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Abstract

This thesis is about the diffraction of discrete point sets.

Firstly we study a new topology and show some connections between the diffrac

tion of a point set and its dynamical hull properties.

In the second part we show that the diffraction of Meyer sets always contains 

a relative dense set of Bragg peaks, which are aligned in a nice ordered way. Also 

we proved tha t the continuous part of the diffraction spectra is either empty or 

supported on a relatively dense set.

In the last part of the thesis we prove that the diffraction of the pinwheel sub

stitution tiling is rotationally invariant.
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Chapter 1 

Introduction

This thesis is about diffraction of discrete point sets and discusses some problems 
from the mathematics of long-range aperiodic order.

Before the discovery of quasicrystals in the mid 1980’s1 it was believed that 
only crystals (fully periodic solids) could produce diffraction patterns consisting 
only of bright peaks, called Bragg peaks. Experiments in the last 20 years have 
demonstrated the existence of quasicrystals, yet many questions remain about their 
atomic structure.

Quasicrystals are solids which have diffraction consisting only of bright peaks 
(essentially no diffuse background) and which don’t  have the periodicity of crystals. 
A simple mathematical model of a quasicrystal is a set of points representing the 
positions of atoms in a real solid, which has the D elone property and a pure point 
diffraction measure. The Delone property is a natural one: a subset A C Md is 
Delone if

• there exists a non-empty open set U C R d such that x, y G A and (x + U) D 
(y +  U) 7̂  0 implies x  =  y ,

•  there exists a compact set K  cM.d such that A + K  — Rd.

These conditions represent the fact that atoms can’t come arbitrarily close to each 
other, and it also requires that the solid “fills” the space (has no arbitrarily large 
holes).

In a diffraction experiment one gets information about the solid’s structure. The 
diffraction pattern comes from self-interference of an incoming beam scattering from

1 The quasicrystals were discovered in 1984 by Shechtman-Blech-Gratias-Cahn and indepen
dently in 1985 by Ishimasa-Nissen-Fukano, when they reported the discovery of solids with 5-fold 
symmetric pure point diffraction.

1
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the atoms of the solid. If A C Rd is our real solid (which is necessary finite), we 
associate to it the measure

*a : = £ > -
x €A

In a more realistic setting in which there is more than one kind of atom we can give 
different points different scattering intensities by introducing a weighted function 
c : A —► C and look instead at Y l x e A  c ( x ) $ x  • However, for the introduction we take 
the simple equally-weighted case.

Then, the diffraction is just (a suitably normalized version of) the square of the 
Fourier transform of A:

I(q) := |<fA(g)|2 =  £  .

x ,y e  A

When one tries to idealize this to Delone sets, one has to face the fact that the 
Fourier transform of £A doesn’t make sense most of the time. To avoid this problem, 
we will use this method, introduced by A. Hof: we compute the intensity as the 
limit of the intensities of larger samples. Thus, the intensity becomes:

I  — km — .
H— > 0 0  V o 1 ( .B r (0 ))

Of course we have to define in which topology we take this limit. 7 is a measure 
describing the intensity of the scattered beam, and it is called the diffraction mea
sure. Any non-trivial Bragg peak in the diffraction is indication of some long-range 
alignment in the solid, while the diffuse background shows some disorder. If the 
diffraction pattern consists only of Bragg peaks it means that a lot of constructive 
interference must occur, thus we must have a very strong internal long-range order. 
We try  to characterize the point sets with this property. We are also interested in a 
weaker form of long range order, namely the case when the diffraction pattern has 
infinitely many Bragg peaks (but is not necessarily consisting only of Bragg peaks).

The main difficulty one is facing when studying the diffraction is the fact that 
there are (infinitely) many different atomic structures which produce the same 
diffraction pattern. Thus, is it impossible to fully describe a point set knowing 
only its diffraction pattern.

Our goal is to construct mathematical models for the quasicrystals and charac
terize these models using only physically detectable properties.

In one-dimensional space, one can identify a Delone point set A, uniquely up 
to translation with a bi-sequence of numbers, representing the distances between 
consecutive atoms. Since we deal only with a finite number of atom types, we may

2
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assume that there are only finitely many local arrangements of the atoms and so 
these nearest neighbor distances can take values only in a finite set. We want A to 
have some long range order, thus we try to construct these bi-sequences following 
some rules. The most common method is to use substitution rules, the idea being 
that atoms combine to create some finite structures which then interact in the same 
way as the original atoms2.

To understand better the substitution sequences let’s look to the Thue-Morse 
sequence. We use the following substitution rules on two letters {a, b} : a ab 
and b ba; or repeating it twice, a ^  ab —<■ abba and b ba baab. Starting 
from b and a and expanding b to the left and a to the right using 4>2, we get a fixed 
bi-sequence

• • • b b a b a a b \ a b b a b a a

If we assign a unit length interval to each letter in the sequence, starting with the 
interval [0 , 1] at the initial letter a and [—1, 0] at the initial letter b we can tile a real 
line R.

. . . - 7  -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 •••
• • • b b a b a a b | a b b a b a a

By defining A to be the set of endpoints of the a-type intervals, we get a Delone 
set in Rd called the Thue M orse sequence. A is fixed by <f>, i.e. if we group the 
symbols in pairs and replace A := ab and B  := ba we get the Thue-Morse sequence 
again. This means that if we look at the tiling, double each tile and divide the 
supertiles as in the substitution rules ( a ab and b ba), then we get the same 
tiling.

A similar idea works in higher dimensional spaces. We look for a set of tiles which 
can be inflated by some factor A so that each inflated tile can be cut into copies of 
the original tiles. Then, we can get a tiling of R d just by repeatedly inflating and 
dividing.

One of the first and nicest examples of an aperiodic tiling in R 2 was introduced 
by Penrose in the mid 70’s. It is a tiling of the plane with two distinct tiles and 
can be created either by substitution or by following matching rules. Exactly as the 
first discovered quasicrystals, it has a 5-fold symmetric and pure point diffraction.

2 In a way this is similar with the ice-flowers grown on a window: smaller ice-flowers combine 
together to create bigger ice-flowers. Substitution is a powerful mathematical tool, but there is no 
physical evidence to support its actual existence in the formation of quasicrystals.

3
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Moreover, the two tiles can tile the space in infinitely many ways, all of them being 
aperiodic and locally indistinguishable.

Around 1970, Y. Meyer introduced in [24] a new concept into harmonic analysis: 
harm onious sets. Despite their originality, they were mainly ignored until the 
mid 90’s, when their relevance to aperiodic crystals was shown ([27], [22]). Their 
importance to aperiodic order lies within their close connection to the cut and project 
method.

The cut and project method is a simple way of creating aperiodic structures. The 
resulting sets are pure point diffractive and are called regular model sets. Intuitively, 
they are the projections of a part of a higher dimensional lattice onto the ambient 
space3. Model sets are far easier to construct than substitution systems, but they 
suffer from being very hard to characterize.

The use of dynamical systems in the study of the internal order of discrete point 
sets in real spaces Mrf has been remarkably effective. The basic idea, which probably 
has its roots in statistical mechanics, was explicitly formulated by Radin and Wolff 
in [37]. Let A C R d be a point set. We will always assume that our point sets 
are locally finite, meaning that their intersections with compact subsets of are 
finite (equivalently they are discrete and closed). The dynamical hull X =  X(A) of 
A is the closure of the Md-translation orbit of A in some suitable topology.

The commonly used topology, which is the one advocated in [37], declares that 
two point sets, Ai, A2 are close if their restrictions to some large ball around 0 are 
close in the Hausdorff metric. The resulting space X is compact and (Md, X) is a 
topological dynamical system. A variation of this topology is to require instead that 
the restrictions of the two sets to some large open ball around 0 are coincident after 
some small overall translation. If the sets have finite local com plexity 4 (FLC) 
then the two topologies are the same.

The importance of the concept is that several fundamental geometrical properties 
of point sets have equally fundamental interpretations in terms of their dynamical 
hulls , notably repetitivity minimality and uniform cluster frequencies unique 
ergodicity. Some of the deepest results in the study of point sets and also in tiling 
theory have come by utilizing the machinery of dynamical systems through this 
connection.

We start by introducing basic definitions and notation for point sets and diffrac

3While originally Penrose tilings were constructed using substitution rules, it was shown by N. 
de Bruijn that Penrose tilings can also be obtained using the cut & project method, thus explaining 
the nice long-range properties of this tiling.

4 A set fi has finite local complexity if, for each compact set K  in Rd, there are, up to translation, 
only finitely many classes of points that can appear in the form il D (a +  K )  as a runs over Md.

4
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tion in Chapter 2. We are interested in identifying that part of the autocorrelation 
which creates the Bragg peaks, and in order to do this we can use the work of G. 
de Lamadrid and L. Argabright [21]. We explain their work in Section 2.2.

Meyer sets are Delone subsets of regular model sets. Thus the concept of Meyer 
set lies between that of Delone set and that of regular Model set. In contrast to 
model sets, Meyer sets have many characterizations, some of which are immediately 
accessible [27]. The most commonly used characterization is introduced by Lagarias 
[22] : A C R d is Meyer if and only if:

• A is Delone,

• its set of '‘interatomic vectors” , A — A is a Delone set.

This simple condition is relatively easy to check, but, as we show in Chapter 4, it 
implies strong internal long range order: A is Meyer the diffraction of A has a 
relatively dense set of Bragg peaks.

In Chapter 4 we study the properties of the diffraction pattern for a (possibly 
weighted) Meyer set. The first part of the chapter is based on [41]; in this section 
we prove that the diffraction of an arbitrary Meyer set shows infinitely many Bragg 
peaks and that the Bragg peaks fill the space without arbitrarily large holes. Also, 
if the Meyer set is not pure point diffractive, the diffuse background also fills the 
space.

The result about Meyer set diffraction is a simple consequence of the following 
proposition, which is one of the results of the thesis:

P roposition  4.10 Let S  be a subset of a pure point diffractive set A with FLC. 
Then, each of the continuous and discrete diffraction spectra is either empty or 
supported on a relatively dense set. Moreover, if  S  is relatively dense, it has a 
relatively dense set of Bragg peaks.

In the second part of Chapter 4 we study the positions at which the Bragg peaks 
of a Meyer set can appear. Imagine, as must always happen in real experiments, that 
there is a threshold of intensity below which Bragg peaks cannot be measured. In 
other words we look only at Bragg peaks whose intensity exceeds some value v > 0. 
We show that these “visible” Bragg peaks also verify the Meyer condition, and that, 
in the aperiodic case, no m atter how small v > 0 is set, there are always non-visible 
Bragg peaks. In the last part of this section we prove that some of these properties 
persist even if we change the Meyer set by a set of sufficiently small density.

When using dynamical systems to study discrete point sets, we generally use 
the local Radin-Wolf topology. In Chapter 3, we study a new topology, introduced 
by M. Baake and R. V. Moody in [7], which is based on statistical coincidence

5
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and is connected with the diffraction measure. We prove the basic properties of this 
topology and study the hull A(A) of a point set A in this topology. If this topological 
space is compact, it becomes a dynamical system in a natural way and thus we can 
study this dynamical system to get information about the point set. We prove that 
in order for this to happen the set A must have pure point diffraction. Moreover, 
under the Meyer condition, compactness and pure pointedness are equivalent. We 
also show that for regular model sets, A(A) is isomorphic to the compact group from 
the cut & project scheme. These results were used in [5] to classify an laxge class of 
model sets, namely nonsingular, minimal regular model sets.

One special example of a substitution tiling is the pinwheel tiling. It is a tiling of 
the plane by copies of a rectangular triangle with sides 1,2 and \/5  by a substitution 
rule, and it was the first example of such tiling in which the tiles appear in infinitely 
many orientations. It have been proved by Radin [33, 36] that the diffraction of the 
pinwheel tiling is circularly symmetric. His prove uses the Dworkin argument which 
provides a deep but not fully understood connection between the diffraction of a 
point set and the spectral measure of the local dynamical system. In Chapter 5 we 
provide a new proof for this result, by a direct computation of the autocorrelation 
measure.

The circular invariance of the pinwheel diffraction shows that the Bragg spectrum 
consists of exactly one peak at the origin. Thus the pinwheel tiling doesn’t have long 
range order in the standard sense, while the rotationally invariance of the diffuse 
background shows that there is still some kind of order. We still don’t  know anything 
more about the nature of the diffuse background of its diffraction.

This thesis consists of 4 different papers, which have been slightly modified to 
bring them into a coherent work for this thesis. These papers are:

•  R. V. Moody and N. Strungaru, Point Sets and Dynamical Systems in the 
Autocorrelation Topology, Canad. Math. Bull. Vol. 47 (1), 82-99, 2004.

• N. Strungaru, Almost periodic measures and long-range order in Meyer sets, 
Discrete and Computational Geometry vol. 33(3), 483-505, 2005.

• N. Strungaru, Bragg spectra of a Meyer Set, preprint, 2004.

• R. V. Moody, D. Postnikoff and N. Strungaru Circular Symmetry of Pinwheel 
Diffraction, preprint 2004, to appear in Annales Henri Poincare.

6
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Chapter 2 

Prelim inaries

In this Chapter we collect together some of the basic definitions tha t are commonly 
used in the mathematics of discrete aperiodic point sets, and some of the less known 
facts about almost periodic functions and measures. Although the most important 
setting for applications is Md (more particularly M2, M3), most of the concepts work 
in the setting of locally compact abelian groups. The reader might wish to skip this 
section at first, referring to it only to pick up definitions as they are used in the 
thesis.

2.1 Definitions and notation
For the entire thesis G will be a locally compact abelian group, which we treat 
additively, and 0 will denote its Haar measure. We will work in this general setting 
as much as we can. For some applications we will need to restrict to the case G = R d.

We say that a set S  C G is locally finite if S  n K  is finite for all compact sets 
K c G .

D efinition 2.1 Let A c  G be a locally finite set.

• For K  C G a compact set, A is A -relatively dense if for all x  G G, (x +  
F ) n A ^ 0 .

•  For a neighbourhood V  of {0}, A is F-uniform ly discrete if for all x  G G
we have (x + V)  fl (A\{x}) =  0.

•  A is weakly-uniform ly discrete if for every compact K  in G there exists a 
constant ck such that for any t  € G

tt(A n  (t +  K )) <  cK ,

7
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where JJ means cardinality.

•  For K  a compact set and V  a neighbourhood of 0, A is a (K , I/)-D elone set 
if A is K-relatively dense and V-uniformly discrete.

Rem ark 2.2 When we don’t need the parameters we say only uniformly discrete, 
relatively dense, or Delone set.

D efinition 2.3 For two compact sets A, K  C G we define the K —boundary o f A
by: ____

dKA = {(K + A )\A °)  U ( ( - K  +  G \A ) n  A) }

Intuitively, dK A  represents the points of G “within K n of the boundary of A.

D efinition 2.4 A sequence A  =  {An}n of compact sets A n C G is called a van 
H ove sequence 2 if for all compact sets K  C G we have:

““ n ^ r r - 0 -n^oo 6 (An)

Intuitively the van Hove condition says that the surface to bulk ratio of the A n 
tends to 0 as n  tends to infinity.

In R d we generally use A„ = Bn(0), the set of ball of radius n  centered at origin, 
as van Hove sequence.

For a measure3 ji on G we denote by fl the measure defined by:

tx(E) = n ( - E ) ,

for all measurable sets E  C G.
Given a locally finite set S  C G we define 5s by:

xes

where 5X is the normalized point measure at x.

1Note that for sets X, Y  c  G,

X ± Y : =  { x ± y \ x e X , y e Y } ,

X \ Y  : = { x € X \  x $ Y ) .

2 See Appendix A for more about van Hove sequences.
3 For the definitions and basic properties of measures one can consult [12].

8
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D efin ition  2.5 A sequence of measures {/xn}n converges vaguely  to g  if, for all
f e C c(C),

D efin ition  2.6  Given a locally finite point set S  and a van Hove sequence {A n}n, 
we say that S  has a well defined au to co rre la tio n  with respect to {A n}n, if the 
sequence:

_ _ 1 ^

'?n_ 0(An) ~  6(An) f -  0x~v ’
y V n> x , y€( St lAn)

converges vaguely to a measure r). We call this measure the a u to co rre la tio n  of S.

R em ark  2.7 The net rjn has always a cluster point [4], Thus, given a van Hove 
sequence, the autocorrelation always exists with respect to a subsequence.

We use the notation: Cc(G) =  { /  : G —> C | /  is continuous and has compact support}. 
Let /C2(G) be the subspace of Cc(G) spanned by { /  * g \ / ,  g E Cc(G)}.

D efin ition  2.8 Given a function g e  L l (G) we can define a new function g on the 
dual group G by:

d(x)  =  f  9(t)x(t)d9(t).
J G

g is called the F ourier tra n s fo rm  of g.

D efin ition  2.9 A measure g, on a locally compact abelian group G is called F o u rie r 
tra n sfo rm a b le  if and only if there exists a measure g  on the dual group G, called 
the F o u rie r tra n s fo rm  of g, such that

< g , g > = < g , g > ,  

for all g 6 /C2(G), where g denotes the Fourier transform of the function g.

The basic properties of Fourier transformable measures can be found in ([9], 
Chapter 1) or ([21], Chapters 10-11).

D efin ition  2.10  g  a measure on G is called tra n s la tio n  b o u n d ed  if for every 
compact set K  C G there exists a constant C  so that:

\g\(x + K)  < C Vx E G ,

where \g\ denotes the variation norm. We denote by A4°°(G) the set of translation 
bounded measures on G.

9
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D efinition 2.11 A continuous function g is called positive definite if the inequal
ity:

m mEE otjOtkg(xk xfi)  ̂0,
j=i k=i

holds for all subsets {aq, x 2, x m} C G and all sequences (aq, a 2, a m) of complex 
numbers.

D efinition 2.12 A measure g E M.°°(G) is called positive definite if, for all
/  € Cc(G), g * f  * f  is a positive definite function, where /  means the function
K x ) = J X ~ x )■

Proposition  2.13 ([9] ,[21]) Let g  be a positive definite measure. Then

i) g  E M°°(G),

ii) g  is Fourier transformable.

The autocorrelation of a point set is a positive definite measure.

D efinition 2.14 Let S  be a locally finite set. Suppose tha t its autocorrelation r) 
exists with respect to some van Hove sequence A . Then we call rf the diffraction  
m easure (or pattern) of S  (with respect to A).

S  is called pure point diffractive if the diffraction pattern of A is a pure point 
measure.

D efinition 2.15 Let A be a Delone set in G and suppose tha t its autocorrelation 
77 exists. Let B  =  {x E G \ rj({x}) ^  0}. B  is called the set of Bragg peaks of A.

D efinition 2.16 A standard cut and project scheme consists of a direct product 
G x H  of G and a locally compact abelian group H, and a lattice L  in G x H  such 
that with respect to the natural projections iti : G x H  —> G and n2 ■ G x  H  H  
we have:

i) 7Ti restricted to L is 1 — 1,

ii) 7v2(L )  is dense in H.

G <2- G x H  ^  H  .
U (2-1)
L

We denote the cut and project scheme by (G x  H ,L ).

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Let 6h  denote the Haar measure of H .

D efin ition  2.17 A subset A C G is called a model set if there exists a cut and 
project scheme (G x  H. L ) and a relatively compact subset W  of H  with non-empty 
interior such that:

A =  u +  A{W) := {u  +  7Ti(a;) | x  G L, 7T2(x) G W }, forsomeu  G G .

