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Abstract

Critical point calculations are a topic of great importance and a fundamental part of

classical thermodynamics. While the basis of this field is hundreds of years old, the

effective handling of complex, multicomponent fluid mixtures has been an ongoing

area of study over the past 50 years. Two major critical point formulations exist (i.e.,

the root-finding method and the optimization method), each with many modifications

and improvements. Despite this, mixture critical point calculation algorithms can be

difficult to implement, unreliable, and slow. In recent years, the development of ma-

chine learning and modern computer science theory has led to many computational

techniques that have the capacity to improve and streamline the mixture critical

point calculations. This work investigates the application of modern computational

techniques to both root-finding-based and optimization-based mixture critical point

calculations. Firstly, we apply the automatic differentiation (AD) technique to both

methods. We demonstrate the effectiveness of AD in calculating the thermodynamic

derivatives that are involved in critical point calculations. Next, we compare the

root-finding methods and the optimization methods in terms of their robustness and

accuracy. We find that the root-finding methods are more robust and accurate for sim-

ple mixtures. Meanwhile, the global optimization methods are effective in computing

the critical points of large, complex mixtures. Finally, we develop a novel procedure

that utilizes deep learning models to create predictions of mixture critical points; this

procedure can be used to initialize critical point calculations. Our procedure, when

implemented into both the root-finding and the global optimization methods, leads

to speed and robustness improvements in mixture critical point calculations.
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Chapter 1

Introduction

1.1 Background

Thermodynamics is the area of study that explores the fundamental physics behind

how chemical species interact with each other. As such, it is a key area of research

when exploring new technologies and concepts in chemical and petroleum engineering.

Within steady-state thermodynamics, studies on phase behaviour investigate how

pure fluids or fluid mixtures exist under given temperature and pressure conditions.

Understanding the phase behaviour of pure fluids or fluid mixtures is crucial to the

study of their transport and storage in bulk spaces and porous media. Therefore, in

petroleum engineering, accurate and nuanced descriptions of phase behavior play a

fundamental role in the development of effective techniques to exploit the valuable

reservoir fluids [1].

A key concept in phase behavior is the critical point (sometimes referred to as

critical state). This point corresponds to a temperature and a pressure at which the

interface between any two phases disappears. The most commonly seen critical point

is the vapour-liquid critical point, where a vapour phase and a liquid phase merge into

a uniform phase. Such a point can be used as a key landmark for the construction of

phase envelopes (i.e., graphical representations of the states at which phase transition

occurs) [2].

The critical points of pure substances can be experimentally measured using well-
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established techniques. However, it is more challenging to measure the critical points

of fluid mixtures. Additionally, it is a non-trivial task to predict the critical points of

fluid mixtures through theoretical calculations. Fortunately, in the last 50 years, sev-

eral critical point calculation methods have been established in the literature based

on fundamental thermodynamic relationships. Several technical difficulties are as-

sociated with the critical point calculations for fluid mixtures. For example, the

computational cost increases exponentially with the number of components, and the

algorithms may occasionally not converge. Many researchers have attempted to mit-

igate or resolve these technical issues by using new formulations or computational

techniques. Despite this, there is still room for further improvement of the existing

critical point calculation algorithms. Research that improves the critical point cal-

culations also has wider significance to phase envelope constructions and minimum

miscibility pressure calculations.

1.2 Literature Review

The determination of critical points has been a key task in the phase behaviour

modeling of pure substances and mixtures. In the field’s seminal paper, ”On the

Equilibrium of Heterogeneous Substances”, Gibbs established that at a critical point,

a fluid mixture must obey two restrictions [3]. These conditions are related to the

minimization of Gibbs free energy and are referred to in the literature as Gibbs’

critical point criteria [4]. By solving the equations that result from Gibbs’ critical

point criteria, the critical points of pure substances are obtainable. Despite this

major step forward, scientists at the time were still not able to accurately apply

Gibbs’ critical point criteria to fluid mixtures, due to the difficulty of describing

multicomponent systems.

In fact, as recently as 1973, Spencer et al. [1] questioned the practicality of extend-

ing Gibbs’ critical point criteria to mixture critical points. However, with the advent

of their accurate two-constant cubic equation of state (EOS) [5], Peng and Robinson
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were able to utilize Gibbs’ critical point criteria to rigorously calculate the critical

points of hydrocarbon mixtures [6]. Since this technique was established, many au-

thors have made improvements and optimizations to the critical-point calculation

algorithm, such as simplifying the formulations [4, 7], improving the convergence be-

havior [8, 9], and allowing for the nonexistence of critical points to be determined

[9]. The method presented by Peng and Robinson [6], based on Gibbs’ critical point

criteria, leads to a system of non-linear equations that require solving via root-finding

methods.

The principle root-finding method utilized is the Newton-Raphson (NR) method.

It is easy to implement and works for a wide variety of mathematical problems. Many

modified techniques have been developed to circumvent some of the convergence issues

of NR methods, such as NR-bisection hybrid methods, interval Newton methods, and

Krylov-based Newton methods [9–11]. Many of these methods have been applied

to mixture critical point calculations with great success for simple mixtures [4, 7].

Additionally, Michelsen presented an interpolation method for approximating the

mixture critical points via working out the full phase envelope near the critical region

using NR-type calculations [2].

However, fluid mixtures with a large number of components can still cause poten-

tial convergence issues when using NR-type methods. Convergence problems typically

arise in NR-type methods when an initial guess is not sufficiently close to the true

root or when the function has erratic behaviour near the root [12]. Additionally, the

standard NR method can only produce one critical point per initial guess and it is

difficult to determine whether the lack of convergence is a result of a nonexistent crit-

ical point. Stradi developed a modified NR method using interval mathematics that

could calculate all mixture critical points on a given range and confirm nonexistence

[9]. This method addresses the major concerns of the NR-based mixture critical point

calculations; however, its computational complexity becomes too great for large fluid

mixtures. Dimitrakopolous et al. used a damped NR (DNR) calculation procedure to
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calculate mixture critical points [8]. This method has robust convergence behaviour,

even for mixtures of greater than 10 components. Still, this method does not handle

multiple critical points or nonexistent critical points. Throughout the development

of mixture critical point calculations, no universal NR-type method has emerged that

is robust and fast, works for large mixtures, and can handle multiple or nonexistent

critical points.

Viewing the critical point problem from a different perspective, Henderson et al.

reformulated Gibbs’ critical point criteria into an optimization problem [13]. This

methodology utilizes a modified tangent plane distance function, which is related to

Gibbs’ critical point criteria to create an objective function that can be globally min-

imized to find the state with the minimum Gibbs free energy (i.e., the critical point).

Global optimization techniques have been applied to a wide variety of phase behavior

calculation problems [14]. Since the advent of Henderson et al.’s method, tunneling

algorithms [15], simulated annealing [13], and differential evolution (DE) [16] have

all been applied to mixture critical point calculations. These techniques have shown

accurate calculation of critical points across a wide variety of mixtures, including

complex mixtures. With appropriate modifications, global optimization techniques

are capable of determining multiple critical points simultaneously or confirming the

nonexistence of a critical point. Using robust global optimization techniques does have

a high computational resource demand and is considerably slower than the NR-type

calculations. Also, Henderson et al.’s formulation involves the third derivative of the

fugacity coefficient, in contrast to the NR-type methods which only require the sec-

ond derivative [13]. This results in greater mathematical complexity and subsequent

implementation difficulties, which limits the current potential of global optimization

as a method for calculating mixture critical points.
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1.3 Motivation

Although many algorithms have been developed for mixture critical point calcula-

tions, they are still often limited by the fundamental nature of the problem. Various

techniques have been developed to improve the robustness [8] and convergence be-

haviour of the mixture critical point calculations algorithms [9], and even allow for

the calculation of multiple critical points [16]. Despite this, further development

and improvement of critical point calculations is possible, especially using modern

computation techniques.

Firstly, when used for mixture critical point calculations, the root-finding methods

require second-order derivatives, while the optimization methods require third-order

derivatives. This results in many authors relying on less accurate numerical deriva-

tives to approximate the higher order derivatives that are involved in mixture critical

point calculations. Additionally, complex EOSs, such as the perturbed-chain statis-

tical associating fluid theory (PC-SAFT) EOS, are under-explored in the literature

when investigating these algorithms due to the complexity of their higher-order deriva-

tive calculations. With numerical derivatives having reduced accuracy and analytical

derivatives sometimes being prohibitively complex to implement, there is a need for

an accurate but simpler alternative. For this, we consider automatic differentiation

(AD), a method utilized to great effect in machine learning applications that can

potentially be used in critical point calculations.

Next, root finding and optimization techniques in the literature have largely been

investigated separately. This means that the root-finding-based literature often uses

completely different fluid data, compositions, and implementations from the optimization-

based literature. Therefore, there is a need for a comprehensive and direct comparison

between the two techniques, as well as a detailed exploration of the strengths and

limitations of each method. In particular, applying both methods to a wide variety

of fluid mixtures over a wide range of compositions will provide further insights into
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both techniques.

Finally, the convergence of both root finding and optimization methods for critical

point calculations can be heavily dependent on tuning parameters or initial conditions.

Furthermore, the rate of convergence of these techniques can be very slow for large,

complex fluid mixtures. Addressing these concerns to allow for the development of

algorithms that are robust and fast is a key component of compositional simulations.

Machine learning is a powerful tool that has a wide variety of applications. Generally,

the ”black-box” nature of machine learning makes it disconnected from fundamental

scientific theory. However, with careful implementation, machine learning can be

leveraged to improve the robustness and speed of mixture critical point calculations,

without compromising the analytical rigor of traditional calculation techniques.

1.4 Thesis Objectives

This thesis aims to apply techniques that utilize machine learning and related tech-

niques to improve the existing methods dedicated to the calculation of mixture critical

points. The research objectives of this thesis are:

1. Demonstrate the application of AD to accurately compute the thermodynamic

derivatives involved in mixture critical point calculations.

2. Identify the strengths and limitations of the root-finding and optimization meth-

ods for critical point calculation in terms of robustness and accuracy.

3. Investigate the ability of deep neural networks (DNN) to generalize mixture critical

point calculations from a sample of compositions to all possible compositions.

4. Utilize the trained DNN models to provide appropriate initializations and bounds

that can help improve convergence speed and robustness of both root-finding-based

and optimization-based critical point calculation methods.
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1.5 Thesis Structure

In this work, we focus on the incorporation of modern computational techniques

to both the root-finding and optimization procedures for the calculation of mixture

critical points. Namely, we incorporate two computational techniques: AD and deep

learning to simplify, accelerate, and improve the robustness of both procedures. In

the first chapter, AD is introduced as a computational method for the calculation

of ”near-analytical” derivatives. This technique is applied to a DNR root-finding

algorithm as well as a DE-based global optimization procedure for mixture critical

point calculations. We show that AD incurs insignificant errors when compared to

analytical derivatives. In addition to avoiding tedious analytical differentiation, we

also find the technique can lead to performance improvements in the DE algorithm.

In the second chapter, having implemented both the DNR and DE algorithms in

their analytical and AD forms, we make some comparisons between the two algo-

rithms. First, the robustness of each algorithm is determined by attempting critical

point calculations for many compositions of various fluid mixtures. Next, deviations

from analytical results are calculated for each algorithm. Finally, mixtures with mul-

tiple critical points are tested. These results reveal the advantages and disadvantages

of each methodology.

In the third chapter, we develop a DNN model for the prediction of mixture critical

points. This is done by using a generator function to create a random sample of com-

positions for a given mixture. Mixture critical point calculations are then done via

the conventional methods to build a training dataset. This training dataset is used to

create a predictive model that works for a given mixture with any composition. We

find that the predictions can be fairly accurate for a wide range of mixtures. Further-

more, we utilize these DNN predictions to provide highly accurate initial guesses to

the DNR algorithm and tight bounding boxes to the DE algorithm. These machine-

learning-based accelerated calculations are shown to have much faster convergence
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behavior as well as increased robustness, especially for global optimization methods.

We believe these three chapters will provide meaningful contributions to the mod-

ernization of mixture critical point calculations. Firstly, we establish AD as a valid

technique for the calculation of thermodynamic derivatives. This allows for more

complex and accurate EOSs to be used without the burden of tedious or impossible

analytical derivations. Secondly, while general knowledge of the limitations of the

root-finding and global optimization methods is known, clear and specific demon-

stration of these issues will allow for the selection of the most appropriate critical

point calculation technique for a given application. Finally, utilizing machine learn-

ing to accelerate analytical calculations simplifies and speeds up the critical point

calculations for complex fluid mixtures without loss of accuracy.
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Chapter 2

Theoretical Basis of Critical Point
Calculation

2.1 The Gibbs’ Critical Point Conditions

The theoretical model for mixture critical point calculations revolves around the min-

imization of Gibbs free energy. This was first described by Gibbs for single component

fluids [3]. He presented two critical point criteria based on thermodynamic theories

that were necessary for Gibbs free energy minimization. For many years, extend-

ing these equations to multicomponent mixtures was attempted; however, the results

were inaccurate. When Peng and Robinson developed their two-constant equation of

state (EOS) [5], they were finally able to demonstrate multicomponent mixture crit-

ical point calculations through the use of appropriate mixing rules and a sufficiently

accurate EOS model [6].

Heidemann and Khalil later simplified the forms produced by Gibbs by rewrit-

ing them in terms of Helmholtz free energy [4] as presented in Equation (2.1) to

Equation (2.3).
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N∑︂
k

N∑︂
j

N∑︂
i

(︃
∂3A

∂nk∂nj∂ni

)︃
∆ni∆nj∆nk = 0 (2.1)

N∑︂
j

(︃
∂2A

∂nj∂ni

)︃
∆nj = 0 (2.2)

N∑︂
i

∆n2
i − 1 = 0 (2.3)

Equation (2.1) produces one equation per component in a multicomponent fluid

mixture. Equation (2.1) to Equation (2.3) lead to a system of N+2 nonlinear equa-

tions that need to be solved. The Helmholtz free energy of a system is known to be

related to the fugacity coefficient. Therefore, Equation (2.1) and Equation (2.2) can

be rewritten as Equation (2.4) and Equation (2.5) [8], respectively.

g∗ =
N∑︂
k

N∑︂
j

N∑︂
i

(︃
RT

∂2 ln fi
∂nk∂nj

)︃
∆ni∆nj∆nk = 0 (2.4)

gi =
N∑︂
j

(︃
RT

∂ ln fi
∂nj

)︃
∆nj = 0 (2.5)

h =
N∑︂
i

∆n2
i − 1 = 0 (2.6)

From these equations, utilizing an EOS, an expression for fugacity can be substi-

tuted to produce the full system of equations. As described in Appendix A, an ex-

pression of fugacity can be derived from any EOS in a compressibility-factor-explicit

form. The natural logarithm of the fugacity coefficient of a component in a mixture

(ln(ϕi)) is defined as the chemical potential departure function [17]. This, in turn,

is obtained by taking the compositional derivative of the Gibbs departure function

for that component ( δG
DEP

δni
). The Gibbs departure function for an EOS is defined as

a function of compressibility factor (Z). Therefore, using the Z-explicit form of any

EOS, the Gibbs departure function can be determined and used to obtain an expres-

sion for the natural logarithm of fugacity coefficient. For a generalized two-parameter
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cubic EOS, the fugacity coefficient equation is shown in Equation (2.7). This can be

then used to determine fugacity from the definition of fugacity coefficient [17].

lnφi = βi(Z − 1)− ln(Z −B)− A

B
ln(

Z + δ1B

Z + δ2B
)(
2αi − βi

δ1 − δ2
) (2.7)

For the analytical calculation of fugacity coefficient, the roots of the Z polynomial

are required. Beginning with the Z-explicit form of a generalized two-constant cubic

EOS, algebraic rearrangement gives the Z polynomial Equation (2.8). This form is

presented using non-dimensionalized variables, with full derivations and definitions

available in Appendix A. The procedure for solving the Z polynomial is outlined in

Figure 2.1.

Z =
1

1− bρ
− aρ

RT

1

(v + δ1b)(v + δ2b)

with EOS parameters δ1, δ2

0 = Z3 + [(δ3 − 1)B − 1]Z2

+[A− (δ3 − δ4)B
2 − δ3B]Z − AB − δ4(B

2 +B3)

where δ3 = δ1 + δ2, δ4 = δ1 ∗ δ2

(2.8)

Firstly, a cubic discriminant is calculated to determine the nature of roots. A

negative discriminant implies a single real root, which can be calculated using the

single root formula in Appendix A. A positive discriminant implies three distinct real

roots, which are calculable as described in Appendix A. When multiple real roots are

obtained, the largest is selected for usage in the optimization algorithms in accordance

with the convention used by Henderson et al. [13]. However, any of the roots can

be used due to the region of the critical point being far away from the three-root

region [13]. When the discriminant is strictly positive, there is at least one repeated

real root. A further check of the coefficients involved in the discriminant is done

(c22 = 3c1c3). When this check passes, there is a triple multiplicity root. Otherwise,
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there are a double multiplicity root and a distinct single multiplicity root, both of

which can be calculated subsequently [18].

Figure 2.1: Algorithmic flowchart showing the procedure of calculating the compress-
ibility factor (Z) based on a general two-constant cubic EOS. The discriminant of the
cubic polynomial is calculated based on component critical properties. A series of
checks are run on the parts of the discriminant to determine the nature of the roots
(the number of unique and repeated roots as well as the number of real roots). When
the nature of the polynomial roots is determined specific calculations can be done to
obtain the cubic roots. The largest root of Z is used in critical point calculations.

As a final note, some formulations require fugacity rather than fugacity coefficient.

For this, the following two relations are utilized [17].

∂ lnφi

∂nj

=
∂ ln fi
∂nj

, i ̸= j

∂ lnφi

∂ni

=
∂ ln fi
∂ni

+
1

ni

, i = j

2.2 Root Finding Techniques for Critical Point Cal-

culation

Root finding methods can be broadly categorized into those that are derivative-based

and those that are non-derivative-based [19]. Derivative-based methods tend to have

much greater reliability and speed than non-derivative methods, given the appropriate

usage. The majority of derivative-based methods are related to the Newton-Raphson
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(NR) method [12]. In this work, we utilize a damped NR (DNR) procedure, orig-

inally presented by Dimitrakopolous et al., as a model root-finding algorithm [8].

In this algorithm, a system of N+2 nonlinear equations, in the form presented in

Equation (2.9), is solved for its root:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂g1
∂Tc

∂g1
∂vc

∂g1
∂∆n1

. . .
∂g1

∂∆nN
∂g2
∂Tc

∂g2
∂vc

∂g2
∂∆n1

. . .
∂g2

∂∆nN
...

...
...

. . .
...

∂gN
∂Tc

∂gN
∂vc

∂gN
∂∆n1

. . .
∂gN
∂∆nN

∂g∗

∂Tc

∂g∗

∂vc

∂g∗

∂∆n1

. . .
∂g∗

∂∆nN

0 0
∂h

∂∆n1

. . .
∂h

∂∆nN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆Tc

∆vc

∆∆n2

...

...

∆∆nN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1(x
k)

g2(x
k)

...

