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Abstract

The research investigation focuses on modeling and mitigation of interference in

Heterogeneous networks (HetNets). Stochastic geometry-based analytical tools are

used to develop tractable mathematical models. The idea is to abstract the spa-

tial distribution of nodes and users by points of suitable point processes. Devel-

oped mathematical models are used to identify the effects of various parameters

and network configurations on the performance of cellular networks. In particular,

the aims of this research project are to: (i) develop analytical tools to comprehen-

sively capture practical conditions of HetNets, including the spatial distribution of

nodes and different environmental conditions (fading, shadowing, and path loss);

(ii) develop new power control schemes for HetNet uplink transmission; (iii) develop

simple cell association policies for HetNets; and (iv) investigate the impact of prac-

tical limitations in cell association policies on the performance of HetNets. Overall,

the research findings will pave the way to the design of new energy-efficient and

spectrally-efficient high-throughput cellular systems.
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Chapter 1

Introduction

From being an expensive technology enjoyed by a select few three decades ago,

mobile communications have become everyday commodity accessible to all today.

During this period, the world has witnessed the evolution of four generations of

cellular mobile communication systems. Each generation has revolutionized the

way people live their day-to-day lives.

Figure 1.1: Cisco mobile traffic forecast 2016-2021 [1]

Today’s mobile communication networks have to cater a diverse set of services

with a range of performance requirements. This includes meeting the high data

rates of capacity-hungry services (video and audio streaming, online gaming, social

networking, cloud computing [7, 8], augmented/virtual reality [9]), providing low

latency and ultra-reliable communications for critical services (autonomous driving,
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drones), and providing network connectivity in user-dense areas (offices, stadiums,

urban centers). Meeting all of these service requirements has put the networks

and system designers under tremendous pressure. Addition of a multitude of new

connections and services has increased the severity of the problem. For example, in

2016 alone, almost half a billion (429 million) mobile devices and connections were

added to wireless systems, increasing the number of the global mobile connections

and devices to approximately 8 billion [1]. As a result, global mobile data traffic grew

by 63% in 2016 and reached 7.2 exabytes (7.2×1018 bytes) per month, compared to

4.4 exabytes per month in 2015, see Figure 1.1 [1]. This trend is expected to continue

at compound annual growth rate (CAGR) of 47% from 2016 to 2021, reaching 49

exabytes per month by 2021. During this period the number of mobile-connected

devices, including machine to machine (M2M) modules is expected to reach 11.6

billion, which is 1.5 mobile devices per capita [1].

To cope with increasing demand, mobile networks have constantly evolved by

adding new technologies and features (enhanced multiple-input multiple-output

(MIMO) technologies [10–13] , carrier aggregation [14,15], dual connectivity, device-

to-device (D2D) communications [16–18], license assisted access (LAA) [19–21]), in-

troducing new types of base stations (BSs) (pico BSs, femto access points (APs),

enabling service off-loading to wireless LANs (WiFi) [22]), and adding more fre-

quency bands (millimeter waves [23,24]). A new generation of cellular mobile com-

munications standards has been introduced approximately every decade. Each new

generation has brought major changes to mobile communication systems. In be-

tween two generations system designers and standardizing bodies constantly add

new technical solutions to meet increasing demand. In keeping with this trend, cur-

rently the fifth generation cellular networks (5G) systems are in the development

stage. These communication systems are expected to be commercially deployed by

2020 [25,26].

1.1 5G New Radio: The Air Interface for Next Gener-
ation of Mobile Communications

5G networks are expected to result in dramatic improvements in the capabilities

of the current International Mobile Telecommunications-Advanced (IMT-A) net-

works (Figure 1.2) [2]. These include providing peak data rates of 20 Gbps, user

experienced data rates of 100 Mbps, area traffic capacity of 10 Mb/s/m2, connec-
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tion density of 1 million devices/km2, user mobility of 500 km/h, and end-to-end

network latency of 1 ms. Further, 5G networks are expected to result in a 3-fold

increase in spectral efficiency and a 100-fold increase in energy efficiency compared

to current IMT-A networks. To meet these demands the new air interface of 5G,

commonly known as 5G new radio (NR), is currently being developed [27].

Figure 1.2: ITU recommendation ITU-R M.2083-0 [2]

The challenging (and also conflicting) IMT-2020 performance requirements will

be met by three implementation varieties of 5G cellular networks, known as usage

scenarios [2] (see Figure 1.3), as follows:

1. Enhanced mobile broadband (eMBB): This usage case aims to serve users

that demand very high data rates [2, 28]. These include high-speed access

in user-dense areas (offices, stadiums, urban centers), broadband connectivity

everywhere (suburban, rural, and road networks), and high-speed mobility

(trains, planes, etc.) to meet the people’s demand for an increasingly digital

lifestyle [28,29].
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2. Massive machine-type communication (mMTC): The aim of the mMTC is to

meet demands of a developed digital society including high deployment den-

sity scenarios such as smart cities and smart agriculture [28]. These scenarios

are typically characterized by a very large number of connected devices trans-

mitting relatively low volumes of non-delay-sensitive data [2]. mMTC devices

need to be low cost and have very long battery life [2].

3. Ultra-reliable, low-latency communication (UR-LLC): Meeting the industrial

and health-care expectations by focusing on latency-sensitive services, such as

automated driving, remote management, wireless control of manufacturing or

production processes, remote medical surgery, and distribution automation in

a smart grid, are among the aims or UR-LLC [2,28]. This usage case has strict

requirements for throughput, latency, and connectivity [2].

Figure 1.3: 5G usage scenarios and their target capabilities [2]

Phased Deployment of 5G NR

To enable early launch of 5G services and to make the development process man-

ageable, there is an industry-wide plan to introduce 5G networks in two phases,

non-standalone 5G (NSA 5G) and standalone 5G (SA 5G). NSA 5G specifications

4



are expected be finalized in mid-2018, as part of 3rd generation partnership project

(3GPP) Release 15 (see Figure 1.4) and commercially deployed by early 2019 [3].

These networks will utilize the existing Long Term Evolution (LTE) radio and core

network as an anchor for mobility management and coverage, while adding new 5G

carriers. The main focus is on enabling eMBB services, while some of the features

of mMTC and UR-LLC are also expected to be realized in NSA 5G [29]. In parallel

to the development of NSA 5G, 3GPP and its organizational partners are currently

working towards the larger vision of 5G NR; SA 5G NR, supporting all three usage

cases eMBB, mMTC, and UR-LLC. These networks are expected to be commer-

cially deployed in 2020. Similar to three previous generations of cellular mobile

communication systems, second generation cellular networks (2G), third generation

cellular networks (3G), and fourth generation cellular networks (4G) [30], the first

release and commercial deployment will be just the starting point. Eventually more

features will be added to 5G systems to meet the future demands [29].

Figure 1.4: 3GPP ongoing releases and the development of 5G NR [3]

1.2 Heterogeneous Cellular Networks

The Heterogeneous network (HetNet) concept involves overlaying low-cost low-

power nodes, for example, pico BSs, femto APs, relay stations, remote radio heads
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Figure 1.5: Heterogeneous cellular network architecture

(RRHs), on coverage holes or capacity-demanding hotspots within a conventional

macro-cellular network [31–35]. Deploying such small nodes aims at off-loading

the macrocells, boosting the local capacity, extending the indoor coverage, and im-

proving the cell-edge user performance. Further, these nodes can be deployed with

relatively low network overhead, and potentially reduce network power consump-

tion. HetNets architecture is expected to play a key role in the next generation

cellular standards such as 5G NR and beyond. With network densification destined

to cope with ever increasing demand, future networks will be more heterogeneous

and will be more densely deployed than today’s networks.

A typical HetNet is shown in Figure 1.5. Macro BSs which are typically deployed

by the operator in a planned layout provide the umbrella coverage. They transmit at

high power level compared to other types of nodes (typically between 20 W to 40 W).

Dedicated optical fiber connections are used to backhaul macro BSs traffic. Pico BSs

are also deployed by the operators. However, they are deployed on coverage holes

or capacity demanding hotspots, and thus follow a relatively random placement.

While their backhaul implementation is similar to that of macro BSs, they transmit

at lower power levels, in the order of 250 mW to 2 W. Femto AP or home BSs

are typically deployed by users and are intended to boost indoor coverage. While

the transmit power is less than 100 mW, they are connected to the core network

via users’ Internet connections, such as digital subscriber line (DSL) or TV cable

6



modem. Access to a femto AP can be either restricted to users within a closed

subscriber group (CSG), unrestricted making service available to all devices coming

within its coverage or a combination of both, giving priority to CSG. These access

schemes are called open, closed and hybrid access, respectively [36]. A relay extends

the coverage of a BS by forwarding signals it receives wirelessly from the BS to the

users, and vice versa [37]. They are classified as in-band and out-of-band depending

on the type of backhaul connection. An in-band relay uses the same frequency band

as the access link for its backhaul, while an out-of-band relay uses a different set of

frequencies [38]. A RRH, also known as a fiber repeater, is connected to a BS by an

optical fiber and repeats signals it receives from the BS. It is an attractive solution

to provide wireless connectivity to users in dense urban areas [39]. A summary of

different types of nodes in HetNets is given in the Table 1.1.

Table 1.1: Different nodes in heterogeneous cellular networks

Node type Transmit power Features
Macro 5 W - 40 W Operator deployed, open access,

dedicated backhaul (often by optical fiber),
provides umbrella coverage

Pico 250 mW - 2 W Features are similar to those of macro BSs

Femto ≤ 100 mW User deployed, can be closed access
open access or hybrid type, backhaul is enabled by
user’s digital subscriber line or
TV cable modem

Relay 250 mW - 2 W Operator deployed, RF wireless backhaul
(usually in-band)

1.2.1 Spatial Modeling of Nodes and Users

A major change in the HetNet setup compared to traditional single-tier cellular

networks is the placement of BSs and their coverage or association regions [34].

Considering the fact that macro BSs are approximately evenly spaced, usually they

have been modeled as lying on a hexagonal grid. The association regions are then

simply the corresponding hexagons. However, smaller base stations, are not regu-

larly spaced nor their association regions homogeneous. These nodes are generally

scattered or clustered within the existing macrocell network due to the demand

based deployment, and form their own embedded smaller association regions. Con-
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sequently, the traditional hexagonal grid-based model is not suitable for modeling

the spatial distribution of nodes and users in a HetNet. One other major drawback

of grid-based model is its mathematical intractability. Therefore, researchers have

to rely on complex system level simulations to evaluate the performance of various

configurations. However, as networks become more complex with the addition of ir-

regularly deployed low-power nodes (pico BSs, femto APs etc.), simulations become

even more complex and time consuming. Thus, stochastic geometry characteriza-

tion of the spatial distribution of nodes and users has been developed [35, 40–43].

Stochastic geometry models permit deriving conclusions about entire classes of cel-

lular networks, instead of restricting to just one specific configuration of the net-

work [42, 43]. In these models, the nodes and users are abstracted by a suitable

point process, the Poisson point process (PPP) for example. Stochastic geometry

modeling of wireless networks is reviewed in Section 2.2.

1.2.2 Cell Association

In a traditional single-tier cellular network, cell association is based on the down-

link signal strength, which provides the best signal-to-interference-plus-noise ratio

(SINR). When all cells are fully loaded, i.e., transmitting and receiving signals in

all their time-frequency resource blocks at all times, such a strategy maximizes to-

tal throughput [34]. However, this strategy is not appropriate for HetNets. This is

mainly because, in a HetNet setup which consists of multiple classes of BSs with dif-

ferent transmit powers, antenna gains and heights, and receiver capabilities, down-

link signal strength based cell association will result in lightly loaded small BSs and

congested macro BSs. Therefore, even when the strongest signal is received from

a macro BS, which is already heavily loaded, a user can achieve a better data rate

by connecting to a nearby small BS (off-loading) and utilizing more radio resources.

Such user off-loading helps to reduce the load on macro BSs, thus the remaining

macro users can enjoy better data rates. The process of off-loading users to small

BSs can be achieved by adding carefully determined extra values (bias values) to the

received signal strengths from small BSs and employing the conventional maximum

signal strength association by using the modified signal strengths from different BSs.
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1.3 Uplink Transmit Power Control in Cellular Net-
works

Uplink transmit power control (TPC) plays a major role in modern cellular networks,

and is employed to maintain the strength of received signals from mobile stations

(MSs) at appropriate levels to successfully demodulate signals. Another key aspect

of power control is to minimize the interference to other transmissions in the same

or adjacent cells. Uplink TPC also helps to prolong the battery life of small hand

held devices.

In LTE and Long Term Evolution-Advanced (LTE-A), uplink TPC is usually a

combination of two mechanisms, open-loop and closed-loop power control [44]. In

open-loop power control, the transmit power of an MS depends on the downlink path

loss and shadow fading estimates, maximum transmit power level and the target

received power. In the closed-loop power control mechanism, the network adjusts

the device transmit power by means of power-control commands transmitted on the

downlink, accounting for various link level and network level parameters.

1.4 Motivation and Objectives

HetNet has shown tremendous potential in meeting traffic demand, massive num-

bers of connections, and high power and area spectral efficiencies envisioned in future

generation cellular networks. However, the demand based deployment of much of

the small, low power nodes in the existing macro-cellular infrastructure results in an

extremely complicated muti-tier cellular network. This makes mathematical mod-

eling, system level analysis and design of HetNets very challenging. To make this

problem tractable, stochastic geometry and especially the point process theory can

be used. Some of the commonly used stochastic geometry models are briefly dis-

cussed in 2.2. Although, initial results have shown stochastic geometry modeling as

a very effective tool, existing models have many limitations in capturing practical

network configurations and conditions. Further, since HetNet is a very complicated

network architecture, it naturally involves a vast number of possible network con-

figurations. Only a handful of these configurations have been investigated, leaving

many gaps in the literature. This thesis identifies such limitations in the analytical

tools and develops a comprehensive framework for modeling and analysis of HetNet.

Further, potential network configurations which have not been investigated in the
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current literature are identified and investigated in detail. The main objectives of

this research are listed below.

1. Develop analytical tools to comprehensively capture practical conditions of

HetNets, including the spatial distribution of nodes and different environmen-

tal conditions (path loss, shadowing due to large objects, multipath fading,

etc.).

2. Develop new uplink TPC schemes for HetNet and investigate their perfor-

mance using stochastic geometry based analytical tools.

3. Investigate the effect of different TPC parameters and network densification

on the performance of power control schemes.

4. Develop new simple cell association policies and investigate their performance.

Investigate the impact of various network configurations and practical limita-

tions on overall network performance.

5. Investigate the impact of limited candidate size for cell association on the gains

of user off-loading.

1.5 Significance of the Thesis

Future generation wireless communication systems, for example 5G cellular net-

works, are expected to be very energy efficient compared to the existing 4G cellular

networks [2]. In particular two out of three usage cases of 5G networks, i.e., eMBB

and mMTC, are expect to be very energy efficient [2]. As the energy efficiency of

a network can be improved by reducing radio frequency (RF) transmit power [2],

the developed power control schemes will help to achieve efficiencies envisioned in

future generation cellular networks. Further, the investigation of the impact of vari-

ous network parameters will help provide useful guidelines for the selection of power

control parameters. Also the developed uplink TPC schemes will help prolong the

battery life of small hand-held mobile devices. As smart cell association is a key

aspect for harnessing the benefits of HetNet, the developed simple cell association

policies will help to provide the best user-perceived data rates with limited network

overhead. The study of the size of the search domain for candidate BS to serve a

given MS will provide useful guidelines on complexity and performance trade-offs of

10



cell association policies. Moreover, the developed stochastic geometry based math-

ematical tools will help to speed up the candidate technology selection process for

5G and beyond cellular networks by reducing the time and resources required to

perform complex system-level simulations.

1.6 Thesis Outline and Contributions

This thesis focuses on modeling and analyzing HetNet, investigating new TPC

schemes and simple cell association policies. The thesis outline is as follows. The

theoretical background on wireless channels, different stochastic geometry models

used to model wireless networks, and other related topics are covered in Chapter 2.

The main contributions of this research are presented in Chapter 3 and 4. Chapter

5 highlights the the conclusions derived from this research study and gives future

research directions.

1.6.1 Novel Contributions of the Thesis

The major contributions of this thesis are as follows:

• Chapter 3 introduces three TPC schemes for cellular uplink. They include

partial compensation of: (1) path loss only; (2) the aggregate effect of path

loss and shadowing; and (3) path loss and complete inversion of shadowing.

An analytical framework for the coverage probability evaluation considering

path loss, shadowing due to large objects and multipath fading is developed.

This analytical framework considers orthogonal channel assignment to match

the network configurations of modern cellular networks, such as LTE and

5G NR, which are based on orthogonal frequency division multiple access

(OFDMA) or discrete Fourier transform-spread OFDMA (DFT-S-OFDMA).

