
Joint Detection and Pose Estimation Based on Images

by

Shuchun Wen

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Control Systems

Department of Electrical and Computer Engineering
University of Alberta

© Shuchun Wen, 2024

Abstract

Pose estimation is widely used in our daily lives and there exist many algorithms

that are applied for bringing convenience and improving efficiency in various fields.

While images are the most common input for feature detection and matching, it is

necessary to study their knowledge background and mathematical representations for

conducting implementations. Techniques of joint extraction and classification have

been introduced in detail with conducted simulations for each algorithm and they are

applied together for joint detection and classification of a robotic arm.

Several common object tracking algorithms have been introduced and imple-

mented, including their mandatory background and mathematical representations.

Multiple filter-based algorithms are simulated and discussed for object tracking pur-

poses, including the Kalman Filter (KF), Extended Kalman Filter (EKF), and Par-

ticle Filter. Reinforcement Learning (RL) has been implemented together with EKF

working towards a trajectory tracking and motion planning problem for robotic arm

accomplishing a pick-and-place task. Enhanced methods are tested in the thesis.

ii

Acknowledgements

First, I would like to thank my supervisor Dr. Qing Zhao for offering me this wonderful

opportunity to explore a field that I never would have dreamt about. This new journey

has not been easy, but with her patience, generosity, continuous support, guidance

and encouragement, I can pull myself together every time when I encounter research

difficulties, to reconstruct strong faith in completing the research and to grow better

and better.

Second, I would like to thank my cousin Jinyu Zhao and sister Ping Guan for

their unconditional love, kindness, patience, care, and tolerance over the past three

years. I would also thank my parents, family and friends for all their love, support,

understanding and encouragement.

Last but not least, I would like to thank my Father for his love and everything he

has brought to my life.

iii

Table of Contents

1 Introduction 1

1.1 Motivation and Background . 2

1.2 Literature Review . 2

1.3 Contribution and Organization . 6

2 Background and Preliminaries 8

2.1 Filters . 8

2.1.1 Kalman Filter (KF) . 8

2.1.2 Extended Kalman Filter (EKF) 10

2.1.3 Particle Filter (PF) . 12

2.2 Camera Intrinsics and Extrinsics . 13

2.3 Convolutional Neural Network (CNN) 14

2.4 Reinforcement Learning (RL) . 17

2.5 Robotic Arm Kinematics . 19

2.6 Pick-and-Place Platform . 21

3 Joint Detection and Classification 23

3.1 SIFT and SURF-based Joint Detection 23

3.1.1 SIFT . 24

3.1.2 SURF . 27

3.2 CNN-based Joint Classification . 30

3.3 Results, Comparisons and Discussion 31

3.3.1 Algorithm Validation . 31

3.3.2 Algorithm Implementation . 35

4 Trajectory Tracking and Motion Planning 39

4.1 Filter-based Trajectory Tracking . 40

4.1.1 Extended Kalman Filter . 40

4.1.2 Particle Filter . 42

iv

4.1.3 Discussion . 44

4.2 Reinforcement Learning-based Motion Tracking and Planning 45

4.2.1 Integration of Extended Kalman Filter and SARSA 47

4.2.2 Results and Discussion . 50

5 Conclusion and Future Work 57

5.1 Conclusion . 57

5.2 Future Work . 58

Bibliography 59

v

List of Tables

2.1 Configurations of the environment setup 22

vi

List of Figures

2.1 One iteration of prediction and update, extracted from [50] 13

2.2 CNN Network Architecture . 15

2.3 Components of Kinova Jaco Assistive Robotics Arm, extracted from [52] 20

2.4 The pick-and-place platform from different perspectives 22

3.1 Main steps of the SIFT . 24

3.2 SURF Algorithm . 27

3.3 200 Strongest features of the image retreived from [55] are extracted

with SIFT . 31

3.4 50 strongest feature points of joint and 200 strongest feature points of

the image retreived from [55] are extracted with SURF 32

3.5 Validation result on SURF: features are matched between the image

of 50 strongest feature points of joint and the image of 200 strongest

feature points of the image retreived from [55] 32

3.6 Joint location validation . 33

3.7 CNN Training Progress (validation for training and testing): (i) The

upper diagram shows the accuracy of the training progress in percent-

age. Smoothed training is represented in solid blue line. Training is

represented in solid line in light blue. (ii) The lower diagram shows

the loss of the training progress. Smoothed training is represented in

solid red line. Training is represented in solid line in light red. (iii)

Validation is represented in dotted black line for both accuracy and loss. 34

3.8 Workflow of Joint Detection and Classification Implementation 35

3.9 The pick-and-place benchmark model: matching features between the

image of a joint and the image of the simulation platform - 1 (imple-

mentation) . 36

3.10 The pick-and-place benchmark model: locating joint in the correspond-

ing position in the image of the simulation platform - 1 (implementation) 36

vii

3.11 The pick-and-place benchmark model: matching features between the

image of a joint and the image of the simulation platform - 2 (imple-

mentation) . 36

3.12 The pick-and-place benchmark model: locating joint in the correspond-

ing position in the image of the simulation platform - 2 (implementation) 37

3.13 The pick-and-place benchmark model: matching features between the

image of a joint and the image of the simulation platform - 3 (imple-

mentation) . 37

3.14 The pick-and-place benchmark model: locating joint in the correspond-

ing position in the image of the simulation platform - 3 (implementation) 37

3.15 CNN Training Progress (implementation): (i) The upper diagram shows

the accuracy of the training progress in percentage. Smoothed training

is represented in a solid blue line. Training is represented in a solid

line in light blue. (ii) The lower diagram shows the loss of the training

progress. Smoothed training is represented in a solid red line. Training

is represented in a solid line in light red. (iii) Validation is represented

in a dotted black line for accuracy and loss. 38

4.1 Results of EKF simulations . 41

4.2 PF simulation with two cylinder cans: the concentrated particles over-

lap the area circled in red on the left, showing satisfactory results; the

errors of three joints are plotted in blue, red, and green respectively on

the right, the range of the errors is (0, 0.1) 43

4.3 Workflow of RL-based Motion Tracking and Planning 47

4.4 EKF and RL Tracking Performance (with no blue sphere): the figure

on the left shows the points of tracked joints, which are in green; the

errors of coordinates for each of the three joints on X, Y, and Z axes

are shown in the three plots on the right in blue, red and green lines

correspondingly. 51

4.5 3D coordinate differences and MSE between coordinate pairs (with no

blue sphere) . 51

4.6 Tracked points with no blue sphere: Data 1 shown in blue dots repre-

sents the results of prediction; Data 2 shown in red squares represents

the results of actual measurements 52

4.7 Simulation platform with blue sphere 53

4.8 3D coordinate differences and MSE between coordinate pairs (with a

blue sphere) . 53

viii

4.9 EKF and RL Tracking Performance (with a blue sphere): the errors

of coordinates for each of the three joints on the X, Y, and Z axes are

shown in blue, red and green lines respectively. 54

4.10 Tracked points with sphere: Data 1 shows in blue dots which represent

the results of prediction; Data 2 shows in red squares which represent

the results of actual measurements 55

ix

List of Symbols

Constants

α Learning rate

δ Dirac delta

γ Discount factor

µ Mean

Ak State transition matrix

Bk Control matrix

E Expectation

f Process nonlinear vector function

G Gaussian operator

h Observation nonlinear vector function

Hk Transformation matrix

Ic Intrinsic camera matrix

J Jacobian

Kk Kalman gain

Pk Error covariance matrix

Qk Process noise covariance matrix

Qk Process noise covariance

R Measurement noise covariance matrix

r Reward

uk Control input

vk Measurement noise

V ar Variance

x

wk Process noise

xk State vector

zk Observation vector

t Translation vector

dB Decibels

xi

Abbreviations

BRIEF Binary Robust Independent Elementary Features.

CNN Convolutional Neural Network.

D Dimension.

DH Denavit-Hartenberg.

DNN Deep Neural Networks.

DoF Degrees of Freedom.

DoG Difference of Gaussians.

EKF Extended Kalman Filter.

FAST Features from Accelerated Segment Test.

KF Kalman Filter.

MDPs Markov Decision Processes.

ML Machine Learning.

NN Neural Networks.

ODE Ordinary Differential Equation.

ORB Oriented FAST and Rotated BRIEF.

PDF Probability Density Function.

PF Particle Filter.

xii

RANSAC Random sample consensus.

ReLU Rectified Linear Unit.

RL Reinforcement Learning.

RLFJ rigid-link flexible-joint.

RRT Rapidly-exploring Random Tree.

SARSA State-Action-Reward-State-Action.

SIFT Scale Invariant Feature Transform.

SURF Speeded-Up Robust Features.

TD Temporal Difference.

xiii

Chapter 1

Introduction

Pose estimation is a computer vision technique that infers the pose of a person or

object in an image or video. It can be treated as the problem of determining the

position and orientation of a camera relative to a given person or object. It is typically

done by identifying, locating, and tracking a number of keypoints on a given object or

person. For objects, they could be corners or other significant features; for humans,

they could represent major joints, like elbows, knees, and wrists.

Most inanimate objects are rigid, and rigid pose estimation is the process of making

predictions of those objects. A task like object detection also locates objects within

an image. This localization consists of a bounding box encompassing the object, while

pose estimation can predict the precise location of its keypoints. For robotic arms,

the keypoints are mostly the joints.

Pose estimation has the potential to create a new wave of automated tools designed

to measure the precision of human movement. In addition to tracking human move-

ment and activity, pose estimation opens up applications in a range of areas, such as:

augmented reality, animation, gaming, and robotics, which raises the demand and

development of various algorithms in order to bring them in reality.

1

1.1 Motivation and Background

For certain applications, e.g. autonomous driving, online learning algorithms need

to be performed since the environment is changing all the time while the system is

operated. Hence it needs a fast and accurate way to detect, recognize and classify

the objects in order to avoid obstacles on the road and plan for the best route for

the user. In other words, this system needs to learn the new environment while

running, process the information with speed and accuracy, and provide the optimal

solution based on the user’s need from the perspective of computer vision. This

requires extensive data collection and preparation, which includes a massive image

database of the environment in various scenarios, geometric transformations between

the camera and world coordinates, and training for the algorithms to reach the best

result.

As objective tracking is widely utilized, it is important yet challenging to develop

more effective methods with improved performance. Although Machine Learning

(ML) and Deep Neural Network (DNN) based approaches have gained the most at-

tention recently, they have limitations when applied to online and real-time situations,

due to their inherent high computation requirement. Therefore, many traditional ap-

proaches are still being utilized and combined with these DNN approaches, such as

Kalman Filter (KF) for maximizing the use of model information [1], and Particle

Filter (PF) for improving the precision of human movement tracking [2].

1.2 Literature Review

Object detection and pose estimation are some fundamental problems in computer

vision. Recently, there have been many proposed methods to increase the accuracy

of object detection and tracking and reduce the processing time of matching features

between videos and images. These methods encompass a wide range of work from the

more classical filter-based to the more recent machine learning and neural network-

2

based techniques which have extraordinary computational abilities [3][4][5].

In the last decade, several approaches were proposed and demonstrated by different

researchers for detection and tracking [6] [7] [8]. Occlusion, insufficient training data,

and depth ambiguity are still challenges in pose estimation [9]. To deal with object

occlusion, clutter background, illumination changes, object transformation and object

variation, various local features have been proposed and they are applied to many

applications such as object detection and recognition, image matching, image stitch-

ing [10], object tracking, etc. A Scale Invariant Feature Transform (SIFT) feature

detector and descriptor for object recognition was proposed [11].

