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ABSTRACT

In this thesis problems of optimum scheduling of hydro-thermal
power systems are discussed. The scheduling problems are solved by
the use of functional analysis, and in this case, the minimum norm
formulation is employed.

Optimal schedules are derived for the classical all-thermal
power system problem. Here the scheduling equations are shown to be
equivalent to earlier results obtained using other optimization
techniques. The problem of hydro-thermal systems scheduling when the
hydro plants are located on separate streams is treated. One, a system
with fixed head hydro-plants and negligible transmission loss is
considered. Two, a fixed head hydro plants system where transmission
losses are included is presented. Three, a power system is considered
where head variations at the hydro-plants are not negligible. In each
case the optimal schedule is obtained. The problem of actually
implementing the optimal schedules is discussed. The scheduling
equations obtained are shown to be equivalent to those obtained using
other techniques.

New scheduling equations are developed for the common-flow hydro-
plants of the system. Here the time taken by water to flow from the
upstream plant to the downstream plant is taken into account. Also,
the tail-race elevation at the hydro-plants is considered.

In the above problems the general loss formula is employed to

represent the electric network of the system. However, in the final
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chapter of this thesis, the problem of the optimal hydro-thermal load
flow is investigated. Here the exact moedel of the electric network
is employed. Reliability considerations are also incorporated in the
formulation. Finally, it is shown in the last chapter how the
efficiency variations and trapezoidal reservoirs effects can be
included in the formulation.

The computational aspects of the obtained scheduling equations
are discussed. Practical examples are also given to illustrate the

results obtained.
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CHAPTER 1

INTRODUCTION

1.1 Background

A prime objective in the operation of a power system is to achieve
optimum economic dispatch. This is the problem of scheduling the
generation at various generating plants. Here the system's power demand
is to be supplied at the lowest possible power production cost. Normally
this is planned for an appropriate time interval. The optimum operation
of a power system will also depend upon restrictions imposed by factors
other than operating economics. Possible decreases in power production
costs of only fractions of a per cent are still of vital concern to the
electric utility industry. In addition, the capability to solve the
economic dispatch problem is extremely useful for the planning and design
of future equipment additions to power systems. For these reasons, the
economic dispatch problem has been the subject of extensive research [1,2].

In economic dispatch it is customary to consider the operating costs
only. This ignores expenses of capital, labour, start-up and shut-down
related to the length of the outage period for a certain unit. It is
essential to have an accurate knowledge of the manner in which the total
cost of operation of each available energy source varies with the instant-
aneous output. In most cases, the fuel supply available to the conventional
thermal plant is not a limiting factor in the operation of the plant. In

such cases the appropriate price to use for economic dispatch is the



current cost of incoming fuel adjusted for handling costs, maintainance
cost of fuel handling facilities, etc. 'In this thesis it is assumed
that the fuel cost is a second order polynomial of the power output [3].

The hydro-thermal optimization problem is different from the all-
thermal one. The former involves the planning of the usage of a limited
resource over a period of time. The resource is the water available for
hydro-generation. Most of the hydro-electric plants are multipurpose in
nature. In such cases it is necessary to meet certain obligations other
than power generation. These may include a maximum forebay elevation
not to be exceeded due to flood prospects and a minimum plant discharge
and spillage to meet irrigational and navigational commitments. Thus
the optimum operation of the hydro-thermal system depends upon the
conditions which exist over the entire optimization interval [4]. Many
systems with large water storage capacity will require a year for the
optimization interval. Another system may have run-of-the-river plants
with only a small or moderate storage capacity. An optimization interval
of a day or a week may be useful in this case [5].

Other distinctions among power systems are the number of hydro
stations, their location and special operating characteristics. The
problem is quite different if the hydro stations are located on the same
stream or on different ones. In the former case, the water transport
delay may be of great importance [6, 7, 8]. An upstream station will
highly influence the operation of the next downstream station. The
latter, however, also influences the upstream plant by its effect on the
tail water elevation and effective head. Close coupling of stations by

such a phenomenon is a complicating factor.



1.2 Scope of the Thesis

In this thesis, optimum generation schedules will be developed
for a hydro-thermal electric power system. The scheduling problem is
solved by use of functional analysis where the minimum norm formulation
is employed. The solution found here is guaranteed to be the unique
optimal solution [9]. The power system considered contains an arbitrary
number of plants.

Aspects of functional analysis optimization techniques that will
be applied to the power system problems are presented in Chapter II. In
this presentation it is chosen to start with the simplest possible problem
and then gradually lead up to the more complex problems.

In Chapter III, we consider an all-thermal electric power system
with negligible transmission losses. This problem is a classical
one [10]. It is included here to show the application of the minimum
norm formulation in the case of additive linear transformations.

Chapter IV is concerned with hydro-thermal system with hydro plants
on separate streams. The electric network representation relies on the
active power balance equation. Section 4.1 covers the background and
previous work done in this area using other optimization techniques.
Attention is focused in this chapter on the hydraulic head variations in
the case of vertical sided reservoirs and transmission losses. In
Section 4.2 a system with fixed head hydro plants and negligible
transmission losses is considered. The assumption of negligible trans-
mission losses is relaxed in Section 4.3. Finally, the more general
problem of variable head hydro plants with transmission losses in the

active power balance equation is presented in Section 4.4. The results



obtained are shown to agree with Kron's equations [11]. The practical
implementation of actually finding the optimum generation schedules is
illustrated by way of two examples in sub-sections 4.3.5 and 4.4.6.

Here functional analytic computational search techniques are employed.

In Chapter V the problems of common-flow between plants are
considered. Here the time delay of flow between hydro plants on the
same stream is taken into account. The effect of tail water elevation
on the effective head at the hydro plants is considered. The problem
of the power system with variable head hydro plants on the same stream
is the subject of Section 5.2. Here a practical example showing the
computational aspect of the problem is given. The computational scheme
employed here is again a functional analytic one. A general power T
system in as far as the relative locations of the hydro plants are
concerned is treated in Section 5.3.

A more complex problem in the area of economic scheduling of power
systems is that of optimal load flows. This is the subject of Chapter
VI. Here a more realistic representation of the electric network is
adopted. Starting from the basic model, a suitable form of the load flow
equation is derived to facilitate the mathematical formulation. A1l of
the electric variables of the system are considered in this chapter.
Here we also include the more ambitious objective of system reliability.
Also inequality constraints imposed on the network variables are con-
sidered. Furthermore, consideration is given to variable efficiency and
trapezoidal reservoirs hydro plants at the end of this chapter.

Only the titles and the broad outline of the problems considered

in this thesis are mentioned here. A more detailed description of each



of the problems and its relationship to the previous work in this area,

will be found at the beginning of each chapter.



CHAPTER 11

THE FUNCTIONAL ANALYTIC OPTIMIZATION TECHNIQUE

2.1 Background

During the years optimal control theory was developed, powerful
general solution methods were introduced. These are based on the now
widely known "Maximum Principle" and "Optimality Principle". Parallel
to the development of these, starting in 1956, attempts have been made
to introduce methods of functional analysis into the study of optimal
control problems.

At first it seemed that the methods of functional analysis
applied only to a very restricted class of problems. But in spite of
this, the number of studies using the ideas of functional analysis has
increased. In solving optimal control problems, by using the Maximum
Principle, or by reduction to the Euler equations, these methods do not
show how to select the initial conditions required for solving the
adjoint system. The methods of Dynamic programming and the approach
that leads to the Hamilton-Jacobi equations do not have this deficiency.
However, the solution of functional equations is not an easy problem [13].

One of the typical features of the functional analysis approach
is that it yields necessary and sufficient conditions for the existence
of solutions. This fact makes it possible to study the qualitative
aspects of optimal processes. Moreover, this approach is free of the
concrete nature of the system. Thus many formulations hold for systems
that are distributive, digital, composite, nonlinear or biological. Of

course, results obtained on the basis of an abstract formulation must



then be given concrete identification in its various physical forms.

Below, we give a survey of certain works where the methods of
functional analysis are used in solving problems in the theory of
optimal processes. It is not the author's intention to give a complete
exposition of the application of functional analysis to the theory of
optimal processes. In fact, works dealing with the abstract minimum
norm formulation will be our main concern.

Investigation of the problem of approximate solutions to first
order ordinary differential equations, led D.S. Carter [14], in 1957,
to the earliest minimum norm formulation. Carter's problem was
concerned with obtaining an element of a specific Banach space. The
image of the element sought under a first order linear differential
operator was to be of minimum norm. The norm adopted was the maximum
norm. The element was to satisfy a two-point-boundary condition.

In 1962, W.T. Reid [15] extended Carter's results to the case of
an nth order differential operator. This was achieved by reducing the
problem to a problem in the theory of moments. The general results of
the Hahn-Banach theorem were then applied to the reduced problem.

A minimum norm problem in Hilbert spaces was considered by A.V.
Balakrishnan [16] in 1962: Given a compact, bounded, linear operator
mapping H] into H2 and with H] and H2 being Hilbert spaces an element
of a given ball in H] is sought. The norm of the difference between the
image of this element and a given element in H2 is to be a minimum. A
sequence of elements in H2 was obtained and was shown to converge to the
desired element.

A wide class of minimum norm problems was considered in 1962 by

L.W. Neustadt. In his paper [17], Neustadt employed a variational



approach to find the minimum norm element. This was set in the Banach
spaces of the Lp type (1 < p < =). The system satisfied a linear
integral operator and the problem was reduced to minimizing a functional
of a new variable. This variable is in many ways analogous to the co-
states of the Pontryagin's Maximum Principle. The method of steepest-
descent was suggested for implementing the final optimal.

G.M. Kranc and P.E. Sarachick [18] considered a minimum norm
problem in 1963. This was essentially the same as Neustadt's probiem.
The only exception was that the element (control) sought was to belong
to a specified ball in the Lp space under consideration. Holder's
inequality was used extensively to specify the optimal solution.

While most authors chose to consider relatively well specified
systems, W.A. Porter chose a more abstract approach to the optimization
problem. Knowing that diverse systems of equations can be associated
with linear transformations, Porter (1964) considered a problem
involving a linear transformation on a "Hilbert space". The cost
associated with an element of the Hilbert space was given by the Hilbert
space norm [19]. Later together with J.P. Williams [20, 21] he extended
the results of this abstract problem to cases involving Banach spaces.

It was noted that the results of these approaches are applicable
to systems of discrete, continuous and composite types. These results
can be utilized for various optimization problems [22, 23, 24]. The

work of this dissertation involves a recognition of some of these areas.

2.2 Some Functional Analysis Concepts

The discussion of this section is aimed at displaying some of the



concepts and symbols which are utilized in the next section. Basic
functional analysis concepts are left to the references of which
[9, 25, 26, 27, 28] are well suited.

The next section will be concerned with linear spaces which have
norms defined upon them. A norm (commonly denoted by ||.||) is a real
valued, positive definite (||x|] > O for x # 0), absolutely homogeneous
(11ax]] = |af.11x]1)s and subadditive (||x + y|| < [Ix||+[|y]]) function.

A transformation is a mapping from one vector space to another.

If T maps the space X into Y, we write T: X»Y. If T maps the vector
xeX into the vector yeY, we write y = T(x) and y is referred to as the
image of x under T. Alternatively a transformation is referred to as an
operator.

The transformation T: XY is said to be linear if for every x,,

Xy eX and all scalars o and a, one has T(a1x] + a2x2) = a]T(X]) + °2T(x2)'
The linear operator T from a normed space X to a normed space Y is said
to be bounded if there is a constant M such that ||Tx|| < M}{x|| for all
xeX. The normed space of all bounded linear operators from the normed
space X into the normed space Y is denoted by B(X,Y).

A functional is a transformation from a linear space into the space
of real (or complex) scalars. A functional f on a linear space X is
linear if for any two vectors X, yeX and any two scalars o and B there
holds f(ax + By) = af(x) + 8f(y). A linear functional f on a normed
space is bounded if there is a constant M such that |f(x)| < M|[x|]| for
every xeX. The smallest such constant M, is called the norm of f. The

norm of the furctional f can be expressed as



10

[IF1] = sup|f(x)|/}]x]] (2.1)
x#0

Given a normed linear space X, one can define bounded linear
functionals on X. The space of these linear functionals is a normed
linear space x". The space X" is the normed dual of X (alternatively
X* is called the conjugate space of X), and is a Banach space. If
X is a Hilbert space, then X = X*. Thus Hilbert spaces are self-dual.
The normed dual X** of X* is called the second dual space of X. A
normed linear space X is said to be reflexive if X = X**. Any Hilbert
space is reflexive.

Let X and Y be normed spaces and let TeB(X,Y). The adjoint

N * * ok .
(conjugate) operator T : Y +X is defined by
* *
<X, T y> = <Tx,y >

An important special case is that of a linear operator T: H+G where H
and G are Hilbert spaces. If G and H are real then they are their own
duals and the operator T* can be regarded as mapping G into H. In this

case the adjoint relation becomes
*
<TXyy> = <X,T y>

Let G and H be Hilbert spaces and TeB(G,H) with the range of T

being closed. Define the set M as M = {x;eG: ||Tx; - y||=min||Tx - y[]}.
X
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Let xoeM be the unique vector of minimum norm. Then the pseudo-inverse
operator Tt of T is the operator mapping y into its corresponding X,
as y varies over H.

The Minkowski functional p of a convex set K in a normed linear

space X is defined on X by:
p(x) = inf{r: é-eK, r>0} (2.2)

In a Banach space B, the set U = {xeB: ||x|| < 1} is said to be

the Closed Unit Ball in B. The boundary aU of U is called the unit

sphere 3U = {xeB: ||x|| = 1}. The Banach space B is called rotund

(strictly convex) if al contains no line segments. Any convex set K in

a rotund space has at most one minimum element. The Banach space B is
said to be smooth if at each point of 3l there is exactly one supporting
hyper-plane of U.

A vector xeU is called an extremal of feB” if x satisfies f(x) = ||f]].
At most one extremal of f exists if and only if B is rotund. If xeB then
feU” s an extremal of x if f satisfies f(x) = ||x||. At most one
extremal of x exists if and only if B is smooth. If XeB, the Hahn-Banach
theorem [9,28] guarantees the existence of at least one extremal f in B*.
Accordingly, if B is reflexive, every f # 0 and feB* has a unique
extremal in B if and only if B is rotund. Every x # 0 and xeB has a
unique extremal in B* if and only if B* is smooth. Finally, if B is
reflexive, rotund and smooth and we denote by X the unique extremal of

x in B”, then x = ﬂ%”- for all x # 0 and xeB.
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2;3 'The Minimum Norm Problem

The main results of this dissertation are based on previous
analysis by Porter and Williams [19, 20, 21] of an abstract
minimum norm problem. For background purposes this section considers

this problem which may be formulated as follows:

Let B and D be Banach spaces. Let T be a
bounded linear transformation defined on
B with values in D. For each £ in the
range of T, find an element ueB that
satisfies

€ =Ty
while minimizing the performance index

Ju) = ||u||

The solution of this problem as obtained by Porter and Williams
will be given in the form of theorems.

Theorem 1 :(Existence)

The minimum norm problem formulated above has a solution for
every bounded linear transformation defined on B if and only if B is

reflexive.

Theorem 2 :(Uniqueness)

For every geD, a unique optimal solution exists if B is reflexive,

rotund and smooth.

Theorem 3 :(Characterization)

With the conditions of theorems 1 and 2 satisfied there exists
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a unique unit ¢ eD* for every £eD which defines the optimal u denoted

13
by ug as:
20
ug = T'g = p(e)T 4, (2.3)
¢E is determined by the conditions
2. Either:

a. <nop> < [p(6)17 <Es0,> for all neC
or
b. [T 0,11 = [p(e)]  <5.0,>
Theorem 3 defines the optimal solution in an implicit form. To
eliminate the ambiguity the following transformations are defined:
1. Define the transformation K: B*+B by the relation
K(f) = ||f||Ff  for every feB” (2.4)
Thus K is an extremizing norm restoring operator.

2. Define the transformation J: D*+D by the relation

3(8) = [IT"6||T(T¢)  for every ¢eD" (2.5)
Thus
3(4) = T(K(T™$)) (2.6)
or
J = TKT (2.7)

Thus theorem 3 can be restated as

Theorem 3 :(Modified Optimal Characterization)

The unique optimal ugeB is given by:

UE = T*g (2.8)

where the pseulo-inverse operator T+ is given by
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e = k™71 (2.9)
In Hilbert spaces the operator K reduces to the identity operator
so that
e = 717 (2.10)
provided that the inverse of TT* exists.
An extension of the results of the minimum norm problem discussed

in this section is as follows:

Let B, Dy, T and £ be as in the minimum
norm problem. Let @ be a given vector

in B. Then the unique u.eB satisfying

g
£ =1Tu

which minimizes the performance index:
Ju) = ||u - 2f|

18 given by

u, = T'lg - Tl 2 (2.11)
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CHAPTER III

A THERMAL POWER SYSTEM

3.1 Background

This chapter is devoted to the problem of optimizing the operation
of an exclusively thermal electric power system. Much of the early
investigations in the economy loading field were centred upon steam-
electric generating units operating in parallel. This resulted in
the development of the theory of incremental loading [10, 29, 30]. The
method leading to this theory successfully employed simple calculus
techniques.

Achieving minimum total cost of supplying the power requirements
of a system requires an accurate knowledge of the operating cost
functions. A cost function represents the manner in which the total
cost of operation of a generating unit varies with its output. The total
cost of operation includes the fuel cost, cost of labour, supplies and
maintenance. However, no methods are presently available for expressing
the latter as a function of the output [1, 10, 31]. Arbitrary methods
of determining these costs are used. The most common one is to assume
the cost of labour, supplies and maintenance to be a fixed percentage of
the incoming fuel costs. It is common practice to obtain the operating
cost function by establishing the input-output curve for the plant
considered, then adjusting for the cost of the fuel per unit input to

the plant. Throughout this dissertation it is assumed that the cost
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functions may be approximated by second order polynomials of the
instantaneous output power of the thermal plants [3, 32].

The problem considered in this chapter deals with the case when
all sources of generation are either located at the same bus or close
enough so that transmission losses may be neglected. In this case the
instantaneous system power demand is equal to the sum of all available
instantaneous generations. Accurate forecasting of the hourly power
demand is thus an important factor in any dispatch strategy. This
depends on both weather information and historical patterns. Procedures
for active power demand forecasting are in existence [33]. In this
thesis it is assumed that the daily power demand of the system is known

beforehand.

3.2 Statement of the Problem

Consider a power system with m thermal plants on the same bus
supplying the load centre. Assume that the system's power demand is a
known function of time over the optimization interval. The problem is
to determine the generation of each plant as a function of time over the
optimization interval under the following conditions:

' 1. The total operating cost over the optimization interval is a
minimum.

2. A1l operating costs attributed to the fuel cost at the thermal

plants (adjusted for labour, supplies and maintenance) are
given by:

2
\ =
Fi(Pg, ()} = o + BiPs (1) + viPs (¢) $/hr

i=1,...,m (3.1)
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3. The total instantaneous power generation in the system matches

the power demand.

m
Pp(t) = 1 P (8) (3.2)

3.3 Mathematical Formulation

The object of the optimizing computation is:

iy

Find Mi F P t))dt 3.3

e ] o
1 0

subject to the constraint given by (3.2). Define the m dimensional
control vector function u(t) by:
u(t) = co].[Ps (t), P (t), ..., P (t)] (3.4)
1 2 m
Define next the m dimensional vectors L and M as:
L = col.[8ys Bys «--» Bpd (3.5)
M=col.[1, 1, ...y 1, 1] (3.6)

Finally define the mxm diagonal matrix B by:

B = diag[y], Yos cees ym] (3.7)

Substituting (3.1) in (3.3) and using (3.4), (3.5) and (3.7)

transform the cost functional of (3.3) to:

3plult)) = ff LTu(t)dt +JIf u'(t) B u(t)dt (3.8)

()

Note that the ai'S of (3.1) are dropped from (3.8), since these are
independent of the control vector u(t). Furthermore, substitution of
(3.4) and (3.6) in (3.2) yields:

Pp(t) = Mlu(t) (3.9)
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In order to cast the problem in a minimum norm formulation, the
control vector u(t) is taken as an element of the Hilbert space
L(m)[o Tf] This is the space of the m-dimensional vector valued square
1ntegrable functions defined on [O,Tf]endowed with the inner product
defined by:
<V(t), u(t)> =J'fvT(t) B u(t)dt (3.10)

for every V(t) and u(t) in L(m)[o Tf] Note that the matrix B is
positive definite for (3.10) to be a valid inner product definition. In
the problem at hand, the Yi's are positive which ensures the validity of
(3.10).

Furthermore, the given power demand function PD(t) is considered
an element of the space LZ[O,Tf] of square integrable functions defined
on [O,Tf], with the inner groduct definition:

<x(t), y(t)> =J{ x(t)y(t)dt (3.11)
(o

for every x(t) and y(t) in L2[0,Tf].

With these definitions it is seen that (3.9) defines a bounded
linear transformation T: L(m%[O,Tf]+L2[0 Tf] Also the cost functional
of (3.8) reduces to:

Jo(ult)) = <Vu(t)> +||u(t)||® (3.12)
where V is given by:
vI = LT (3.13)
Furthermore, (3.12) can be written as:
3oult)) = [lu(t) + (¥/2.)]12-] |v/2.]|? (3.14)

Since V is independent of the control vector u(t), it is only needed to

consider minimizing:
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3, (u(t)) = [lu®) + (2.2 (3.15)
Also, since a norm is a positive scalar, then minimizing the norm is
equivalent to minimizing its square. Thus the final cost functional

that needs to be considered is given by

J(u(t)) = [{u(t) + (¥/2.]] (3.16)
subject to

Pp(t) = T(u(t)) (3.17)
or

T(u(t)) = Wu(t) /3.18)

The problem is now formulated as a minimum norm problem whose form
was given in section (2.3). The optimal solution vector !i(t) is

obtained in the next section.

3.4 The Optimal Solution

In view of Section 2.3, the optimal solution to the problem

formulated in the previous section is given by

u (t) = T'[Pp(t) + T(V/2.)] - (V/2.) (3.19)
The first step in characterizing the pseudo-inverse transformation T s
to obtain the adjoint transformation T*. This is obtained by utilizing
the adjoint equation:

Pp(£),T(u(t))> = < (Pp(t)),u(t)> (3.20)
The left-hand side inner product is evaluated in Lz[o,qg as

<PD(t),T(g(t))> =]fPD(t)[[v1_Tg_(t)]dt (3.21)

The right-hand side inner product in Lgm%[O,Tf] is given by:

* T %*
T (Pp(£)),u(t)> = ffu (Py(t)1'B u(t)dt (3.22)
0



Thus the equality (3.20) reduces to

f (r(py (11" - M'BTP,(£)18 u(t)dt = 0 (3.23)
0

The equality (3.23) is satisfied for
[T (P ()17 = WTB™ TP () (3.24)
This yields an expression for the adjoint transformation T* as
TP (t)] = 87" Py(t) (3.25)
The second step is to =valuate the operator J(PD(t)) using the
relation (2-7), and the equations (3.9), (3.17) and (3.24) to obtain

J(PD(t)) = MTB"TM Py(t) (3.26)
Note that (M B 1M) 1s a quadratic form which has the scalar value
MBI = Z L (3.27)
i=1 Y4 1
Thus the inverse operator J~ is obtained as:
3 py(t) = p (t)/z L (3.28)
Yy
Finally the pseudo- 1nverse operator T is obtained as
TP (t)] =B M P (t)/z L (3.29)
D D 21 Y5

Note that substituting equations (3 6) and (3.7) in (3.29) yields:

P_(t t P (t
T+[PD(t)] = col. D; ) , g( ) s sees ———%S—Z—-
Iy vl Yol ¥T
b vy 55y mizy Yy
(3.30)

The vector V in (3.19) is given by (3.13). Substituting (3.5)
and (3.7) the following is obtained:

8 B B

V=col—L, -2, —"‘-] (3.31)
- RN m

And using (3.18) yields

T(V/2) = Z 2—— (3.32)

20



21

Thus substituting (3.30), (3.31) and (3.32) in (3.19) the optimal
vector given in (3.19) is obtained. Here recalling the definition of
Hi(t) in (3.4), the optimal power generations are obtained as:

m m
Pg (t) = ([Py(t) + 0.5 J (Bi/Yi)]/(Yi_Z (1/v;))1
gi i=1 i=1

- (8;/2v;}  i=1,...,m (3.33)

It is worth mentioning here that the optimal solution obtained
here can be shown to satisfy the optimality conditions of the classical

theory of variational calculus [34].
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CHAPTER IV

POWER SYSTEMS WITH HYDRO PLANTS ON SEPARATE STREAMS

4.1 Background

In this chapter the problem of obtaining optimal generation
schedules for hydro-thermal electric power systems is considered. The
system considered here is characterized by the presence of hydro plants
that are not on the same stream. According to their order of complexity,
three optimal operation problems are formulated and solved in the next
three sections.

The optimization procedure is based upon predicted future system
demand and a forecast of available water resources. Due to accuracy
considerations present day forecasting techniques are only reliable for
short time intervals. Thus the deterministic optimization problems
considered here are categorized as short-range economy dispatch problems.

The inclusion of the system's transmission losses in the power
balance equation is based on the well established loss formula [10]. It
is noted that such a function as the transmission losses cannot be
expressed in terms of only generator powers in an exact manner. There
are a number of approximations involved in the loss formula derivation.
However, it produces close answers with errors of up to a few percent [34].
Very sophisticated methods of ca]culat{ng the loss formula coefficients
exist and are being used [35, 36].

The operating costs of the hy<ro-electric plants do not change
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with the power output. This would lead to an optimization schedule
assigning the power demand to all existing hydro-plants. In practice,
however, the amount of water available over the optimization interval
is limited. Thus a constraint on the volume of water discharge over
the optimization interval is imposed.

A brief presentation of previous investigations of hydro-thermal
power systems economic operation will be given. Various optimization
techniques have been used in the past. Among these are the variational
calculus principles, the methods of dynamic programming and the
Pontryagin's Maximum Principle.

In 1940, J. Ricard [37] obtained a set of operating schedules for
a hydro-thermal system with no losses. His work was continued by W.G.
Chandler, P.L. Dandeno, A.F. Glimm and L.K. Kirchmayer [38] in 1953,
who included transmission losses but with constant hydraulic head. The
latter method was improved in 1958 by A.F. Glimm and L.K. Kirchmayer [11]
by including variable head plants. The work of Kron, who developed
equivalent equations, was reported in [11].

A set of scheduling equations was developed in 1953 by R.J. Cypser
[6]. These were developed under the assumption that variations in
elevation and plant efficiencies can be neglected. J.J. Carey [39]
suggested an approach which will linearize Cypser's equations. C.W.
Watchorn gives in [4] a set of equations to be satisfied in order to
achieve maximum economy.

It should be noted that the above mentioned investigations employed
the Euler equationof the calculus of variations to obtain the scheduling

equations.



24

The work of R.A. Arismunander [40] in 1960 and later in 1962 [41]
jointly with F. Noakes dealt with short-range optimization of hydro-thermal
systems. He employed all the necessary and sufficient conditions for
optimality of the variational calculus. In addition to this he proved
the equivalence of all previously developed equations.

In 1962, J.H. Drake, L.K. Kirchmayer, R.B. Mayall and H. Wood [7]
presented a dispatch formula based on the calculus of variations. This
formula is restricted to the case where all the hydro-plants operate
with constant head. The system considered has series plants, multiple
chains of plants and intermediate reservoirs.

L.K. Kirchmayer and R.J. Ringlee presented a dispatch formuia for
a hydro-thermal power system in[42]. Head variations were considered.

The formula applies for power systems having one hydro-plant.

In a discussion of the paper in reference {7], C.W. Watchorn
points out the importance of considering variable head for the optimization
of such systems. In separate discussions of the same paper, C.W. Watchorn
and R.A. Arismunandar, both point out that a river time delay of a couple
of hours is highly important for accurate optimization of many power
systems.

B. Bernholtz and L.V. Graham [43] presented a dynamic programming
solution to the hydro-thermal optimization problem. L.K. Kirchmayer and
R.J. Ringlee [42] have also a presentation of some results and conclusions
with regard to dynamic programming solution.

The application of both the Pontryagin's Maximum Principle and
Dynamic Programming to the hydro-thermal dispatch problem was considered

by E.B. Dahlin in 1964 [5] and later, jointly with D.W.C. Shen [44].
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The general dispatch formulas obtained were applicable to a wide class
of systems. These were the systems with hydro-plants having fixed
head, varying head, and hydraulic coupling, both with and without river
transport delay.

The economic operation of a simplified model system and the long
range operation of a multi-reservoir system is considered by I. Hano,
Y. Tamura and S. Narita in 1966 [3]. They employed the Pontryagin's
Maximum Principle to obtain the scheduling equations.

The various factors involved in hydro-thermal coordination and
their interrelation required for optimum generation are discussed by
C.W. Watchorn in 1967 [3]. In a discussion of C.W. Watchorn's paper,
G.S. Christensen points out that the scheduling equations obtained
constitute only a necessary condition for optimality. He suggested the
steepest descent method to search for the global optimum mode of

operation.

4.2 Power System with Fixed Head Hydro-Plants and Negligible Transmission

Losses
In this section, a hydro-thermal electric power system is considered.
It is assumed that the transmission losses and head variations at the
hydro plants are negligible. Imposing a constraint on the volume of
water discharged over the optimizatior interval is equivalent to
constraining the hydro-energy over the same interval. The formulation
of the probiem under this condition will fail to define the optimal

hydraulic generations. This difficulty arises if one uses either of
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the variational principles or the functional analytic technique adopted

in this thesis. The main reason for this is the absence of second

order terms of the hydro-generations in both the cost functional and

the constraints. To avoid this difficulty in this particular problem,

it is assumed here that the integral of the square of the hydro
generation over the optimization interval is a prespecified constant [45].

This implies the presence of an upperbound on the hydro-energy available.

