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Abstract 

A challenge in petroleum geostatistics is the application of modeling algorithms such as 

Gaussian simulation to unstructured grids that are being used for flow simulation.  

Geostatistical modeling is typically applied on a fine scale regular grid and then upscaled 

to the unstructured grid.  This work proposes a fine scale unstructured grid.  The grid is 

designed so that its elements align with the flow simulation grid elements, eliminating the 

occurrence of intersections between the two grids.  Triangular and tetrahedral grids are 

used for the fine scale grid; however, they introduce a variety of element scales.  The 

approach developed in this work populates the fine scale grid based on the scale of 

conditioning data.  The resulting error due to scale discrepancy is quantified and 

mitigated though the upscaling process.  A methodology to assess the error in upscaled 

properties is developed and used to control the design of the fine scale grid.  Populating 

the fine scale grid with reservoir properties requires modification of existing 

geostatistical algorithms.  The set of spatial locations for modeling is irregular and three 

differences that result from this are addressed: random path generation; spatial search; 

and the covariance lookup table.  Results are compiled into an algorithm for sequential 

indicator and sequential Gaussian simulation on irregular point sets.  Checking variogram 

reproduction on large irregular point sets is a challenge.  An algorithm that efficiently 

computes the experimental variogram for these cases is developed.  A flow based 

upscaling method based on the multipoint flux approximation is developed to upscale 

permeability models from the fine scale unstructured grid to the flow simulation grid.  

Triangular grids are assumed for the fine scale.  Flow simulation results using the 

upscaled transmissibilities are very similar to results obtained using traditional flow 

simulation on high resolution regular grids. 
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Chapter 1 Introduction 

 

This chapter begins with a discussion on the problem of modeling reservoirs with 
unstructured grids using geostatistics.  Section 1.1 describes the components involved 
and why they are important, including the need and benefit of generating numerical 
reservoir models, the motivation for using geostatistics to generate those models, and the 
motivation for using unstructured grids.  The purpose of this thesis and a list of 
contributions are covered in Section 1.2.  Background in Section 1.3 describes the 
geometry of unstructured grids and scaling laws of reservoir properties.  Sections 1.4 and 
1.5 give a review of the relevant literature and summarize the outline of this dissertation. 

1.1 Problem Setting 

1.1.1 Reservoir Modeling and Geostatistics 
Several important commodities originate from reservoirs including hydrocarbons – 
detailed numerical models help assess our ability to exploit these resources.  Reservoir 
models are constructed based on known information and they are used in a variety of 
ways.  One use is predicting original volumes of hydrocarbons or other fluids in the 
reservoir, which is important for assessing the economic viability of producing them and 
for estimating initial capital requirements in the form of land, materials, and facilities.  
Another use of reservoir models is in selecting methods of production.  Several 
techniques are available for hydrocarbon production and the viability of each can be 
assessed using flow simulation to determine which is optimal for a given reservoir.  
Models are also used to choose economically optimal well locations, configurations of 
multiple wells, and number of wells required (Deutsch, 2002).  Generating reservoir 
models that consider all available information can be accomplished through geostatistics. 

Understanding the geological heterogeneity of a reservoir is crucial for making decisions 
since the heterogeneity directly affects the flow response.  Geostatistics treats properties 
such as porosity and permeability as spatially correlated random variables.  Reservoirs 
are treated as probabilistic and our lack of understanding of the true heterogeneity is 
reflected through multiple equally probable realizations of what could be the truth.  Each 
realization reveals a different flow response.  Together, the set of realizations and flow 
responses quantifies uncertainty, that is, a measure of our incomplete knowledge. 

Geostatistics is a powerful aid to classical deterministic approaches involving geophysics 
and geology.  Methods such as inverse distance interpolation and contour mapping 
provide a single model.  The advantage of geostatistics is that uncertainty is quantified 
and it can be used as an additional measure for decision making.  It is possible to assign 
risk to decisions and optimize objectives such as profitability, recovery and sustainability.  
Geostatistics requires a large amount of domain specific knowledge and can be 
demanding for practitioners, requiring them to become familiar with many complex 
techniques and available data.  This level of involvement leads to an improved 
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understanding of the reservoir and better models when implemented correctly.  Proper 
use of geostatistics requires all relevant data to be integrated into the final models; 
therefore, resulting models reproduce many sources of data such as core, log, and 
seismic. 

1.1.2 Unstructured Grids 
The focus of this dissertation is on populating unstructured grids with reservoir properties 
using geostatistical techniques.  Reservoirs are discretized by a grid so that the flow 
equations can be solved and an analysis of a reservoirs response to different flow 
conditions is possible.  The response depends on many factors including reservoir 
structure, geologic heterogeneity, well locations, and flow conditions at the wells.  Our 
ability to predict the response also depends on the grid design.  A good design accounts 
for the factors affecting flow and increases our confidence in response predictions. 

Designing a grid to account for reservoir structure is a demanding task as the structures 
may form complex configurations of stratigraphy and faults.  Tying everything together 
with a grid that also meets requirements of available flow simulators requires a flexible 
data structure.  Unstructured grids are a natural response to this problem.  They can be 
constrained to flow simulator requirements, reservoir structures, well locations, and 
controlled locally with reservoir heterogeneity.  Unstructured grids also offer the ability 
to control grid resolution that can be made high where it is needed such as near flowing 
wells and low in areas where little flow is expected.  With good grid design, increased 
resolution results in increased accuracy in important high flow areas.  Flow simulation is 
computationally demanding and if available resources limit the size of a grid that can be 
used, having flexibility in resolution becomes an advantage. 

Four examples of unstructured grids are provided in Figure 1-1.  Specific details 
regarding the geometry of these grids are found in the background section of this chapter.  
Two grid types are shown: perpendicular bisector (PEBI) grids in A, C and D and a 
tetrahedral grid in B.  The PEBI grid in A is shaded by mean flow velocity, which is 
computed using a high resolution permeability model for flow based grid generation 
(Prevost et al, 2005).  Several goals were targeted in this grid design including: 
reproducing geologic features, which in this case is a single fault; achieving higher grid 
resolution in regions where higher flow velocities are anticipated; and maintaining 
orthogonality between elements.  Orthogonality is an important feature for commercial 
flow simulators that use the two-point flux approximation.  The primary goal for the grid 
in B is to represent a complex network of faults (Prevost et al, 2005).  Since tetrahedral 
elements are used, a different flow simulation method is necessary, such as finite 
elements or the multipoint flux approximation.  In C, a single fault, multiple horizons, 
and a deviated well are incorporated into the grid design (Verma, 1998).  Such a grid is 
useful in analysing the effectiveness of a newly proposed well.  Notice in this grid that 
only the fault and the well path are reproduced accurately.  The horizons shaded with 
different colors are only approximately captured as the element interfaces do not align 
with the color transitions.  Slightly different from the grids in A and C, the grid in D is a 
2.5D PEBI grid: the PEBI portion of the grid is designed in two dimensions in plan view 
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to reproduce fault lines, then the result is projected along depth to match horizons.  This 
grid accurately reflects faults and horizons, but it introduces partial element connections 
along displaced faults, that is, elements do not perfectly align in depth as shown by 
Figure 1-2.  Partial connections do not occur in the other grid examples. 

 

Figure 1-1: Example grids: A – PEBI grid with fault, blue to red is low to high velocity 
(Prevost et al, 2005); B – Tetrahedral grid with multiple intersecting faults (Prevost et al, 

2005);  C – PEBI grid with multiple stratigraphic layers, a fault, and a deviated well (Verma, 
1998); D – 2.5D faulted PEBI grid (Levy et al, 2001).  Not to scale. 

 

Figure 1-2: Element connections. 

Consider designing grids for examples A to D using structured grids.  A structured grid is 
shown in Figure 1-3 for comparison.  Achieving high resolution in grid A where mean 
flow velocity is high using a structured grid is only possible if a high resolution is 
assigned to all parts of the grid.  This increases the number of grid elements dramatically 
and increases CPU time for flow simulation.  Moreover, to represent the fault either the 
orthogonality property would be lost or the accuracy of the fault would be reduced.  The 
same issue is encountered for B in attempting to represent the faults with a structured 
grid, and in C trying to represent the deviated well path, horizons, and fault.  Grid D is 
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similar to existing structured grid design with the only difference being that in plan a 
PEBI grid is used.  The design process is also similar in that grid structure is designed in 
plan view and projected in depth. 

 

Figure 1-3: Example structured grid.  Not to scale. 

Geostatistical algorithms are designed for regular grids and cannot be directly applied to 
unstructured grids.  Available geostatistical approaches to characterize unstructured grids 
involve an underlying structured grid.  Take the examples in Figure 1-1, geological 
models are built using an underlying regular grid and equivalent properties are computed 
for the unstructured grid elements.  The process of obtaining equivalent properties is 
often called upscaling since the volumes of regular grid elements are usually smaller than 
the volumes of unstructured grid elements.  The regular grid forms a discretization of the 
unstructured grid.  Properties for the unstructured grid elements are calculated without 
having to account for the geometry of each element directly.  This dissertation claims that 
a regular grid is not the most appropriate discretization of an unstructured grid for 
upscaling purposes. 

1.1.3 Discretization 
Flow simulation grids are often limited by computer resources and time and therefore 
involve an order of magnitude fewer elements than geostatistical modeling grids.  The 
majority of unstructured grid elements are larger than those used for geostatistical 
modeling especially in areas of low flow.  Accounting for the scale and shape of 
unstructured elements as well as the geological heterogeneity within them is 
accomplished by discretization followed by upscaling.  The grid used for discretization is 
constrained by the upscaling processes involved.  In cases where flow equations are 
solved to upscale permeability, the discretization grid must agree with the method used to 
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solve the equations.  Regular grids are used due to limitations of geostatistical algorithms.  
Regular grids are a good choice when the flow simulation grid is also regular because a 
fine regular grid forms an ideal partition of a coarse regular grid when the grids overlap, 
see Figure 1-4.  Such a partition is ideal because: 

1. The coarse and fine grids are both amenable to existing flow simulation 
algorithms permitting the use of flow based upscaling, which involves flow 
simulation on the fine scale grid and flow simulation of the coarse model.  
Although this seems somewhat trivial, the ability to flow simulate a grid must be 
extended to all discretization regimes and this restricts the set of feasible 
discretizations. 

2. Every coarse element is represented by the same number of fine elements 
resulting in a consistent level of accuracy used to describe the heterogeneity 
within coarse elements.  For upscaling, no coarse element is over or under-
represented by fine elements; therefore any upscaling error that exists is constant 
throughout the whole grid. 

3. Fine grid elements do not overlap one another and are fully embedded in coarse 
elements.  This is in accordance with dispersion variance concepts in 
geostatistics, which is based on a disjoint partition of equal volume elements.  In 
some cases, not all fine scale elements represent the same volume even with 
regular grids and the equal volume requirement is an approximation.  Grid 
alignment also simplifies computing average values for upscaling variables that 
scale arithmetically including facies, porosity, fluid saturations, and pressure. 

4. The interfaces of fine elements are aligned with coarse element interfaces.  
Although closely related to point 3, the implications of this are important for 
upscaling permeability and transmissibility using flow based techniques.  Flow 
based upscaling relies on solving the flow equations on the fine grid to obtain 
equivalent flow parameters on the coarse grid.  In finite volume formulations 
solving the flow equations results in fluxes defined across element interfaces.  
The fluxes across coarse element interfaces are immediately computed as the 
sum of fluxes across all coincident fine element interfaces as shown in Figure 
1-5. 

One goal of this dissertation is to implement a discretization that achieves the features 
listed in points 1 to 4 for unstructured grids.  The discretization will not be a regular 
Cartesian grid.  A more flexible discretization structure is needed given the range of 
geometric configurations that are possible with unstructured grids.  One discretization 
style that meets conditions of all four points is ݊-simplicial grids, which are 
triangulations for ݊ = 2 and tetrahedralizations for ݊ = 3.  These are referred to as 
simplex grids to avoid any ambiguity with dimension.  Figure 1-6 shows a pair of two 
dimensional PEBI grid elements discretized by both a regular grid and a simplex grid. 
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Figure 1-4: Coarse regular grid and conforming discretization. 

 

 

Figure 1-5: Fine and coarse scale flux in flow based transmissibility upscaling. 

 

 

Figure 1-6: PEBI elements discretized by a regular grid and a simplex grid. 

The geometric complexity of unstructured grids and simplex discretization make 
achieving an equal number of fine elements per coarse element challenging.  A more 
appropriate measure than number is accuracy: how effectively the discretization 
represents the upscaling process.  This is similar to measuring the accuracy of numerical 
integration techniques (Kythe and Schaferkotter, 2004).  Simplex grids also form a 
disjoint partition; however, there is some variation in the scale of each simplex that has 
implications in regards to geostatistical scaling laws.  Because the simplex discretization 
is aligned with the coarse grid, computing arithmetic averages and resolving interface 
flux in flow based upscaling is straightforward; however, computing the interface flux 
requires solving the flow equations on a simplex grid. 

1.2 Statement of Purpose and Contributions 

The problem addressed in this dissertation is the population of unstructured grids by 
geostatistical techniques for reservoir flow simulation.  The function through which 
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uncertainty is measured is flow response.  Therefore geostatistical models are generated 
with the knowledge they will be used in upscaling processes and flow simulation. 

The most important variable involved is permeability.  It is a second order tensor 
property that describes the ease that reservoir rock transmits fluids.  The permeability 
tensor, ܓ, links fluid flux, ܙ, to reservoir pressure, ݌, through Darcy’s law (Equation 1.1), 
where ߤ is the fluid viscosity and ∇ is the gradient operator.  Tensors can take on several 
forms as shown in Equation 1.2, all of them are symmetric and only the upper triangular 
components are shown.  Developments made in this thesis assume that a tensor is 
isotropic or transversely isotropic for populating fine scale simplex grids.  This is a 
common assumption for geostatistical modeling of permeability.  As an alternative to 
permeability, transmissibility is also used in flow simulation and it relates the flux 
through a surface to the pressure drop across the same surface. 
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 1.2 

The purpose of this thesis is to develop mathematical and computational methods for 
populating unstructured grids with reservoir properties to be used in flow simulation 
studies.  Underlying this are discretization, geostatistical modeling, and upscaling. 

The main contributions of this dissertation are a workflow and associated tools for 
modeling reservoirs with geostatistics on unstructured grids.  It is different than existing 
work in that an unstructured grid is used on the fine scale as opposed to a regular grid.  
Grid design is not the main focus of this dissertation; however, guidelines and methods 
are provided.  The data scale becomes a concern since all grid elements may have 
different geometry and volume.  General guidelines on upscaling from core and log scale 
to another consistent scale for property modeling are provided as well. 

One step in the workflow is discretization.  It involves generating a fine scale grid that 
conforms to a coarse scale grid, both being unstructured.   For variables that average 
arithmetically, a method to choose how many fine scale elements to use in each coarse 
scale element is developed.  The approach results in an analytical function relating 
element volume to number of discretization elements that can be used with existing grid 
generation tools. 

Reservoir property modeling follows discretization.  A contribution in this area is the 
development of a sequential simulation tool that does both sequential indicator simulation 
(SIS) for facies and sequential Gaussian simulation (SGS) for continuous properties on 
unstructured grids.  It is shown that the optimal point to use for each grid element is their 
centroid.  This minimizes the error between the estimation variance at the scale of the 
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conditioning data being modeled by the sequential simulation algorithm and the scale of 
the unstructured grid element it represents.  It is further demonstrated that when the grid 
being modeled is upscaled to a coarser grid, the error is reduced substantially.  For 
variables that average arithmetically, it is shown that the correct estimate, estimation 
variance, and covariance are recovered at the coarse grid scale.  Another contribution is a 
tool to compute the experimental variogram from potentially very large non-uniform 
point sets.  It was adapted from (Deutsch and Journel, 1998) and is intended to validate 
the variogram for models generated on unstructured grids. 

A new method for upscaling permeability from the fine scale grid to transmissibility on 
the coarse grid is developed.  It is based on the multipoint flux approximation and is 
developed for two dimensions.  Extending the theory to three dimensions is 
straightforward; however, implementation may be more complex.  The approach is 
validated for homogeneous, layered, and heterogeneous media; however, poor grid 
design or highly anisotropic permeability may still yield non-physical flow results. 

Additional contributions include a description and some usage information for existing 
tools for unstructured grid discretization and visualization.  Two programs used 
throughout this dissertation are: Triangle by Shewchuk (1996) for generating two 
dimensional triangular grids and TetGen by Si (2006) for generating three dimensional 
tetrahedral grids.  For visualization, an open-source application called Paraview is used 
(Squillacote, 2008). 

1.3 Background 

1.3.1 Grid Geometry 
A variety of different grid specifications exist and they have common geometric 
characteristics.  Grids consist of a set of elements that consist of a set of faces, edges, and 
vertices as depicted in Figure 1-7.  To meet the constraints of reservoir simulators and 
flow based upscaling techniques that use them, elements are also linear and convex, see 
Figure 1-8.  Linear implies the edges and faces are lines and planes rather than curves and 
curvilinear surfaces.  Non convex and curvilinear elements are not discussed.  Simulation 
techniques involving the two-point or multipoint flux approximation require additional 
geometric information including centroids, centroid connections, and face midpoints.  
These details are reserved for Chapter 4 that discusses flow based upscaling. 

For geostatistical modeling purposes, the geometric information of interest is the vertices 
for simulators requiring vertex parameterization or centroids for simulators requiring 
element distributed parameterization.  Mixed finite elements may be specified either way, 
whereas two-point and multipoint simulation require properties at the centroid or some 
other interior point representing the whole element.  Other geometric components are 
used after vertices or centroids have been populated with reservoir properties.  For 
example, assessing global statistics requires element volumes and permeability upscaling 
requires volumetric and connectivity information. 
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Figure 1-7: Geometric primitives of a grid. 

 

Figure 1-8: convex and non-linear non-convex elements. 

Structured grids are used primarily for geostatistical property modeling.  Just as in Figure 
1-7, they can be decomposed into similar geometric primitives.  The grid is referred to as 
structured because the elements can be traversed in a logical manner.  In other words the 
arrangement of neighbouring elements is constant for all elements, see Figure 1-9.  
However, there is no constraint on the shape and volume of each element except that it 
must be a quadrilateral in two dimensions or a hexahedron in three dimensions.  Grids 
may also be regular grids that maintain the same logical structure with all elements 
having equal volume in the form of rectangles or boxes.  A convenient feature of 
structured grids for geostatistics is that there is always a mapping to a regular grid, see 
Figure 1-10.  The space where the regular grid exists is often called stratigraphic space, 
depositional space, or chronologic space (Deutsch, 2002; Mallet, 2004; Gringarten et al, 
2008) and it is where geostatistical property modeling is carried out.  For structured grids, 
all elements often have the same volume in stratigraphic space; however, in cases with 
varying sedimentation rates combined with differential compaction, the thickness can 
vary (Mallet, 2004).  Also, distance and covariance computations are not influenced by 
faulting and folding that has taken place after the time of deposition.  For this reason, 
similar transformations are still required for unstructured grids. 
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Figure 1-9: Pattern of neighbours for a two dimensional structured grid. 

 

 

Figure 1-10: Mapping from a structured grid to a regular grid. 

There are two common unstructured grid types found in the literature on reservoir 
modeling and flow simulation: PEBI grids and simplex grids.  Both specifications may be 
used as the coarse scale flow simulation grid or as the refined grid to be populated and 
upscaled.  In cases where a simplex grid is Delaunay (de Berg et al, 2000; Edelsbrunner, 
2001), both types of grids are the other’s dual as shown by Figure 1-11.  The Delaunay 
condition states that if every edge in a triangulation ܶ is locally Delaunay, then the grid is 
a Delaunay triangulation, where local Delaunay indicates that the circumscribing circle of 
any triangular element’s vertices contains no other vertex as shown in Figure 1-11 
(Edelsbrunner, 2001).  The same definitions apply in three dimensions.  For these grids, 
the edges of ܶ form perpendicular bisectors of the edges of its dual Voronoi grid ܧ.  This 
is ideal for the two-point flux approximation; however, it may not be ideal for 
geostatistical modeling since the vertices of ܶ, denoted p, are not necessarily the 
centroids of the elements of ܧ, denoted p௖.  Estimates of reservoir properties generated at p will not be as representative of those generated at p௖. 

When the centroid is required it is computed for simplexes as the average of the element 
vertices.  For Voronoi elements numerical integration is required to evaluate Equation 1.3 
for an element ݒ, where ܝ defines a position in the element and (ܝ)ߩ defines a mass or 
density function. 
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The density function can be assumed constant, but for grid generation purposes it is 
useful and has been included in the equation.  For example, it could reflect the magnitude 
of permeability or another property and be used to control centroidal Voronoi grid 
generation (Du et al, 1999).  When (ܝ)ߩ is constant, the centroid can be computed using 
geometric decomposition; the element is broken down into a set of simplexes and used in 
Equation 1.4, where ܣ௞ is the area or volume of the kth simplex and p௖௞ is its centroid. 
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Figure 1-12 provides a simple two dimensional example.  The volume of Voronoi 
elements is computed using decomposition as well, where the volume of a tetrahedron is 
given by Equation 1.5, and pଵ, pଶ, pଷ and pସ are its vertices.  In two dimensions, 
decomposition involves triangles and the area is given by Equation 1.6. 

 ( )1 4 2 4 3 4

1
(p p ) (p p ) (p p )

6
A = − ⋅ − × −  1.5 

 3 1 2 1 2 1 3 1

1
(p p ) (p p ) (p p ) (p p )

2 x y x yA = − − − − −  1.6 

For the multipoint flux approximation (Aavatsmark et al, 1998), the dual grid used to 
define interaction regions is not necessarily a Voronoi grid.  The concept of interaction 
regions is discussed in Chapter 4.  In Delaunay triangulations, the edges connecting two 
Voronoi elements do not always physically intersect the face connecting those elements 
as shown in Figure 1-13.  In this work, this is referred to as invalid connections.  In 
multipoint formulations, the interaction region between a set of triangles with a common 
vertex must be contained within those triangles and this is also shown in Figure 1-13. 

Interaction regions for a polygonal grid are not always convex, but their volumes and 
centroids are computed using decomposition.  Performing simulation on the polygonal 
grid involves triangular interaction regions and reservoir properties are assigned to the 
polygons; whereas performing simulation on the triangular grid will involve polygonal 
interaction regions and reservoir properties are assigned to the triangular elements.  Both 
scenarios are shown in Figure 1-14 using the same Delaunay triangulation as in Figure 1-
12.  As with Delaunay triangulations and Voronoi grids, the vertices of the triangular 
interaction regions are not necessarily the centroids of the control volumes. 
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Figure 1-11: Delaunay triangulation and Voronoi grid (left), and local Delaunay condition 

(right).  On the right, no triangle vertices fall inside the circumscribed circles. 

 

Figure 1-12: Voronoi element centroid by decomposition.  Numbers above the triangle 
centroids are the areas and those in parenthesis are respective x and y coordinates. 
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Figure 1-13: Imperfect connections, acceptable and unacceptable interaction regions. 

 

Figure 1-14: Delaunay triangulation and polygonal grid showing interaction regions. 

There are many other geometric features to take into consideration for grid generation 
purposes, for measuring grid quality, or determining how effectively a grid discretizes a 
differential operator.  For the purposes of geologic property modeling, the features of 
importance include knowing and understanding the type of grid being used, obtaining a 
set of vertices or centroids to populate, and computing areas or volumes for assessing 
statistics and upscaling. 

1.3.2 Scaling Laws 
Unstructured grids introduce a significant amount of geometry into the framework of 
geostatistical resource characterization.  A major difference between unstructured grids 
and regular grids is variable element scale and shape.  This poses a difficulty for 
geostatistical prediction that is based on statistics at a specific scale.  A related problem 
for geostatistics has been incorporating sample data that are representative of different 
scales, for example the scale of porosity derived from a neutron log is different than that 
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measured for a core sample, and both of these are different than the scale of grid elements 
chosen for geological modeling or flow simulation. 

Core, log, and seismic data are representative of different scales.  Unlike core samples, 
where the scale is exactly defined by a core plug, log and seismic data do not represent a 
clear geometric object.  The ability to handle these ill-defined geometries with 
geostatistical scaling laws has been discussed by several authors (Frykman and Deutsch, 
1999 and 2002; Frykman, Vejbæk and Rasmussen, 2005).  Another scale to consider is 
that of the geologic model.  The scale is the volume of grid elements that is constant for 
regular grids and generally assumed constant for structured grids after a stratigraphic 
transformation.  Grids designed for flow simulation introduce another scale when regular 
grids are used, or a variety of scales with unstructured grids.  Each grid element having a 
different volume and geometric specification represents a different scale.  Figure 1-15 
provides a summary of typical scales encountered in reservoir modeling. 

Differences in scale are often accounted for by averaging the available data to the 
geologic modeling scale.  This approach assumes well log and core data adequately 
represent the geologic grid elements; however, in most cases grid elements are 
intersected by one vertical well and averages cannot characterize the horizontal direction 
that is often important for permeability.  Unfortunately, there are not many alternatives: 
geostatistical scaling laws are only applicable to variables that average arithmetically.  
Change of support and a discussion on the scaling laws of facies and permeability is 
included below.  Porosity is treated as an arithmetically averaging variable and is not 
discussed further in this section. 

 

Figure 1-15: Scales for different kinds of reservoir data and grids. 

1.3.2.1 Change of Scale 
Statistical inference of geological properties depends on the scale or volume that is being 
inferred.  In geostatistics, volume-variance relationships have been defined to explain 
how the statistics of random variables change with volume, including the distribution, 
variance, and variogram.  The theory pertains to the concept of regularized variables 
(Journel and Huijbregts, 1978); the arithmetic average of a variable ܼ௩ with volume ݒ to 
obtain its equivalent ܼ௏ at the larger volume ܸ (Equation 1.7).  Determining a set of laws 
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that explain how the statistical and spatial properties for a variable change with volume 
are the solution to the change of scale problem.  The results theoretically permit the 
incorporation of data with different volumes. 

 
1

V v
V

Z Z dV
V

=   1.7 

The effect of volume-variance relations or scaling laws on the variogram is discussed.  
Generally, as the volume that represents a variable increases, the variogram range 
increases while its variance or sill and nugget effect decrease (Journel and Huijbregts, 
1978; Kupfersberger et al, 1998).  These effects are expressed mathematically based on 
the dispersion variance, ܦଶ(ݒ, Ω), which is the variance of data with volume ݒ within a 
domain Ω.  In the context of this work, the domain could be a hydrocarbon reservoir or an 
aquifer and v could be a core sample.  Letting ݒ < ܸ < Ω, the dispersion variances of ݒ 
within ܸ and of ܸ within Ω are additive for arithmetically averaging variables via 
Equation 1.8. 

 2 2 2( , ) ( , ) ( , )D v D v V D VΩ = + Ω  1.8 

The dispersion variance can be related to the variogram, (ܐ)ߛ, by first defining the 
averaged variogram, ̅(ܐ)ߛ, where ܐ is a separation vector between two locations ܝ and ܝ′, that is, ܐ = ܝ − ,ݒ)ߛ̅ the averaged variogram denoted ,ݒ For the volume  .′ܝ  is (ݒ
defined by Equation 1.9, and its relation to dispersion variance by 1.10.  Here, ܝ is a 
spatial position vector in some coordinate system and |ݒ| denotes the volume of ݒ. 
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These relations were initially derived for regular grids and therefore only two or three 
volumes would have to be dealt with depending on the types of sample data available and 
their sources.  Consider ܸ to be the volume of regular grid elements, then the averaged 
variogram can be derived by the scaling laws.  Two approaches are used: 1 – core 
samples with scale ݒ are averaged or upscaled to ܸ and an experimental variogram 
calculated and modeled from the result; 2 – the experimental variogram of core samples 
is calculated and modeled and the result scaled to agree with ܸ.  The first is more 
common in the context of reservoir characterization.  In the second approach, the 
variogram nugget effect, ܥ଴, range, ܽ, and sill, ܥ௜, ݅ = 1,… , ݊i,with ݊ the number of 
nested structures, are scaled according to Equations 1.11, 1.12, and 1.13 (Kupfersberger 

et al, 1998).  In Equation 1.12, ിܸ and ݒി describe the extent of the volumes and are 
direction dependent.  These results are based on variables that average arithmetically. 

 0 0
V v v

C C
V

= ⋅  1.11 



 

16 
 

 ( )V va a V v= + −
 

 1.12 

 
1 ( , )

1 ( , )
V v
i i

V VC C
v v

γ
γ

−=
−

 1.13 

Variogram scaling laws and the additive property of dispersion variance are appropriate 
for variables that average arithmetically such as porosity.  Different change of scale 
models are required for other variables, such as permeability, that scales according to 
physical laws rather than statistical averages. 

1.3.2.2 Facies 
Facies and other categorical variables average arithmetically when they are treated as 
mutually exclusive indicators.  Rather than averaging to a single category, facies average 
to a distribution of categories for a particular volume (Deutsch and Lan, 2008).  In this 
context, ܼ௩ is a categorical variable that defines ݊ܿ facies types.  The indicator mapping 
is defined by Equation 1.14, where ߜ is the Kronecker delta. 
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The result is a vector since the number of possible facies types ranges from 1 to ݊ܿ.  
Regionalizing this variable to ܸ as in Equation 1.7 results in a vector of proportions given 
by Equation 1.15, which also identifies the constraint that all proportions sum to unity.   
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Upscaled facies form a compositional variable (Pawlowsky-Glahn and Olea, 2004).  If Ω 
was partitioned into a set of elements, as with regular grids, then upscaling results in a 
distribution of proportions for each category that can be expressed as a probability 
distribution function. 

Results of the above equations are shown experimentally using a hypothetical two 
dimensional facies model (Figure 1-16) that is upscaled to various regular grids with 
different scales (Figure 1-17).  At the smallest scale each point is defined by a single 
category and the proportion is either zero or one and the cumulative density function is a 
step function.  As the scale is increased, the density function of each facies proportion 
converges to the global proportion. 



 

17 
 

 
Figure 1-16: Synthetic facies model of four arbitrary facies types. 

 

Figure 1-17: Empirical facies proportion distributions at four different scales. 

Applying the scaling laws described in the previous section to upscale facies is slightly 
different due to the compositional character of the result.  To ensure that the facies 
proportions for a given volume sum to one, this constraint must be included in the scaling 
laws that control the distributions.  Compositional scaling of this type can be avoided by 
dealing strictly with facies at a point scale, where only one facies can exist. 

Current practice for geostatistical treatment of facies is to upscale from core and well log 
scale to the geologic modeling scale using majority vote averaging.  The most abundant 
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facies in a grid element is chosen to represent the whole element and global proportions 
and indicator variograms are calculated based on the result.  Considering that the 
geologic modeling scale is an order of magnitude larger than core and log data, this 
practice raises concerns.  Facies that contribute significantly to the flow response of a 
reservoir, such as highly permeable sand or impermeable shale, can be neglected 
completely if they contribute to a small proportion of a grid element, see Figure 1-18. 

Two cases are identified in the figure to show that grid positioning can have a drastic 
effect on flow character using majority vote upscaling.  Another issue is that an 
experimental variogram calculated for a particular facies category is not necessarily 
representative of the actual variogram for that same category.  Consider the vertical 
variogram calculated for the original layering (the point scale variogram) in Figure 1-18 
and for the two upscaled scenarios (Figure 1-19): the upscaled experimental variograms 
are different from one another and neither is equivalent to the actual vertical variogram.  
Variograms were computed by discretizing the full thickness into layers with a thickness 
of 1 unit. 

 

Figure 1-18: Two cases of majority vote upscaling in layered media.  The position of the 
origin of the grid elements leads to different upscaled results.  Units are arbitrary. 

 

Figure 1-19: Vertical variograms of actual facies and scenarios from Figure 1-18. 
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1.3.2.3 Permeability and Transmissibility 
Only under special conditions does permeability average in a known manner (Renard and 
de Marsily, 1997).  For a discussion of permeability upscaling methods, it is assumed that 
a permeability field and grid are defined at the fine scale, and that a grid for the coarse 
scale is also available.  For averaging techniques other than arithmetic, the previously 
discussed scaling laws using average covariance are not applicable.  The goal of these 
upscaling methods is to achieve a similar flow response on all scales. 

Arithmetic averaging is appropriate in a layered porous medium when each layer has a 
constant permeability and flow is parallel to the layers (Figure 1-20).  In the same type of 
media and flow perpendicular to the layers, harmonic averaging is correct (Figure 1-21).  
Arithmetic and harmonic averages for permeability under these conditions are defined by 
Equations 1.16 and 1.17, where ݊ is the number of layers and ݇஺ and ݇ு are respectively 
the arithmetic and harmonic averages of the layered volume ܸ.  Cardwell and Parsons 
(1945) proved that these two averages define the lower and upper limit of the effective 
permeability of a block of porous media. 
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Figure 1-20: Conditions where arithmetic average of permeability is appropriate. 

 

Figure 1-21: Conditions where harmonic average of permeability is appropriate. 

In more complex media, simple averages have been evaluated including the geometric 
average (Jensen, 1991), defined by Equation 1.18, and the power average (Journel et al, 
1986; Deutsch, 1987 and 1989) defined by Equation 1.19, where ܤ is the power.  Here 
the sum over ݊ layers has been replaced by a sum over ܸ to indicate the method has been 
applied to more arbitrary volumes and heterogeneous permeability fields. 
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The power average is equivalent to the arithmetic average when ܤ = 1, to the harmonic 
average when ܤ = −1, and to the geometric average as ܤ → 0.  Some combinations of 
averages such as harmonic-arithmetic have been advocated to obtain directional 
permeability for problems in two or three dimensions (Aarnes et al, 2007).  For example, 
in a layered reservoir where flow is primarily in a direction parallel with the layering 
harmonic-arithmetic averaging proceeds as follows: first, harmonic averaging is applied 
to evaluate permeability in the direction perpendicular to the layers, and second, the 
harmonic averaged permeability values are averaged arithmetically in the direction 
parallel to the layers. 

These simple averaging techniques are quite limited, especially in two and three 
dimensional problems when permeability is a tensor property.  Harmonic, arithmetic, 
power, and combinations can only provide upscaled permeability in specified directions; 
therefore, they are limited to diagonal tensors and off diagonal or cross flow terms cannot 
be derived.  More complex upscaling models have been developed to accommodate 
tensor permeability.  These methods are referred to as dynamic or flow based upscaling 
since permeability is used to solve for pressure and flux fields by flow simulators.  
Resulting pressures and fluxes are used to solve for permeability tensor coefficients or 
transmissibility. 

Several types of flow based upscaling methods exist.   The following section describes 
the setting and methodology behind local upscaling for both permeability and 
transmissibility.  The setting for local upscaling is as follows: there is a fine scale 
permeability model defined on one grid specification, a coarse scale grid specification, 
and a series of local problems used to calculate permeability or transmissibility for the 
coarse grid (Figure 1-22).  Two general types of local problems are shown; type 1 uses 
averaging techniques discussed previously, except pressures and fluxes are used to 
calculate a permeability tensor, and type 2 involves coarse grid cells that share a common 
interface where pressures and fluxes are used to calculate the transmissibility between the 
two coarse cells.  For both problem types, boundary conditions must be chosen to induce 
flow through the element or across the interface. 
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Figure 1-22: general scenarios for upscaling permeability and transmissibility. 

Calculating a permeability tensor from known pressure and flux fields at the fine scale is 
accomplished with Darcy’s Law (Equation 1.20). 
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Let ݒ denote fine scale grid elements and ܸ denote coarse scale elements (ݒ < ܸ), then 
the upscaled version of Equation 1.20 is given by Equation 1.21, where the upscaled flux 
is approximated as the average fine scale flux over a coarse grid element and the pressure 
gradient is approximated by the average fine scale pressure drop across the same region, 
both are calculated with Equation 1.22. 
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Unless it is assumed that the upscaled permeability tensor is diagonal, Equation 1.21 is 
underdetermined.  For ܓ௏ symmetric, there are six unknowns and only three equations; 
therefore, multiple sources of ܙ and ∇݌ are required.  In fact, this is also true for the 
diagonal tensor case because if the tensor were truly diagonal, ܙ and ∇݌ may be exactly 
zero in one or two of the three possible directions.  Multiple sources are obtained by 
using different boundary conditions and solving for all components of ܓ௏ is a regression 
problem; the residual between ܙ௏ and ܓ௏∇݌௏ is minimized.  The residual is a measure of 
the information or detail lost in upscaling the fine scale field to the coarse scale one.  
Figure 1-23 shows an example that uses two sets of boundary conditions to force flow in 
different directions such that a diagonal tensor can be derived.  In this simplified case, 
regression is not required and permeabilities are computed directly as shown by the 
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equations in Figure 1-23.  The coarse scale flux is computed from the fine scale flux field 
either at the inlet or outlet faces.  The flux field shown is for explanatory purposes only. 

 

Figure 1-23: Example type 1 local problems to upscale permeability. 

For transmissibility upscaling (type 2 problem in Figure 1-22), where flow is calculated 
between multiple coarse grid elements, a transmissibility value is to be calculated from 
known fine scale pressure and flux fields.  This type of upscaling is only applicable to 
two-point flux simulation.  Transmissibility is used to express the flux across a cell 
interface in terms of the pressures in cells adjacent to the interface.  This is shown in its 
simplest form in Equation 1.23 where ݍ௏௜௝ is the flux between elements ௜ܸ and ௝ܸ, ௜ܶ௝ is 

the transmissibility, and ݌௏௜ and ݌௏௝ are the pressures, see Figure 1-24. 

