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Abstract

We report upon an experimental study of internal gravity waves generated

by the large-amplitude vertical oscillations of a circular cylinder in uniformly

stratified fluid. Quantitative measurements are performed using a modified

synthetic schlieren technique for strongly stratified solutions of NaCl or NaI.

Oscillatory turbulent patches that develop around the cylinder are found to be

the primary source of the observed quasi-monochromatic wave beams whose

characteristics differ from theoretical predictions and experimental investiga-

tions of waves generated by small-amplitude cylinder oscillations. Over long

times the waves break down into turbulence that is examined quantitatively

through conductivity probe measurements and qualitatively through unpro-

cessed synthetic schlieren images. Based on observations of the location of

wave breakdown we determine that the likely mechanism for breakdown is

through parametric subharmonic instability. This conclusion is supported

by fully nonlinear numerical simulations of the evolution of a temporally

monochromatic internal wave beam.
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Chapter 1

Introduction

Density stratified fluids support the propagation of internal gravity waves that

arise from buoyancy restoring forces. The internal waves exist at frequencies

below the buoyancy (Brunt-Väisälä) frequency of the stratification, at which

the oscillations of the fluid are purely in the vertical direction. Energy and

momentum are transported in geophysical fluids by the internal waves radi-

ating from localized sources. Observations, modelling, and experiments have

been used to study in detail several generation mechanisms and the properties

of the resulting waves. In particular, topographic forcing by tidal flow over

features of the ocean floor is observed to be a major source of oceanic inter-

nal waves (Rudnick et al., 2003; St. Laurent et al., 2003; Lamb, 2004) that

are subsequently responsible for significant diapycnal mixing (St. Laurent and

Garrett, 2002). Similarly, flow over mountains may generate moderate- to

large-amplitude atmospheric waves (Chan et al., 1993), the turbulent break-

down of which has been observed directly through in-flight measurements (Lilly

and Lester, 1974). Fritts and Alexander (2003) reviewed the generation of at-

mospheric internal waves by several primary sources, including topography,

convection, shear, geostrophic adjustment and wave-wave interactions. Dur-

ing the process of geostrophic adjustment, excess energy is radiated in the

form of inertial waves as geostrophically balanced flow conditions are restored
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(Fritts and Alexander, 2003). Using atmospheric data collected during com-

mercial flights, Fritts and Nastrom (1992) examined the relative importance

of several of the primary atmospheric generation mechanisms. It was found

that topographic forcing was responsible for the largest enhancement of veloc-

ity and temperature variance relative to regions with no source of waves. In

general, the existence of such disturbances in the atmosphere and oceans can

have a significant nonlocal effect on the mean flow through the propagation

and breaking of internal waves.

It has been noted previously (Sutherland, 2006a) that much observational

work on internal waves has focused on the low frequency, low wavenumber

components of the wave spectrum. The observation of such waves is favoured

by the timescales and lengthscales associated with current measurement tech-

niques. In addition, studies are motivated by measured geophysical spectra

that exhibit a concentration of wave power at low frequencies. In the ocean

this corresponds to tidal forcing of waves, while in the atmosphere the majority

of the momentum flux from topographic generation is due to waves with hor-

izontal wavelengths between approximately 10 and 100 kilometres (Fritts and

Alexander, 2003). While a significant fraction of the total internal wave energy

may be at low frequencies, the cumulative effects of disturbances with higher

frequencies and wavenumbers may be non-negligible (Sutherland, 2006a). In

this work we focus upon a generation mechanism that is applicable to the

upper range of the internal wave spectrum.

Previous studies of internal wave generation by turbulence have been mo-

tivated by such phenomena as stationary turbulence (Linden, 1975), wind

stress on the ocean producing a sheared turbulent mixed layer (Munroe and

Sutherland, 2008), turbulent shear flow over a barrier (Sutherland and Lin-

den, 1998), and the turbulent wake in the lee of topography (Aguilar and

Sutherland, 2006). While turbulent flows are involved to varying extent in
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geophysical sources of internal waves, the generation process is currently not

well understood. It has been observed in experiments (Sutherland and Linden,

1998; Dohan and Sutherland, 2003; Aguilar and Sutherland, 2006) and numer-

ical simulations (Diamessis et al., 2005) that turbulent sources generate waves

in a narrow frequency range relative to the background buoyancy frequency.

In a recent numerical study, Taylor and Sarkar (2007) found that the internal

waves generated by oceanic bottom boundary layer turbulence propagated at

angles between 35 and 60 degrees from the vertical. It was shown that linear

differential viscous decay could produce the observed spectral peak and decay

in wave amplitudes: small-scale waves or those with high or low frequencies

decayed more rapidly in their simulations. However, the proposed model may

not be an adequate explanation in the case of larger amplitude waves (Taylor

and Sarkar, 2007). A key difference between the numerics and experiments is

that the former used large-eddy simulation for the numerical boundary layer

and so did not resolve finescale turbulence. Although a theoretical viscous

model was in agreement with the results of the simulations, experiments show

the immediate generation of narrow-band internal waves on a timescale that

is less than that required for differential viscous decay.

The generation of internal waves by a small-amplitude monochromatic lo-

calized source has been studied extensively in theory (Makarov et al., 1990;

Voisin, 1991). In particular, Hurley and Keady (1997) presented an approxi-

mate solution for Boussinesq waves generated by a cylinder oscillating at small

amplitude in a viscous fluid. Theory predicts that four wave beams emanate at

a fixed angle to the vertical from the cylinder in a “St. Andrew’s Cross” pattern

(Voisin, 1991). The angle is set by the frequency of oscillation of the cylinder

relative to the buoyancy frequency, with the beams approaching the vertical

as the frequency increases. The beams are predicted to exhibit a bimodal am-

plitude structure near the source, and a unimodal structure evolves far from
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the cylinder due to viscous attenuation (Makarov et al., 1990). Moderate-

amplitude forcing in Boussinesq fluids has been investigated in laboratory

experiments by Sutherland et al. (1999) and Sutherland and Linden (2002)

with circular and elliptical cylinders, respectively. In general, good qualita-

tive agreement was found between the experiments and the linear, viscous,

Boussinesq theory of Hurley and Keady (1997). However, the beam width was

consistently underpredicted because the theory neglected the formation of a

viscous boundary layer around the cylinder. The current work is focused on

the study of internal waves generated by large-amplitude oscillations of a circu-

lar cylinder in a strongly stratified fluid. Boundary layer separation resulted

from the large-amplitude forcing, so that the internal waves were launched

effectively by an oscillatory turbulent patch. In this sense, the extension of

previous experimental work to include large-amplitude effects also alters the

generation process.

Although the region bounding the cylinder is turbulent, we anticipate that

the source of waves retains a dominant frequency due to the oscillatory forcing

of the turbulent patch. Therefore, it differs from previous work examining the

generation of waves by an oscillating grid (Linden, 1975; Dohan and Suther-

land, 2003) in which the approximately homogeneous turbulence had a broad

frequency spectrum. This work includes cylinder frequencies below the buoy-

ancy frequency, whereas the frequency of grid oscillations in the cited “mixing

box” experiments was above the buoyancy frequency in all cases. The source

conditions also differ due to the spatial localization of the turbulent patch

rather than the horizontally uniform conditions of previous studies.

As well as standard sodium chloride (NaCl) solutions, a new experimental

technique (Clark and Sutherland, 2009) that is applied in this work is the

use of sodium iodide (NaI) to produce stronger stratifications and thus higher

buoyancy frequencies than those in conventional tank experiments with NaCl.
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The solubility of NaI at room temperature is higher than that for NaCl, so

a larger density gradient can be achieved over a given tank depth. Whereas

typical stratifications have a density change on the order of 5% over the depth

of the fluid, the density differences in this study are approximately 20% for

solutions of NaCl and 50% for NaI. The large density gradients introduce

the potential for non-Boussinesq growth of the wave amplitude with height,

which is a consequence of momentum conservation as the ambient density

decreases in the vertical. Such effects could have an observable influence on

the propagating beams.

Presently, the parameterization of internal wave dynamics in atmospheric

General Circulation Models is based largely upon linear theory. Heuristics are

used to predict the amplitude at which waves are generated and the height at

which they break, either as a result of encountering a critical level or due to

anelastic (analogous to non-Boussinesq) growth. Recent numerical and theo-

retical work (Sutherland, 2006b) has questioned the use of these linear theory

heuristics by showing that weakly nonlinear effects can either enhance or retard

the amplitude growth of an internal wavepacket. While the large-amplitude

forcing in our experiments acts to modify the source region by causing bound-

ary layer separation, it also has the effect of generating finite-amplitude waves.

Thus, we anticipate that nonlinear effects may have a non-negligible influence

on the evolution of the wave beams. Tabaei and Akylas (2003) showed through

an asymptotic analysis that nonlinear effects are relatively insignificant for an

isolated beam with slow along-beam modulations in a uniform, Boussinesq

stratification. Dispersive and viscous effects were found to be the dominant

factors in determining the propagation of isolated beams. A subsequent paper

(Tabaei et al., 2005) investigated the role of nonlinearity in situations where

there exists a region of interaction, namely the reflection of a wave beam from

a slope or the collision of two beams. In such cases it was found that nonlinear
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effects result in the generation of higher-harmonic beams that propagate out

of the interaction region and into the far field. In this study we find that

nonlinear effects have a significant influence on the evolution of the moderate-

amplitude waves, resulting in wave breaking and turbulent mixing of a single

beam in the absence of critical layers. The instability mechanism requires in-

vestigation, particularly in light of existing theoretical predictions about the

relative unimportance of nonlinear considerations for an isolated beam (Tabaei

et al., 2005).

1.1 Thesis Overview

Chapter 2 describes the experimental apparatus and the implementation of

the synthetic schlieren measurement technique in strongly stratified fluids.

Measurements of the optical properties of NaI solutions are presented for this

purpose1. A derivation of the equations for Boussinesq schlieren is provided

in Appendix B. In Chapter 3 we provide a detailed description of the analysis

methods that are used to obtain the wave frequency, lengthscale and amplitude

at relatively early times following generation. From these measured properties

we also compute the power of the primary beam. Each quantity is compared to

linear theory predictions in order to assess the relative effects of the turbulent

generation mechanism observed in experiments. Appendix A is a review of

this linear theory, based on the work of Hurley and Keady (1997).

Chapter 4 contains the results of the examination of the observed beam

instabilities and breakdown. We describe a qualitative method for the determi-

nation of breakdown time and location relative to the position of the cylinder.

Fully nonlinear numerical simulations of a monochromatic wave beam are per-

formed to test our hypothesis for the instability mechanism2. A summary of

1A version of this chapter has been published. H. A. Clark and Bruce R. Sutherland
(2009). Experiments in Fluids. 47:183-193.

2A version of Chapters 3 and 4 has been submitted for publication. Heather A. Clark
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the significant findings of this thesis is given in Chapter 5.

and Bruce R. Sutherland. Physics of Fluids.
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Chapter 2

Experimental Methods

2.1 Introduction

The majority of internal wave experiments to date have used stratified so-

lutions of NaCl to obtain Boussinesq conditions in a laboratory setting. In

such cases the maximum density change over the depth of a fluid is limited

by the saturation density at typical ambient conditions. However, in general

this limit is not approached because the desired density gradient is achieved at

much lower concentrations. Part of the motivation for the work of this thesis is

to introduce more significant density variations over the vertical scale of wave

propagation and measurement. For this reason, experiments using NaCl were

performed in stratifications ranging from near-saturation to near-fresh concen-

trations. In addition, this work also includes the first use of NaI stratifications

to achieve larger density gradients than in previous experiments. The experi-

ments were performed in the laboratory of Paul F. Linden at the Department

of Mechanical and Aerospace Engineering, University of California, San Diego.