...

gN(x
k)

g∗(xk)

h(xk)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.9)

J∆x = −F (x) with the update formula,

xk+1 = xk +D∆xk, for some damping constant D.

gi, g
∗ and h are described in Equation (2.4), Equation (2.5) and Equation (2.6),

respectively. The exact forms of these functions can be calculated for a given EOS by

expansion and non-dimensionalization. The work of Dimitrakopolous et al. presents

derivations for these forms for a generalized two-parameter cubic EOS [8]. As per

their work, a damping constant is defined by Equation (2.10).

D =
1

1 +Q ∗ e−0.5kd
(2.10)

kd is the iteration number and Q is the damping coefficient. Q is set to 518 for

non-binary mixtures which, from the numerical studies presented by Dimitrakopolous

et al. [8], is the best-performing value. In mixtures where convergence at Q=518 is

not obtainable, particularly those with more than 10 components, Q=700 is tried.

The implementation of the DNR technique comes directly from the work of Dim-

itrakopolous et al. and is shown in Figure 2.2. An initial guess for the input vector
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Figure 2.2: Algorithmic flowchart of DNR procedure used in this work. Component
critical properties are used to compute the initial guess of the critical property vector
and nondimensionalized EOS parameters. From there, the system of equations for the
Gibbs critical point criteria is constructed and its Jacobian is taken. The Jacobian is
used to solve a matrix equation that obtains the next iterate for the critical property
vector. This iterate is damped and the next Jacobian matrix equation is constructed.
When a tolerance is reached, the Gibbs critical point criteria is rechecked to determine
if the answer is a correctly converged critical point.

is taken using Kay’s mixing rule [20]. From this, EOS parameters and subsequent

non-dimensionalizations are precomputed. Then, the necessary expressions in the

Gibbs critical point criteria and its Jacobian are computed using the forms of Equa-

tion (2.4) derived by Dimitrakopolous et al. [8]. Once the Jacobian is obtained,

the input vector is iterated upon by solving the matrix equation. Each iteration is

damped based on the selected Q value until the tolerance (10−4 for Tc/vc and 10−8 for

∆n) is reached. When an input vector passes the tolerance check, the function value

of the Gibbs critical point criteria is checked to determine if they are far from zero,

which would indicate a false or nonexistent root. If this check is passed, then pressure

can be calculated from the EOS and the critical point can be returned. There is a

maximum of 30 iterations allowed for simple mixtures and 50 for complex mixtures

(10+ components). If the maximum number of iterations is reached, it is possible
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that the initial guess and damping factor are poorly suited for the mixture or that

no critical point exists.

2.3 Global Optimization Formulation of the Gibbs

Critical Point Conditions

Figure 2.3: Example contour plot over temperature and pressure of the two compo-
nents of the objective function (Equation (2.13)) for a ternary mixture (C2/C4/C7):
a) c component corresponding to Equation (2.4); b) q component corresponding to
Equation (2.5).

The global optimization methodology for mixture critical point calculations was

developed by Henderson et al. [13]. This formulation uses the modified phase stability

test based on the Gibbs tangent plane criterion presented by Equation (2.11).

d =
N∑︂
i=1

xi[µi(x⃗)− µi(z⃗)] ≥ 0 (2.11)

This considers the stability of a theoretical phase at x⃗, by comparing it to the

global composition z⃗ on the Gibbs tangent plane. The third critical point condition

Equation (2.6) imposes the restriction that the mole fractions must add to 1. This
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Figure 2.4: Natural logarithm of the objective function (Equation (2.13)) for a ternary
mixture (C2/C4/C7) plotted as a function of temperature and pressure. The three
subplots represent 3D views from three perspectives. The global minimum represents
the critical point of this fluid mixture at this composition.

produces the form Henderson et al. referred to as the modified stability test condition

(Equation (2.12)) [13].

d(x⃗) =
N−1∑︂
i=1

xi

{︂
[µi(x⃗)− µi(z⃗)]− [µr(x⃗)− µr(z⃗)]

}︂
+ [µr(x⃗)− µr(z⃗)] ≥ 0 (2.12)

By considering the Taylor expansion of the modified stability test function at the

input composition, the phase stability problem can be recast to the following equation:

q =
∇2d(x) · u⃗2

2
≥ 0

Based on the Lagrange multiplier theory, Henderson et al. identified the vector u

in these forms as the minimizing eigenvector of the modified stability test function

in state space, u⃗∗(T, P ) [13]. From this analysis, Henderson et al. constructed an

objective function that could be minimized to find the critical point, where both

critical point conditions should be satisfied, as shown in Equation (2.13) [13].

q(x, T, P ) = ∇2d(x) · u⃗∗2(T, P )

c(x, T, P ) = ∇3d(x) · u⃗∗3(T, P )

F (x, T, P ) = q2 + c2

(2.13)
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The objective function is a superposition of the functions q and c which are linked

to Equation (2.4) and Equation (2.5), respectively. Both of these functions create

an envelope of local minima on the state space, as shown in Figure 2.3. The in-

tersection of these two envelopes will have a value near zero. This point, having a

zero value for the minimum eigenvalue and its derivative, is identified as the critical

point. Additionally, Henderson et al. proved that the second order derivatives of the

modified tangent plane distance function could be obtainable through a relation with

the fugacity coefficient (Equation (2.14)) [13].

∇2d =
δd(x)

δxiδxj

=
δµi

δxj

− δµr

δxj

δµi

δxj

= RT

[︃
δln(ϕi)

δxj

+
δ ln(xiP )

δxj

]︃ (2.14)

The objective function is highly jagged with many local minima and local maxima

in the vicinity of the critical point, as demonstrated in Figure 2.4. This leads to

local optimization algorithms failing to converge to the correct minimum. Therefore,

stochastic global minimization methods are typically utilized to identify the critical

point [13, 16]. For our calculations, a DE (DE) algorithm is utilized. The initial

values of critical pressure and critical temperature from Kay’s mixing rule are used

to obtain search bounds for DE [20].

Figure 2.5 shows the overall procedure of global optimization used in this work.

This algorithm contains three subroutines: the cubic root solver as described in Fig-

ure 2.1; the inverse iteration algorithm dedicated to the calculation of the minimal

eigenvalue; and the DE algorithm for the minimization of the objective function.

Firstly, the component critical properties are used to calculate the EOS parameters.

Then, the cubic discriminant is calculated and used to determine the roots of the

compressibility polynomial, as previously described. The calculated root and non-

dimensionalized EOS parameters are used to construct the log-fugacity expressions.

These expressions are then differentiated and then related to the elements of the Hes-
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sian matrix via Equation (2.14). The minimal eigenvalue of the Hessian matrix is then

calculated using the inverse iteration technique. For the cubic form of the objective

function, the element-wise derivative of the Hessian matrix is taken. Based on the

minimal eigenvector, the Hessian matrix, and the derivative of the Hessian matrix, we

can calculate the objective function. This objective function can then be minimized

via any global optimization technique. In our work, a simple DE algorithm is used.

A detailed explanation of the implementation of the DE algorithm is explained in the

literature [16][21].

The following parameters are utilized initially across all mixtures:

Figure 2.5: Algorithmic flowchart of the DE procedure used in this work. The com-
ponent critical properties are used to compute nondimensionalized EOS parameters
and the Z-polynomial. Roots of the Z-polynomial are computed using the algorithm
shown in Figure 2.1. Next, mole fraction derivatives of the natural logarithms of the
fugacity coefficients are computed. These are used to construct the Hessian matrix.
The gradient of the Hessian matrix is then computed. Also, using inverse iteration,
the smallest eigenvector of the Hessian matrix is computed. These elements are used
to construct the objective function to prepare for minimization. Standard bounds and
tuning parameters are used initially for the minimization of the objective function via
DE. If these bounds fail to converge, then an expanded bound with more rigorous
parameters is used. If both of these fail to converge, we deduce there is no critical
point on the bounds; otherwise, we obtain a mixture critical point.
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T ∈ (
∑︁

xiTci,
∑︁

xiTci+100), P ∈ (0.9
∑︁

xiTci, 2.5
∑︁

xiTci), a mutation constant

F = 0.95, and an absolute tolerance η = 10−14. The Sobol-sequence-based initializa-

tion is adopted. In cases where convergence is not achieved, a more rigorous parameter

set is used: T ∈ (
∑︁

xiTci − 50,
∑︁

xiTci + 200), P ∈ (0.75
∑︁

xiTci, 4
∑︁

xiTci), a

mutation constant F = 0.95, a population number Nde = 40, an absolute tolerance

η = 10−16, and a crossover probability PCR = 0.4. DE is done using Scipy’s built-in

routine based on the work of Storm and Price [21].
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Chapter 3

Application of Automatic
Differentiation to Mixture Critical
Point Calculations

3.1 Introduction

Throughout its development, equilibrium thermodynamics has been reliant on rela-

tively complex mathematical models that can describe a wide variety of physical phe-

nomena. In these mathematical models, differentiation is a very common operation

that is especially important in the context of thermodynamics. The differentiation

of thermodynamic properties is a necessary component of nearly all mathematical

calculations in the field.

In his foundational paper, Gibbs established that the phase transition of pure

components is tied to the differential change in Gibbs free energy at a given state [3].

This established the basis for many of the phase behaviour advancements throughout

the 1900s. A key part of the overall phase behaviour of a fluid is the calculation of its

critical points. Using a highly accurate two-constant cubic equation of state (EOS)

[5], Peng and Robinson were able to extend Gibbs’ previous work to calculate the

critical point of fluid mixtures of many components [6]. Heidemann and Khalil later

reformulated the mixture critical point calculation algorithm [4]. Their formulation

is based on the compositional derivatives of the Helmholtz free energy of the fluid
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system. This has since become the most common formulation of the mixture critical

point equations.

The formulation of Hiedemann and Khalil requires the calculation of first and

second-order compositional derivatives of the system’s Helmholtz energy [4]. Fur-

thermore, the two common calculation algorithms that solve this non-linear system

of equations are the Newton-Raphson (NR) method and tangent plane distance func-

tion minimization; both of these techniques require further compositional derivatives.

Additionally, these and other computations can require derivatives of temperature,

pressure, or volume (state derivatives). This can result in highly complex mathemat-

ical models with multivariable, higher-order differential forms.

Helmholtz energy is most often calculated using EOSs based on the critical prop-

erties of each component in a system. For a two-parameter cubic EOS, derivation

of the Helmholtz energy form and its subsequent derivatives are tedious but well ex-

plored in the literature. However, for fluids containing many components and complex

chemistry, more sophisticated EOSs are typically preferred. The Helmholtz energy

equation of these complex EOSs can be convoluted, even more so for its derivatives.

For certain EOS, the required derivatives can be implicit and pose even further issues

in their analytical calculations [22]. This has led to many authors utilizing numerical

derivatives, whose accuracy degrades as system complexity increases [13, 23].

In computer science and machine learning, automatic differentiation (AD) is an

established technique for accurate differentiation of complex functions where analyt-

ical derivatives are impractical [24]. This technique takes advantage of the fact that

any mathematical function calculated by a computer can be decomposed into a series

of basic operations. AD applies chain rule to the algorithmic form of the function,

resulting in ”near-analytical” accuracy even for complex functions [25]. AD has been

shown to be more accurate, more robust, and potentially faster than finite difference

methods in machine-learning, especially for large or complex problems. In other areas

of science, AD has been effectively used to allow for the simplification of complex cal-
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culations and physics [26, 27]. The scalability and modular nature of this technique

makes it an attractive option for calculating thermodynamic derivatives, which has

previously been demonstrated in the literature [28].

In this work, we outline the principles and basic theory of AD. We apply AD to the

calculation of fluid mixture critical points over a variety of fluid mixtures. Specifically,

we consider both a damped Newton-Raphson (DNR) algorithm and a minimization

via differential evolution (DE) algorithm. Various incorporations of AD into these

algorithms, as well as implementation concerns, are discussed. We demonstrate that

the errors introduced by AD are negligible when compared to analytical implemen-

tations. Additionally, we show that for complex mixtures, the computational cost is

reduced by using AD over numerical derivatives. Finally, we discuss other potential

advantages of AD when applied to thermodynamic derivatives in general, such as ease

of model change and implementation of complex EOSs.
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3.2 Theoretical Basis of Automatic Differentiation

Figure 3.1: Computational graph for the calculation of compressibility factor for
carbon dioxide at 0◦C/22.4 L

mol
, using the Van der Waals EOS. l−1,...,7 represent the

various terms in the equation. Simple mathematical operations are performed to
combine terms and produce the overall result. This graph can be easily traced by an
algorithm to allow for quick calculations. Additionally, an AD algorithm can compute
the adjoint or tangent of this computational graph to obtain the function derivative.

AD is a computational technique for the calculation of ”near-analytical” deriva-

tives. AD takes advantage of the fact that any program implemented by a computer

can be seen as a mathematical map consisting of simple mathematical operations.

An example of such a map is presented in Figure 3.1. The chain rule is trivial to

23



Figure 3.2: Example of a forward mode AD trace to obtain the molar density deriva-
tive of the compressibility factor using the Van der Waals EOS for carbon dioxide at
0◦C/22.4 L

mol
. On the left is a primary function trace, which consists of computations

of each basic term in the equation. On the right is the tangent trace, which consists
of the chain rule derivatives of the terms in the primary trace. Differentiation by each
input variable has its own unique tangent trace.

implement for basic mathematical operations. Furthermore, its propagation is also

simple when the machine is given a clear mathematical map between function input

and output. With these facts together, implementations of AD instruct the machine

to propagate the derivative of the algorithm alongside the function value itself [25].

This is done by constructing the mathematical map of the function (Figure 3.1) and

then computing its adjoint or tangent step by step. An outline for this procedure is

presented in Figure 3.2. Implementation of AD can be done manually or through a

variety of packages available in most modern programming languages, such as JAX,

pytorch, autodiff, ADF, etc.

As shown in Figure 3.2, forward mode AD begins with the function input variables

seeding the primary (function) trace (l−1, l0). The tangent trace in a forward AD

operation tracks the derivative of each variable with respect to the selected input
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variable, l−1 in the case of the figure. The primary trace breaks the overall function

into individual steps comprised of only one or two basic arithmetic operations (l1−l7).

Each step in the primary trace can then be differentiated via chain rule with respect

to l−1 (δl1−δl7). The resulting combination of these derivatives, following the primary

trace, is the total derivative of the function with respect to l−1 (δl7). The error on this

approximation of the analytical derivative is the total propagated truncation error at

each step [25]. This is what results in the ”near-analytical” property of AD, as the

associated error is not an approximation error but a propagated truncation error.

Figure 3.3: Example of a reverse mode AD trace to obtain the molar density and
temperature derivative of the compressibility factor using the Van der Waals EOS for
carbon dioxide at 0◦C/22.4 L

mol
. On the left is a primary function trace, which consists

of computations of each basic term in the equation. On the right is the adjoint trace,
which consists of the chain rule derivative of the final term with respect to each of the
terms in the primary trace. The adjoint trace computes the derivative of the function
with respect to all input variables simultaneously.

In addition to the forward-mode AD in Figure 3.2, it is possible to instead calculate

the adjoint trace to create reverse-mode AD as shown in Figure 3.3 [24]. In reverse

AD, two calculations are required. Firstly, the primary trace is calculated as an evalu-

ation of the function. Secondly, an adjoint trace is calculated using backpropagation.
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The adjoint of each primary trace step is the derivative of the output with respect

to that primary trace step ( δy
δli
). This means the adjoint of the final trace step is 1

and the adjoint of the variable of differentiation is δy
δx
, i.e., the desired derivative. All

intermediate adjoints are calculated via chain rule expansion, similar to the tangent

trace. Note that the adjoint trace computes the derivative of the function with re-

spect to all input variables simultaneously. As reverse AD requires two distinct passes

through the function, it tends to be slower than forward AD. However, since reverse

AD calculates the derivative with respect to all input variables simultaneously, it is

much more efficient for some problems. Generally, forward AD’s speed scales with the

dimensionality of the output and reverse AD’s speed scales with the dimensionality

of the input, rendering AD additional flexibility to handle many disparate types of

problems.

There are several advantages brought by the utilization of AD for derivative cal-

culations. Firstly, AD is not numerical differentiation. The only error that an AD

derivative incurs is the truncation error which, for simple algorithms, can be limited

to some multiple of machine epsilon [29]. In addition to this, numerical derivatives

are poorly conditioned and can be more costly to evaluate as the size and complexity

of problems increases [25]. Analytical and symbolic derivatives can be used in place

of numerical derivatives to avoid these issues. Symbolic derivatives come at a great

computational cost and are limited in scope, which often makes them impractical

[25]. Similarly, analytical derivatives are time-consuming, complicated, and prone to

human errors, especially when functions are implicit [24]. For sufficiently complex

functions, analytical derivatives are not feasible due to the difficulty of implementa-

tion. Even in the relatively simple derivatives of PR and SRK EOS, typographical

and mathematical errors have been made in even major publications [8].

AD is also far more flexible than the other options. AD of similar functions gen-

erally does not need recomputation of identical traces. This leads to an improved

performance when many similar derivatives are needed. Additionally, when making
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slight changes to the differentiated function, AD traces are naturally recalculated

without further user input. This can allow for fast changes in EOS model, mixing

rule, and other thermodynamics models for testing or simulation purposes. However,

as for analytical derivatives, rederivation of the derivatives when the EOS model is

changed is required.

3.3 Application to Critical Point Calculation Al-

gorithms

AD can be used at various points in the mixture critical point calculation algorithm.

At a fundamental level, both algorithms (global optimization and root finding) involve

the minimization of chemical potential. Therefore, AD can be used directly in Equa-

tion (3.1) to obtain the form of the chemical potential departure function. Integral

functions are able to be processed by many modern AD packages by programming

them as Riemann sums [30]. Alternatively, a compressibility factor equation might

be simple to analytically integrate in ρ while being nontrivial to differentiate by com-

ponent moles (dNi). An example of this is a virial coefficients EOS, which is a simple

polynomial in ρ but can have more complex mixing rules. Once a chemical potential

departure function expression is found it can be related to fugacity and used in either

procedure [17].

ln (φi) = µDEP =

(︃
∂GDEP (x, T, P )

∂ni

)︃
T, P, nj∼=i

=
∂

∂ni

∫︂ ρ

0

Z − 1

ρ
dρ+ (Z − 1)− lnZ

(3.1)

In the DNR procedure, the main step in the algorithm that AD can contribute

to is the construction of the Jacobian. In the work by Dimitrakopolous et al., the

authors derived complex Jacobian expressions for a generalized cubic EOS [8]. These

expressions can be replaced with AD, which is particularly helpful if more complex

EOSs are needed. For this, Equation (2.4) is constructed analytically based on the

27



fugacity expression of a particular EOS. Then the composition gradient of this vector

of functions is taken to generate the Jacobian. These implementations are described

in Figure 2.2.