In this case W  is called the window of the model set.
If, in addition, Oh (OW) =  0 and W  is the closure of its interior, we say that A

is a regular model set.

P ro p o s itio n  2.18 Let (G x H, L) be a cut and project scheme, and let W  C H  be 
a compact set with non-empty interior. Then A(W) is Delone. In particular, since 
A(W') ±  A(W")  C A{W ' ±  W ") for any W ', W "  C H, the set

A(W ) ±  A(W)  ±  A(iy) ±  ... ±  A(W)

is Delone for any or all choices of sign.

Since in many applications we work simultaneously with both G and G, we write 
x  to refer to an element from G, and when we write x  we refer to an element from 
G.

D efin ition  2.19 For a subset A C and e > 0 we define:

Ae =  {x  G | |x (r) — 1| <  e for all x  G A} .

We call A£ the e-dual of A.

D efin ition  2.20 A relatively dense subset A C is called a Meyer set if A — A := 
{x — y | x, y G A} is uniformly discrete.

P ro p o s itio n  2.21 [27] I f  A is a relatively dense subset o f R d then the following are 
equivalent:

i) A is Meyer set,

ii) A is a subset of a model set,

Hi) For any 0 < e, the e-dual set A£ is relatively dense,

11
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iv) For some 0 < e < 1/2, the e-dual set A£ is relatively dense.

Whenever we need the Meyer condition we have to restrict ourselves to the case 
o iG  = R d since only here we have the full characterization of Meyer sets. Recently, 
using the structure theorem for compactly generated locally compact abelian groups, 
it was proved in [5] that some of the equivalent definitions for Meyer sets are still 
equivalent in these more general groups.

D efin ition  2.22 A weighted comb is a measure p =  Ylxes °x^x where S' is a discrete 
point set and cx € C, with {cx}x€s bounded, (i.e. p  is a complex valued pure point 
measure). We say that the weighted comb p is supported on a Meyer set if we can 
write p  =  Ylxes Cx̂ :r whh S  Meyer.

R em ark  2.23 The measure p is a weighted comb supported on a Meyer set if and 
only if supp(p) is a subset of a Meyer set.

2.2 A lm ost periodic measures
For the entire section G is a u —compact, locally compact abelian group, and 0 is its 
Haar measure.

Given a locally finite point set S, we are interested mainly in its pure point 
diffraction spectrum. Thus, if rj is the autocorrelation and rf its Fourier transform, 
we are interested in (rf)pp and (rf)c. The theory of almost periodic measures [21] can 
be used, so one gets a unique decomposition r) = rjs +  Vo, into the strong and null 
weakly almost periodic components, such that

where A is a countable set. Let rjs be the part of the autocorrelation which is 
mapped by Fourier transform into (rj)pp. Then, using the inverse Fourier transform, 
we should get:

(rj)PP =  (vs)

(rf)c = (Vo) ■

We explain below the decomposition v — Vs + Vo- 
Restrict for a moment to G =  Md. We can write

12
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The problem here is to determine in what sense is the second sum convergent. 
Anyhow, this is similar with the Bohr approximation of almost periodic functions, 
so the answer should be similar. In [21] the authors proved that rjs is almost periodic 
in a sense that we describe below, and they studied both the measures rjs and
Vo = V ~  Vs-

We use the following notations:

C(G)  =  { /  : G —► C | /  continuous},

Cb (G) = { /  e  C(G)  | / bounded},

Cu{G) =  { /  G Cb (G) | /  uniformly continuous},

C0(G) =  { /  G Cu{G) | /  vanishing atcx)}.

For each x  € G we define the left translation tx : Cu(G) —> Cu(G)  by:

(Txf) (y)  = f ( - x  A y ) .

D efinition 2.24 We define the weak topology on Cu(G) as the topology defined 
by its dual space. We refer to the Banach topology as the strong topology.

D efinition 2.25 The map n  —> {/t * / } { / e c c(G)} is an embedding of M °°(G ) in 
[Gu(G)]Cĉ . Giving [Ct/(G)]Cĉ GHhe usual product topology, the induced topology 
on M.°°(G) is called the product topology. We will also refer to this topology as 
the strong topology. The weak topology is defined by the dual space of M °°(G ).

Rem ark 2.26 The product topology defines a structure of locally convex topolog
ical vector space on A4°°(G). A fundamental system of semi-norms is given by 
{II ■ l l / } / e c c(G), where :

II /* l l /HI / * * /  lloo •

D efinition 2.27 Let ji be a translation bounded measure on G. Let — [8X * 
ji}xeG and 6 /  =  the closed 4 convex hull of D^.

We say that ji is am enable (see [16]5 or page 52 of [21] ) if and only if C / 
contains exactly one scalar multiple /i0 of the Haar measure 6.

4 A theorem by Mazuro and Bourgin [23] says that in a locally convex topological vector space 
a convex set is closed if and only if it is weakly closed. Thus the closure in this definition is the 
same in both strong and weak topologies.

5Eberlein uses a more general setting and the concept of ergodicity. In the particular case of 
M °°(G ),  the Definition 2.27 of an ergodic element becomes the one we use for the amenability.

13
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In this case we write:
Ho = M ( h)0 ,

and call M (p) the m ean of //.

We say that /  6 Cu(G) is am enable if and only if the measure f dd  is amenable. 
If this happens we define: M( f )  — M(fdO).

Rem ark 2.28 i) f is amenable if and only if G/, the closed convex hull of {<5X * 
f } x e G  contains exactly one constant function. In this case this constant is
M( f ) .

ii) This definition is difficult to use. In [16] it is proved tha t for any amenable 
function the averaged integral exists 6, if one computes the average over some 
particular sequences. We prove in the Appendix that the average integral can 
be computed over van Hove sequences.

It is easy to see that, if it is well defined, the average integral is constant on 
Cf .  Thus, if a function is amenable, the mean is the average integral.

D efinition 2.29 /  6 Cu( G)  is called strongly alm ost periodic if C f  is compact 
in the strong topology. /  is called weakly alm ost periodic if C f  is compact in 
the weak topology, f  is called null weakly alm ost periodic if it is weakly almost 
periodic, and | / |  is amenable7 with M ( |/ |)  =  0.

We denote by SAP(G), WAP(G) and WAP0(G) the spaces of strongly, weakly, 
and null weakly almost periodic functions on G, respectively.

Rem ark 2.30 In a Banach space a closed set is compact if and only if its closed 
convex hull is compact ([17], [30]). Thus the previous definition is equivalent to the 
usual one for almost periodic functions, namely that the closure of D f  is compact. 
We prefer to use the one with C f  because we can use the same set for both weak 
and strong topology.

These definitions extend to translation bounded measures.

6We say that the average integral of /  € Cu(G) exists with respect to the averaging sequence 
A — {A n} n if the following limit exists:

f A f (t )d0( t )  
hm — n ------ .

n -* o o  0(An)

rEberlein showed in [16] that /  weakly almost periodic implies | / |  is amenable, thus one can 
ignore this requirement in the definition of null weakly almost periodic function.

14
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D efinition 2.31 A measure g  G M °°(G ) is called strongly alm ost periodic if
C,L is compact in the product topology and g  is called weakly alm ost periodic  
if C)t is compact in the weak topology. We denote by S A P (G )  and W A V ( G )  
the spaces of strongly and respectively weakly almost periodic measures on G. A 
translation bounded measure g  over a locally compact abelian group G is called null 
weakly alm ost periodic if and only if for each g G Cc(G),g * g  is a null weakly 
almost periodic function ( g * g  is weakly almost periodic and M(\g * g\) = 0). The 
corresponding space of measures is denoted by W AVo(G).

Rem ark 2.32 ([21] Corollary 5.4 and Corollary 5.5) For these properties we can 
talk about a correspondence between measures and functions. More precisely, if P  
is the property of being strongly, weakly, null weakly almost periodic or amenable, 
then the following are true:

i) /  G Cu(G)  has property P  if and only if f d9  G M.°°(G) has property P,

ii) g  G M°°(G)  has property P  if and only if /  * p has property P  for every
/  e  Cc(G).

Rem ark 2.33 Using Remark 2.32 we can see that any null weakly almost periodic 
measure is in fact a weakly almost periodic one.

D efinition 2.34 For K  C G a compact set with non-empty interior we define a 
norm on M.°°(G) by

|| g \\k ' -= sup|//|(a; +  K ) .
xeG

We define the norm topology as the topology defined by this norm.

D efinition 2.35 A measure g  G M °°(G ) is called norm alm ost periodic if D M
is precompact in the norm topology.

We will make use of the following results:

Proposition  2.36 Let fi be a transformable measure on G, with ju translation 
bounded and Fourier transformable. Then n  G W A V ( G ) .

Proof: We apply ([21], Theorem 11.1) to the inverse Fourier transform of p. □

Proposition  2.37 ( [21], Theorem 7.2 and Theorem 8.1) Let g  G V\?AV{G). Then
g  can be written uniquely in the form

g = gs + go, 

with g$ G SAP(G) ,  go G W ^P q{G ).

15
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Proposition  2.38 ( [21], Theorem 7.2) Let p  G W A P( G )  be a positive measure. 
Then ps is positive.

P roposition  2.39 ( [21], Theorem 11.2) Let p  be a transformable measure and let 
p be translation bounded and Fourier transformable. Then

(t )pp =  (/4s) i

(p)c = (po).

Corollary 2.40 Let p be a transformable measure and let p  be translation bounded. 
Then p is a pure point measure if  and only i f p G  SA V (G ) and p  is a continuous 
measure if  and only i f p  G W A Po ( G ) .

Rem ark 2.41 Suppose that p  G At°°(Md) is Fourier transformable. Then p  is 
Fourier transformable and

p = p.

To see this, one may use the following argument suggested by M. Baake. p  is 
well defined in the tempered distribution sense and p = p, when viewed as tempered 
distributions. Thus (p,g) = (p,g) Vg G <S(Rd).

Any function in Cc(Md) can be approximated by a function in the Schwartz class
S( Rd), so one gets:

(p,g) = (p, g) Mg G /C2(Md) .

16
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Chapter 3

Point Sets and Dynam ical System s 
in the A utocorrelation Topology

3.1 Introduction
As we mentioned in the Introduction, we can get information about a discrete point 
set A by using a topology on the set of discrete point sets and studying the hull of 
A in this topology. Usually we use the local Radin-Wolf topology, which is based on 
local configurations.

In [4] was shown that pure point diffraction is a result of the existence of many 
e-a lm ost-periods for every positive e, that is, translations t  that almost perfectly 
match up A with itself in an average or statistical sense:

tat +  A) A A) n Bfi(O)
vol(Bn(0)) '

where A  is the symmetric difference operator.
Now this suggests quite a different notion of closeness which reflects a low av

erage discrepancy between the two sets or, to put is another way, high statistical 
coincidence. This can be supplemented to include small translations: two point sets 
are close if after a small translation they are statistically almost the same. This is 
the a u to co rre la tio n  topology. We can again form the dynamical hull of a point 
set A, say A =  A(A).

There is no reason to expect X and A to be in any way related, and indeed this 
is in general what happens. But it is a striking fact that it is the local topology that 
captures the fundamental geometric properties of the set and the autocorrelation 
that holds the keys to the diffractive properties. Since most of the famous examples

17
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of aperiodic point sets have very beautiful local structure and are also pure point 
diffractive, it comes as no surprise that for these examples X and A are related, 
namely A is a factor of X. In fact this result holds for all A which are regular generic 
model sets. In the final section of this Chapter we prove that for a regular model 
set, A(A) is isomorphic to the “torus” T of its cut and project scheme, thus laying 
down the connection to the paper of Schlottmann [40] which shows the existence of 
a mapping X — > T.

This Chapter is about the topologies arising by statistical coincidence. The first 
part is about statistical coincidence alone (no translations included) and centres on 
a completeness result for locally finite sets in this topology. The second part adds 
in translations and leads to some results on A (which is actually an abelian group), 
when it is compact, and when it is pure point diffractive.

The results from this Chapter do not depend very much on the special properties 
of R d other than it is a cr-compact locally compact abelian group. Thus we work in 
the more general context of a cr-compact locally compact abelian group G (written 
additively) and its Haar measure 9, unique up to a positive factor. Autocorrelation 
depends on averaging over something and for that purpose we fix once and for all 
an averaging sequence A  — {A„}„gN satisfying

i) each A n is a compact subset of G ;

ii) for all n, A n C A°+1;

hi) UneN A n =  G;

iv) the van Hove condition b

Since G  =  UneN-^n+i> we see that for any compact subset K  C  G, there is a 
finite cover of it using sets from A , and then K  C A n for some n. In particular, for 
any m e  N there is an n e  N so that A m +  K  C  A n.

3.2 (D, d) as a com plete m etric space

Definition: Let A, A' C G be two locally finite sets. Define

uk k/s v | ( ( A A A ' ) f l A n) , .d(A,A) := h m su p  ---------. (3.1)
n —»oo

1See Definition 2.4. We do not consider here the question of the existence of such a sequence. 
For compactly generated locally compact abelian groups one can use the structure theorem to 
explicitly construct such sequences.

18
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This is a pseudometric. We obtain a metric by defining the equivalence relation

A =  A '^ d ( A ,A ')  =  0

and factoring d through it:

V  {A C G | A locally finite}/ =  and d : V  x D  — ► R >0 . (3.2)

Proposition  3.1 (T>,d) is a complete metric space.

Proof: Let {Am} be a sequence of locally finite subsets of G which form a Cauchy 
sequence when regarded in V.  We will construct a locally finite subset A of G to 
which this sequence converges when considered in T>.
(First Case: lim ^oo 0(An) = oo)

We can pick a subsequence {Afcm} such that d(Afcm, Afcm+1) <  4_m for each m >  0. 
Since

d ( \  \  1 — l i m  - l i n  ^  ^ fcm +i )  n  ^  *
A‘“ > “  ‘T A P  »(A 0------------- £  4=

there exists nm > 0 such that for all n > nm we have

tf((Afcm A Aw ) n i n) < 1 
9(An) ~  2™ '

We may assume that the sequence nm is increasing (since we can replace each nm 
with any larger natural number).

We define now
•A-i =  Ani

and inductively

In fact

A-m+i — ^nm+i A ((Am A A„m+1) n

C A Um — Am n  A nm and

■̂ rn+1 n (G \A nm) — A„m+1 n (G \A nm).

Since limn^ oo0(An) =  oo we have : A(„+1 =  A„m+1. By construction we have 
tt((A(„ A A(n+1) n A n)/0 (A n) < 2~m for each m  and n.
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Let 1 < k < I be integers and n be arbitrary. Then

a((Â  A Aj) n A,) »(A‘-t(Aj A Aj+1) n A.) »(ufct(A' A Aj+1) n A,)
0(4.) »(A.) -  e(An)

1 - 1  U / / A /  A  * /  \  A  \  I — 1 i  1

oi ~  ok - 1  •
AA'+1) n 4 )  ^

0(An) ~  ^  2< “  2*

(3.3)

Let n  be arbitrary and let Z(n) := 2 +  |_log2 6{An)\ where |_ J means the integer 
part. Let m ,k >  l(n). Then by (3.3):

U((Ato A A'fc) fl An) < 1 <  1 .  1
9(An) ~  2minlm>fcl_1 “  2'(")-1 6(An)

since by the dehnition of l(n) we have 21<̂ ~ X > 9(An). Hence for each m ,k >  l(n) 
we have:

tt((Am A  A'*.) n A n) < 1 §((A'm A A'k) ft A n) — 0
(3.4)

=► (Afm AA 'k) n A n = 0 =► A'm n A n = A'k n A n .

We are now able to define a new set A by

An A n = A'l(n) n A n (3.5)

for all n. This is well defined since for n < n' , l(n) < l(n') and hence by (3.4) we 
have

A/(n) ^ An AZ(n,) n A n — (Aj(n,j n An/) n A n .

Now, A is our required limit. First of all we note that for any compact K  C  G, 
K  C  A n for some n. Now A n A n = A'l(n  ̂n A n and A^n. is made up from subsets of 
A i,. . . ,  A[(ny In turn, each of these contains only finitely many points from K  since
each Afc e  T>. Thus A n K  is finite, showing that A G V.

Second, we prove that d(A, A’m) < 2” (m_1) for each m. Let n e  N be arbitrary,
and let k > max{m , l(n)}. Then by (3.4)

A n A n — Aj(n) n A n — Ak n An .

Hence
tf((Am A A) n A n) _  tt((A^ A A'k) n A n) <  1

0{An) 8(An) ~  2m~
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because of (3.3) and

,/» */ x tt((A A A m )C A n) 1 1d(A, Am) =  lim sup — —  ™ ------ - < lim sup ; —
d(An) ~  n-̂ oo 2m_1 2m~l 

showing that
lim A'm = A.m—>oo

However, A'm = Akm by construction. Hence:

lim Akm = A .m—+ oo

So we started with an arbitrary Cauchy sequence and we proved that this has a 
converging subsequence. This proves that our space is complete.
(Second Case: limn_ oc 9(An) =  c < oo) Let {Am} be a Cauchy sequence in V.  
{Am} is a Cauchy sequence, hence there exists a mo so that Vm, I >  mo we have 
d(Am,An) < (2c)-1.

Let now m, I > mo be arbitrary. Since

D((AmAA,)n/t„) 1 
* ™ T ----------------  < 2 3

there exists an n0 such that for all n > no we have :

H((Am AA;) n An) 1 
9(An) c '

But the sequence {0(An)} is increasing and convergent to c , hence 0(An) < c for 
all n. This implies that:

tf((AmA A ;)nA ») <  |J((Am AA/) 0 A n) < 1
C _  0(An) c ’

It follows that )J((Am A A;) n  An) < 1, so

Am n  A n — Ai n  A n , Vn > n0 .

Finally Am = Ai so Am =  Ai , the sequence is constant from m0 on, and hence it is 
convergent. □

Rem ark 3.2 Note that if we have n'm an increasing sequence of natural numbers 
with the property that n'm > nm Vm, then in the previous proof we can replace 
{nm}m by {n'ni}m- We will use this fact in the following results.
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R em ark  3.3 In the second case of the proof of Proposition 3.1 (when the measure 
of G is finite), we have proved that in fact d induces the discrete topology on V . In 
this case all the results of the next section become trivial.

R em ark  3.4 Since nm is increasing we have the following description of A'm:

Am C Ani — Afcj C Ani 
Am ^  D (Ani\ A r 2 < i < m

A'm n (G \A nJ  = A kmn (G \A nm)

and hence the following description of A:

A n A ni — Akl n Ani 
A n (A jt^A n^i) = A ki n  (A.ni\A ni_1), i >  2 .

Rem ark 3.5 Neither the pseudometric d nor the metric d inherited from it is nec
essarily G-invariant. Invariance has to be derived from the van Hove property of 
our sequence. However, the van Hove property is a statement about boundary to 
bulk ratios in terms of measure, whereas the metric is involved with actual counting 
of points. Only when the points actually “eat up volume” is it possible to link the 
two ideas. Later, when we introduce uniform discreteness we will be able to do this 
and then obtain G-invariance on the smaller spaces T>v (see Corollary 3.14).

W ith the notation from the proof of Proposition 3.1 we have limn_>00 A  ̂=  A in 
the local topology. However, in general there is no connection between these two 
topologies, as the following example shows.