Using the developed framework, several observations are made on the suitable

TPC strategies and parameters under various networks conditions. First, at

low SINRs, i.e. for cell-edge users or users experiencing severe shadowing,

compensating for the aggregate effects of path loss and shadowing (Scheme

2) provides better coverage compared to the other two schemes. However,

at high SINRs, i.e., for cell-center users, inverting only path loss (Scheme 1)

provides the best coverage. Second, we show that the network densification

(adding more BSs) has little effect on the coverage under power control scheme
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1 and 3 at all shadowing levels, and for Scheme 2 a similar trend holds under

light shadowing conditions. Third, we observe that the level to which path

loss and shadowing should be compensated for in a network, depends on the

operating SINR of the network. Analytical expressions are also derived for

the probability density function (PDF) and cumulative distribution function

(CDF) of the transmit power under three TPC schemes. These results help

to understand battery power utilization by each scheme.

• Chapter 4 proposes and investigates simple cell association schemes for single-

tier and two-tier networks. In particular, for a single-tier network a given

user is proposed to be associated with the highest instantaneous SINR BS

from among BSs, providing average received power above a predetermined

threshold value. Two methods are given to determine the threshold received

power. This approach is extended to a two-tier HetNet, assuming two differ-

ent conditions for the availability of SINR information. We show that the pro-

posed policy enables flexible user off-loading in two-tier networks. A stochastic

geometry-based mathematical framework is developed to investigate the cov-

erage probability and achievable data rates by an MS in coverage. Using the

developed analytical framework and extensive simulation results, several ob-

servations are made. First, it is observed that monitoring the received signal

strength indicator (RSSI) from few candidate BSs is sufficient for cellular net-

works. The candidate BSs can be selected based on the average RSSI from

BSs that provide meaningful signal quality. Second, user off-loading to small

cells through association bias will result in lower average data rates for small

cell users due to their lower SINR. Hence, the average user data rate in a two-

tier HetNet will also be reduced. However, the network capacity will increase,

since many more users will be served by small cells in addition to those already

served by macrocells at higher average data rates per user.

∼
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Chapter 2

Background

Analysis of modern cellular communication systems requires proper modeling of

mobile radio channel impediments, the spatial distribution of mobile stations (MSs)

and the various types of nodes (base stations (BSs), access points (APs), relays).

This chapter reviews these key wireless communications concepts that are employed

in this thesis. In particular, various channel impediments and their mathematical

modeling are discussed in Section 2.1. Various stochastic geometry models and the

special properties of the Poisson point process (PPP) are discussed in Section 2.2

and Section 2.3.

2.1 Mobile Radio Channel

The mobile radio channel poses severe challenges for reliable high-speed commu-

nication. It is susceptible to co-channel interference (CCI), noise and channel im-

pediments. Three mechanisms contribute to the channel impediments: reflection,

diffraction and scattering. As a result, the received signal strength exhibits random

changes over time. In the analysis of radio wave propagation, these impediments

are characterized by three nearly independent phenomena: path loss with distance,

shadowing and multipath fading. Figure 2.1 shows the channel power gain in dB ver-

sus log-distance for these three phenomena. This section briefly discusses co-channel

interference and the three channel impediments.

Co-channel Interference

Cellular systems rely heavily upon frequency reuse, where geographically sepa-

rated cells simultaneously use the same carrier frequencies and/or time slots (time-

frequency resource blocks). Due to frequency reuse, communication between a BS
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and an MS in one cell is interfered with by one or many BS-MS pairs belonging

to adjacent cells. This is referred to as CCI, and is the primary factor that limits

capacity of modern cellular systems [30].

Multipath Fading

In cellular communication systems, MSs and small BSs (pico-BSs or femto-APs,

for example) are typically surrounded by local scatterers due to their low-elevation

antennas. Except in rural or open environments where line-of-sight (LoS) condi-

tions exist, a non-line-of-sight (NLoS) condition typically exists between the BSs

and MSs. Consequently, radio waves must propagate between the BSs and MSs

via reflections, diffraction and scattering. This generates multiple replicas of the

transmitted signal that arrive at the MS (or BS) receiver antenna(s) from different

directions, with each having a distinct polarization, amplitude, phase and delay.

In wireless communications, this phenomenon is referred to as multipath propa-

gation. These multiple plane waves combine vectorially at each MS (or BS) and

produce a composite received signal resulting in rapid fluctuations in the received

signal amplitude and phase, commonly referred to as multipath fading. If all the

frequency components in the received signal experience the same time-variant am-

plitude gains, the fading is known as frequency flat; otherwise the fading is called

frequency selective. For communication system designers, frequency selective fading

poses numerous challenges, while frequency flat fading is easier to deal with. Wide-

band communication systems such as Long Term Evolution (LTE) use orthogonal

frequency division multiplexing (OFDM) to obtain multiple frequency flat subchan-

nels (sub-carriers). 5G new radio (NR) is also expected to use OFDM [27, 45]. In

frequency flat fading, channel gain due to multipath fading can be represented by a

single complex coefficient b = |b|ejφ, where |b| is the amplitude (envelope) gain, and

φ is the phase shift. In NLoS fading, φ is usually uniformly distributed in {0, 2π}.

Various distributions are used to model the amplitude gains based on the wireless

communications environment. In this thesis we consider the Rayleigh distribution

given by [30]

f|b|(t) = 2t
µ
exp

(
−t2

µ

)
, t ≥ 0, (2.1)

where the average fading envelope power E [|b|2] = µ. The corresponding squared

envelope g = |b|2 is exponentially distributed and its probability density function
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(PDF) is given by [30]

fg(t) = 1
µ
exp

(−t
µ

)
, t ≥ 0. (2.2)

A more general model is Nakagami−m fading, in which the PDF of the channel

amplitude is given by

f|b|(t) = 2
(
m

µ

)m t2m−1

Γ(m) exp
(
−mt

2

µ

)
, t ≥ 0, m ≥ 1

2 , (2.3)

where Γ(m) is the gamma function. With Nakagami-m fading, the squared envelope

has the Gamma distribution given by

fg(t) =
(
m

µ

)m tm−1

Γ(m)exp
(
−mt
µ

)
, t ≥ 0, m ≥ 1

2 . (2.4)

Shadowing

Signals transmitted over a wireless channel also experience random variations due

to blockage from large objects in their paths, such as buildings and trees. Shad-

owing is also caused by changes in the reflecting surfaces and scattering objects.

Since the spatial distribution, size and dielectric properties of the blocking objects

causing these random blockages are generally unknown, statistical models are used

to characterize their attenuation [4, 30]. The most common model is log-normal

shadowing [4,30]. Empirical results have confirmed that the lognormal distribution

is an accurate model, which captures the signal strength variations in both outdoor

and indoor environments. The lognormal distribution of shadow (large-scale) fading

of the local mean received envelope power is given by [30]

fµ(t) = 1
tσdBδ

√
2π

exp

−
(
10log10(t)− ς(dBm)

)2

2σ2
dB

 , (2.5)

where σdB is the shadowing standard deviation in decibel units, and δ = ln(10)/10.

ς(dBm) = 10 E [log10(µ)] is the mean value (the area mean determined by the path

loss). For macro cellular networks σdB is typically in the range of 5 dB to 12 dB,

with 8 dB being a commonly used value [4,30]. Further, studies has shown that σdB

is nearly independent of transmitter to receiver distance [30].

Composite Shadowing-Fading Distributions

When both shadowing and multipath fading affect a communication system, it is

desirable to obtain the composite distribution of the envelope of the complex channel
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gain due to these two fading mechanisms. To this end, two different approaches have

been proposed in the literature.

1. Express the probability density function of the squared envelope of the chan-

nel gain as conditional, conditioned on the channel envelope power due to

shadowing, µ, and then integrate over the PDF of µ to obtain the distribu-

tion of the composite fading. When the envelope of the channel gain due to

small-scale fading is modeled by Rayleigh distribution, i.e., (2.2) and envelope

power due to shadowing (large-scale fading) by (2.5), the composite shadow

and multipath fading distribution is given by [30]

fh(t) =
∫ ∞

0

1
µ
exp

(
− t
µ

) 1
µσdBδ

√
2π

exp

−
(
10log10(µ)− ς(dBm)

)2

2σ2
dB

 dµ, t ≥ 0.

(2.6)
Similarly, when the envelope of the channel gain due to fading is modeled by

Nakagami-m distribution, i.e., (2.4), and envelope power due to shadowing by

(2.5), the composite shadowing-fading distribution is given by [30]

fh(t) =
∫ ∞

0

(
m

µ

)m tm−1

Γ(m)exp
(
−mt
µ

)

× 1√
2πδσdBµ

exp

−
(
10log10(µ)− ς(dBm)

)2

2σ2
dB

 dµ, t ≥ 0,m ≥ 1
2 .

(2.7)

Unfortunately, both distributions (2.6) and (2.7) cannot be expressed in closed

form, but can be efficiently evaluated using Gauss-Hermite quadrature inte-

grations [30,46].

2. The second approach expresses composite squared envelope of the channel gain

due to shadowing and multipath fading as the product of the squared envelope

due to multipath fading and shadow fading, g and µ, i.e., h = g × µ [30, 47],

and assume that g and µ are statistically independent.

In Chapter 3, (2.6) is used to characterize the effect of composite shadowing-

fading on cellular uplink tansmissions.

Path Loss

Path loss reduces the received average power of a radio wave as it propagates through

space. In addition to the distance between the transmitter and receiver, it also
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depends on frequency, antenna heights and topography [4, 30]. Path loss is the

largest and most variable quantity in a communication link budget [30]. A variety

of theoretical and empirical path loss models exist in the literature. In this thesis,

a power-law path loss model is used. In this model, signal power attenuates at the

rate of ||x − y||−α, where x and y are the location of the transmitter and receiver

respectively. Parameter alpha is the path loss exponent. The value of α can be

empirically evaluated, and is typically in the range of 1.6 to 6.5 [4].

Composite Effect of Path Loss, Shadowing, and Multipath Fading

Distance (log)
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Shadowing and path loss
Multipath fading, shadowing, and path loss

Figure 2.1: Path loss, shadowing and multipath versus distance [4]

Figure 2.1 shows the variation of channel power gain (and hence the received

signal power) in dB versus log-distance due to the aggregate effect of path loss,

shadowing and multipath fading [4]. In a radio channel, received signal strength

variations due to path loss occur over large distances, so that variations due to

shadow fading are averaged out [30]. Random shadowing occurs over distances

proportional to the lengths of the obstructing objects, and are obtained by averaging

out variations due to multipath fading over distances of about 20 wavelengths [30].

Since both variations due to path loss and shadowing take place over relatively
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larger distances, they are commonly referred to as large scale propagation effects

[4]. Variations due to multipath fading occur over distances on the order of signal

wavelength [4]. Therefore, these variations are commonly referred to as small-scale

propagation effects.

2.2 Stochastic Geometry for Analysis and Design of
Cellular Networks

The demand-based deployment of many low-cost low-power BSs, for example, pico

BSs and femto APs, makes a network arrangement more irregular than that of the

traditional homogeneous cellular networks [48]. Furthermore, certain types of cells,

e.g. femtocells, may be deployed by their users, thus falling under the random de-

ployment category. All of these deployments result in a complex multi-tier network,

in which each tier represents a different kind of BSs (macro and pico BSs, femto AP,

etc.). It has been shown that the spatial distribution of BSs of such an irregular

and random network can be adequately modeled by points of stochastic random

processes [33,34,40,41,49,50]. The random spatial modeling of the locations of BSs

is surprisingly tractable analytically and captures some of the main Heterogeneous

network (HetNet) performance trends [33]. Some of the most commonly-used point

processes to model locations of nodes and MSs are discussed below.

1. Poisson point process (PPP): PPP with intensity measure λ(x), is a point

process Φ = {x1, x2, ....} ∈ Rd such that [42,51,52]

• The number of points in any compact set A denoted by Φ(A) is Poisson-

distributed with mean µ(A) = E [Φ(A)] =
∫
A λ(x)dx, i.e.,

Pr (Φ(A) = k) = µ(A)k

k! e−µ(A), k = 0, 1, 2, 3, ... and, (2.8)

• If A1, A2, ..., Am are disjoint bounded sets, then Φ(A1),Φ(A2), ...,Φ(Am)

are independent random variables.

When λ(x) = λ, a constant, the resultant point process is a homogeneous PPP.

Figure 2.2 shows a cellular network consisting of a single class of BSs, macro

BS for example, and MSs characterized by two independent homogeneous

PPPs. Homogeneous PPP has been extensively used in the cellular network

research to characterize the spatial distribution of nodes and MSs [40,41, 53].
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Figure 2.2: Poisson distributed BSs and MSs in a 5 km × 5 km cellular network,
with each mobile associated with the nearest BS. The cell boundaries are shown
and form a Voronoi tessellation. Legend: blue triangles - BSs, red squares - MSs.
Poisson-Voronoi cell boundaries are denoted by blue lines.

In [40] the downlink coverage probability and data rate of a cellular network

consisting of a single class of BSs are investigated. Homogeneous PPP is used

to characterize the spatial distribution of BSs and MSs. In [41] independent

PPPs with different intensities are used to characterize the spatial distribution

of various types of BSs in a multi-tier network, and to investigate the downlink

coverage probability and achievable data rates. In [53] the spatial distribution

of MS is characterized by a homogeneous PPP, and uplink coverage probability

and the mean data rate of a single-tier cellular network are investigated. The

PPP model has been shown to provide pessimistic bounds on the performance

metrics (e.g., the coverage probability and the mean rate) that are as tight

as the optimistic bounds provided by the conventional grid-based model for

actual cellular networks [40, 41]. Non-homogeneous PPP has also been used
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to model cellular networks in several studies [54, 55]. Circularly symmetric

power-law, polynomial and Gaussian intensity functions have been considered

in most studies. PPP can be used to model communication networks, in which

both the number of devices (BSs, MSs) and their locations are random, but

the densities are known.

2. Binomial point process (BPP): A point process overW ∈ Rd is a binomial

point process Φn
W = {x1, x2, ..., xn}, if the number of points in any set A ⊂W

is a binomial random variable (RV) with parameters n and p = |A|/|W |, i.e.,

Pr (Φn
W (A) = k) =

(
n

k

)
pk(1− p)n−k, k = 0, 1, 2, ..., n, (2.9)

where | · | is the Lebesgue measure in d-dimensional Euclidean space.

When the total number of nodes is known and they are independently and

uniformly distributed in a finite area (volume in R2 and distance in R1), their

spatial distribution can be modeled by a BPP [56,57]. In [57], the BPP is used

to characterize the spatial distribution of nodes in an ad-hoc network.

3. Cluster process: A cluster process is generated by using a parent point

process and daughter point processes, one per parent, and translating each

daughter process to the position of their parent [42]. The union of all the

points of the daughter processes represents the cluster process. Consider a

parent point process denoted by Φp = {x1, x2, ...xn} and number of parent

points by n ∈ N ∪ {∞}. Also let Φi, i ∈ N, be the untranslated daughter

process of xi. The cluster process is the union of the translated daughter

processes, i.e.,

Φ =
⋃
i∈[n]

Φi + xi. (2.10)

When both parent process and the daughter processes are PPPs, the result-

ing cluster process is a Poisson cluster process (PCP). In practical cellular

networks, operators deploy more BSs in highly populated areas, while few

in sparsely populated suburban or rural areas. PCP is useful for modeling

these networks. In [58] and [59], cluster processes are used to model interferer

distributions in large cellular networks and ad-hoc networks, respectively.

4. Hard-core process: Hard-core processes are point processes with a given

minimum distance between two points [42]. A hard core process can be gen-
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erated by first generating a point process that has no restriction on the min-

imum distance and then deleting all the points that violate this condition.

There are two commonly used hard-core processes, Matérn hard-core process

of type I and II [42]. A Matérn hard-core process of type I can be generated

by starting with a homogeneous PPP of intensity λb, and then identifying

all points that have a neighbor within minimum distance rm and deleting

all identified points. The intensity of the resultant type I process is given

by λ = λbexp
(
−λbcdrdm

)
, where cd = πd/2/Γ(d/2 + 1) [42] and Γ(·) is the

gamma function. A Matérn hard-core type II process can be generated as

follows. Start by generating a PPP of intensity λb. Add a mark m(x), an

independent and uniformly-distributed random variable on [0, 1] to each point

x. Flag all points that have a neighbour within distance rm that has a smaller

mark. Then remove all flagged points. The resultant intensity is given by

λ =
(
1− exp(−λbcdrdm)

)
/cdr

d
m [42].

5. Poisson hole process (PHP): PHP is generated by carving out holes in a

PPP. Let Φ1 and Φ2 be two PPPs with intensities λ1 and λ2 (λ2 > λ1) respec-

tively. For each x ∈ Φ1, remove all the points in Φ2 ∩ b(x,R), where b(x,R) is

a ball centered at point x with readius R. The remaining points of Φ2 form a

PHP with intensity λ = λ2 exp
(
−πλ1R2) [42,60]. PHP is a very suitable point

process to model the placement of small cells around macro cell edges [61],

device-to-device (D2D) communication systems where cell edge users are al-

lowed to directly communicate with each other without going through the

cellular system or with its limited involvement [62], and cognitive radio net-

works where underutilized licensed sprectrum is opportunistically accessed by

unlicensed users [63].

2.3 Selected Properties of the Poisson Point Process

PPP has number of special properties, which often make the calculation of associated

probabilities mathematically tractable. Some of these properties used in this thesis

are described below. Further details on these properties of PPP and additional

useful properties can be found in [42,51,52,64].