SIFT is an algorithm to detect, describe, and match local features in images. It

can extract keypoints from the image and detect objects by comparing and matching

features [12]. It is widely used for it has the advantage of scale-invariant demonstrated

by [13]. Research results show that SIFT is invariant on rotations, translations, and

scaling and SIFT features have strong matching robustness for radiation transforma-

tion, perspective changes, illumination changes and noises by studying the theories of

SIFT matching, using Euclid distance as similarity measurement of keypoints and us-

ing RANSAC (Random Sample Consensus) to eliminate mismatches [14]. The SIFT

method emerges as a valuable mechanism for enhancing the safety of autonomous ve-

hicles by ensuring the accuracy and reliability of information influencing autonomous

decision-making processes [15].

This work then becomes the original inspiration for most of the local feature de-

scriptors proposed later. Then, a Speeded-Up Robust Features (SURF) was reported

as a more efficient substitution for SIFT by H. Bay, et al. [16] since it produces a

descriptor with a smaller feature size and also speeds up the matching step. SURF

method plays a vital role as it detects, extracts the robust features [17] and describes

the detected feature for matching purposes [18][19].

The SURF algorithm mainly includes three steps: interest point detection, interest

point descriptor and interest point matching [20]. SURF is not only used innovatively

3

to solve the problem of automatic target detection and tracking in an unstabilized

video by auto-detecting the target of interest followed by tracking [21], but also used

for watermarking authentication [22]. While SURF is known to be a powerful al-

gorithm, it is computationally expensive and therefore time-consuming. It can be

further improved in feature detection by linearizing the SURF detector in a way that

its detection characteristics are preserved [23]. It is known that the Haar descriptor

of the SURF algorithm can not make full use of the information around the neigh-

borhood of the feature points found [23]. [20] resolves this issue by proposing an

improved SURF algorithm.

For object recognition systems, the goal is to make descriptors faster to compute,

and more compact while remaining the robustness. To address these requirements,

many researchers attempted to build a lightweight descriptor based on a binary string.

A Binary Robust Independent Elementary Features (BRIEF) descriptor which relies

on a relatively small number of intensity difference tests to represent an image patch

as a binary string was proposed [24]. It is an important result from a practical point

of view because it shows that real-time matching performance can be achieved even

on devices with limited computational power. However, it is very sensitive to in-plane

rotation. E. Rublee, et al. [25] built Oriented Features from Accelerated Segment

Test (FAST) and Rotated BRIEF (ORB) to make an orientation invariant feature

based on the well-known FAST keypoint detector [26] and the BRIEF descriptor [24],

which is rotation invariant and resistant to noise. FAST detects the keypoint based

on the difference of intensity value on a circle surrounding a point and looks for

continuous arc that are either darker or lighter than the point. It is designed to be

very efficient for real-time applications [27].

Although SIFT has many merits, it can be time-consuming. [28] proposed an

improved SIFT algorithm that can generate feature descriptors based on hierarchical

regions and treat those regions differently. A major challenge in object tracking is

the occlusion of the target object by other objects in the scene. [29] proposed a

4

target tracking method based on SIFT and Kalman Filter: SIFT for computing the

location of the target, and Kalman Filter (KF) for optimizing the target location in

order to correct the error of SIFT. They are also implemented to track occluded and

non-occluded objects in the videos in an automatic object tracking system [30]. The

objects in the image sequences can be identified with the help of invariant features

extracted using the SIFT algorithm. Then the occluded objects can be tracked using

Kalman Filter since it optimally estimates the position of the object in the current

frame using the information obtained from the previous frame so that the overall

performance in the event of occlusion can be improved.

Generally, the Kalman Filter is used to optimally estimate the variables of interest

when they can not be measured directly, but only when an indirect measurement

is available. It can also be applied in moving object detection and tracking [31].

An improved Kalman Filter is capable of reducing the computational effort of the

algorithm while improving the accuracy of the multi-object tracking results which

solves the problem of target loss during multi-object tracking [32]. Similarly, the

Extended Kalman Filter (EKF) can also be used to treat nonlinearities. It is applied

to estimate the actual positions and velocities of the detected objects [33], as well as

to accurately estimate the state of the target [34].

EKF can also be combined with a temporal-difference (TD) learning algorithm to

train the active fault detector [35] and a reinforcement learning (RL) based algorithm

for solving a game model [34], as RL can be used to provide a superior method of

creating desired behaviors for agents [36]. Furthermore, an EKF model can be used to

identify moving objects in the scene and incorporate deep learning and RL models for

detecting the type of vehicle [37]. An EKF-based algorithm for trajectory tracking is

proposed in [38]. It is capable of predicting the position of moving objects in dynamic

environments.

Neural Networks (NN) are one of the most popular algorithms in pose estimation

and are widely used in complicated contexts, like human pose estimation [39][40] [41]

5

and multi-object tracking [42] as object tracking and detection are strongly intercon-

nected and they can benefit each other. The NN-based approach has the advantage

of handling large amounts of data efficiently, which alleviates people’s burden to a

certain extent by allowing them to generalize a system without reprogramming.

Convolutional Neural Network (CNN) is used for image classification and recog-

nition to improve significant performance. It is trained with millions of images of

different classes [43]. CNN is the learning method which exploits the spatial informa-

tion of an image and learns the complex features automatically [44]. It can be used

for object tracking with shift variant architecture, for which the features were learned

during an online process, and the spatial and temporal features are considered using

a pair of images instead of a single image [45]. [46] used a pre-trained CNN model for

online tracking. The CNN is used after parameter tuning to adjust the appearance

of the object in the scene and a probability map is created instead of creating labels.

Deep learning techniques are tested to be reliable for 2D human pose estimation

[9]. As the features extracted by the deep learning method usually contain noise

and outliers, [47] designed a complex deep CNN to generate deep feature descriptors.

Since deep CNN can learn high-level image abstractions, it has been applied for

feature detection and achieves satisfactory results in low-level feature detections [48].

The low-level features and deep features can be combined to improve the performance

of image retrieval tasks by enhancing the connection between different feature maps

[49].

1.3 Contribution and Organization

With the rapid growth of machine learning in recent years, many techniques and algo-

rithms have been developed for pose estimation in order to improve the effectiveness

and efficiency for complicated tasks in various fields. Traditional approaches have

come along at first and they have been applied with various popular new algorithms

for delivering competitive results. As there are many existing algorithms for conduct-

6

ing pose estimation task for different purposes, this thesis focuses on the ones that

are most widely used and most suitable for robotic arms.

This work first provides the background knowledge and preliminaries for image-

based pose estimation of robotic arms, such as the process of designing CNN for

joint classification, Reinforcement Learning (RL) and the structure of a robotic arm.

Kalman Filter, Extended Kalman Filter and Particle Filter are also introduced as the

foundation for object tracking. A detailed description of pick-and-place platform is

presented and applied as a 3D simulation environment.

The working mechanisms of object detection algorithms like SIFT and SURF, are

explained in stages with conducted simulations along with the discussion of their

advantages and disadvantages. Object tracking simulations with Kalman Filters and

its extensions are provided and their results can serve as a base for conducting a more

complicated task.

In the last part of the thesis, with several modifications of the pick-and-place

environment, RL is applied with EKF for state prediction and update to achieve a

better performance for object tracking, along with object detection algorithms being

used as the preparation of the input for tracking.

In summary, Chapter 2 provides a knowledge base for pose estimation, including

filters, camera intrinsics and extrinsics, the structure of CNN, an introduction to

RL, the kinematics of robotic arm and the setup of the simulation environment.

Chapter 3 includes all the preliminaries and simulation results for joint detection

and classification. A complete simulation of joint tracking and motion planning is

presented in Chapter 4 with the applications of all the methods presented in the

previous chapters along with a reinforcement learning algorithm combined with the

EKF designed for adaptive tracking. Chapter 5 concludes the thesis by summarizing

the presented work and simulation results, as well as discussing more future research

work and directions.

7

Chapter 2

Background and Preliminaries

This chapter introduces background knowledge for conducting image-based robotic

arm pose estimation. The sections start with an introduction to filters, camera in-

trinsics and extrinsics, the process of designing a pre-trained Convolutional Neural

Network (CNN) and its structure, Reinforcement Learning (RL), as well as robotic

arm kinematics. The platform for a pick-and-place task is presented in the last sec-

tion.

2.1 Filters

2.1.1 Kalman Filter (KF)

Kalman Filter (KF) uses the prior knowledge of the state to make a forward projection

state or a prediction of the next state.

xk+1 = Akxk +Bkuk + wk, (2.1)

A measurement model zk that describes a relation between the state and measurement

at the current step k always comes along with xk.

zk = Hkxk + vk, (2.2)

where Ak ∈ Rn×n is a state transition matrix relating the state at time step k to the

state at time step k + 1; Bk ∈ Rn×p is a control input matrix for the input uk ∈ Rp×1.

Hk ∈ Rm×n is the measurement transformation matrix that transforms the state to

8

the measurement zk. wk is the process noise with covariance Qk ∈ Rn×n, and vk is the

measurement noise with covariance R ∈ Rm×m, and they are statistically independent

Gaussian.

The equations of Kalman Filter are divided into two groups. The time update

equations (or the predictor equations) are responsible for projecting forward the cur-

rent state and error covariance estimates to obtain the priori estimates for the next

time step. The measurement update equations (or the corrector equations) are re-

sponsible for improving the posteriori estimate by incorporating a new measurement

into the priori estimate. The goal is to minimizing the trace of the error covariance

matrix.

1. Predictor equations

A priori state estimate x̂k+1
− is predicted by using the state dynamic equation

that projects one step in time:

x̂k+1
− = Ax̂k +Buk. (2.3)

The error covariance matrix Pk+1
− is predicted by:

Pk+1
− = AP−

k AT +Qk, (2.4)

where Pk
− is the previous estimated error covariance matrix with

Pk = E⟨ek, eTk ⟩, (2.5)

where ek is the estimation error ek = xk − x̂k and Qk is the process noise

covariance.

2. Corrector equations

The Kalman gain Kk can be computed as follows:

Kk = Pk
−Hk

T (HkPk
−Hk

T +Rk)
−1, (2.6)

9

where Rk is the measurement error covariance.

The measurement residual is the difference between the actual measurement zk

and the previous estimated measurement Hkx̂k
−. The update of the predicted

state estimate x̂k is proceeded by the summation of the priori projected state

estimate x̂k
− to the product of the Kalman gain and the measurement residual:

x̂k = x̂k
− +Kk(zk −Hkx̂k

−) (2.7)

With calculated x̂k, the filter calculates the updated error covariance Pk, which

will be used in the next time step:

Pk = (I −KkHk)Pk
−. (2.8)

2.1.2 Extended Kalman Filter (EKF)

While most of the real-world systems are nonlinear, Extended Kalman Filter (EKF)

has been applied with adapted techniques from multivariate Taylor series expansions

to linearize a model about a working point. EKF can start with a continuous ordinary

differential equation (ODE):

ẋk = f(xk−1, uk, wk), (2.9)

which is then linearized and discretized.

zk = h(xk, vk), (2.10)

where wk and vk are the process and observation noises which are both assumed to

be zero mean multivariate Gaussian noises with covariance Qk and Rk respectively.

uk is the control input.

Function f is used to compute the predicted state from the previous estimate and

function h is used to compute the predicted measurement from the predicted state.

However, they cannot be applied to the covariance directly. Instead, a matrix of

partial derivatives (the Jacobian) is computed. At each time step, the Jacobian

10

is evaluated with current predicted states. This process essentially linearizes the

nonlinear function around the current estimate. By assuming the nonlinearities in

the dynamic and observation model, functions f and h can be expanded in Taylor

Series and proceed the approximations and predictions.

The process starts with an initialization of x0:

x0 = µ0 = E[x0], (2.11)

with error covariance P0, where µ0 is the mean, and x0 represents the initial optimal

estimate.