In the global optimization algorithm, AD can play a role in two major steps. Firstly,

Henderson et al. analytically derived expressions for the derivatives of the logarithms

of the fugacity coefficient of each component [13]. This is done for the Peng-Robinson

EOS and involves complex differentials of compressibility and mixing rules. Instead,

an automatic derivative of the lnϕi can be taken directly from the expression derived

from the EOS. In this work, a generalized cubic EOS is used to expand the work by

Henderson et al. [13]. Secondly, Henderson et al. utilized a numerical differentiation

methodology to obtain the Hessian gradient [13]. While this approximation is suffi-

ciently accurate, it involves two evaluations of the gradient of the modified tangent

plane distance function. Therefore we can instead take the automatic gradient of the

Hessian matrix when it is constructed to reduce computational costs and improve

accuracy. This is shown in Figure 2.5.

One key consideration when implementing AD in these algorithms is that some

formulations or models require mole fraction derivatives to be taken with or without

the restriction that the sum of mole fractions is equal to one. These are referred to as

constrained mole fraction derivatives. Full considerations of constrained derivatives

are available in Appendix A. For a general cubic EOS with Van der Waals mix-

ing rules, we define AD-compliant constant definitions with constrained derivatives

(Equation (3.2)).

a = aNN + 2
N−1∑︂
i=1

xi(aNi − aNN) +
N−1∑︂
j=1

N−1∑︂
i=1

xixj(aij − 2aNi + aNN)

b = bN +
N−1∑︂
i=1

xi(bi − bN)

(3.2)

In this work the JAX package is used for AD [31]. Firstly, the original DNR
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method utilizes manually computed analytical forms to populate the Jacobian matrix

Equation (2.9). The AD version of the DNR method (AD-DNR) instead uses AD to

calculate the complete Jacobian matrix from the original form of Equation (2.4).

Secondly, for the global optimization method proposed by Henderson et al., a third-

order numerical approximation of the derivative of the cubic form Equation (2.13) is

used [13]. The Hessian itself is populated via analytical computation of the chemical

potential derivatives. In the AD-GO method, AD is used to directly calculate the

derivative of ln(ϕ), which is used to compute chemical potential and populate the

Hessian matrix. Then a second AD routine is run to differentiate the Hessian and

obtain the cubic form. DE for minimization of the objective function is done via

scipy’s DE function [32]. Notice that this implementation utilizes AD to replace both

the analytical derivations to obtain the Hessian and the numerical differentiation of

the Hessian.

3.4 Results and Discussion

3.4.1 Performance of AD When Applied to DNR Method

In order to quantify the benefits of using AD in mixture critical point calculations,

the DNR method is run with the methodology as reported by Dimitrakopolous et al.

[8] and with the AD method.

By nature, AD versions of algorithms cannot meaningfully outperform the analyt-

ical counterparts [24]. However, from the 44 mixtures that are tested, the relative

deviations yielded by AD-DNR from analytical results (as shown in Figure 3.4a), are

less than 3× 10−6. Therefore, AD derivatives provide very accurate approximations

of the analytical ones.

Additionally, from Figure 3.4b, it can be seen that the performance impact of

utilizing AD is not associated with the number of components in a mixture. This

indicates that mixture complexity does not have a significant impact on AD’s speed.
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Figure 3.4: Accuracy and computational speed comparisons between the AD im-
plementation of the DNR algorithm and the analytical implementation of the DNR
algorithm for each of the 44 mixtures in Dimitrakopoulos et al. [8]: a) the relative
deviation of AD from analytical results for each fluid mixture; b) the relative change
in computational time consumed to reach convergence for each fluid mixture. The
results include those for the SRK EOS and the PR EOS.

AD can offer up to a 7.5% speed up or 10% slowdown in terms of the overall com-

putation time. For the 44 mixtures examined in this study, the number of iterations

consumed by AD-DNR and analytical DNR are very similar.

The major advantage of AD when compared to analytical derivatives is the reduc-

tion in the complexity of the mathematics and coding. The Python code for AD-DNR

consists of 527 lines of code, in comparison to the 848 lines of code needed for a fully

analytical DNR. Also, the AD method does not require tedious mathematical calcu-

lations of the Jacobian matrix as expressed by equations 54-79 in the original work

of Dimitrakopolous et al. [8].

3.4.2 Performance of AD When Applied to DE Method

Henderson et al. used a third-order finite difference to compute the derivative of

the Hessian [13]. This introduces very little error to the critical pressure and critical

temperature calculated by DE [13]. However, using finite differences does have an
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impact on the computational speed. This prompts us to use AD in lieu of numerical

derivatives.

Table 3.1 shows the changes in the number of iterations and the number of func-

tion evaluations yielded by the AD-DE algorithm as compared to the numerical-

derivative-based DE algorithm. The use of AD results in an average reduction of

19.34 in the number of iterations and an average reduction of 2549.2 in the number of

function evaluations. For some mixtures, AD increases these quantities; however, for

most mixtures, it reduces them. Through the calculations, we observe that since AD-

DE can normally converge over the narrower bounds (T ∈ (
∑︁

xiTci,
∑︁

xiTci +

100), P ∈ (0.9
∑︁

xiTci, 2.5
∑︁

xiTci)), AD-DE does not need to search for the

minimum over the expanded bounds (T ∈ (
∑︁

xiTci − 50,
∑︁

xiTci + 200), P ∈

(0.75
∑︁

xiTci, 4
∑︁

xiTci)). Therefore, huge reductions in the number of iterations

and function calls by AD-DE are observed for some mixtures (e.g., mixture No. 16).

A considerable performance improvement is possible with the inclusion of an AD-

compatible DE algorithm such as EvoSAX [33].

3.4.3 Easiness in Handling EOS Model Changes by AD

If a new EOS is used, new analytical derivatives have to be derived in order to perform

critical point calculations based on the new EOS. A major advantage of AD is its

superior adaptability and easiness in handling EOS changes.

To demonstrate this, we modify the original DNR system to utilize the volume-

translated SRK developed by Peneloux et al. [34]. Peneloux et al. modified the SRK

equation with a volume translation parameter as shown in Equation (3.3) [34].

P =
RT

v − b
− a

(v + c)(v + 2c+ b)

c =
n∑︂

i=1

zici,

ci = 0.40768
RTci

Pci

(0.008881− 0.08775wi)

(3.3)
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Making the substitutions c∗ = c
b
, C = Pc

RT
, c∗B = C and putting compressibility factor

into its cubic form, we obtain Equation (3.4). Similarly, the substitutions into the

general fugacity coefficient form shown in Appendix B gives Equation (3.5).

0 = Z3 + [3C − 1]Z2 +
[︁
A−

(︁
B2 + 2CB − 2C2

)︁
− (B + 3C)

]︁
Z

−AB − (CB + 2C) (1 +B)
(3.4)

ln (φi) = βi (Z − 1)− ln (Z −B) + A ln

(︃
Z + C

Z + (B + 2C)

)︃(︃
2αi − βi

B + C

)︃
(3.5)

Typically, implementing this new model would require considerable modifications

to the analytical derivatives associated with the critical point calculations due to the

derivatives of Equation (3.5) needing to be calculated. Instead, with the use of AD,

we can directly perform the derivative calculations without re-deriving the analytical

derivatives. Figure 3.5 compares the calculated objective function (Equation (2.13))

with and without the application of volume translation in SRK EOS. Both results

are calculated with the AD-DE algorithm.

While, herein, we only demonstrate how to apply AD in mixture critical point cal-

culations, we can extend AD to many other thermodynamic calculation procedures.

The overall flexibility makes AD an especially attractive choice for calculating ther-

modynamic derivatives. In thermodynamics, it is quite common practice to switch to

different EOSs and mixing rules. Additionally, thermodynamic problems can involve

both function derivatives of many variables and many function derivatives of a single

variable, motivating the usage of both forward and reverse AD. As a specific exam-

ple, the usage of complex EOS models in both root finding and global optimization

methods for critical point calculations is limited by the difficulty of differentiating

Helmholtz energy equations, which can often get very complex. Previous authors

have attempted to use numerical derivatives to perform critical point calculations
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Table 3.1: The change in the number of iterations and function evaluations yielded
by the AD implementation of the DE algorithm as compared to the numerical im-
plementation of the DE algorithm for each mixture from Dimitrakopolous et al. [8].
Large changes in function evaluations (> 10000) are a result of convergence being
achieved over the standard bounds, preventing the need for calculations over the ex-
panded bounds.

Mixture
No.

Change in
the number
of iterations

Change in
the number
of function
evaluations

Mixture
No.

Change in
the number
of iterations

Change in
the number
of function
evaluations

0 -6 -192 22 5 160

1 41 1312 23 14 448

2 2 64 24 -17 -544

3 -6 -192 25 -18 -576

4 18 576 26 -9 -288

5 -8 -256 27 7 224

6 4 128 28 9 288

7 9 288 29 5 160

8 -6 -207 30 -19 -608

9 -24 -768 31 -6 -192

10 -1 -32 32 -30 -960

11 2 64 33 147 4704

12 -32 -1024 34 6 192

13 -21 -672 35 -12 -384

14 -23 -736 36 -43 -1376

15 0 0 37 -8 -256

16 -327 -47667 38 2 64

17 -596 -67123 39 85 2720

18 78 2496 40 -31 -992

19 7 224 41 -419 -41584

20 -30 -960 42 -21 -672

21 0 0 43 421 41984
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Figure 3.5: Impact of applying volume translation on critical point calculations:
a) 3D view of the objective function (Equation (2.13)) calculated based on SRK
EOS; b) 2D topography of the objective function calculated based on SRK EOS over
the pressure-temperature plane; c) 3D topography of the objective function (Equa-
tion (2.13)) calculated based on volume-translated SRK EOS; d) 2D topography
of the objective function calculated based on volume-translated SRK EOS over the
pressure-temperature plane.

based on PC-SAFT EOS [23]. AD would be a much better choice in this case as its

use is more straightforward and accurate.
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3.5 Conclusions

In this work, AD is introduced in the context of thermodynamic mixture critical

point calculations. AD is identified as a powerful computational technique that is

compatible with a wide range of thermodynamic calculations. Firstly AD allows for

accurate calculations of thermodynamic derivatives by avoiding tedious analytical

calculations. Additionally, for complex thermodynamic models, AD can replace less

accurate numerical approximations that are often used in the literature. Finally, the

flexibility of AD means that changes in EOS models or mixing rules can be easily

accommodated by AD.

These facts are demonstrated by implementing AD in both NR-based and DE-

based algorithms. We find that for the fluid mixtures examined in this study, an AD

implementation of the DNR method yields a relative deviation of < 3 × 10−6 in the

calculated critical pressure and critical temperature in comparison to a fully analytical

scheme. The computational cost of both AD and analytical implementations is of

similar magnitude. We also show that replacing numerical derivatives with AD in the

DE-based algorithm can result in fewer iterations and fewer function evaluations.
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Chapter 4

Comparison of Root-Finding and
Global Optimization Methods for
Critical Point Calculations

4.1 Introduction

Critical points are of major interest to researchers in thermodynamics, as they are

an important component of the phase envelope. In his 1879 work, Gibbs originally

laid out the foundation for critical point calculations of pure substances [3]. For

pure substances, Gibbs calculated the point at which the Gibbs free energy of phase

separation is zero [3]. Above this point, a single phase exists. Meanwhile, below this

point, the Gibbs free energy of phase separation is negative, and spontaneous phase

separation occurs. This was later extended to allow for the calculation of critical

points of multicomponent mixtures by Peng and Robinson [6]. The method developed

by Peng and Robinson utilized a Newton-Raphson (NR) algorithm to solve the system

of equations obtained from extending Gibbs’ calculations to multicomponent fluids

[6]. Heidemann and Khalil later simplified the algorithm by modifying the equations

to use Helmholtz free energy [4]. Michelsen used an NR procedure to calculate full-

phase envelopes, but interpolated the critical point on a given phase envelope [2].

NR techniques were the primary methodology for critical point calculations until

Henderson et al. developed a new formulation [13]. In this new procedure, Henderson
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et al. developed a modified tangent plane distance function for phase stability testing

[13]. This results in the original Gibbs critical point criteria being re-framed as a

minimization problem. This new method appears to have some key advantages over

the original NR-based methods [13]. In accordance with the original criteria, the

modified tangent plane distance also compares the free energy of a single phase to the

free energy of two separate phases. Minimization of the objective function returns

the state (temperature and pressure) at which the difference between the two free

energies is zero.

Many authors have worked on improvements to the original NR method that Peng

and Robinson had suggested [6]. After the Helmholtz formalization was developed

by Hiedemann and Khalil [4], Michelsen and Heidemann extended the work to use

a generalized cubic EOS [7]. Stradi attempted to resolve the two major issues of

the NR method when applied to thermodynamic critical point calculations [9]. His

application of interval mathematics allowed for the nonexistence of critical points to

be determined and for multiple critical points to be found on a given temperature/-

pressure range. While Stradi’s method is effective, it is computationally expensive,

especially for complex mixtures [9].

As root finding is a general computational technique, many other improvements

and modifications have been made that are also applicable to thermodynamic com-

putations. Combinations of the NR and bisection methods have been commonly

explored in literature, such as Brent’s method [35]. These hybrid techniques offer

more efficient convergence, while maintaining the accuracy of standard NR methods

[14]. Quasi-Newton methods, such as Broyden’s Method, avoid the computational

expense of computing the derivatives of complex functions by estimating the Jaco-

bian or Hessian matrix [10]. Additionally, recent works have investigated utilizing

Krylov subspaces to accelerate the convergence of traditional NR algorithms [11].

These modifications and improvements provide an abundance of algorithms that are

suited for all manner of mathematical problems.
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Dimitrakopoulos et al. provided a detailed explanation of a damped Newton Raph-

son (DNR) algorithm based on the work of Stradi and Jia et al. [8, 9, 36]. This

damped method has highly robust convergence and only requires one parameter, a

damping factor. This damping factor can be tuned to allow a wide range of mix-

tures to converge, even when the initial guess is not refined. Despite these many

advancements in NR calculation algorithms, no universally superior algorithm has

yet emerged.

The global optimization formulation, presented by Henderson et al., offers a set

of advantages and disadvantages different from NR-based algorithms [13]. Various

global optimization techniques have been successfully used to calculate mixture crit-

ical points, including simulated annealing [13], differential evolution (DE) [16], and

stochastic optimization [14]. Global optimization techniques are generally slow com-

pared to NR, due to their nondeterministic nature [14]. While this is can be a signif-

icant drawback, the optimization form of the problem has been shown to have some

other advantages. Firstly, the optimization formulation can be fully visualized as a

function of temperature and pressure. This can help identify multiple critical points,

nonexistence of critical points, and give information about the type of critical point

in a fluid mixture [13]. Additionally, for complex mixtures, global optimization may

converge where NR does not. Therefore, the advantages of global optimization make

it quintessential for the thorough modeling of mixture critical points.

In this work, a DNR algorithm and a DE algorithm are implemented to calculate

critical points of fluid mixtures. Both methods are tested on a wide range of mixtures

to evaluate their robustness of convergence, number of iterations, and overall perfor-

mance. Our discussion identifies the key issues and advantages of each method using

illustrative example mixtures. Additionally, this provides a comprehensive compar-

ison of the two methods using the same mixtures, which is currently lacking in the

literature.
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4.2 Comparison of Root Finding and Global Op-

timization Methods

While implementing the DNR and DE algorithms for mixture critical point calcula-

tions, we investigate their respective robustness and accuracy. For a particular fluid

system, the optimal algorithm may be unclear. In-depth analysis based on speed,

robustness, and accuracy can allow for the appropriate calculation algorithm to be

selected.

4.2.1 Evaluation of Algorithm Robustness

Firstly, the DNR algorithm is generally quite robust. It is able to compute the

critical point of a wide range of mixtures at various compositions. In contrast, other

NR methods from the literature, do not show this level of robustness [4, 9]. The DNR

algorithm has the added advantage of having only 1 tuning parameter, the damping

coefficient Q. This makes this method easy to tune to obtain convergence for a given

fluid mixture. In contrast, methods that modify the bounds or initial guesses, such

as the DE or interval NR algorithms, may require specific parameters for each unique

mixture.

Dimitrakopoulos et al. [8], from numerical studies, suggested Q = 518 as an initial

damping coefficient value. For the mixtures studied in this work, all but 2 of the

simple mixtures converge with this damping coefficient. The failed simple mixtures

can converge with Q = 700. Meanwhile, for complex mixtures of greater than 10

components, Q = 1000 is used to achieve convergence.

Table 4.1 shows the rate of convergence of the DNR method over 150 generated

compositions for each unique mixture. The convergence of the DNR algorithm is

dependent on the quality of the initial guess. For the mixtures we have studied, the

initial guess that Dimitrakopoulos et al. suggest [8] is sufficiently accurate to enable

convergence. In highly irregular mixtures, it is possible that regardless of the value
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Q takes, the DNR algorithm will not converge for a particular initial guess. For the

simple mixtures, all 150 compositions typically converge. The compositions that do

not fully converge have nitrogen as a major component, which can lead to abnormal

critical point behaviour. We obtain similar results for complex mixtures, with >98%

of compositions converging.

Table 4.1: Rate of convergence yielded by the DNR method for 150 randomly gen-
erated compositions for each unique fluid mixture in the data sources. Generated
compositions are created by a Dirichlet generator function with limited nitrogen mole
fraction, as described in Chapter 5.

Mixture
No.

Convergence
Rate (%)

Mixture
No.

Convergence
Rate (%)

Mixture
No.

Convergence
Rate (%)

Simple Mixtures 8 100 17 100

0 100 9 100 18 98.667

1 98 10 100 19 100

2 100 11 100 20 100

3 100 12 100 21 100

4 100 13 100 Complex Mixtures

5 100 14 100 01 98.667

6 100 15 100 12 98

7 100 16 100 23 99.333

1 Dimitrakopoulos et al. [8];
2 Ghorayeb et al. [37];
3 Xu and Li [38]

In contrast, the global minimization via DE could not achieve a > 75% convergence

rate with a generalized set of parameters. We found that the DE algorithm can

achieve convergence rates of > 90%, but this requires mixture-specific bounds and

tuning parameters. Henderson et al. proposed modified DE algorithms that seeded

the search space more efficiently, which allowed for faster searches of large bounds [16].

These modified algorithms have improved robustness but are still much slower than

NR-based methods. The DE algorithm, and other global optimization methods, have
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the advantage of being able to search a much larger space than NR-based methods.

This can be important in the case where a good initial guess is not possible.

Another issue with the DE algorithm is that, over the mixtures tested, DE yields

a greater deviation from experimental values than DNR. Experimental results, as

collected by Dimitrakopolous et al., are compared to the critical points found by both

calculation algorithms [8]. These comparisons are shown in Table 4.2. The average

absolute percentage deviation from the experimental results for the DNR algorithm

is 1.96% for critical pressure and 0.81% for critical temperature. Meanwhile, the DE

algorithm results in larger deviations, i.e., average absolute percentage deviations of

3.19% for critical pressure and 1.32% for critical temperature.

4.2.2 Handling of Complex Mixtures

The major advantage that global optimization methods have over NR-based methods

is the ability to handle multiple critical points and confirm critical point nonexis-

tence. The NR-based methods require different initializations to be able to identify

multiple critical points. Furthermore, nonexistent critical points pose a major issue

for the DNR algorithm. It is difficult to determine when the DNR algorithm fails to

converge due to the nonexistence of a critical point rather than due to inappropriate

initializations or damping coefficient values. In his work, Stradi proposed an interval

NR-based method that could converge multiple critical points on a given range as

well as confirm critical-point nonexistence [9]. Despite these advantages, the method

is computationally inefficient for large mixtures (>5 components). This makes the

global optimization methodology the most effective method for mixtures that may

have multiple or no critical points.