1. Superposition Property

Let Φ1,Φ2, ... be a countable collection of independent PPPs on space S and

21



let the mean measure of Φi is given by µi, ∀i. Then the superposition of PPPs,

Φ =
∞⋃
i=1

Φi, (2.11)

is a PPP with mean measure [52] µ =
∑∞
i=1 µi. Consequently, when Φ1,Φ2, ...

are homogeneous PPPs with intensities λ1, λ2, ..., Φ =
⋃∞
i=1 Φi is a homoge-

neous PPP with intensity λ =
∑∞
i=1 λi.

2. Restriction Theorem

Let Φ be a PPP with mean measure µ on space S, and let S1 be a measurable

subset of S. The random countable set Φ1 = Φ ∩ S1 is a PPP on S with

mean measure µ1(A) = µ(A∩S1) or a PPP on S1 whose mean measure is the

restriction of µ to S1.

3. Colouring Theorem and Independent Thinning

Let Φ be a PPP on space S with mean measure µ. Let the points of Φ

are coloured randomly with k colours such that the probability that a point

receives the ith colour is Pi and the colours of different points are independent

of one another and of the position of the point. The set of points that receive

ith colour, Φi forms an independent PPP with mean measure µi = piµ.

Independent thinning a PPP can be considered as a special case of k = 2.

One colour represents not deleted and the other represents points deleted

in the thinning process. Points are deleted with probability 1 − p, where

0 ≤ p ≤ 1, from a PPP of intensity λ. Points remaining and deleted in the

thinning process form two independent PPPs, with intensities pλ and (1−p)λ,

respectively. Superposition of these two point processes yields the original

point process.

4. The Probability Generating Functional and Campbell’s Theorem

The probability generating functional (PGFL) of a point process Φ on Rd is

defined as

G(ν) = E

∏
x∈Φ

ν(x)

 , (2.12)

for all non-negative functions v : Rd → [0, 1]. PGFL of PPP is given by

the Campbell’s theorem. The moment-generating function (or the Laplace

transform) of sums over PPP can be obtained using the Campbell’s theorem

or the PGFL of PPP. The theorem is formally stated below [42,52].
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Campbell’s Theorem: Let Φ be a PPP on space S with mean measure µ and

f : S → R a measurable function. Then the sum over Φ

Σ =
∑
x∈Φ

f(x), (2.13)

is absolutely convergent if and only if∫
S

min (|f(x)|, 1)µ(dx) <∞. (2.14)

If (2.14) holds, then for any complex θ

E
[
e−θΣ

]
= exp

− ∫
S

(
1− e−θf(x)

)
µ(dx)

 . (2.15)

Further, the sum of f over Φ is given by

E

∑
x∈Φ

f(x)

 =
∫
S

f(x)µ(dx), (2.16)

in the sense that expectation exists if and only if the integral (2.16) converges.

If (2.16) converges, then

var

∑
x∈Φ

f(x)

 =
∫
S

f(x)2µ(dx). (2.17)

Note that replacing θf(x) in (2.15) by −log (ν(x)), we can obtain PGFL of

PPP.

5. Slivnyak’s Theorem

Before presenting Slivnyak’s theorem, we will first introduce the Palm distri-

bution and the reduced Palm distribution. The Palm distribution, denoted

by Px is the conditional point process distribution given that a point exists at

a specific location x. In the reduced Palm distribution, denoted by Px!, the

point at x on which we condition is not included in the distribution. These

two concepts play a very important role when wireless networks are modeled

using Point processes. For example, assuming all transmitting nodes form a

point process, one may want to consider one of them as the desired transmit-

ter, while the others are interferers. Then the desired transmitter should not

be included in the set of interferers.

The independence property of the PPP states that the number of points in a

ball centered at point x with radius ε denoted by b(x, ε) is independent of the
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number of points in any region outside this ball, for an arbitrarily-small ε. This

suggests that conditioning on a point at x does not change the distribution of

the rest of the point process. This is formally stated in the Slivnyak’s theorem.

Slivnyak’s theorem: For a PPP the reduced Palm distribution equals to its

(original) distribution P of PPP, i.e.,

Px! = P. (2.18)

Using the Slivnyak’s theorem and (2.8) with k = 0, for a PPP with intesity

measure λ(x) the PDF of the nearest neighbour distance r0 can be obtained

as follow.

Fro(r) = Pr (Φ(b(x, r)) = 0) ,

= exp
(
−
∫
b(x,r)

λ(x)dx
)
. (2.19)

For a homogeneous PPP in R2 with intensity λ, (2.19) simplifies to

Fro(r) = exp
(
−πλr2

)
, 0 ≤ r ≤ ∞. (2.20)

Differentiating (2.20) with respective to r0, we can obtain the PDF or r0 given

by

fro(r) = 2πλr exp
(
−πλr2

)
, 0 ≤ r ≤ ∞. (2.21)

2.4 Aggregate Interference and Signal-to-Interference-
Plus-Noise Ratio Analysis in Poisson Wireless Net-
works

Many performance metrics used in wireless network analysis are directly or indirectly

related to signal-to-interference-plus-noise ratio (SINR). Therefore, characterizing

the aggregate interference and the resultant SINR is very important. However,

in many situations, these parameters cannot be directly computed. Alternatively,

the moment generating function (MGF) or equivalently the Laplace transform of

the PDF of aggregate interference and SINR can be computed, and use for the

performance analysis. This approach has been used in many studies related to

various types of wireless networks including HetNet [41,50,65,66], D2D communica-

tions [62, 67], cognitive radio networks [68–70], and point-to-point communications

with and without diversity reception [71–74]. In the following we briefly discuss how

24



the properties of PPP can be used to compute the MGF or the Laplace transform

of the aggregate interference in a Poisson wireless network.

Let us consider a network with nodes distributed according to a homogeneous

PPP Φ in R2 with density λ. Also assume that one of the node x ∈ Φ is the

receiver and all the other nodes z ∈ Φ\x generate interference to x. Following

the Slivnyak’s theorem and using the stationary property of homogeneous PPP in

R2 [51], the aggregate interference at x does not depend on the location of the

receiver or whether the point x belongs to Φ. The aggregate interference is then

given by

I =
∑
z∈Φ

Pl(x, z)hxz, (2.22)

where P is the transmit power by each node (a constant). l(x, z) represents the

channel power gain due to path loss. hxz is the channel envelope power gain due

to shadowing (large-scale fading) and small-scale fading. The Laplace transform of

the PDF of I can be obtained as

LI(s) = E
[
e−sI

]
,

= E
[
e−s

∑
z∈Φ Pl(x,z)hxz

]
,

= EΦ,hxz

∏
z∈Φ

e−sP l(x,z)hxz

 . (2.23)

Assuming PPP Φ and shadowing-fading process are statistically independent (2.23)

can be written as

LI(s) = EΦ

∏
z∈Φ
Ehxz

[
e−sP l(x,z)hxz

] . (2.24)

Using the definition of PGFL of PPP LI(s) can be written as

LI(s) = exp
(
−
∫
R2

(
1− Ehxz

[
e−sP l(x,z)hxz

])
µ(dz)

)
. (2.25)

∼
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Chapter 3

Uplink Power Control in
Cellular Networks under
Composite Rayleigh-lognormal
Fading Channels

In cellular networks each mobile station (MS) adjusts its power level under control

of its base station (BS), i.e., through uplink transmit power control (TPC), which

is essential to reach signal-to-interference-plus-noise ratio (SINR) at the BS and to

limit inter-cell interference (ICI). The optimal transmit power of an MS depends

on channel impediments; path loss, shadowing and multipath fading, as well as the

network configuration. However, since path loss is distance dependent and the cell

association distances are correlated due to the cell association policies, the perfor-

mance analysis of the uplink TPC is very complicated. Consequently, the impact

of a specific power control algorithm on network performance is hard to quantify.

In this Chapter 1, using tools from stochastic geometry, we analyze uplink TPC

schemes. Three schemes are considered which either completely or partially invert

the effect of path loss and/or shadowing. We assume the standard power-law path

loss and composite Rayleigh-lognormal fading. The cumulative distribution func-

tion (CDF), the probability density function (PDF) of uplink transmit power and

the resulting network coverage probability are derived and validated via computer

simulations. With the aid of the mathematical expressions derived, the impact of

various networks and TPC parameters on the network performance are investigated
1A version of this chapter has been published in EURASIP Journal on Wireless Communications
and Networking [75]. A part of the contribution of this chapter has been also published in 2015
IEEE 82nd Vehicular Technology Conference, Boston, MA, USA [76].
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and several observations are made. The study shows that the coverage is highly de-

pendent on the severity of shadowing, the power control scheme and its parameters,

but invariant of the density of deployment of BSs when the shadowing is mild and

power control is partial. Study also shows that when the operating SINR is low,

which is the typical scenario for cell edge users, compensating both path loss and

shadowing by power control improves the coverage. However, when the operating

SINR is high (for cell center users) compensating for path loss only improves cov-

erage. It was also observed that increase in the severity of shadowing significantly

reduces the coverage.

3.1 Introduction

Both uplink and downlink TPC is an integral part of modern cellular system stan-

dards (e.g., Long Term Evolution (LTE) and Long Term Evolution-Advanced (LTE-

A) to control the transmit power of MSs and BSs, respectively, in order to miti-

gate inter-cell and intra-cell interference, while achieving energy savings, improv-

ing connectivity and maintaining a required signal-to-interference-plus-noise ratio

(SINR) [44]. Uplink TPC is essential to the operation of CDMA cellular systems

(e.g. the 3G cellular systems). Without the uplink TPC these systems would simply

not work, due to the near-far effect on their uplink [30]. The simplest uplink TPC is

to ensure that all user transmissions reach the same SINR at the base station (BS),

which however requires that those encountering high path loss to transmit with

much higher power. In contrast, partial power control, standardized by 3rd gen-

eration partnership project (3GPP) for LTE [44], LTE-A [44], and non-standalone

5G (NSA 5G) new radio (NR) [77], compensates for the path loss and possibly

shadowing between the MS and its serving BS, and higher path loss users (e.g.,

cell-edge users) are allowed to operate at a lower SINR, thus reducing ICI. TPC

(both downlink and uplink) is especially important for dense Heterogeneous net-

works (HetNets), the layouts of which may be very irregular. In HetNets, uplink

interference from a neighbouring cell can be very strong [66], and battery-powered

MS handsets need to save energy. All these reasons have motivated the development

of various uplink TPC schemes to improve the total network throughput, cell-edge

user performance, and energy efficiency [48,53,66,76,78–87].

Therefore, it is critically important to understand and quantify the perfor-

mance of both uplink and downlink TPC schemes. Fortunately, the downlink has
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been widely modeled and optimized using stochastic geometry [40–42,50,53,66,88].

Stochastic geometry facilitates tractable analysis of HetNets, where the locations of

the BSs, access points (APs), and MSs are distributed according to mathematically

tractable point processes [34, 41, 42]. For example, the homogeneous Poisson point

process (PPP) has been widely used to study HetNets [34, 41, 42]. However, the

uplink studies have been relatively limited, but have become necessary due to, for

example, applications such as cloud processing and storage [89].

Location dependent power control and orthogonal multiple access make mathe-

matical modeling cellular uplink more challenging. To elaborate, there is only one

randomly located MS per cell per resource block due to the use of orthogonal fre-

quency division multiple access (OFDMA) (see Figure 3.1). Thus cell association

policy couples the locations of MSs. Consequently, even when all MS in the net-

work form a PPP, the set of active MSs in a given resource block does not form a

PPP. Moreover, the transmit powers of MSs, which typically depend on the MS-BS

distances and random channel gains due to shadowing and multipath fading, are

highly variable and correlated. This is because, although MS-BS distances of differ-

ent cells are identically distributed, they are not statistically independent. All these

conditions pose fundamental challenges for the analysis of uplink TPC performance.

In previous research, the aforementioned challenges have been overcome in two

ways. First, one neglects or only partially captures the dependency among locations

of interfering MSs and simply assumes them to form a homogeneous/inhomogeneous

PPP. Therefore, we call this the PPP approximated MSs model. The correlation be-

tween the tagged MS (MS under investigation) and the interfering MS is captured

by considering an appropriate interference protection region around the serving BS

considering the cell association policy adapted. For example, with closest-BS as-

sociation policy, no other co-channel MS can be closer to the serving BS than the

tagged MS. In that model, the MS transmit powers are also assumed to be inde-

pendent and identically distributed (i.i.d.). The exact distribution depends on the

power control scheme and the cell association policy adapted. Second, one considers

a fully loaded network, i.e., each cell has an active uplink transmission scheduled per

time-frequency resource block. The spatial dependency between co-channel MSs is

neglected and assumed to form a homogeneous PPP [90]. This makes the density

of MSs per resource block equal to the density of BSs in the network. Each MS

is assumed to be associated with the BS that provides the highest area averaged
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Figure 3.1: Poisson distributed BSs and MSs in a cellular network with orthogonal
multiple access. MSs associated with the nearest BS. The cell boundaries are shown
and form a Voronoi tessellation. Legend: blue triangles - BSs, red circles - active
MSs per resource block. Poisson-Voronoi cell boundaries are denoted by blue lines.

received signal power. To capture the correlations among MS-BS distances, the as-

sociated BS of each MS is assumed to be uniformly distributed in the Voronoi cell

of the MS. We refer to this approach as the downlink equivalent model [53].

3.1.1 Prior Related Research

For modern OFDMA-based or similar cellular networks, TPC attempts full/partial

compensation of path loss and/or shadowing [53, 91]. Common schemes are path

loss inversion (PLI) and path loss and shadowing inversion (PLSI). In the following,

we summarize recent uplink TPC studies and highlight their contributions.

PLI, which compensates for path loss only, is considered in [53,66,78–81,85–87,

90, 92]. The downlink equivalent model is used by [53, 90], while the PPP approxi-

mated MSs model is adopted by [66,78–81,85–87,92]. Reference [53] has introduced
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the downlink equivalent model and has derived the coverage and average rate of up-

link partial PLI power control in a single-tier network. ICI mitigation through uplink

partial frequency reuse [93,94] and partial PLI power control is investigated in [90].

For a multi-tier HetNet, [80] proposes a tractable and general model to character-

ize the uplink signal-to-interference ratio (SIR) and rate distribution. First uplink

analysis with multiple antenna BSs is presented in [81] considering a generalized

version of partial PLI power control. The coverage probability and achievable data

rate are derived for maximal ratio combining (MRC) and optimum combining at the

BS. All works thus far consider partial PLI. In contrast, full PLI, which maintains a

constant area mean (after averaging over variations due to shadowing and multipath

fading [30]) received power at BSs, is considered in [66, 79, 92]. The outage proba-

bility and spectral efficiency of both single-tier and multi-tier cellular networks are

investigated in [66]. Symbol error rate analysis of multi-tier HetNets is presented

in [79]. A two-tier HetNet consisting of femtocells and macrocells is considered

in [92]; upper and lower bounds for the outage probability of femtocell and macro

users are derived there. SIR distribution in a two-tier HetNet is investigated in [78],

where the MS transmit power is selected out of a finite set of discrete values to

maintain the area mean received power above or equal to a predefined target value.

Reference [85] investigates uplink outage probability in a multi-channel environ-

ment and captures the load variation on BSs. Uplink SINR and rate distribution in

a massive multiple input multiple output (MIMO) network are investigated in [87].

In all previously mentioned references, uplink performance is investigated by

averaging over the respective underlying point processes considered for the spatial

distribution of users and BSs. Recently, [95,96] have investigated the uplink coverage

probability of arbitrary, but fixed, realization (meta distribution of SIR) of Poisson

cellular networks. Both these references consider partial PLI power control.

References [48, 76, 82, 83, 86] consider PLSI power control (i.e., compensation of

both path loss and shadowing). The downlink equivalent model is adopted by [76],

but PPP approximated MSs model is used by [48,82,83,86]. Reference [82] considers

an interference aware PLSI scheme, where interference from each MS to the most

interfered BS is kept under a predefined value. Reference [83] evaluates the uplink

interference in a two-tier HetNet considering multi-type users and BSs. Uplink

capacity in a two-tier direct sequence code division multiple access (DS-CDMA)

HetNet consisting of macro BSs and femto APs is considered in [48]. Reference
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[76] investigates coverage probability of a single-tier cellular network in composite

Rayleigh-lognormal fading channels considering partial inversion of path loss and

complete compensation of shadowing. Uplink SINR and rate distribution in a multi-

tier cellular network are investigated in [86]. Joint uplink and downlink rate coverage

(joint probability of uplink and downlink data rate/SINR exceeding their respective

thresholds) is also investigated there.

3.1.2 Motivation and Our Contribution

The main goal of this study is the investigate and characterize the impact of TPC

and shadowing on the uplink performance. The effectiveness of shadowing compen-

sation by power control is also in the focus. Shadowing may degrade the performance

of modern HetNets that include both macro and low-power, small form-factor small

cells, which have low antennas. In such environments, a significant impact of shad-

owing is to be expected. Shadowing specifically refers to variations in the signal

strength over distances proportional to the length of an obstructing object (10-100

meters) in outdoor environments and less in indoor environments [4]. Experiments

have confirmed that typical shadowing effects can be modeled as log-normal [4,30],

and that distribution has thus been widely used to study the effects of shadow-

ing [4, 30, 97, 98]. Overall, power control schemes that alleviate shadowing in addi-

tion to path loss (i.e., PLSI) will undoubtedly have a beneficial effect on the uplink

coverage, data rates, and power efficiency.

