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Abstract

Pathfinding for commercial games is a challenging problem, and many existing methods use 

abstractions which lose details of the environment and compromise path quality. Conversely, 

humans can ignore irrelevant details of an environment that modem search techniques still 

consider, while maintaining its topography.

This thesis describes a technique for extracting features such as dead ends, corridors, and 

decision points from an environment represented using a constrained Delaunay triangulation. 

The result is that the pathfinding task is simplified to the point where the search algorithm 

need only decide to which side of each obstacle to go, while all features of the environment 

are retained.

We present algorithms which search the triangles of the environment (Triangulation 

A*) and the decision points identified (Triangulation Reduction A*). We also explore a 

number of techniques which deal with finding paths for circular objects of nonzero radius 

and enhancements to various aspects of the search.
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Chapter 1

Introduction

1.1 A rtificial Intelligence
Artificial Intelligence is a vast field of research, both in breadth and depth, so any definition 
encompassing its many approaches and techniques would have to be suitably general. One 
interpretation, however, is that the aim of Artificial Intelligence is to emulate human-like 
behaviour when applied to various tasks. This is because we as humans view ourselves, by 
and large, to be intelligent.

An auxiliary, if not just as important, goal of Artificial Intelligence is to  use the above 
process to gain further understanding into the way the human brain operates. Because many 
applications studied by Artificial Intelligence are performed well by humans, successfully 
directing a computer toward the same task can be an indication that the method by which 
it is achieved is similar in some way to the human approach to the problem.

Games have emerged as a particularly interesting application area within Artificial In­
telligence. Here was an area where humans could perform well in the presence of a large 
number of possibilities for play, they could look at a few details of a state of a game and 
produce a summary of it, they could develop complex strategies and quickly learn insight 
into that of their opponent. To even approach these abilities, a modem computer would 
have to  perform lengthy techniques despite continuing advances in technology.

This was an indication that despite their sequential speed and accurate storage abili­
ties, computers were not intelligent in the same ways as humans. Where computers would 
consider a huge number of possibilities using only brute force, humans could easily discern 
which had the most potential. While computers learned about their opponent over the 
course of many games, humans could do it in few, if more than one.

Certainly this was an application area where learning about and applying methods em­
ployed by humans could only improve the play by computers. Indeed, it has been an active 
area within Artificial Intelligence, with much progress being made in classical games like 
checkers [43, 44], Othello [7, 8], card games like poker [4, 3], and more. More recently, 
with great increases in computing power and the rise in popularity of computer and console 
games, commercial games has become a popular area within games itself.

Originally, restrictions in both time and memory confined the “Artificial Intelligence” 
used in commercial games to being predefined by the programmers during development. 
Any perceived intelligence was simply a matter of these predefined (or scripted) behavious 
being appropriate for the situation. Besides not being dynamic, much less truly intelligent, 
this process could take a considerable amount of work on behalf of the developers.

Only recently has the hardware available to run such games had sufficient processing 
speed and memory capacity to allow application of Artificial Intelligence. However, because

1
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commercial games are constantly pushing the boundaries of modern computing, updates 
to  the game’s state are done many times each second and the vast majority of time and 
memory are allotted to other areas such as graphics, sound, physics, networking, and so on, 
and so Artificial Intelligence still receives very small amounts of resources within which to 
work.

For this reason, Artificial Intelligence in commercial games must work within strict time 
and memory requirements. This is often a point of contention between academia and the 
commercial games industry, with academic solutions often requiring resources not available 
in practice, and commercial approaches not having sufficient academic merit (often still 
being based on scripted solutions).

1.2 Pathfinding
When implementing Artificial Intelligence in a commercial game, the first task is often 
pathfinding. Pathfinding is the process of determining a set of movements for an object at a 
particular position and orientation (collectively, configuration.), which when applied, result 
in the object being in another configuration.

This sequence of movements, or path, between the initial configuration (the start) and 
the final configuration (the goal) must also have the property that at no point when the 
object is on the path, should its configuration be invalid. In pathfinding, this often means 
that the object must not collide with any obstacles in the environment in which the object 
exists.

This is an intuitive requirement, since when deciding on a route to take to the store, a 
human would not consider a path which goes through a building to be valid. This meets 
well with the goal of simulating a human’s decisions given a similar situation. Obviously if 
an object in a commercial game chose a path which brought it into collision with a wall, 
one would not deem its actions to be very intelligent.

As a consequence of this, pathfinding is often considered the most fundamental Artificial 
Intelligence task in commercial games. No matter what techniques are used to govern its 
behaviour, a character in a commercial game cannot seem intelligent if it cannot move 
around its environment reasonably and without colliding with obstacles.

This requirement for “reasonable” motion belies the complexity of another property that 
is often desirable for pathfinding—optimality. What it means for a path to be optimal varies 
by the application, however two of the most common definitions are that the path be as 
short as possible, and that it take the least amount of time to travel.

Using a distance metric, an optimal path is the valid path between the start and goal 
configurations whose combined distances between adjacent intermediate configurations is 
no greater than any other. This is the most common measure of optimality, and is intuitive 
as such. If someone is going from New York to Los Angeles, we would not consider a route 
that passes though Miami to be intelligent, unless this person had some reason for going 
there first.

Another common measure of optimality is the time required for the path to be traversed. 
This type of optimality need be considered in situations where parts of the environment take 
more time to  traverse than others, if the object being moved takes time to turn or accelerate, 
and so on. In most other cases, the shortest path is also the one which takes the least amount 
of time to follow. One can imagine a situation where this is not the case: if travelling between 
cities the fastest route is often along connecting highways, even if following dirt roads might 
result in less distance, as one can only drive along dirt roads at certain speeds.

There are other possibilities for defining an optimal path, such as the path which involves 
the fewest number of rotations, and some that consider additional constraints based on the

2
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environment, like avoiding an enemy’s line of sight whenever possible. That said, not all 
situations require finding an optimal path, and one can sometimes find a path that is nearly 
optimal with a fraction of the resources required to find one that is exactly optimal.

In a commercial game, a character can often select a path that is not quite optimal while 
still appearing intelligent. As long as the path selected does not move in a very unintuitive 
way, the character can usually be forgiven for a suboptimal path, as humans very seldom 
concern themselves with taking the absolute best path, so long as it is rational.

Now, in order for an object to appear to move around its environment intelligently, we 
have the requirement of finding a collision-free path between the start and goal configurations 
that is either optimal according to some measure, or at least very close to it. Again, the 
application of commercial games imposes strict requirements on both time and memory 
usage.

This problem has been studied extensively, but nonetheless this thesis presents a novel 
approach, explained in Section 1.4, that meets all these requirements, as well as having 
properties conducive to further applications and enhancements.

1.3 Exam ple
In the spirit of Artificial Intelligence, we look at the pathfinding problem from the perspective 
of a human to see what we can learn from the way a human goes about determining a path 
between locations. Consider a man attempting to find the best path from the door of the 
restaurant shown in Figure 1.1 to the table at which his friend is sitting.

The man will not plan his individual steps, he is instead likely to decompose the problem 
to that of moving between small areas of the restaurant that are free of obstacles such as 
tables and walls. On top of this, he will not consider dead ends. While it seems trivial 
that he would not ponder going into corners, this also applies to  going into the kitchen or 
down the hallway leading to the bathrooms—if these do not lead to  the table at which his 
friend is sitting, he will not spend time thinking about them as possibilities. Figure 1.2 
shows the areas of the restaurant eliminated by this technique alone. Current pathfinding 
techniques do not avoid searching these places any more than they would any other part of 
the restaurant.

Another problem common to current pathfinding techniques is that if the goal could be 
in a small area or require the object to  go through a small area, then the search will have to 
consider moving between all such areas, and thus the restaurant will be made up of more,
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Figure 1.1: Environment for pathfinding example
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Figure 1.3: Proceeding down a corridor

smaller areas, forcing the search to make more decisions and thus use more memory and 
time. In our example, however, the man will not take any more time to decide how to get 
to  his friend in a restaurant where the walls were zigzagged (creating several small nooks) 
than if the walls were straight, and he can still represent the walls precisely in either case.

Let us say that upon entering the restaurant, there are booths to both sides of the man. 
We know he will not sit down at either, since he will not consider dead ends. This again 
seems trivial, but it reduces his decisions to either moving forward or moving backward. 
Since backward would move him to where he has already been, that is not a very useful 
option either. Thus, his options until reaching the other side of the booths are simply a 
series of forward steps. Obviously he will not separate these conceptually, and consider his 
first “move” to be going to the end of the booths. In other words, he will consider this to 
be a corridor. This is shown in Figure 1.3.

Again, most pathfinding techniques will consider all these as moves, which result in 
more decisions than realistically have to  be made. Also, if the area between the booths was 
wider than he man, some pathfinding techniques would consider lateral movement as well as 
forward movement as shown by the multiple arrows in Figure 1.3. This is also unnecessary, 
since the man will not consider at which side of this corridor he will walk when determining 
a path—he only knows he will traverse it, and his exact path within it will be determined 
by how he enters and exits the corridor.

At the other side of the booths is an area with tables sitting out from the walls, to which
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the man can walk on either side. This is the first point at which the man must make an 
actual decision. He may consider at this point different combinations of going around the 
tables. Figure 1.4 shows the points where such decisions must be made. The number of 
such combinations is exponential in the number of obstacles, however many resulting paths 
are obviously too long, and he will quickly rule them out. When looking at the best such 
combinations, he will finally consider the actual steps that would lead him to the chosen 
side of each table. Some of the possible paths through the tables are illustrated in Figure 
1.5.

With this information he can determine which of-these combinations of decisions leads 
to  the shortest path through the tables. He will not consider how he will walk around 
each table, because once the series of decisions is made, the best path adhering to this 
combination of decisions can be determined quickly. Again, this shows how the man will 
not consider individual moves, lateral moves in larger areas, or dead ends not leading to the 
goal, as decisions.

At the opposite side of this open area of tables is a row of tables on each side of another 
corridor. At one of these tables is the man’s friend. This time the man will not consider 
going all the way through the corridor as this would take him past his goal, but will instead 
stop at the table at which his friend is sitting. We see that while he has considered going 
through earlier corridors as single moves, it has not hindered his ability to move partway 
through this one. Figure 1.6 shows how the path does not traverse the whole corridor.
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Figure 1.6: Walking partway down a corridor and having a seat in a dead end

Similarly, when reaching his friend’s table, the man can sit down even though he did not 
consider such a “dead-end” option at any other table in the restaurant. The man can then 
follow his chosen path by moving to the end of the booths, going around the tables in the 
open area in a manner which results in the shortest overall path, going partway down the 
corridor of tables, stopping at his friend’s table and sitting down, also shown in Figure 1.6.

Finally at this point the man will consider his individual steps; once making the high-level 
decisions about his route, he can easily plan these steps minimizing the distance travelled 
while avoiding obstacles and adhering to the chosen route.

1.4 Approach
The approach taken to  pathfinding in this thesis will be described in the context of the 
above example, in this section. When looking at the decision process of a human, one can 
see the improvements that are possible with the proper abstractions and representation.

First, we use a triangulation to represent the environment, which is described in terms of 
line segment barriers (polygonal representation). This addresses the issue that a human will 
consider areas of the environment (triangles) instead of individual steps when approaching 
the pathfinding problem.

This also has the advantage that the number of triangles in the environment is not 
sensitive to its size. A large area has no more triangles than a smaller area with the same 
features; this number is only affected by the complexity of the barriers in the environment.

In addition, the triangles added to deal with more detailed areas of the environment do 
not affect other areas. This is akin to how the man could consider small and complex areas 
of the restaurant without taking longer to  consider larger open spaces.

The approach taken in this thesis uses the properties of a constrained triangulation (one 
formed around the aforementioned line segment barriers) to  identify dead ends, corridors, 
and decision points in a connected area of the environment. The result of this process is 
a graph where the nodes represent where a decision must be made as to  which side of an 
obstacle to go. The implications of this technique are many, and fit well with the method by 
which a human solves the pathfinding problem: only considering how to go around obstacles, 
and considering every path which adheres to these decisions as one.

The pathfinding task then consists of reaching the adjacent such nodes from both the 
start and goal points by moving to the adjacent corridor if the point is in a dead end, and 
then considering the decision points at each end of the corridor if there. Only one decision 
point need be considered for the start or goal if the point is on one already.
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Now on the graph, the search need only consider decision points since the paths by which 
the start and goal points connect to this graph have already been identified. This is similar 
to  how a human can ignore dead ends and move through corridors in one pass throughout 
the search, even if the start or goal is in such a dead end or corridor.

Because these are the only points at which a decision must be made, it implies what was 
described above how the man will only consider which corridors he will traverse, and not 
the details of how he will traverse them. Once a succession of corridors leading from the 
start to the goal (or between the decision points adjacent to them) is found, the best path 
through these corridors can be found.

The process of finding such a path can be thought of conceptually as weaving a string 
through the selected corridors and then pulling it at the start and goal points so that it 
tightens around the obstacles and forms the shortest path through those corridors. Once 
the length of this path is determined, it would be adopted as the best path if no shorter 
paths have been found.

When one path is determined, we can determine which routes around obstacles may 
provide a shorter path than the best found so far, and consider only those. This process 
can be continued until an optimal path is found (this is guaranteed when no other routes 
could yield a shorter path than the best one found), or at least one of acceptable quality.