An additional difficulty in the DNR algorithm is that in complex mixtures with

multiple critical points, it can be impossible to predict which initial guess will lead

to which critical point. This can lead to some critical points that are very difficult

to obtain, due to few initial guesses converging to that particular critical point. This
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Figure 4.1: Root loci yielded by the DNR algorithm for Ghorayeb et al.’s first mix-
ture at composition 0, where multiple critical points are present [37]. Initial guesses
that lead to negative pressure roots are shown in red, convergence failures in black,
the extreme pressure root in yellow, the upper root in blue, and the lower root in
green. Initial guesses are tested over a wide range of molar volumes and tempera-
tures. Convergence failures are declared when the algorithm does not converge after
50 iterations.

is a well-described mathematical issue with all NR-based root-finding methods [39].

Figure 4.1 shows the root loci of the first composition of the fluid mixture described

by Ghorayeb et al., which has multiple roots. Henderson et al. identify a lower and

upper root for this mixture [16]. In the figure, various initial guesses and the roots

they converge to are shown. As shown, with a damping coefficient of 1000, very

few initializations converge to the upper root in the wide range of initial conditions

searched. Additionally, the algorithm can also converge to non-physical negative
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pressure roots, and an extreme pressure root (T = 92.7 K, P = 191.1 MPa). These

difficulties make the DNR algorithm an unreliable choice for calculating critical points

of mixtures with multiple or nonexistent critical points.

Figure 4.2: Objective function (Equation (2.13)) with marked upper and lower crit-
ical points for Ghorayeb et al.’s first mixture at composition 0 [37]. Using the DE
algorithm, bounds can be set that only include one global minimum to predictably
get either the lower or upper critical point. Visualization of the objective function
can help set bounds and determine the existence of the two critical points.

Herein the DE algorithm has key advantages, as it searches an entire bound and is

formulated based on temperature and pressure. Firstly, the pressure range is easier to

set than the molar volume range. Secondly, pressure bounds avoid the issue of non-

physical roots to the Gibbs critical point criteria. Thirdly, due to the complete search

of the bound, when the DE algorithm fails to converge, it confirms nonexistence of
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a critical point over the search bound. Most importantly, by setting an appropriate

bound, every critical point of a fluid system can be obtained easily and predictably.

For the Ghorayeb et al. fluid [37], we obtain both the lower (T = 105.8 K, P = 25.99

MPa) and upper critical point (T = 395.1 K, P = 45.92 MPa) using their respective

bounds.

Another advantage of the global optimization formulation is that the objective

function (Equation (2.13)) values can be calculated and plotted for a given bound

in the temperature-pressure space. This can be used to graphically check for critical

point nonexistence and multiple critical points. Additionally, the nature of a critical

point can be discerned from the topography of the objective function surrounding it

[16]. Also, Henderson et al. demonstrated modified DE methods that can converge

to multiple critical points simultaneously on a given bound [16]. These advantages

make the DE algorithm, and similar global optimization methods, extremely adept

at handling fluid mixtures with complex critical point behaviour.

4.3 Conclusions

In this chapter, we compare the robustness, accuracy, and ability to handle the crit-

ical point phenomena of the DNR method with that of the global optimization via

DE. To do this, we use both algorithms to calculate the critical points of various

fluid mixtures. The convergence rate of 150 randomly generated compositions for

a given mixture is used as a robustness metric. Next, we measure the accuracy of

both methods by considering the absolute percentage deviations from experimental

results. Finally, a complex mixture with two critical points is selected to illustrate

the algorithmic difficulties in handling complex critical point phenomena.

We find that the DNR algorithm has a high convergence rate, even for complex

mixtures. For most mixtures, all 150 compositions converge. For mixtures that do

not have full convergence, the convergence rate is above 98%. These results are ob-

tained without mixture-specific tuning of the damping coefficient. Meanwhile, the DE
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algorithm can achieve a > 90% convergence rate only with mixture-specific bounds

and tuning parameters. While both algorithms show acceptable deviations from ex-

perimentally obtained values, the DNR algorithm leads to smaller deviations than

the DE algorithm.

Despite the robustness advantage of the DNR algorithm, we show that global op-

timization methods can be highly effective at calculations involving complex fluid

mixtures. Firstly, critical-point nonexistence over a certain bound can be confirmed

by the lack of convergence of global optimization methods. This is not possible for

NR-based methods without incurring a large increase in computational costs. Addi-

tionally, the DE algorithm can effectively locate multiple critical points of complex

mixtures by supplying different bounds or simultaneous computations. In contrast,

some critical points may be difficult to obtain with the DNR algorithm, and the na-

ture of the critical point yielded by the DNR algorithm is sometimes unclear. Finally,

the global optimization methods enable us to visualize the critical points via plotting

the objective function as a function of temperature and pressure in a 3D space. This

allows manual confirmation of nonexistent critical points or multiple critical points

and facilitates bound selections.

The above analysis suggests that the NR-based methods are more robust than the

global optimization methods. Meanwhile, the global optimization methods appear to

be more reliable at handling challenging critical point behavior, such as the existence

of multiple critical points, the nonexistence of critical points, and non-physical critical

points.
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Table 4.2: Calculated and experimental critical points for unique fluid mixtures in
the work of Dimitrakopoulos et al. [8]. Calculated results are shown for the DNR
algorithm and the DE algorithm. Experimental results are obtained from Dimi-
trakopolous et al [8]. The DE algorithm does not converge for Mixture 7.

Mixture
No.

DNR DE Experimental

Pc (MPa) Tc (K) Pc (MPa) Tc (K) Pc (MPa) Tc (K)

0 5.3121 299.179 5.3121 299.180 5.3220 299.0

1 8.0601 300.570 8.0682 300.394 8.3000 302.0

2 6.3144 439.295 6.2269 441.459 6.6120 438.0

3 8.2624 392.507 8.0793 400.535 8.1010 391.0

4 9.1028 321.486 8.9369 323.033 9.2320 313.0

5 7.2634 358.785 7.1934 359.942 7.6400 354.0

6 10.1609 307.505 9.7740 317.577 10.3400 311.0

7 4.8969 306.105 - - 4.9000 306.0

8 5.5452 403.769 5.5292 404.320 5.6000 397.0

9 4.1675 430.417 4.1670 430.445 4.1900 429.0

10 3.7911 450.486 3.7910 450.503 3.8800 450.0

11 7.0174 226.412 7.0192 228.834 6.8900 228.0

12 8.9871 316.132 8.8282 317.731 8.9630 313.0

13 7.3911 422.990 7.2280 427.155 7.4120 423.0

14 5.0595 410.264 5.0534 410.460 5.1130 406.0

15 4.4165 419.360 4.4157 419.451 4.5060 418.0

16 5.5979 388.242 5.5459 388.870 5.6200 385.0

17 7.0402 394.004 6.9709 394.905 7.2200 387.0

18 5.6343 201.753 5.7302 202.843 5.4560 200.0

19 6.4443 380.725 6.4243 381.324 6.5360 376.0

20 7.8514 318.063 7.8348 318.464 7.8460 314.0

21 5.8464 202.455 6.2783 206.511 5.5780 201.0

22 6.9610 204.278 7.1964 207.204 6.5840 204.0

Average
Error (%)

1.9605 0.8084 3.1921 1.3198 - -
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Chapter 5

Machine-Learning-Based
Acceleration of Mixture Critical
Point Calculations

5.1 Introduction

Machine learning has proved itself as a fundamental tool for modern scientific and

engineering practice. Despite the potential of machine-learning techniques, their

black-box nature makes them difficult to use for fundamental scientific problems.

Literature is beginning to explore machine learning approaches for solving thermody-

namics problems [40, 41]. Typically, the lack of connection between machine-learning

models and theoretical models reduces the practicality of machine-learning-based so-

lutions in thermodynamics. This has been an additional barrier to the utilization of

machine-learning techniques in the field.

In other chemical engineering fields, various implementations of machine learning

have attempted to mitigate these concerns. Coupling physics-based modeling with

machine learning has been a promising option to allow the integration of analytical

models into machine-learning algorithms [42, 43]. These techniques are just emerging

in the literature, and while they show promise, much work is needed before they are

generally applicable to a wide variety of chemical engineering problems.

One other approach is the machine-learning-based acceleration of analytical cal-
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culations. This has been shown to be a viable way of taking advantage of machine-

learning techniques while still preserving a connection to theory [44]. In these types

of approaches, machine learning is used to improve an existing theoretical framework

rather than serve as a standalone solution. A machine-learning-based acceleration

protocol can be implemented in a multitude of ways, e.g. making a first-pass es-

timate with machine learning [45], or using machine learning to sort problems into

different categories which are to be solved by different analytical algorithms. This

type of machine learning tends to rely less on complex, application-specific models

and can prove to be more robust than standard predictive machine learning.

In this work, we investigate a machine-learning-based acceleration procedure to

improve mixture critical point calculations. In our methodology, a series of training

datasets for various fluid mixtures are created by computing critical points at varying

compositions. From these training datasets, machine-learning models are trained for

each unique fluid mixture. These trained models can predict the critical properties of

their respective mixtures at any composition and can be easily saved, modified, and

reused. The predictions are shown to have relatively good accuracy for a wide range

of fluid mixtures at most compositions. The trained machine-learning models can be

used in applications where a rough critical-point estimation is sufficient.

When higher accuracy is needed, the predictions made by the machine-learning

models are used to initialize the traditional critical point computation algorithms

(i.e., the root finding method or the global optimization method). We find that the

resulting machine-learning-initialized algorithms have a superior convergence rate and

generally improved robustness. The machine-learning-based initialization procedure

is demonstrated using a damped Newton-Raphson (DNR) algorithm and a differential

evolution (DE) algorithm. Additionally, we determine the impact of the size of the

generated training dataset on the number of iterations needed to reach convergence.

We quantify the convergence improvement achieved for both the DNR and DE algo-

rithms, which have differing initialization procedures. We believe the framework that
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is outlined in this work can contribute to compositional simulations by speeding up

and front-loading the computational work required.

5.2 Computational Methods

5.2.1 Generation of Training Datasets for Machine Learning

In the procedure outlined by this work, the most computationally expensive step is

the initial creation of a machine-learning training database. The training of machine-

learning models can require 30-250 various compositions, along with their precom-

puted critical points, as training data. The computation of mixture critical points in

the training data must be done via conventional critical point calculation algorithms

(i.e., the DNR and DE algorithms). While it can be beneficial to pay this computa-

tional cost upfront, for complex mixtures (15+ components) this can involve a huge

amount of computational time and memory. Therefore, we are well motivated to

generate compositions for the training dataset in a way that maximizes the amount

of valuable information per generated composition.

To this end, we recommend the usage of a Dirichlet Generator Function (DGF).

The DGF randomly selects compositions from the total compositional space of the

mixture via a Dirichlet distribution. The Dirichlet distribution is the multivariable

extension of the well-known beta distribution [46]. A Dirichlet distribution function

of N variables will produce N probabilities that sum to 1. This function has N tuning

parameters α1,2,...,N , allowing for the implementation of bias towards one or more of

the variables. Figure 5.1 demonstrates an example of the generated training datasets

from the DGF with various tuning parameters.

The tuning parameters allow for the creation of training datasets that are special-

ized for a given mixture or application. For example, some of the mixtures presented

by Dimitrakopoulos et al. contain nitrogen gas [8]. Nitrogen gas, at high mole frac-

tions, can produce open-phase envelopes without critical points or with abnormal
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Figure 5.1: Example composition distributions of ternary mixtures from the DGF:
a) a C2/C4/C7 system with an even composition distribution (α = [1, 1, 1]); b) a
N2/C1/C3 system with a maximum nitrogen gas mole fraction of 0.3 (α = [0.2, 3,
3]); c) a C2/C5/C7 system with a dominant ethane component (α = [5, 1, 1]); d) a
C1/C2/C4 system clustered around the point of equimolar composition (α = [6, 6,
6]).

critical points (such as critical points with extremely high critical pressures). This is

particularly an issue when a fluid mixture contains mostly light hydrocarbon compo-

nents. Therefore, for mixtures with nitrogen and light hydrocarbons, α can be selected

such that the nitrogen mole fraction is limited to < 0.3% (b). In cases where trace

heavy components are present in a light-oil-dominant mixture, tuning parameters can

be selected to generate higher ratios of light-oil components (c). Alternatively, there
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are mixtures with chemically similar components, in which near equimolar ratios are

commonly expected; in this case, the tuning parameters can be modified such that

small mole fractions are avoided for all components (d).

By tuning the DGF to limit the range of the training dataset and utilizing advanced

computational techniques, training datasets can be generated in a reasonable amount

of time for any fluid mixture. Once the DGF has generated the compositions, critical

point calculations are performed to label the training and testing datasets. Two major

calculation methodologies can be used for mixture critical point determinations: root-

finding methods and global optimization methods.

The DNR algorithm is used to label the training dataset generated for the fluid

mixtures presented in this work. It is worth noting that nonconverged or nonexistent

critical points in the training dataset can cause issues associated with the training

of the machine-learning models. Therefore, critical points that do not converge via

the DNR algorithm are checked using the DE algorithm. If neither algorithm can

converge, a nonexistent critical point at that composition is likely. We remove and

replace such compositions using the DGF. This checking step is expensive when it

occurs; therefore, it is preferable to tune the DGF to exclude compositions that can

lead to critical-point nonexistence if known beforehand. For the results shown in this

work, nitrogen fractions are limited to avoid nonexistent critical points, but no other

DGF tuning is performed.

5.2.2 Deep Neural Network (DNN) for Critical Point Pre-
dictions

For the machine-learning model, a deep neural network is utilized, which is shown in

Figure 5.2. The base DNN class that is used for all mixtures consists of two linear

hidden layers with 50 neurons each. The input layer takes N variables representing the

component mole fractions. Meanwhile, the output layer depends on the critical point

calculation algorithm. For the DNR algorithm, critical temperature, critical volume,
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Figure 5.2: Diagram of the architecture of the DNN models used: a) DNN model
that can potentially accelerate critical point calculations via the DE algorithm; b)
DNN model that can potentially accelerate critical point calculations via the DNR
algorithm. Both models consist of an input layer of mole fractions to describe the fluid
mixture. Both models have two fully connected hidden layers of 50 neurons. Critical
properties are normalized by the simple average of component critical properties
before training.

and mole number perturbation for each component are outputs (N+2 variables in the

output layer). For the DE algorithm, critical temperature and critical pressure are

the output variables. The layers are initialized with a Xavier uniform distribution

and both layers are activated via rectified linear units. Mean squared error is the

loss parameter, with an ’Adam’ optimizer. Training is done over 100 epochs with a

learning rate of 1e-4.

The general base model does not take component critical properties as direct in-

puts. While the model’s performance can be improved by including component critical

properties, we still achieve adequate performance. The critical property values of a

given mixture are normalized to improve training speed. We perform normalization

of critical properties based on the simple average of the mixture components’ critical

properties (Equation (5.1)):
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P ∗
c =

Pc∑︁N
i=1 Pci/N

, T ∗
c =

Tc∑︁N
i=1 Tci/N

(5.1)

This base model is very generalized and significant accuracy improvements can be

made via the tuning of hyperparameters and the inclusion of more input variables.

Including chemical property data as inputs may not be viable for fluid systems with

pseudo-components or other complex component chemistries. Additionally, machine-

learning-based acceleration does not require a very high level of prediction accuracy.

Therefore, our calculations are performed using the un-optimized base model to estab-

lish a baseline performance. However, when the application allows, chemical property

data should be included as input to the models to improve predictions.

5.2.3 Initialization of Critical Point Calculations with Ma-
chine Learning

Figure 5.3: Flowchart showing the procedure adopted for training the DNN models
dedicated to mixture critical point predictions. The DGF is used with tuning param-
eters to generate a dataset with random compositions. Component critical properties
are then used with the DNR algorithm to compute a mixture critical point to act as
a label for each random composition. Generated compositions and their labels are
split into a training and a testing dataset by a 0.9/0.1 ratio. DNN models are trained
with the training dataset, with prediction accuracy being evaluated on the testing set.
The trained DNN models for each unique mixture have their weights and parameters
saved.
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Many circumstances call for accurate calculations of critical properties with a the-

oretical basis. When analytical accuracy is required, we utilize the trained machine-

learning model to provide an initialization for the mixture critical point calculations.

This initialization reduces the overall difficulty of the critical point calculations. Both

the DNR and DE algorithms benefit from a reliable initialization scheme to reduce the

number of iterations needed to reach convergence. The integration of the machine-

learning-based initialization is slightly different for each algorithm. Figure 5.3 demon-

strates the overall procedure used for generating machine-learning initializations.

Any NR-based method, including the DNR method, requires an initial guess. It is

possible to prove, when supplied with an initial guess that is sufficiently close to the

true answer, that NR-based methods have quadratic convergence [47]. As mentioned

above, to generate an initial guess for the DNR method, we train the DNN models to

predict critical temperature, critical volume (Tc and vc), and component mole devia-

tions (δni). The DNN-model predictions are normally very close to the true critical

point, resulting in a faster convergence. Due to the convergence issues encountered by

Newton’s Method when handling multiple roots, as discussed in Chapter 4, mixtures

with multiple critical points still create issues.

For the DE algorithm, machine-learning-based initializations can be implemented

in two ways. Firstly, global optimization methods typically work over some bounding

box. Therefore, it is simple to use machine-learning predictions and their associated

errors to define a tight bounding box around the predicted critical point that should

contain the true critical point. We compute the bounding box by adding and subtract-

ing the computed prediction uncertainty (δTpred, δPpred) to the predicted critical point.

The prediction uncertainty is based on the expected error in the machine-learning

predictions, as described in Equation (5.2). The tight bounding box computed from

machine-learning predictions will allow for the DE algorithm to be replaced with a

brute force search (BFS) algorithm.
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P+ = Ppred + δPpred, P− = Ppred − δPpred

T+ = Tpred + δTpred, T− = Tpred − δTpred

(Tcrit, Pcrit) = min(F (T, P )|x),

T ∈ (T−, T+), P ∈ (P−, P+)

(5.2)

Alternatively, for the objective function of a fluid mixture, there is a line on the

temperature-pressure plane that contains the global minimum and the nearby local

minima. By identifying this line, we can perform a BFS along the line to find the

global minima. To identify this line, we begin with a DNN model prediction of

critical pressure for the fluid mixture. Using the prediction (Ppred) and its associated

uncertainty (δPpred), we can get the estimated maximum and minimum expected

pressures (P+, P−). The true critical pressure lies somewhere between these two

values. At the maximum expected pressure (P+), we can minimize the objective

function as a 1-D function of temperature. This minimum will be one of the points

on the line of local minima. The same procedure can be applied to the minimum

expected pressure (P−) to get a second point on the line of local minima. These

two points can be used to write a line equation that contains the global minima.

Finally, a BFS of the points on the line will identify the global minimum, which is

the critical point. This methodology is described in Equation (5.3). All the above

three initialization methods are shown in Figure 5.4.

