex vertex, is intersected
with an edge that exists between e; and e, and shares the one vertex shared
by ¢ and e,. In Figure 4.6, the edges [and [’ replace two edges e; and e
according to Lemma 1. By following Lemma 1, we model a polygon with a set
of primitive edges to cut search spaces.

We introduce the following definition according to Lemma 1.

Definition 8. (An Obstruction line) Let P (V, E) be a polygon with a set
of V vertices and a set of E lines. An obstruction line ! is an edge that is
introduced by Lemma I and whose two end vertices are points v; € V and
vy € V, while it is interior to P and not intersected with any e € E. An
obstruction line of a convex point v € V from the polygon P obstructs in a
dimension the two visible spaces 4; and A created by two adjacent edges e

and ey of v.

It is sufficient to discover a set of obstruction lines that blocks visible
spaces for every convex vertex from a polygon by minimizing the number of
obstruction lines. It is obvious that we reduce N lines for a convex polygon to

E

obstruction lines. Using a bi-partition method that divides a set of convex
vertices into two sets according to an enumeration order — clockwise or count-
clockwise, it is straightforward to compose a set of obstruction lines by joining
two vertices from each partition. In addition, the bi-partition method achieves
the loss-less reduction of a polygon. Figure 4.7 for a convex polygon illustrates
steps to generate a set of obstruction lines that are red coloured.

An obstruction line is easily drawn between two convex vertices in a convex
polygon. Doing so is , however, not trivial for a concave due to its shape. It
is necessary in the case of a concave polygon to check whether a line, as a
possible obstruction line candidate, which is constructed by the bi-partition
method, is intersected with an edge from the concave polygon or is exterior
to the concave polygon. Recall that every line segment created by the bi-

partition method for a convex polygon is admissible for an obstruction line.

o4

(a) Stepl (b) Step2 (c) Step3

Figure 4.7: Steps of Polygon Reduction

We need to predefine a set of possible obstruction line candidates for a concave
polygon. For instance, if a possible obstruction line candidate is intersected
by an edge to a given polygon or is exterior to it, then it is replaced with a set
of obstruction lines that can be edges of the concave polygon or be interior to
and not intersected by the concave.

In order to construct a set of obstruction edges from a concave polygon,
when a possible obstruction edge candidate is not admissible, we employ a
single-source shortest path algorithm [10] which converts a concave P(V, E)
into a weighted graph whose edges are a set of admissible obstruction lines
drawn from each vertex in the concave and the weight of whose edge is the
distance between a source and a destination. Note that the source and the
destination vertex are two end vertices from a non-admissible obstruction line
generated by the bi-partition method. The weight of an edge is 1. The weight

of a path from v; and v, is then defined as follows:
Weight(viw3) = Y Edge; (4.1)

In Equation 4.1, Edge; is the weight of an " edge € 7w, and the path 7W is a
set of admissible obstruction lines. Figure 4.8 illustrates steps of the polygon
reduction algorithm for a concave polygon.

We describe Polygon Reduction algorithm in detail in Algorithm 8. Line
1 in Algorithm 8 takes advantage of the convexity test to obtain a vertex
type using the Convexity Test previously performed since a convex vertex
only forms visible spaces. Constructing a bi-partition enhances efficiency and
effectiveness when building a set of obstruction edges in view of the fact that bi-

partitioning convex vertices assures the loss-less decomposition of a polygon in

55

’ o

a) Stepl (b) Step2 (c) Step3

Figure 4.8: Steps of the Polygon Reduction algorithm

a two dimension plane, easily allowing obstruction line candidates to be drawn,
particular for a convex polygon. Once a possible obstruction line candidate in
Line 4 is outlined, it is necessary to verify whether the edge is admissible to its
polygon, as illustrated in Line 5. For a convex polygon, the verification is not
necessary due to its property that V v; and v; are visible to each other, where
v; and v; are vertices that exist inside of a convex polygon. On the other hand,
a concave polygon should complete the affirmation, that is, an obstruction line
is admissible. An obstruction line candidate that fails the verification in Line
5 is substituted for with a set of minimal obstruction lines retrieved by the
transformation from a concave polygon to a weighted graph. Those steps from
Line 3 to Line 10 are iterated until all convex vertices are processed from the
partitions. The last obstruction line is drawn in Line 11.

Algorithm 9 explains the step in Line 6 of Algorithm 8, which generates a

set of admissible obstruction lines.

Lemma 2 Given a polygon P(V, E) with n., number of convex vertices, a set
of obstruction lines E' generated by Algorithm 9 preserves visibility relations

formed by an input edge | joining the two end vertices s and d.

Proof: Note that the bi-partition method allows the Polygon Reduction
algorithm to prune the search spaces efficiently. The first obstruction line

joining the first convex vertex and the middle convex vertex from P covers

| %] (new — [%)), the number of visible spaces created by P. In addition,
the first obstruction line allows each partition to find its set of obstruction
lines such that the set of obstruction lines covers the visible spaces in each
partition. Therefore, it is sufficient to construct a set of obstruction lines that

cover the adjacent visible spaces of each convex vertex from each partition.

96

Input : A Polygon
Output: A set of obstruction lines

1 Get a convex vertex list and create bi partition by an enumeration
order;

2 In the initial of for loop, create an obstruction line between first vertex
in first partition and the middle convex vertex from the convex list
which follows an enumeration order, and check if it is admissible, If
not, then do Line 6 and Line 7;

3 for all elements from each partition do

4 create an obstruction line candidate from the bi-partitioned sets and

check if the line is admissible;

if the line is not admissible then

6 find a set of obstruction lines to replace the obstruction line

candidate;

7 put them into obstruction line list;

endif

else

put it into obstruction line list;

endif

10
endfor

11 draw an admissible obstruction line for the last convex vertex and put
it into obstruction line list;

12 Return obstruction line list;

Algorithm 8: Polygon Reduction Algorithm

Note that each obstruction line is drawn by joining two vertices from two
partitions respectively. Since the types of two vertices s and d are convex, as
shown in Figure 4.9, there are 4 possible visible spaces,vp;, ups, vps, and vpy,
around the vertices if there is a convex vertex between s and d. Note that
visible spaces are enumerated in an order such that a visible relation between
a precedent visible space and its succeeding visible spaces is covered first. In
other words, the visible relation between a visible space and its precedent
visible spaces are not required to be examined. Hence, the non-admissible
obstruction line joining s € V and d € V has the role of impeding the visible
relations between vp, and vp, and between wpsy and vpy. The visible relation
between vp, and vp, is covered by s, and d covers the visible relation between

vps and vps. A set of admissible obstruction line that in turn replaces the

57

Input : a source S and a destination D vertices in a concave polygon
with its adjacency matrix

Qutput: a shortest path between S and D

build a weighted graph from the input polygon sort the vertices topo-

logically u = S;

for each vertez v € Adjfu/ do

Select a path uv with minimum weight;

1 | if each vertex v’ € Adj[v] has not been inserted into Adjfu] then

Put vertex v’ into Adj[u] ;

//The weight of w is v+1;

//since v’ is adjacent to v;

Set a weight(u, v, w);

if v’ == D then

break;

endif

endif

endfor

Return a shortest path between S and D;

Algorithm 9: Shortest Path between two vertices

(a) A non-admissible edge (b)A set of admissible edges

Figure 4.9: A polygon and its visible spaces

non-admissible obstruction line should have the same role as s and d. An edge
e’; € E' joining two vertices s and v €V maintains visible relations that are
created by two adjacent edges of s since every line segment that is intersected
by two adjacent edges of s intersects with e’;. By following the same step, the
visible relations that are constructed by d are covered.