Although uplink PLSI studies exist in the literature [48, 82, 83], their system

models appears to be not flexible enough to investigate the effect of uplink TPC

in modern cellular networks. For example, [82,83] consider shadowing as a random

displacement on the MS point process. This prevents the consideration of differ-

ent shadowing levels for different radio channels, desired and interfering channels

for example. Reference [48] investigates the cellular uplink with PLSI power con-

trol. However, it investigates a two-tier DS-CDMA cellular network. Therefore,

the results of this research are not fully applicable for modern orthogonal frequency

division multiplexing (OFDM) or discrete Fourier transform-spread OFDMA (DFT-

S-OFDMA) based cellular uplink such as LTE or fifth generation cellular networks

(5G) NR.

All above mentioned reasons and gaps in the literature motivate the investigation

of TPC schemes which compensates for path loss and shadowing. Thus we consider
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three TPC schemes which provide full and/or partial compensation for

1. Path loss only,

2. The aggregate effect of path loss and shadowing,

3. partial compensation of path loss and complete inversion of shadowing.

With these, the transmit power of an MS becomes a random variable, whose statis-

tics depend on the MS−BS distance, shadowing, and power control parameters. The

MS battery power utilization has a direct relationship with these statistics. Thus

we derive the CDF and the PDF of the transmit power under each scheme. Further,

these TPC can have a significant impact on the uplink signal quality (signal-to-

noise ratio (SNR)). Therefore, a refined mathematical framework is also developed

to investigate the coverage probability under each TPC scheme. The developed

framework help us to quantify the impact of power control, shadowing, and other

network parameters on the coverage probability. Specifically, the main contributions

of this study can be summarized as follows:

• We provide analytical expressions for PDF, CDF and the mean transmit

power, and coverage probability for the three power control schemes consid-

ering composite Rayleigh-lognormal fading and path loss. To evaluate the

complicated integrals, we use the Gauss-Hermite and Gauss-Laguerre quadra-

tures to express them as weighted sums of function evaluations. This provides

a powerful, flexible platform to evaluate the effects of different shadowing lev-

els. Computing the Gauss quadrature nodes and weights is very simple with

Golub-Welsch algorithm [99], which utilizes the eigenvalues and eigenvectors

of the symmetric tridiagonal matrix formed by the recurrence relations to

compute the nodes and weights.

• We investigate in detail the effects of shadowing, power control factor, and BSs’

density on the coverage probability using analysis and simulations. We show

that under all three power control schemes, density of BSs has no significant

effect on the coverage.

• Comparing the performance of three power control schemes, we show that at

low SINRs (cell edge users or users subject to severe shadowing), compensating

for both path loss and shadowing improves the coverage probability. However,
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at high SINRs (users closer to their serving BSs) compensating for path loss

only is more effective.

3.2 System Model, Power Control and Assumptions

This section presents the network setup, three power control schemes considered,

and key assumptions needed for tractable mathematical analysis.

3.3 System Model

This research considers uplink transmission in a cellular network with the following

network configurations and assumptions. We use the downlink equivalent model

proposed in [53], which is described by the following 6 points.

1. Network consists of a single class of BSs with density λ > 0. Similarly to [53,66]

we consider minimum path loss based association policy. Therefore, each MS

is associated with the BS providing the highest area mean received power

[30]. This is equivalent to connecting to the closest BS. Considering minimum

path loss association is motivated by two reasons. First, investigating the

effectiveness of compensating for shadowing as a part of power control is one

of the aims of this study. Therefore, we refrain from considering shadowing

and fast fading for the cell association. Second, this association policy is

simple and also avoids frequent handoffs [100]. An orthogonal multiple access

technique is used, for example OFDMA or DFT-S-OFDMA.

2. Universal frequency reuse [30], which allows every cell in the network to reuse

the same set of carrier frequencies. The network is fully loaded, i.e., each BS

has an active uplink transmission scheduled for each time-frequency resource

block.

3. The locations of MSs operating in a particular time-frequency channel form

a homogeneous PPP Φ. Due to orthogonal channel assignment and the as-

sumption of a fully loaded network, Φ = {x1, x2, . . .}, where xk ∈ R2 has the

intensity λ.

4. With this network setup, each BS is uniformly distributed in the Voronoi cell

of its corresponding MS [53,90]. This is referred to as the downlink equivalent

model for uplink communication.
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5. All the radio channels are subject to power-law path loss and composite

Rayleigh-lognormal fading. Although the severity of shadowing depends on

the density and locations of shadowing objects, considering different shadow-

ing levels for each cell is mathematically intractable. Therefore, we consider

only two values for the standard deviation of the shadowing process: σ for the

local environment (locality of the BS serving MS z0), and ξ for interfering cells.

Channel power gains due to small-scale fading and shadowing are assumed to

be independently distributed across all MS-BS pairs.

6. We investigate the coverage probability of a randomly chosen MS z0 ∈ Φ.

Since a homogeneous PPP in R2 is translation and rotation invariant, without

loss of generality the BS associated with z0 is assumed to be located at the

center of the network.

Reference [53] has investigated the accuracy of this model and has shown that it

accurately models the uplink transmissions in a cellular network.

3.3.1 Power Control Schemes

We consider three partial power control schemes, which compensate for path loss

and shadowing. For a selected power control scheme, we assume all the MSs use the

same set of power control parameters.

Scheme 1: Partial/Full Path Loss Compensation

This scheme aims to compensate for the effect of path loss on the received signal

power. Therefore, the transmit power Pz of MS z ∈ Φ associated with the BS y 2 is

given by

Pz = ρ (l(z, y))−η , (3.1)

where ρ is a constant and l(z, y) is the channel power gain due to path loss.

For power-law path loss model, l(z, y) = ||z − y||−α, where α > 2 is the path loss

exponent. The power control factor is denoted by η ∈ [0, 1]. η can be interpreted as

a fairness parameter, where higher value helps the cell edge users meet their SINR

target but at the cost of increasing the interference level in the network [86]. This

can reduce the SINR experienced by cell center users. η = 1 represents complete
2with a slight abuse of notation we will use z to denote both the location of MS and MS itself.
Similarly for BS y.
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elimination of path loss while η = 0 represents no power control. For a given network

ρ is a constant; value is the same for all the MSs.

Scheme 2: Partial/Full Compensation for both Path Loss and Shadowing

With this power control, the transmit power of MS z ∈ Φ is given by

Pz = ρ (l(z, y)hzy)−η , (3.2)

where hzy is the shadowing power gain. Therefore, η = 1 (η = 0) represents complete

compensation for path loss and shadowing (no power control).

Scheme 3: Partial Compensation for Path Loss and Complete Inversion
of Shadowing

This scheme completely eliminates the shadowing effect, but only partially inverts

path loss. Therefore, the transmit power of MS z ∈ Φ is given by

Pz = ρ (l(z, y))−η h−1
zy . (3.3)

In (3.3), power control factor η ∈ [0, 1] determines the degree of path loss com-

pensation. That is, η = 1 (η = 0) gives a complete inversion of path loss (path loss

is not compensated for and only shadowing is inverted).

3.3.2 Downlink Equivalent Model

As mentioned before, correlations among transmit powers and the locations compli-

cate the analysis. To overcome this, we will use the downlink equivalent model [53]

and make two additional assumptions to obtain the PDF of the transmit power for

each TPC scheme.

Assumption 1

According to the system model described earlier, the BS is uniformly distributed in

the Voronoi cell of the MS being served. We approximate this choice by selecting

the closest BS from a networks with BSs forming a PPP with intensity λ. This

assumption is also made in [53], and it is shown that the loss of accuracy due to it

is minimal. This assumption will play a key role in the derivations of the PDFs of

the MS transmit powers.
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With Assumption 1, the distance between an MS and its associated BS follows

the Rayleigh PDF given by

fr(t) = 2πλt exp
(
−πλt2

)
, 0 < t <∞. (3.4)

Proof: Since each MS associates with the closest BS, the CDF of the the distance r

between any MS located at point x ∈ Φ to its associated BS can be written as

Fr(t) = Pr [Φ(b(x, t)) = 0] . (3.5)

Pr [Φ(b(x, t)) = 0] can be obtained by assigning k = 0 in (2.8). Therefore,

Fr(t) = exp
(
−λπt2

)
. (3.6)

PDF (3.4) can be obtained by differentiating (3.6) with respect to variable t.

Assumption 2

All MS-BS distances are i.i.d. with PDF (3.4).

In all three power control schemes, transmit power of an MS depends on path

loss, power control parameter η and ρ. As path loss is a function of MS-BS distance

and path loss exponent, with Assumption 2, transmit power from different MSs

become i.i.d..

References [53,66] showed that the dependencies between MS-BS distances and

transmit powers are in fact weak, and above assumptions yield accurate results. In

Section 3.6, we also test the validity of these assumptions by comparing numerical

and simulation results and show that the loss of accuracy due to these assumptions

is negligible.

3.4 Transmit Power Analysis

Here we derive the transmit power PDFs and CDFs.

3.4.1 Scheme 1: Partial Compensation for Path Loss

In this scheme, each MS adjusts its transmit power according to (3.1). Using As-

sumptions 1, 2, and (3.4), approximate expressions for the CDF and PDF of the

transmit power at MSs z ∈ Φ, Pz, can be derived as given in the following lemma.
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Lemma 1

In a single-tier Poisson cellular network with closest BS cell association and partial

path loss inversion power control, the CDF and the PDF of the transmit power Pz
are given by

FPz(t) = 1− exp
(
−πλρ−

2
αη t

2
αη

)
, 0 < t <∞ and (3.7)

fPz(t) = 2πλ
αηρ

2
αη

exp
(
−πλρ−

2
αη t

2
αη

)
t

2
αη
−1

, 0 < t <∞. (3.8)

Proof: Using (3.1), the CDF of Pz can be written as

FPz(t) = Pr [ρrαη < t] ,

= Pr
[
r <

(
t

ρ

) 1
αη

]
. (3.9)

Substituting the PDF of r given by (3.4) in (3.9) we obtain the CDF of Pz given in

(3.7). By differentiating (3.7) we obtain the PDF of Pz given in (3.8).

3.4.2 Scheme 2: Partial Compensation for the Aggregate Effect of
Path Loss and Shadowing

For partial inversion of the path loss and shadowing, the transmit power at the MS

z ∈ Φ, Pz, is given by (3.2). The CDF and PDF of the transmit power are given

below.

Lemma 2

In a single-tier Poisson cellular network with closest BS cell association and partial

path loss and shadow inversion power control, the CDF of Pz is given by

FPz(t) = 1−
N∑
k=1

wk√
π
exp

(
− πλ

(
t

ρ

) 2
αη

exp
(2
√

2ξuk
α

))
+ON , 0 < t <∞. (3.10)

The PDF of the transmit power is given by

fPz(t) = 2
√
πλ

αηρ
2
αη

N∑
k=1

wkt
2
αη
−1exp

(2
√

2ξuk
α

− πλ
(
t

ρ

) 2
αη

exp
(2
√

2ξuk
α

))
+ εN

, 0 < t <∞. (3.11)

Here N > 1 is an integer which determines the accuracy of the approximation.

ON , and εN represent the error terms that decrease to zero as N increases to infinity.
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wk and uk are weights and abscissas for Gauss-Hermite quadrature of order N . For

different values ofN , wk and uk are available in [6, Table (25.10)] or can be calculated

by a simple MATLAB® program.

Proof: See Section A.1.

3.4.3 Scheme 3: Partial Compensation for Path Loss and Complete
Inversion of Shadowing

The transmit power of each MS z ∈ Φ, Pz, is given by (3.3). The CDF and PDF

are given by the following lemma.

Lemma 3

In a single-tier Poisson cellular network with closest BS cell association, partial path

loss compensation and complete shadow inversion power control, the CDF is given

by

FPz(t) = 1−
N∑
k=1

wk√
π
exp

(
− πλ

(
t

ρ

) 2
αη

exp
(

2
√

2ξuk
αη

))
+ON , 0 < t <∞. (3.12)

The PDF of the transmit power Pz is given by

fPz(t) = 2
√
πλ

αηρ2/αη

N∑
k=1

wkt
2
αη
−1exp

(2
√

2ξuk
αη

− πλ
(
t

ρ

) 2
αη

exp
(2
√

2ξuk
αη

))
+ εN

, 0 < t <∞. (3.13)

Similarly to in Lemma 1, wk and uk are the weights and abscissas for Gauss-Hermite

quadrature of order N . ON and εN are the error terms.

Proof: See Section A.2.

3.5 Coverage Probability Analysis

Next we derive the coverage probability of the network for the three power control

schemes (Section 3.3). Similarly to [40], the coverage probability is defined as the

probability that a randomly chosen MS z0 ∈ Φ achieves the uplink SINR target of

T .
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3.5.1 Scheme 1: Partial Compensation for Path Loss

Under this power control scheme, the SINR at the BS serving MS z0 ∈ Φ can be

written as

SINR = ρr
α(η−1)
z0 hz0∑

z∈Φ\z0 Pzr
−α
z hz +N0

, (3.14)

where rz0 is the distance between MS z0 and its associated BS at the origin. Variance

of the additive white Gaussian noise (AWGN) is given by N0. The channel power

gain due to composite shadowing-fading modeled by Rayleigh-lognormal distribution

is given by hz0 . The set Φ\z0 represents all the active co-channel interfering MSs

(all MSs of Φ except z0). For MS z ∈ Φ, where z 6= z0, rz = ||z|| and hz are the

Euclidean distance from the BS at the origin and channel power gain (modeled by

Rayleigh-lognormal distribution) to the BS. The coverage probability is given by

the following theorem.

Theorem 1

The uplink coverage probability of an MS in a single-tier cellular network under

partial path loss inversion power control is

Pc(T ) =2
√
πλ

L∑
i=1

ζi

∫ ∞
0

rz0exp

−πλr2
z0 −

N0T exp
(
−
√

2σvi
)

ρr
α(η−1)
z0


× LIΦ\z0

s =
T exp

(
−
√

2σvi
)

ρr
α(η−1)
z0

 drz0 + εL, (3.15)

where

LIΦ\z0 (s) = exp
(−2π

1−αη
2 λ

2−αη
2 sρ r2−α

z0

α− 2

M∑
j=1

κjexp
(√

2σxj
) Q∑
q=1

βq

× 2F1

(
1, α−2

α
, 2− 2

α
,
−sρ exp

(√
2σxj

)
δ
αη
2
q

rαzo (πλ)
αη
2

))
+RMQ. (3.16)

Here, ζi and vi are the weights and nodes for the Gauss-Hermite quadrature of order

L. Similarly, κj and xj are the weights and nodes for Gauss-Hermite quadrature

of order M . Finally, βq and δq are the weight and nodes for the Gauss-Laguerre

quadrature of order Q. Weights and nodes for Gauss-Laguerre quadrature of differ-

ent orders are available in [6, Table (25.9)] or can be calculated by a low-complexity

MATLAB program [99]. Terms εL and RMQ are the errors of the approximations.

Proof: See Section A.3.
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3.5.2 Scheme 2: Partial Compensation for the Aggregate Effect of
Path Loss and Shadowing

When Scheme 2 is employed, SINR at the BS serving MS z0 ∈ Φ can be written as

SINR = ρr
α(η−1)
z0 ĥz0∑

z∈Φ\z0 Pzr
−α
z hz +N0

. (3.17)

Since power control partially inverts the effect of shadowing, ĥz0 ∼ exp(µ), where

µ ∼ lognormal(0, (1− η)σ). The coverage probability for this power control is given

by the following theorem.

Theorem 2

In a single-tier Poisson cellular network with closest BS cell association, partial path

loss and shadow inversion power control, the coverage probability can be given by

Pc(T ) = 2
√
πλ

L∑
i=1

ζi

∫ ∞
0

rz0exp

−πλr2
z0 −

N0T exp
(
−
√

2σ(1− η)vi
)

ρr
α(η−1)
z0


× LIΦ\z0

s =
T exp

(
−
√

2(1− η)σvi
)

ρr
α(η−1)
z0

 drz0εL, (3.18)

where

LIΦ\z0 (s) = exp
( −2λ
α− 2

N∑
k=1

wk

M∑
j=1

κj

Q∑
q=1

βq
r2−α
z0 sρ exp

(√
2σxj

)
δ
αη
2
q

(πλ)
αη
2 exp

(√
2ξukη

)
× 2F1

(
1, α−2

α
, 2− 2

α
,
−sρ exp

(√
2σxj

)
δ
αη
2
q

rαz0 (πλ)
αη
2 exp

(√
2ξukη

)))+RNMQ. (3.19)

Here, ζi and vi are the weights and abscissas for the Gauss-Hermite quadrature

of order L > 1. Similarly, wk and uk are the weights and abscissas for the Gauss-

Hermite quadrature of order N > 1. κj and xj are the weights and abscissas for

Gauss-Hermite quadrature of order M > 1. βq and δq are the weight abscissas for

the Gauss-Laguerre quadrature of order Q. Terms εL and RNMQ are the errors of

the approximations.