By assuming an optimal estimate xk−1 with Pk−1 covariance at time k − 1, the pre-

dicted state estimate is:

x̂k ≈ f(xk−1), (2.12)

where f(xk−1) is acquired by expanding the process nonlinear vector funtion f in

Taylor Series about xk−1, and predicted covariance estimate is:

Pk
− = Jf (xk−1)Pk−1J

T
f (xk−1) +Qk−1, (2.13)

with

Jf =
∂f

∂x
. (2.14)

The equations of corrector is given below. Kalman gain is:

Kk = Pk
−JT

h (xk)(Jh(xk)Pk
−JT

h (xk) +Rk)
−1, (2.15)

with

Jh =
∂h

∂x
. (2.16)

The state estimate is:

x̂k ≈ xk +Kk(zk − Jh(xk)x̂k
−), (2.17)

and the posterior covariance of the new estimate is:

Pk = (I −KkJh(xk))Pk
−, (2.18)

11

with Rk as the measurement noise covariance matrix.

2.1.3 Particle Filter (PF)

The key idea of particle filtering is to represent the posterior probability density

function by a set of discrete samples known as particles. Each particle represents

a hypothesis of the state and it is randomly drawn from the prior density. After

a particle is drawn, it is then propagated according to the transition model. Each

propagated particle is verified by a weight assignment using the likelihood model.

The posterior probability density function is constructed recursively by the set

of weighted random samples x
(i)
k , w

(i)
k ; i = 1, ..., N where N is the total number

of particles. At each time k, the particle filtering algorithm repeats a two-stage

procedure, prediction and update:

1. For prediction, each particle x
(i)
k evolves independently according to the state

model, including the addition of random noise in order to simulate the unknown

disturbance. The step yields an approximation of the prior probability density

function:

p(xk) ≈
1

N

N∑︂
i=1

δ(xk − x
(i)
k), (2.19)

where δ(·) denotes the Dirac delta function. The Dirac delta function δ(a) is

zero everywhere except for a, and its integral is equal to 1.

2. For update, the weight of each particle is evaluated based on the latest measure-

ment according to the measurement model (likelihood model). The posterior

probability density function at time k in the form of a discrete approximation

can be written as:

p(xk|z1:k) ≈
N∑︂
i=1

w
(i)
k δ(xk − x

(i)
k), (2.20)

and the sum of the weight set equals to 1, with z represents the measured

sequence in the equation.

12

Figure 2.1: One iteration of prediction and update, extracted from [50]

2.2 Camera Intrinsics and Extrinsics

Intrinsics and extrinsics are parameters of a camera. Extrinsics describe the location

of the camera in the 3D world, while intrinsics are parameters inside the camera.

1. Extrinsic camera matrix

The camera’s extrinsic matrix describes the camera’s location, and what di-

rection it is pointing. It has two components: a rotation matrix, R, and a

translation vector t.

The extrinsic matrix takes the form of a rigid transformation matrix: a 3 × 3

rotation matrix in the left block, and 3 × 1 translation column vector in the

right:

[︂
R|t

]︂
=

⎡⎢⎢⎢⎣
r1,1 r1,2 r1,3|t1
r2,1 r2,2 r2,3|t2
r3,1 r3,2 r3,3|t3

⎤⎥⎥⎥⎦ (2.21)

It is common to see a version of this matrix with extra row of (0, 0, 0, 1)

added to the bottom. This makes the matrix square, which allows for further

decomposition into a rotation followed by translation.

13

2. Intrinsic camera matrix

The intrinsic matrix Ic transforms 3D camera coordinates to 2D homogeneous

image coordinates, by assuming that the projection is modeled by an ideal

pinhole camera,

Ic =

⎡⎢⎢⎢⎣
fx s cx

0 fy cy

0 0 1

⎤⎥⎥⎥⎦ , (2.22)

with s encodes any possible skew between the sensor axes due to the sensor not

being mounted perpendicular to the optical axis and (cx, cy) denotes the optical

center expressed in pixel coordinates. fx and fy represent focal lengths, i.e. the

distance between the pinhole and the film (also known as the image plane). The

focal length is measured in pixels. In a true pinhole camera, fx and fy have the

same value.

By using a single focal length and an aspect ratio that describes the amount

of deviation from a perfectly square pixel, the camera geometry (focal length)

from distortion (aspect ratio) can be separated.

There are infinitely many pinhole cameras that can produce the same image.

The intrinsic matrix is only concerned with the relationship between camera

coordinates and image coordinates, so the absolute camera dimensions are ir-

relevant. Using pixel units for focal length and principal point offset allows for

representing the relative dimensions of the camera, which is the film’s position

relative to its size in pixels. This suggests the intrinsic camera transformation

is invariant to a uniform scaling of the camera geometry, and the invariance can

be captured by representing dimensions in pixel units.

2.3 Convolutional Neural Network (CNN)

The Convolutional Neural Network (CNN) is a deep learning algorithm commonly

used to recognize patterns in image data. It basically consists of convolutional layers,

14

pooling layers and fully-connected layers. A simple convolutional neural network

for deep learning classification has been created and trained within Matlab, which

involves the following steps:

1. Load Image Data

Load the sample image data. The data are divided into training and validation

data sets. For example, 30% of the training data are set aside to be used as val-

idation data and observations to the training and validation sets are randomly

allocated.

2. Define Network Architecture

The size of the images in the input layer of the network and the number of

classes in the fully-connected layer are specified before the classification layer.

The structure of the layers is given in Fig. 2.2.

Figure 2.2: CNN Network Architecture

(a) Convolution 2D Layer

The convolution kernel in the convolutional layer is the key to the auto-

matic extraction of image features by CNN. Different convolution kernels

can extract different features. The calculation formula for the convolu-

tional layer feature extraction is:

A = σ(W T ·X + b), (2.23)

where σ(·) is the activation function, with input X, weights W, and bias b.

The filter size defines the size of the local region of the feature matrix,

which can be set as 3, 5, or 7. The number of filters is set to be 32,

15

which corresponds to the number of neurons in the convolutional layer

that connect to the same region in the input.

Stride is the step size for traversing the input vertically and horizontally.

They are both equal to 1, same as the factor for dilated convolution.

In order to let the output have the same size as the input when the stride

equals 1, the size of padding is applied to input borders vertically and

horizontally, specified as a vector [a b] of two nonnegative integers, where

a is the padding applied to the top and bottom of the input data and b is

the padding applied to the left and right. They are set to be 0.

(b) Batch Normalization Layer

Batch normalization layer normalizes the activations and gradients prop-

agating through a neural network, acrossing all the observations for each

channel independently. It is used between convolutional layer and nonlin-

earities to speed up neural network training and reduce the sensitivity to

neural network initialization.

(c) Rectified Linear Unit (ReLU) Layer

Rectified Linear Unit (ReLU) layer performs a threshold operation max(0,

x) to each element of the input, thresholding at zero.

(d) Fully-connected Layer

A fully-connected layer combines all the features learned by the previous

layers across the image to identify the larger patterns. It multiplies the

input by a weight matrix and then adds a bias vector. The last fully-

connected layer combines the features to classify the images. The input

size is automatically determined during training, and the output size is

equal to the number of classes in the target data.

The Glorot initializer is applied as the function to initialize the weights,

which independently samples from a uniform distribution with zero mean

16

and variance 2/(input size + output size). The function values to initialize

biases are zeros.

(e) Softmax Layer

The softmax activation function normalizes the output of the fully-connected

layer. The output of the softmax layer consists of positive numbers that

sum to one, which can then be used as classification probabilities by the

classification layer. It is defined as:

S(xi) =
exp(xi)∑︁n
j=1 exp(xj)

, (2.24)

where x is an input vector to the softmax function S, xi is the ith ele-

ment of the input vector, and n represents the number of classes (possible

outcomes).

(f) Classification Layer

It computes the cross-entropy loss for classification and weighted classifi-

cation tasks with mutually exclusive classes. The layer infers the number

of classes from the output size of the previous layer. Unweighted cross-

entropy loss is applied for class weights. The classes of the output layer

are automatically set at training time.

3. Train the Network

During the training process, options need to be specified, e.g. validation fre-

quency, maximum of epoch, and evaluation metrics. The training is for joints

classification. The classification accuracy is the percentage of correctly pre-

dicted labels.

2.4 Reinforcement Learning (RL)

Reinforcement Learning (RL) is a type of machine learning technique that is based

on the agent’s learning strategies to maximize returns or achieve specific goals while

17

exploring and interacting with the environment by trial and error using feedback from

its actions and experiences. In general, it consists of an agent and the interaction

environment. An RL agent may include one or more of the following components:

1. Policy: is the agent’s behaviour function. It maps from state to action.

2. Value function: is a prediction of future reward. It is used to evaluate the

goodness of each state, and therefore select between actions.

3. Model: is the agent’s representation of the environment.

The agent sends actions to the environment, and then the environment moves to a

new state and generates rewards, which are sent back to the agent for the next step.

The state represents the observation of the environment, and the rewards evaluate the

outcome of the current action. The objective of RL is to learn the optimal policy for

the agent to take the best action at each step. When interacting with the environment,

an agent always follows a certain behavior pattern during the entire procedure.

Sarsa(λ) Algorithm is implemented in the thesis as it can update the λ step before

getting the reward, which enables the agent to learn how to get the maximum reward

more efficiently. The process of the Sarsa(λ) algorithm is shown in Algorithm 1.

Based on the algorithm, a Q-value table has been built to save the state s, all

actions a that will be taken, and Q(s, a). In each round, the first state and action

are randomly initialized and execute action to get the reward r and the new state

s′. Then use ϵ-greedy to select action a′ from the Q-value table based on the current

state s′. The value functions Q(s, a) are updated for the state s and corresponding

action a of the current sequence [51]. α is the learning rate, γ is the discount factor,

and r + γ ∗Q(s′, a′) is the estimated return for the next state-action pair.

18

Algorithm 1 Sarsa(λ) algorithm

1. Initialize Q(s, a) arbitrarily

2. Repeat for each episode:

(a) Initialize s

(b) Choose a from s using policy derived from Q (ϵ-greedy)

(c) Repeat for each step of episode

i. Take action a, observe r, s’

ii. Choose a’ from s’ using policy derived from Q (ϵ-greedy)

iii. Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)]

iv. s← s′; a← a′

(d) until s is terminal

2.5 Robotic Arm Kinematics

1. Dynamics

The robotic arm for our simulation is based on Kinova Jaco robotic arm, which

is a light-weight robot composed of six inter-linked segments. Through the

controller, the robot can be moved in three-dimensional space and grasp or

release objects with the gripper. The simulations are conducted in Matlab

simulink environment. Figure 2.3 provides the structure and components of the

applied robotic arm. The n-link rigid-link flexible-joint (RLFJ) robot dynamics

can be expressed as:

M(q)q̈ + C(q, q̇)q̇ +G(q) = u, (2.25)

by assuming where q, q̇, q̈ ∈ Rn represent the position, velocity, and acceleration

of the joints respectively. M(q) ∈ Rn×n is the symmetric and positive definite

inertia matrix, C(q, q̇)q̇ ∈ Rn×n denotes the Coriolis and centrifugal vector, G(q)

∈ Rn is the gravity vector and u ∈ Rn is the joint torque with n = 6.