This chapter begins with a description of the experimental apparatus and

measurements of characteristic background density profiles in Section 2.2. In

Section 2.3 we present the modified form of the synthetic schlieren equations,

which are used to obtain quantitative measurements of the wave properties

from video recordings of the experiments. To implement synthetic schlieren in
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strongly stratified fluids, the dependence of the index of refraction upon the

fluid density is required. The results of experimental measurements of this

relationship for solutions of NaI are the topic of Section 2.4.

2.2 Apparatus and Density Stratifications

We have performed a series of experiments using an oscillating cylinder to

generate waves in strong stratifications of NaCl or NaI solutions. As illustrated

schematically in Figure 2.1, a cylinder of radius Rc was forced by a variable-

speed motor to produce vertical oscillations with half peak-to-peak amplitude

Ac and angular frequency ωc in a rectangular acrylic tank. In order to obtain

disturbances that were uniform in the spanwise (y) direction, the length of

the cylinder was 2 mm less than the inner separation of the tank walls. The

tank of dimensions Wt = 122.3 cm and Lt = 15.5 cm was filled to a depth

of Ht ≃ 55 cm. For both types of stratification, experiments were performed

with the cylinder centred approximately 12 cm above the bottom of the tank

or approximately 8 cm below the fluid surface. This was done to allow for a

comparison between the characteristics of upward- and downward-propagating

waves. The spatial region for quantitative analysis was focused to one side of

the cylinder, as we assume symmetry of the wave properties about the vertical

axis. As in the case of small-amplitude forcing, four wave beams were observed

emanating from the source region. Hereafter we will refer to the “primary

beam” and the “reflected beam” as they are shown in Figure 2.1. The terms

are used similarly for the case with the cylinder near the top of the tank, but

the beam reflection occurs off of the fluid surface rather than the bottom of

the tank.

A standard double bucket apparatus (Oster, 1965) was used to produce

the NaCl stratifications with a near-saturation density at the bottom of the

tank. For NaI solutions, 2 cm deep layers of decreasing density from bottom to
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Figure 2.1: (a) Schematic diagram of the suspended cylinder oscillating with
constant frequency and amplitude. An approximate resulting wave beam pat-
tern is shown. (b) A side view of the synthetic schlieren apparatus. The
dashed line represents the path of a light ray from the screen to the camera.
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top were successively manually poured through a sponge float and the system

was allowed to diffuse overnight. The dilution for each layer was performed

with the target density calculated to result in an exponential decrease. For the

experiments reported upon here, the maximum density at the tank bottom was

approximately 1.5 g/cm3. For both solutions, the resulting density profile was

established such that the fluid could be treated as an approximately uniformly

stratified non-Boussinesq fluid, for which the background density profile, ρ̄(z),

decreased exponentially with height:

ρ̄(z) = ρ0 exp[−(z − z0)/H ] , (2.1)

where z0 is a reference height at which the density, ρ0, is known, and H is

the density scale height. A conductivity probe was used to traverse the upper

45 cm of the tank, making approximately 40 measurements of the fluid density

per vertical centimeter between the surface and 10 cm above the tank bottom.

The data, shown in Figure 2.2 for characteristic experiments, were fitted with

an exponential function of the form of (2.1) using a least-squares method.

H ≃ 270 cm for NaCl stratifications, and H ≃ 130 cm for experiments using

NaI. To account for the large variations in density over the depth of the fluid,

we calculate the background buoyancy frequency, N , using the non-Boussinesq

relation,

N2(z) = −g
ρ̄

dρ̄

dz
, (2.2)

where g is the acceleration due to gravity. Given the non-Boussinesq form of

the equation, the construction of near-exponential stratifications in the exper-

iments results in an approximately constant background buoyancy frequency

denoted by N0. The values of H shown above yield buoyancy frequencies of

N0 ≃ 1.9 s−1 and N0 ≃ 2.7 s−1 for NaCl and NaI, respectively, according to

(2.2).
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Figure 2.2: Vertical fluid density profile for typical experiments using NaCl
(thin solid curve) and NaI (thick solid curve). Dashed curves are the expo-
nential fits to experimental data.

We have calculated the Reynolds number, Re, using a velocity scale of Ac ωc

and a length scale of 2Rc. Measurements of the viscosity of NaI solutions at

a temperature of 20.005◦C were performed using an Anton Paar DMA 500

density meter, with densities between that of fresh water and approximately

1.6 g/cm3. We find that for these densities the kinematic viscosity, ν, lies

in the range of 0.01 cm2/s to 0.016 cm2/s. If we assume similar viscosities for

solutions of NaCl up to saturation densities, we may estimate a range of Re for

the experiments based on the forcing parameters. We obtain Re ≈ 250− 4400

across the entire forcing parameter space, but the experiments that will be of

focus in Chapter 3 lie in the more intermediate values of Re ≈ 1500 − 2000.

A Cohu CCD video camera positioned 465 cm from the front of the tank

was focused on an image of horizontal black lines situated Ls = 15.5 cm be-

hind the rear tank wall (Fig. 2.1(b)). The image screen was back-illuminated
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by a set of regularly spaced fluorescent tubes. The field of view was a region

spanning the depth of the tank and approximately 70 cm in the x direction

with the cylinder situated near the corner of the image. Video images were

recorded on SVHS tape at a rate of 1 frame per 1/30 seconds and were subse-

quently digitized with a spatial resolution of approximately 0.12 cm using the

software package DigImage (Dalziel, 1992). The images were then processed

to determine the amplitude of generated waves through a technique known as

synthetic schlieren. This method and its adaption for strongly stratified fluids

is described in the following section.

2.3 Synthetic Schlieren

Here we briefly review quantitative synthetic schlieren as presented by Suther-

land et al. (1999) and indicate where modifications should be made for a strong

density stratification or non-Boussinesq fluid. A derivation of the synthetic

schlieren equations for Boussinesq stratifications is given in Appendix B.

Propagating waves displace the isopycnal surfaces, resulting in variations of

the local density gradient. This changes the local index of refraction in space

and time, thereby affecting the degree to which light passing through the tank

is deflected. By measuring the apparent displacements of objects (lines or

dots) in the image behind the tank, one can calculate the perturbation density

gradient associated with spanwise-uniform waves. From this, other wave fields

may be determined.

To perform this calculation, we assume that the background index of refrac-

tion, n̄, is a quadratic function of the background density of the salt solution

and we form an expansion about a reference density ρ0:

n̄(ρ̄) = n0 + a1(ρ̄− ρ0) +
1

2
a2(ρ̄− ρ0)

2, (2.3)
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where

a1 =
dn̄

dρ̄

∣

∣

∣

∣

ρ0

and a2 =
d2n̄

dρ̄2

∣

∣

∣

∣

ρ0

(2.4)

are empirically measured constants. Taking ρ0 = 0.99823 g/cm3 to be the

density of fresh water at room temperature, the reference index of refraction

is n0 = 1.3330.

As a light ray traverses the width of the tank at a small angle from the

horizontal, it encounters a vertical gradient in the index of refraction, so that

the ray follows an approximately parabolic path (Sutherland et al., 1999). The

curvature of the path is proportional to the density gradient at that vertical

level in the fluid. By measuring the vertical deflection, ∆z, of an image one can

compute the density gradient and thus the change to the squared buoyancy

frequency,

∆N2 ≃ −∆z
1

γ

[

1

2
L2
t + Lt n̄

(

Lp
np

+
Ls
na

)]

−1

, (2.5)

in which np = 1.49 and na = 1.0 are the refractive indices of acrylic and air.

Here we have expressed the vertical gradient in the index of refraction in terms

of the buoyancy frequency as

∂n̄

∂z
=
dn̄

dρ̄

∂ρ̄

∂z
= −

(

1

g

ρ̄

n̄

dn̄

dρ̄

)

n̄N2 = −γn̄N2, (2.6)

so that the quantity γ in (2.5) is given by

γ =
1

g

ρ̄

n̄

dn̄

dρ̄
=

1

g

ρ̄

n̄
[a1 + a2(ρ̄− ρ0)]. (2.7)

The calculation of ∆N2 from ∆z differs from previous work (Sutherland et al.,

1999; Dalziel et al., 2000) in the definition of γ. In that work it was assumed

that γ = 1
g
ρ0
n0

a1, a constant. Here, to account for significant variations of

the background density and index of refraction with height, both quantities

are taken to be functions of z. The quadratic variation of n̄ with ρ̄, through
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the nonzero value of a2 in (2.3), is also included. Further discussion of these

modifications to synthetic schlieren can be found in Section 2.4.

The apparent vertical deflection is determined using changes in pixel inten-

sities of the digitized image in the same manner as reported in Sutherland et al.

(1999). By measuring ∆z variations between small times (typically 2/30 s),

the time derivative can be estimated. From this, using (2.5) with ∆z replaced

by ∂z/∂t, one can measure the rate of change of the buoyancy frequency, N2
t ,

due to the stretching and compressing of isopycnals by waves.

2.4 Optical Properties of NaI Solutions

Conventional experiments with stratified fluids use NaCl solutions of varying

density, the properties of which are well documented (Weast, 1981). In par-

ticular, the dashed lines in Figure 2.3 plot the dependence of n̄ on ρ̄ and of

ρ̄ on concentration, c, of the solution. For NaCl the curves extend to densi-

ties of ρ̄ ≃ 1.2 g/cm3, at which the solutions are saturated at approximately

20◦C. Using tabulated data of n̄ and ρ̄ from Weast (1981) for solutions of

NaCl we find that for a profile of the form of (2.3), a1 = 0.2458 cm3/g and

a2 = −0.1208 cm6/g2. These values are used in (2.5) and (2.7) for the calcu-

lation of ∆N2 and N2
t in experiments with stratifications of NaCl solutions.

Assuming a stratification such that ρ̄ ∈ [0.99823, 1.2] g/cm3, the variation in

γ over depth is approximately 5%. For the value of γ calculated using the

maximum density and the corresponding index of refraction, the a2 term con-

tributes 11% of the total. Thus the inclusion of the nonlinear term in (2.3)

has a non-negligible effect for solutions of NaCl as saturation densities are

approached.

While there are tabulated data of the optical properties of NaCl solutions,

to our knowledge there is no analogous information for NaI available in the

literature. We have therefore performed measurements relating the concentra-
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tion, density, and index of refraction of NaI solutions. The index of refraction

of solutions with known concentrations was measured at a temperature of

21.0±0.5◦C using a Bausch & Lomb Abbe-3L refractometer. The correspond-

ing density for each solution was measured at 20.00◦C with an Anton Paar

DMA 4500 density meter. We assume that temperature variations on the or-

der of 1◦C will not affect the index of refraction at the level of accuracy of

our measurements. The results are shown as the solid circles in Figure 2.3

for densities ranging up to approximately 1.8 g/cm3, which corresponds to a

solution of approximately 50% NaI by weight. The measurements have been

fit with quadratic functions, shown as solid lines.

Using n0 = 1.3330 and ρ0 = 0.99823 g/cm3, we find that the coefficients in

the index of refraction as a function of density, (2.3), for NaI solutions are

a1 = 0.1894 ± 0.0002 cm3/g and a2 = −0.0086 ± 0.0006 cm6/g2. (2.8)

Note that the nonlinear variation of the index of refraction with density is

much weaker for NaI solutions than NaCl solutions, even for near-saturation

concentrations. Although a2 is small in comparison with a1, the correction to γ,

(2.7), that is made by retaining the a2 term is up to 4% for NaI solutions. This

maximum contribution was calculated assuming a density of ρ̄ = 1.8 g/cm3 and

using the corresponding index of refraction. For stratified solutions of NaI, the

variation in γ due to z dependence is the dominant effect of the modifications to

the Boussinesq synthetic schlieren formulation. Using ρ̄ ∈ [0.99823, 1.8] g/cm3,

we may compare the resulting values of γ with a constant value given by

γ0 = 1
g
ρ0
n0

a1, where ρ0 = 0.99823 g/cm3 and n0 = n̄(ρ0). We obtain a total

variation in γ of 56% of γ0 by retaining the vertical dependence of ρ̄ and n̄

for a saturated NaI stratification. Density variations of ∼ 0.02 g/cm3 from

the characteristic value ρ0 produce variations in γ of approximately 1%. The

results of the preceeding calculations depend only minimally on the value of
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ρ0.