(Tc, Pc) = min(F (T, P )|x : (T, P ) ∈ ymin),

ymin = mT + b

m =
2δP

min(F (T )x,P+)−min(F (T )x,P−)

b = P+ −m ·min(F (T )x,P+)

(5.3)

Utilizing the DGF, datasets with 150 data points are built for each unique mixture

in two different mixture sets. The first mixture set is taken from the work of Dimi-

trakopolous et al., containing various mixtures of up to 10 components with alkanes,
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Figure 5.4: Use of machine learning to accelerate critical point calculations: a)
machine-learning models can provide a refined initial guess for the NR-based root
finding methods; b) machine-learning models can provide a tight bounding box for
the global optimization methods; c) machine-learning models can provide a line con-
straint for the global optimization methods.

nitrogen, and carbon dioxide [8]. The second mixture set consists of various complex

mixtures (>10 components) obtained from multiple sources, including petroleum flu-

ids and pseudo-components. Mixture compositions and chemical properties can be

found in Appendix B.

5.3 Results and Discussion

5.3.1 Predictive Performance of Stand Alone Deep Learning
Models

Training dataset generation is done for each of the unique mixtures in the dataset

provided by Dimitrakopolous et al. [8]. These training sets will train machine-learning

models that are directly used for making critical point predictions. Each unique

mixture has a unique training dataset and a unique trained model. We use the

following evaluation metrics as performance indicators: root mean squared relative

error (RMSRE) and mean absolute relative error (MARE). These metrics are defined

in Equation (5.4) and the prediction errors are summarized in Table 5.1.
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Table 5.1: Prediction errors of mixture critical points yielded by the trained machine-learning models for the unique fluid mixtures
from Dimitrakopoulos et al. [8]

Mix CO2 N2 CH4 C2H6 C3H8 iC4H10 nC4H10 iC5H12 nC5H12 nC6H14 nC7H16
Tc

RMSRE
Pc

RMSRE
Tc

MARE
Pc

MARE

0 □ □ 0.0010 0.0023 2.904E-06 2.760E-10

1 □ □ 0.0042 0.0126 1.014E-05 8.539E-10

2 □ □ □ 0.0071 0.0098 1.286E-05 1.123E-09

3 □ □ □ 0.0086 0.0147 1.436E-05 1.742E-09

4 □ □ □ 0.0203 0.0879 4.100E-05 5.782E-09

5 □ □ □ 0.0052 0.0475 1.153E-05 2.937E-09

6 □ □ □ 0.0172 0.1070 3.399E-05 6.157E-09

7 □ □ □ 0.0016 0.0041 3.494E-06 7.388E-10

8 □ □ □ 0.0035 0.0083 7.603E-06 1.394E-09

9 □ □ □ 0.0040 0.0047 8.174E-06 8.857E-10

10 □ □ □ 0.0032 0.0016 5.652E-06 3.518E-10

11 □ □ □ 0.0032 0.0252 8.620E-06 1.445E-09

12 □ □ □ □ 0.0113 0.0375 3.017E-05 3.492E-09

13 □ □ □ □ 0.0076 0.0124 1.377E-05 1.486E-09

14 □ □ □ □ 0.0037 0.0081 6.972E-06 1.310E-09

15 □ □ □ □ 0.0034 0.0064 5.921E-06 1.334E-09

16 □ □ □ □ □ 0.0096 0.0160 1.644E-05 2.219E-09

17 □ □ □ □ □ 0.0129 0.0146 2.794E-05 1.575E-09

18 □ □ □ □ □ 0.0521 0.3737 1.236E-04 2.095E-08

19 □ □ □ □ □ □ 0.0219 0.0514 3.443E-05 4.017E-09

20 □ □ □ □ □ □ 0.0496 0.0891 6.667E-05 6.236E-09

21 □ □ □ □ □ □ □ 0.0288 0.0632 4.831E-05 4.837E-09
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For each mixture, a 0.9:0.1 ratio is applied to split the entire generated compositions

into the training and testing datasets. This results in Ntest = 15 testing compositions,

across which RMSRE and MARE are calculated. Predictably, we see that mixtures

with more components have higher prediction errors, and may benefit from larger

training datasets. For mixtures that do not include nitrogen, the RMSRE in the

critical temperature predictions is 0.71±0.58% and the RMSRE in the critical pressure

predictions is 2.09 ± 2.73%. Mixtures that include nitrogen tend to have higher

prediction errors since a higher nitrogen fraction may lead to erratic critical point

behaviour. For nitrogen-inclusive mixtures, the RMSRE in the critical temperature

predictions is 2.82 ± 1.81% and the RMSRE in the critical pressure predictions is

10.8± 12.1%.

For both nitrogen-inclusive and non-nitrogen-inclusive mixtures, RMSRE can ex-

aggerate the effect of outliers and misrepresent the actual expected inaccuracy. The

calculated MARE is considerably lower than the RMSRE, even after taking the

squareroot. This indicates that the majority of the predictions are being made very

accurately, with only some outlier compositions causing large errors.

The effect of outlier compositions on the prediction accuracy can be observed in

Figure 5.5. There is a tendency for the machine-learning models to predict with

larger errors at extreme normalized pressures. Prediction errors can be potentially

reduced by tuning the generator function to avoid compositions that are unrealistic

or abnormal. Alternatively, the generator can be biased towards the components that

are most irregular to provide more training data in regions that are more difficult to

predict.

Table 5.2 shows three mixtures, each with over ten components, that are selected

to test the prediction performance of the trained DNN model for complex mixtures.
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Figure 5.5: Comparison of true mixture critical points and DNN-predicted mix-
ture critical points: a) mixture 2 - binary Ethane/nButane system; b) mix-
ture 5 - ternary Methane/Ethane/nButane system; c) mixture 19 - 6-component
Methane/Ethane/Propane/nButane/nHeptane/nHexane system.

The properties of these mixtures can be found in Appendix A. The prediction errors

are similar to those shown in Table 5.1. We observe that the first mixture has more

components than the other two mixtures and yet has a lower prediction error. This

indicates that prediction accuracy may not directly correlate with the number of

components in a mixture.

Table 5.2: DNN-model prediction accuracies for complex mixtures (10+ components).

Mixture Nc
Tc

RMSRE
Pc

RMSRE
Tc

MARE
Pc

MARE

Ghorayeb et al. [37] 13 0.0138 0.0285 1.674E-05 3.842E-09

Xu and Li [38] 12 0.0345 0.0914 3.759E-05 5.899E-09

Dimitrakopoulos et al. [8] 11 0.0314 0.0932 3.260E-05 4.320E-09

5.3.2 DNR Algorithm Initialized by a Trained DNN Model

To improve speed and robustness of critical point calculations, we initialize the

DNR algorithm with predictions that are made by machine-learning models. For

the DNR algorithm, the trained machine-learning models predict critical tempera-

ture, critical molar volume, and mole number perturbations of individual components

(Tc, vc,∆n1,2,...,N). Due to the close proximity of the machine-learning prediction to
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the true solution, the initialized algorithm converges for all mixtures that have a

single root. This allows the damping coefficient to be set to zero for the DNR in

initialized mixture critical point calculations.

We evaluate the performance improvements of the initialized DNR algorithm by the

reduction in the number of iterations when compared to the original DNR algorithm

without DNN-aided initialization. For each unique mixture, we calculate the critical

points of the 15 compositions in the testing dataset using the original DNR algorithm

and count the number of iterations needed to reach convergence. We predict the

critical point for each of the 15 test compositions using the previously trained DNN

model for that mixture. We then use the DNN-model predictions to initialize the

DNR algorithm and again count the number of iterations needed for the critical

point calculation to converge. For each mixture, the number of iterations required

for both the DNN-model initialized calculations and standard initialized calculations

(i.e., using Kay’s mixing rule as shown in Figure 2.2) is averaged across the 15 test

compositions. The difference in the average number of iterations between standard

and DNN-initialized DNR calculations is taken as the evaluation metric. For the

simple mixtures, with 150 generated data points, the average number of iterations is

reduced from around 20 to 3-6, as shown in Figure 5.6.

Training dataset generation and DNN-model training can be done before the crit-

ical point calculation process. However, the generation of training data is still com-

putationally resource-intensive. Therefore, we desire to avoid generating extraneous

training data that may not yield significant performance improvement. To this end,

we generated datasets with various sizes (30-250 compositions) and used them for

DNN-model training to determine the necessary size of the training dataset. For

each generated dataset, a 0.9/0.1 ratio is again applied to split the dataset into a

training dataset and a testing dataset. The difference in the number of iterations

between standard and DNN-initialized DNR calculations is determined and averaged

across all the compositions in the respective testing dataset. The performance and
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Figure 5.6: Average number of iterations needed to reach convergence for DNN-
initialized DNR calculations with varied sizes of generated data: a) binary mixtures,
b) tertiary mixtures, c) quaternary mixtures, and d) mixtures of 5 or more com-
ponents. The iteration count yielded by the DNR algorithm initialized with Kay’s
mixing rule is shown as ’Default Initialization’. The number of iterations to reach
convergence are averaged over the testing dataset for each unique fluid mixture at
each generated data size.

dependence on the generated dataset size of the DNN-initialized critical point cal-

culations are shown in Figure 5.6. Note that, the datasets are randomly generated

from the DGF and randomly split into training and testing datasets. Therefore, the
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calculation of the optimal generated dataset size will be stochastic and vary based on

what compositions are generated by the DGF and how they are split into training

and testing datasets.

As shown in Figure 5.6, the DNR algorithm with the standard initializations takes

an average of 8 iterations to converge for binary mixtures. We observe that, with

only a small dataset of 25-50 data points, a 62.5% reduction in the average number

of iterations can be achieved. For larger mixtures of 3-8 components, approximately

200 data points are needed to achieve the greatest performance enhancement (63.6%-

85.7%). Complex mixtures with 9+ components require 250+ data points for their

peak performance enhancement (50%) but can achieve meaningful enhancement with

datasets of 150 points. For the three complex mixtures investigated in this study,

150 generated data points allow for a 27.2-50% reduction in the number of iterations.

Complex mixtures can benefit from a higher learning rate. Further tuning of the

learning rate, epochs, and DNN-model architecture can yield a greater performance

enhancement effect from DNN initializations.

5.3.3 Global Optimization Methods Initialized by a Trained
DNN Model

Performance enhancement of the DE algorithm is achievable in a similar way. Global

optimization methods are less reliable than NR methods, as they may converge to

local minima rather than the global minimum. This makes most of the simple op-

timization methods ineffective for training dataset generations. Sufficiently robust

global minimization methods, such as simulated annealing, can be very computa-

tionally expensive. Therefore, for smaller mixtures, we use root-finding calculations

to calculate the critical properties of the generated compositions. For larger, more

complex mixtures with multiple or nonexistent critical points, global optimization is

necessitated. For these mixtures, slow but robust optimization methods should be

used to avoid convergence issues in the training dataset.
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When applying DNN-model initializations to global optimization methods via

bounding box (method 1, Equation (5.2)) or determining the line of local minima

(method 2, Equation (5.3)), the search space is drastically reduced. Therefore, it

becomes feasible to perform a faster, deterministic BFS of the entire search space

rather than relying on stochastic methods such as DE.

Table 5.3 displays the performance improvement achieved by switching from DE

minimization to DNN-initialized BFS minimization. The number of iterations and

computation time are calculated for the basic DE algorithm (without DNN-aided

initializations) using the default DE parameters from Henderson et al. [13]. The

DNN-initialized BFS uses machine-learning predictions with an uncertainty of 5%

(based on the average uncertainty) to define a bounding box for BFS minimization, as

described in Figure 5.4a. Method 2, as shown in Figure 5.4b, is also tested and found

to yield similar results for the mixtures we have investigated. Across all mixtures,

substantial reductions in the number of iterations and computation time (>90%) are

possible when using the DNN-model predictions to initialize mixture critical point

calculations. Additionally, we see that two of the fluid mixtures that do not converge

when using the DE algorithm with the default parameters do converge with the DNN-

initialized BFS.

5.4 Conclusions

In this work, we explore the usage of machine learning to predict mixture critical

points and improve mixture critical point calculations. Using a specialized generator

function, databases of random compositions are created for several fluid mixtures.

Traditional critical point calculation algorithms are used to label each of these com-

positions. These databases are then used to train simple DNN models to predict

mixture critical properties. These predictions are then further utilized to initialize

the conventional critical point calculations, resulting in a reduction in the number of

iterations needed to reach convergence and improved robustness.
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Table 5.3: Performance improvements yielded by using the DNN-initialized DE in-
stead of the standard DE algorithm for mixture critical point calculations. Mixtures
with * require a higher learning rate (1e-2) to converge.

Mixture
No.

Convergence
of

Standard
DE

Convergence
of

DNN-Initialized
DE

Iteration
Reduction (%)

Computation
Time

Reduction (%)

0 ✓ ✓ 91.258 93.906

1 ✓ ✓ 89.224 93.936

2 ✓ ✓ 92.119 92.140

3 ✓ ✓ 88.814 91.556

4 ✓ ✓ 88.793 91.381

5 ✓ 36.431 53.434

6 ✓ ✓ 89.615 92.140

7* ✓ 61.930 79.592

8 ✓ ✓ 90.712 93.137

9 ✓ ✓ 89.364 93.355

10 ✓ ✓ 89.912 93.022

11 ✓ ✓ 89.766 92.337

12 ✓ ✓ 92.681 91.556

13 ✓ ✓ 89.600 91.989

14 ✓ ✓ 89.852 92.521

15 ✓ ✓ 90.190 93.174

16 ✓ ✓ 93.094 92.242

17 ✓ ✓ 88.839 91.498

18* ✓ ✓ 89.265 93.178

19 ✓ ✓ 93.832 92.145

20 ✓ ✓ 89.259 91.989

21* ✓ ✓ 92.677 91.837
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The prediction accuracy of the standalone DNN models, trained with 150 gener-

ated compositions, is found to be sufficient for many purposes. The standalone DNN

models yield an average RMSRE of 0.71 ± 0.58% for critical temperature predic-

tions and 2.09±2.73% for critical pressure predictions for mixtures without nitrogen.

For nitrogen-containing mixtures, the average RMSRE for critical temperature pre-

dictions is 2.82 ± 1.81%, and the average RMSRE for critical pressure predictions

is 10.8 ± 12.1%. For complex mixtures with more than ten components, the aver-

age RMSRE for critical temperature predictions is less than 3.5%, while the average

RMSRE for critical pressure predictions is less than 10%.

The trained DNN models are applied to initialize the DNR and DE algorithms.

We can significantly reduce the number of iterations to reach convergence (30-85%) if

we initialize the DNR algorithm with the DNN model that is trained with a dataset

size of 150 generated compositions. For mixtures with less than six components,

datasets of 50 to 150 points can result in significant iteration reductions. But for

more complex mixtures, datasets of >200 points are more favorable. Meanwhile,

for the global optimization formulation, using the DNN-model predictions to define

a tight bound, and using a BFS algorithm instead of standard stochastic methods,

allows for an 80-90% reduction in the required number of iterations.

In this work, we have shown that DNN models can be easily trained for the predic-

tion of mixture critical points. DNN models have a fair prediction accuracy and can

be easily saved, tuned, and shared. Additionally, DNN-model predictions can be used

to initialize standard critical point calculation algorithms, leading to faster analytical

calculations. We believe the procedure outlined in this work can improve the robust-

ness and speed of critical point calculation algorithms for potential applications such

as compositional reservoir simulations.

65



Chapter 6

Conclusions, Recommendations,
and Future Work

6.1 Conclusions and Recommendations

In this thesis project, we explore the incorporation of modern computational tech-

niques into mixture critical point calculations. The critical point problem is solved

using the two main calculation methods presented in the literature - root finding

and global optimization. Root finding is explored in the form of a damped Newton-

Raphson (DNR) algorithm, while global optimization is conducted via a differential

evolution (DE) algorithm. Calculations and comparisons are performed using a set

of 43 (21 unique) hydrocarbon mixtures of 2-8 components, as well as a set of three

complex fluids (>10 components).

Firstly, we discuss the implementation of automatic differentiation (AD) in mixture

critical point calculations. We find that using AD to replace analytical derivatives

causes negligible accuracy reduction and results in similar calculation speeds. Ad-

ditionally, we observe faster calculations for some fluid mixtures when we use AD

instead of numerical derivatives in the DE algorithm. We find AD highly effective in

the computation of thermodynamic derivatives, with great potential to simplify algo-

rithmic implementations and accommodate easy changes in equation of state (EOS)

models.

Secondly, a comparison between the DNR and DE algorithms is carried out. Our
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investigation shows that, with a generalized damping coefficient, the DNR algorithm

can achieve a convergence rate of > 98% for 21 different fluid mixtures. Meanwhile,

the DE algorithm can only achieve similar results when mixture-specific tunings are

done. Additionally, the DNR algorithm yields lower deviations from experimental

values than the DE algorithm (about 2 and 3%, respectively). We show that for

complex mixtures with multiple or nonexistent roots, the global optimization method

is more reliable due to its predictable convergence behaviour. Overall, the DNR

algorithm appears to be more accurate and robust, but the DE algorithm performs

well for mixtures with complex critical point phenomena (such as nonexistent or

multiple critical points).

Finally, the application of deep neural networks (DNNs) to critical point calcu-

lations as prediction and acceleration techniques is investigated. DNN models have

fairly good prediction accuracy for mixture critical points with less than 5% error

for critical temperature predictions and less than 10% error for critical pressure pre-

dictions. These accuracies can be further improved by tuning the generated training

datasets and model architectures. Next, with the DNN-aided initializations, the av-

erage number of iterations to reach convergence for the DNR algorithm decreases by

50-85%, depending on the training dataset size and the number of components in a

mixture. Similarly, for the global optimization method, we obtain an 80-90% reduc-

tion in the number of iterations and enhanced robustness by using the DNN-aided

initializations.

Incorporating AD and DNN-aided initialization strategies not only improves the

calculations of mixture critical points but also can be extended to other thermody-

namic computations. As a result, much faster, more sophisticated, and more robust

algorithms can be developed. Overall, we believe this thesis work helps open the

door to incorporating modern computational techniques into classical thermodynamic

computations.
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6.2 Future Work

Firstly, recent years have seen a rising application of the perturbed chain statistical

associating fluid theory (PC-SAFT) EOS to critical point calculations. With some

reformulation and utilizing AD, the DNR and DE algorithms can be implemented

to allow for calculations based on the PC-SAFT EOS. Secondly, in this study, the

predictions and subsequent initialization of the mixture critical point calculations are

performed with no significant tuning of the training dataset and DNN architecture.