19

Figure 2.3: Components of Kinova Jaco Assistive Robotics Arm, extracted from [52]

2. Kinematics

The pose of each joint in the robot’s kinematic chain is represented by homo-

geneous transformation. A Denavit-Hartenberg (DH) transformation matrix

has been applied to describe the relationship between two adjacent links in the

robotic arm. It is defined by link length, link twist, link offset, and joint an-

gle. A 4 × 4 homogeneous transformation matrix T describes the position and

orientation of a joint in space:

T =

⎡⎢⎢⎢⎢⎢⎢⎣
cos θn − sin θn cosαn sin θn sinαn rn cos θn

sin θn cos θn cosαn − cos θn cosαn rn sin θn

0 sinαn cosαn dn

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ (2.26)

θn is the rotation around the direction of the joint axis. dn is the sliding motion

along the joint axis. αn and rn define the physical dimensions of the link in

terms of the angle measured around and distance measured along the axis that

is parallel to the common normal.

The Jacobian matrix is used to compute the joint velocities. It relates the

20

velocity of the end-effector to the velocity of the joints as follows:

Ve = J(q) ∗ Vq (2.27)

where Ve is the velocity of the end-effector, J(q) is the Jacobian matrix evaluated

at the current joint angles q, and Vq is the velocity of the robot’s joints. The

Jacobian matrix for the robotic arm is a 6 × 6 matrix that consists of both linear

and angular velocity components. The linear velocity component represents the

rate of change of the end effector’s position with respect to the joint angles,

while the angular velocity component represents the rate of change of the end

effector’s orientation with respect to the joint angles.

2.6 Pick-and-Place Platform

A pick-and-place platform has been constructed for a Kinova Jaco Assistive Robotics

Arm for trajectory tracking and motion planning within Matlab as our simulation

environment. The environment consists of one Kinova Jaco robotic arm, a ground

floor, two table tops in different heights locating above the floor, and a red cylinder

can on the upper table top. In order to improve the complexity and difficulty for

simulation, a green cylinder can in different size is later set on the upper table top,

together with the one in red. In addition, a blue sphere will appear in the environment

in the middle of the mission as an unknown obstacle for interfering the movement of

the robotic arm. The radiuses, height, length, width and their positions are shown in

the configuration table.

The starting point (initial position of the gripper) of the robotic arm is set as a

point between the table tops. The target position can be set by the user, for example,

in our experiment, it is set to be [-0.15, 0.35, 0.51]. It needs to pass through the lower

table top to pick the red cylinder can, and then place it to the target point on the

lower table top without touching anything in the environment.

21

Objects Size Pose

Floor (1, 1, 0.01) N/A

Tabletop 1 (0.4, 1, 0.02) [0.3, 0, 0.6]

Tabletop 2 (0.6, 0.2, 0.02) [-0.2, 0.4, 0.5]

Red cylinder can (0.03, 0.16) [0.3, 0.0, 0.7]

Green cylinder can (0.03, 0.1) [0.3, 0.2, 0.7]

Blue sphere (0.06) [0.15, 0.1, 0.7]

Table 2.1: Configurations of the environment setup

(a) Starting position of the red cylin-
der (bird’s eye view)

(b) Target position of the red cylin-
der (bird’s eye view)

(c) Starting position of the red cylin-
der (front view)

(d) Target position of the red cylin-
der (front view)

Figure 2.4: The pick-and-place platform from different perspectives

22

Chapter 3

Joint Detection and Classification

In this chapter, two joint detection and matching approaches, SIFT (Scale Invariant

Feature Transform) and SURF (Speeded-Up Robust Features) are introduced in detail

in the first section. The process of joint classification with CNN (Convolutional Neural

Network) is illustrated in section 3.2. All the algorithms are validated by using

sample image data of a multi-robot-arm platform through Matlab, and the results of

validation as well as the implementation of SIFT and SURF on the pick-and-place

platform are presented in the last section, with comparisons and discussions.

3.1 SIFT and SURF-based Joint Detection

There exist many approaches for feature detection and matching in the image pro-

cessing area. In this work, we focus on the SIFT and SURF methods, which are

known to be invariant to image transformations. Other methods have also been stud-

ied and applied extensively, for corner and edge detection, etc. For example, the

Harris Corner Detector, it is commonly used to extract corners and infer features

of an image, similar to the FAST (Features from Accelerated Segment Test) method

[53]. BRIEF (Binary Robust Independent Elementary Features) approach is very fast

both in building and matching features and easily outperforms other fast descriptors

such as SURF and SIFT. In this method, image patches need to be converted to

binary feature vectors, and each keypoint is described by a feature vector which is a

23

128-dimensional vector [24]. The ORB (Oriented FAST and Rotated BRIEF) method

builds on the well-known FAST keypoint detector and the BRIEF descriptor. Both

techniques are attractive because of their good performance and low cost, but they

are generally more computationally expensive.

3.1.1 SIFT

The SIFT algorithm detects interest points in a scale-invariant way, as extrema in

the response of the convolution of the image with a difference of Gaussians (DoG)

function [54]. It is applied for joint detection and matching by the following main

steps which are shown in Figure 3.1:

Figure 3.1: Main steps of the SIFT

1. Scale-space peak selection

(a) Scale-space

The scale-space of the image is a function L(x, y, σ) (σ is the scaling param-

eter) that is produced from the convolution of a Gaussian kernel at different

scales with the input image. Scale spaces are usually implemented as im-

age pyramids. Scale-space is separated into octaves and each octave has 3

layers. Several octaves of the original image are generated, and the image

size of each octave is half of the previous one. As most parts of a robotic

arm are in the same color, it is difficult to use color as a differentiation.

24

(b) Blurring

Blurring refers to the convolution of the Gaussian operator and the image.

This particular expression is applied to each pixel. It is written as:

L(x, y, σ) = G(x, y, σ) ∗ I(x, y), (3.1)

G(x, y, σ) =
1

2Πσ2
exp

{︃
−(x2 + y2)

2σ2

}︃
, (3.2)

where G is the Gaussian blur operator and I represents an image. σ is the

scale parameter and x and y are the location coordinates. The result is a

blurred image.

(c) DoG (difference of Gaussians)

Blurred images are also used to generate another set of images, the DoG,

which is the difference of Gaussian blurring of an image with two different

scale parameters, i.e. σ and kσ. This process needs to repeat for every

octave of the image in the Gaussian pyramid.

(d) Finding keypoints

Once the scale spaces are generated and used to calculate the DoGs, the

DoGs are used to calculate the Laplacian of Gaussian approximations that

are scale invariant. Every pixel in the image is compared with its 8 neigh-

bors and 9 pixels in the previous scale and the next scale. A total of 26

checks are made for each one. If it is a local extrema, then it is a potential

keypoint, the best one represented in that scale. Keypoints like joints and

gripper are found in this step.

2. Keypoint localization

Intensities are checked for low contrast features, as some of the keypoints gener-

ated may not have enough contrast, or they all lie along the edge. Taylor series

expansion is applied to scale space to get a more accurate location of extrema.

25

If the intensity at an extrema is less than a predetermined threshold value, it

will be rejected.

3. Orientation assignment

The legitimate keypoints are obtained from the previous step and the scale at

which keypoint was detected, which is the same as the scale of the blurred

image. Therefore, the scale invariance is achieved. In order to make each

keypoint rotation invariant, an orientation to each keypoint is assigned.

A neighborhood is taken around the keypoint location depending on the scale,

and the gradient magnitude and direction are calculated in that region. An

orientation histogram with 36 bins covering 360 degrees is created. The amount

added to the bin is proportional to the magnitude of the gradient at that point.

After this has been done for all the pixels around the keypoint, the histogram

has a peak.

The highest peak in the histogram is taken and any peak above 80% is also

considered for calculating the orientation. It creates keypoints with the same

location and scale in different directions.

4. Keypoint descriptor

A descriptor is used to compute the local image region about each joint that

is highly distinctive and invariant to variations, e.g. changes in viewpoint and

illumination.

A 16 × 16 window around the keypoint is taken. It is divided into 16 sub-blocks

of 4 × 4 size. For each sub-block, an 8-bin orientation histogram is created,

so 4 × 4 descriptors over 16 × 16 sample arrays are used. Totally 4 × 4 × 8

directions correspond to 128 bin values. It is represented as a feature vector to

form the keypoint descriptor.

5. Keypoint matching

Finally, joints are extracted and saved as separate images. They are matched

26

with the corresponding original input images by identifying the nearest neigh-

bors.

3.1.2 SURF

Although both SIFT and SURF can detect and extract features, SURF mainly differs

from SIFT in the following aspects:

1. It is based on Haar wavelets instead of derivative approximations in an image

pyramid;

2. The interest points constitute approximations of scale-space extrema of the

determinant of Hessian matrix instead of Laplacian operator;

3. Entries in the feature vector are computed as sums and absolute sums of the

first-order derivative, instead of histograms of coarsely quantized gradient di-

rections.

The detailed process of SURF presented in Figure 3.2 is illustrated below:

Figure 3.2: SURF Algorithm

1. Integral image

The integral image is used as a quick and effective way of calculating the sum

of pixel values and the average intensity within the given image. The entry of

27

an integral image IΣ(x) at location x = (x, y)T represents the sum of all pixels

in the input image I within the rectangular region formed by the origin and x .

IΣ(x) =
i<=x∑︂
i=0

j<=y∑︂
j=0

I(i, j) (3.3)

2. Hessian matrix determinant and normalization

SURF uses the Hessian matrix because of its good performance in computation

time and accuracy. It relies on the determinant of the Hessian matrix for se-

lecting the location and the scale. In order to adapt to any scale, the Gaussian

kernel is used to filter the image. Given a point x = (x, y), Hessian matrix

H(x , σ) in x at scale σ is defined as:

H(x , σ) =

⎡⎣Lxx(x , σ) Lxy(x , σ)

Lxy(x , σ) Lyy(x , σ)

⎤⎦ , (3.4)

where Lxx(x , σ) is the convolution of the Gaussian second order derivative with

image I in point x , similarly for other representations.

3. Non-maximum suppression

Non-maximum suppression is a technique used to eliminate duplicate detec-

tions and select the most relevant detected objects. The images are repeatedly

smoothed with a Gaussian and subsequently sub-sampled. Due to the use of

box filters and integral images, SURF applies such filters of any size at exactly

the same sliding rate directly on the original image. In order to localize in-

terest points in the image and over scales, a non-maximum suppression in a

3 × 3 × 3 neighborhood is conducted. It helps reduce false positives and the

computational complexity.

4. SURF descriptor

The creation of the SURF descriptor takes place in two steps.

(a) Interest point orientation

In order to be invariant to rotation, SURF first calculates the Haar-wavelet

28

responses in x and y directions, and in a circular neighborhood of radius

6s around the keypoint, with s = 4, the scale at which the keypoint was

detected. Also, the sampling step is scale-dependent and chosen to be s,

and the wavelet responses are computed at that current scale s.

Calculate the sum of vertical and horizontal wavelet responses in a scanning

area, then change the scanning orientation by adding π/3, and re-calculate,

until the orientation with the largest sum value is found. This orientation

is the main orientation of the feature descriptor.

(b) Interest point descriptor

In order to extract the descriptor, the first step consists of constructing a

square region centered around the keypoint and oriented along the orienta-

tion acquired above. The size of this window is 20s. Then the region is split

up regularly into smaller 4 × 4 square sub-regions. For each sub-region, a

few simple features are computed at 5 × 5 regularly spaced sample points.

To increase the robustness towards geometric deformations and localization

errors, the Haar-wavelet response in the horizontal and vertical directions

(with filter size 2s), dx and dy are first weighted with a Gaussian (σ =

3.3s) centered at the keypoint.

Then, the wavelet responses are summed up over each sub-region and form

a first set of entries to the feature vector. In order to bring in information

about the polarity of the intensity changes, the sum of the absolute values

of the responses is extracted, |dx | and |dy |. Hence, each sub-region has a

four-dimensional descriptor vector v for its underlying intensity structure

V = (Σdx, Σdy, Σ|dx |, Σ|dy |). This results in a descriptor vector for all 4

× 4 sub-regions of length 64.