 ( )Vij ij Vj Viq T p p= −  1.23 

Unlike Equation 1.21 where flux is a vector quantity, flux across an interface is expressed 
as a magnitude in Equation 1.23.  Coarse scale flux is calculated using fine scale fluxes 
along the interface ߲ ௜ܸ௝ = ߲ ௜ܸ ∩ ߲ ௝ܸ in Equation 1.24, where ܖ is the unit normal vector 

along ߲ ௜ܸ௝ pointing from ௜ܸ to ௝ܸ, and ݌௏௜ and ݌௏௝ are calculated using the fine scale 

pressures within elements ௜ܸ and ௝ܸ respectively by Equation 1.25. 
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Figure 1-24: Example type 2 transmissibility upscaling. 

The type of permeability upscaling used depends on the flow simulation technique, some 
require permeability while others the transmissibility.  In this thesis the focus is upscaling 
permeability from the fine scale grid to transmissibility on the coarse scale grid.  The 
following section reviews some of the literature related to flow simulators and upscaling. 

1.4 Literature Review 

Several research topics are involved in this dissertation: unstructured grids, grid design, 
grid refinement, geostatistics, upscaling, and flow simulation.  Each topic is an area of 
active research with extensive history and much accumulated knowledge.  This section 
reviews previous work on integrating unstructured grids into geostatistical modeling and 
flow simulation workflows.    A brief review of the use of unstructured grids in reservoir 
modeling is relevant to understand their geometry and properties.  More specifically, the 
review on unstructured grids, which is combined with flow simulation, addresses how 
they are defined, what features are inherent in good designs, and how they are generated.  
A literature review on upscaling is also provided. 

1.4.1 Unstructured Grids and Flow Simulation 
An unstructured grid is a generalized geometric entity that partitions Euclidean space into 
a set of elements.  By definition there are no constraints on the geometry of elements or 
their configuration pattern apart from being non-intersecting.  The design capabilities of 
unstructured grids are practically unlimited and many forms of elements are possible.  
Several have been used in the finite element method (FEM) (Hrenikoff, 1941; 
Zienkiewicz, Taylor and Zhu, 2005), where elements range from tetrahedra to complex 
curvilinear elements.  For reservoir modeling, grids partition the three dimensional space 
containing the reservoir into a set of elements.   The targeted use of these grids is for 
engineering purposes and the design of elements is done to optimize the quality of flow 
solutions, or in other words to minimize the error incurred due to gridding.  Elements 
should align with significant geologic features like boundaries, faults, and horizons that 
are relevant to flow (Kocberber, 1997) and areas with potentially high volumetric flux 
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such as near wells.  Grid design is also constrained by the limitations of flow solvers 
which are discussed later in this section. 

Historically, unstructured grids have been in use since the 1940’s in various fields of 
continuum mechanics.  They are a recent addition to reservoir simulation with research 
beginning in the 1980’s using Voronoi grids (Pathak et al, 1980).  Substantial interest was 
not seen until the 1990’s with PEBI grids (Heinemann et al, 1991; Palagi and Aziz, 
1994).  Research advancements in both flow simulation on unstructured grids and grid 
design from the 1990’s to date are extensive and a detailed review can be found in 
Prevost (2004).  The majority involve convex elements of varying geometry designed to 
align with reservoir geology and to capture complex near-well flow or flow through 
highly permeable conduits.  Some recent examples are automatic flow-based grid 
generation to represent reservoir structure and areas with high volumetric flux (Edwards, 
2002; Prevost et al, 2005) and a hybrid grid generation scheme for gaining accuracy near 
wells (Flandrin, Borouchaki, and Bennis, 2006). 

Characterizing reservoir structure and manually constructing a good quality grid is time 
consuming.  With the complexity of reservoir models, automatic grid generation 
techniques are a necessity.  Many techniques exist and several are described by Frey and 
George (2000).  They describe triangulations and tetrahedralizations as being the most 
flexible for representing complex geometries, which include any combination of faults, 
horizons, stratigraphic layers, and channels.  Three of the main types of unstructured grid 
generation algorithms are aimed at generating simplex grids and include spatial 
decomposition, advancing-front, and Delaunay methods. 

Several developments have been made in generating coarse grids for reservoirs.  Most are 
based on smaller models for which simulation of the respective fine grid is manageable 
for comparison purposes.  Having the capability to flow simulate the fine grid provides 
an avenue to assess the effectiveness of the unstructured grid design.  One of the earliest 
automatic unstructured gridding schemes involved PEBI grids and was developed as an 
advancing front method.  Points were distributed through space based on certain criteria, 
and then connectivity was determined resulting in a Voronoi grid (Palagi and Aziz, 
1994).  Generating PEBI grids remains an active research topic (Hale, 2002; Mlacnik, 
Durlofsky, and Heinemann, 2006; Katzmayr and Ganzer, 2009; Yadecuri and Mahani, 
2009).  Other grids are generated for finite volume simulation methods and multiscale 
finite element methods and are typically triangulations or tetrahedralizations. 

Other methods of generating unstructured grids for reservoirs are hybrid techniques and 
flow based techniques.  In hybrid techniques, reservoirs are initially partitioned by a 
coarse background grid, which is refined in areas with complex geology and anticipated 
high saturation and flow gradients (Aziz, 1993).  The background grid is commonly 
regular so does not perfectly align with faults and horizons.  Automatic methods are 
employed to create elements to align with these structures (Kocberber, 1997; Mallet, 
2002; Flandrin, Borouchaki, and Bennis, 2006).  High saturation gradients are typical 
near injection and production wells where the background grid is refined to conform to 
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well paths.  This refinement is done by removing elements within the vicinity of a well 
path, then filling the void space with a radial grid. 

Flow based grid generation techniques require the solution to a fine scale flow problem 
from which grid elements are derived.  Grid vertices may be distributed based on 
streamlines (Verma and Aziz, 1996), streamlines and isopotentials (Mlacnik, Durlofsky, 
and Heinemann, 2006), streamtubes and isobars (Portella and Hewett, 2000), or other 
flow information.  The fine scale problem is usually a basic incompressible, single phase 
pressure equation, although some research is being done on multiphase upscaling 
(Christie, 1996 and 2001; Arbogast, 2002; Chen and Li, 2009).  Solving the flow 
equations characterizes the pressure and velocity fields throughout the fine scale grid, 
which is often a structured regular grid.  This is the case since current geologic property 
modeling techniques are designed for regular grids.  The problem of building a 
permeability model for input to the pressure equation on other discretizations has not 
been addressed and is a focus of this dissertation. 

Both static (Edwards, 2002) and dynamic (Mlacnik, Harrer, and Heinemann, 2003) flow 
based generation techniques are possible.  In the static case, a grid is generated once and 
remains fixed for the duration of time dependent simulation runs.  It may be generated 
using no wells and arbitrary global boundary conditions so that streamlines are influenced 
primarily by reservoir structure and heterogeneity, since the element size and density 
varies according to characteristics of the flow solution.  A grid may also be generated for 
a specific flow scenario, such as a production well configuration where boundary 
conditions are imposed globally and at well locations.  Simulation runs using the 
resulting grid are only valid if there are no significant changes to the boundary conditions 
over the time of the run.  Shutting in a well or converting a producer into an injector 
would have a significant impact on flow and thus on the optimal flow based grid.  To 
alleviate the influence of changing reservoir operating conditions over time adaptive 
grids may be considered.  Each alteration to reservoir conditions requires the solution to a 
fine scale simulation problem, grid generation, grid optimization, and permeability 
upscaling stages, providing the grid and properties for the next series of time steps on the 
new grid.  Depending on the size of the fine scale model, this series of stages can become 
time consuming. 

For any simulation grid the constraints imposed by discretization of the flow equations 
must be considered.  Flow simulators that work with unstructured grids is an active area 
of research.  Their capabilities dictate how flexible an unstructured grid design can be 
and the element geometry that is applicable.  FEM is an approach applicable for 
unstructured grids, but is unstable for complex porous flow problems (Farmer, 2005).  
The simulation technique that has received the most attention due to its use in industry 
and ability to handle unstructured grids is the finite volume method (FVM). 

Most commercial hydrocarbon flow simulators using FVM are limited to corner point 
grids (Ponting, 1992), which are structured and possibly irregular.  Although structured 
grids do offer some flexibility, there are complications for alignment with well 
trajectories, overturned surfaces, intersecting faults, and thrust faults (Farmer, 2005).  



 

26 
 

These simulators are also based on the two-point flux approximation (TPFA); flux from 
one element to another depends only on the pressures in those two elements.  
Transmissibility for the face separating the two elements is based on two points typically 
chosen as the element centers.  It is calculated using the permeability tensors for each 
element, which are usually assumed diagonal.  Use of TPFA with full tensors results in 
error (Edwards and Rogers, 1998; Eigestad and Klausen, 2005; Chen and Mallison, 
2007), motivating the development of new simulation techniques. 

There are three main types of next generation simulators that are being developed: FVM 
with multipoint flux approximation (MPFA); hybrid FE-FVM or mixed FEM (MFEM); 
and multiscale simulators.  MPFA methods have been developed for both two dimensions 
(Aavatsmark et al, 1996; Aavatsmark et al, 1998a,b) and three dimensions (Verma and 
Aziz, 1997) and are undergoing further development (Eigstad, Aavatsmark, and Espedal, 
2002; Mlacnik and Durlofsky, 2006; Chen et al, 2008).  MPFA simulators are being 
developed for triangular, tetrahedral, quadrilateral, and hexahedral grids.  Although this 
appears to be a constraint, practically any unstructured grid consisting of polygonal 
volumes can be reduced to a set of tetrahedra.  Hybrid FE-FVM (Geiger et al, 2004; 
Paluszny, Matthai, and Hohmeyer, 2007; Maliska, Cordazzo, and Silva, 2007) are very 
similar to FVM using MPFA with the major difference being a finite element formulation 
is used to solve the fluid pressure field and finite volumes for the fluid transport 
phenomena.  Tetrahedral grids are the focus, but other possible element configurations 
are presented. 

Multiscale methods (Hou and Wu, 1997; Kippe, Aarnes, and Lie, 2008; Pavliotis and 
Stuart, 2008) are a recent class of simulation technique that assumes each element is 
characterized by pressures and fluxes that are functions of position within the element, 
rather than a constant.  Fine scale information is incorporated into the solution of coarse 
scale equations without having to resolve the fine scale, thus the methods are more 
efficient than directly simulating at the fine scale.  Although still under development, 
multiscale simulators show promise for complex grid geometries.  Aarnes, Krogstad, and 
Lie (2008) discuss a multiscale mixed/mimetic finite element method that is extensible to 
general polyhedral cells.  They also identify three considerations for generating coarse 
grids: 1 - Grid geometry should minimize the possibility of bidirectional flow across 
element interfaces; 2 - Element faces should follow geological layers; 3 - Elements 
should adapt to flow obstacles.  Extending multiscale methods to more complex 
multiphase flow regimes is ongoing. 

A common set of grid attributes for reservoir simulation models are identified in this 
review on unstructured grids and flow simulation.  Attributes are both geological and 
simulation based.  Resulting simulation models should accurately represent large scale 
geologic structures including the reservoir boundary, faults, and horizons (Kocberber, 
1997).  Geologic attributes at a smaller scale involve designing elements that do not 
contain significant permeability discontinuities and do not span structural surfaces like 
faults.  Such occurrences are one source of numerical instability for simulation.  Qualities 
in regards to simulation include the accurate representation of well trajectories, near-well 
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flow, and any other area where complex flow patterns are anticipated, for example 
through highly permeable conduits or across faults.  The overall grid should also be 
designed to meet the requirements of a particular flow solver and for the most efficient 
solution of the flow equations.  Finally, the process for building a reservoir simulation 
model should be user-friendly and not overly time consuming.  Processes designed to 
generate unstructured grids should include these attributes. 

1.4.2 Geostatistics 
There is little previous work involving geostatistics on unstructured grids.  The major 
difficulty in developing geostatistical algorithms for unstructured grids is the variety of 
grid element volumes.  Methods are required to account for the statistics of random 
variables at different scales; initial research into algorithms for variable scales involved 
direct sequential simulation (Xu and Journel, 1994).  Direct methods were not originally 
developed for unstructured grids, but for the problem of integrating multiple data types 
having different scales such as core and log data (Tran, Deutsch, and Xie, 2001). 

The application of direct geostatistics on unstructured grids was discussed by Deutsch, 
Tran, and Pyrcz (2002).  Some issues with direct methods were identified including 
problems with histogram reproduction and the proportional effect inherent in variables 
having skewed distributions.  Solutions to these issues are discussed and more detail is 
provided in Oz et al (2003).  These techniques involve the use of average covariances that 
reflect the geometry and scale of unstructured grid elements and of the sample data, but 
their use is restricted to random variables that average arithmetically such as porosity.  
An approach for permeability is suggested and assumes that arithmetic averaging applies 
after a power law transformation; however, this technique cannot yield tensor 
permeability for unstructured grid elements.  More information on the use of power 
averaging can be found in Deutsch (1989) and in the background section.  Some follow-
up work to address implementation aspects has been done (Manchuk, Leuangthong, and 
Deutsch, 2004). 

Direct methods have rarely been used in practice, which is likely due to it being in too 
early a stage of development.  A series of outstanding issues are discussed by 
Leuangthong (2004).  All other work involving geostatistics on unstructured grids 
implements an underlying structured grid such that existing geostatistical theory and 
algorithms are applicable (Caumon, Grosse, and Mallet, 2004).  Caumon, Grosse, and 
Mallet (2004) also highlights three of the potential concerns with implementing 
geostatistics on unstructured grids including: more complex neighbourhood search, 
elements being aligned in directions different than the principal directions of geological 
anisotropy, and computation of average covariance. 

1.4.3 Upscaling 
Equivalent reservoir properties for unstructured grid elements are computed from values 
defined on a refined grid.  Different properties scale according to different laws and in 
reservoirs, there are two principle types encountered: arithmetic averaging properties and 
flow properties.  Variables such as porosity, density, fluid saturation, and facies 
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proportions scale arithmetically, while permeability and transmissibility scale according 
to equations of flow. 

Bear (1972) discusses the concept of representative elementary volume in terms of 
volumetric porosity, which is computed as an arithmetic average.  This approach 
conserves the pore volume across scales (Durlofsky, 2003).  Some recent work has been 
done on scaling of categorical variables such as facies (Deutsch and Lan, 2008).  At a 
small scale, facies are considered categories, but as scale is increased, facies are 
expressed as proportions that tend to follow a Beta-type distribution function.  
Proportions are computed arithmetically and within a specific volume, such as an 
unstructured grid element.  The proportions of all facies types must sum to unity, thereby 
forming a compositional variable (Pawlowsky-Glahn and Olea, 2004). 

For permeability, several classes of single phase flow based upscaling exist: local, 
extended local, global, and coupled local-global.  In local methods, grid elements are 
considered independently, much like a sample of reservoir rock is treated in a lab 
(Warren and Price, 1961).  Flow is hypothetically induced across the element in different 
coordinate directions by means of prescribed boundary conditions and Darcy’s law is 
used to solve for a permeability tensor.  For two-point transmissibility, as used in the 
TPFA, two elements are considered in the local problem and flow is induced across the 
interface between them.  The average pressure in each element and the flux across the 
interface are used to compute the transmissibility (White and Horne, 1987).  Extended 
local methods involve a grid element plus an additional region surrounding it (Gomez-
Hernandez and Journel, 1990).  The intention is to achieve a more accurate representation 
of flow through the element as it exists within the reservoir.  The same principle can be 
applied to compute transmissibilities.  Probably the least used method is global upscaling, 
which requires solving the flow equations over the entire fine scale geologic model 
(Farmer, 2002).  This is computationally demanding.   

Coupled local-global upscaling is more recent (Chen et al, 2003; Chen and Durlofsky, 
2006).  In this technique, flow equations are solved globally on the coarse grid and used 
as boundary conditions for local problems, which are solved to update either the 
permeabilities or transmissibilities for the global problem.  The process is iterative.  More 
detailed information on these and other upscaling techniques can be found in several 
extensive reviews (Wen and Gomez-Hernandez, 1996; Renard and de Marsily, 1997; 
Farmer, 2002; Durlofsky, 2003; Prevost, 2004; Farmer, 2005; Aarnes et al, 2007). 

Advances made towards upscaling on unstructured grids assume the underlying 
permeability model is defined on a regular grid.  He, Edwards, and Durlofsky (2002) 
develop an upscaling regime for general quadrilateral elements using MFEM.  The 
background grid and overlying quadrilateral element are triangulated.  Permeabilities 
from the regular grid are assigned to the triangulation, which is involved in the flow 
based upscaling approach.  Edwards (2002) describes an upscaling method where 
unstructured control volumes are enclosed in a bounding box that contains a subset of a 
regular gridded permeability model, much like the local upscaling methods discussed 
previously.  Local flow based upscaling for regular grids is then used, but only the 
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pressures and fluxes within the enclosed unstructured element and along its boundary are 
used to compute equivalent permeability.  Prevost (2004) describes two upscaling 
methods for unstructured grids to compute permeability tensors or transmissibilities.  
Tensors are utilized in the MPFA method and transmissibilities in the TPFA.  Again the 
fine scale permeability model is defined on a regular grid.  Development of a technique to 
upscale permeability from a fine scale unstructured grid to a coarse scale unstructured 
grid is required. 

1.5 Thesis Outline 
Chapter 2 discusses many of the pre-processing requirements to undertake reservoir 
modeling on unstructured grids, including a proposed a workflow.   Grid discretization 
using simplex elements is introduced along with existing tools in two and three 
dimensions.  Tools for visualization are also identified.  Spatial transformations from 
geological space to depositional space are described and their applicability to 
unstructured grids is demonstrated.  A common concern with geostatistics on 
unstructured grids is data scale; hence a discussion is given along with suggestions for 
upscaling from sample data scale to a consistent scale for reservoir modeling.  This 
chapter closes with a section on grid design. 

Chapter 3 primarily develops a sequential simulation algorithm for populating 
unstructured grids with categorical and continuous properties.  It is based on sequential 
indicator simulation and sequential Gaussian simulation from GSLIB (Deutsch and 
Journel, 1998).  Input data and the grid specification are discussed.  Implementation 
details covered include random path generation and nearest neighbour search.  Model 
validation for the histogram and variogram are discussed and a tool for computing the 
experimental variogram of large point sets is developed. 

Chapter 4 investigates grid discretization and upscaling.  These topics are placed together 
since the accuracy of upscaled properties depends on the discretization.  Theory is 
developed for arithmetic averaging.  A method that links grid element volume and 
number of discretization points to the expected error in average properties is developed.  
For permeability, an upscaling approach using the MPFA approach is developed.  
Permeability that is modeled on the fine scale grid is upscaled to multipoint 
transmissibilities on the coarse grid for MPFA simulators.  Some guidelines on 
discretization to achieve accurate upscaled transmissibilities are given. 

Chapter 5 validates the methods and provides a case study.  The discretization approach 
for arithmetic averaging variables is proven to reproduce the correct variance and 
covariance at the scale of coarse unstructured grid elements.  It is also shown that 
statistics including the variogram and proportional effect are reproduced through 
transformations from a Gaussian variable to a reservoir property such as permeability.  
Potential biases due to irregular discretization are discussed.  It is demonstrated that using 
a low enough error criteria for the grid discretization process removes biases in global 
statistics.  The flow based upscaling approach is validated for homogeneous, layered, and 
heterogeneous media.  The case study goes through all geostatistical modeling steps of 
the workflow proposed in this dissertation. 
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Chapter 2 Methodology 

 

Developing geostatistical methods for unstructured grids requires a modified workflow 
and a novel treatment of data and scale.  Firstly, Section 2.1 summarizes an existing 
workflow for reservoir characterization and flow simulation, and then discusses 
modifications required for the proposed workflow involving unstructured grids.  Section 
2.2 explains key pre-processing steps and prerequisites required to do geostatistical 
modeling including grid discretization; stratigraphic and chronologic transformations; 
defining a scale for core and geophysical log data; dealing with secondary data such as 
seismic; and visualization.  Lastly, Section 2.3 covers aspects of grid design with 
examples. 

2.1 Workflow 

An existing workflow for geostatistical reservoir modeling involves the following 
(Deutsch, 2002): 

1. Data preparation 
2. Model large scale features such as horizons and faults 
3. Choose a geological modeling grid 
4. Preliminary mapping 
5. Facies modeling 
6. Modeling continuous properties such as porosity and permeability 
7. Model validation 

Resulting models are used in reservoir flow simulation.  If the numbering is continued, 
these steps involve: 

8. Coarse grid design 
9. Upscaling to effective properties 
10. Flow simulation 

Currently, grids designed for geological modeling are structured regardless of the coarse 
grid designed for flow simulation, i.e. step 3 (choosing a geological modeling grid) rarely 
considers step 8 (coarse grid design). 

The proposed workflow (Figure 2-1) is similar, but ensures the geological modeling grid 
and flow simulation grid are designed together.  Steps 1 and 2 remain unchanged since 
they are done prior to any choice of grid.  Steps 3 to 6 are categorized as preliminary 
modeling and are carried out on a regular grid for the purpose of coarse grid design.  The 
final coarse grid design is discretized to a fine grid for geological modeling.  Results are 
upscaled to the coarse grid for flow simulation.  The proposed workflow is as follows: 
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1. Data preparation 
2. Structural modeling 
3. Grid design 

a. Regular gridding and preliminary mapping 
b. Coarse (unstructured) grid design 

4. Grid discretization 
5. Facies modeling 
6. Continuous property modeling 
7. Model validation 
8. Upscaling 
9. Flow simulation 

 

Figure 2-1: Reservoir modeling workflow with unstructured grids.  Preliminary mapping is 
done to provide a background grid of reservoir properties to control grid design.  The grid is 
discretized to a finer scale and then populated with reservoir properties using geostatistics.  

The resulting models are upscaled to the coarse grid design for flow simulation. 

A clear disadvantage of this workflow is geological modeling is carried out twice; once 
during preliminary mapping, since the coarse grid design depends on geological 
heterogeneity, and again after grid refinement.   However, geostatistical modeling 
workflows are easily automated once they are parameterized.  This involves assessing 
statistical properties of sample data including probability distribution functions, first and 
second order moments, multivariate relationships, and spatial covariance (Cressie, 1993).  
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All of these statistics are dependent on the scale of the sample data from which they are 
computed.  Once all data and parameters are defined for a specific case, geostatistical 
models are constructed automatically with a computer. 

The proposed workflow has several advantages.  During grid design, features having an 
effect on flow are included in the coarse grid design and are therefore included in the 
discretization.  These may include existing or proposed wells for production or injection 
purposes and multiple-well communication data.  To obtain higher accuracy in flow, the 
scale of unstructured grid elements is much smaller near these features (Fung et al, 1994).  
For example, radial grids (Figure 2-2) are common around production and injection wells 
(Pedrosa and Aziz, 1986; Lee et al, 2003; Flandrin et al, 2006).  Adjacent to a well, 
extremely small elements are possible.  By including these in an unstructured design and 
discretization, a higher level of detail in geological heterogeneity is achieved.  How 
important an area is in terms of flow is reflected in the resolution of the geological model.  
Such information is not incorporated into workflows using structured grids for geological 
modeling.  The resolution of heterogeneity is limited to the structured grid element scale.  
Another advantage comes from having flexibility in the discretization method as 
explained in Chapter 1. 

 

Figure 2-2: Example radial grids: A – 3 wells embedded in a control volume polygonal grid 
(Fung et al, 1994); B – 5 wells embedded in a regular grid (Pedrosa and Aziz, 1986); C – a 

deviated well embedded in a distorted hexahedral grid (Lee et al, 2003) 

2.2 Preprocessing and Prerequisites 

2.2.1  Discretization 
Discretization is the process of subdividing space into a set of points or elements.  Its 
purpose in the proposed geological modeling workflow is to provide a grid for describing 
the geological heterogeneity within coarse unstructured grid elements.  In geostatistical 
modeling and flow simulation, each point represents an area or volume.  In this 
dissertation, unstructured grid elements are discretized into a set of points that are the 
centers of simplex elements.  Each point represents the volume of a simplex.  Algorithms 
for flow simulation and grid generation exist for simplex grids.  The discretization of a 
domain into a set of simplexes is commonly referred to as simplicial mesh generation or 
meshing (Berg et al, 1998; Frey and George, 2000). 
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Two existing programs for generating simplex grids are: Triangle by Shewchuk (1996) 
for generating two dimensional triangular grids and TetGen by Si (2006) for generating 
three dimensional tetrahedral grids.  Both are constrained generators, meaning the 
resulting grids conform to boundaries such as faults, horizons, and the faces of 
unstructured grid elements.  Other constraints are also possible; two of the more 
important ones are simplex size and quality.  In two dimensions, triangle area is 
constrained to a user specified maximum either globally or locally within segment 
bounded regions.  The same concept is used in TetGen to constrain the volume of 
tetrahedral elements, except local control is within facet bounded regions. 

 

Figure 2-3: Example of volume constraints using TetGen.  Numbers adjacent to elements 
indicate the assigned volume constraint.  Radius-edge ratio constraints of 2 (left) and 1.4 

(right) are shown.  Units are arbitrary. 

Using Triangle, quality is measured by a lower bound angle constraint for triangles.  For 
example, specifying an angle constraint of 20 degrees results in a triangular grid where 
all interior angles are no less than 20 degrees.  Using TetGen, quality is measured using 
an upper bound radius-edge ratio measure for tetrahedra (Miller et al, 1995).  The radius 
refers to a tetrahedron’s circumsphere and the edge refers to the length of the 
tetrahedron’s shortest edge.  Quality measures are an important link between grid 
geometry and the accuracy of solving flow equations using the grid (Aavatsmark et al, 
1998b; Knabner and Angermann, 2003).  A three dimensional example of volume 
constraints (Figure 2-3) is shown using coarse scale PEBI grid elements as the bounded 
regions.  Two radius-edge ratio constraints show the difference in tetrahedron shape 
achieved. 

Discretization is important when the grid designed for flow simulation cannot take into 
account all geological features for reasons of computational feasibility and time.  The 
discretization process is used to include these details such that their effect on flow is 
captured through upscaling.  As mentioned, capturing the variation of reservoir properties 
within coarse unstructured grid elements is the purpose of discretization, but this may 
involve more than facies, porosity, and permeability.  For example, a stratigraphic unit 
may consist of several thin beds that are not included in the coarse grid.  The beds may 
not correlate with the stratigraphic unit either in the case of cross-bedding (Figure 2-4).  
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As long as such features can be modeled, they can be included in the discretization and 
upscaling process. 

 

Figure 2-4: Example of cross bedding not captured by a flow simulation grid. 

2.2.2  Spatial Transformation 
Most reservoirs in their existing configuration, referred to as geological space or physical 
space, are complex geometric environments that have been affected by post-depositional 
events including folding, faulting, compaction, and erosion.  This results in a distorted 
image of the reservoir and poses challenges for geostatistical modeling.  Determining 
how reservoir properties correlate is confounded by post-depositional events.  In 
geostatistics, spatial correlation between two points is defined as a function of the 
Euclidean distance between them.  Using the Euclidean distance in geological space 
directly will not account for geometric deformations.  An example involving a fold is 
shown in Figure 2-5.  A common assumption is that the spatial correlation of reservoir 
properties is entrained in the data prior to any post-depositional alterations (Deutsch, 
2002; Mallet, 2004; Gringarten et al, 2008).  The space of a reservoir at the time of 
deposition is referred to as depositional space.  Mapping a reservoir from geological 
space to depositional space involves reversing all post-depositional events.  It requires a 
structural model of the reservoir that includes major stratigraphic surfaces and fault 
surfaces.  Types of erosional events and differential compaction that occurred are also 
required.  Refer to Deutsch (2002) and Mallet (2002) for a review of structural modeling. 

 

Figure 2-5: Euclidean distances in geological and depositional space.  The distance in 
geological space is shorter than in depositional space leading to a covariance that is 

artificially high.  Not to scale 

Two mapping techniques are stratigraphic coordinates (Jones et al, 1986; Deutsch, 2002) 
and the geo-chronological model (Mallet, 2004).  Both techniques assume that geometric 
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deformations affect only the spatial arrangement of a reservoir, not the reservoir 
properties. 

Stratigraphic coordinates define a vertical coordinate mapping within a stratigraphic 
layer.  Layers are defined by two surfaces from the structural model that are referred to as 
the existing top and existing base of the layer.  Due to erosion or onlap, these are not 
necessarily the correlation top and correlation base of the layer.  The vertical coordinates 
of these surfaces are used to define the stratigraphic coordinates in Equation 2.1, where ݖ௦ is the stratigraphic depth, ݖ is the depth of any point within the layer, and ݖ௖௧ and ݖ௖௕ 
are the depths of the correlation top and correlation base (Figure 2-6).  Transformation 
results will differ depending on the geological interpretations of the reservoir and events 
resulting in the existing top and base. 
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Stratigraphic coordinates can be applied to unstructured grids as well.  The structural 
model provides the information required to compute the geological coordinates of any 
point in the reservoir.  If the stratigraphic layer in Figure 2-6 was discretized using a 
triangulation, the vertices and centers of the triangles could be mapped to stratigraphic 
space (Figure 2-7). 

 

Figure 2-6: Example of stratigraphic coordinates.  Not to scale. 

 

Figure 2-7: Example of stratigraphic coordinates with a triangulation.  The triangulation 
was made using the program Triangle (Shewchuk, 1996). Not to scale. 
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The geo-chronological model (Mallet, 2004) defines a curvilinear coordinate system in 
geological space that can be mapped to depositional space while minimizing distortions 
in distance and volume.  One of the differences between stratigraphic and geo-
chronological coordinates is how the time axis is defined.  Stratigraphic coordinates 
assume time is vertical in both geological space and depositional space.  Geo-
chronological coordinates assume time is vertical only in depositional space.  It is derived 
by tracing a curve through particles that were deposited earliest to those deposited latest 
(Figure 2-8).  This transformation is also possible for unstructured grids (Figure 2-9).  For 
the stratigraphic coordinate case, the triangulation is distorted only in the vertical 
direction; whereas for geo-chronological coordinate, the triangulation is distorted in all 
directions. 

 

Figure 2-8: Example of geo-chronologic coordinates.  Not to scale. 

 

Figure 2-9: Example of geo-chronological coordinates with a triangulation.  The 
triangulation was made using the program Triangle (Shewchuk, 1996). Not to scale. 

2.2.3  Data Scale 
Geostatistical property modeling requires an association between conditioning data and 
scale because statistics depend on scale.  In geological modeling workflows involving 
structured grids, the scale is equal to the structured grid element volume in depositional 
space.  It is common to assume that all elements are of equal volume, which is useful in 
assessing and modeling various statistics including probability distribution functions, 
multivariate relationships, and variograms.  However, sample data is not initially 
available at this consistent scale.  It may include core photos, formation micro image 
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(FMI) logs, core samples, high resolution and standard wireline logs, seismic data, and 
well test data (Figure 2-10).  Sample data at a smaller scale than structured grid elements 
(hard data) is upscaled while sample data at a larger scale (soft data) is integrated using 
other methods that are discussed in the following section on seismic data. 

Upscaling from the scale of samples to the geological modeling scale has received little 
attention as compared to upscaling from the geological model scale to the flow 
simulation grid scale (Dubrule and Damsleth, 2001).  The static averaging methods 
described in Chapter 1 are often used to upscale core and logs to the geological modeling 
scale (Figure 2-11).  A variety of other averaging and regression approaches are used for 
permeability as summarized by Deutsch (2009) along with a micro-modeling and flow 
based upscaling technique using FMI logs.  The use of micro-models for upscaling has 
also been discussed by Hosseini et al (2008).  These techniques are needed to unify the 
scales of sample data for geostatistics on unstructured grids. 

 

Figure 2-10: Scales for different kinds of reservoir data 

 

Figure 2-11: Example of arithmetic averaging of a synthetic porosity log to structured grid 
elements.  The section of log samples that fall within each grid element are averaged and 

assigned to the element.  The arithmetic average is used for porosity to preserve pore volume 
across scale.  Not to scale. 
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Coarse unstructured grids and their discretizations cover a variety of scales in both 
geological and depositional space.  Upscaling hard data to the discretized grid would lead 
to a set of scale-inconsistent samples, each with a scale equal to their respective grid 
element volume (Figure 2-12).  In cases where a grid is designed to include wells, 
samples along the well may not fall within an element but on its edges.  However, some 
degree of scaling is necessary to achieve a consistent scale for integrating various types 
of data and so that variances and covariances between variables are consistent for 
geostatistical modeling purposes. 

 

Figure 2-12: Triangular elements intersected by a well.  Areas of intersected triangles are 
shown.  Not to scale and units are arbitrary. 

This dissertation proposes that a reasonable scale is larger than the small sample data and 
on the order of the smallest grid element scale in geological space.  The scale must be 
larger than the hard sample data for several reasons.  One is for practicality.  Each type of 
data measures a different scale of heterogeneity.  For example, a full core sample 
measuring 5 cm in diameter and height is roughly 100 cm3; therefore it is possible to take 
roughly 10,000 core samples form a cubic meter of rock.  Given that reservoirs are on the 
order of millions of cubic meters, assessing this level of heterogeneity throughout is 
impractical.  Another reason is that hard data samples are sparse.  Attempting to derive 
their spatial correlation is made challenging by short scale variability, which is smoothed 
through upscaling.  This concept is shown in Figure 2-13 using an interval from an actual 
gamma ray log in a carbonate reservoir and arithmetic averaging.  By averaging out short 
scale variability, a higher spatial correlation is observed over a change in depth of 1.8 
meters. 
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Figure 2-13: Effect of short scale variability on spatial correlation. 

Figure 2-13 also highlights a loss of detail as one consequence of upscaling.  To limit the 
loss of detail, a reasonable scale should be no larger than the smallest grid elements used 
in geological modeling.  This choice relates to unstructured grid design, which involves 
smaller elements in areas of increased importance.  In many cases, the smallest elements 
will occur adjacent to wells.  By limiting the reasonable scale to be no larger than these 
elements, the amount of smoothing or loss of detail in areas of importance is bounded.  
From here on, the chosen reasonable scale is referred to as point scale.  To summarize, 
define the reasonable point scale as ݒ௣, the scale of hard data as ݒఌ and the scale of the 

smallest grid element in a discretization as ௠ܸ௜௡ in depositional space.  The point scale is 
chosen according to Equation 2.2 with two goals: to unify hard data to a single scale and 
avoid excessive loss of detail. 

 p minv v Vε < ≤  2.2 

To obtain point scale samples, the upscaling approach shown in Figure 2-11 is not 
advocated.  There are inconsistencies in both the position of samples within grid elements 
and the number of samples within grid elements.  A more robust approach is to upscale 
samples along wells into equal volume intervals independent of the gridding scheme.  A 
concern with this approach is aliasing, that is, the effect of phase shifts on the upscaled 
properties.  Equal interval upscaling was used to compute average values along the 
gamma ray log in Figure 2-13.  It is equivalent to the case where wells are vertical and 
intersect a column of regular grid elements through the element centers (Figure 2-14).  
Differences occur when the well does not intersect the grid element centers since it is 
typical to assign the upscaled samples to the center locations.  The proposed method 
assigns upscaled samples to the center of the averaging volume. 

As with upscaling to a structured grid, the intervals for upscaling are not necessarily 
constant through a reservoir.  The chosen scale, ݒ௣, is dependent on post-depositional 

events and is affected by the transformation from geological space to depositional space.  
If the chosen point scale defines a length for upscaling log data, then the length must 
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correspond to depositional space.  Upscaling to equal intervals in this space accounts for 
deformation like folding and differential compaction. 

 

Figure 2-14: Similarity of averaging with vertical wells and a regular grid (left) to upscaling 
with equal intervals (right).  Identical upscaled values are achieved with arithmetical 

averaging (middle). 

A side effect of using point scale data is the scale of larger elements is not precisely 
accounted for.  In geostatistical modeling, the error in assigning point scale estimates to 
larger scale elements can be measured.  For arithmetically averaging variables such as 
porosity, the error is expressed as the decrease in variance incurred through an increase in 
scale.  It is computed using dispersion variance or average variograms in Equation 2.3, 

where ఙ݂ is the reduction in variance going from scale ݒ to ܸ, where ݒ, ܸ, and Ω denote 
the point, grid element, and reservoir volume scales respectively.  A variance reduction 
parameter can be specified, which is translated into an upper bound on element volume.  
Equation 2.4 provides the average variogram value from which the volume is derived. 
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Deriving a volume is non-trivial.  Several reasons for this are: 1 – each reservoir property 
has a different variogram, giving different average variograms; 2 – variograms depend on 
orientation and using simplex discretization results in grid elements with many different 
orientations; 3 – distances and variogram computations are defined in depositional space 
whereas the discretization is computed in geological space.  The last point leads to a 
spatially dependent volume in cases where post-depositional and syn-depositional events 
have altered the volume of reservoir rock as with differential compaction and variable 
sedimentation rate. 
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These three problems are handled using the following approaches and assumptions.  To 
deal with multiple variograms, specify a single variogram for grid design purposes so that 
for any separation vector, ܐ, the variogram for grid design, ߛ௚(ܐ) is not less than all other 

variogram models, ߛ௞(ܐ), ݇ = 1,… ,݉ variables, that are involved (Equation 2.5).  

Average variogram values using ߛ௚(ܐ) will always be larger, leading to a volume that in 

the worst case results in the specified variance reduction parameter. 