Note that a concave polygon is represented by an adjacency matrix that
provides a set of paths that connects two vertices directly and is built on the
stage of the convexity test. According to Algorithm 9, given a source and a

destination vertex, the weight on a path from the adjacency is being updated,

58

as the shortest path between two vertices is computed in O(E"), where E' is
the number of edges from the adjacent matrix, and edges are admissible. Each
vertex that is for the first time visited is inserted into an adjacency list with its
weight. And the added path is extended by choosing the minimum weighted
path with a minimum increase of a weight, that is, 1. Again the weight of a
path is not the "FEuclidean” distance, but the number of precedent vertices
from a source(Refer to Equation 4.1).

The proof that Algorithm 9 finds the shortest paths between two vertices
is trivial since any adjacent vertices to a source vertex are relaxed by updating
the weight of the path between a source and its adjacent vertices. The update
is expanded by the vertices that are adjacent to the adjacent vertices of a
source. Suppose the shortest path s, ..., v, d is found by Algorithm 9. Then
the path 57 is the shortest path that has a minimum weight discovered by
Algorithm 9. The adjacent vertices of v are examined in Line 1. If one vertex
d that satisfies the condition of Line 1 is inserted and the weight is assigned
to the path 53, the minimum increment, which is 1, is applied to the path and
the destination vertex has been reached.

In this section, we re-articulate the Definition 4 since the problem this
thesis investigates considers obstacles that influence the precision of clustering
data objects. Prior to modifing the concept of the Definition 4, we need to
define the following definitions. Those definitions are extended from DBSCAN
in order to take into account disconnectivity constraints. The illustration of

examples of each notion is shown in Figure 4.10.

Definition 9. (Directly obstacle free density-reachable) A point p is directly
obstacle free density-reachable from a point ¢ with respect to Eps, MinPts if

(1) p € Ngps (¢) and

(2) |Ngps (g)| > MinPts, where | Ngps(q)| denotes the number of points in the

circle of radius Eps and centre g

(3) an edge joining p and q is not intersected with any obstacle

Figure 4.10 (a) shows that directly density reachable from DBSCAN is ex-

39

@ ® °
@ @ ® e \
® ¢ 1
® @ ®
(a) Directly obstacle free density~reachable (b) Obstacle free density—reachable

(c) Obstacle free density—connected

Figure 4.10: Obstacle free density notions(Eps=2cm and MinPts=/)

tended to directly obstacle free density-reachable. Data point p is directly den-
sity reachable from ¢ with respect to Eps and MinPts. In addition, p and ¢ are
visible from each other in spite of an obstruction line which is present in Eps-
neighbourhood of q. Therefore, p is directly obstacle free density-reachable from
g. In Figure 4.11 (a), the data point p is not directly obstacle free density-
reachable from the data point ¢ since an obstruction line k blocks visibility

between p and g, although p is directly density reachable from g¢.

Definition 10. (Obstacle free density-reachable) A point p is obstacle free
density-reachable from a point q with respect to Eps and MinPts if there is a
chain of points p1, .., pn, P1 = q, , Pn = p such that p;y; is directly obstacle

free density-reachable from p;.

Note that data points p and ¢, which are not visible from each other, are obsta-
cle free density-reachable in Figure 4.10 (b) since there is a chain that makes p
and ¢ directly obstacle free density-reachable. Figure 4.11 (b) illustrates a case
where p is not obstacle free density-reachable from g due to obstruction line /.

Note that obstruction lines k£ and [in Figure 4.11 extend beyond dense areas

60

such that two data points p and ¢ are not reachable with respect to density

notions.

Definition 11. (Obstacle free Density-connected) A point p is obstacle free
density-connected to a point ¢ with respect to Eps and MinPts, if there is a
point o such that both p and ¢ are obstacle free density-reachable from o with

respect to Eps and MinPts.

Figure 4.10 (c) illustrates that two data points p and ¢ are obstacle free density-
connected by a data point o since both p and ¢ are obstacle free density-
reachable from o despite the presence of an obstruction line. Data points p
and ¢ in Figure 4.11 (c) are not obstacle free density-connected due to obstruc-
tion line m, although q is obstacle free density-reachable from o. Hence, the

Definition 4 are redefined to integrate obstacle entities.

(c)

Figure 4.11: Examples of non obstacle free deunsity-reachable(Eps=2¢m and
MinPts=4)

Definition 12. (Cluster) Given a set D of n data objects D={d,, d, d3, ...,
dn}, a cluster is a set C of ¢ data objects C={ ¢y, ¢y, c3, ..., ¢; }, where C C
D. Let D be a database of points. A cluster C with respect to Eps and MinPts
is a non-empty subset of D satisfying the following conditions: Let i and j €

(1..n] such that i # j.

61

(1) Maximality. V d;, d; q if d; € C and d; is obstacle free density-reachable
from d; with respect to Eps and MinPts, then d; € C.

(2) Connectivity. V ¢;, ¢; € C, ¢; is obstacle free density-connected to c¢; with

respect to Eps and MinPts.

4.2.1 Correctness of the Polygon Reduction algorithm

Theorem 1 Given a polygon P(V, E), the Polygon Reduction algorithm mod-
els P with a set of obstruction lines, preserving uvisibility relations between

visible spaces S formed by P.

Proof : Given a polygon P, the convexity test algorithm classifies the type of
P — convez or concave — where V is a set of vertices and E is a set of edges in P.
Vertices are enumerated in order — either clockwise or counterclockwise. Based
on Lemma 2, a set of obstruction lines generated by Algorithm 8 preserves the
visibility relations of visible spaces that are created by a non-admissible edge
in Algorithm 9.

Let n, n., and n., be the number of vertices, the number of concave ver-
tices, and the number of convex vertices in P respectively. The total number

of visible relations produced between visible spaces in P is then

Ny - (ncv - 1)
2

Note that the first obstruction line created by the bi-partition method

(4.2)

completely obstructs the visible relations of the visible spaces between two
partitions since the visible spaces in one partition are blocked from the visible
spaces from the other by the first obstruction line. Consider n visible spaces
in a polygon P(V, E). The bi-partition method creates two partitions, Bp;
and Bp,, of V. The first obstruction line is drawn by joining two vertices
vo € Bpy and vz € Bp,. The visible spaces that are created by vertices
vj € [vo, v) are completely invisible to the visible spaces that are created by
vertices vg € [v|n),v,). See Figure 4.12 (a). Obstruction line / impedes the
visibility between two partitions. In other words, the visible spaces composed

by P are blocked for a dimension between Bp; and Bps.