The above assertion about “pulling the string” is not entirely accurate, since it is often 
the case that the object for which the path is being found, is not a point object. In the case 
of the man in the restaurant, he would obviously not appreciate a path which touched tables 
or walls, since being centered on the path would cause him to collide with them. Again, a 
main aim of pathfinding is to  avoid such obstacles.

For the purposes of this thesis, objects are considered to be circular with some radius. 
Conceptually, to keep an object of some radius from colliding with obstacles, we center 
circles of this same radius around the corners of the obstacles around this route, and then 
pull the string around them. This ensures that the resulting path stays at least the object’s 
radius away from these obstacles, so that when the object’s center follows this path, it will 
not collide with anything, as desired.

When creating the triangulation, we also determine what size of objects can fit through 
the triangles. When dead ends are identified, we determine for each point in them how large 
of objects can reach the connecting corridor. When identifying corridors, we determine for 
each point the maximum object radius that can reach each connecting decision points.

We finally determine the sizes of the largest objects which can travel through entire 
corridors connecting decision points, so that once searching between decision points, we can 
determine valid paths for an object of a given size without considering any other structures. 
While these size considerations are somewhat tangent to the rest of the work in the thesis, 
they were necessary for applying the technique in the chosen application areas.

1.5 C ontributions
Here we will quickly overview the parts of the work described above, as well as some others, 
which are novel contributions. We will follow that with an outline of the structure of the 
rest of the thesis.

The aforementioned methods for dealing with objects with nonzero area by measuring the 
throughput of triangles, dead ends, and corridors has many benefits over existing techniques, 
which will be described in its respective section.

Also the description above about “pulling the string” with circles around the corners 
of obstacles was actually accomplished by creating a new version of an existing algorithm 
called the funnel algorithm to deal with circular objects of nonzero radius. The original
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and modified versions of this algorithm both run in time linear in the number of triangles 
through which the path moves.

We then determined an anytime search algorithm for searching through a triangulation 
which deals with the inherent uncertainty within a triangulation in order to find an optimal 
path, while being as efficient as possible.

As mentioned earlier, the main work of this thesis is the technique by which the trian­
gulation is examined to find features such as dead ends, corridors, and decision points. This 
has many advantages as will be described later.

Another anytime algorithm was created to deal with searching solely between decision 
points after the above technique is performed. This algorithm must make the same consid­
erations as the first, but also deal with a number of possibilities that might exist due to  the 
placement of the start and goal points in the environment.

Other techniques employed include faster point location in order to  find the triangle in 
which the start and goal points reside, and a simple technique for finding the first path 
quickly, thereby increasing the window of the anytime algorithms in which a solution is 
available.

1.6 T hesis O utline
C h ap te r 2 This chapter will review work previously done in Artificial Intelligence in gen­

eral search techniques, pathfinding-specific search techniques, basic abstractions, and 
abstractions applied to pathfinding.

C h ap te r 3 The thesis will here discuss the issues involved with environment represen­
tation in pathfinding, the common grid-world representation, general triangulation 
representations, and the Dynamic Constrained Delaunay Triangulation representation 
on which this work was based.

C h ap te r 4 Next we will describe considerations for pathfinding using objects which have 
nonzero size. This includes a method for determining the maximum radius for a 
circular object which can move through a particular triangle and an algorithm for 
calculating it, and then the extension of an existing method for finding the shortest 
path through a group of triangles (the funnel algorithm) from a point object to a 
circular one of nonzero radius.

C h ap te r 5 This chapter describes searching within a triangulation starting with a simple 
search which can find suboptimal paths, a discussion on the effects of approximated 
path lengths in the search for an optimal path, and a search incorporating these 
principles.

C h ap te r 6 Here the thesis covers the abstraction of the triangulation starting with the 
different classifications for the triangles (analogous to dead ends, corridors and de­
cision points above), the consequences of these on the resulting graph, an algorithm 
for creating this abstraction given a Constrained Delaunay Triangulation, and the 
information that the abstraction itself contains.

C h ap te r 7 The thesis goes on to describe the procedure for searching the abstraction, the 
special cases that can occur, the effects of approximated path lengths in the search 
for an optimal path as it differs between the triangulation and the abstraction, and 
finally the search algorithm resulting from these concerns.

C h ap te r 8 An explanation of other enhancements done for the search is given in this 
chapter. These include point location based on sectors and other approaches, and
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a minor modification to the earlier searches meant to produce an initial (possibly 
suboptimal) solution quickly without affecting the ability for the search to find an 
optimal solution.

C h ap te r 9 This chapter contains information from experiments which were performed with 
the search techniques described earlier. This will include a discussion of the test 
environments and other application areas, the experimental setup, its results and an 
analysis thereof.

C h ap te r 10 The thesis will then conclude with a recap of what was covered and an explana­
tion of the many possible extensions and applications of the work covered. References 
follow.
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Chapter 2

Previous Work

The work presented in this thesis was originally intended for use in the Real-Time Strategy 
(RTS) commercial game genre. This type of game puts the player in the place of a general 
waging a battle. Objectives include gathering and managing resources, building and defend­
ing one or more bases, constructing vehicles and training troops for attacking the forces of 
another army or accomplishing some other objective.

RTS games pose many challenges described in more detail in [10]. Of primary interest 
here, however, is that in addition to the ordinary constraints of a commercial game to 
perform computations many times per second, there are many objects (buildings, vehicles, 
troops, etc.) to consider. The environment also tends to  be large, with both wide open 
areas such as fields, and small details such as a jagged line forming the base of a cliff.

The above requirements simply reinforce the constraints under which a pathfinding sys­
tem must run for such a game: it must find a path even faster than is normally required 
because several paths may be requested at a time, and the representation should handle 
both large areas and detailed regions efficiently.

The technique developed in this thesis also has other properties which could be useful 
in RTS games, described in Section 10.2. The majority of the work, however, is applicable 
to  all pathfinding.

The goal of the techniques done here was to apply them in the Open Real-Time Strategy 
(ORTS) game engine [11]. This is an ideal test bed for algorithms such as pathfinders because 
it is an open source engine providing easy integration, is very general in its implementation, 
and is not susceptible to compromise by its clients, among other advantages [9].

2.1 General Search
A domain in which some search is to take place can have one or several attributes associated 
with it at any one time. An assignment of these attributes to  particular values yields a 
state, which represents a situation in this domain at some instance, possibly resulting from 
a series of actions. Performing an action on some state usually results in some other state. 
All possible assignments of values to the attributes associated with a domain produces all 
possible states in that domain, also called a state space.

A search is performed to determine the series of actions which, when applied to a given 
initial state, or start, result in a desired final state, or goal. A sequence of intermediate 
states resulting from these actions is often another result which a search can yield. Either 
of these is referred to as a path. A search is done by performing each possible action on the 
start state, which yields a corresponding subsequent state for each action. If none of these
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states produced is equivalent to the goal state, we then perform this set of actions on one
of these resulting states, and continue in this manner.

There are several methods for performing this general task. One such example is breadth- 
first search. As indicated by the name, this algorithm first searches all states resulting from 
a single action performed on the start state before searching those which require two, and 
so on. This technique is usually implemented by means of a queue, and whenever the goal 
state is found, it is found by the shortest possible sequence of actions. A drawback of 
breadth-first search is that it is memory-intensive: by the time it reaches the goal state, all 
states that result from fewer actions than the goal are stored in memory. Obviously, as the 
state space becomes larger and the goal is farther from the start, the memory requirement
of this approach can quickly surpass the capacity of a computer.

In such cases, a technique called depth-first search can be used. These will search into 
the space along one path at a time to find a solution. This type of search uses less memory, 
but take longer to complete, hence their use when sufficient memory is not available for 
breath-first techniques. However, often it was not desirable to search along each path as 
far as possible before trying another, since this could yield a path much longer than the 
shortest possible sequence. Also in many cases such a search is not even possible.

For these reasons, depth-first iterative-deepening (DFID) can be used instead, which 
expands each path a certain distance, and if no solution is found, it will search each path 
slightly further, and continue in this manner until a solution is found. While this technique 
will return the shortest path to the goal, understandably it requires even more time to 
complete than depth-first search due to the repeated search involved.

Originally, these search techniques were used mainly to traverse graphs, however even­
tually, larger state spaces began to be used, and more efficient techniques were required. 
The techniques above effectively traverse the search space but do not search it intelligently. 
In many cases knowledge about the structure of the search space could be applied to the 
benefit of the search.

Thus, an algorithm called A* [23] was devised to incorporate such knowledge to search 
the state space more efficiently. A* is based on a breadth-first search, but uses a heuristic, 
which is a measure of how close any state is to the goal of the search. Its approach is not 
only intuitive, but also has several properties desirable in many domains. These are explored 
in more detail in Section 5.1.

Because of this, A* has enjoyed widespread use for decades. Despite its efficiency, how­
ever, one problem with A* is that as state spaces grow even greater in size and domains 
become even more complex, the memory required by this approach stretches beyond that 
available in computers.

So similarly to how A* introduces heuristics into breadth-first search, IDA* [33] intro­
duces them into DFID search. IDA* shares many of the same properties as A*, but also 
works in settings where sufficient memory is not available for techniques such as A*, at the 
cost of requiring more time because of repeated search. As with A* and breadth-first search, 
heuristics allow IDA* to proceed in a much more intelligent fashion than DFID search.

Other search techniques followed which allow the use of such heuristics to intelligently 
guide their progress, however those mentioned above are the most prominent.

2.2 G eneral A bstractions
One question that might come to  mind is the origin of the heuristics used by such algorithms 
as A* and IDA*. Often, they are the result of human knowledge of the domain being 
searched. In most cases, people develop explicit techniques to determine from a state in a 
given domain, approximately how far it is to the goal.
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However, there is another, more general method to provide these values: abstraction. 
This involves producing from a given state space, a parallel space comprised of fewer states, 
known as an abstract space. For any state in the search, a corresponding state can be 
determined in this abstract space, where it is easier to get an estimate for the distance to 
the goal. The actual distance between this abstract state and that corresponding to the 
goal in the abstract space often forms a fairly accurate heuristic in the original space.

There are a number of ways to go about constructing an abstraction of the original 
space. The most common is to  form a partition over the original state space where all 
states in a single partition correspond to  the same resulting state in the abstract space. 
This creates a significant reduction in the state space and often allows the exact distance 
between the abstract states corresponding to the current state being searched and the goal, 
to  be calculated exactly. Once again, there are numerous approaches to obtaining these 
values. Two such approaches are pattern databases [16] and Hierarchical A* [26].

Pattern databases associate each state in an abstract space with a value indicating the 
distance they are from the corresponding goal. These are populated by determining the 
state corresponding to the goal in the abstract space, and from this state, exhaustively 
visiting the entire abstract space using breadth-first search, and recording for each abstract 
state, the distance from the goal.

This way for each state in the original space, the corresponding state in the abstract space 
can be found and the distance of this state from the abstract goal determined immediately 
and used as a heuristic in the original space. This technique represents the end of the 
spectrum where all values are calculated during preprocessing, and is useful if a number of 
such searches are likely to be done.

Hierarchical A*, by contrast, calculates such values as the search is being performed. 
To find a heuristic for a state in the original space, the corresponding state is found in 
an abstract space. The distance between this abstract state and the goal in this space is 
determined by a search, and this value is used for the heuristic of the original state. A 
heuristic is also needed for the search in the abstract space, so each state here is mapped 
to  one in an even more abstract space, where the distance between this state and the goal 
again becomes the heuristic for the state in the less abstract space.

This process continues searching more and more abstract spaces, until reaching a space 
so abstract that it contains only one state, or some suitably abstract space where a domain- 
dependent heuristic is used. These values are saved, and other useful figures are cached, so 
that subsequent searches can benefit from these calculations. Searches using this method 
take longer than those using a pattern database, but require no preprocessing, so it is more 
suited to  situations where too few searches will be performed to warrant constructing a 
pattern database.

2.3 Pathfinding Search
In addition to the general search techniques that are commonly used for pathfinding tasks, 
there are many, more specialized searches which exploit the properties inherent to  this 
problem. Indeed, pathfinding is so important to application areas such as commercial games 
and robotics, that there are methods which address not just pathfinding as a whole, but 
even subtasks therein. Unfortunately a complete treatise of pathfinding techniques is well 
beyond the scope of this thesis, but we will give a synopsis of a few important results below.

The problem of finding a shortest path in a plane is well-studied [39], The optimal 
solution is given in [25], where execution time and memory usage is 0 (n  log n), respective 
of the vertices in the environment. In most cases, a more practical approach is more suitable. 
Probably the most common type of solution uses a grid-based environment representation
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[32], described further in Section 3.2.
However, other techniques such as visibility graphs [34] can be used as well. This involves 

connecting the vertices of the obstacles to each other so long as an unobstructed straight line 
can be formed between them. A search is then performed on this graph, which is guaranteed 
to  contain an optimal path for an object of zero size. The drawbacks to this technique lie in 
the fact that the number of edges in the graph can be quadratic in the number of vertices 
on the obstacles, which is detrimental in respect to both time and memory, and that in 
the presence of a change in the environment, this graph can require extensive repairs, and 
finally that it only provides paths for objects of a single size.