Exam ple 3.6 Let Am =  Z \ { —m, —m  +  1 , . . . ,  m }  and let A n [—n, n] . Then in 
the local topology

lim An =  0 ,
n —>00

whereas in the autocorrelation topology we have

lim An =  Z .
71—► OO

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



More generally let {Am} be any sequence of locally finite subsets of G and A 
any other locally finite set subset of G. Let A n be any van Hove sequence with the 
property that

Define {A'm } by

lim 0(An) = o o ,
71—> 0 0

UneN^n =  G .

Am ^  Am ■— AH A m 
A'm D (G \A m) := Am fl (G \A m).

(so we replace the points Am which inside A m by those of A). Then we have 
lim{A(n} =  lim{Am} in the autocorrelation topology (assuming tha t the limit ex
ists), but in the local topology lim{A(„} =  A .

3.3 Stable geom etric properties under convergence

As above, G is a u-compact locally compact abelian group, A  = {A n} is a fixed van 
Hove sequence, and d is the metric defined by this van Hove sequence on V.

If 0(G) < oo all the results in this section are trivial since, as we have pointed 
out above, the metric then induces the discrete topology. For this reason in all the 
proofs we study only the case 6(G) — oo. In particular

lim 0(An) = oo .
n —>00

D efin ition  3.7 Let {Aa}a C G be a family of locally finite sets. We say tha t this 
family is:

equi-uniform ly discrete if there exists a neighbourhood V  of {0} such that 
Aq is V- uniformly discrete for all a.

equi-relatively dense if there exists a compact set K  such that A a is i r 
relatively dense for all a.

equi-weakly-uniform ly discrete if for any compact K  in G there exists a 
constant cK such that for all a  and for all t  E G, K(Aa fl (t + K )) < ck

equi-D elone if the family is equi-relatively dense and equi-uniformly discrete.
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R em ark  3.8 If a family is V  -uniformly discrete then it is W-uniformly discrete 
for some neighbourhood W  of {0} with compact closure. If we have a family of 
V--equi-uniformly discrete sets then we can chose the same W  for the entire family.

L em m a 3.9 Let A, K  C G with 0 E K  and K  compact. Let V  be a compact 
neighbourhood of 0 in G with V  = —V . Then

V  +  dK (A) C dv+K (A)

(see Definition 2.3 for the notation).

P roo f: Let x  e  dK(A), v G V. We need to show that v + x  € dv+K(A).
Suppose that x E ( K  +  A)\A°. Then v - \ - x e V  + K  + A , and if v +  x £ A °, we 

have what we wish. If v +  x  € 4̂° C A, then from x  e  G \A° = G \A ,

v + x e  (V +  GV4) n i c  dv+K(A ) ,

as required.
On the other hand, if x  G {—K  +  G\^4) fl A  then v + x E V  — K  + G \A , and 

if v +  x  e  A  we have what we need. If v + x  f  A  then from x  E A  we have
v + x t V  + A d V  + K  + A, so

v + x e ( V  + K  + A )\A °  c  dv+K(A ) .

□

D efin ition  3.10 We say that a set A has a certain A -  statistical property if we can 
find a set A' which has that property and d(A, A') =  0.

P ro p o s itio n  3.11 Let A C G be statistically relatively dense and statistically uni
formly discrete. Then A is a statistically Delone set.

P roof: A is statistically relatively dense means that there exists B  C G and a 
compact K  such that B  is AT-relatively dense and d(A, B) =  0. A is statistically 
uniformly discrete means that there exists C C G and a neighbourhood of zero V 
such tha t C  is T-uniformly discrete and d{A, C) =  0. W ithout loss of generality we 
may assume that V has compact closure.

Let V  = { E \ C c E c B u C  and E i s V  — uniformly discrete} and order it by 
inclusion. Since C s P ,  P  ^  0.
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Let T  C P  be non-empty and totally ordered. Let M  =  UfE1 | E  E T}. 
Obviously C  C M  C B  U C. Suppose by contradiction that M  is not V-uniformly 
discrete. Then there exists x E M  so that

(x + V) n  (M \{x} ) ±  0 .

Let y E ((x + V) fl (M \{x}) . Since x ,y  E M, there exists E x, E 2 G T  such that
x E E i and y E E 2. But T  is totally ordered, so E x c  E2 or E2 C E x. So we can
find E  G T  such that

x ,y  E E  => y £ ((x + V) n  (E \{ x } ) ) .

Hence E is not E-uniformly discrete, contradicting the fact that E  e T .
By Zorn’s Lemma we know that there exists a maximal element Z  E V  . In 

particular Z  is V-uniformly discrete. We prove that Z  is /(''-relatively dense , where 
K ' — K  +  V  is compact.

Suppose by contradiction that Z  is not /^'-relatively dense. Then there exists 
x  E G such that

(:r +  K ') n  Z  = 0.

Since B  is /T-relatively dense, there exists y E (x + K ) H B  .
Let N  = Z  I) {y}. Then y Z  and Z  is maximal in V  implies that N  But

C c Z g N c B u C  and N  ^  V  implies that N  is not V-uniformly discrete.
Hence there exists z E {y + V )D (N \{y}) , from which z E Z; and also z E (y + V) 

and y E (x + K ) from which 2 E (x-\-K + V)nZ  C (x+K')C\Z =  0. This contradiction 
proves that Z  is K ' relatively discrete.

Now

C c  Z  C B U C  ^ 0  = d(C, A) <  d(Z, A) <  d(B  U C, A) <  d(B, A) +  d(C, A) =  0.

Hence d(Z, A) =  0. □

L em m a 3.12 Given an arbitrary compact set K , we can construct {nm} in Propo
sition 3.1 such that:

,im E L ,  H s k (a „j )
»(AnJ

P roof:
For this to be true it is enough to have:

d(dK(Anm)) < d(Anm) for all m , 
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and
k29(Anm) < 9(AUk) for all m  < k .

We have to prove two things:

i) the two conditions imply the result of the lemma

ii) we can chose m n in the proof of 3.1 to satisfy these conditions.

i)
S L i  »(aA'(-V J )  e(dK( K , ) )  +  «(SK ( / U j )

» ( 4 J  0 (A ,J

<
(3.6)

,  8(8“(A*)) T.^,Wk2MAn*))
~  »(Ant)
^ e(dK(Ank)) k - 1 
-  0 (4 * )  *2 '

Since both terms on the right side of the inequality go to zero we get the result, 
ii) The key for this is the fact that in the proof of Proposition 3.1, as long as 
nm > nm_i, we can replace each nm by any larger number. Since

lim W . »  =  0
f » A n l

there exists a j  such that 9(dK(An)) < 9(An) for all n > j .  By taking n i >  j  the 
first condition is satisfied.

Proceeding inductively, let C(k) := maxi<TO<fc_i m 29(Anm). At the beginning of 
the section we showed that we can assume lim ^oo 9(An) =  o o . Find nik) so that 
n  >  n(k) implies 9(An) > C(k). Choose any n*, >  n(k). Then for all m  < k, 
9{Ank) > C(k) > k29(Anm). The second condition is satisfied. □

Proposition  3.13 Let {Am} be a convergent sequence of locally finite sets.

i) I f  An are equi-uniformly discrete then the limit is statistically uniformly dis
crete (with the same V ).

ii) I f  all A n are equi-Delone sets then the limit is statistically Delone set.

Hi) I f  all An are equi-relatively dense then the limit is statistically relatively dense.
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Proof:
i) Choose V  in the definition of the uniform discreteness so that its closure is 

compact and V  = —V. Let K  — V  + V  and let {nm} be as in the previous lemma. 
We may also assume that A nm + K  + K  C A Um+1. Let K ' = V . Let A be the set 
constructed in Proposition 3.1 with this {nm} and let

B : = A n
meN

We prove that A\ B  is F-uniformly discrete and B  has density zero.
If x £ A\ B  then there exists some m  such that x  £ A nm\ A nm_1. Then from the 

construction of B, ( :r+ P )n A  C (A„m\A nm_1)nA  C A„m, which itself is F-uniformly 
discrete. This shows that A\ B  is P-uniformly discrete.

On the other hand, for x £ A fl dK'(A nm) we have, by Lemma 3.9, x  +  V  C
d K(Arim). We show now that each set x  +  V  contains at most two points from A.

Let r be minimal such that (x + V) n  (Anr\A „r_1) ^  0. Let y £ (x  +  V) fl 
(A„r \A nr_1). Then y £ x  + V. Since V  =  —V  we get x  £ y + V , so

x + V c y  + V  + V c y  + K c A nr + K c  A nr+1. 

Thus x  + V  C A Ur+1.
We show now that (x + V) D A„t._1 =  0:
Suppose by contradiction that (x + V) fl A nr_1 ^  0. From the minimality of r 

we get that
(x +  V) fl (Anr_1\A np_2) =  0. 

Thus (x + V ) n  A nr_! c  (x + V) n  A Ur_2, so (x + V) n  A nr_2 ±  0 .
Let y £ (pc +  V) fl A Ur_2. As above,

x + V  C y +  K  C A nr_2 + K  C AUr_1,

contrary t o r  +  L n  ±  0 .
Now, since x  + V  C A Um+1 and (x + V) n  A„m_1 =  0 we get tha t x  + V  C

(A»m+1 V W J ,  thus x + V  c&n meet only (Anm+1\A nJ  and -A„m\A ntn_1- 
Since each set x  + V  contains at most two points from A we get

0 ( V M A n d K'(A nJ ) < 2 0 ( d K(AnJ ) .

Now the previous lemma gives d(B, 0) =  0.
ii) We know from a) that A is statistically uniformly discrete. We prove now 

that it is statistically relatively dense. Let K  be given by the equi-relative density. 
We can assume that 0 £ K  and K  = —K . Let K " K  + K .
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Let {nm} be as in the previous lemma. We can also ask that A nm+ K "  C A„m+1. 
Let A be the set constructed in Proposition 3.1 with this {nm} and set

B :=  U ( A» » u A » » « ) n s K " ( 4 * J -
m= 1

In the same way as above we can prove that A U B  is AT-relatively dense and B  has 
density zero.

iii) Let K  be defined by the relative density . Let V  be a compact neighbourhood 
of {0}. Let K ' := K + V . We make the same construction as in b). The only problem 
is tha t B  may not have density zero.

As in Proposition 3.11 we construct B ' a maximal P-uniformly discrete subset 
of B. Then B ' has density zero and, exactly as in Proposition3.11, A U B ' is i r 
relatively dense. □

T>v be the set of equivalence classes of W-uniformly discrete subsets of G. We let 
d y  denote the restriction of the d  both to the set of F-uniformly discrete subsets of 
G and to their equivalence classes V y .  Restriction to V y  brings with it the property 
of G-invariance which we will need in the next section.

C o ro lla ry  3.14 Let V  = —V  be a compact symmetric neighbourhood of {0} in G. 
Then

i) d y  is a G-invariant on the set of V-uniformly discrete subsets o fG ;

ii) T>y is complete and G-invariant.

P roof: i) Let A, A' be V-uniformly discrete sets and let t e  G. Let W  = —W  be 
a compact symmetric neighbourhood of {0} satisfying W  + W  C V. Then for all 
x ,y  £ A with x  ^  y, (x +  W ) Pi (y 4- W ) — 0. Now

^  a am (t(((t +  A) A (f +  A')) n A n)d(t + A ,t + A') =  lim sup — ----  '  v ’’ '

=  lim sup

0(An)
tt((A A W) n (-t +  An)) 

B{An)

Comparing this with d(A, A') we see that the difference is due to (—t +  A n) \A n and 
A n\ ( —t  +  An) both of which are in dK(An) for K  {0, t, — t}; and in magnitude 
the difference is bounded by the sum of

#{A n dK(An))
‘T A P  »(An)
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and the corresponding value for A'. However, for each i  G A n  dK(An), x  + W  C  

dw+K(An). by Lemma 3.9, and so, taking into account the F-uniformness of A,

There is a similar expression for A'. Now the van Hove property shows tha t the 
limits are 0, and so d y ( A, A') =  d y ( t  +  A, t  +  A') as required, 
ii) The set of V-uniformly discrete subsets of G is G-invariant, and by a) so is the 
pseudo-metric d v  on it. Thus d y  induces a G-invariant metric on V y .  Proposition 
3.13 (and its proof) show that V y  is complete. □

R em ark  3.15 i) Let K — 7 \  U^Li(2n, 2 " + l , ..., 2n+n}. Then A is not relatively
dense, but d ( A, Z) — 0.

ii) Let A' =  Z U U^Li(2n +  ^}- Then A' is not uniformly discrete , but d{A',  Z) =  
0 .

iii) Let now A" =  A '\ U^Li(2” + 1 , •••, 2n +  n}. Then A" is neither relatively dense 
or uniformly discrete , but d { A", Z) =  0.

3.4 The autocorrelation group A ( A )

Let A C G be any Delone set with FLC.

D efin ition  3.16 We define a pseudo-metric on G: d \ ( t ,  t') = d ( t  +  A, t' +  A).

d \  is a G-invariant pseudo-metric (see Corollary 3.14). The interest in this 
pseudo-metric stems from its connection with the autocorrelation of A. For t £ G,

lim l ( * n ( m K )
n—*oo v { A n )

is the f-au to co rre la tio n  coefficient of A, and

is the a u to co rre la tio n  (m easu re)2. If the autocorrelation exists, then in fact for
£lll t  £  G ,

d A ( t , 0 ) =  2(77(0) -  7] ( t ) ) .

2This definition is equivalent to the original one since A has FLC.
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For more on this, see [7].
Note that dA is not in general a metric on G: for t, t' G G,

d \(t, t') — 0 d \( t  — t ' , 0) =  0 d{t — t' + A, +A) =  0

that is, t — t' is a s ta tis tic a l p e rio d  of A.

D efin ition  3.17 For each open neighbourhood V  of 0 and each e >  0 define

U(V, e) : =  {(x,  y) e G  x G \ 3v e V  such that dA{—v +  x, y) < e} .

The set of all of these U(V,e) form a fundamental set of entourages for a uniformity 
U on G. Moreover, since each U(V, e) is G-invariant, we obtain in this way a new 
topological group structure on G, called the m ixed  topo logy  of G.

Let A =  A(A) denote the completion of G in this new topology, which is a new 
topological group called the a u to co rre la tio n  com pletion  of G.

For each y G G and each U G U define U[y\ := {x  G G | (x , y) G U}.

D efin ition  3.18 For each e > 0, define the e-alm ost p e rio d s  of A: Pe :=  {t G G \
dA(t, 0) < e}.

For each e > 0 and V  a neighbourhood of {0} we have:

U(V,e)[0] = Pe + V .

R em ark  3.19 Let e0 := 2d(A, 0). Then for all e > e0, Pe =  G, and if V  is a
neighbourhood of {0} then U(V,e)[0] =  G.

Recall that a uniform space X  is said to be p reco m p ac t if and only if its 
Hausdorff completion X  is compact or, equivalently, for each entourage U of X  
there exists finite cover of X  with [/-small sets ([10],Theorem 4.2.3).

L em m a 3.20 Let V  be an open neighbourhood of {0} with compact closure in the 
standard topology of G and let e > 0. Then the following are equivalent:

i) U(V,e)[0] is precompact in the mixed topology,

ii) fo r all 0 < e' < e there exists K  a compact set in G with the standard topology 
so that

Pe C P e> + K .
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P roof: Suppose that U(V, e)[0] is precompact and let 0 < e' < e. Cover U(V, e) [0] 
by finitely many translations of U(V, e')[0]. Then using the previous remark there 
exist ti, ...,tn such that:

n

P£ + V  c l J i U  + Ps + V ) .
i=1

Since V  has compact closure, K  [J”=1 ti + V  is compact. Hence:

71
Pe c P £ + V c  ( J f t  +  Pt< + V ) c P e, + K .

i= 1

Conversely, let U' be an open neighbourhood of {0} for G in the mixed topology. 
We need to cover U(V, e)[0] with finitely many translates of U'. For this purpose 
we can assume that U' =  U(V',e')[0] for some open neighbourhood V ' of {0} and 
some e' < e. By assumption there exists compact K  in the standard topology so 
that Pe C Pe' + K . Then

U(V, e) [0] =  Pt +  V  C P£l +  K  + V  C Pe, +  K  + V .

Since K  +  V  is compact there exist such that K  +  V  C  UiL=i( t̂ +  ,
so we obtain

n n n

U(V, e) [0] c P e' + K  + V c  j j ( t i  +  P ,  +  V') = U ( ti  +  U{V', e')[0]) C [JiU  + U') .
i=l i=1 i=l

This proves that U(V, e)[0] is precompact. □

P ro p o s itio n  3.21 A is compact i f  and only if  for all e > 0, P£ is relatively dense 
in G (in the standard topology).

P roof: Suppose that A is compact. Let e > 0. Choose e' > max{e, e0}. Since A is 
compact, G is precompact. Let V  be an arbitrary open neighbourhood of {0} with 
compact closure. Then U(V, e')[0] =  G is precompact hence there exists K , compact 
in G such that

G = Pe, C Pt +  K .

Hence Pe is relatively dense.
Conversely, fix any e > eo- Let 0 < e' < e. Since P€> is relatively dense in 

G then there exists K  compact such that Pf C  Pe' +  K . Hence for any V  open 
neighbourhood of {0} with compact closure we have by Lemma 3.20 tha t G =
C/(V, e)[0] is precompact. □
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C oro lla ry  3.22 Let G be a a-compact locally compact abelian group. Let A c  G be 
a locally finite with a well-defined A-autocorrelation. Assume that A —A is uniformly 
discrete. Then the following are equivalent:

i) Pe is relatively dense for all e > 0;

ii) A is pure point diffractive;

Hi) A(A) is compact.

Proof: Proposition 3.21 proves the equivalence of i) and iii). For the equivalence 
of i) and iii) see [7], Theorem 5. □

P ro p o s itio n  3.23 Let A be a Delone subset of the locally compact abelian group G. 
The following are equivalent:

i) A is locally compact;

ii) There exists an e > 0 such that for all 0 < e' < e there exists compact K  with 
Pe C Pe> + K .

Proof: Suppose that A is locally compact. Let (p : G —► A be the uniformly 
continuous map which defines the completion.

Let U1 be a compact neighbourhood of {0} in A. Then we can find e >  0 and V  
an open neighbourhood of {0} in G such that p(U(V, e))[0] C U1. Then U(V,e)[0] 
is precompact, so we can apply Lemma 3.20.

Conversely, let V  be an open neighbourhood of {0} G G with compact closure. 
Again by Lemma 3.20, U(V,e) is precompact. □

R em ark  3.24 The completion mapping <p : G —> A provides a natural G-action on 
A. If A is compact we have a dynamical system, both topologically and measure 
theoretically (using Haar measures). Compact or not, the action of G on A is 
m in im al in the sense that every G-orbit is dense in A.

As pointed out in the introduction, A has an associated local dynamical hull 
obtained from the closure of its G-orbit in the local topology. In general, one should 
not expect any nice relationship between X and A. However, for model sets, there 
is a strong connection between the two, as we shall see in Section 3.5.
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In the case that G is a real space Md, the use of the Hausdorff metric d# on 
subsets of Rd allows a simple reformulation of some of the results above. Note that 
for A  C  B  C Rd,

dH(A, B) < oo <=t> B  C A  +  K  for some compact set K  C  Rd .

Now the following are obvious:

Corollary 3.25 The following are equivalent in Rd:

i) A is locally compact;

ii) There exists an e > 0 so that for all 0 < e' < e, d#(P£, P£>) < oo .

iii) There exists an e > 0 such that for all 0 <  e', e" < e, dn(Pe', Pe") < oo.