Due to the typical practice of constructing solutions of known concentration

rather than density, we also provide the functional relationship between these

properties for NaI solutions. Assuming a quadratic dependence of the form

ρ̄(c) = ρ0 + b1 c+
1

2
b2 c

2, (2.9)

where c is the solute concentration in g/ml and ρ0 = 0.99823 g/cm3, we

find b1 = 0.7564 ± 0.0001 and b2 = −0.0348 ± 0.0002. Experimental data are

shown with the fit curve in Figure 2.3(b). These new results allow for the

quantitative measurement of non-Boussinesq fluid phenomena through the im-

plementation of synthetic schlieren over a much larger range of ambient density

variation than has been accessible previously.

18



Chapter 3

Wave Generation

3.1 Introduction

Section 3.2 contains a detailed description of the analysis methods that were

used to obtain quantitative measurements of the wave frequencies, wavenum-

bers and amplitudes. The methods are specific to each quantity, but for all

cases the process is based upon the analysis of time series images of the video

recording for each experiment. Synthetic schlieren processing of the images, as

described in Section 2.3, yields the wave field data that we focus upon in this

chapter. The details of the analysis are followed in Section 3.3 by the experi-

mental results for each of the fundamental wave properties. Wherever possible,

these are compared with the predictions of the linear theory presented in Ap-

pendix A to illustrate the effects of the turbulent, large-amplitude generation

mechanism upon each measured characteristic of the waves. In Section 3.3.4

we provide an estimate of the power of the primary beam, which requires a

combination of the other quantities presented in this chapter.

3.2 Analysis Methods

For each experiment, vertical time series were made from the raw video footage

at 24 equally spaced horizontal locations using the DigImage (Dalziel, 1992)

software package. Further processing to obtain N2
t (z, t) was performed with
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a separate computer program. As shown in Figure 3.1(b), we reconstruct a

spatial snapshot at any desired time from the set of vertical time series images.

In this figure, vertical wavenumbers greater than 1.0 cm−1 have been filtered in

the Fourier domain in order to remove small-scale spatial noise. Interpolation

is also performed between grid points in the horizontal direction to smooth

the image that results initially from the computational reconstruction of the

snapshot. We calculate the envelope, 〈N2
t 〉, as shown in 3.1(c), from

√
2 times

the root mean square (rms) of 16 snapshots evenly spaced in time over one

wave period (Sutherland and Linden, 2002) to obtain information about the

average wave amplitude and beam structure in space and time. The direction

of the increasing positive cross-beam coordinate, σ, is superimposed on the

primary beam in (b) and (c). The orientation of the σ axis is calculated

from the dispersion relation after the wave frequency has been determined as

described in the next subsection.

3.2.1 Measurements of wave frequency

In the majority of cases, the wave frequencies were measured using time series

of N2
t for t ∈ [5Tc, 15Tc], where Tc is the oscillatory period of the cylinder.

For several experiments with low forcing frequencies, the experimental data

spans fewer than 15 periods, so the time window for frequency measurements

was reduced. The standard time interval was chosen so that the waves were

well-developed and reasonably steady. Figure 3.2 shows an example of the

analysis process for one experiment in a NaI stratification with Rc = 2.98 cm,

Ac = 2.0 cm, and ωc = 1.53 s−1. As plotted in Figure 3.2(a), we constructed the

horizontal time series of the data at a vertical distance of 5Rc above or below

the equilibrium vertical position of the cylinder, depending on whether the

cylinder was near the bottom or the top of the tank. The horizontal coordinate

for the plot in (a) has been shifted such that the centre of the cylinder is located
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is at the equilibrium position of the cylinder.
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at x = 0. Eleven equally spaced profiles over the region x ∈ [−6Rc,−5Rc],

represented by the vertical lines in (a), were Fourier transformed in time to

obtain power spectra in frequency space. The field for one representative

profile is plotted in (b), with the corresponding spectrum shown in (c). The

average of the 11 spectra was computed before finding the location of the

peak in frequency, which we denote by ωigw. For an improved measurement,

we calculated ωigw from a parabolic fit to the three discrete points that defined

the peak of the power spectrum. The uncertainty, δωigw, in the measurement

was taken to be the half-width of the parabolic curve that was centred about

the peak. For the example shown in Figure 3.2(c), the wave frequency was

equal to the cylinder frequency. However, in general the wave and cylinder

frequencies need not be equal because of the turbulent generation process. A

comparison between measured wave and cylinder frequencies is the topic of

Section 3.3.1.

3.2.2 Measurements of wavenumber

Beginning with a snapshot of the N2
t field, the image was reflected about the

horizontal coordinate of the center of the cylinder and rotated such that the

lines of constant phase of the waves appeared horizontal. The clockwise angle

of rotation is calculated as π/2 − Θ, where Θ is the angle of the beam to the

vertical direction, given by

Θ = cos−1

(

ωigw

N0

)

. (3.1)

This is a consequence of the dispersion relation for internal waves. Through

this processing of the image the horizontal and vertical axes correspond to

the along-beam (r) and cross-beam (σ) coordinates respectively, as plotted in

Figure 3.3(a) for a typical experiment. Note that the r axis as shown does not

start from zero. For small values of the radial coordinate the schlieren pro-
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cessed data contains unreliable values due to the presence of the cylinder and

the surrounding three-dimensional turbulence. We have restricted our analysis

to σ ≥ 0 because of potential interference between the primary beam and the

reflected beam in the lower flank, for which σ < 0. Although interference is

not predicted by theory, our experimental beams have more diffuse bound-

aries because of the turbulent generation process. The heavy dashed lines in

Figure 3.3(a) correspond to the edges of the original schlieren image that has

undergone reflection and rotation. The amplitude is not necessarily zero in the

upper corners of (a), but the region for data acquisition did not include the

areas outside of the dashed curves. In general, this restriction did not affect

our analysis because we have focused on the primary beam and the amplitude

of the signal was naturally decreasing to zero as the edge of the analysis win-

dow was approached. In some cases it was evident that a clockwise rotation

by the angle π/2 − Θ resulted in beams that were not horizontal. Although

we have been unable to determine the cause of this observation, in these cases

a correction of up to ∼ 0.1 rad was applied to yield nearly horizontal phase

lines. Without this correction, it was obvious to the eye that a profile through

the image at constant r would not be close to perpendicular to the phase lines

of the beam. A spatially averaged profile, plotted as the solid curve in Fig-

ure 3.3(b), was computed from 11 evenly spaced profiles over r ∈ [5Rc, 6Rc],

which are represented by the dashed vertical lines in (a). The dashed curves in

(b) are the envelope of the r-averaged N2
t profiles over one wave period, with

the lower curve being the reflection of the positive amplitudes obtained from

the rms. The profile shown at a particular phase moderately overshoots the

envelope because the experimental signal includes noise and so is not perfectly

sinusoidal in time. We then calculated the power spectrum, shown in (c), of

the Fourier transformed data.

In all cases we observed a distribution of power over a range of wavenum-
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bers, which is expected for a beam of internal waves. However, here we focus on

the wavenumber with the maximum associated power in the Fourier spectrum,

and denote its magnitude as k∗σ. For each spectrum as shown in Figure 3.3(c),

the peak value was found from a quadratic fit to the three points with the

maximum amplitudes. The resulting peak values from 16 evenly spaced snap-

shots were then averaged in time for t ∈ [4Tigw, 5Tigw]. The wave period was

calculated from the measured wave frequency as Tigw = 2π/ωigw. This inter-

val in time was chosen because the beams were well-developed and significant

distortions due to wave instabilities were not yet present. The uncertainty

in the measurement of the cross-beam wavenumber, δk∗σ, was taken to be the

standard deviation determined from the averaging process. This procedure

provides a characteristic value for an analysis of the wave lengthscale and is

used in further calculations that involve the polarization relations.

3.2.3 Measurements of wave amplitude

For the analysis of wave amplitudes, we have focused on the N2
t field for

times t ∈ [4Tigw, 5Tigw] and the amplitude envelope was computed as described

in Section 3.2. The processed images were reflected and rotated about the

position of the cylinder, as described in the previous subsection. In order

to capture the properties of the beam, we have computed a profile in the σ

direction, averaged over a radial coordinate of r ∈ [10 cm, 20 cm]. Although

we use the envelope, 〈N2
t 〉, for this analysis, some “patchiness” is still evident

in the final image that we use for further calculations. Averaging in the r-

direction reduces some of the variability in the signal that is an artifact of

processing rather than an indication of the wave structure. The lower bound of

the spatial interval was chosen such that the measurements would be outside of

the turbulent boundary layer around the cylinder. In general, this spatial range

captured the region of maximum wave amplitude and also included sufficient
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areas of smaller amplitude so as not to over-estimate the characteristic value for

the experiment. This characteristic amplitude, denoted by AN2
t
, was taken as

the maximum value extracted from the r-averaged profile, with its uncertainty

given by the standard deviation.

3.3 Wave structure and transport

The results of the experimental analysis as described in Section 3.2 are pre-

sented in the same order in the following subsections.

3.3.1 Wave frequencies

In Figure 3.4 we compare the normalized wave frequencies, ωigw/N0, to the

normalized forcing frequency, ωc/N0. In (a) the average power spectrum for

each experiment is shown with an offset on the horizontal axis corresponding

to the value of ωc/N0. For illustrative purposes, the spectra have been rescaled

such that the maximum amplitude is the same for all experiments. The dashed

line with a slope of 1 corresponds to the prediction of linear theory that the

wave frequency is equal to the forcing frequency. In Figure 3.4(b) the value

of ωigw with peak power is plotted with a solid circle. The open circles corre-

spond to secondary, lower amplitude peaks in the frequency spectrum. Two

additional dashed lines with a slope of 2 and 3, respectively, are also shown

in (b) to indicate frequency harmonics. For the experiments with the smallest

relative forcing frequencies, the majority of the power in the frequency spec-

trum was at double the forcing frequency. When frequency-doubled waves

were observed, a peak in the spectrum also occurred at the forcing frequency.

For the lowest forcing frequency, another small-amplitude peak can be seen

in the spectrum at three times the forcing value, but this is the only experi-

ment that permits frequency tripling due to the upper limit of the buoyancy

frequency. Also according to linear theory, no waves can be generated directly
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Figure 3.4: Measured frequency ωigw versus cylinder frequency ωc, both nor-
malized by N0. The dashed line with a slope of 1 corresponds to the prediction
of linear theory, as described in the text. In (a), the power spectrum is shown
for each experiment, with an offset on the horizontal axis that corresponds to
the normalized forcing frequency. The frequency with the maximum power
has been found and is plotted in (b) with solid circles. Open circles show the
locations of secondary peaks in the spectra for the lowest frequency cases. A
typical horizontal error bar is shown in the upper left-hand corner.
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by the cylinder for ωc above N0, which is indicated on the plot by the dotted

vertical line. Although the spectra are broader for forcing frequencies above

the buoyancy frequency, we nonetheless observed propagating internal waves

with ωigw ≃ 0.5N0 in these experiments due to generation by the oscillatory

turbulent patch. The observed relative frequency corresponds to propagation

at approximately 60◦ from the vertical. This result is near the largest angle of

the ranges for turbulently generated waves found numerically by Taylor and

Sarkar (2007) (35◦– 60◦) and experimentally by Dohan and Sutherland (2003)

(42◦– 55◦).