4.2.1 Statement of the Problem

A hydro-thermal electric power system is considered. The system
has n generating plants, of which m are thermal. A prediction of the
system's future power demand is assumed available. The problem is to
determine the generation of each plant in order to minimize the operating
cost of the system under the following conditions:

1. The operating costs at the ith thermal plant is approximated

by:
_ 2
Fi[Psi(t)]- ag + Bipsi(t) + Yipsi (

2. The total generation in the system matches the load. Transmission

t) $/hr (4.2.1)
losses may be neglected.
3. The integral of the square of the hydro generation over the

optimization interval is a prespecified constant.

4.2.2A Minimum Norm Formulation

The object of the optimizing computation is

;
fm
find Min j I (ag + 8;P, (£) +v;P, 2(t)rdt (4.2.2)
PS (t) o i=1 i i
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subject to the constraints:

m n
-5 op p 4.2.3
LIRRRHL RSN (4.2:3)
Te
f P, Z(t)dt = K, i= w0 (4.2.4)
1
(o]

The constraints given by (4.2.4) may be included in the cost
functional defined in (4.2.2). The resulting augmented cost functional

is then given by:

¢ m 2
Jo(Pg (B)aeen Py (1)) jo L (0) + vipg B

+[§ kiPh_z(t)] dt  (4.2.5)
i=m+] i
Here terms explicitly independent of the power generations are neglected
in the cost functional. The ki's are unknowns to be determined such that
(4.2.4) is satisfied.

Define the nx1 column vector control function u(t) as:

u(t) = col.[pg (), Py (8), wes P (0, 7y (8),
m m

cees Py (2)] (4.2.6)
n

Define two nx1 column vectors L and M as
L = col.[Bys «-v» Bys Os -.0s 0] (4.2.7)
M= col.[1, ..., 1] (4.2.8)

and an nxn diagonal matrix B by:

§= diag[Y1, Yz, csey Ym, ln+]’ ceey kn] (4.2-9)
Using these definitions in (4.2.5) and (4.2.3), the problem



28

reduces to minimizing

T
f

34u(t)) =f wWhu(t) + uT(£)B u(t)dt (4.2.10)
0

subject to satisfying
Pp(t) = Mlu(t) (4.2.11)

The control vector function u(t) is considered an element of the
Hilbert space L;’B[O,Tf]. This is the space of all n-dimensional vector
valued square intZQrable functions defined on the interval [O,FJ. The
space is endowed with the inner product definition

<V(t),u(t)> =[Tf V(t)B u(t)dt (4.2.12)
)
for every V(t) and u(t) in the space LS’B[O,EQ. The power demand function
PD(t) is considered to belong to the Hilbert space LZ[O,Tf] of the single
valued square integrable functions defined on the interval [0,]J. The
inner product definition for this space is:
<x(t),y(t)> =ff x(t)y(t)dt (4.2.13)
(4]
for every x(t) and y(t) in LZ[O,Tf].
The cost functional given by (4.2.10) then reduces to
3 (u(t)) = <Vu(t)> + |u(t)] |2 (4.2.14)
where

vT

T

= L7p"! (4.2.15)

The constraint given by (4.2.11) is seen to define a bounded 1inear
transformation T: Lg’g[O,Tf]-iz[O,Tf] of the form
Pp(t) = Tlu(t)] (4.2.16)

Following the same procedure as in Section (3.2.2), the problem
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reduces to minimizing:

Ju(t)) = |lu(t) + /2] (4.2.17)
subject to

Pp(t) = Tlu(t)] (4.2.18)

This is a minimum norm problem of the form discussed in Chapter 2.

4.2.3 The Optimal Solution

According to the results cited in Chapter 2, the optimal solution
to the problem formulated in Section 4.2.2. is given by:
u () = T'Pp(8) + T(W2)] - (W/2) (4.2.19)
The system's transformation T here is the same as that of the
all-thermal problem solved in Chapter 3. Moreover, the spaces involved
are essentially the same. Thus the derivation of the optimal solution
as given in (4.2.19) follows essentially the same steps as given in

Section (3.2.3). The optimal generations are thus found to be:

1 m 81
[Ppt) + E'iZ] ;;ﬂ 8.
P (t) = - (4.2.20)
S ['§ 1, 'Z‘ 1, 2v4
3 Y4 —
1521 Y4 i=m T
i=1,...,Mm
1 n B1
[PD(t) + §'i§] ;;i
Phi (t) = : ? ] E ] : (4.2.21)
£ K. —_t —
LRI EA S L

i=mtl,...,N

It can be seen that the sum of the optimal generations as given

by (4.2.20) and (4.2.21) yields the power demand function PD(t). This
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is in agreement with the constraint given by (4.2.3). The (n-m)
unknown ki's can be obtained by substituting (4.2.21) in the corresponding

constraint (4.2.4).

4.3 Power System Containing Hydro Plants with Negligible Head Variations

The problem posed and solved in this section is the same as the
problem in Section 4.2, except that the transmission losses in the system
are also included here. The transmission losses are assumed to be
represented by the General Loss Formula. The General Loss Formula provides
second order powers of the hydro-generations, which makes it possible to
take directly the hydro-water draw-down constraint into consideration.

The results of this section were first reported in [46]. It is
easily shown that the optimal generations obtained in this section satisfy
the variational conditions for optimality.

4.3.1 Statement of the Problem

Consider a power system with m thermal plants and (n-m) hydro plants.
A prediction of the system's future load and water supply is assumed
available for the optimization interval under consideration. The problem
is to find the active power generation of each plant as a function of
time over the optimization interval under the following conditions:

1. The total operating cost of the thermal plants over the
optimization interval is a minimum.

2. The operating costs at the ith thermal plant are approximated
by:

Fi(Pg (ED= a5 + 8P (1) + yiPsiz(t) $/hr (4.3.1)

3. The total active generation in the system matches the load
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plus the transmission losses.
4. The time integral of water discharge from each hydro plant
is a prespecified constant amount.

4.3.2 A Minimum Norm Formulation

The object of the optimizing computation is

fm
l;:in(t) [ 1_2] Fi(Psi(t))dt (4.3.2)
S,i 0

i=1,...,m

The generation schedule sought must satisfy the active power balance
equation:

Pp(t) = I P (t) +

n
R
i i=mt+]

-
nes13
—r

Phi(t) - PL(t) (4.3.3)

The transmission loss is a quadratic function of the active power

generated by the system plants and is given by [10]:

n

n n
P (t) = 1-51 jgl Py (t)B;;Ps(t) + 1-51 BioPi(t) + Kiy (4.3.4)

with Bij's and Bio‘s and KLo being the loss formula coefficients which
are assumed to be known, with the property:

Bij = B (i =1, ...p n) (4.3.5)

Furthermore, the water discharge at each hydro plant must satisfy the
following constraint on the volume of water used during the optimization

interval:
T¢

fq#ﬂﬂ=bi i=mtl,...,n (4.3.6)
)
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The ith hydro plant's active power generation Ph (t) is given by:
i

n.q;(t)h,(t)
- i i
Ph.i(t) - 1'1'.'8 — m (4.3.7)
Assuming constant head and efficiency at each hydro plant, the constraint

given by (4.3.6) is equivalent to the following energy constraint:

f
j' Py (t)dt = K. i=ml,....n (4.3.8)
i
with
nih;ib;
Ki = T8 (4.3.9)

The constraint given by equation (4.3.3) can be added to the
integrand of the cost functional given by (4.3.2) using theunknown function
8(t), so that a modified cost functional is obtained:

Tf m
2P (8), Py () = | L3 Fi(P (£)) + o(e)(Py(t)

(o]

m n
. ig] Psi(t) -1 Pplt)+

i=m+1 i

P (t))dt (4.3.10)

Substituting for PL(t) from (4.3.4) and Fi(Ps.(t)) from (4.3.1), (4.3.10)
i

can be written as:

2P (8, Py (1)) = j[zw * o(6)By - 1P (1)

n
EPIRUCILIE L
TP 2t) +e(t) T
21 1s i1 §=1

P;(t)B,P.(t)]dt (4.3.11)

i3
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Here terms explicitly independent of the power generations are dropped.

Define the nx1 column vector :

= . ’ 2 seey seeesP
u(t) = col.[Pg (t).Pg (¢) P g (EseePy (0]
L(t) = col.[(8y + Cy8(t)),..., m+18(t)s.o5C 0(t)]
where
Ci = Bio -1 i=Tse00,n

And the symmetric (nxn) matrix
E(t) = (b‘ij(t))
with
by4(t) = Bys6(t) 143 = Toewesn (3 7 3)

bii(t) =v; * Biie(t) i=1, «iusm

e
n

bii(t) = Biie(t)
then (4.3.11) becomes:

m+l,...,N

:
f

JCIE W (t)u(t) + u'(£)B(t)u(t)at
0

If we let
v(t) = B7L(t)

equation (4.3.16) can be written as:

.
f

) =[ i wreuce) + u(0p(tu(D)a
0
T
f

or () = Te(w(e) + Y Ta(e) i) + S,
0

]
- (LLE) ey Yhyae

(4.3.

(4.3.

(4.3.

(4.3.

(4.3.

(4.3.

(4.3.

(4.3.

12)

13)

14)

15)

16)

17)

18)

19)
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The last term in the integrand of equation (4.3.19) does not

depend explicitly on u(t), so that it is necessary only to consider:

T
f

J(u(t)) =f {(u(t) + !ét—))Tg(t)(g(t) + -v-gt—))}dt (4.3.20)

0

The problem is now transformed to that of finding a control vector
u(t), that minimizes the cost functional given by (4.3.20) while satisfy-
ing the energy constraint given by (4.3.8). Notice that 8(t) will be
determined so that the optimal control vector sétisfies the active
power balance equation (4.3.3).

The control vector u(t) is considered to be an element of the
Hilbert space LZ’B[O.Tf]of the n-vector valued square integrable

functions defined on [O’Til;l whose inner product is given by

f
<V(t),u(t)> / VI (t)B(t)u(t)dt (4.3.21)
o
for every V(t) and u(t) in Lé")[O,Tf],provided that B(t) is positive
definite. This means that gt;(t)e:LEl B[o’Tf] which minimizes:
v(t)"
JHu(®) = [lu(e) + KL |2 (4.3.22)

and satisfies (4.3.8) is sought.

Define the (n-m)x1 column vector.

i = COI.[‘H‘F]"°"K[}] (4.3.23)
and the nx(n-m) matrix
M = col.[0,I] (4.3.24)

with 0 being the mx(n-m) matrix whose elements are all zeros, and Iis
the (n-m)x(n-m) identity matrix, so that the constraints of equation
(4.3.8) can be expressed as:

Te
T
£= [ Mu(t)dt (4.3.25)
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Equation (4.3.25) can be shown to define a bounded linear trans-
formation T: Lg’B[O ,Tf]+R("'m) .
The real vector space R("'m) is endowed with the Euclidean inner
product definition:
AY> = XY (4.3.26)
for every X and Y in R("'m).

Equation (4.3.25) is now written as:

£ = Tlu(t)] (4.3.27)
with TLu(t)] given by:
f
Tlu(t)] = J Mlu(t)dt (4.3.28)
o]

The problem under consideration has been reduced to finding the
optimal generation vector u(t) which minimizes the cost functional given
by (4.3.22) such that (4.3.27) is satisfied for the given vector .

4.3.3. The Optimal Solution.

In view of the results cited in Chapter 2, there is exactly one
optimal solution to the problem formulated in the previous section, namely

the optimal vector.

v
u (t) = T + T('ét))l - Vét) (4.3.29)

where TJr is obtained as follows:

T*, the adjoint of T, is obtained by using the identity:

<g,Tu(t)> = <Tg,u(t)
&.Tu(t) 2(n-m) T e,u(t) Lér’ug[o,Tf] (4.3.30)

where in R("'m) we have:

<g,Tu(t)> = £'Tu(t) (4.3.31)



using (4.3.28), the following is obtained:

"
<g.Tu(t)> = 5f e/Mu(t)dt

0
or T
LI T
<€ Ju(t)> [ (871 (e )me)TB(t)u(t)dt
0

where use is made of
1(t) = (87'(t)T

But in Lé?% [0,}J we have:
1 f 1 T
& ()M, u(t)> = 5) ™1 ()Me) TB(t)u(t)dt

hence, by equation (4.3.30) it is seen that
T = 87 ()M
which defines the adjoint of T.
Next we find the transformation J given by:
*
Je = T[T &]
using equations (4.3.28) and (4.3.36) as
T
e = [ (BT (t)mdtle
()
which yields T
-1 foT.- -1
GE [jn_a (£ dt]7 g
()

(4.3.32)

(4.3.33)

(4.3.34)

(4.3.35)

(4.3.36)

(4.3.37)

(4.3.38)

(4.3.39)
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Finally, using the definition of the pseudo-inverse transformation

T+, one obtains:

.
f

e = 57 j M (t)M dt] g
0

Thus the optimal generation vector gﬁ(t) is given by:

(4.3.40)
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T T
u () = 87 (0 Jf MTB 1 (t)m dt] g + ;—Jfﬂ(t)dt} -y
0 ° (4.3.41)
The optimal solution obtained here may be written in component
form. However, this cannot be done unless the number of plants is
specified and the inverse of B(t) is evaluated. The optimal solution
contains the unknown function 6(t) which is determined such that the power
balance equation is satisfied.

4.3.4 Implementing the Optimal Solution.

Without loss of generality, consider a power system whose loss
formula contains zero off-diagonal coefficients, then B(t) can be written

in partitioned form as:

B(t) = diag[B_ (t), By, (t)] (4.3.42)
with

.gss(t) = diag[(y] + e(t)B”),....(ym + e(t)Bmm)] (4.3.43)
Let

L(t) = co].[Lss(t). LHH(t)] (4.3.44)
with

Leg(t) = col.[(8y + 8(t)C)su..s(B, + 0(t)C )] (4.3.45)

LHH(t) = co].[e(t)Cm+],...,e(t)Cn] (4.3.46)

Substituting in equation (4.3.41), the optimal solution for this

particular system is obtained as

:
B
u (t) = L %l~%%§—i (4.3.47)
- By

L
P H Lhy
e(t)fe (t) dt
0

where
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C ,.T
1
co].[(Km+] + ZB($:])(m+])

()
"

)s vens

ol )] ( )

(K + 4,3.48
n ZBnn ,

so that the optimal power generations are obtained as:

[8; + C; o(t)]

P (t) = - i=l,..m  (4.3.49)
'IE 2[yi + Bii e(t)]
C. T C.
P, (t) = } [K; + 25— - B
T f -1 ii i
e(t)-I o 1(t) dt
0
i=ml,...,n (4.3.50)

The last expression contains the unknown function 6(t) which will
be determined so that the power balance equation (4.3.3) is satisfied.

Using equation (4.3.4), equation (4.3.3) is written as:

g 2 t 2
Polt) + I Byy P "(t) +] By, Ph, (8 +

1g i=m+1 £
‘i‘ n
i=1 G P (t) +.Z Ci Ph. (t) + KLo =0 (4.3.51)
1g i=m+1 1g

then substituting in (4.3.51) for P (t) and Ph (t) as given by
i i
13 13
(4.3.49) and (4.3.50) respectively we get

O A1) ) + al1) x(t) + all) )

a1 KT 8 w7
0

(4.3.52)
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where

n
2

D= .. M.

iZmH e

i Te .
my = Ki + ?E;;_ i=mtl,...,n
y(t) = -[a + Py(t)]
P

a = - et e—

o ity B
A£1)=bi 8. i=1,...,m
(i) _ .
A-I "C_i bi -Bi ei 1 ‘],.-..m
(i) _ . _
Ao —'e_i Ci 1 -]..."m
bi=Bi'i B,i -2C.i Yi 'i=],...,m
ei=c1. Bii i=]’.--’m
B§”=4Yi2 i=1,....m
B§1)=8yi Bi i=1,...,m
(i) _ 2 . _
Bo - 4Bii 1 ]’ou-’m

Thus equations (4.3.49), (4.3.50) and (4.3.52) completely define
the optimal generation vector required.

4.3.5 A Computational Example

The method which is used to find the optimal solution is a scanning
process that searches for a function x(t) which is a solution to (4.3.52)
and simultaneously yields a positive definite matrix B(t) (which makes the

definition of the space Lé"%[O,Tf] valid). Furthermore, the optimal
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generations must be physically realizable in the sense that no negative
or complex active power generations are permissible.

The procedure followed in solving (4.3.52) is one of discretization
which will result in a system of N simultaneous algebraic equations in
N unknowns (xl....,xN) which can be solved by any classical iteration
technique.

A study was made of a sample system with the following particulars:
Number of thermal plants (m) = 1.
Number of hydro-plants (n-m) = 2.

Loss formula coefficients

4

(o]
|

B]] = 1.6000 x 10~ = 2.2000 x 10-4 833 = 1.6000 x 10”%

B]O = 0.00 Byp = 0.00 830 = 0.00

Thermal Plant's cost equation:
F(Pg(t)) = a + 4.0 P(t) + 1.20 x 1072 P 2(t)  $/hr.
The energy constraints on the hydro-plants:

Ks

K3

3600.00 MW-Hr.

2400.00 MW-Hr.

Example (1):
Let

T.= 24 Hrs.

Ppt) = 400.00 M4 O ct<T. T,

then equation (4.3.52) reduces to a second order algebraic equation in

x(t), which yields a feasible x(t) given by:

x(t) = 0.21629 0<tsT,



4

so that we get the following generation allocation by using equations

(4.3.49) and (4.3.50):

Optimal thermal power generation P.(t) = 160.68 MW(0 < t < Te)

Optimal hydro-power generation Ph (t) =150.00 MW(0 < t < Tf)
2

P. (t) =100.00 MW(0 < t < T,)

h3 - "= 'f

The result of this example agrees with the obvious assumption of
constant, hydro-generations at the average values satisfying the energy
constraints and the value of thermal power generation that satisfies the

power balance equation.

Example (2):

Let
Ts
PD(t) = 400.00 MW(0 < t < irﬁ
Ts
=600.00  MH(zR<t<T)
Tf = 24 Hrs.

then equation (4.3.52) reduces to two simultaneous algebraic equations in

two unknowns Xq and Xo where

Ts

x(t) = x, 0<ts<as
Te

) z <t:Tg

The values of X and X, satisfying these two equations and which

simultaneously yield a feasible optimal power generation are found to be:

Xy = 0.20008
0.19349

X5
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with the corresponding optimal power generations given by:

P_(t) = 249.53 MW.P (t) = 114.42 MW , Py (t) = 49.40 MW
S ) H2 H3
I
0<t < ?ﬁ
Ps(t) = 288.21 MW,PHZ(t) = 185.58 MW, P 3(t) = 150.70 MW
T
-2i<t§Tf

4.4 Power System with Variable Head Hydro-Plants and Transmission Losses

The problem considered in this section is more general than the
ones dealt with in the previous sections. The results obtained in this
section are shown to agree with Kron's results [11], that is, for the
case of one thermal and one hydro plant system. The work of this section
was reported by the author jointly with G.S. Christensen in [47-48].

4.4.1 Statement of the Problem.

Consider an electric power system with m thermal plants and (n-m)
hydro-pfants. A prediction of the system's future power demand and water
supply is assumed available for the optimization interval. The problem is
to find the active power generation of each plant as a function of time
under the following conditions:

1. The total operating costs of the thermal plants over the
optimization interval is a minimum.

2. The operating costs at the ith thermal plant are approximated by:

FilPs, (001 = oy + 8y Py (8) + vy P B0 sy,
(4.4.7)

3. The total active generation in the system matches the load plus
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the losses.

4. The transmission losses in the system may be re

general loss formula.

5.

presented by the

The time integral of water discharge for each hydro
Prespecified constant amount.,

6.

-plant is a

The ith hydro-plant's reservoir is assumed to have vertical sides

and small capacity. Head variations are related to the discharge by the

reservoir's dynamic equation,

S ﬁi(t) = 1;(t) - q;(t) (4.4.2)

plants does not

7. The tail-race elevation at any of the hydro-

change with the water discharge.

4.4.2 A Minimum Norm Formulation

The object of the optimizing computation is:

. Tf m
1=lye00,m

m n
P =7 P_{ P (t) - P (t
o(t) =1 P e ] b, (8) = PL(t)

The transmission power loss is given by:

n n n
FLEE) =L 0 Pi(t) By po(t) L Byo Py(t) + K
i=1 j=1 i=]
(4.4.5)
Furthermore, the water discharge at each hydro plant is to satisfy

the following constraint on the volume of water used over

the optimization
interval:
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e
j a;(t)dt = b, i =m,...n (4..6)
o

The ith hydro plant's active power generation Ph.(t) is given by
i

q;(t)h, (t)
P, (t) = 11— i=ml,...n  (4.4.7)
i i
with
G; = 11.8/n,

The effective hydraulic head at the ith hydro plant hi(t) may be expressed
using (4.4.2) as:

t
Sl
() = §- [iLi(c)do -lqi(o)do] +h(0)  (4.4.8)

i=mtl,...yn
Thus substituting (4.4.8) in (4.4.7), hi(t) is eliminated. The expression

for the hydro-power is then given by:

1 11

hil) 4 f 1 f
Ph (0 = ay (O F—+ 51 L i;(o)do - W_[qi(o)do]

i=mtl,...,n (4.4.9)

Define the following quantities:

hil) 4 F .
Ni(t) =5 +-ﬂ?fli(c)dc 1 m+l,...,N
(o]

(4.4.10)
- -1 .
E; = (SiGi) i=ml,...,Nn
(4.4.11)
then (4.4.9) reduces to:
t
P (8) = 50N () - ; [ a;(0)ee)
0 i=ml,...

WN
(4.4.12)



It is convenient to introduce the volume of water discharges variable

Qi(t) by the following definition:
t

0,(t) =.I§i(o)do i = mHl,...un (4.4.13)
0
thus »
a;(t) = Qi(t) i=ml,...,n (4.4.14)

This reduces the power generation as given by (4.4.12) to

Ph-(t) = Q1(t)[N1(t) - E'i Q-l(t)] (4.4.15)
i
i=ml,...,N
And the constraint on the volume of water discharged over the

optimization interval given by (4.4.6) reduces to:

Q,(Ty) = by = ml,...,n (4.4.16)
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The problem now is to minimize the cost functional given by (4.4.3)

subject to satisfying (4.4.4), (4.4.5),(4.4.15) and (4.4.16). Including

(4.4.4), (4.4.5) and (4.4.15) in the cost functional yields:

If
m
350y (0),Py (0,040 = |0

FilP, (] + AP0
0

1

n n n
+L jg] Pi(t) Byy Py(t) + 1 B;oP; (t)

m n
K. -3 P (t)-F P (t
FRo m L P (8 L P (8]

n . .
+ 7 ng(e)IN(£)Q;(t) - E4Q;(t)Q;(t)

i=m+]

- P, (t)]1dt (4.4.17)
i
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Using the following relations:

o o f )
['ns (020, 0005008t = Jong(ren,? - | (010 P e)at]
0

0

i=mtl,...,n (4.4.18)

T T

f *
[ ntom; 0y (0ae = ny (TN e, -.Ifri(t)Qi(t)dt
o

0

i=ml,...,n (4.4.19)
with
re(t) = Ry (N () + g (£IN,(t) (4.4.20)

We can write the cost functional (4.4.17) as:

T
f m

Jo[PSi(t)’Phi(t),Qi(t)] = [{SZ]G.]) + A(t)PD(t) + l(t)KLo
(]

" ] 2
+1Zm+][ni(qgnicq)bi - (Db

+ Iy 0B MO, (0
i= i

n
+ 1 Ing(®) + (1813 (0)Py (1)

P 2
is. (t)

n m
S REACIAORS
1=
1

i=m+1

+

n
1Py (O (0)8P5(0)

E; . 2
A (00, 2(01at
m+1 (4.4.21)

-
nes133 ne-13
-

+
wde
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Dropping terms in (4.4.21) that are explicitly independent of the

control functions Pq (t), Ph (t) and Qi(t) over the interval [O,Tf] it
i i
is only necessary to consider minimizing:

f m
J][Psi(t),Phi(t),Qi(t)] = E£1[B‘ - (1-B;)(t)]

O\ —{

n
Psi(t) +i§m+]-[n1.(t) +(1-B; )a(t)]

n
P, (8) + 3 r (e (8)

i=m+]

? P 2 E E P.(t)A(t)B,:P.(t)
+ ¥ v, + (t)a(t)B,.P.
=1 VS =1 =1 33

N AT
= N, .
jemey 2T
(4.4.22)
Define the (2n-m)x1 column vectors.
u(t) = col.[P (t),p,(t),Q(t)] (4.4.23)
L(t) = col.[Ly(t),L, (t),Lo(t)] (4.4.24)
where
gs(t) = col.[PS](t),....Psm(t)] (4.4.25)
Bp(t) = cOl.[P  (8),.0sPy (1)) (4.4.26)

L (t) = col.[{s, =(1-B;)A(t) },. .. (B -(1-B,5)A(t)]
(4.4.27)

Lo(4) = ol [i-Dnpyq () + (1B y M) e,

(-[n (1) + (1-B,)A ()13 (4.4.28)



LQ(t) = co].[-rm+](t),...,-rn(t)]

the (2n-m)x(2n-m) matrix B(t):

—W
B.(t)  By(t) O
B(t) = Ehs(t) Eh(t) 0
o 0 By(t)
where
B(t) = (by (8))
is the (mxm) matrix whose elements are:
biis(t) = y; + A(t)By

B, (t) = (b, (t))
=h 1JSh
is the mx{n-m) matrix whose elements are:

b (t) = x(t)Bij

1jsh
Ehs(t) = (bijhs(t))
is the (n-m)xm matrix whose elements are:

by, (8) = MERy

and §Q(t) is the (n-m)x(n-m) diagonal matrix:

Enﬁn(t)

E .on ..(t
§Q(t) = diag[—mil;milg—z, cevs

.
1]

Ts.0e,m

| PN

Tyeas,m
13 1 R |

M+l ,.ooen
1,...,Mm

(4.4.29)

(4.4.30)

(4.4.31)

(4.4.32)

(4.4.33)

(4.4.34)

(4.4.35)

(4.4.36)

(4.4.37)
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Using these definitions (4.4.22) becomes:

T
(e = [ + Topwuea
0
Let
vit) = LT (t)
and we have
(o 09 I N € ]
-1 _
BT(t) =[G (t) g (t) 0
] 0 Gyt
where

-1
£ (t) = [B(t) - By, (t)B; (£)B, (t)]

6, (8) = [8,(6) - B, (018 (0B, (0]
Cen(t) = [-BZ1 ()8, (£)C, (£)]

Cos(t) = [-B;1 ()8, (t)C(t)]

Cplt) = Bg'(¥)

provided that the inverses in the last equalities exist.

(4.4.39) can then be expressed as:
V() = (e ¥ () yg ()]
where
¥i(t) = LT(e)e (8) + L(e)e, (1)
¥n(2) = Lltt)e, (0) + L (e)g, (8)

Ty T
Ya(t) = Ly(t)Cy(t)

(4.4.38)

(4.4.39)

(4.4.40)

(4.4.41)
(4.4.42)
(4.4.43)
(4.4.44)

(4.4.45)

(4.4.46)

(4.4.47)

(4.4.48)

(4.4.49)

49
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Furthermore, (4.4.38) can be written as:

T,
t) t)
Jy (u(t)) J{(U(t) LA )TB(t)(U(t) +—;——)]
o
I
- (V—éﬂ B(t) !éﬂ)}dt (4.4.50)

The last term in the integrand of (4.4.50) does not depend explicitly

on u(t), so that one needs to consider only minimizing:

3,(u(t)) f () + Z2TB(e)[u(e) + e (a.4.50)

subject to the constraints.
Qi(Tf) = bi i = m]'o.o’n (4-4.52)
Define the (n-m)x1 column vector:
b = col.[b 4qs--sbp] (4.4.53)
and the (2n-m)x(n-m) matrix M by:
T rop 4o
M = [0l1 5¢ (4.4.54)

0 being the (n-m)xn matrix whose elements are all zero, and I being the
(n-m)x(n-m) unity matrix.
Thus the constraints of equation (4.4.53) reduce to:
b =ffﬂTy_(t)dt (4.4.55)
0
The control vector u(t) is considered an element of the Hilbert
Space L(2n m)[o Tf] of the (2n-m) vector valued square integrable functions

defined on [O,Tf] whose inner product is given by
T¢
(1) ,u(t)> = f VT (t)B(t)u(t)dt (4.4.56)

(o}
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for every V(t) and u(t) in L(Z"'m)[O,Tf], provided that B(t) is positive

2,8
definite.
The given vector b is considered an element of the real space R(n-m)
with the Euclidean inner product definition:
<X,Y> = LT!_ (4.4.57)

for every X and Y in rin-m),
Equation (4.4.55) then defines a bounded linear transformation

T: L(zg'm)[O,Tf]+R("'m). This can be written as:

b = T[u(t)] (4.4.58)
and the cost functional given in (4.4.51) reduces to
3y(u(e)) = [lu(e) + Us )2 (4.4.59)
Finally, it is only necessary to minimize
s = Ju(e) + B2 1) (4.4.60)

subject to

b = T[u(t)]

for a given b in r(nM),

4.4.3 The Optimal Solution

The optimal solution to the problem formulated in the previous sub-
section using the results of Chapter 2 is given by:
u (t) = T + T(v/2)] - (V/2) (4.4.61)
where T' is obtained as follows:
T*, the adjoint of T, is obtained using the identity:

*
<5olw = <& ¥ (2n-m)

Let

£ = col.[gm%],...,gn] (4.4.63)
*
Tg = col.[T,, Tpps Tol (4.4.64)



with

Ip = co].[t], vees tm] (4.4.65)
Tp = o[t g «oe t,] (4.4.66)
IQ = co].[mm+],..., wn] (4.4.67)
then in R(“'m), the inner product of the left hand side of (4.4.62) is:
T
<€, Jus = £ ff Mlu(t)dt (4.4.69)
0

where Qi(o) = 0 according to (4.4.13).
And in Lgfg'm)[o,Tf], the inner product of the right hand side of (4.4.62)
is

I
<I:€_, u> =f(ﬁ_;)T§(t) u(t)dt (4.4.70)
(o]

Using (4.4.64), (4.4.30) and (4.4.23) this reduces to:
T

f
Toowr = [(I18 + Ty
]

T T
+ [Ip Bop + 1, §h]Eh
+ T TBQg}dt (4.4.71)
-Q

Thus the identity of (4.4.62) using (4.4.69) and (4.4.71) reduces to:

)
f

gfom = [, + 1,78, 1P (t)
0

+ IQTgog(t)}dt (4.4.72)
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Equation (4.4.72) is satisfied for the choice:

(=0 t e[0,T,] (4.4.73)
T,(t) =0 t e[0,T,] (4.4.74)
Tty =0 | t e[0,T¢) (4.4.75)
IQT(Tf) = gTﬁal(Tf) (4.4.76)

-E o

where 0 is the nx(n-m) matrix whose elements are all zeros, and u(t) is the

(n-m)x(n-m) diagonal matrix given by:

u(t) = diag[em+](t),...,en(t)] (4.4.78)
ei(t) =0 t €[O:Tf)
2
E'i nilifi t = Tf (4.4.79)
The operator J is next evaluated as:
3g) = T[T'e] (4.4.80)
Using (4.4.54), (4.4.55) and (4.4.77) this reduces to:
Te o
J(g) =f [oj1 E] (T £dt (4.4.81)
A u
or Tf
d
J(E) =J' 4 u(t) g dt (4.4.82)
()

so that 3(e) = [w(T,) - w(o)lg (4.4.83)



but by (4.4.79) u(o) = 0, then

I(e) = w(Te)e (4.4.84)
This yields:
N ) = T (4.4.85)

Finally, the pseudo-inverse operator Tt is obtained from the

definition
Te] = T 07 0E] (4.4.86)
using (4.4.77) and (4.4.85) this yields:
ng_ =——%T] _p_-] (Tf)_&;_ (4.4.87)
utt
or -
: 0
T £= -————_]——'i (4.4.88)
[ u(t)u (Tf)

From (4.4.54) and (4.4.46) one obtains

T(V(£)/2) = (D) - Yglo)] (4.4.89)
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The optimal solution is now found by substituting (4.4.89), (4.4.88) and

(4.4.46) in (4.4.62);

By (8) = - FY(v) (4.4.90)
Ehe(t) = - %!h(t) (4.4.91)
Va(t)
Q,(t) = 3 (Db + § We(T) - Ygloh] - TH—
(4.4.92)

which can be reduced by using (4.4.79):

Vo(t
Q(t) = - ZQ-;—) t elo,T] (4.4.93)

QE(TQ b (4.4.94)



55

v
since gﬁ(o) = - ﬁ;—)— = 0.
Thus according to (4.4.57), (4.4.48) and (4.4.49) the optimal solution

is:

B (t) - - LB (1) + ¢ ()L, ()] (4.4.95)

Ehg(t) = - 3l (L) + gl (63 (4.4.96)

T T
gg(t) QQ(t)L (t)] (4.4.97)

It is noted that the optimal solution involves the unknown functions A(t)
and ni(t) which are to be determined such that the constraints (4.4.4) and
(4.4.15) are satisfied.