 ( ) ( ) , 1,...,g k k mγ γ≥ ∀ =h h h  2.5 

Deriving the volume from ߛ௚(ܐ) for the second problem and handling orientation effects 

is possible using an iterative approach like that implemented in Frykman and Deutsch 
(1999).  This is done in depositional space where volumes have not been affected by 
post-depositional events.  In the third problem with spatially dependent volumes, spatial 
dependence is a consequence of the transformation.  In depositional space, the time-space 
volume is constant.  Generating the fine scale grid for geological modeling is still carried 
out in geological space, since it depends on the geometry of the coarse grid for flow 
simulation.  Element volume calculations are done in depositional space to impose 
volume constraints on grid generation; however, this requires mapping the elements from 
geological space.  The validity of this process assumes that through the transformation 
from geological to depositional space, distortions in a grid element’s geometry are 
minimal.  This is a reasonable assumption since the scale at which the spatial 
transformation operates is significantly larger than the scale of grid elements.  For 
example, in Figure 2-7 a triangle with straight edges in geological space remains a 
triangle with straight edges in depositional space.  Using a triangle in the region that has 
undergone a substantial amount of compaction, a comparison between the actual triangle 
geometry through the transformation is shown as compared to the straight edge 
approximation (Figure 2-15).  The difference in area is 1.785%, and this is for a relatively 
extreme synthetic case of compaction and deformation. 

 
Figure 2-15: Difference in triangle area for the actual geometry through the mapping 

process and assuming straight edges.  The triangle of interest is shown on the left. 
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More detail on deriving a volume and controlling grid discretization is covered in 
Chapter 4 due to its relation to upscaling.  It is shown that the error incurred in going 
from point scale to a discretized grid element scale is mitigated through upscaling.  
Discretization volume constraints are derived from the error in upscaled properties rather 
than the error from point scale to element scale. 

2.2.4  Seismic Data 
Other forms of sample data are large relative to geological modeling grid elements.  
Some typical examples are seismic, well test data, and historical production data.  This 
section focuses on incorporating seismic data into geostatistical modeling on unstructured 
grids.  It is often referred to as secondary data because it is used to guide modeling of 
reservoir properties (primary data) directly used in flow simulation.  Several techniques 
to account for seismic data in geostatistical reservoir modeling include regression, 
external drift, locally varying mean, block cokriging, collocated cokriging, and simulated 
annealing (Xu et al, 1992; Deutsch et al, 1996; Deutsch and Journel, 1998).  Most 
techniques are discussed in terms of enhancing lithology and porosity modeling.  For the 
remainder of this section, it is assumed that seismic has been processed or inverted into a 
useful attribute such as acoustic impedance (AI) that is correlated with a primary variable 
(Haas and Dubrule, 1994). 

Apart from block cokriging, all methods require the seismic attribute, typically AI, be 
available at all locations.  Existing modeling practices using structured geological grids 
involve two situations with seismic data: 1 – the seismic attributes are available at a 
higher resolution laterally and a coarser resolution vertically than the geological grid; 2 – 
similar to 1, but the seismic attributes are available at the same vertical resolution as the 
geological grid.  The lateral resolution of seismic is typically high with 12.5 by 12.5 
meter sample spacing (Liner, 2004).  Structured geological models often involve 
elements that are 16 to 64 times larger in area, requiring upscaling of the seismic 
attributes to obtain collocated samples.  Vertical resolution of seismic is typically larger 
than the geological grid and is interpolated at points matching the grid element centers. 

For unstructured grids, several situations are possible.  The resolution of seismic both 
laterally and vertically may be higher or lower than the size of the unstructured grid 
elements.  However, the point scale chosen for hard data as discussed in the previous 
section is constant.  It is the point scale data that is involved in seismic calibration 
processes (Deutsch et al, 1996), which uses seismic at its available resolution.  Therefore, 
making point scale estimates on unstructured grids should not involve any change in 
scale for seismic data, such as block averaging to unstructured elements.  Rather, a 
nearest neighbour re-sampling approach could be used to obtain data for collocated 
cokriging.  Full cokriging could also be used. 
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2.2.5  Visualization 
Visual display of reservoir models is important to their analysis.  Geostatistical models 
should be checked numerically and visually for consistency and correctness.  Visual 
checks can reveal issues with specific components of the workflow, for example: 
unrealistic intersection of geological structures; coincident samples, which cause a 
singularity in kriging; and unreasonable grid element geometry.  They are also useful for 
determining if changes to a grid design are necessary, for example if surfaces and faults 
are represented accurately or if a well has been integrated into the design properly.  Tools 
to accomplish these tasks using unstructured grids are becoming available.  To list a few, 
Paradigm GOCAD has two plugins available for unstructured grids and Eclipse FloGrid 
from Schlumberger handles unstructured grids as well.  Developments are also being 
made in other areas of research.  This dissertation utilizes an open-source visualization 
application called Paraview (Squillacote, 2008). 

Paraview accepts many types of geometric primitives and grid element types (Schroeder 
et al, 2002).  Four built in element types useful for reservoir modeling are quadrilateral, 
hexahedron, triangle, and tetrahedral elements.  Voronoi elements can be defined in two 
dimensions using the polygon element type; however, in Paraview there is no equivalent 
in three dimensions.  Either a set of polygons can be used to represent the faces of a three 
dimensional Voronoi element, or a set of tetrahedral elements can be used.  One method 
of defining structured and unstructured grid designs and element properties to visualize in 
Paraview is through keyword based text files (Kitware, 2006).  Table 2-1 provides a 
sample file that defines the four element types listed previously (Figure 2-16). 

 

Figure 2-16: Illustrative example of four element types visualized in Paraview.  Elements are 
numbered according to their type. 
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Table 2-1: Example Paraview input file for Figure 2-16. 

Line Text Line Text 
1 # vtk DataFile Version 3.0 18 CELLS 4 23 
2 Figure 2-11 19 8 0 1 2 3 4 5 6 7 
3 ASCII 20 4 4 5 6 8 
4 DATASET UNSTRUCTURED_GRID 21 4 9 2 6 10 
5 POINTS  11 float 22 3 9 2 3 
6  0.000  0.000  0.000 23  
7  7.000  0.000  0.000 24 CELL_TYPES 4 
8 10.000 10.000  0.000 25 12 
9  0.000 10.000  0.000 26 10 

10  0.000  0.000 10.000 27 9 
11 10.000  0.000 10.000 28 5 
12 10.000 10.000 10.000 29  
13  0.000  7.000 10.000 30 CELL_DATA  4 
14  5.000  5.000 14.000 31 SCALARS z float 1 
15  7.000 15.000  0.000 32 LOOKUP_TABLE default 
16  7.000 15.000 10.000 33 2 
17  34 4 

  35 1 
  36 3 

 

2.3 Grid Design 

Two grids are involved in reservoir analysis; a fine grid for geostatistical modeling and a 
coarse grid for flow simulation.  Consistency between the two grids is important for up 
and down scaling between grids.  Fine grids are designed to honour major geological 
features such as faults and surfaces and provide adequate detail for upscaling.  Flow 
simulation grids or coarse grids have the following characteristics: they are solvable by 
existing simulators; they honour major geological features, wells and other boundary 
conditions; and minimize error that occurs due to approximating the flow with a discrete 
system of elements.  Additional goals are needed for geological grids to ensure a 
seamless transition to flow simulation grids.  These goals were identified in Chapter 1 
and are reiterated here: 

1. The coarse and fine grids are both amenable to existing flow simulation 
algorithms. 

2. The accuracy of upscaling processes is consistent for all coarse elements. 
3. Fine elements do not overlap one another and are fully embedded in coarse 

elements. 
4. The interfaces of fine elements align with coarse element interfaces. 

These are not part of current geological grid design that involves structured grids in 
geological space.  Structured grids often have non-orthogonal features (Figure 2-17), 
which is contradictory to the first goal, that is, such features are not ideal for the TPFA.  
Non-orthogonal geometry and partial element connections cause grid orientation effects 
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with existing commercial flow simulators that use the TPFA method (Aziz, 1993; Aarnes 
et al, 2007).  Other problems with structured grids for flow simulators are summarized by 
Farmer (2005).  Problems are avoided by using different geological grid designs such as 
simplex grids, and targeting different flow simulation algorithms for upscaling and full 
field simulation. 

This section covers types of inputs that contribute to grid design ranging from choice of 
flow simulator to seismic, log, and core data.  The influence each input has on the design 
is discussed with some examples for demonstration purposes. 

 

Figure 2-17: Structured grid aligned with horizons and faults. Not to scale. 

2.3.1  Inputs 
An abundance of data sources exist for reservoir analysis and can be used for grid design.  
Several variables provide information about the structure, heterogeneity, and conditions 
of a reservoir, the most common ones are listed in Table 2-2 and their impact on grid 
design is summarized.  Variables in Table 2-2 are organized in an order they might be 
incorporated for grid generation: 

1. Determine the grid type. 
2. Define boundaries. 
3. Define interior geometry and detail. 

The following sections cover grid design with simulator choice, geological structure, 
wells, and hard and soft data. 
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Table 2-2: Variables and their influence on grid design 

Variable Influence 
Simulator 
choice 

Determines how the flow equations and grid are discretized to achieve 
convergence to the correct solution.  For example, use of the TPFA technique 
limits grids to regular or locally orthogonal, whereas use of the MPFA method 
permits general polygonal or tetrahedral grids. 

Grid purpose The type of production the grid is intended to simulate will influence grid 
parameters such as the type of elements to use and their volume and resolution.  
For example, a large scale application may use a fairly coarse PEBI grid, 
whereas a smaller SAGD application may use a high resolution structured grid. 

Geological 
structure 

Horizons, faults, geologic objects, and boundaries that are expected to 
influence flow should be incorporated into grid design.  Flow across or along 
these structures is captured more accurately and it is possible to incorporate 
additional information about the surfaces.  For example, faults may be 
conductive, transmissive, or sealed and impermeable.  Structural modeling is 
also important for mapping from geological space to depositional space. 

Existing wells Wells involved in the production process, such as those used for injection or 
production, influence the grid.  Unstructured grids commonly incorporate 
dense radial grids around wells to capture radial flow there.  Well trajectories 
and perforated intervals can also be used to constrain near well discretization. 

Future wells If future well sites for production are known in advance, they can be 
incorporated into the grid in a similar manner to existing wells. 

Single well test 
data 

Drawdown and buildup tests provide information about the effective 
permeability within the vicinity of a well, which can be used to condition the 
near-well permeability field (Wen et al, 2005).  They also provide information 
about the area of influence of the test, which can be used for controlling radial 
grid design. 

Multiple well 
test data 

Interference tests and tracer data can provide information about the occurrence 
and flow character of faults, effective permeability, connectivity between 
wells, and pressure distributions.  This data can be used to characterize 
surfaces with flow parameters such as transmissibility multipliers, to condition 
permeability fields between wells based on connectivity, and to provide a 
rough idea of pressure gradients and streamlines for flow based gridding. 

Historical 
production data 

Provides similar information as multiple well test data.  Additional information 
includes well drainage volume and well communication. 

Seismic data Helps identification and modeling of structures and influences geological 
property modeling, which can control grid resolution. 

Well log and 
core data 

Provide information about distributions and variography of facies, porosity, 
and permeability.  Preliminary mapping of these variables helps to identify the 
spatial distribution and level of uncertainty which can be tied to grid resolution.  
Permeability models can also be used in flow based gridding. 
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2.3.2  Simulator Choice 
Selecting the type of grid to use is dependent on the simulator, the application, the 
capability of the model, and on knowledge about the reservoir including the depositional 
environment and fluids involved.  In Chapter 1, several simulation techniques were 
discussed along with grids they can handle; however, flow simulators have additional 
limitations that impact grid design.  Simulators using TPFA should be limited to regular 
or locally orthogonal grids and diagonal tensor permeability (Chen et al, 2007).  More 
flexibility in design is possible with MPFA simulators.  Hexahedral, polygonal, and 
simplex grids with full tensor permeability are possible.  However, finding a solution for 
the pressure field is sensitive to the magnitude and anisotropy of permeability.  In 
extreme cases, it can be shown that the system matrix for MPFA is not an ܯ-matrix, 
resulting in non-physical pressure oscillations (Aavatsmark et al, 1998; Eigstad and 
Klausen, 2005; Mlacnik and Durlofsky, 2006).  Oscillations that reduce pressure can lead 
to dissolution of gasses where this would normally not occur.  If it is possible that the 
environment and fluids will lead to these conditions the MPFA method may not be 
appropriate, or care must be taken in subsequent grid design steps.  For example, grid 
optimization can be applied to improve the quality of the solution (Mlacnik and 
Durlofsky, 2006). 

2.3.3  Grid Purpose 
Grid selection is also influenced by the targeted application and scale of the problem.  
Conventional production processes may be effectively discretized using coarse hybrid 
grids.  If little structure is involved, a regular grid may suffice.  Enhanced recovery 
processes (Donaldson et al, 1989) such as immiscible and miscible displacement may 
require more accurate representation of structure and increased resolution to better 
describe the geometry of the frontal and interface regions (Sammon, 2003).  Different 
discretizations may be required for thermal applications such as cyclic steam injection 
and SAGD.  Describing the distribution of temperature and viscosity and simulating the 
gravity drainage process demands a higher resolution model than conventional 
production for example (Christensen et al, 2004; Skoreyko, 2003). 

2.3.4  Geological Structure 
In existing workflows and the proposed workflow suggested in Section 2.1, structural 
modeling is carried out prior to any gridding.  Structures can be used to constrain 
resulting discretization.  In many cases, incorporating faults and stratigraphic surfaces 
into a structured grid cannot be accomplished while maintaining orthogonality resulting 
in distorted grid designs and partial element connections (Figure 2-17).  If orthogonality 
is a condition of grid design, then a more appropriate discretization is a PEBI grid (Figure 
2-18). 

Other grid choices like tetrahedral grids can make the inclusion of structure more 
straightforward.  Specifying a point distribution defines the vertices and faces of 
tetrahedral elements directly, so vertices can be placed directly on the surfaces thereby 
reproducing them (Figure 2-18).  Since the set of element faces along surfaces form a 
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triangulation, it would be logical to use triangulations for initial structural modeling.  
They can be reproduced exactly by the final tetrahedralization.  Constrained tetrahedral 
grid generation is well developed for a variety of problems, with the majority of research 
targeting grid optimization (Du and Wang, 2006). 

Structural surfaces are demonstrated in an example involving four horizons, which form 
three stratigraphic layers, and two faults (Figure 2-19).  The area of interest covers a 
1,000 by 500 meter area and is roughly 25 meters thick.  Upper and lower layers are 
permeable while the middle layer is assumed to be a very low permeability shale barrier.  
It is assumed that only folding and faulting of the layers has occurred, in that order, and 
stratigraphic coordinates are satisfactory.  Mapping is a two stage process: first the fault 
block is translated to align the horizons, then the layers are flattened using stratigraphic 
coordinates. 

 

 

Figure 2-18: Example grids from Chapter 1: A – PEBI grid with fault, blue to red is low to 
high velocity (Prevost et al, 2005); B – Tetrahedral grid with multiple intersecting faults 

(Prevost et al, 2005). 
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Figure 2-19: Isometric view of structures for grid design example (top); unfaulted and 
flattened surfaces in depositional space (bottom).  The Z-Strat axis has been scaled to reflect 
the average thickness of each layer.  Lateral coordinate are in 10’s of meters and elevation is 

relative to sea level in meters. 

2.3.5  Wells 
Existing wells and proposed future wells that are involved in the production process 
should be included in the grid design.  This is often accomplished using high resolution 
radial grids centered along the well path.  Increased resolution can provide higher 
accuracy of resulting pressure and flow gradients.  Several methods have been developed 
to incorporate wells into a grid design (Palagi and Aziz, 1994; Flandrin et al, 2006).  
They work under the assumption that a grid design for a reservoir already exists without 
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any wells: first elements are deleted within the vicinity of wells; then new elements are 
reconstructed to form radial or other grid types and stitched to the existing grid.  Some 
work has also been done on generating tetrahedral grids down to the scale of well 
perforations (Karimi-Fard and Durlofsky, 2009). 

Continuing with the example from the previous section, the model is also going to test an 
injection-production well pair.  It is also assumed that the available simulator uses MPFA 
so tetrahedral grids are possible.  Using tetrahedral grids for both the coarse and fine 
scale achieves the four goals listed at the beginning of Section 2.3.  The locations of the 
production and injection wells for the example are shown in Figure 2-20.  Injection is 
proposed into the lower layer and production from the upper layer.  Using simplex grids 
around wells is not exactly like the radial grids shown in Figure 2-2; however, for the 
purpose of capturing the radial flow behaviour near wells, simplex grids with increasing 
resolution towards wells provide the necessary accuracy.  Addition of a radial grid is 
shown for the producing well (Figure 2-21 and Figure 2-22).  The grid was given a radius 
of 70 meters and discretized using 7 radial increments that grow quadratically (the 
spacing from one radius to the next is a quadratic function as opposed to linear) and 11 
tangential increments. 

 

Figure 2-20: Locations of injection and production wells. 

 

Figure 2-21: Triangular radial grid at the producer location (left) and close-up (right).  A 
Cross section from A to A’ is shown in Figure 2-22. 
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Figure 2-22: Cross section showing tetrahedral radial grid along a well. 

 

2.3.6  Seismic, Well Log and Core data 
The spatial distribution of properties can be used to control the local resolution of grid 
design.  Reservoir properties are used as soft constraints on grid design, unlike reservoir 
structures that are used as discrete constraints.  Reservoir structures specify exactly where 
grid element interfaces must lie; whereas spatial distributions can provide control in 
several ways: to specify limits on the variability within unstructured grid elements; be 
converted to a spatial distribution of element volumes to control grid generation; and in 
the case of permeability, be used in flow based grid design. 

Use of property distributions requires some degree of preliminary mapping.  It provides 
an idea of the spatial distribution of variables that correlate with flow such as facies, 
porosity, and permeability.  In geostatistics, mapping is accomplished with one of several 
forms of kriging, which provides an estimate of the expected value of a property, as well 
as a homoscedastic estimation variance that serves as a measure of local uncertainty.  
Integrating the estimation variance into grid generation is not appropriate for highly 
skewed variables such as permeability.  It is possible to grossly underestimate the 
variance in areas where high permeability is expected, and overestimate it in areas where 
low permeability is expected, leading to a suboptimal grid.  The phenomenon for such 
distributions is known as the proportional effect (David, 1977; Manchuk et al, 2009), and 
various techniques are available to obtain a more appropriate estimation variance 
including distribution mapping (Oz et al, 2003), interpolation variance calculation 
(Yamamoto, 2000), and indicator kriging methods (Goovaerts, 1994). 
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Another important aspect to consider during preliminary mapping is data dependence.  
Relationships may exist between permeability, porosity, and facies for example.  Such 
information is analysed and incorporated into modeling during data preparation.  It is best 
to use the same modeling techniques and parameters for preliminary mapping that will be 
used in generating the final models.  Using numerical models of reservoir properties to 
control unstructured grid design is discussed by several authors (Pirzadeh, 1993; 
Yadecuri and Mahani, 2009).  Other references to flow based grid design are found in 
Chapter 1. 

Preliminary mapping using geostatistics has two possible outcomes: 1 – a single model 
that gives local distributions of uncertainty for each property (kriging); 2 – a set of 
models or realizations of each property that are equally probable (simulation).  Using 
kriging results, or similarly the expectation of a set of realizations, to control grid design 
gives one design.  Design of this type is referred to as designing in expectation, and the 
objective is to generate a grid to account for a set of realizations, rather than for a specific 
realization.  Using simulation results for grid design gives a different design for each 
realization.  This could be very tedious unless a fully automatic grid generation system is 
available. 

Using the same stratigraphic layout and well locations as in Figure 2-19 and Figure 2-20, 
preliminary mapping on a regular grid is done to provide a synthetic permeability model 
that is used for grid generation.  The regular grid was arbitrarily chosen in depositional 
space with the number of elements in x, y, and z of 39, 19, and 49 respectively (Figure 
2-23). 

 

Figure 2-23: Regular grid for preliminary mapping in geological space (left) and 
depositional space (right).  Units are in 10’s of meters. 
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Figure 2-24: Synthetic permeability model from preliminary mapping.  Units are in 10’s of 
meters. 

Typical geostatistical methods were used to generate several realizations that were 
averaged to provide an expected permeability model (Figure 2-24).  The full range of 
log(k) is -9 to 4.  This is used to control grid generation in two ways: 1 – element volume 
is related inversely to the magnitude of permeability; 2 – element volume is controlled by 
flow velocity in a flow-based gridding approach. 

Generating a tetrahedral grid using TetGen with permeability based volume control is 
done in an iterative fashion.  One of the command line arguments for TetGen is the ‘r’ 
switch that reconstructs or refines a grid that has already been generated.  Several 
refinement modes are possible, but the one of interest involves creating a text file of 
volume constraints that defines the maximum volume for each tetrahedron.  Using the ‘r’ 
switch along with ‘a’ tells TetGen to read in the volume file and apply the constraints.  
This capability is used as follows: 

1. Convert the permeability model into a volume model.  A high contrast volume 
model is used in the example (Equation 2.6).  The large volume is set high so that 
no refinement is applied for low permeability. 
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2. Generate an initial coarse tetrahedral grid with the ‘p’ switch, possibly with a 
quality constraint or global maximum volume constraint (‘pq’ or ‘pqa’).  For the 
example, ‘pq1.4’ was used that imposes the quality radius-edge ratio of 1.4. 

3. Find the nearest point in the volume model to the tetrahedra barycenters and 
generate a volume file. 
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4. Refine the mesh from 2 using ‘ra’ and repeat step 3.  Iterate until the grid is 
desirable or does not violate any volume constraints.  In the example, ‘rq1.4a’ is 
used to maintain the quality. 

In the model, there is also the very low permeability layer where no flow is expected to 
occur.  This can be eliminated from the tetrahedral grid by identifying the layer as a hole 
for TetGen.  Holes are specified as three dimensional points falling inside an enclosed 
portion of the piecewise linear complex (Miller et al, 1996; Si, 2006) used to define the 
reservoir model.  All tetrahedra within the enclosed region specified as a hole are 
eliminated from the grid. 

After three iterations the grid has 96,915 tetrahedral elements (Figure 2-25).  Volumes 
range from less than 0.02 m3 in the central portion of the radial grids to roughly 80 m3 in 
regions with low permeability.  In comparison with Figure 2-24, the grid has small 
elements where log(k) is above one as well as near wells and large elements elsewhere.  
Also notice the low permeability layer is not included in the grid. 

One of the motivations for going to flow based gridding is shown in the permeability 
based grid.  There are areas of the reservoir that have been gridded with a high resolution 
even though no flow is expected to occur there.  The cross section in Figure 2-26, which 
is oriented exactly as that in Figure 2-20 through the well locations, indicates areas where 
low flow is expected to occur based on the injection and production sites.  It may be 
possible to grid these regions very coarsely or omit them from the model completely 
resulting in fewer elements and more efficient flow simulation.  One possible workflow 
for triangular or tetrahedral flow based gridding involves the following steps: 

1. Generate an initial coarse tetrahedral grid for the reservoir.  It may include 
surfaces, faults, and radial grids around wells. 

2. Use nearest neighbour interpolation to assign permeability from preliminary 
mapping to the unstructured grid element centers. 

3. Build and solve the flow equations for pressure and flux for a given set of 
boundary conditions. 

4. Refine the grid based on one of several measures such as pressure gradient, flow 
velocity, or streamline density.  Reiterate from step 2.  

Refining a grid with this approach leads to a grid with smaller elements only where flow 
occurs.  However, the grid is only valid or optimal for the boundary conditions used for 
its design.  Adding a well or changing boundary conditions will result in a different grid. 

 



 

55 
 

 

Figure 2-25: Tetrahedral grid with permeability based element volume control.  Axes in 10’s 
of meters; volume in m3. 

 

Figure 2-26: Cross section through wells showing areas of low expected flow.  Axes in 10’s of 
meters. 
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2.4 Summary 

This chapter discussed a workflow that incorporates unstructured grids into reservoir 
modeling and flow simulation.  It included the following steps: 

1. Data preparation 
2. Structural modeling 
3. Grid design 
4. Grid discretization 
5. Facies modeling 
6. Continuous property modeling 
7. Model validation 
8. Upscaling 
9. Flow simulation 

Some of the key components were covered.  Discretization is used to increase the 
resolution of coarse unstructured flow simulation grids for geostatistical property 
modeling and upscaling.  Spaces involved in reservoir modeling including geological and 
depositional space were covered and it was shown that existing mapping techniques that 
apply to regular grids also apply to unstructured grids.  A discussion on data scale 
highlighted the scales involved in reservoir modeling and criteria to choose a reasonable 
scale to use.  A reasonable scale is chosen to be practical and minimize loss of detail.  
Some issues with existing methods of upscaling sample data from core and log scale to 
the geological modeling scale were pointed out and a different method was suggested 
whereby upscaled values are not assigned to grid elements, but to the center of the 
upscaling volume.  Incorporating larger scale data such as seismic was also discussed.  
Existing techniques for this are applicable to unstructured grids. 

Visualization is a very important component to reservoir modeling.  It facilitates the 
detection of errors, workflow issues, and areas for improvement or adjustment.  Some 
available software for this was identified.  Visualization is also important for grid design 
that was covered in moderate detail. 
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Chapter 3 Sequential Simulation 

 

This chapter focuses on using geostatistics to populate a discretized unstructured grid 
with reservoir properties.  It develops a sequential simulation algorithm that populates 
grids with categorical variables such as facies and continuous variables such as porosity 
and permeability.  The general workflow of the algorithms is described in Section 3.1.  
Some of the input parameters required for the algorithm are covered in Section 3.2.  
Section 3.3 develops components of the workflow that require a different approach than 
regular grids including defining a random path and searching for data.  Section 3.4 
discusses model validation including histogram reproduction and variogram 
reproduction. 

3.1 Sequential Simulation 

Sequential indicator simulation (SIS) and sequential Gaussian simulation (SGS) are two 
widely used geostatistical algorithms for generating reservoir models (Deutsch and 
Journel, 1998; Deutsch, 2002).  They are typically used to generate a set of equally 
probable models called realizations that reproduce input distribution functions, 
heterogeneity, and patterns of spatial continuity.  Each realization defines the spatial 
distribution of all properties of interest such as facies, porosity, and permeability.  The set 
of realizations are used to quantify the uncertainty in other analyses such as flow 
simulation. 

Simple kriging is the estimation method used in SIS and SGS algorithms.  Given a set of 
conditioning data, the kriging estimate and estimation variance, also referred to as the 
conditional mean and conditional variance respectively, define a distribution function.  
Assuming the random variable is Gaussian, the conditional mean and variance from 
kriging define a Gaussian distribution function.  The distributions are used with Monte 
Carlo simulation to generate realizations.  Several variants of kriging exist and are 
discussed in Chiles and Delfiner (1999), Isaaks and Srivastava (1989), and others. 

Simple kriging is a linear estimator that minimizes the error variance between the true 
value and the estimate based on the covariance function of the property.  The estimate, ݕො(ܝ), is a linear combination of ݊ conditioning data, ݕ(ܝ௜), given by Equation 3.1, where ߣ௜ are the kriging weights. 
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Minimizing the estimation variance defined by Equation 3.2 leads to the system of 
equations in Equation 3.3, where ߪ௬ଶ is the variance of ݕ and ܝ)ܥ௜,  ௝) is the covarianceܝ

between locations ܝ௜ and ܝ௝ calculated based on the variogram of ݕ.  This forms a linear 

system of equations in Equation 3.4, where ۱ is the covariance matrix between 
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conditioning data and ܋ is vector of covariance between conditioning data and the 
estimate. 
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The kriging equations are applicable to any data configuration.  Kriging and simulation 
algorithms using kriging are therefore applicable to discretized unstructured grids. 

A general workflow for building reservoir models using SIS and SGS is described in the 
following list.  It is executed within a domain that is assumed to be first and second order 
stationary (Journel and Huijbregts, 1978; McLennan, 2007).  These are typically the 
individual stratigraphic layers within a reservoir.  Sample data, referred to as conditioning 
data for geostatistical modeling, is used to derive input parameters for the geostatistical 
simulation algorithms.  A grid specification is also required to define the spatial locations 
where reservoir properties are modeled.  Once all parameters are defined, sequential 
simulation proceeds as follows: 

1. Data transformation.  Facies are transformed to indicators for SIS.  Porosity and 
permeability are transformed to a standard normal distribution for SGS. 

2. Define a random path to traverse through the grid elements. 
3. For each element: 

a. Search for conditioning data and previously simulated values. 
b. Perform kriging of facies proportions or the conditional mean and variance. 
c. Draw from the conditional distribution and add to the pool of previously 

simulated values. 
4. Back transformation.  Indicators are converted to categories and normal values to 

their corresponding input distributions. 

Resulting models are validated to ensure input statistics are reproduced.  Two common 
checks are histogram reproduction and variogram reproduction.  Histogram reproduction 
compares the histogram of the realizations with the histogram of the conditioning data.  
Variogram reproduction compares the realization variograms with the input variogram.  
When multivariate data are involved, the correlations between properties are also checked 
to ensure the correlation of the realization match those of the conditioning data. 

Applying the sequential simulation algorithm to discretized unstructured grids is done 
using the centers of the grid elements.  Centers form an irregular configuration of points 
throughout the reservoir in geological space.  The configuration remains irregular in 
depositional space.  When structured grids are used, the mapping results in a regular 
gridded set of points.  There are no changes to the algorithm for irregular sets of points, 
but components requiring some attention are: the input histogram; generating a random 
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path; searching for nearby conditioning data; and validating models.  A sequential 
simulation program called psgsim was developed for this and is described in the 
Appendix. 

 

3.2 Input Parameters 

Geostatistical simulation involves several parameters that are derived from hard and soft 
conditioning data including: trends and other non-stationary behaviour such as locally 
varying moments; univariate and multivariate distribution functions; correlation 
coefficients; and variograms.  Several general books on geostatistics describe these 
parameters (Goovaerts, 1997; Deutsch, 2002; Wackernagel, 2003; Webster and Oliver, 
2007).  Statistical parameters explained in this section include the histogram and 
variogram.  Another input parameter for simulation is a grid.  In existing sequential 
simulation algorithms, the grid is regular and is fully defined by 9 parameters: in each 
coordinate direction, the number of grid elements, the origin of the grid, and the element 
extent are defined.  The algorithm developed in this chapter is intended to work with any 
spatial configuration of points.  When the algorithm is applied to an unstructured grid 
discretization, the points are the centers of the grid elements.  The algorithm can be 
applied to any configuration of points. 

3.2.1 Histogram and Variogram 
The histogram and variogram derived from conditioning data depend on the scale of the 
data and on the space where the data resides.  The scale of data for modeling a discretized 
unstructured grid is equal to the scale of conditioning data as discussed in Chapter 2, 
where the scale was referred to as point scale.  The histogram and variogram represent 
the same point scale.  These parameters also depend on the space in cases where the 
mapping from geological space to depositional space is non-linear.  In a non-linear 
transformation, either the relative position of points change affecting the variogram, or 
the volume each point represents changes affecting the histogram.  The variogram is 
affected by changes in relative position because this changes the distance.  An example 
where relative position is changed, but not volume, is through reversing the displacement 
caused by a fault (Figure 3-1).  Experimental variograms and variogram modeling makes 
sense in depositional space where Euclidean distances provide the correct correlation.  
An example where volume is changed but not relative position is in undoing the 
differential compaction of Figure 3-2.  If the point configuration were not central in the z-
axis as shown, the relative point position would also change.  Transformations will 
usually change both relative position and volume. 
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Figure 3-1: Change in relative point position from undoing a fault. 

 

Figure 3-2: Change in volume from undoing differential compaction. 

Changing the volume through a spatial transformation can lead to a different histogram in 
each space.  Consider the example in Figure 3-3 involving a hypothetical porosity model 
with a trend in the horizontal direction.  The hypothetical porosity model was created by 
linearly varying porosity along the x axis and adding some uniform random noise.  
Values were scaled to an arbitrary range of 0.07 to 0.44.  In geological space, the 
histogram has a lower mean and is negatively skewed whereas in depositional space the 
histogram is roughly uniform with zero skew.  If the trend is removed from the porosity 
field, the distribution of the uniform random values in each space is nearly identical; 
however, the trend may not be so evident in all cases.  Also, the effects of spatial 
transformation on the histogram may not be clear because we rarely have exhaustive 
knowledge of the reservoir properties. 

 

Figure 3-3: Effect on the histogram of transforming differential compaction (left) to 
depositional space (right). 
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The final histogram of interest is that of the reservoir properties in geological space.  
Computations such as hydrocarbon volume require the distribution of porosity and oil 
saturation in geological space.  The distribution of permeability is required in geological 
space for flow simulation.  From Figure 3-3, the histogram on the left is an example of 
the resulting porosity distribution that a realization from SGS should reproduce; however, 
using this distribution for input will not give these results using structured or unstructured 
grids.  In the structured grid case, the grid is mapped to depositional space where it is 
regular and defines the scale and variogram space for SGS (Figure 3-4).  Even though the 
realization produces the input distribution, it is at the scale of the grid in depositional 
space.  Computing the distribution in geological space requires the values of the 
realization be weighted by the grid element volumes in geological space.  Weighting was 
already applied to obtain the input distribution.  Applying weighting again will lead to the 
wrong porosity distribution and in this case inflation of the mean due to the negative 
skew.  For SGS to reproduce the correct porosity histogram in geological space, the input 
histogram should be the depositional (Figure 3-3, right). 

 

Figure 3-4: Structured grid associated with Figure 3-3 mapped to depositional space. 

In almost all cases the histogram of a reservoir property is not known and it must be 
estimated from available conditioning data.  When a reservoir is not sampled uniformly, 
the data are often declustered to estimate the true distribution (Journal, 1983; Deutsch, 
1989).  Declustering should be applied in depositional space where the distribution is 
required.  Moreover, this has the advantage that post-depositional effects do not influence 
the declustering process. 

3.2.2 Grid Specification 
Grids define a set of spatial locations that are populated using geostatistical methods.  In 
existing techniques, reservoirs are modeled using structured grids and the set of locations 
is the grid element centers.  The transformation from geological space to depositional 
space results in a regular grid for modeling.  Using a discretized unstructured grid is 
similar.  The centers of the elements define a set of locations that are mapped to 
depositional space; however, the configuration of points is irregular.  In this thesis, 
unstructured grids are always discretized using a simplex grid, but other discretizations 
are possible so this section is kept general. 
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Not all unstructured grids are defined using element centers, for example, in the finite 
element method properties can be assigned to the element vertices.  Another example 
involves PEBI grids, where the set of points that define its dual grid are not always PEBI 
element centers (Figure 3-5).  This dissertation focuses on populating points that are 
inside the corresponding grid elements.  In the following, it is found that using element 
centroids is optimal. 

Each grid element also has a volume that is different than the scale of conditioning data.  
Kriging estimates based on the scale of conditioning data have a variance with the same 
scale, not a variance representative of the grid element scale.  The associated error was 
discussed in Chapter 2 and for an unstructured grid discretization will not exceed the 

variance reduction parameter fσ.  Another error involves the magnitude of the estimate 
that depends on the location of the estimate within the grid element.  Minimizing both 
errors is based on simple kriging. 

 

Figure 3-5: Voronoi element centroid by decomposition from Chapter 1.  Numbers above the 
triangle centroids are the areas and those in parenthesis are ࢞ and ࢟ coordinates 

Consider a particular element ݒ from an unstructured grid: the point scale estimate using 
simple kriging is defined by Equation 3.1 and the ݒ-scale estimate by Equation 3.5, 
where an overbar is used to indicate kriging weights are derived using the average 
covariance between conditioning data and the grid element (Equation 3.6).  Also, the 
estimate ݕො௩ is no longer associated with a location, ܝ, but with the whole element. 
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Average covariance between ݕ(ܝ௜) and ݒ is defined by Equation 3.7, where |ݒ| is the 
element volume (Equation 3.8). 
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The point with position ܝ should be located to minimize the error between the point scale 
estimate made without average covariance and the ݒ-scale estimate made with average 
covariance. 

The assumptions involved include: 

1. Properties scale arithmetically at least up to the scale of the grid element 
permitting the use of average covariance. 

2. The element ݒ is small relative to the scale of variation of the covariance 
function, that is, the covariance function is nearly linear for any distance that 
spans ݒ. 

3. The element ݒ is convex. 

The minimization problem is defined by Equation 3.9 and is simplified after substituting 
in the equations for the kriging weights. 
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Under the assumptions specified, Equation 3.9 is minimized by setting the value in 
parentheses to zero.  Covariance functions in geostatistics are functions of distance; 
therefore under assumption 2 listed previously the covariance is proportional to the 
distance and a proxy for the average covariance of Equation 3.7 is given by Equation 
3.10, where ܝ)ݎ௜,  .ܟ ௜ andܝ is the Euclidean distance between (ܟ
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Consider the case with one conditioning datum, then Equation 3.9 is written as Equation 
3.11. 
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Setting ܝ)̅ܥ௜, (ݒ − ,௜ܝ)ܥ  to zero and rewriting using the distance function results in (ܝ
Equation 3.12.  Reorganized into Equation 3.13, the left hand side defines the centroid of ݒ in terms of the distance coordinate ݎ.  This is a contour of constant distance around ܝ௜.  
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Considering a second conditioning datum ܝ௜ାଵ, the resulting contours intersect near the 
centroid of ݒ. 
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Equation 3.13 is evaluated for three conditioning data and a triangular element with an 
area of 1.5 m2 in Figure 3-6.  As ݒ gets larger, especially in a direction orthogonal to the 
vector from ܝ௜ to u, the contour departs from the centroid because the distance surface 
over ݒ is cylindrical.  However, when several conditioning data are present, the average 
of the intersections near the center of ݒ will approximate the center of ݒ and minimize the 
error between the estimate and estimation variance made with and without the use of 
average covariance. 