Images with a number of the strongest detected features that are in their correspond-

ing circular neighborhoods are generated by SURF. The features are extracted and

29

matched with the target images, and located in the right position of the original

images.

3.2 CNN-based Joint Classification

After the features are obtained from the SIFT and SURF, which are a set of images

of the gripper and joints from different angles at different time stamps, CNN is used

for classification of the features since it is robust to translation, rotation, and scaling

invariance, and its ability to handle large amounts of data and achieve high accuracy.

The images of extracted features, such as the images of joints shown on the left side

of Figures 3.9, 3.11 and 3.13, are the input used for the training process. After the

classification, they become the input for the filtering.

The images are divided into training and validation data sets, so that each category

in the training set contains 750 images, and the validation set contains the remaining

images. 30% of the training data are set aside to be used as validation data. Each

image is 270 × 270 × 3 pixels and there are 5 classes. The input to the convolution

layer is 2D images, which are data with four dimensions corresponding to pixels in

two spatial dimensions, the channels and the observations. The filter size is set to 3.

The maximum number of epochs is set to be 5 for implementation and other settings

are kept as default. The accuracy is the percentage of correctly predicted labels. In

this case, more than 97% of the prediction match the true ones of the validation set.

Matching is completed by calculating the differences and making comparisons of

the images between the data sets. As a result, images of each joint and gripper from

different angles are classified and labelled for joints from top to bottom of the arm

and the gripper respectively. This brings convenience for prediction with the Kalman

Filter. If one joint is detected and classified, its coordinates can be easily acquired

and then the poses of other joints can be determined by the robot kinematics and

inverse kinematics, which speeds up the prediction step.

30

3.3 Results, Comparisons and Discussion

The joints of the robotic arm are the best choices for testing the joint detection and

classification algorithms since they are revolute and rotational as the connections of

the links of the arm. In this section, three algorithms are implemented for handling

joint detection and classification.

3.3.1 Algorithm Validation

1. Joint detection with SIFT

Simulation has been conducted using SIFT: 200 strongest features are extracted

for the image of multiple robotic arms, which is extracted from [55].

Figure 3.3: 200 Strongest features of the image retreived from [55] are extracted with
SIFT

2. Joint detection with SURF

This simulation is performed for detecting a specific object based on finding

point correspondences between the reference and the target image. The refer-

ence image is the image of a joint, and the target image is the image of multiple

31

robotic arms.

The two imported images are transformed into gray scales at first. After that,

50 strongest feature points in the joint image and 200 strongest feature points

in the arm image are detected respectively as shown in Figure 3.4.

Figure 3.4: 50 strongest feature points of joint and 200 strongest feature points of the
image retreived from [55] are extracted with SURF

Then using SURF, the extracted features are matched between two images

connected in yellow lines in Figure 3.5 and the joint is located in the right

position of the target image, which is the red box shown in Figure 3.6.

Figure 3.5: Validation result on SURF: features are matched between the image of
50 strongest feature points of joint and the image of 200 strongest feature points of
the image retreived from [55]

32

Figure 3.6: Joint location validation

Keypoints between two images are matched by identifying their nearest neigh-

bors in SIFT, but in some cases, the second closest match may be very near to

the first. It may happen due to noise or some other reasons. In that case, the

ratio of closest distance to second closest distance is taken. If it is greater than

0.8, they are rejected. It eliminates around 90% of false matches while discards

5% correct matches.

For SURF, Gaussians are optimal for scale-space analysis, but in practice, they

have to be discretized and cropped. This will lead to a loss in repeatability

under image rotations around odd multiples of π/4. This weakness holds for

Hessian-based detectors in general. The detectors perform well, and the slight

decrease in performance does not outweigh the advantages of fast convolutions

brought by the discretization and cropping. In SIFT, the descriptor is the 128

dimensional vector.

While both algorithms can provide satisfactory results, and are comparable in

performance, SURF sometimes works faster than SIFT. This method of object

detection works best for objects that exhibit non-repeating texture patterns,

which give rise to unique feature matches. This technique is not likely to work

well for uniformly-colored objects, or for objects containing repeating patterns.

33

In all, SURF is better than SIFT in rotation invariance, blurring and warp

transform. SIFT is better than SURF for images in different scales.

3. Joint classification with CNN

CNN has been applied for classifying the joints of the robotic arm with the

validation data sets, which consists the images of the joints from different per-

spectives. The validation is performed by a pretrained CNN via Matlab.

Figure 3.7: CNN Training Progress (validation for training and testing): (i) The
upper diagram shows the accuracy of the training progress in percentage. Smoothed
training is represented in solid blue line. Training is represented in solid line in light
blue. (ii) The lower diagram shows the loss of the training progress. Smoothed
training is represented in solid red line. Training is represented in solid line in light
red. (iii) Validation is represented in dotted black line for both accuracy and loss.

As shown in the figure, the accuracy starts from 10% to 20%, then goes to

around 70% after roughly 30 iterations, while the diagram of loss shows the

consistency by starting at around 2.7 then decreases to around 0.8 after about

30 iterations. There are also fluctuations in the first epoch for both accuracy

and loss, which suggest the process of learning in the first 50 iterations, then the

lines become smooth until the training process ends. The validation accuracy is

98%, and max epoches are reached. For each epoch, the frequency of validation

is 30.

34

3.3.2 Algorithm Implementation

After the SIFT, SURF and CNN algorithms for joint detection and classification are

validated, they are applied to the pick-and-place platform. The workflow of joint

detection and classification is shown in the figure below.

Figure 3.8: Workflow of Joint Detection and Classification Implementation

Videos have been recorded from various angles while the robotic arm conducting

the pick-and-place task. Frames (images) are captured in each 0.1 seconds for every

video as the original input for determining the points of interest. The images of the

robotic arm conducting simulations with the platform consisting of one red cylinder

and one green cylinder are the input for the implementation. They are obtained

from the frames captured from the simulation videos. SURF is applied to generate

extracted features, which can be used as the input for classification. The results

of SURF implementation are shown in Figures 3.9, 3.11 and 3.13 with the images

of joints on the left side. Each joint is extracted and the three strongest features

are detected and matched to the right positions of the robotic arm. Figures 3.10,

3.12 and 3.14 provide corresponding satisfactory results for matching different joints

between the extracted and the original input images. Each of the joints is located in

the right position with respect to the various stages of the robotic arm conducting

the pick-and-place task.

35

Figure 3.9: The pick-and-place benchmark model: matching features between the
image of a joint and the image of the simulation platform - 1 (implementation)

Figure 3.10: The pick-and-place benchmark model: locating joint in the correspond-
ing position in the image of the simulation platform - 1 (implementation)

Figure 3.11: The pick-and-place benchmark model: matching features between the
image of a joint and the image of the simulation platform - 2 (implementation)

36

Figure 3.12: The pick-and-place benchmark model: locating joint in the correspond-
ing position in the image of the simulation platform - 2 (implementation)

Figure 3.13: The pick-and-place benchmark model: matching features between the
image of a joint and the image of the simulation platform - 3 (implementation)

Figure 3.14: The pick-and-place benchmark model: locating joint in the correspond-
ing position in the image of the simulation platform - 3 (implementation)

37

Figure 3.15: CNN Training Progress (implementation): (i) The upper diagram shows
the accuracy of the training progress in percentage. Smoothed training is represented
in a solid blue line. Training is represented in a solid line in light blue. (ii) The lower
diagram shows the loss of the training progress. Smoothed training is represented in
a solid red line. Training is represented in a solid line in light red. (iii) Validation is
represented in a dotted black line for accuracy and loss.

As shown in Figure 3.15, the accuracy starts from a bit over 20% at first, then

goes to 80% after 2 iterations, and increases to almost 100% after about 3 iterations.

The diagram of loss shows consistency with the diagram of accuracy as well. It

starts at around 1 then goes to 1.8 and quickly decreases to around 0.4 after about 3

iterations. Then the lines become smooth until the training process ends. The small

number of iterations it takes to complete the classification and the time it spends to

reach this high accuracy suggest the reliability and effectiveness of SIFT and SURF.

The validation accuracy is 99%, and max epochs are reached. For each epoch, 6

iterations are completed.

38

Chapter 4

Trajectory Tracking and Motion
Planning

After the features of joints have been extracted and classified, they can be applied

for tracking the trajectory of the robotic arm with the help of many available track-

ing algorithms, including feature-based, filter-based, optimization-based, and more

recently Reinforcement Learning (RL) approaches, etc. In this work, we mainly focus

on the filter-based approach. Furthermore, we attempt to incorporate reinforcement

learning in filter-based motion planning and tracking.

In the first section, the Extended Kalman Filter (EKF) and Particle Filter (PF)

are designed and implemented for joint tracking and tested on the simulated pick-

and-place benchmark model (shown in Figure 3.10) introduced in Chapter 2. The

robotic arm used for joint tracking is a 6DoF (Degrees of Freedom) Kinova Jaco

Assistive Robotics Arm. Its components and structure are introduced in Figure 2.3

and Figure 2.4 respectively. The initial trajectory of the pick-and-place is determined

by the rapidly-exploring random tree (RRT)[56][57]. The whole process is recorded

in video format with a length of 100 seconds, which will be used for pose estimation

and motion tracking. The process of motion planning and tracking with EKF and

RL is presented in the second section, along with the simulation results in a more

complicated context.

39

4.1 Filter-based Trajectory Tracking

4.1.1 Extended Kalman Filter

With videos as the initial input, frames are captured every 0.1 seconds. The image

data are loaded and read as pixels for joint detection with SURF and classification

with CNN. The results are the input for prediction with Extended Kalman Filter

(EKF). The information regarding the dynamics and kinematics of the robotic arm

is applied by loading the setup built in the Matlab simulation platform.

The results of EKF implementations are shown in Figure 4.1. The first column

of figures shows the results for state estimation, while the second column of figures

shows the results for the corresponding errors of states.

For the first column, the actual state is plotted in blue line and the estimated state

is in dotted red. The value of q ranges from -0.8 to 1. The value of q̇1 ranges from

-0.7 to 0.1. The value of q̇2 ranges from -0.1 to 0.8. For the second column, the range

of q1 estimation error is from -45dB to -5dB, the the range of q̇1 estimation error is

from -30dB to -5dB, while the range of q2 and q̇2 estimation error is from -35dB to

-5dB.

The fluctuations for estimation error suggest consistency to the actual movement

with respect to the estimations for q1 from time 55s to 60s and for q2 from time 50s to

80s, while the directions of them moving the red cylinder have changed during these

periods of time. The results of the simulations are satisfactory.

40

(a) q1 estimation (b) q1 estimation error

(c) q2 estimation (d) q2 estimation error

(e) q̇1 estimation (f) q̇1 estimation error

(g) q̇2 estimation (h) q̇2 estimation error

Figure 4.1: Results of EKF simulations

41

4.1.2 Particle Filter

The particle filter (PF) algorithm first constructs a temporary particle set Xk. This

collection of particles represents the belief. It does this by taking each particle in

the input set and further approximating them to the posterior distribution. The

algorithm then generates a hypothetical state x
(i)
k for time k based on particle x

(i)
k−1

and given input, and the weight is assigned to the corresponding belief.

The algorithm draws with replacement N particles from the temporary set Xt
¯ . The

probability of drawing each particle is given by its importance weight. Re-sampling

transforms a particle set of N particles into another particle set of the same size.

After a particle is drawn, it is propagated according to the transition model. Each

propagated particle is verified by a weight assignment using the likelihood model.

Generally, the algorithm consists of the following steps:

1. Initialize particles concentrated around the given initial joint state in the joint

configuration space.

2. For each time step:

(a) Use the joint torques and propagate the particles forward in time with a

dynamic model that has Monte Carlo-like variations in parameters for each

particle (resembling mutation in a genetic algorithm).