62

Vi w2
i
(a) An initial obstruction line (b) Obstruction lines

Figure 4.12: A polygon and an obstruction line

After the first obstruction line is drawn, the Polygon Reduction algorithm is
sufficient to build a set of obstruction lines such that each obstruction line for a
convex vertex in a partition impedes adjacent visible spaces. Each obstruction
line intersects with the first obstruction line, since each obstruction line joins
two vertices from two partitions respectively. This in turn ensures that the
visible relations between visible spaces in each partition are maintained for two
dimensional space. Figure 4.12 (b) provides an example of a set of obstruction
lines. Once the initial obstruction line [is drawn, other obstruction lines O;,
ie [1..4], joining two convex vertices from each partition are constructed.

Hence, it is sufficient to show that the obstruction lines generated by the
Polygon Reduction algorithm preserve the same number of visible relations.

The first obstruction edge O from Line 3 in Algorithm 8 covers

| =1 (e — =1 (4.3)

visible relations due to an advantage of bi-partitioning. O; covers

2 - G-D+ 2] - (- 1),2<i< 5 (4.4)

visible relations. The total number of visible relations that have been covered

by Algorithm 8 are as follows.

L5+ r2=1
S e = 5D+ (5 =0+ (51 -9 (49)

Note that equations 4.2 and 4.5 are equal. Therefore, the total number of

visible relations produced by P are completely maintained by Algorithm 8.

63

In this section, we have addressed the problem of modeling polygons (ob-
stacles) into a set of obstruction lines as a sub-procedure of the clustering
problem in the presence of constraints. This thesis presents two algorithms:
the Convexity Test and the Polygon Reduction algorithms. To the best of
our knowledge, there is no ongoing research to model a polygon into a set of
obstruction edges, preserving visible relations created by the relations between
the polygon and data objects. In many domains dealing with complex data
types such as geographical information systems, spatial data mining, com-
puter graphics, CAD, etc, it is critical to preclude search spaces due to the
limitations of the algorithms themselves. With respect to visibility relations
between polygons and data objects in a two dimensional planar space, the
Polygon Reduction algorithm as a pre-processing stage significantly improves
the pruning of search spaces by modeling a polygon into a set of obstruction
edges.

In addition, the Convexity Test succeeds in minimizing user interactions to
enhance automatic procedures. Note that it is essential to analyze problems
avoiding external users’ involvement.

The algorithms introduced in this thesis, however, suffers from the problem
of the dimensionality of a polygon since they apply only to two dimensional
planes, while many complex data have multidimensional structures.

We believe that more deliberation should be given to multidimensional
planes for real applications. For instance, objects in three dimensional spaces
can be considered with obstruction hyper-planes that block visible relations
between objects. Note that we do not integrate an indexing structure for edge
objects in this thesis since doing so goes beyond the main idea of modeling a
polygon as a set of obstruction edges. An indexing scheme, however, would
enhance the processes of the algorithm improving the search costs, that is,
to check whether an edge is intersected by an edge from a polygon in O(E'),

where E’ is the number of edges in an adjacency matrix for a polygon.

64

4.3 Modeling Crossing

In this section, we present a modeling scheme of a constraint Crossing (Bridge)
in a two dimensional planar space. Before formalizing a crossing that can
connect data points from different clusters, we need a modeling scheme to
consign connectivity functionality of a bridge as well as to control connectivity
flow for a wide range of applications. For this purpose, we introduce " Entry
point” and " Entry edge” notions. An Entry point is a point on the perimeter
of the polygon crossing when it is density-reachable (Definition 2) from a given
point p with respect to Eps. As a result p becomes reachable by any other
point z density-reachable from any other Entry point of the same crossing
with respect to Eps. In other words, given two different Entry points, p; and
P9, at two extremities of a crossing; a point a is density-reachable to p; with
respect to Eps; and a point b is density-reachable to p, with respect to Eps,
a and b are then density connected (Definition 3). An Entry edge is an edge
of a crossing polygon with a set of Entry points starting from one endpoint
of the edge to the other separated by an interval value i, where 7, < FEps.
The descriptions of Entry points and Entry edges are amalgamated with the

definition of crossings as follows.

Definition 13. (Crossing) A crossing (or bridge) is a set B of m points gen-
erated from all Entry edges. By definition any point b,, € B is reachable by all
other points in B. Before a bridge is modeled, the bridge B is denoted by B(P,
E), where P is a set of Entry points and a set of Entry edges E. Thus a bridge
“connects” objects such as clusters or data points that are Eps — reachable
from all Entry points generated from the bridge where Eps — reachable of
an Entry point is any data point which is in an Eps-neighbourhood. The
Eps — reachable are not affected by any obstacle entities. In other words,

crossing entities have a priority over obstacle entities, unless otherwise speci-

fied.

According to the properties of a bridge, there are two significant concepts:

an Entry point and an Entry edge. The functionality of a crossing is effected

65

by Entry points and Entry edges (Definition 13). In other words, it is not
necessary to define every edge in a crossing as an Entry edge. Once a set
of Entry edges is defined, it is replaced with a set of Entry points, starting
from one endpoint of the edge to the other, separated by an interval value i,
where i, < Eps. Thus, every Entry point from a crossing expands a reachable
cluster. Notice that the flow of connectivity is controlled by how Entry edges
are defined in a crossing. That implies the malfunction of a bridge, such that
a bridge is in turn impeded, if an obstacle traverses a bridge. As a result, the
bridge is no longer a ”bridge”. The Entry edge and Entry point allow their
applications to control priority between an obstacle and a crossing; to control
connectivity flow or connectivity coverage, such that connectivity functionality
is able to be applied in either a direction or bi-direction, and a subset of entry

edges can be engineered with the connective function.

Entry edges)/Emry Points
¢‘eo o0
e
oo o0
distance
(a) Before modeling a crossing (b) After modeling a crossing

Figure 4.13: Illustrating modeling a crossing: Entry edges and Entry points

Figure 4.13 illustrates how a bridge has been modeled applying Entry point
and Entry edge concepts. Once a crossing is modeled, all Entry points whose
interval distance i, is i < Eps merge clusters for all possible data points and
clusters. Note that two edges in Figure 4.13 (a) are not labeled as Entry edges

such that they are not assigned connectivity functionality.