4.4.4. Comparison with Kron's [11] Equations

Consider an electric power system with one thermal and one hydro plant.
The optimal solution for this system is given by (4.4.95), (4.4.96) and
(4.4.97) where all vector quantities reduce to one element vectors, since
m=1and n-m = 1 in this case.

Here we have using (4.4.27), (4.4.28) and (4.4.29)

L (t) = 8 = A()[T - BT (4.4.98)
Lp(t) = - {nz(t) +A(t)[1 - Bypl! (4.4.99)
LQ(t) = - rz(t) (4.4.100)
And using (4.4.41), (4.4.42), (4.4.43), (4.4.44) and (4.4.45)
B
¢ (t) = 22 (4.4.101)

(vq *# A{t)By)By, - A()B;,Byy

(Y] + >\(t)B'l'l)
M)y + x(€)By1)B,, - A(E)B;,B,¢] (4.4.102)

Ch(t) =



. (t) = - P8 (t) (4.4.103)
B
- 21
Chs(t) = - E;E Cs(t) (4.4.104)
_ 2
CQ(t) = EEEETET (4.4.105)

Thus the optimal solution is:

B

Py (t) = - 9 [ W €3|I
S 200ry * A(E1Byq)By, = A(E1By5B5]

B
21
[{B] - )\(t)[] - 310]} + E’é‘;{nz(t)

+ ()01 - Bylll (4.4.106)

[Y] + )\(t)B]]]

P (t) = -
n,(¥) = Oy ¥ (08T, - A(E1By5,]

Blzx(t)
- ;;—;—X1E7§TT {B] - a(t)[1 - B]O]}

- ny(8) + (00 - Bzo]ﬂ (4.4.107)
Q. (t) = na{t) (4.4.108)
: AT 4.

Furthermore, eliminating nz(t) between (4.4.106) and (4.4.107) yields

B
24 21, 2x(t)a
_p (t) + [8y - M) - By + g

Blzx(t) . i
Phg(t) - Y] + )‘(t)B]]LB] - )‘(t)(] - B]o)]] =0

(4.4.109)
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where
8 = (v *+ A(t)By1)By, - A(t)B),B,, (4.4.110)

Equation (4.4.109) can be rewritten as:

28 _ _r 3 A
B, Psg(t) + [8y - a(r)( S10J8,,0; + XTEIB;;)

24 x(t)BZ] ) = 0
+ P, (t) =
Boplyy + A(t)By;) "h,

or

2PS€(t)[Y] + A(t)By 1 + [8) - A(t)(1 - Byy)]

+ ZBZ]A(t)Ph (t) =0 (4.4.111)
g

This equation should be satisfied if Ps (t) and Ph (t) are to be optimal.
g

The optimal volume of water discharge is reduced to:

1 . nz(t)
Qg(t) = EE{NZ(t) + N2(t) ﬁ;TfTJ (4.4.112)

This results from applying (4.4.20).
Furthermore (4.4.106) and (4.4.107) can be written as:

ZAPSE(t) = - 822[31 - a(t)(1 - B]o) - 321["2(t) +A(t)(1 - 820)]
(4.4.113)
(Y] + A(t)B”)
ZAPhg(t) = 812[3] - A (L) (1 - B]O)] + NE)

[ny(t) + A(t)(1 - Byg)] (4.4.114)

Multiplying both sides of (4.4.113) by PP (4.4.114) by By, and adding,
the following is obtained.

ny(t) + A(t)(1 - B

20)
208Pg (8) + BBy ()] - 5]
g




or
nz(t) = )\(t)[ZB]2 S (t) + 2822 h (t) - (0 - Bzo)]
: (4.4.115)
If one lets
Dg(t)sg(t) = (1 - Bzo) - ZB]ZPSE(t) - 2B,,P, (t)
(4.4.116)
then nz(t) = - x(t)DE(t) (4.4.117)
iy(t) = -[A(t)D (t) + A(t)D, (t]] (4.4.118)

58

so that the optimal volume of water discharged given by (4.4.112) becomes:

A(t)D (t)
Q. (t) = —[Nz(t) + Ny(t) XTE, OEBGN) ST (4.4.119)

Kron's scheduling equations [11] are:

aP
g—F—+ A(t) 55t - A(t) = 0 (4.4.120)
S S
aP, P ‘ 3P, aP
Me) g Wﬁ] s+ S MO (- -33':-) saﬂ] = 0 (4.4.121)

In the particular power system under consideration one obtains
3F g+ 24P () (4.4.122)
3P, 1 M"s e

P

(4.4.123)

L.

Thus (4.4.120) becomes:

2Ps(t)[y] + A(t)B]]] + [B] -A(t)(1 - Blo)] + ZBZ]A(t).

Ph(t) =0 (4.4.124)
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This is exactly (4.4.111), thus the optimal solution obtained in sub-
section (4.4.3) is Kron's first equation.
Furthermore, one finds that

aP
1 - -p- 1= Byg - 2B,,P(t) - 2B,,P (t)

And by (4.4.116) this reduces to:

BPL
D(t) =1 - 33;- (4.4.125)

Thus Kron's second equation (4.4.121) transforms to:

aP

utgg(t) ahh’”%:{"(t)n(t) Q (4.4.126)

By (4.4.7), (4.4.14) one obtains
oP t

_h_h Q?.;) (4.4.127)
And by (4.4.15)

P,

Q" Ny(t) - EjQ,(t) (4.4.128)

Using (4.4.127), (4.4.128) and (4.4.11), equation (4.4.125) becomes:

EpA(t)Df£)Q,(t) + g—t[x(t)Dz(t)[Nz(t) - ExQ,(t)1]= 0
or

*(t)a"'[%¥t)N (t)]+-x (t)Qét)Nz(t) - EZQZ(t)[A(t)Q§t) :4Ait;§é;)] 0

This yields
B Ny (t)a(t)Dft)
Q,(t) = Q["z(t) RN Tt)u;ﬂ (4.4.130)

But this is precisely (4.4.119), so that the optimal solution obtained

is the second equation given by Kron.
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4.4.5 Implementing the Optimal Solution

The optimal solution obtained in subsection (4.4.3) contains the
unknown functions ni(t) and A(t). These can be determined by substituting
the optimal solution in the corresponding constraint equations. The
resulting equations in ni(t) and A(t) are generally nonlinear. In order
to get deeper insight into how the actual solutionis obtained, the
following simplifying assumptions are made:

1. The system is characterized by a loss formula where:

a. B.. =0 it i= 1005

LR

b. By, ~ 0 i

C. KLo =0

2. The rate of natural water inflow to the reservoirs is constant.

]’000”1

These assumptions will represent no loss of generality.
The first assumption implies the following in (4.4.30).
gsh(t) =0 (4.4.131)
Ehs(t) =0 (4.4.132)
g_s(t) = d'iag[(y] + A(t)B”)....,(Ym + x(t)Bm)] (4.4.133)
Eh(t) = diag[x(t)B(m+])(m+]),...,x(t)Bnn] (4.4.134)

And in (4.4.27) and (4.4.28):

L () = col.[{By - A(t)}se-enlly A(t)}] (4.4.135)
L () = col.[{-[np, (t) + A(£)13s. .0 i-In (£) + A(£)]}]
(4.4.136)

Using (4.4.131), (4.4.132),(4.4.133) and (4.4.134) in (4.4.41) through

(4.4.44) one obtains:



61

C(t) = d1ag[m— mﬁ—] (4.4.137)

= A3 1
Qh(t) = d1ag[l(t)8(m+])(m+])’.'.’ —TETE;;J (4.4.]38)
Ce(t) = 0 (4.4.139)
Chlt) =0 (4.4.140)

Thus the optimal solution given by (4.4.95), (4.4.96) and (4.4.97)

reduces to:
1 B] - A(t) m - A(t)
Esg(t) = - 3 col. [ + (2B, Yo * AEIE ]
(4.4.141)
[n_.1(t) + a(t)] [n (t) + a(t)]
=_1 o —mt] . _n
Ehg(t) = -3 col.[ A(t)B(m+])(m+]) s cees A(t)Bnn
(4.4.142)

. (t)
g (t) = COI'[{E’:T](NmH(t) + Ry (2) —"‘*—]'m)},

] . nn(t)
{q(Nn(t) + Nn(t) W)}] (4.4.143)
Or component wise this is given by:
A(t) - .
Ps. (t) = 2y, A(t)s“] T=Tom  (4.4.144)

e

"i(t) + aA(t)

Ph, (V) = —mroe—
hi 2 (t Bii

3

-4
]

m+l,...,n (4.4.145)

1 . n-(t) .
Qis(t) = £ [N, (t) + N;(t) ﬁ;—m-] i=ml,...,n (4.4.146)

The constraint equation (4.4.4)for the optimal solution becomes ;



m n
P(t) =5 P (t)+ I P (t
o® =4, Sig( bl hig( )

m
-1 B, p 24 - E B.. P, 2(t)
i=1 ii Sig jeme] 1 hi&

Substituting (4.4.144) and (4.4.145) this reduces to:

(4.4.147)

m ] n n.(t) 2
o 78k ST E R i, O G

where
E ]
B: t—p——
i=1 B4
[Bi ii + Yi]z
Ci = 8 i=1,...,m
ii
1 .
D, = —5— i=1, ,Mm
] 4Bii

The hydro-power constraint given by (4.4.15) is

Ph (t) = Qi (t)[Ni(t) - EiQi (t)] is= m+1.-.-
i, : :
Let
n(t) .-
Xi(t) = E;TET i=mH,...
or

t
ny(t) = ni(o)expg[lxi(t)]"dt i =ml,...,n
(o)
Then (4.4.146) becomes:

1 . .
Qig(ﬁ) = E;{Ni(t) + N (E)x(t)] i =mH,.. 00

(4.4.148)

(4.4.149)

(4.4.150)

(4.4.151)

sNn

(4.4.152)

sN

(4.4.153)

(4.4.154)

(4.4.155)
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Differentiating both sides of (4.4.155) yields:

m;n=%jmu)+&un4w+ngwgun

i=mtl,...,Nn (4.4.156)

so that the constraints (4.4.152) reduce to

N, (t)x. (t) . . . .
Py, (8) = = o D (8) + g (00 + iy (0% (8]
¢ i=mH,...,n (4.4.157)
Using (4.4.145) in (4.4.157) fne obtai?s:
, ni(O)exp[OExi(t)] dt] \ R (£)x; (t)
B, 2X(t)B; ; E,

[; (£) + N (£)x;(8) + §; (£)%;(8)] = 0

i=ml,...,N (4.4.158)
Recalling (4.4.10) for Ni(t) and using (4.4.11) one obtains:

h; (o) . .
Ni(t) = 5 +E; 1i(°)d° i=m+l,...,Nn (4.4.159)

i

0
Differentiating one obtains:
Ni(t) = E; i5(t) i=ml,...,n (4.4.160)
Ni(t) = E; i4(t) i=mtl,...,n (4.4.161)

Thus (4.4.158) reduces to ¢
ni(o)expE[(xi(t)']dt]

1+ T0)

+ 2B, E; ii(t)xi(t)

[i, ()0 + X, (£)) + x, ()i, ()] = 0
i=ml,...,n (4.4.162)
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Let
_ . 2 .
ai(t) = ZBiiEi i (t) i=mtl,...on (4.4.163)

Then (4.4.162) reduces to:

nf) ko
1+ T exp[ (xi(t) dt]

. () () ] %i(t) )

. = - - - X.

1 ai(t)xi(t) 1i[t] 1
i=m+l,...,n (4.4.164)

Under the assumption of constant water inflow ii(t) = 0, thus (4.4.164)

reduces to:

t
).('I(t) = - {[] + {[n-i(o)exDljxi-](t)dt]/A(t)}]/ai(t)xi(t)} ‘]
o

i=ml,...,n (4.4.165)
The optimal Qi(t) given by (4.4.146) reduces to

t

1 h;(o) . .
4 (8) = g{g—+ Eij; i,(0)do + E, 1 (t)x, (£)]

i=mtl,...,n (4.4.166)

At t = 0 this reduces to:

h, (o) . . |
EiQig(O) = _E;'_'+ E; 1i(°)xi(°) i=ml,...,n
(4.4.167)
But at t =0
ng(o) =0
Thus
S.'h.i(o)

X,i(O) = - —111—(3-)-— i=ml,...,n (4.4.]68)
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At t = Tf, equation (4.4.165) is:

_ hy(0) .
Ei°1€(Tf) P B, 1, (Te) + By §5(Tedx;(Te)
i=mbl,...sn (4.4.169)
But at t = Tf
Qi (Tf) = bi
£
Thus
b. i (o) I.(T.)
x:(Te) = = + x:(0) — R
ivf 111Tf5 i ii(Tfj 11{Tf§
i=mtl,...sn (4.4.170)
where t
(1) = J'ii(o)do =, (4.471)
(o]

In the case when ii(t) = ii = constant, (4.4.168) and (4.4.170) reduce to:

Sihi(o)
xi(o) = - — i =mtl,...,N (4.4.172)
i
b; .
xi(Tf) = xi(o) + [;:-- Tf] i =mtl,...,N (4.4.173)

Thus solving (4.4.149) and (4.4.165) subject to the boundary conditions
(4.4.172) and (4.4.173) completely defines the optimal schedule. It is noted
that (4.4.149) is an algebraic equation in A(t) and the (n-m) unknown
functions ni(t). On the other hand (4.4.165) is a set of (n-m) first order
nonlinear differential equations in xi(t), where xi(t) and ni(t) are related
by (4.4.153).

In the computerized search for the above mentioned unknown functions,

jt is highly desirable to characterize the region of search. This is done
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by utilizing the physical significance of each variable involved. In
addition to this, restrictions on the variables can be obtained so that
the functional analytic formulation adopted is a valid one.

Consider the optimal thermal power generation expression of (4.4.144).
If the thermal power generated is to satisfy the following practical
Timitation:

Pus. < P. (t) <P i=1,...,M
M1ni S; Maxi ’

g
Thus using (4.4.144) one obtains

By * 2¥iPuin, “ By * 2¥iPyax,
< A t < i = ],...,m
T - 28;Puin, ~ = 1 - 2ByiPyax,
(4.4.174)
Let
[Bi ¥ ZYiPMini] ( )
. = Max 4.4.175
Min ~ 3 g )T 2BiiPMing
: By * ZYiPMaxi] ( )
ru = Min 4.4.176
Max i=1,...5Mm T- ZBiiPMaxi
Then
Amin < A(E) < Ayax (4.4.177)

Furthermore an expression for the effective head hi(t) can be obtained

utilizing (4.4.8), (4.4.10) and (4.4.146) as:

hy(t) = - Giﬂi(t)xi(t) i =mHl,...,n (4.4.178)
Using (4.4.160) and (4.4.11) this yields
Sihi(t) =-ii(t)xi(t) i =mtl,...,n (4.4.179)



Let

V#t)= %h#t) i=ml,...,Nn (4.4.180)
hence
v, (t)
xi(t) = e —— i=ml,...sn (4.4.181)
i;(t)

Here Vi(t) is the volume of water stored in the reservoir. In the case

when this volume is restricted between upper and lower bounds given by

mtl,...,N (4.4.182)

vMini < Vi) < vMax1 i

This yields

- T < %) < - "T'%' i=ml,...,n (4.4.183)
1.it - 1 - 1it

It is evident that

xi(t) <0 i=ml,...sN (4.4.184)

Furthermore, if the hydro-power is restricted such that:

P <P (t) <P i=ml,...,n (4.4.185)
i

Dy < h
M1ni £ Maxi

Then utilizing (4.4.145) the following inequality must be satisfied:

A(t)[28B,.P - 1] < n,(t) < r(t)[28,.P - 1]
o hyin, =i - 11 hyay.
i i
i =mtl,...,n (4.4.186)
If
<1 i =mtl,...,n (4.4.187)

then ni(t) <0 i=mtl,...,n (4.4.188)
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This combined with (4.4.185) yields
ﬁi(t) >0 i=ml,...,n (4.4.189)

The restricted search area in the (n-n) phase plane is shown in
Fig. (4-1). It is noted here that (4.4.177) and (4.4.189) guarantee that
the matrix B(t) in the inner product definition is positive definite.

It is worth mentioning here that it is assumed in the problem formulation
that the inequality constraints are not violated. Thus these constraints are
not included in the cost functional to obtain the optimal solution. The
optimal solution is then implemented in a way that confines the search area
to the regions of the space of the unknown functions where the inequality
constraints are not violated. This agrees in principle with the nonlinear
programming approach to this type of problems. In the Kuhn-Tucker method,
unknown multipliers (called the Kuhn-Tucker Multipliers) are associated with
the inequality constraints for inclusion in the cost functional. These
multipliers are set to zero as long as the inequality constraints are not
violated [49]. Thus an optimum solution is obtained by scanning the whole
space of the unknown functions. If the solution obtained violates any in-
equality constraint, the corresponding variable is set to the nearest value
that does not violate the constraint. The main difference between that
method and the method adopted here is that the search region in the latter
is smaller than that of the former. This reduces the computing time
considerably and leads to good estimated values for the unknown functions.

Consider Equation (4.4.165) which can be rewritten as:

ii(t) = fi[xi(t)’ A(t), ni(o)] i=m+l,...,n (4.4.190)

where
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t
DX (£1A(E)m; (0)] = ~(T1 + (I (odexpl] ;™ t)dt]
0o

/M(t)1/a;(t)x;(t)}-1

i=ml,...,n (4.4.191)

Let
sf4(s) = £:0x D ()aa()uny(0)] - £50x, 1) (5),2(5)um; (0)]
i=ml,...,n (4.4.192)

Then using Equation (4.4.191) this reduces to

£(x; () - x,@s))

Afi(s) = ;

]
a; (s)x; U (s)x, 12 (s)
f(xi(z)(a))-]do

+ EiEEZ(x.(l)eo
a(s) !

2o (1) 1y
(x;'' (o)) 'do
- xi(z)gL 1 )] i=mtl,...,N

(4.4.193)

The following inequality is true for all s:

{Ixi(])(S) - xi(z)(s)l

|8 (s)] < ]
T etk is) s

n.(0)

+ Itk D) - 1 Bs) 1k s -
S

exp([ 1% N (@17 - 11,2017 a1
0

i =mtl,...,Nn

(4.4.194)
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s
Here the fact that exp{ [xi(z)(o)]']do} < 1 was used.
0

Further use is made of the following inequality:
le* -1 < |z] ifReZ<0
so that s
961 = 120 - el 1o M@ - P e
0

s
N |xi(2)(o)|.| J}(xi(1)(c))-l - (xi(z)(o))_]}dol
(]

(4.4.195)
This can be reduced to
1Tl 1%, B ()|
lg;(s)| < L X:(S) ”2*'*1(2)(5) - xi(])(s)l
(4.4.196)

where

Xi(s) = min xi(])(s)xi(z)(s) i=mtl,...,n (4.4.137)
s
Thus (4.4.194) reduces to

o)1 < wmax 1k, (206 - 5 (Dis)

’Tf
i=m+l,...,N (4.4.198)
where
1 n; (o)
M= . (-I) (2) {] + lminﬂs)"l]
minfa; (s)x; " '(s)x; "/ (s)] S

+ UTelmax|x; BNs) 7%, (1313 = m1,..uom
S
(4.4.199)
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Furthermore (4.4.198) provides exactly a Lipschitz condition given

by

1 2
?ngfllfi[xi( )(s),...] - f.0x, (2,7

< M.max |xi(])(s) - xi(z)(s)l (4.4.200)

This means that Picard's iteration process given by:

x;©)(t) - x; (0) (4.4.201)

t
x; ™1 (¢) = x, (o) +If(xi(m)(S),A(S),ni(O))ds (4.4.202)
)
is guaranteed to converge to a solution of (4.4.190) for given ni(o) and
A(s).

4.4.6 Practical Application

A computer program was written to solve (4.4.165) and (4.4.148) for
xi(t) (i =m#1,...,n) and A(t) to obtain the optimum generation schedule
Figure (4-2 ) shows the flow chart for this program. An initial estimate

of the function A(t) is made. This was taken as

20ty = » t e[0,T,]

Min
where AMin is given by (4.4.177). For each hydro plant, the initial value

of ni(t) was estimated as:
(0) - - i =
n, (o) = a [ZBiiPh. 1] i=m+l,...,n
Min
A solution to (4.4.165) was then obtained for each hydro plant. This

Min

was done by utilizing the Picard's algorithm given by (4.4.201) and (4.4.202).
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The value of xi(Tf) obtained here was compared with the boundary condition
given in (4.4.172). If the error in this step is large, the estimated
value ni(o)(o) was modified to the correct direction that minimizes the
error. When all the xi(t)'s were obtained the corresponding ni(t)'s were
evaluated using (4.4.154).

Thus equation (4.4.148) becomes a (2m+2)nd order algebraic equation
in A(t) for every t. This is solved for A(t) in the region given by
(4.4.171). The x(t) obtained was then taken as the initial estimate
instead of AMin and the process is repeated. If the difference between
two successive evaluations of Ax(t) was less than a prespecified amount the
iteration process was stopped. The last step is to evaluate the optimum
generation schedules as given by (4.4.144), (4.4.145) and (4.4.146).

This program was applied to a hydro-thermal system with four thermal
and three hydro-plants whose particulars are summarized in Tables 4.1 and 4.2.
The optimal generation schedules and the assumed power demand curves are

shown in Fig. (4-3).



Table 4.1

Thermal Plants' Particulars

Plant No: 1 2 3 4
8 4.4 4.3 4.2 4.25
x10° 1.2 156 | 1.67 | 1.32
Biix104 1.6 1.5 1.8 1.4
Table 4.2
Hydro Plants' Particulars
Plant No: 5 6 7
Constant ii(t)x10'6 0.1 1.0 0.15
S5 X 10710 £¢2 7.2 0.72 1.44
hs(c) ft 100 200 150
§x 10710 £¢3 0.05 | 0.35 0.78
.ox 104 2.2 2.3 2.4
B : . :
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Figure 4.1  The Search Area in the h-n plane.
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Initiallize

X(O)(t)

Select
nj (o)

41

Solve (4.4.165) for

i x; (t) using C.M.P.
il gdt n. (t) by (4.4.154)

A(°)=l(])(t)

No

Solve (4.4.148) for
A(l)(t)

1) /012 No
AV ()
(0)(t

Figure 4.2 Computer Program Flow Chart.
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() Hydro Plant No-3

(3) Hydro Plant No-2

%) Thermal Piant No4

(5) Thermal Plant No-1

{6) Hydro Plant No-

(7) Thermal Plant No-3

(9) Thermal Plant No.2
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@) Trasmission Losses
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Figure 4.3a The System's Power Demand and Optimal Generations.
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Figure 4.3b Optimal Hydro-Power Output.
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Figure 4.3c Optimal Thermal Output and Transmission Losses.



79

CHAPTER V
POWER SYSTEMS WITH COMMON-FLOW HYDROPLANTS

5.1 Background

The problems considered in this chapter are characterized by the
presence of common-flow hydro-plants in the system. These problems are
of a complex nature. The hydraulic coupling between plants on the same
stream is a factor that is not present in the problems dealt with in
Chapter 4. The importance of including the time delay of flow between
coupled plants in the optimization scheme was pointed out by C.W. Watchorn
and R.A. Arismunander in separate discussions of [7].

Among the early contributions to this problem is H.A. Burr's work
[50]. He developed loading schedules for a two-plant common-flow hydro
system but the assumptions made were too simplifying. Later, P.R. Menon
[51] used the Euler equations for constructing sets of minimizing sequences
for a three-plant hydro-thermal system. It is noted here that the system
considered by Menon was of low-dimension, that is, a small number of hydro-
plants were considered. Also this was a long-range scheduling problem.

In [44], E.B. Dahlin and D.W.C. Shen treat the problem of a power
system with hydro plants on the same stream using the Pontryagin's Maximum
Principle. They used a river flow model which introduced a large number of
differential equations and boundary conditions. This was a definite

contribution to the theory of economy scheduling. Unfortunately this model
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made the problem more difficult to analyze numerically.

A more recent related work is that by R.H. Miller and R.P. Thompson
[52]. Their work is concerned with the Pacific Gas and Electric Company
hydro-thermal system. A linear programming approach is used for solving
the long range scheduling problem. A set of inequality constraints on the
reservoir's storage and head variations are imposed. However, the time
delays of flows were not taken into consideration.

It is evident that the need still exists for an optimum scheduling
scheme for common flow systems. In the following two sections two distinct
problems are discussed. In Section 5.2, the problem of a system with a
general number of hydro plants on the same stream is treated. A more
general situation is discussed in Section 5.3. Here a system characterized
by multi,le chains of hydro-plants is considered. In these problems, the
time delay of flow between plants on the same stream is taken into
consideration. Also, the effect of the tail-race elevation on the effective
hydraulic head is considered.

The time-delayed control systems field is still an active one. One
of the main references on this subject is [53]. In this reference a dynamic
programming approach is used to obtain the optimal solution for some certain
problems. For an extension of the classical calculus of variations results
to control problems with delayed arguments, reference [12] is an important

contribution.

5.2 Power System with Variable Head Hydro-plaats on the same stream.

An extension of the results obtained in Chapter 4 is made here. The
problem of a hydro-thermal electric power system with variable head hydro-

plants on the saile stream is discussed in this section. The time delay of
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flow between the hydro stations is taken into consideration. Also the
effect of tail-race elevation on the effective hydraulic head is
considered. The results of this section were reported in [54,55].

5.2.1 Statement of the Problem

An electric power system with m-thermal plants and (n-m) hydro-plants
on the same stream is considered. The hydraulic part of the system is
shown in Fig. (5-1). A prediction of the system's power demand and water
supply is assumed available over the optimization interval. The problem
is to find the active power generation of each plant as a function of time
under the following conditions:

1. The total operating costs of the thermal plants over the optimiz-
ation interval is a minimum.

2. The operating costs at the ith thermal plant are approximated by:
= 2
F1~[P5i(t)] =a; + BiPSi(t) *1iPs, (t) $/Hr  (5.2.1)

3. The total active generation in the system matches the load plus
the losses.

4. The transmission losses in the system may be represented by the
general loss formula.

5. The time integral of water discharge for each hydro-plant is a
prespecified constant amount.

6. The effective hydraulic head at the ith hydro plant is equal
to the difference between the forebay elevation yi(t) and the tail-race

elevation yT'(t), thus
i
hi(t) = yi(t) - yT'(t) i=ml,...,n (5.2.2)
i

7. The forebay elevation yi(t) is given by:
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Figure 5.1 Layout of Hydro-Plants on the Same Stream.
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¥i(t) = y5, + 8, s4(t) i=ml,...,n (5.2.3)

Y
This relation is true for vertical sided reservoirs. Yio and Byi are
constants corresponding to the forebay geometry.