Corollary 3.26 The following are equivalent in Rd:

i) A is compact;

ii) for all e > 0, dH(Pe, Rd) < oo;

iii) for all 0 < e, e', dn(Pe, Pe1) < oo.

3.5 Regular m odel sets
Let (G, H, L) be a cut and project scheme:

G <2- G x H  H
u  (3-7)
L

(see Definition 2.16 and following for definitions)
We let L := iti(L) and * : L  — ► H  be the mapping ^  0 (7Ti)—1 |z,- By hypothesis, 

the group T := (G x H )/L  — {(t, t*)|t £ L} is compact. The obvious G-action on T 
makes it into a (minimal, see below) dynamical system.

Let A =  A(W) be a regular model set. We will assume that for u £ H, u  +  W  =  
W  if and only if u = 0 [39] 3. The regular model set A is generic if dW  n  L* =  0.

3 This condition is called irredundancy. By slightly generalizing the definition of model sets to 
sets A of the form u +  A(W°)  c  A c  u +  A(W°) we can replace I f  by a quotient of it so as to 
create a cut and project scheme for A which satisfies irredundancy. See [7] for details.
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Regular model sets are always Delone sets [26, 25] and have well-defined au
tocorrelations. In particular we can consider the autocorrelation group A(A). A 
key point is that A and T are isomorphic, so in fact T for a regular model set has 
a very natural interpretation - namely the completion of the orbit of A under the 
autocorrelation topology.

Proposition  3.27 Let G be a compactly generated locally compact abelian group 
and let A be a regular model set of the cut and project scheme (2.1). Then A(A) ~  T 
and the isomorphism is also a G-mapping.

Proof: There is no loss in assuming that A =  {t £ L\t* £ W }. The action of G 
on T =  (G x  H )/L  is defined by x  + (t + L) = x  + t + L, and it is easy to see that 
the image of G in T under this map is dense. So T and A are the completions of 
G under the respective topologies on G induced by the G-orbits of {0} in these two 
groups. It suffices to show that these topologies on G coincide. For the T-topology, 
x  £ G is close to zero if and only if there is a small open neighbourhood V  of G and 
a pair (t, t*), where t £ L  so that x  — t £ V  and t* is close to {0} £ H.

On the other hand, x £ G is close to zero in the A-topology if and only if there 
is a small open neighbourhood V  of G, and a small e >  0, and a t £ G so that 
x  — t £ V  and t £ Pe. Such a t necessarily lies in A — A C L. So we need to show 
that for t £ L, t* is close to zero in H  if and only if t £ Pt for some small e.

By uniform distribution (see [25, 39])

since the second term converges to the autocorrelation d(t +  A, A) =  d \(t, 0). It 
remains to prove that 0H(W\(t*  +  W )) converges to 0 if and only if t* converges to 
0.

Now, for all u £ H,

where lw  is the indicator function for the set W  and {} changes the sign of the 
argument. This is uniformly continuous in u (for this result on convolutions see [38], 
Chapter 1) and so disposes of the ‘if’ part.

V  1 +  lim
'  n—*oa

x e ( A \ ( t + A ) ) n A n x e ((t+ A )\A )n A ,

= eH(w\(t* + w)) + eH((t* + w)\w)  
= eH(w\(t* + w)) + eH(w\(-t* + w)),

e H ( w \ ( u  + w)) = eH{w) -  ( i w  * i w ) ( u ) ,
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Conversely, let {iq} be a net in H  for which {#ff(lT\(uj +  W))} converges to 0. 
The Ui eventually lie in W  — W  which is compact, so we may assume that in fact

O O
the Ui converge, say to u0. Then 0H{W \(u 0 + W )) = 0 and W  \(u 0 +  W ) is open,

O O
so W  \(u 0 +  W ) =  0. Thus W C uo + W , so W  C uq + W . A similar argument leads 
to the reverse inclusion. Then, by our assumptions above, Uo =  0. □

Corollary 3.28 For any regular generic model set there is a G-invariant surjective 
continuous mapping X(A) — > A(A). Furthermore, this mapping is 1 — 1 almost 
everywhere with respect to the Haar measure on A(A).

Proof: By [40] there is a unique G-invariant continuous surjective mapping X(A) — ► 
T(A) which maps A to {0} in T, and it is 1 — 1 T-almost everywhere. □

Rem ark 3.29 Corollary 3.28 in effect characterizes the regular model sets amongst 
the relatively dense sets A satisfying the Meyer property A — A is uniformly discrete 
[5],
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Chapter 4 

Diffraction of M eyer sets

In this Chapter we study the diffraction of arbitrary Meyer sets and the similarities 
between the diffraction patterns of (subsets of) model sets and lattices.

Just as the regular model sets, Meyer sets can be obtained by the cut & project 
method. Meyer sets require weaker conditions on the window, thus they are more 
general and easier to characterize than model sets, but also have less long-range 
properties.

Lattices are highly ordered periodic point sets and we should see this order in 
the diffraction experiments. It is a well known result, which follows from Poisson’s 
summation formula, that the diffraction of a periodic crystal is a fully-periodic 
collection of Bragg peaks:

P ro p o s itio n  4.1 Let L  c  R d be a lattice and let L* be the dual lattice. Then the 
diffraction pattern of L is C 5l*, for some constant C .

P ro p o s itio n  4.2 Let L  c  be a lattice and let F  C R d be finite. Then, the 
diffraction pattern of F  + L is supported on the dual lattice L*. In particular, F  + L  
is pure point diffractive.

Since regular model sets are the projection of a part of a lattice using a nice 
window, they should preserve some of the long range order of the lattices. Indeed, 
they have as nice diffraction patterns:

P ro p o s itio n  4.3 ( [39], [7]) I f  A is a regular model set then A is pure point diffrac
tive (with respect to any averaging sequence A ).

Given a discrete point set A which shows long range order, if we look to an 
arbitrarily subset 5  c  A we expect 5  to preserve only some of its order. In the case 
of lattice subsets, the following result has been proved by Michael Baake:
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P ro p o sitio n  4.4 [3] Let L be a lattice in and let S  C L. Let L* be the dual 
lattice o f L. Then the diffraction pattern of S  is L*—invariant. Ln particular each 
of the continuous and discrete spectrum is either zero or supported on a relatively 
dense set.

In this Chapter we prove that similar results hold for Meyer sets. More exactly 
we prove the following Propositions:

P ro p o s itio n  4.15 Let M  be a Meyer set and suppose that its autocorrelation r) 
exists with respect to an averaging sequence A . Then the set o f Bragg peaks (relative 
to A )  is relatively dense. Moreover, i f  M  is not pure point diffractive, it has a 
relatively dense support for the continuous spectrum as well.

C o ro lla ry  4.37 Let A be a Meyer set in Md. Then, there exists a constant 
C  > 0 such that, for every e > 0 the pure point diffraction measure of A, (rf)pp, is 
e-invariant under translations by the e-dual set A e/C; where A =  A — A.

P ro p o s itio n  4.41 Let A be a Meyer set inM.d. Then for any 0 < a < f?({0})> L{a) 
the set of Bragg peaks with intensity at least a, is a Meyer set.1

One can see Proposition 4.41 as a necessary diffraction condition for a point set 
to be a Meyer set.

We also prove in Section 4.2.2 that for Meyer sets, unless we are in the periodic 
case, the set of Bragg peaks is strictly larger than the set of visible Bragg peaks.

In Section 4.1.3 we study the existence of Bragg peaks in a diffraction experi
ment. The well known Riemann-Lebesgue lemma tells us that the Fourier transform 
of any absolutely continuous measure must vanish at infinity. This gives a neces
sary condition for the autocorrelation of a point set to have absolutely continuous 
diffraction spectrum.

In the case of translation bounded measures, a necessary and sufficient condition 
for a measure to have a continuous Fourier transform is given in [21]. The condition 
(namely null-weak almost periodicity) is mentioned below, but generally is not easy 
to check. In Section 4.1.3 we provide an equivalent asymptotic condition for the case 
of positive translation bounded measures. In particular we get a simple necessary 
and sufficient condition on asymptotic behavior of the autocorrelation coefficients 
for the diffraction to be a continuous measure (i.e. no Bragg peaks)2. We also 
provide a necessary and sufficient condition for no Bragg peaks to appear in the

1For a subset of a lattice, it follows easily from Proposition 4.4 that the set of Bragg peaks 
consists of finitely many translates of the dual lattice.

2 This result is interesting only in the case of diffraction from (possible complex valued) weighted 
combs with non-negative autocorrelation. The diffraction pattern of a Delone set has always a 
Bragg peak in the origin.
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diffraction pattern, when the autocorrelation is not positive, but it is supported 
on an uniformly discrete set (in particular for the autocorrelations of a complex 
weighted comb supported on a Meyer set).

Although physical applications are concerned with R d (when cZ =  2,3), much of 
the theory that we develop is valid for (compactly generated) er-compact, locally 
compact abelian groups, and we use this setting as long as we can.

4.1 A lm ost periodic measures and long-range or
der in M eyer sets

4.1.1 T he diffraction of M eyer Sets

For most of this part we work with an arbitrarily locally compact abelian group G. 
For the main applications of the results, we will restrict to the case G = Md, since 
only here do we have the complete characterization of Meyer sets. We will work 
with respect to a fixed, but arbitrary van Hove sequence A  = {A„}n6N.

L em m a 4.5 Let M  be a Meyer set in R d. Then M  is subset o f a regular model set.

P roof: M  Meyer set implies that M  is a subset of a model set [27]. Let H  be the 
internal space of this model set and W  be its window. Let U be an open set in H  
such tha t U is compact and dnidU) = 0 .

W  is compact implies W  c  (J"=i(^ +  U) f°r some A ,..., tn G H. Let V  := 
U"=i(^i +  U) , then V  is open , has compact closure and 0h {9V) =  0.

Let
A =  A (V ),

in the notation of [27]. Then M  C A and A is a regular model set. □

P ro p o sitio n  4.6 Let A. be a pure point diffractive set in G with finite local com
plexity, and let M  be a subset of A. Suppose that both their autocorrelations Vm  and 
t]a exist with respect to a A . Let

Vm  =  ( Vm ) s  +  ( v m )o  ,

be the decomposition into the strongly and null-weakly almost periodic parts. Then 
('Vm )s ) (Vm )o are pure point measures.
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P roof: Since A is pure point diffractive, Va = (va)s -
Since vm >  0 we get by Proposition 2.38 that (v m )s >  0.
Now:

M  C A Vm  <V a => Va ~ V m > 0  => (Va ~  Vm )s > 0,

(Va -  Vm )s >  0, Va = (Va )s  = >  (Vm )s < Va ■

So we get:

0 <  (v m )s < Va hence supp((?7m)s) C supp(7yA) C A -  A .

In particular (Vm )s is a pure point measure.

(Vm )o = Vm  ~  (Vm )s =*> supp((?tm)o) C supp((77m)s) U s u p p ^ )
C (A -  A) U (M  -  M)  =  A -  A .

□
P ro p o s itio n  4.7 Let 0 ^ / 6  Cu(G) be a strongly almost periodic function and let 
A  = supp(/). Then G can be covered by finitely many translates of A.

P roof: /  ^  0 =>• f ( x )  0 for some x  E G. Since r_x/  is strongly almost periodic 
and supp(rx/ )  =  x  +  A, without loss of generality we may assume that /(0 ) 0.
Let 0 < e < |/(0 )|.

For g E Cu(G)  we define B t (g) — {h E Cu(G) \ || g — h ||0O< e}. B e(g) is an open 
set. Df  = {rxf } xeG is a subset of Cj  which implies that Dj  has compact closure.
It is easy to see that

D} C ( J  B e(rxf ) .
x e G

Since D f is compact, there exists X i,..., x n E G such that

n

i = 1

So for any fixed x E G there is an i such that rxf  E B €{rXif ) .  Thus, we get:

II rxf  -  txJ  ||00< e and |Txf(xi )  -  rXif(xi)\  < e < | / ( 0) | .

Consequently,

| f ( —x  + Xi) — /'(0 )| < /(0 ), hence f ( —x  + Xi) ^  0, hence — x  + Xi E A, sox  E Xi — A  .
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Since x E G was arbitrary, we get G C \Jl=i{x i~ A ), thus G — —G C  U”= i(—xi +
A).

□

P ro p o sitio n  4.8 The support of any non-trivial strongly almost periodic measure
on G is relatively dense.

P roof: Let p  be a non-trivial strongly almost periodic measure on G. Let A  = 
supp(/i). Let /  E Cc(G) be a non-negative function such that f  ^  0, and let 
K  = supp(/).

If 0 ^  /  * p(x) = f G f ( x  -  y)dp{y) =  f A f { x  -  y)dp(y) then there exists y E A  
such that f ( x  — y) 0, so x  — y E K,  hence x  E K  + A.

Thus we get that /  * p  =  0 on G \(K  +  A). Since K  + A  is closed we get that:

supp(/ * p) C  A  +  K  .

Since p  is strongly almost periodic we get that f  *p  is a strongly almost periodic 
function by Remark 2.32. Applying the previous proposition we get that there exist 
Xi, ..., x n e  G so that

n n necU( Xi + su p p ( /* /r ) )  C  U< Xi + A  + K ) =
i = 1 i= 1 i = 1

proving that A  is relatively dense. □

R em ark  4.9 Let S  be a Delone set and suppose that its autocorrelation r] exists 
with respect to A. Since rj is positive and positive definite, we know by Proposition 
2.38 that rjs is positive and positive definite. Thus each of rj and ps are Fourier 
transformable and also rf and ffs are Fourier transformable. Taking the difference 
we get also that r/0 is Fourier transformable and also 770 is Fourier transformable. 

Thus we can apply the Corollary 2.40 for 77, 775 and 770.

P ro p o s itio n  4.10 Let S  be a subset of a pure point diffractive set A with FLC, and 
suppose that both their autocorrelations 77 and 77A exist with respect to A . Then each 
of supp(77)pP and supp(77)c is either relatively dense or empty.

P roof: We know from Proposition 4.6 that 77s and r]0 are pure point measures. 
Thus, from Corollary 2.40, we get that (f))pp and (77)c are strongly almost periodic 
measures. The result follows now from Proposition 4.8. □
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P ro p o s itio n  4.11 Let S  be a set in G which has finite local complexity, and suppose 
that S  is pure point diffractive. Then S  has a relatively dense set of Bragg peaks.

P roof: Let rj be the autocorrelation of S  and let rj be its Fourier transform. Since rj 
is pure point we get that rj is strongly almost periodic. We know that fj is also pure 
point. Then, the set of Bragg peaks is dense in its support. Applying Proposition 
4.8 we get tha t the set of Bragg peaks is relatively dense. □

L em m a 4.12 Let A  be a relatively dense set in G and let B  be another subset of 
G such that A c  B  and B  has finite local complexity. Then there exists a finite set 
F  such that:

P roof: Let K be compact such that G = A +  K, and define F = (B — A) fl K. F 
is finite since F  C (B — B) fl K.

Let y E B. Since G ~ A + K we get y = x  + z  with x  E A and z E K.

that both their autocorrelations rj and rja exist with respect to A . Then there exists 
a finite set F  such that:

B  C A + F .

But z  = y — x  E B  — A, hence z E F. This proves that: B  C A + F. □

L em m a 4.13 Let M  be a relatively dense subset of a set A with FLC, and suppose

x , y€F

In particular, i f  A is pure point diffractive, rjs 0.

P roo f: From Lemma 4.12 we get that there exists a finite set F with A c  F + M. 
Let t  E M  — M. Then :

H((An (t +A)) n An)
0(An)

< mMAF)n(t + M + F))nAn)
6{An)

#(Ux,j/6f((-^ + y ) r \ ( t  + M + x ) ) n  An) 
0(An)

^~2x,yeF +  y) n (t +  M +  a:)) fl An)
<

(4.1)
<

x , y e F
E

0(AO
t)(((M +  y) fl (t +  M +  x)) n An) 

0{An)

where 0 is Haar measure in G.
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Now letting n —► oo we get:

Va <  T(*-y)V •

For the last claim we see that if A is pure point diffractive then

Va =  (Va)s  <  ( J2 B * - y ) V ) =  T(x-y)Vs ■
\x,yeF J s x,y€F x,yeF

Since A is relatively dense we get that ? 7 a ( { 0 } )  ^  0, hence r\s 7̂  0. □

Lem m a 4.14 Let A be a pure point diffractive set with FLC and let M  be a subset 
of A. Suppose that both autocorrelations rjA and T)m  exist with respect to A . Then 
each of the pure point and continuous diffraction spectra for M  is either empty or 
supported on a relatively dense set. Moreover, i f  M  is relatively dense, it has a 
relatively dense set of Bragg peaks.

Proof: The proof is a consequence of Proposition 4.10 and Lemma 4.13. □

Proposition  4.15 Let M  be a Meyer set and suppose that its autocorrelation r) 
exists with respect to A . Then the set of Bragg peaks is relatively dense. Moreover, 
i f  M  is not pure point diffractive, it has a relatively dense support for the continuous 
spectrum as well.

Proof: Since M  is Meyer we get that M  is a subset of a regular model set (Lemma 
4.5). Since the autocorrelation of a regular model set exists with respect to any van 
Hove sequence [25] and the regular Model sets axe pure point diffractive ([39] or [7]), 
the Proposition is an easy consequence of Lemma 4.14. □

Rem ark 4.16 In Section 4.2.2 we show that there is a connection between the set 
of Bragg peaks for a Meyer set and the e-dual sets.

Proposition  4.17 Let M  be a Meyer set. Let D be a Delone set such that M  C D 
and suppose that the autocorrelation rjo exists with respect to A . Then D has an 
infinite set of Bragg peaks.

Proof: Suppose by way of contradiction that D  has only finitely many Bragg peaks.
We take any regular model set A such that M  C A. Then there exists F  finite 

for which A c M  + F c D  + F. Just as in Corollary 4.13 we get :

VA ^  ^  '  F(x-y)VD ■ 
x,yeF

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Looking at the strongly almost periodic parts we get:

Va < ^ 2  t(x- v)(Vd )s -
x , y e F

But rja is a non-trivial pure point measure, hence ((77d )s)pp 7̂  0.
Since D  has only finitely many Bragg peaks, (rfojpp = YhzeB c^ z  f°r some finite

set B. Thus (t)d )s = (Vd )s =  (Vo)pp — YhztB cze-27" <Zr> is a continuous measure. 
But this contradicts the fact that ((77d )s )pp /  0. □

Rem ark 4.18 We used the intermediate regular model set A to prove that ((rj£>)s)pp 7  ̂
0 because we don’t know whether the autocorrelation of M  exists with respect to 
A.  One could also use the fact that for any point set C  and any van Hove sequence 
there exists a subsequence with respect to which the autocorrelation of C  exists [4].

D efinition 4.19 Let D  be a locally finite subset of G. We say tha t D  has A -zero 
density if

p n d B) n
lim sup =  0 .

ra-+ 00 @(An)
We say tha t two sets B  and C  are ^.-statistically the sam e if B  A C  has .4-zero 
density.
We say that B  is an ^.-statistical M eyer set if there exists a Meyer set M  such 
that B  and M  are ^.-statistically the same.

Rem ark 4.20 i) If two sets are M-statistically the same, and the autocorrelation 
of one can be computed with respect to A,  then the autocorrelation of the other 
can be computed with respect to A  and the autocorrelations are equal.

ii) For a given set B  we can find a set C  which is ^-statistically the same as B  
and contains a Meyer subset if and only if B  contains an M-statistical Meyer 
subset.

iii) For more properties of the statistical equality, see Chapter 3.