(b) Calculate the forward kinematics of each particle and compare the result

with the measured end effector pose.

(c) Use the results from (d) to assign new probability weights to each particle.

(d) Resample and normalize particle weights as needed.

The number of particles in our simulation of the pick-and-place platform with PF is

300 and the range of velocity is 0.5. For noise parameters, the variance of position

and velocity are set to be 1.0 and 0.5 respectively. The random seed value is zero by

42

default and the velocity feature for the particles is considered. The quality of each

particle is measured by comparing its new value to the target value. The weights

are given to particles and a noise feature is added to the particle weights, then the

particles are resampled. The sample set is updated at every time instant incorporating

new data and resampling the set of state samples x
(i)
k .

x
(i)
k = p(xk|z1:k, u1:k) (4.1)

p(xk|z1:k) = cp(zk|xk)p(xk|z1:k−1) (4.2)

For sampling from the prediction distribution p(xk|z1:k−1), the weight is

w(x) = cp(zk|xk), (4.3)

with

c =
1

p(zk|z1:k−1)
. (4.4)

PF simulations have been conducted in the same environment setup as EKF. The

residuals for the state estimation with robotic arm joints are shown in Figure 4.2.

The overlap of the green concentrated particles and the area circled in red along with

the errors of three joints ranges from 0 to 0.1 from Figure 4.4 also suggests the results

are satisfactory.

Figure 4.2: PF simulation with two cylinder cans: the concentrated particles overlap
the area circled in red on the left, showing satisfactory results; the errors of three
joints are plotted in blue, red, and green respectively on the right, the range of the
errors is (0, 0.1)

43

4.1.3 Discussion

Unlike its linear counterpart, the EKF in general is not an optimal estimator. If the

initial estimate of the state is wrong, or if the process is modelled incorrectly, the

filter may quickly diverge, owing to its errors in the linear approximation. Another

problem with EKF is that the estimated covariance matrix tends to underestimate

the true covariance matrix.

The ability of the particle filter to represent multimodal belief states makes it well-

suited to tackle the problem of estimating joint configurations, unlike tools such as the

Kalman Filter, which requires beliefs to resemble Gaussian probability distributions.

The filter represents arbitrary distributions non-parametrically with weighted clusters

of particles. For Particle Filter is a recursive Bayesian state estimator that uses

discrete particles to approximate the posterior distribution of an estimated state, it

is useful for online state estimation when measurements and a system model that

relates model states to the measurements are available.

If the system model is not accurate or not well-known, then Monte Carlo methods,

especially Particle Filter, will be employed for estimation. Monte Carlo techniques

predate the existence of the EKF but are more computationally expensive for any

moderately dimensioned state space.

44

4.2 Reinforcement Learning-based Motion Track-

ing and Planning

For the pick-and-place task considered in this work, a state space is created to rep-

resent the configuration space (joint space) for motion planning. It samples feasible

states for the robot arm. The grasp motion is planned using Rapidly-exploring ran-

dom tree (RRT) with the customized state space and state validator objects. The

start and goal configurations are specified by inverse kinematics for solving configu-

rations based on the pose of the end effector.

The target position for the cylinder can on the other tabletop has been set and the

found path is first smoothed through a recursive corner-cutting strategy. During the

process of planning the move motion, the cylinder can level is kept at all time to avoid

spill and an additional constraint is on the interim manipulator configurations. In this

section, we consider a more complex scenario than the previous setup. A blue sphere

would appear in the middle of the task, which interrupts the planned trajectory as

the sphere blocks the original planned path of the robotic arm for placing the red

cylinder can. To tackle this problem and achieve the obstacle avoidance, we have

designed a scheme following the steps of the Reinforcement Learning (RL) algorithm

SARSA (State-Action-Reward-State-Action).

Markov Decision Process

Since almost all RL problems can be formalized as Markov decision processes (MDPs),

an environment represented by ⟨S,A,P ,R, γ⟩ is constructed with MDP. S is a finite

set of states. The Markov state St, the coordinates of the joints, satisfies:

P[St+1|St] = P[St+1|S1, ..., St]. (4.5)

A is a finite set of actions of the gripper moving horizontally (left or right) or vertically

(up or down). Given action a the state transition probability P is defined by:

Pa
ss′ = P[St+1 = s′|St = s, At = a], (4.6)

45

where it defines the transition probabilities from all states s to all successor states s′.

R is a reward function, which adds points if the distance between the gripper and

the target has been reduced, or deducts points if the distance has not been reduced.

No points will be assigned if the position of the gripper remains unchanged.

Ra
s = E[Rt+1|St = s, At = a], (4.7)

and γ is a discount factor, γ ∈ [0, 1]. The return Gt is the total discounted reward

from time step t.

Gt = Rt+1 + γRt+2 + ... =
∞∑︂
k=0

γkRt+k+1 (4.8)

The discount is the present value of future rewards. The value of receiving reward R

after k + 1 time steps is γkR.

A policy π is a distribution over actions given states,

π(a|s) = P[At = a|St = s], (4.9)

it fully defines the behaviour of an agent. The applied policy is ϵ-greedy. The state-

value function vπ(s) is the expected return starting from state s, and following policy

π:

vπ(s) = Eπ[Gt|St = s]. (4.10)

The action-value function qπ(s, a) is the expected return starting from state s, taking

action a and following policy π:

qπ(s, a) = Eπ[Gt|St = s, At = a]. (4.11)

46

4.2.1 Integration of Extended Kalman Filter and SARSA

With videos as the initial input, frames are captured every 0.1 seconds and each frame

needs to go through the same workflow as shown in Figure 4.3.

Figure 4.3: Workflow of RL-based Motion Tracking and Planning

The first step is to check if the last frame has been reached. If the last frame is

reached, the performances of detection and tracking will be evaluated. As the process

proceeds, if it is not the last frame, image data needs to be loaded and read. The

data are the coordinates of the joints and their relative positions in the simulation

platform. The coordinates are acquired by the pixel values of extracted features,

which are the results of joint detection with SURF and classification with CNN.

Through the transformation, the coordinates are obtained, and the possible locations

of joints in the next moment are predicted. In addition, the data helps detect an

unknown object when one appears. The results are the input for prediction with

Extended Kalman Filter (EKF).

An agent is controlled by its policy (function), which takes the states (observations)

as the input and generates the action the agent needs to take at the current step.

The environment is the pick-and-place platform of a robotic arm with two cylinder

cans where a blue sphere would appear in the middle of the task as an unexpected

interference. The agent is the robotic arm and actions are moving vertically (up or

down) or horizontally (right or left).

47

It is known that the RRT is usually performed to generate pre-determined trajec-

tories at the beginning of a task. When there are unexpected changes in the envi-

ronment, such as the appearance of an unexpected object interrupting the planned

trajectory, it will be difficult to run RRT in real time to generate a new route as it

is time-consuming. In our scheme, RRT is used once at the beginning as the initial

condition is chosen based on the predetermined trajectory. When the blue sphere

appears and is detected, Reinforcement Learning (RL) is implemented to find a new

route to avoid the sphere object and complete the place task.

Workflow Illustration

The motion of the robotic arm is predicted. The system state equation for the dy-

namics of the joint pixels in the 2D frame can be expressed as:

xk = Akxk−1 + wk. (4.12)

xk is the state variable of the system, and the gain matrix Ak ∈ Rn×n is the system

state transition matrix from the state of k − 1 at the previous moment to the state

of k at the current moment. The random variable wk is the process noise with the

Gaussian distribution.

The equation below defines the system observation variable as zk, Hk is the obser-

vation matrix, and the random variable vk is the observation noise, vk ∼ N (0, R),

where R is the covariance matrix of vk.

zk = Hkxk + vk. (4.13)

The workflow of the filter starts from the initial estimation of the covariance matrix

and the initial estimation of state variables. If the state at the previous moment is

xk−1 and the error covariance matrix associated with it is Pk−1, the prediction error

covariance matrix is calculated first. Q is the covariance matrix.

x̂k
− = Akx̂k−1, (4.14)

48

Pk
− = AkPk−1A

T
k +Q. (4.15)

The Kalman gain can be calculated,

Kk = Pk
−HT

k (HkPk
−HT

k +R)−1. (4.16)

RL is applied in the updating step, which means that after the observations are

obtained and the prediction step is finished, a reward is used for updating the policy.

Based on the algorithm, a Q-value distance-based table has been built for calculating

the maximum expected future rewards for action at each state. In each round, the first

state and action of the robot are randomly initialized and execute action to get the

reward points and the new state. After the robot takes action to obtain the reward,

Sarsa(λ) updates the λ step before getting the reward. The value range of λ is [0, 1].

ϵ-greedy is applied to select action from the Q-value table based on the current state.

The value functions Q(s, a) are updated for the state and its corresponding action of

the current sequence [51]. α is set to be 0.3 and discount factor γ is set to be 0.95.

Combining the system observation value zk with the predicted value x̂k
−, the posterior

estimate can be calculated, which is the estimate of the optimal current state.

x̂k = x̂k
− +Kk(zk −Hx̂k

−) (4.17)

The error covariance of posterior estimates is updated by the equation:

Pk = (I −KkH)Pk
− (4.18)

After the policy is updated, it takes the current state as the input to issue new

actions, which is the gripper moving vertically (up or down) or horizontally (right or

left) to the next time step conducting prediction. The predicted coordinates of the

joint location can be derived from the above formulas.

49

4.2.2 Results and Discussion

Simulations have been conducted for Extended Kalman Filter and Reinforcement

Learning on the same platform as the one introduced in the previous section but in

two scenarios: one with a blue sphere appears in the middle of the process, while

the other one does not. The tracking results are shown by plotting the actual and

estimated states and the mean squared error.

1. Simulation results with no blue sphere

The tracking results with no blue sphere in the environment are shown in Figure

4.4 with the green dots representing the tracked points of the movement of joints

on the left. On the right side, the errors of the three joints on the X, Y and

Z axes are presented in different colors respectively. The range of errors for all

the joints is between -0.04 and 0.04.

The left side of Figure 4.5, shows the differences between pairs of coordinates;

the mean squared error (MSE) of the simulation ranges from around 0.05 to 0.3

is shown on the right. The differences in the coordinates are larger compared

to the other diagram of differences. The tracked points are rather large for the

initial process of learning the new environment, but the results are better after

the process, which is shown in the diagram of MSE.

Figure 4.6 presents the points of tracking with two cylinder cans in the simu-

lation environment. The blue dots are the points of prediction named Data 1,

while Data 2 shown in the red squares are the results of the measurements.

50

Figure 4.4: EKF and RL Tracking Performance (with no blue sphere): the figure on
the left shows the points of tracked joints, which are in green; the errors of coordinates
for each of the three joints on X, Y, and Z axes are shown in the three plots on the
right in blue, red and green lines correspondingly.

Figure 4.5: 3D coordinate differences and MSE between coordinate pairs (with no
blue sphere)

51

Figure 4.6: Tracked points with no blue sphere: Data 1 shown in blue dots represents
the results of prediction; Data 2 shown in red squares represents the results of actual
measurements

2. Simulation results with blue sphere

Figure 4.7 presents the simulation platform with the blue sphere that blocks

the planned trajectory of the robotic arm. The pose of the blue sphere is [0.15,

0.1, 0.7].

The figure of the differences between pairs of coordinates is shown on the left

side of Figure 4.8, while the MSE of the simulation is shown on the right side.

Both diagrams suggest the results are satisfactory and justified by the small

range of values of the differences and MSE.

52

Figure 4.7: Simulation platform with blue sphere

Figure 4.8: 3D coordinate differences and MSE between coordinate pairs (with a blue
sphere)

53

Figure 4.9: EKF and RL Tracking Performance (with a blue sphere): the errors of
coordinates for each of the three joints on the X, Y, and Z axes are shown in blue,
red and green lines respectively.