In addition to such deterministic methods, there are random techniques that have been 
used to some degree of success. In higher-dimensional spaces, complete algorithms are 
sometimes unwieldy and so algorithms such as Rapidly-exploring Random Trees (RRTs) 
were developed [35]. Such trees quickly explore the space at random in an attempt, in this 
case, to find a path between a start and goal. While sometimes useful in the case of an 
unsearchably large or complex environment, these techniques are not guaranteed to find a 
path except in their limit, and typically do not find an optimal path. In the application 
areas for which the work of this thesis was targeted, both of these abilities are important 
and so such techniques are not suitable.

Nevertheless, it was a primary goal to produce a technique that functioned effectively 
in large and complex environments, so information specific to pathfinding in Euclidean 
space was required. In particular, the techniques presented in this thesis are based on 
the triangulation environment representation, or more precisely, the Constrained Delaunay 
Triangulation representation presented in [28], Because this work is so central to this thesis, 
it is presented in more detail in Section 3.4. It should be noted that there are other popular 
polygonal representations available such as trapezoidal decomposition [30, 29], however the 
triangulation representation provided mechanisms for the abstraction procedure discussed 
in Chapter 6.

2.4 Pathfinding A bstractions
A work with which that in this thesis is compared is the PRA* algorithm presented in [47]. 
While there are many pathfinding techniques which make efficient use of abstractions such 
as HPA* [5], which decomposes an environment into “rooms” and caches the best paths 
between the entrance and exit points of each to  construct a complete path between points 
quickly, PRA* is the most competitive algorithm at the time of writing.

PRA* (short for Partial-Refinement A*), performs pathfinding search in an abstracted 
representation of the environment and then converts the solution from this space to one on 
the original environment. It works by building layers of increasing abstraction, forming a 
layer by abstracting neighbouring states of a layer, into a single state in the more abstract 
layer above. States at the top, most abstract level represent groups of states in the original 
space which are reachable from each other. For pathfinding, these states equate to areas in 
the environment, specifically, the cells in the grid, which is described further in Section 3.2. 
When a path is requested, the start and goal are projected up through layers of abstraction 
by determining at each layer, the state of the layer above which corresponds to that state. 
This is continued until either they become the same state in some abstract layer, indicating 
that a path exists between them, or they reach two distinct states at the most abstract level, 
indicating such a path is impossible. This is similar to checking the component indices in 
TRA* as described in Subsection 7.1.1.

If a path can be found, a suitably abstract layer is chosen on which to perform the search, 
for example the layer halfway between the original graph and that at which the start and
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goal met in a single state. The search is performed at this layer, and once complete, the 
states forming the path are projected onto the layer below by determining which states on 
that layer correspond to  those in the solution path on the layer above. Then another search 
is performed on this level, but only in the states corresponding to those in the solution on 
the level above. This is continued downward through less abstract layers until a path on 
the original environment results.

There are several advantages to this approach. The first and most obvious is the increased 
speed which results from the search being performed on an abstract layer with a much smaller 
state space than the original environment. Another advantage is that the existence of a path 
between any two points in the environment can be quickly determined instead of requiring 
a lengthy exhaustive search.

Finally, because a path is found on some abstract layer and the actual path must be 
within the corresponding states in the original environment, this “concrete” path need only 
be determined a portion at a time. For example, the actual path for the first few states in 
the solution path on the abstract layer need only be determined for the object to start along 
a path which we know will lead to a goal. This is useful in commercial games where a delay 
before an object starts moving toward the desired location is should be avoided. Subsequent 
portions of the path can then be determined at any time while the object moves along the 
portion of the path already known.

Also, as seen in Section 9.2, the presence of the abstraction also makes this algorithm 
less susceptible to increases in execution time as the distance between the start and goal 
increases, and also more predictable. This is because the actual distance between the start 
and goal can be predicted by the height of the layer at which they meet at the same state. 
Thus, the resulting search is performed on a suitably abstract layer, meaning that both 
complex and long paths are dealt with on a more abstract layer, reducing their negative 
impact on execution times.

A disadvantage of this method is that creating the abstraction of the environment in 
such a manner inherently loses details therein. Therefore, as long as the search is performed 
on any abstracted layer, this method cannot guarantee the shortest path will be found. 
Obviously if the initial search is done on a very abstract level, the resulting suboptimality 
will be more likely and more pronounced than if it was performed on one which is closer 
to the original environment. Luckily, performing the search on the layer at half the height 
of that at which the start and goal become the same abstract state, results in both a very 
efficient search, and a path which, with a high degree of probability, is very close to optimal.
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Chapter 3

Environment and 
Representation

The first question that one must ask when approaching a pathfinding problem is that of 
how to represent the environment. This decision can depend on a number of factors such as 
the nature of the environment and the pathfinding techniques that are applicable to each 
representation.

In this section, we will discuss such concerns and give advantages and disadvantages of 
a couple of the most common environment representations. The method selected for use in 
this thesis will be described and justified.

3.1 Environm ent D escription
In essence, an environment in pathfinding dictates which configurations between which an 
object can and cannot transition in a single motion or time step. Typically, this is given in 
terms of obstacles, with which the object must not intersect at any time, either on a time 
step or in between them.

While this is the most common case in pathfinding and indeed in commercial games, it 
is worthy of note that more complex situations are possible, such as ledges that the object 
can move down but not up. Technically, situations such as “teleportation” where an object 
moves farther than is normally possible in a period of time, are possible in this framework. 
Indeed, such cases exist in some commercial games.

Such possibilities, however, can complicate the pathfinding task and distract from its 
fundamental properties. We therefore adopt the convention that an object can move at 
a constant rate in any direction of its current position, providing that neither the final 
configuration from this motion, nor any intermediate configuration results in the object 
overlapping with an obstacle in the environment (or another object).

To further simplify matters, this thesis will consider all objects to be radially symmetric 
(circles in 2 dimensions). This implies that if an object in a particular configuration does not 
overlap an obstacle, it cannot be made to  through rotation. Similarly, an object intersecting 
an obstacle always will unless its position is changed. Thus, an object’s configuration is 
simply considered to be its position for our purposes. From this point on in the thesis, the 
terms configuration and position are used interchangeably.

15
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3.2 Grid-W orld R epresentation
The most common environment representation used for pathfinding is known as the grid- 
world representation. This is where a grid (most often, of squares) is overlaid on the envi­
ronment and each cell of the grid is considered either traversable if no part of an obstacle 
overlaps the cell, or obstructed otherwise. Figure 3.1 shows an environment which has some 
obstacles. Its grid-world representation is shown in Figure 3.2, with the obstructed cells 
shaded and traversable cells left white.

Figure 3.1: Environment for representation example

m
Figure 3.2: Grid-world representation of environment

The position of the object for which pathfinding is to be done is discretized to a 
(traversable) cell, and each possible move for the object results in its position changing 
to one of that cell’s neighbours (either 4- or 8-neighbours in the case of square cells) which 
are traversable. Figure 3.3 shows possible moves for an object (depicted by a circle) into 
traversable 4-neighbours (solid arrows) and 8-neighbours (solid and dotted arrows).

This representation is the most common in commercial games as it is easy to  define an 
environment as a number of cells on a grid, and because many pathfinding techniques are 
made for this representation. A disadvantage of this is that if obstacles such as walls are 
not axis-aligned, this results in imprecise representation. An example of this is shown in 
Figure 3.4.

If the resolution is not sufficient, this imprecision can lead to  the pathfinding algorithm 
finding suboptimal paths or none at all. When the grid has sufficient resolution, especially

16
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Figure 3.3: Possible moves for an object in a grid world

Figure 3.4: Imprecise representation of a non-axis-aligned obstacle

Figure 3.5: No path due to insufficient grid resolution
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in this situation, the number of cells can severely complicate the pathfinding process, mul­
tiplying the number of moves required for a path. In Figure 3.5, the imprecision causes 
no path to be found between the start and goal cells. The resolution of the grid must be 
increased to reduce this imprecision to the point where such a path can be found, as in 
Figure 3.6.

Figure 3.6: Grid resolution increased to produce path

Similarly, the number of cells in an area is dependent on its size; a large area has a greater 
number of cells than a small one, even if they are geometrically similar. For these reasons, 
grid-world-represented environments, particularly more accurate or non-axis-aligned ones, 
tend to have many more cells than other representations.

3.3 Triangulation R epresentations
A slightly less common representation is the constrained triangulation, a variation of which 
is used in the work in this thesis. A constrained triangulation represents the borders around 
the obstacles in the environment as line segments or constrained edges. Unconstrained edges 
are then added between the end points (and points of intersection) of these constrained 
edges, without such edges crossing, until no more such edges can be added, at which point 
the environment is made up entirely of triangles.

Figure 3.7 shows the same environment as in Figure 3.1, but with curves approximated 
by line segments (the reason for which is explained below). Figure 3.8 shows that envi­
ronment represented by a constrained triangulation with solid lines for constrained edges 
and dotted lines for unconstrained edges (this is the convention adopted in diagrams of 
constrained triangulations from this point forward). Traversable and obstructed spaces in 
the environment are implicitly defined in that objects always originate in traversable space 
and cannot move across constrained edges into obstructed space.

Triangulations have a number of advantages compared to the grid-world representation, 
in that they can precisely represent any environment which contains straight obstacles (axis- 
aligned or not), the number of triangles in any area is determined by the properties of that 
area and not its size, and the necessity to include more detail in any one area does not 
increase the number of triangles in others.

To illustrate, consider adding an obstacle to a grid-world-represented environment which 
is smaller than any of the grid cells. In this case, either the obstacle would have to  be 
imprecisely represented, or the entire grid would have to be made up of more, smaller cells. 
If a triangulation was used, this obstacle could be precisely represented (provided its shape

18
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Figure 3.7: Same environment with curves approximated by line segments
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Figure 3.8: Environment represented by a constrained triangulation

Figure 3.9: Small obstacle imprecisely represented in a low-resolution grid
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Figure 3.10: Grid resolution increased to better approximate small obstacle
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Figure 3.11: Small obstacle added to (empty) triangulation

is polygonal) while only creating smaller triangles in the vicinity of the obstacle, avoiding 
modifications to and an increase in the number of triangles in other areas.

Figure 3.9 shows such an obstacle being added to a grid and imprecisely represented 
due to the grid’s relatively low resolution. In Figure 3.10, the obstacle is more accurately 
represented at the cost of increasing the resolution of the grid everywhere. This same 
obstacle is shown added to an otherwise empty triangulation in Figure 3.11.

When borders of obstacles in a triangulated environment are curved, they can be ap­
proximated by line segments, using more for increased accuracy. This is why the circle 
from the environment in Figure 3.1 is approximated by an octagon in Figure 3.7 prior to 
triangulation. This only increases the number of triangles in the area of the curve.

For the above reasons, there are generally much fewer triangles in a triangulated polyg­
onal environment than there are cells in a grid-world representation with any reasonable 
resolution. Also, there are a number of existing algorithms which use triangulations and 
their inherent simplicity is helpful in the abstraction discussed in Chapter 6 .

3.4 D ynam ic C onstrained D elaunay Triangulations
The particular implementation of a triangulation used in this work is the Dynamic Con­
strained Delaunay Triangulation (DCDT) developed by Marcelo Kallmann [28]. Below we 
will describe different types of triangulations to familiarize the reader before describing this
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Figure 3.12: A collection of points to be triangulated

Figure 3.13: A triangulation of this set of points

work. A more complete treatment of these and other geometric structures is given in [41].
A basic triangulation takes a collection of points like that in Figure 3.12, between pairs 

of which edges are added such that these edges do not cross, until no more such edges can 
be added. At this point, within the convex hull of these points, all areas are triangular, 
as illustrated in Figure 3.13. A Delaunay Triangulation (DT) of these points adds the 
edges in such a way that the minimum interior angle of all triangles in the triangulation, is 
maximized. This is equivalent to other requirements described further in [28], This property 
implies that these triangulations tend to avoid “sliver” triangles wherever possible, which is 
beneficial to  the triangulation as a whole. An efficient algorithm for the computation of a 
Delaunay Triangulation is given in [1]. As an example, compare the Delaunay Triangulation 
in Figure 3.14 to the regular triangulation of the same points in Figure 3.13.

As described earlier, pathfinding in triangulations is normally done using some form 
of Constrained Triangulation (CT), where constrained edges represent borders between 
traversable and obstructed space. Often the convex hull is made using constrained edges 
to  specify that objects are not to exit the triangulated area. For instance in many games 
this area might be a rectangle. A rectangular area enclosed by constrained edges contain­
ing barrier segments is shown in Figure 3.15, and a Constrained Triangulation of these 
is shown in Figure 3.16. Specifying that a Constrained Triangulation be Delaunay (now 
Constrained Delaunay Triangulation or CDT) again adds the requirement that the uncon­
strained edges be added in a way maximizing the minimum internal angle of any triangle
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Figure 3.14: A Delaunay Triangulation of the same set of points

Figure 3.15: A collection of segments including a bounding box

in the triangulation, as long as none of the constrained edges are affected. A Constrained 
Delaunay Triangulation of this same environment is shown in Figure 3.17; again, compare 
the unconstrained edges to those in Figure 3.16.

A Constrained Triangulation with the Delaunay property better represents the structure 
of the environment, especially for abstraction, as shown in Chapter 6 . More specifically, 
however, this property is used to ensure that whenever a valid path exists between two 
points in the triangulation, one exists such that it does not pass through any triangle more 
than once, which is no longer. The corresponding proof is given in Chapter 4. See [13] for 
an optimal 0 (n  log n) algorithm for computing a Constrained Delaunay Triangulation, and 
[17] for one that works on-line.