Proof: See Section A.4.
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3.5.3 Scheme 3: Partial Compensation for Path Loss and Complete
Inversion of Shadowing

In Scheme 3, path loss is partially compensated while the shadowing is completely

inverted. Therefore, the SINR at BS serving MS z0 ∈ Φ can be written as

SINR = ρr
α(η−1)
z0 gz0∑

z∈Φ\z0 Pzr
−η
z hz +N0

, (3.20)

where g ∼ exp(1) is the power gain of the serving BS-MS channel due to Rayleigh

multipath fading. The uplink coverage probability under this power control scheme

is given by the following theorem.

Theorem 3

In a single-tier Poisson cellular network with closest BS cell association and partial

path loss compensation and complete shadow inversion power control, the coverage

probability is approximated by

Pc = 2πλ
∫ ∞

0
rz0exp

(
−πλr2

z0 −
N0T

ρr
α(η−1)
z0

)
LIΦ\z0

(
Tr

α(1−η)
z0

ρ

)
drz0 , (3.21)

where

LIΦ\z0 (s) = exp
( −2λ
α− 2

N∑
k=1

wk

M∑
j=1

κj

Q∑
q=1

βq
r2−α
z0 sρ exp

(√
2σxj

)
δ
αη
2
q

(πλ)
αη
2 exp

(√
2ξuk

)
× 2F1

(
1, α−2

α
, 2− 2

α
,
−sρ exp

(√
2σxj

)
δ
αη
2
q

rαz0 (πλ)
αη
2 exp

(√
2ξuk

)))+RNMQ. (3.22)

Here, wk and uk are the weights and abscissas for the Gauss-Hermite quadrature

of order N > 1. κj and xj are the weights and abscissas for the Gauss-Hermite

quadrature of order M > 1. βq and δq are the abscissas and weight factors for

the Gauss-Laguerre quadrature of order Q > 1. Term RNMQ is the errors of the

approximation.

Proof: See Section A.5.

3.6 Numerical Results

This section presents numerical and simulation results, and investigates the effect

of power control factor, standard deviations of shadowing, and intensity of BSs on
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the uplink coverage probability. In the numerical derivations (Appendix A) natural

logarithm is used instead of logarithm with base 10. Therefore, PDFs (A.3) and

(A.9) are scaled versions of the actual PDFs [30]. Thus the standard deviations of

shadowing in dB σdB and ξdB given in the following figures are σdB = (10/ln10)σ

dB and ξdB = (10/ln10)ξ dB.
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Figure 3.2: Coverage probability vs SINR threshold for three Schemes under differ-
ent degrees of shadowing, η = 0.5, λ = 0.5 BS km−2, α = 3.5, N0 = 0.

Fig. 3.2 we compare analytical coverage probability curves with the simulation

results for three TPC schemes and different degrees of shadowing. We observe

that our analytical expressions closely match the simulation results and accurately

capture the performance trends. Further, lower σdB and ξdB (less severe shadowing)

improve coverage. For analytical expressions, we use 30-points Hermite quadratures

and 15-points Gauss-Laguerre quadratures.

Fig. 3.3 compares the coverage of the three TPC schemes under various de-

grees of shadowing. When shadowing is less severe, they achieve similar perfor-

mance. For example, their coverage probabilities are more or less the same when

σdB = ξdB = 4 dB. This suggests that, in an environment with less severe shad-

owing, path loss inversion using TPC is sufficient. Consequently, frequent channel

state measurements such that they capture the variations due to shadowing are not
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Figure 3.3: Comparison of coverage of three schemes for different degrees of shad-
owing. η = 0.5. λ = 0.5 BS km−2, α = 3.5, σdB = ξdB, N0 = 0.

essential for proper power control. It is sufficient to capture channel state changes

due to path loss. However, as the shadowing increases, the coverage probabilities

differ significantly. Of these three, Schemes 3 results in the lowest coverage except

when threshold SINR is very low (high coverage region). This is because, although

complete inversion of shadowing (Scheme 3) improves the received signal strength of

the desired signal, it also increases the transmit powers of interfering MSs, resulting

in higher aggregate interference power.

Fig. 3.3 also shows that at low SINR thresholds, compensating for the aggre-

gate effect of path loss and shadowing (Scheme 2) improves coverage, especially for

higher degrees of shadowing. However, at high SINR thresholds, path loss inversion

(Scheme 1) provides better coverage compared to other two TPC schemes. Reasons

for these two trends can be explained as follows. Generally cell-edge users operate

at low SINR due to high path loss and compensating for shadowing significantly

improves their SINR. Cell-center users operates at high SINR as they experience
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lower path loss. For these users, compensating for shadowing results in less signifi-

cant SINR improvement, but negatively impacts cell-edge users and capacity of the

network due to increased interference.
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Figure 3.4: Comparison of outage probability of three schemes at lower threshold
SINR. η = 0.5. λ = 0.5 BS km−2, α = 3.5, σdB = ξdB, N0 = 0.

Fig. 3.4 highlights the outage probability (1-coverage probability) at low SINR

threshold values, i.e., when coverage probability is high. The negative impact of

higher shadowing standard deviation can be clearly identified. For example, to

reach 10% outage probability, a network experiencing σdB = 12 dB needs more than

10 dB extra SINR compared to a network with σdB = 8 dB. Also results strongly

indicate that partially compensating for both path loss and shadowing (Scheme 2)

helps to lower the outage probability of the network in low SINR threshold region.

For example, when σdB = 8 dB, to reach outage probability of 0.05% Scheme 3 gives

a 2 dB advantage over other two Schemes.

Fig. 3.5 shows the coverage for different BS densities and shadowing levels. We

see that the BS density has no impact on the coverage probabilities of Schemes
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Figure 3.5: Coverage probability of three Schemes vs SINR threshold for different
BS intensities and degrees of shadowing. η = 0.5. λ is in BSs/km2, α = 3.5,
σdB = ξdB, N0 = 0.

1 and 3, but severity of shadowing does. A similar observation can be made for

Scheme 2, except for higher shadowing standard deviations values. For example,

for σdB = ξdB = 12 dB, coverage slightly lowers as the BS intensity increases. This

is because increasing the intensity of BSs not only increases the intensity of co-

channel interfering users, but also increases the received signal power at the serving

BSs by bringing in BSs closer to their users. Reference [80] has shown that with

minimum path loss association and full PLI power control (Scheme 1 with η = 1),

uplink coverage is invariant of the BS density. Fig. 3 corroborates this claim also

for partial power control (η < 1) under Schemes 1 and 3 for all shadowing levels and

for lower shadowing levels under Scheme 2.

Fig. 3.6 shows the coverage probability of Scheme 1 for different values of η

and different degrees of shadowing. Clearly the coverage is smallest when the path

loss is completely compensated. This is because higher value of η helps the cell

edge users meet their SINR target, but at the cost of higher interference level in the

network. This also reduces the SINR experienced by cell center users. Therefore,

the spatially averaged coverage probability is reduced. Therefore, careful choice of

TPC parameters is essential for proper designing of a cellular network. We also

observe that at high threshold SINR (T > 0 dB), the η = 0 (no power control; each

MS transmits with the same transmit power regardless of the path loss), results

in better coverage. Further, the variation of coverage with η is similar for the two
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Figure 3.6: Variation of coverage of Scheme 1 vs SINR threshold for different η
values. λ = 0.5 BSs/km2, α = 3.5, N0 = 0.

shadowing severities considered.

Fig. 3.7 shows the coverage probability of Scheme 2 for various values of η and

two levels of shadowing. Note that η = 1 represents complete compensation for path

loss and shadowing, resulting in a constant received power level ρ at the serving BS.

η = 0 represents no power control, resulting in each MS transmitting with constant

power. At low SINR thresholds, complete compensation results in provides the

highest coverage, while compensation for both path loss and shadowing (η > 0)

results in higher coverage compared to that of no power control (η = 0). However, at

high SINR thresholds, η = 0 results higher coverage probability. Also, Fig. 5 shows

that the performance gap widens, when the shadowing standard deviation increases.

Therefore, we can conclude that at low SINR thresholds complete elimination of

shadow fading and path loss improves coverage, while at high SINR thresholds

power control reduces the coverage probability.

Fig. 3.8 shows the variation of coverage probability with power control factor η
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Figure 3.7: Coverage probability of Scheme 2 vs SINR threshold for different η
values. λ = 0.5 BSs/km2, α = 3.5, ρ = −30 dBm, N0 = 0.

for Scheme 3. When η = 1, both path loss and shadowing are fully compensated

for, resulting in a constant received power level ρ at the serving BS for all the

MSs regardless of the path loss and shadowing they experience. On the other hand

η = 0 only compensates for shadowing. This provides higher coverage probability

for higher SINR thresholds, but not otherwise. Also as the compensation factor

increases above 0.5, coverage drops considerably. Therefore, we can conclude that

at low SINR thresholds complete elimination of shadowing and partial compensation

of path loss gives better coverage, while at high SINR thresholds inverting only the

effect of shadowing improves coverage.

3.7 Conclusion

Three uplink power control schemes for cellular networks with path loss and com-

posite Rayleigh-lognormal fading have been investigated. They are partial compen-

sation of: (1) path loss only, (2) the aggregate effect of path loss and shadowing,
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Figure 3.8: Coverage probability of Scheme 3 vs SINR threshold for different η
values. λ = 0.5 BSs/km2, α = 3.5, ρ = −30 dBm, N0 = 0.

and (3) path loss and complete inversion of shadowing. Approximate PDF and CDF

expressions have been derived for the transmit power and the coverage probabilities.

The results have been validated via simulations.

This study leads to several observations. First, shadowing clearly has negative

impact on network coverage. Second, when the operating SINR is lower which is

typically the case with cell-edge users or users subject to severe shadowing, com-

pensating for the aggregate effect of path loss and shadowing (Scheme 2) improves

coverage compared to the other two schemes. However, when the operating SINR is

high which is the case for most cell center users or users close to the serving BS, in-

verting only path loss (Scheme 1) provides the best coverage. Further, of the three,

power control Scheme 3 gives the worst coverage. Third, previous research has ob-

served that the BS intensity has little effect on the coverage, when minimum path

loss association and full path loss inversion power control (scheme 1 with η = 1) is

used in uplink. We find the same holds true for scheme 1 and 3 for all shadowing lev-
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els and η < 1. Further, it also holds for Scheme 2 under light shadowing. However,

in all three schemes the extent to which path loss and shadowing are compensated

has a significant effect on the coverage probability. Therefore, proper selection of

uplink power control parameters is essential in cellular networks.
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Chapter 4

Coverage and Rate Analysis for
Limited Information Cell
Association in Cellular
Networks

The complexity and uncertainty inherent in large cellular networks make the ac-

quisition of location and channel information of all but perhaps a few neighbouring

network nodes 1 difficult for a given user. Therefore, a cell association policy must

operate with sparse information. Thus, in this chapter 2 a new cell association pol-

icy is introduced which only requires channel state information of few neighboring

users. In this policy the serving base station (BS) is the one that provides the high-

est instantaneous signal-to-interference-plus-noise ratio (SINR) from among all BSs

providing average received signal power exceeding a predetermined minimum. This

policy is evaluated for the downlink of single-tier (homogeneous) and two-tier (het-

erogeneous) networks, and for the latter the key advantage of the proposed policy is

its capability to enable traffic off-loading. Two methods to determine the minimum

average signal power are given. Coverage probabilities and average rates of mobile

stations (MSs) in coverage are derived accounting for path loss, multipath fading

and random locations of BSs in each tier. Analysis is verified by Monte-Carlo sim-

ulations. We observe that the instantaneous SINR and average received power of

a few BSs are sufficient to achieve the coverage corresponding to the highest-SINR

association, which in general requires instantaneous SINR information of a larger
1node = base station (BS)/access point (AP), user = mobile station (MS)
2A version of this chapter has been published in IEEE Transactions on Vehicular Technology [101].
A part of the contribution has also been published in 2014 IEEE 80th Vehicular Technology
Conference, Vancouver, BC, Canada [102].
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subset of a network. We also observe that in a two-tier network, the effect of strong

interference from high power BSs, such as macro BSs, can be limited by proper

choice of minimum average received power for low power BSs.

4.1 Introduction

As described in Section 1.2.2, in Heterogeneous network (HetNet) the cell association

policy plays an important role in providing the best user-perceived rate [34]. Due to

the uncertainty of locations of network nodes and users, many association policies

have been studied under different spatial models for single-tier (homogeneous) and

multi-tier (heterogeneous) networks [40,41,50,53,65,103–108]. Based on the metrics

used for the serving BS selection , they can be classified into three categories

1. Closest-BS: Serving BS selection is based on BS-MS distances [40,50,53].

2. Highest-SINR (equivalently, highest-signal-to-interference ratio (SIR) in interference-

limited networks): received SINR is used to select the serving BS [41,103–105].

3. Biased association: Serving BS selection is based on biased-SINR or biased-

location [106–108].

In these studies, the locations of BSs in each tier are modeled with a homogeneous

Poisson point process (PPP). The PPP [51] has extensively been used to model

distributions of BSs and MSs [40–42,49,50,53,103–108] in the literature.

4.1.1 Prior related research

In the closest-BS policy, the serving BS is the closest one. Essentially, this policy

ensures the highest area-averaged signal strength with the variation of the signal

strength due to small- and large-scale fading are averaged out. Reference [40] inves-

tigates the coverage probability, normalized per user mean data rate and coverage

gain (and mean rate loss) from static frequency reuse on the downlink of a single-tier

network assuming spatial distribution of BSs follows a homogeneous PPP. The up-

link performance with per-mobile power control is investigated in [53]. The downlink

performance of multi-tier networks is investigated in [50]. Multiple tier BSs have

different transmitted powers, supported data rates, and deployment densities. The

spatial distribution of BSs in each tier is modeled using an independent homogeneous

PPP.
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In highest-SINR policy, the serving BS is the one offering the highest SINR.

When BSs are fully loaded, transmitting and receiving packets on all their ra-

dio resource (time-frequency) blocks at all times, this strategy maximizes the sum

throughput [34]. Performance of multi-tier networks under this policy is investigated

in [41] and [104] assuming a system model similar to that of [50]. Reference [41]

show that under this policy the coverage probability of an open access interference-

limited network does not depend upon the number of tiers or the density of BSs

when target threshold SIRs are the same for all the tiers. Reference [103] investi-

gates the downlink coverage probability of a single-tier network under highest-SINR

policy by characterizing the distribution of BSs with a non-homogeneous PPP.

In multi-tier networks, the area covered by each type of BS varies significantly.

For example, a macro BS will provide umbrella coverage for an area covered by many

pico BSs and femto access points (APs) (femto APs). Due to this reason, BSs with

smaller coverage areas, such as pico BSs or femto APs, will have fewer active users

and hence will be lightly loaded compared to macro BSs [34]. Therefore, smart cell

association policies should be capable of off-loading users from highly loaded BSs

to lightly loaded ones so that BSs offer them the best user-perceived rate [34]. This

goal is achieved by introducing a bias into the association policy to account for the

load of each type of BS. Performance of SINR-based biased association policies is

investigated in [106,107]. In [108], Mukherjee investigates the downlink performance

of both SINR- and location-based biased association policies.

Reference [109, 110] propose and investigate the performance of equivalent re-

ceived power connectivity policy for multi-tier networks. In this policy a mobile

user connects to the BS, from which it receives maximum equivalent power (re-

ceived power in a given tier averaged over small- and large-scale fading, and divided

by target SINR for that tier). When target SINRs are the same across multiple

tiers, this policy is equivalent to the closest-BS association.

4.1.2 Motivation and Contribution

Contribution in this chapter is motivated by the following two key factors.

1. In large cellular networks channel state information available to an MS usually

limited to only a few nodes [49]. Thus, the association policy must rely only

on this limited information.
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2. Due to the power-law path loss, the area-averaged received signal strength

decays quickly with the distance between transmitter and receiver. In future

generations of networks, this path loss may even increase with lower BS an-

tennas and the use of higher frequencies. Therefore, higher the area-averaged

received power from a BS to a user, higher the probability that it will provide

the highest instantaneous SINR for the user.

These factors suggest that search for the best serving BS should be limited to a set

of BSs providing the area-averaged received power (from here onward referred to

as average received power) above a certain value. Motivated by these factors, we

propose that a given user is served by the highest instantaneous SINR (from here

onward referred to as SINR) BS from among BSs providing average received power

above a predetermined value Pth. Thus, this policy requires only the instantaneous

SINR and the average received power of a limited number of BSs, but not of the

full network. The conventional highest-SINR association [41] can be considered as

a special case of the new policy, i.e., when Pth → 0. We consider two methods to

determine Pth: (i) selecting a fixed value and (ii) iterative selection of Pth. We show

that iterative selection of Pth considerably reduces the number of BSs to be tracked

and hence the complexity of the cell association process.

This policy is also extended to two-tier macro pico deployments. These exten-

sions assume different conditions for the availability of SINR and average received

power of the pico BSs: (i) both SINR and average received power are available,

(ii) only the average received power is available. In multi-tier networks, BSs with

smaller coverage areas, such as pico BSs or femto APs, will necessarily serve fewer

users and hence will be lightly loaded compared to macro BSs [34]. Therefore, a

smart cell association policy should be capable of off-loading user traffic from highly

loaded BSs to lightly loaded ones. It is shown that the proposed policy enables user

off-loading in two-tier networks.