 

Figure 3-6: Contours equal to the average distance between points and a triangular element 
intersecting at the element centroid. 

When geostatistical simulation is used to populate a grid and average covariance is not 
used, the points should be the centroids of the grid elements.  This holds true for all grids 
including those where the centroids are not used in other processes such as flow 
simulation.  For example, flow simulation on PEBI grids uses the vertexes of the dual 
triangular grid, which do not always coincide with the centroids of the PEBI grid 
elements.  In another scenario, if a PEBI grid were used to discretize an unstructured grid, 
it would be populated using geostatistics and the element centroids, then flow based 
upscaling would use the vertices of the dual triangular grid. 

The consequences of using points other than the centroid to model reservoir properties 
are demonstrated with a configuration of points that are not evenly spaced, but that result 
in a Voronoi grid that is also a regular grid (Figure 3-7).  Random Gaussian fields are 
generated with no conditioning data (unconditional) using the centroids and using the 
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Voronoi grid points.  Fields are generated with LU simulation (Davis, 1987) that is a 
technique for generating Gaussian processes using Cholesky factorization and involves 
the following steps: 

1. Compute the covariance matrix between all points, ۱ = ,௜ܝ൫ܥ ,௝൯ܝ ݅, ݆ = 1, … , ݊, 

where ݊ is the number of points. 
2. Compute the Cholesky factorization of the covariance matrix, ۱ =  ்ۺۺ
3. Generate a vector of Gaussian random numbers with length ݊, ܡ଴. 
4. Correlate the random vector with the lower triangular matrix, ܡ = ۺ ∙  ଴ܡ

Resulting Gaussian fields have the correct covariance structure or variogram.  Multiple 
realizations are generated by repeating steps 3 and 4 with different Gaussian random 
vectors, ܡ଴.  With this approach, the same vector ܡ଴ is used to generate a random field at 
the centroids and at the Voronoi points; therefore they can be compared directly since the 
differences originate strictly from the covariance matrix that depends on the position of 
the points. 

 

Figure 3-7: Voronoi grid with points that do not coincide with the element centroids. 

In this example, the Gaussian fields from LU simulation are converted to synthetic 
permeability fields using ܢ = exp(ܡ).  An isotropic spherical variogram with a range of 5 
meters and no nugget effect is considered for this example.  Several items are compared 
visually and with sum squared error (SSE) measures between using the centroids, which 
is correct, and using the Voronoi points including the differences in: 

1. Synthetic permeability fields. 
2. Two-point transmissibilities computed using the Voronoi points. 
3. The upscaled permeability using the static averages covered in Chapter 1 

including arithmetic, harmonic, and geometric. 
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SSE is measured for a single realization and its distribution over a set of 500 realizations 
is also computed.  For upscaled permeability, the distribution of the difference over the 
set of realizations is used for comparison. 

Two-point transmissibility is used to relate the flux across an interface in the grid to the 
pressure in the elements that share the interface (Chen et al, 2007).  Transmissibility 
across a vertical interface in the Voronoi grid is computed using Equation 3.14, where ∆ݕ 
is the length of the ݕ-interface that is intersected orthogonally by the vector from point ܝ௜ 
to ܝ௝, ∆ݔ is the length of the vector from ܝ௜ to ܝ௝, and ݇௫ is the permeability in the ݔ 

direction (Figure 3-8).  The equation for the transmissibility across the horizontal 
interfaces is similar with ∆ݕ and ∆ݔ flipped and ݇௬ instead of ݇௫.  For this example, 

permeability is isotropic, that is, ݇௫ = ݇௬. 

 2 xi xj
ij

xi xj

k kyT
x k k

⋅Δ=
Δ +

 3.14 

 

Figure 3-8: Components for evaluating Equation 3.14. 

A realization of permeability using Voronoi points, centroids, and the difference is shown 
in Figure 3-9.  The SSE between the fields is 12.53.  The difference between adjacent 
simulated values caused by the difference in distance between centroids and Voronoi 
points can be seen, for example, in the elements at (ݔ = 2, ݕ = 1) and (ݔ = 3, ݕ = 1).  
For the Voronoi point pairs across vertical element interfaces that are closer than centroid 
points, the values are more similar as expected since the covariance between them is 
higher.  The reverse is true for Voronoi point pairs that are further apart. 

Differences in the permeability fields lead to different transmissibility fields in ݔ and ݕ 
(Figure 3-10 and Figure 3-11).  In flow simulation, this will result in a different pressure 
and velocity field and therefore in a different flow response.  Histograms of the 
permeability and transmissibility errors for 500 realizations were also generated (Figure 
3-12).  Errors tend to follow a lognormal distribution since the synthetic permeability 
realizations are lognormal. 
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Figure 3-9: Permeability fields using Voronoi points, centroids and the difference. 

 

Figure 3-10: ࢞-Transmissibility fields using Voronoi points and the permeabilty fields from 
Figure 3-9. 
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Figure 3-11: ࢟-Transmissibility fields using Voronoi points and the permeability fields from 
Figure 3-9. 

 

Figure 3-12: Histograms of SSE measures for 500 realizations. 
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Three averages were used to approximate upscaled permeability of the 6 m by 6 m 
region: arithmetic, geometric, and harmonic.  Histograms of the error incurred when 
computing the upscaled permeability using the field generated with Voronoi points as 
opposed to element centroids are shown in Figure 3-13.  The errors involved are similar 
to the average SSE divided by the number of element in the underlying permeability field 
and transmissibility fields.  Although the errors do not appear high in magnitude, the 
minimum and maximum permeability values observed in the 500 realizations is 0.016 
and 46.35 mD respectively.  Permeability models can involve much larger values, and the 
error scales with magnitude.  Consider a permeability field with a higher mean, so instead 
of creating a synthetic field using ܢ = exp (ܡ), we use ܢ = exp (ܡ + 4).  The range of 
permeability observed for 500 realizations using this equation is 0.85 to 2,530.7 mD.  
Errors in the average permeabilities are significantly higher (Figure 3-14). 

These errors in average permeability are for one coarse grid element.  For a grid of such 
elements, the errors in average permeability translate into errors in transmissibility as 
they did in the fine scale model, resulting in a different pressure and flow response in 
flow simulation. 

 

Figure 3-13: Error histograms for three static permeability averages of 500 realizations. 
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Figure 3-14: Increase in error for three static permeability averages of 500 realizations using 
permeability with a larger magnitude. 

3.3 Algorithm Details 

Designing a sequential simulation algorithm to work on irregular sets of points involves a 
few differences from existing approaches designed for regular grids.  Differences include: 
how point locations are defined; computation of covariance between points; generation of 
a random path for sequential simulation to follow; and searching for nearby data for 
kriging. 

In geostatistical modeling algorithms that use regular grids, the location of points is 
defined implicitly.  Cartesian regular grids defined by center points require nine 
parameters in three dimensions: 

• Number of elements along each Cartesian axis: ݊௫, ݊௬, ݊௭ 

• Origin of the first element center: ܝ଴ = ,௫ݑ) ,௬ݑ  ௭).  In this definition, the originݑ

or first block is the lower, left, back (minimum ݖ, ,ݕ  .respectively), element ݔ

• Size of each element: ݀ܝ଴ = ,௫ݑ݀) ,௬ݑ݀  (௭ݑ݀

The center of any grid element based on its index, ۷, using the above nine parameters is 

done with Equation 3.15, where ۷ = ൫ܫ௫, ,௬ܫ ,௭൯ܫ ௫ܫ ∈ 1, … , ݊௫, ௬ܫ ∈ 1, … , ݊௬, ௭ܫ ∈ 1, … , ݊௭ 

and ૚ = (1,1,1). 

 0 0( ) d= + − ⋅Iu u I 1 u  3.15 
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With irregular sets of points, the locations are specified explicitly.  There are two 
computational disadvantages to defining points explicitly: 1 – the points are usually 
stored on disk (hard drive) and must be loaded into main memory (random access 
memory or RAM) and this is not required with regular grids; 2 – storing point explicitly 
requires more memory, leaving less for other processes.  Both disadvantages are not 
significant because in most cases, points will only be read into main memory once and 
there is usually an adequate amount of RAM available, especially with 64 bit computers. 

Computing covariance between two points is another difference.  When the relative 
position of two points in a regular grid is identical, the covariance does not change 
regardless of the location in the grid, assuming second order stationarity.  If the 
covariance between two points is computed once, it is known for all other points with the 
same configuration in the regular grid and does not have to be recomputed, but the 
covariance must be stored.  Covariance values are stored in a lookup table, denoted ்ܥ, 
based on the relative index between the two points involved.  For two points in a regular 
grid with indexes ۷ଵ and ۷ଶ, the relative index is ݀۷ = ۷ଵ − ۷ଶ, and the covariance is 
accessed from or assigned to the lookup table: ܥଵଶ =  A two dimensional  .(۷݀)்ܥ
example is given in Figure 3-15. 

 

Figure 3-15: Covariance lookup table for a regular grid. 

When the points are irregularly spaced, no two configurations of points may be the same 
and the type of covariance lookup table for regular grids is not possible.  It is also not 
feasible to store all covariances as ݊(݊ − 1)/2 pairs are involved, where ݊ is the number 
of points in the irregular point set.  The number of pairs grows quadratically with ݊, 
exceeding one billion with ݊ as low as 45,000.  The disadvantage of no lookup table is 
the covariance between any pair of points encountered must be computed, rather than 
referenced from a lookup table. 

Two other differences involving random path generation and searching for data are more 
extensive and are covered in the following sections. 
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3.3.1 Random Path 
Sequential simulation involves estimating conditional distributions for all center points of 
a grid.  It is based on a factorization of the joint probability of grid points and 
conditioning data defined by Equation 3.16, where P is probability, ݊ is the number of 
conditioning data and ܰ is the number of grid points.  For Gaussian random fields, 
conditional distributions are given by simple kriging and used to generate Gaussian 
random values, ݕ௡, … ,  .௡ାேݕ
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For very small problems (݊ + ܰ ≤ 10,000) when all conditioning data and previously 
simulated values can be included in kriging, the path taken through the grid points has no 
effect on results; however, ܰ is typically large (ܰ ≥ 10଺) for realistic problems and the 
conditional probabilities are approximated using a set of nearest neighbours.  In this case, 
the path has an effect on results.  Several approaches to avoid path-related artifacts in 
realizations are based on random or quasi-random paths.  For regular grids, the multigrid 
approach is common (Gomez-Hernandez and Cassiraga, 1994; Chiles and Delfiner, 
1999).  It is a stratified sampling method (Asmussen and Glynn, 2007) that provides 
improved reproduction of the variogram over pure random sampling, especially when 
anisotropy and more complex nested variogram models are involved. 

A multigrid approach for unstructured grids is accomplished using a spatial 
decomposition data structure called a quadtree for two dimensional problems and an 
octree for three dimensions (Klinger, 1972; Berg et al, 2000).  In two dimensional 
problems, the set of grid points is decomposed into four quadrants that form the coarsest 
layer.  Each quadrant is further divided into four more quadrants, forming the second 
layer, and so on.  This recursive decomposition is continued until a quadrant only 
contains one grid or data point (Figure 3-16).  Each quadrant or octant is called a node; if 
nodes contain more than one point, they are split into more quadrants constituting a new 
level; nodes with only one point are called leaf nodes. 

A path is generated from a quadtree or octree by randomly traversing from the highest 
level to a leaf node.  Each time a level is accessed, a different node is chosen than the last 
time it was accessed.  Each time a leaf node is reached, the datum is added to the path 
and the cycle is repeated from the top level.  Leaf nodes are visited only once.  A small 
unconditional simulation example is provided to show variogram reproduction results 
using a purely random path (Figure 3-17), the multigrid approach (Figure 3-18), and the 
quadtree method (Figure 3-19).  A 200 by 200 node regular grid of 1 m elements was 
used.  Sgsim (Deutsch and Journel, 1998) with the number of previously simulated nodes 
limited to 30 was used to generate the conditional distributions.  Average variograms 
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were calculated by taking the average of the experimental variograms of each individual 
realization. 

In all cases, variogram reproduction is close visually.  The SSE between the input model 
and the average variogram of the 50 realizations was computed as well (Table 3-1).  
Errors were calculated up to two different distances: to the variogram range in each 
direction and to a distance of 100 m in each direction.  Samples for the SSE calculation 
were spaced at the element size of 1 m.  For SSE up to 100 m, errors are highest when 
using the fully random path.  The multigrid and quadtree are close, with the quadtree 
performing best in the ݕ-direction.  For SSE up to the variogram range, the quadtree 
approach performs best followed by the multigrid. 

 

Figure 3-16: Schematic of a quadtree for 4 data points. 

 

Table 3-1: SSE of variogram reproduction for different random paths. 

Random Path Type 
SSE in ݔ 

100 m 
SSE in ݕ 

100 m 
SSE in ݔ 

15 m 
SSE in ݕ 

50 m 
Random 0.0775 0.0444 0.0203 0.0241 

Multigrid 0.0234 0.0382 0.0123 0.0132 

Quadtree 0.0243 0.0120 0.0089 0.0085 
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Figure 3-17: Variogram reproduction using a pure random path. 

 

Figure 3-18: Variogram reproduction using the multigrid approach. 

 

Figure 3-19: Variogram reproduction using the quadtree approach. 

Quadtrees and octrees are well suited for unstructured grids where the element volume, 
and hence the point density, varies in space.  The number of levels depends on the point 
density; higher density requires more levels.  Since the dimension of quadrants from a 
particular level is tied to data density, multigrid sampling is achieved for all data densities 
encountered in an unstructured grid.  Two tests are done to show that variogram 
reproduction is achieved for the quadtree approach on non-uniformly distributed points.  
Unconditional realizations are generated using psgsim (see Appendix). 

Test 1: a random point set with 10,000 points is generated using a Gaussian mixture 
model distribution within a 100 by 100 meter domain.  The mixture model consists of 
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three Gaussian kernels centered at (ݔ = 50, ݕ = 20), (80,70), and (25,75) with standard 
deviations of 15, 22 and 8 respectively.  The concentration of points in these three areas 
could represent discretization within the vicinity of three wells for example.  An 
anisotropic variogram model defined in Table 3-2 is used with the 30 nearest previously 
simulated points for kriging.  A single Gaussian realization is shown in Figure 3-20, and 
variogram reproduction results for fifty realizations are shown in Figure 3-22.  Visually, 
the match between the input model and average experimental variogram is good.  The 
SSE computed at a spacing of 1 m in the ݔ-direction and 3 m in the ݕ-direction are 
0.0053 and 0.0087 respectively.  Errors are accumulated up to distances of 20 m and 80 
m in ݔ and ݕ respectively. 

Test 2: the same variogram, nearest neighbours, and domain size is used, but the points 
are distributed along randomly positioned lines that could represent faults or fractures.  
10,500 points are used.  There is a background set of 3,000 uniform random points, and 
each line is surrounded by 1,500 random points with distances from the line that are 
Gaussian distributed.  A single Gaussian realization is shown in Figure 3-21, and 
variogram reproduction results for fifty realizations are shown in Figure 3-23.  Variogram 
reproduction results are good as with the last example by visual inspection.  The SSE 
computed at a spacing of 1 m in the ݔ-direction and 3 m in the ݕ-direction are 0.0057 and 
0.0127 respectively.  Errors are accumulated up to distances of 20 m and 80 m in ݔ and ݕ 
respectively. 

Table 3-2: Variogram model for Test 1 and 2. 

Structure Structure Type 
Nugget 
Effect 

Variance 
Range in ݕ 

(m) 
Range in ݔ 

(m) 

1 Spherical 0 0.5 30 10 

2 Exponential 0 0.5 100 10 
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Figure 3-20: Point realization for Test 1.  Point values are Gaussian distributed. 

 

Figure 3-21: Point realization for Test 2.  Point values are Gaussian distributed. 
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Figure 3-22: Variogram reproduction for Test 1. 

 

 

Figure 3-23: Variogram reproduction for Test 2. 

3.3.2 Search 
Estimating conditional distributions using a set of nearest neighbours requires finding the 
nearest points to the estimation location.  Two search strategies utilized in GSLIB are the 
superblock search and spiral search (Deutsch and Journel, 1998).  The superblock search 
is applicable to unstructured grids and irregularly spaced sample data.  Many other search 
strategies exist (Skiena, 1998; Zezula et al, 2005), and they are often designed for very 
large and high dimensional datasets.  The superblock search and another effective search 
structure called k-dimensional trees or ݇d-trees (Skiena, 1998; Samet, 1990a; Samet, 
1990b) are explored.  Other search strategies are not explored as they will likely offer no 
significant improvement; however, additional study in this area could be undertaken. 

For geostatistical modeling the number of dimensions does not exceed three and the 
search space is Euclidean in depositional space.  Executing the search in depositional 
space will yield the nearest neighbours with highest covariance for a specific variable, but 
this may not occur if the search is done in geological space based on Euclidean distance.  
When multiple variables are involved, different covariance functions are possible and the 
nearest neighbours of one variable may not be the same as those for another variable.  
This may warrant a different search for each variable in a multivariate problem. 
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3.3.2.1 Superblock Search 
The superblock search decomposes space into a regular grid of elements.  Conditioning 
data and grid points are stored in each element (Figure 3-24).  For example, superblock (3,3) in the figure references the point marked with a cross.  Searching for the nearest 
neighbours of a point, ܝ, is done by retrieving the containing superblock (the query 
block) using an index calculation (Equation 3.17), then spiralling out through superblocks 
until enough neighbours are located.  Equation 3.17 is Equation 3.15 rearranged for ۷, 
where the ϐloor function rounds real numbers down to the nearest integer and 1.5 is 
added instead of 1 to account for points ܝ that do not align exactly with the center of a 
superblock. 

 0

0

floor 1.5
d

 −= + 
 

u uI
u

 3.17 

Grid parameters are required to setup a superblock search.  All conditioning data and grid 
points are added to the grid prior to simulation by determining the superblock index via 
Equation 3.17 and storing the index of the data and points.  The index of a conditioning 
datum or point from an irregular point set refers to a position in a vector containing the 
locations of the conditioning data and points.  The path taken when spiralling out from 
the query block is optimized using a search template (Figure 3-25) that defines a set of 
superblock index offsets to follow.  Superblocks in the template are sorted by increasing 
distance from the center of the query block, where distance is measured to the nearest 
corner of other superblocks.  Since the grid is regular, several superblocks are equidistant 
from the query block and they are all searched to ensure closer points within them are not 
omitted. 

As a superblock search is done, the set of ݇-nearest neighbours is maintained using a 
maximum heap (Cormen et al, 2002) keyed by distance.  Once ݇ data have been found, 
the size of the ball containing them is the maximum distance in the heap (Figure 3-26).  If 
additional points are found that have a smaller distance, a replace-maximum operation is 
done on the heap and the ball size is updated (Figure 3-27).  This process continues until 
the distance to the closest corner of the next superblock is greater than the ball size.  The 
resulting set of ݇ points contains the exact ݇-nearest neighbours. 

 

Figure 3-24: A two dimensional superblock structure.  Block indexes are in parenthesis. 
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Figure 3-25: Superblock search template for isotropic case (left) and anisotropic case (right) 
with a 2:1 anisotropy ratio at an azimuth of 45 degrees.  Numbers indicate search order 

from the query block numbered 0. 

 

Figure 3-26: Ball size in a maximum heap. 

 

Figure 3-27: Replace-maximum operation for ࢑ = ૝. 
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3.3.2.2 kd-trees 
The ݇d-tree decomposes space using half-planes so that conditioning data and grid points 
can be accessed efficiently by location (Figure 3-28).  For kriging, a kd-tree is 
constructed using the conditioning data and is static for all grid points.  For sequential 
simulation, two approaches are possible: 1 – the tree is constructed once using all grid 
points and nearest neighbour queries return both previously simulated and unvisited 
points; 2 – the tree is dynamic, growing as grid points are visited. 

Building the tree once using all grid points has the advantage that a balanced ݇d-tree is 
possible, which yields faster queries.  The downside is when the ratio of un-simulated to 
simulated points is high; many points are accessed to find a set of nearest neighbours.  
With a dynamic ݇d-tree no time is taken accessing un-simulated points since they are not 
stored in the tree; however, some additional time is used for inserting points, and some 
efficiency is lost because the resulting tree is unbalanced.  A tree that is balanced has the 
cutting plane positioned at the median of the data for all levels, which minimizes the 
number of levels required and the query time.  With unbalanced trees, the number of 
levels depends on the location of the query points.  This degrades the efficiency of ݇d-
trees for nearest neighbour queries in geostatistical modeling applications. 

To insert a point, the ݇d-tree is traversed until the containing node is found and the 
point’s index is added to the ݇d-tree node.  Traversing the tree involves making logical 
comparisons between the point location and the half-plane location for a particular node.  
When the number within a node reaches a predefined maximum, the node is split along 
the dimension with maximum extent.  It is possible to ensure a ݇d-tree is balanced by the 
end of generating a realization since the points used to construct it are static.  All half-
planes can be pre-computed based on all points and used during the incremental 
construction of the tree.  The tree is balanced at the end of generating a realization, but 
may not be balanced at intermediate steps. 

 

Figure 3-28: Example two dimensional ࢑d-tree 

The ݇d-tree has three advantages over the superblock search: 

1. A search radius and grid specification is not required. 
2. There is no overhead to store empty blocks. 
3. There is no additional overhead to construct and store a search template 
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The problem of having to specify a search radius is that conditioning data or grid points 
beyond it are ignored.  This may be important in the early stages of simulating a 
realization when few previously simulated values are available and also for locations that 
are far from conditioning data.  Moreover, having to specify or determine optimal grid 
settings with a superblock search is an iterative process.  Large superblocks cause a slow 
search because each block may contain many points and more distances are computed 
than necessary to find the ݇-nearest neighbours.  Small superblocks require excessive 
memory because the grid can contain excessive numbers of superblocks. 

Using superblock grids superimposed over unstructured grids will invariably lead to 
empty blocks, but these still require memory and are still visited during the search 
process to test if data is contained within them.  Lastly, the search template can involve a 
substantial amount of memory, especially for cases where small superblocks are used and 
the search radius is large.  It is possible to use larger superblocks; however, this can result 
in blocks containing more than the required ݇-nearest neighbours; in this case, many 
points are checked against the heap for the initial superblocks searched.  This is the cause 
of the slower time trials in Figure 3-29. 

Both search strategies are tested in two and three dimensions for a series of uniformly 
distributed random point sets ranging from 100 to 1 million.  A computer with a 3.2 GHz 
processor was used.  Unconditional realizations are generated for each point set using a 
maximum of 20 previously simulated points for kriging.  The average time per realization 
is calculated based on ten realizations.  Results are shown in Figure 3-29.  The ݇d-tree 
performs best in all cases.  In the two dimensional problems, two versions of the 
superblock search are tested.  One was of fixed size (݊௫ = ݊௬ = 31); therefore, as the 

size of the point set grows, the number of data in each superblock increases.  The 
consequence is a quadratic increase in time with the number of points.  The second 
superblock search was optimized to contain on average 10 points per superblock giving 
results similar, but slower than the ݇d-tree.  Two superblock grids were also used for the 
three dimensional sets.  One was optimized to have an average of 10 points per 
superblock and another to have an average of 5 points per superblock. 

For comparison, an unconditional realization on a 1 million element regular grid takes 
approximately 35 seconds, which is 3.2 times faster than the equivalent unstructured 
problem using psgsim.  The principal reason for the difference in run times is the 
covariance lookup table.  Distances and covariance do not have to be computed for every 
pair of points encountered. 
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Figure 3-29: Time trials for two dimensions (top) and three dimensions (bottom). 

 

3.4 Model Validation 

For geostatistical models it is useful to assess statistics such as the histogram and 
variogram for three reasons: 1 – to ensure that the random fields are consistent with the 
input statistics; 2 – to check that other input parameters are satisfactory, such as the 
number of data to use for kriging; 3 – to confirm that models are consistent with the 
assumptions made regarding first and second order stationarity.  Both the histogram and 
variogram are checked in depositional space where they are defined as input to the 
sequential simulation algorithms.  The following sections cover the validation of these 
statistics for psgsim.  Variogram reproduction was confirmed in Section 3.3.1 for two 
arbitrary cases with lots of scatter; however, more detail on computing the experimental 
variogram of large irregular point sets is provided. 
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3.4.1 Histogram Reproduction 
One test is done to show that psgsim generates fields with a Gaussian distribution in 
depositional space.  The importance of this test is based on the normal score 
transformation that is applied to reservoir properties prior to modeling them.  In using the 
normal score transform, we assume the resulting property is Gaussian distributed.  By 
generating a field with a Gaussian distribution, the back transformation yields the original 
input distribution of the reservoir property. 

The point set for the test is generated differently than in Section 3.3.1 since grid elements 
are needed.  Element areas or volumes are used as weights when computing the empirical 
distribution function of the realizations generated by psgsim.  Points are generated 
randomly and the Delaunay triangulation provides grid elements.  The triangular element 
centers are used as input to psgsim.  A dataset similar to Test 2 in Section 3.3.1 involving 
random points generated along lines that could represent faults or fractures is used.  The 
variogram from Table 3-2 is used and 50 realizations are generated to check for 
Gaussianity (Figure 3-30). 

 

Figure 3-30: A single realization and empirical distributions of 50 realizations. 

Normality of the realizations is tested using the Chi Square test with the null hypothesis 
that the realizations follow a normal distribution.  Since a finite domain is used to 
generate realizations, there are fluctuations in the sample mean and variance from one 
realization to the next; therefore the reference distribution for each realization is 
determined based on the sample mean and sample variance.  The sample distribution is 
non-standard normal; however, the average mean and average standard deviation across 
multiple realizations reflect a standard normal distribution.  Empirical distributions of 
each realization are fit using 500 quantiles. 

The mean of the realization means (-0.0328) and the mean of the realization standard 
deviations (0.977) are close to 0 and 1 respectively.  At a significance level of 0.05, the 
Chi Square tests rejected the null hypothesis once out of 50 realizations.  Chi Square tests 
used 20 bins to compute observed frequencies and since sample mean and variance were 
used to compute expected frequencies, 17 degrees of freedom remain. 
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3.4.2 Variogram Reproduction 
Confirming variogram reproduction is more challenging because of implementation 
issues.  Points are irregularly spaced and there are potentially millions of them.  
Computing experimental variograms involves point pairs; a grid with ܰ points has ܰଶ 
pairs, which cannot feasibly be searched during the computation.  This is still infeasible 
when considering symmetry, where ܰ(ܰ + 1)/2 pairs are considered.  Moreover, 
multiple directions are typically checked, with the directions aligning with principal 
directions of correlation. 

Gamv from GSLIB (Deutsch and Jounel, 1998) computes the variogram of irregularly 
spaced data; however, it searches all ܰ(ܰ + 1)/2 pairs.  This is feasible for the intended 
purpose of gamv, which is for a limited number of sample data.  Often sample data are 
sparse and in small number.  A different approach is developed for very large irregular 
point sets.  Some of the enhancements are: data organization to eliminate array indexing 
calculations; the number of required square roots is minimized; and the outermost or 
slowest cycling loop is by direction rather than over the point pairs.  Several parameters 
required for computing the experimental variogram are (Figure 3-31): azimuth angle, ߠ, 
azimuth tolerance, ݀ߠ, horizontal bandwidth, ܾ௛, dip angle, ߙ, dip tolerance, ݀ߙ, vertical 
bandwidth, ܾ௩, lag separation distance, ℎ, and lag tolerance, ݀ℎ. 

 

Figure 3-31: Experimental variogram parameters for irregularly spaced data. 

 

For each direction the coordinate system is rotated so that the new ݔ-coordinate, ݔ′, 
aligns with the direction.  Locating pairs into their proper lag windows in the rotated 
coordinate system is a simple index calculation.  For two dimensional problems, points 
are sorted by ݕ′ (the rotated ݕ-coordinate) and makes clipping by the bandwidth 
parameter straightforward.  Points within the bandwidth will always be contiguous in 
memory and defined by a lower and upper index.  From a given index ݅, the range is 
easily determined by searching in +݅ and −݅ until ݕᇱ(±݅) exceeds the bandwidth.  
Rotation also simplifies clipping points outside the angle tolerance window.  For two 
points with indexes ݅ and ݆, the pair is clipped for the condition defined by Equation 3.18, 
where tan (90 −  .only needs to be evaluated once for each direction (ߠ
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Enhancements for three dimensional problems are similar.  Rather than sorting, points are 
added to a two dimensional kd-tree based on their ݕᇱ and ݖ′ coordinates.  Points within 
the bandwidth specifications are found using an orthogonal range query with extents ݕ′ ± ܾ௛/2 and ݖ′ ± ܾ௩/2.  Clipping by the angle tolerance window is identical to the 2D 
case for the azimuth tolerance, but requires an additional check using the dip tolerance 
(Equation 3.19), where tan (90 −  .only needs to be evaluated once for each direction (ߙ
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The enhancements discussed are only necessary for large data sets when bandwidths that 
are small relative to the domain of the problem are used.  Computing omnidirectional 
experimental variograms with large bandwidths still involves all ܰ(ܰ + 1)/2 pairs and 
no appreciable difference in performance between gamv and gamvf is expected.  Three 
time trials were done to show the feasibility of using gamvf.  Times for gamv are 
included to illustrate the time required for all ܰ(ܰ + 1)/2 pairs.  The first trial dataset is 
two dimensional with 10,000 random samples and experimental variograms for two 
directions are calculated.  The same dataset is also used with large bandwidth and 90 
degree direction tolerances so that gamvf searches all ܰ(ܰ + 1)/2 pairs.  The second 
example is three dimensional with 125,000 random samples and three directions are 
explored (Table 3-3).  The domain for both examples is 100 m along each axis.  All 
azimuth and dip tolerances were set to 10.0 degrees and horizontal and vertical 
bandwidths to 1 except for the omnidirectional case. 

Table 3-3: Run time for gamv and gamvf 

Dimensions ݊ Time, seconds 
(gamv) 

Time, seconds 
(gamvf) 

2 (omni) 10,000 17.875 8.766 

2 10,000 17.875 0.172 

3 125,000 10,495.255 2.641 

 

More comprehensive time trials are done with gamvf.  Table 3-4 gives results for several 
values of ܰ and different bandwidths and angle tolerances.  The domain in all cases is a 
100 m cube and points are uniform random distributed throughout.  Each time is for a 
single direction and single realization.  An isotropic spherical variogram with a range of 
30 m was used. 

Experimental variograms are plotted in Figure 3-32.  They are not labelled since most 
overlap significantly.  Variograms do not match the input model exactly because this is 
one realization, not the average variogram of many realizations.  Variograms for the 
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8,000 point case show the largest separation, where curves with increased variability are 
associated with smaller bandwidths.  Resulting times are insensitive to the angle 
tolerance for the range of bandwidths explored in each case.  For the 125,000 and 1 
million point cases, the experimental variograms are smooth and a smaller bandwidth 
could be applied resulting in reduced execution time.  Three smaller bandwidths were 
used for this and results are summarized in Table 3-5 and Figure 3-33.  The number of 
pairs involved in computing each variogram value is also shown.  Smooth results are 
obtained using a bandwidth of 0.1 and each point is supported by 10,000 to 20,000 pairs.  
The number of pairs decreases as distance increases due to the finite domain. 

Using a bandwidth of 0.1 for 100 realizations of 1 million points in three directions, 
variogram reproduction checks would take approximately 20 minutes.  Since times 
appear to increase linearly with ܰ, this approach is feasible for applications involving 
multimillion element models. 

Table 3-4: Time trials for gamvf. ܰ Bandwidth 
(bh=bv) 

Angle Tolerance 
(dθ=dα) 

Time (seconds) 

8,000 2.0 10, 30, 50 0.0156, 0.0156, 0.0156 

4.0 10, 30, 50 0.0469, 0.0469, 0.0469 

8.0 10, 30, 50 0.0781, 0.0781, 0.0781 

125,000 1.0 10, 30, 50 0.6719, 0.6875, 0.6718 

2.0 10, 30, 50 1.5156, 1.5156, 1.5000 

4.0 10, 30, 50 4.7188, 4.6719, 4.6719 

1,000,000 0.2 10, 30, 50 4.4688, 4.6875, 4.7344 

0.4 10, 30, 50 7.7188, 7.7813, 7.7188 

0.8 10, 30, 50 19.563, 19.609, 19.500 

 

Table 3-5: Reduced bandwidth time trials for 1,000,000 = ࡺ. ܰ Bandwidth (ܾ௛ = ܾ௩) 
Angle Tolerance (݀ߠ =  (ߙ݀

Time (seconds) 

1,000,000 0.01 10 2.906 

0.05 10 3.438 

0.10 10 3.813 
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Figure 3-32: Experimental variogram results from gamvf for various ࡺ, bandwidths, and 
angle tolerances. 

 

Figure 3-33: Experimental variograms for small bandwidths and 1 million points.  Number 
of pairs for each point is shown for bh = bv = 0.1. 
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3.5 Summary 

This chapter covered many of the necessary components to populate unstructured grids 
with sequential simulation.  Of particular importance is the space where statistics are 
derived.  The distribution and covariance function of a random variable are applied in 
depositional space; therefore, these parameters are derived in depositional space.  An 
algorithm was developed to populate unstructured grids with point scale or pseudo-point 
scale realizations.  Since points are used instead of attempting to populate values that 
represent the scale of grid elements, all of the geometry required to specify a grid is not 
required.  Psgsim requires only a set of points.  To minimize the error due to scale 
differences, the optimal points are the element centers.  Other underlying implementation 
details including specifying point locations explicitly instead of implicitly, the inability to 
use covariance lookup tables, generating random paths, and searching for the ݇-nearest 
neighbours were covered. 

Model validation is an important part of geostatistics.  Histogram and variogram 
reproduction for unstructured grids was discussed.  It was shown that psgsim gives 
Gaussian random fields with the correct spatial correlation based on an example with a 
point set having a high degree of scatter.  The histogram is weighted by the unstructured 
grid element volumes, operating in the same way as declustering weights in polygonal 
declustering.  This Chapter focused primarily on two dimensional examples to 
demonstrate correctness.  Further demonstration of geostatistics on unstructured grids in 
three dimensions is provided in Chapter 5 in a case study. 
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Chapter 4 Upscaling 

 

Grids populated with reservoir properties are at a higher resolution than grids used for 
flow simulation.  Upscaling is used to compute effective properties for the coarse grid 
using properties from the fine grid.  Accuracy of upscaled properties depends on the 
geometry of the fine grid that is controlled by discretization; therefore the geometry of 
the discretization should be influenced by the upscaling procedure.  This chapter 
develops upscaling of arithmetic variables such as porosity and facies in Section 4.1.  A 
flow based upscaling approach for transmissibility using the multipoint flux 
approximation is developed in Section 4.2.  Within this is a section on the convergence of 
upscaled transmissibility as the resolution of the discretization is increased.  Section 4.3 
discusses aspects of discretization element quality including angle and aspect-ratio for 
triangles and tetrahedra respectively. 

4.1 Arithmetic Averaging 

Several variables in reservoir modeling applications scale arithmetically including 
porosity, facies, and fluid saturations.  Upscaling from a fine scale simplex grid to a 
coarse scale element is accomplished using a weighted arithmetic average of the values 
given by Equation 4.1, where ܼ௏௜ is the upscaled value assigned to coarse element ݅ with 
volume ܸ, ݊ is the number of simplexes within element ݅ with volumes ݓ௞, ܼ(ܝ௞) are the 
point scale simulated values in each simplex, and ܰ is the number of coarse elements. 
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This holds for continuous and indicator variables; however, the result for indicators is a 
vector of proportions, ૎௏௜, rather than a single average (Equation 4.2), where ߜ is the 
indicator transform function defined by Equation 4.3 and ݊ܿ is the number of categories.    
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The volume of element ݅ is given by Equation 4.4.  Note that the locations, ܝ௞, depend on ݅ and the number of discretization points may be different for each ݅ as well. 
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Equation 4.1 can be evaluated in either geological space or depositional space as long as 
the simplex volumes and coarse element volumes are computed in the same space.  The 
resulting values are equal unless non-uniform deformation of the elements has taken 
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place from post-depositional events.  It is recommended that upscaling is done in 
geological space, since flow simulation with the coarse elements is done in geological 
space. 

Computing the arithmetic average is similar to infill asymptotics (Cressie, 1993).  With 
infill asymtotics, the domain is kept constant and the convergence of statistics with 
increasing sample size is analyzed.  In this case, the domain is a coarse unstructured grid 
element and the sample size is controlled through the discretization process.  The statistic 
is the mean of an underlying random field.  In the literature, infill asymptotics assess 
statistical parameters of random processes such as the mean of the associated random 
variable.  Arithmetic averaging is similar in that for a given realization of a random field, 
each average should represent the associated realization, rather than all possible 
realizations of the random process. 

One question that arises is if the mean of a realization, whether for a whole reservoir or 
within a single unstructured grid element, converges as the number of points increases to 
infinity.  From a sequential simulation perspective and considering a finite domain, the 
mean of a realization should converge to a constant value, but it may not be attainable.  