The further specification that the triangulation is dynamic simply implies that in the 
presence of a change in the triangulation (one or more constraints is added, deleted, or 
moved), the triangulation can be repaired locally [28]. While this is not a requirement for 
the research in this thesis, it is advantageous in the application areas.

For example, in an RTS game, it is often the case that the user will encounter previously 
unknown terrain. In terms of the triangulation, this will result in constraints being added 
(or removed). In order to perform pathfinding properly given this new information, these 
constraints will have to be incorporated into the triangulation.

Obviously in the presence of the strict constraints of a commercial game as discussed ear­
lier, it would be more beneficial to  only modify the triangulation in the region of the change
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Figure 3.16: A Constrained Triangulation on this collection of segments

Figure 3.17: A Constrained Delaunay Triangulation on the same collection of segments

than to  completely rebuild it. Kallmann’s DCDT provides a mechanism for modifying these 
constraints with minimum changes to the triangulation.

Changes to the triangulation consist of the addition and removal of vertices and con­
strained edges; changes in location are done by removing the affected constraints and sub­
sequently adding them in their new position. Since for pathfinding, we consider vertices to 
be obstacles, for the most part, these are added only as endpoints and intersection points 
of constrained edges, however, they could form “light post”-like obstacles.

Adding a vertex is done by first locating it within the triangulation (this point location 
process is described in further detail in Section 8.1), to see if it lies on another vertex, 
an edge, or in a triangle face. If the vertex is incident with another, it does not need to 
be added. If it lies on an edge, this edge is split into two edges consisting of the original 
endpoints of the edge each leading to the vertex just added. Then the triangles incident 
with the original edge are split by adding unconstrained edges between the new vertex and 
the vertex of each triangle opposite the original edge. This situation is shown in Figure 
3.18.

If the edge lies in a triangle face, unconstrained edges are added between the vertices of 
this triangle and the newly added vertex. Figure 3.19 shows a vertex being added inside a 
triangle face. When a vertex is added to either an edge or a face, the triangles surrounding 
this are may have lost the Delaunay property.

Therefore we must check the edges surrounding the triangles involved with the insertion
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Figure 3.18: Adding a vertex on an existing edge

*
* \  *  » ♦

• % *  « ♦
* \  *  « ♦ .

I  \  *  l  ♦
» A  '  * A  \

L.. \  i;
 *

Figure 3.19: Adding a vertex in a triangle face

(shown in bold on the right side of both figures) to see if they need to be “flipped” . We 
check if the triangles forming the quadrilateral of which the edge forms the diagonal has lost 
the Delaunay property. If so, the diagonal is instead made to join the other pair of opposite 
vertices in this quadrilateral, restoring this property in the region.

However, doing this might cause other triangles to lose this property, and so the other 
two edges of the original triangle not in the direction of the inserted point, are similarly 
checked. In this way, the area affected by the insertion of the vertex expands as a star­
shaped polygon from this region. Although in the worst case, this could lead to  flipping 
every edge in the triangulation, the expected number of flips, no matter how the vertices 
are distributed in the triangulation, is constant [21],

Inserting a constraint is done in several steps. A constraint often represents a single 
obstacle, and could be comprised of several line segments, for example. Each such segment is 
added as described below, and can correspond to multiple constrained edges in the resulting 
triangulation. The process for adding a segment of a constraint will be illustrated here using 
an example similar to  that in [28]. First, point location is performed to find both endpoints of 
the segment. These endpoints are added as vertices to the triangulation. Figure 3.20 shows 
the triangulation after this step; the solid horizontal line is the segment being inserted.

Next, the intersection points between the new segment and existing constrained edges are 
calculated and inserted. For each intersection point with a constrained edge, the constrained 
edge and the new segment are split at the intersection point into two edges or segments each.
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Figure 3.20: A segment being inserted into the triangulation

Figure 3.21: Intersection points between the new segment and constrained edges are inserted

This step is shown in Figure 3.21. After this, all unconstrained edges which cross the new 
constraint are calculated, and removed from the triangulation, as shown in Figure 3.22.

The final step is the insertion of the segments of this new constraint as constrained 
edges. Note that such a segment intersecting with another constraint on a vertex also splits 
the segment into smaller segments, but the other constraint does not change. If a segment 
of this constraint overlaps an existing edge in the triangulation, this constraint is simply 
added to  the edge. In this way, an unconstrained edge can become a constrained edge, or 
a constrained edge could represent multiple constraints. Finally, the non-triangular regions 
left by the previous step are triangulated, yielding the final result shown in Figure 3.23.

Removing a particular vertex from the triangulation is done by first removing all edges 
for which the given vertex is an endpoint, and then the vertex itself. This leaves a non- 
triangular area around where the vertex was removed, which must be triangulated. It is 
assumed there are no constrained edges for which this vertex is an endpoint, and that the 
vertex itself is not a constraint, otherwise, such a procedure would not be allowed.

Removal of a constraint is done by first locating the constrained edges which correspond 
to  this constraint. Once those are located, this constraint is removed from these edges. 
Each constrained edge for which this represents the only associated constraint, becomes 
unconstrained.

Finally, the endpoints of all edges which formerly comprised this constraint are checked 
for whether they form an endpoint for any constrained edges, or themselves represent a
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Figure 3.22: Unconstrained edges crossing the new segment are removed

Figure 3.23: Final triangulation after new segment has been inserted

constraint. The vertices that do not are removed from the triangulation using the procedure 
above. Moreover, if a vertex which formed the intersection point between the removed 
constraint and another constraint (as evidenced by exactly two constrained edges incident 
with this vertex, representing the same constraint and being colinear), this vertex and the 
incident constrained edges are removed from the triangulation and then a single segment is 
inserted to replace the two smaller segments that were removed.
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Chapter 4

Nonpoint Objects

In this section, we explore the implications of performing pathfinding for objects larger 
than the simple point object case. As described earlier, we consider objects to be radially 
symmetric so as to remove the orientation component of the configuration and are left only 
with position (in two dimensions).

There are a number of ways to approach this problem, the most common one being 
the Minkowski Sum operation. This consists of adding every element of the object’s shape 
to  every element of the obstacles in the environment. This results in the obstacles in 
the environment being “grown” so that the object can be treated as a point object and 
pathfinding done in this environment [36], then when the object follows this path in the 
original environment, it will not collide with the obstacles.

Figure 4.1 shows an environment and nonpoint object and Figure 4.2 shows that same 
environment with the object’s shape added to the obstacles via the Minkowski Sum oper­
ation. Figure 4.3 shows a path found for a point object in this environment, and finally, 
Figure 4.4 shows the path for the nonpoint object in the original environment.

There are, however, several disadvantages to the use of Minkowski Sum for pathfinding. 
The first is that there would have to be separate representations of the environment corre­
sponding to each size of object, all of which would require time to calculate and memory to 
store. Also, we wish to  perform pathfinding for objects of arbitrary size, and using this ap­
proach would either necessitate performing this calculation online—which may debilitating 
in a real-time setting—or using a precalculated environment representation for an object of

Figure 4.1: Nonpoint object in original environment
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Figure 4.2: Minkowski Sum of object on environment

11SI

Figure 4.3: Path for point object among “grown” obstacles

Figure 4.4: Same path for nonpoint object in original environment
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Figure 4.5: Part of a Constrained Triangulation

MMlil

Figure 4.6: Obstacles grown by Minkowski sum for a circular object, approximated by a 
regular polygon

different size (risking finding invalid paths if the object is larger than that for which the 
representation was constructed, and risking missing valid paths if the object is smaller).

Finally, because we are dealing with the situation involving radially symmetric objects, 
representation of an environment grown with a Minkowski Sum becomes overly complex. As 
discussed in Section 3.2, a grid representation of such circular detail would either be inaccu­
rate or require many cells, which increases the memory required to store the environment, 
and slows the pathfinding process.

Triangulations are negatively affected by this operation as well. Refer to Figure 4.5 for 
part of a triangulation of an environment. A circular object is approximated by a regular 
polygon and added via Minkowski Sum to the obstacles resulting in the environment shown 
in Figure 4.5. Again, there is a trade-off between accuracy and complexity in representation, 
as adding more sides to the regular polygon to better approximate the object results in more 
triangles in the resulting environment. The method of growing obstacles used in the work on 
which this thesis is based [27] is presented in [37]. For further details regarding Minkowski 
sums, such as how they are calculated and their properties, see [2 , 22].

For these reasons we seek to  avoid such an operation and instead wish to simply use 
the original representation of the environment in order to calculate both the portions of 
the environment that can be traversed by an object of arbitrary size, as well as a path for 
that object which avoids obstacles and travels through a sequence of these areas. Using
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triangulations, both of these can be exactly determined for circular objects.
We will begin with a description of a method used to calculate the maximum possible 

size an object can be and still pass through a particular triangle in Section 4.1. Then we will 
prove that this indeed provides the correct value in Section 4.2. Next, we discuss a technique 
for determining the shortest path adhering to a sequence of triangles found through which 
the desired object can fit. An existing algorithm for this problem using point objects is 
shown in Section 4.4, and the modified version for use with nonzero-radius circular objects 
is given in Section 4.5.

4.1 W idth  Calculation
As described earlier, we desire to find the diameter of the largest circular object that can 
move between two (unconstrained) edges of a triangle in a Constrained (Delaunay) Trian­
gulation, for example, between edges a and b in Figure 4.7 (Subsection 4.2.1 describes more 
formally what is meant by being able to move between two edges). Luckily this is equiv­
alent to  finding the closest obstacle to the vertex joining these two edges (vertex C  in the 
diagram) in the region extending between the edges as shown. An obstacle, in this respect, 
can be a vertex or a point on a constrained edge.

There are three cases possible within a triangle which can determine the closest obstacle 
in this region. The first such case is that either IC A B  or LCBA  is a right angle or obtuse 
(Subsection 4.1.1), the second arises when these angles are acute and edge c is constrained 
(Subsection 4.1.2), and finally the last possibility is when IC A B  and LCBA  are acute and 
edge c is unconstrained (Subsection 4.1.3).

In each case, the path for the object of maximum diameter is determined as an arc 
hugging vertex C. While the object need not always follow this path to traverse the triangle, 
it is true that an object could not successfully traverse some other path and not this one, 
as is proven in Theorem 4.2.11.

In these proofs, we assume circular objects, but this could be extended to  other shapes as 
well. The maximum allowable size of a circular object through a series of adjacent triangles 
could be used to determine the throughput of smaller objects, or the maximum allowable 
size of a rectangular object, for example.

The techniques used assume that at the very least, each vertex in a triangulation rep­
resents a constraint. That is, if one was representing an environment, one would only add 
a vertex to  the triangulation either because it was an endpoint for a constrained edge, or

c
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Figure 4.7: Part of a triangulation
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if it were a point obstacle. This is intuitive because adding unneeded vertices would only 
complicate the triangulation and slow down subsequent algorithms. If such vertices were 
added, however, these methods might incorrectly determine the maximum diameter of an 
object through a triangle in the case where a path for the true largest possible object would 
pass through such an unconstrained vertex.

A brief discussion on the complexity of this algorithm is given in Subsection 4.1.4, and 
the proofs that this technique is equivalent to finding the maximum radius of an object with 
a valid path through this triangle are given in Section 4.2.

4.1.1 Case 1: Angle CAB  or angle CBA is Right or Obtuse

C

B

Figure 4.8: Case 1: angle at vertex A  is obtuse

The first, and simplest case to consider is that which occurs when either IC A B  or IC B A  
is right or obtuse. Assume, without loss of generality, that IC A B  is right or obtuse. It 
follows that edge b is shorter than edge a. Thus, the maximum allowable diameter d of a 
circular object between edges a and b in this triangle is the length of edge b. See Figure 4.8 
for a visual explanation. This follows from Lemma 4.1.1 below.

Lem m a 4.1.1 The closest point on a line to another point is where a line passing through 
the point intersects the line at a right angle.

P

Figure 4.9: The closest distance of a line to a point

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



P ro o f In Figure 4.9, the point c is the point where a line passing through point p  intersects 
with line ab at a right angle. For any other point c' on the line ab, it will be some positive 
distance I away from c. Thus, if the distance from p to c is d, then the distance (dr) from p 
to  c' is \/d? +  I2 > d. Thus, c is the closest point to p on line ab, as desired. |

C

Figure 4.10: Triangle with one obtuse angle

Similarly, consider Figure 4.10. The length of segment b is -\/\CP\2 + \PA\2. For any 
point A' ^  A  along the segment between vertex A  and vertex B, the length of the segment 
between C  and A' would be ^ /\C P |2 +  (|Pj4| +  |A 4 ' | ) 2 > ^ \C P \2 + |P A |2 since \AA'\ > 0. 
Thus, vertex A  is the closest point on segment A B  to vertex C, and since there can be no 
obstacles in this triangle (any obstacles would have been incorporated in the triangulation), 
it follows that the closest obstacle is |6 | away from vertex C  and this is the maximum 
diameter of an object that can move between edges a and b in this triangle.

4.1.2 Case 2: Edge c is Constrained
In the case that both IC A B  and LCBA  are acute, the point on the line passing through the 
vertices A  and B  that is closest to vertex C  lies between A  and B  as shown in Subsection 
4.1.1 above. In the case that edge c is constrained, this point is an obstacle. This situation 
is shown in Figure 4.11.