4.2 System Model

This section presents the system model considered in this study.
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R

Figure 4.1: Randomly distributed BSs in R2 with MS at the center. Black squares
- accessible BSs, black circles - inaccessible BSs.

4.2.1 System Model: Single Tier Networks

Consider downlink of a network with BSs distributed in Rd, d ∈ {2, 3} according to

a homogeneous PPP Φ with intensity λ [42,51]. Multi-user downlink transmission is

assumed. However, transmission to each user within a given cell occurs on a different

time-frequency resource block; the resource blocks within each cell are orthogonal.

Universal time-frequency channel reuse and a fully loaded network are also assumed.

Hence, the worst intercell interference case is considered. Every BS transmits with

power Pt. Rayleigh fading (with envelope power normalized to one) is assumed

along with path loss. We will use the simplified power-law path loss model, where

the received power Pr at a distance of r from the transmitter is given as Pr = Ptr
−α.

α > d is the path loss exponent. The condition α > d is necessary to maintain a

finite received power at each MS. In the proposed cell association policy serving

BS is the one, which provides the highest SINR among all BSs meeting average

received power requirement (from here onward referred to as candidate BSs). Since

simplified path loss model is assumed, Pth defines a maximum distance R =
(
Pt
Pth

) 1
α

a candidate BSs can be located from an MS (see Figure 4.1). The highest-SINR

association [41] is a special case of the new policy when Pth → 0 or equivalently

R→∞.

In practice, MS-BS association is based on received signal strength indicator

(RSSI) measurements from all available BSs (BSs that provide a meaningful RSSI).

The association scheme proposed in this study can be implemented by imposing a

cut-off threshold value for the area-averaged RSSI to select a subset of BSs out of all
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the available BSs, and then choosing the BS with the highest instantaneous RSSI to

serve a given MS. With that only the instantaneous RSSI of the selected subset of

BSs and the average RSSI of available BSs need to be tracked. The selected subset

of BSs should be updated periodically to account for the mobility of the MS and for

changes in the radio wave propagation environment with time.

4.3 Coverage Probability Analysis

In this section first the coverage probability of a single-tier network is derived.

Subsequently two methods for the selection of Pth for cell association are presented.

4.3.1 Coverage Probability Analysis: Single-Tier Network

Without loss of generality, we consider an MS located at the center of Rd. As

described in Section 4.2.1, the minimum average received power requirement for

candidate BSs divides the original space Rd, over which the BSs are distributed, into

two disjoint sub-spaces: S1 = {x ∈ Rd : ||x|| ≤ R} and S2 = {x ∈ Rd : ||x|| > R},

where R =
(
Pt
Pth

) 1
α . Candidate BSs are distributed in the space S1. According to

the restriction theorem [52], BSs residing in S1 and S2 form two independent PPPs:

Φ1 and Φ2, respectively. Assuming the MS is connected to a BS at point y ∈ Φ13,

SINR of the MS can be written as

SINR(y) = ||y||−αgy∑
w∈Φ1\y

||w||−αgw +
∑
z∈Φ2 ||z||−αgz +N0

= ||y||
−αgy

I1\y + I2
, (4.1)

where gy, gw, and gz represent the power gains due to multipath fading (fading

coefficients). Φ1\y denotes Φ1 excluding BS y. The variance of additive white

Gaussian noise (AWGN) is given by N0. I1\y =
∑
w∈Φ1\y

||w||−αgw is the total

interference power from all the BSs in Φ1, when MS is connected to BS at the point

y and all the BSs transmit with unity power. I2 =
∑
z∈Φ2 ||z||

−αgz is the total

interference power from Φ2 when all BSs transmit with unity power. The resulting

SINR at the MS is given by

SINR = maxy∈Φ1{SINR(y)}. (4.2)
3With slight abuse of notation we will use y to denote both the location of MS and MS itself.
Similarly for w and z.
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An MS is considered to be in coverage, when its SINR equals or exceeds a given

threshold T . Using a similar approach to that in [41], the coverage probability Pc(T )

under the new cell association policy can be expressed as

Pc(T ) = Pr

 ⋃
y∈Φ1

SINR(y) ≥ T

 , (4.3)

≤ E

∑
y∈Φ1

1 (SINR(y) ≥ T )

 ,
The bound is the union bound on Pc(T ). Using Lemma 1 of [41], it can be easily

shown that the union bound is exact for threshold SINRs T > 0 dB and is an upper

bound for T < 0 dB. Now (4.3) can be written as

Pc(T )
a
≤ λ

∫
S1

Pr
(
gy ≥

T (I1\y + I2 +N0)
||y||−α

)
dy,

b
≤ λ

∫
S1

EI1\y+I2

[
exp

(
−
T (I1\y + I2 +N0)

||y||−α

)]
dy,

c
≤ λ

∫
S1

exp
(
− TN0
||y||−α

)
LI1\y+I2

(
T

||y||−α
)
dy, (4.4)

where (a) follows from the Campbell-Mecke theorem [51] and (b) follows from gy ∼

exp(1). (c) follows form the definition of the Laplace transform. S1 = {x ∈ Rd :

||x|| ≤ R}. LI1\y+I2(s) can be derived as shown in the following [102].

Since the fading coefficients are independent and two PPPs Φ1 and Φ2 are in-

dependent of each other and independent of the fading processes, I1\y and I2 are

statistically independent. Therefore,

LI1\y+I2(s) =EΦ1,gw

[
exp

(
−s

∑
w∈Φ1\y

||w||−αgw
)]
EΦ2,gz

[
exp

(
−s
∑
z∈Φ2

||z||−αgz
)]
. (4.5)

Since Rayleigh fading is assumed gw ∼ exp(1) and gz ∼ exp(1). Therefore,

LI1\y+I2(s) = EΦ1

[ ∏
w∈Φ1\y

1
1 + s||w||−α

]
EΦ2

[ ∏
z∈Φ2

1
1 + s||z||−α

]
. (4.6)

Using the Slivnyak-Mecke theorem [51] along with the definition of probability gen-
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erating functional of PPP [51] we get:

LI1\y+I2(s) =exp
[
− λ

∫
S1

(
1− 1

1 + s||w||−α
)
dw

]
,

× exp
[
− λ

∫
S2

(
1− 1

1 + s||z||−α
)
dz

]
,

=exp
[
− λ

∫
Rd

(
1− 1

1 + s||u||−α
)
du

]
. (4.7)

Converting from Cartesian to polar/spherical coordinates, for d-dimensional net-

works (4.7) can be written as

LI1\y+I2(s)=exp
[
−κdπλ

∫ ∞
0
rd−1

(
1− 1

1 + sr−α

)
dr

]
,

=exp
[−κdπ2λs

d
α

α sin
(
dπ
α

)], (4.8)

where κ2 = 2, and κ3 = 4. Converting (4.4) from Cartesian to polar/spherical

coordinates and substituting (4.8) in this new expression, Pc(T ) for d-dimensional

networks can be expressed as

P c(T )≤

1−exp

−κdπ2
(
PtT
Pth

) d
α λ

α sin
(
dπ
α

)

α sin

(
dπ
α

)
dπT

d
α

. (4.9)

According to (4.9), the impact of λ on Pc(T ) diminishes as Pth → 0. A similar

observation is made for 2-D networks in Corollary 1 of [41].

Selection of Minimum Average Received Power Pth

We know that if Pth is too large, no BS is likely to be selected as a candidate BS,

which will put the MS into outage. Conversely, if Pth is too small, too many BSs will

be selected as candidate BSs, increasing the complexity of the association. Thus,

Pth should be chosen such that more than n (≥ 1) BSs provide average received

power above Pth with a reasonably high probability q. For example, n = 2 and

q = 0.95 will guarantee that two candidate BSs are available with a probability of

0.95. For a network with a homogeneous PPP distribution of BSs, Pth for selected

set of values for n and q can be computed as follows.

Let Pn be the nth highest average received power from BSs. Since the average

received power only depends on the path loss and BS transmitted power, which is

assumed to be constant, Pn is the average received power from nth closest BS to
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the MS. The cumulative distribution function (CDF) of the random variable Pn is

given by

FPn(z) = Pr
[
Ptr
−α
n ≤ z

]
,

= 1− Pr
[
rn ≤

(
Pt
z

) 1
α

]
, (4.10)

where rn is the Euclidean distance between an MS and its nth closest BS in Rd.

The CDF of rn is given by [111]

F (rn) = 1− Γ(n, λcdrdn)
(n− 1)! , 0 < rn <∞, (4.11)

where c2 = π, c3 = 4π/3. Substituting (4.11) in (4.10),

FPn(z) =
Γ
(
n, λcd

(
Pt
z

) d
α

)
(n− 1)! , 0 < z <∞. (4.12)

Therefore, in Rd, for a given number of BSs n and probability q = 1−FPn(Pth), Pth
can be computed as

Pth = Pt

[
λcd

Γ−1 (n, (n− 1)!(1− q))

]α
d

. (4.13)

Improving Pc by iterative decrease of Pth
The second way to select Pth is to use an adaptive update. The problem of

selecting too many BSs as candidate BSs can be alleviated by initializing the asso-

ciation with a large value for Pth (equivalently, small n and q), and decreasing it

iteratively. For example, a system may select the initial minimum association re-

ceived power P (0)
th by selecting lower values for n and q, n(0) and q(0) (e.g., n(0) = 1

and q(0) = 0.9, which guarantees at least one BS given P (0)
th , 90% of the time). If no

BS to associate with is found, Pth can be decreased iteratively N times (e.g., with

N = 2, new minimum association received power after 1st iteration P (1)
th is selected

with n(1) = 1 and q(1) = 0.99, which guarantees one BS 99% of the time; in the

second iteration, P (2)
th with n(2) = 1 and q(2) = 0.999). This process is implemented

by Algorithm 1 listed below. In Section 4.5 it is shown that the iterative selection

of Pth considerably reduces the number of BSs to be scanned, therefore it lowers the

complexity of the association process.

4.3.2 Extensions for Two-Tier Heterogeneous Networks

Consider a two-tier network consisting of macro and pico BSs. Two cases are con-

sidered for the availability of average received power and SINR information of pico
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Algorithm 1 Cell association with iterative decrease of Pth
Input: λ, α, Pt, N, n(j) and q(j) j ∈ {1, 2, ..., N}

P
(0)
th ← calculate starting value of Pth, use eq. (4.13)

with n = n(0) and q = q(0)

2: i(0) ← number of BSs providing P (0)
th

if i(0) ≥ n(0) then
4: selected BS← BS with highest SINR among those

providing P (0)
th

else
6: j ← 1

while i(j) < n(j), j ≤ N do
8: P

(j)
th ← calculate jth value of Pth, use eq. (4.13)

with n = n(j) and q=q(j)

i(j) ← number of BSs providing P (j)
th

10: j ← j + 1
end while

12: selected BS← BS with highest SINR among those
providing P (j)

th

end if

BSs: (i) both SINR information and average received power are available, (ii) only

the average received power is available.

For case (i), association policy attempts to select a pico BS providing average

received power exceeding Pth. If only one pico BS is available, the MS associates

with it. When more than one pico BSs are available, one providing the highest

instantaneous SINR is selected. If the average received powers from all the pico BSs

are lower than Pth, the macro BS providing the highest average SINR is selected

as the serving BS. This is equivalent to associating with the closest macro BS. The

ability to manage user off-loading to small cells by Pth is among the advantages of

this association policy. For example, 70% of users will be served by pico BSs, when

Pth is selected with q = 0.7 and n = 1 (70% of the time there is at least one pico BS

providing average received power exceeding Pth). For case (ii), each MS connects

to the pico BS providing maximum average received power (equivalently the BS

providing maximum average SINR), if its received power exceeds Pth. If this fails,

it is connected to the macro BS providing the highest average SINR.

Two-Tier Network: Network Parameters

We characterize the spatial distribution of macro and pico BSs by two independent

homogeneous PPPs Φm and Φp with intensities λm and λp, respectively. Macro
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BSs transmit with power Pm, while pico BSs transmit with power Pp. All the

links are assumed to be subject to path loss (as in Section 4.2.1) and multipath

fading. Path loss exponents of macro BSs and pico BSs are given by αm and αp (

αm, αp > 2). Target SINR thresholds of macro BSs and pico BSs are Tm and Tp,

respectively. Multi-user downlink transmission is assumed, as described in detail in

the first paragraph of Section 4.2.1.

4.3.3 Coverage Probability Analysis: Two-Tier Networks

This section presents the coverage probability analysis for two cases, namely (i)

both instantaneous SINR and average received power of pico BSs are available (ii)

only average received power is available. Without loss of generality the coverage

probability of an MS located at the center of the network is considered.

4.3.4 Both Instantaneous SINR and Average Received Power Avail-
able

When both SINR and average received power of pico BSs are available, the proposed

association policy selects the pico BS providing the maximum instantaneous SINR

from those providing average received power exceeding Pth. If no pico BS is found to

provide such average power, the macro BS with the highest average SINR is selected

as the serving BS. Using the theorem on total probability the coverage probability

can be expressed as

Pc(Tm, Tp) = PvP
macro
c (Tm) + (1− Pv)P pico

c|ru<Rp(Tp), (4.14)

where ru = ||u|| is the distance between the closest pico BS u ∈ Φp and the MS.

Rp =
(
Pp
Pth

) 1
αp . Pmacro

c (Tm) is the coverage probability when the MS is served by

the macro BS providing the highest average SINR given that there is no pico BS

providing Pth. P pico
c|ru<Rp(Tp) gives the coverage probability, when the MS is served by

the highest SINR pico BS out of those providing Pth. Pv represents the probability

that no pico BS is found to provide Pth at the MS. Pv can be derived as

Pv = Pr
(
Ppr

−αp
u < Pth

)
= Pr

(
ru >

(
Pp
Pth

) 1
αp

)
. (4.15)

Pr
(
ru >

(
Pp
Pth

) 1
αp

)
is the probability that no pico BS is found within distance(

Pp
Pth

) 1
αp from the MS. Since pico BSs are distributed according to a PPP with
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intensity λp,

Pv = exp
(
−λpπ

(
Pp
Pth

) 2
αp

)
. (4.16)

Using a similar approach to the derivation of (4.3) and (4.4), P̂ pico
c|ru<Rp(Tp) = (1 −

Pv)P pico
c|ru<Rp(Tp) can be derived as follows [102]:

P̂ pico
c|ru<Rp(Tp) ≤ λp

∫
AR

Pr
(
gy ≥

Tp(Ip\y + Im +N0)
Pp||y||−αp

)
dy,

a
≤ λp

∫
AR

exp
(
− TpN0
Pp||y||−α

)
LIp\y+Im

(
Tp

Pp||y||−αp

)
dy,

≤ 2πλp
∫ Rp

0
r exp

(
− TpN0
Ppr−α

)
LIp\y+Im

(
Tp

Ppr−αp

)
dr, (4.17)

where AR represents the circular region around the MS with radius Rp. Step (a)

follows from the Rayleigh fading assumption. Ip\y represents the aggregate interfer-

ence from pico BSs when MS is served by pico BS located at y ∈ Φp. Im represents

the aggregate interference from macro BSs. Similarly to (4.4), the expression (4.17)

is exact for threshold SINRs Tp > 0 dB and is an upper bound for Tp < 0 dB. Since

fading coefficients are independent and identically distributed (i.i.d.) and the fading

processes are independent from PPPs LIp\y+Im (s) = LIp\y (s) × LIm (s). LIp\y (s)

can be obtained by replacing s, λ, and α in (4.8) with sPp, λp, and αp, respectively.

LIp\y(s) =exp
[−2π2λp(sPp)

2
αp

αp sin
(

2π
αp

) ]
. (4.18)

Following similar steps to those in the derivation of (4.8), LIm (s) can be expressed

as

LIm (s)=EΦm

[ ∏
x∈Φm

Egx
[
exp

(
− sPm||x||−αmgx

)]]
,

=exp
[−2π2λm(sPm)

2
αm

αm sin
(

2π
αm

) ]
. (4.19)

Pmacro
c (Tm) can be derived as shown in the following. When MS is served by the

highest average SINR macro BS z ∈ Φm, SINR is given by

SINR(z)= Pmr
−αm
z gz∑

x∈Φm\z
Pm||x||−αmgx+

∑
y∈Φp,||y||>Rp

Pp||y||−αpgy +N0
, (4.20)
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where distance between MS and the highest average SINR macro BS (equivalently,

the closest macro BS) is denoted by rz = ||z||. Therefore, Pmacro
c (Tm) is given

by [102]:

Pmacro
c (Tm) = Pr

[
Pmr

−αm
z gz

Im\z + Ip\AR +N0
≥ Tm

]
,

=
∫ ∞

0
Pr
[

Pmr
−αm
z gz

Im\z + Ip\AR +N0
≥ Tm

∣∣∣∣rz = t

]
frz(t)dt,

=
∫ ∞

0
Pr
[
gz≥

Tm
(
Im\z+Ip\AR +N0

)
Pmr

−αm
z

∣∣∣∣rz= t

]
frz(t)dt. (4.21)

Here, Im\z =
∑
x∈Φm\z Pm||x||

−αmgx and Ip\AR =
∑
y∈Φp,||y||>Rp Pp||y||

−αpgy. As

fading follows Rayleigh fading with unity variance, gz ∼ exp(1). Therefore,

Pmacro
c (Tm) =

∫ ∞
0
EIm\z+Ip\AR|rz=t

exp
−Tm

(
Im\z+Ip\AR +N0

)
Pmr

−αm
z


× frz(t)dt. (4.22)

Using the definition of the Laplace transform

Pmacro
c (Tm) =

∫ ∞
0

exp
(
− TmN0
Pmr

−αm
z

)
LIm\z+Ip\AR |rz=t

(
Tm

Pmt−αm

)
× frz(t)dt. (4.23)

The probability density function of rz is given by [111]

frz(t) = 2πλmt exp
(
−λmπt2

)
, t > 0. (4.24)

LIm\z+Ip\AR (s) can be derived as shown in the following [102].