8. The tail water elevation varies with the rate of water discharge
according to the relation.

.VT. (t) = ‘YT-
1

+ By qi(t) i=mtl,...,n (5.2.4)
io i

YT.
io
Thus substituting (5.2.3) and (5.2.4) in (5.2.2), the effective head hi(t)

and 8, are known constants corresponding to the tail-race geometry.
T

is given by

h,i(t) =ay1'+ Byisi(t) - BTiqi(t) i=m+l,...,n (5.2.5)
where

% Yio YT, i =m,...,n (5.2.6)
9. The reservoir's dynamics are described by
Smeq (8) = ipg (0) + apy g (tryq) - ap,(¢)
i=2,00.5(n-m) (5.2.7)

81 () = () - q (1) (5.2.8)

Here, the time delay of water discharge between two consecutive hydro-plants
is assumed to be a constant t.

5.2.2. A Minimum Norm Formulation

The object of the optimizing computation is

fm
1
i=1,...,m °
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The generation schedule sought must satisfy the active power balance
equation.
n
Pplt) = Z P 1(~t) + zmﬂ Phi(t) - P (t) (5.2.10)

The transmission power loss is given by:

nn
PL(t) =1£1 Y=] P. (t)BIJPJ(t) + Z] Biopi(t) + KLo (5.2.11)

[ AN o

Furthermore, the water discharge at each hydro plant is to satisfy the
following constraints on the volume of water used over the optimization

interval.

i
J’ qi(t)dt = bi i=mtl,...,n (5.2.12)
0

The ith hydro-plant's active power generation Ph.(t) is given by:
i
q; (t)h; (t) _
Ph (t) = ————— i=ml,...,n (5.2.13)
i G,
i
where the Gi's are the efficiency constants of the hydro plants. Substituting

(5.2.5) in (5.2.13) the hydro powers are given by:

q.,;(t)
Py (t) = T —fay . +8 s

+i . Ym+i +
m+i Gm+1 m+i m 1

Define the following quantities:

t
D (£) = Spaq(0) +[ iy (e)do (5.2.15)
4]

t
Y (£r7) = [ G - )do (5.2.16)
0

t
Qe (£) -J’ G (0)do (5.2.17)
0



Then integrating the reservoir's dynamic equations (5.2.7) and (5.2.8)
yield:
sm+](t) = Dm+](t) - Qm+1(t) (5.2.18)
S (£) = D (8) + Vg (Eamg ) = Qe (2)

2,...,(n-m) (5.2.19)

-te
1]

Define the pseudo-control variables [54]

xm+i(t) = Sm+i(t) - Dh+i(t) i=2,...,(n-m) (5.2.20)

then (5.2.19) yields

X (8 = Y1 (Eo7i ) = Qi (8)
i=2,...5(n-m) (5.2.21)
Thus (5.2.14) using (5.2.20) is

e ()

hm+‘i(t) = Gm+i [Qm.” + Bym'l"i (Dm+'i(t) + xm+'i(t))

P

= 8Tm+iqm+i(t)] is= 2n~--)(n'm)

(5.2.22)

and for the (m+1)st plant:

q .q(t)
m+1 Ly

Ph (t) = ][Dm+](t) - Qm+](t)]

[a
m+ m+1

m+
m+1

- BTqumﬂ(t)] (5.2.23)

Let

Am+i(t) Sl e [“m+i + Bym+iDm+i(t)] i=1,.0.,(n-m)
(5.2.24)

85
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By .
Byi = — i=1,...,(n-m) (5.2.25)
G ..
m+1
BT
Cpaj = —t i=1,...,(n-m) (5.2.26)
6 ..
m+1

then the hydro power given by (5.2.22) and (5.2.23) becomes:

P (8 A (£, (8) 4 Bqap (6100, (1)

2
* Cit19pey (B) =0 (5.2.27)

Ph 1.(t) + l\nﬂ‘(t)qmﬂ'(t) - Bm+iqm+‘i (t)xmﬁ(t)

m+
2 _ .
* CreiOpeq (8) =0 i=2,...,(n-m) (5.2.28)

The problem now is to minimize the cost functional given by (5.2.9)
subject to satisfying (5.2.10), (5.2.16), (5.2.17), (5.2.28), (5.2.21) and

(5.2.12). The constraints (5.2.21) are rewritten in the equivalent form

2 2 2 =
xm+i (t) + Qm+-i (t) + 2xm+i (t)Qm+-i(t) - Ym+1' (t’Ti_]) - 0

2,...5(n-m) (5.2.29)

-
]

and (5.2.16) is rewritten as

Ymei-1 (i) = f q
2,...5(n-m) (5.2.30)

-
1

—

-
[}

Let

tori
Ui -1 (Eo749) =f Im+i-1(07do

(t < ty.q) 1= 2,0, (n-m)(5.2.31)
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Note that y .. ;(t,t;_;) is a known initial condition function. Then

(5.2.30) becomes:

Veic1 (i) = ¥y (triy) O ton

= i1 (Tio1omi1) F Quugag (toty )

t; < tsTe i=2,...,(nm (5.2.32)

i-1
Thus (5.2.29) reduces to
x 2(t) + QL 2(t) + 2x . (8)Q Lo (t) - v .. 2(thr, 1) = 0
m+i m+i Xt Vi mEi-1 Ve T

0

bt

A

+

Xpeio(8) + Qyi2(t) + 2 (0o (8) = Do ye 1 2(n5 q0msy)

2 i
* 2 (T o) Qe () + Qg (tery )1 = 0
T < t< Tf i=2y00.5(n-m)

i-1
(5.2.33)

Moreover the constraint (5.2.17) is rewritten in the equivalent forms.

Oy () = Oy (E) (5.2.34)

and

Ui (8004 () = Qs (£DQ 4 (2)
i=2,...,(n-m) (5.2.35)

An augmented cost functional is formed as:

6
J(U(t)) = T J;(u(t)) (5.2.36)
i=o
where Jo is given by (5.2.9), and U(t) is the control vector defined by:

U(t) = col. [P(t) M 1 () W po(t)sen sl (£)] (5.2.37)
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with
P(t) = CO]'[PS](t)"“’Psm(t)’th+](t)""’Phn(t)]
(5.2.38)
_m_”(t) COI-[qm.,,](t) ’Qm](t)] (5.2.39)
W () = collap,; (8),0n, 5 (£) x5 (8)]
i=2,...,(n-m) (5.2.40)
while

n n
3,[u(t)] =f x(t)[lg L (008 P5 () + L (Byg - TPy (0)]et
(5.2.41)

3,[u(t)] f e (TP (8) + Ay (D (6) + By G (8
Q7 () + Cpydey (811 (5.2.42)

:
f .

3,0U(t)] = j [ 47 (8187 (1) = Mg (800 (£)14 (5.2.43)
0

f n-m

:
3,[u(t)] j SEWGICEROREMWIOUNIS
0o

1=

(894 (8) + Caqpe ()14
(5.2.44)

Bm+1 m+i

Tf n-m .
ILUEI] = [ 1 g (£ ()0 () = P (£)0q (1
0

i m+1(t)]dt (5.2.45)
f n-m
LE)] = [ T i (O)Dges () + Q4 2(8)
0

# 2a (005 (8) = Vg “(Ear_p)1at
(5.2.46)
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where A(t),nm+](t), mm+i(t) and rm+i(t) are unknown functions of time.
Jq corresponds to the power balance equation (5.2.10) and (5.2.11)
after dropping PD(t) which is independent of the control vector U(t).
J, and J4 correspond to the constraints (5.2.27) and (5.2.28). J3 and
Jg correspond to (5.2.34) and (5.2.35) respectively. Finally Jg corresponds
to (5.2.29). Note that in (5.2.45) and (5.2.46) equivalent forms of the
constraints (5.2.17) and (5.2.21) were used so that a valid norm definition
can be obtained.

It is more convenient to reduce JZ’ J3 and J5 to modified values by

performing integration by parts and neglecting terms explicitly independent

of the control U(t). Then the following is obtained

T
£

e = [ (e (ODPy(8) + Ay (E)ag (1) + Gy
o

B . h ,(t)
qm,,]z(t)] - ———"'”2'“” Qmﬂz(t)}dt

(5.2.47)

T
f

3O = [ D (a7 (8) # (610, (811t (5.2.48)
0

T
f n-m th ..
JgLu(t)] = f ]Z=2[mm+1-(t)qm+i(t)om+,-(t) + 2 q . 2(t)lat
° (5.2.49)
Let
JgLu(t)] = Jﬁx,qm(t)] - Jsv[y_(t)l (5.2.50)
with T
f n-m 2 %
I, LUV - jo D T (6 Dige (800 )

2 (60,1 (t)1dt (5.2.51)
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.
f n-m 2
JGY[yjt)]=d£ L, i ()i am et (5.2.52)

Interchanging the integration and summation operations yields

m

T
n- 2
JGY[th)] = §= jfrm+i(t)vm+i-1 (t,ri_])dt (5.2.53)
[§}

2

The last equation can also be written as:
n-m Ci-1 2
IRUCH DI RO TSRRLCEIN
0

Jr;

2
*:[ PRDIUWR U REIRY
Ti-1

* 21 (7750 O (BT q)

+ Qi Elter_q)ldt] (5.2.54)

Dropping terms explicitly independent of the control, it is only necessary

to consider

:

' n-m ,f

JGY[Qﬂt)] = §=2 ]’ i (O 020053 (52 07509)
Ti-1

2
Qi1 (t-T529) *+ Qg (E-my_q)1dt



n-m f Ti-1
Jg [U(t)] =}
Y 1=2

oY 4

Qns-1(5) + Qg (5)1ds

Define

¢m+i(t:"~'i_'|) l"m+i(t+‘r,i_]) t S[O,Tf-‘ti_]]

P (827590 = 20y q (rg gy Mg (8915 )
t E[O’Tf-Ti-]]
= 0 t E[Tf'T.i_],Tf]
Using these definitions, (5.2.55) becomes:

n-m
e [U(t)] = §
Y i=

Tf
) J‘[pm+i(t’Ti-l)Qm+i-](t)
0

* dmti (t»Ti_] )Qm.,..i_]z(t)]dt
or

' Tf n-m-1
3% 1u(0)] L Do Do 6oy O ()

+ g (6700 ,: 2(8) 1t

Thus Jg given by (5.2.50) reduces to

Tf n-m-1
Jlue)] = [, T (8) =t (8200
0

P (545 D054 (15 p0759).

(5.2.55)

(5.2.56)

(5.2.57)

(5.2.58)

2(¢)
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b (B ) 2(8) # T (BER(E)

n-m 2
+ Z rm+i(t){xm+i (t) + 2xm+](t)

n-m-1
Qm+1(t)} - z pm+-i+'|(ts't-i)qm+.i (t)]dt

(5.2.59)
Integrating the last term of the integrand in (5.2.59) and neglecting terms
explicitly independent of the control, one obtains

T¢
n-m-1 2
Js[g(t)] =J [;::2 (Tm+,i(t) - ¢m+:l+](ts'f.i))qm+i (t)

o

- bg(ter Qe () # r (000G (8)

n-m

¥ §=2rm+i(t){xm+12(t) * 2xm+i(t) Qm+i(t)}
n-m-1

+ ;_-2 pm+1'+'|(t’11')qm+1'(t) - pm,,,z(tn])

Qp4q (t)1dt (5.2.60)

Substituting (5.2.9), (5.2.41), (5.2.47), (5.2.48), (5.2.44), (5.2.49)
and (5.2.60) in (5.2.36) for Jy, i =0,...,6 respectively yields

J[U(t)] = 3, [u(t)] + Jqlult)]
with Te m
3 [u(e)] =fo [) ey = AE)1 - Big TP (4

n
+1'Zm+1[ni(t) - () - Bio}]Phi(t)

+ [n g (B A () + moep (8)]ag, (t)



+ [mm+](t) = pm+2(t:T])]Qm+](t)

n-m-1
+

n-m
* (A (t)ay (8) + ) (0], ;(¢)

(0)x (t)1dt

m+i
and

n-m
+]
i=
T m
I [u(t)] j (7 y.P %n+z ZARP(H
Q= | i1 i S;

i=1 j=1
n-m
2(

31375 (8) * L G ()

B N ..(t)
_Eﬁﬂ_ﬂﬂﬂ___gqm+]2(t)

= [¢m+2(t9T]) + 2

+

-m-1m . (t)
+ (E_m {Eh%?———-

h (t)
Opei - (8) + (T + v (£))Q2(t)

n-m 2
+ §=2[rm+i(t){xm+i (t) +2x .. (t)
Qe (8) + me s (E)ap, 5 (6)Q, 4 (2)
- Bm+1'"m+1‘(t)qm+1‘(t)xmﬁ(t)]}dt

Define
L(t) = colu [Lo(t)sLpyq (£) oL, o (t)s e u oL, (£)]

where

Lp(t) = co].[zp (t),...,zp (t),zp (€9 P

59 Sm L

t)

§=2 g (60 (£ + By gaq (g a4 (2)

(5.2.61)

rm+i(t) - ¢m+i+1(t’Ti)}

(5.2.62)

(5.2.63)



Ly (8) = co]‘[’?‘(m+'l)q(t")’2'(m+1)Q(t)]

(5.2.65)

l_.m+.|(t) = Co"[z(mi)q(t)’2(m+i)Q(t)’2(m+i)x(t)] (5.2.66)

i=2,...,N-m

and the square symmetric matrix B(t) as:

B(t) = diaglB,(t) By (t) Brp(t)se B ()] (5.2.67)

with

g (t) =8, - A(t)[1 - B, ]

p
Si

)
Phm+i

(t) = npyq(8) -

A(t)[1 - B(m+i)o]

2(me1)q(t) = Ay (B0 (8] + mp sy (2)
Lare1)Qft) = Mg (8) = Bpap(tary)

Lmti)g (8 = A (0 (8) + Py (Bory)

Fmei)q(®) = O

Ymei)x(t) = 0

tng(t) = Ag(E)n, (8)

v+ Bypa(t)
Blzx(t)

i=2,...,n-m=1

i=2,...5n=-m

Blzx(t)
.Y2 .+ Bzz)\(t) - - - -

By H

.. By a(t)

.. anx(t)

(5.2.68)

(5.2.69)

(5.2.70)

(5.2.71)

(5.2.72)

(5.2.73)

(5.2.74)

(5.2.75)

94
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. ﬂm.'.‘l (t)
Em.,.](t) = d1ag[cm+'|nm+] (t)a - (¢m+2(t9'l"|) + Bm+'| )]
(5.2.77)
B (8) = (01253 (0) 4= 2,00m (5.2.78)
biLi(t) = Copifinyi () 1 = 2ccunem (5.2.79)
(t
biZ.(t) = '-n'“—;l-(—)- i=2,....,n-m (5.2.80)
B..n_..(t
bl‘nii(t) = - ﬁl;—'“-*—‘—(—l i=2,....0-m (5.2.81)
n o (t)
6Z2,(6) = B 4 v (0 - g (any)
i=2y...,n-m-1 (5.2.82)
b23.(t) = 1,4 (t) i=2,...,n-m (5.2.83)
b3 (¢) = r_..(t) i=2,...,nm (5.2.84)
33 " .2.
h(t
b22(t) = —"é—)— + v (t) (5.2.85)
n
This reduces J[U(t)] to:
it T T
J[u(t)] j [ (t)u(t) + uT (£)B(t)u(t)Jdt (5.2.86)
0
Let Vi(t) = LT(t)B 7 (t) (5.2.87)

then (5.2.86) is rewritten as

;
f

e = [ e + HETB e + 1Ut)y
0

v v
- L {8) g(e) Ythyar

The last term in the integrand of the last expression does not depend

explicitly on the control U(t). Thus one needs only to consider minimizing:
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i
f

ool = [ e + FAR0 + Z e (5.2.00

(8]

subject to T
f
Ot 4
o

(o)do = bt i i=1,...50-m (5.2.89)

Define the (n-m)x1 column vector:

b= co].[bm+],...,bn] (5.2.90)
and (n-m)x(4n-3m-1) matrix Klas:
~ T -
o K. 0o
T
K' = T
- .Q. g .K...m+2
T
En_-
(5.2.91a)
with K., =[0] : (5.2.91b)
K. = [100] (5.2.91¢)
This transforms the constraint (5.2.89) to:
Te
T
g=j K'u(s)ds (5.2.92)
[

The control vector U(t) is considered an element of the Hilbert space

LE?E'3m']][O,Tf] of the [4n-3m-1] vector valued square integrable funciions
defined on [O,Tf] endowed with the inner product definition:
Tf
(1) u(t)> f VT (t)B(t)u(t)dt (5.2.93)

0
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for every V(t) and u(t) in Lgfg‘sm']][O.Tf], provided that B(t) is positive
definite.

The given vector b is considered an element of the Real Space R("'m)
with the Euclidean inner product definition:
<X,Y> = LTL (5.2.94)
for every X and Y in r(n-m)
Equation (5.2.92) defines a bounded linear transformation
T: Lgfg'3m°]][0,Tf]+R"'m. This can be writen as:
b= Tu(®)] (5.2.95)
and the cost functional given in (5.2.88) reduces to:
()= |lu(e) + Kth)|2 (5.2.96)
Finally, it is necessary only to minimize
Jlu(t)] = [|u(t) + ¥§£l1| (5.2.97)
subject to b = T[u(t)]

for a given b in r{n-m)

5.2.3 The Optimal Solution

The optimal solution to the problem formulated in the previous
subsection, using the results of Chapter 2 is:
v v
u(t) = T7[b + T(=bthyy - t) (5.2.98)
- - 2 2
where T+ is obtained as follows:

T*, the adjoint of T, is obtained using the identity:

*
<§-’B'->Rn-m—<—5’9-> (4n-3m-1)
L2 B [O,Tf] (5.2.99)

Let
g = co1.[£m+],...,gn] (5.2.100)

T = col. [T T o Tegs e Ty (5.2.101)
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Ip = co][t1.....tn] (5.2.102)
T = col.[t ot ] (5.2.103)
—m+] e’ e
T .. =col.[t ot ot ] (5.2.104)
- Opei” Qi X
In R("'m), the inner product of the left-handside of (5.2.99) is:
<g,Tu> = _g_TIfl(_Ty_(s)ds (5.2.105)
0
This reduces to T
n f
<g,Ju> =} &5 J q; (o)do (5.2.106)
i=m+] o

In L£4g'3m']][0,Tf], the inner product of the right-handside in (5.2.99)

is: T

%
Teu =J'

0

f w7
(T g) 'B(t)u(t)dt (5.2.107)

Using (5.2.37), (5.2.67) and (5.2.102) this reduces to
T

* foT T
o =[ 18 (R(E) + Ty (D (8
0

n-m T
# 1T B (Bl (0110 (5.2.108)

Thus the identity of (5.2.99) using (5.2.106) and (5.2.108) yields:

Tfn-m Tf T n-m
. . = P + T B .(t
[ L et (e)do I RCLOES R
0 0
W (t)]dt (5.2.109)

Let
dmes = [y O] (5.2.110)
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o1, = [b,; 0 0] i=2,...,n-m (5.2.111)

then (5.2.109) becomes

S izl ¢m+iﬂm+i(u)do =-I [T.B_(t)P(t) +i£] ToeiBaei (t)
0 (s]
Wy (t)]dt (5.2.112)
Equation (5.2.112) is satisfied for:
T
= 5.2.113
Ip(t) 0 ( )
T T -1 .
T (t)=9¢ B .. i=1,...,n-m (5.2.114)
mti mti

From (5.2.77) the following is obtained:

BL(8) = diagl{Cy g (81 {=(opyp(tary)

ho . (t)
+B L) 11 (5.2.115)

thus one obtains from (5.2.114) for i = 1 and (5.2.110):

b
T m+1
T ..(t) = [—-——(—)— , 0] (5.2.116)
m+1 cm+1nm+1 t
Let

BT1.(t) = [ay; ()] i =2,...(nm) (5.2.117)

Im+i

then by (5.2.114) and (5.2.111) one obtains:

T
T ..(t) =[b  .a (t), b_,.a (t), b_..a (t)]
—m+i m+i ]]m+i m+i ]2m+1 m+i ]3m+i

i=2,.00.50-M (5.2.118)

This means now that T £ as given by (5.2.101) is completely defined
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by (5.2.113), (5.2.116) and (5.2.118).
The operator J is next evaluated as:

J(g) = el (5.2.119)
Using (5.2.91), (5.2.92), (5.2.95) and (5.2.101) this is given by:

Te T
f
J(i) = CO].[b"H_-II ——-]——m;T(—)' dt bm+2J' a-l-lm+2(t)dt,...]
° (5.2.120)
or
Jel=A¢g (5.2.121)
with

T T
£ £
. ]
A= d1ag[J' dt,‘[ a (t)dt,...] (5.2.122)
A Cort 1M1 (B A M2

Thus the inverse operation Vs given by:

sl =0 g (5.2.123)
where
f a,(f -1
= d1ag[( []/Cm-l»'lnmé-](t)]dt) o( a'l-l (t)dt) sere]
m+2
0 0
(5.2.124)
Finally, the pseudo-inverse operator 1T is obtained from the
definition:
1 = 717l
Using (5.2.101), (5.2.113) and (5.2.118) this becomes
t t oot T
T'e = col.[t seoosty ] (5.2.125)
—p’Ewm+1 twn
with
3’; = ¢01.[0,...,0] b (5.2.126)
t) = col.[ m+1 , 0]
e c @ (fase (t))dt
m+1 L | j m+1 Mo+l
(5.2.127)
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o N2, ()
- + + (m+i)
B U R U M
(m+i)
a3, (t)
+ m+i .
t(m+i)] 3;;1__T)T?7'] 1= 2,e...0em
(m+1) (5.2.128)
b ..a (t)
m+it1] .
+ {m+i)
e = T (5.2.129)
a (t)dt
Let
vV
n=b+T(3) (5.2.130)
and
n= c°]’["m+1""’”n] (5.2.131)
then applying (5.2.92) one obtains:
Te
- 1
i = bm+i ﬁjﬁ Eﬂ(m+i)](t)dt (5.2.132)
o

where it is assumed that V(t) given by (5.2.87) is obtained in the

partioned form:

vi(t) = [g;(t),y;+](t),...,yl(t)] (5.2.133)

!;(t) - [V, (8)s-0a¥, (t),...,Vph (t)] (5.2.134)
1 m+1 n

vl(t) = V), (V) (0] g (5.2.135)

v (t) = OV mei), BV (e, Vet (5.2.136)

i=2,00.5(n-m)

This gives the optimal solution of equation (5.2.98) in component

form as:
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V), () fo=
(t) = - 2] OT
1 o (8) (TO/n . ()1t
m+1 j 1
(5.2.138)
v (t)
1
Q  (t) = - (m+2)2 (5.2.139)
m+1

V(m+i)](t) m+ ll(mﬂ)(t)

t = -
q5m+i( ) 2 ff e
t)dt
0"“11("1+1
§ = 2y0..,n-M (5.2.140)
V, ..y (t) .a (t)
o (g, T )
S f
j’ a (t)dt
o (m+i)
i = 2y...50-M (5.2.141)
Voo (8) nsagg | (E)
X (t) =~ (mh? +Tm+1 (m+i) (5.2.142)
m+i f

t)d
-La”(mﬁ)( har

5.2.4. The Modified Optimal Solution

In formulating the problem at hand, pseudo control variables q(t)
and x(t) were introduced. It is possible to eliminate these variables
together with the multiplier functions m(t) and ri(t) associated with them.
First we establish some relations between some of the variables encountered

in the previous subsection.
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Using (5.2.66), (5.2.72), (5.2.73), (5.2.74), (5.2.87) and (5.2.117)

in (5.2.136) we obtain:

V(m+i)1(t) N [Am+i(t)nm+i(t) * pm+i+1(t’Ti)]a11(m+i)(t)

i=2,...50-M (5.2.143)

V(m+i)2(t) = V(m+.l)](t) 3 m+1 2

i = 25000,(n-m) (5.2.144)

Voo (8) = VL (8) =/
(me), ) (), ) i)

i =2,...5n-M (5.2.145)

substituting (5.2.144) and (5.2.145) in (5.2.141) and using (5.2.140)

respectively one finds:

a (t)
12 (10
QE (t) = ) ¢ (t) i = 2,...,0-M (5.2.146)
m+i ]](m+i) i
a3, (1)
m+i
X (t) = 3 ) 9 (t) i=2,...,n-m (5.2.147)
5m+1' (m"'i ) Emﬂ'

Invoking the constraint equation (5.2.21) using (5.2.146) and (5.2.147)

one obtains:
(t) +a (t)
]3(m+i)

a2, ..
(m+i)
(t) q£m+i(t)

a

Ypsi-1(Ei) =

i =2,...,n-m (5.2.148)

From (5.2.78) through (5.2.85) and (5.2.117) it follows that
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= ﬁm+i
M ety 8 7 Tt (D17 = o (6 Va4 ()

i=2,...,n-m (5.2.149)

M ()
a]z(m+i)(t) = - i+ Brot e (2117284 (t)

i=2,....n-m (5.2.150)
(mm'f"i

13 gy V) = Uit (D (8 + By (60 (2L

m+i)
s (£ = iy (82701728, (1)
i=2,...,(n-m) (5.2.151)

where Am+i(t) is the determinant of the matrix §m+i(t)' Thus (5.2.148)

is rewritten as:

B ..n ..(t)
- m+1 m+i q (t)

Y oo 1(tyts 4) = (5.2.152)
mEi-1"2 a1 E ..
2rm+i(t) m+i

and (5.2.146) as:

Im i (t) +B .n .(t)]
Q (t)=- i e ¢ (t)  (5.2.153)
Substituting (5.2.143) in (5.2.140) one obtains:
2q, (t)
Emti

——————1—7- Am+1(t)"m+1 + pm+i+1(t’ri) = € (5.2.154)

with
e . = m 3 (5.2.155)
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The expression for a (t) from the inverse operation given by (5.2.149)
m+i
after substituting for Am+i(t) yields:

1 c ) [y (£) * Byyinp g (801
a ® ° ‘mtimeilt -
[ e Ay () = dop4q (taty)
.2 2
) Brei Mmei (t)
4rm+i(t) (5.2.156)

Substituting (5.2.156) in (5.2.154) and using (5.2.152)and (5.2.153)

we have
2cm+inm+i(t)q5m+i(t) * A (BIng (8) + ppigq (tary)
B iMpes () Ym+i-lg(t’fi-1) + Imo () + Ban L (8)]
Q. (t)=e. (5.2.157)
Em+i m+1
Let
Znei (t) = 2cm+i"m+i(t)qé;nm-(t) * Ay (tIng (2)
then differentiating (5.2.157) and substituting (5.2.158) and (5.2.57) one
obtains:
Zei (6] + B (800 (€ + By () (E)
I M (00 ()7 20 (e s (Ehes) = 0
1 Em+i Vi VT T i V7T
t < T, - T2 (5.2.]59)

and
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7 . (t) + B . (t)Q  (t) +B (t)q, ()
m+i i e md T e

dt (t)Q (t)] =0 t>Te- (5.2.160)

Substituting (5.2.56) in (5.2.153) and using the result in eliminating

1.(t) from (5.2.159) and (5.2.160) these yield:

7 () * By (0 2 (£470)

t<Te - 7y (5.2.161)

o, 0; (rpo7p) * Qe (8] =

and
Zm+ (t) + Bm+1 m+1(t)Qm+1(t) =0 t~> Tf Ty (5.2.162)

Rewriting (5.2.152) advanced one plant and with time lead t; as:
Bm+i+1“m+i+1(t+11)qzm+1+](t+11) = 2 (B44)
D (Tio3) * Qe (t)] (5.2.163)
one can eliminate rm+i+1(t+Ti) from (5.2.161) to obtain:
pi (8) + By (810 (8 B 1M1 (474
q (t+rs) = 0 t<Te- 1 (5.2.164)
Embiel £

Using (5.2.158) in (5.2.162) and (5.2.164) one obtains:

%E{z m+i m+1(t)Q (t) * Am+i“m+i(t) y Bm+i"m+i(t)

V(B )% B (900 (8 B a1 (EF74)

(t+'r_i) =0 t e[O,Tf - Ti] (5.2.165)

Ep+it]
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and

el i (D00 (&) + A a(Edn o (8) - B,

Emti
M (8) Y (Bay )]+ By (800, 5() = 0

t e(Te - 7,,T¢] (5.2.166)
The equations (5.2.165) and (5.2.166) thus obtained depend on
"m+i(t) and Qm+i(t)‘ The multipliers

i(t) and i(t) were eliminated

M i+
as a result of invoking the corresponding constraints. This holds for
i =2,...,n-m or hydro-plants affected by plants which are upstream of

them. Note that for i= n-m, the terms in "m do not exist as in the

+i+1
cases i = 2,...,n-m-1. However, it can be shown that (5.2.165) and (5.2.166)
hold for i = n-m by repeating the same analysis.

For i = 1, using (5.2.70), (5.2.71), (5.2.77) and (5.2.87) one

obtains:

Vm+](])(t) = [Am+](t)“m+](t) + mm+](t)]/cm+1nm+](t)

(5.2.167)
vm+1(2)(t) = = [ () -Pro(tay ) 1/ Lo o (tsTy)
h
" el m+%(t)] (5.2.168)

Thus (5.2.138) and (5.2.139) become:

21 a1 (809 (6D Ry (B0 (8 + g () = ey
(5.2.169)

Q (t) _ mm+](t) = pm.,.z(ts'f])

= (5.2.170)
Eme 2omaa(tsty) + Brghp g (t)
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Differentiating (5.2.169) and substituting (5.2.170) for mm+](t) one

obtains

G2y (0 (6) % Ay (£ (21]

+B A (£)Q,  (t) +B o0 (t+r))Q,  (t+ry) = 0
m+1l m+] 5m+1 m+2 m+2 1 §m+2 1

t e[O,Tf -11] (5.2.171)
G20 (0 (6] + Ay (£ (8]

+ Bm+1“m+1(t)°m+1§(t) =0 te(Te-1y5T¢] (5.2.172)

Note that in (5.2.171) and (5.2.172) elimination of rm+2(t+r]) was made
possible by utilizing (5.2.153) for i = 2.