66

Chapter 5
DBCIluC

The algorithm that this thesis presents, DBCluC (Density-Based Cluster-
ing with Constraints, pronounced DB-clu-see), is based on DBSCAN [15] a
density-based clustering algorithm that significantly outperforms, in terms of
its effectiveness and efficiency, CLARANS [35]. Note that COD-CLARANS
incorporate CLARANS into its main frame. DBSCAN’s performance is better
not only in terms of time complexity, but also in terms of clustering qual-
ity, for example, the detection of natural cluster shapes and noise (outliers)
sensitivity.

As previously mentioned, the significance and effects of constraints, espe-
cially physical constraints in clustering issues, should be taken into account in
clustering procedures in a cost-effective way. For instance, indexing schemes
for data objects such as points, lines, and polygons will significantly help aug-
ment processing phases. However, none of the indexing schemes is able to
compress the number of data objects such that a loss of data information does
not occur. Hence, this thesis investigates the clustering algorithm DBCluC,
which efficiently takes into account constraints and effectively clusters large
databases.

DBCluC initially manipulates constraints such that a set of obstacles is
modeled by the Polygon Reduction algorithm, which is introduced in Chapter
4. Upon finishing the modeling procedure, DBCluC groups data objects in the
presence of the modeled obstacles and crossings that are formed by the new

concepts Entry points and Entry edges. Note that crossings are considered in

67

the course of the clustering step. The following figure illustrates the general

procedures of DBCluC.

[Clustering problem in the presence of physical constraintsj

v

[Modeling ConstrajntsJ

’

[Grouping data objects with constraints’ models]

v

[Discover a set of Clusters]

Figure 5.1: An overview of DBCluC

5.1 DBCIluC Algorithm

We have seen how to model constraints — obstacles and crossings. Obsta-
cles are modeled by the Polygon Reduction algorithm to prune search spaces.
Crossings are modeled with respect to two principles: Entry edge and Entry
point. These in turn allow to improve the flexibility of the algorithm, for
instance, controlling data flow and assigning priority. Recall that Figure 5.1
generalizes the entire procedures of the DBCluC algorithm.

Once we have condensed obstacles using the polygon reduction algorithm
and modeled crossing constraints, DBCluC starts the clustering procedure
from an arbitrary data point. This is the advantage of DBCIuC in that the
performance is not sensitive to an input order. Due to the arbitrary selection
of an initial starting point, DBCluC can consider crossing constraints after or
while clustering data points. This enables DBCluC to be flexible in revising
discovered clusters. The clustering procedure in DBCluC is similar to that
of DBSCAN [15], with respect to the density notion. Hence, all definitions
introduced in Section 2.3.1 are inherited in DBCluC.

Normally, clusters discovered by [15] that are not satisfied by Definition 12,
and where the distance between them is larger than Eps, are forced to be apart.

Consequently, DBSCAN does not correctly produce groups of data points in

68

the presence of constraints. In order for an algorithm to resolve the clustering
problem in the presence of constraints, the constraints should be efficiently
processed to produce correct clustering result. Using the Polygon Reduction
algorithm, DBCIuC efficiently performs the clustering of data objects with
obstacles. In addition, DBCluC groups distant clusters with Entry edges and

Entry points from crossing constraints.

Input : Database, Crossings, and Obstacles
Output: A set of clusters
// While clustering, bridges are taken into account;
Start clustering from Entry points of crossings ;
for Remaining Data Points Point from Database do
if EzpandCluster(Database, Point, Clusterld, Eps, MinPts, Obstacles)
then
Clusterld = nextId(ClusterId);

endif
endfor

N

=4

Algorithm 10: DBCluC

In Algorithm 10, crossing constraints are taken into account while clus-
tering data objects. DBCluC maximally expands a set of clusters such that
all data points that are reachable by crossings are grouped together. Note
that DBCluC can also consider crossing constraints after clustering. However,
when it comes to dynamic evaluation of correlations between data objects
and constraints, the crossing constraints must be processed in the course of
clustering.

“Database” is a set of data points to be clustered in Algorithm 10. In
this thesis, the database is limited to two dimensional space for experimental
purposes. Line 2 initiates the clustering procedure from a set of entry points
that are modeled from crossing constraints. Thus, a set of data objects is
maximally grouped according to the crossing connectivity defined by a set
of entry points in crossing constraints. Note that Line 2 uses the module of
ExpandCluster for all entry points that are modeled from crossing entities.
Once a maximum set of clusters is discovered after Line 2, Line 3 builds up a

cluster from data objects that are not reachable by the crossing connectivity

69

Input : Database, a data point Point, Clusterld, Eps, MinPts, and
Obstacles
Output: True or False
SEED = RetrieveNeighbours(Point, Eps, Obstacles);
if size of seed is less than MinPts then
Classify Point as NOISE;
Return False;

endif

[I S

5 change clustered of all elements in SEED into Clusterld,;
6 delete Point from SEED;
7 while SEED.SIZE < 0 do
8 CurrentPoint = SEED.first();
9 RESULT = RetrieveNeighbours(CurrentPoint,Eps,Obstacles);
10 if RESULT.SIZE > MinPts then
11 for element € RESULT do
12 if element is UNCLASSIFIED then
13 put it into SEED;
14 set its cluster id to Clusterld;

endif
15 if element is NOISE then
16 ‘ set its cluster id to Clusterld;

endif

endfor
endif
17 delete CurrentPoint from SEED;
endw

18 Return True;

Algorithm 11: ExpandCluster(Database,Point,Clusterld,Eps,MinPts,Obstacles)

in the database. In the course of clustering, Line 5 assigns a new cluster id for
the next expandable cluster.

The ExpandCluster in Algorithm 11 may seem similar to the function
of the DBSCAN. However, the distinction is that obstacles are considered
in RetrieveNeighbours (Point, Eps, Obstacles), illustrated by Algorithm 12.
Given a query point, neighbours of the query point are retrieved using SR-
tree. In DBCluC, we have adopted the range neighbour query approach instead
of the nearest neighbour query approach from SR-tree, since it is extremely
difficult for the latter to expand a set of clusters if a density of data objects is

high. The average run time of a neighbour query in SR-tree is O(logN), where

70

N is the number of data objects. Notice that the range search in SR-tree is
very expensive, especially when the density is very high with a large database.
Once neighbours of a query point have been retrieved, it is trivial to evaluate
visibilities between a query point and its neighbours. The visibility between
two data objects in the presence of obstacles is computed using a line segment
joining two data objects. If any obstruction line representing an obstacle is
intersected with a line segment joining a query point and a data object, then
the data point is excluded from Ny, for the query point, since they are not
visible from each other according to Definition 7. However, if a priority of a
bridge is higher than that of an obstacle, then the data objects are grouped in
spite of the visible relations between two objects. This is one key advantage
in the DBCluC for wide applicable domains. It is not available to COD-
CLARANS and AUTOCLUST+. Those accepted neighbours defined as the
SEED that are retrieved by RetrieveNeighbours of Algorithm 11 continue to
expand a cluster from elements of the SEED, if the number of elements in the
SEED is not less than MinPts. A data object is labeled by an assigned cluster
id, if retrieved neighbours are satisfied with the parameter MinPts excluding
outliers. Note that Line 10 in Algorithm 11 excludes a noise from being an

element of the SEED in order to enhance query efficiency.