Since fading coefficients are independent and identically distributed (i.i.d.) and

two PPPs Φm and Φp are independent of each other interferences Im\z and Ip\AR are

statistically independent. Therefore, the Laplace transform of the sum of inference

can be written and the product of individual interference terms.

LIm\z+Ip\AR |rz=t(s) =LIm\z |rz=t(s)× LIp\AR (s). (4.25)

Using the definition of the Laplace transform

LIm\z+Ip\AR |rz=t(s) =EΦm,gx

[
exp

(
− s

∑
x∈Φm\z

Pm||x||−αmgx
)]

× EΦp,gy

[
exp

(
− s

∑
y∈Φp,||y||>Rp

Pp||y||−αpgy
)]
. (4.26)
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Using the fact that PPPs and fading processes are statistically independent and

fading coefficients are i.i.d.

LIm\z+Ip\AR |rz=t(s) =EΦm

[ ∏
x∈Φm\z

Egx
[
exp

(
− sPm||x||−αmgx

)]]

× EΦp

[ ∏
y∈Φp,||y||>Rp

Egy
[
exp

(
− sPp||y||−αpgy

)]]
.

(4.27)

As gx ∼ exp(1) and gy ∼ exp(1), taking the expectation over gx and gy

LIm\z+Ip\AR |rz=t(s) =EΦm

[ ∏
x∈Φm\z

1
1 + sPm||x||−αm

]

× EΦp

[ ∏
y∈Φp,||y||>Rp

1
1 + sPp||y||−αp

]
. (4.28)

Follows from the definition of probability generating functional of PPP [51] and by

converting from Cartesian to polar coordinates

LIm\z+Ip\AR |rz=t(s)
e= exp

[
− 2πλm

∫ ∞
t

u

(
1− 1

1 + sPmu−αm

)
du

]
× exp

[
− 2πλp

∫ ∞
Rp

v

(
1− 1

1 + sPpv−αp

)
dv

]
. (4.29)

Solving two integrations LIm\z+Ip\AR |rz=t(s) can be written as

LIm\z+Ip\AR |rz=t(s) =exp
[−2πλmPmt2−αms 2F1

[
1, αm−2

αm
; 2− 2

αm
, −Pmstαm

]
αm − 2

]

× exp
[−2πλpP

2
αp
p P

1− 2
αp

th s 2F1
[
1, αp−2

αp
; 2− 2

αp
,−sPth

]
αp − 2

]
.

(4.30)

4.3.5 Only Average Received Power Available

When only average received powers of pico BSs are available, each MS attempts

to connect to the pico BS with the highest average received power, if the average

received power from it exceeds Pth. Essentially, this is connecting to the closest

pico BS if it meets the minimum average received power requirement. If no pico

BS is found providing Pth, MS associates with the macro BS providing the highest

average SINR. The coverage probability of the network for this case can be derived

as follows. From the theorem on total probability

Pc(Tm, Tp) = (1− Pv)P̃ pico
c|ru<Rp(Tp) + PvP

macro
c (Tm), (4.31)
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where P̃ pico
c|ru<Rp(Tp) is the coverage probability, when the user is served by the pico

BS with the highest average received power provided that the average received power

exceeds Pth. Pv and Pmacro
c (Tm) are given by (4.16) and (4.23), respectively. Using

the definition of conditional probability (1− Pv)P̃ pico
c|rz<Rp(Tp) can be expressed as

(1− Pv)P̃ pico
c|ru<Rp(Tp) = Pr

[
Ppr

−αp
u gu

Ip\u + Im +N0
≥ Tp, ru < Rp

]
,

=
∫ Rp

0
Pr
[
gu >

Tp(Ip\u + Im +N0)
Ppr

−αp
u

|ru = t

]
fru(t)dt, (4.32)

where Ip\u is the total interference from all other pico BSs when MS is connected

to the pico BS with the highest average received power provided that the average

received power exceeds Pth. gu is the fading power gain. fru(t) is the PDF of

ru, distance from the MS to the pico BS with the highest average received power

(equivalently, the closest pico BS) from the MS. Since gu ∼ exp(1), (4.32) can be

written as

(1− Pv)P̃ pico
c|ru<Rp(Tp) = 2πλp

∫ Rp

0
t LIp\u+Im|ru=t

(
Tpt

αp

Pp

)

× exp
(
−λpπt2 −

TpN0
Ppt−αp

)
dt, (4.33)

where LIp\u+Im|ru=t (s) represents the Laplace transform of Ip\u|ru=t + Im (s) with

respect to s. Since Ip\u|ru=t and Im are statistically independent, LIp\u+Im|ru=t (s) =

LIp\u|ru=t (s)× LIm (s). LIm (s) is given by (4.19). Following a similar approach to

the derivation of LIm\z |rz=t(s) in (4.30), LIp\u|ru=t (s) can be obtained as

LIp\u|ru=t (s) = exp
[
−2πλp

∫ ∞
t

y

(
1− 1

1 + sPpy−αp

)
dy

]
,

= exp
[−2πλpPpt2−αps 2F1

[
1, αp−2

αp
; 2− 2

αp
,
−Pps
tαp

]
αp − 2

]
. (4.34)

4.4 Achievable Rate Analysis

In this section, the average rate achievable by a randomly chosen MS in coverage

is investigated. First, average rate of an MS in a single-tier network is derived.

Subsequently, the derived expression is extended to two-tier networks.
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4.4.1 Single-Tier Networks

The average rate achievable by a randomly chosen MS in coverage in a single-tier

network can be expressed as

R1-tier = ESINR|SINR ≥ T [ln (1 + SINR)] . (4.35)

Here SINR = maxy∈Φ1{SINR(y)} where, SINR(y) is given by (4.1). Since the

expectation of any positive random variable X is given by E [X] =
∫∞

0 Pr(x > z)dz,

R1-tier =
∫ ∞

0
Pr [ln(1 + SINR) > z|SINR ≥ T ] dz,

=
∫ ∞

0
Pr [SINR > ez − 1|SINR ≥ T ] dz. (4.36)

Using the definition of conditional probability

R1-tier =
∫ ∞

0

Pr [SINR > ez − 1, SINR ≥ T ]
Pr [SINR ≥ T ] dz,

= ln(1 + T ) +
∫ ∞

ln(1+T )

Pr [SINR > ez − 1]
Pr [SINR > T ] dz,

= ln(1 + T ) + 1
Pc(T )

∫ ∞
ln(1+T )

Pc(ez − 1)dz, (4.37)

where Pc(x) is the coverage probability in a single-tier network when threshold SINR

is x, which is given by (4.9). In Section 4.3.1, it was shown that (4.9) is an exact

expression for T ≥ 0 dB and an upper bound when T < 0 dB. Consequently, (4.37)

is an exact expression for T ≥ 0 dB and a lower bound when T < 0 dB.

4.4.2 Two-Tier Networks

The achievable rate of an MS in coverage in a two-tier network R2-tier is analytically

intractable when the SINR thresholds of two types of BSs are different. Therefore,

we derive R2-tier assuming SINR thresholds to be the same, i.e., Tm = Tp = T .

Following a similar approach to the derivation of (4.37), R2-tier has been derived as

R2-tier = ln(1 + T ) + 1
Pc(T, T )

∫ ∞
ln(1+T )

Pc(ez − 1, ez − 1)dz, (4.38)

where, Pc(x, y) is given by (4.14) or (4.31) depending on the availability of SINR/average

received power information. Similarly to (4.37), (4.38) is an exact expression for

Tm, Tp ≥ 0 dB and a lower bound when Tm, Tp < 0 dB.
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4.5 Simulation and Numerical Results

This section first considers a single-tier network with the proposed cell association

policy. Its coverage probability is compared with those of the closest-BS and the

highest-SINR association policies. Secondly, the coverage probability of a two-tier

network, which employs extensions of the new association policy, is investigated.

Performance of the new policy is compared with those of the closest-BS, the highest-

SINR and the maximum biased instantaneous received power [106] association poli-

cies. Finally the average rates of MSs in coverage of both single-tier and two-tier

networks are investigated.
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Figure 4.2: Variation of Pc in a single-tier network with T . α = 3.5, λ = 12× 10−6

m−2, Pt = 20 W, N0 = 0.

Figure 4.2 shows the variation of Pc in a single-tier network with the new policy.

The analytical and simulation results are very close when T > −2 dB. Also, the

coverage probability of the new policy is compared with those of the closest-BS and

the highest-SINR policies. Interestingly, when Pth is selected appropriately (equiv-
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alently, n and q are appropriately selected), this policy outperforms the closest-BS

association and performs similarly to the highest-SINR policy. For example, the new

policy with n = 1, and q = 0.99 achieves similar performance as the highest-SINR

one. Due to path loss, to achieve a higher SINR an MS needs to associate with

a much closer BS. Therefore, as can be seen, the performances of all the policies

converge to that of the closest-BS policy when threshold SINR is higher (T > 6 dB).
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Figure 4.3: Pc in a single-tier network with adaptive Pth vs T . α = 3.5, λ = 12×10−6

m−2, Pt = 20 W, N0 = 0.

Coverage probability improvement that can be achieved by adaptive selection

of Pth is shown in Figure 4.3. In the network considered, P (j)
th , j ∈ {0, 1, 2} is

selected with ∀j : n(j) = 1, q(0) = 0.9, q(1) = 0.99, and q(2) = 0.999. Therefore,

P
(0)
th = −40.74 dBm, P (1)

th = −46.01 dBm, and P (2)
th = −49.09 dBm. Results show

that Pc with no iteration outperforms the closest-BS policy. Also, it shows that

the performance of the proposed policy with one iteration (N = 1) significantly

improves Pc compared to no iterations. Further, the results indicate that only

a marginal performance improvement can be achieved by having more than one
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iteration. In a network with PPP distribution of BSs, the average number of BSs to

be scanned with N = 1 is given as qπλ
(

Pt
P

(0)
th

) 2
α

+ (1− q)πλ
[(

Pt
P

(1)
th

) 2
α

−
(

Pt
P

(0)
th

) 2
α

]
.

For the networks considered, this figure is ≈ 2.3. Figure 4.3 also shows that Pc for

n = 1, q = 0.99 no iteration case is only slightly higher compared to N = 1 case.

However, the average number of BSs to be scanned in n = 1, q = 0.99 no iteration

case is πλ
(
Pt
Pth

) 2
α ≈ 4.6. This shows that the complexity (the number of BSs to be

tracked) in the association process can be significantly reduced by using adaptive

Pth selection at a cost of small performance degradation.
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Figure 4.4 shows the variation of Pc in a two-tier network with the SINR thresh-

old. The minimum average received power Pth for pico BSs was selected with n = 1

and q = 0.7. Under this configuration 70% MSs will be served by pico BSs, while the

remaining 30% will be served by macro BSs. Notably, a considerable coverage prob-

ability improvement can be achieved by the availability of both instantaneous SINR

and average received power (proposed scheme 1) as opposed to only average received

power of pico BSs (proposed scheme 2), especially when −8 dB < Tp < 0 dB. Figure

4 also shows that having instantaneous SINR information for macro BSs (scheme

3), marginally improves the coverage probability at low SINR thresholds. However,

at high SINR thresholds, it does not provide any coverage probability improvement

compared to having average SINR. Further, Figure 4.4 compares the coverage proba-

bilities of the proposed policy with those of closest BS, highest SINR, and maximum

biased instantaneous received power [106] association policies. With the closest BS

policy, an MS connects to the closest-BS, while under the highest-SINR policy an

MS associates with the BS providing the highest SINR, regardless of the BS type.

Therefore, these two policies fail to manage user off-loading. Clearly, the highest-

SINR policy provides the best coverage probability, while the closest-BS policy pro-

vides the worst coverage probability. In maximum biased instantaneous received

power [106] association, an MS associates with the macro BS providing the highest

instantaneous received power, if the received power from it exceeds the maximum

instantaneous received power from pico BSs with a margin of Bpico dB. Therefore,

Bpico = 0 dB represents the highest SINR association. When Bpico increases, more

MSs will be served by pico BSs than in highest SINR association. Clearly, when

Bpico increases, coverage probability decreases due to interference from high power

macro BSs. Results also show that at lower average SINR thresholds, biased as-

sociation provides better coverage for all Bpico values considered compared to the

proposed scheme 1. However, for lower SINR thresholds, the coverage probability

of biased association can be lower than that of the proposed scheme 1 depending on
3Proposed scheme 1: MS is associated with the pico BS, from which it receives the highest instan-
taneous SINR, if the average received power from at least this pico BS exceeds Pth; otherwise, the
MS is associated with the macro BS, from which it receives the highest average SINR. Proposed
scheme 2: MS is associated with the pico BS, from which it receives the highest area-averaged
received power, if the average received power from at least this pico BS exceeds Pth; otherwise,
the MS is associated with the macro BS, from which it receives the highest average SINR. Scheme
3: MS is associated with the pico BS, from which it receives the highest instantaneous SINR, if
the average received power from at least this pico BS exceeds Pth; otherwise, the MS is associated
with the macro BS, from which it receives the highest instantaneous SINR.
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the bias Bpico.
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Figure 4.5: Average rate of an MS in coverage in a single-tier network, and in the
coverage of pico- and macro-tiers in a two-tier network. Network configuration for
single tier network: α = 3.5, λ = 12 × 10−6 m−2, n = 1, Pt = 20 W. Network
configuration for two-tier network: Pm = 20 W, Pp = 2 W, αm = 3.5, αp = 3.8,
n = 1, q = 0.7, Tm = Tp = T dB, λm = 5× 10−7 m−2, λp = 20× 10−6 m−2, N0 = 0.

Figure 4.5 shows the variation of the average rate of an MS in a single-tier net-

work for two different values of q. A close match between theoretical and simulation

results can be observed for T > 0 dB. When T < 0 dB, analytical expressions provide

lower bounds. Clearly, at high SINR thresholds, MSs in coverage achieve similar

average data rates regardless of the value of q. However, at low SINR thresholds,

average rates slightly decrease when Pth decreases (or equivalently when q and/or n

increase). This is because selecting a small Pth allows MSs to associate with BSs lo-

cated far from them. Figure 4.5 also shows the average rate an MS can achieve when

in coverage of macro and pico BSs assuming cell association described in Section

4.3.4.

The variation of average rates of MSs within coverage in two-tier networks is
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Figure 4.6: Average rate of an MS in coverage in a two-tier network for different
value of q. Pm = 20 W, Pp = 2 W, αm = 3.5, αp = 3.8, n = 1, Tm = Tp = T dB,
λm = 5× 10−7 m−2, λp = 20× 10−6 m−2, N0 = 0.

shown in Figure 4.6. Cell association described in Section 4.3.4 is assumed. The

analytical results closely match the simulation ones. Interestingly, the results show

that the average rate increases when Pth for pico BSs increases. When Pth becomes

larger, an MS only associates with a pico BS that provides higher average SINR

(equivalently, with a pico BS located closer to it). Otherwise, it associates with a

macro BS. Therefore, the effect of strong interference from high power macro BSs,

when an MS is associated with a pico BS, is limited and average rate increases.

However, when Pth is higher, a large percentage of MSs will be associated with

macro BSs, thus reducing the number of users off-loaded to pico BSs.

4.6 Conclusion

Smart cell association policies are critical for emerging heterogeneous cellular net-

works. This study has proposed a new cell association policy in which the serving BS
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is the one that provides the highest instantaneous SINR from those providing a pre-

determined minimum average received signal power. The aim is to reduce the over-

head associated with cell association with a minimum impact on the performance

of the network. This policy includes the conventional highest-SINR association as a

special case. Two methods to determine the minimum association average received

power are given. Application of this policy in both single-tier and two-tier networks

is investigated. It has been shown that, this policy outperforms the closest-BS pol-

icy and performs similarly to the highest-SINR association. In two-tier networks, it

can be used to manage traffic off-loading to small cells which is an essential feature

in HetNet to provide user-perceived rates. Coverage probability and average rate

of MSs within coverage of 2- and 3-dimensional single-tier (homogeneous) and 2-

dimensional two-tier (heterogeneous) networks have been derived and validated by

Monte-Carlo simulations.

∼

72



Chapter 5

Conclusion and Future Work

In this chapter, first the conclusions and the summary of the contributions of the

thesis are outlined. Then, the future research directions are described.