Corollary 4.21 Let S  be a Delone set, whose autocorrelation exists with respect to 
the van Hove sequence A . I f  S  contains a A-statistical Meyer set, S  has an infinite 
set of Bragg peaks.

Proof: From the previous remark we know that we can find a set B  which contains 
a Meyer set and has the same autocorrelation as S. Applying Proposition 4.17 we 
are done. □
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4.1.2 T he diffraction of w eighted com bs w ith  M eyer set sup
port

Throughout this section we work with a real weighted comb:

w =  Y  w({a:})5x ,

x e M

where M  is a Meyer set. We require that a; is a translation bounded measure, or 
equivalently that the set {u>({x}) | x  E M }  is bounded. Also, for the entire section 
we consider a fixed, but arbitrary van Hove sequence A  = {An}n6N- 

We say that the autocorrelation of to exists with respect to A  if

rj(z) = lim — j—  Y  n-oo d(An) ^
x —y = z

exists for all z € M  — M. In this case we define:

v=  Y
zeM - M

and we call it the au to co rre la tio n  of u. 3
We will further assume that the autocorrelation exists with respect to A ,  and 

that the autocorrelation tjm of M exists with respect to A .  This is possible since, 
if we pick an arbitrary van Hove sequence, the autocorrelation of u> exists for a 
subsequence [4] and we can repeat the argument for M.

We assume for the entire section that rf is Fourier transformable. Then (rf)pp and 
(fj)c are also Fourier transformable ([21], Theorem 11.2).

P ro p o s itio n  4.22 Let rj be Fourier transform of the autocorrelation and B  the set 
of Bragg peaks . Let also {Dk}kEn C Kd be an arbitrary van Hove sequence.

Then the following are equivalent:

i) B  is non-empty;

ii) rj is not continuous;

iii) lim ^oo 0 (i.e. either the limit doesn’t exist or it exists and is not
zero);

3For the properties of the autocorrelation one can see [7]. There, it is also shown that in the 
case of equal weighted point sets, this definition is equivalent with the one we use.
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iv) B  is relatively dense ;

v) B  is an infinite set.

Proof: iv)=> v) i) ^  ii) are trivial.
ii) iii) follows from Proposition 4.30, proved in the next section, 
ii) => iv)
Let C  be such that |u;({x})| < C  for all x  € M. Then —C$m  < oj < CSm -
It is easy to see that

- C 2t)M < V <  C 2rjM ■

Since (t]m )s  is a pure point measure, by Proposition 4.6 and Proposition 2.38 we 
get th a t rjs is a pure point measure.
Now, since fj is not continuous, we obtain rjpp ^  0. But we know that fjpp — rjs, so 
fjpp has a pure point Fourier transform, hence is strongly almost periodic.

Applying Proposition 4.8 we get that B  is relatively dense. □

Rem ark 4.23 A similar argument shows tha t if there exists r > 0 for which 
w({a:}) > r  for all x  € M  then the support of the pure point part of the diffraction 
pattern of uj is relatively dense. Moreover, in this case, r) is positive and positive 
definite, thus rj and (fj)pp are Fourier transformable.

4.1.3 Translation bounded m easures w ith  continuous 
Fourier Transform

Let be a positive translation bounded and transformable measure on G. In this 
section we will provide a necessary and sufficient condition for jl to be continuous. 
The idea behind the proof is tha t whenever /  € Cc(G) and p  are positive, we can 
ignore the absolute value in the definition of null-weak almost periodicity.

We want the mean of /  * ^  to be zero. The key to the result is tha t (f * p) \a  

is different from f  * {n U) only on the A-boundary of A, for some compact K. 
The integral of the second function over G is just fx{A) fG f. Thus, in this case, the 
average integral of f  * n is just the average of fi multiplied with f G / .

Proposition  4.24 ([21], Corollary 11.1) Let /a be a translation bounded transformable 
measure on G and suppose that jl is transformable and translation bounded. Then 
jl is a continuous measure if and only if  p  E WAVo(G).

□
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D efin ition  4.25 For g E Cc(G) let

H a )  '■= f  9 ( x ) d 0 ( x )  ■
J G

P ro p o s itio n  4.26 Let g be a positive translation bounded measure on G and let 
g E Cc(G) be positive. Let K  = — supp(g) U supp(p) and let A , B c G  be two sets 
such that A  +  K  C B. Then

i )  (a* U )  * g  <  ( g * g )  Ib  ,

a )  ( » * g )  \a <  (a» Is) *g-

P roof: i) Let y E G. (g U) * g(y) =  JGg(y -  x)d(g |A)(x) =  JA g(y -  x)dg{x).  
l i y  £ A  + K  then (g |A) * g(y) = 0 and (g * g) \B> 0. Thus i) holds.
If y E A + K  then y E B, so

ih * g )  Is (y) = T*g{y) = /  g ( y - x ) d g ( x ) >  /  g ( y - x ) d g ( x ) ,
J G  J  A

and again i) holds.
ii) Let y E G . l i y  £ A  then (g * g) \A (y) = 0 <  (g |B) * g- 
If y E A  then y +  K  c  B. Then

(v  Is) * g(y) = JG g(y -  x)d(g |B)(z) =  J ^ p p ^  g(v -  x)d(g |B)(x)

= Sy+K g(y -  x)dg(x),
the last equality following the fact that y +  K  C B. Since g(y — x) ^  0 only if
x  E y +  K  we get

(a* Is )  *  g ( y )  =  g ( y -  x ) d g { x )  > ( g * g )  \A ( y)  ■
J G

□
P ro p o s itio n  4.27 I f  g is positive, translation bounded and transformable and g E 
Cc(G) is positive, then g * g is amenable and

M (g *g) = 0(g) lim
71-+00 f7[ An )

for any sequence {A n}n which has the M-property 4. In particular this is true i f  
{ An}n is a van Hove sequence.

See Appendix A for definition
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Proof: Since g  is transformable we know that g  is a weakly almost periodic measure 
([21] Theorem 11.1). Hence g *  g is an amenable function ([21] Corollary 5.4) and 
by Proposition A.6 we have

f q  * g(x)d9
M(g  * //) =  lim n  , (4.2)n-*oo 8(A'n)

for any sequence {A'n}n which has the Fqlner property. In particular we obtain that 
the limit exists.

Let K  =  — supp((/) U supp(g). Prom Proposition 4.26 we have:

/  g * g (x )d 9 <  /  g * (g \An)(x)d9 <  /  g * g (x )d9 .
J a %~ J g  J a %+

Since everything is positive, by the Tonelli Theorem we can change the order of
integration. Thus we get:

(4.3)
/  S *  (#* =  f  ( /  !/!.t -  y ) d ( p

J g  J g  J g

= f  [  9 (x ~  y)d9{x)d(tx \An)(y) = !  8(g)d(g \An)(y) = 8(g)g(An) .
J g J g  J g

So we get:

[  g*  g(x)d9 < 9(g)g(An) < f  g*  g (x )d8 .
J a%- Ja%+

Dividing by 9(An) we get:

SAK -g * n (x )d 9  0(AK-) MAO JAK+g * t ix )M e (A % -)
8(A*~) 8(An) -  9(An) ~  d(AK-) 9(An) '

Using (4.2) and the definition of M-sequences we get that the first and last terms 
converge to M(g  * g), so:

9{An)M (g *g) = 9(g) lim
8(An) ‘

□
C o ro lla ry  4.28 I f  g is a positive transformable measure on G and {A n}n has the 
M.-property then:

M M  =  lim f t X T  'n -» o o  t ) (A n )
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P roof: In ([21], Corollary 5.4) it is proved that if g E Cc(G) is positive with 
9(g) — 1, then

M(p) = M (p  * g).

Hence the result follows from Proposition 4.27. □

C o ro lla ry  4.29 I f  p is a positive, translation bounded and transformable measure, 
and {A n} has the M-property (in particular if  {A n} is a van Hove sequence), then 
the following are equivalent:

i) n  e  W ^ P o (G ),

ii) p has continuous Fourier transform,

Hi) lim ^oo f { j A  =  o ,

iv) M(ff) — 0 .

P roof: We already stated that i) ii) and iii) iv).
i) =>■ iii): Let g E Cc(G) be a positive function, not identical to zero. Then 

9(g) > 0. By Definition 2.31 and Proposition 4.27:

0 =  M(\g  * p\) =  M(g  * p) =  9(g) lim .
n—>oc u { A n )

Dividing by 9(g) ^ 0  we obtain iii).
iii) =>■ i) : Let g E Cc(G) be arbitrary. It is easy to see that:

M (\g*fi\)  < M ( \g \* p ) .

Applying Proposition 4.27 to \g\ E Cc(G) we obtain M(\g\ * fi) = 0. Since M(\g  * 
p\) > 0 we are done. □

We use \p\ for the variation measure of p.

P ro p o sitio n  4.30 Let p be a transformable, translation bounded measure and let 
p be translation bounded. Let {An} have the M -property ( in particular let {A n} be 
any van Hove sequence).

Consider the following statements:

i) p E  W A V 0(G) ,

ii) p has continuous Fourier transform,
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iii) |/i| has continuous Fourier transform,

iv) \g\ £ W A V 0(G ),

v) lim ^™  =  0v ) lim ——UJ m i l n ^ o o  e ^A n )

Then always i i i)  4=> iv) 4» v) 4=t> vi) =t- i) 4=> ii).
Moreover, i f  supp (g) is uniformly discrete, all statements are equivalent.

Proof: The equivalence iii) iv) <=> v )  <=> vi) is obvious from Corollary 4.29, and
i) 44> ii) follows from Proposition 4.24.
iii) i) Let g £ Cc(G) be arbitrary. It is easy to see that: \g* g\ < |g| * \g\. Thus 
M(\g*/J,\) < M (\g \* \g\). Using iii) we obtain: M(\g*g\) = 0. Thus g  £ W A V o(G).

We prove now, under the assumption supp(/x) is uniformly discrete, tha t i) im
plies vi). Let S  := supp(/i) and let U be open such that (S  — S)  n  U = {0}. Let 
V  be an open neighbourhood of 0 such that V  — V  C U. Since S  =  supp(/i) is 
uniformly discrete then g =  Ylses c^ s  for some cs £ R, and it is easy to see that 
\h\ ~

Let g £ Cc(G) be arbitrary so that K  := supp(g) C V. We prove tha t \g * g\ =
\g\ * H-

g(x) = /  g ( x - y ) d g ( y )  = J 2 g ( x - y ) g ( { y } )  
Jg ,icC

If y £ x  — K  then x  — y ^ K ,  hence g{x — y) =  0. Thus

g * g (x )  = ^
yeSn(x+KT)

By the choice of V  we have (((S' fl (x — K))  <  1, whence

9 ( x - y ) g ( { y } )  =  ] T  \g(x -  y ) g ( { y } ) \ .
y e s n ( x - K ) y € S n ( x - K )

and

\g\ * MO*)-
y e S n ( x - K ) y e S n ( x - K )
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Now assume i). By Definition 2.31 we have M(\g*y\) = 0. Thus 0 =  M(\g*y\) =  
M(\g\ * \y\). Then by Proposition 4.27 and Corollary 4.28 we get 0 =  M(\y\). □

A natural question now is if we can replace the condition of uniform discreteness 
by a weaker one. The natural condition to think of is weak uniform discreteness. 
The following is an example of a null weakly almost periodic measure which doesn’t 
satisfy the fifth condition of the Proposition 4.30:

Exam ple 4.31 Let y  =  Zlnez\{o}(^ -  <Wi/n) e  Ad°°(E). Let A n = [-n,ra].
Then y  G WMPoCR) , but

lim l4 r 4 4 =  Hm E ,6 Z ' n^ | /‘ (S)' =  2 .n—>oo 0(An) ti ôo 6\An)

P roof: The only thing which is not trivial is that /i  G WA'Po(M), so we concentrate 
on this.

First we prove that for all g € Cc(R), g * y  is a function vanishing at oo.
Let k be a positive integer such that supp(p) C [—fe, k\. Let e >  0 be arbitrary. 
g G K ( R) implies that g is uniformly continuous. Thus there exists a 6 > 0 such 

that \x — y\ < 8 implies |g(x) — g(y)\ < e/(2k +  2).
Let n0 > 0 be such that 1/uq < 5. Let |n| > n0. Let x  G R. Then

|(<yn -  <Jn+i/n) * 9(x) | < e / (2k + 2).

Moreover, supp ((Sn — Sn+i/n) * d) C [—n — k — 1/n, k — n] C [—n — k  — 1, k — n].
Let \y\ > no+k+1. Then (5n—Sn+i/n)*g(y) ^  0 only if y G [—n —k —l , k —n], thus 

only if n  G [—y — k — l , k  — y]. But this implies that there are at most 2 k+ 2 terms of 
the type (8n — 5n+i/n)*g(y) we have to consider in ii*g(y). Also n  G [—y —k — l , k —y] 
implies |n| >  |y| — k — 1 >  n 0. Thus, for any n  G [—y — k — l , k  — y], we have 
|(<̂ n -  8n+i/n) * g{y)\ < e/(2fc +  2). Thus, for all y  with \y\ > n0 +  k + 1, we have
\»*g(v)\ < e-

Now since y * g  is vanishing at oo we get y * g  is null weakly almost periodic [16]. 
Since this is true for any g G C'c(R), by Remark 2.32 we get y  G WM'Po(R)- □

Rem ark 4.32 For any pure point measure y, then following implications are true:

M(\y\) =  0 ^  y e  W A V 0(G) =» M (y) =  0.

We saw that if y  is positive all three are equivalent. We saw that the first two 
are equivalent under the assumption of uniform discreteness, but not equivalent for
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weakly uniform discreteness. We construct an example of pure point measure p with 
uniformly discrete support so that M(/t) =  0, but p  ^ W A V q{G):

Let
p =  E ( - i r « » .

neli

It is obvious that // transformable (because it is periodic) and M (p) =  0.
Now, since supp (p) =  Z we know

/ r e  HULP0(G) ^ M ( |/ / |)  =  0.

But M (|/r|) =  1. In fact, p G SAV{G ),  with

A4 ~  ^i(2Z+l) •

4.2 The Bragg Spectrum  of a M eyer Set

4.2.1 Prelim inaries

For an y  G Md we denote by Ax the element of defined by:

Xx(x) = e~27:i<x’x>.

Proposition  4.33 [20] I f  p G is Fourier transformable and A  is a van
Hove sequence of cubes, then for any x  € M.d we have:

^  t  h n X- x ( x ) M x )
m x } )  = lim , .-------- .

n—*0° 0 { A n)

Corollary 4.34 I f  fi G A I00(Md) is Fourier transformable and non-negative then 
for any x  G Md we have:

Proof:

I  An X~X(X) M X)
0(An) <  l l m  —  M  A  \ ------------  =n~>°° 0 ( A n)

□
R em ark  4.35 Under the conditions of the previous corollary we have: (/r)pp 7  ̂0 <f=r- 
p({0}) 7  ̂ 0 limjj^oo ^  which was also proved in Proposition 4.30.
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4.2.2 Translation bounded m easures w ith  M eyer set sup
port

For this section, we consider a Meyer set A C R . We let r] e  _M°°(R) be a Fourier 
transformable measure with supp(ry) C A. r] can take complex values. A  = {A n}n 
will represent a van Hove sequence of cubes and 0 will denote the Lebesgue measure 
in Rd.

For most of the applications, r] is the autocorrelation of a (weighted comb sup
ported on a) Meyer set.

P ro p o s itio n  4.36 There exists a constant C  > 0 such that for all 0 <  e, x  €
and for all ip e  A£//c we have

I v d ^  + x})  < e -

P roof: Let

C  =  lim sup •
n —i-oo " {f in )

Then 0 <  C' < oo , since one can use K  — [0, l]d, the tiling Rd =  U3, +  K ,  and the 
fact that r] is translation bounded to get C' <  Ck  =  supx€Rd|ry|(x +  K).  (If r] is 
positive, then C' =  ^({0}).)

Let C > C  be arbitrary but fixed.
We know from Proposition 4.33 that the Fourier-Bohr coefficients of rf are given by:

V({x}) = I™
I a„ X-x (X)drl(x)

0(An)

Then, for any e > 0, any ip 6 A £/ ° , x  € Rd and x  G A we get:

\X-ip -  x(x) -  A_x(x)| < e / C . 

Using the fact that supp(??) c  A we get

\ m  + *}) -5({x}) I < Bnw,
fAn(e/° )d MOd<  iAa.. .  :  f

-  e ( An) 6 ■

□
C oro lla ry  4.37 Let A be a Meyer set in Rd, and let A =  A — A.
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i) Let T) be an autocorrelation of A. Then there exists a constant C  >  0 such 
that for all 0 < e, (fj)pp is e-invariant under translations by A €/c  i.e. when we 
translate by any element of A ^ c we get an error smaller than e.

ii) Let p  be a weighted comb with the support inside A and let rj be its autocor
relation. Then there exists a constant C > 0 such that for all 0 <  e, (fj)pp is 
e-invariant under translations by A e/C.

Rem ark 4.38 i) For each 0 < e < 2/C, A elc  is a model set [27].

ii) Corollary 4.37 and Corollary 4.4 show that there are similarities between the 
diffraction of lattice subsets and diffraction of subsets of model sets.

The result from Corollary 4.4, for the pure point part only, can be obtained as 
a corollary to Proposition 4.36, using the fact that, for a lattice L  C R d with 
dual lattice L* and for e < 1/2, we have L e = L*.

We denote I 8up(rj) = s u p ^ ^ l x } ) } .

Rem ark 4.39 i) I SUp(v) ^  0- Note that since fjpp is concentrated on a countable 
set, there exists \  £ 3Rd such that fj({x}) = 0.

ii) If r/ >  0 then we know that

\vi{x})\ < v(P),
so

Isupiv) = h({0}) =  lim sup -  M(r]).
n—*oo v \ A r i )

For th e rest o f th e section we suppose th at r) is positive definite. C
will denote th e constant given by Proposition 4.36.

For any a e  R we define

1(a) = i x  e  Md | fj({x}) > a}.

R em ark  4.40 We are interested in 1(a) only when 0 < a <  I SUp(v)- For a fixed a
we refer to this set as the set of a-visible Bragg peaks.

Proposition  4.41 i) For any e > 0 we have:

1(a) ±  A e/C C I(a  -  e ) .
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ii) I f  r) is also positive, and ISUp(v) > then f or any 0 < a < I Sv,p(ji); I ( a) a 
Meyer set.

P roof:
i) Follows trivially from Proposition 4.36, since A etc  =  —A e/C.
ii) Let e > 0 be such that e < a and e < I sup(r}) — a.
We prove that

A e/C C 1(a) C A €l°  +  F ,

for some finite set F.
Let A := A ^ c .
A C 1(a): Since 0 G I ( I sup(rj)) we have A  C I ( I sup(r})) + A  C I ( ISup(v) -  e)- 

Since a < Isup(rj) — e we get I ( I SUp(v) — e) ^  /(a ), thus A  C 1(a).
1(a) C F  +  A: Let b = a — e > 0. We know that 1(a) — A  C 1(b). Since A  is 

relatively dense, then there exists a compact set K  such that A  +  K  = R d. We have 
fj(K) < oo (for example from the fact that rj is translation bounded).

Let F  =  K  Pi 1(b). Then rj(K) >  ^({x}) >  fecard(F). Since b ^  0 and
rf(K) < oo we get that F  is finite.