C

c

Figure 4.11: Case 2: angles at vertices A  and B  are acute and edge c is constrained
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As described in Subsection 4.1.1, since there can be no obstacles within the triangle, 
the closest point on edge c to vertex C  (when edge c is constrained) represents the closest 
obstacle to vertex C  in the triangle. Assuming the distance between vertex C  and the point 
P  on edge c which makes the segment C P  perpendicular to c, is d, the diameter of the 
largest circular object that can traverse the triangle from edge a to edge b is d, as desired.

4.1.3 Case 3: Edge c is Unconstrained
In the case where edge c is not constrained and both IC A B  and LC BA  are acute, the 
situation gets slightly more complex, as the closest point on edge c to vertex C no longer 
represents an obstacle.

Vertices A  and B  are still obstacles, and thus the maximum object diameter that can 
traverse this triangle from edge a to edge b is bounded above by both |a| and |6 |. Figure 
4.12 shows a case where the shorter of edges a and b is the distance to  the closest obstacle. 
However, since there may still be obstacles on the opposite side of edge c from vertex C 
closer to  C  than either A  or B, we must consider these possibilities.

Figure 4.12: Vertex B  is the closest obstacle to vertex C

What must occur then is a search that is bounded by the closest obstacle found so 
far. Thus, this search begins by searching across edge c to the triangle opposite this edge, 
bounded above by min{\a\, |6 |} and continues as described below.

When the search enters a triangle via an edge, it checks the other two edges as follows. 
We will say each edge is the segment between two vertices U and V. First of all, an edge 
will only be considered if both angles LCVU  and LCUV  are acute, that is, if the closest 
point on the line passing through U and V  to vertex C  lies between these two points. If 
this criterion is not met, search along this sequence of edges ends.

Figure 4.13 shows how considering a segment that does not fit this requirement could 
incorrectly determine the closest obstacle to vertex C. Here, if edge b' were considered an 
obstacle, the distance from vertex C  to an obstacle would be incorrectly considered to be 
its distance from the dotted arc. However, there is no obstacle at this distance, since V does 
not extend past vertex A, and further it would not be in the area between edges a and b.
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Figure 4.13: Edge b' should not be considered because C'AC  is obtuse

C

Figure 4.14: Edge a is farther from vertex C  than A, so it is not considered

The actual closest obstacle to vertex C in this region is vertex A , and this distance is shown 
by the solid arc.

Next, we consider the distance from vertex C  to the closest point on segment UV. If this 
distance is greater than the current upper bound, search across this series of edges returns 
because further search will not yield a closer obstacle than the closest already found. This 
situation is depicted in Figure 4.14.

If this distance is less than the current upper bound and segment UV  is constrained, 
then the current upper bound is updated to reflect this new distance, and search returns 
from series of edges. A case where a constrained edge determines the closest obstacle to 
vertex C  is shown in Figure 4.15. Finally if the distance is less than the current upper bound 
and UV  is unconstrained, search continues across this edge into the adjacent triangle.

Pseudocode for the algorithm for determination of the width of some triangle T  when 
moving between two edges o and b is given in listings 1, 2, and 3. Next, we discuss the 
complexity of the algorithm.
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Figure 4.15: Edge b' becomes the closest obstacle to vertex C

A lgorithm  1 DistanceBetween(Vertex C, Edge e) : Distance
l A  , B  *— EndpointsOf(e)
2 if  A x =  Bx th e n
3 re tu rn  \AX -  Cx \
4 else
5 rise <— By — Av
6 run  <— Bx — A x
7 intercept Ay -  { j ^ ) A x
8 a *— rise
9 b «-----run

10 c <— run  X intercept
11 re tu rn  \°"c<°+*-Cy+°\

V a 2 + i>2
12 en d  if

A lgorithm  2 SearchWidth(Vertex C, Triangle T, Edge e, Distance d) : Distance
1 U ,V  <— EndpointsOf(e)
2 if  IsObtuse(C, U, V ) V IsObtuse(<7, V, U) th e n
3 re tu rn  d
4 en d  if
5 d! <— DistanceBetween(C, e)
6 if  d! > d th e n
7 re tu rn  d
8 else if  IsConstrained(e) th e n
9 re tu rn  d'

10 else
11 T ' <— TriangleOpposite(T, e)
12 e', e" <— OtherEdges(T', e)
13 d SearchWidth((7, T ,  e', d)
14 re tu rn  SearchWidth(C, T ', e", d)
15 en d  if
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A lgorithm  3 CalculateWidth(Triangle T,  Edge a, Edge b) : Distance
l: C <— VertexBetween(a, b)
2: c <— EdgeOpposite(C, T)
3: A  <— VertexOpposite(a, T)
4: B <— VertexOpposite(6, T)
5: d min{Length(a), Length(b)}
6: if  IsObtuse(C, A, B) V IsObtuse(C, B, A) th e n  
7: r e tu rn  d {Case: 1}
8: else if  IsConstrained(c) th e n  
9: r e tu rn  DistanceBetween(C, c) {Case: 2}

10: else
11: re tu rn  Search Width((7, T, c, d) {Case: 3}
12: en d  if

4.1.4 Complexity
Of course, we desire to know that this algorithm’s complexity will be reasonable if we wish 
to  use it in certain domains. One can note that in the worst case, determining the width of a 
single triangle could require searching on order of all the triangles in the triangulation. Such 
a search could not be any worse, because this would require searching triangles multiple times 
when determining the width for a single triangle, which is not possible given our algorithm.

Figure 4.16: Search for the width of a triangle overlaps on a triangle

Refer to Figure 4.16. Here we show the search to find the width of the triangle at the 
top of the figure, using arrows. This search goes into the triangle at the bottom right from 
two different directions. However, one can note that entering this triangle from the left as 
shown is impossible using the technique presented because the angle created by this segment 
and the vertex at the top of the figure, is obtuse. Thus, this triangle would not be searched 
from this direction.

This is true in general, as shown in Figure 4.17. Here we see that search for the closest 
obstacle to vertex C  could not enter triangle T  through both edges /  and d, because the 
exterior angles of a triangle are necessarily greater than 7r, meaning either LDEC  or IF E C  
(or both) must be obtuse, so they would not be considered. If both these angles were acute, 
then edge e would be closest to vertex C, and search would enter triangle T  through it.

While this shows the worst case for searching to determine the width of a single triangle, 
there are several reasons that in most cases, this value can be determined in much less time. 
First of all, both cases 1 and 2 require constant running time. Case 1 occurs quite frequently
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Figure 4.17: Proof that at most one exterior edge of a triangle can form two acute angles 
with a point outside that triangle

Vs.

Figure 4.18: Searching across all triangles to  find the width of triangle Ti

in triangulations, and when there are few or no point obstacles (triangulated vertices not 
representing endpoints of constrained edges) case 2 will occur even more often.

Also one can notice that unless LACB  is close to i t , case 3 cannot result in a very long 
search. In most cases, the bound of the search (mm{|a|, |6 |}) will not exceed the value at 
the start of the search (the distance of edge c from vertex C) by very much. For a search to 
traverse many triangles, particularly when this difference is small, the triangles across edge 
c would have to be very thin. This is uncommon to see in most triangulations and a very 
rare case in Delaunay Triangulations. Such a case is illustrated in Figure 4.18.

Although searching a triangle can conceivably expand search across two other edges 
resulting in an exponential search, we must remember that in the worst case, the search is 
still limited by the number of triangles in the triangulation and thus could not be worse 
than linear. Next one must note the conditions under which search could branch in such 
a way. These conditions are rare to find in a triangulation, and impossible in a Delaunay 
Triangulation, as proven later in Theorem 4.3.6.

As an example, observe Figure 4.19. In this case the algorithm for finding the width 
between edges a and b in triangle T  will result in a search across edge c and into triangle T ', 
and then across both edges o' and 6'. However, in a Constrained Delaunay Triangulation, 
edge c would have been replaced by the edge shown in grey, and thus this effect would not 
have occurred.
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Figure 4.19: Finding the width of triangle T  results in a branching search

One could also conceivably bound the search of all the triangles if the maximum object 
size is known a priori. If there are no objects with a diameter greater than a certain value, 
one could bound the searches of all the triangles by this distance. That way, search would 
not be performed on triangles that are wide enough to permit passage of all possible objects.

Finally, while a proof of the upper bound of this algorithm’s running time for all triangles 
in a triangulation would be quite involved, we can make a number of observations to see 
that it will not be unmanageable. Combining the above considerations affecting the length 
of the search to determine the width of a single triangle, we see that when determining the 
width for one triangle results in a search across several others, the properties of the other 
triangles searched will are often such that they will almost or always fall under case 1 or 2 
when their width is determined. For example, in Figure 4.18, finding the width of triangle Tj 
results in a search through triangles T2, T3, T4, and T5. However, the width of all the other 
triangles can be determined without any search at all. Thus, the cost of finding the widths 
of all these triangles is linear in the number of triangles. Because of this, the complexity of 
running this algorithm on the entire triangulation is likely linear in the number of triangles 
and not quadratic.

4.2 A rc Paths
In this section, we show that the distance of the closest obstacle to vertex C  between edges 
a and b is equivalent to the diameter of the largest circular object which can move between 
these edges. In Subsection 4.2.1, we define what it means for an object to perform such a 
motion, and go through some preliminary proofs that we will use in the following section.

In Subsection 4.2.2, we prove that whenever the closest obstacle between edges a and b 
is at distance d from vertex C then the a circular object of diameter d can move between 
these edges (Theorem 4.2.10) and that if there exists a circular object of a some diameter 
that can move between these edges, there will be no obstacles within this distance of vertex 
C  between edges a  and b, (Theorem 4 .2 .11). These combined prove the equivalence of 
the distance between vertex C and the closest obstacle between edges a and b and the 
diameter of the largest circular object that can move between these edges, thus that the 
width calculation presented in Section 4.1 correctly finds the diameter of the largest circular 
object that can move between these edges. Finally, Theorem 4.2.12 shows how to determine 
the motion for an object of given radius between these edges, which is shortest. This result 
will be used later on.
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4.2.1 Definitions
The motion for an object takes place over time, and at any time the object is in exactly 
one place in two-dimensional space. Therefore, we define an object’s motion to be a curve 
in mathematical terms. A curve is a function 7 , which maps a parameter indicating its 
progress to a point in two-dimensional space, in particular, 7  : [0 , 1] 1—> 9?2.

A path is a curve which can be followed by an object. Because an object will have a 
certain speed and is unable to jump between locations suddenly, we require that a path be 
continuous.

For the purposes of this section, we need only consider the path of an object as it travels 
through a single triangle at a time. First, we will add the conditions required of such a path 
moving through a triangle T, and in particular, between two edges a and b.

D efin ition  4.2.1 A curve 7  forms a p a th  from  edge a to  edge b if  it is a path, and 7 (0) 
is on edge a and 7 (1) is on edge b.

A path between edges a and b is either a path from edge a to edge b or from edge b to 
edge a.

Furthermore, we wish to constrain the path not to stray too far from the triangle through 
which the object wishes to pass. Hence we define a path which travels through a triangle T  
below.

D efinition  4.2.2 A curve 7  forms a p a th  th ro u g h  trian g le  T  for a  c ircu lar o b jec t 
o f rad iu s  r i f  it is a path, and Vx € [0,1], 7 (2;) is within distance r of some point in T.

Using this definition, if an object following a path between edges a and b in triangle T  
completely leaves this triangle, for example by crossing edge c, we consider it instead as 
separate paths going from edge a to edge c, continuing somehow through other triangles, 
and then returning to  triangle T  going from edge c to  edge b.

The reason it is not required for the path to  stay entirely within T  is because sometimes 
a path might exist where the object is always partially within T  but where the path itself 
might cross edge c. Suppose the triangle opposite edge c is T '. If we required the path to 
be entirely within T, such a path would require finding a path from a to c in T, from c to c 
in T 1, and then from c to b in T. This would complicate the problem unnecessarily and so 
such a path is only considered to  be going through triangle T.

In Section 4.3, we will prove the fact that not requiring the path itself to stay entirely 
within T  allows us to rule out paths which traverse any triangle more than once. This is 
a useful result both in searching for a valid path, and avoiding complications in the funnel 
algorithm described in Section 4.4. In addition, Section 4.5 illustrates how this does not 
affect the calculation of a valid path for a nonpoint object through a series of adjacent 
triangles whose widths are sufficient for the object.

An example of a path 7  such that 3x e  [0,1] where y(x) is not in T  but /Eta g [0,1] 
where 7 (2:) is more than distance r away from any point in T, and thus is a path through 
triangle T, is shown in Figure 4.20. An example of a path 7  such that Eta € [0,1] such that 
7 (x) is not within distance r  of some point in T, and thus is not a path through triangle T, 
is shown in Figure 4.21.

Another obvious requirement for a path is that it does not bring the object following it, 
into collision with an obstacle. Here we will define again what exactly comprise the obstacles 
in the environment for the purposes of further definitions.

D efin ition  4.2.3 Let O C 5ft2 be a set of obstacles in the environment. In  particular, 
Vo g O, o is either a vertex in the triangulation, or a point on some constrained edge.
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c

A

2 r

Figure 4.20: A path that is always within r  of T

C

A

> r

Figure 4.21: A path that is > r  away from T  at some points
u

With this defined, we can now describe exactly what corresponds to a collision, and the 
characteristics of a path which will not result in one for the object.