Letting the number of points, ݊, go to infinity, the estimate, መܼ, and estimation variance, ܸܽݎ( መܼ), is expressed as a recursion in Equation 4.5, where ܋ is a vector of covariances 
between ܝ௡  and ܝ௡ିଵ, ۱ is the covariance matrix between all ܝ௜, ݅ = 1, … , ݊ − 1, and ݖ is 
the set of ݊ − 1 simulated values.  Since the distance between points ℎ → 0 as ݊ → ,௡ܝ)ܥ ,∞ (௝ܝ → 1 for some ݆ ߳ 1 … ݊ − 1.  In this case ۱ି்܋ଵ = ૃ = [0ଵ 0ଶ  ⋯ 0௝ିଵ 1௝ 0௝ାଵ ⋯ 0௡ିଵ], which yields the result in Equation 4.6; therefore, the realization ultimately 

converges. 

 

1
1

2 1

ˆ ( ) ( )

ˆ ( )

T
n n

T
n Z

Z z

Var Z σ

−
−

−

=

  = − 

u c C u

u c C c
 4.5 

 
ˆ ( ) ( )

ˆ ( ) 0

n j

n

Z Z n

Var Z

→ → ∞

  → 

u u

u
 4.6 

A problem for this analysis is the mean to which a realization converges is unknown.  
The mean could be observed as ݊ is increased, but until the domain is saturated the mean 
will fluctuate, i.e. it has non-zero variance.  An alternative measure is needed to assess 
the quality of an average.  The problem is similar to numerical integration, for example 
using the midpoint rule (Kythe and Schaferkotter, 2004).  The goal is the same: to 
estimate the true integral defined by Equation 4.7.  The difference is that for 
triangulations the intervals are not necessarily of equal width.   
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Numerical integration results in a mean squared error measure that is summarized by 
Equation 4.8. 

 { }2 2ˆ( , ) ( )Z V Vn V E Z Zε = −  4.8 

The right hand side is equal to the estimation variance assuming the expected value of ܼ௏ 
is zero (Equation 4.9). 
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Expanding the square and substituting Equation 4.7 in for ܼ௏ and Equation 4.1 for መܼ௏: 
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The expected values of the products is equal to the covariance, that is, ܧሼܼ(ܝ)ܼ(ܞ)ሽ ,(ܝ)൫ܼܥ= ൯(ܞ)ܼ + ሽ(ܝ)ሼܼܧ ሽ with the assumption(ܞ)ሼܼܧሽ(ܝ)ሼܼܧ = ሽ(ܞ)ሼܼܧ = 0.  

Covariance is expressed as a function that is independent of the values of ܼ, so replacing ܧሼܼ(ܝ)ܼ(ܞ)ሽ in Equation 4.10 by ܝ)ܥ,  :(ܞ
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All terms are average covariance expressions.  Defining ̅ܥ(ܸ, ܸ) as the exact average 
covariance of ܸ (first term), ܝ)̅ܥ, ܸ) as the exact average covariance between point ܝ and 

volume ܸ (integral component of the second term), and ܥመ(ܸ, ܸ) as the approximate 
average covariance computed from the discretization (third term),  Equation 4.11 is 
written as Equation 4.12 and is similar to the estimation variance in geostatistics (Chiles 
and Delfiner, 1999), except that weights are used. 
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Equation 4.12 is written in terms of the covariance function of ܼ,ܥ௓; however, the 
covariance used in constructing models using sequential simulation discussed in Chapter 
3 is typically that of the Gaussian transform, ܻ =  ௒.  Since theܥ denoted ,(ܼ)ܩ
transformation is rank preserving and finite, the error using either covariance function is 
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representative of the other, but the convergence rate to zero of ߝଶ(݊, ܸ) with increasing ݊ 
may differ (Equation 4.13).  Note that the association of ܸ, ݊ and ݓ to element i is 
implicit in Equations 4.10 and 4.11. 
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In the case of indicator modeling of categorical variables, the covariance is that of the 
indicator variable for evaluating Equation 4.12, which becomes a sum over the number of 
categories.  Each category may have a different covariance function and weights are 
based on element volumes in geological space. 

Equation 4.12 assumes the random field within ܸ is stationary; although this is not a 
requirement.  If ܸ contains multiple stratigraphic units or facies, it is partitioned into 
stationary sub-volumes to evaluate the error in a piecewise manner.  Evaluating the error 
is made more complex by the exact integrals that often require numerical methods to be 
evaluated (Journel and Huijbregts, 1978), and because the covariance function is defined 
in depositional space.  As is shown in the following section, Equation 4.12 converges to 0 
as ݊ → ∞. 

4.1.1  Number of Points 
Determining how many points to use for the discretization process depends on the desired 
accuracy to achieve through arithmetic averaging.  The result depends on several 
parameters including the grid element geometry, variogram structure, and distribution 
function of the variable.  All of these are problem specific; however, a general guide on 
selecting the number of points is developed.  The approach is based on evaluating 
Equation 4.12 and understanding how it responds to different parameters.  Two responses 
indicated in the literature are the error decreases as ݊ increases and the error decreases as 
the variogram becomes more regular (Chiles and Delfiner, 1999, page 130).  As ݊ 
increases and assuming the discretization maintains regularity (i.e. points remain 
uniformly distributed in the element), the second and third terms in Equation 4.8 
approach the first term, thereby reducing the error.  Increased regularity of the variogram 
increases the accuracy of the second and third terms, which reduces the error.  For 
example, if the regularity of the covariance function within ܸ approaches a constant 
covariance of one, the error would be zero for any choice of ݊ ≥ 1. 

The variance of ܼ scales the error linearly.  In most cases, the covariance function is 
standardized to have unit variance.  Expressing the error in the same variance units as ܼ 
is accomplished by multiplying the error using the standardized covariance of ܼ by the 
variance of ܼ.  Variables such as porosity, facies, and water saturation range between 
zero and one and the variance cannot exceed 0.25.  Other variables such as grain density 
and permeability may have different variance depending on the units (kg/m3, lbs/ft3, m2, 
and others).  Because of the variety of units, choosing the number of points is based on 
standardized variables. 
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Increasing the nugget effect, ܥ଴, reduces the average covariance by a factor of ߪଶ − ଴ܥ =1 −  ଴, which reduces the error by the same factor.  As in the example where theܥ
covariance function approaches a constant of one, in the same manner as the covariance 
approaches zero (ܥ଴ = ݊ ଶ), the error would be zero for any choice ofߪ ≥ 1. 

The average covariance is related to the volume and geometry of ܸ.  As the average 
covariance of ܸ decreases for a given covariance function and constant ݊, the error 
increases.  A reduction in average covariance generally indicates an increase in ܸ, 
although two elements with equal volume and different orientations have different 
average covariance when there is anisotropy in the covariance function. 

Determining the number ݊ that achieves a given accuracy is done by evaluating Equation 
4.12 and extracting a contour of constant error to guide the discretization process applied 
to the coarse unstructured grid.  A disadvantage of this approach is the average 
covariance can have a range of values for all elements in an unstructured grid with the 
same volume since the elements can have different shapes.  However, if the orientation 
and geometry of all elements in an unstructured grid with a given volume ܸ is consistent, 
then the average covariance of those volumes will also be consistent.  In some cases, this 
is a valid assumption because grids designed for flow simulation often follow some 
consistency limitations to achieve stable and convergent systems of equations. 

Because of the wide variety of variogram models and grid geometry, the error function is 
developed empirically.  Data are created by randomly generating volumes and choosing 

different ݊ to evaluate Equation 4.12.  Results are fit with a surface of the form ߝ௓ଶ(݊, ܸ).  
The resulting surface is used to choose ݊ to control grid discretization.  It is also possible 
to choose a contour of constant error that provides a function of ݊, which is dependent on 
the average covariance or volume.  A FORTRAN program called cbarerror was 
developed to do this.  It generates grid elements and discretizes them using a range of ݊ 
values to compute the error.  The program uses a parameter file so users control the size 
and shape of volumes to explore, the range of ݊, and the variogram model (Table 4-1). 

Table 4-1: Parameters for cbarerror. 

Line Parameters Description 
1 1 0.0 nested structures, nugget effect 
2 0 1.0 0.0  0.0  0.0 structure, variance, angle 1 2 3 
3      10.0 10.0 10.0 range 1 2 3 
4 0.1 20.0 10 min max volume to explore, number 
5 1 type of shape (1-tri/tet, 2-quad/hex) 
6 30 2 max points to use and step 
7 3 point infill method: 1-deterministic, 2-simplex 
8 2 dimensionality of the problem 
9 errcurve.out file for output 

 

The minimum and maximum volumes on line 4 are divided uniformly (for the parameters 
shown, 10 volumes are explored ranging between 0.1 and 20).  Two types of elements are 
randomly generated: triangles or tetrahedra and quadrilaterals or hexahedra.  The same 
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number of random elements is generated for each volume as there are multiple volumes 
to explore (10 random elements per volume for the parameters shown, 100 in total).  The 
error is evaluated for several values of ݊ (line 6).  The number always starts at 1 and 
increments by the step size up to the maximum.  Two different point infill methods are 
possible.  For the deterministic option, elements are gridded with a barycentric coordinate 
system for simplexes and a regular grid for quadrilaterals or hexahedra.  Triangulation is 
done with the program Triangle (Shewchuk, 1996) and tetrahedralization with the 
program TetGen (Si, 2006). 

Examples in two and three dimensions are developed for three common variogram 
models: the spherical, exponential, and Gaussian functions.  All are isotropic with a range 
of 10 meters.  Triangular and quadrilateral volumes range from 0.1 to 30 m2 discretized 
by triangulation with the number of points ranging from 1 to 29 in steps of 2.  Triangles 
are constrained to have interior angles no less than 20 degrees resulting in some variation 
in n from the targeted range.  In three dimensions, tetrahedral and hexahedral volumes 
range from 0.1 to 90 m3 discretized by tetrahedralization for the same point range.  
Tetrahedral quality was constrained to a radius-edge ratio of 1.5.  An approach to model 
the error function is developed below in reference to the two dimensional examples.  This 
is followed by three dimensional results.  True average covariances were approximated 
by using an excessive number of points per block: 500 per element in two dimensions 
and 700 per element in three dimensions.  The average covariance for different volumes 
based on the two and three dimensional examples described converges rapidly to a stable 
value (Figure 4-1). 

 

Figure 4-1: Convergence of average covariance with increasing number of points for 
different triangular and tetrahedral volumes in two and three dimensions. 

An initial look at the resulting data for the spherical variogram (Figure 4-2, results are 

similar for the other variogram models) shows the error varies like ݊ିଵ and ܸଵ/ଶ.  The 
error is also exponentially distributed and taking the logarithm reveals more information.  
The function is linearized by replacing ݊ with its inverse, 1/(݊ + ߬), and raising the 

volume to a power, ܸఉ.  Through visual inspection for the data shown in Figure 4-1, ߬ 
and ߚ were chosen to be 10 and 0.15 respectively (Figure 4-3).  Alternatively, a simple 
minimization process to find ߬ and ߚ involves the following iteration: 
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1. Choose initial parameter, ߬ or ߚ. 

2. Compute the independent variables, (݊ + ߬)ିଵ or ܸఉ, and standardize it. 
3. Perform linear regression and compute the error. 
4. Increase or decrease the parameter based on the change in error. 
5. Iterate until the error in the residuals is small (the stopping criteria). 

With this approach and using an error stopping criteria of 0.001, ߬ and ߚ were found to 
be 6.67 and 0.2 respectively (Figure 4-3).  Although the difference between the visually 
chosen parameters and optimized ones is not immediate, the effect is observed in the 
regression error of the final model.  After linearization, the function is a plane with (݊ + ߬)ିଵ  and ܸఉ as the independent variables and log (ߝ௓ଶ(݊, ܸ)) as the dependent 
variable (Equation 4.14).  The mean squared error between the predicted error via 
regression and the actual error is 2.1×10-4 using the hand picked parameters and 5.1×10-5 
using the optimized ones for the data shown in Figure 4-2. 

 ( ) 12
0 1 2log ( , )Z n V A AV A nβε τ −= + + +  4.14 

 

Figure 4-2: Variation of mean squared error with n and volume.  The large separation in the 
upper right plot is due to the large reduction in error from ࢔ = ૚ to ࢔ = ૛. 
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Figure 4-3: Linearized plots of mean square error with functions of n and volume. 

Results for the other variogram models are summarized in Table 4-2 for triangular 
elements and Table 4-3 for quadrilaterals.  Error surfaces are displayed as contours for 
spherical, exponential, and Gaussian variograms in Figure 4-4 to Figure 4-9.  The 
presence of a nugget effect leads to a lower error as identified previously.  In Figure 4-4 
through Figure 4-9, this appears as a change in the error scale by a factor of 
approximately 70% = 1 −  .଴ܥ

Different variogram models yield different error surfaces as well.  The occurrence of 
decreasing error from exponential to spherical to Gaussian variograms is due to their 
shape.  The exponential covariance function has the largest gradient near the origin and 
more points are necessary to approximate the average covariance.  The Gaussian 
variogram has a gradient of zero at the origin and fewer points are required to achieve the 
same accuracy for a given volume.  The Spherical model falls in-between. 

Volume shape has some effect on the quality of the regression.  The residual error using 
triangular elements was larger than quadrilateral elements indicating more variability in 
the average covariances for given volumes.  This can be attributed to the occurrence of 
randomly generated slivers or low quality triangles that cover a large extent of the 
covariance function in one direction and a small extent in the other.  This leads to smaller 
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average covariance and larger error for smaller volumes.  Quadrilaterals tend to be more 
symmetric in their coverage of the covariance function for a given volume leading to 
more consistent average covariance and results with lower error. 

Any variogram model can be used to generate the data required to perform regression and 
obtain parameters ߬, ܣ ,ߚ଴, ܣଵ and ܣଶ.  Results are used to choose an acceptable mean 
squared error, which is used to extract a contour that relates element volume and ݊ to use 
in the discretization process.  An error contour of Equation 4.14 is defined by Equation 
4.15, with the resulting ݊ being rounded to the nearest positive integer.  Rounding is not 
necessary if the result is converted into a volume constraint, ܸ/݊, for the discretization 
process. 
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In practice, several variables are involved and each may have a different variogram 
leading to different error surfaces.  Choosing one variogram model that contains all 
others involved allows a single error surface to be modeled and utilized for choosing ݊.  
This concept was discussed in Chapter 2, but in terms of deriving a volume for which the 
error is small when restricted to ݊ = 1.  In this case, the volume curve for constant ݊ is 
defined by Equation 4.16.  Curves are shown for ݊ = 1 and the spherical, exponential 
and Gaussian cases with no nugget effect and quadrilateral elements in Figure 4-10.  An 
interesting point is the error incurred in representing the discretizing elements with one 
point is mitigated in the averaging process.  Using the exponential, quadrilateral, zero 
nugget effect case (Figure 4-6) for an example and assuming an error of 0.005 is targeted, 
a volume of 30 m2 would be discretized by roughly 15 points.  Each point represents an 
approximate volume of ܸ/݊ = 2 m2.  These volumes are represented by 1 point, which 
involves an error of roughly 0.08 when scaled off the curve in Figure 4-10. 
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Findings are similar in three dimensions and the same error surface model is applicable.  
For the same set of example variograms, the resulting error function surfaces are 
summarized in Table 4-4 for tetrahedral elements and Table 4-5 for hexahedral elements.  
Error contour surfaces for spherical, exponential, and Gaussian variograms are shown in 
Figure 4-11 through Figure 4-16.  There is not a significant increase in the number ݊ 
required to obtain a low error with the added dimension.  The growth of ݊ is based on 
point spacing.  Using the spherical variogram, zero nugget case for an example, a triangle 
with an area of 16 m2 requires approximately 10 points (approximate point spacing of (16/10)ଵ/ଶ = 1.26) to achieve an error of 0.003, while a tetrahedron having similar 

dimensions with a volume of 64 m3 (16ଷ/ଶ) requires roughly 25 points (approximate 

point spacing of (64/25)ଵ/ଷ = 1.36).  These numbers are based on points being 
distributed using the programs Triangle and TetGen as explained previously. 
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Choosing the error is dependent on the reservoir modeling application, practicality, and 
user discretion.  One should attempt to minimize the error while maintaining a reasonable 
number of fine scale grid elements.  Small problems with few coarse grid elements could 
use a high degree of refinement and achieve very low error.  Larger models may have to 
be limited to fewer ݊ and relaxed error criteria.  Arithmetic averaging is not the only 
upscaling process involved in reservoirs and the choice of ݊ cannot be limited to them.  
An upscaling method for transmissibility using the MPFA method is developed in 
Section 4.2.  This process is different than an arithmetic average and results in different 
criteria for choosing ݊. 

Table 4-2: Error function regression surfaces for triangular elements. 

Model Nugget ߬ ܣ ߚ଴ ܣଵ ܣଶ Fit Error 

Spherical 0.0 6.67 0.100 -13.91 4.51 48.62 1.41E-3 
0.3 6.67 0.100 -14.26 4.51 48.62 6.90E-4 

Exponential 0.0 6.67 0.091 -13.52 4.89 47.18 1.01E-3 
0.3 6.67 0.091 -13.88 4.89 47.18 5.00E-4 

Gaussian 0.0 4.67 0.083 -34.69 17.41 54.77 1.51E-3 
0.3 4.67 0.083 -34.69 17.13 54.66 7.40E-4 

 

Table 4-3: Error function regression surfaces for quadrilateral elements. 

Model Nugget ߬ ܣ ߚ଴ ܣଵ ܣଶ Fit Error 

Spherical 0.0 6.67 0.200 -11.29 1.89 46.83 5.07E-5 
0.3 6.67 0.200 -11.65 1.89 46.83 2.49E-5 

Exponential 0.0 7.67 0.091 -13.69 4.83 52.91 1.67E-4 
0.3 7.67 0.091 -14.05 4.83 52.91 8.19E-5 

Gaussian 0.0 6.67 0.083 -35.80 18.11 68.74 2.06E-5 
0.3 6.67 0.083 -35.87 17.90 68.59 1.03E-5 

 

Table 4-4: Error function regression surfaces for tetrahedral elements. 

Model Nugget ߬ ܣ ߚ଴ ܣଵ ܣଶ Fit Error 

Spherical 0.0 6.67 0.286 -8.60 0.61 38.51 3.42E-5 
0.3 6.67 0.286 -8.95 0.61 38.51 1.68E-5 

Exponential 0.0 6.67 0.091 -10.33 2.98 38.01 5.58E-5 
0.3 6.67 0.091 -10.69 2.98 38.01 2.73E-5 

Gaussian 0.0 7.67 0.083 -26.78 12.38 51.02 4.79E-6 
0.3 7.67 0.083 -27.13 12.38 51.02 2.35E-6 
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Table 4-5: Error function regression surfaces for hexahedral elements. 

Model Nugget ߬ ܣ ߚ଴ ܣଵ ܣଶ Fit Error 

Spherical 0.0 12.67 0.286 -9.43 0.61 78.99 2.64E-5 
0.3 12.67 0.286 -9.79 0.61 78.99 1.29E-5 

Exponential 0.0 12.67 0.100 -10.87 2.67 78.43 3.66E-5 
0.3 12.67 0.100 -11.22 2.67 78.43 1.79E-5 

Gaussian 0.0 18.67 0.083 -28.58 12.62 139.36 2.48E-6 
0.3 18.67 0.083 -28.94 12.62 139.36 1.21E-6 

 

 

Figure 4-4: Error surfaces for a spherical variogram: range 10 m; nugget effect 0. 

 

Figure 4-5: Error surfaces for a spherical variogram: range 10 m; nugget effect 0.3. 
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Figure 4-6: Error surfaces for an exponential variogram: range 10 m; nugget effect 0. 

 

 

Figure 4-7: Error surfaces for an exponential variogram: range 10 m; nugget effect 0.3. 

 

 

Figure 4-8: Error surfaces for a Gaussian variogram: range 10 m; nugget effect 0. 
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Figure 4-9: Error surfaces for a Gaussian variogram: range 10 m; nugget effect 0.3. 

 

 

Figure 4-10: Error curves for n = 1. 
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Figure 4-11: Error surfaces for a spherical variogram: range 10 m; nugget effect 0. 

 

 

Figure 4-12: Error surfaces for a spherical variogram: range 10 m; nugget effect 0.3. 

 

 

Figure 4-13: Error surfaces for an exponential variogram: range 10 m; nugget effect 0. 



103 
 

 

Figure 4-14: Error surfaces for an exponential variogram: range 10 m; nugget effect 0.3. 

 

 

Figure 4-15: Error surfaces for a Gaussian variogram: range 10 m; nugget effect 0. 

 

 

Figure 4-16: Error surfaces for a Gaussian variogram: range 10 m; nugget effect 0.3. 
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4.2 Flow-based Upscaling on Simplex Grids 

In this section, a flow based upscaling approach for transmissibility is developed using 
the multipoint flux approximation.  The fine grid is assumed to be a simplex grid and the 
coarse grid a PEBI grid or polygonal grid; although the methods developed are 
theoretically applicable to other grids that the MPFA method is applicable to including 
triangular, tetrahedral, quadrilateral, and hexahedral grids.  Details of the MPFA method 
for triangular and polygonal grids in two dimensions are presented by Aavastmark et al 
(1998a,b) and in three dimensions by Verma and Aziz (1997).  The focus of this 
dissertation is the single phase pressure equation given by Equation 4.17, where ∇ is the 
gradient operator, ߩ and ߤ are the fluid density and viscosity, (ܝ)ܓ is a symmetric 
positive definite permeability tensor dependent on spatial location ݌ ,ܝ is the pressure, 
and ݍ are the sources and sinks that typically model production and injection wells.  The 
component in parenthesis is the Darcy velocity. 
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Permeability tensors given by Equation 4.18 are populated on the discretized grid using 
geostatistics.  They are often assumed diagonal and isotropic (݇௫௫ = ݇௬௬ = ݇௭௭ and ݇௫௬ = ݇௫௭ = ݇௬௭ = 0) or transversely isotropic (݇௫௫ = ݇௬௬ ≠ ݇௭௭ and ݇௫௬ = ݇௫௭ =݇௬௭ = 0).  Full symmetric tensors are obtained through upscaling from the discretized 

grid to the unstructured flow simulation grid; however, most flow simulation methods use 
transmissibilities that are derived from permeability, rather than the permeability tensors 
directly. 

The MPFA method is a control volume scheme to solve Equation 4.17, where each 
element of the coarse grid forms a control volume.  The divergence theorem, that is, 
conservation of mass (Equation 4.19) is used to construct a system of equations to solve 
for the pressure, where V is a control volume with bounding surface ߲ܸ, ܖ is the unit 
normal pointing out of the surface, ܵ (Figure 4-17), and the viscosity and density terms 
have been dropped for simplicity.  Approximations such as the MPFA are invoked to 
simplify the integrals.  Transmissibility across grid elements is derived from permeability 
to discretize the flow equations.  Upscaling is used to derive transmissibility at a larger 
scale much like permeability is upscaled to full tensors. 

 ( )
V V

qdV p dS
∂

= − ∇ ⋅  k n  4.19 
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Figure 4-17: Illustration of the divergence theorem for a two dimensional volume.  The mass 
of fluid originating from the source must equal the mass of fluid crossing the surface 

indicated by the solid line. 

4.2.1  MFPA Background 
The MPFA method is defined for both triangular grids and polygonal grids that were 
discussed in Chapter 1.  Typically, the dual grid of a triangulation is a Voronoi grid or a 
PEBI grid; however, this is not always the case for the MPFA formulation even when the 
triangulation is Delaunay.  Reversing the argument and considering a PEBI grid as 
primal, the dual grid for the MPFA formulation is not necessarily a triangulation.  Both 
cases are shown in Figure 4-18. 

 

Figure 4-18: Primal PEBI grid (left) and primal triangular grid (right) in the MPFA 
formulation. 

Dual grids for both cases are generated by connecting the primal grid element centers 
through the midpoints of the interfaces between neighbouring elements.  If this is relaxed 
so that the dual grid element edges are permitted to intersect the primal grid interfaces at 
any point, it is possible to design PEBI grids so that the dual is a triangulation.  The 
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criterion for this is that the PEBI grid vertices fall inside the triangles or tetrahedra that 
generate them. 

Elements of the dual grid are termed interaction regions as they describe how fluids 
interact between the control volumes that generate them.  Components of interaction 
regions are defined with reference to a triangular region, but they apply to polygonal 
interaction regions as well.  In Figure 4-19, points labelled p௜ are the centers of three 
adjacent control volumes, ௜ܸ, ܾ is the interaction region barycenter, m௜ are the midpoints 
along edges pపpపାଵതതതതതതതത, ܖ௜ are the normal vectors pointing from p௜ to p௜ାଵ, and ܞ௜ are normal 
vectors to the face opposite of p௜.  The normal vectors are area vectors in that their length 
is equal to the area of the associated face.  Vector ܞ௜ା and ܞ௜ି  have lengths equal to edges pపmపതതതതതത and pపmపିଵതതതതതതതതത respectively.  Interfaces defined by ܾmపതതതതത form the flux interfaces 
between control volumes ௜ܸ and ௜ܸାଵ.  The triangles formed by ∆p௜m௜m௜ିଵ are variation 
triangles with areas ܣ௜. 
Interaction region parameters in three dimensions for tetrahedral regions (Figure 4-20) 
are a straightforward extension of the triangular case.  There are five barycenters, one for 
each triangle, ܾ௜௝௞, and one for the tetrahedron, ܾ.  Six midpoints, m௜௝, along the 

tetrahedron edges are involved.  Normal vectors, ܖ௜௝ and ܞ௜ are associated with faces and 

their lengths are equal to the face areas. 

 

Figure 4-19: Triangular interaction region (left) and variation triangle (right).  Vectors are 
not drawn to scale. 
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Figure 4-20: Three views of a tetrahedral interaction region.  Vectors not drawn to scale. 

Interfaces within the interaction regions are used to discretize Equation 4.19.  The two 
dimensional case is used to demonstrate the MPFA methodology.  In the MPFA method, 

multiple points are used to express the flux, ݍ௜, across each of the interfaces (ܾmపതതതതത, ݅ =0,1,2) in terms of the pressures in the adjacent control volumes (݌௜, ݅ = 0,1,2) given by 
Equation 4.20, where ݐ௜௝ are weights.  If all pressures are identical, that is, if there is no 

pressure gradient within the interaction region, the flux across all interfaces must be zero; 
therefore the weights must sum to zero (Equation 4.21).  Otherwise, there would be flow 
across an interface with no force driving it.  Using matrix notation, fluxes across all 
interfaces within an interaction region are expressed in Equation 4.22, where ܂ is the 
transmissibility matrix for the interaction region. 
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The weights are transmissibility coefficients, where ݐ௜௝ specifies the contribution of 

pressure ݌௝ to flux ݍ௜ across flux interface ݅.  Derivation of ݐ௜௝ depends on the geometry 

of the problem, the underlying permeability field, and assumptions regarding the 
continuity of pressure and flux within the interaction regions.  It is assumed that pressure 
varies linearly within the variation triangles and that pressure is continuous across the 
edge midpoints.  Pressure is permitted to be discontinuous along the flux interfaces at all 
other points.  Flux is assumed continuous over the flux interfaces. 

Assuming pressure varies linearly within a variation triangle, the pressure gradient is 
constant and Equation 4.19 is simplified to Equation 4.23 for interface ݅ and control 
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volume ݆.  The index ݆ is superscripted for ܓ to indicate it is the permeability tensor of 
control volume ݆.  The area of the interface is equal to the length of the normal vector. 

 ( )j
ij j iq p= − ∇ ⋅k n  4.23 

The pressure gradient, ∇݌௝, is dependent on the pressures at the vertices of the variation 

triangle ∆p௜m௜m௜ିଵ, with the pressures at midpoints m௜ and m௜ିଵ being unknown.  The 
purpose of the flux continuity assumption previously mentioned is to provide sufficient 
conditions to account for the unknown midpoint pressures.  Flux continuity is achieved 
by setting the flux across interface ݅ due to pressure gradient in variation triangle ݆ equal 
to the flux across interface ݅ due to pressure gradient in variation triangle ݆ + 1 (Equation 
4.24).  The pressure gradient within each variation triangle is calculated from Equation 
4.25, where ݌పഥ  is the pressure at midpoint m௜.  Substituting Equation 4.25 into 4.24 and 
solving results in Equation 4.26 for the transmissibilities, where ܂ is the transmissibility 
matrix used in Equation 4.22, ߱௜௝ is defined by Equation 4.27 and each matrix is defined 

afterwards in Equation 4.28. 
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Transmissibilities are determined similarly for polygonal interaction regions (Verma and 
Aziz, 1997; Verma, 1998; Aavastmark, 1998a,b).  This approach is used to compute 
transmissibilities for all interaction regions in a grid such that the expression for the flux 
across all control volume interfaces in terms of the pressures within the control volumes 
is defined.  The result is a discretized version of Equation 4.19 where the right hand side 
is the total flux out of a control volume.  For single phase incompressible flow, this flux 
is zero unless the control volume acts as a source or sink (injector or producer).  The 
unknowns to be solved for are the pressures in each control volume.  For ܰ control 
volumes, this forms a sparse system of ܰ equations (Equation 4.29), where ܂ is the 

matrix of transmissibilities between all control volumes, ܘ is the vector of pressures at 
the control volume centers, and ܙ is the vector of out-fluxes for all control volumes.  ܂ is 

constructed using ܂ matrices from Equation 4.26 for each interaction region. 

 =Tp q  4.29 

After solving for ܘ, transmissibilities are used to compute the flux across the interfaces 
between control volumes so that the transfer of fluid from sources to sinks can be 
assessed, in other words, flow simulation. 

4.2.2  Local Transmissibility Upscaling 
In this dissertation, there are two grids involved: a coarse grid for flow simulation, which 
is assumed to be a PEBI grid, polygonal grid, or a simplex grid, and a fine simplex grid 
for geological modeling.  When using the MPFA method on the coarse scale grid, 
upscaling involves deriving the transmissibility matrices of the coarse scale interaction 
regions from the permeability field defined on the fine scale simplex grid.  This approach 
constrains the geometry of the grid discretization, since one of the goals of grid design is 
conforming coarse and fine scale grids. 

Equation 4.22 is used to derive the transmissibility matrix for coarse scale interaction 
regions using a flow based upscaling approach.  In the local approach to flow based 
upscaling discussed in Chapter 1, the flow equations are solved on the fine scale using 
arbitrary boundary conditions.  Resulting pressures and fluxes are determined for the 
coarse scale grid and either coarse scale permeability or transmissibility is solved for.  
Since Equation 4.22 involves 9 unknowns for triangular interaction regions, two sets of 
boundary conditions are required along with the constraint in Equation 4.21 to solve for 
the unknown transmissibility matrix. 

Pressure boundary conditions are chosen to induce flow across the flux interfaces as well 
as allow flow in and out of the interaction region, i.e. the pressure gradient is non-zero 
(Equation 4.30).  To agree with the derivation of MPFA transmissibility, the pressure 
along the edges ݌ప݌ఫതതതതത varies linearly, but the pressure on the interior of the interaction 

region is unconstrained. 

 ; , , 0,1,2;i j kp p p i j k i j k> ≥ ∈ ≠ ≠  4.30 
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The two boundary condition scenarios and sum constraint form the system in Equation 

4.31, where ݍ௝௞ is the jth flux due to the kth boundary condition and ݌௝௞ is pressure at vertex ݆ of boundary condition ݇.  Choosing boundary conditions that forms the 3×2 identity 
matrix (Equation 4.32) provides a trivial solution defined in Equation 4.33. 
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Obtaining ݍ௝௞ based on ݌௝௞ involves solving for the pressure using Equation 4.29 within 

the interaction region and reconstructing the fluxes across the flux interfaces.  More detail 
on the discretization follows. 

Grid discretization for upscaling permeability to MPFA transmissibility matrices requires 
the interaction regions to act as boundary constraints.  For a coarse scale PEBI grid and 
triangular interaction regions, the fine scale simplex grid conforms to the triangle edges 
(tetrahedron faces in 3D) and flux interfaces.  Because flux interfaces form the PEBI grid 
elements, the simplex grid conforms to both the control volumes and the interaction 
regions.  This situation is identical for coarse simplex grids, only control volumes refer to 
simplexes and interaction regions to polygons or polyhedra (Figure 4-21). 

 

Figure 4-21: Constrained triangulation of triangular interaction regions (left) and polygonal 
interaction regions (right). 
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An advantage of constraining the discretization by the interaction regions is that for a 
given problem, upscaling to the MPFA transmissibility matrices is possible for both 
interaction region types using the same discretization.  The coarse grid may be used as 
either a grid of control volumes, or a grid of interaction regions in setting up Equation 
4.29.  Development of geometry for upscaling is done in terms of triangular interaction 
regions. 

Using the program Triangle (Shewchuk, 1996) to discretize an interaction region requires 
the boundaries and flux interfaces are input as segments.  A single triangular interaction 
region involves seven points, which are the corner points, midpoints and barycenter.  It 
also involves nine segments including six connecting the corner points to the midpoints 
and three connecting the barycenter to the midpoints.  A sample text file for input into 
Triangle is given in Table 4-6 along with the interaction region geometry in Figure 4-22.  
Line 1 defines the number of vertices (݊௩ = 7), dimensionality (always 2), the number of 
attributes, and an option to use boundary markers (0 or 1).  The next ݊௩ lines include the 
vertex number, ݔ and ݕ coordinates, attributes if any, and boundary markers that are all 
set to 1 in this example.  Line 9 is the start of the segment list that specifies the number of 
segments (݊௦ = 9) and number of boundary markers.  The next ݊௦ lines identify the 
segment number, vertices involved in the segment (always 2) as indexes into the vertex 
list, and the boundary markers.  Ordering of the vertices and segments is arbitrary. 

Table 4-6: Triangle input file example for triangular interaction region. 

Line Text Result 
1 7   2   0   1 

 
Figure 4-22: Geometry and boundary markers 
corresponding to Triangle input in this table. 

2 1   0.0000   0.0000    1 
3 2   1.0000   0.0000    1 
4 3   0.5000   0.8660    1 
5 4   0.5000   0.0000    1 
6 5   0.2500   0.4330    1 
7 6   0.7500   0.4330    1 
8 7   0.5000   0.2887    1 
9 9   1 

10 1    1    4    1 
11 2    4    2    2 
12 3    2    6    3 
13 4    6    3    4 
14 5    3    5    5 
15 6    5    1    6 
16 7    4    7    7 
17 8    6    7    8 
18 9    5    7    9 
19 0 

 

Generating the discretization using Triangle involves several command line switches as 
well.  Chapter 2 mentions user control of triangle area and quality.  It is also possible to 
ensure the triangulation is conforming Delaunay (all Voronoi vertices fall within the 
triangulation) and to generate various output files including a segment file.  The 
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following is a sample command executed in Cygwin to triangulate the interaction region 
of Figure 4-22, with the result shown in Figure 4-23: 

Program Switches Input file 

 $ ./triangle -pDq30a0.005e g 

 

Specifying the input file requires only the name and not the extension, which is .poly by 
default.  Command line switches used include: 

− p: triangulate a planar straight line graph 

− D: generate a conforming Delaunay triangulation 

− q30: constrain interior angles to greater than 30 degrees 

− a0.005: constrain the maximum area of triangles to be less than 0.005 square 
meters 

− e: generate an edge list file. 

 

Figure 4-23: Interaction region discretized using Triangle. 

Using segment boundary markers and generating the segment file is useful for identifying 
the edges that fine scale triangles are adjacent to.  Segments in the file that coincide with 
an input segment are assigned the same boundary marker, making it straightforward to 
determine which triangles fall on the boundaries to recover the fluxes.  Solving for 
interface fluxes on the triangulation using MPFA involves modeling the permeability in 
each triangle (Chapter 3), building the polygonal interaction regions, computing 
transmissibilities, specifying boundary conditions, and building and solving Equation 
4.29.  These steps are developed using the triangulation of Figure 4-23.  Permeability is 
homogeneous with a value of 1 for all simplexes to validate the approach. 
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Polygonal interaction regions are built exactly like the triangular ones discussed in 
Section 4.2.1, the barycenters of triangles are connected to the midpoints of the triangle 
edges (Figure 4-24).  Transmissibilities are compiled into ܂ from Equation 4.29 that is a 

sparse ܰ × ܰ matrix, where ܰ is the number of fine scale triangles.  ܰ is equal to 139 in 
this case.  Pressure boundary conditions are specified along the whole boundary of the 
coarse triangular interaction region based on the arbitrary pressures chosen for its vertices 
via Equation 4.30.  Enforcing linear pressure variation along the outer edges of the coarse 
variation triangles and pressure continuity at the midpoints is done by assuming linear 
pressure variation between the assigned vertex pressures; however, only pressures along 
the bounding fine scale triangle barycenters are kept. 

Assigning linearly varying pressures to the barycenters of the fine scale triangles is done 
as follows: 

1. Identify the set of bounding triangles, ܵ, which are those having an edge that 
borders only one triangle. 

2. Compute the barycentric coordinates, ࡸ, of all triangles in ܵ relative to the coarse 
simplicial interaction region. 

3. Interpolate the corner point pressures from the coarse interaction region, ܘ, to the 
fine scale triangles, ܘ(ܵ) =  .ܘࡸ

Figure 4-25 shows the resulting pressure boundary conditions for one case.  Triangles are 
shaded fully based on their pressures for visibility; however, the pressures exist only at 
the barycenters. 

Pressure boundary conditions are applied to ܘ܂ =  for each boundary triangle, ܵ(݇), by ܙ

zeroing row ܵ(݇) of ܂ and setting the same row of ܙ equal to the pressure ݌(ܵ(݇)).  