Let x  £ I ( a)■ Since A  +  K  = we can write x  =  a  +  k with a  G A ,k  G K.  
Then k =  x  ~  a  € (1(a) — A) C 1(b), thus k 6 (K  fl 1(b)) = F. So x  ^  A  + F. Thus 
1(a) C A + F.

Since A€//c C 1(a) C A e/°  +  F  and A e/C is a model set, it follows at once that 
1(a) is a Meyer set. □

C oro lla ry  4.42 Let A be a Meyer set in Rd.

i) Let r] be an autocorrelation of A. Then, for any 0 < a < rj({0}), the set of
Bragg peaks with intensity at least a is a Meyer set.

ii) Let p, be a weighted comb with the support inside A and let rj be its autocorre
lation. I f  rj is translation bounded and transformable, then for any a > 0 the
set of Bragg peaks with intensity at least a is either empty or a Meyer set.

R em ark  4.43 A necessary (but not sufficient) diffraction condition for a point set 
to be a Meyer set is that ISUp(v) > 0 and for any 0 < a < I Sup(v)-> H a) is a Meyer 
set.

R em ark  4.44 If in Proposition 4.41 ii) rj is not positive, we can still prove that 
for any 0 < a < I sup(rj) there exists a finite set F  C Rd and a y  G Rd such tha t
y  +  A t/C c  1(a) c  A e/C + F.
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One known result is the following, due to Cordoba. It says that if the Fourier 
transform of is pure point and A is uniformly discrete, then we are in the crystal 
case. Since the original proof is very long one would like to get a simpler one.

P roposition  4.45 [13] Suppose that the point sets A i,...,A n are pairwise disjoint 
and A =  Ur=i *s untformly discrete. Let

i = l

for some (different) complex numbers C\ , ..., cn.
I f  ft is a translation bounded pure point measure, then each A; is a finite disjoint 

union of translates of lattices.

We can prove the following:

Proposition  4.46 Suppose that rj is positive and positive definite and supported on 
a Meyer set A. Suppose that the set of Bragg peaks is 1(a) for some a > 0 (i.e., all 
the intensities of the Bragg peaks are above some positive value). Then there exists 
a lattice L, with dual lattice L*, such that A  is a subset of finitely many translations 
of L and the set of Bragg peaks is a subset of finitely many translates of L*.

Proof: For 1/2 > e > 0 small enough, by Proposition 4.36 and Proposition 4.41 
we get A £ C 1(a) and 1(a) +  A ' c B ,  where B  is the supporting set for the Bragg 
peaks. But B  = 1(a) , thus:

with n  terms in the sum.
Thus L* the group generated by A£ is in 1(a) so it is discrete. Since A £ is 

relatively dense we get that L* is a lattice. Let L be the dual lattice.
Since A£ C L* we get [27] that L*€ C (A£)£. But since e < 1/2 we get that

n

1(a) +  A£ C 1(a). 

Using the fact that A£ C 1(a) we get that:

A£ +  Ae +  ... +  A£ C 1(a),

L*€ =  L. This implies that L c  (A£)£. Then by applying Lemma 4.12 we get a finite 
set F  such that:

A c  (A£)£ C L + F .

Also applying the same lemma to A £ C 1(a) and using A£ C L* one gets the last
part of the proposition. □
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Corollary 4.47 Let A be a Meyer set in Md and let rj be an autocorrelation of A. 
Suppose that the set of Bragg peaks is 1(a) for some a > 0. Then there exists a 
lattice L and a finite set F  such that A c  L + F.

Proof: We know that supp(?y) C A =  A — A. Since A is a Meyer set we get that 
there exists a lattice L and a finite set F' such that A C L + F ' . Now for an element 
x  E A we have A — x c A  — A c L  +  F '. Thus

A c  L + F ,

where F  — F ! + x.  □

R em ark  4.48 In a diffraction experiment one is limited in one’s ability to see the 
Bragg peaks by the physical sensitivity of the equipment. One cannot expect to 
see all the Bragg peaks in general, only the Bragg peaks with the intensity above a 
certain value. The previous proposition says that if in the diffraction of a Meyer set 
you see all the Bragg peaks then you are in the crystal case (i.e. the set is inside 
finitely many translates of a lattice).

By applying the previous result to rj one gets the following:

Proposition  4.49 Suppose that rj is positive and positive definite and there exists 
a > 0 such that for all x  e R d we have rj({x}) ^  (0, a) (i.e., (rj)pp doesn’t take values 
arbitrarily close to 0). I f  rj is supported on a Meyer set then both rj and (rj)pp are 
supported on subsets of finitely many translates of lattices.

Rem ark 4.50 If one compares this result with Proposition 4.45, we see th a t we 
ask less about 77 (is not necessary 77 to be pure point or the pure point part to take 
only finitely many values) but we ask that rj is pure point with Meyer set support, 
which is a very strong requirement. Thus this proposition is weaker than Cordoba’s 
result.

Also we can prove the following:

P roposition 4.51 Suppose that the point sets A i , . . . ,A n are pairwise disjoint and 
A =  UILi A, is a Meyer set. Let

n
V ~  ^  ' cî A, j 

i= 1

for some (different) complex numbers C\ , ..., cn .
I f  jl is a translation bounded pure point measure, then each A, is a finite disjoint 

union of translates of the same lattice.
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P roof: Since jl is pure point we get that p is a strongly almost periodic measure 
[21]. p strongly almost periodic and supported on a Meyer set implies p  norm almost 
periodic [7],

If one uses an 0 < e < C, where C  is the smallest absolute value of the differences
| Ci — Cj | with i ^  j  and a compact set V  with non-empty interior such tha t A — A
is V  — V  uniformly discrete to define the norm topology in [7], one gets that every 
e norm almost period is actually a period for p.

Thus the set L of periods for p is relatively dense, so it is a lattice.
Since n

p =  y  ] Aj,

i~l
for different complex numbers Ci,..., cn is L-periodic we get that each Aj is L-periodic, 
thus consists of finitely many (since Aj is uniformly discrete) translates of L. □  

We have proved the Cordoba’s result under a stronger assumption, namely that 
either p or p is Meyer set supported.

4.2.3 (e,m) dual characters

Recall that in Proposition 4.15 we have proved that the diffraction of a Meyer set 
A always has a relatively dense set of Bragg peaks. How robust is this?

We now show that as long as A is not too badly disturbed the property survives. 
Our idea is to study what happens when A is replaced by a subset of it augmented 
with a locally finite set. The main results are Proposition 4.71 and Proposition 4.74 
in Section 4.2.4. Here in Section 4.2.3 we lay down the technical requirements for 
proving these.

For the entire section, p G Af°°(Md) is a positive and positive definite measure.
By Bochner’s theorem, r/ is Fourier transformable and p is a positive and positive
definite measure. In particular rj E Af°°(Md).

Also we know that (rj)pp /  0 if and only if p({0}) ^  0. Thus for the entire section 
we assume that p({0}) ^  0 .

A  will represent again a van Hove sequence of cubes.

D efin ition  4.52 For any x G Md and 0 < e < 2 we define:

D(x, e) =  {x E R d | 1 -  Re(Ax(x)) < e} .

R em ark  4.53
2 ( l-R e (A x(a:))) =  |l —Ax(z)|2 .
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This shows that for A C R d =  R d and e > 0 we have:

f | D ( X, £ ) = A ^ .
xeA

D efinition 4.54 For p E A4°°(R ) , A C R , we define:

d(A; rf) =  lim inf .
V "  n - o o  r?({0}) 6(An)

Rem ark 4.55 i) d(Rd; rj) =  1,

ii) For any A C  Rd we have 0 <  d(A; 77) <  1,

iii)

lim sup Tl̂ n} ^  = “  d(A; *?)) •n —xx>

D efinition 4.56 For x  £ Rd and 0 < e < 2 we say that y  is a (e, m ) character on 
r/ if

m < d ( D ( x , e ) ; r 7).

Rem ark 4.57 For A =  supp(r7) , x  £ A62/2, we have

d(D(x,e);p) = 1.

In particular x  is an (e, m) character on p for any 0 < m <  1.

Lem ma 4.58 For any x € Rd we have :

^  X4„(! — Re(Ax(a:))<i»7(a:)
^?({0}) -  ^?({x}) =  lim — --------------  >  0 .

n ->  oo (7{A.n)

P roof:

77({0}) =  lim
n— "

*?({*}) =  lim

SAn ld ^
00 0(A„)

L n K ( x )dv(x)
0(An)

Now p is positive and positive definite. Thus:

~ r r  ^  n  r u  i- f AnRe(Xx (x ) )M x )
V ( { x } )  =  R e ( v ( { x } ) )  =  lim — 2 ZTTA '"-►OO v(An)

The inequality follows from the fact that Re(Ax(x))) < 1 . □
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L em m a 4.59 For any x  € Md and 0 < e <  2 , we have :

*) ^({°}) -  V({x}) <  e d ( D ( x ,  e); rj)rj({0}) + 2?7({0}) -  2d(D(x, e); v M M ) .

ii) rf({0}) -  r/({x}) > «?({0}) -  ed(D(X, e); r/)?({0}).

iii) \v({'4’})-v({'>P+x})\ < \^d(D(x,e);rj)rj({0})+2ri({0})-2d(D(x,ey,ri)r)({0}) 

P roof:
Let x, e be fixed and let A =  D(x, e) and d0 = d(A; rj).
i)

5({0 } ) - W x } ) = i lm
0(An)

I a„n/X1 ~  Re(Ax (x)))drj(x) +  f An\A(l -  Re(Ax (x)))drj(x)
=  l i m  a t  a \n^oo 0{An)

= lim inf ^ ra(1  ”  ReM x ^ dv(x)
n—>oo

lim sup

0(An)
-  Re(Ax(x)))dr](x) 

0(An)
/  • c ev(An n  A) 2r](An\A)< lim inf —  . ----- 1- lim sup ■

n —► OO 0(An) 6(An)
< ed0rj({0}) +  2(1 -  c?o)7?({0} ) .

(4.4)

ii)

v({®}) -  v({x})  =  lim e(An)
L nnA(! -  Re(Ax (x)))drj(x) +  f AAA( 1 -  Re(Ax (x)))drj(x)

=  lim vn^oo 0{An)

.. IauHa(! -  Re(M X D )^(z)  + LnvX1 -  ReM x)))dv(x)
= lim su p ----------------------------

> lim sup

9(An)
erj(An\ A )

0(An)
= « 7({0}) -  edoff({0}).

(4.5)
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I a„ M x ) ~  'W O r ))*7<»
lim -----------S7T T ----------------1^00 9{An)

^  r  L J M * )  “  K+x(x ) \ M x )
^  lim  --------------oo 0(An)
<  lim

(4.6)

< \ / 2edo?l({0}) +  2?y({0}) -  2dorj({0} ) ,

the last inequality being obtained as in i). □

Rem ark 4.60 If one tries to work with |1 — Ax(x)| <  e, which is natural because 
we want to use the e—dual sets, i) is trivial, but ii) cannot be proved so easily. The 
reason for ii) to be true is that we can eliminate the absolute value using Lemma 
4.58.

Corollary 4.61 Let y £ e > 0 and a > 0 be given. Then, we have: 

i) Suppose that

(2d(D(x, e);rf)~ ed(D(x, e); rj) -  l)r?({0}) >  a .

Then x  £ 1(a).In particular if  for an e > 0 we have d(D(y, e);^) > ^  then

Proof:
Using Lemma 4.59, we get lower and upper estimates for rj({x} and we use the

v({x})  ¥= o.

ii) I f  X £ I ( a) then :

(ed(D(x, e); rj) -  e +  1)t?({0}) >  a .

In particular :

d(D(x,e);rj) >
e

fact that x  £ I ( a) if and only if ?y({y}) >  a. 

Corollary 4.62 Let y e  Rd and a > 0.

□
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i) Suppose that x  is cm (e,m) character on 77 and that

(2m — em — l)r/({0}) >  a .

Then x  £ I ( a)-

ii) Suppose that x  £ I ( a)- Let 2 > e > 1 — ^ o j-  Then for any

0 < m < a/i?({°} ) + t ~ 1 ,
e

X is an (e, m) character on p.

Corollary 4.63 Let (e, m ) be fixed and let

B(e\ m) =  {y G | x is an (e, m ) character on 77} .

Then (ff)pp is (m\[2e + 2 — 2m)— invariant under B(e\ m).

Corollary 4.64 Suppose that there exists A a Meyer set such that m  = d(A; 77) > 
1/2. Then, for any 0 < e < , the set ( A ) ^ e is a subset of supp((rj)m ).

Proof:
Prom m  > 1/2 and 0 < e < we get that m  > ^ • Thus, since A ^  C

D (x,e)  we get that
d(D(x,e)]i7) >  d(A; 77) >  m ,

for all x  € A ^ .
The claim follows now from Corollary 4.61. □

Rem ark 4.65 It is easy to see that all the results in Section 4.2.3 are trivial in 
locally compact abelian groups for subsets of model sets (one can use that the e- 
duals of model sets are relatively dense [27] and the fact that for any e > 0 and
A  C B  we have B e C A £).

4.2.4 Sets w ith  a large M eyer subset

For this entire section M  is a subset of a Meyer set, S  is an arbitrary locally finite 
set and A =  M  U S. We also assume that S  fl M  = 0. Let A =  M  — M , t]a be 
the autocorrelation of A and t)m  be the autocorrelation of M  respectively, which are 
assumed to exist with respect to our van Hove A  of cubes.
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R em ark  4.66 Let TV be a Meyer set so that M  C TV. Then A c J V - J V ,  which is 
a Meyer set. Thus (TV — TV)6 is relatively dense for all e >  0 and (TV — TV)6 c  A6. In 
particular A6 is relatively dense for all e > 0 .

Lem ma 4.67 ^
H(A \ >  W W )

( ’,a )  -  « { o } ) '

Proof:

d( A; t/a) =  lim inf ) r/Â n f ^  >  lim inf " rk v in^oo 77a ({o}) 6(An) oo %({0}) 0(An)

=  lim inf 1 VM(An) w ({0})
—  ^ ({ 0 } ) 9(An) %({0}) •

□

Proposition  4.68 For any 0 < e < 2 and x  £ A ^ ,  x is an e, ( ^({o})) character 
on r}\. In particular:

%({0}) -  %({*}) < 2%({0}) -  (2 -  e)?/M({0}) •

Proof: Since x  G A ^ ,  we get A C D(x, e), thus

d{D{x, e); % ) >  rf(A;r/A) >  . (4.7)

From Lemma 4.59 i) we get:

%({0}) -  ? m ( M )  <  2% ({0}) -  (2 -  e)d(D(X, e); % )% ({0} ) .

From (4.7) we get

- ( 2  -  e)d(D(x, e); 7/a )t^ ({0}) <  - ( 2  -  e)?7̂ ({ 0} ) , 

thus the desired result. □

Corollary 4.69 For any 0 < e < 2 and x  G A ^ , we have:

Va ({x }) >  (2 -  e)hM({0}) -  ?7a({0}) •
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D efin ition  4.70 We say that S  is sm all w ith  re sp ec t to  M, if

2^m ({0}) > ?7a({0},

that is the intensity of the Bragg peak at the origin for M  U S  is less than twice the 
intensity of the Bragg peak at the origin for M.

Let B  be the set of Bragg peaks of A.

P ro p o s itio n  4.71 I f  S  is small with respect to M , then there exists an eo such that 
for all e < e0 we have C B.

In particular. A =  M  U S  has a relatively dense set of Bragg peaks.

P roof:
Since 2?7m({0}) > ?7a({0} we can find an eo such that

(2 -  eo)%K{0}) -  % ({0}) > 0 .

The first part of the Proposition follows now from Corollary 4.69. □

D efin ition  4.72 We say that a locally finite set T  is un ifo rm ly  d is tr ib u te d  if
the limit:

 ̂ t ^  r  jj((x +  T ) n A „ )
dens(x + T ) =  lim ------   ,

n ^ o o V { A n )

exists uniformly and independently in x .

P ro p o s itio n  4.73 I f  S  and M  are uniformly distributed, then S  is small with re
spect to M  if  and only if

dens(M) > (1 +  \/2 )dens(5).

P roof: Since M  and S  are uniformly distributed A is also uniformly distributed. 
Then, by [20], we have:

%({0}) =  (dens(A))2 ,

^m({0}) =  (dens(M))2 .

Thus, S  is small with respect to M  if and only if dens(A) < \/2dens(M ). Since 
dens(A) =  dens(S) +  dens(M) we get that S  is small with respect to M if and only 
if

dens(5) < ( \/2  — l)dens(M ).
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P ro p o s itio n  4.74 Let A and N  be locally finite sets, with N  Meyer set. Assume 
that both A \ N  and A Pi N  are uniformly distributed and that:

dens(A A N) < — dens(A).
v 2 +  2

Then A has a relatively dense set of Bragg peaks.

P roof: Let M  = A n  N  and S  — A \N .  Then

A =  M i ) S ,

and

dens(Af) =  dens(A) — dens(5) > [(\/2 +  2)dens(AAiV)] — dens(S)

>  [(\/2  +  2)dens(5)] — dens(5) =  (1 +  -\/2)dens(5).  ̂ ^

Thus, M  is a subset of a Meyer set and S  is small with respect to M. □
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Chapter 5 

Circular Sym m etry of Pinw heel 
Diffraction

5.1 The Pinw heel Tiling as a Substitution
The pinwheel tiling was first conceived as a substitution tiling by John H. Conway. 
Charles Radin later developed the matching rules that determine the same structure 
[35]. It is an aperiodic tiling of the plane by 1 : 2 : \/b  right triangles and may be 
constructed by iterating the following substitution rule:

The substitution consists of a standard type of inflation and subdivision rule, 
but also requires a second step: a rotation through the angle u  := — arctan \  that 
aligns the new central triangle with the original tile. This extra step is necessary if 
we require the pinwheel substitution to have a fixed point.

W hat makes the pinwheel tiling interesting is that it exhibits tiles of infinitely 
many orientations, and hence is composed of infinitely many types of tiles in the 
sense of translational symmetry. Thus the well-developed theory of tiles and point 
sets which are of finite local (translational) complexity breaks down. In particular, 
the diffraction of the pinwheel tiling (say of its vertices or of control points, one from 
each tile) is still unknown, even qualitatively.

Progress has been especially hampered by the fact that the number of orienta
tions of the pinwheel grows only linearly in the number of substitutions while the 
number of tiles is growing exponentially. Thus images derived from computation of 
the diffraction or autocorrelation turn out to be totally unrepresentative of what is 
actually happening in the limit.

However, it has been established [33, 36] tha t the diffraction of the pinwheel 
tiling is circularly symmetric. This was done by studying the associated dynamical
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inflatejind
subdivide

Figure 5.1: The pinwheel substitution

system and its unique invariant probability measure n  (see Section 5.6) and then 
looking at the spectrum of the unitary action of M2 on L 2(X,fi). The relationship 
between the dynamical and and diffraction spectra is given by a piece of formalism 
called Dworkin’s argument [15]. In the case of the pinwheel tiling, the dynamical 
spectrum is circularly symmetric [33], and using the Dworkin argument one can pass 
this information over to the diffraction side. In Section 5.6 we offer another short 
way to prove the circular symmetry based on the circular symmetry of the associated 
dynamical system, this time without passing through the Dworkin argument.