Input : a data object Point, Eps, and Obstacles
Output: A set of data points
1 RESULT = getNeighbour(Point, Eps);
2 for element e RESULT do
3 if CheckVisibility-with(e, Point, Obstacles) then
4 RESULT .delete(e);

endif
endfor
5 Return RESULT;

Algorithm 12: RetrieveNeighbours(Point, Eps, Obstacles)

The “RESULT” in Algorithm 12 is a set of data objects that are neigh-
bours of given query objects. The elements in the RESULT are collected and
the obstacles are evaluated by Algorithm 12. The RESULT elements are con-

structed by removing data objects that are not visible from a query point

71

Point because of the blockage by obstacles. This task is performed by Line 3
in Algorithm 12. Notice that line 1 in Algorithm 12 retrieves neighbours of a
given query point, using SR tree [27].

5.2 Complexity

As discussed in the previous chapters, the Polygon Reduction algorithm models
obstacles and bridges by classifying an obstacle as either convex or concave.
Let n be the number of points (edges) of a polygon P, and n,, and n, be the

number of concave and convex points, respectively. Then,
N = Nee + Ny (5.1)

For the Turning Direction approach in the Convexity test, the complexity
to classify a type of P as well as to label a type of every point in P is O(n), and
the complexity of the Externality method is O(n?). The Polygon Reduction
algorithm requires a weighted graph to replace a non-admissible obstruction
line segment with a set of admissible line segments. The complexity in the
replacement is, in the worst case, O(E) using an adjacency matrix that repre-
sents admissible connectivity between vertices from a polygon, where F is the
number of all possible obstruction edges, including a set of line segments that
lies in P. Note that E is less than a-n, where a < n. Therefore, the Polygon

Reduction algorithm for P requires
O(n-logn +ne, - I - E) (5.2)

in the worst case, where [is the number of non-admissible line segments to be
replaced. In the contrary, if a polygon is convex, then its complexity is O(n).

The upper bound of the polygon reduction algorithm is as follows:

O(n-logn+ne-I-n) = O(n-logn+ne -1 (nee+ne) = O(n-logn+ne ne+n)
(5.3)
Since we evaluate a set of polygons, and n.. and I are on average far smaller

than n, the complexity of the polygon reduction is absolutely less than O(n?).

72

Note that the Polygon Reduction algorithm is a pre-processing phase that
precedes the clustering step. The complexity of the clustering algorithm alone
is in the order of O(NV -log N - L), where L is the number of obstruction lines
generated by the polygon reduction algorithm, and N is the number of points
in the database. The complexity can, however, be reduced to O(N - log N),
if we adopt an indexing scheme for obstacles. Currently, all obstruction lines
are tested to check the visibility between two data points. We can reduce
the number of obstruction lines, which are examined by evaluating lines that
only traverse neighborhoods of a query. Therefore, the total complexity of

DBCluC, including the pre-processing stage, would be O(N - log N).

73

Chapter 6

Experiments and Evaluations

In this chapter, we evaluate the performance of the algorithm with respect to
effectiveness and scalability. Although COD-CLARANS and AUTOCLUST+
investigate the clustering problem in the presence of obstacles, it is hard to
compare quantitatively the performance of DBCluC with that of other ap-
proaches, because of the different data sets tested. To realistically compare
the algorithms, we ought to use the exact data sets with the same constraints.
Since we do not have access to these data sets and technically cannot gen-
erate the same data sets, we cannot accurately compare the performance of
COD-CLARANS and AUTOCLUST+ with that of DBCluC. Yet, it is known
that a density-based clustering algorithm such as DBSCAN outperforms a
partitioning algorithm such as CLARANS, when it comes to efficiency and
effectiveness. For instance, CLARANS cannot properly detect a non-sphere
shaped cluster, whereas DBSCAN can find an arbitrary shaped cluster. In
addition, memory management and insensitivity to noise are well handled by
DBSCAN, while CLARANS shows poor management. Hence, we clearly infer
DBCluC’s performance, based on density-based clustering, is of better quality
than that of COD-CLARANS, since COD-CLARANS inherits the shortcom-
ings of CLARANS. We have evaluated DBCluC by generating synthetic data
sets with complex cluster shapes and by varying the size of data as well as the

number and difficulty of the physical constraints.

74

6.1 Experiments

For the purpose of the experiments, we have generated synthetic datasets. We
report four of them herein DS1, DS2, DS3, and DS4. Bridges and obstacles
such as rivers, lakes, and highways are also simulated in these datasets. DS1
containing 434 data points with four obstacles, is used for illustration purposes.
Figure 6.1 shows the 16 polygon line segments reduced to 8 obstruction lines.
Since DS1 is sparse, it is primarily grouped into one cluster. Adding obstacles
creates four distinct clusters (Figure 6.1(c)). DS2 and DS3 presents clusters
in the presence of obstacle and crossing entities. DS2 has 1063 data points,
4 obstacles, and 2 crossings. There are visually 6 clusters ignoring obstacles
and crossing constraints, as shown in Figure 6.2(b). DS3 has 11775 data
points with 6 obstacles that consist of 29 line segments and 2 bridges. The
initial 29 line segments from simulated obstacles in DS3 are replaced with 15
obstruction lines. DS2 and DS3 show how variously crossings are defined such
that crossings control their own connectivity flows. DS4 has 1296 data points,
and 6 obstacles. Note that 6 obstacles are composed of 92 line segments.
DS4 illustrates the experiment of DBCluC’s performance with respect to non-
spherical shaped clusters and more complicated obstacles in the absence of
noise.

Figures 6.2 and 6.3 illustrate the effectiveness of DBCluC in the presence of
obstacles and crossings. For convenient comparison of clustering results, Fig-
ure 6.2 and 6.3 illustrate sequentially: (a) data points, obstacles, and crossings,
before clustering; (b) clustering results in the absence of constraints; (c) clus-
ters in the presence of crossings; (d) clusters in the presence of obstacles; and
(e) clustering results in the presence of both types of constraints — obstacles
and crossings. The red lines from obstacles in all datasets are the obstruction
lines replacing the initial polygons that are illustrated by blue. Crossings from
DS2, and DS3 are drawn in red lines and black lines implying entry edges and
non-entry edges respectively. DS2 represents the primary intuitive solution of
the problem we have investigated in this paper. The correct clustering shows

8 groups of data points. Although a cluster is close enough to access a crossing

75

from (c) in Figure 6.2, it is not merged with other clusters by the bridge owing
to the modeling of the crossings.