D efin ition  4.2.4 A curve 7  forms an u n o b s tru c ted  p a th  for a circular object of radius 
r if it is a path, and Vx € [0,1], /So € O such that dist('y(x), o) < r.

Furthermore, we can eliminate considerations of obstacles across the edges the path 
connects, in this case, edges a and b. For example, when the object is crossing the edge 
a—that is, for points on the path for which some segment of length r extending from it 
intersects edge a—we do not consider obstacles in the region opposite edge a from triangle 
T. Similarly, when the object crosses b, we do not consider obstacles in the region opposite 
edge b from T. Thus, here we provide a definition for a path which is not obstructed by 
obstacles that do not lie across those edges.

D efinition  4.2.5 A curve 7  forms an unobstructed path for a circular object of radius r 
betw een  edges a an d  b if  it is a path between edges a and b, and Vx € [0,1] and o € O 
such that dist{pf{x), o) < r, the segment between 7 (2;) and o crosses either edge a or edge b.

The reason for this requirement is because the ultimate goal of finding these paths 
through individual triangles is to  combine the paths through adjacent triangles together to
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Figure 4.22: Obstacle outside of triangle T  interfering with a path inside of it

C

2 r

Figure 4.23: An example of an arc path

form a single path through a triangulation. Thus, obstacles on the opposite side of a will be 
the considered when finding a path through the triangle which shares edge a, and similarly 
for b. An example of such an obstacle across edge b interfering with a path in triangle T  is 
given in Figure 4.22.

We now have sufficient conditions that we can formulate what is required for a path to 
be valid.

D efinition  4.2.6 A curve 7  forms a valid p a th  through triangle T  between edges a and b 
i f  it is an unobstructed path between edges a and b through triangle T . When the context is 
clear, we simply refer to such a path as a valid p a th .

Now, for the purpose of the proofs that follow, we will define a specific type of path 
called an arc path.

D efinition  4.2.7 A curve 7  is an arc p a th  for a circular object of radius r between edges 
a and b in a triangle T  if  it is a path between those edges in that triangle, and Vjc € 
[0,1], dist(pf(x), C) — r, where C is the vertex at which edges a and b meet.

An arc path is so called because it forms an arc between these edges a and b of radius r. 
Equivalently, we may refer to such a path as one which “hugs” vertex C . Figure 4.23 shows 
an example of such a path. Arc paths are used because by their very definition, they have
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c

Figure 4.24: Region R  for triangle T  when moving between edges a and b

only to be shown to be unobstructed to qualify as a valid path. For this final requirement 
to  be met for an object of radius r, the closest obstacle to vertex C  must be at distance 
> 2r from vertex C. We prove that this condition holds if and only if there exists a valid 
path in the sections that follow.

We wish to further narrow the possibilities for obstacles that can cause an arc path to 
become obstructed. Consider the region which exists between the rays extending from vertex 
C  toward A  and from C toward B. This forms what is called a cone in two-dimensional 
space, referred to here as region R. Figure 4.24 illustrates this region for a triangle.

Sometimes an obstacle outside of region R  can interfere with a path through T  between 
edges a and b. If, at some point along a path, the object is crossing the boundary of R  
outside either edge a or edge b, then those obstacles are not being considered by the paths 
through the triangles sharing those edges and thus must be considered by the path through
T-

However, such obstacles will not interfere with an arc path, because an object following 
an arc path will never cross the boundaries of the region R  other than at edges a and b, as 
we show here.

Lem m a 4.2.8 A circular object of radius r  following an arc path will not cross the boundary 
of R  other than through edges a and b.

P ro o f We will prove this by contradiction, by assuming we have a valid path which crosses 
this boundary and showing it is not an arc path.

Consider an arc path 7  for an object of radius r between edges a and b in a triangle T  
that is valid. Without loss of generality, assume 7  goes from edge a to edge b. Because 7  
is valid and thus unobstructed, Vx € [0,1], /Qo € O such that dist(/y(x), o) < r. And since 
7 (0) is on edge a and 7 (1) is on edge b, obstacles must be at least distance r from these 
points. Now, Vx € [0,1], dist('y(x), C) = r), so since vertices are considered obstacles, this 
means that dist(C ,A) > 2r A dist(C, B) > 2r.

Without loss of generality, we will simply consider the boundary of R  by edge b. The 
proof extends identically to the boundary by edge a. Assume, for some x € (0,1),7 (0;) is 
distance < r from the closest point to it w on the boundary of region R, that is, an object of 
radius r  on y(x) will overlap this boundary. Furthermore, dist(/y(x), A) > r, because vertex 
A  is an obstacle, and the segment joining 7(2:) and w does not intersect edge b.

Thus, since the segment from w to 7(2:) must be perpendicular to the boundary of R, then 
dist{7 (x),C) > dist(w ,C). Also we know that dist(w ,C) > dist(A ,C ), and dist{A ,C ) >
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t

Figure 4.25: An object crossing the boundary of region R  below edge b

2r. Thus, dist('y(x), C ) > 2r, which violates our definition that Vx € [0,1\, dist(~/(x), C) =  r 
for an arc path 7 . A diagram of this proof is found in Figure 4.25.

Thus, an arc path will not cross a boundary of region R  outside of edges a and b, as 
desired. |

C orollary 4 .2 .9  To verify that an arc path is unobstructed, we need only consider obstacles 
within region R.

4.2.2 Proofs
Using the definitions from Subsection 4.2.1 above, we will prove the equivalence of the closest 
obstacle in region R  of a triangle being at a distance of 2r from vertex C  and the existence 
of a valid path between edges a and b of the triangle T  for a circular object of radius r.

T heorem  4 .2 .10  I f  there is no obstacle within 2r of vertex C in region R, then there is a 
valid path through triangle T  from edge a to edge b for a circular object with radius r. In  
particular, there is such a path hugging vertex C .

P ro o f Consider an arc path 7 . By its very definition, an arc path is already guaranteed to 
be a path in triangle T  between edges a and b. It remains to prove that if JBo € O such 
that o is in R  and dist(o, C) < 2r, in which case the arc path is unobstructed and thus a 
valid path.

By the definition of an arc path, Vx e  [0,1], d ist(7 (2;), C) =  r. Thus, for this path to be 
obstructed, it must be that Bo € O  such that d i s t { o ,  7(2;)) <  r  for some x  € [0 , 1].

However, because of the triangle inequality, we know that fio  G O, x  € [0,1] such that 
dist(o ,C ) > 2r A dist(o, 'y(x)) < r A dist('y(x),C) = r. That is, an obstacle that is > 2r 
from vertex C  cannot be < r from any point that is at distance r from that same point. 
This is depicted in Figure 4.26 for clarity.

Thus, if there are no obstacles within distance 2r of vertex C  in region R , there are none 
within distance r of any point along the path from edge a to  b in triangle T  hugging vertex 
C. Therefore, 7  is unobstructed and qualifies as a valid path. |
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Figure 4.26: Using the triangle inequality to prove soundness

C

< 2 r

-1  \

Figure 4.27: Partitioning of region R  into 2 sub-regions

T heorem  4.2.11 I f  there exists a valid path 7  between edges a and b in triangle T  for an 
object of radius r then /3o £ O such that o is in R  and dist(o, C) < 2r.

P ro o f Assume Bo € O such that o is in R  and dist(o, C) < 2r. Consider the point p  where 
p  is in R  and dist(p, C ) < dist(o, C)Vo 6  O such that o is in R. That is, p  is the closest 
obstacle to vertex C in region R. Such a point must exist in region R  because by Lemma 
4.2.8, only obstacles in region R  can interfere with an arc path from edge a to  edge b through 
triangle T.

For the remainder of the proof, we will consider this point to be the only obstacle in 
region R. This is a relaxed constraint, and certainly, if no unobstructed path exists with 
this single point obstacle, no path unobstructed exists with any set of obstacles including 
p. We know that /Bo e  O such that o is in T, because an obstacle would be included in 
the triangulation as a vertex or constrained edge; all triangles are free of obstacles by the 
triangulation’s construction.

Now consider the line segment going from vertex C  to this point p. We know that the
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< r

< r

Figure 4.28: An object trying to pass between C and p

length of this line segment is < 2r. Similarly, consider a ray extending from p perpendicular 
to  and away from edge c of the triangle. One can see that these partition R  into two sub- 
regions. This partitioning can be observed in Figure 4.27. Thus, we can see that any valid 
path travelling between edges a and b in region R  must cross either the segment between C 
and p, or the ray extending from p, since edge a and edge b are in different sub-regions of 
R, and a path cannot leave R  without leaving T  and thus becoming invalid. We will cover 
both of these cases below.

We will now show that any path 7  between edges a and b is necessarily obstructed, or 
leaves triangle T, in both cases, becoming invalid. First, assume 7  crosses the segment 
between C and p  at some point u. That is, 7 (2;) =  u for some x  € [0,1], Since the segment 
between C  and p  has length < 2r, we know u must be at distance < r from either vertex 
C  or p (or both). Thus, if 7  crosses any point on this segment, it comes within distance r  
of some obstacle, and thus becomes obstructed. This can be seen in Figure 4.28 where the 
above object is interfering with vertex C  (its centre is distance < r from C) and the lower 
object with point p.

Similarly, if 7  crosses the ray extending from p  perpendicular to and away from edge c, 
it must cross at some point v on the ray. That is, 7 (2;) =  v for some x  S [0,1]. Furthermore, 
dist(v,p) > r, otherwise 7  would be obstructed and become an invalid path. Figure 4.29 
shows that since p is not in T, and the ray is perpendicular to  c—the closest edge of T  to 
p—the point that is distance r away from v that is closest to triangle T  is along that ray. 
However, since v is at least r away from p, which itself is outside of T, it follows that at 
point v, there is no point within distance r  which is inside triangle T. Thus, 7  is not a path 
through T, and not valid.

Finally we conclude that since there is nowhere that a path from edge a can cross the 
partition to edge b, or vice versa, and remain valid, no valid path is possible. Thus, if a 
valid path exists for moving a circular object of radius r  from edge a to  edge b in triangle 
T, there must be no obstacles within distance 2r of vertex C  in region R, as desired. |

Here we will prove that an arc path is the least distance valid path through a triangle. 
This result will become useful when we begin searching for paths in Constrained (Delaunay)
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> r

Figure 4.29: An object trying to pass below point p

Triangulations.

T heorem  4 .2 .12  The arc path 7  is the shortest valid path for a circular object with radius 
r between edges a and b through triangle T.

P ro o f We know that for any valid path 7  for a circular object with radius r between edges 
o and b through triangle T, Vx € [0, l \ ,d is t(7 (2:), C) > r, where C  is the vertex joining edge 
a and b, otherwise, 7  would be obstructed and thus invalid. Again, we assume all vertices 
in a triangulation are obstacles.

The path such that Vx € [0,1], dist{r){x)) C) =  r is indeed the arc path for a circular 
object with radius r, so it remains to prove this path is shorter than valid paths <p such that 
3x 6  [0,1], dist(jp{x),C) > r.

There are two cases to consider for this proof: one for paths p  where dist(tp(0), C) = 
r Adist(ip(l), C ) =  r, that is, it meets edges a and b at the same points as the arc path, and 
one for paths xf where dist(xf(0), C) >  rV  dist(xf(l),C) > r, that is, it meets these edges at 
different points.

We will consider the former possibility first. We know that dist(ip(0),C) = r and 
dist(<p(l), C) =  r and 3x € (0,1 ),dist((p(x),C) > r, that is, ip departs from the arc path 
at some point in between edges a and b. Let k =  p(x). Also, 3w 6  [0, x),dist(<p(w), C) = 
r, that is, <p departs from the arc path at some point. Let i =  <f(w). Also, 3y € 
(x, l],dist(<p{y),C) — r, that is, (p rejoins the arc path at some point. Let j  = (p(y). 
This configuration is shown in Figure 4.30.

Consider a path <p' that follows the arc path to point i, goes in a straight line to point 
k, and then to point j ,  and continues following the arc path through the triangle. Because 
the shortest distance between any two points is a straight line, we know that the length of 
ip' is no greater than that of ip. It remains to prove that the arc path between points i and 
j  is shorter than the path from i to k to j ,  since this is where ip' differs from the arc path.

Take first the triangle formed by vertex C, and points i and k as shown in Figure 4.31. 
Consider l iC k  to be 0. We know the arc in this triangle has length r6 so we must show 
dist(i, k ) > rO.
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Figure 4.30: An alternate path departing from the arc path in the middle

i

>r

c

Figure 4.31: One section of the alternate path

We know that dist{C,i) =  r and dist(C ,k) > r, so we must find dist(i,k). We also 
know that LCik is either a right angle or obtuse, because otherwise segment ik  would be 
closer than r to vertex C  at some points, making ip' obstructed and thus invalid. Now, as 
6 increases, dist(i, k) increases given we know dist(C ,i) and angle 6. Thus, we will assume 
LCik is a right angle, and the real length of segment ik  will be at least that which we find 
using this assumption.

This way, we can say that dist(i,k) > r ■ tan(9), so then we have r ■ tan{9) > rO =>• 
tan{9) > 6, which is true for — < 9 < which is all we require. Thus, segment ik  is
longer than the corresponding portion of the arc, and this applies identically to segment k j  
as well. We have shown, then, that the arc path is the shortest of valid paths ip such that 
dist(ip(0), C) = r  A dist((p( 1), C) = r, that is, all paths that pass through points at distance 
r away from vertex C  on edges a and b.