We are now in a position to rewrite (5.2.165), (5.2.166), (5.2.171)
and (5.2.172) in a unified fashion as:

402 g (D8 (8) + Ay (€1 (0]

+ m+-| m+1(t)q (t) + gm+1' (tﬂi:'f.i_]) =0

1,...,0-M (5.2.173)

ado
1]

with the boundary conditions:

Q (o) =0 i=1,...5n-m (5.2.174)

Em+i

Tyeeosn-m (5.2.175)

-e
n

Q (Tf) = bm+1

Em+1'

where
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9neq (Eo1q) = Bm+2nm+2(t+r])q£m+2(t+11) t e[0,T¢1,]
= 0 t e[Tf"T] ,Tf]

(5.2.176)

O (E27557520) = Bygar Mpega (B30 (t+ry)
Smei+]

d
- ElBnei i (V) ¥paioq (Bt )]
t E[O,Ti_]]

S B n e (tda,  (tee)
mti+] m+i+] i i i

d
- B e () i g (y0749)

+Q,  (tery ]

Smi-1
te(ryqaTetial
= o480 ()W (T )
B (8) e (17
* Qi (b3t e(Temry 0Tl
i=25.00.,n-m-1 (5.2.177)
d
- FEB (v q (Lot q)]

9 (ts7y 1)

t el0ury gy
= -G8 ()1, (1> et
dt* " n'n ¥n-1'"n-m-1°"n-m-1
+ an-](t'Tn_m_])}] t E(Tn-m-]’Tf]

(5.2.178)
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It is interesting to note that (5.2.173) describes the optimal
interaction of the volume of water discharged QE (t). The solution of

m+i

this equation will depend on n_..(t) which is to be determined such that

m+i
(5.2.28) is satisfied. The value of "m+i(t) depends solely on the (m+i)th
plant characteristics. Moreover, the solution will also depend on
9m+i(t’Ti’Ti-l)' This depends on the behavior of the plants immediately
upstream and downstream from the (m+i)th plant.

The equations (5.2.137) and (5.2.173) will be referred to as the
modified optimal solution. It can be shown that this solution satisfies
the necessary and sufficient condition for optimality for control problems

with time delayed arguments as given by D.K. Hughes in [12].
5.2.5 Special Cases of the Problem

It is the purpose of this subsection to show the optimal solution for
some specific cases of the problem considered in this section. First we
give the solution for the case when the water flow time delays between hydro
stations on the same stream are negligible. The results obtained here are
identical with those obtained in [7]. It is worth mentioning that this
§pecial case was formulated and solved without introducing the pseudo-
control xm+i(t)' This is possible since xm+i(t) was introduced to facilitate
dealing with the time delays. The results obtained both ways are identical.
Next, the solution when tail-race variations are neglected is given.
Finally, the optimal solution for plants not on the same stream is obtained.
It is shown that the solution here is identical with the results of Chapter
4. 1In all these cases we are dealing with the hydraulic discharge equation

(5.2.173).
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A. Negligible Time Delay Case

In this case T = 0 so that (5.2.31) yields

t
¢m+i-](t’0) =.jam+i_](0)dc t<o0
0
and
Ymi-1(0,0) = 0 (5.2.179)

Also (5.2.176), (5.2.177) and (5.2.178) transform into:

9 .1(t,0) =B .n .(t)g (t) (5.2.180)
m+] m+2 m+2 Eme2
g o(t,0,0) =B ...on . (t)q (t)
m+i m+i+] m+i+] Emti+]
d
- gElB a0 - ()Q (t)]
dt™ m+i m+i Emti-1

i=2,...,(n-m-1) (5.2.181)
g, (t.0) = - gE{Bnnn(t)QEn-1(t)] (5.2.182)

Thus the optimal discharges are given by (5.2.173) using (5.2.180) through
(5.2.182).

B. Negligible Effect due to Tail-race Elevation

In this case Cpti = 0» since 8 = 0. Thus (5.2.173) is rewritten
i Tm+i

for this case as:

1 d
(t) = - ey L+ (o740 ¥
Em+i B My (£) - 7m i77i-177 dt

(Apei (B (8))] i = 1,...,n-m (5.2.183)
where the gm+i's are given by (5.2.176) through (5.2.177) in the case when

Q

time delays are present or (5.2.180) through (5.2.182) when time delays
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are negligible.

C. _Hydro-plants not on the same stream

In this case two observations are made. The first one is that in
(5.2.7) the coupling term Inei-1(t-75_1) will be absent. The second
observation is that one can assume that the ri's approach infinity, so
that the discharge from one hydro-plant would not effect the others.

These two observations can be stated as:

1im (t-t.) =0 i=1,...,(n-m) 5.2.184)
Ti%qm{,-'( T-. ] (

This leads to:
l?lvmi(t’ri) = 0 i = ],ooo’(n_m) (5-2-]85)

i

and
limy_ . (t,t:) =0 i=1,...5(n=m) (5.2.186)
T oo m+ 1

i
The last two equations result from applying (5.2.184) to (5.2.16) and

(5.2.32) respectively. Applying the last results to (5.2.176) through
(5.2.178) one obtains

lim (t,t,1s =0 i=1,...,n-m (5.2.187)
T_»mgm+1 i T1-1)

Thus (5.2.173) reduces to
d .
GE LM (00 () + Ay (Edn (1)
+ Bm+ihm+i(t)qgm+i(t) =0 i=1,...,n-m (5.2.188)

Furthermore, if tail-race elevation is neglected, then (5.2.188) reduces

to:
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o{® () - ';;:—;::1‘7' EE{Am+1 (t)ng(t)]

Em+1
i=1,...5n=m (5.2.189)

It is our intention now to show that (5.2.189) is identical with

(4.4.97). To this end we rewrite (4.4.97) as:

(4) . M (£
Yot " e (67 (5.2.1%0)

and using (4.4.20) this is given by:

4) 1 I"'m+'i(t’) :
') (t) = N, (t) - i (6)] (5.2.191)
gm+1 Em+i m+i nm+i!t$ m+i
Also by using (4.4.10) and (4.4.11), (5.2.190) reduces to:

s 1

t
ol (@) =s; (o) +J’m+1(o)do
o

m+i mH mH
m+1(t) )
m+1‘ T) mti
Note that S. here is that of Chapter 4, which means that S; h. (o)
1 med i
is in fact the initial storage Sm+i(°) of this chapter. Thus we have
t)
4) A
ol () = [Sp400) + Iy (0] -
Enei m+i m+i m+1l ) ! m+1
(5.2.192)
Using (5.2.15) this is given by
ol (1) = 0y (0) - LR (5.2.193)
Enei D A (E) i e
Now (5.2.189) is rewritten using (5.2.24) and (5.2.25) as:
t) .
(5) m+1(
Q mh1(t) 3 -—+ Dm+i(t) - ﬁ;:;TET'Dm+i(t) (5.2.194)

ym+1
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Observe that in Chapter 4, % +j Was taken as zero. Thus (5.2.194) and

+1
(5.2.193) are identical. This proves that the results of section 4.4
are a special case of the results obtained in this section.

5.2.6 Implementing the Optimal Solution

The modified optimal solution obtained in (5.2.4) contains the
unknown multiplier functions ni(t) and A(t). These are to be determined
such that the constraints (5.2.10), (5.2.27) and (5.2.28) are satisfied.
In this subsection, the reduction of the equations specifying the optimal
schedules for the general system is given.

Let the (nxn) symmetric matrix:

-1 _
B, (t) = (bijp(t)) (5.2.195)

be the inverse of §p(t) as given by (5.2.76). Note that elements of
gp(t) are dependent on A(t) so that one may write
-1 _
Ep (t) (bijp(x(t))) (5.2.196)
From (5.2.64) and (5.2.196), the expression for yp(t) given by (5.2.133)

and (5.2.87) in the component form (5.2.134) is:

m
Vo (8 = L Ly - MO - Big) by ()

n
+ [n.(t) - a(t)(1 - B, )b.. (a(t))
§=m+] J jo’7ji
(5.2.197)
and the optimal power generations given by (5.2.137) component-wise
are:

P, (t) =-V_(t)/2 i=1,0..,m (5.2.198)

m+l,...,n (5.2.199)

O
=
—
ct
~
n
1
=
©
~~
ﬁ
S
~
[A]
el
1]
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Here it is noted that the power generations depend on the ni(t) and A(t).

The optimal power generations should satisfy (5.2.10), thus the

following relation must hold true:

() + L TV () +L T TV (0B (1)
+ 5 t) + + t)B..
-I n
- 5-121 Biovpi(t) + Ky =0 (5.2.200)

This is an algebraic equation in A(t) and the (n-m) functions ni(t).
The optimal hydro-generations should satisfy (5.2.27) and (5.2.28),
thus

LWL 2[Ap ()04 (£) + By (60, (1)

+CuqQ ()] (5.2.201)

Vp (8 = 2l (8000, (8) + By (800, (8)

" B Qe (8) Yo (b7 )

22 .
* CoriQuei (B)] i=2,...n-m (5.2.202)

Here Ym+i-1(t’Ti-1) are given by (5.2.32).

The problem of implementing the optimal solution is thus reduced to
that of finding [2(n-m)+1] unknown functions Qi(t)[i=m+1,...,n],
ni(t){i=m+1,...,n] and A(t). These are obtained by solving simultaneously
(5.2.173), (5.2.200), (5.2.201) and (5.2.202). These are exactly
[2(n-m)+1] equations in the unknown functions. Due to the nonlinearity of
these equations, one inevitably resorts to iterative techniques.

Consider equation (5.2.173), rewritten as
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, B.. h..(t)
A m+1 m+i
QEmﬂ'(t) ) N (E) Q‘;m+i(t) i 2Cnti Mpei () Qemﬂ'(t)

Apei (8 A (8) By (8)

+g .(t,T.,T._ ) + =
m+i i*i-1 ZCm+i 2cm+i "m+i(t)
i=1,...,n-m (5.2.203)
Let (t)
_ et .

pm_”-(t) = m i=1,...,n-m (5.2.204)

oo o i=1,...,n-m (5.2.205)

m+1i 2cm+i

(t)) = gm+'i (taTi sT.i_'l)

G .:(tytsst: qon:  (t),h,
mHit i -1 L. Tt

. A'SE"(?) ()

204

°m+i(t) i=71,...5n-m (5.2.206)

Then (5.2.203) reduces to:

O (8 # oy (000 (6] % epuionu(tl, (1)
+ 6, =0 i=1,...,(n-m) (5.2.207)

Furthermore, let

Zni (8) = cot.[z81)(2),2{2) (1)1
where 0 2) .
i (1) = 0, (8) and 220 (0) = & (1)

i=1,...,(n-m) (5.2.208)

Then (5.2.207) reduces to the linear vector equation:
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L) = R (017 (6) + Frus(t)

i=1,...5(n-m) (5.2.209)

with 0 1
R (t) =
“emeiPmei () P (8)
i=1,ee.,(n-m)
£m+i(t) col.[o0, m+1] i=1,...,(n-m) (5.2.210)
Here the boundary conditions Q (o) = 0 and Q (T¢) = b_,. can be
i Epeq T M
written as:
d Zm+1(°) *N —m+1(Tf) N —m+1
i=1,...5n-m (5.2.211)
with
1 0 0 o}
M=1o o » N=17 o (5.2.212)
£6+1 = co].[O,bm+i] i=1,c0e.,5n-m (5.2.213)

Equation (5.2.209) with the boundary condition (5.2.211)are next transformed
into an integral form. The results obtained here rely heavily on those
given by P.L. Falb and J.L. De Jong in [56]. The following is an integral
representation of (5.2.209) and (5.2.211):
t
T
i b s[Te-t] ft[Te-s]
(1) mt ff i

o | t

i=1,...,(n-m) (5.2.214)
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t T
b_.. f To-s
Aﬂ“““%“j'%%ﬁm“+f4fﬂﬁm“
o t

i=1,...5(n-m) (5.2.215)

Here

fq(s) = em+ipm+i(s)z'$‘l12(s) + pm+i(5)22:li)(5)

+ Gy () i= 1,00, (n-m)  (5.2.216)

Note that in (5.2.215), satisfying the boundary condition (5.2.211) is
guaranteed during the search for the required solution. For the sake of
simplicity, the practical application of the suggested computational
scheme is shown by way of an example. This example is concerned with a
one-thermal, two hydro-plants on the same stream system. This is the
subject of the next subsection.

5.2.7 Practical Application

A computer program was written to solve (5.2.200), (5.2.201),
(5.2.202), (5.2.214) and (5.2.215) to obtain optimum generation schedules
for a sample system. The sample system is characterized by a diagonal
loss matrix (i.e. Bij =0, i#j). The number of hydro-plants is two and
they are on the same stream. There is only one thermal plant in the system.

For this system, the equations describing the optimum mode are:

¢ T
2§ (e) = oyt +f stT-tey(s)es of "elTs1e(e)d8]
o] t

(5.2.217)
t

:
f
2{?(t) = }—f{b2 +J' -sf,(s)ds +j (Tg-s)fp(s)ds]
° t (5.2.218)
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t
f
Zg])(t) = %;{b3t + J's[Tf-t]f3(s)ds +‘] t[Te-s1f5(s)ds]
t
° (5.2.219)
t T,
Zgz)(t) = %;{b3 + !- sf3(s)ds + I (Tf-s)f3(s)ds]
t (5.2.220)
Define
Y(t) = col.Ly (t),y,(t)ry3(t),y,(t)] (5.2.221)
where
v, (1) = 2 (x) (5.2.222)
¥p(t) = Zéz)(t) (5.2.223)
y5(t) = Z§])(t) (5.2.224)
ya(t) = Zgz)(t) (5.2.225)

Then equations (5.2.217) through (5.2.220) define the operator
equation

Y(t) = T(Y(t)) (5.2.226)

This equation can be solved iteratively using a modified contraction

mapping algorithm of the form:

Y - e T red™) - ueMyg (5.2.227)
Here I is the identity operator, U is any operator which is linear and
[I-U] is invertible. The convergence conditions for this algorithm are
given in Appendix A.

The initial estimate of the unknown variables is taken as:
y{O)(t) = b/, (5.2.228)

y§°)(t) = b,/T, (5.2.229)



TABLE 5.1

SAMPLE SYSTEM CHARACTERISTICS

Thermal Plant:

-2

By = 4.0 vy = 0.12x10

Loss Formula Coefficients:

_ -3 ) -3
The Hydro Plants:

ny = 0.708 ng = 0.708
5,(0) = 0.72x10'3 s4(0) = 0.144x10'3
ay = 0.0 ag = 0.0
By = 0.54x1078 B = 0.2047x10°°

2 3
B, =0.1389x10"10 g = 0.1389x10"9
) Y3

i,(t) = 0.1x10° i5(t) = 0.1x107

120

= 0.16x1073
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Figure 5.2 Optimum Schedules for the Sample System.
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y$ot)

y$o)(t)

b3t/Tf (5.2.230)

b3/Tf (5.2.231)

A sample system whose particulars are summarized in Table (5.1)
was used to test the method. Optimum loading schedules obtained are
shown in Figures (5.2), (5.3) and (5.4). Figure (5.5) shows the
variation of the relative error between successive approximations with
the number of iterations. The operator U for this test problem was

taken as U = -0.95].

5.3 Power System with Multiple Chains of Variable Head Hydro-plants

This section is concerned with the case of a power system with series
plants (on the same stream), multiple chains of plants and imtermediate
reservoirs. The variety of models that can be considered from a theoretical
standpoint is infinite. However, a practical model is chosen in this
section. Here the formulation adopted is applicable to any practical
system with a larger number of hydro-plants. The results obtained here
are reported in [57].

5.3.1 Statement of the Problem

A hydro-thermal electric power system is considered. The system has
one thermal plant and eight hydro-plants. The hydraulic portion of the
system is shown in Fig. (5.6). The operating conditions require minimizing.

T

f 2
3, Jo (o + 8 By (1) + 4P, Floilat (5.3.1)

while satisfying the following constraints:

1. The power balance equation.
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8 9 9
P(t) =P,  (t)+ J P (t) -] [ P.(t)B,.P.(t)
D Sq i=1 M BESE ij'J
9
2. The volume of water discharged at the hydro-plants during the
optimization interval is a prespecified constant:

T¢
J' 4;(0)do = b, i=1,...,8 (5.3.3)
0

3. The upstream plants' active power generations satisfy:

Phi(t) + Ai(t)qi(t) + Biqi(t)oi(t) + Ciqiz(t) =0

i=1,2,3,5,8 (5.3.4)
These are upstream plants so that all of them can be represented by
(5.2.23). Note that Ai(t), B; and C; are given by (5.2.24) through
(5.2.26).
4. For the intermediate plants; the situation is illustrated in
Fig. (5.7). Let there be (i-k) plants upstream from the (i+1)st. The
flow from each plant has a transport delay of rj(j=k,...,i) to the

(i+1)st plant. Then the (i+1)st reservoir's dynamics are expressed by:

i
Si+](t) = ii+1(t) + jgk Qj(t‘Tj) - qi+](t) (5-3-5)
Integrating (5.3.5) one obtains
i
S;41(t) =Di+](t) + jgk xj(t) - Qi+1(t) (5.3.6)

where

t
D;41(t) = S, (0) +J’ i 47(0)do (5.3.7)
o



i 9yl

)

qm‘t) l

Figure 5.7 The ith Hydro-Plant's Reservoir.

128



129

¢
;(t) = [ ay(e)o (5.3.8)
(o]
t
x3(t) =J' a; (-1)do 5= Kaeoosd (5.3.9)
0
Let totg
wj(t’rj) = J' qj(s)ds t< Tj
' 5= Kyeunsi (5.3.10)

which is a known function of time from the previous history of the

system. Then (5.3.9) reduces to:

Xj(t) wj(t,Tj) t < 1,

- J
i =Kkyeusi (5.3.11)

wj(Tj'Tj) + Qj(t-tj) t > rj

J = kyeonsi (5.3.12)

The hyvdro-power generated at the (i+1)st plant is given by:

o (e =t e s ()]
= a. . - B q.
hi+1 Gi+1 i+l Yi+] i+l Ti+1 i+l
(5.3.13)
Substituting (5.3.6) in (5.3.13) for Si+1(t), one obtains
i
P, (t) + Ay 1 (t)as 1 (t) = Biqas,4(t) I xs(t)
2 -
+ C4q0547 (8) + Bypq@y,q(8)Q,(t) = 0 (5.3.14)

In the system at hand, plant number 4 is downstream from plants
number 1, 2 and 2. Also plant number 6 is downstream from 4 and 5, and 7

is downstream from the 6th plant. Thus applying (5.3.14) we have:
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P (81 + Ag(t104(8) - By O)Txy(8) + xy(t) + x3(0)]

+ Byay(t)Q,(t) + Cyaf(t) = 0 (5.3.15)
P (1) + Ag(1)a6(8) - Bgag(01Dxy () + x5(0)]

+ Bgag(t)Qg(t) + Ceas(t) = 0 (5.3.16)
Po (£) + Ap(£)ay(8) = By (E)Ixg(£)] + Cral()

+ Bya,()Q,(t) = 0 (5.3.17)

5.3.2 A Minimum Norm Formulation

The cost functional to be minimized is:

T

f

3, j [o + 6P, (t) + vPg 2(t)1dt (5.3.18)
A g g

subject to satisfying (5.3.2), (5.3.3), (5.3.4), (5.3.8), (5.3.11), (5.3.12)
(5.3.15), (5.3.16) and (5.3.17). Including all these constraints except
for (5.3.3), (5.3.8), (5.3.11) and (5.3.12), we have to minimize

Tf 8
3 = [ L - A0 - BgghR (8) + T ing(8) - A0 - 84D
0

8
SORSENCNOINOR Ypsgzm + ()

9 9

8
DA NOIRGR PRERGIRG
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8 .
+ LBy (0605 (8) - Byny(£)a, (2)

[X](t) + Xz(t) + X3(t)] - Bsns(t)q6(t)

[x4(t) + xs(t)] - B7n7(t)q7(t)x6(t)]dt (5.3.19)

subject to (5.3.3), (5.3.8), (5.3.11) and (5.3.12).
Consider (5.3.8), the equivalent of which is:

q;(t) = Qi(t) i=1,...,8 (5.3.20)
and the equivalents of (5.3.11) and (5.3.12) are
20y =, 2
x:2(6) = 9. 2(r.01.) + 29 (tas.)Q (tots)
J J V3 31337 J
Q.2(t-1.) t > 1. (5.3.22)
J J -

The extra functional to be added to (5.3.19) is (so that (5.3.20) and

(5.3.21) are taken care of):

f 8
%ﬂ&=ji§[mhhﬁﬂ+m#ﬂ%una
0

T

t)x (t)dt - r (t)

+
(=] —]
H-’,
-t
[aeel-))
——
IIMO\

4

2
[Q'I (t-Ti) + Zq/i(TisTi)Q.i (t"‘T.i)]dt
(5.3.23)
Here terms explicitly independent of qi(t), Qi(t) and xi(t) were neglected.

The functional given by (5.3.23) can further be reduced to
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Te g
J =J ) 8
X,q,Q 5 ’i=][mi (t)qi(t) + m'i (t)Q-i (t)] + 'i-Z—'l
2 6 (f i
ri(t)xi (t)ldt - § ri(s+r.)
i=1 !
0
[0;2(s) + 20, (x;74)04(s)1ds (5.3.28)
Let
p_i(t,'r,i) = le,i('r.i ,'r,i)ri(th'i) 0<tc< Tf"l'i
b O Tf"T_i < t f Tf
i=1, »6 (5.3.25)
ei(t’fi) = ri(t""f.i) 0<tc Tf—Ti
=0 Tf-r,i <tc< Tf
i=1,...s6 (5.3.26)

then the augmented cost functional given by J] of (5.3.19) plus Jx q,Q
of (5.3.24) is given by:

;
f
() = e - 201 - Bgg) P (0
0 g
8
"L (0 - 00 - 8) Py ()

6
LI (0 (8) + my(8) + py(£,5)Ta4(t)

8
* LIng (A (E) ¥ m; (t)Ja;(t)
1=
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4 2
+ iZ] mi(t)Qi(t) + YPSg (t)
9 9
RIOIPRRLIOLTLD
8 8 Byn(t)
+ ,21 cini(t)qiz(t) Z z(t)
1= i=1

- Bang(t)a, (t)[x)(t) + x,(t) + x5(t)]
- BG"G(t)qﬁ(t)[x4(t) + xs(t)] - B7n7(t)Q7(t)x6(t)

6
+ 3 e (At +1 05(t,7;)Q;2(1)1dt  (5.3.27)

I ~100
-

i
Define the control vector by:

Eﬂt) = C01-[gjt):ﬂq(t): Ee(t)9 !3(t)»---9!8(t)] (5-3-28)

with
P(t) = col.[P, (t),...,P, (t),P_ (t
P(t) = col.[ h1( ) hs( ) Sg( )]
Ej(t).= co1.[Q;(t),a;(t)] i=1,2,3,5,8 (5.3.29)
Wa(t) = co1.[Qy(t),q,(t)sx;(t),x,(t),x5(t)] (5.3.30)
Hg(t) = col.[Qg(t),ag(t),x,(t),x5(t)] (6.3.31)
W (t) = col.[Q,(t),a5(t)xg(t)] (5.3.32)

and define vector L(t) by

L(t) = co].[Lp(t),Lw](t),...,ng(t)] (5.3.33)

where

Lp(t) = co].[{n](t) - A(t)(1 - Bm)}....,

{ng(t) - A(t)(1 - Bgg)}, 78 = A(t)(1 - Bgg)}]
(5.3.34)
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Lwi(t) = co].[mi(t),mi(t) + "i(t)Ai(t) + pi(t’Ti)]
i=1,2,3,5 (5.3.35)
£w4(t) = co1.[m4(t),m4(t) + n4(t)A4(t)

+ pg(tsy),0,0,0] (5.3.36)

Lwﬁ(t) = col.[ms(t),ms(t) + n6(t)A6(t)

+ p6(t,16),0,0] (5.3.37)
Lw7(t) = col.[m7(t).m7(t) + n7(t)A7(t),0] (5.3.38)
Lus(t) = co].[ms(t),mg(t) + n8(t)A8(t)] (5.3.39)

Let the square symmetric matrix B(t) be given by:

B(t) = diag[Ep(t),EN](t)....,§w8(t)] (5.3.40)
with B,(t) = (by3(t))gyg (5.3.41)
b].j(t) = k(t)Bij J,i=1,9 i=3#9
=y + A(t)By i=j=9 (5.3.42)
. Bihi(t)
E,wi(t) = d1ag[’(T——+ ei(t”i))’ci"i (t)]
i=1,2,3,5 (5.3.43)
. B4h4(t)
_3“4(1:) = diagl-(— + 94(t”4))’§w (t)] (5.3.44)
qsx4 -
~ B,n,(t) B,n,(t) B,yn,(t)
Cyng(t) 44 a2t
B4n4(t)
B (t) = -B—m’ r](t) 0 0
CsXy L 0 rp(t) 0
Byfy (t)
—5 0 0 r‘3(t)
| (5.3.45)
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. Bhg(t)
gwﬁ(t) = diag[-(— + 96(t,16)).§wq'x (t)]
6 (5.3.46)
B.n_(t) Bon_(t)]
[FXCIE CUR
B.n.(t)
gwq’xﬁ(t) = —5:5_ ry(t) 0
B.n_(t)
_‘ 6n6 0 rs(t) J
(5.3.47)
_ B,h, (t)
Ew7(t) = diag[- —5——, B, (t)] (5.3.48)
st7
~ B,n,(t)
Cny (t) -_72L_
- (5.3.49)
B (t) = B,n
Haux, - 4L re(t)
 Bghg(t)
§N8(t) = diag[- - C8n8(t)] (5.3.50)

Using these definitions, the cost functional given by (5.3.27)
reduces to:

;
f

J(u) =J’ wWu(t) + uT(£)B(E)u(t) 1t (5.3.51)
0

Let
) vi(e) = LT(e)e N (e) (5.3.52)

then J in (5.3.51) reduces to

;
f

J(u) =f Ceu(t) + S TB(e) qu(e) + Wt
(0]

;
- (LS8 () Yt)yqr (5.3.53)

The last term in the integrand of (5.3.53) does not depend explicitly on

g(t), so that it is only necessary to consider
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.
f

J(u) =J[{g(t) + l'-é-’iL}Tg(t){y_(t) + léy-}]dt (5.3.54)
o

From (5.3.40) we have
V(1) = diaafR -1 -1 -1
B (t) = diag[B) (t),gw] (t),...,88 (t)] (5.3.55)

Thus (5.3.52) is rewritten component-wise as:
V(t) = col.[!p(t),yw](t),...,yws(t)] (5.3.56)
with
!p(t) = co].[Vph (t),...,Vph (t),Vps (t)] (5.3.57)
1 8 g
!wi(t) = col.[vwi (t),VNi (t)] i=1,2,3,5,8 (5.3.58)

1 2

v = . s ) s s
Ny (0 = ol Dy (2D (6L (8).V (2D, (6)]
(5.3.59)

Vy () = col [V, (t),V, (t).V, (t),V, (t 5.3.60)
Yy co [‘”61( )‘”62( )463( ) ‘“64( )1«

V, (t) = col.[V t),V t),v, (t 5.3.61
—w7( ) = co [N”() w72( )‘”73( )] ( )
then
T T -1
lp(t) = Lpgp (t) (5.3.62)
T T -1
!,,,i(t) = L”i(t) By, (t) (5.3.63)
Let -
-1
gp (t) = (Cij(t))gxg (5.3.64)
and we have
-1 A 1 1
B t) =d - ,
By, (8) = diagl- gy e (O

7t olty)

i=1,2,3,5 (5.3.65)



1

-] s
§W4 (t) = diag[- B4ﬁ4(t) s -B'wqx
—7— *+ 8,(t7y) 4

(5.3.
It can be shown that
B, (t)=(b, () (5.3.
%4 4ij
is a symmetric matrix whose relevant elements are given by:
(t) 3
bw4 (t) = [C4 4(t) - ——74— 121 ——(—T] (5.3.
n
4 4(t)
bw4 (t) = -—-1-7-' Wy (t) (5.3
12 11
B4n4(t)
by () = gy by, (V) (5.3
4 2 4
13 11
_Bang(t)
bw (t) = —r—(—r W (t) (5.3
4 3 4
14 11
Next from (5.3.46)
B, ~1(t) = diag[- ‘ B, T1(t)]
Y 9L~ B (%) ="
6 66 + 8 (t ) CIx6
—Z " 76'"6 (5.3
with
B, ~(t)=1(b, (1) (5.3
aXg 61j
being a symmetric matrix whose relevant elements are given by:
Bs2ng (t) 5 i
bwﬁ (t) = [C6n6(t) Rl S 124 m] (5.3.

il

()]
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66)

67)

68)

.69)

.70)

7)

.72)

.73)



B6n6(t)
g, ()7 eyt g (Y
12 1
B t
by (1) = s (o
613 2rg(t) 764

And from (5.3.48)

-1 . 2 -1
B, ~'(t) = diag[- AT B (t)]
with
B, ()= (b, (t))
ax; 743
where rﬁ(t)
b (t) =
W 7 7
n B, ;" (t)
C7n7(t)r6(t) -
_ B7n7/2
by (t) = 77
712 B, "n,"(t)

Also from (5.3.50)

-1 i 2 1
B t =d - s ]
g (t) = diag[ Bghg(t) * Tgng(t)

138

(5.3.75)

(5.3.76)

(5.3.77)

(5.3.78)

(5.3.79)

(5.3.80)

(5.3.81)

Now the components of the vector V(t) are obtained as follows:

Using (5.3.34) and (5.3.64) in (5.3.62) one obtains:

p
J

+ 6 - M(£)(1 - Bg)ICy (1)

8
v h.(t) = iZ‘[[ni(t) - () - BioIPij(t

J



8
Vp (8 = L Ing(e) = M(6)(1 - Big)Ieyq(t

+ {8 = M1 - Bo)IC (1)
Substituting (5.3.35) and (5.3.65) in (5.3.62) we have:
y (¢)

!wi(t) = col.[- Bihi(t) s
7+ 0;(tsy)

mi(t) + n (t)A(t) + p;(t.r;)
ci"i(t)

i=1,2,3,5

Using (5.3.36), (5.3.66) and (5.3.67) in (5.3.62) one obtain

y(t)
a5 (t)
424 + 64(1’.,14)

Vg, (8) = [ng(8) + ng(£A(8) + pyltary)lbyy (1)

1]
-
=
oY
N
—
(ad
~r
(=2
=
t

-
=
—
ct+
~—
|
-l

N
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(5.3.83)

(5.3.84)

(5.3.85)

(5.3.86)
(5.3.87)

(5.3.88)

(5.3.89)
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And from (5.3.37) and (5.3.78) in (5.3.62):

_(t)
) 6
vwm(t) - Bt (5.3.90)
—2 * 9%(te)
Vygplt) = IMglt) + ng(tIAg(1) + pe(targ)Ioy ()
1

b, (t) (5.3.91)
v, (t) =V, (t) “12 (5.3.92)
We3 We2 bw6]1(t)

by (t)
vV, (t) = v, (t) 13 (5.3.93)
Wea Weo Bﬁ;_;TTJ-

1

Also substituting (5.3.38) and (5.3.77) into (5.3.62) one obtains:

V. (t) = - " (t) (5.3.94)
7 B,h, (%)
2
Yy - e~ n7(t)A§7(2.3§6(” (5.3.95)
e (thrg(t) - Lo
Voo (t) =V, . By (1) (5.3.96)
Wy Mpy" “2rg(T)

Finally from (5.3.39) and (5.3.81) in (5.3.62) the following is obtained:

2m8(t) mg(t) + n8(t)A8(t)
Vwa(t) = col.[- Bs“a(f) . C8n8(t) ] (5.3.97)
Thus the components of the vector V(t) are determined by the above equations.
The problen formulated thus far is that of minimizing (5.3.54) subject

to (5.3.3). Def:.ne the 8x1 column vector:
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b = col.[bys...sbg] (5.3.98)

and the (8x21) matrix 5} as:

- T
o ¥ o ]
T T
K=o 0 K (5.3.99)
T
K
—8
| -
with
Kl = [0,1] : i =1,2,3,5,8 (5.3.100)
_lgl = [0,1,0,0,0] (5.3.101)
T_
ki = [0,1,0,0] (5.3.102)
K = [0,1,0] (5.3.103)
Then (5.3.3) reduces to
Te 1
b =j K'u(s)ds (5.3.104)
0

The control vector u(t) is considered an element of the Hilbert space
L(ZI)[O Tf] of the 21-vector valued square integrable functions defined on
[o, Tf] endowed with the 1nn$r product definition:

<V(t),u(t)> _J' vT(t)B(t)u(t)dt (5.3.105)
()
for every V(t) and u(t) in L(21)[0,Tf], provided that B(t) is positive

definite.
The given vector b is considered an element of the Real space RE
with the Euclidean inner product definition:

= X'y (5.3.106)

>

<X,7>

for every X and ' in R.
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Equation (5.3.104) defines a bounded linear transformation

t: Lézé)[O.Tf]+R8. This can be expressed as:

b = Tlu(t)] (5.3.107)

and the cost functional given by (5.3.54) reduces to:

v
()] = |lu(t) + L2 (5.3.108)
Finally it is necessary only to minimize:
v
Iu(t)] = [lule) + | (5.3.109)

subject to
b = T[u(t)] for a given b in R.