DS3 in Figure 6.3(c) shows five clusters merged into two clusters by cross-
ings, illustrating how crossings are differently modeled comparing to those of
DS2. Depending upon where the entry edges are defined on a bridge, entry
edges are in red in the figure. Clusters close to the longitudinal side of the
bridge can also be pulled into the merger. In Figure 6.3(c), due to the bridge
entry edge, one such cluster close to a crossing is merged, while the other is
not. Moreover, as depicted in the figures, there is priority defined between
an obstacle and a bridge. Even though an obstacle is drawn over a bridge, a
bridge has a priority over an obstacle, unless otherwise specified.

Figure 6.4 shows an example of DBCluC’s flexibility in handling complex
cluster shapes and constraints. The obstacles are reduced to 40 obstruction
lines. The number of obstruction lines that represent obstacle entities are
dependent on the shape or complexity of the obstacle entities.

In this thesis, we simulate a real spatial data in order to experiment capa-
bility of DBCluC on a real data set. The real spatial data set is shown as an
image format in Figure 6.5 (a). The map image describes the city centre of
Edmonton, Canada. Note that the main roads, rivers, hills, and bridges are
represented by sets of polygons for the experiment purpose of DBCluC. Some
of the roads from the map are not modeled since they do not have significant
effects on the clustering task of DBCluC. By ignoring all constraints, data
objects are hard to be clustered such that they can be grouped together, as
seen in Figure 6.5 (c). Bridge entities in Figure 6.6 (d) do not affect the clus-
tering results since the density of data objects is too sparse to be grouped with
respect to closeness between data objects. Figure 6.6 (e) shows the cluster-
ing output in the presence of obstacles, not considering crossing entities. One
can observe that six clusters are merged into three clusters by three crossings
which were not considered in Figure 6.6 (¢). DBCluC finally generates a set of
clusters such that the members in a group are comparable to each other taking

into account the functionality of constraints: connectivity and disconnectivity.

76

6.2 Evaluations

We also conducted evaluations varying the size of the dataset and the number
of obstacles in order to demonstrate the scalability of DBCluC. Figure 6.7
represents the execution time in seconds for eight datasets varying in size from
25K to 200K, with an increment of 25K data points, showing good scalability.
The execution time is almost linear to the number of data objects.

Table 6.1 shows run time varying the number of obstacles for clustering
38K data objects. The number of reduced line segments from polygons are

almost half of the number of initial line segments from the polygons.

Number of line seg- | 31 60 91 121 300 600 900
ments in obstacles

Number of obstruc- 15 27 45 72 135 270 405
tion lines

Time (sec) 58.89 | 65.03 | 73.68 | 86.13 | 116.53 | 180.42 | 242.11

Number of line seg- | 1200 1500 1800 | 2100 | 2400
ments in obstacles
Number of obstruc- 540 675 810 945 1080

tion lines
Time (sec) 306.08 | 368.33 | 431.01 | 497.53 | 558.89

Table 6.1: Run time varying the number of obstacles

Figure 6.8 presents the execution time in seconds by varying the number of
obstacles. The numbers in the X-axis represent the total number of polygon
edges and the respective obstruction lines. Observe that the incremental ratio
of X-axis to Y-axis in Table 6.1 is variable: the increment in Y-axis is constant,
whereas the increment in X-axis is not. The increment ratio of the first three
coordinates in X-axis becomes higher than that of the other coordinates in
X-axis. Hence, the first three coordinates in X-axis are omitted in Figure 6.8
to show the scalability. However, in the proportion of the increment in the
number of polygons, the execution time is almost linear. Thus, DBCIuC is
scalable for large databases with complicated obstacles and bridges in terms

of size of the database and the number of constraints.

77

(a) Before clustering

e
. E
. v - W x
P . N - s
¥ ¢ P ®
- . kS . .
v
L wa B . * &
Lt s 8 o ?\w"f 4 L
., . ¥
* * q ¥ we % A
® W oh N * L ’@* 3 N . N
4 E ¥ & ; N * o -
R sy B
u .k i ¥ v Fe
- # B
v s B M ? N . " -
)] . W ® v
- . .
N
b @ * 4% L
> PR » " g
A . N *
b ¥ . Low
» N - ...
- LI R s "R
L, e - “
PR s B
.. o B Leoae - PR
¢ o v r IO] 5
‘ . vy B o4 « 1
e . F L]
Ay « ¥
N - “ N eE G
s # 4 LIS »
- ' B
e .
s . B - e
H] L *
. ») »
1
o R s o St R RS S S e o
' B T
- ’ “ P A
LI . . o ¥
- . . = ®
. - LN K a0
. ,-’ R M ar %
N *r «®
LA ;, M N
¥ 2 FaN ‘ -! ”
N A B b -
o . .
% & N B
wew
* i
S A N . t
B . P ¥
i ® o -, 3
R . . 308 3
. - - v " . i
v
3 El
« - . , e
It . : b e
. . [. PR | 3 -
LY BF) ., T P
&) . s L 3 ¥ . 1 B
N ° g ot A .
LR et s ® LI
] . 3 e
P [b v 5 * #
3 [z %
a

(c) Clustering with constraints

Figure 6.1: Clustering dataset DS1
78

i
et A T
RS,

(e) Clustering with bridges and obstacles

Figure 6.2: Clustering dataset DS2

79

() Clustering with bridges and obstacles

Figure 6.3: Clustering dataset DS3

80

Sy e .

XA T

a
=]
B=t
<
&
172}
&
¥
TR
* -3 « *u, -
e 22 NN A e =4
g T :
IS AN & B
Cret =
RN g
g e 50
. g
m Tae
= Coern
] 3 * e
Q PR
—~ e s b
= R R
PR ARSI
T s T
O Fowe e
A A PRI

0

aints

(a) Before clustering

(c) Clusering with constr

dataset DS4

ing

Cluster

4

6

igure

F

81

(a) An example map of Edmonton

(b) Before clustering (c) Clustering without constraints

Figure 6.5: Clustering dataset DSH

82

® [3
& W P T U T -
* * =8 » C AU 2L
s 8 * H L [B
ae Wy L “ .
Bu gt g?® &.‘ Wy ® gbm B ETas
®
8 & W
@ +% 8
-t @ 5 8 2y 3
T L R T faftoe
s Ty B, a2t % by B
. * e u'lrr:;::.'a *
L™ e 1 ®
T Ny 1] L ’t. . a8 % aa ot
., M [LN
LA ** » LA o #*
LI
&6 & L * [
v.:"t"zg o 'Z-.,. oy »
ot 504 » * . ‘. & [
3 P4 o
& &' %

W LT el e e
* » » » “' - E'Y
E'S 6 & 2 e L P 1
L D « g * L]
» a ® . PO T Y
(d) Clustering with bridges (e) Clustering with obstacles

(f) Clustering with bridges and obstacles

Figure 6.6: Clustering dataset DS5(continued)

83

1

25k 50k 75k 100k 125k 150k 175k 200k
Numbers of data points

Figure 6.7: Algorithm Run Time by varying the number of data points

800 -
500 A
400 A
300 4

200 4

Time In seceond

100

Number of line segments in obstacles! Humber of reduced line segments
{N=38K, Eps=5.0, and MinPts=3)

Figure 6.8: Algorithm Run Time by varying the number obstacles

84

Chapter 7

Conclusions and Future work

In this chapter, we summarize the works we have introduced thus far. In

addition, some discussion about future work is presented.