The proof concerning paths that do not meet both edges a and b at distance r from 
vertex C, follows similarly. Consider one side where the alternate path and the arc path
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Figure 4.32: Alternate path departing from the arc path on one side

do not meet an edge at the same place. Without loss of generality, assume this is edge a 
and that ip goes from edge a to edge b, that is, dist(ip(0),C) > r. We will also assume that 
the arc path and ip have at least one common point, that is, 3x 6  (0,1], dist(ip(x), C) = r. 
The extension of this proof to alternate paths that do not meet the arc path at all will be 
given afterward.

Let i be the closest such common point to  edge a, or in other words, i = ip(w) where 
dist(i,C ) = r,w  € (0,1], and Vx € (0,1] such that dist(ip(x),C) = r ,x  > w. Also, let 
k = ip{0). This is shown in Figure 4.32. Now, consider the path ip' consisting of a straight 
segment between i and k and then following the arc path to edge b. We know that the 
length of ip' will not exceed that of ip, because the straight line path between i and k cannot 
be longer than any other path between those points, and the arc path is no longer than 
any other path between i and edge b, as shown above. The proof that segment ik  is longer 
than the corresponding section of the arc path is identical to the proof above. This extends 
equivalently to edge b and paths going from edge b to edge a.

Now we will show that this extends to any path ip that does not share any common points 
with the arc path. Consider w € [0,1] such that dist(ip(w),C) < dist(ip(x), C )'ix  g [0,1], 
that is, ip{w) is the closest point to vertex C  on path ip. We know dist(ip(v>),C) > r, 
because if dist(ip(w),C) = r tp would have a common point with the arc path and the proof 
above would apply, and if dist(ip(w),C) < r, ip would be obstructed by vertex C  and thus 
not be valid.

From the proof above, the length of ip is greater than that of the arc path for a circular 
object with radius dist{ip{w), C). Since this in turn is longer than the arc path of radius r 
(dist(ip(iv),C) > r => dist(ip(w),C) ■ 6 > rO where 0 — IA C B ), we have that ip is longer 
than the arc path for a circular object with radius r.

Thus, we have shown that the arc path of radius r  between two edges of a triangle is the 
shortest valid path for a circular object of radius r between those edges of that triangle, as 
desired. |

4.3 T he D elaunay Property
The requirement that our triangulation be Delaunay not only ensures that “sliver” triangles 
are avoided as much as possible, providing triangular areas that better describe the environ­
ment, but also provides some results useful for searching the triangulation for a path and 
assuring that the algorithm for determining a triangle’s width is manageable.

Theorem 4.3.4 states that when searching for a path through a Delaunay Triangulation,
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those that pass through any one triangle multiple times need not be considered since shorter 
paths are preferred to longer ones. Theorem 4.3.6 says that in a CDT, the search to provide a 
triangle’s width will never cross both opposite edges of a triangle. Finally, we briefly discuss 
how that the widths through different parts of the triangulation are identical regardless of 
the placement of the unconstrained edges.

The ability to eliminate paths crossing a triangle multiple times is useful not only in 
decreasing possibilities during search, but also avoids complication in the funnel algorithm 
described in Section 4.4 and the alternate version described in Section 4.5. Determining the 
shortest path through a group of adjacent triangles in time linear in the number of those 
triangles, can be problematic if a triangle is included twice, effectively creating a loop in 
this area.

D efin ition  4.3.1 For an object of radius r and triangles t \ , t 2 , and t$ where t\ and t$ are 
adjacent to <2 (via unconstrained edges), and t \  ^  <3 , define validr ( t \ ,^21 3̂) i f  o-nd only if  
the width of triangle <2 when moving between the edges shared with triangles t\ and (3 , is 
> r, that is, the object has a valid path from triangle t \  through t i  to tz (and also in  the 
other direction).

D efinition  4.3.2 Now, pathr { t\ ,t 2 , t n) &  Vi, 1 < i < n  — 1, validr{ti,ti+\ , t i+2 ) ,
that is, an object or radius r has a valid path from triangle t\  through <2 and so on, in  
sequence, arriving at triangle t n .

D efinition  4.3.3 Let \pathr ( t \ , t 2 , . .. ,t„ _ i,tn)| be the length of the shortest path through 
the triangles t \ , t 2 ,

If two intermediate triangles were the same, say f, =  tj for some 1 < i < j  < n  then 
removing the triangles in between them from this sequence would necessarily shorten the 
path, that is:

\pathr{t\ , ..., t{—l , t{, f i-j-l, ..., tj' —1, t j , t j + \, ..., tn) | ^  | pathr ( t l , ..., t i—1 ,ti,tjJr 1, ..., tn) |

Obviously since we have a desire to find the shortest path possible, we would not consider a 
path which visits the same triangle multiple times so long as this still results in a valid path. 
However this is only possible if validr ( t i - i , t i , t j+i), and depending on the triangulation, 
this may not be true. Luckily, it is for CDTs.

T heorem  4.3.4 For a circular unit of radius r moving through a Constrained Delaunay 
Triangulation with triangles tf,,

validr (tj—j , t^, t̂ _|_j) /\ vahdr(tj \ , t  j , t j  -j-i) Atj — tj  — valtd(t% \ , tj, tj-i-i)

P ro o f  Figure 4.33 shows the case where an object could travel between two of the three 
pairs of edges of triangle T, but not the third pair. Here, if an object like that shown at 
edge a wants to reach edge b, it would have to pass through edge c, then edge a', somehow 
return through edges V and c, then finally move to edge b.

In a Delaunay Triangulation, the diagonal, edge c in this case, should instead be between 
vertices C  and C . We will use the property of a Delaunay Triangulation that there cannot 
be a point inside the circumcircle of any triangle [18], Since there are no constrained edges 
in this portion of the triangulation for such a situation, we can simply consider it a Delaunay 
Triangulation, and disregard the exceptions to  the above rule required for a Constrained 
Delaunay Triangulation.

We will show that if this portion of the triangulation is Delaunay, that is, if there is 
no vertex in the circumcircle of triangle T, then there will be a valid path between edges
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Figure 4.33: Objects of certain radii can move between edges a and c, and edges b and c, 
but not between edges a and b, of triangle T

c

Figure 4.34: Circumcircle around triangle T  and arc around vertex C

a and b for any object with a path between edges a and c, and edges b and c (an object 
with radius r < min{\a\, |6 |, |c|}). Equivalently we wish to  find that the arc around vertex 
C  with radius r  =  m in { |a|, |6|) is unobstructed in region R  between rays U S  and CA.

Refer to  Figure 4.34. Here we have an arbitrary triangle, and a circumcircle around it. 
Assume, without loss of generality, that we wish to travel between edges a and b, and that 
|«| < |&|. So then we have an arc centered at vertex C, extending to vertex B  (the arc has 
radius |o|). Since we know no vertices can be in the circumcircle, and we wish that there 
are no obstacles in the arc, we will show that the arc cannot extend past the circumcircle 
in the region R.

Obviously since the arc and the circumcircle intersect at vertex B  and what we show 
as vertex A which is the other point on the circumcircle at distance |a| from vertex C, 
any extension of the arc past the circumcircle in region R  (or as a relaxed requirement, the 
region between rays C'A and CA') would happen at the opposite side of the circumcircle as 
vertex C  (the bottom of Figure 4.34).

However, any extension of the arc past the circumcircle would require the radius of the 
arc to be twice that of the circumcircle, but the radius of the arc is known to be the length 
of edge a, so if this were true, vertices C  and B  could not both be on the circumcircle, which 
is a contradiction with the definition of the circumcircle. Thus, no vertex in a Delaunay 
Triangulation can cause an arc path to be invalid.
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Therefore in Figure 4.33, the diagonal would be between vertices C  and C' instead of 
A  and B, and thus the path that the object would have to take again would only traverse 
each triangle once. We now have that

val%d .̂{ti—j,tj,t i+ i)  f\ —l Aji t j+1) /V t % —— tj  —'y valid{ti_

as desired. |

C oro llary  4.3.5 Thus, for any object of radius r such that

pathr ( t \ , ...,t i—i, t{, ti+1 , ...,tj—i,t j , t j+ i , ..., t n)

and ti = tj for some 1 < i < j  < n, we can take the shorter pat hr (t\, ..., t n)
equivalently, and so we do not have to consider a path which traverses any triangle multiple 
times during search since it could just be replaced by a shorter path, as desired.

It is useful to  know when determining the width of a triangle by searching across uncon­
strained edges, that the search will not cross two unconstrained edges of the same triangle, 
since it is another indication that the search will not traverse an unwieldy number of trian­
gles. We prove that in a CDT, this situation is impossible.

T heorem  4.3.6 In a Constrained Delaunay Triangulation, determining the width of a tri­
angle will never result in a search across two unconstrained edges of the same triangle.

P ro o f  Figure 4.35 shows a case in which search across multiple edges of the same triangle 
is possible when determining the width between edges a and b.

If either edge a or b were constrained, one would not have to check if an object could 
pass between them, and if any other edge were constrained, the search could not reach the 
branching point since it would stop at the obstacle. So again we can use the properties of 
a regular Delaunay Triangulation to show that this situation cannot happen.

Again we use that there cannot be a vertex in the circumcircle of any triangle in a 
Delaunay Triangulation. For the width search to cross edge a', IC B C 1 would have to be 
acute, and similarly ICAC* must be acute for the search to cross edge b1. Without loss of 
generality, we will consider half of the quadrilateral C B C  A  and the circumcircle of triangle 
CBA, as shown in Figure 4.36.

Assume vertex C s position is fixed to the “top” of the circumcircle, we must show that 
when LCBA  is acute, then vertex A  cannot intersect the circumcircle on the same side

c

C’

Figure 4.35: Situation in which determining the width between edges a and b would result 
in a search across multiple edges
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c

Figure 4.36: Half of the quadrilateral and triangle’s circumcircle

of the circle as the bisector going through vertex C. This is because we know that since 
triangle C B A  is acute, the circumcenter must be inside the triangle [6].

Since this applies to both sides, it will prove that where these segments cross, forming 
the fourth vertex of the quadrilateral, must be inside the circumcircle, making the triangle 
illegal in a Delaunay Triangulation. Therefore in a Delaunay triangulation, the search to 
determine the width of a triangle cannot cross two unconstrained edges of the same triangle, 
as desired. |

With all the results requiring the triangulation be Delaunay, it poses the question as 
to  whether the triangle widths are sensitive to the placement of the unconstrained edges. 
Luckily this is not the case, which is useful due to the fact that there can be multiple 
Constrained Delaunay Triangulations for a set of points and constraints (if four points lie 
on the same circle).

To verify this, one can simply observe that the determination of each triangle’s width 
between two edges is the distance between one of its vertices (considered to be an obstacle), 
and the closest obstacle between those two edges. Obstacles, both vertices and edges, as we 
know are required to be in the triangulation unchanged.

So it only remains to see that the regions formed between the pairs of edges of all 
triangles cover the area of the triangulation, and that it suffices to measure the distances 
between vertices and other obstacles. The former is trivial since the triangulation is made 
of triangles and the region between each triangle’s edges at least covers that triangle. The 
latter follows from the fact that obstacles are vertices and line segments, and the minimum 
distance between two line segments is always equivalent to the distance between one of the 
endpoints (a vertex in the triangulation) and somewhere on the other segment.

4.4 Funnel A lgorithm
The object of pathfinding in a triangulation is to find a series of adjacent triangles inside the 
first of which is the start point and inside the last of which is the goal. As stated in Theorem 
4.3.4, whenever such a series of triangles contains any duplicates, the triangles between such 
matching pairs can be removed to shorten the path, providing the triangulation is Delaunay. 
Thus, we consider such a series of triangles to  never contain a triangle more than once.

Obviously, as described throughout this chapter, we wish that the object have a valid 
path between each of the edges of each triangle in this series. If the object has a valid path 
between the edges of each triangle in such an adjacent series, it follows that there exists
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Figure 4.37: A series of triangles, start and goal points, and the resulting channel

a valid path that traverses all of these triangles. The most obvious such path consists of 
the arc path within each triangle, with these paths through adjacent triangles connected by 
straight segments.

Obviously for a path to be valid, the object must not overlap any obstacles when centered 
on either the start or goal positions. We can usually assume that the start point is valid 
since the object should already be positioned in an unobstructed position, however if the 
start or goal point needs to be checked for validity, one can use a test similar to that for 
determining the closest obstacle to a vertex.

We have left to ensure that there are unobstructed paths between the start and goal 
point and the edge connecting the triangles containing them, to the rest of the series. Since 
we know the positions themselves are unobstructed, obviously moving to a less restrictive 
area would not result in further obstruction. And the most obstructed area in a triangle is 
that between a vertex and its closest obstacle.

Therefore if the object must pass between a vertex and its closest obstacle, this width 
must be at least the diameter of the object for this path to  be valid. If the object is already 
closer to the next triangle than this area, this test is unnecessary since the object is only 
moving to a less obstructed area than its starting point, which was already checked.

Now that we know such a path exists, we look at a technique for providing the shortest 
such path within this series [24]. We will define an interior edge to be unconstrained edges 
in the triangulation which the object will cross when traversing a path through this series 
of triangles. That is, it is one shared by two triangles adjacent in this series. Also, define 
an interior triangle to  be a triangle in the series not containing the start goal point. That 
is, all triangles between and not including the first and last triangles in the series.