Specified pressures are recovered exactly in the solution vector ܘ.  Fluxes across the fine 
scale triangle interfaces are determined from the corresponding interaction region 
transmissibilities and the pressure solution.  For the constant permeability case, the 
resulting pressure field has a constant gradient.  Reconstructed fluxes are shown using 
velocity vectors, which are calculated as flux divided by the interface area (Figure 4-26). 
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Figure 4-24: Fine scale polygonal interaction regions for MPFA upscaling. 

 

Figure 4-25: Linear pressure boundary conditions on a coarse triangular interaction region 
for the local fine scale pressure solution.  Pressures are stored at the fine scale triangle 

barycenters. 
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Figure 4-26: Velocity field with magnitude indicated by arrow width. 
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The fluxes to compute the transmissibility matrix of the coarse scale interaction region 
are the sum of all fine scale fluxes along the coarse scale flux interfaces.  The result is the 
first column of the left hand side matrix in Equation 4.32; however, the sign given to the 
fluxes must agree with the MPFA approach.  Flux ݍ଴ଵ is the flux across interface 0 from p଴ to pଵ, flux ݍଵଵ is the flux across interface 1 from pଵ to pଶ, and flux ݍଶଵ is the flux across 
interface 2 from pଶ to p଴, with outflux being positive.  The final set of equations and 
coarse transmissibility matrix is given by Equation 4.34. 

The previous development of MPFA upscaling using constant permeability and an 
equilateral triangle confirms two results: 

1. The pressure gradient across the coarse flux interface that is along the zero 
pressure edge is zero; therefore the flux must be zero there as indicated by the 
results. 

2. Across the coarse flux interfaces with a pressure gradient of 1 and with 
permeability a constant 1 Darcy, the flux is equal to the area of the interface.  For 
the equilateral triangle of edge length 1, the flux interfaces have a length of 3ଵ/ଶ/6 ≅ 0.28868 that was recovered in Equation 4.34 with some error involved 
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due to numerical round-off and a triangulation consisting of triangles with 
different shapes and sizes. 

The upscaling methodology presented in this section is new and is a contribution of this 
thesis.  It is needed so that permeability models on high resolution simplex grids can be 
upscaled to a coarse scale polygonal grid.  Methods shown apply to triangular interaction 
regions, but they can be generalized to other interaction regions including: polygonal 
interaction regions when the grid of control volumes is triangular and hexahedral 
interaction regions when the grid is structured.  For the case with polygonal interaction 
regions, the geometric components are identical to those presented for triangular 
interaction regions.  Pressures are defined at the triangular control volume centers.  If the 
triangular and polygonal grids are dual, then the edge midpoints are coincident as are the 
edges connecting them.  Differences include: the definition of flux interfaces and 
interaction region edges are interchanged; the number of equations is equal to the number 
of control volumes in an interaction region.  If this number is ݊, then ݊ − 1 boundary 
conditions are required along with the constraint that transmissibilities sum to zero to 
solve for the transmissibility matrix of the polygonal interaction region. 

4.2.3 Boundary Conditions 
Using pressure boundary conditions with a constant gradient is limiting because 
regardless of the point pressures selected for p௜, p௝, and p௞, the coarse scale 

transmissibilities do not change.  Incorporating this approach into any local-global 
upscaling regime (Chen et al, 2003; Chen and Durlofsky, 2006) is ineffective because the 
global pressures that are used as local boundary conditions have no effect on the resulting 
upscaled transmissibility matrix.  Other approaches to construct boundary conditions for 
local upscaling problems are presented to achieve an improved description of the flow 
that actually occurs through an interaction region.  One option found in the literature uses 
one dimensional pressure solves around the perimeter of a volume to be upscaled rather 
than a linear pressure variation as in Section 4.2.2 (Chen et al, 2003).  The method is 
applicable to local MPFA upscaling. 

Solving for perimeter pressures for a triangular interaction region is a one dimensional 
problem that is solved using two-point transmissibilities.  Consider edge pଵpଶതതതതതത of the 
triangle used in Figure 4-23.  Pressures assigned at points pଵ and pଶ are boundary 
conditions used to determine pressure at the midpoints of all fine scale triangles along the 
edge (Figure 4-27).  Each triangle has a permeability ܓ௜.  Two-point transmissibilities, ௜ܶ௝, defined by Equation 4.35 are used to setup the system of equations, where ܓ௜ and ∆ݔ௜ 
are respectively the permeability and width of element ݅ along the edge and ௜ܶ =  ௜ݔ∆/௜ܓ
is the transmissibility of element ݅. 
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Figure 4-27: One dimensional pressure problem shown for lower edge. 

Applying conservation of mass for each element via Equation 4.36 provides a system of ݊ equations having the same structure as Equation 4.29, where ݊ is the number of 
elements along the edge and ܂ is tridiagonal with diagonal entries ௜ܶିଵ,௜ + ௜ܶ,௜ାଵ, lower 

diagonal entries ௜ܶିଵ,௜ and upper diagonal entries ௜ܶାଵ,௜. 
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Three such problems are setup, one for each side of the triangular interaction region to 
characterize the pressure distribution around its perimeter.  Since two sets of boundary 
conditions are required to determine the transmissibilities in Equation 4.31, six one-
dimensional problems are involved.  Using boundary conditions of (1,0,0) and (0,1,0), the 
solution to edges with zeros at the vertices is zero and only four problems are involved. 

Solutions to the one dimensional problems can be used in two ways: 1 – only the 
pressures at the coarse interaction region midpoints are retained and used to impart 
different pressure gradients in each variation triangle; 2 – all pressures are used as 
boundary conditions for the interior problem.  Method 2 is not explored; however, it is 
expected that results are better than linearly varying boundary conditions since more 
permeability information is incorporated into the upscaling process.  This is an area of 
future development.  The first approach is similar to that in Section 4.2.2 in that a linear 
pressure variation is applied to each variation triangle; however, the pressure gradient is 
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different along edges pపmపതതതതതത and mపpపାଵതതതതതതതതത if the permeability is heterogeneous.  For constant 
permeability, the same solution is obtained as Equation 4.34 for the equilateral triangle 
example. 

An example with constant permeability in each control volume connected by the 
equilateral interaction region previously used demonstrates the result (Figure 4-28).  
Different pressure gradients in each variation triangle are clear.  They were derived based 
on the corner point and midpoint pressures only.  The apparent gradient in the direction 
from point 1 to 5 of the interaction region is greater than that from corner 1 to 4.  This is 
as expected since permeability increases from point 1 to 3 through 5 and decreases from 
point 1 to 2 through 4.  Using these pressures along the boundary of the interaction region 
to solve for the interior pressures gives a smooth pressure field (Figure 4-29). 

 

Figure 4-28: Heterogeneous permeability (left) and linear varying pressure in the variation 
triangles (right) based on midpoint pressures from one dimensional boundary solutions. 

 

 

Figure 4-29: Interior pressure solution for three permeabilities case. 
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The resulting transmissibility matrix is summarized in Equation 4.37.  Using the same 
boundary conditions but without the one dimensional solves for the midpoint pressures 
results in the transmissibility matrix in Equation 4.38.  Knowing the permeability within 
each variation triangle makes it possible to compute the transmissibility matrix 
analytically using Equation 4.26 with the solution given by Equation 4.39.  Interestingly, 
the matrix obtained without the midpoint pressures is closer to the analytical result.  
Evaluating Equation 4.27 always results in a zero pressure gradient contribution from p௜ 
across the opposing flux interface ܾmపାଵതതതതതതതത when the permeability tensor is diagonal and 
isotropic.  Using linear boundary conditions, the computed pressure gradient across flux 
interfaces along the zero pressure edge is approximately zero as well, leading to a 
solution that is closer to the analytical solution. 

However, the assumptions and simplifications made by the MPFA approach do not 
consider flow at a higher resolution within the interaction regions.  The fine scale 
pressure solution gives an improved understanding of flow on the interior of the 
interaction region beyond the assumption of a constant pressure gradient in the variation 
triangles.  By arguing that fluid takes the path of least resistance, flow must occur across 
the interface on the zero pressure edge for the example with three permeabilities.  This is 
found using boundary conditions that involve the midpoint pressures and is observed in 
Figure 4-29.  Pressure contours not perpendicular to a flux interface induces flow across 
that interface. 
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An issue with the one dimensional pressure solution is a possible discontinuity in 
pressure along the edge and at the midpoint when computed for the neighbouring 
interaction region if the fine scale permeability is different on opposite sides of the edge 
(Figure 4-30).  In this case, the permeability from two neighbouring triangles sharing the 
edge involved in the one dimensional pressure problem is averaged arithmetically.  This 
is equivalent to assessing flow through layered media parallel to the layers and the 
arithmetic average is correct (Figure 4-31).  Resulting pressures along the edge are 
guaranteed to be continuous between interaction regions. 
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Figure 4-30: One dimensional pressure problem leading to discontinuous pressure between 
two triangular interaction region edges. 

 

Figure 4-31: Average permeability to ensure continuous pressure between interaction 
regions when using one dimensional pressure solves. 

Using the midpoint pressures to define boundary conditions provides a unique solution in 
that regardless of the two sets of pressure boundary conditions chosen the transmissibility 
matrix is unique.  Although more representative transmissibilities are obtained than 
without the midpoint pressures, they are independent of the boundary conditions.  This 
may not be the case when the interaction regions involved in the upscaling process 
contain heterogeneous permeability and are embedded in a larger grid. 

All variations on local boundary conditions that are based solely on the pressures at the 
corners of the interaction region lead to a unique transmissibility matrix.  This occurs 
because the flux across the interaction region boundary is directly linked to the corner 
point pressures.  Only when the boundary conditions are controlled by more than the 
local information is dependence between pressure and transmissibility obtained.  For 
example, if the midpoint pressure was dependent on more information than the corner 
point pressures, a different transmissibility matrix would result.  Such information might 
include pressures around the region being upscaled or a better approximation of the flux 
across its boundary; the limit being the global pressure and flux fields on the fine scale 
grid that is typically unattainable.  As mentioned in Chapter 1, additional information is 
brought into the equations using extended local upscaling (Gomez-Hernandez and 
Journel, 1990).  The objective is to obtain better estimates of flow through the upscaling 
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region.  Extended local upscaling methods are not explored in this dissertation; however, 
additional study in this area could be undertaken. 

4.2.4 Convergence 
Upscaled transmissibilities are used to approximate the flow that is happening through 
the fine scale grid.  As with arithmetic averaging, there is dependence between the 
number of fine scale elements involved and the accuracy of the upscaled values.  In the 
arithmetic averaging case, it is possible to compute the expected value of the error since 
the true value can be approximated.  There is no straightforward approximation for the 
upscaled transmissibility based on the fine scale permeability field.  There are several 
additional dependencies including the permeability field, boundary conditions, geometry 
of the fine scale discretization, and geometry of the interaction region.  Reconciling these 
requires numerical studies. 

Choosing the number of fine scale elements, ݊, to discretize a coarse element will 
primarily be chosen for practicality: grids must be kept to some manageable size to meet 
time constraints and computational limitations.  A few convergence studies are done to 
give a general idea of potential error when choosing ݊.  It is assumed that the variation of 
permeability within interaction regions is not extreme in the presence of different facies 
and/or geological units (Figure 4-32), that is, the accuracy of transmissibility assuming a 
constant facies and geology is representative.  This is applicable for small grid elements.  
Larger elements in an unstructured grid design are typically in areas of the reservoir 
where low flow rates occur and the accuracy is not as important as areas adjacent to 
wells, where grid elements are small.  Further convergence study is required to relax the 
assumptions made for the studies presented. 

 

Figure 4-32: Interaction region intersecting different geological units (left) and facies (right). 

Computing the error in transmissibility matrices requires an estimate of the true values 
and approximations for different ݊.  True values are estimated numerically with a high 
resolution discretization consisting of ܰ ≫ ݊ elements; however, accessing both 
transmissibility matrices for the same realization is problematic as a realization filling ݊ 
elements can lead to many different realizations of size ܰ.  The approach used to observe 
the convergence of transmissibility for a few simple examples is: 



122 
 

1. Generate a set of high resolution permeability realizations. 
2. For some arbitrary interaction region covered by the realizations and for a variety 

of discretization volume constraints 
a. Resample the realizations using nearest neighbour interpolation. 
b. Upscale the transmissibilities. 

3. Observe the changes in transmissibility with increasing ݊. 

Nearest neighbour interpolation is used in step 2.a. for two reasons: 1 – it is similar to 
generating a point scale realization on the different discretizations using geostatistics, but 
rather than simulating a value at the centre of an element, the value from the already 
known realization from step 1 is selected; 2 – it prevents the permeability field from 
being smoothed out by using other methods such as kriging and linear interpolation. 

In two dimensions, the coarsest possible discretization that is constrained by the 
boundary and the flux interfaces has ݊ = 6 triangles (Figure 4-33).  This is used as the 
starting point for all examples.  A difference between these studies and those involving 
the arithmetic average is an interaction region is used here and in the arithmetic average 
cases a grid element is used.  Defining ݊஺ as the number chosen for arithmetic averaging 
and ݊ as the number chosen for transmissibility upscaling, the relationship between them 
for simplex interaction regions is approximated by Equation 4.40, where ܱ is a cluster of 

interaction regions connected to the center points of a grid element, ധܱ is the number of 
interaction regions in the cluster, and ݀ is the dimensionality. 

 

Figure 4-33: Coarsest discretization possible for a triangular interaction region. 
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The first two examples covered involve the equilateral triangle used previously and 
observe the computed transmissibility with increasing ݊.  Example 1 uses a constant 
permeability of 1 Darcy.  In this case, the coarsest triangulation yields the exact 
transmissibility matrix.  Increasing ݊ results in less symmetry in the discretization 
because the program Triangle (Shewchuk, 1996) inserts new points for the triangulation 
without considering global grid quality; however, there is very little deviation from the 
analytical transmissibilities (Figure 4-34).  In the second example, permeability is 1 
Darcy in two control volumes and 10 Darcy in the third.  The transmissibilities quickly 
converge to a consistent value (Figure 4-35). 
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Figure 4-34: Convergence of transmissibility for constant permeability. 

 

 

Figure 4-35: Convergence of transmissibility for different permeability in each control 
volume joined by the interaction region. 

Further examples involve unconditional permeability fields and multiple realizations.  
Fields are generated on a 51 by 51 node regular grid that covers the interaction region 
using Cholesky factorization or LU simulation (Davis, 1987).  The realizations from LU 
simulation are Gaussian and are transformed using ܼ = exp (ܻ) to reflect permeability.  
Convergence of transmissibilities is expressed as a sum of squares of the change in value 

with increasing ݊ (Equation 4.41), where ෠ܶ௜௝(݊) is a component of the transmissibility 

matrix computed using a discretization with ݊ elements.  Initial transmissibilities without 
discretization, ݊ = 0, are approximated using the geometric mean of the permeability in 
each variation triangle and Equation 4.26.  Triangulation was done using the program 
Triangle (Shewchuk, 1996) with a minimum interior angle constraint of 30 degrees. 
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Three SSE curves averaged over 25 realizations are shown for the equilateral triangle 
case in Figure 4-36 corresponding to a spherical, exponential, and Gaussian variogram 
model.  All models were isotropic with a range 5 times the extent of the interaction 
region.  Results are as expected for the effect of variogram structure on error: variograms 
with less variation show less error.  Another observation is the error from the geometric 
average approach, ݊ = 0, to using ݊ = 6 is less than the error from ݊ = 6 to ݊ = 12.  
Using ݊ = 6 is not much different than the analytical approach and the error is small; 
hence the resulting transmissibilities are more similar.  This indicates that the geometric 
average and too few ݊ are unsatisfactory.  For the three variograms shown, ݊ should be at 
least 12. 

Convergence of error with variogram range is shown in Figure 4-37 using an isotropic 
spherical model and ranges 1, 2, 3, 5 and 8 times the interaction region extent.  As range 
decreases relative to the interaction region, which is equivalent to more variation in the 
variogram, the error increases for a constant n.  For ranges 1 and 2, ݊ = 18 discretization 
points may be necessary for a spherical variogram.  However, in most applications 
variation in the variogram is small relative to the grid element volume.  A similar 
convergence test using a spherical variogram with range of 5 meters and a nugget effect 
varying between 0 and 0.2 is shown in Figure 4-38. 

A final convergence test (Figure 4-39) using a spherical variogram with a range of 5 
meters shows the change in error as the interior angle of the interaction region is changed.  
To accommodate the changing angle, the quality constraint for the program Triangle 
(Shewchuk, 1996) was decreased along with the quality of the interaction region.   
Results are somewhat mixed, but generally the error seems to increase as the angle 
decreases.  The variation is not substantial.  Studies to observe the change in error with 
permeability contrast were not done since the transmissibility scales linearly with 
permeability.  Higher permeability translates to larger transmissibilities that yield larger 
squared error.  When scaled by the magnitude of the permeability contrast, max(ܓ) /min (ܓ), the error curves would show no difference.  There is some concern in all the 
convergence plots (Figure 4-36 to Figure 4-39) because the error is not monotonically 
decreasing.  This is caused by the variation in the geometry of the underlying 
triangulation when increasing ݊. 
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Figure 4-36: SSE convergence with ࢔ for different variograms. 

 

Figure 4-37: SSE convergence with ࢔ for a spherical variogram with different ranges. 
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Figure 4-38: SSE convergence with ࢔ for a spherical variogram with a range of 5 meters and 
different nugget effects. 

 

Figure 4-39: SSE convergence with ࢔ for a spherical variogram with a range 5 meters and 
different interior angles for the interaction region. 
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These basic convergence examples show that choosing ݊ for upscaling transmissibility is 
not as exact as for arithmetic averaging.  Because of the high number of dependencies, no 
explicit approach presents itself; however, some general guidelines are identified: 

• As variation in the variogram relative to the size of interaction regions decreases, ݊ can be reduced.  Variation decreases from exponential to spherical to Gaussian 
variogram models.  The presence of a nugget effect increases the variation and 
reduces the convergence rate. 

• As the smallest interior angle of triangular interaction regions decreases, the error 
generally increases.  Discretization also becomes more challenging since this 
angle may violate the minimum angle constraint specified for Triangle. 

• Specifying an angle constraint of 30 degrees for Triangle typically leads to at 
least 12 fine scale triangles regardless of the area constraint.  This is due to 
Triangle having to match both the triangle, barycenter, and flux interfaces. 

• In general for two dimensional problems, ݊ should be chosen to be 12 to 18 for 
triangular interaction regions.  The upscaling methods were not extended to three 
dimensions; therefore these guidelines are not necessarily applicable in three 
dimensions. 

Realistically, the volume of interaction regions is on average small relative to the 
variation in the variogram.  The majority of grid elements are concentrated around wells, 
significant geological features, and known flow paths and are small for obtaining 
accurate flow simulation results. 

4.3 Comments on Discretization Quality 

Another constraint for generating simplex discretizations is element quality.  For 
approximating the arithmetic average of a stationary random field with a triangular 
discretization, it is clear that a more uniformly distributed set of triangles yields a better 
approximation.  This is achieved with a high angle quality constraint with Triangle and 
low radius-edge ratio with TetGen.  For the MPFA, quality also depends on the 
underlying permeability tensor field that acts as a local coordinate system.  Some 
geometric and permeability configurations are known to cause non-physical solutions to 
the pressure equation using MPFA simulation (Aavatsmark, 2002; Mlacnik and 
Durlofsky, 2006).  This situation is not encountered if the inverse of the transmissibility 
matrix, ܂ in Equation 4.29, is positive, ି܂ଵ ≥ 0.  A sufficient condition is that ܂ is an ܯ-

matrix (Fujimoto and Ranade, 2004), which is a matrix with properties defined in 
Equation 4.42. 
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For isotropic permeability in two dimensions, an ܯ-matrix is achieved using a triangular 
grid when the sum of the interior angles opposite a shared edge is less than ߨ (Figure 
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4-40) (Aavatsmark et al, 1998b).  This is achieved using a Delaunay triangulation, which 
is an option in Triangle (command line switch ‘D’).  For example, using an angle 
constraint of 30 degrees, the worst possible case for the angle sum is 120 + 120 = 240 
degrees, but to ensure the triangulation is Delaunay the shared edge is flipped and the 
new sum is 60 + 60 = 120 degrees (Figure 4-41).  For tetrahedral grids, a sufficient 
condition for an ܯ-matrix is the dihedral angle of any two faces of a tetrahedron is less 
than 2/ߨ; however this is not a necessary condition (Mlacnik and Durlofsky, 2006).  An ܯ-matrix is achieved when the sum of the contributions from all tetrahedra sharing an 
edge is less than or equal to zero. 

 

Figure 4-40: Interior angle constraint for an ࡹ-matrix in two dimensions and for isotropic 
homogeneous permeability. 

 

Figure 4-41: Example edge flip in a Delaunay triangulation. 

For heterogeneous and anisotropic permeability, the conditions for an ܯ-matrix do not 
necessarily hold.  It becomes difficult to define quality constraints for discretization to 
ensure a good quality solution to the pressure equation.  Achieving these conditions is a 
grid optimization problem discussed by Mlacnik and Durlofsky (2006).  In this thesis, it 
is assumed that the coarse unstructured grid was designed with such considerations.  
Also, it is assumed that discretization to achieve Delaunay triangulations and good 
quality elements is sufficient to achieve stable upscaled transmissibilities.  This implies 
that any ܯ-matrix issues that occur on the fine scale grid are mitigated through upscaling 
and will not degrade flow simulation results on the coarse grid. 

4.4 Summary 

This chapter introduced two new components for upscaling: 1 – a general way to measure 
error for arithmetic averaging that can be used to control grid discretization; 2 – a new 
method to upscale transmissibility for PEBI and polygonal grids using the MPFA 
method.  For random variables that scale with an arithmetic average, the expected error is 
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dependent on the variogram and geometry.  It is possible to derive a problem-specific 
function that relates the expected error to the number of discretization points used for the 
average.  For cases when the variation in the variogram is low within the extent of grid 
elements, which is often the case, low error is possible with few discretization points.  It 
was also found that when going from two dimensions to three dimensions, the number of 
points required to maintain a similar accuracy is achieved by maintaining the same point 
spacing. 

Upscaling transmissibilities using the MPFA method was developed for triangular 
interaction regions.  It was shown to yield exact results for homogeneous permeability.  
Extending the results to tetrahedral interaction regions is possible and additional study 
could be undertaken for this.  Local upscaling methods were developed with two types of 
boundary conditions: 1 – linearly varying pressure around the entire interaction region; 2 
– linearly varying pressure in each variation triangle, with midpoint pressures derived 
from one dimensional pressure solves.  Regardless of the type of boundary conditions 
chosen, as long as they are local the resulting transmissibility matrices for triangular 
interaction regions are independent of the boundary conditions; i.e. any two sets of 
boundary conditions along with the constant sum constraint yields the same 
transmissibility matrix. 

Determining an approach to choose the discretization points for transmissibility upscaling 
is more complex than for arithmetic averaging.  Some general guidelines were identified 
to acquire more stable transmissibility matrices in two dimensions.  Generally, more 
points are required when there is increased variation in the variogram and lower quality 
interaction regions.  In two dimensions, 12 to 18 points are adequate.  When a low 
enough error is chosen for the arithmetic average discretization criteria, the number of 
points should be adequate for transmissibility upscaling as well, although further study is 
required. 

Averaging and flow based upscaling is one stage of the proposed reservoir modeling 
workflow of this dissertation.  Starting with a coarse unstructured grid designed based on 
some a priori knowledge of the permeability distribution and boundary conditions, the 
approach is to discretize the coarse grid with a higher resolution simplex grid.  
Discretization is controlled by the desired accuracy of averaging and flow based 
upscaling and also by practicality, i.e. the time required to do the modeling depends on 
the number of fine and coarse grid elements.  Final upscaled properties are used in flow 
simulation studies.  The upscaled properties reflect the underlying fine scale models for 
all scales in the coarse unstructured grid. 
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Chapter 5 Demonstration and Case Study 

 

This chapter focuses on demonstrating aspects of the workflow proposed in Chapter 2.  
Section 5.1 shows that the correct local distributions of uncertainty are obtained using 
simplex discretization.  Recovery of statistics through the Gaussian transformation is 
shown for a lognormal variable including the covariance function and the proportional 
effect.  A comparison of global statistics computed using regular grids and conventional 
approaches to using discretized unstructured grids is also done. 

Section 5.2 demonstrates that the transmissibility upscaling approach in homogeneous, 
layered, and heterogeneous media gives good results in comparison to using traditional 
flow simulation methods on high resolution regular grids.  The last section goes through a 
reservoir modeling case study covering the geostatistical modeling components of the 
proposed workflow in Chapter 2.  It utilizes programs developed in Chapter 3 for 
modeling and checking variogram reproduction and the error function from Chapter 4 for 
choosing discretization parameters.   

5.1 Simplex Discretization 

5.1.1 Covariance Reproduction 
In Chapter 4 it was shown for simplex discretization that as discretization density 
increases, the average covariance converges to the correct value.  This section shows that 
geostatistical simulation on the discretization followed by upscaling is consistent with 
scaling theory for arithmetically averaging random variables.  It is shown that averaged 
simulated values within an element are distributed with a mean and variance equal to 
those obtained by kriging with the average covariance of the same element.  This is first 
done assuming the underlying random field is Gaussian, which removes any non-linear 
effect imposed by a Gaussian transformation. 

For Gaussian fields, simple kriging using the average covariance of an element yields the 
same distribution as simulating random values in the element and averaging them.  
Consider a case where a Gaussian value is conditionally simulated based on ܰ 
conditioning data to represent an unstructured grid element using average covariance that 
is approximated by discretizing the element into ݊ points.  In Equation 5.1, ܡ is the vector 
of conditioning data, ݕ௦ is the simulated value, ૃ is the vector of kriging weights, ܋ is the 

vector of average covariances between data samples and the grid element, ۱ଵଵ is the 
covariance matrix between the conditioning data, and ݎ is a zero mean Gaussian random 

deviate with variance given by Equation 5.2.  Here, ܥ(ܸ, ܸ) is the average covariance of 
the element that describes the variance at scale ܸ. 
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 2 ( , ) T
r C V Vσ = −λ c  5.2 

Now consider representing the same element by simulating point scale values at each of 
the ݊ points and averaging them arithmetically.  For simplicity, assume all values 
represent an equal fraction of ܸ, that is, ݓ௞ = 1/݊, ݇ = 1, … , ݊.  To account for all 
covariances the LU formalism (Davis, 1987) is used.  Covariances between all 
conditioning data and discretization points is expressed in Equation 5.3 along with its 
Cholesky decomposition, where ۱ଵଶ is the covariance between conditioning data and 
discretization points and ۱ଶଶ is between discretization points. 

 11 12 11 11 12

12 22 2212 22

0
0T

     = =         
C C L U BC A L UC C  5.3 

A conditional realization for all ݊ points is generated using Equation 5.4, where ܡ௦ is the 
vector of simulated values and ܚ is a vector of zero mean Gaussian random deviates with 
unit variance. 

 1
21 11 22s

−= +y C C y L r  5.4 

Computing the mean and variance of the mean of Equation 5.4 recovers exactly the result 
in Equations 5.1 and 5.2 as shown in Equations 5.5 and 5.6.  The first step replaces ۱ଵଵିଵܡ 
by હ as in dual kriging and the expected value of L22r is a zero vector since ܧ{ۺଶଶܚ} {ܚ}ܧଶଶۺ= = 0.  Summation of ۱ଵଶ over ݅ and multiplying by 1/݊ gives the same average 
covariance vector in Equation 5.1 and replacing હ with its original matrix vector product 
recovers the same kriging estimate. 
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Computing the variance of the mean is a quadratic form expression of the variance of ܡ௦ 
shown in Equation 5.6, where ܌ = [1/݊ … 1/݊]்.  These results are applicable when no 
transformation is used and the variable being estimated averages arithmetically. 

Using point scale estimates is therefore consistent with geostatistical scaling for Gaussian 
random fields.  Averaging a set of point scale values accounts for scale and shape as the 
average covariance approach does.  It is also shown in Equations 5.10 and 5.11 that the 
estimate and estimation variance are correct when there are multiple grid elements 
involved.  In this case, the average covariance between conditioning data and grid 
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elements and between the elements must be recovered.  Consider two grid elements, ܽ 
and ܾ, and LU simulation using average covariance, then Equation 5.1 is written as 
Equation 5.7, where ܋௔ and ܋௕ are vectors of average covariance between conditioning 
data and grid element ܽ and ܾ respectively, and ۱ଵଵ is unchanged.  ۺଶଶ is from the 
Cholesky decomposition of the covariance matrix in Equation 5.8 and the estimation 
variance is defined by Equation 5.9. 
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Discretizing the elements and taking the expected value in Equation 5.10 yields the same 
result.  Equation 5.11 shows the same estimation variance matrix is recovered as well. 
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These equations show that in the Gaussian space of geostatistical simulation, the 
proposed approach using discretization is consistent with arithmetic scaling laws.  The 
advantage of using the discretization approach is realized when transformations and non-
linear averaging are involved.  Reservoir properties are typically not Gaussian.  Quantile 
transforms are often used to obtain a Gaussian random variable so that geostatistical 
techniques apply; however, this is a non-linear transform and the average covariance 
approach is not applicable. 

5.1.2 Statistics through a transformation 
Statistics of point scale values through a transformation are reproduced since the 
geostatistical simulation algorithm developed in Chapter 3 results in a Gaussian field.  
The correct covariance is recovered and other statistics such as the proportional effect 
(David, 1977; Journel and Huijbregts, 1978; Manchuk et al, 2009) are recovered as well.  
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These results are found in the literature (Journel and Kyriakidis, 2004); however they are 
demonstrated with a single two dimensional example involving a lognormally distributed 
random variable, ܼ.  There is an analytical relationship (Equation 5.12) between the 
covariance functions of ܼ and ܻ = ln (ܼ).  ܻ is normally distributed.  In Equation 5.12, ߪ௒ଶ is the variance of ܻ (1 in this case),  ݉ is the mean of ܼ defined by Equation 5.13, and ݉௒ is the mean of ܻ (0 in this case). 

 ( )2 2( ) exp ( ) 1Z Y YC m Cσ = − h h  5.12 

 ( )2ln / 2Y Ym m σ= +  5.13 

Checking that the variogram is reproduced at the coarse grid element scale requires 
computing the experimental variogram; however, computing the experimental variogram 
of an unstructured grid with a variety of element shapes and volumes is non-trivial.  For 
simplicity, a coarse regular grid is used so that the experimental variogram can be 
computed as only a function of ܐ, rather than of ܐ, volume, and shape.  Elements are 
discretized using a triangulation as would be the case with a coarse unstructured grid. 

An arbitrary regular grid with 60 by 30 elements in ݔ and ݕ of size 10 by 10 m is used.  
The program Triangle is used to discretize the grid with a quality constraint of 20 degrees 
and an area constraint of 10 m2.  There are nominally 15 triangles per regular grid 
element and a total of 27,883 triangles.  On the triangle barycenters, 50 unconditional 
Gaussian realizations are generated using psgsim with a spherical variogram with a range 
of 50 meters in ݔ and 100 meters in ݕ.  Realizations are converted to a lognormal 
distribution and both variables are averaged to the coarse regular grid (Figure 5-1). 

Checking reproduction of the covariance at the coarse scale is done by computing the 
experimental variogram of each coarse scale realization and averaging the set of 50.  
Analytical values of the sill were calculated for the input variogram model.  The sill of 
the average of ܻ is 0.88 and of ܼ is 3.84.  Input point scale variograms are plotted with 
the average variogram of the coarse realizations in Figure 5-2.  The experimental and 
analytical sills are visually similar.  Other changes agree with variogram scaling law 
theory (Frykman and Deutsch, 1999):  the range is larger at the coarser scale; the 
variograms are shifted to the right due to the smoothing effect of averaging; the overall 
shape of the variogram has been preserved.  Note the average variogram is not 
computable at a spacing less than the coarse grid element size. 

The presence of a proportional effect is also confirmed for this example with a cross-plot 
of the mean and standard deviation of each element for a single realization (Figure 5-3).  
Checking against the analytical relationship requires evaluating Equation 5.12 at ܐ = 0, 
written as Equation 5.14. 

 ( )2 2 2exp 1Z Ymσ σ = −   5.14 

Assuming second order stationarity, the variance of ܻ is constant throughout the field and 
is determined using the dispersion variance covered in Chapter 1 (Equation 5.15).  The 
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dispersion variance, discussed in Chapter 1, between the coarse elements and the domain 
was already calculated as ܦଶ(ܸ, Ω) = 0.88. 

 2 2 2( , ) ( , ) ( , )D v D v V D VΩ = + Ω  5.15 

For large domains and Gaussian field, the dispersion variance between point scale (ݒ in 
this case) and the domain is assumed 1; however, for the domain in this example, ܦଶ(ݒ, Ω) = 0.98.  The variance, ߪ௒ଶ, used in Equation 5.14 is then equal to 0.98 −0.88 = 0.10.  This value is approximated from the lognormal realizations using linear 
regression of the form of Equation 5.16, where ݇ is the slope. 

 2 2 2, ln( 1)Z Ykm kσ σ= = +  5.16 

Based on this approach using the 50 realizations, ߪ௒ଶ = 0.096.  Resulting lines are shown 
on Figure 5-3 and are in close agreement. 

 

Figure 5-1: Gaussian realization on a fine scale triangular grid (top) and arithmetically 
averaged to a coarse regular grid (bottom). 
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Figure 5-2: Variograms of averaged Gaussian, ࢅ, and lognormal, ࢆ, variables.  Sills are 
shown with dashed lines. 

 

Figure 5-3: Proportional effect of an averaged lognormal realization. 
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Reproduction of statistics using this regular grid example indicates the methodology of 
refinement with simplex grids for averaging is sound and that psgsim is generating 
Gaussian fields with the correct spatial structure.  A regular grid was used in this case to 
allow computation of the experimental variogram at the element scale.  Equivalently, a 
grid of hexagons or triangles with the same volume could have been used. 

5.1.3 Global Statistics 
This section compares the reproduction of global statistics such as the mean and variance 
of a realization using current practices and regular grids with unstructured grids and the 
discretization approach.  Since the targeted use of unstructured grids is flow simulation, it 
is necessary that the new approach does not introduce a bias in porosities, permeabilities, 
or initial fluid volumes in place.  In Chapter 3, it was shown that psgsim yields Gaussian 
realizations with zero mean and unit variance on average.  This indicates there is no bias 
in realizations though a transform and estimates of pore volume for example would be 
accurate; however, conditioning data was not involved.  The impact of conditioning data 
is that the variation of a reservoir property within the vicinity of the data is reduced.  For 
example, a large grid element that is consistently assigned a low value due to its 
proximity to a low porosity sample draws the mean of the realizations down.  The 
discretization process mitigates this type of effect by accounting for the scale and shape 
of grid elements. 

A simple two dimensional example is used to demonstrate the impact of conditioning 
data and grid element distribution on estimates of oil in place (OIP).  OIP is calculated by 
Equation 5.17, where ܰ is the number of grid elements, ߶௜, ௜ܸ, and ܵ௪௜ are the porosity, 
volume, and water saturation of element ݅ respectively. 

 ( )
1

1
N

i i wi
i

OIP V Sφ
=

= −  5.17 

The field is 100 by 100 meters with a thickness of 1 meter and random porosity samples 
are placed on a 9 by 9 regular grid within the area.  An arbitrary PEBI grid with very 
coarse elements in the Northwest quadrant and smaller elements in the Southeast 
quadrant discretizes the space (Figure 5-4).  The porosity value near the center of the 
largest grid element is consistently chosen to be high with a value of 0.7 while all others 
are between 0 and 0.5.  This is to force a bias in OIP estimates because this value will 
receive a high kriging weight when estimating the largest grid element.  A porosity of 0.7 
is somewhat physically unrealistic, but it does make the bias more pronounced for this 
example. 
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Figure 5-4: Random porosity samples (circles) and PEBI grid. 

Estimates of OIP are made using ordinary kriging with the porosity samples as 
conditioning data and assuming a constant water saturation of 0.33.  An isotropic 
spherical variogram with a range of 50 meters is used.  The coarsest possible 
discretization to consider involves only the PEBI elements.  A bias in the estimates of 
OIP in this case is expected because of the high value near the center of the largest grid 
element.  However, if discretization is applied based on the error criteria developed in 
Chapter 4, no bias is expected because the scale and shape of the grid elements will be 
accounted for more accurately.  The true OIP value is estimated using a 100 by 100 
element regular grid. 

Discretization area constraints are derived using the cbarerror program from Chapter 4 
with the variogram used for kriging and the areas covered by the PEBI elements.  The 
smallest element is 3.3 m2 and the largest is 646.6 m2.  The resulting error surface and 
number of discretization elements curve for an error of 0.003 are shown in Figure 5-5.  
Converting the discretization constraints to area constraints for the program Triangle 
results in 3,019 triangular elements.  A quality constraint of 20 degrees was used. 

 

Figure 5-5: Error surface (left) and resulting discretization using the 0.003 error contour. 
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Fifty different random porosity data sets were used to assess the distribution of OIP 
estimate errors.  Several different discretization constraint contours were used as well.  
The error is the difference between the value obtained using the regular grid and that 
obtained for the unstructured grid (Table 5-1). 

Table 5-1: Bias due to grid coarseness. 