5.3.3 The Optimal Solution:

The optimal solution to the problem formulated in the previous

subsection, using the results of Chapter 2 is:
- <t V(t) V(t
u (t) = T'[b+ T(S] - —-%—)- (5.3.110)
where T' is obtained as follows:

%*
T , the adjoint of T, is obtained using the identity:

wiv = Tow

Lg_]’B[O.Tf] (5.3.111)
Let

g = col.[gys..0Eg] (5.3.112)

*
T = col. [T sTy seeesTy ] (5.3.113)
R 114
Ip = co].[tp],...,tpg] (5.3.114)
T, = col.lty ,t, ] i=1,2,3,5,8 (5.3.115)

1 1] 12

Iw = co].[tw sty oty Sty Lty ] (5.3.116)

4 41 T42 43 44 45



T CO].[t . ot ot ]
g We1' We2® We3® Wgq

62
t t, 1]
W7 W3

—
I

= col.[t
W71

g
[[]

= CO] .[0,&4,0’0 ,0]
= CO] . [0'56’0 ,0]

& £

7 = c01.[0,¢,,0,0]

Then in R8 one has

Te g T
<g,Tu> = J' ,Z &5 !ﬁ dt
R8 o i=]

.21
and in L2,B[0’Tf]

8
L

L

*

Teowr = [ A (0R(0) + |
o

Thus the equality (5.3.111) reduces to:

)
f 8
fo o8 (RO, 7, By (0 (0130t

Tre
=fzg>_.w.dt
i=1 ' 7

o]

This is satisfied for the choice:
T =0
¥ —-T 1
Iwi = gq §wi (t) i=1,...,8

co].[O,Ei] i=1,2,3,5,8

I“ig"‘i (t)W, (t)1dt
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(5.3.117)

(5.3.118)

(5.3.119)
(5.3.120)
(5.3.121)
(5.3.122)

(5.3.123)

(5.3.124)

(5.3.125)

(5.3.126)
(5.3.127)

Substituting the inverse matrices in (5.3.127) this reduces to:

£.
= 1 PR
T“.i = CO].[O,W] 1 = ],2,3,5,8

£—I

N 12

(t)]
W
Y4

£4b

co].[o,g4bw4 (t),54bw4 (t),g4bw4

(5.3.128)

(5.3.129)
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st = col.[o,gsbNs (t).gsbw6 (t),gsbw6 ()] (5.3.130)
1 12 13
T, = col .[0,&,by, (t),&4by ()] (5.3.131)
7 M Y

This completely specifies Ijg_given by (5.3.113).
The operator J is evaluated from:

J[e] = T[1e] (5.3.132)
Using (5.3.104) and (5.3.113) this reduces to:

T¢ Tt
J(g) = CO].[{&-I I Eﬁﬁ—:ydt},{izj -(:—z—r;l—(?)-dt},
o

(o}

f te
1
{53 Wdt},{i4j bw4 (t)dt},
o

0 1
e T¢
5'5 J "6
0 o N
e o
{57[ b, (0)dt)ieg[ gy dtt (53133
7 J 88
o 1 0
or Jel=1r¢g (5.3.134)
with

T T T
[ F 1 4 F1 1
A = diag I t.J' t,j ,
A C]n](ti A C2n2(t$ . C3n3lt$
(t) A d be (t)d
t), t, t)dt,
f Cgng(t) j We
0 o 4] 11
T T, :
f by, (t)dt,J T ¢t (5.3.135)
o 'n o 88

Te
b,

W
41

Thus the operation J'lg is given by



This yields the pseudo-inverse operation given by

as:

J-l

-1

£=A &

e = T 1e)
1.
Telp=0
t 5
T_glw = col.[O, T, ]
1
ni(t)Jn—i-(:E')-dt
0
i=1,2,3,5,8
by &4 by €4
. 1 3 9
Wy T T
jbw4 (t)dt jbw4 (t)dt
o M o M
b (t)e b, (t)e
W 4 W 4
413 41a :
L " T¢
fbw4 (t)dt [bw (t)dt
o M o N
b, (t)gg by (t)a6
ﬁg_l = col.[0 ;6” 12
W Te Te
Ibwﬁ (t)dt " (t)dt
o °N o °Nn
bw6 (t)s6
13 ]
Te
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(5.3.136)

(5.3.137)

(5.3.138)

(5.3.139)

(5.3.140)

(5.3.141}
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b, (t)g, b, (t)gy
1], = col.[0 Al "12 ]
— W, Ts L

wa7 (t)dt fbw7 (t)dt

0 11 0 11

(5.3.142)
In the expression for the optimal solution (5.3.110) let:
n=b+ T(—ﬂ—)-zt ) (5.3.143)

This is an (8x1) vector whose components are found to be:

FF mi(8) + n (DA (£) + py(tar;)
. = b, +
5 i I' 2C;n. (t)
o]
i=1,2,3,5 (5.3.144)

L (f
ng = by + ?f [my(t) + ng(£)A,(t) + Py(tst,)]
o

b, (t)dt (5.3.145)
1
T
_ 1 f
"~ P%*Z f [mg(t) + ng(t)Ag(t) + pglt.zg)]
(o]
by, (t)dt (5.3.146)
691
T
f [m,(t) + n (t)A,(t)]
7 = b *lif 7 ! 72 >— rg(t)dt (5.3.147)
0 B7 n, (t)
Cyny(thrg(t) - —7——
.
f [mg(t) + ng(t)As(t)]
ng = bg + ]Ef 8 Ce"e%t) 8~ dt (5.3.148)

0
Thus replacing ¢ components in (5.3.138) through (5.3.143) by components
of n as given in (5.3.144) through (5.3.148) one obtains



I__g.lp =0
+ 4 .
T.__“JN = col.[0, P ] i= 1,2,3,5,8
= 1
ni(t)fn—i-(ﬂ-dt
0
bw4 (t)ﬂ4 b (t)n4
+ N 12
T'n|, = col.[0, , ,
LI} T¢
I b, (t)dt (t)dt
4
o n 0 n
bw4 (t)n4 b (t)n4
13 14 1
T T
fbw4 (t)dt Ibw4 (t)dt
o M o M
bNG (thng b (t)ng
ﬁ.lw = CO].[O, T 1 ’ 12 ’
X6 f
f oy, (t)dt f b, (t)dt
o N o 1
613 ]
—
f
Ibws (t)dt
0 1
71 12
T'nl,. = co1.[0, 7 , ]

147

(5.3.149)

(5.3.150)

(5.3.151)

(5.3.152)

(5.3.153)
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Now the optimal solution given by (5.3.110) is obtained component-wise

as: ‘()
.Eg(t) =z - :%__. (5.3.154)
M) . 5
Qgi(t) = B-ihi(t) T zei(t’Ti) 1 = ],...,6 (5. .]55)
. M) i = 5.3.156
Qgi(t)—-B—im i=7,8 (.. )
[mi(t) + n‘i(t)A'i (t) + p'i (tsT-i)]
%, {t) = - 20, (6)
T
£m.(t) + n, (LA (t) + p,(t, .)
by * - géfn:(%g UMM LA LY
+ 0
n.(t)jrf ! dt
i A ni(tS
i=1,2,3,5 (5.3.157)
by (1)

4
ORE —— [, (t) : ng(t)A(t) + Py(tsry)]

f
b, (t)by * % j by (£)Img(t) + ny(t)A,(t) + py(tatg)1dt
) o M1

i
j bw4 (t)dt
0 n

+

(5.3.158)
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by, (1)
g (£) = - —5— [mg(t) + ng(t)Ag(t) + pg(t.g)
6 T
f
by, (D)lbg + 3 [ by (£)Img(t) + ng(tIAG(E) + pg(tseg)lat
L _on 0 76”
fb (t)dt
[ b,
o N (5.3.159)
b, (t)[my(t) + ny(t)A,(t)]
q, (t) = - —11 :
&7 : T,
by, (B)Iby + 7] [m, (t) + n7(t)A7(t)]bw7”(t)dt]
+ 11 0 T
.
f b, (t)dt
o 71]
(5.3.160)
[mg(t) + ng(t)Ag(t)]
qgs(t) =- TCqng(E)
T
1 m8(t) + n8(t)A8(t)
[bg + 2 ff Cag (D) dt
* ° T (5.3.161)
n8(t)[f W dt
0
B,n,(t)
xg](t) = ﬁﬁﬂ—q%(t) (5.3.162)
B,n,(t)
xgz(t) = T%%T:T qg4(t) (5.3.163)
B,n,(t)
44 (5.3.164)
ng(t) = g;grfy- q54(t)
Bsnﬁ(t)

= (5.3.165)
e, (V) = 20 TE 9 (M
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_ Bgng(t)
ng(t) = m— qge(t) (5.3.]66)

_ Byny(t)
ng(t) = Fﬁ—ﬁ"—)— QE7(t) (5.3.167)

5.3.4 The Modified Optimal Solution

Here, the pseudo-control variables x(t) and q(t) will be eliminated

together with the associated multipliers. Rewrite (5.3.157) as:

2.0, (£)Q, (t) + my(t) + ng(t)A;(t) + py(tary) =
i £y i i i i i i

i=1,2,3,5 (5.3.168)
(5.3.158) as:

+

57y O, (8) *+ Ma(t) + ng(OA(8) + pyltany) = &

1 (5.3.169)
(5.3.159) as:
EEE:gTET'Qas(t) + mg(t) + ng(t)Ag(t) + pgltatg) = €6
" (5.3.170)
(5.3.160) as:
E;—'grfy 657(t) +ma(t) + ny(t)A,(t) = ¢ (5.3.171)
Y
and (5.3.161) as:
2C8n8(t)6£8(t) + mg(t) + ng(t)Ag(t) = eg (5.3.172)

where e; are the constants in the corresponding q; (t) expressions given in

£
(5.3.157) through (5.3.161). Differentiating (5.3.168) through (5.3.172)

one obtains:
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& [20in; (810 (£) + ny(£IAS(8)] + My (£) + By(tamy) = O
i=1,2,3,5 (5.3.173)

&l #‘TY 0, (6) + ng()G(£)] + () + py(tany) = O

11
(5.3.174)

eI 5;4—2—@7656&) + ng(t)As(t)] + g (t) + py(t,rg) = 0
611 (5.3.175)

S—t [ -bw—:—(;y 6g7(t) *ng(t)A(t)] + o (t) = 0 (5.3.176)
1

g€~[208n8(t)6€8(t) + ng(t)Ag(t)] + Mg(t) =0 (5.3.177)

Substituting for pi(t,ti) from (5.3.25) and (5.3.26) in (5.3.173) through
(5.3.175) one obtains:

%z{zcini(t)égi(t) + 0y (LA (£)] + hy(t) + 20(y5ty)

ei(t’Ti) =0 i=1,2,3,5 (5.3.178)
& 5w4—2-m Q, (8) + ng(£AL(1)] + My (1) + 2uy(r01y)
11
84(ts7y) = 0 (5.3.179)

H tfm Qg (£) + ng(t)AG(1)] + hg(t) + 20(xgug)

11
es(t,TG) =0 (5.3.180)
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Substituting (5.3.155) for mi(t) in (5.3.178) through (5.3.180) the

following is obtained:

FEL2Cin; (B0 (1) + ny (DA (D] + By, (e)a, (2)

+ zei(tsTi)[‘Pi(Ti:Ti) + Qgi(t)] =0

i=1,2,3,5
d 2 A
1

+ 294(ts 74)[""4(1:4:1:4) + 054(1:)] =0

2

ala
c'-

611
* 29g(targ)[vg{xgr7g) + O (8)] = 0
Consider the constraints (5.3.11) and (5.3.12)
x(8) = vy (tary) ts

Xj(t) = yilrgorg) + Qpt-ry)y =< t o T
Rewriting (5.3.185) for a time advance T; one has:

Xi(t+Tj) = wi(tj,tj) + Qi(t) 0<tc< Tf'Ti

The equations (5.3.162) through (5.3.167) can be rewritten as:

Zri(t+Ti)xi(t+Ti) = Bj"j(t+Ti)Qj(t+Tj)

0<tcx< Tf'Ti

mdgs(t) * ng(t)Ag(t)] + Behg (1) ()

(5.3.181)

(5.3.182)

(5.3.183)

(5.3.184)

(5.3.185)

(5.3.186)

(5.3.187)

where for i = 1,2,3 we have j = 4, for i = 4,5 we have j = 6 and for i =

j=17.

6,
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And by definition (5.3.26)

85 (tyt;) = rylt+ey) 0 <t< Temry (5.3.188)

=0 Tf-T'i(tin

Thus (5.3.181) through (5.3.183) reduce to:
dgecn, (0, (6) + ny (DA (D] * By, (610 (1)

i=1,23 j=¢
i=>5 j=6 0 <t Temty
(5.3.189)
gi{ - 2 35-Q54(t) + n4(t)A4(t)] + B4h4(t)QE4(t)
M
+ 35n6(t+r4)656(t+14) =0
0<t<TeTy (5.3.190)
] 2 gy b (0) + g (E)AG(1)] + Behg(1)g ()
611
+ B7n7(t+16)(.157(t+16) =0 (5.3.191)

0 S t _<_ Tf"T6
Note that ~or t e(Tf-Tj,Tf], equations (5.3.189) through (5.3.191)

hold true with exception that the last term in the left-hand side (time
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lead) disappears. Note that (5.3.189) now depends only on ni(t) and
Qi(t), so that this equation isthe modified optimal equation for this
type of plants. However, (5.3.150) and (5.3.191) contain the ri(t)
functions implicitly. This will be considered as follows:

Consider (5.3.68)rewritten as: 2 2
B,n,“(t) 3
4 4 )

[by, (0177 = [epn,(t) - 24— b ,,—i‘m]
11

(5.3.192)
substituting (5.3.162) through (5.3.164) in (5.3.192) one obtains:

-1 B4n4(t) 3
[bw4]](t)] = [Cyny(t) - EQEZTET igl xgi(t)] (5.3.193)
Also (5.3.74) is rewritten as:
-1 _ BG"G(t) 5
[b”s]](t)] = [Cgng(t) - ?U;;T?T 124 xgi(t)] (5.3.194)

Thus (5.3.190) and (5.3.191) are given by:

g—f{2C4n4(t)QE4(t) + ny(t)A,(t) - B4n4(t)i§]xgi(t)]
" Byfy(80, (1) + Bgng (t+4)Q (t+ey) = 0
0<tsTe-1, (5.3.195)
Sel2Ceng (1), (8) + ng(t)Ag(t) - Bng(t) 3 x (t)]
6 ELS
* Bghe(t)Qe (1) + Bymy (t470)Q; (t4eg) = 0

(5.3.196)



155

Note that by (5.3.11) and (5.3.12) we have

xi(t) = ¢i(t,Ti) t 5 Ti (5.3.197)

= wi(Ti,Ti) + Qi(t-Ti) t > Ti (5.3-]98)

so that (5.3.195) and (5.3.196) are in terms of ni(t) and Qi(t).
Finally substituting (5.3.156) in (5.3.176) and (5.3.177) one obtains

FEL2Cn7 (£)0 (€)= Byny ()xg(t) + my (DA (4)]
+ B7|'|7(t)Q7 (t) =0 (5.3.199)
13
-:}—t-[zcans(t)égau) + ng(t)Ag(t)] + Byhg(t)Qg (1) = 0
(5.3.200)

The modified optimal equations (5.3.189), (5.3.195), (5.3.196),
(5.3.199) and (5.3.200) can be rewritten in the general form

%E{Zci“i(t)dei(t) + n; (t)A; ()] + Bihi(t)Qgi(t) +g:(t) = 0

(5.3.201)
Here the gi's are given by:
g;(t) = B4n4(t+ri)6€4(t+ri) 0<tsTer,
i=1,2,3 (5.3.202)
g;(t) = 0 Temty < t < T
i=1,2,3 (5.3.203)
gg(t) = Bsns(t+15)6§6(t+15) 0<t<Temtg  (5.3.208)
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. d 3
g4(t) = BG"G(t+T4)Q§6(t+T4) - HE{B4"4(t)iZ]xi(t’Ti)]

0<tsTer, (5.3.206)

3
= - g—t{B4n4(t)1§] Xi(tgr‘l)]

Tf'T4 < t f Tf (5.3.207)
. d 5
gs(t) = B7n7(t+r6)Q€7(t+16) - ET{BGnG(t)i§4xgi(t'Ti)]

5
_ . d
ge(t) = - EE[BGnG(t)iZ4x€i(t’Ti)]
Tf"TG < t f Tf (5-3.209)

g, (t) = - $5B;n; (£)xg(t)] (5.3.210)

gg(t) = 0 (5.3.211)
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CHAPTER VI

OPTIMAL HYDRO-THERMAL POWER FLOW

6.1 Background

In this chapter extensions of the problems considered in the
previous chapters are made. Here, the active power balance equation
used in the previous formulations is replaced by the load flow
equations. This is as far as the electric network variables are
concerned. One more consideration is the inclusion of a reliability
objective in the cost functional. Moreover, realistic inequality
constraints imposed on the electric variables are considered. In the
final section of this chapter a practical form of the reservoir
(trapezoidal) is considered. Furthermore the effect of efficiency
variations with the active power generation at the hydro-plants is
included. The problem of implementing the optimum generation schedules
is illustrated by way of an example.

The extension of the existing economy dispatch solutions to include
the exact model of the transmission network is due to Carpentier [58].
The resulting optimization problem was shown to be one of nonlinear
programming. Necessary conditions for optimality were derived using the
nonlinear programming techniques. In their paper [59], J. Peschon and
his associates presented the general problem considered by Carpentier
for an all-thermal system. Another important contribution is that of

H.W. Dommel and W.F. Tinney [60]. Here optimal power flow solutions are
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obtained for an all-thermal system. The method is based on power flow
solution by Newton's Method [61], and a gradient adjustment algorithm
for obtaining the minimum is employed.

A unified approach to load-flow, minimum loss, and economic
dispatching problems was presented by A.M. Sasson [62]. Here investigation
of the application of various nonlinear programming methods to the problem
was considered. In [63], A.H. E1-Abiad and F.J. Jaimes presented a
variational method to solve the optimal load flow problem. It is noted
that these two works were also concerned with all-thermal systems.

The problem of power systems reliability motivated the work of R.L.
Sullivan and 0.I. Elgerd [64]. An effort to define a reliability
objective in terms of the system's reactive power generations was made.
The basic idea of their work was to optimally distribute the reactive
power generation between the system generators.

The work by C.M. Shen and M.A. Laughton [65] was of the same nature
as those previously mentioned. The main contribution here was exploring
the problem of existence and uniqueness of the optimal solution using
nonlinear programming techniques. The problem of a hydro-thermal system
with negligible head variations was solved in [66]. Here a discrete
formulation was adopted and the problem is solved using the nonlinear
programming techniques. The discretization process makes the problem a
one of a large dimensicn. However a method of splitting the problem into
ones of smaller dimension was proposed.

A dual linear programming formulation was given in [67]. Here a
fast solution can be obtained for the problem of an all-thermal system

under inequality constraints. This was a contribution to the online
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dispatching problem. The need for including objectives other than
economy was given in [68]. Here a minimum emission dispatch problem
was considered. A variational technique is employed to obtain the
solution.

A generalized reduced gradient technique is used for obtaining
optimal-power flow solutions in [69]. This represents the best method

to date for solving problems of very high dimension.

6.2 Statement of the Problem

A hydro-thermal power system is considered. The system is assumed
to have Ng generating plants (generator buses). There are Nh hydro-
plants and (Ng - Nh) thermal plants. The system's electric network is
represented by N buses (or nodes) and these are connected by branches
or lines having conductance Gij and admittance Bij. Connected between
bus i and neutral is a branch having conductance Gi° and admittance Bio.
This is required for the equivalent = representation of transmission
1ines.

At a given bus i, the phasor source current into the bus is given by

Kirchhoff's Current Law as:

- _ N - g
I(t) = ) [E(t) - Ej(t)]Y (t) (6.2.1)
J=0
where
vid - gl 4 5l (6.2.2)

The net power and reactive volt-ampere at the ith bus is

|
—
(aj
~
"

E'i*(t)'l_i(t) (6.2.3)

(T2l
-
—
(o
~
u

Pi(t) - jQi(t) (6-2-4)
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*
where E; (t) represents the conjugate phasor voltage. Let:
E,(t) = E;(t)ed® (6.2.5)

Ei(t) = Edi(t) + qui(t) (6.2.6)
Then (6.2.3) reduces to:

_ N _ _ _is N _ i
S.(t) = ] ET(OE T -E7(1) ] E (T (6.2.7)
& = J
J=o0 j=o
J#i
substituting (6.2.2) and (6.2.6) in (6.2.7) and separating real and

imaginery parts of §} to obtain P, and Qi as given by (6.2.4) one obtains:

N . ..
= .2 - iJ _ ij
Pi(t) E; (t)Gi Edi(t)jgo[ﬁdj(t)s qu(t)B ]
N . .
- E, (t) § [y (£)BY + £ (£)6"V] (6.2.8)
9% “j=o 9 9
J#i \
-0;(t) = E;5(t)B, + Eqi(t)jéo[Edj(t)Gij - qu(t)Bij]
J#i
N . .
- E4 (1) ] [E (t)B" + E_ (t)6'9] (6.2.9)
i §%0 9 9
J#i
where

N ..
6; =6 (6.2.10)

J=0

J#i

N ..
B; = J 8" (6.2.11)

J=0

Jj#i

Note that if the E}'s are the phasor voltage to neutral then it is obvious

that Ed = Eq = 0. Hence (6.2.8) and (6.2.9) are rewritten as:
0 )
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2 N . -
Pi(t) = E,°(t)6; - Edi(t)jgl [Edj(t)e” - £ (t)B1]

J#i ’
- E (t) ? e, (t)B'd + £ (t)6id]
% g 9 9
J#i
i=1,.00N
(6.2.12)

N ;s . .
2
-Q;(t) = E;5(t)B; + Eqi(t)jglffdj(t)G’J - sqj(t)B‘J]
it

N . . .
- By (t) } [E4 (t)BY + E. (t)e™]

i q=] J J
J#i
1‘ = ])OOQ‘N
(6.2.13)
Note that
E2 = E, 2(t) + £ () i=1,..0N (6.2.14)
LI 9

The equations (6.2.12) and (6.2.13) are the load flow equations.
Each bus is characterized by four variables Pi(t), Qi(t), Edi(t) and
Eqi(t). In a normal load flow study, two of the four variables are
specified and the others must be found. Depending upon which variables
are specified, the buses can be divided into three types [60]:

1. Generator bus with P and E specified, Q and the phase angle

E
[tan'] ESJ unknown.
d

2. Load bus with P and Q specified, Ed and Eq being the unknowns.
3. Slack bus with Ed and Eq specified, P and Q unknowns. For

convenience this shall be the node Ng and Eq(t) is taken as zero. Since
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the slack bus is taken as a generator Ng node, this means that the
number of the unknowns is reduced by one. We may assume that E is not
specified at the (Ng-l) bus.
In the economy dispatch problem, the active power generation
P at the generator buses are sought. These generations are obtained such
that maximum economy is achieved. This requires minimizing the operating
costs at the thermal plants. Thus the problem is:
Tf N
. 2
Min I'{'E [a,i + Bips.(t) + YiPs- (t)]ydt (6.2.15)
Psi(t) b 1—Nh+1 i i

while satisfying the load flow equations. Note that now the powers Pi's
are no longer specified for the generator buses in these equations.
Another important objective in the power system's operation is
its reliability. To improve the system reliability during operation, it
is necessary to ensure that the reactive generations are minimally
proportional between the system generators [32,64]. To achieve this it
is suggested that the schedules obtained must
T
Min f[ ;g ;gQi(t)Ki.Q.(t)]dt (6.2.16)
%, (8 1%1 3= ]
where the Kij‘s are assumed to be known weighting coefficients.
It is assumed here, that both the economy requirement and the

reliability requirement are of equal importance. Thus one is required

to:
N 2 g Y
Min ./'{.z P (t) + v “(t)] *-21-21
Psi(t)’QGi(t) o N+ i i i=1j=
Q; (t)K; ;04 ()t (6.2.17)
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while satisfying the load flow equations (6.2.12) and (6.2.13).
There are several inequality constraints that must be satisfied

at the optimum for a valid solution. These are given by:

M
2 2 2 -
P.i (t) + Qi (t) i Si 1= ].o.-’Ng (6.2-]8)
m M . _
Qi 5 Q_i(t) i Qi ] - ]"o.,Ng (6-2.]9)
m M .

Furthermore, since E at a generator bus is specified then one
requires

2 = 2 i = -
a; (t) Ei (t) i ]....,Ng 1 (6.2.21)

2
Edi (t) + E
where Ei(t) is assumed to be known.
The hydro-plants active power generation is assumed to vary with the
rate of water discharge as:
2 -
Phi(t) + A (t)g;(t) + Bwiqi(t)Qui(t) +C;q;°(t) = 0
is= 1,...,Nh (6.2.22)
with
q;(t) = Q”i(t) i=1,00N (6.2.23)
Moreover, the volume of water discharge at any hydro-plant is a prespecified

constant:

b
J’qi(t)dt - b, P2 1N, (6.2.24)
0

6.3 A Minimum Norm Formulation

The problem stated in the previous section can be formulated as a
minimum norm problem as follows: An augmented cost functional JO can be

obtained as:
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J_ (. .3.
0. 04) (6.3.1)

:
f N
= 2 2
3, () -fo L, 2, (B)I-P5(8) + By 2(0)6y + £ (0,

N .. ..

-E, (t E, (t)6" - E_ (t)B"d

d ) ig![ dj( ) qj( )B'Y]
J#i

N . .
- B, (t) _Z][Ed.(t)B1J + g ()677]]1dt

1 J= J J
hfal (6.3.2)
Te N ) »
3, (+ { L 2, (000;0) + £ B(os + £ Z(00e,
+E () ? e, ()™ - E_(t)81]
% 5= Y 9
3#
- E, (t) § [E, (t)BY + E_(t)6'977dt
4" 3217 Y 9
J#i (6.3.3)
Tf Ng-2 ) )
() fo I e, 0 B0 + £ Febe (6.3.)
Te N
6, () =.£ L (0P (6) + A (£)ag(8) + By q,(t)

Q (8) + Ca;%(8)] + my(B)a (1) + h;(6)Qy (t))dt

(6.3.5)
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:
f
2
Jog-) 1{1 by [8yPg (1) + v; g (0]
N N
Z Z Q; (t)Ky5Q5(t)1dt (6.3.6)
i=1 j=1
T N
f M
o) -[ _z? M (P21 + 020 _sF 1t (6.3.7)
1=
0]
Te Ng
3, () =J' Isg(0ey" - py(e)ee (6.3.8)
i
0
f Ng M
o () =[ L B ®IPy(8) - "y (6.3.9)
o 1= 1
Tf Ng
o, f I e (00" - 05(e) et (6.3.10)
1=
0
T N
J°1o J— 2 el (£)[Q;(t) - o, "lat (6.3.11)

Here Jo is obtained from (6.2.12) and Jo js obtained from (6.2.13). Also
1 2
Jo corresponds to (6.2.21), J_ to (6.2.22) and (6.2.23). J_ 1is the
3 04 %5
original cost functional of (6.2.17). The inequality constraints (6.2.18)

through (6.2.20) are included using the Kuhn-Tucker theorem [59] by

considering J (.) through J (.) so that the following exclusion equations
6 10

must be satisfied at the optimum.