Agreement with the theoretical prediction is closest for the range ωc/N0 ∈

[0.5, 0.8], where we see that the experimental data lie on the theoretical curve

within the error bars in all cases. In the following sections, we focus on exper-

iments in this frequency range because the waves exhibit the most coherent

beam structure, thereby facilitating our analysis and interpretation of the data.

For low forcing frequencies, frequency doubled and tripled wave beams are su-

perimposed with waves having frequency ωigw ≈ ωc. This causes difficulties

because the technique of rotating into (σ, r) coordinates for analysis becomes

ambiguous. For supercritical forcing, the waves are generated purely by tur-

bulence and the resulting structure is not a coherent beam. We observed a

change in the qualities of the waves above ωc/N0 ≃ 0.8, where the data turn

off from the theoretically predicted curve.

3.3.2 Cross-beam wavelengths

In the linear regime the length scale of the waves is completely determined by

the size of the cylinder (Hurley and Keady, 1997). In the current experiments,

for which Ac is of the same order as Rc, we anticipate that the large-amplitude

forcing may influence the wavenumber as well. In Figure 3.5(a) the inverse of

the cross-beam wavenumber, 1/k∗σ, is plotted as a function of the cylinder ra-

29



dius. Due to the restriction of the frequency range as discussed in Section 3.3.1,

only two different cylinder sizes remain in the final data set. From the plot

it is evident that Rc is not an adequate predictor of the resulting wavenum-

ber, particularly for the smaller values of oscillation frequency. Based on this

separation of the data points according to frequency, we conclude that the

frequency must be incorporated in order to find a relevant length scale.

Estimation of the Ozmidov length scale

Due to the turbulent nature of the wave generation process, we look for a

length scale of turbulence that has physical relevance to the system. The

Ozmidov length scale, LO, is a measure of the scale in stratified turbulence

at which buoyancy effects and inertial forces are equal (Kantha and Clayson,

2000). Thus it characterizes the maximum vertical extent of eddies in the flow.

The Ozmidov scale is given in terms of the turbulent dissipation rate, ε, and

the buoyancy frequency as (Thorpe, 2005)

LO = ε1/2N−3/2. (3.2)

We hypothesize that the size of the largest eddies in the turbulent patch sur-

rounding the cylinder may influence the length scales of the resulting internal

waves. Continuing with this physical intuition we estimate LO for the experi-

mental apparatus, as described in Section 2.2, by first finding an appropriate

estimate of ε. We assume that the energy of the waves is small in comparison

with the total energy input by the cylinder so that the turbulent dissipation

rate may be approximated by the rate of energy input per unit mass. The

validity of this assumption is discussed in Section 3.3.4 in the context of mea-

surements of the wave power.

From observations of the unprocessed experimental data, we find that when

the cylinder oscillates, fluid in the bounding region above or below the cylinder
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is displaced and flows around the cylinder to the opposite side. This appears

to be the primary process occurring in the generation of the turbulent patch,

and it is also consistent with our qualitative observation that in quasi-steady

state the oscillatory turbulence is out of phase with the cylinder. The time

lag is produced as the fluid from below the cylinder flows around the cylinder

toward the top, or vice versa. We will use this process as a model from which

to estimate the relevant velocity and time scales for the input of kinetic energy

by the oscillations of the cylinder. Here it should be emphasized that we are

performing an estimate with the aim of obtaining the correct form of the

dependence on the experimental parameters.

First we calculate the area, A, in the (x, z) plane of the fluid that is dis-

placed by the downward motion of the cylinder with amplitude Ac. We obtain

A = AcRc

√

1 − A2
c

4R2
c

+R2
c

[

π − 2 sin−1

(
√

1 − A2
c

4R2
c

)]

, (3.3)

which is dominated by the first term. Assuming that Ac . Rc, which is the case

for our experiments, this expression may be treated reasonably as A ∼ AcRc.

Thus, the mass of fluid per unit length along the cylinder that is displaced

is roughly ρ0AcRc, where ρ0 is a characteristic density at the position of the

cylinder. To estimate the velocity of the displaced fluid we assume that it

travels a vertical distance of 2Rc in a timescale of ω−1
c , yielding a character-

istic speed of v ∼ 2ωcRc. From these calculations we find that the rate of

kinetic energy input per unit length for the displaced fluid is approximately

ρ0(AcRc)(2ωcRc)
2ωc, where the third power of ωc is a result of finding the

quantity per unit time. To obtain the input rate of energy per unit mass, we

divide this quantity by the fluid density and the area of the region of energy

input, which to leading order is πR2
c . Thus our final estimate of ε becomes

ε ∼ (AcRc)(2ωcRc)
2ωc

πR2
c

∼ AcRc ω
3
c . (3.4)
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From (3.2) the resulting expression for LO is then

LO ∼
√

AcRc

(ωc
N

)3/2

. (3.5)

Typical values of LO for our experimental parameters are on the order of 1 cm,

which indeed is the characteristic scale of the turbulent patch observed above

and below the cylinder.

In Figure 3.5(b) (k∗σ)
−1 is plotted as a function of our estimated LO. There

are several encouraging features of this plot in comparison with that shown

in (a). Due to the introduction of the frequency to the lengthscale on the

horizontal axis, the experiments with lower forcing frequencies are no longer

separated from the higher frequency cases. We do not expect perfect collapse

of the data because of the significant level of noise present in the experimental

data. However, Figure 3.5 demonstrates that a clearer trend emerges through

a comparison between the wave lengthscale and a lengthscale of stratified

turbulence. Although we acknowledge that the values of the Ozmidov scale

are an estimate, the relationship between (k∗σ)
−1 and LO is of order 1, which

makes a direct correspondence between these quantities more physically plau-

sible. Some of the scatter in the data may be attributed to our treatment of

the beam as monochromatic in space. Since we have retained only the peak

wavenumber in our analysis, the results for each experiment may be affected

differently by this simplification depending on the true distribution of power

with wavenumber. The result that the lengthscale of the waves appears to be

determined by a lengthscale of turbulence reinforces our interpretation of the

wave generation process as turbulent.

3.3.3 Wave amplitudes

Although we measured the amplitude AN2
t

directly, we may use the Boussinesq

polarization relations as summarized in Table 3.1 to find the amplitude of the
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vertical displacement of the waves, given by

Aξ =
AN2

t

N3
0kx sin Θ

=
AN2

t

N3
0k

∗

σ cos Θ sin Θ
. (3.6)

We normalize Aξ by the horizontal wavelength, λx = 2π/kx, to provide a

more physically meaningful interpretation of the data. The final values were

calculated as

Aξ
λx

=
AN2

t

2πN3
0 sin Θ

. (3.7)

We have plotted the normalized amplitude as a function of Ac/LO because of

the result presented in Section 3.3.2 that LO, rather than Rc, determines the

length scale of the waves. As shown in Figure 3.6, there is a clear separation

in the ratio Aξ/λx for NaCl and NaI experiments, with an approximately

constant ratio of ∼ 2.5% for all NaI experiments. In previous work (Dohan

and Sutherland, 2003; Aguilar and Sutherland, 2006) with NaCl stratifications

it was observed across experiments that Aξ/λx collapses to a value in the range

of 2-4%, regardless of the forcing amplitude. We do not have an explanation

for the observed increase in the ratio for NaCl experiments. The effect of

the smaller buoyancy frequency for NaCl stratifications is magnified by the

cubic power of N0 in (3.6). However, there is no obvious physical reason to

anticipate that this difference between the amplitude ratios should be based

on stratification alone.

For all calculations in the analysis of the wave generation, we have as-

sumed that the fluid can be treated as Boussinesq, because the extent of

vertical propagation is small in comparison with the density scale height. As

shown in Figure 3.6, the vertical error bars are sufficiently large as to produce

a region of overlap between the data for upward- and downward-propagating

waves. If trends in the data are significant, the slightly reduced amplitudes

for downward-propagating cases may indicate that the region of observation is
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Field variable, b Complex amplitude, Ab
ξ Aξ
w = ∂ξ

∂t
Aw = −iωAξ

∂ψ
∂x

= w Aψ = − ω
kx
Aξ

u = −∂ψ
∂z

Au = iω kz

kx
Aξ

ρ = −dρ̄
dz
ξ Aρ = ρ0

g
N2Aξ

∂p
∂x

= −ρ0
∂u
∂t

Ap = iω2ρ0
kz

k2
x
Aξ

∆N2 = − g
ρ0

∂ρ
∂z

A∆N2 = −ikzN2Aξ
N2
t = ∂

∂t
(∆N2) AN2

t
= kzωN

2Aξ

Table 3.1: Polarization relations for two-dimensional, small-amplitude waves
in an inviscid, uniformly stratified Boussinesq fluid. The complex amplitude,
Ab, of the velocity components (u,w), streamfunction (ψ), density pertur-
bation (ρ), pressure (p), change in buoyancy frequency (∆N2) and its time
derivative (N2

t ) is given in terms of the vertical displacement amplitude, Aξ.
The horizontal and vertical wavenumbers are related through tan Θ = kz/kx.
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Figure 3.6: Vertical displacement amplitude, Aξ, normalized by hori-
zontal wavelength, λx, shown as a function of normalized cylinder am-
plitude. Upward(downward)-pointing arrows denote measurements of
upward(downward)-propagating waves.
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at the threshold of non-Boussinesq asymmetry between the directions of ver-

tical propagation. However, we cannot conclude that the data shown contains

evidence of non-Boussinesq wave behaviour.

3.3.4 Wave power

We use the measurements of the characteristic wavenumber and amplitude,

as described in the previous subsections, to calculate the average energy flux

of the primary beam, from which we compute the wave power. The present

analysis is restricted to experiments for which δk∗σ/k
∗

σ ≤ 0.1 and δAN2
t
/AN2

t
<

0.2 simultaneously. Although these are significant fractional uncertainties, for

the calculation of wave power we wish to retain the experiments for which the

characteristic values are as unambiguous as possible.

From the polarization relations shown in Table 3.1 we obtain the following

expression for the time-averaged vertical energy flux of a monochromatic plane

wave with wavenumber kσ:

〈FE〉 = 〈wp〉 =
1

2
ρ0

A2
N2

t

N3
0 cos Θ sin Θk3

σ

. (3.8)

The use of this expression in our analysis requires that modes other than kσ

do not contribute significantly to the N2
t field. However, based on the char-

acteristics of the experimental power spectra, it is unreasonable to expect an

accurate result for power if the beam is treated as monochromatic. Therefore,

we have modified the above expression to account for the contributions from

all cross-beam modes, kn, with non-negligible power. When referring to the

Fourier spectrum, we use the term “power” to refer to the squared magnitude

of the Fourier coefficient of a particular mode of the N2
t signal, and denote it

by Pn(kn). We replace the amplitude and characteristic wavenumber with a

sum over modes, i.e.