7.1 Conclusions

In this thesis, we have addressed the problem of clustering spatial data in the
presence of physical constraints in two dimensional planar space. The con-
straints we considered are not only obstacles such as rivers, highways, moun-
tain ranges, etc., but also crossings such as bridges, pedestrian-overpasses,
viaducts, etc. We have proposed model schemes for these constraints using
polygons and have devised a method to prune the edges of polygons represent-
ing obstacles by identifying a minimum set of line segments, called obstruction
lines, that does not compromise the visibility spaces. The polygon reduction
algorithm reduces the number of lines representing a polygon by half and thus
prunes the search space by half. We have also defined the concept of reachabil-
ity in the context of obstacles and crossings and have used it in the designation
of the clustering process. Finally, we have developed a density-based clustering
algorithm, DBCluC, that takes constraints into account during the clustering
process. Owing to the effectiveness of the density-based approach, DBCluC
finds clusters of arbitrary shapes and sizes with a minimum of domain knowl-
edge. In particular, it is not necessary to know the number of clusters to be
discovered. In addition, experiments have shown the scalability of DBCluC in

terms of the size of the database and the number and complexity of physical

85

constraints.

The following summarizes the major contributions of this thesis.

1. Defining a clustering problem in the presence of physical constraints:
obstacles and crossings.

2. Modeling schemes of obstacles and crossings.

e the Polygon Reduction algorithm using polygons.

e Crossing modeling using Entry points and Entry edges.
3. Pruning searching spaces.

4. Controlling connectivity flow.

7.2 Future work

We have defined a clustering problem in the presence of physical constraints.
The algorithm DBCluC in this thesis is useful to discover knowledge from
large spatial databases in two dimensional space. Although DBCluC enhances
efficiency and effectiveness in solving real clustering problems, there are still
issues that have to be investigated in the future. This section briefly introduces

key issues for future work.

7.2.1 Efficiency issues

In this thesis, obstacles are not indexed. This necessitates the checking of all
obstruction lines before expanding the reachability of any point. While the
number of line segments to test is reduced significantly thanks to the polygon
reduction algorithm, this number can still be further reduced with a better
indexing of the obstruction lines. Indeed, it suffices to test only the lines
traversing the neighbourhood of a data point to be expanded. Data structures
such as Quadtree, PM variants Quadtree, and R-tree are introduced to index
line objects in the literature [39, 40, 19]. However, since lines represented by
their end-points whose end-points are close to range queries can be relatively

distant, it is difficult to index such lines for range queries. With a good

86

indexing scheme for the obstruction lines or polygons, the complexity of the
clustering algorithm can be reduced to O(N logN). Moreover, most of the
execution time in the current implementation is spent retrieving neighbours
with range queries in the SR-tree structure, which indexes data objects. The
SR-tree indexing scheme performs well for the k-NN type of queries instead.
Note that k-NN search queries are not useful to expand clusters if the density
of data distribution is high. For spatial databases, with an index structure
optimized for range queries of two dimensional data objects, the run time of

DBCluC could be dramatically improved.

7.2.2 Effectiveness issues

The main issue with respect to effectiveness in the clustering problems is the
dimensionality of data objects. As we have shown in previous chapters, this
thesis focuses on a two dimensional planar space. Although some real geo-
graphical spatial data objects are in a two dimensional space, it is critical
for applications to support high-dimensional data objects such as the altitude
of a geographical location. This in turn would enable the modeling schemes
introduced in this thesis to investigate their multi-dimensional flexibility. We
could then apply the schemes to wide range of applications.

The model we propose for crossings does not allow directional crossings and
assumes that bridges are bi-directional. We need to investigate a new model
for crossings with entry-points and exit-points forcing the expansion over a
bridge to go from entry-point to exit-point, thus allowing more flexibility in
the definitions of constraints. In addition, a new crossing model would also
consider the length of bridges in the reachability definition. Doing so would
restrict the maximal length of a bridge model to assign a semantic functionality
since a relatively long crossing might lose its connectivity functionality. One
could also add time constraints, which are very useful when analyzing traffic
flow, for example. In applications studying flooding of fields or cities, the
heights of obstacles are also important attributes to consider since at different
heights, some obstacles may become irrelevant.

Operational constraints [46, 21], for example, user specified constraints or

87

a specific number of members for a cluster, which are not considered in this
thesis, have a key role with respect to the effectiveness of clustering results,
even though they require expensive processing.

As we have seen so far in this thesis, solving a clustering problem in the
presence of constraints from large spatial databases is not trivial with respect
to effectiveness and efficiency. This is a multi disciplinary problem requiring
wide and deep investigation. We believe that further research in this area
will solve constraints-based clustering problems much more effectively and

efficiently, widening applicable domains.

88

Bibliography

[1] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar
Raghavan. Automatic subspace clustering of high dimensional data for
data mining applications, 1998.

[2] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jorg
Sander. OPTICS: ordering points to identify the clustering structure. In
ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’ 99), pages
49-60, 1999.

[3] C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. The quick-
hull algorithm for convex hulls. ACM Transactions on Mathematical Soft-
ware, 22(4):469-483, 1996.

[4] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R* tree:
An efficient and robust access method for points and rectangles. In Proc.
of the 1990 ACM SIGMOD Intl. Conf., pages 332-331, 1990.

[6] J.C. Bezdek and R.J. Hathaway. Numerical convergence and interpre-
tation of the fuzzy c-shells clustering algorithm. [FEE Transactions on
Neural Networks, 3(5):787-793, 1992.

[6] Christian Bohm, Stefan Berchtold, and Daniel A. Keim. Searching in
high-dimensional spaces - index structures for improving the performance
of multimedia databases. In To be appear 2001 ACM Surveys, 2001.

[7] P. S. Bradley, Usama M. Fayyad, and Cory Reina. Scaling clustering
algorithms to large databases. In Knowledge Discovery and Data Mining,
pages 9-15, 1998.

[8] V.L. Brailovsky. A probabilistic approach to clustering. Pattern Recog-
nition Letters, 12(4):193-198, 1991.

[9] N.G. Colossi and M.A. Nascimento. Benchmarking access structures for
high-dimensional multimedia data. In Proc. IEEE Intl. Conf. on Multi-
media and Ezpo (ICME’2000), pages 1215-1218, 2000.

[10] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algo-
rithms. The MIT Press, 1990.