The generation of the training datasets and DNN architectures can be further op-

timized in future studies. Thirdly, the DNN models used in this work use only the

compositional data as the input data; incorporating critical properties and molecular

structures as part of the input data may greatly improve the accuracy and robustness

of the DNN-model predictions. Finally, in the current procedure, a unique model is

needed for each unique mixture. With the incorporation of critical properties and

molecular structures, a generalized mixture critical point prediction model could be

potentially built.
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Appendix A: Derivations of Key
Equations

A.1 Generalized Cubic Polynomial

A.1.1 Polynomial Form

For a two-constant cubic equation of state with no additional terms we have the

generic form for compressibility factor (Z) [7]:

Definition 1 Z = 1
1−bρ

− aρ
RT

1
(1+δ1bρ)(1+δ2bρ)

Define non-dimensionalized cubic EOS constants:

Definition 2 A = aP
(RT )2

, B = bP
RT

, bρ = B
Z

Substituting and dividing both sides by a factor of Z,

Z = 1
1−B

Z

− A
Z

1
(1+δ1

B
Z
)(1+δ2

B
Z
)

1 = 1
Z−B

− A
(Z+δ1B)(Z+δ2B)

Rewriting this equation as a polynomial gives the expression,

(Z −B)(Z + δ1B)(Z + δ2B) = (Z + δ1B)(Z + δ2B)− A(Z −B)

0 = −Z3 + [1− (δ1 + δ2 − 1)B]Z2 + [(δ1 + δ2 − δ1δ2)B
2 +

(δ1 + δ2)B − A]Z + AB + δ1δ2(B
2 +B3)

Then we define combinations of EOS parameters as additional EOS parameters to

obtain he final form:

Definition 3 δ3 = δ1 + δ2, δ4 = δ3δ4, δ5 = δ1 − δ2

Theorem 1 0 = Z3+[(δ3−1)B−1]Z2+[A−(δ3−δ4)B
2−δ3B]Z−AB−δ4(B

2+B3)
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A.1.2 Cubic Roots

Solving the compressibility factor cubic equation is necessary for both critical point

calculation methods.

Algorithm 1 Roots of cubic compressibility factor equation for a generalized two

constant EOS.

0 = Z3 + [(δ3 − 1)B − 1]Z2 + [A− (δ3 − δ4)B
2 − δ3B]Z − AB − δ4(B

2 +B3)

0 = c1Z
3 + c2Z

2 + c3Z + c4

Discriminant ∆ indicates root types. ∆ = 18c1c2c3c4 − 4c32c4 + c22c
2
3 − 4c1c

3
3 − 27c21c

2
4

∆ = 0: Three real roots with repeated root(s).

c22 == 3c1c3: Triple multiplicity root which is calculated by:

Z1, Z2, Z3 = − c2
3c1

c22 ̸= 3c1c3: Distinct root and repeated Root, calculated by:

Z1 =
4c1c2c3−9c21c4−c32

c1(c22−3c1c3)
, Z2, Z3 =

9c1c4−c2c3
2∗(c22−3c1c3)

∆ > 0: Three distinct real roots.

p1 =
3c1c3−c22

3c21
, p2 =

2c32−9c1c2c3+27c21c4
27c31

, θ = 3p2
2p1

√︂
−3
p1

Zj=1,2,3 =
√︂

−2p1
3

cos( cos
−1(θ)
3

− 2(j−1)π
3

)

∆ < 0: One real root with two complex conjugates.

d0 = c22 − 3c1c3, d1 = 2c32 − 9c1c2c3 + 27c21c4

C =
3

√︂
d1±

√
d21−4d30
2

Z1 =
−1
3c1

(c2 + C + d0
C
)
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A.2 Fugacity Coefficient Derivation

A.2.1 Differentiation of Mixing Rules

Standard Van Der Waals mixing rules are traditionally combined with cubic EOS

[48]. For the Henderson et al. formation, these mixing rules are differentiated with

the relation
∑︁N

i xi = 1 [13]; therefore, to allow for compatibility with AD, we define

the mixing rules as follows:

Definition 4 ai =
Ω1(RTci)

2

Pci
[1 +mi(1−

√︁
( T
Tci

))]2, mi = p0 + p1 + ωi + p2ω
2
i

aij = (1− kij)
√︁

(aiaj), bi =
Ω2RTci

Pci

a = aNN + 2
∑︁N−1

i=1 xi(aNi − aNN) +
∑︁N−1

j=1

∑︁N−1
i=1 xixj(aij − 2aNi + aNN),

b = bN +
∑︁N−1

i=1 xi(bi − bN),

αi =
aNi+

∑︁N−1
j=1 xj(aji−aNi)

a
, βi =

bi
b

Derivatives of EOS constants then become the forms below, and their respective mole

number derivative can be calculated as described in the literature [49]:

∂a
∂xk

= 2a(αk − αN),
∂b
∂xk

= b(βk − βN)

∂A
∂xk

= 2A(αk − αN),
∂B
∂xk

= B(βk − βN)

∂αi

∂xk
= aik−aNi

a
− 2αi(αk − αN),

∂βi

∂xk
= βi(βk − βN)

∂f
∂nk

= − 1
nt

∑︁
j ̸=k

∂f
∂xj
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A.2.2 Gibbs Departure Form

The fugacity coefficient of a component in a mixture can be defined in terms of

chemical potential as follows [17]:

Definition 5 ln(ϕi) = ln( fi
yiP

) = µi−µi0

RT

The right-hand side of the equation is the chemical potential departure function. This

is further expanded as the compositional derivative of the Gibbs’ departure function

[17].

ln(ϕi) = µDEP
i = (∂G

DEP

∂ni
)|T,P,ni ̸=j

In turn, the Gibbs departure function is defined based on the selected equation of

state as,

Definition 6 GDEP =
∫︁ ρ

0
Z−1
ρ

dρ+ (Z − 1)− ln(Z)

Utilizing the generic cubic definition of compressibility factor we obtain:

ln(ϕi) =
∂

∂ni

∫︁ ρ

0
Z−1
ρ

dρ+ (Z − 1)− ln(Z)

Z = 1
1−bρ

− aρ
RT

1
(1+δ1bρ)(1+δ2bρ)

GDEP =
∫︁ ρ

0
b

1−bρ
− a

RT
1

(1+δ1bρ)(1+δ2bρ)
dρ+ (Z − 1)− ln(Z)

GDEP = ln(1− bρ)− a
bRT

1
δ1−δ2

ln(1+δ1bρ
1+δ2bρ

) + (Z − 1)− ln(Z)

Introducing non-dimensionalized variables from Definition 2, we can obtain:

GDEP = ln(Z−B
Z2 )− A

B
1

δ1−δ2
ln(Z+δ1B

Z+δ2B
) + (Z − 1)
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A.2.3 Fugacity Coefficient Expression

We can take the compositional partial derivatives to obtain the fugacity coefficient

expression:

ln(ϕi) =
∂

∂ni
(ln(Z−B

Z2 )− A
Bδ5

ln(Z+δ1B
Z+δ2B

) + (Z − 1)|T,P,ni ̸=j

ln(ϕi) = − 1
nt

∑︁
j ̸=i

∂
∂xj

xi(E1 − E2E3

δ5
+ E4)

ln(ϕi) = − 1
nt

∑︁
j ̸=i(

∂
∂xj

(xiE1 − xiE2E3

δ1−δ2
+ xiE4))

∂Z
∂xi

= ∂b
∂xi

( 1
1−bρ

)2 − ρ
RT (1+δ1bρ)2(1+δ2bρ)2(︂

∂a
∂xi

(1 + δ1bρ)(1 + δ2bρ)− ((1 + δ2bρ)δ1 + (1 + δ1bρ)δ2) aρ
∂b
∂xi

)︂
= ∂b

∂xi
( 1
1−bρ

)2 − ρ
RT (1+δ3bρ+δ4b2ρ2)2

(︂
∂a
∂xi

(1 + δ3bρ+ δ4b
2ρ2)− (δ3 + 2δ4bρ)aρ

∂b
∂xi

)︂
= ∂B

∂xi

Z
(Z−B)2

− Z3

(Z2+δ3ZB+δ4B2)2

(︂
∂A
∂xi

(Z2 + δ3ZB + δ4B
2)− A ∂B

∂xi
(Zδ3 + 2δ4B)

)︂
∂Z
∂xi

= B(βi − βN)
[︂

Z
(Z−B)2

− AZ3

Z2+δ3ZB+δ4B2

(︂
2(αi−αN )
B(βi−βN )

− Zδ3+2δ4B
Z2+δ3ZB+δ4B2

)︂]︂
∂E1

∂xi
=

2 ∂Z
∂xi

B−Z( ∂Z
∂xi

+ ∂B
∂xi

)

Z(Z−B)
=

∂Z
∂xi

−B(βi−βN )

Z−B

∂E2

∂xi
= 1

B2 (
∂A
∂xi

B − A ∂B
∂xi

)

∂E3

∂xi
=

δ5(Z
∂B
∂xi

− ∂Z
∂xi

B)

Z2+δ3ZB+δ4B2

∂E4

∂xi
= ∂Z

∂xi

Theorem 2 lnφi = βi(Z − 1)− ln(Z −B)− A
B
ln(Z+δ1B

Z+δ2B
)(2αi−βi

δ5
)

Further simplification of the derivatives of E1−4 is described in ”Introductory Chem-

ical Engineering Thermodynamics” by Elliot and Lira [17].
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Appendix B: Mixture and Chemical Properties

B.1 Simple Mixture Set

Table B.1: Mixtures from Dimitrakopolous et al. [8]. Unique mixtures used for machine learning are in bold.

Mixture
No.

CO2 N2 Methane Ethane Propane iButane nButane iPentane nPentane nHexane nHeptane

1 0.1 0.9

2 0.95 0.05

3 0.429 0.373 0.198

4 0.726 0.171 0.103

5 0.514 0.412 0.074

6 0.801 0.064 0.135

7 0.612 0.271 0.117

8 0.615 0.296 0.089
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Table B.1: Mixtures from Dimitrakopolous et al. [8]. Unique mixtures used for machine learning are in bold.

Mixture
No.

CO2 N2 Methane Ethane Propane iButane nButane iPentane nPentane nHexane nHeptane

9 0.0465 0.453 0.5005

10 0.193 0.47 0.337

11 0.391 0.354 0.255

12 0.04 0.821 0.139

13 0.007 0.879 0.114

14 0.461 0.443 0.095

15 0.196 0.758 0.045

16 0.996 0.001 0.003

17 0.99 0.004 0.006

18 0.98 0.016 0.004

19 0.97 0.027 0.003

20 0.3414 0.3421 0.3165

21 0.3276 0.3398 0.3326

22 0.201 0.399 0.4

23 0.201 0.298 0.501

24 0.198 0.106 0.696
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Table B.1: Mixtures from Dimitrakopolous et al. [8]. Unique mixtures used for machine learning are in bold.

Mixture
No.

CO2 N2 Methane Ethane Propane iButane nButane iPentane nPentane nHexane nHeptane

25 0.6449 0.2359 0.1192

26 0.833 0.13 0.035

27 0.8 0.039 0.161

28 0.049 0.4345 0.0835 0.433

29 0.6168 0.1376 0.0726 0.173

30 0.2542 0.2547 0.2554 0.2357

31 0.4858 0.3316 0.1213 0.0613

32 0.033 0.91 0.056 0.0012

33 0.015 0.959 0.026 0.0001

34 0.016 0.95 0.026 0.0078

35 0.3977 0.2926 0.1997 0.0713 0.0369

36 0.2019 0.2029 0.2033 0.2038 0.1881

37 0.016 0.945 0.026 0.0081 0.0052

38 0.1015 0.3573 0.2629 0.1794 0.0657 0.0332

39 0.022 0.316 0.388 0.223 0.043 0.008

40 0.014 0.943 0.027 0.0074 0.0049 0.001 0.0027
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Table B.1: Mixtures from Dimitrakopolous et al. [8]. Unique mixtures used for machine learning are in bold.

Mixture
No.

CO2 N2 Methane Ethane Propane iButane nButane iPentane nPentane nHexane nHeptane

41 0.0109 0.0884 0.8286 0.0401 0.0174 0.003 0.0055 0.0019 0.0012 0.0014 0.0006

42 0.002 0.24 0.7364 0.012 0.0053 0.001 0.0015 0.0005 0.0004 0.00004 0.0005

43 0.003 0.113 0.858 0.015 0.006 0.0012 0.0018 0.0006 0.0004 0.0004 0.0006

44 0.01 0.1611 0.7625 0.0369 0.016 0.0028 0.0051 0.0018 0.0011 0.0012 0.0015
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Table B.2: Pure component critical properties as described by Dimitrakopolous et al.
[8].

Component Pc (MPa) Tc (K) Vc (L/mol) ω

CO2 7.374 304.12 0.0939569 0.225

N2 3.398 126.2 0.0892421 0.037

Methane 4.599 190.56 0.0985305 0.011

Ethane 4.872 305.32 0.145375 0.099

Propane 4.248 369.83 0.199785 0.152

iButane 3.65 408.2 0.2585 0.183

nButane 3.796 425.12 0.255136 0.2

iPentane 3.39 460.4 0.307143 0.227

nPentane 3.37 469.7 0.310571 0.252

nHexane 3.025 507.6 0.368329 0.3

nHeptane 2.74 540.2 0.427839 0.35
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Table B.3: Binary interaction parameters as described by Dimitrakopolous et al. [8].

Component CO2 N2 Methane Ethane Propane iButane nButane iPentane nPentane nHexane nHeptane

CO2 0.0000 -0.0200 0.1000 0.1298 0.1350 0.1298 0.1298 0.1250 0.1250 0.1250 0.1199

N2 -0.0200 0.0000 0.0360 0.0500 0.0800 0.0950 0.0900 0.0950 0.1000 0.1490 0.1439

Methane 0.1000 0.0360 0.0000 0.0022 0.0068 0.0131 0.0123 0.0176 0.0179 0.0235 0.0289

Ethane 0.1298 0.0500 0.0022 0.0000 0.0013 0.0046 0.0041 0.0074 0.0076 0.0114 0.0153

Propane 0.1350 0.0800 0.0068 0.0013 0.0000 0.0010 0.0008 0.0026 0.0027 0.0051 0.0079

iButane 0.1298 0.0950 0.0131 0.0046 0.0010 0.0000 0.0000 0.0003 0.0004 0.0019 0.0036

nButane 0.1298 0.0900 0.0123 0.0041 0.0008 0.0000 0.0000 0.0005 0.0005 0.0019 0.0036

iPentane 0.1250 0.0950 0.0176 0.0074 0.0026 0.0003 0.0005 0.0000 0.0000 0.0004 0.0015

nPentane 0.1250 0.1000 0.0179 0.0076 0.0027 0.0004 0.0005 0.0000 0.0000 0.0004 0.0014

nHexane 0.1250 0.1490 0.0235 0.0114 0.0051 0.0019 0.0019 0.0004 0.0004 0.0000 0.0003

nHeptane 0.1199 0.1439 0.0289 0.0153 0.0079 0.0036 0.0036 0.0015 0.0014 0.0003 0.0000
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B.2 Complex Mixture Set

Table B.4: Mixture compositions for the 13-component mixture from Ghorayeb et al. [16].

Mixture
No.

C30+ C25-29 C20-24 C16-19 C13-15 C10-12 C7-9 C6 n/i-C5 n/i-C4 C3 C2 C1,CO2,N2

1 0.0049 0.0134 0.0059 0.0074 0.0088 0.0126 0.0297 0.0065 0.0093 0.0228 0.0378 0.0815 0.7696

2 0.007 0.0191 0.0203 0.0182 0.0172 0.0202 0.0404 0.008 0.0108 0.0248 0.0389 0.0806 0.6945

3 0.004 0.0389 0.0334 0.026 0.0223 0.0242 0.0449 0.0086 0.0111 0.0247 0.0382 0.0784 0.6453

Table B.5: Mixture compositions for the 12-component mixture from Xu and Li [38].

Mixture
No.

CO2 CH4 C2 C3 C4 C5

1 0.121556 0.379469 0.120906 0.128456 0.026601 0.009350

2 0.133343 0.220989 0.141543 0.157692 0.033048 0.012349

Mixture
No.

C6 C7+(1) C7+(2) C7+(3) C7+(4) C7+(5)

1 (cont.) 0.010900 0.089554 0.045502 0.030252 0.022351 0.015101

2 (cont.) 0.014899 0.126244 0.064247 0.042748 0.031548 0.021349
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Table B.6: Pure component critical properties for the 13 com-
ponent mixture as described by Ghorayeb et al. [16]. Vc is
calculated based on Peng-Robinson critical compressibility.

Components
Pc

(Mpa)
Tc
(K)

Vc
(L/mol)

ω

C30+ 0.686 830 3.08939 1.505

C25-29 1.108 818.92 1.88721 1.399

C20-24 1.328 778.92 1.49766 1.168

C16-19 1.679 726.96 1.10555 0.94

C13-15 2.031 679.05 0.85371 0.776

C10-12 2.453 622.29 0.64776 0.611

C7-9 2.969 554.13 0.47656 0.428

C6 3.396 506.35 0.38072 0.299

n/i-C5 3.33 469.6 0.36008 0.251

n/i-C4 3.799 425.18 0.28577 0.193

C3 4.19 369.8 0.22536 0.152

C2 4.883 305.4 0.15970 0.098

C1,CO2,N2 4.6 190.6 0.10580 0.008

Table B.7: Pure component critical properties for the 12-
component mixture as described by Xu and Li [38]. Vc is calcu-
lated based on Peng-Robinson critical compressibility.

Components
Pc

(Mpa)
Tc
(K)

Vc
(L/mol)

ω

CO2 7.374 304.14 0.10542 0.228

CH4 4.592 190.6 0.10609 0.008

C2 4.875 305.4 0.16011 0.098

C3 4.238 369.8 0.22302 0.152

C4 3.793 425.2 0.28652 0.193

C5 3.368 469.6 0.35636 0.251

C6 2.964 507.4 0.43753 0.296

C7+(1) 2.883 616.2 0.54628 0.454

C7+(2) 1.932 698.9 0.92458 0.787

C7+(3) 1.659 770.4 1.18688 1.048

C7+(4) 1.527 853.1 1.42790 1.276

C7+(5) 1.467 1001.2 1.7443 1.299
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Table B.8: Binary interaction parameters for the 13-component fluid from Ghorayeb et al. [16].

Component C1,CO2,N2

C30+ 0.024

C25-C29 0.02

C20-C24 0.02

C16-C19 0.019

C13-15 0.015

C10-12 0.01

C7-9 0.009

Table B.9: Binary interaction parameters for the 12-component fluid from Xu and Li [38]. CO2 binary interactions are taken
from Xu and Li [38], and other parameters are taken from Dimitrakopolous et al. [8].

Component CO2 CH4 C2 C3 C4 C5 C6 Component CO2

CO2 0 0.12 0.15 0.15 0.15 0.15 0.15 C7+(1) 0.15

CH4 0.12 0 0.0022413 0.0068288 0.01270905 0.01777645 0.0288643 C7+(2) 0.15

C2 0.15 0.0022413 0 0.0012579 0.004335 0.0075114 0.0114138 C7+(3) 0.15

C3 0.15 0.0068288 0.0012579 0 0.00092975 0.00264195 0.005142 C7+(4) 0.15

C4 0.15 0.01270905 0.004335 0.00092975 0 0.000444625 0.0018663 C7+(5) 0.15

C5 0.15 0.01777645 0.0075114 0.00264195 0.000444625 0 0.0004167

C6 0.15 0.0288643 0.0114138 0.005142 0.0018663 0.0004167 0
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Appendix C: Automatic
Differentiation Compliant Code

C.1 Dampened Newton-Raphson

The following code implements the Damped Newton-Raphson Method as described

by Dimitrakopolous et al. [8]. This code utilizes Jax for automated differentiation.