The main purpose of this Chapter is to offer a proof of the circular symmetry by 
explicitly working with the autocorrelation and showing that it, and hence also its 
Fourier transform (which is by definition the diffraction), converges to a circularly 
symmetric measure. This process is longer than the argument using the dynam
ical system. However, it studies the substitution and the corresponding evolving 
autocorrelation in a very direct and detailed way. It is hoped that the insights 
of this setting will shed light on the remaining problem of determining the radial 
autocorrelation, which still remains wide open.

5.2 Control Points and the Pinwheel Tiling as a 
Point Substitution

It is convenient from the point of view of notation and calculation to identify M2 
with the complex plane C. Thus let r 0 be the 1 : 2 :  %/5 right triangle with vertices 
=lY 1, and • The pinwheel tiling T is obtained by iteratively applying the 
substitution seen in Figure 5.1 to r 0 infinitely many times. Fn denotes the set of 5n 
tiles obtained by iterating the substitution n times. Tiles that differ from To by a 
Euclidean motion are said to have positive chirality; those that differ by a Euclidean
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motion and a reflection possess negative chirality.
Let 7  be any tile in T. Let x  be the vertex at the right angle of 7  and let y 

be the other terminal vertex of the short leg. We define the orientation of 7  to be 
9a := y — x = eUi. where a  is the angle that the short leg makes to the positive 
x-axis. Note that 9a is an element of U(l) := {x | x  e  C, |x| =  l} , the group of 
rotations around 0 in the plane.

Following [35] we locate a specific distinguished point within a pinwheel tile: 
if x  and y are the vertices defined above and 2 is the remaining vertex, then the 
distinguished point of a tile 7 is located at x+2v+z. Notice that 0 is the control point 
of To and that 0 occupies the same relative position with respect to the vertices 
in every supertile Tn. It is this property that determines this choice of control 
points, for it allows us to replace the tiling substitution by a point substitution (see 
Definition 5.2).

All of the information of a tile 7 is encapsulated in its distinguished point, 
orientation, and chirality, which motivates the following definition:

D efin ition  5.1 Let 7 be any tile in T. The co n tro l p o in t of 7  is a triple (x , 9a, x) 
consisting of the distinguished point of 7 , the orientation of 7 , and the chirality of 
7  ( ± 1) respectively.

The set of all control points in F is denoted by A and the set of the control points 
of T„ is A„. By A+, hr we mean the subsets of A comprised of the control points 
of positive and negative chirality, respectively.

D efin ition  5.2 The p inw heel su b s titu tio n  is given by:

( x , 0 a , x)
) Qa+u—xw ) X)

( ^ a + u - x u + ^ -  T  1 ^a+a>—x w + 7r > X )

i.^9a+u—xu+*f T  'J§9u)X, 9ajrU1—̂UJ+7t , x)
{da + uj-xw + n + \/59UJx , 0 a + u)-xu+ -K) — x) 

(Pa+w—x w —  3 ?  ^ /5 9 u )X  ,  9 0l+UJ—xijJ—X f  > X )  •

By infinitely iterating the above substitution on the set starting with the single 
element A0 =  (0 , 9$ , 1) we generate A. Note that we arbitrarily started with a tile 
of positive chirality; we could just as easily have used a negative chirality tile. If 
we repeated the above arguments for the tile To (which is the mirror image of To in 
the x-axis), we would obtain a tiling that is a mirror image of the pinwheel tiling. 
This process would also involve the creation of a mirror substitution. We will use 
the mirror iterates Vn := An in Section 5.4.2.
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5.3 Uniform  D istribution of Orientations
Since there is an exact copy of A * in A^+i we can define two sequences of angles 
U tliS i) {/3i}iZi Q [0, 2tt) such that for any k, 0ai, . . . ,  8amk are the orientations 
of the x  — 1 points in A*. and 8pnk axe the orientations of the y  =  —1

points, rrik := — 2 ~' rik :== ~2~ are number of chirality 1, -1 points in A &
respectively.

We fix such a sequence for the rest of the Chapter.
A key property of the pinwheel tiling is the uniform distribution of the orienta

tions of the tiles [34], in other words the uniform distribution of the two sequences 
that we have just defined. For the convenience of the reader we provide a short 
proof of this.

Recall tha t a sequence C U(l) is uniformly distributed on U( 1) if

lim Ar
N —>oo N

1 N  r
/ ( * " ) = /

N M i)
f (z)dX u^ ( z )  = Xu^ ( f )

for all f  : U( 1) —► C continuous (A ^1) is normalized Haar measure on 17(1)). We 
say that a sequence {7^}^! C [0, 27t) is uniform ly distributed m odulo 2n if 
(en'J }*Ll is uniformly distributed on U( 1).

Define

M(t)  :=
2g * t(2 a i-7 r) _|_ g i t (2 w + |- )  

g it(2 u )) _|_ gi t(2ui—ir) (5.1)

for all t e Z .
If the indices 1 (respectively 2) refer to the tiles of positive (respectively negative) 

chirality then (M (l))jk  is the sum of the orientations of the type j  tiles obtained 
after applying the pinwheel substitution to a single type k tile with orientation 1. 
Then

/ mk

£ •
Atotj

3 = 1  
n k

Y  eu^
\  j=i

E
3 = 1mk

E e
j=i

,i t(2kw—/3j) \

,it(2kui—a j )

follows immediately from the definition of M(t)  and the pinwheel substitution.

1This matrix is similar to the matrix used in [34]. The primary difference comes from the fact 
that Radin rotates An at every step so that, considered as one big triangle, it has orientation Oo- 
We must use the above matrix in place of Radin’s because of our requirement that we work with 
a fixed point substitution. Also, Radin’s type 1 tile corresponds to what we have chosen to be our 
type 2 tile and vice versa.
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T h eo rem  5.3 (R ad in ) { a n } n and {fdn } n are uniformly distributed.

Proof: By the well-known Weyl criterion a sequence {zn}'^Ll C 17(1) is uniformly 
distributed if and only if for allf € Z \  {0}

^ E ( 2»)‘ =  0 -
71—1

Since lim ^  =  lim ^  it will be enough to prove that, for allf ^  0,1 <k—*oq o k—̂oo £) ^
i , j  < 2

Um M k  = 0 .
k—>00 5

Let t ^  0 be arbitrary but fixed. Let A  be the matrix defined by A tj =  

\ (M( t ) ) i j \ .  Then 0 < -4 < ^ ^ ^ in an entrywise sense, with the additional

restriction d  ^  ^  ^ Also \ ( ( M( t ) ) k)ij\ < (A k\ j  for a llk , i , j -  Let A be the

Perron-Frobenius eigenvalue of A. Then, by the Perron-Frobenius Theorem A <  5,
/  2 3 A

since 5 is the PF eigenvalue of f ^ j  • Furthermore there exists a constant c 

such that for all n > 0, < c. Then

((M (t)) k\

5k

since A < l. Hence, the desired result follows. □

5.4 A utocorrelation of the Pinwheel Tiling

5.4.1 Introduction  to  th e A utocorrelation  and Som e N ota
tion

Let Ad(M2) denote the space of all regular Borel measures on M2.
71

Let V  := C \  {0}, the punctured complex plane and let M.*pp(V) := { E  ckdak |
fc=l

Ck E M, n > 0, ak E V ]  be the span of all real finitely supported measures on V.
For any a  E [0,27r), we let R(a) : V  —* V  be rotation through angle a: 

R(ct)(z) := eiaz. Let a be the operation of reflection in the x-axis: a(z) = z .
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Both these types of operations extend to functions and to measures; in particu
lar R(a)  and a act naturally on M*pp(fP) : R(a)(Y2=i ck&ak) = Ylk=ick$R{a)(ak),
a (X)/c=l Ck $ a k ) =  J 2 k =1 Ck d a £

Let A®2 be Lebesgue measure on R2, Ar/7) the normalized Haar measure on 17(1), 
and Sz be the delta measure supported at z  G R2.

R em ark  5.4 When we use the sequence { rn}^L1 as our averaging van Hove se
quence, the autocorrelation of A is the vague limit rj := lim r/n , if it exists 2,

R em ark  5.5 In Section 5.5 we will see that we can in fact use any van Hove se
quence to compute the autocorrelation.

5.4.2 Sub stitu tion  Form ulation for M easures

The primary objective of this section is to verify that tj is circularly symmetric. The 
pinwheel substitution of Definition 5.2 involves complication-causing reflections that 
we prefer to avoid. Imagine that each tile of some finite part of the pinwheel tiling 
carries some measure and we are interested in the total sum v of these measures. 
We break this total measure into two pieces u+ and , with u+ carrying the total 
measure of the positive chirality tiles and v~ carrying the measure of the negative 
chirality tiles after they have been reflected in the x-axis. Thus v = u+ +  au~, but 
rather than this sum we work with the matrix

In this scheme all measures lie on tiles of positive chirality and the process of reflec
tion can then be relegated to a single operation at the very end to that brings the 
second measure into the correct position. Figure 5.2 illustrates the formalism as it 
appears in the substitution process.

Once we have established our formalism, we will use it to generate the rjn. By 
letting n —>• oo, we achieve the desired result.

2 Throughout this section, we will almost exclusively understand A to represent only the locations 
of the control points, which are points of C ~  R2.

where

z,ye(Anrn)
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l p p \ '  ) I  ■ V " l p p

H \ I K[—LO) U \ ( p

D efin ition  5.6 Let il, <f> : { M ^ i V ) ) 2 —> (M*PP{V))2 be linear maps defined by:

n 

$

©

R ( - lo) 0
0 R(ui) J \  v

1 /  R(0) +  R ( t t )  2R(tt) +  R ( - f ) \  /  p

5 V 2i?(—7r) +  i? ( f ) i? (-0 ) +  .R(-tt) J  V ^

cri/

D efin ition  5.7 For any k > h > 1, define the linear map : (M ^ ifP ))2 
( M ^ P ) ) 2 by:

:= . . . ST*#fi* I ' '
V

If we define T™ to be the identity map whenever m  < h, then we have ^  —

for k > I > h > 1. This decomposition of will feature in several

induction arguments.

P ro p o sitio n  5.8 For any k > h > 1,

k ( F 1

/  m k - ( h - l )  « f c - ( h - l )  \

£  f l f o )  £  rt(2Aw +  /9,)
J = 1  j = l

" f c - ( f t - l )  m k - ( h - l )

^  R (—2huj — (3j) ] T  R (~ ai)
V j=i j=i /

Proof (by induction on k): Fix an arbitrary fi >  1 for the remainder of this proof. 
k =  fi:

h ( F = n~ nm

1 /  R (0) +  R( t t )  2R(2hu  + 7r) +  R(2huj — | ) \  /  p
5 \  2R(—2hu) — 7r) +  R (—2hco + | )  R ( -0 )  + R ( - n )  ) \ v

Induction step: 'F*+1 ( M ) . We know what looks like fromh i ‘ I ) = ( I

our base case above, and we have by the induction hypothesis. Because of the 
symmetry of the T matrices, it is sufficient to consider (T^+1)n  and ('3/^+1)i2:
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m k - ( h - l )

( * £ « ) „  =  (R(0) + * 0 0 )
3 = 1

»»fc-(h-l)

+(2i?(2(A; +  l)u; +  7r) 4- i?(2(fc +  l)w  — ^  R (—2hu> — /3j)
}=i

mk-(h-1) " ^ - ( h - l )

=  5 Z - R ( 0 ! j ) +  J ] JR(Q!j  +  7 r ) +  ^  2 f l ( 2 ( f c  -  ( / i  -  l ) ) w  -  ^  +  tt)

i=i i=i j'=i

+  j ^ B ( 2 ( « ! - ( f c - l ) ) w - f t - | )  =  rt(a,).
J = 1 j=l

For help visualizing this argument, see Figure 5.2. The argument for (T^+1)i2 is 
similar. □

Now that we understand in terms of our sequences of angles, we can put the 
uniform distribution result to good use.

P ro p o sitio n  5.9 For anyu  e  V  and uniformly distributed sequence {-2n}£Li C 17(1) 
we have:

1 N
i im  T t £  R {z n )5 u =  Ac/(1) ®  ,iv—► oo iv  z '

7 1 = 1

where the limit is in the vague topology.

Proof. Note that the product of measures above refers to the product decomposition 
V  = U(l) x M>0.

Let /  be any continuous compactly supported C-valued function on V. We are 
required to show that

J™ , ^ 5 1  R (z”)5u’ = (XU{1) ® 5M’ / )  •

We have
N  \ , N  , N

Y ,  R ( Z n ) K ,  f )  = f ,  R iZ n Y 1!)  = f V ,  [  f M  dS,{x)
n = l  /  n—1 n = l  ^

N
n = l  /

N

= Fj / ( 2«u ) f  f{zu)dz = [  f ( z  \u\)dz
iV n = l  ^ ( 1 )  - M l )

=  f  f ( z r ) d \ u{l\ z )  <g> <J|„|(r) =  (At7(1) <g> <5|„|, / )
•/tniixIUn
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□
R em ark  5.10 Note that measures of the form Xu^  ® a, where a  is a positive 
measure o n i f c  (0 , oo), are not what one may intuitively think from the perspec
tive of usual Lebesgue measure on R2. For example, consider that HA*7^  ® o\\= 
\ uPfiU (\) )a (K )  =  a ( K ). This is independent of where K  lies in (0, oo). The
Lebesgue measure of B K =  U(l) x K  c  I 2 (see Equation (5.4)) is its area, and
hence depends on where K  is located.

D efin ition  5.11 Let P  : V  —»• (0, oo) be defined by P (z ) \z\. Then P determines
a linear map (also denoted by P) from M*W{V) to A1°°((0, oo)) by P($2k=i ck^ak) ■= 
Sfc=l ckbp(ak) ■

C oro lla ry  5.12 For all p, v e  M * p(V),

xyk (  v  \  k-^o  1 (  X U(V  ®  ( P { p  +  is)) X
h \ i s  )  2 \ X u ^ ® ( P ( p  +  is)) )

in the vague topology.

Proof. The combination of Propositions 5.8 and 5.9 yields

0 * / M  *-«, 1 /  \ uili ® <5|o| +  \ uw  ® 5lyl \  
l' \ S y )  2 I +  )

for any h >  1. Since / i ,  v are finite linear combinations of deltas, the desired result 
follows by linearity. □

5.4.3 T he A utocorrelation  on th e nth  Iterate

We recall that A„ consists of 5 isometrical copies of An_i. Let n > 1. We define

Dn := {(x, y) e  A x A | x, y £ A„ and are in different copies o f  An_i} ,

Cn := {(x, y) e  A x A | x, y € A„, x  ^  y, and are in the same copy o f  An_i} .
(5.2)

Then 1 l
Vn =  Sq +  —  S x - y  +  ^  ^ 2  ^X~V '

x,y€Cn x,y€Dn

Because the minimum distance between pinwheel control points is there exists 
^  > r  > 0 such that Vn\Br{0) = ô- For such an r, lim Vn\Br(0) = ô- In other words, 
0 is separated from the rest of the support of p.
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For any K  bounded in (0, oo), we define

B k  := {a E V  | \a\ E K )  = P ~ \ K ),

the FT-corona around 0, whose intersection with the positive x axis is K.  
For any n ,v  E we have:

i) h {Bk ) = P{v) (K ) ,

i i i  \Trfc (  V \  (R  -i =  1 (  m k-{h-l)^{.BK ) +  nk- ( h- i)V(BK ) \
h V V  )  K 5*—(A—i) ^  nk-(h-i)H(BK ) +  m k-(h-i)v{BK) )  '

It is immediate that:

L em m a 5.13 For all u, v' >  0, we have

k (  V \ ( T> \ s- (  u(B k )  +  1/1 (Bk)

D efin ition  5.14

^  Pn '-= 5H x̂ ~ y '
x ,yeD n

ii) r jf , rfn are defined recursively as follows:
P ?  =  P i  : = 0 ,

Pn \  -tyn—1 (  Pn—1 Pn— 1 A 

Pn )  V Pn— 1 /

By a standard induction argument, we get

( £ ) - g * s ( V ) f O T d , n a 2 '

P ro p o s itio n  5.15 For any n >  1 we have

Pn =  <50 +  Pn +  a Pn +  Pn •

7 4
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Proof: To see that equation (5.6) holds, by (5.3) we must prove that

(z,2/)eC„+ i

We prove this by induction. Figure 5.2 may help clarify the following argument. 
n =  0 : Ci =  0 ; rjf — 0 . 7/j~ =  0 , which gives us our desired equality.
Induction step: An+1 consists of the union of the five disjoint copies of An resulting 
from the application of the mappings / i , . . . , / s  upon A„. Here / i ,/2  are direct 
isometries of C, while / 3, / 4, / 5 are opposite (i.e., chirality reversing) isometries of C 
(note that the translation and reflection components of these isometries depend on 
n, while the rotation components are independent of rt). Then,

Cn+i =  {(x, t / ) g A x A | 3 1 < i < 5  and (a, b) € An x An with a ^ b
such that (x , y) =  (f i(a ), f fb ) ) }  , so

The translation part of /) cancels when we take differences:

x,yeA„x̂ ty

x^y

Now, by the induction hypothesis:

Xyty

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 5.2: Successive powers of 'I' build up sums of rotation operators which we 
ultimately apply to measures. Rather than carrying two chiralities in one plane, we 
prefer to work with one chirality (namely, +1) in two planes. These two planes are 
represented here by the half planes above and below the x-axis respectively. It is 
to be understood that the full chiral picture is obtained by reflecting the lower half 
plane onto the upper through the x-axis. The rotations involved are indicated here 
by the orientation of the triangles which we see being built up by the substitution. 
After reflection, the upper and lower pictures fit together to give the full substitution.
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Therefore,

J 2  8^ y  =  +  Pn  +  ° V n )
(x,y)ecn+1

+gi?(nw)(2i2(7r) +  R ( ~ ) ) a R ( - n u ) ( r { +  +  pn +  (rrQ)

= ^  ((12(0) +  R(n))(ri+ +  pn) + cr(R(-0) + R ( -  

+a(2R(-2nu> -  7r) +  R ( -2 n u  +  ^))(r/^ +  p„) 

+ (22?(2nu; +  tt) +  i?(2nu; -  | ) > 7n )  =  ^+ 1  +  ^ n + i  

by Definition 5.14. □

2   ̂  ̂ 5 ' 1  ^
X ] =  5 5^ ^ 2  8fi(x)~Mv) ■

(x,y)eCn+i i=1 I.S6A„x^y

5.4.4 C onvergence and Circular Sym m etry  

D efin ition  5.16 p rhK '■= p (vn\Bl() £ A4°°((0, oo)) for K  C (0, oo) bounded.

P ro p o s itio n  5.17 Let K  C (0, oo) be any bounded set. Then { p n ^ ^ i  converges 
in the total variation norm topology to a pure point measure.

Proof: By Definition 5.16 and Proposition 5.15, we get

P n + l , K  =  P ( r j n + l | a * )  =  P ( V n + l  \b k  )  +  P i .V n + l \ s K ) +  P ( P n + l \ b k  )■

Note tha t P (v f+1) = P(ar]f+1).
By a remark following Equation (5.4), if K '  C K  is any set we have

/  Vn+l{B K>) \  _  1 (  2r)+(BK>) +  2pn(BK') +  3rj~(BK>) \
V r]~+1(BKi) )  5 \  3r)+(BK>) + 3pn(BK>) +  2rj~(BK>) )  ’

whence

P{r,f+l){K') +  P(Vn+1)(K') = V: +1(Bk ,) +  r]~+1(BK>)

=  Vn(BK') +Pn{BK>) +  Pn{BK>) =  T)n(BK>) =  P(r}n) { K ' ) .