[11] M. de Berg, M. van Kreveld, M. Vermars, and O. Schwarzkopf. Compu-
tational Geometry: Algorithms and Applications. Springer press, 1998.

[12] M. Ester, H. P. Kriegel, and X. W. Xu. Knowledge discovery in large
spatial databases - focusing techniques for efficient class identification.
Lecture Notes In Computer Science, 951:67-82, 1995.

89

[13] Martin Ester, Alexander Frommelt, Hans-Peter Kriegel, and Jorg Sander.
Spatial data mining: Database primitives, algorithms and efficient dbms
support.

[14] Martin Ester, Hans-Peter Kriegel, and Jorg Sander. Knowledge discovery
in spatial databases. In KI - Kunstliche Intelligenz, pages 61-74, 1999.

[15] Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. A
density-based algorithm for discovering clusters in large spatial databases

with noise. In Knowledge Discovery and Data Mining, pages 226-231,
1996.

[16] V. Estivill-Castro and I. Lee. Autoclust: Automatic clustering via bound-
ary extraction for mining massive point-data sets. In In Proceedings of
the 5th International Conference on Geocomputation, 2000., 2000.

[17] Vladimir Estivill-Castro and IckJai Lee. Autoclust+: Automatic clus-
tering of point-data sets in the presence of obstacles. In International

Workshop on Temporal and Spatial and Spatio-Temporal Data Mining
(TSDM2000), pages 133-146, 2000.

(18] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. CURE: an efficient
clustering algorithm for large databases. In ACM-SIGMOD International
Conference Management of Data, pages 73-84, 1998.

[19] Antonin Guttman. R-trees: A dynamic index structure for spatial search-
ing. In Beatrice Yormark, editor, SIGMOD’84, Proceedings of Annual
Meeting, Boston, Massachusetts, June 18-21, 198/, pages 47-57. ACM
Press, 1984.

[20] J. Han and M. KamberK. Data Mining: Concepts and Techniques. Mor-
gan Kaufman, 2000.

[21] Jiawei Han, Laks V.S. Lakshmanan, and Raymond T. Ng. Constraint-
based mulitdimensional data mining. Computer, 32(8):46-50, 1999.

[22] Paul S. Heckbert. Graphics Gems(4). Academic Press, 1994.

[23] A. Hinneburg and D. Keim. A general approach to clustering in large
multimedia databases with noise, 1998.

[24] Alexander Hinneburg and Daniel A. Keim. An efficient approach to clus-
tering in large multimedia databases with noise. In Knowledge Discovery
and Data Mining, pages 58-65, 1998.

[25] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review.
ACM Computing Surveys, 31(3):264-323, 1999.

[26] George Karypis, Eui-Hong (Sam) Han, and Vipin Kumar. Chameleon:
Hierarchical clustering using dynamic modeling. IEEFE, 32(8):68-75, 1999.

[27] Norio Katayama and Shin’ichi Satoh. The SR-tree: an index structure

for high-dimensional nearest neighbor queries. In Proc. of the 1997 ACM
SIGMOD Intl. Conf., pages 369-380, 1997.

90

[28] L. Kaufman and P.Rousseeuw. Finding groups in data: an introduction to
cluster analysis. In Finding Groups in Data: An Introduction to Cluster
Analysis. Wiley, New York, 1990.

[29] J. Mark Keil. Decomposing a polygon into simpler components. SIAM
J. Comput., 14(4):799-817, 1985.

[30] B. King. Step-wise clustering procedures, 1967.

[31] Teuvo Kohonen. Self-organized formation of topologically correct feature
maps. Biological Cybernetics, 43:59-69, 1982.

[32] K. Koperski, J. Adhikary, and J. Han. Spatial data mining: Progress and
challenges survey paper, 1996.

[33] J. MacQueen. Some methods of classification and analysis of multivariate
observations, 1967.

[34] S. Nahar and S. Sahni. Fast algorithm for polygon decomposition. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 7:473-483, 1988.

[35] R. Ng and J. Han. Efficient and effective clustering methods for spatial
data mining. In Proc. of VLDB Conf., pages 144-155, 1994.

[36] Franco P. Preparata and Michael Ian Shamos. Computational Geometry:
An Introduction. Springer-Verlag, Berlin, Germany, 1985.

[37] H. Ralambondrainy. A conceptual version of the k-means algorithm. Pat-
tern Recognition Letters, 16(11):1147-1157, 1995.

[38] Enrique H. Ruspini. A new approach to clustering. Information and
Control, 15(1):22-32, 1969.

[39] Hanan Samet. The quadtree and related hierarchical data structures.
ACM Computing Surveys, 16(2):187-260, 1984.

[40] Hanan Samet and Robert E. Webber. Storing a collection of polygons
using quadtrees. ACM Transactions on Graphics, 4(3):182-222, 1985.

[41] J. W. Shavlik and T. G. Dietterich. Readings in Machine Learning. Mor-
gan Kaufmann, 1990.

[42] Gholamhosein Sheikholeslami, Surojit Chatterjee, and Aidong Zhang.
WaveCluster: A multi-resolution clustering approach for very large spa-
tial databases. In Proc. 24th Int. Conf. Very Large Data Bases, VLDB,
pages 428-439, 24-27 1998.

[43] P. Sneath and R. Sokal. Numerical taxonomy, 1973.

[44] M.G. Stone. A mnemonic for areas of polygons. AMER. MATH.
MONTHLY, 93:479-480, 1986.

[45] A. K. H. Tung, J. Hou, and J. Han. Spatial clustering in the presence
of obstacles. In Proc. 2001 Int. Conf. On Data Engineering(ICDE’01),
2001.

91

[46] Anthony K. H. Tung, Raymond T. Ng, Laks V. S. Lakshmanan, and
Jiawei Han. Constraint-based clustering in large databases. In ICDT,
pages 405419, 2001.

[47] Robert J. Walker and Jack Snoeyink. Practical point-in-polygon tests
using CSG representations of polygons, 12, 1999.

[48] Wei Wang, Jiong Yang, and Richard R. Muntz. STING: A statistical
information grid approach to spatial data mining. In The VLDB Journal,
pages 186-195, 1997.

[49] C. Zahn. Graph-theoretical methods for detecting and describing gestalt
clusters. In IEEE Transactions on Computers, pages 20:68-86, 1971.

[50] Osmar R. Zaiane, Andrew Foss, Chi-Hoon Lee, and Weinan Wang. On
data clustering analysis: Scalability, constraints and validation. Lecture
Notes in Al 2536, pages 28-39, May 2002.

[61] Osmar R. Zaiane and Chi-Hoon Lee. Clustering spatial data in the pres-
ence of obstacles. In Sizth International Database Engineering and Ap-
plications Symposium, July 2002.

[52] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. BIRCH: an efficient
data clustering method for very large databases. In ACM-SIGMOD In-
ternational Conference Management of Data, pages 103-114, June 1996.

92