The errors of the three joints on the X, Y and Z axes are presented in different

colors in Figure 4.9. The range of errors for all the joints is between -0.04 and

0.04.

In Figure 4.10, Data 1 represents the predicted positions, which are shown

in blue dots, and Data 2 represents the actual positions, which are shown in

red squares. As shown in the figure, the algorithm provides satisfactory and

consistent tracking results.

54

Figure 4.10: Tracked points with sphere: Data 1 shows in blue dots which represent
the results of prediction; Data 2 shows in red squares which represent the results of
actual measurements

3. Discussion

From the implementations of EKF and RL, the simulation results are satisfac-

tory. The range of MSE is much smaller compared to the ones without applying

RL for simulations without the blue sphere. Because the green cylinder can be

an obstacle in the initial setup, RL can easily learn its existence from the be-

ginning. However, the blue sphere is set to appear in the environment in the

middle of the process until the task has been finished, which interferes with the

learning process and extends the time for making trajectory planning decisions.

Although the interference of the newly added obstacle has brought challenges in

searching for the best route, the results of the mean squared error and the differ-

ences between each pair of coordinates suggest the effectiveness of the combined

application.

The learning category of Sarsa is on-policy. The process of the algorithm is to

update the values in the Q table continuously, and then judge what action to

take in a certain state based on the new values. In state s, after the action is

executed according to the policy of ϵ-greedy and reaches the next state s′, the

55

method used to update the Q-value of (s, a) at this time still uses the policy of

ϵ-greedy and takes Q(s, a), each episode and every step of each episode performs

the ϵ-greedy exploration [36].

Since the time step in each episode in the Sarsa algorithm adopts the strategy

of ϵ-greedy, it cannot guarantee that the agent can search every position in the

space in an episode, but it visits and records each position of the space through

the continuous increase of the episode, so the algorithm converges slowly [51].

56

Chapter 5

Conclusion and Future Work

5.1 Conclusion

One of the contributions of this thesis is to provide a process for image-based pose

estimation with a robotic arm as a research subject. This thesis has presented and

experimented with several popular object detection and tracking algorithms, which

provide sufficient information for readers to understand and implement for various

purposes. Another contribution is that the thesis combined the Extended Kalman

Filter and Reinforcement Learning for composing the state estimation and tracking

in a motion planning problem.

In Chapter 3, feature extraction, matching, and classification of images are in-

troduced and implemented with SIFT, SURF and CNN. SURF is more robust than

SIFT, and CNN is tested to be reliable for classifying the joints of the robotic arm.

After the features are extracted and classified, the coordinates of the points of in-

terest can be used as input for filter-based algorithms to conduct tracking missions.

As illustrated in Chapter 4, EKF and PF can be applied for tracking, and each of

them has its advantages for different purposes respectively. With the motion planning

platform of the robotic arm conducting pick and place of the red cylinder, Reinforce-

ment Learning (RL) for state update has been explored instead of the update step for

Extended Kalman Filter, and implemented by adding a new obstacle which interferes

with the original planned trajectory.

57

5.2 Future Work

As many algorithms can detect and extract features, for this particular robotic arm

is our primary research subject, all the methods introduced in the thesis are selected

and implemented towards the best result for this specific object. In other words, by

changing to other algorithms or objects, the results may not be as satisfactory as the

presented ones.

Conducting feature detection and extraction with BRIEF or ORB and tracking

the movement of collaborative robotic arms or robotic arms that have more degrees

of freedom conducting the same task in the same introduced framework could bring

more challenges and less satisfactory results, for the structures would be more com-

plicated which could bring some problems to feature extraction and errors in matrix

transformations calculations.

As images and videos are the input for our simulations with no sensors involved,

their clarity and the precision of the extracted pixel values could influence the results

as well. One could work towards exploring better methods for improving the read-

ability of the images with more input images and videos from different perspectives,

which could lead to better results in more complicated scenarios.

More implementations can be conducted with other combinations of algorithms for

the motion planning problem. RL has been applied together only with the Extended

Kalman Filter in the thesis, further implementations with other filters, like the Cu-

bature Kalman Filter, can be explored. Extended Kalman Filter can be applied with

other machine learning algorithms as well for tracking objects.

58

Bibliography

[1] T. Wen, J. Liu, B. Cai, and C. Roberts, “High-precision state estimator design
for the state of gaussian linear systems based on deep neural network kalman
filter,” IEEE Sensors Journal, vol. 23, no. 24, pp. 31 337–31 344, 2023. doi:
10.1109/JSEN.2023.3329491.

[2] R. Zhou, M. Tang, Z. Gong, and M. Hao, “Freetrack: Device-free human track-
ing with deep neural networks and particle filtering,” IEEE Systems Journal,
vol. 14, no. 2, pp. 2990–3000, 2020. doi: 10.1109/JSYST.2019.2921554.

[3] M. Ariza-Sent́ıs, S. Vélez, R. Mart́ınez-Peña, H. Baja, and J. Valente, “Object
detection and tracking in precision farming: A systematic review,” Computers
and Electronics in Agriculture, vol. 219, p. 108 757, 2024, issn: 0168-1699. doi:
https://doi.org/10.1016/j.compag.2024.108757. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0168169924001480.

[4] A. Kumar, R. Vohra, R. Jain, M. Li, C. Gan, and D. K. Jain, “Correlation
filter based single object tracking: A review,” Information Fusion, vol. 112,
p. 102 562, 2024, issn: 1566-2535. doi: https://doi.org/10.1016/j.inffus.2024.
102562. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S1566253524003403.

[5] J. Kaur and W. Singh, “A systematic review of object detection from images us-
ing deep learning,”Multimedia Tools and Applications, vol. 83, no. 4, pp. 12 253–
12 338, Jan. 2024.

[6] A. Elgammal, R. Duraiswami, D. Harwood, and L. Davis, “Background and
foreground modeling using nonparametric kernel density estimation for visual
surveillance,” Proceedings of the IEEE, vol. 90, no. 7, pp. 1151–1163, 2002. doi:
10.1109/JPROC.2002.801448.

[7] S. Tang, M. Andriluka, and B. Schiele, “Detection and tracking of occluded
people,” International Journal of Computer Vision, vol. 110, no. 1, pp. 58–69,
Oct. 2014.

[8] M. Sadik, S. Moussa, W. El-Sayed, and Z. Fayed, “Vehicles detection and track-
ing in advanced automated driving systems: Limitations and challenges,” In-
ternational Journal of Intelligent Computing and Information Sciences, pp. 1–
16, Jul. 2022. doi: 10.21608/ijicis.2022.117646.1158.

[9] C. Zheng et al., “Deep learning-based human pose estimation: A survey,” ACM
Computing Surveys, vol. 56, no. 1, pp. 1–37, 2023.

59

https://doi.org/10.1109/JSEN.2023.3329491
https://doi.org/10.1109/JSYST.2019.2921554
https://doi.org/https://doi.org/10.1016/j.compag.2024.108757
https://www.sciencedirect.com/science/article/pii/S0168169924001480
https://www.sciencedirect.com/science/article/pii/S0168169924001480
https://doi.org/https://doi.org/10.1016/j.inffus.2024.102562
https://doi.org/https://doi.org/10.1016/j.inffus.2024.102562
https://www.sciencedirect.com/science/article/pii/S1566253524003403
https://www.sciencedirect.com/science/article/pii/S1566253524003403
https://doi.org/10.1109/JPROC.2002.801448
https://doi.org/10.21608/ijicis.2022.117646.1158

[10] J. Zhang and Y. Xiu, “Image stitching based on human visual system and sift
algorithm,” The Visual Computer, vol. 40, no. 1, pp. 427–439, 2024.

[11] D. Lowe, “Object recognition from local scale-invariant features,” in Proceedings
of the Seventh IEEE International Conference on Computer Vision, vol. 2, 1999,
1150–1157 vol.2. doi: 10.1109/ICCV.1999.790410.

[12] X. LI, L. JIAO, Y. LIU, and C. MA, “A video stabilization method based on
improved sift,” Computer and Modernization, no. 06, p. 43, 2024.

[13] F. Guo, J. Yang, Y. Chen, and B. Yao, “Research on image detection and match-
ing based on sift features,” in 2018 3rd International Conference on Control and
Robotics Engineering (ICCRE), 2018, pp. 130–134. doi: 10.1109/ICCRE.2018.
8376448.

[14] A. Watts and D. Harvey, “Robust and optimal alignment of high-dimensional
data using maximum likelihood estimation through a random sample consensus
framework,” International Journal of Data Science and Analytics, Jan. 2024.

[15] M. Anshari, M. N. Almunawar, M. Masri, N. L. Fitriyani, and M. Syafrudin,
“Autonomous vehicle safety through the sift method: A conceptual analysis,”
Information, vol. 15, no. 6, p. 357, 2024.

[16] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,”
in Computer Vision – ECCV 2006, A. Leonardis, H. Bischof, and A. Pinz,
Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 404–417, isbn:
978-3-540-33833-8.

[17] U. Diaa, “A deep learning model to inspect image forgery on surf keypoints of
slic segmented regions,” Engineering, Technology & Applied Science Research,
vol. 14, no. 1, pp. 12 549–12 555, 2024.

[18] M. S. Patel, N. M. Patel, and M. S. Holia, “Feature based multi-view image
registration using surf,” in 2015 International Symposium on Advanced Com-
puting and Communication (ISACC), 2015, pp. 213–218. doi: 10.1109/ISACC.
2015.7377344.

[19] D. Zhou and D. Hu, “A robust object tracking algorithm based on surf,” in 2013
International Conference on Wireless Communications and Signal Processing,
2013, pp. 1–5. doi: 10.1109/WCSP.2013.6677270.

[20] H. Li, T. Xu, J. Li, and L. Zhang, “Face recognition based on improved surf,”
in 2013 Third International Conference on Intelligent System Design and En-
gineering Applications, 2013, pp. 755–758. doi: 10.1109/ISDEA.2012.179.

[21] K. Verma, D Ghosh, and A. Kumar, “Visual tracking in unstabilized real time
videos using SURF,” Journal of Ambient Intelligence and Humanized Comput-
ing, vol. 15, no. 1, pp. 809–827, Jan. 2024.

[22] D. Awasthi and V. K. Srivastava, “Robust, imperceptible and optimized wa-
termarking of dicom image using schur decomposition, lwt-dct-svd and its au-
thentication using surf,” Multimedia Tools and Applications, vol. 82, no. 11,
pp. 16 555–16 589, 2023.

60

https://doi.org/10.1109/ICCV.1999.790410
https://doi.org/10.1109/ICCRE.2018.8376448
https://doi.org/10.1109/ICCRE.2018.8376448
https://doi.org/10.1109/ISACC.2015.7377344
https://doi.org/10.1109/ISACC.2015.7377344
https://doi.org/10.1109/WCSP.2013.6677270
https://doi.org/10.1109/ISDEA.2012.179

[23] F. Schweiger, G. Schroth, R. Huitl, Y. Latif, and E. Steinbach, “Speeded-up surf:
Design of an efficient multiscale feature detector,” in 2013 IEEE International
Conference on Image Processing, 2013, pp. 3475–3478. doi: 10.1109/ICIP.2013.
6738717.

[24] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: Binary robust indepen-
dent elementary features,” in Computer Vision – ECCV 2010, K. Daniilidis, P.
Maragos, and N. Paragios, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 778–792, isbn: 978-3-642-15561-1.

[25] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient alter-
native to sift or surf,” in 2011 International Conference on Computer Vision,
2011, pp. 2564–2571. doi: 10.1109/ICCV.2011.6126544.