〈FE〉 =
1

2
ρ0

1

N3
0 cos Θ sin Θ

∑

n

A2
n

k3
n

. (3.9)

36



The images used in the present analysis were processed using the same

procedure as for the wavenumber analysis, as described in Section 3.2.2. Signal

attenuation with increasing σ and a geometric effect caused by the rotation

of the processed images resulted in a region of zero amplitude for the largest

values of σ. Based on the properties of the FFT algorithm that we have

employed, we account for this in our analysis by scaling the amplitude of a

mode according to the ratio Lσ/L, where Lσ is a measure of the beam width

and L is the length of the spatial domain for the Fourier transform. In this

case the amplitude, An, that one would obtain from the transform is related

to the amplitude of the real signal, A, through

An =

(

Lσ
L

)

A. (3.10)

We find that the squared amplitude is given in terms of the power by

A2
n =

(

2

Lσ/L

)2

Pn. (3.11)

To obtain the total power of the primary beam, we multiply the vertical

energy flux by the area of a horizontal cross-section through the beam, LcLx =

LcLσ/ cos Θ, in which Lc is the length of the cylinder. Through this step and

the substitution of (3.11) into (3.9) we arrive at the expression for the total

measured power of the experimental beam:

Pexpt =
2ρ0LcL

2

N3
0 cos2 Θ sin ΘLσ

∑

n

Pn
k3
n

. (3.12)

In order to use the above expression we also require a quantitative method of

determining the beam width, Lσ. We express Lσ in terms of a characteristic

wavelength, λ∗, and an undetermined parameter, α, as

Lσ = αλ∗ =
2πα

k∗σ
. (3.13)
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By substituting this expression into (3.10) with An → A∗ corresponding to

the amplitude of the waves with kn → k∗σ, we obtain

α =
A∗

A

(

k∗σL

π

)

=
1

α

P1/2
∗

A

(

k∗σL

π

)2

, (3.14)

then rearranging for α, we find

α =
P1/4

∗

A1/2

(

k∗σL

π

)

. (3.15)

For our estimate of α, we take the power of the mode for which kn is closest to

k∗σ, and we use the characteristic amplitude, AN2
t
, as described in Section 3.2.3.

This yields values of α ∈ [1.6, 2.2] across all experiments. Comparison with

the structure of the original N2
t profiles in the σ direction shows that this

range of α is reasonable when we consider that it characterizes the number of

wavelengths contained in the primary beam.

For a theoretical prediction of the time-averaged power radiated by a single

wave beam, we refer to the linear, inviscid solution of Hurley (1997). Although

the absence of viscosity is a further simplification in comparison with exper-

iments, viscous attenuation should not play a large role over the moderate

distance from the cylinder at which we focus our observations. Note that we

do not expect the analytic expression to capture accurately the power radiated

by a beam in the experiments because of energy loss to the turbulent boundary

layer. However, we provide the theoretical background as a reference point for

the expected behaviour of an idealized system. Ignoring viscosity, for the beam

in the first quadrant the spatial dependence of the streamfunction, Ψ(r, σ), is

given by

Ψ =

{

1
2
WRce

−iΘ
[

− σ
Rc

− i
√

1 − (σ/Rc)2

]

, |σ/Rc| < 1

0, |σ/Rc| > 1
, (3.16)

where W is the maximum of the magnitude of the cylinder velocity. The

corresponding along-beam velocity is ur = ∂ψ
∂σ

, where ψ = Ψ exp(−iωct). An
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integral of the average radial energy flux, 〈urp〉, where p is the pressure field,

is computed over the region bounded by the tangents to the cylinder to obtain

the power. From the linearized Boussinesq equations we obtain

p = −(iωcρ0 tan Θ)ψ, (3.17)

where ρ0 is a characteristic density. Thus, using ur = ∂ψ/∂σ, for the average

power P we have

P =

∫ Rc

−Rc

〈urp〉 dσ =
π

8
ρ0W

2ωcR
2
c tan Θ. (3.18)

For comparison with the experimental results we have computed the time

average of the power of the primary beam using (3.18). Denoting this as Pthy

and recasting the result in terms of our experimental parameters, we obtain

Pthy =
π

8
ρ0

(

N2
0

ω2
igw

− 1

)1/2

ωigwR
2
c(Ac ωc)

2Lc. (3.19)

Here ωigw is the internal wave frequency, which in general may differ from

ωc for our experiments. The use of both ωigw and ωc in the calculation of

Pthy arises from the conversion of parameters in (3.18) to the variables in our

notation. The product of Acωc is the magnitude of the maximum velocity

of the oscillating cylinder, whereas the single power of ωigw is a result of our

distinction between the properties of the waves and the cylinder. In the an-

alytic formulation it is unnecessary to introduce a separate wave frequency.

For the experiments that we are analyzing here, ωigw differs very little from

ωc because we have restricted our focus to a particular range of forcing fre-

quencies, as discussed in Section 3.3.1. We have expressed Pthy in terms of

the wave frequency rather than the angle from the vertical because for some

experiments there is a discrepancy between the predicted and observed an-

gles. A formulation in terms of the frequency, which in the analytic problem

would be equivalent to an expression using the propagation angle, allows us
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Figure 3.7: Experimentally measured power versus theoretically predicted
power of the primary beam. 1 erg = 1 g cm2 s−2.

to use measured values rather than the less precisely obtained wave angle.

For calculations of both Pexpt and Pthy we have used characteristic densities

of ρ0 = 1.25 g/cm3 for NaI stratifications and ρ0 = 1.1 g/cm3 for NaCl strat-

ifications. These values were estimated from the experimental measurements

of the density at the vertical level of our analysis of wavenumber and am-

plitude. We do not expect agreement between the experimentally measured

power and the value predicted by (3.18) because the analytic result was de-

rived under the assumptions of linear, Boussinesq theory. Although we did

not observe significant deviations from Boussinesq conditions for the location

of the current measurements, i.e. upward- and downward-propagating waves

are quantitatively similar, the small-amplitude assumption does not hold. We

pursue the comparison between Pexpt and Pthy in an attempt to gain insight

into the effects of the large-amplitude forcing on the resulting energy transport

of the waves.
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Figure 3.7 shows a plot of the experimentally measured power versus the

theoretical prediction. (Note that the horizontal and vertical scales differ sig-

nificantly.) The large vertical error bars on the data points are a result of

adding significant contributions from several of the variables in (3.12). Namely,

the largest contributions to the final error were due to the uncertainties in Θ,

Lσ, and Pn, the last of which was estimated from the standard deviation of the

time-averaged power spectrum. The experimental measurements and theoret-

ical predictions are similar for small values of Pthy, but the two values deviate

more with increasing forcing intensity. In general, we expect the experimental

values to be less than the theoretically predicted power, because the coupling

of the cylinder to the internal waves is affected by the development of the

turbulent boundary layer. Where the theory predicts an increasing rate of

energy transport by waves, we hypothesize that much of the forcing energy is

lost to turbulent kinetic energy in the bounding region of the cylinder. Here

we may use the expression for ε, (3.4), to estimate the total turbulent dissi-

pation rate. The product of ρ0ε with the characteristic volume of displaced

fluid, ∼ AcRcLc, yields an approximate dissipation rate of ρ0(AcRc)
2Lcω

3
c .

Using characteristic experimental values, we obtain an estimate of moderately

larger than 2000 erg/s. Therefore, it is unsurprising that we observe smaller

wave powers than predicted by theory. In particular, the estimated dissipation

rate is comparable to the discrepancy between the values of Pthy and Pexpt as

the forcing intensity is increased. Our assumption that the energy dissipation

rate ε is approximately equal to the rate of energy input, which neglects loss

due to waves, is reasonable considering the relatively small magnitude of the

measured wave power compared with the estimated rate of energy input.
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Chapter 4

Instabilities and Breaking

4.1 Introduction

As discussed in Section 3.3.3, we did not observe non-Boussinesq growth of the

wave amplitudes for upward-propagating beams through the use of synthetic

schlieren. Although we cannot attribute the breakdown of the wave beams to

the strong background stratification, the occurrence of instabilities remains an

observation that requires further investigation. The fully three-dimensional

flow that develops as the waves break down into turbulence eliminates quan-

titative synthetic schlieren as a tool for measurement or visualization of the

process. Therefore, in this chapter we describe two other techniques through

which we obtain information about the wave breakdown. Section 4.2 contains

details about the use of conductivity probe measurements at fixed spatial lo-

cations to obtain the corresponding vertical displacement field. We explain a

systematic technique for the qualitative analysis of wave breakdown from syn-

thetic schlieren images in Section 4.3.1, followed by the results in Section 4.3.2.

The findings of this qualitative analysis guide our hypothesis about a candidate

instability mechanism through which the beams break down. For an investi-

gation of the instability we have performed numerical simulations using a fully

nonlinear code. A brief description of the code and an order-of-magnitude

comparison between the results of the simulations and experiments are given
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in Section 4.4.1.

4.2 In-situ probe measurements

Synthetic schlieren provides a means of measuring quantitatively the structure

and amplitude of internal waves in space and time. In the previous sections

we have demonstrated the application of synthetic schlieren to experiments in

strongly stratified fluids. We have used a separate quantitative technique for

one characteristic experiment, in which measurements were made of the waves

at a fixed location as they evolved in time. This provides an independent

means through which we may observe the establishment of the wave field and

its subsequent breakdown into turbulence.

A conductivity probe was used to perform a vertical traverse of the back-

ground stratification in the spatial region of interest, with approximately 42

measurements of voltage, V , per vertical centimeter. The probe was then

placed at fixed locations in space for a series of three experiments in which a

cylinder with Rc = 4.43 cm and Ac = 2.0 cm was oscillating with frequency

ωc = 1.96 s−1 approximately 10 cm above the bottom of the tank. The probe

provided measurements of the voltage with a resolution in time of ∆t = 0.05 s.

The horizontal location of the probe was approximately 30 cm from the center

of the cylinder while the vertical coordinate was set at z = 45, 40, and 35 cm

successively above the bottom of the tank. In all cases the total depth of the

fluid was Ht ≃ 55 cm.

The time series measurements of voltage were translated into densities us-

ing the function ρ̄(V ) obtained from a linear fit to four discrete measurements

of voltage for densities in the range of [0.998, 1.30] g/cm3. With waves in the

fluid, the perturbation density at each vertical level was computed by sub-

tracting the background density that was measured prior to the start of the

cylinder oscillations. The wave vertical displacement, ξ, was then calculated
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according to

ρ = −dρ̄
dz
ξ, (4.1)

where ρ is the perturbation density and the background density gradient at

each of the three vertical levels was found through

dρ̄

dz
=
dV

dt

dρ̄

dV

dt

dz
. (4.2)

Time series of the vertical displacement are shown in Figure 4.1 for each

vertical level. The motor driving the oscillations of the cylinder was turned

on at t = 30 s for (a) and t = 20 s for (b) and (c), and was turned off at

t ≃ 150 s for each experiment. In all cases, we observe at first a regular, peri-

odic signal in time, with growth in amplitude as the initial transient reaches

and passes the location of the probe. Based on the background stratification

and the forcing frequency, we expect close agreement between the cylinder

and wave frequencies because ωc/N0 ∈ [0.5, 0.8], as discussed in Section 3.3.1.

A closer examination of the early times in Figure 4.1 yields a wave period

that is similar to the cylinder period of Tc = 2π/ωc = 3.2 s. For each plot

the vertical axis is the same to allow for direct comparison of the wave am-

plitudes at varying location in the vertical. The schlieren measurements as

reported upon in Section 3.3.3 yielded an estimate of the amplitude of the

waves for t ∈ [4Tigw, 5Tigw] from an average over r ∈ [10 cm, 20 cm]. For an

experiment with the same forcing parameters as the experiment shown here,

the estimated vertical displacement amplitude was Aξ = 0.5 cm. Although

the spatial locations of the measurements differed, the conditions should be

the most similar to those at z = 35 cm in the present analysis. The appro-

priate time for comparison of the wave amplitudes is approximately 4 wave

periods after the oscillations of the cylinder began, which is t ≃ 33 s. While

we do not expect exact agreement between the measurements because of the
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ing parameters in each case.
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different techniques of instantaneous measurement and averaging over space

and time, the magnitude of the wave vertical displacement is within approx-

imately 25% of the value of 0.5 cm obtained using synthetic schlieren. As

shown in Figure 4.1, after a finite time the signal becomes irregular and the

wave amplitude varies erratically. We consider this change in the regularity

of the signal the signature of turbulence onset. The occurrence of large wave

amplitudes or irregularity in the time series correlates well with the observa-

tion of significant distortions in the schlieren image of horizontal lines behind

the tank, as described in Section 4.3.1.