M

M (6)[P 2(t) + 0;%(t) - si2 1=0 (6.3.12)
zi(t)[Pim - Py(t)] =0 (6.3.13)
23()P, (1) - PiM] = 0 (6.3.14)
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e; (t)IQ;" - Q;(t)1 = 0 (6.3.15)
e} (t)[Q;(t) - ¢;"1 = 0 (6.3.16)

for i = 1,...,Ng t e[O,Tf]. Moreover, Api(t), xqi(t), xei(t), ni(t)
and mi(t) are to be determined such that the corresponding equality
constraints are satisfied.

The augmented cost functional Jo(.) of (6.3.1) can also be

expressed as:

Jo(.) = Jod(.) + Jop(.) + JoQ(') + JOE(.) + Jow(.)
' (6.3.17)
where Tf N
I, () - fo 1,gﬂgﬂ[-xpi(twi(t) 3 (810;(1)]
+ [, ()6, + 2 (t)B,]
p N q N
Ng 9 g
Ny
[, Z0)+E 201+ T
Ng Ng is=
ZM m . M
[-Mi(t)S,i + zi(t)Pi - zi(t)Pi
+ e, ()" - e} (t)Q;"ldt (6.3.18)

Note that Jo (.) is explicitly independent of the control variables. The
d
control variables here are P.(t) and Qi(t)[i = 1,...,Ng], Ed.(t), Eq (t)
i

[i= ,N] and q; (t),QN (t)[i = 1,...,Nh]. And
T&
h
op) ][zn(t)u(t)-ut)-x (£)7P, ()
o i=1
Ng
+ 1 [ +z(t)-2(t)-k()]P()

1=Nh+1
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N, Ng
L 2(t) + z (Mi(8) +vy)

i=N h+

Piz(t)]dt (6.3.19)

Te N
JOQ(-) = ] [ 1.Z][e,!(t) - e;(t) + Aqi(t)]Qi(t)
Ng Ng N
+ Z M, (t)Q, 2(t) + Z Z Q, t)KIJQJ(t)]dt
i=1 j=1
(6.3.20)

I 2
Jo_(+) =‘L'[izl [Api(t)Gi + Aqi(t)Bi + xei(t)]gdi (t)
N -2

s 7 G 2
L Dy (06 ¢ g (VB; * e (D)IE, “(1)

+
nesq 2
=

2
g_][xpi(t)ei * Aqi(t)Bi]Edi (t)

-+
II.M =

2
X _][Api(t)Gi + Aqi(t)ai]z-:qi (t)

=g

N

) z Eg (1)) (t)e‘J + g (t)B’J}Ed (t)

113;] 1 95 J
J#i

]
nes-122

ij ij
Eqi(t){xpi(t)G + xqi(t)B }qu(t)

= it 2Z
-t —

N .. ..

I3 E (t)a (£)BY - a (£)6"E, (t)

L IR % %
J#i
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N N ..
+ 1 LEg (t){x )8V - (£)eMIE (t)]dt
i=1 351 9 Pi 9 9
J#i
(6.3.21)
Let
- ij ij
aij(t) = -[Api(t)G + Aqi(t)B ]
123 = Tyeee,Nyifl (6.3.22)
= - ij _ ij
bij(t) [Api(t)B Aqi(t)G ]
P9d = VaeuesNyiti (6.3.23)
235(1) = g (1)) + 3 (0B + 2, ()]
21,000,802 (6.3.24)
ag;(t) = xpi(t)Gi + Aqi(t)Bi
1= N1, 0N (6.3.25)

Then (6.3.21) reduces to:

N 2 2
o f [ ayi(8)Eg “(8) + Eg 5(0)]
0 i#N
NN
+1Z1 j§1 Edi(t)aij(t)Edj(t)
Jj#i
N N

PURVICLLT §{8Eq, (1)
J#
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+

Ho2Z

4 Eqi(t)bij(t)Edj(t)

o2z

1
i

N
'i§1 ; Edi(t)bij(t)Eq.(t)]dt (6.3.26)
j

J

) e Cus Cue

1

i

q (t) are specified (this is the slack bus) then the
N

Since Eq (t) and E
N
g
above expression can ge reduced to

;
f N
= 2 2
3o () -JE L2, 21500y 50 + € B0

1ng
NN
Tihh R (Da(0E (0
Ny 3#.5N J
NN
ChL ey (0

i#N, jfi.ijg

N
+

i=1

L
i=1
1#Ng

N
)
j=1
J#i

N
!

§=1
i#i

()

Eqi(t)Bij(t)EdJ

,j#Ng

Eg, (t)b43(1)Eg (1)
3Ny

N
. . E t)E, (t
+ iz],ing[aNg’I(t) + a1’Ng(t)] dN ( ) di( )

9

* L Doy a(thay y (0,

g (£)E, (¢)

N i

g

. ll.Mz

i=1
i#N
7%
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N
+ 3§ [by (t) + b o (£)IE, (t)E, (t)
i=1 Ng,1 1,Ng qNg di
lng
g ( (t) (t)IE, (t)E, (t)]
- by, :(t) +b; t)]E t)E_ (t)ldt
i=1 Ng,1 1.Ng dN Q5
it 9
(6.3.27)
With the assumption of zero phase angle at the slack bus:
E. (t)=0 (6.3.28)
qNg

thus T
E, (t)a,.(t)E, (t)
L ‘l]J di 1J dj
1fN J#N

N

+ 1 Z Eq, (t)a5()Eg (t)
i=1 j=1 9 j
1#N J#N

N N

+ E_ (t)b..(t)E, (t)
121 Z] 9 it
ifNg 3#1.J#Ng

N N

- £, (t)b,(t)E. (t)
s S

ifNg 3#1L.3N

N
+ 121 [awgi(t) + ai’w;t)]EdN (t)Edi(t)
ifN 9

N
- Z] [bN () + by N(t)]Ed (t)E 1(t)]dt
1#N d 5 (6.3.29)



And T N
f "h
%) = f [3 (ng (£A;(8) + my(e))ay(®)
0
Ny M
2
+ Lm0 (8) + T Cng(t)e"(1)

Ny By By(t)

2
- L . Q" (£)Jat

Define the control vector as:
u(t) = col.[P(t),Q(t),E(t) N(t)]
with

P(t) = col. [Py (t),P (t)]

Py(t) = co][P](t),...,PNh(t)]

P (t) = co].[ENh+](t),...,PNg(t)]

Q8) = col. [0 (1), (8]

E(t) = col.[Ej(t),E (t)]

E (t) = col.[E; (t),...,E t),E t),E, (t
Eg(8) = col.[Eg (B)urensy () ngH( )1Eg (0]
L (DEy () (8)]

gq(t) = col.[Eq](t),...,E g

q
Ng

W(t) = col.[ﬂq(t),--.,ﬂNh(t)]

W, (t) = col.[q;(t),Qy (t)]
1
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(6.3.30)

(6.3.31)

(6.3.32)
(6.3.33)
(6.3.34)
(6.3.35)
(6.3.36)

(6.3.37)

(6.3.38)

(6.3.39)

(6.3.40)

The control is a 2[n+Nh+Ng]x1 column vector function as can be seen by

inspecting (6.3.31) through (6.3.40).

Define the auxilliary vector L(t) as:



172

L(t) = co1-[Lp(t).LQ(t).LE(t).Lu(t)] (6.3.41)
Lp(t) = co].[LPh(t),LPS(t)] (6.3.42)
LQ(t) = co].[LQ](t),...,LQN (t)] (6.4.43)
g

Lp (t) = col.[Lp (t)seeuslp (t)] (6.4.44)

h 1 Ny
Lps(t) = col.[LPNh+](t),...,LPNg(t)] (6.3.45)
Le(t) = col-[LEd(t),L£ (t)] (6.4.46)

q
Le (8 = col.llg (8)eeoobe (t)alg  (thilg (¥)]
1 Ng-1 Ng+] N (6.3.47)

Lo (t) = col.[Ly (t),...sl (t),L (t),L. (t)]
=£ E E E =£

q 4 qNg-l qng+1 W (6.3.48)
L,(t) = co].[Lw](t),...,LwN ()] (6.3.49)

h
with

Lpi(t) = ["1' (t) + 2%(t) - li(t) - )‘pi(t)]

i= Tyl (6.3.50)
Lpi(t) = [8; + 2(t) - 25(¢) - xpi(t)]
i= N#l,oN (6.3.51)
LQi(t) = [e;(t) - ei(t) + Aqi(t)] i=1, ..,Ng (6.3.52)
L. (t) = [ay ;(t) + a; (t)JE, (t)
E N i i,N d
% : ’ YN
i# N (6.3.53)
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Le (t) = -[by ;(t) + b, o (t)JE, (t)
Eqi Ng,1 1,Ng dN

g

i=1,...,N

i 7N (6.3.54)
Ly (8) = col.Llng (DA, () + ms () ()]

i= ]""’Nh (6.3.55)
Let the square matrix B(t) be given by:
B(t) = diagLBp(t) ,EQ(t) ._QE(t),Ew(t).] (6.3.56)

with
By(t) = diaglBy (£).8p (0] (6.3.57)
§Ph(t) = diag[Mi(t)] i=1,000N (6.3.58)
§Ps(t) = diag[BPi(t)] is= Nh+1,...,Ng (6.3.59)
BPi(t) = Mi(t) + Y; (6.3.60)
By(t) = (Ki;(t)) (6.3.61)
K%j = Kij iFJ 1. = ]""’Ng (6.3.62)
K%i(t) = Mi(t) + Kii is= ]""’Ng (6.3.63)
gw(t) = diag[gwi(t)] i=1, .,Nh (6.3.64)
. B;n, (t) :

l_3_w.(t) = d1ag[c,in1.(t), - —-—2-——] i=T,.0N (6.3.65)

i

Let
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a(8) ap,(t) .. BN 10 bpple) by (e by (t]
21(t) () oo a(t) [oby(t) 0 obyg(t)e by ()
R T S A E A S
Be (&) ~fam (1) ap(t)e- s e ay(e) | -y (6)bys() -bys(t) e

St e em e am e em W s @ e s = -

0 blz(t) b]3(t)..bm(t) :a”(t) a]2(t) e e am(t)

|
byy(t) 0 b2§(t)..b2y(t) :azz(t) a,(t) ... -az[q(t)

i (8) Bp(t) Bg(8)ee 0 | ag(e) o) ... - ay(®) |

B- (t) = (C;.(t i, #N
AR FIC 12§ # N,
1,J # N+Ng (6.3.66)
Then (6.3.29) reduces to
i T
¢ (+) = [ TET (118 (DE(H) + LI0)E(0)] (6.3.67)
o 0

Note that §£ (t) is non symmetric. However, one can replace §£ (t)
()

()
by the symmetric matrix §£(t) such that

E'(t)8¢ ()E(t) = ETB.(t)E(E) (6.3.68)
where °

B-(t) = (b t

Be(t) = ( eij( ))Z(N-I)XZ(N-U (6.3.69)
with

b t) =b t 6.3.70

e, (¥ e,V ( )

1 Cs
! Ja # N and N (6.3.71)
Using the above definitions, the augmented cost functional Jo(.) of

(6.3.17) reduces to:
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:
f

3,(.) =I [LT(t)u(t) + u' (£)B(t)u(t)ldt (6.3.72)
0

Note that the terms explicitly independent of the control u(t) are
dropped in (6.3.72)
Let
v(t) = LT()87(t) (6.3.73)

then the cost functional of (6.3.72) becomes:

T
f

3,(.) =f [u(t) + SETB(e) [u(t) + Uie  (6.3.70)
(o]

I
Here - !—égigjt) lézl-was dropped since it is explicitly independent of
u(t).
Thus the problem is now reduced to that of minimizing (6.3.74)

subject to satisfying (6.2.24) which is:

e

b_i =f qi(t)dt i = ]’...’Nh (6-3-75)

o

Define the thl column vector:

b = col.[bys..nsby ] (6.3.76)
h
and the th[Z(N+Nh+Ng)] matrix ET as:

T _ T
5, - [stQ_Q ao sl(_w ]
with gp being the thNg matrix whose elements are all zero. gQ and

0, are th(Ng) and th(Z(N-l) zero matrices respectively. And EQT being

(6.3.77)

the th2Nh matrix given by:

5;41- = [&T""’EJJT ] (6.3.78)
1 Nh

The K 1's being !, x2 matrices with zero elements everywhere except at the
; h
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Ist column and ith row location where the element is one. Thus (6.3.75)

reduces to:

Te
b =I _Tg(s)ds (6.3.79)
0

The control vector u(t) is considered an element of the Hilbert

space Lg(g+Nh+N )

9'[0,T,] of the 2(N+Nh+Ng) vector valued square integrable

functions defined on [O,Tf] endowed with the inner product definition:
T

<V(t),u(t)> =jf!T(t)_§(t)!(t)dt (6.3.80)
(]
for every V(t) and u(t) in Lgfgh+Ng+N)[0,Tf], provided that B(t) is
positive definite.
The given vector b is considered an element of the Real space RNh

with the Euclidean inner product definition.

%Y = XY (6.3.81)
for every X and Y in R,
Equation (6.3.79) defines a bounded linear transformation

N
T: Lg[gh+N9+N][0,Tf]*R h. This can be expressed as:
b = T[u(t)] (6.3.82)

and the cost functional given by (6.3.74) reduces to:

V(t),,2
JpLu(t)] = [lu(t) + =5E| (6.3.83)
Finally it is necessary only to minimize:
vV
Iu(t)] = || (t) + =L (6.3.84)
subject to b = T[u(t)] (6.3.85)
for a given b in RV
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6.4 The optimal solution

The optimal solution to the problem formulated in the previous

section using the results of Chapter 2 is:

= T*[Q_+ T(!éﬁi)] - léﬁl (6.4.1)

where T+ is obtained as follows:

T*, the adjoint of T, is obtained using the identity:

<§_,T_u> <T*g,u>
R 2NN ) o 9 (6.4.2)
2,8 9 "LOl¢ -4
Let
£= col-[ap---,eNh] (6.4.3)
T'g = col.[T RrRram (6.4.4)

where Ip, IQ and T are of the same dimension as P,Q and E respectively.

IN = co].[Iw],...,IwN ] (6.4.5)
h
I, = colli LT, ] = TN, (6.4.6)
j 1 i
q Qw
and
o = co].[g.,O] i=1, N, (6.4.7)
Then in RV one obtains: N
T h
<€,Tu> = 2 ¢;TW.dt (6.4.8)

. 2(NpN_+N) .
and in LZ,Bh g [O,Tf].

T [ 7,8, (t):(t) + ToBy()Q(t) + T B (t)E(t)
h

+ 1 T, By (L)W (t)1dt (6.4.9)
i=1 'l
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Thus the equality of (6.4.2) reduces to:
Te N T

f 'h f
T =
[ L, eitset [ gptie(e) + Tgg(t1(®)
(] o
Nn
+ I£§E(t)51t) + 121 I“iEwi(t)Hﬁ(t)]dt
(6.4.10)
which is satisfied for
= 6.4.11
=0 ( )
= .4.12
IQ Q (6.4.12)
I.=0 (6.4.13)
- J -1 .
Iwi"¢i Ewi (t) 1 '],.o.,Nh
or
5 6.4.14
I“]'—[W. 0] 1']9 -sNh (- . )
This completely defines I:Q as given by (6.4.4).
The operator J is evaluated as
Je] = TIT7E] (6.4.15)

this is found to be T En. Lf

£, If
] = co1.[{% Jn—l-](?ydt},...,{cNh J’ nN](t) dt)]
° h“ "h (6.4.16)

or

JMel=A ¢ (6.4.17)
. T T
with diag[( f——l—y‘ dt (Jf_——(-y‘ dt)]  (6.4.18)
A - 1a ey *«Te

so that the operation J']g is given by:
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V) = a7l (6.4.19)

This yeilds the pseudo-inverse operation given by:

e = T el (6.4.20)
as Tl = 0 (6.4.21)
ﬁgg=g (6.4.22)
ﬁﬂ5=g (6.4.23)
ey, - g
n1(t)J; E;%ET dt
i= 1.l (6.4.24)

Consider (6.3.74) and let:

U(t) = col. [Up() Vg () Vg(£) 1y ()] (6.4.25)

Then using (6.3.72) and (6.3.57) one obtains

vi(e) = L;(t)g;](t) (6.4.26)
v(t) = LB(t)gal(t) (6.4.27)
vL(t) = LE(0)E; (1) (6.4.28)
ygft) - Uy () (6.4.29)

Furthermore, let

!p(t)

CO]‘[!Ph(t)’!P (t),VN(t)] (6.4.30)
s

using (6.3.42) and (6.3.57) then one obtains:



Tiey _ T -1 T -1
Yo(t) = [(Lph(t)gph(t))(Lps(t)gps(t))] (6.4.31)
Thus .
Vo (t) = Lj (1)B71(t 6.4.32
Yp (8) -ph(t)—Ph( ) (6.4.32)
T T -1
Vg (t) = Lb (t)B'(t (6.4.33)
_Ps( ) _ps( )_Ps( )

From (6.3.50) and (6.3.58) one obtains (6.4.32):

n;(t) + 2i(t) - 2,(t) - Api(t)
W0 ]

vV (t 1.
_ph( ) = col.[

and from (6.3.51) and (6.3.60) for (6.4.33):

B; + z%(t) - zi(t) - (t)

Pi

i = Nh+],oo-’Ng
(6.4.35)

The matrix inverses gal(t) and EE](t) will be assumed as:

Dy(t) = Byl (¢) (6.4.36)

De(t) = BE](t) (6.4.37)
with

Da(t) = (dqij(t)) (6.4.38)

Dc(t) = (dEij(t)) (6.4.39)

Note that the dQ (t)'s are functions of Mi(t) and the dE (t)'s are functions
ij id
of Api(t) and Aqi(t). Thus yQ(t) and !E(t) are given by:



181

yQ(t) = co].[VQ](t)....,VQN (t)] (6.4.40)
and g
Vo(t) = col.[Vo (t),...,V Ve (t)y..esVe (t)]
—£ E E E E
4 d 9 an
(6.4.41)
Note Ve and VE are not present in !£(t).
dy N
g g
Then (6.3.52), (6.4.24) and (6.4.38) yield:
Ng
VQi(t) = jg][ej(t) - ej(t) + qu(t)]doij(t)
i=1,.. ’Ng (6.4.42)

Aiso (6.3.53), (6.3.54), (6.4.28), (6.4.41) and (6.4.42) yield

N-1
Ve (t) = [ay s(t) +a.,, (t)IE, (t)d. (t)
g (V)7 ) Ton g8+ apy (MR (t)dg
T ] 9
g
2(N-1)
* jgn [y ,-N_+1(8) * by pyq g (£)]
ij+Ng
£y (t)d (t) i=1,..0N (6.4.43)
Ng ij
(6) = T [ay (t) (t)IE, d(t)
v t) = a (t) + a. t)]E t
j#Ng g g
A (t) + b (), (t)
+ - . t) + b. t
q;:+N Ng,J—Ng+1 J-Ng+],Ng ng
J
g
dg () =N
(Ng-1+1)J
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Consider (6.4.29) and let

!N(t) = co].[!w1(t),....!NNh(t)] (6.4.45)
then using (6.3.73) one obtains

T _ T -1 .
V”i(t) = L“i(t)B“i(t) is= l,...,Nh (6.4.46)
if vV, (t) = col.[v,, (t),V, (t)]
—Ni Nqi in

then (6.3.55) and (6.3.65) yield:

m.(t) + n: (LA, (t)

qui(t) = Tnn (D) i=1,0N (6.4.47)
2, (t) _
qu.(t) = - B1—n1—(£7 1= ],...,Nh (6.4.48)

1

The optimal solution as given in (6.4.1) is written in component form

t
P(t) = T'[b + T(=m)]| %! ) (6.4.49)
(t)
Q. (t) =T b + T(=(—?-))]|9_ - =§— (6.4.50)
t
E(t) =T b + T(—(—))IIIE ( ) (6.4.51)
(t)
W(t) = T'[b + T(—(—))]lN ‘“ (6.4.52)
From (6.4.21) through (6.4.23) one obtains for (6.4.49) through (6.4.52)
vV (t)
P_g(t) = - L% ) (6.4.53)
Va(t
Q. (t) = - :92— (6.4.54)

v (t
E (1) = - '%(—) (6.4.55)
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Moreover ﬂg(t) in (6.4.52) is rewritten component-wise as:

v, (t)
W.
() = T'0p ¢ TEEED, - —— (6.4.56)
1 =1

using (6.4.24), (6.4.49) and (6.4.50) this yields:

[mi(t) + ni(t)Ai(t)]

q, (t) = -
£ zcwi"im
Tf my (t) + n (A (t)
b. +
i I ZCini(t)
+ 0
Te
1 _dt
ni(t)f ni(ti
0
i=1,..N (6.4.57)
, (t) .
ng (t) = m is= ]....,Nh (6.4.58)
i i

Furthermore, using (6.4.33), (6.4.34) and (6.4.35) in (6.4.53) one

obtains:
Ph @ - Eni(t) + z%(:; - 2i(t) - Api(t)]
i, i(t)
is= 1,...,Nh (6.4.59)
b (0 - - [s; + zi(t) - 25(t) - Api(t)]
g M, (t) + vy

i= Nh+'l,...,NG
(6.4.60)
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Also from (6.4.42)

L
-
—~
-+
~—
]
]
L
e, 2

T Lej(e) - e5(t) + rg, (920, (8

i=1,...,N (6.4.61)

9

Finally, using (6.4.43) and (6.4.44) the following is obtained
CAL
Ed'i (t) = - —29—'[ Z [aN ,j(t) + aj,Ng(t)]dE- (t)

£ q=; g ij
j# g

2(N-1)
+ ) [by (t) + b, _ (t)ld. (t)]
3oN Ng,J Ng+] j Ng+1,Ng Eij
j#Ng+N

i=1,...,N (6.4.62)
By (t)

N N
—_q . - d
By, (t) ——1[ jg] faug,a(t) ¥ aJ’Ng(t)] EN -1+i),j(t)

3 it ’

2(N)

(o541 (E) * By sy p (14 (t)]

j=N E(Ng-1+i),j

j #N+
J#N Ng

i=1,...,N (6.4.63)

The last two equations are modified by noting that the symmetric
matrix Be in (6.3.69) can be written as:

A(t) ()
t) = (6.4.64)

]
Q) A(t)
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A-(t) = (a;, (t 6.4.65
B0 = gy a0 (6.4.65)
C = (C,. 6.4.66
GO = @) (6.4.66)
oy (1) = 1 25 (6.4.67)
E
<b.. b..
Cig () = S (6.4.68)

. ) . T
Note that A_(t) is symmetric but Ce(t) is not. Moreover Ee(t) = - Cg(t).
Th2 inverse matrix BE](t) is denoted by

Dg(t) = BE](t) (6.4.69)

Then using (6.4.67) and the property QE(t) = - Cz(t), one obtains for
QE(t):

e et (6.4.70)
D (t) = G,
=
He(t)  Fg(t)
where
Felt) = [ag(0) + Lo () (]! (6.4.71)
_
He(t) = -A (t)C (t)Eg(t) (6.4.72)
Thus

v

_Ed(t) = L_Ed(t)EE(t) - L (t)ﬂE(t) (6.4.73)

q
xEq(t) = _L_Ed(t)ﬁf(t) + LEq(t)EE(t) (6.4.74)

so that (6.4.65) and (6.4.66) can be written in the alternative form:
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g, (B
E (t) = - — [ (a (t) + a. (t))f1(t)
dig 2 Jz'l Ng,j J;Ng i j
J#Ng
N
+ 551 (bNg’j(t) + bj.Ng(t))hiJ.(t)]
j#N
? (6.4.75)
£y (B
Eqig(t) = - "29 [ jgl (aNg,j(t) + aj,Ng(t))hij(t)
J#Ng
N
) J-Z] (bNg;j(t) + bj,Ng(t))fij(t)] (6.4.76)
J'ng

6.5 Implementing the Optimal Solution

The m2thod suggested for actually implementing the optimal solution
is best illustrated by way of an example. The example concerns a practical
power system as shown in Fig. (6.1). Here bus number one is a hydro-
generator bus, bus number two is a thermal plant's bus (also slack bus)
and bus number three is a load bus. The classification of the various
variables in the sample system is given in Table (6.1).

The reliability matrix K cost functional (6.2.16) is taken as

1+K1 K]
2 -7
K= (6.5.1)
o
2 2
Ky = 0.02 (6.5.2)

This is the same reliability matrix as the one given in [64]. Thus the
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Hydro Thermal
plant

%%
2

Load 3
bus
Rela,

Figure 6.1 EXAMPLE 3-BUS SYSTEM

T
f
Bus Type E Eq E P Q q f q(t)dt
q 0
1 Hydro Optimum Optimum Optimum Optimum Optimum Optimum Specified

2 {herma; Specified Specified Specified Optimum Optimum
Slack

3 Load Optimum Optimum Optimum Specified Specified

TABLE 6.7  CLASSIFICATION OF VARIABLES IN THE
EXAMPLE SYSTEM.



matrix gQ(t) in (6.3.61) is given by

[ 1+K] K] -
M (t) + 1) (- 5N
Ba(t) = K, 14, (6.5.3)
(- 51) (My(t) + —-1)
and the inverse matrix QQ(t) is:
[ ]+K1
M)+ (5 kg
A 24
Q Q
Dq(t) ] ]+K] (6.5.4)
K My(t) + (o)
ZAQ AQ ]

142K

14K
B = M(EM(E) + LM (8) + My(t)) + o—L  (6.5.5)

The optimum active and reactive powers at buses 1 and 2 are given by

(6.4.59) through (6.4.61) as:

[y (£) + 27(8) = 2(8) = o (1)

1
P (t) = - A (6.5.6)
1 (®) 2 )
[8, + 25(t) - 2,(t) - Apz(t)]
Py, (8) = - 2T 7 7] (6.5.7)
1 1+
Q]g(t) = - Z—Aa[(ei(t) - e](t) + )\q](t))(Mz(t) + ( 2 ))

K
*leplt) - eplt) vag (1) F (6.5.8)
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K
aLlel(t) - e (t) + A, (8] 2

1+K
* (e5(8) - ey(t) + 2 (D) (1) + (D))

(6.5.9)
According to (6.3.66), the matrix §£ (t) is given by
(o]
all(t) a]3(t) 0 -b]3(f)
t t -b,, (t 0
B (t) = 0 () | () (6.5.10)
0 0 by5(t) aj(t)  ap4(t)
_b3](t) 0 a3](t) 333(t)-‘
And the symmetric matrix BE(t) is then _
a1.(t) + a,(t) baq(t) = by (t)
a]](t) [ 13 > 31 1l o 31 - 13
313(8) + a3(t) @) [Pt - by (e
- a
Be(t) = 2 33 2
by,(t) - by, (t) a1.(t) + a,,(t)
0 13 , 31 ap; () 13 > 31
b -b t t
n(t) : 13(t) o13(t) i ag (t) gyt
) (6.5.11) i
Thus in accordance with (6.4.64) one obtains
B a1.(t) + a,,(t)
apy (t) 13 > 31
A-(t) = (6.5.12)
* ay3(t) + ag;(t)
A 2 a33(t)
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by3(t) - bgy(t)

2

(6.5.13)

Thus from (6.4.12) and (6.4.13) in {6.4.71) one obtains:

ay4(t) + aqq(t)
i ag3(t) K ;)
PR
e(t) 8¢ (%) a13(t) + agy (t)
- [ 7 an(t)
i (6.5.14)
: a;3(t) + a5y(t) ,
8= ayq(t)ags(t) - ( > )
bay(t) - bya(t)2
3] 13
-1 5 ] (6.5.15)

Also using (6.4.72):

- . by3(t) - bs,(t)
2
He(t) = A'%tj
; by (t) - by3(t)
0
X 2 (6.5.16)
Using (6.5.14) through (6.5.16) in (6.4.75) and (6.4.76) one obtains:
Eg_(t)
Eq, () = - Ezgrfy [(apy(t) + a;,(t))ag,(t)
£
a;.(t) - ay,(t)
- (ay3(t) + agy(t)) (22 3

2
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bay (t) - byo(t)
+ (byg(t) + byy(t)) (g 1373
(6.5.17)
Fa, () 3;3(t) + ag(t)
Ed3 = - ﬁé_ [‘(az](t) + a]z(t)( 2 )
g
+ (323(t) + a3z(t))a]](t)
boy(t) - bya(t)
- (byy(£) + by (1)) (R 13
(6.5.18)
g, (t) 251(8) - byt
£, (t) = - 2—,— [(ay5(t) + a5,(1))( )
€
- (b2'|(t) + b]z(t))a33(t) + (b23(t) + b32(t))
(al3(t) ; a3](t))] (6.5.19)
g, (t) (t) (t)
£y, (8) = - 'ZTE"‘ [-(ap (t) + a,,(t))( " st
£
a,.(t) + a,,(t)
+ (byy (£) + by (1)) (B 317
- (b23(t) + b32(t))a]](t)] (6.5.20)

The optimal expressions for q](t) and Qw (t) as given by (6.4.57)
and (6.4.58) can be combined to yield:

gf{zcw1n](t)éw](t) *+ ng(t)A ()] + Bw]h1(t)0w](t) =0

QN](O) =0 Qw](Tf) = b, (6.5.21)
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Here the optimal values for the unknown variables are obtained in
terms of the functions xp](t), xpz(t), Ap3(t), Aq](t), xqz(t), Aq3(t)
and "1(t)' These are to be determined such that the equality constraints
(6.2.12) for i = 1,2,3, (6.2.13) for i = 1,2,3 and (6.2.22) for i =1
are satisfied. Note that the Kuhn-Tucker multipliers Mi(t), zi(t),
2%(t), ei(t) and e%(t) for i = 1,2, are determined in accordance with the
exciusion equations (6.3.12) through (6.3.16).