[26] E. Rosten and T. Drummond, “Machine learning for high-speed corner detec-
tion,” in Computer Vision – ECCV 2006, A. Leonardis, H. Bischof, and A.
Pinz, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 430–443,
isbn: 978-3-540-33833-8.

[27] D. Phan, C.-M. Oh, S.-H. Kim, I.-S. Na, and C.-W. Lee, “Object recognition
by combining binary local invariant features and color histogram,” in 2013
2nd IAPR Asian Conference on Pattern Recognition, 2013, pp. 466–470. doi:
10.1109/ACPR.2013.103.

[28] X. Zhou, K. Wang, and J. Fu, “A method of sift simplifying and matching
algorithm improvement,” in 2016 International Conference on Industrial Infor-
matics - Computing Technology, Intelligent Technology, Industrial Information
Integration (ICIICII), 2016, pp. 73–77. doi: 10.1109/ICIICII.2016.0029.

[29] H.-T. L. Chiang, J. Hsu, M. Fiser, L. Tapia, and A. Faust, “Rl-rrt: Kinodynamic
motion planning via learning reachability estimators from rl policies,” IEEE
Robotics and Automation Letters, vol. PP, pp. 1–1, Jul. 2019. doi: 10.1109/
LRA.2019.2931199.

[30] P. Mirunalini, S. M. Jaisakthi, and R. Sujana, “Tracking of object in occluded
and non-occluded environment using sift and kalman filter,” in TENCON 2017 -
2017 IEEE Region 10 Conference, 2017, pp. 1290–1295. doi: 10.1109/TENCON.
2017.8228056.

[31] P. R. Gunjal, B. R. Gunjal, H. A. Shinde, S. M. Vanam, and S. S. Aher,
“Moving object tracking using kalman filter,” in 2018 International Confer-
ence On Advances in Communication and Computing Technology (ICACCT),
2018, pp. 544–547. doi: 10.1109/ICACCT.2018.8529402.

[32] X. Cai, Y. Wu, S. Liu, H. Xie, and H. Sun, “Multi-object tracking using kalman
filter and historical trajectory correction for surveillance videos,” Jan. 2024. doi:
10.21203/rs.3.rs-3849387/v1.

[33] F. Wael, “A comprehensive vehicle-detection-and-tracking technique for au-
tonomous driving,” International Journal of Computing and Digital Systems,
vol. 9, no. 4, pp. 567–580, 2020.

61

https://doi.org/10.1109/ICIP.2013.6738717
https://doi.org/10.1109/ICIP.2013.6738717
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/ACPR.2013.103
https://doi.org/10.1109/ICIICII.2016.0029
https://doi.org/10.1109/LRA.2019.2931199
https://doi.org/10.1109/LRA.2019.2931199
https://doi.org/10.1109/TENCON.2017.8228056
https://doi.org/10.1109/TENCON.2017.8228056
https://doi.org/10.1109/ICACCT.2018.8529402
https://doi.org/10.21203/rs.3.rs-3849387/v1

[34] L. Xue, B. Ma, J. Liu, C. Mu, and D. C. Wunsch, “Extended kalman filter based
resilient formation tracking control of multiple unmanned vehicles via game-
theoretical reinforcement learning,” IEEE Transactions on Intelligent Vehicles,
vol. 8, no. 3, pp. 2307–2318, 2023. doi: 10.1109/TIV.2023.3237790.

[35] J. Škach and I. Punčochář, “Input design for fault detection using extended
kalman filter and reinforcement learning,” IFAC-PapersOnLine, vol. 50, no. 1,
pp. 7302–7307, 2017.

[36] A. Seekircher, S. Abeyruwan, and U. Visser, “Accurate ball tracking with ex-
tended kalman filters as a prerequisite for a high-level behavior with reinforce-
ment learning,” in The 6th Workshop on Humanoid Soccer Robots at Humanoid
Conference, Bled (Slovenia), 2011.

[37] L. Fu, Q. Zhang, and S. Tian, “Real-time video surveillance on highways us-
ing combination of extended kalman filter and deep reinforcement learning,”
Heliyon, vol. 10, no. 5, 2024.

[38] T. Omeragić and J. Velagić, “Tracking of moving objects based on extended
kalman filter,” in 2020 International Symposium ELMAR, 2020, pp. 137–140.
doi: 10.1109/ELMAR49956.2020.9219021.

[39] T. Xiao, S. Li, B. Wang, L. Lin, and X. Wang, “Joint detection and identification
feature learning for person search,” 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 3376–3385, 2017. doi: 10.1109/CVPR.
2017.360.

[40] A. Toshev and C. Szegedy, “Deeppose: Human pose estimation via deep neural
networks,” in 2014 IEEE Conference on Computer Vision and Pattern Recog-
nition, 2014, pp. 1653–1660. doi: 10.1109/CVPR.2014.214.

[41] B. Xiao, H. Wu, and Y. Wei, “Simple baselines for human pose estimation
and tracking,” in Computer Vision – ECCV 2018, V. Ferrari, M. Hebert, C.
Sminchisescu, and Y. Weiss, Eds., Cham: Springer International Publishing,
2018, pp. 472–487, isbn: 978-3-030-01231-1.

[42] H. Kieritz, W. Hübner, and M. Arens, “Joint detection and online multi-object
tracking,” 2018 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition Workshops (CVPRW), pp. 1540–15 408, 2018. doi: 10.1109/CVPRW.
2018.00195.

[43] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6, 84–90,
2017, issn: 0001-0782. doi: 10.1145/3065386. [Online]. Available: https://doi.
org/10.1145/3065386.

[44] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks for hu-
man action recognition,” IEEE transactions on pattern analysis and machine
intelligence, vol. 35, no. 1, pp. 221–231, 2012.

62

https://doi.org/10.1109/TIV.2023.3237790
https://doi.org/10.1109/ELMAR49956.2020.9219021
https://doi.org/10.1109/CVPR.2017.360
https://doi.org/10.1109/CVPR.2017.360
https://doi.org/10.1109/CVPR.2014.214
https://doi.org/10.1109/CVPRW.2018.00195
https://doi.org/10.1109/CVPRW.2018.00195
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386

[45] J. Fan, W. Xu, Y. Wu, and Y. Gong, “Human tracking using convolutional neu-
ral networks,” IEEE Transactions on Neural Networks, vol. 21, no. 10, pp. 1610–
1623, 2010. doi: 10.1109/TNN.2010.2066286.

[46] N. Wang, S. Li, A. Gupta, and D.-Y. Yeung, Transferring rich feature hierar-
chies for robust visual tracking, 2015. arXiv: 1501.04587 [cs.CV].

[47] Y. Liao et al., “Feature matching and position matching between optical and
sar with local deep feature descriptor,” IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, vol. 15, pp. 448–462, 2022.
doi: 10.1109/JSTARS.2021.3134676.

[48] W. Liu, S. Liao, W. Ren, W. Hu, and Y. Yu, “High-level semantic feature
detection: A new perspective for pedestrian detection,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 5187–
5196.

[49] Z. Lu, G.-H. Liu, F. Lu, and B.-J. Zhang, “Image retrieval using dual-weighted
deep feature descriptor,” International Journal of Machine Learning and Cy-
bernetics, vol. 14, no. 3, pp. 643–653, 2023.

[50] N. Ki and E. Delp, “New models for real-time tracking using particle filtering,”
vol. 7257, Jan. 2009. doi: 10.1117/12.807311.

[51] Y. Zhang, Y. Hu, X. Hu, and B. Xing, “Path planning for mobile robot based
on rgb-d slam and pedestrian trajectory prediction,” in 2020 4th Annual Inter-
national Conference on Data Science and Business Analytics (ICDSBA), 2020,
pp. 341–346. doi: 10.1109/ICDSBA51020.2020.00094.

[52] Kinova Assistive, Jaco assistive robotic arm user guide (en), 2023. [Online].
Available: https://assistive.kinovarobotics.com/uploads/EN-UG-007-Jaco-
Assistive-robot-user-guide-r06.1.pdf.

[53] D. Viswanathan, “Features from accelerated segment test (fast),” 2011. [On-
line]. Available: https://api.semanticscholar.org/CorpusID:17031649.

[54] J. Cruz-Mota, I. Bogdanova, B. Paquier, M. Bierlaire, and J.-P. Thiran, “Scale
invariant feature transform on the sphere: Theory and applications,” Interna-
tional journal of computer vision, vol. 98, pp. 217–241, 2012.

[55] MARKET PROSPECTS, Smart manufacturing: Robotic arm vision now and
tomorrow, 2023. [Online]. Available: https : / /www .market - prospects . com/
articles/robotic-arm-vision-now-and-tomorrow.

[56] D. Song, B. Zhao, and L. Tang, “A tracking algorithm based on sift and kalman
filter,” Aug. 2012. doi: 10.2991/iccasm.2012.400.

[57] D. Berenson, S. S. Srinivasa, D. Ferguson, A. Collet, and J. J. Kuffner, “Ma-
nipulation planning with workspace goal regions,” in 2009 IEEE International
Conference on Robotics and Automation, 2009, pp. 618–624. doi: 10 . 1109/
ROBOT.2009.5152401.

[58] T. Lee et al., “Camera-to-robot pose estimation from a single image,” May
2020, pp. 9426–9432. doi: 10.1109/ICRA40945.2020.9196596.

63

https://doi.org/10.1109/TNN.2010.2066286
https://arxiv.org/abs/1501.04587
https://doi.org/10.1109/JSTARS.2021.3134676
https://doi.org/10.1117/12.807311
https://doi.org/10.1109/ICDSBA51020.2020.00094
https://assistive.kinovarobotics.com/uploads/EN-UG-007-Jaco-Assistive-robot-user-guide-r06.1.pdf
https://assistive.kinovarobotics.com/uploads/EN-UG-007-Jaco-Assistive-robot-user-guide-r06.1.pdf
https://api.semanticscholar.org/CorpusID:17031649
https://www.market-prospects.com/articles/robotic-arm-vision-now-and-tomorrow
https://www.market-prospects.com/articles/robotic-arm-vision-now-and-tomorrow
https://doi.org/10.2991/iccasm.2012.400
https://doi.org/10.1109/ROBOT.2009.5152401
https://doi.org/10.1109/ROBOT.2009.5152401
https://doi.org/10.1109/ICRA40945.2020.9196596

[59] T. Lindeberg, “Feature detection with automatic scale selection,” International
journal of computer vision, vol. 30, pp. 79–116, 1998.

[60] G. Golluccio, G. Gillini, A. Marino, and G. Antonelli, “Robot dynamics iden-
tification: A reproducible comparison with experiments on the kinova jaco,”
IEEE Robotics Automation Magazine, vol. 28, no. 3, pp. 128–140, 2021. doi:
10.1109/MRA.2020.3004149.

64

https://doi.org/10.1109/MRA.2020.3004149

	Introduction
	Motivation and Background
	Literature Review
	Contribution and Organization

	Background and Preliminaries
	Filters
	Kalman Filter (KF)
	Extended Kalman Filter (EKF)
	Particle Filter (PF)

	Camera Intrinsics and Extrinsics
	Convolutional Neural Network (CNN)
	Reinforcement Learning (RL)
	Robotic Arm Kinematics
	Pick-and-Place Platform

	Joint Detection and Classification
	SIFT and SURF-based Joint Detection
	SIFT
	SURF

	CNN-based Joint Classification
	Results, Comparisons and Discussion
	Algorithm Validation
	Algorithm Implementation

	Trajectory Tracking and Motion Planning
	Filter-based Trajectory Tracking
	Extended Kalman Filter
	Particle Filter
	Discussion

	Reinforcement Learning-based Motion Tracking and Planning
	Integration of Extended Kalman Filter and SARSA
	Results and Discussion

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