4.3 Wave breakdown: qualitative observations

4.3.1 Method

In order to gain insight into the mechanism for the observed instabilities, a

qualitative examination was performed of the raw video footage for a subset

of experiments. The collection of experiments included both NaCl and NaI

stratifications, as well as the full range of cylinder radius, amplitude, and os-

cillation frequency. A consistent, although qualitative, criterion was chosen to

mark the onset of significant disturbances to the beam structure; we will refer

to this phenomenon as wave breakdown. The horizontal black and white lines

of the schlieren image were monitored visually for the first occurrence of the

lines appearing to be oriented vertically at a location outside of the turbulent

region bounding the cylinder. An example of the visual characteristics of the

schlieren image is shown in Figure 4.2. The experiment and spatial region

are the same for each frame, with time increasing from (a) to (c). A typical

image resulting from a coherent wave beam is shown in (a), which includes

visible deflections of the lines from their undisturbed orientation. The region is

shown in (b) 4 seconds later with clear qualitative changes occurring in the im-
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Figure 4.2: Close-up view of synthetic schlieren background showing evolution
of image characteristics. (a) Typical distortions of the image due to waves. (b)
The image when satisfying the criterion for breakdown. (c) Loss of resolution
of the lines. (x, z) = (0, 0) corresponds to the equilibrium position of the
cylinder.

age. Our criterion for wave breakdown is satisfied at (x, z) ≃ (−11 cm, 28 cm),

where the lines become vertical and appear to be “overturning.” The image

in (c), taken 7 seconds after the time of (b), shows blurring and the inability

of the camera to resolve each separate line due to the development of fully

three-dimensional turbulence. We interpret this evolution of the raw image as

evidence of the evolution of the beam instability, but these features alone do

not provide significant insight into the instability mechanism. We provide a

discussion of potential causes for wave breakdown in Section 4.3.2.

For each experiment, several frames separated by 1 second were made from

the video recording, starting at approximately the time of breakdown. From

these still images the initial breakdown could be examined more easily and

precisely. In each case, this technique was used to estimate the time and loca-

tion at which breakdown occurred, which can then be compared for different

forcing parameters of the cylinder. We emphasize that this analysis focuses

on the first occurrence of the image “overturning,” as shown in Figure 4.2(b).

47



Such overturning often is subsequently observed at different locations in the

tank for later times in the experiment.

4.3.2 Results of qualitative synthetic schlieren analysis

The qualitative data, obtained from unprocessed schlieren images as described

in Section 4.3.1, yielded several significant results. For some experiments, the

breakdown criterion was not satisfied at any time that the cylinder was oscillat-

ing. It was common to these experiments that the forcing frequency was very

near to or above the background buoyancy frequency, or the amplitude of oscil-

lation was the smallest of our parameter range. This result for high frequency

forcing is consistent with the quantitative synthetic schlieren measurements,

in which the wave signal was weaker and less coherent than for mid-range forc-

ing frequencies. Thus, we should not necessarily expect significant growth and

transition to instability for the waves generated by high frequency forcing. The

occurrence of wave breakdown in both upward- and downward-propagating ex-

periments confirms that non-Boussinesq growth of upward-propagating waves

is not responsible for the behaviour. Another trend in the observations is

that the time of wave breakdown varies significantly across experiments. For

the same cylinder radius and amplitude, a change in the forcing frequency

yielded an opposite change in the observed time of breakdown, i.e. a decrease

(increase) in frequency resulted in a later (earlier) breakdown. This is a phys-

ically reasonable consequence of the change in the timescale of wave beam

development due to the change in frequency. The effects of cylinder radius

and amplitude on the breakdown time and location appear to be dominated

by the forcing frequency in this qualitative analysis.

There are several possible scenarios, which are represented schematically

in Figure 4.3, that could lead to the breakdown of waves as observed. We

expect that nonlinear effects are the most significant in regions of beam self-
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Figure 4.3: Schematic illustration of potential causes for wave breakdown: (a)
beam superposition due to surface reflection, (b) beam-beam interference, and
(c) breakdown of a freely propagating beam due to instability.
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interaction, such as where the primary beam reflects off of the surface, or

in a beam-beam interaction that could arise through multiple reflections off

of the tank walls and the fluid surface. These situations are depicted in (a)

and (b), respectively. We also consider the possibility of the breakdown of a

freely propagating, non-interfering primary beam, as shown in (c). Breakdown

in a region of beam reflection is the most straightforward to identify from

observations because of the proximity to the surface or the bottom of the

tank. In the case of beam-beam interactions at mid-depth, we expect that

the location of the breakdown would vary significantly according to the wave

frequency and the corresponding angle of propagation. Through geometrical

considerations, the region of interference would move farther from the position

of the cylinder with decreasing forcing frequency.

The greatest insight into the underlying mechanism for the instability has

been obtained from a comparison of the breakdown location across experi-

ments, for which the data are plotted in Figure 4.4. The experiments have

been separated into upward- and downward-propagating beams in (a) and (b)

respectively, with further distinctions made according to the forcing frequency

relative to the background buoyancy frequency, as shown by the legend. For

reference, we also include lines with slopes predicted by the value of ωc/N0,

by which we can place approximate bounds on the expected locations of the

waves contained in the primary beam at a given frequency. Note that in this

qualitative analysis of video footage, the experiments were not restricted to

the frequency range that was used for quantitative analyses. In Figure 4.4,

a marker indicates the location of wave breakdown for each experiment. We

observe that as a group, the markers are displaced somewhat upward in (a)

and downward in (b) relative to a line through the centre of the cylinder.

This is consistent with our observations from quantitative synthetic schlieren

that the primary beam was not centred about the equilibrium position of the
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Figure 4.4: Schematic of experimental setup (to scale) with a marker denoting
the location of wave breakdown for each experiment as indicated in the legend.
Results for upward- and downward-propagating primary beams are shown in
(a) and (b), respectively.
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cylinder. Therefore, the locations of the markers agree well with our expecta-

tions, considering that the primary beam emanates from the turbulent patch.

The horizontal coordinates of breakdown were clustered within approximately

20 cm from the centre of the cylinder, and there were no apparent trends in

this location based on forcing parameters. The initial wave breakdown accord-

ing to our criterion occurred at a vertical coordinate that does not correspond

to a region of surface or bottom wave reflection, nor does the horizontal dis-

tance change significantly with frequency. So, having ruled out beam-beam

interactions, we conclude that the waves contained in a single beam undergo

a transition to instability independently of interactions with boundaries or

other beams. A candidate mechanism for the breakdown of an isolated beam

is parametric subharmonic instability, whereby energy is transfered to waves of

lower frequency and higher wavenumber than the primary disturbance. This

hypothesis provides the motivation for the numerical simulations as described

in the following section.

4.4 Parametric Subharmonic Instability

The nonlinear interaction of internal waves through resonant triads was first

demonstrated theoretically by Phillips (1960). These resonance conditions

provide a mechanism through which energy is transferred between waves of

different frequency and wavenumber, such that initially small-amplitude dis-

turbances of the base state may grow in time. A triad of modes with frequen-

cies ωi and wavenumber vectors ~ki satisfes the following relations (Staquet and

Sommeria, 2002):

~k1 + ~k2 + ~k3 = 0 (4.3)

ω1 + ω2 + ω3 = 0, (4.4)
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where both positive and negative frequencies are possible. The dispersion

relation for internal waves must be satisfied for each of the wave modes inde-

pendently.

McComas and Bretherton (1977) describe parametric subharmonic insta-

bility (PSI) as a particular class of triad interaction in which energy is trans-

ferred from a large-scale primary wave of finite amplitude to two small-scale

disturbances with nearly opposite wavenumber vectors. The analysis of Hassel-

mann (1967) showed that growth is only possible for perturbations of smaller

frequency than the primary wave, with the maximum growth rate occurring

for the half frequency subharmonic (Staquet and Sommeria, 2002). The am-

plitudes of the small-scale waves grow exponentially in time with the energy

of the primary wave until the wave action density, given by Ai(~ki) = E(~ki)/ωi,

is approximately equal for each mode (McComas and Bretherton, 1977). Here

E(~ki) is the energy density per unit wavenumber per unit volume in physical

space. This continuing transfer of energy to small-scale disturbances of sub-

harmonic frequencies has significant implications for the evolution of the wave

field and has motivated theoretical, numerical and experimental studies of PSI

by previous authors.

Mied (1976) performed a linear stability analysis of finite-amplitude plane

waves under the Boussinesq approximation. In general, numerical techniques

were used to solve the equations to a high accuracy without employing sim-

plifying assumptions about the lengthscales of the growing disturbances. For

waves with a wavenumber vector between 10◦ and 80◦ from the horizontal, it

was found that even those with infinitesimal amplitudes are parametrically un-

stable. Klostermeyer (1982) improved upon the numerical techniques of Mied

(1976) to extend the theory to full generality and confirm that for inviscid flow

the most unstable disturbance modes are those with the largest wavenumbers.

Experimental observations of PSI in a cylindrical boundary geometry were
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presented by McEwan and Robinson (1975). In that work it was also noted

that earlier experiments displayed evidence of PSI in shadowgraph images,

with the common feature that the appearance of such local instabilities was

correlated with the subsequent “irreversible traumatic distortion” of the strat-

ification and finescale layered density discontinuities. In experiments that ex-

amined the breaking of standing mode-1 waves in a rectangular tank, McEwan

(1983) noted that density microstructure became evident surprisingly rapidly

in regions of the tank that were outside of breaking due to PSI. Although the

source conditions differ, similar behaviour was observed qualitatively in the os-

cillating cylinder experiments for the current work. In some cases, widespread

visual distortions that were not associated with beam locations appeared in a

relatively short time following the breakdown of the primary beam. In more

recent experiments, Thorpe (1994) showed the development of parametric in-

stability in an oscillating tilted tube of stratified fluid. Alternating locations

of wave overturning were found to correspond with the scale of the subhar-

monic waves, thereby demonstrating directly that the instability contributes

to convective motions and mixing.

Using three-dimensional direct numerical simultions of plane waves in a

Boussinesq fluid, Lombard and Riley (1996) investigated the unsteady break-

down of waves to turbulence. It was found that for an initially two-dimensional

base wave, there was comparable energy in both the two- and three-dimensional

components of the unstable flow. Resonant triad interactions in two dimen-

sions were the dominant mechanism of instability for waves of smaller ampli-

tude, while the three-dimensional character of the breakdown became increas-

ingly prominent for larger base wave amplitudes.

These studies and others have focused on the unstable dynamics of plane

waves, whereas the work of this thesis is focused on a quasi-monochromatic

internal wave beam. While there exists qualitative shadowgraphic evidence of
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PSI in the case of two interacting wave beams (McEwan and Robinson, 1975),

no further research on the potential development of PSI for an isolated beam

has been conducted. For this reason we have performed numerical simulations

to examine the breakdown of a finite-amplitude beam. The details of the

simulations and its results are given in the following subsection.