Constraint 
Contour 

Grid 
elements 

Mean Error 
(OIP) 

Mean Error 
(%) 

Standard 
Deviation 

None 266 107.0 5.92 36.2 
0.050 1,378 7.8 0.43 9.6 
0.007 1,901 -0.3 -0.02 6.3 
0.003 3,019 0.8 0.05 5.5 

 

Discretization with low enough error criteria (in this case 0.007) reduces the bias in 
global statistics that may occur due to a grid design.    In this example, one very large 
grid element located close to a high porosity value gave a 6% overestimation of OIP if 
using no discretization.  Since grid designs in this dissertation are intended primarily for 
flow simulation, element volume is not necessarily related to the magnitude of a reservoir 
property and biases in statistics may be either above or below the mean.  Sufficiently fine 
discretization reduces the bias in any case. 

An advantage related to the flexibility of unstructured grids is also present for this 
example.  Consider that the portion of the reservoir below a northeast line is more 
important, i.e. it has smaller elements.  The average area of triangular elements for the 
0.007 case in Table 1 in this region is 3.4 m2.  A regular grid with equivalent areas would 
be roughly 54 by 54 (elements with side-length of 1.85 m), having a total of 2,916 
elements, which is 53 % higher than the triangular grid. 

5.1.4 Near-well Heterogeneity 
A noted advantage of unstructured grids is their flexibility allowing smaller elements to 
be placed in areas where higher accuracy of the flow field is required.  This is common 
near wells.  The correctness of the flow field is also important and it depends on the 
underlying permeability model.  Therefore, it is desirable to generate reservoir property 
models that represent the underlying heterogeneity.  Properties should reflect the 
distribution and covariance structure that have been interpreted for them.  This is 
accomplished using discretization. 

It was shown in Section 5.1.1 that the covariance is reproduced using the proposed 
discretization approach; however, the covariance is incorrect using the common approach 
with regular grids.  In the common approach, regular grid elements are partitioned by the 
unstructured grid and all components are assigned the value of the element (Figure 5-6).  
Of interest is when the volumes of unstructured grid elements are smaller than the regular 
grid elements.  This is possible near wells where radial grids or other forms of local grid 
refinement are used. 
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Figure 5-6: Intersection of a regular grid with an unstructured grid. 

 

Figure 5-7: Regular grid and local grid refinement. 

To show that the covariance between unstructured grid elements is incorrect the LU 
formalism is used.  Consider a case where the unstructured grid aligns exactly with the 
regular grid, except where there is a well some local grid refinement is used (Figure 5-7).  
Values simulated on the regular grid are defined by ܡ௦ and values assigned to the local 
grid refinement as ܡ௦ᇱ.  Denote ݕ௦௜ the simulated value of the regular element that contains 
the refinement and ݕ௦௝ the value for any other element.  All ݕ௦௞ᇱ = ௦௞ᇱݕ ௦௜, whereݕ  is the 

value assigned to an element of the refinement. 

Using point scale LU simulation the ܡ௦ values are defined by Equation 5.4, reiterated 
here as Equation 5.18. 

 1
21 11 22s

−= +y C C y L r  5.18 

The covariance between a refined point and regular grid point are derived in Equation 
5.19 and between two refined points in Equation 5.20.  The vectors ܘ௜ and ܘ௝ are used to 

extract the ݅ and ݆ elements of ܡ௦: ܘ௜ = [0 ⋯ 0 1௜ 0 ⋯ 0]்.  Note that {்ܚܚ}ܧ is the 
identity matrix since ܚ is a vector with independent random values with zero mean and 
unit variance.  Using point scale Gaussian simulation, the only case where Equation 5.19 
is correct is when the refined point and regular grid element center are coincident.  
Equation 5.20 is only correct when there is only one refined point, in other words when 
there is no refinement.  These results apply to any case where unstructured elements are 
embedded within a regular grid element.  In all cases, the random field is too smooth in 
these areas and the resulting pressure gradient and flux will not be representative of the 
actual heterogeneity in those areas. 
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5.2 Flow-based Upscaling 

In Chapter 4, it was shown that transmissibility upscaling using MPFA and triangular 
interaction regions yields the correct transmissibility for homogeneous media.  This was 
done for one interaction region.  Validation for problems involving larger grids is done in 
this section.  Flow simulation of water flooding is done on the models.  Results are 
summarized using pore volume injected, PVI, and water fraction produced, ܨ௪, plots.  It 
is assumed that the correct solution is that obtained using a high resolution regular grid 
and the two-point flux approximation.  Examples include homogeneous media, layered 
media, and general heterogeneous media.  These are shown in two dimensions.  A similar 
set of examples is used by Prevost (2003) for validating permeability upscaling and 
streamline simulation methods.  Curves are checked visually for two characteristics: 
agreement of breakthrough time, that is, the instant when the fraction of water produced 
becomes positive; and overall closeness of the curves for the duration of the flow 
simulation. 

5.2.1 Homogeneous Media 
A 100 m by 100 m domain is considered with a constant permeability of 1 Darcy.  Two 
scenarios are considered: 1 – boundary conditions to produce flow in the ݔ direction; 2 – 
quarter five-spot boundary conditions.  Reference ܨ௪ curves are based on a 100 by 100 
regular grid of 1 m elements.  Grid element centers for the unstructured grid were 
generated using the program Triangle (Shewchuk, 1996) and an area constraint of 33 m2 
which results in 480 interaction regions and 272 polygonal grid elements (Figure 5-8).  
Average volume of the polygonal elements is 36.8 m2.  The grid was discretized using 
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Triangle as well with an area constraint of 1 m2 and quality constraint of 27 degrees.  A 
quality of 27 degrees was used to give good quality elements for flow based upscaling, 
but not cause excessive discretization near vertices of the coarse grid that was occurring 
when using an angle of 30 degrees.  Each interaction region is discretized into 
approximately 37 triangles (Figure 5-9). 

Transmissibilities for the coarse scale interaction regions were computed using the local 
upscaling technique developed in Chapter 4.  Linear pressure boundary conditions were 
used for each local problem.  Resulting transmissibilities are used to build the system of 
equations for flow simulation.  Good agreement is observed between the regular grid and 
coarse grid curves in the PVI plots (Figure 5-10).  Some deviation in breakthrough time is 
expected because the coarsening factor (36.8) is high and this is observed for the flow in ݔ scenario.  The curves are very similar in the quarter five-spot scenario. 

 

Figure 5-8: Unstructured grid for homogeneous flow validation.  

 

Figure 5-9: A portion of the unstructured grid at ࢞ = ૞૚ ܕ and ࢟ = ૜૙ ܕ showing 
discretization. 
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Figure 5-10: PVI-࢝ࡲ curves for the homogeneous flow example. 

 

5.2.2 Layered Media 
The same domain and scenarios that were used for the homogeneous example are used 
here, with the addition of flow in ݕ.  The domain is divided into four equal horizontal 
layers with the same permeability in ݕ, but a different permeability in ݔ for each layer 
(Figure 5-11).  Generating a grid that does not take into account the permeability 
anisotropy may result in a non-monotone system of equations and unrealistic fluctuations 
in the pressure.  This is a documented problem with MPFA (Eigstad et al, 2002; Prevost, 
2003; Mlacnik and Durlofsky, 2006) and to account for it, the space is transformed to 
remove the anisotropy.  In this case, anisotropy is removed by scaling the space in ݕ.  
Adequate scaling to achieve a stable system of equations for flow simulation was 
accomplished by scaling layer 1 by 2, layer 2 by 3, layer 3 by 4.5, and layer 4 by 6.  
Although layer 1 did not require scaling, this was done to inflate the number of elements 
generated for that layer to smooth the transition in element volume from layer 1 to layer 
2. 

Layers are only approximately matched by the polygonal grid, which consists of 1,075 
elements (Figure 5-12).  Reference PVI-ܨ௪ curves were generated using a 100 by 100 
element regular grid.  Good agreement is observed for flow parallel and perpendicular to 
the layers (Figure 5-13) and for the quarter five-spot problem (Figure 5-14).  For flow 
parallel to the layers, the breakthrough time of each layer indicated by a vertical jump in ܨ௪ on the reference curve is smoothed out by the unstructured grid.  The initial 
breakthrough time is similar in all three cases. 



143 
 

 

Figure 5-11: Layered media in geological and gridding space. 

 

Figure 5-12: Unstructured grid for layered flow validation. 



144 
 

 

Figure 5-13: PVI-࢝ࡲ curves for flow parallel and perpendicular to the layers. 

 

Figure 5-14: PVI-࢝ࡲ curves for quarter five-spot flow in layered media. 

5.2.3 Heterogeneous Media 
Using the same domain and quarter five-spot boundary conditions, flow simulation on 
general heterogeneous media between a regular grid and unstructured grid are compared.  
The unstructured grid consists of 853 elements.  Discretization resulted in 27,003 
triangular elements that were used to generate a permeability model.  Unconditional 
simulation on the triangle centers was carried out to give a model with three facies and 
permeability (Figure 5-15).  Permeability was resampled using nearest neighbour 
interpolation onto a 100 by 100 element regular grid for the reference flow curve. 

Two comparisons are done for this example: 1 – the water front near breakthrough time 
and 2 – the PVI-ܨ௪ curves.  Water fronts (Figure 5-16) are similar; however, two issues 
caused by upscaling are observed.  At (ݔ = 60, ݕ = 10), water is flowing into a region in 
the unstructured grid where it is not in the regular grid.  The permeability in this region is 
high and a connected segment of high permeability can be traced along the lower right 
corner of the model; however, this segment is not connected to the producer.  Upscaling 
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causes an increased connectivity at (ݔ = 90, ݕ = 50) that draws water through the 
conduit that does not appear in the regular grid.  The opposite issue occurs at (ݔ =50, ݕ = 95), where flow that appears on the regular grid does not on the unstructured 
grid.  The thin segment of high permeability on the top edge of the model in this area has 
been mitigated by upscaling, leading to reduced flow.  Despite these differences, the PVI-ܨ௪ curves are close (Figure 5-17), with the unstructured grid having a lower breakthrough 
time and lower ܨ௪ for the second half of the flow simulation.  Lower ܨ௪ is likely caused 
by the excess water that is flowing through the (ݔ = 60, ݕ = 10) region. 

 

Figure 5-15: Unstructured grid and heterogeneous permeability model. 
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Figure 5-16: Water front comparison near breakthrough time. 

 

Figure 5-17: PVI-࢝ࡲ curves for quarter five-spot flow in heterogeneous media. 
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5.3 Case Study 

The focus of this study is to demonstrate the geostatistical components of the proposed 
reservoir modeling workflow for unstructured grids.  Components of the workflow that 
are covered include: 

1. Data assembly 
2. Structural modeling of horizons and faults 
3. Space transformation: geological space ↔ depositional space 
4. Upscaling from log scale to modeling scale 
5. Statistical analysis of model scale, including: 

a. Declustering 
b. Correlations 
c. Variography 
d. Discretization error 

6. Preliminary mapping using a regular grid 
7. Unstructured grid design 
8. Discretization 
9. Property modeling and validation 
10. Upscaling arithmetic properties 

Data made available by the Rocky Mountain Oilfield Testing Centre (RMOTC) and U.S. 
Department of Energy are used for this study.  These data have been used in other 
research and studies as well (Olsen et al, 1993; Garcia, 2005; Friedmann and Stamp, 
2006 to list a few) and it is from the federally owned Naval Petroleum Reserve No. 3, 
also called the Teapot Dome field.  It consists of several geological units.  The Tensleep 
formation is the focus of this case study. 

Three types of data are available: core, geophysical logs, and 3D seismic.  Variables 
derived from the core that are used include horizontal permeability, ݇௛, vertical 
permeability, ݇௩, porosity, ߶, water saturation, ܵ௪, and oil saturation, ܵ௢.  Of the 
available logs, those used include gamma ray, GR, bulk density, RHOB, neutron 
porosity, NPHI, deep resistivity, RD, and shallow resistivity, RS.  There are 37 wells that 
intersect the Tensleep formation, 31 of them with logs and 18 with core.  The boundary 
of the Tensleep Dome formation, topography, and wells are shown in Figure 5-18.  
Seismic covers the whole area and is used for structural modeling.  Horizons for the 
Tensleep top and base are available in the time domain.  Available well markers are used 
to convert the horizons from time to depth. 

Log scale data are used for modeling.  The logs are processed into four reservoir 
properties including lithology, porosity, water saturation, and oil saturation.  All 
properties are modeled using geostatistical methods.  Models of permeability are 
generated based on a relationship with porosity in the preliminary mapping stage to be 
used in flow based grid design.  Lithology consists of sand and dolomite and is assigned 
based on well markers.  There are four markers, which ordered by increasing depth are 
ASand, BDolo, BSand, and C1Dolo (Figure 5-19).  Lithology is assigned as upper sand 
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in the ASand – BDolo and lower sand in BSand – C1Dolo intervals.  BDolo – Bsand is 
assigned as dolomite.  Well markers are typically used to model surfaces that separate 
different stratigraphic units; however, for this study the BDolo – Bsand layer is assumed 
to be discontinuous so indicator simulation is used to model it.  Other logs are processed 
using standard procedures and calibrated using the core data (Ellis and Singer, 2007). 

 

Figure 5-18: Teapot Dome field boundary and topography. 
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Figure 5-19: Well tops in measured depth for the Tensleep formation shown with a porosity 
log curve. 

5.3.1 Structural Modeling 
Horizons of the Tensleep top and base, respectively the ASand and C1Dolo markers, 
interpreted from the seismic data are available in the RMOTC data set in the time 
domain.  These horizons were converted to the depth domain using a velocity model 
generated from the well markers.  Resulting surfaces match the well markers.  Based on 
the seismic, there are also several faults in the formation; however, the data set did not 
include any fault interpretations.  Six faults were interpreted from the seismic by hand.  
More information on structural modeling can be found in Mallet (2002) or Groshong 
(2006). 

Contour maps of the top and base structure are shown in Figure 5-20.  Contours terminate 
at the limit of the horizon interpretations and the locations of faults are indicated with 
trace lines.  The structure is an anticline that trends North North-West.  Its trend can be 
traced along the shallowest points on the contour maps.   Faults in the modeling area 
identified in Figure 5-20 have the largest vertical offset, up to 100 feet near mile 151.8 in 
East and 180.5 in North. 
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Figure 5-20: Tensleep horizons, fault traces, and modeling area. 

5.3.2 Space Transformation 
Transforming from geological space to depositional space involves undoing the faulting 
and the fold of the anticline.  Stratigraphic coordinates are used, but to account for the 
faulting and deformation of the horizons, they are applied with a background tetrahedral 
grid.  The stratigraphic coordinate system axes are labelled ݑ, ,ݒ  Within the modeling  .ݐ
area, the following surfaces were triangulated using the program Triangle: top, base, two 
faults, and model boundary.  These surfaces are stitched together to form a sealed model 
or piecewise linear complex (PLC), which is used as input for the program TetGen to 
produce the background tetrahedral grid (Figure 5-21). 

Nodes of the tetrahedral grid are assigned depositional coordinates.  All nodes on the top 
receive a value of zero while all those on the base receive a value of -110 feet, which is 
approximately the average thickness of the formation multiplied by negative one.  
Stratigraphic coordinates of interior tetrahedron nodes are interpolated using kriging and 
an isotropic Gaussian variogram with a range of 316 ft that is equivalent to a variance of 
100,000 ft2.  The variance is chosen large to give a smooth interpolation.  Deviations to 
flatten the model in ݖ are computed as ݀ݖ = ݐ −  There is some deviation in the  .ݖ
horizontal plane due to faulting that must also be accounted for.  Deviations in x and y, 
respectively ݀ݔ and ݀ݕ, are computed for any node associated with a fault by projecting 
it onto the fault center line in the ݕݔ-plane.  Resulting deviations are smoothed away 
from the faults so that when mapping between coordinate systems, tetrahedra do not fold 
in on themselves.  Stratigraphic coordinates in the ݒݑ-plane are then ݑ = ݔ + ݒ and ݔ݀ = ݕ +  .Horizontal deviations due to faults do not exceed 63 ft and are not shown  .ݕ݀
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Figure 5-21: Isometric view of the tetrahedral grid generated for mapping from geological 
space to depositional space.  A vertical exaggeration of three is used. 

 

Figure 5-22: Depositional coordinates interpolated throughout the reservoir.  A vertical 
exaggeration of three is used.  Contours shown to aid in display of relief. 

Deviations are used to flatten the model into depositional space, whereas the stratigraphic 
coordinate values and actual coordinates of the tetrahedral nodes are used to map points 
between the spaces.  Mapping a point from geological space to depositional space 
involves the following steps: 

1. Find the tetrahedron containing the point, ܝ. 
2. Compute the barycentric coordinates of the point, ࡸ = ,ଵܮ} ,ଶܮ ,ଷܮ  .{ସܮ
3. Interpolate the depositional coordinates from the tetrahedron nodes, ܜ ,ଵݐ}= ,ଶݐ ,ଷݐ ௣ݐ :ସ} to the pointݐ =  .ܜ்ࡸ

The same process is used to shade the model by depositional coordinates (Figure 5-22).  
Statistics used for reservoir modeling including the distribution and variogram are 
derived in depositional space.  To accomplish this all well data is mapped to ݑ, ,ݒ   .space ݐ
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Wells that are inside the modeling area are transformed using the tetrahedral grid method, 
but for purposes of variogram modeling, it is desirable to retain all well data when the 
whole domain is stationary.  Because the deviations in ݔ and ݕ are small with the 
maximum observed being 63 ft and with the wells being nearly vertical, the wells outside 
the modeling area do not necessarily have to be mapped using the tetrahedral grid 
approach.  Standard stratigraphic coordinate mapping discussed in Chapter 2 is applied to 
these wells (Equation 5.21). 

 110ASand

ASand C1Dolo

z zt
z z

−= − ⋅
−

 5.21 

5.3.3 Upscaling: Log Scale to Modeling Scale 
Chapter 2 proposed that well log data should be upscaled into equal intervals along the 
well bore instead of into grid elements, which are not available at this point in the 
workflow.  The interval is chosen with two goals: to unify hard data to a single scale and 
to limit the amount of variability that is averaged out or smoothed in upscaling process.  
The highest level of detail possible is based on the log sample spacing, which is sampled 
with 6 inch spacing along the well bores.  Considering all wells, there are 6,579 samples 
at this resolution. 

A variety of approaches can be used to determine a scale for geological modeling.  One 
approach is to attempt to determine an REV (Bear, 1972).  Another possibility is to 
increase the scale until a specified amount of variability is removed from the data.  In 
applications with regular grids, the scale may simply be chosen arbitrarily to limit the 
size of model that results or it may be based on the resolution to be used in a flow 
simulator.  In typical applications, regular grid cells are chosen between 10 and 50 meters 
horizontally and 0.1 to 1 meter vertically (Aarnes et al, 2007). 

In this study, the change in standard deviation is observed for porosity and water 
saturation as the interval size along the wells is increased from 6 inches up to 7 ft.  They 
are upscaled using an arithmetic average.   Figure 5-23 indicates that a consistent change 
in variance is observed for porosity up to a length of 5 ft, whereas the change varies 
significantly for water saturation above a length of 2.5 ft.  Vertical resolution for 
upscaling the logs is chosen at 1.64 ft or 0.5 m.  Since the lithology is defined by well 
markers, no upscaling intervals are chosen to contain both indicators.  Upscaling is done 
in the ASand-BDolo, BDolo-BSand, and BSand-C1Dolo intervals separately for each 
well. 
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Figure 5-23: Standard deviation as a function of upscaling length. 

5.3.4 Statistical Analysis 
All statistical analyses are done in depositional space.  Upscaled data are first mapped to 
depositional space using the tetrahedral grid for wells inside the modeling area and 
Equation 5.21 for all other wells.  Processes that are covered in this section include 
declustering, data transformation, correlation analysis, and variogram modeling.  A 
different data transformation process is used for oil and water saturation since these 
variables form a composition. 

5.3.4.1 Declustering 
Declustering is a technique to account for the irregular spacing of wells that intersect the 
Tensleep formation.  Wells are clustered around the peak of the anticline structure and 
fairly sparse elsewhere.  Cell declustering (Deutsch and Journel, 1998) is applied in two 
dimensions since wells are nearly vertical and the formation thickness is relatively 
constant.  Cell size choice is based on maximizing the mean of Vsh, which is the only 
continuous property that is defined at all well locations.  Some wells were missing logs 
necessary for deriving ߶, ܵ௪, and ܵ௢ so these are not used for declustering.  A 
declustering cell size and mean plot (Figure 5-24) indicates a maximum plateau is 
reached for a cell size of approximatey 7,000 ft.  This spacing coincides with the average 
well spacing of 7,124 ft.  For this cell size the mean of Vsh is 0.243, an increase of 15% 
from the non-declustered mean. 
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Figure 5-24: Declustering results. 

5.3.4.2 Data Transformation 
Continuous reservoir properties are often modeled using Gaussian simulation and the 
variogram of the properties in Gaussian space are required.  The normal score transform 
is most common.  Categorical properties are often transformed to indicators.  A common 
practice in geostatistical modeling is to partition the data by lithology and model each 
independently.  Tools such as cross plots and histograms can be used to determine if the 
data come from different populations, indicating a need to partition the data (Figure 
5-25).  The data are partitioned for this case study.  Models of ߶, ܵ௪, and ܵ௢ are 
constructed within each lithology independently. 

 

Figure 5-25: Cumulative distributions and cross plots of ࣘ, ࢝ࡿ and ࢕ࡿ by lithology. 

Water saturation and oil saturation are not directly transformed to Gaussian space.  In 
cases where the reservoir rock is fully saturated with two phases such as oil and water, it 
is only necessary to model one and the normal score transform can be used directly.  In 
this case, there is water, oil and an additional phase because ܵ௪ and ܵ௢ do not sum to one.  



155 
 

The unknown phase is labelled ௙ܵ and its value is ௙ܵ = 1 − ܵ௪ − ܵ௢.  These three phases 

form a composition and modeling the saturations as a typical continuous variable 
provides no control on their sum.  Several techniques exist to deal with compositional 
data (Pawlowsky-Glahn and Olea, 2004; Pawlowsky-Glahn and Egozcue, 2006).  The 
additive logratio (ALR) transformation is used prior to the normal score transform to 
remove the sum constraint.  Equation 5.22 defines the forward ALR transform and 
Equation 5.23 the inverse ALR transformation. 
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Prior to the ALR transform, saturations are properly visualized in a simplex or ternary 
diagram with its vertices defining each component (ܵ௪, ܵ௢ or ௙ܵ) at 100% saturation and 

the opposite sides defining 0% saturation.  Post ALR transform, ܴ௪ and ܴ௢, are plotted 
on Cartesian axes (Figure 5-26).  Partitioning has no effect on the ALR transformation.  
For modeling variograms and computing correlations between variables, the normal score 
transformation is implemented on the partitioned data without using declustering weights. 

 

Figure 5-26: Ternary plot of saturations and ALR transformed cross plot. 

5.3.4.3 Correlations 
Correlation coefficients between ߶, ALR(ܵ௪), and ALR(ܵ௢) are computed for each 
lithology using the normal scores (Figure 5-27).  Permeability models will be constructed 
based on a regression equation between these properties rather than through Gaussian 
simulation because permeability at the log scale was not derived and permeability 
samples from core are sparse.  Using linear regression, a quadratic relationship between ߶ and ݇௛ is derived (Equation 5.24) and a linear relationship between ݇௛ and ݇௩ 
(Equation 5.25; Figure 5-28).   Although this relationship was derived from core scale 
data, it is assumed to be valid for log scale data as well. 
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 3/2log( ) 164.07 135.79 7.23hk φ φ= − + −  5.24 

 log( ) 0.79 log( ) 1.06v hk k= −  5.25 

 

Figure 5-27: Cross plots of normal score properties.  Correlation coefficients are indicated 
above each plot. 

 

Figure 5-28: ࣘ-ࢎ࢑ and ࢜࢑-ࢎ࢑ relationships. 
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5.3.4.4 Variograms 
Variogram modeling of lithology and of the normal scored variables results in the models 
defined in Table 5-2 and Table 5-3 respectively.  Indicator variograms of lithology 
depend on the proportion of each lithology, which are provided in Table 5-2.  All 
lithology variogram models have a nugget effect of 0.002.  For continuous variables, all 
models have a nugget effect of zero.  All variograms are oriented with an azimuth of 160 
degrees, corresponding to Range 1 in the table.  Range 2 corresponds to an azimuth of 70 
degrees and Range 3 is vertical. 

 

Table 5-2: Indicator variograms for lithology. 

Lithology 
Proportion, Sill 

Structure Variance 
Range 
1, ft 

Range 
2, ft 

Range 
3, ft 

Upper Sand 
0.219, 0.171 

Spherical 0.049 100,000 25,000 40 
Spherical 0.120 100,000 25,000 40 

Dolomite 
0.204, 0.162 

Spherical 0.050 1,500 4,000 25 
Spherical 0.110 100,000 8,000 25 

Lower Sand 
0.577, 0.244 

Spherical 0.154 100,000 25,000 45 
Spherical 0.090 100,000 25,000 100 

 

 

Table 5-3: Continuous property variogram models. 

Lithology Property Structure Variance 
Range 
1, ft 

Range 
2, ft 

Range 
3, ft 

Upper 
Sand 

߶ Exponential 0.2 500 1,000 5 
 Spherical 0.8 5,000 2,500 40 
ALR(ܵ௪) Exponential 0.5 2,000 3,000 50 
 Spherical 0.5 8,000 3,000 50 
ALR(ܵ௢) Exponential 0.4 2,000 3,000 50 
 Spherical 0.6 8,000 3,000 50 

Dolomite 

߶ Exponential 0.6 3,000 1,500 20 
 Spherical 0.4 5,000 3,000 400 
ALR(ܵ௪) Exponential 0.5 2,000 3,000 18 
 Spherical 0.5 8,000 3,000 20 
ALR(ܵ௢) Exponential 0.4 2,000 3,000 25 
 Spherical 0.6 8,000 3,000 30 

Lower 
Sand 

߶ Exponential 0.2 500 1,000 15 
 Spherical 0.8 5,000 2,500 80 
ALR(ܵ௪) Exponential 0.5 2,000 3,000 18 
 Spherical 0.5 8,000 3,000 80 
ALR(ܵ௢) Exponential 0.4 2,000 3,000 20 
 Spherical 0.6 8,000 3,000 100 
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5.3.4.5 Discretization Error Function 
The discretization error function can be assessed at this point because it only depends on 
the variogram models and can be used to determine grid resolution for preliminary 
mapping and for typical geological modeling workflows involving structured grids.  It is 
useful to assess the expected error when using one point to populate a grid cell as well as 
for choosing discretization criteria.  In typical modeling workflows, the upscaled data is 
used to populate a structured grid with one point per element; therefore, the discretization 
error function can be used to check the error involved for the range of usual geological 
modeling grid element scales identified in Section 5.3.3. 

To ensure the error specified by the function is achieved for all properties, a variogram 
that is above all other variogram models is defined.  Variograms for lithology, ߶, 
ALR(ܵ௪), and ALR(ܵ௢) are plotted on the same axes in Figure 5-29 along with the 
enclosing model that is defined in Table 5-4. 

Table 5-4: Variogram model for discretization error. 

Nugget Structure Variance 
Range 
1, ft 

Range 
2, ft 

Range 
3, ft 

0.002 Exponential 0.1 400 1,700 18 
Exponential 0.5 3,300 1,700 18 
Spherical 0.4 5,000 2,500 20 

 

Error curves that quantify the upscaling errors involved with existing modeling 
workflows when only one point is used are generated for hexahedral elements.  Volumes 
are explored with a fixed vertical extent and varying horizontal extent.  The smallest 
vertical extent is equal to the upscaling length of 1.64 ft and several other multiples of it 
are explored.  Horizontally, the extent does not exceed 164 ft or 50 m.  For this element 
size, the error is not expected to be large because the variogram range is relatively large.  
Error curves for ݊ = 1 and vertical extents ranging from 1.64 ft to 6.56 ft (0.5 to 2 m) are 
shown in Figure 5-30. 

Error curves are converted to an approximate number of hexahedral grid elements 
required to fill the study domain based on the domain extents (Figure 5-31).  Extents are 
oriented at an angle of 15 degrees from the x axis and are equal to 9,060 ft in 11,023 ,′ݔ ft 
in ݕ′, with ݔ′ and ݕ′ the rotated coordinates.  For this case study, the maximum number of 
grid elements that is considered for preliminary mapping is 106.  For example, if a 
vertical resolution of 3.28 ft is chosen, it is not possible to do better than an expected 
error of roughly 0.029, which corresponds to elements having a horizontal extent of 74 ft 
in ݔ′ and ݕ′.  These results are used in the next section on preliminary mapping.  The 
error surface for a variety of ݊ is revisited after an unstructured grid is designed. 
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Figure 5-29: Enclosing variogram model for discretization error. 

 

 

Figure 5-30: Error curves for hexahedral elements represented with one discretization point. 

 

Figure 5-31: Number of elements as a function of expected error. 

5.3.5 Preliminary Mapping 
All of the necessary statistics are available to generate models of the reservoir properties; 
however, a grid is required to generate models.  To provide insight into the spatial 
distribution of properties throughout the reservoir and how the reservoir might perform, 
preliminary mapping on a regular grid is used.  Models from preliminary mapping are 
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used for unstructured grid design.  The parameters including the conditioning data, 
histograms, and variograms that are used to generate final geostatistical models are used 
at this stage for consistency.  Using a regular grid in geological space for preliminary 
mapping has several advantages: very little effort is required to generate the grid; 
visualization is straightforward; and basic flow equations can be solved to give an idea of 
pressure and velocity distributions for unstructured grid design.  The last point only 
applies to regular grids generated in geological space.  A regular grid generated in 
depositional space, which is usually the case for existing reservoir modeling workflows, 
is not regular in geological space and can lead to grid orientation effects for flow 
simulation. 

A regular grid for preliminary mapping is generated in this case study for solving 
pressures and flow velocities so that a flow based unstructured grid can be designed.  
Flow based grids are often designed using a single realization of reservoir properties; 
however, since only 1 grid design is considered here, kriging results are used.  Kriging 
results should not be used to evaluate the flow response of a reservoir because the 
variance of the model is too low, that is, the heterogeneity of the reservoir properties is 
too smooth; however, kriging results can be used to generate a grid design that reflects 
how reservoir properties are spatially distributed in expected value.  The grid is held 
static for all realizations. 

In cases where only one pressure solve is done, a higher resolution grid can be used than 
when a flow simulation study requiring several solves over time is required.  For this 
study, a grid with no more than 150,000 elements is deemed adequate for preliminary 
mapping.  This keeps the pressure solve time and discretization error using 1 point per 
grid element low.  Using a vertical element size of 3.28 ft, a regular grid in geological 
space with 140,490 elements is achieved by using horizontal extents of 151 ft in ݔ′ and ݕ′ 
(Figure 5-32).  The grid of elements is 60 by 73 in ݔᇱ and ݕ′ and nominally 32 in ݖ. The 
discretization error for each element is roughly 0.035 for this grid design. 

To obtain a general idea of the spatial distribution of permeability throughout the 
reservoir for flow based grid design, the following workflow is used: 

1. Apply indicator kriging to generate a probability model of lithology. 
2. Convert the probabilities to lithology by selecting the maximum.  This can cause 

a significant bias for lithologies with a small proportion, but for this problem the 
lowest proportion is 20%, so this is not a concern. 

3. Apply ordinary kriging to generate estimates of ߶ in each lithology. 
4. Use the regression equations to compute ݇௛ and ݇௩ from ߶. 
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Figure 5-32: Plan view of grid for preliminary mapping in rotated coordinates. 

A plan view of the resulting ݇௛ through a depositional coordinate of ݐ = −65 ft is shown 
in Figure 5-33.  This is primarily in the lower sand, which involves the highest porosity 
and permeability.  Computing pressures and velocities based on this permeability model 
also requires boundary conditions; however, choosing them depends on the context of the 
problem.  For example, if one assumes the final grid design will get used for a variety of 
flow simulation studies, general boundary conditions are appropriate; in other cases 
where a specific well configuration and injection process are to be evaluated, boundary 
conditions for the specific process are appropriate. 

Existing studies involving the Tensleep formation such as Friedmann and Stamp (2006) 
have evaluated it for enhanced recovery using CO2 injection and CO2 storage.  The 
targeted area is in the shallowest portion of the anticline structure, which, along with the 
faults, acts as a trap for injected CO2.  Assuming this is the context for grid design, 
boundary conditions that highlight the flow paths of fluid injected in the anticline are 
considered.  All exposed faces except those along the model extremities in ݕ′ are 
assumed sealed and are assigned no flow boundary conditions (Figure 5-33).  Resulting 
pressure and velocity magnitude fields along the plane with deposition coordinate of ݐ = −65 ft are shown in Figure 5-34.  These were determined using the TPFA method.  
Since areas and lengths are in ft, pressures were assigned as pounds per square foot (psf) 
and millidarcies were converted to ft2. 
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Figure 5-33: Permeability model created during preliminary mapping and boundary 
conditions used to solve for the pressure. 

 

Figure 5-34: Pressure and velocity fields from preliminary mapping.  Velocities shown as 
magnitudes without direction. 

5.3.6 Unstructured Grid Design 
A basic procedure for unstructured grid design is implemented for demonstration 
purposes.  A tetrahedral grid is built using a point set generated with a density that 
depends on the magnitude of velocity determined from preliminary mapping.  Points are 
inserted into the model based on the curve in Figure 5-35 that is a geometric function 
with a factor of 0.998: ݍ(݅) = ݅)ݍ − 1) ∙ 0.998, where ݍ is the Darcy velocity.  This was 
chosen so that the final grid design results in a manageable number of grid elements.  
3,109 points were added based on the curve.  Applying the program TetGen (Si, 2006) 
using the bounding surfaces, additional points, and a quality constraint of 1.5 resulted in a 
tetrahedral grid with 24,247 points and 121,994 elements (Figure 5-36).  The dual 
polygonal grid is shown in Figure 5-37.  Elements with smaller volume are concentrated 
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in areas of expected high velocity and around the faults (Figure 5-38).  It is important to 
consider areas like these for flow simulation. 

 

Figure 5-35: Curve relating velocity to number of points added for tetrahedral grid 
generation. 

 

Figure 5-36: Isometric view of tetrahedral grid design. 

If flow simulation were to be applied, either the tetrahedral grid or dual polygonal grid 
could be used.  Moreover, discretization leads to the same high resolution grid for both 
coarse scale grids; therefore the geostatistical models will also be identical.   The 
advantage of the tetrahedral grid is that the faults are honoured by the element interfaces.  
Polygonal elements are bisected by the faults and incorporating information such as the 
flow character of the faults is difficult.  On the other hand, the advantage of the polygonal 
grid is substantially fewer control volumes.  Flow simulation would be done using 24,247 
elements as opposed to 121,994. 
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Figure 5-37: Isometric view of the polygonal grid. 

 

Figure 5-38: Rendering of the tetrahedron element volumes.  Volumes larger than 200,000 
ft3 are transparent. 

5.3.7 Discretization 
Up to this point, the significant differences between existing workflows and the proposed 
one is that the unstructured grid was designed based on a preliminary mapping stage 
using a kriged model and there was no structured grid design for geostatistical modeling.  
Discretization is another significant difference between the workflows.  Existing 
techniques generate reservoir models on a structured grid design, and then upscale; 
whereas this workflow generates reservoir models on a discretized unstructured grid prior 
to upscaling. 

The discretization error is evaluated using the same variogram defined in Section 5.3.4.5 
of this chapter.  The tetrahedral grid was generated with the z axis scaled by 10, so most 
tetrahedral elements have an aspect ratio of 10 to 1.  Element volumes range from less 
than 10 ft3 to 900,000 ft3.  However, the distribution of element volumes is highly skewed 



165 
 

and 80% of the volumes are less than 150,000 ft3 (Figure 5-39).  Discretization error is 
evaluated up to this volume.  Elements with volumes above this exist in areas of the 
reservoir that involve low flow velocities as determined by preliminary mapping and are 
therefore deemed unimportant for the case study.  The number of discretization elements 
required for 150,000 ft3 elements is applied to all larger volumes.  A close analysis of the 
error function shows this is necessary because there is a vertical asymptote for the 
volume defined by Equation 5.26. 

Regression resulted in Equation 5.27 with a mean squared fit error of 6.08 × 10ିହ.  An 
error of 0.005 is chosen to control the discretization process.  This choice was made to 
keep the number of discretization elements close to 1 million.  The associated contour is 
show in Figure 5-40.  Volume constraints are setup for the program TetGen by dividing 
the element volume by the number of discretization points computed from the error 
contour. 
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Figure 5-39: Histogram of tetrahedral grid volumes. 



166 
 

 

Figure 5-40: Tetrahedral grid discretization error surface. 

Tetrahedron elements are discretized by the subdivision process shown for a triangle in 
Figure 5-41.  The program TetGen did not run to completion for this problem and 
requires further study.  Information that is not retained by the subdivision approach used 
is the tetrahedral topology of the discretized grid.  Flow based upscaling using MPFA or 
MFEM requires this information; however, flow based upscaling is not done in this case 
study.  Flow based upscaling was developed and demonstrated in two dimensions for 
triangular grids.  Computing the arithmetic average does not require the topology since 
discretization points in each tetrahedron represent the same volume and all weights are 
equal using the subdivision approach. 

 

Figure 5-41: Analytic discretization of a simplex. 