All packages are the property of their respective authors.

The following packages are required:

• funtools.partial

• jax

• jax.numpy

• time
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Algorithm C.1: Automatic Differentiation Compliant Damped Newton-Raphson
#N_bar , the total change in mols.

def N bar ( dnvec ) :
import jax . numpy as jnp
return jnp . sum ( ( dnvec ) )

#nu , a constant dependant on EOS , that affects a.

def nu(EOS) :
if EOS == ’SRK’ :

return 0.42748
if EOS == ’PR’ :

return 0.45724

#c, the accentricity polynomial.

def c ( i , EOS, w) :
if EOS == ’SRK’ :

c i = 0 .48
c i += 1.574∗w[ i ]
c i += −0.176∗w[ i ]∗∗2
return c i

if EOS == ’PR’ :
c i = 0.37464
c i += 1.54226∗w[ i ]
c i += −0.26992∗w[ i ]∗∗2
return c i

#ai , the attraction parameter of component i.

def a i ( i , Tc mx , Tc , R, EOS, Pc , w) :
a i = (R∗Tc [ i ] )∗∗2∗nu(EOS)/Pc [ i ]
a i = a i ∗(1 + c ( i , EOS, w)∗(1−(Tc mx/Tc [ i ] ) ∗ ∗ 0 . 5 ) ) ∗ ∗ 2
return a i

#aij , the binary attraction parameter of component system i-j.

def a i j f (Tc mx , Tc , R, EOS, Pc , w, k , C) :
import jax . numpy as jnp
a i j = jnp . z e r o s ( [C, C] )
for i in range (C) :

for j in range (C) :
a i j = a i j . at [ i , j ] . set ( ( a i ( i , Tc mx , Tc , R, EOS, Pc , w)∗ a i ( j , Tc mx , Tc , R, EOS, Pc , w))∗∗0.5∗(1 −k [ i ] [ j ] ) )

return a i j

#bi , the covolume parameter of component i.

def bi ( i , EOS, R, Tc , Pc ) :
if EOS == ’SRK’ :

b i = 0.08664∗R∗Tc [ i ] / Pc [ i ]
return bi

if EOS == ’PR’ :
b i = 0.07780∗R∗Tc [ i ] / Pc [ i ]
return bi

#D1 and D2 , parameters that defines the EOS.

def D1(EOS) :
import jax . numpy as jnp
if EOS == ’SRK’ :

u0 = 1
w0 = 0

if EOS == ’PR’ :
u0 = 2
w0 = −1

D1 = (u0 + jnp . s q r t ( u0∗∗2−4∗w0))/2
return D1
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def D2(EOS) :
import jax . numpy as jnp
if EOS == ’SRK’ :

u0 = 1
w0 = 0

if EOS == ’PR’ :
u0 = 2
w0 = −1

D2 = (u0 − jnp . s q r t ( u0∗∗2−4∗w0))/2
return D2

#a_tot , the weighted sum of binary attraction interactions.

def a t o t (n , n tot , a i j , C) :
a t = 0
for i in range (C) :

for j in range (C) :
a t += n [ i ]∗n [ j ] / n to t ∗∗2∗ a i j [ i , j ]

return a t

#b_tot , the weighted sum of covolume interactions.

def b to t (y , EOS, R, Tc , Pc , C) :
b t = 0
for i in range (C) :

b t += y [ i ]∗ bi ( i , EOS, R, Tc , Pc)
return b t

#alphak , the percentage of total attraction parameter from component k.

def alpha ( j , y , a i j , n , n tot , C) :
a lpk = 0
for i in range (C) :

a lpk += y [ i ]∗ a i j [ i , j ]
return alpk / a t o t (n , n tot , a i j , C)

#alpha_bar , total change in the alphaks due to delta_n.

def a lpha bar ( dnvec , y , a i j , n , n tot , C) :
a lp bar = 0
for i in range (C) :

a lp bar += dnvec [ i ]∗ alpha ( i , y , a i j , n , n tot , C)
return a lp bar

#a_bar , the relative change in a_tot due to delta_n.

def a bar ( dnvec , a i j , n , n tot , C) :
a b = 0
for i in range (C) :

for j in range (C) :
a b += dnvec [ i ]∗ dnvec [ j ]∗ a i j [ i , j ]

a b = a b/ a t o t (n , n tot , a i j , C)
return a b

#betai , the percentage of total covolume parameter from component k.

def beta ( i , EOS, R, Tc , Pc , y , C) :
return bi ( i , EOS, R, Tc , Pc)/ b to t (y , EOS, R, Tc , Pc , C)

#beta_bar , the total change in betai due to delta_n.

def beta bar ( dnvec , EOS, R, Tc , Pc , y , C) :
bet bar = 0
for i in range (C) :

bet bar += dnvec [ i ]∗ beta ( i , EOS, R, Tc , Pc , y , C)
return bet bar

#K, the nondimensional ratio of critical molar volume of mixture to covolume parameter.

def K(Vc mx , y , EOS, R, Tc , Pc , C) :
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return Vc mx/ b to t (y , EOS, R, Tc , Pc , C)

#F1 -F6 are EOS based factors which are f(D1, D2, K).

def F1(Kv, EOS) :
return 1/(Kv−1)

def F2(Kv, EOS) :
F2 = 2/(D1(EOS)−D2(EOS) )
F2 ∗= (D1(EOS)/(Kv+D1(EOS))−D2(EOS)/(Kv+D2(EOS) ) )
return F2

def F3(Kv, EOS) :
F3 = 1/(D1(EOS)−D2(EOS) )
F3 ∗= ((D1(EOS)/(Kv+D1(EOS)))∗∗2−(D2(EOS)/(Kv+D2(EOS) ) )∗∗2 )
return F3

def F4(Kv, EOS) :
F4 = 1/(D1(EOS)−D2(EOS) )
F4 ∗= ((D1(EOS)/(Kv+D1(EOS)))∗∗3−(D2(EOS)/(Kv+D2(EOS) ) )∗∗3 )
return F4

def F5(Kv, EOS) :
import jax . numpy as jnp
F5 = 2/(D1(EOS)−D2(EOS) )
F5 ∗= jnp . l og ( (Kv+D1(EOS) ) / (Kv+D2(EOS) ) )
return F5

def F6(Kv, EOS) :
import jax . numpy as jnp
F6 = 2/(D1(EOS)−D2(EOS) )
F6 ∗= (D1(EOS)/(Kv+D1(EOS))−D2(EOS)/(Kv+D2(EOS)))− jnp . l og ( (Kv+D1(EOS) ) / (Kv+D2(EOS) ) )
return F6

""" Generalized vector function that calculates the various equations in the N+2 system

based on the Gibbs Criticality Conditions.

Inputs:

xvec - A vector consisting of

[Mixture Critical Temp. (K), Mixture Critical Molar Volume (cum/mol), Mol Number Deviations]

y - A vector of component compositions.

Tc - A vector of component critical temperatures in the order of y. (K)

Pc - A vector of component critical pressures in the order of y. (Pa)

w - A vector of component accentricity factors in the order of y.

EOS - Equation of state. ’PR’ or ’SRK’ implemented.

C - Number of components in mixture.

n - A vector of component mole number. Unused , only for compatibility with other functions. (mol)

n_tot - Total moles. (mol)

R - Gas constant. (J/(molK))

Vc - A vector of component crit. molar volumes.

Unused , only for compatibility with other functions. (cum/mol)

k - Matrix of binary interaction parameters with component

in order of y as columns and rows. Main diagonal of 0.

Outputs:

fvec - A vector of the values of each of the Gibbs criticality functions.

"""

def General izedCubicFunct ion ( xvec , y , Tc , Pc , w, EOS, C, n , n tot , R, Vc , k ) :
import jax . numpy as jnp
#Unpack input xvec.

Tc mx = xvec [ 0 ]
Vc mx = xvec [ 1 ]
dnvec = xvec [ 2 : ]

f v e c = jnp . z e r o s ( [ 1 , len ( xvec ) ] )

#Calculate universal variable values

a i j = a i j f (Tc mx , Tc , R, EOS, Pc , w, k , C)
a to tv = a to t (n , n tot , a i j , C)

90



b totv = b to t (y , EOS, R, Tc , Pc , C)
N barv = N bar ( dnvec )
a barv = a bar ( dnvec , a i j , n , n tot , C)
a lpha barv = alpha bar ( dnvec , y , a i j , n , n tot , C)
beta barv = beta bar ( dnvec , EOS, R, Tc , Pc , y , C)

Kv = K(Vc mx , y , EOS, R, Tc , Pc , C)

F1v = F1(Kv, EOS)
F2v = F2(Kv, EOS)
F3v = F3(Kv, EOS)
F4v = F4(Kv, EOS)
F5v = F5(Kv, EOS)
F6v = F6(Kv, EOS)

#First GCC - First derivative of each component ’s Helmholtz Energy should be 0. N non -linear equations.

for i in range (C) :
betav = beta ( i , EOS, R, Tc , Pc , y , C)
pA = R∗Tc mx/ n to t
pB = a to tv /( b totv ∗ n to t )
A1 = dnvec [ i ] / y [ i ]
A2 = F1v∗( betav∗N barv + beta barv )
A3 = betav∗F1v∗∗2∗ beta barv
B1 = betav∗ beta barv ∗F3v
B2 = 0
for j in range (C) :

B2 += dnvec [ j ]∗ a i j [ i , j ]
B2 = −F5v/ a to tv ∗B2
B3 = F6v∗( betav∗beta barv−alpha ( i , y , a i j , n , n tot , C)∗ beta barv−alpha barv ∗betav )
A = pA∗(A1+A2+A3)
B = pB∗(B1+B2+B3)
fve c = fvec . at [ 0 , i ] . set (A+B)

#Second GCC - Sum of all second derivatives of Helmholtz Energy should be 0. 1 non -linear equation.

pA = R∗Tc mx/ n to t ∗∗2
pB = a to tv /( b totv ∗ n to t ∗∗2)
A1 = 0
for i in range (C) :

A1 += dnvec [ i ]∗∗3/ y [ i ]∗∗2
A1 = −A1
A2 = 3∗( N barv ∗( beta barv ∗F1v )∗∗2)
A3 = 2∗ ( (F1v∗ beta barv )∗∗3)
B1 = 3∗( beta barv ∗∗2)∗ ( (2∗ alpha barv−beta barv )∗ ( F3v+F6v ) )
B2 = −2∗( beta barv ∗∗3)∗F4v
B3 = −3∗beta barv ∗ a barv ∗F6v
A = pA∗(A1+A2+A3)
B = pB∗(B1+B2+B3)
fve c = fvec . at [ 0 ,C ] . set (A+B)

#Third GCC - Euclidean distance of delta_n should be 1. 1 non -linear equation.

norm mols = 0
for i in range (C) :

norm mols += dnvec [ i ]∗∗2
norm mols += −1
fve c = fvec . at [ 0 ,C+1] . set ( norm mols )
return f v e c

""" Initialization for NR method with no provided initialization.

Based in Kay’s Mixing Rule as described by Dimitrakopolous et al.

Inputs:

y - A vector of component compositions.

Vc - A vector of component critical molar volumes in the order of y. (cum/mol)
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Tc - A vector of component critical temperatures in the order of y. (K)

C - Number of components in mixture.

Outputs:

Tc0 - Initial mixture critical temperature guess.

Vc0 - Initial mixture critical molar volume guess.

dn0 - Initial mixture mole number deviations.

"""

def I n i t i a l i z eNR (y , Vc , Tc , C) :
import jax . numpy as jnp
#Initialize first guess based on composition and component critical values.

dn0 = jnp . z e r o s ( jnp . shape (y ) )
Tc0 = 0
Vc0 = 0
for i in range (C) :

Vc0 += y [ i ]∗Vc [ i ]
Tc0 += y [ i ]∗Tc [ i ]
dn0 = dn0 . at [ i ] . set ( y [ i ]∗∗ ( 2 / 3 ) )

Tc0 = 3∗Tc0
return Tc0 , Vc0 , dn0

""" Generalized vector function that calculates the various equations

in the N+2 system based on the Gibbs Criticality Conditions.

Inputs:

y - A vector of component compositions.

Tc - A vector of component critical temperatures in the order of y. (K)

Pc - A vector of component critical pressures in the order of y. (Pa)

w - A vector of component accentricity factors in the order of y.

C - Number of components in mixture.

R - Gas constant. (J/(molK))

Vc - A vector of component critical molar volumes in the order of y. (cum/mol)

k - Matrix of binary interaction parameters with component

in order of y as columns and rows. Main diagonal of 0.

n_tot - Total moles. (mol)

EOS - Equation of state. ’PR’ or ’SRK’ implemented.

ini - Optional initialization , overwriting Kay’s Mixing Rule.

printflag - Optional iteration printouts to external file.

Outputs:

Fmat - Function values at calculated root

xvec - Final x vector values in format: [Temp., Mol. Vol., Mole Dev.]

Pc - Calculated critical pressure using EOS. (Pa)

itr - Iterations to convergence.

rn_time - Run time. (s)

"""

def CompNewtonRaphson(y , Tc , Pc , w, C, R, Vc , k , n tot , EOS, i n i = None , p r i n t f l a g=True ) :
from f un c t o o l s import p a r t i a l
import jax
import jax . numpy as jnp
import time
import KeyFunctions as me
from IPython . d i sp l ay import c l e a r ou tpu t

n = y∗ n to t

#Initialize x0vec with default initialization or provided intialization.

temptc , tempvc , tempdn = In i t i a l i z eNR (y , Vc , Tc , C)
if i n i is None :

x0vec = jnp . array ( [ temptc , tempvc ] )
x0vec = jnp . append ( x0vec , tempdn )

elif len ( i n i ) == 2 :
x0vec = jnp . array ( i n i )
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x0vec = jnp . append ( x0vec , tempdn )
else :

x0vec = jnp . array ( i n i )

if p r i n t f l a g :
print ( "Initial X-Vector Guess:" )
print ( x0vec )
print ( "---------------------------------------------" )

s t a r t t ime = time . time ( )

#Create Jacobian matrix function and initialize F matrix.

Fmat = jnp . z e r o s ( [ 1 , len ( x0vec ) ] )
j i t f = p a r t i a l ( jax . j i t , s t a t i c a rgnames=[’EOS’ , ’C’ , ’n_tot’ , ’R’ ] )
Jmat = jax . jacfwd ( j i t f ( General izedCubicFunct ion ) )

#Iterate with x(k+1) = x(k) + D*dx.

xvec = x0vec
dxvec = jnp . ones ( jnp . shape ( xvec ) )
i t r = 0
i t r t im e = 0

if p r i n t f l a g :
print ( "dxVector Magnitudes:" )

while ( abs ( dxvec [0 ])>1 e−4 or abs ( dxvec [1 ])>10 e−8 or any ( abs ( dxvec [ 2 : ] ) >1 e −4)) :
#Count iterations for dampening factor.

i t r s t a r t = time . time ( )
i t r += 1

#Calcualte function values and Jacobian at xvec(k).

F = General izedCubicFunct ion ( xvec , y , Tc , Pc , w, EOS, C, n , n tot , R, Vc , k )
cubtime = time . time ( )
Fmat = jnp . append (Fmat , F , ax i s = 0)
F = −1∗ jnp . t ranspose (F)
J = Jmat ( xvec , y , Tc , Pc , w, EOS, C, n , n tot , R, Vc , k ) [ 0 ]

#Solve dxvec , uses LU decomposition with partial pivoting.

dxvec = jnp . l i n a l g . s o l v e (J , F)
dxvec = jnp . t ranspose ( dxvec )
dxvec = jnp . reshape ( dxvec , [ jnp . shape ( J ) [ 0 ] ] )

#Define Q, the damping factor. 0 for binary mixtures , and 518 for ~20 iterations for non -binary.

if C ==2:
Q = 0

else :
Q =518

#Apply dampening.

D = 1/(1+Q∗ jnp . exp (−0.5∗ i t r ) )
xvec = xvec + D∗dxvec

#Max iterations is set as 30.

if i t r >30:
print ( "Convergence not achieved in 30 iterations." )
Pc = None
return Fmat , xvec , Pc

#Calculate iteration time for full report.

i t r e nd = time . time ( )
i t r t im e = i t r end− i t r s t a r t
if p r i n t f l a g :
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print ( str ( i t r )+" "+str ( round ( jnp . l i n a l g . norm( dxvec ) , 4))+" "+str ( round ( ( i t r t im e ) , 4 ) ) )

#Calculate mixture runtime for summary report.

end time = time . time ( )
rn t ime = end time−s t a r t t ime

#Calculate final function values for evaluation of convergence.

F = General izedCubicFunct ion ( xvec , y , Tc , Pc , w, EOS, C, n , n tot , R, Vc , k )
Fmat = jnp . append (Fmat [ 1 : , : ] , F , ax i s = 0)

#Check convergence and calculate Pc.

c onv f l a g = jnp . l i n a l g . norm(F−jnp . z e r o s ( jnp . shape (F) ) )
if c onv f l a g >= 1 :

print ( "Convergence achieved , function values high. Critical point may be false or nonexistent." )
else :

if p r i n t f l a g :
print ( "Magnitude of final function vector: " + str ( round ( conv f l ag , 4 ) ) )

if p r i n t f l a g :
print ( "---------------------------------------------" )

a i j = a i j f ( xvec [ 0 ] , Tc , R, EOS, Pc , w, k , C)
Pc = R∗xvec [ 0 ] / ( xvec [1]− b to t (y , EOS, R, Tc , Pc , C) )\
− a t o t (n , n tot , a i j , C) / ( ( xvec [1 ]+D1(EOS)∗ b to t (y , EOS, R, Tc , Pc , C) )\

∗( xvec [1 ]+D2(EOS)∗ b to t (y , EOS, R, Tc , Pc , C) ) )

return Fmat , xvec , Pc , i t r , rn t ime
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C.2 Global Optimization - Differential Evolution

The following code implements the differential evolution method for optimization-

based critical point calculations (as described by Henderson et al.) [13]. This code

utilizes Jax for automated differentiation and Scipy’s differential evolution procedure

for minimization. All packages are the property of their respective authors.