In the case when none of the inequality constraints is violated,

the Kuhn-Tucker multipliers are zeros. Thus (6.5.7) yields

o - 2 (6.5.22)
P, (t) = ———— 6.5.22
25 2'72
(6.5.8) and (6.5.9) reduce to:
_ 1
ng(t) = - T;QKT{(1+K])Aq](t) + K]qu(t)] (6.5.23)
1
ng(t) = - +2K] K1Aq1(t) + (1+K])xq2(t)] (6.5.24)
while (6.5.6) yields
(t) = (t) (6.5.25)
n] ) p](

Note that this result can be obtained if P](t) in the formulation of the
problem was not taken as a control. This is the case when there is no
second order term in P](t) in the cost functional or the associated
constraints.

The number of unknown variables in this example is 16, these are

divided into two categories:
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1. Physical variables: these are P, (t), P, (t), Q, (t), Q, (t),
1 2g ]g 2E
E, (t), E. (t), E, (t) and Q, (t). The physical variables are
d 9 d3 w]

€ 13
related directly by the load flow equations (6.2.12) and (6.2.13) for
i =1,2,3 and the hydro power equation (6.2.22). Note here that the
number of the physical variables is 9 while the constraining equations

are 7.

2. Dual variables: these are xpi(t), Aqi(t)>(i = 1,2,3) and ni(t).
These are related to the physical variables by the optimal expressions
(6.5.6) through (6.5.9), (6.5.17) through (6.5.20) and (6.5.21). The
nﬁmber of the dual variables is 7 and the constraining equations are 9.
Thus one has 16 equations in 16 unknowns.

It is possible in this example to reduce the number of equations
and unknown variables by algebraic manipulations. However, this will not
be done for many reasons. One of the reasons is that the reduced équations
for this example are not easily extended to higher dimensions. Another
reason is that it is important to keep the variables as they are in order
to satisfy the inequality constraints and the corresponding exclusion
equations. The third and most important one is that the load flow equations
can be solved easily with the present state of the art. Thus developing

a coinputer program that is an extension of a load flow program is highly
desirable.
The Example 3-bus System's particulars are summarized in Table 6.2.

The results of the optimum load flow study are shown in Fig. (6.2) through
(6.5).
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TABLE 6.2

EXAMPLE 3-NODE SYSTEM'S PARTICULARS

The Thermal Plant Cost:

8 = 4.0 y = 1.2x1073

The Electric Network: (Admittances in mhos ).

69 = 0.147x1072  BHJ = _g.g3x10°2 i - 1,2,3
. . it]
6'° = 0.0 B' = 0.05x102 i =1,2,3

The Electric Variables Specifications: (Voltages line to line).

Slack Bus: E, (t) = 220 kv E (t) =0.0
dy 9
Load Node: P3(t) = -41.5MW Q3(t) ==-14 MVAR
Load at Node 1: P (t) = -50 MW Qy (t) = +30 MVAR
1 1
Load at Node 2: P, (t) = -50 Mw Q, (t) = -75 MVAR
D, D,

The Hydro Plant:

n = 6.708 V = 13.35x108ft3
_ 10 )
8, = 1/7.2x10 8 = 0.0
(o) = 7.2x1012
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6.6 Trapezoidal Reservoirs and Variable Efficiency Hydro-plants Consider-

ations

In formulating the problems in Chapters 5 and 6 it was assumed that
theefficiency of each hydro-plant remains constant over the operating
range. Another assumption is that of vertical sided reservoirs at the
hydro-plants. In this section these two assumptions are relaxed and the
modifications to both formulation and optimal solution are shown. Here
the power system problem stated in Section 6.2 is considered.

The ith hydro-plant's active power generation is given by:

Phi(t)Gi(t) = hi(t)qi(t) (6.6.1)
This is precisely equation (5.2.13) except that here the inverse efficiency
Gi is no longer a constant.
The effective hydraulic head at the ith hydro-plant is given by
(5.2.2) which is:

ni(8) = y3(t) - vy (¢) (6.6.2)

The forebay elevation isrelated to the forebay volume of water stored

Si(t) by the relation:

2
S;(t) = ayiyi (t) +8 1.yi(t) (6.6.3)

y

where a ) and B

y y are constants for the trapezoidal reservoir given by:
i i

zi tan¢i

™
n

o

o
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The geometry of a trapezoidal reservoir is shown in Fig.(6.5). The

volume of water stored Si(t) is also given by:

t t
S.(t) = S;(0) +{ i;(0)do - } q.(o)do (6.6.4)
1 1 ‘([ 1 '(l)‘ 1

This is the reservoir's dynamic equation in the case of no hydraulic
coupling between the plants. Here ii(t) and qi(t) are the rates of water
inflow and discharge respectively. The volume of water stored variable

Si(t) can be eliminated by substituting (6.6.3) in (6.6.4) to obtain:

k t
2 i, do = 0
uyiyi (t) + Byiyi(t) +.Lqi(°)d° - Si(o) _1;11(0) g
(6.6.5)

The tail-race elevation yT'(t) is given by:
i
yr (t) =y; + 8r q.(t) (6.6.6)
Ti Tio Ti i

This is the same equation as (5.2.4)

Thus the active power generation equation (6.6.1) becomes:

2 -
Phi(t)Gi(t) + yTioqi(t) * By (t) - a;(t)y;(t) =0
(6.6.7)
Here (6.6.2) and (6.6.6) were substituted in (6.6.1) to obtain (6.6.7).
For all practical purposes the variation of the inverse efficiency

Gi(t) with the active power generation can be represented by

2 2
a .Gi (t) + Bg.Gi(t) + Yg-Ph (

t) +6 P_(t)+6_ =0
91 i i gi hi

94
(6.6.8)
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Figure 6.6 A Trapezoidal Reservoir.
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This is the equation of an ellipse and is assumed to hold true over the

operating range (Pim < Ph.(t) < PiM) of the hydro-plant. This is shown
i

Xkl

in Fig.(6.7).

61187

SR

> P(XW)

P P
MIN. MAX.
Figure 6.7 Efficiency versus Power Qutput.
The performance of the ith hydro-plant is completely specified by
the relations (6.6.5), (6.6.7) and (6.6.8). Thus the only modification
to the formulation of the problem in Section (6.2) is replacing (6.2.22)
by the three relations mentioned above. Note here that two more variables
per plant are introduced. These are yi(t) and Gi(t)' Accordingly the
functional Jo (.) in (6.3.5) becomes:
4
Te Ny
3y () =j[ I tn ()P, (£)6;(t) + y; (t)as(t)
4 i=1 1 io
0
2

+ 87.9;°(8) - ag(t)y (8] + my(£) g G;7(1)

1

2
+ +
6916 (t) yg Ph (t) + ag Ph (t) + egi]

o -

+ Pi(t)[ayiyi (t) + By y (t) +qu‘(s)d°

t 0
-5, (0) --[ii(o)ddp]dt (6.6.9)
0
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Note that the variable Qwi(t) in (6.3.5) is no longer of use. Thus
in effect only one extra variable is needed.

Here the control variables are Phi(t)’ G, (t), q;(t) and y,(t).
Thus thk2 terms explicitly independent of these variables can be dropped

from J (.) so that one needs to consider only
4
T () J’ [ z {0y (B)TPy (816, (1) + yp_ay(t)

+ 87.9,°(8) - a3(t)y; (0] + m; (8)[=g G%(t)

2
+ . + +
39161 (t) Ygiph‘i (t) Gg‘iphi(t)]

+qun%gfu)+%ggw]-qumgnht

(6.6.10)
As for the augmented cost functional Jo(.) of (6.3.17), the only

changes are in Jq (.) of (6.3.19) and Jo (.) of (6.3.30), these will be
W

P
given by: T N

f g .
3 (- =J£ L e - 14(8) - 2p (814

Ng )
+i=§h+] (M'I(t) + Yi)Pi (t)

N
+ Z [ej(t) - 24() -2y (t) +my(t)sg ]

'I
Nn
Pi(t) + _Zl[Mi(t) + mi(t)Ygi]Piz(t)
Nh Nh
+ 21 n; (t)P, (t)G, () + Z] mi(t)ay 6 )
i= 1
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N

h
+ izl mi(t)Bgiﬁi(t)]dt (6.6.11)

.
f
J_ ()=
o ") iti
Nh Nh
2
¥ izlni(t)BTiq’ (t) - i§1ni(t)qi(t)yi(t)

N
21["i(t)yTio'ri(t)]qi(t)

i |

N
h

2
¥ iiz] ROQICHES (t) + Byiyi(t)]]dt (6.6.12)

The control vector defined in (6.3.31) is modified as follows:

p, (£) = col. [Py (£) 6y (£)ss Py () oy, (£)] (6.6.13)

W;(t) = col.[g;(t)wy;(t)] (6.6.14)

orrespond to (6.3.33) and (6.3.40) respectively.

The last two equations ¢

The control vector is a 2[n + I.SNh+Ng]xl column vector function in this

case.

The auxilliary vector L(t) of (6.3.32) is modified to:

Lph(t) = CO]’[LP](t)”"’LPNh(t)] (6.6.15)
Lpi(t) = col-[(mi(t)6gi(t) + 2;(t) - 25(t) - Api(t)),

(m; (t)8g )] I TOR (6.6.16)

L, (t) = co1-[(ni(t)yTio - ri(t)),fi(t)syi]

1

i= TeeeenlNy (6.6.17)
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Finally the matrix B(t) of (6.3.47) is modified to:

gpn(t) = diag(gpi(t)) = 10N (6.6.18)
- n; (t)
[M;(£) + m;(t)y, ] 4
3
B, (t) =
‘Pi( ) n; () ‘
- mi(t)ugi

- n;(t)
B,y (t) T
By (t) =
! n;(t)
-7 AL

=108 (6.6.20)

These are the changes as far as the formulation is concerned.

The modification in deriving the optimal solution as obtained in
Section (6.4) follows easily. First in obtaining T*g of (6.4.4) the
following modification is needed to (6.4.14) using (6.6.20)

gi“y."'i(t) g.n. (t)
T, = L , — 6.6.21
’”i [ Awi(t) ZAWi(t)] ( )
n,(t)
Here Awi(t) = ni(t)[BTiayiri(t) --7r-—4 (6.6.22)

is the determinant of the matrix in (6.6.20). Second, the operator J is

obtained as:
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16 r(t)
J[_E_J = CO][(Eiay. Wdt)] i = 'l,.ougNh
i .
° (6.6.23)
Thus A of (6.4.18) becomes:

7t
d1ag[a J’ ——ixzy-dt] i= 1,...,Nh (6.6.24)

Finally, Iig is modified only in:

+ AP (t) £504 (t)
Tgly, = col.l 1 (%)

B 8y (t)J’—-(—)—dt 20, (t)f —-(—Tdt

i=T,.00N (6.6.25)

The expression for V(t) as given by (6.4.25) will not be changed.
Only the expressions for its components Vg (t) and (t) will be modified.

Thus (6.4.34) is modified to:

:"-b<

(t) = co].[Vp](t),VG](t).... v

o Vg, (1] (6.6.26)

h h
with:
vpi(t) = {[mi(t)sgi + 2%(t) - zi(t) - Api(t)]mi(t)agi
- 0'5mi(t)“i(t)ﬁgi}/{bwp.(t)} (6.6.27)
i

VGi(t) = {[M,(t) + mi(t)Ygi]mi(t)Bgi - 0.5n,(t)

[mi(t)sgi + z%(t) - 2i(t) - Api(t)]}/{Awpi(t)}
(6.6.28)
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2
by, () = my(t)ag 4 (6) + 7 1y (0] - (n2(£)/4)

1 (6.6.29)

Also (6.4.46), (6.4.47) and (6.4.48) are modified to:

v, (t) = col.[v, (t), V (t)] (6.6.30)
L) wqi Wy,

qu.(t) = {[ni(t)yTio - ri(t)]uyifi(t) + 0.5n, (t)r;(t)

1

Gyi}/{ANi(t)} (6.6.31)
wa1(t) = {0.5ni(1:)|:ni(t)yTio -ri(t)]+ BTiByi
ni(t)fi(t)}/{AHi(t)} (6.6.32)
6.4.56) is

The optimal solution as given by (6.4.53) through (

unchanged. However, component-wise only (6.4.57) through (6.4.59) change to:

:
f
(t) = [-v, (t)/2] + {lb;+ v, (t)/21dtlr;(t)/
ag (1) = € “qi( )/2] + {[b; J: v, o

[a, (t) () ath (6.6.33)
A .0.
Wi Awi(t’

.

f
g (6) = [y (0/2] + (Lo +]; [vy, (£)/23deIn; (e

1 1

.
[2a, (t) f tiizzj-dt]} (6.6.34)
wi Aw. t * ¢

0 1

Phi,(t) = -Vpi(t)/Z (6.6.35)
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Gig(t) = -VGi(t)IZ (6.6.36)

Here the variables qE (t), _y5 (t), P hy (t) and G; (t) are to satisfy
E
the equality constramts (6. 6 5), (6. 657) and (6.6.8).
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CHAPTER VII

CONCLUDING REMARKS

7.1 Conclusions

In this thesis a functional analytic optimization technique is
applied to problems of economy scheduling of hydro-thermal electric
power systems. Here, the minimum norm formulation is employed to find
the optimum generation schedules. This jnvestigation shows how the
powerful minimum norm formulation can be applied to complex problems
of high dimension.

in Chapters 3 and 4, some simplified economy scheduling problems
are considered. The problems are posed and solved using the minimum
norm formulation. These problems were jnvestigated earlier using other
optimization techniques. However, the solution obtained here is guaranteed
to be the unique optimal solution. Moreover, 1imitations on the unknown
functions obtained through this particular formulation facilitates the
practical jmplementation of the optimal solution. A further simplification
is the elimination of the multipliers associated with constraints that
are linear in the control vector. The solutions obtained here are easily
shown to agree with the previously obtained solutions using other methods.
This provides a firm ground for jnvestigating more complex problems.

The problems posed and solved in Chapters 5 and 6 represent one

main contribution of this investigation. So far as the author of this
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thesis knows, there has been little or no work in the following areas.
First, the time delay of flow between hydro-plants on the same stream
is included in the formulations of Chapter 5. Also, the tail-race
elevation effect on the operating hydraulic head is considered here.
Second, the formulation in Chapter 6 is in terms of the exact model of
the electric network. The reliability objective and the practical
limitations on the network variables are also considered. The formulation
concerns itself with a hydro-thermal system with variable head hydro-
plants. Third, the effects of efficiency variations were incorporated
and a trapezoidal reservoir is considered. These formulations in addition
enjoy the advantages cited before.

An important aspect of the problems considered in this thesis is
the computational schemes adopted. Due to the nonlinearity of the
resulting equations, the method is iterative in nature. Here employing
the modified contraction mapping principles is very useful. Furthermore,
the transformation of the differential equations into operator equations
in Chapter 5 guarantees satisfaction of the boundary conditions at each

jteration step.

7.2 _Suggestions for Further Research

The minimum norm formulation employed in this investigation has
demonstrated the capability of solving complex power system scheduling
problems. Further research with the same technique would be desirable
in order to explore the possibility of solving more complex problems.

For example, it may be possible to solve common-flow problems in the case

where the time delay of water flow is a function of the rate of water
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discharge. The justification of the constant time delay lies in the
fact that these delays are of the order of a fraction of the optimization
jnterval considered. Also efforts in the field of defining an overall
reliability functional are highly desirable.

The optimization method used in this research also holds promise
for related problem areas of the electric power industry. Similar
system optimization problems arise in the design of new power transmission
systems and in determining favourable locations for building new generation
stations. In addition, the system design and optimization of new trans-
mission line parameters as independent variables in the optimization

problems are problems that may be handled using this method.
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CONVERGENCE CONDITIONS FOR THE ALGORITHM (5.2.227)

(5.2.217) through (5.2.220) this is rewritten as:

where

T

Consider the operator equation (5.2.226) of Chapter 5.

Then using

vV fv
T = 1Mo + [ e M) E(s).) - Ws)X(s) s

F(y(s)s) = Dyy(s),=Fo(¥(5)) .y (s) -3 (y(s))1T

v v v
6 "™(t,s) = diagle,™(t,s),6,"™(t,5)]

v (-8 ()00 - &
6,"M(t,s) = T ;
1 s _
L Ts Te
-t t 7
Vi T 'T_f'(Tf's)
Ga (tys) = t<s<T
1 1
= Te-s]
" Tf £ f

with derivative given by:

f

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.5a)

(A.5b)

Under certain conditions [56], the operator in (A.1) is differentiable



.
fVv

()] = [ ™) 5Hy.s) - ¥is)luls)s
0
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(A.6)

F
An expression for [%iiy,s) - V(s)] can be obtained from (A.3) and (A.4).

This is given by:

[%Ms),s) - ()] =

Thus

v
g'““(t,s)[g—%x(s).s) - ¥(s)Iu(s) =

Here

v
GZMN(t,s) -

y(s) = col.[vy(s),v,(s), v3(s), vy(s)]

0 -4

3f2

B

- Z g]z(t 5)
- Z gzz(t S)

3
= 1 970(tss) 5o~
Z 12 J

]
- z 922(t S)

-b]](t’s) Q]Z(t»s)

92](t95) 922(t’5)

0

Bf3

. Vi (s)

e Y3 (s)

. Vi (s)

v Y3 (s)

(A.7)

(A.8)

(A.9)

(A.10)



Thus (A.6) reduces to:

I&[v(t)] = col.[t;1,t¢2,t¢3,t¢4] (A.11)
L of,
tv] _2 JZ g]2(t s) v (s)ds (A.12)
Te 4 of,
1:\;2 =j; Z]gzz(t »S) 35 v (s)ds (A.13)
' Tf 4 af
tv3 ='£ - JZ]glz(t s) J v (s)ds (A.14)
Te af
t'4 ='y Z 922(t s) 3 TR (s)ds (A.15)
()

The modified contraction mapping defined in (5.2.227) is

Y =P Y= [1-U17'IT0Y] - U(Y)] (A.16)
This has a derivative given by:

PyIv(t)] = [L-U17'[TyIw(8)] - U v(t)] (A.17)
In the case when U is given by:

U = diagluysugsugsi,] (A.18)
Then

PyLv(t)] = col.[p;,P;.P35P,] (A.19)

RSN
P.i(t) T (A.20)

j
Now the norm of PQ[!jt)] is given by

[IPgI1 = supt][PyLv()T][3
[v]]<
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or
[IPyI1 = Sup  {Sup {Sup |pi(t)|}} (A.21)
Hvllet it
The convergence conditions for the algorithm (A.16) are
[EPCYS) - Yoll = Sup Supl[Ply,); - ¥, ;(t)]3
i t
f Ns N Z 0 (A.ZZ)
Sup{llP;Il} <ac<l (A.23)
yes
Consider the components of the derivative operator T; as given by

(A.12) through (A.15). These yield:

th]I < 1p0(t)Z, (A.24)
Ity,| < (812 (A.25)
|t¢3l < yp(t)Z, (A.26)
lt¢4| < ryo(t)z, (A.27)
where T
r12(t) =j-'|912(tss)lds (A.28)
2
roo(t) =.S lg,,(t,s)|ds (A.29)
o of,

Z, = Sup Sup Sup Z

ay vs(s) (A.30)
[vll<1 ] s 951773



4 af3
I3 = Sup Sup Sup } ———-vj(s)

= 3y
vl 3 s TP
Evaluation of rlz(t) and rzz(t) yields:
r12t) = 3Te-t]

roplt) = T};{(rf-t)? + t2]

Moreover
S _+ 2

t
Sup r22(t) = Te/2

t

(A.31)

(A.32)

(A.33)

(A.34)

(A.35)
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Thus conservative limits on the |t¢ |given by (A.24) through (A.27) are

1

as follows:
T 2
' f
Itv]| 5 h
T
Ity | < _f£
Vo' - T D,
7.2
f
]
RVRIE s
T
1 f
Itv4| 274

Using (A.20), the following inequality holds true:
] -] ]
lpi(t)] < [0 - w,] {Itvi|+|u1.v1.(t)|}

or using (A.36) through (A.39):

(A.36)

(A.37)
(A.38)

(A.39)

(A.40)
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2

1
P8 < 01 = wd -2, + [y (A.41)
: 1,'¢
Ipz(t)l <[1 - uo] -2, + |u2|} (A.42)
T 2
JHOTEN IERN S 55 AP (A.43)
Py < T - ugd 6of 2, + ug ) (A.44)
Pa(t)] < [T - upd 5= Z3 + fuy| :

Assuming u; = (i =1,...,4), then (A.21) reduces to

[1Pyll < Sup[Sup{|p;(t)|}, Suplpy(t)|] (A.45)
it t
or
[1PyI] < Supik,sks} (A.46)
2,3
where :
1, ¢2 .
ky = [1 -] Ejy-zi + |u|] i=2,3 (A.47)

The evaluation of estimates on 22 and Z3 is done using (A.30) and

(A.31), which yie1d5°

Z; < Sup| Z 7, | (A.48)
s J=1
Now (5.2.216) written using the notation of this section is
fz(l,S) = [Ezy](s) + yZ(S)]Dz(X)S) + Gz(l:s) (A.49)
f3(yss) = [egy3(s) + y,(s)Io5(yss) + G5(yss) (A.50)

so that
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so that
4 of,(y,s) A (s)
2 =
L e =)+ ) ¢ [lepn (8 ¢ AORE
4 s 4 ’
Z apz(x_s)] . aggi%.s) (n51)
j=1 J=1 J

Here use is made of (5.2.206) for Gz(x,s). Similarly one obtains:

4 3f3(135) A (s)
jél ayj"" 93(x;s)[1 +eg] + [[e3y3(s) +y,(s) + 2, ]

4

z aps(l)s) 4 393(1,5)

1 "oy Y jZ] 7 (A.52)

Rewriting (5.2.176) and (5.2.178) in terms of y, and y,, one has

g,(ys8) = Byng(tery )y, (they) t e[0,Te1y)
=0 t e(Te=17,T¢]  (A.53)
65(1s8) = = JByny () (s.7y)] t e[0,1)
= - LBgny(s)tuy(ryary) + ¥y (temy))]
t elry,Te] (A.54)
Thus
4 3g,(y,s) 4 ong(y,s)
jZ] 3)’j B3[a3(t) + b3(t) JZ] -——BTJ-— (A.55)
4 395(y»s) 4 an3(x,s)
—2 - = - B,[C,(t d,(t —_— A.56
jzl 7 3[C5(t) + d;(t) jz] o7, ] (A.56)
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with
33(t) = [y4(t+T])n3(t+T])/y4(t)] t E[OsTf'T])
= 0 t e(Tf-r] ,Tf]
(A.57)
b3(t) = y4(t+'r-|)h3(t+r])/h3(t) t e[O,Tf-T-I)
= 0 t e(Tf-'r-l 'Tf)
(A.58)

C3(t) = Ling(t)yy (=01 )/ (£)} + {ng ()5, (t-1q)/9,(t)}]
t s[r],Tf] (A.59)
d3(t) = [.Vz(t“l']) + {;;3(t)[ll'2('['|:'l']) + Y (t‘T])]/h3(t)}]
t e[r],Tf] (A.60)
Moreover since

Di(lss) = ni(s)/"i (S)

api(x,s) ) ﬁi 1 4 an,

= -0 ) 1 (A.61)
ayj n; LU W

Using (A.55),(A.56) and (A.61) in (A.51) and (A.52) one obtains:

af, (y,s)

e~

1 = pz(x_’s)[] + 52] + B3a3(t)

Az(s) ﬁz
+ {[ezy](s) + yz(S) + EEE——J[EE'- 02]

J
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1 4 8n2 4 an3
[E] jg'l -ayj—} + B3b3(t) jgl a—yJ- (A.62)
4 af.(y,s)
JE] g'yJ = 93()':5)[] + 53] - 83C3(t)
n A4(s)
* [ T = ogllegyy(s) + y,(s) + o
q an3
- B3d3(t)] JZ] g&; (A.63)

From (5.2.197), (5.2.199) and (5.2.200) with Bij =0 i#J one

obtains:

") = A - 28y (1] (-64)
"3() = A0 - 28p, (0] (A.65)
Pp(t) + 311[%%32 + Bzzphtz(t) * B3P h32(t)

S AT gl] " Ph(t) - Py (8) = 0 (A.66)

Moreover, (5.2.201) and (5.2.202) are rewritten as:
T Phy (1) = Apl8)y,(8) + Byyy ()y,(t) + Cpy, (1) (A.67)

" Pny (8 = Agldyg(8) + Byyy(0)y, (txp) = y(£)Icqy, (1)

(A.68)

an,

The evaluation of § 3;1-can be easily effected utilizing the above
=1 ¥
euglities. Thus sne obtains:



8+ a(t)By; o

xi(8) = 20808y + (Gagg—

(1 - 28,p) (£)%)

g %P Py (8)
& ;W—j - [ﬁg - (B, + C,)y,(t)]
g Pn, P (0) Yp(t-ty)
jzl Y = [y4(t) - [83[_§ETTT__" 1] + C3ly,(t)]

Thus (A.62) is rewritten as:

4 3f2 xz(t)
j21 3y; T P2lyas)Dl eyl + Byag(t) + 2, TE)
(2 Iy aph?][ ; " ]
— = p ——— + B
h, 2 j=1 ;3 j=1 V5 2Y2
4 ap
(t) ] 52
- B.b —c
Also (A.63) reduces to:
aP
o3 e ey (t) ) k
3v- = Pall + ) - BoCa(t) + xo(t Y I
PN TN 3/ - B33 3T L4 By

aP

.Yz(t‘T] )
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(A.69)

(A.70)

(A.71)

(A.72)

(A.73)

1 ng 3 hy
(85 + Et3331€7.[35 - 93][j£] 3;3— + 33(_§ETT7__‘]ﬂ]

Using (A.70), then the limit on xi(t) is obtained as

0 < x;(t) < x,
- 1 - 1M

(A.74)

(A.75)



) 2. Y+ MByyo
x; =2DyB; v (V- 28PNl gzgg 1)
M TMax 1
Also (A.71) and (A.72) yield:
4 Py,
0< ] LI
= =1 Y5 T
Phi
5. = —MaX y _ o fori=2andk =4 fori
™ Yy,
Min
Let
[ - 0]
6. = Maxls - o;
TMax t hi 1
tﬁ" ]
0. = Min[+— - P
iMin 0t N
yZ(t‘T])
|B3(-yzrgy-' N < ky
Thus (A.73) and (A.74)yield
X. 6 é
4 of 122
2 M “Max
| ¥ = flp('l+s)|+|B Maxa(t)+—M-———(—)
321 5 2 2 37 3 2C, ln n,(t

(s, + By, 1l
iy 2 ZM

of
1%

nes-1-H
%
A

3

o3

Max
(B, + ____,___1_7{5, + k,]1]|
3 2C3M1n n3 t iy 2

< |pa(1 + €5)] + |By Max C (t) + x4 8
3 3 3 t 3 3M 3M

(A.76)

(A.77)

(A.78)

(A.79)

(A.80)

(A.81)

(A.82)

(A.83)

232
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Then (A.30) and (A.31) yield:

X, 8 )

20 2 2
M “M M
22 = Max {,pz(] + 82)|,|B3 Max a3(t) + Z—C—an_ar):—rﬂ-
t 2 t 2
[6, +B ]l} (A.84)
1y = Max{ o (1 + e3)|,|B3 Max C5(t) + X3 84
t MM
o3
Max
(By + ZCHin n(ey L3, + ko113 (A.85)
t

Equations (A.84) and (A.85) together with (A.46, (A.85) and (A.47) define
the convergence condition (A.23).

The convergence condition (A.22) using (A.1) and (A.16) reduces to:

Sup Sup {lAi(t)l} <n n>0 (A.86)
1 t

8;(t) = n_]—u-;)- [tilyy) - v;0]

Here (A.1) is expressed as

1,2,...,4 (A.87)

TEY] = col. [ty (y)styly)s tly)s )] (A.88)
Further (A.87) reduces to:
t Te
1
4(8) = ey [J;[Tf-t]fz(yo,s)ds + [ ereesat, 1y, 50053
0 0 (A.89)
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t T
f
1
By(t) = IT‘T';ETT;[J-‘sz(yo's)ds + { (Te-s)fy(y,»s)ds]

(A.90)
t T
A3(t) = 11—:—%37T;{I5[Tf-t]f3(yo.s)ds + jft[Tf-s]
0 t
f3(ygss)ds] (A.91)

t T
f
1
84(t) = n—_-u—4,T—f{§-sf3(yo,s)ds + g [T-s1f5(y,s)ds] (A.92)

(o]

These in turn yield:

2
27
f
Sltl:P lA](t)l < 1—_—‘1-;[Suplf2(yo,t)|] (A.93)
48
S:p la,(t)] < 1—:—;E{S:plf2(yo.tn] (A.94)
2
21,
sup [a5(t)] < y—-{Sup|fs(y,.t)l] (A.95)
t 3t
2T,
S%p la4(t)] < 1—:—;;{Sgplf3(yo,t)|] (A.96)
Let
21
ng T Ty Max {Szplfz(yo,t)l, Szplf3(yo.t)|} (A.97)
then
ng ¢ n>0 (A.98)

The modified contraction mapping sequence (5.2.227) based on the
Yo given in (5.2.228) through (5.2.231) converges if condition (A.26) is
satisfied. Note that condition (A.98) is satisfied for the indicated
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value of Yo+ If one is interested in defining the region of convergence,

then n must be calculated. However, the crucial convergence inequality

is (A.46).