 

A total of 1,241,152 points resulted from the subdivision discretization process with an 
average of 10 points per volume.  No volumes received more than 20 points to keep the 
total number reasonable.  The volume represented by a point is equal to the coarse scale 
tetrahedral element volume divided by the number of points used to discretize it.  In areas 
where smaller elements are located (Figure 5-38), the average tetrahedron volume is 
4,389 ft3 and they are discretized by 4 points on average.  Each point represents a volume 
of 1,097 ft3.  To obtain such a resolution with a regular or structured grid would require a 
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high resolution everywhere in the modeling domain.  The whole reservoir has a volume 
of 10,495×106 ft3, which would require a structured grid having upwards of 9.5 million 
elements.  Based on the smallest tetrahedron volume that is less than 10 ft3, a regular grid 
achieving this resolution would require more than one billion elements. 

To compare existing workflows that would discretize the reservoir using a structured 
grid, it is fair to consider a grid with 1.2 million elements.  Based on the extents of the 
modeling domain and using a vertical element size that is equal to the upscaled log data 
of 1.64 ft and horizontal extents of roughly 75 ft, a regular grid with 1,217,744 elements 
is achieved in depositional space.  Utilizing this grid for upscaling to the tetrahedral grid 
offers little control in terms of discretization error.  At one end of the spectrum, 
tetrahedral elements are discretized by many regular grid elements, while at the other 
they are discretized by less than 1.  The largest element is 920,433 ft3 and 103 elements 
of the regular grid intersect it based on center points only (Figure 5-42).  In the middle 
range with elements of 150,000 ft3, roughly 20 regular grid elements intersect the 
tetrahedral elements (Figure 5-43).  This is similar to the proposed approach in terms of 
the number of discretization points.  For volumes of 1,000 ft3, less than 1 regular grid 
element intersects the tetrahedral element (Figure 5-44).  In this case, the discretization 
error is higher than achieved with the proposed approach.  A higher discretization error 
implies two results: the error in the average value of the tetrahedral element is higher; the 
error in the approximation of the average covariance of the element and between the 
element and its neighbours is higher.  The later further implies the heterogeneity at the 
scale of the small tetrahedral elements is inaccurate. 

Another issue that is indicated by these examples of discretization with a regular grid is 
the elements do not align with the unstructured grid element interfaces.  Computing the 
arithmetic average or a property involves computing all intersections of regular grid 
elements with unstructured grid elements.  This is more complex than computing the 
weighted average using the proposed discretization approach.  Moreover, when flow-
based upscaling is used, determining the velocity across the tetrahedral interfaces is not 
exact, especially when the tetrahedra are smaller than the regular grid elements.  
Velocities obtained are known across the regular grid interfaces and must be resolved to 
the interfaces of the tetrahedra.  Unstructured grids often have smaller elements in areas 
of significant flow so the effort should be made to accurately determine the velocities 
through these elements. 
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Figure 5-42: Largest tetrahedron discretized by a regular grid. 

 

Figure 5-43: Intermediate tetrahedron discretized by a regular grid. 

 

Figure 5-44: Small tetrahedron discretized by a regular grid. 

5.3.8 Property Modeling 
For geostatistical modeling, discretization points are transformed to depositional space 
where variogram modeling is done.  Lithology is modeled first, then ߶, ALR(ܵ௪), and 
ALR(ܵ௢) within each lithology.  The program psgsim (see Chapter 3 and the Appendix) 
does this using indicator kriging for lithology modeling and collocated cokriging for 
multiple continuous variables.  Since indicator simulation provides the lithology model, 



169 
 

an additional feature was added to psgsim so that a lithology realization is cleaned prior 
to continuous variable simulation.  For example, no upper sand should be simulated in the 
lower sand interval and cleaning is used to remove such occurrences.  Lithology cleaning 
was done with a moving average filter.  Within each lithology, ߶ is modeled using simple 
kriging, followed by ALR(ܵ௪) using collocated cokriging conditional to the simulated ߶ 
value, and finally ALR(ܵ௢) conditional to ALR(ܵ௪).  Correlation coefficients shown in 
Figure 5-27 were used. 

Twenty realizations were generated to show reproduction of distributions, bivariate 
relationships, and variograms.  18 data were used to construct systems of equations for 
kriging.  Each realization took approximately 7.15 minutes on an Intel 2.13 GHz 
processor, which is acceptable given that for each of the 1.2 million points, 6 linear 
systems of equations are constructed and solved: 3 for lithology proportions, and 1 for 
each continuous property.  Each set of 3 systems requires a search for the nearest 
neighbours as well. 

Distributions of each property are checked for shape and summary statistics including the 
mean and standard deviation.  For lithology, the proportions are checked (Table 5-5).  
Proportions are reproduced well, with larger errors occurring for dolomite and upper 
sand, which is expected since they have smaller proportions than lower sand.  
Reproduction of the mean and standard deviation of continuous properties within each 
lithology shows low factional difference for the mean, but ܵ௪ and  ܵ௢ show large 
differences in standard deviation ( 

Table 5-6).  The fraction difference between true and simulated fluid saturations is high 
for Dolomite and upper sand, but this is due to the ALR transformation process and is 
caused by the occurrence of zeros in the data.  When ܵ௪ and ܵ௢ sum to 1, which occurred 
primarily when one of ܵ௪ and ܵ௢ was equal to 1, ௙ܵ is zero causing issues with the ALR 

transform.  Resulting distribution tails are observed in the distribution reproduction plots 
(Figure 5-45).  Long tails on the saturation distributions account for a very small 
proportion of the realizations and only cause inflation in the variance; reproduction of the 
mean remains accurate.  Otherwise, all realization distributions reproduce the input 
distributions well. 

Variogram reproduction is not perfect in this case study: some properties and directions 
match very well, while others have a mismatch (Figure 5-46 and Figure 5-47).  The types 
of mismatch observed include: variograms having the correct shape, but not reaching the 
sill; variograms matching short range structure well, but departing from the input model 
with increasing range; trouble with reproducing anisotropy; and variograms going over 
the sill, indicating variance inflation, which is a known issue with collocated cokriging.  
Causes of these are using a limited number of data for kriging, 18 in this case, possibly 
random path related, and attempting to enforce variogram reproduction for a multivariate 
study without using direct variograms from a licit linear model of coregionalization.  This 
is an area requiring further research.  Another contributor of mismatch for lithology 
variograms is the cleaning step discussed previously. 
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A final check is to ensure that the relationships between variables were preserved, which 
includes correlation coefficients and the shape of scatter plots.  Unlike variograms and 
histograms, it is not feasible to create a scatterplot for all realizations so the tenth realization 
is shown.  It is also difficult to see relationships when over 1.2 million points are plotted on a 
scatterplot.  Instead, the realization results are converted to a density and plotted as 
contours.  True data are plotted as points over the contours for a visual check (Figure 5-48).  
Contours appear to represent the density distribution from which the samples originated in 
all cases.   Correlation coefficients are checked for all realizations ( 

Table 5-7).  Most coefficients are reproduced well, although the coefficient for ߶-ܵ௢ in 
lower sand is somewhat low. 

Table 5-5: Reproduction of lithology proportions. 

Lithology 
True 

Proportion 
Mean Simulated 

Proportion 
Difference 

Upper sand 0.577 0.584 0.007 
Dolomite 0.204 0.219 0.015 
Lower Sand 0.219 0.197 -0.021 

 

Table 5-6: Reproduction of mean and standard deviation. 

Property and 
Lithology 

True 
Mean 

Mean of 
Models 

Fraction 
Diff 

True ߪ 
 of ߪ

Models 
Fraction 

Diff ߶ 
Upper S. 0.061 0.061 0.000 0.025 0.025 0.000 
Dolo 0.072 0.064 -0.111 0.040 0.035 -0.125 
Lower S. 0.106 0.105 -0.009 0.037 0.037 0.000 ܵ௪ 
Upper S. 0.581 0.575 -0.010 0.088 0.106 0.205 
Dolo 0.505 0.515 0.020 0.106 0.144 0.358 
Lower S. 0.574 0.570 -0.007 0.078 0.072 -0.077 ܵ௢ 
Upper S. 0.249 0.257 0.032 0.045 0.081 0.800 
Dolo 0.286 0.294 0.028 0.049 0.122 1.490 
Lower S. 0.262 0.264 0.008 0.033 0.029 -0.121 

 

Table 5-7: Reproduction of correlation coefficients. 

Pair Lithology 
True 

Correlation 
Mean Simulated 

Correlation 
Difference ߶ – ܵ௪ Upper sand -0.037 0.005 0.042 

 Dolomite -0.442 -0.537 -0.095 
 Lower Sand -0.591 -0.643 -0.052 ߶ – ܵ௢ Upper sand 0.089 -0.001 -0.090 
 Dolomite 0.432 0.432 0.000 
 Lower Sand 0.627 0.444 -0.183 ܵ௪ − ܵ௢ Upper sand -0.914 -0.946 -0.032 
 Dolomite -0.959 -0.928 0.031 
 Lower Sand -0.912 -0.857 0.055 
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Figure 5-45: Reproduction of distributions from psgsim realizations. 
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Figure 5-46: Lithology and Phi variogram reproduction. 
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Figure 5-47: ࢝ࡿ and ࢕ࡿ variogram reproduction. 
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Figure 5-48: Reproduction of bivariate relationships. 

5.3.9 Upscaling 
An advantage of the proposed workflow is simplicity of upscaling.  There are no complex 
element intersections to be concerned with and covariance across all scales is preserved.  
Upscaling a structured grid to an unstructured grid requires many volume-volume 
intersection operations that are time consuming.  In the case of flow based upscaling, 
velocities do not have to be interpolated to unstructured grid element interfaces because 
the fine scale velocities align exactly with the coarse element interfaces. 

Realizations can be upscaled to either the tetrahedral grid or the dual polygonal grid.  An 
advantage of upscaling to the polygonal grid is ease of visualization.  Upscaled properties 
can be represented by the polygonal element centroids that coincide with the tetrahedral 
grid vertices.  Rendering models, generating cross sections, and performing other 
visualization operations are straightforward and computationally efficient in this case. 

Lithology is upscaled to proportions, and ߶, ܵ௪ and ܵ௢ are upscaled arithmetically.  A 
realization of porosity is shown before and after upscaling (Figure 5-49).  To move on 
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with flow simulation, permeability would be computed from porosity and upscaled.  
After upscaling, realizations would be used in flow simulation studies to assess the 
uncertainty in a CO2 injection process.  This was not done since flow-based upscaling 
was only developed in two dimensions. 

 

 

Figure 5-49: Point scale realization of porosity (top) and upscaled equivalent. A vertical 
exaggeration of five is used. 

It is possible to use geostatistical models constructed on unstructured grids in many of the 
same ways as on regular grids, for example, assessing expected values and global 
uncertainty.  Results of this case study are used to compute the expected value of the 
hydrocarbon volume (ܸܥܪ = ܸ ∙ ߶ ∙ ܵ௢) in the highest part of the anticline.  It is 
arbitrarily assumed that injection cannot recover reservoir fluids below a depth of -300 ft 
subsea.  The volume of reservoir above this depth is 1.3 billion ft3.  The mean porosity is 
6.3 percent and mean pore volume is 82.9 million ft3.  A histogram of ܸܥܪ is shown in 
Figure 5-50.  The mean and standard deviation are 4.017 million barrels and 83,477 
barrels respectively.  Data density is high in this area (Figure 5-18) relative to other parts 
of the reservoir and parameter uncertainty was not considered, leading to the low 
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variance in ܸܥܪ estimates.  Using the expected ܸܥܪ model, computed from expected ߶ 
and ܵ௢ models, pockets where ܸܥܪ is expected to be highest are identified (Figure 5-51).  
A ߶ ⋅ ܵ௢ cutoff was chosen arbitrarily. 

 

Figure 5-50: Histogram of HCV. 

 

Figure 5-51: Tetrahedral elements with high expected ࣘ ⋅  .࢕ࡿ

5.4 Summary 

This chapter showed that the discretization approach to geostatistical modeling of 
unstructured grids reproduces the estimate, estimation variance, and covariance between 
coarse grid elements and conditioning data and between multiple coarse scale elements.  
Results apply to Gaussian random variables; however, the advantage of the discretization 
approach is it applies even when non-linear transformations such as the normal score 
transform are implemented on non-Gaussian reservoir properties.  Average covariance 
approaches that apply to Gaussian variables do not apply through such transformations.  
It was also demonstrated that the discretization approach reproduces the variogram at the 
fine scale and coarse scale in both Gaussian and original space.  In the example, the 
variable in original space was lognormal; therefore it also exhibits a proportional effect.  
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The method reproduces this feature.  Further, the method was shown to be unbiased when 
a low enough error is chosen for controlling the discretization process. 

The second section of this chapter validated the flow based upscaling approach developed 
in Chapter 4.  Three types of media were used: homogeneous, layered, and general 
heterogeneous.  Good agreement between PVI-ܨ௪ curves computed using a high 
resolution regular grid and coarse unstructured grids was found in all cases.  These were 
done in two dimensions.  A case study demonstrating the geostatistical components of the 
proposed workflow was given last.  The scenario involved three lithologies, porosity, 
water saturation, and oil saturation variables.  Two advantages over methods using 
structured grids were identified: fewer elements are involved for geological modeling and 
coarse unstructured elements are discretized more uniformly.  A weakness with 
variogram reproduction and complications in discretization were identified also. 
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Chapter 6 Concluding Remarks 

 

Unstructured grids are utilized in reservoir analysis for flow simulation.  The goal is to 
obtain accurate flow response predictions with reasonable computational effort.  
Unstructured grids are typically designed based on geostatistical property models that are 
available on structured grids.  This dissertation proposed that structured grids are not the 
optimal spatial decomposition structure to use when properties are to be upscaled to an 
unstructured grid for flow simulation.  Problems arise when the structured grid is coarser 
than the unstructured grid, which is possible in the important areas adjacent to wells and 
along other significant geological features and boundaries.  Moreover, upscaling is 
complicated because the two grids do not align. 

This dissertation proposed a solution to the problem of modeling reservoir properties on 
unstructured grids using geostatistical techniques.  One concern is the range of scales 
introduced by the grid elements.  Different element scales were accounted for by 
discretizing the coarse unstructured grid with a higher resolution unstructured grid.  
Triangular and tetrahedral grids were used.  A workflow was proposed that uses 
geostatistics to populate the high resolution unstructured grid and upscale to the coarse 
grid. 

6.1 Summary of Contributions 

There are three principle contributions of this thesis: an approach to discretize an 
unstructured grid into a higher resolution triangular or tetrahedral grid; an algorithm for 
geostatistical simulation of categorical and continuous properties on high resolution 
unstructured grids; and a flow based upscaling technique based on the multipoint flux 
approximation. 

6.1.1 Unstructured Grid Discretization 
Discretizing a coarse unstructured grid for flow simulation using a higher resolution 
unstructured grid was chosen because of the following advantages: the grids are nested 
and aligned, agreeing with dispersion variance concepts of geostatistics; static upscaling 
including arithmetic, harmonic, geometric, and power averaging and dynamic or flow-
based upscaling approaches are straightforward as compared to grids that do not align; 
the covariance between all coarse scale grid elements is correct up to the accuracy 
obtainable by discretization; and the accuracy of properties upscaled to the coarse grid 
can be controlled by the resolution of the fine grid.  Discretization was done using 
triangular and tetrahedral grids that can be constrained to the coarse grid element 
geometry.  The discretization can also be constrained to other features in the reservoir 
that are important to flow simulation and have not been incorporated into the coarse grid 
design, such as fractures or cross-bedding.  These features are accounted for in the 
upscaling process. 



179 
 

The scale of triangular and tetrahedral grids used to discretize coarse unstructured grids 
was determined to ensure upscaled values retain a user-specified level of accuracy.  It 
was shown that the accuracy of arithmetic averaging properties is dependent on the 
variogram.  Expressed as the mean squared error between the true value for a coarse 
unstructured grid element and the value obtained using the discretization, the error 
expression given in Chapter 4 is equivalent to the estimation variance.  Evaluating the 
error is computationally expensive because it involves average covariance calculations so 
an approximating function was developed.  A program was written to generate data so 
that the best fit approximating function can be recovered using linear regression.  The 
error approximating function was found to be accurate for three popular variogram 
structures: the spherical, exponential, and Gaussian models.  Geostatistical modeling is 
often a multivariate problem involving facies and several continuous properties and by 
using one variogram model that is greater than all other variograms involved, the 
accuracy can be guaranteed for all properties simultaneously with one discretization.  The 
user-specified accuracy is obtained for all coarse grid elements regardless of their 
volume.  Situations where the fine grid is coarser than the coarse grid, such as near wells, 
do not occur. 

For Gaussian random variables, it was shown that the conditional distributions of 
uncertainty from kriging are the same when average covariance is used and when point 
scale simulations are averaged.  Both approaches account for the coarse grid element 
geometry and scale.  Using the average covariance approach, it is possible to draw a 
Gaussian value from the conditional distribution; however, the value cannot be back-
transformed to the space of a reservoir property that is non-Gaussian or that does not 
average arithmetically.  The explanation is the normal score transform is a non-linear 
transformation when the reservoir property is non-Gaussian.  Using the discretization 
approach, Gaussian values are drawn for the set of fine scale grid elements within the 
coarse scale element.  These values can be back-transformed, since there has been no 
change in scale, and then upscaled. 

6.1.2 Geostatistical Simulation 
The second contribution is adaptations of geostatistical simulation algorithms for 
unstructured grids.  Sequential indicator and sequential Gaussian simulation were adapted 
to work with irregular sets of points that are the barycenters of triangular or tetrahedral 
grids.  Kriging is the underlying generator of conditional probabilities for both sequential 
algorithms and it is applicable to any configuration of points.  Of particular concern for 
sequential simulation is random path generation, the search for data to use in kriging, and 
covariance computation. 

Random path selection is typically done on regular grids using the multigrid approach to 
improve variogram reproduction.  On an irregular set of points, a similar type of random 
path is generated using a quadtree in two dimensions or an octree in three dimensions.  
This approach gave good results for several test cases; however, variogram reproduction 
in the case study was not as good as anticipated.  Two search structures were tested: the 
superblock search and the kd-tree.  The kd-tree was found to be faster and it requires 
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fewer parameters.  Covariance computation was the principal loss of efficiency.  Unlike a 
regular grid where a covariance lookup table can be constructed and referenced during 
simulation, a lookup table cannot be constructed for irregular point sets.  The covariance 
between points is always calculated from the specified equation.  The final modeling 
algorithm was found to run in a reasonable time despite the losses in efficiency compared 
to regular grid algorithms.  A realization of 1.2 million points with 3 lithologies and 6 
variables from the case study took just over 7 minutes. 

Geostatistical models must be checked for consistency with the input data and 
parameters.  Two common checks are histogram and variogram reproduction.  The 
simulation algorithm was shown to produce random fields with a Gaussian distribution 
for unconditional simulation.  This is important since we assume the data are multivariate 
Gaussian after a normal score transformation for use in sequential Gaussian simulation 
and guarantees the field will have the same distribution as the input data after a back-
transformation to the original variable.  Computing the histogram of a random field on an 
unstructured grid is accomplished by weighting the property values by the grid element 
volumes.  This approach is similar to polygonal declustering.  An existing program for 
computing the experimental variogram (Deutsch and Journel, 1998) was adapted to work 
on very large point sets so that the variogram can be checked.  The new algorithm was 
found to be effective for checking the variogram on sets of more than 1 million 
irregularly spaced points. 

6.1.3 MPFA Upscaling 
A local flow-based upscaling approach based on the MPFA method was the third 
contribution.  The MPFA method is applicable to triangular and tetrahedral grids.  The 
upscaling approach involved solving the flow equations on the discretization for a series 
of boundary conditions, then using the results to compute coarse scale MPFA 
transmissibility matrices for flow simulation on the coarse unstructured grid.  
Developments were made in two dimensions.  The extension to three dimensions is 
possible, but there are challenges with grid design and quality to ensure the flow 
equations are well conditioned. 

Using the upscaling approach developed requires that the unstructured grid is discretized 
to honour the control volumes and interaction regions.  Substantially more edges and 
interfaces are involved as constraints for the discretization.  In two dimensions, this is not 
a concern; however, in three dimensions it is anticipated that the number of elements in 
the discretization could grow large to meet constraints and quality criteria. 

The convergence of upscaled transmissibilities with different permeability scenarios was 
explored.  This included homogeneous permeability, permeability that was different in 
each coarse scale control volume, and general heterogeneous permeability with different 
variograms.  All cases indicated convergence with relatively few fine scale elements.  12 
to 18 elements seem appropriate in two dimensions.  It was shown that the upscaling 
approach was correct for homogeneous permeability.  Four flow simulation examples 
were used to validate the proposed upscaling approach including: flow through 
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homogenous media; flow through layered media parallel to the layers; through layered 
media perpendicular to the layers; and through general heterogeneous media with three 
facies.  Resulting flow curves closely matched the reference curves that were generated 
using a high resolution regular grid and the TPFA approach. 

6.2 Limitations 

Several limitations exist for implementing the proposed workflow and algorithms.  The 
workflow involves two modeling steps: a preliminary mapping step that is used for grid 
design and a final modeling step that populates the discretized grid.  This is somewhat 
redundant, although in cases where the unstructured grid design will be influenced by 
reservoir properties, some degree of modeling is required to provide a property model.  In 
existing approaches, unstructured grid design is often based on a single realization or 
estimated model of properties that was generated on a structured grid.  Generating a 
design based on a single realization in the proposed workflow is not straightforward 
because the realization generated during preliminary mapping will be different from the 
one generated on the discretization.  Features of the unstructured grid that are based on 
the preliminary mapping realization may no longer apply to the discretized realization.  
The proposed approach is restricted to more general grid designs, those that are not based 
on a single realization of reservoir properties. 

Using a single grid design rather than a different grid for each realization implies the 
approach may be limited when considering large scale heterogeneity, that is, uncertainty 
in faults, horizons, channels, and other geological features that are incorporated into an 
unstructured grid.  In this case, each realization has different large scale features.  If the 
grid is to conform to such features, then a different grid is necessary for each realization. 

Another limitation is the type of discretization that can be used to refine an unstructured 
grid for geostatistical modeling.  Triangular and tetrahedral grids were used in this 
dissertation.  Other discretizations can be used, but they are limited by the type of flow 
simulation algorithm that is available if flow based upscaling will be used.  The type of 
discretization chosen can also restrict the types of flow simulation algorithms that are 
applicable.  In choosing triangular grids, the TPFA cannot be used for flow based 
upscaling.  The discretization approach used in the case study excludes all simulators that 
require a grid. 

The MPFA method allows flow simulation on several grid types including triangular 
grids; however, the stability of the system of equations to solve for the pressures is a 
limitation.  Stability is sensitive to the quality of the discretization and it depends on the 
geometry of the grid elements and the permeability tensors within them.  Discretization in 
this thesis was done based on geometric quality alone and although stability problems 
were not encountered in two dimensions with flow based upscaling studies, they may be 
a concern in three dimensions.  Also, shifting to three dimensions using tetrahedral 
discretization causes the number of grid elements to increase dramatically from two 
dimensions and triangulations.  Depending on the size of the reservoir modeling problem, 
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the number of elements in the discretized grid may grow too large and property modeling 
will take an excessive length of time. 

Another grid-related limitation is the flow simulation grid must be static.  Discretization 
depends on the grid and so do the resulting reservoir property models.  Methods 
involving adaptive grids are not applicable.  Each step in an adaptive process that 
changes the grid requires re-computing the discretization, generating another property 
model, and upscaling.  Although this could be automated, it does not seem feasible for 
two reasons: extensive amounts of computer time are involved; and the generated 
property model is not guaranteed to preserve information from the initial realization. 

Using unstructured discretizations also limits the type of geostatistical modeling 
algorithms that are applicable.  Sequential indicator and sequential Gaussian simulation 
using kriging as the underlying estimator are applicable to any spatial configuration of 
points; however, two geostatistical algorithms are restricted to regular grids: multipoint 
statistics (MPS) and spectral simulation based on the Fast Fourier transform (FFT).  Both 
MPS and the FFT cannot be applied directly; however, they may be applied in an 
approximative manner using an underlying regular grid.  Other facies modeling 
techniques such as object based modeling and process mimicking techniques introduce a 
challenge because the unstructured grid design should conform to the resulting geometry 
of the objects or facies.  Objects are placed into a model with uncertainty and processes 
proceed with uncertainty.  A different unstructured grid design would be required for 
each realization in these cases. 

6.3 Future Work 

The presented approach to reservoir modeling using unstructured grids could benefit 
from further research.  Four issues were identified through the case study: 1 – variogram 
reproduction was not as good as anticipated; 2 – a vertical asymptote exists in the 
discretization error function; 3 – discretizing the coarse tetrahedral grid with a finer scale 
tetrahedral grid was unsuccessful; 4 – the permeability upscaling technique is not 
developed in three dimensions.  Components of sequential simulation that impact 
variogram reproduction are the random path, anisotropy of the search; and the number of 
data used for kriging.  Research into these areas may identify the source of variogram 
reproduction issues identified in the case study.  For the second issue, different functions 
to approximate the error could be looked into, or more efficient methods to numerically 
evaluate the average covariance integrals of the exact equation.  Future work related to 
the third issue is to explore existing software to solve the problem or develop new 
methods that are specialized for dealing with the geometries involved in reservoir 
engineering and geological modeling. 

Not all geostatistical modeling algorithms were adapted for unstructured grids.  Other 
approaches for modeling categorical and continuous variables could be adapted, with 
MPS and spectral simulation as exceptions.  Methods such as truncated Gaussian 
simulation and truncated pluri-Gaussian simulation for categorical variables are possible 
on any spatial configuration of points.  Methods that handle non-stationary behaviour of 
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reservoir properties would be beneficial as well including simulation with a locally 
varying mean and external drift.  Multivariate techniques such as LU simulation and full 
cokriging are also possible. 

Work could be done to handle the scale of discretized grid elements with more accuracy.  
In this thesis, the focus was on limiting the error involved in the upscaled values on the 
coarse unstructured grid.  Improving accuracy at the finer scale will improve accuracy on 
the coarse scale.  This can be taken a step further and methods to account for the scale of 
coarse unstructured grid elements directly without the need for a discretization step could 
be considered. 

Flow-based upscaling using the MPFA was developed as a local upscaling method.  A 
few variants of boundary conditions were covered, but not thoroughly tested.  Boundary 
conditions that would make the approach useful in a coupled local-global upscaling 
regime are an area for further work.  The method also requires extension to three 
dimensions.  This will require further work on generating three dimensional grids and 
discretizations that result in a stable system of equations for the MPFA. 

The discretization scheme developed in this thesis is ideal for multiscale methods.  The 
grids align exactly.  Multiscale methods using the MPFA could be developed for coarse 
polygonal grids discretized by triangles or tetrahedra.  Instead of upscaling, the fine scale 
information is retained and used to simulate fluid flow on the fine scale grid, while the 
coarse scale grid is used to solve for the pressure.  The last future work item is 
geostatistical modeling and flow based upscaling using meshfree methods (Liu and Gu, 
2005).  Discretization in this case does not require a grid of elements and the approach 
used in the case study could be used in meshfree flow-based upscaling. 

6.4 Final Remarks 

Discretizing unstructured grids using the presented approach allows the accuracy of 
upscaled properties to be controlled.  For flow based upscaling, computing pressures and 
resolving flux across coarse element interfaces is straightforward and introduces no 
inaccuracies due to interpolation.  As with any flow based upscaling method, the goal is 
to minimize the loss in accuracy that is a result of using a coarse grid for flow simulation.  
Coarse grids are used to reduce the amount of computational effort that is required for 
flow simulation.  This is a necessity when the uncertainty in a flow response is assessed, 
since quantifying uncertainty requires several flow simulation runs with different 
realizations of reservoir properties. 

Minimizing the reduction in accuracy of the average covariance is also important.  Using 
the discretization approach, the covariance between coarse grid elements is correct to a 
known accuracy and realizations on the coarse scale have the correct spatial structure.  
The spatial structure of reservoir properties influences the path fluids take in flow 
simulation and this affects the uncertainty in a flow response.  Making decisions such as 
injection well placement depends on the path injected fluids will take from the injector to 
a producing well.  By having the correct spatial structure, the uncertainty in production 
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information such as breakthrough time and water cut relates back to the variograms used 
for modeling the reservoir properties. 

The variogram is just one of many parameters that effects flow simulation results.  The 
histogram of reservoir properties, characteristics of the fluids involved, surface conditions 
of the pore spaces, and boundary conditions are a few others.  Flow simulation sensitivity 
studies are used to understand how these parameters effect flow performance.  By 
ensuring that the accuracy of other processes including reservoir modeling and upscaling 
is high, they will not bias the effects other parameters have on flow response, and these 
parameters can be better understood. 

A challenge for any research is transferring findings to industry.  This research builds on 
unstructured grids that have been undergoing research for some time in reservoir flow 
simulation; however, unstructured grids are still uncommon in industrial reservoir 
analysis applications.  Research related to modeling unstructured grids with geostatistics 
will take time to be applied.  There are a few findings from this research that would be 
useful in existing workflows with regular grids and can be incorporated sooner. 

The approach for upscaling well data to a scale for geological modeling could be used 
instead of upscaling to regular grid elements.  Some existing techniques for upscaling 
well data to regular grid elements do not account for the scale in the direction 
perpendicular to wells.  The approach developed for assessing the error in upscaled 
values could be used to determine a discretization to use to upscale well data to the 
regular grid elements so that the scale of the elements is accounted for more accurately.  
In this case, the discretization would take on the form of a micro-model or mini-model 
(Deutsch, 2009; Hosseini et al, 2008).  Errors in values upscaled to the flow simulation 
scale could also be assessed to aid in selecting an appropriate grid resolution for 
geological modeling. 

Flow simulation using the MPFA is applicable to structured grids used for geological 
modeling.  The flow based upscaling method developed in this dissertation could be 
adapted to upscale from a high resolution geostatistical model on a structured grid to a 
coarser structured or unstructured grid.  Both grids could be designed to align and the 
advantages identified for aligned unstructured grids would apply. 
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Appendix 

 

A FORTRAN program called psgsim was developed to perform sequential simulation of 
categorical and continuous properties on irregular sets of points.  Sequential indicator 
simulation and sequential Gaussian simulation are possible.  Program flow is as follows: 

1. Load conditioning data if it exists into main memory. 
2. Load point locations for simulation into main memory. 
3. Partition the data into categories if categorical data is used. 
4. Data transformation. 

a. Categorical variables transformed to indicators. 
b. Continuous variables normal score transformed. 

5. For each realization: 
6. Generate a random path through the point set. 
7. For each point: 

a. Search for the set of nearest neighbours including conditioning data and 
previously simulated points. 

b. Kriging.  For indicators, the proportion of each category is calculated and for 
continuous variables to conditional mean and variance. 

c. Draw from the conditional distribution and add to the pool of previously 
simulated points. 

8. Back transformation. 
a. Indicators are converted to categories. 
b. Gaussian values are converted to the original continuous variables. 

9. Output results to disk. 
10. Go to step 5 to generate another realization. 

Input parameters for psgsim are defined in a keyword based parameter file that is parsed 
upon program execution.  Not all keywords are required and their order in the parameter 
file is irrelevant.  Table 1 describes keywords and associated parameters that must be 
space delimited.  The table is followed by more detailed explanations where more 
information may be required.  Comments can be added to the parameter file by preceding 
them with pound sign (#).  An entire block of parameters can be commented out by 
preceding the keyword with # as well.  Several execution modes are also possible 
depending on which keywords are specified in the parameter file (Table 2). 
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Table 1: Parameters for psgsim. 

Keyword Purpose Line Parameters 

DATA Specify that conditioning 
data exists. 

1 
2 
3 
4 
5 
6 
7 

DATA 
File with conditioning data 
Columns for x, y, z, weight 
Number of variables (݊ݎܽݒ) 
Columns for variables (1, … ,  (ݎܽݒ݊
Variable type 
Transformation flag 

UNDEF Specify undefined values. 8 UNDEF value 

PROPS Specify global proportions 
for categorical variables.  
As many proportions as 
categories must be 
specified. 

9 
10 

PROPS 
prop1 prop2 … prop݇ 

TAILS Specify minimum and 
maximum values for 
continuous variables3. 

11 
12 
13 
14 

TAILS ݊ݐ 
vnum1 minimum maximum 
… 
vnum݊ݐ minimum maximum 

SEARCH Specify search type and 
ellipsoid. 

15 
16 
17 
18 

SEARCH 
type 
ang1 ang2 ang3 
rad1 rad2 rad3 

SIMP Specify locations for 
simulation and related 
parameters. 

19 
20 
21 
22 
23 
24 
25 
26 

SIMP 
File with point locations 
Columns for x, y, z 
Maximum conditioning data 
Number of realizations 
Random number seed 
File with specified path 
File for output 

KRIG Specify the kriging type. 27 
28 

KRIG ݇݁݌ݕݐ 
IVARGS Specify variograms for 

categorical variables 
29 
30 
31 
32 

IVARGS ݊ݐݏ nugget ℎ݂ ݂ݐ sill ݁݌ݕݐ௞ ܿܿ௞ ܽ݊݃1௞ ܽ݊݃2௞ ܽ݊݃3௞ 1݁݃݊ܽݎ௞ 2௞݁݃݊ܽݎ  3௞݁݃݊ܽݎ
CVARGS Specify variograms for 

continuous variables 
33 
34 
35 
36 

CVARGS ݊ݐݏ nugget category ℎ ݁݌ݕݐ ݎݎ݋ܿ ݐ௞ ܿܿ௞ ܽ݊݃1௞ ܽ݊݃2௞ ܽ݊݃3௞ 1݁݃݊ܽݎ௞ 2௞݁݃݊ܽݎ  3௞݁݃݊ܽݎ
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Line 2 and 20 – Input data files have the following format: 

Line Content Example 

1 Title Data for psgsim 

2 Number of columns, ݊ 3 

3 Column 1 title East, m 

4 Column 2 title North, m 

5,...,݊ + 2 Column ݊ title porosity ݊ + 3 Start of data records 10.0   5.0   0.22 

 

Line 6 – Specify the type as continuous with a 0 or categorical with a 1.  Only 1 
categorical variable is supported, but there is no limit to the number of categories in that 
variable. 

Line 7 – Normal score transform continuous variables from Line 6.  For each variable, 
the transform is applied if a 1 is input and not if a 0 is input. 

Line 9 – If the PROPS keyword is not included or is commented out, then proportions are 
calculated based on a categorical variable from input conditioning data. 

Line 11 – The number of distribution tails, ݊ݐ, does not have to match the number of 
continuous variables.  The variable number coincides with the input order used to specify 
columns for variables in the DATA block.  If tails are not specified, the range of the 
conditioning data is used. 

Line 12 – Minimum and maximum tail values are used to extrapolate the tails of 
continuous variable distributions. 

Line 15 – Two search methods are available: the superblock search specified with a 0 or a 
kd-tree with a 1.  For the superblock search, the angles and radii define an ellipsoid which 
is used to determine the superblock grid specification and search template.  For the ݇d-
tree, ellipsoid parameters are used only to define the anisotropy for distance calculations.  
Radii do not constrain search results when using the ݇d-tree. 

Line 22 – The maximum conditioning data define the number of conditioning data and 
previously simulated points to use in kriging. 

Line 24 – Uniform real random numbers in [0,1] are generated using the Mersenne 
Twister (Matsumoto and Nishimura, 1998).  This requires a non-zero integer for a 
random number seed. 

Line 25 – Random paths are generated automatically, but other random paths may be 
specified in a file and passed to the program.  The file must only contain a set of space 
delimited integers that index into the file with point locations.  Integers coincide with the 
order the point locations are stored in the point file. 

Line 28 – Three kriging types are supported: simple kriging specified with a 0; ordinary 
kriging with a 1; and collocated cokriging with a 2. 
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Line 29 – As many variogram specifications as categories are required.  The block from ݊ݐݏ to 3݁݃݊ܽݎ is repeated for each variogram, where ݊ݐݏ is the number of nested 
structures, ℎ݂ and ݂ݐ are the head category and tail category, ݁݌ݕݐ defines the model to 
use from a set of available models (0 – spherical, 1 – exponential, 2 – Gaussian, 3 – 
power, 4 – hole effect), ܿܿ is the variance contribution, and the angles and ranges define 
the anisotropy of the model.  Parameters from ݁݌ݕݐ to ܿܿ are repeated for ݇ = 1, … ,  .ݐݏ݊

Line 33 – Specified similarly to indicator variograms, except the facies or category that 
the variogram applies to is specified and ℎ and ݐ refer to the head and tail continuous 
variable number, and ܿݎݎ݋ is the correlation between them.  Full linear models of 
coregionalization and cokriging are not supported; however, for collocated cokriging (݇݁݌ݕݐ = 2), any arbitrary cross variogram can be input with the correct correlation that 
is used by the program.  The cross variogram is not used. 

Table 2: Execution modes of psgsim. 

Keywords present Execution mode 

DATA with continuous and 
categorical variables, CVARGS, 
IVARGS 

Conditional simulation of categorical and 
continuous variables. 

DATA with continuous variables 
only 

Conditional simulation of continuous variables. 

DATA with continuous variables 
only, PROPS, IVARGS 

Unconditional simulation of categorical variables 
and conditional simulation of continuous 
variables. 

DATA with categorical variables 
only 

Conditional simulation of categorical variables. 

DATA with categorical variables 
only, CVARGS 

Conditional simulation of categorical variables 
and unconditional simulation of continuous 
variables. 

CVARGS Unconditional simulation of continuous variables. 

PROPS, IVARGS Unconditional simulation of categorical variables. 

CVARGS, PROPS, IVARGS Unconditional simulation of categorical and 
continuous variables. 
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