5.1 Summary of Contributions and Conclusions

• Chapter 3 has presented three transmit power control (TPC) schemes for the

cellular uplink. A refined analytical framework has also been developed by

incorporating three essential radio channel impediments in the system model,

namely path loss, shadowing and fading. More practical Rayleigh-lognormal

fading channels have been considered, which are generally hard to incorporate

in analytical models. Using the Hermite polynomial approximation approach

these analytical difficulties have been circumvented. Also the developed frame-

work has considered orthogonal channel assignment (one mobile station (MS)

per time-frequency channel in each cell) to make the system model appropri-

ate for modern cellular networks such as Long Term Evolution (LTE), Long

Term Evolution-Advanced (LTE-A), and the upcoming fifth generation cel-

lular networks (5G) new radio (NR). It has been observed that for cell-edge

users or users experiencing severe shadowing, compensating for the aggregate

effect of path loss and shadowing by TPC provides better coverage. However,

cell center users benefit more from compensating for path loss only. Also it

has been observed that increasing the density of base stations (BSs) has no

significant effect on the coverage experienced by MSs.

• Chapter 4 has introduced two simple cell-association policies; one each for

single-tier and two-tier networks. The motivation has been to limit the over-

head involved with cell association by reducing the number of candidate BSs
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considered in the selection process. This approach can be very useful in

densely-deployed networks, which are expected to be common in 5G and

beyond-5G communication systems. A refined analytical framework for evalu-

ating coverage probability and achievable data rates has been developed. The

trade-offs between cell-association complexity and performance have been in-

vestigated. It has been observed that considering a few candidate BSs is

sufficient to achieve the same service quality as considering all active BSs for

cell association. Also approaches to use the introduced policy to adaptively

off-load users from large cells to small cells in a two-tier network setup has

been discussed. Further, the impact of user off-loading on the achievable data

rates has been quantified.

5.2 Future Research Directions

• One observation in Chapter 3 is that cell edge users or users subject to severe

shadowing benefit more from compensating for the aggregate effect of path

loss and shadowing in their TPC, while cell center users benefit more from

compensating only for path loss. A natural problem to look at therefore is

to investigate how much performance improvement can be achieved by im-

plementing mixture of these two power control schemes depending on their

operating signal-to-interference-plus-noise ratio (SINR).

• TPC in cellular networks can have a significant effect on the performance of

other underlying technologies: for example, device-to-device (D2D) communi-

cations and cognitive radio networks.

• In Chapter 3 our analysis has been limited to coverage probability and trans-

mit power of MSs. It will be interesting to see the impact of TPC schemes

considered on the other performance metrics such as achievable data rates.

• In Chapter 4 we have observed that when the operating SINR is lower, user

off-loading reduces the achievable data rates. However, the gains from user

off-loading come from making radio resources available for more users by fre-

quency re-use. Therefore, to evaluate the gains from user off-loading under the

proposed cell association scheme, user traffic modeling should be incorporated

in the system model while considering the maximum capacity for each BS.
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• In Chapter 4, two-tier networks have been modeled by two independent ho-

mogeneous Poisson point processes (PPPs). However, a common deployment

approach is to have more low power BSs towards the cell edge. To this end,

macro BSs can be modeled by a homogeneous PPP, while the distributions

of small BSs can be modeled by a Poisson hole process (PHP). Extending

the study presented in this thesis to such a network arrangement will provide

more insights into the applicability of the proposed cell association policy in

commercially deployed networks.

∼
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Appendix A

Proofs for Chapter 3

A.1 Proof of Lemma 2

When the aggregate effect of path loss and shadowing is partially compensated,

transmit power Pz is given by (3.2). Using (3.2), the CDF of Pz can written as

FPz(t) = Pr
(
ρ
(
r−αhzy

)−η
< t
)
,

= Ehzy

[
Pr
(
r <

(
t

ρ

) 1
ηα

h
1
α
zy|hzy

)]
, 0 < t <∞. (A.1)

Using the PDF of r given in (3.4), (A.1) can be written as

FPz(t) = Ehzy

[
1− exp

(
−πλ

(
t

ρ

) 2
αη

h
2
α
zy

)]
, 0 < t <∞. (A.2)

The PDF of hzy is given by

fhzy(h) = 1√
2πξh

exp
(
− (ln(h))2

2ξ2

)
, 0 < h <∞. (A.3)

Substituting (A.3) in (A.2) and using the change of variable u = ln(h)/
√

2ξ

FPz(t) = 1− 1√
π

∫ ∞
−∞

exp
(
− u2 − πλ

(
t

ρ

) 2
αη

exp
(2
√

2ξu
α

))
du, 0 < t <∞.

(A.4)

Solving the integration in (A.4) by Gauss-Hermite quadrature, we obtain (3.10).

PDF of Pz (3.11) is obtained by differentiating (3.10).
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A.2 Proof of Lemma 3

In this power control scheme, each MS transmits with power given by (3.3). The

CDF of the transmit power of MS z ∈ Φ, Pz, can be derived as follows.

FPz(t) = Pr
(
ρrαηh−1

zy < t
)
,

= Ehzy

[
Pr
(
r <

(
hzyt

ρ

) 1
αη

|hzy

)]
. (A.5)

Using the PDFs of r given by (3.4), (A.5) can be written as

FPz(t) = Ehzy

[
1− exp

(
−πλ

(
hzyt

ρ

)2/αη)]
. (A.6)

Substituting (A.3) in (A.6) and using the change of variable u = ln(h)√
2ξ

FPz(t) = 1− 1√
π

∫ ∞
−∞

exp
(
−u2 − πλ

(
t

ρ

)2/αη
exp

(2
√

2ξu
αη

))
du. (A.7)

Solving the integration in (A.7) by Gauss-Hermite quadrature we obtain (3.12).

Now by differentiating (3.12) we can obtain (3.13).

A.3 Proof: Theorem 1

For power control Scheme 1, SINR at the BS serving MS z0 is given by (3.14).

Therefore, the coverage probability can be written as

Pc(T ) = Pr (SINR > T ) = Pr

hz0 > T
(
IΦ\z0 +N0

)
ρr
α(η−1)
z0

 , (A.8)

where, IΦ\z0 =
∑
z∈Φ\z0 Pzr

−α
z hz is the total interference power from all the

co-channel MSs. Variance of additive white Gaussian noise (AWGN) is given by

N0. Since composite Rayleigh-lognormal fading is considered, hz0 ∼ exp(µ) where,

µ ∼ lognormal(0, σ). Now, the PDF of hz0 can be written as [30]

fhz0 (h) =
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0

1
µ
exp

(
−h
µ

) 1√
2πσµ

exp
(
− (ln(µ))2

2σ2

)
dµ. (A.9)

Substituting (A.9) in (A.8) introduces computational and analytical difficulties. To

overcome these challenges, we use an approach similar to that proposed in [46].

Using change of variable ln(h)/
√

2σ = v, (A.9) can be written as

fhz0 (h)= 1√
π

∫ ∞
−∞

exp
(
−
√

2σv − h exp
(
−
√

2σv
)
− v2

)
dv. (A.10)

89



(A.10) has the form of Gauss-Hermite integration, which can be approximated as

fhz0 (h) =
L∑
i=1

ζi√
π
exp

(
−
√

2σvi − h exp
(
−
√

2σvi
))

+OL, (A.11)

where ζi and vi are the weights and abscissas determined by Hermite polynomial

after L is chosen. L represents the remainder terms that decrease to zero as L

increases to infinity.

Using (A.11) the complementary cumulative distribution function (CCDF) of

hz0 can be written as

F hz0 (h) =
L∑
i=1

ζi√
π
exp

(
−h exp

(
−
√

2σvi
))

+O′L, (A.12)

where O′L is the error in the approximation due to OL in (A.11). Substituting (A.12)

in (A.8), Pc(T ) can be written as

Pc(T ) =
L∑
i=1

ζi√
π
Erz0

[
EIΦ\z0

[
exp

(− (IΦ\z0 +N0
)
T exp

(
−
√

2σvi
)

ρr
α(η−1)
z0

)]]
+ εL,

(A.13)

where εL is the error in the approximation due to O′L of (A.12). Using the definition

of the Laplace transform, (A.13) can be written as

Pc(T ) =
L∑
i=1

ζi√
π
Erz0

[
exp

−N0T exp
(
−
√

2σvi
)

ρr
α(η−1)
z0


× LIΦ\z0

s =
T exp

(
−
√

2σvi
)

ρr
α(η−1)
z0

]+ εL, (A.14)

where LIΦ\z0 (s) is the Laplace transform of the PDF of random variable IΦ\z0 .

Substituting the PDF of rz0 given by (3.4) in (A.14) we obtain (3.15). LIΦ\z0 (s),

can be derived as follows.

LIΦ\z0 (s) = EΦ,hz ,Pz

exp
−s ∑

z∈Φ\z0
Pzr

−α
z hz

 ,
= EΦ,hz ,Pz

 ∏
z∈Φ\z0

exp
(
−sPzr−αz hz

) . (A.15)

Using the definition of probability generating functional of PPP [51].

LIΦ\z0 (s) =exp
(
−2πλ

∫ ∞
rz0

rzEhz ,Pz
[
1−exp

(
−sPzr−αz hz

)]
drz

)
. (A.16)
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Since Pz and hz are statistically independent and using the PDF of where, Consider

I = Ehz ,Pz[1− exp (−sPzr−αz hz)]. Using the PDF of hz given by (A.11), I can be

written as

I = EPz
[
1−

M∑
j=1

κj√
π
exp

(
−
√

2σxj
)

×
∫ ∞

0
exp

(
−hz

(
exp

(
−
√

2σxj
)

+ sPzr
−α
z

))
dhz

]
+OM ,

= EPz

1−
M∑
j=1

κj√
π

1
1 + sPzr

−α
z exp

(√
2σxj

)
+OM , (A.17)

where OM is the error due to using the approximate expression (A.11). Substituting

(3.8) in (A.17) and using the fact that
∑M
j=1 κj =

√
π

I = 2
√
πλ

αηρ
2
αη

M∑
j=1

κj

∫ ∞
0

P
2
αη
−1

z

1 + rαz
sPzexp(√2σxj)

exp
(
− πλ

(
Pz
ρ

) 2
αη
)
dPz +OM . (A.18)

Using the change of variable δ = πλ
(
Pz
ρ

) 2
αη , (A.18) can be written as

I =
M∑
j=1

κj√
π

∫ ∞
0

exp(−δ)

1 + rαz (πλ)
αη
2

sρ exp(√2σxj)δ
αη
2

dy +OM . (A.19)

(A.19) can be approximated as a Gauss-Laguerre quadrature sum as given below.

I =
M∑
j=1

κj√
π

Q∑
q=1

βq
1

1 + rαz (πλ)
αη
2

sρ exp(√2σxj)δ
αη
2
q

+OMQ, (A.20)

where βq and δq are the abscissas and weight factors for the Gauss-Laguerre inte-

gration [6, Table (25.9)] and OMQ is the error in the approximation. Substituting

(A.20) in (A.15),

LIΦ\z0 (s) = exp
(
− 2
√
πλ

M∑
j=1

κj

Q∑
q=1

βq

∫ ∞
rz0

rz

1 + rαz (πλ)
αη
2

sρ exp(√2σxj)δ
αη
2
q

drz

)
+RMQ,

(A.21)

where RMQ is the error in the approximation. Solving (A.21) we obtain (3.16) of

Theorem 1.
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A.4 Proof of Theorem 2

When power control Scheme 2 is employed, SINR at the BS serving MS z0 ∈ Φ is

given by (3.17). Therefore, the coverage probability can be written as

Pc(T ) = Pr

ĥz0 > T
(
IΦ\z0 +N0

)
ρr
α(η−1)
z0

 . (A.22)

The CCDF of ĥz0 can be obtained by replacing σ by (1−η)σ in (A.12). Following

approach similar to the derivation of (A.14), (A.22) can be written as

Pc(T ) =
L∑
i=1

ζi√
π
Erz0

[
exp

−TN0exp
(
−
√

2(1− η)σvi
)

ρr
α(η−1)
z0


× LIΦ\z0

(
s =

T exp
(
−
√

2(1− η)σvi
)

ρr
α(η−1)
z0

)]
+ εL, (A.23)

where εL is the error in the approximation. Substituting (3.4) in (A.23), we obtain

(3.18). Following steps similar to the derivation of (A.15), LIΦ\z0 (s) for power control

Scheme 2 can be derived as follows.

LIΦ\z0 (s) = exp
(
− 2πλ

∫ ∞
rz0

rz
(
1− EPz ,hz

[
exp

(
−sPzr−αz hz

)])
drz

)
. (A.24)

Consider B = 1 − EPz ,hz [exp (−sPzr−αz hz)]. B is similar to I given in (A.17),

but with the PDF of Pz given by (3.11). Therefore, B can be written as

B = 2λ
αηρ

2
αη

N∑
k=1

wk

M∑
j=1

κjexp
(

2
√

2ξuk
α

)∫ ∞
0

P
2
αη
−1

z

1 + rαz
sPz exp(√2σxj)

× exp
(
− πλ

(
Pz
ρ

) 2
αη

exp
(2
√

2ξuk
α

))
dPz +ONM . (A.25)

Here, ONM is the error term due to OM . Using the change of variable δ =

πλ
(
Pz
ρ

) 2
αη exp

(
2
√

2ξuk
α

)
,

B= 1
π

N∑
k=1

wk

M∑
j=1

κj

∫ ∞
0

e−δ

1 + rαz (πλ)
αη
2 exp(√2ξukη)

sρ exp(√2σxj)δ
αη
2

dδ+ONM . (A.26)

Solving the integral in (A.26) by Gauss-Laguerre quadrature

B= 1
π

N∑
k=1

wk

M∑
j=1

κj

Q∑
q=1

βq
1

1+ rαz (πλ)
αη
2 exp(√2ξukη)

sρ exp(√2σxj)δ
αη
2
q

+ONMQ. (A.27)

Here, βq and δq are the abscissas and weight factors for the Gauss-Laguerre

quadrature of order Q > 1. ONMQ is the error in the approximation. Substituting

(A.27) in (A.24) and solving the integration, we obtain (3.19) of Theorem 2.
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A.5 Proof of Theorem 3

When power control Scheme 3 is employed, SINR at the BS serving MS z0 ∈ Φ is

given by (3.20). Therefore, the coverage probability can be written as

Pc(T ) = Pr

gz0 > T
(
IΦ\z0 +N0

)
ρr
α(η−1)
z0

 . (A.28)

Since gz0 ∼ exp(1), and random variables gz0 , IΦ\z0 , and rz0 are statistically inde-

pendent

Pc(T ) = EIΦ\z0 ,rz0

gz0 > T
(
IΦ\z0 +N0

)
ρr
α(η−1)
z0

 . (A.29)

Substituting the probability density function (PDF) of rz0 given in (3.4)

Pc(T ) = 2πλ
∫ ∞

0
rz0exp

(
−πλr2

z0 −
TN0

ρr
α(η−1)
z0

)
EIΦ\z0

[
exp

−IΦ\z0Tr
α(1−η)
z0

ρ

]drz0 .
(A.30)

Using the definition of the Laplace transform, Pc(T ) for power control Scheme 3 can

be written as

Pc = 2πλ
∫ ∞

0
rz0exp

(
−πλr2

z0 −
TN0

ρr
α(η−1)
z0

)
LIΦ\z0

(
Tr

α(1−η)
z0

ρ

)
drz0 , (A.31)

where LIΦ\z0 (s) is the Laplace transform of the PDF of aggregate interference IΦ\z0 .

This concludes the derivation of (3.21) of Theorem 3.

Using steps similar to the derivation of (A.15), LIΦ\z0 (s) can be written as

LIΦ\z0 (s) = exp
(
− 2πλ

∫ ∞
rz0

(
1− EPz ,hz

[
exp

(
− sPzr−αz hz

)]))
rzdrz. (A.32)

Consider A = 1− EPz ,hz
[
exp

(
− sPzr−αz hz

)])
. A is similar to I given in (A.17), but

with the PDF of Pz given by (3.13). Therefore, A can be written as

A = 2λ
ρ

2
αηαη

N∑
k=1

wk

M∑
j=1

κj

∫ ∞
0

P
2
αη
−1

z

1 + rαz
sPzexp(

√
2σxj)

× exp

2
√

2ξuk
αη

−
πλP

2
αη
z exp

(
2
√

2ξuk
αη

)
ρ

2
αη

dPz +ONM , (A.33)

where ONM is the error in the approximation. Using the change of variable δ =

πλP
2
αη
z exp

(
2
√

2σui
αη

)
ρ
−2
αη ,

A = 1
π

N∑
k=1

wk

M∑
j=1

κj

∫ ∞
0

exp(−δ)

1 + rαz (πλ)
αη
2 exp(

√
2σuk)

sρ exp(
√

2ξxj)δ
αη
2

dδ +ONM . (A.34)

93



The integral in (A.34) can be approximated as a Gauss-Laguerre quadrature

sum as given below.

A= 1
π

N∑
k=1

wk

M∑
j=1

κj

Q∑
q=1

βq
1

1+ rαz (πλ)
αη
2 exp(

√
2σuk)

sρ exp(
√

2ξxj)δ
αη
2
q

+ONMQ, (A.35)

where ONMQ is the error term due to ONM and representing integration in (A.34) as

a Gauss-Laguerre quadrature sum. Substituting (A.35) in (A.32) we obtain (3.22)

of Theorem 3.

∼
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