4.4.1 Numerical Simulations

A two-dimensional, fully nonlinear, Boussinesq code was used to simulate the

evolution of an internal wave beam. The governing equations in terms of the

vorticity, ζT , and the total density, ρT , are given by (Sutherland, 2006a)

DζT

Dt
=

g

ρ0

∂ρT

∂x
+ ν∇2ζT , (4.5)

DρT

Dt
= κ∇2ρT . (4.6)

Here D/Dt = ∂t + uT∂x +wT∂z is the material derivative, with the horizontal

and vertical components of the total velocity defined as uT = −∂zψT and wT =

∂xψT . The streamfunction, ψT , is related to the vorticity through ζT = −∇2ψT .

In (4.6), ν is the kinematic viscosity and κ is the diffusivity. In practice, the

influence of viscosity was determined through the Reynolds number, which was

set to correspond with an experimental value for each run of the simulations.

The Schmidt number, given by ν/κ, was set to unity for all cases. Although

this implies unrealistic values of κ, diffusive processes were not important to

the dynamics being studied, as the Reynolds numbers (≈ 1250 − 1800) were

sufficiently large.

Previous numerical work (Sutherland, 2006b; Brown et al., 2008) has fo-

cused on plane waves and spatially localized wavepackets, often with uniform

structure in the along-stream direction. The simulations presented here are

not an attempt to model accurately all of the characteristics of the oscillating

cylinder experiments. Our objective in performing simulations was to inves-
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tigate potential instabilities in an established beam of finite width. For this

study the spatial domain was horizontally and vertically periodic with a resolu-

tion of 128 by 512 points in the x and z directions respectively. The code uses

finite differencing in the vertical with periodic upper and lower boundary con-

ditions and was run with 64 spectral modes in the horizontal direction. While

a horizontally plane wave structure can be resolved with far fewer modes,

the finite beam width in the current study means that increased horizontal

resolution was required for adequate sampling across the signal.

We have initialized the simulations with a perturbation in the form of plane

wave structure in the cross-beam (σ) direction with a Gaussian envelope to

determine the beam width. In order to satisfy the doubly-periodic boundary

conditions, the full disturbance consisted of a superposition of three identical

beams separated by a fixed distance. The beams decayed sufficiently rapidly

to prevent an increase in amplitude of the neighbouring beams due to super-

position. Given a domain x ∈ [0, L], z ∈ [0, H], the beam separation was given

by

σs =
LH√
L2 +H2

. (4.7)

This distance guarantees the periodicity of the structure by positioning the

centre line of the two secondary beams at the appropriate corners of the do-

main. We have initialized the beams such that the structure resembles the

first quadrant of the wave pattern resulting from monochromatic forcing. The

centre line of the primary beam was from corner to corner of the domain, re-

gardless of the dimensions L and H. These parameters determine the angle of

the beam to the vertical direction, and hence the frequency ωigw, through the

relations

Θ = tan−1

(

L

H

)

= cos−1

(

ωigw

N0

)

. (4.8)
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The maximum amplitude of the perturbation, cross-beam wavenumber,

and standard deviation of the Gaussian envelope, denoted by a0, kσ, and σ0

respectively, are free parameters. The initial structure of the streamfunction

is then given by

ψ(σ, t = 0) = a0

{

exp

[−σ2

2σ2
0

]

cos(kσσ) + exp

[−(σ − σs)
2

2σ2
0

]

cos [kσ(σ − σs)]

+ exp

[−(σ + σs)
2

2σ2
0

]

cos [kσ(σ + σs)]

}

. (4.9)

For each spatial coordinate pair (x, z) in the domain, a transformation to the

σ coordinate was performed using σ = −x cos Θ + z sin Θ. The value of ψ

was calculated for the resulting value of σ according to (4.9), and was then

assigned at the original grid point. Small-amplitude randomly generated noise

was also superimposed on the field over the entire domain to seed any physical

instabilities evenly.

For a beam in the first quadrant, the vertical component of the group

velocity is positive. Therefore, in order to obtain the correct signs of the

horizontal and vertical wavenumbers kx and kz, they were calculated as

kx = |kσ| cos Θ, kz = −|kσ| sin Θ, (4.10)

where kσ < 0.

The parameters that determine the flow were chosen to model the experi-

mental conditions. In all cases, the background velocity was zero and N0 was

the value determined from the density profile, as described in Section 2.2. For

a given experiment, the characteristic cross-beam wavenumber, k∗σ, frequency,

ωigw, and vertical displacement amplitude, Aξ, were known. The initial stream-

function amplitude was determined through polarization relations (Table 3.1)

as

a0 =
ωigw

kx
Aξ =

ωigw

k∗σ cos Θ
Aξ, (4.11)
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such that a0 > 0. The value of Aξ was determined similarly using the polar-

ization relation (3.6), so the final value of a0 should be considered an estimate

due to the propagation of uncertainties in our experimental measurements.

We also have an approximate measure of the beam width from experiments

in terms of the parameter α, given by (3.15). For the numerical beam ini-

tialization, we have attempted to obtain approximately 2 wavelengths across

the width of the beam for consistency with observations and the result that

α ∈ [1.6, 2.2]. Contours of the vorticity field are shown at initialization in

Figure 4.5(a). Note that the extrema of the contour range are the same for

each panel so that direct comparison is possible.

For all simulations that were initialized using parameters comparable to

experimental conditions, an instability developed along the central beam after

an initial period of regular propagation of phase lines through the beam at a

constant angle. The onset of the instability occurred along the centre line of

the beam, where the initial amplitude was largest, and the transition appeared

visually to occur along the entire length of the beam simultaneously, as shown

in Figure 4.5(b). Therefore, we have confidence that the instability is physical

and is not caused by boundary effects in the numerical formulation. Within

the beam structure, waves began to develop at a larger angle to the vertical

direction, and hence a lower frequency, than the initial disturbance. A cascade

of energy to smaller scales was also observed. The change in frequency and

wavenumber are evident in Figure 4.5(c), where we have superimposed arrows

showing the orientation of waves at the initial frequency and the half-frequency

subharmonic. The phase lines of the waves including the developed instability

align well with the expected direction for the subharmonic, thereby supporting

the conclusion that PSI was the primary mechanism for the breakdown of

the wave beam in the numerical context. In general, the instability grew in

amplitude until overturning began to occur, after which the simulations broke
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Figure 4.5: Contours of the vorticity, ζT [s−1], at (a) initialization, (b) ap-
proximately the onset time of the instability, and (c) a late time in the
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down rapidly. For waves with smaller initial amplitudes, the simulations ran

for the full time of the corresponding experiment. However, the development

of PSI was responsible for a complete loss of the coherent beam structure. This

effect may explain our observations in raw experimental footage of the sudden

spread at late times of large disturbances in the tank that did not correspond

with the expected location of beams.

The use of experimentally realistic parameters to initialize the simulations

facilitates a comparison between the observed time of PSI onset in the sim-

ulations and the experimentally observed time of wave breakdown from the

raw schlieren image, as described in Section 4.3.2. Although we cannot spec-

ify what physical effects occurred at the time of observation, the hypothesis

that PSI arose in the experiments may be supported or refuted through an

order-of-magnitude comparison with the results of the simulations. Runs were

performed with parameters modelling five characteristic experiments in two

different stratifications with a range of forcing frequencies. We have found that

the estimated time of the onset of PSI in the simulations differs from the ex-

perimental breakdown time by a maximum of a factor of 2. This is reasonable

agreement if one considers that the simulations serve to model approximately

some of the characteristics of the experimentally measured waves. Using the

numerics, we have verified that instabilities became evident in a physically

reasonable timescale given realistic input parameters. No systematic pattern

emerged in a comparison between the estimated times of instability onset for

the numerics and the experiments, e.g. there were cases in which the experi-

mental time was approximately 30% less than the time from simulations and

vice versa. The similarity of the experimental and numerical timescales for

the development of instabilities serves as support for the hypothesis that PSI

was the cause of breakdown of the beams in the experiments.
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Chapter 5

Summary and Conclusions

We have studied the generation, propagation, and eventual breakdown of in-

ternal wave beams generated by the vertical oscillations of a cylinder in strong

stratifications of NaCl or NaI. Large-amplitude forcing caused boundary layer

separation around the cylinder, resulting in an oscillatory turbulent source.

This generation mechanism was found to influence the characteristics of the

internal wave beams in comparison with previous experimental observations

and theoretical predictions in the linear regime. Although we did not ex-

pect agreement between our observations and theory due to the turbulent

and large-amplitude source, the theoretical results were used to illustrate and

characterize the effects of the source modification upon the waves.

In order to perform quantitative measurements in fluids with significant

density variations with height, a generalized form of synthetic schlieren was

developed to take into account the full vertical profile of the density and index

of refraction. To implement this technique in the current work, we performed

measurements of the index of refraction of NaI solutions as a function of den-

sity, over a large range of concentrations. The resulting functional dependence

may be used for experiments in which the desired density variations are larger

than those permitted by standard NaCl solutions. In this work, the modified

synthetic schlieren technique was used to make quantitative measurements of

61



wave frequency, wavenumber, and amplitude.

It was found that the wave frequency was equal to the forcing frequency

only for the interval ωc/N0 ≈ 0.5 − 0.8. For small forcing frequencies, beams

were generated at higher harmonics and with larger associated power than

the primary beam. With forcing frequencies above N0, the waves generated

by the localized turbulent patch had frequencies of approximately 0.5N0. In

all cases, the waves with the maximum associated power were observed in

the range ωigw/N0 ≈ 0.5 − 0.8, regardless of the forcing frequency. These re-

sults indicate a preferred frequency range that is in agreement with previous

work on the turbulent generation of internal waves (Dohan and Sutherland

(2003); Aguilar and Sutherland (2006); Taylor and Sarkar (2007)). Wave fre-

quency selection in the typical range occurred despite a dominant frequency

component, due to forcing by the cylinder, of the turbulent source. Coherent

quasi-monochromatic beam structures were observed emanating directly from

the source without an intermediate spatial region of waves with a broad fre-

quency distribution. Therefore differential viscous decay as studied by Taylor

and Sarkar (2007) does not account for the observation of frequency selection

in this study.

Rather than the cylinder radius, the Ozmidov scale, which characterizes

the vertical scale of the eddies in stratified turbulence, was found to be predic-

tive of the size of the turbulent patch surrounding the cylinder and also of the

lengthscale of the waves. Also as a consequence of the turbulent generation

mechanism, the wave amplitudes were found to be an approximately constant

fraction of the horizontal wavelength, which has been noted in previous ex-

perimental studies (Aguilar and Sutherland, 2006). However, the magnitude

of this ratio differed for experiments in NaCl and NaI stratifications. This

observation is currently unexplained and requires further investigation. The

measurements of frequency, cross-beam wavenumber and amplitude were com-
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bined in a calculation of the power of the primary wave beam. To account

for the energy transport by all components of the spectrum, we expressed

the power as a sum over wavenumber modes. With this treatment of the

full spectrum rather than simply a characteristic lengthscale, the measured

wave power was nonetheless found to be approximately an order of magni-

tude smaller than the rate of energy input. Much of the forcing energy was

converted to turbulent kinetic energy in the boundary layer surrounding the

cylinder.

Although the experiments were partially motivated by the observation of

non-Boussinesq effects in a laboratory setting, the amplitude analysis showed

no significant differences between upward and downward propagation of the

primary beam. Large-amplitude effects dominated the evolution of the waves.

The timescale, and hence vertical scale, over which the waves were steady and

quantitatively measurable were insufficient for the observation of asymmetry

in the vertical direction.