The following packages are required:

• scipy.optimize

• jax

• jax.numpy

• time
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Algorithm C.2: Automatic Differentiation Compliant Global Optimization via Differential Evolution
#nu , a constant dependant on EOS , that affects a.

def nu (EOS) :
if EOS == ’SRK’ :

O1 = 0.42748
O2 = 0.08664
return [O1 , O2 ]

if EOS == ’PR’ :
O1 = 0.45724
O2 = 0.07780
return [O1 , O2 ]

#D1 , D2 , D3, and D4, parameters that define the EOS.

def d 1 (EOS) :
import jax . numpy as jnp
if EOS == ’SRK’ :

u0 = 1
w0 = 0

if EOS == ’PR’ :
u0 = 2
w0 = −1

D1 = (u0 + jnp . s q r t ( u0∗∗2−4∗w0))/2
return D1

def d 2 (EOS) :
import jax . numpy as jnp
if EOS == ’SRK’ :

u0 = 1
w0 = 0

if EOS == ’PR’ :
u0 = 2
w0 = −1

D2 = (u0 − jnp . s q r t ( u0∗∗2−4∗w0))/2
return D2

def d 3 (D1 , D2 ) :
return D1+D2

def d 4 (D1 , D2 ) :
return (D1∗D2)

#m, the accentricity polynomial.

def m (w, C, EOS) :
import jax . numpy as jnp

m = jnp . z e r o s ( [C] )
if EOS == ’SRK’ :

m = m. at [ : ] . set (0 .48+1.574∗w−0.176∗w∗∗2)
return m

if EOS == ’PR’ :
m = m. at [ : ] . set (0 .37464+1.54226∗w−0.26992∗w∗∗2)
return m

#ai , the attraction parameter of each component i.

def a i (T, M, NU, Tc , Pc , R, C) :
import jax . numpy as jnp
a i = jnp . z e r o s ( [C] )
for i in range (C) :

a i = a i . at [ i ] . set ( (R∗Tc [ i ] )∗∗2∗NU[ 0 ] / Pc [ i ]∗ ( 1 + M[ i ]∗(1−(T/Tc [ i ] ) ∗ ∗ 0 . 5 ) ) ∗ ∗ 2 )
return a i

#aij , the binary attraction parameter of component system i-j.

def a i j ( ai , C, k ) :
import jax . numpy as jnp
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a i j = jnp . z e r o s ( [C, C] )
for i in range (C) :

for j in range (C) :
a i j = a i j . at [ i , j ] . set ( ( a i [ i ]∗ a i [ j ] )∗∗0.5∗(1 −k [ i ] [ j ] ) )

return a i j

#bi , the covolume parameter of each component i.

def b i (NU, Tc , Pc , R, C) :
import jax . numpy as jnp
b i = jnp . z e r o s ( [C] )
for i in range (C) :

b i = bi . at [ i ] . set (NU[ 1 ] ∗R∗Tc [ i ] / Pc [ i ] )
return bi

#a_tot , the weighted sum of binary attraction interactions.

def a t (y , a i j , C) :
import jax . numpy as jnp
import jax
a = jnp . array (0 )

#maintain the sum(y_i) =1 relation needed for Henderson ’s formulation.

yn = jnp . append (y [ : −1 ] , (1− jnp . sum ( y [ : − 1 ] ) ) )

r = C−1
for i in range (C) :

for j in range (C) :
a += jnp . mult ip ly ( jnp . mul t ip ly ( yn [ i ] , a i j [ i , j ] ) , yn [ j ] )

return a

#b_tot , the weighted sum of covolume interactions.

def b t (y , bi , C) :
import jax . numpy as jnp
import jax
bt = jnp . array (0 )
r = C−1
for i in range (C) :

#maintain the sum(y_i) =1 relation needed for Henderson ’s formulation.

bt += y [ i ] ∗ ( b i [ i ]−bi [ r ] )
bt += bi [ r ]
return bt

#A_dim , nondimensionalized a.

def A dim(a , P, R, T) :
import jax . numpy as jnp
return a∗P/(R∗T)∗∗2

#Alphai , percentage of total attraction parameter of component i.

def ALPHA (y , a i j , a , C) :
import jax . numpy as jnp
import jax
#maintain the sum(y_i) =1 relation needed for Henderson ’s formulation.

yn = jnp . append (y [ : −1 ] , (1− jnp . sum ( y [ : − 1 ] ) ) )
ALPHA = jnp . z e r o s (C)
for i in range (C) :

for k in range (C) :
ALPHA = ALPHA. at [ i ] . add (yn [ k ]∗ a i j [ k , i ] )

ALPHA = ALPHA. at [ : ] . set (ALPHA[ : ] / a )

return ALPHA

#Betai , percentage of total covolume parameter of component i.
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def BETA ( bi , b , C) :
BETA = bi /b
return BETA

#B, nondimensionalized b.

def B dim(b , P, R, T) :
import jax . numpy as jnp
return b∗P/(R∗T)

#Z, compressibility factor.

def CompFact (A, B, EOS) :
import jax . numpy as jnp
import jax
#EOS cubic compressibility coefficients

D1 = d 1 (EOS)
D2 = d 2 (EOS)
D3 = d 3 (D1 , D2)
D4 = d 4 (D1 , D2)

c1 = jnp . array (1 )
c2 = jnp . array ( (D3−1)∗B−1)
c3 = jnp . array (A−D3∗B−(D3−D4)∗B∗∗2)
c4 = jnp . array(−D4∗(B∗∗3+B∗∗2)−A∗B)

#Piecewise functions must be coded using JAX -compliant conditionals.

#Cubic discriminant

d i s c = 18∗ c1∗ c2∗ c3∗ c4 − 4∗ c2 ∗∗3∗ c4 + c2 ∗∗2∗ c3 ∗∗2 − 4∗ c1∗ c3 ∗∗3 − 27∗ c1 ∗∗2∗ c4 ∗∗2
def th r e e r oo t ( c1 , c2 , c3 , c4 , d i s c ) :

#Three real roots.

def t h r e e d i s t i n c t ( c1 , c2 , c3 , c4 ) :
p1 = (3∗ c1∗ c3 − c2 ∗∗2)/(3∗ c1 ∗∗2)
p2 = (2∗ c2 ∗∗3 − 9∗ c1∗ c2∗ c3 + 27∗ c1 ∗∗2∗ c4 )/(27∗ c1 ∗∗3)
arg = 3∗p2/(2∗p1 )∗ jnp . s q r t (−3/p1 )
arg = jax . lax . complex ( arg , jnp . array ( 0 . 0 ) )

Z1 = 2∗(−p1 /3)∗∗ (1/2)∗ jnp . cos ( jnp . a r c co s ( arg )/3)
Z2 = 2∗(−p1 /3)∗∗ (1/2)∗ jnp . cos ( jnp . a r c co s ( arg )/3−2∗ jnp . p i /3)
Z3 = 2∗(−p1 /3)∗∗ (1/2)∗ jnp . cos ( jnp . a r c co s ( arg )/3−4∗ jnp . p i /3)

Z1 = jnp . r e a l (Z1 − c2 /(3∗ c1 ) )
Z2 = jnp . r e a l (Z2 − c2 /(3∗ c1 ) )
Z3 = jnp . r e a l (Z3 − c2 /(3∗ c1 ) )
return jnp .maximum( jnp .maximum(Z1 , Z2 ) , Z3 )

#At least one repeated root.

def r epea t ed roo t ( c1 , c2 , c3 , c4 ) :
def one repeated ( c1 , c2 , c3 , c4 ) :

#Double multiplicity root.

Z1 = (4∗ c1∗ c2∗c3−9∗c1 ∗∗2∗ c4−c2 ∗∗3)/( c1 ∗( c2∗∗2−3∗c1∗ c3 ) )
Z2 = (9∗ c1∗c4−c2∗ c3 )/ (2∗ ( c2∗∗2−3∗c1∗ c3 ) )
return jnp .maximum(Z1 , Z2 )

def two repeated ( c1 , c2 , c3 , c4 ) :
#Triple multiplicity root.

Z3 = −c2 /3∗ c1
return Z3

return jax . l ax . cond ( c2 ∗∗2 == 3∗ c1∗c3 , two repeated , one repeated , c1 , c2 , c3 , c4 )
return jax . lax . cond ( d i s c != 0 , t h r e e d i s t i n c t , r epeated root , c1 , c2 , c3 , c4 )

def oneroot ( c1 , c2 , c3 , c4 , d i s c ) :
#One Real Root , Two Complex Conjugates

d0 = c2 ∗∗2 − 3∗ c1∗ c3
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d1 = 2∗ c2 ∗∗3 − 9∗ c1∗ c2∗ c3 + 27∗ c1 ∗∗2∗ c4

C0 = jnp . cbrt ( ( d1 + jnp . s q r t ( d1∗∗2−4∗d0 ∗∗3) )/2)
#Select other root if needed

def proot (d1 , d0 ) :
C = jnp . cbrt ( ( d1 + jnp . s q r t ( d1∗∗2−4∗d0 ∗∗3) )/2)
return C

def nroot (d1 , d0 ) :
C = jnp . cbrt ( ( d1 − jnp . s q r t ( d1∗∗2−4∗d0 ∗∗3) )/2)
return C

C = jax . lax . cond (C0 == 0 , nroot , proot , d1 , d0 )

Z1 = −1/(3∗ c1 )∗ ( c2+C+d0/C)

return Z1

return jax . lax . cond ( d i s c >= 0 , three root , oneroot , c1 , c2 , c3 , c4 , d i s c )

#Calculate Cubic EOS params based on inputs.

def EOS Params(y , T, P, Tc , Pc , w, k , R, C, EOS) :
nu = nu (EOS)
m = m (w, C, EOS)
d1 = d 1 (EOS)
d2 = d 2 (EOS)

a i = a i (T, m, nu , Tc , Pc , R, C)
a i j = a i j ( ai , C, k )
a = a t (y , a i j , C)
b i = b i (nu , Tc , Pc , R, C)
b = b t (y , bi , C)

A = A dim(a , P, R, T)
B = B dim(b , P, R, T)

Z = CompFact (A, B, EOS)

ALPHA = ALPHA (y , a i j , a , C)
BETA = BETA ( bi , b , C)
return ai , a i j , a , bi , b , A, B, d1 , d2 , Z , ALPHA, BETA

#ln(f/xP), the chemical potential departure for component i.

def l n f c ( ai , a i j , a , bi , b , A, B, d1 , d2 , Z , ALPHA, BETA, C) :
import jax
import jax . numpy as jnp

l n f c = jnp . z e r o s (C)
E0 = jnp . l og ( (Z+d1∗B)/(Z+d2∗B) )
l n f c i = BETA∗(Z−1) −jnp . l og (Z−B) − 2∗(A/B)∗ALPHA/(d1−d2 )∗E0 + (A/B)∗BETA/(d1−d2 )∗E0
l n f c = l n f c . at [ : ] . set ( l n f c i )

return l n f c

#Chemical potential of component i as calculated by Henderson et al.

def Chemica lPotent ia l (y , T, P, Tc , Pc , w, k , R, C, EOS) :
import jax
import jax . numpy as jnp

def l n f (y , T, P, Tc , Pc , w, k , R, C, EOS) :
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ai , a i j , a , bi , b , A, B, d1 , d2 , Z , ALPHA, BETA = EOS Params(y , T, P, Tc , Pc , w, k , R, C, EOS)
l n f = l n f c ( ai , a i j , a , bi , b , A, B, d1 , d2 , Z , ALPHA, BETA, C)
return l n f

l n f = l n f (y , T, P, Tc , Pc , w, k , R, C, EOS)
d l n f = jax . jacfwd ( l n f , argnums = 0)
d ln f = d l n f (y , T, P, Tc , Pc , w, k , R, C, EOS)

r = C−1
dmu = jnp . z e r o s ( [C, C] )
for i in range (C) :

for j in range (C) :
if i != j :

if i != r :
dmuij = d ln f [ i , j ]∗R∗T

elif i == r :
dmuij = ( d ln f [ r , j ] − 1/y [ r ] ) ∗R∗T

else :
dmuij = ( d ln f [ j , j ] + 1/y [ j ] ) ∗R∗T

dmu = dmu. at [ i , j ] . set ( dmuij )
return dmu

#Compositional Hessian of the objective function.

def Genera l i zedCubicHess ian (y , yr , T, P, Tc , Pc , w, k , R, C, EOS) :
import jax . numpy as jnp
dmu = Chemica lPotent ia l ( jnp . append (y , yr ) , T, P, Tc , Pc , w, k , R, C, EOS)
r = C−1
H = jnp . z e r o s ( [ r , r ] )

for i in range ( r ) :
for j in range ( r ) :

Hi j = dmu[ i , j ]−dmu[ r , j ]
H = H. at [ i , j ] . set ( Hi j )

return H

""" Inverse power iteration for computation of minimum eigenvector.

Other calculation methods have not yet been made jax -compliant.

Inputs:

H - A matrix whose dominant eigenvalues are needed.

Outputs:

l - The minimum eigenvalue , the dominant eigenvalue of inverse(H).

umin - The eigenvector associated with l.

"""

def l min (H) :
import jax . numpy as jnp
import jax

#Inverse power iteration

H inv = jnp . l i n a l g . inv (H)
umin = jnp . ones ( len (H) )
umin = umin/ jnp . l i n a l g . norm(umin )
for t in range ( 5 0 ) :

umin = jnp . dot ( H inv , umin )
umin = umin/ jnp . l i n a l g . norm(umin )

l = jnp . dot ( jnp . dot (H, umin ) , umin )
return l , umin

""" Objective function for minimization based on Cubic EOS.

Inputs:
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TP - A vector of state in the format [T (K), P(Pa)]

y - A vector of component compositions.

Tc - A vector of component critical temperatures in the order of y. (K)

Pc - A vector of component critical pressures in the order of y. (Pa)

w - A vector of component accentricity factors in the order of y.

k - Matrix of binary interaction parameters with component

in order of y as columns and rows. Main diagonal of 0.

R - Gas constant. (J/(molK))

C - Number of components in mixture.

EOS - Equation of state. ’PR’ or ’SRK’ implemented.

Outputs:

Q+C - Q, the value of the first criticality condition.

C, the value of the second criticality condition.

"""

def CostFunction (TP, y , Tc , Pc , w, k , R, C, EOS) :
import jax
import jax . numpy as jnp
T = TP[ 0 ]
P = TP[ 1 ]
yr = y [−1]
y = y [0 : −1 ]
Hf = jax . j i t ( General izedCubicHess ian , s ta t i c a rgnames=[’C’ , ’R’ , ’EOS’ ] )
H = Hf (y , yr , T, P, Tc , Pc , w, k , R, C, EOS)

lmin = jax . j i t ( l min )
l , u = lmin (H)
Q = l ∗∗2

dHf = jax . jacfwd (Hf , argnums = 0)
dH = dHf (y , yr , T, P, Tc , Pc , w, k , R, C, EOS)
C = jnp . dot ( jnp . dot ( jnp . dot (dH, u ) , u ) , u)∗∗2

return Q+C

#Rho , calculated from the compressibility factor.

def CalcRho (y , T, P, Tc , Pc , w, k , R, C, EOS) :
import jax
import jax . numpy as jnp
ai , a i j , a , bi , b , A, B, d1 , d2 , Z , ALPHA, BETA = EOS Params(y , T, P, Tc , Pc , w, k , R, C, EOS)
rho = P/(Z∗R∗T)
return rho

""" Objective function for minimization based on Cubic EOS.

Inputs:

MxN - Number associated with selected composition.

DataSet - DataSet folder to obtain chemical data from.

EOS - Equation of state. ’PR’ or ’SRK’ implemented.

y_given - vector of composition as an alternative to default y.

TP_bound - Alternative search bound , overwrites Kay’s Mixing.

Outputs:

minima - Optimize object with attributes x, fun , nfev , nitr.

rho - Critical density (mol/cum).

rn_time - Runtime. (s)

TP_bound - Selected bound (testing purposes ).

"""

def minimizer (MxN, DataSet , EOS, y g iven = None , TP bound=None ) :
import jax . numpy as jnp
import KeyFunctions as me
import jax
import numpy as np
import s c ipy as sp
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from time import time as t

jax . c on f i g . update ( "jax_enable_x64" , True )
#Function for obtaining chemical data.

[ y , Tc , Pc , w, C, R, Vc , k , mxNames ] = me . LookUpMix(MxN, DataSet , EOS)

if y g iven is not None :
y = y g iven

t s = t ( )
TP guess = [ jnp . dot (y , Tc ) , jnp . dot (y , Pc ) ]
if TP bound is None :

TP bound = [ ( TP guess [ 0 ] ∗ 0 . 7 5 , TP guess [ 0 ] ∗ 1 . 2 5 ) , ( TP guess [ 1 ] , TP guess [ 1 ] ∗ 2 ) ]

#Initial minimization with simple parameters.

minima = sp . opt imize . d i f f e r e n t i a l e v o l u t i o n ( CostFunction , \
bounds = TP bound , args = (y , Tc , Pc , w, k , R, C, EOS) ,\

mutation = 0 .95 , a t o l = 1e−14, i n i t = ’sobol’ )

if minima . fun > 1 :
#Expanded bound and more stringent parameters for improved convergence.

TP bound = [ ( TP guess [0 ] −50 , TP guess [ 0 ]+200) , ( TP guess [ 1 ] , TP guess [ 1 ] ∗ 2 ) ]
minima = sp . opt imize . d i f f e r e n t i a l e v o l u t i o n ( CostFunction ,\

bounds = TP bound , args = (y , Tc , Pc , w, k , R, C, EOS) ,\
mutation = 0 .95 , pops i z e = 40 , t o l = 1e−16, recombinat ion = 0 . 4 )

if minima . fun > 1 :
d i sp l ay ( ’Erroneous Minima ’ )

tn = t ( )
rn t ime = tn−t s
rho = CalcRho (y , minima . x [ 0 ] , minima . x [ 0 ] , Tc , Pc , w, k , R, C, EOS)

return minima , rho , rn time , TP bound

102


	Introduction
	Background
	Literature Review
	Motivation
	Thesis Objectives
	Thesis Structure

	Theoretical Basis of Critical Point Calculation
	The Gibbs' Critical Point Conditions
	Root Finding Techniques for Critical Point Calculation
	Global Optimization Formulation of the Gibbs Critical Point Conditions

	Application of Automatic Differentiation to Mixture Critical Point Calculations
	Introduction
	Theoretical Basis of Automatic Differentiation
	Application to Critical Point Calculation Algorithms
	Results and Discussion
	Performance of AD When Applied to DNR Method
	Performance of AD When Applied to DE Method
	Easiness in Handling EOS Model Changes by AD

	Conclusions

	Comparison of Root-Finding and Global Optimization Methods for Critical Point Calculations
	Introduction
	Comparison of Root Finding and Global Optimization Methods
	Evaluation of Algorithm Robustness
	Handling of Complex Mixtures

	Conclusions

	Machine-Learning-Based Acceleration of Mixture Critical Point Calculations
	Introduction
	Computational Methods
	Generation of Training Datasets for Machine Learning
	Deep Neural Network (DNN) for Critical Point Predictions
	Initialization of Critical Point Calculations with Machine Learning

	Results and Discussion
	Predictive Performance of Stand Alone Deep Learning Models
	DNR Algorithm Initialized by a Trained DNN Model
	Global Optimization Methods Initialized by a Trained DNN Model

	Conclusions

	Conclusions, Recommendations, and Future Work
	Conclusions and Recommendations
	Future Work

	Bibliography
	Appendix A: Derivations of Key Equations
	Generalized Cubic Polynomial
	Polynomial Form
	Cubic Roots

	Fugacity Coefficient Derivation
	Differentiation of Mixing Rules
	Gibbs Departure Form
	Fugacity Coefficient Expression


	Appendix B: Mixture and Chemical Properties
	Simple Mixture Set
	Complex Mixture Set

	Appendix C: Automatic Differentiation Compliant Code
	Dampened Newton-Raphson
	Global Optimization - Differential Evolution