Thus, for all K '  C  K  we have P{gf+1)(K')  +  P(gfl+1)(K r) =  P{r}n)(K').
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Hence,

P (Vn+l\BK ) +  P ^ n + l \ BK) =  P(*ln+l)\K +  P ( V u+i ) \k

= P(Vn)\K = P(Vn\Bj<) = V n , K  ■ (5.7)

So we get
P n + \ , K  =  P n ,K  +  P ( P n + i \b k ) ■

Therefore, pn+\^K > Pn,K and

ll/^n+l./C dn.A'II =  P n + l ( P k ) — ipi  iD ^  P n + l  | \% 1j\ £  AT}.

Because x , y must be in different copies of A„, x  must be in the B^-boundary of one
of those copies and y E x  + B k • Let c := max(jj{A fl (a +  B k )}), a finite quantityoec
because the minimum distance between control points is^g. Then,

5

ft{(x ,y )  E Dn+1 | | a : - y |  € * } < c . £ | i p e A n a B* ( / , r „ ) } .
3 = 1

When we inflate we have \ R2(dBK r n+i) — V5XR2 (dBKTn), since the linear 
scaling is by \ff).

Therefore, 3 a constant d  depending only on K  such that

Pn+,(BK) <  d  + - (5.8)

Then \ \ pm ,K -  P n , K || < ^YJj=n+1(75 )̂  shows that { p n, K } n  is Cauchy in the total 
variation norm. By a comment following Proposition 3 of [7], {pn,K}n converges in 
the total variation norm topology to a pure point measure. □

D efin ition  5.18 /.lk  := lim p n K  is a pure point measure on (0, 00).
71—>OC

P ro p o sitio n  5.19 pn\BK — ► A*^1) pK in the vague topology.

Proof: Let tjk =  AL (1) dfJK- Let U be any neighbourhood of 0 in the vague topology. 
Then 3 b ,  a neighbourhood of 0, such that V  + V  + V  + V  + V  + V  C U . Also, we 
may assume that V  = — V. Since the total variation topology is stronger than the 
vague topology, there exists e > 0 such that whenever ||i/|| < e then v E V.

Because p n.K P-k- there exists N  such that for all n >  N ,  we have 
IIP n ,K  — P k \\ <  e- This gives us H A ^ 1) 0  ^ n K  _  \ U ( i )  ^  n K \\ <  e, and hence,
A ^d 0  p n K̂ — Vk  G V  for all n > N.
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(5.8) says that PniBn) < c' ( 75) , so 3 M  >  iV +  1 such that

m
PkiBx) < e for all m  > M. (5.9)

k = M

We know by (5.5) that

Vn
n— 1

** =  E * » : i\  \bk j  *.=1

Splitting the above sum yields

j Vti+ m \b k  |   ^ n + M — 1 (  Vm \Bk

Pn—k\BK
0

(5.10)

V Vn+M  I b k  J  \  I b ^  J  k= 1

and using the triangle inequality gets us

/  l

E v ry n + M -l I P n + M - k \ s K
n + M —k 1 r>

(  Vn+M  11 

\  Vn+M  11

t f j n + M —1 (  Vm \b k  

M  I  Vm \b k k= l

E ^ n + M - l  
n + M —k

- 1  (  P n + M - k

k= 1
0

^ryn+M —1 | P n + M - k  
n + M —k I q

(Bk ) ,

(Bk )

where
v
z/

Ir  II
M l

and II • II is the total variation norm.

Thus, by Lemma 5.13 and (5.9),

Vn+M \  _  t y n + M - 1 I Vm

Vn+M J  M \ V m
(Bk ) < (5.11)

We also know that Af/(1) % P m - i  -  %  G h . From Corollary 5.12 and the fact that 
M  is fixed, we know

q , n + M - \  |  Vm \bk  |  n->oc 1 f A 17^  <g> P ( t)m \b k  +  Vm \b k ) 

V Vm \b k  )

and so, by (5.7), we get that

n<
m - i  I Vm \b k  

\  Vm \b k

1 f  <g> p m - i
2 \  A*7^  <g> /xm-1
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Therefore, 3 N '  such that

^ r - 1 (  \  ® ^ M_1 )  G (  X  )  for a lln  >  N ',
\ V m \Bk J  2 V J \ V  J

and by (5.11), we have

f ^ + m \bk ] _  (  1m \*K ) e  (  J O  for a lln  >  0 .
V Vu+m \bk J  V vm \bk J  V V  J

Combining these, we get

(  < +« U ,  )  * (  ^  )  e  (  V-~ '  )  £or >  j v  .

V y 2 V A (] ® m - i  J  \  v  -  v  J

Finally, from Proposition 5.15

Vn+M\BK -V K  = (vZ+m \bk -  \ XU{1) ® t*M-1) +  (V^+m \bk ~  ® »M -1)

<8> Pm - i  -  A^P 0  h k ) T  Pn+M | bk

and then (5.9) gives us ||pn+Af|Bi£. || < e whence pn+m \Bk £ V, by our choice of e. 
Thus

Vn+M\BK -  VK e v  -  V  + V  -  V  + V  + V  c u , 

and therefore pn | — %- £ U for all n > N ' + M . □

5.4.5 A utocorrelation  C onclusions

It is easy to see that if K  C K '  then Pk ’\k =  Pk - This allows the following definition:

D efin ition  5.20 p is the pure point measure on (0, oo) defined by p\K =  p n  for a llK  
bounded in (0 , oo).

From Proposition 5.19 and the fact that lim pn\ .. =  Sq for some sufficientlyn—>oo J
small r > 0, we get that pn\i0)UBK — ► <̂o +  Au(P <8» p\K for all AT C (0, oo) bounded. 
This final remark sets us up for the main theorem.

T h eo rem  5.21 The autocorrelation of A, p, exists with respect to {T}))b1 and 
V = +  A^P) <S> p.
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Proof. Suppose that /  is an arbitrary real valued continuous function of compact 
support. Then, supp(/) C {0} U B K for some bounded K  C (0, oo).

Prom Proposition 5.19 we have

Vn\muBK --- ► $0 + XU{1) <8> llK ,

which means
Vn\{0}uBK(f)   ► (^0 +  AU(1) ® flK)(f)-

Because supp(/) C {0} U B K, this gives us

Vn(f) — " (So +  Af/(1) <8) fi)(f)  ,

and finally, by the definition of vague convergence,

Vn — ► <5o +  Ac/(1) (8) n ■

□

Figure 5.3: Part of the support of the pinwheel autocorrelation measure 77

Our understanding of the autocorrelation of the pinwheel tiling only lacks knowl
edge regarding the pure point measure p, and hence about the radii and heights of 
the circles. In [32], Charles Radin suggests that the support of n  has a self-similar 
structure. While we were not able to exploit this observation, it may prove useful 
to future pinwheel enthusiasts.
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5.4.6 D iffraction

It is easy to check that for R(a)  G U( 1), /  G (^(M2) we have: (R ( a ) f ) ( k ) =  
R (a ) f(k )  and hence, if u is a Fourier transformable measure and R(a)u  =  v  then 
u (R (a )f)  =  v (f) .  Since the pinwheel autocorrelation is fully circularly symmetric, 
so is the diffraction.

From this, we can see that the diffraction may only have a pure point part at 
the origin. We show that this is indeed the case.

Proposition  5.22 r}pp = (dens(A))2S0.

Proof. This result follows from Theorem 2.2 in [20]. We have

5.5 van Hove sequences
In the construction of the autocorrelation and the diffraction we have assumed that 
the averaging sequence is the ascending chain of super triangles Tn created by the 
substitution process itself. In this section we prove that we get the same autocorre
lation (and hence diffraction) for any van Hove sequence A  =  {A m}.

Proposition 5.23 Let A  =  {Am} be any van Hove sequence in R2 and let

be the averaged autocorrelation of A m. Then rjAm —*■ rj in the vague topology.

Proof: It suffices to take one fixed, but otherwise arbitrary, continuous function /  
on R2 of compact support and show that rjAm ( f ) —► v ( f  )- We assume f  ^  0.

We know that gn —> 77 =  XuW <g> p  in the vague topology. Since Xu(-A <g> ^  =

Let B  be a closed ball around 0 which contains supp(/). Since Reirj) = r) for all 
6, it follows that RePnif) —* v ( f )  f°r each 0. Since the mapping (9, x) 1—► f(R gx)  is 
continuous and 17(1) x B  is compact we see that the convergence to rj(f) is uniform 
in 0. In the same way R e(arjn) —»77 uniformly for all 0.

dens (A)

Then, by the result mentioned above, ^({0}) =  (dens(A))2. □

x,y€AnAi
(5.12)

a ( \ uW (g, ^ we also have that ar]n —> 77.
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Consider any of the triangles r „  and in particular its inner boundary of width 
equal to the diameter of the ball B. Let p(Tn) be the perimeter of Tn. Since A is a 
Delone set, there is a positive constant cB so that the number of points of A inside 
this inner boundary is bounded above by cBp(Tn) for all n, no m atter where or in 
what orientation the triangle T„ is placed in R2. Let nB be the maximum number 
of points of A inside any translate of B.

Combining all this information, for any e > 0 we can choose N  = N(e, f )  >  0 so 
that for all 0 and for all k > 0 we have simultaneously

• IReVN(f) ~  V(f)\ < e

• |R ear]N(f)  -  r](f) \ < e

cbP(FN)n B :
OO < e

vol (IV)

Let A  be any region of R2 precisely tiled by a subset of the super-tiles TN in the 
total tiling T of R2. Then

M

i= 1

where the T, are composed of Euclidean isometries, and since autocorrelations are 
unaffected by translations,

(5.13)
i= 1 i = l

The averaged autocorrelation of t)a of A  is

M

M=  X ? E > f r , r „ ( / )  +  ^  E  / ( * - » )
*=1 ( x,y )eD(A,N)

(5.14)

where D (A ,N )  is the set of all pairs (x, y) G (A n  A) x (A n  A) where the two 
components come from different copies of the tile Tat in its tiling of A.

Since x  — y G B  is necessary for (x, y) to make any contribution to the sum, x  
is restricted to the inner S-boundary of the tile it belongs to and y is restricted to 
the ball x  +  B. Thus

1 Evol A ' x y
Cx , y ) e D ( A , N )

(/)
M cBp(T N)nB\\f  \\oo 

Mvoi(rv) 6
(5.15)
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Thus
(V a  -  n)( f )I < 2e (5.16)

Now consider the van Hove sequence {A m}. Let K  be any closed disk centered 
on 0 containing Tr  and F,v. Let A(m) be that part of A m which is composed of 
complete VN ~ tiles taken from the full tiling T. Then A m\A (m )  C dK(Am).

Now the point is that because of the van Hove property the boundary can contain 
only a number of points of A that is bounded by cpcvo\(dKA m) for some positive 
constant Cr  that is independent of m. Thus

where the sum is over all x, y 6  T n  A m in which at least one of x  or y is in dK (Am). 
The van Hove property shows that rtA(m) ~  rlAm —► 0 as m  —> oo.

Combining this with equation (5.16) we see that |r/(/) — < 3e for all
m  »  N  = N(e, / ) .  A se and /  are arbitrary, we have proven the proposition. □

5.6 Further Remarks
We offer here another proof (worked out with Michael Baake) of circular symmetry, 
this time based on the theory of dynamical systems. Consider the space X  of 
all tilings that are locallly indistinguishable from the pinwheel tiling tha t we have 
constructed. These are the tilings each of whose patches is a copy, under the rotation- 
translation group of the full Euclidean group of isometries of the plane, to a patch of 
the given pinwheel tiling, and vica-versa. This is evidently closed under the rotation- 
translation group and in particular under the translation group of the plane. We 
give this space the standard topology [37]. The uniform distribution of orientations 
allows us to conclude that X  is the closure of the translation orbit of any of its 
tilings -  it is minimal.

The substitution together with the uniform distribution of orientation allows one 
to see quite easily that patch frequencies are uniform, that is, the limit defining the 
frequency, or density, of a patch of tiles is approached uniformly, independent of the 
position or orientation of the patch. It follows from this that the autocorrelation is 
identical for all elements of X ,  and so this measure must be circularly symmetric.

vol A,
vol (dKA m)\\f\\ OO

(5.17)
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A ppendix A  

Averaging Sequences

The setting for all averaging processes in this Appendix is that of van Hove se
quences. In the Section 4.1.3 we needed various results which require particular 
specialized properties of a sequence to prove. In this Appendix we discuss these 
properties, particularly the property M, and show that all van Hove sequences sat
isfy it. One can find these results in ([44], Appendix 3). We provide the proofs here 
because the discussion in [44] is in a more general context and also, some of the 
Propositions there are mentioned without proofs.

D efinition A .l  Let {An}n be a sequence of measurable subsets of G. We say that 
the sequence has the Fplner property if

r  $ (A n A (x +  A n))
lim    A .-------- =  0 for all x  G G .

0(An)

D efinition A .2 Let {An}n be a sequence of subsets of G. For any compact K  C G 
we define:

An~  =  A n \  ((—K  + G \ A l )  n An) ,

A *+ =  An +  ({0} u A ) .

Rem ark A .3 One has A%~ = A n \  dK(An) and A%+ =  A n U dK(An).

D efinition A .4 Let {An}neN be a sequence of measurable sets in G. We say that 
this sequence has the property M  if :

i) {A n}n has the Fplner property.

ii) {A%~, A ^ +} have the Fplner property for all compact K,
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iii) lim ^ o o ^ -A ^  )/0(An)) =  limn^ 00(6'(A^+) / 6>(^Tl)) =  1.

We begin with the following lemma:

L em m a A .5 [2] Every weakly almost periodic function is amenable. Furthermore, 
i f  { f n } n  is a sequence of non-negative functions in L l {G) such that:

i) f Gfn(x)dx  =  lV n ,

ii) limn || Sx * f n -  f n ||i=  0 for all x  G G,

then for any xueakly almost periodic function g on G we have

M( f )  =  lim [  f n(x)g(x)dx. 
n J g

□

P ro p o sitio n  A .6 Let {A n}n be a sequence of subsets of G which has the F0lner 
property . Let

fn = Q(Af) Un  ’

where 1. is the characteristic function of the set. Then {/„} verifies the conditions 
from the previous lemma. In particular, for any weakly almost periodic function g 
on G, we have:

Mi,)
n b>(An )

P roof: It is easy to see that :

l^x * f n  f n | — a /  a \ ~̂ -An h { x + A n)
1

Q(An) '

Then the proof follows from the definition of the Fplner property. □
Next proposition shows that any van Hove sequence has the Fplner property. 

For this we show in fact that:

A n A (x +  An) c d {x’- l}(An).

P ro p o s itio n  A .7 Let {A n}n be a van Hove sequence in G. Then {A n}n has the 
Fglner property.

9 0
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P roof: Let x  G G. Let K '  =  {x, —x}. We prove that:

A n A (x +  A n) C dK'(An) .

Let y e  A n A (x + A n).
F irs t case y G A n, y ^  (x + A n).

Since y ^  (x + A n) then y — x £ A n so y — x  £ G \  A n. Since x  G K '  =  —K '  we 
get: _ _ _ _

y e - K '  + G \ A n .

We know y € A ri. Thus y G dK'(An), hence we are done.
Second case y £ A n,y  e  (x + A n).

y G (x + An) implies y G K '  +  A„. Since y £ A n then y £ Int(A„). Hence 
y € dK'(An). □

In the next two Propositions we show in fact that when we compute the mean by 
averaging over van Hove sequences, we can ignore what happens in the K —boundary 
of the sequence.

P ro p o s itio n  A .8 Let {An}n be a van Hove sequence in G. Let K  be an arbitrary 
compact set and let

Bn = A n \ ( ( - K  + G\A~n) n A n),

Cn = ( { 0 } \ jK )  + A n .

Then B n,C n are van Hove sequences.

P roof:
i) T h e  p ro o f for B n: Let K '  be a compact subset of G. Let K "  =  ({0} U K )  +  
({0} U K'). K "  is compact. Let x  G dK'(Bn). Then x  G K '  +  B n \  Int(J5n) or
x G ( - K '  +  G \ B n)D B n. ______
F irs t case x  G (K 1+ B n) \ I n t ( B n). Then x  G (K f + (An \  ((—K  + G \  A n) f lAn))) \  
Int(S„), hence x  G K 1 +  A n.
If x  £ Int(An) we get x G dK>(An), sox  G dK"(An).
If x  G Int(An), since x  £ ln t(Bn) we get x  £ Int(An \  ((—K  + G \  A n) H An)), so 
x  <£ Int(An f! (G \  ((—K  + G \  A n) fl An))) hence

x i  Int(A„) n  Int((G \  ( ( - K  +  G \ K )  fl A n) ) ) .

This implies x £ ln t( (G \((—K + G  \  An)nA„))),so x  ^  (G \( (—K  + G \  A n) n  A n)). 
Hence

X G ( K  +  G \ 4 ) n d n)) c  ( ( - K  + G\A.~))  n  c  G \ 4 0 )  •
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Thus , we get x E dK(An) C dK"(An).
Second case x  G ( - K '  + G \  B n) n  B n implies x  G B n => x  G A n. We also know

x G ( - A ' +  G \ W n) = (- K ' +  G \ ( A n \ ( ( - A  +  G \ X ) n A n))

=  ~ K '  +  ( G  \  A n ) U ( — A  +  ( G  \  A n ) )  =  - A '  +  ( ( G  \  A „ )  +  ( - A  U  { 0 } ) ) .  

Hence x  G
This proves that B n is a van Hove sequence,

ii) T h e  p ro o f for Gra: Let K '  C G  be compact. Let K "  =  (AU{0}) +  (A'U{0}). A "
is compact. Let x G dK' (Cn), then x G (it'/+G n)\In t(G Jl) or x G (—K '+ G  \  Gn)flGn 
F irs t case x  G (A ' +  Cn) \  Int(G„). We get x G A ' +  Cn hence x G A ' +  (A  U 
{0}) +  A n C A" +  A n.
Since A n C Gn we obtain Int(A„) C Int(G„) so x ^  Int(Tn). Hence x G dK"(An). 
Second case x G (—A'  + G \  Cn) fi Cn , then x G Gn sox G A" +  A n.
If x ^ Int(Art) we are done.
If x G Int(An), we know that x G (—A ' +  G \  Gn) so we get x G (—A ' +  G \  A„), 
hence x G dK" (An).

□
The previous proposition says that if {A n}n is a van Hove sequence then {A „ +}n 

and {A%~}n are van Hove sequences.

P ro p o s itio n  A .9 Let {An}n be a van Hove sequence in G and K  C G any compact 
set. Then

i) A$~  +  K  c  A n ,

ii) littljwoo g(An) ~  g(2n) = ^

P roof:

i) Let x G A%~,y E K  and z — x  +  y. Suppose that z £ A n then z E G \  A n so 
x — z — y E (—K  + G \  A n), a contradiction.

ii) We have A%~ C A„ c  A ^~  U dK(An) , and similarly A n C A%+ c  A n U 
dKu(°)(An) , with the second inclusion following from the fact that

x G A ^~  ,x  £ A n implies x ^  Int(A„) hence x E ^ ^ ^ ( A n ) .

Now the proof follows from the definition of van Hove sequences.

□
C oro lla ry  A .10 Let {A n}n be a van Hove sequence in G. Then {A n} has the 
property M .
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