Qualitative observations from unprocessed videos were used to characterize

the time and location of wave breakdown in the experiments. With the motiva-

tion of examining potential instabilities for a monochromatic wave beam, fully

nonlinear numerical simulations were performed with experimentally realistic

input parameters. The results of the simulations showed the development of

parametric subharmonic instability at times comparable to the observed val-

ues for the experiments. Based on this outcome, we conclude that PSI of

the isolated primary beam was responsible for the breakdown of the waves

in the experiments at relatively late times. This result contradicts the ex-

pectation that nonlinear effects should only be significant in regions of beam

self-interaction or collisions.
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Appendix A

Review of Theory for

Oscillating Cylinder

Here we briefly review the results of Hurley and Keady (1997) for the approx-

imate solution of waves generated by small-amplitude oscillations of a circular

cylinder in a viscous Boussinesq fluid. Although our experiments are per-

formed in strongly stratified fluids, the cylinder radius is much smaller than

the density scale height, H, so that the wave generation may be considered

Boussinesq. Non-Boussinesq effects may modify the amplitude of waves as

they propagate away from the source over vertical distances comparable to H.

The theory is expected to deviate from our experimental results because it

neglects boundary layer separation and the formation of turbulence. However,

we use the analytic results as a means for characterizing the experimental

observations in terms of an idealized generation mechanism.

A circular cylinder of radius Rc with its central axis aligned in the y-

direction is assumed to oscillate vertically with velocity given by the real part

of W exp(−iωct). This produces two-dimensional waves in the x-z plane. As-

suming time-periodic solutions, the wave disturbance field can be character-

ized by a streamfunction of the form ψ = Ψ(x, z) exp(−iωct), so that the fluid

velocities in the x and z directions are given by

u = −∂ψ
∂z
, w =

∂ψ

∂x
, (A.1)
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respectively. With the assumptions that the fluid is uniformly stratified and

Boussinesq, that the flow is laminar and that the oscillation amplitude is

small in comparison with the cylinder size, the resulting equation for Ψ(x, z)

is (Voisin, 1991; Hurley and Keady, 1997)

N2
0

∂2Ψ

∂x2
− ω2

c ∇2Ψ + iωc ν∇4Ψ = 0, (A.2)

where ν is the kinematic viscosity and N0 is the constant buoyancy frequency.

A new coordinate system defines the along-beam coordinate, r, and cross-

beam coordinate, σ, for the wave beam propagating upward and to the right

of the source in terms of the (x, z) coordinates as

σ = −x cos Θ + z sin Θ, r = x sin Θ + z cos Θ. (A.3)

The angle to the vertical, Θ, at which the beam emanates is determined by

the forcing frequency relative to the buoyancy frequency:

ωc
N0

= cos Θ. (A.4)

This is the dispersion relation under the current assumptions, given that

Θ is also related to the wavenumber vector, ~k = (kx, kz), through Θ =

tan−1(kz/kx). The boundary-layer approximation (Thomas and Stevenson,

1972) allows one to simplify equation (A.2) in the (σ, r) system by neglecting

high-order derivatives with respect to r in comparison with derivatives with

respect to σ. The resulting equation is

− ∂2Ψ

∂σ∂r
+

iν

2ωc tan Θ

∂4Ψ

∂σ4
= 0. (A.5)

The viscous no-slip boundary condition on the cylinder is replaced by a free-

slip condition under the assumption that the Reynolds number, Re, is large.

Equivalently,

λ =
ν

2R2
c ωc tan Θ

=
1

2Re tan Θ
≪ 1. (A.6)
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Under these conditions the solution to (A.5) for the wave beam in the first

quadrant of the (x, z) coordinate system is given by

Ψ = −iWRc

2
eiΘ
[
∫

∞

0

J1(K)

K
exp

(

−K3λ
r

Rc

− iK
σ

Rc

)

dK

]

, r > 0,

(A.7)

where J1 is the first-order Bessel function of the first kind.

Synthetic schlieren measures changes to the background density gradient

due to waves. The perturbation is more intuitively quantified as the rate

of change of the local squared buoyancy frequency, N2
t . Thus, for compar-

ison with experiments we will use (A.7) to compute N2
t using linear theory

(Sutherland and Linden, 2002):

N2
t ≃ N2

0 cos Θ sin Θ
∂2Ψ(r, σ)

∂σ2
. (A.8)

Thus from (A.7), we obtain

N2
t =

iW

2Rc

eiΘN2
0 cos Θ sin Θ

[
∫

∞

0

KJ1(K) exp

(

−K3λ
r

Rc

− iK
σ

Rc

)

dK

]

.

(A.9)

At any distance, r, from the cylinder centre, the across-beam structure can

be computed from (A.9) using Fast Fourier Transforms. Figure A.1 shows

the transition in the cross-beam structure with increasing distance from the

cylinder. In (a), a beam cross-section in the near field reveals bimodal waves,

whose amplitude envelope peaks near tangents to the cylinder. The far field

profile becomes unimodal, as shown in (b), with the peak in amplitude along

a line through the cylinder centre.

Because the theory assumes flow around the cylinder is laminar and free-

slip, it underestimates the experimentally observed beam width. For moderate-

amplitude forcing, an estimate of the thickness of the viscous boundary layer

surrounding the cylinder accounts for the expected discrepancy between the

theoretically predicted beam width and the experimentally observed value
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Figure A.1: Normalized N2
t field as a function of normalized cross-beam co-

ordinate, calculated from (A.9). The heavy solid curves are the amplitude
envelope over one wave period, and the inner curves show the field at partic-
ular values of the phase.

(Sutherland et al., 1999). In our experiments the forcing amplitude is on the

order of the cylinder radius so that a thick turbulent layer develops around

the cylinder. This causes many of the assumptions made in the derivation of

(A.9) to break down. A calculation of the viscous boundary layer thickness

alone significantly underestimates the expected discrepancy between theoret-

ical predictions and observations.
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Appendix B

Derivation of Synthetic

Schlieren Equations

Synthetic schlieren is an optical measurement technique that depends upon

the variation of the index of refraction of a fluid with density. In laboratory

experiments with stratified fluids, propagating internal waves cause density

perturbations in space and time that can be visualized through the apparent

displacement of an image behind the tank. Synthetic schlieren allows one to

compute the internal wave field from measurements of the visual distortions of

this image. The application of schlieren to fully three-dimensional flows using

inverse tomography has been developed recently by Decamp et al. (2008) and

demonstrated through numerical experiments. Here we review the derivation

of the synthetic schlieren method for two-dimensional flows, as presented by

Sutherland et al. (1999). We focus on the technique as it was implemented in

previous studies, i.e. in a Boussinesq stratification with buoyancy frequency

N . The results are restricted to the case of fluid disturbances in the (x, z)

plane, such that the properties of the flow are uniform in the y (cross-tank)

direction. Previous experiments and the work presented in this thesis were

designed to satisfy this physical condition.

The path of a ray of light as it passes through a stratified fluid varies
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Figure B.1: Schematic diagram of a close-up view of the stratified fluid
bounded by tank walls, which are represented by the shaded areas. The angle
of incidence and curvature of the path are exaggerated for clarity.

according to Snell’s Law,

n̄ cosφ = constant. (B.1)

Here n̄(x, z) is the index of refraction of the fluid and φ(y, z) is the angle of the

ray to the surfaces of constant n̄, which are horizontal in the undisturbed state.

The path is decomposed into coordinates parallel (y) and perpendicular (x or

z) to these isosurfaces. For simplicity and consistency with the current study

and previous experiments, we will restrict the derivation to the optical tracking

of vertical displacements only and focus on z as the perpendicular coordinate.

In this case, the image consists of a pattern of alternating horizontal black and

white lines that are uniform in the x direction. The path of the ray through the

fluid under these assumptions is shown schematically in Figure B.1. Denoting

the along-path coordinate as s, we differentiate (B.1) with respect to s and
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use the geometric relations dy = ds cosφ and dz = ds sinφ to obtain

dn̄

ds
cosφ− n̄ sinφ

dφ

ds
=
∂n̄

∂z
cosφ sinφ− n̄ sinφ

dφ

ds
. (B.2)

Noting that

d2z

dy2
=

d

dy
(tanφ) =

∂s

∂y

d

ds
(tanφ) = sec3 φ

dφ

ds
, (B.3)

we may eliminate dφ/ds in (B.2), resulting in

d2z

dy2
=

sec2 φ

n̄

∂n̄

∂z
. (B.4)

The density gradient is introduced through the following substitution:

∂n̄

∂z
=
dn̄

dρ̄

∂ρ̄

∂z
= −

(

1

g

ρ0

n0

dn̄

dρ̄

)

n0N
2, (B.5)

so that

∂n̄

∂z
= −n0γN

2, (B.6)

where

γ =
1

g

ρ0

n0

dn̄

dρ̄
. (B.7)

Here ρ0 and n0 are reference values of the density and index of refraction. In a

Boussinesq stratification it is sufficient to treat γ as a constant over the entire

tank depth because of the small variation in the fluid properties with z. For

solutions of NaCl, the value of dn̄/dρ̄ may be obtained from tables, such as

those in Weast (1981). (B.4) is simplified by the assumption that the angle

of incidence of the ray to the horizontal is small, which is guaranteed by the

positioning in space of the experimental apparatus. Using (B.6) and assuming

that sec2 φ ≃ 1, we obtain

d2z

dy2
= −γN2. (B.8)
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Figure B.2: Schematic diagram (not to scale) of a typical experimental appa-
ratus for synthetic schlieren, with the path of a light ray represented by the
solid line.

Integrating this equation yields the path of the light ray, z(y), as it traverses

the span of the tank:

z(y) = zi + y tanφi −
1

2
γN2y2, (B.9)

where zi and φi are the vertical coordinate and the angle to the horizontal at

the point of incidence of the ray. The stable stratification causes the light to

follow a parabolic path through the fluid, thereby changing the angle, φf , at

which the ray meets surfaces of constant n̄ upon exiting the tank.

For experimental applications, the light rays pass through several interfaces

between different media on their path from the screen to the camera, as shown

schematically in Figure B.2. To obtain the total vertical deflection of a ray

between these endpoints, Snell’s Law is applied at each interface with the

corresponding index of refraction for each medium. Performing this calculation

and assuming that each angle of incidence is small, such that tanφi ≃ φi, the

total vertical deflection for a ray entering the camera at an angle φ0 above the
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horizontal is given by

z(N2, φ0) ≃ Lcφ0 + Lp(na/np)φ0 + Lt(na/nw)φ0 −
1

2
γN2L2

t (B.10)

+ Lp(na/np)φ0 − Lp(nw/np)γN
2Lt + Lsφ0 − Ls(nw/na)γN

2Lt.

The lengths Lc, Lt, Lp and Ls are shown in Figure B.2, with the subscripts

referring to the camera, tank, walls and screen, respectively. Tank walls are

typically constructed of Perspex acrylic, with the index of refraction denoted

as np. The constants na and nw refer to the indices of refraction of air and

water, respectively. The use of the constant nw for the entire stratification is

a result of the Boussinesq approximation.

When internal gravity waves are present in the tank, the local value of

N2 changes with the perturbation to the background stratification. One may

calculate the apparent displacement, ∆z, of the image due to internal waves

by substituting N2 → N2 + ∆N2 in (B.10), which yields

∆z(∆N2, φ0) ≃ −1

2
γ∆N2L2

t − Lp(nw/np)γ∆N
2Lt − Ls(nw/na)γ∆N

2Lt.

(B.11)

Finally, since ∆z is measured experimentally in order to determine the wave

field, we rearrange the above equation to solve for the perturbation to the

squared buoyancy frequency in terms of known quantities:

∆N2 ≃ −∆z
1

γ

[

1

2
L2
t + Lt nw

(

Lp
np

+
Ls
na

)]

−1

. (B.12)

The calculation of ∆z from experimental images is based upon tracking

the changes in light intensity recorded at each pixel in the field of view of the

camera. For successive frames, the apparent displacement is calculated if the

contrast in intensity across three pixels is greater than an explicit threshold

value. For details on the implementation of synthetic schlieren, the reader is

referred to Sutherland et al. (1999).
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