A channel is the simple polygon inside which we wish to find a valid path for the object. 
The vertices of the channel consist of the start and goal points as vertices, along with the 
vertices of all the interior triangles in the series. The edges of this polygon are those of the 
interior triangles other than the interior edges. Figure 4.37 shows a start and goal point, a 
series of triangles, and the resulting channel.

We use this channel and the interior edges in order to find the shortest path between the 
start and goal points, within this channel. This can be done in time linear in the number 
of triangles in the series, using what is called the funnel algorithm [12, 38]. This technique 
works for point objects; we will discuss the extension to circular objects of nonzero radius 
in Section 4.5.

The funnel algorithm considers three structures: the path, the apex, and the funnel. 
The path is the series of line segments forming the portion of the shortest path known at
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Figure 4.38: The path, apex, and funnel during a run of the funnel algorithm

Figure 4.39: Wedges corresponding to the vertices in a funnel

the current point in the algorithm. The funnel consists of two series of line segments, one 
turning clockwise and one counterclockwise, which represent the area in which all shortest 
paths to the area not yet processed, must be. Finally, the apex is the point which joins the 
path and the funnel. Figure 4.38 shows these structures.

At the start of the algorithm the path is empty, the apex is set to the start point, and 
the funnel begins as the segments connecting the start point to the first interior edge. The 
funnel is stored in a deque structure. Each interior edge is processed in turn, with the vertex 
not already processed being added to the corresponding side of the funnel deque. Vertices 
are popped from that side of the funnel until the wedge in which the current vertex lies is 
discovered, at which point that vertex is added to the end of the funnel deque on that side. 
These wedges are illustrated in Figure 4.39.

If the apex is popped off the deque in this way, the next vertex to be considered becomes 
the new apex, and a segment connecting the old apex to the new one gets added to the 
path. Once the final interior edge of the channel is added to the apex, we add the goal point 
to  the funnel on either side, say the right. Once this is done, we combine the path with the 
right side of the funnel to  form the entire path between the start and the goal. This process 
yields the shortest path within the channel, as shown in [24], Pseudocode for the funnel 
algorithm is given in code listings 4 and 5.

Here we consider an example of adding the same vertex to each side of the deque. If the 
object would cross the topmost edge of the new triangle, the vertex would be added to  the
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Figure 4.40: Adding a vertex to the right side of the funnel

(p a r t  of) 

c h a n n e l

n e w  funnel

o ld  funne la p e x

p a th  t

s ta r t

Figure 4.41: The new funnel after a vertex is added on the right
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Figure 4.42: Adding a vertex to the left side of the funnel
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Figure 4.43: The new funnel and apex and path after a vertex is added on the left

right side as in Figure 4.40. Here all vertices to the right of the one in whose wedge the new 
vertex lies, are removed from the deque, and the funnel on that side changes to include the 
segment between those two vertices. This is shown in Figure 4.41.

If the object would cross the bottom edge of the new triangle, the vertex would be added 
to the left side of the deque, resulting in the situation in Figure 4.42. Here all the vertices 
on the left side of the deque are popped off, and then the apex is popped, moving the apex 
one vertex to the right and extending the path to  include the segment between the old apex 
and the new one. Then we reach the vertex whose wedge contains the new vertex, so we 
stop popping vertices and replace the left side of the funnel with the segment between the 
apex and the new vertex as in Figure 4.43.

A lgorith m  4 Funnel (Channel c, Point s, Point g) : Path  
1: p.Clear()
2: i f  NumEdges (c) <  1 th e n  
3: p.Add(s); p.Add(p)
4: r e tu r n  p
5: e n d  if
6: AddVertex(s, p)
7: f  *— FunnelDeque(s)
8: vi «— LeftEndpoint(co); A d d(/, vi, Left, p)
9: vr <— RightEndpoint(co); A d d(/, vr , Right, p)

10: fo r  i *— 1 to  NumEdges(c) do
11: v[ <— LeftEndpoint(cj); v'r <— Right Endpoint (c;)
12: i f  v[ =  vi th e n
13: vr <- v'r ; A d d ( /, vr , Right, p)
14: e lse
15: vi^— v'i, A dd(/, vi, Left, p)
16: e n d  if
17: e n d  fo r
18: A d d (/, g, Point, p)
19: r e tu r n  p
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A lg o rith m  5 Add(FunnelDeque / ,  Vertex v, Type t, Path p)
l: i f  t  — Left th e n  
2: loop
3: if  /L e f t  =  /R ight th e n
4: /.AddLeft(v); b re a k
5: else  if  /L e f t  =  f A p e x  th e n
6: 9 <- Angle(/Left, / Lef t + i )

7: 0  <- Ahgle(/Left, v)
8: e lse
9: 0 *- Angle(/Left+1, / Left)

10: </> <- Angle(/Left, v )
11: e n d  if
12: if  CounterclockwiseTo($, <ft) th e n
13: /.AddLeft(v); b re a k
14: e n d  if
15: if  /Left — /Apex th e n
16: 0   ̂ A l l g l e ( / a ]>ex^ /A p e x T y p e j /A p e x + 1 ;  P i g h t )
17: AddVertex(/ApeX) p)
18: /.PopApexLeft()
19: e n d  if
20: /.PopLeft()
21: e n d  loop
22: e lse  if  t  =  Right th e n
23: { sa m e  p roced u re, w ith  d irec tio n s reversed }
24: e lse  if  t  =  Point th e n  
25: i  0

26: w h ile  /aj'cx) i 7~ /R ight do
27: i < r - i  + I

28: AddVertex(/Apex+i, p)
29: e n d  w hile
30: e n d  i f
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4.5 M odified Funnel A lgorithm
Now that we have a way to obtain the shortest path between the start and goal points inside 
the channel for a point object, we desire to find such a path for a circular object of nonzero 
radius r. Fortunately this can be done by conceptually attaching circles of equal radius 
around each of the vertices in the channel (except the start and goal points) and performing 
the funnel algorithm on those.

Both versions of the algorithm can be visualized as a rubber band being pulled through 
the channel from start to goal. The original funnel algorithm snaps to  vertices in between, 
whereas this modified funnel algorithm bends around these circles. While the funnel algo­
rithm yields line segments between the start and goal points and vertices in between, the 
modified funnel algorithm results in arcs of radius r around these vertices, and line segments 
tangent to  them.

(part of) 
ch an n e l

funnelapex
p a th

sta rt

Figure 4.44: The modified funnel algorithm for an object of nonzero radius r

,* 'f u n n e l  
(left s ide only)

apexpath (part of) channel

Figure 4.45: Case requiring another adjustment in the modified funnel algorithm

Figure 4.44 shows the modified funnel algorithm being run on the same channel as before, 
but for an object of some nonzero radius r. There is another modification that must be 
made to the algorithm to deal with the fact that adding these circles around the vertices 
of the channel changes the wedges in a way that would not occur in the original funnel 
algorithm. This case is illustrated in Figure 4.45, where a vertex must be added to one side 
which interferes with the opposite side of the funnel already constructed.
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Figure 4.46: Unadjusted modified funnel algorithm run on the degenerate case

This does not occur in the original funnel algorithm because this would require the 
boundaries of the channel to cross, forming an invalid channel that would not be considered 
for such an algorithm. This situation is uncommon in Constrained Delaunay Triangulations, 
but is included here both for completeness and because the algorithm can then also be used 
in regular Constrained Triangulations. When looking at Figure 4.45, one might notice that 
part of the channel is too narrow for the object in question (the same size as the circles 
around the vertices). However, one must remember that the edges bordering the channel 
could be unconstrained, and part of the object could venture outside this area so long as 
part always remains inside.

If the modified funnel algorithm were to add the next vertex without the adjustment 
required to deal with this situation, the result would look similar to Figure 4.46, with the 
final path backtracking through the channel and probably intersecting an obstacle. Certainly 
this is not the desired behavior. In order to fit with our expectations of this algorithm, we 
would like the result of adding this vertex to look like Figure 4.47. The adjustment that 
must be made for this situation, then, is that when comparing the angle of the funnel moving 
to  the new vertex to the angles of the funnel adjoining a vertex opposite the apex being 
considered (equivalent comparing the new vertex to  the wedge of the other vertex in the 
original funnel algorithm), if the new vertex is not in this range but is closer to the apex 
than the other, the apex should be moved to the new vertex (adding the corresponding 
section to  the path). This adjusts the funnel appropriately to produce the result seen in 
Figure 4.47.

A path that follows such arcs requires that the object be capable of second-order, or 
curved, motion. Sometimes, this may not be the case and it may have to  approximate this 
motion. For example, the object may only be able to  turn in place and move in straight 
lines. In this instance, the curved part of the path would have to be made up of straight 
segments similar to the approximation of curved barriers in the initial triangulation.

If the object is navigated by use of waypoints, a similar approximation is necessary. If the 
object is capable of steered motion such that its turning radius is at most its own radius, the 
exact paths can be used, but if its turning radius is more than this, a form of “out-in-out” 
cornering—where the object must approach the turn from farther away, touch the vertex in 
the middle of the turn, and exit away from the vertex—may be required. Obviously objects 
with holonomic motion could follow these paths exactly.

While these paths will be valid for a circular object, this technique should also be useful 
for objects with other shapes. The simplest way to  extend this to other object shapes is 
to  find a path using the bounding circle of the object. These paths would be guaranteed
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Figure 4.47: The desired result after dealing with the degenerate case

valid, however may miss some paths. For example, a rectangular object could fit through 
some corridors that its bounding circle could not, however only considering the width of 
the rectangle would result in collisions when the object would have to turn. Therefore more 
information about the motion of the object would be required. While the scope of this thesis 
is limited to radially symmetric objects, it may still be possible to test traversability of the 
environment and find paths for objects of other shapes.

Code listings 6 and 7 contain pseudocode for adding a vertex conceptually encompassed 
by a circle of radius r  to a funnel deque, and the modified funnel algorithm described above, 
respectively.

A lg o r ith m  6 Funnel (Channel c, Radius r, Point s, Point g) : Path 
1: p.Clear()
2: i f  NumEdges(c) < 1 th e n  
3: p.Add(s); p.Add(g)
4: r e tu r n  p
5: e n d  if
6: /  <— FunnelDeque(s, r)
7: vi <— LeftEndpoint(co); A dd(/, wj, Left, p)
8: vr <— RightEndpoint(co); A dd(/, vr, Right, p)
9: fo r  i <— 1 to  NumEdges(c) do 

10: v[ LeftEndpoint(ci); v'r <— RightEndpoint(cj)
11: i f  v[ = vi th e n
12: vr <- v'r ; A dd(/, vr , Right, p)
13: e lse
14: Vi <— v'f, A dd(/, vt, Left, p)
15: e n d  if
16: e n d  fo r
17: A dd(/, g, Point, p)
18: r e tu r n  p
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A lg o r ith m  7 Add(FunnelDeque / ,  Vertex v, Type t, Path p)
1 i f  t  =  Left th e n
2 loop
3 If /Left =  /Right th e n
4 /.AddLeft(v); b re a k
5 else  if  /Left =  / Apex th e n
6 e <- Angle(/Left, /ApexType, /Left+i, Right); h  <- Distance(/Left, v)
7 else  if  /Left+i =  / Apex th e n
8 e «- Angle(/Left+1, /ApexType, /Left, Left); h  <- Distance(/Loft+i, w)
9 else

10 0 <- Angle(/Left+i, L e/t, / Left, Left); Z2 <- Distance(/Left+i, v)
11 e n d  if
12 h  *— Distance( /Left, fheft+l)',  «1 /Left
13 if  /Left — /Apex th e n
14 /  f Angle(/Left, /ApexType, tl, t)
15 else
16 <f> <- Angle(/Left, Left, v, t)
17 e n d  i f
18 if  CounterclockwiseTo(0 , / )  th e n
19 / . AddLeft (v) ; break
20 e n d  if
21 if  /Left = /Apex A Z2 < k  th e n
22 V; * Angle(/Apex, /ApexType, h’, t)
23 AddVertex(/Apex, /ApexType, A. p)
24 Add Vert ex (w, t, -0, p)
25 / . Add ApexLeft (i>, t)
26 else  if  / Left =  / Apex th e n
27 /  ' Angle(/Apex, /ApexType, /Apex-f 1, Right)
28 AddVertex(/Apex, /ApexType, - p)
29 AddVertex(/Apex+i, Right, t/>, p)
30 /.PopApexLeft()
31 e n d  if
32 /.PopLeft()
33 e n d  loop
34 else  i f  t  = Right th e n
35 {same procedure, with directions reversed}
36 e lse  i f  t  = Point th e n
37 t e  0
38 t /ApexType 5 2̂ * Right
39 w h ile  /Apex+i A /Right do
40 if  / a pex) , M =  /Right th e n
41 t 2 Point
42 e n d  if
43 * Angle(/Apex+i, t l ,  /Apex-fi+1, '̂2)
44 AddVertex(/Apex+i, *i, A  p)
45 AddVertex(/APex+i+1, <2. A  p)
46 ti <— Right
47 » i +  1
48 e n d  w hile
49 e n d  if
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Chapter 5

Triangulation Search

In this chapter, we will first review some basic properties of A* search in Section 5.1 and 
then discuss what implications it has on searching in a triangulation in Section 5.2. Then we 
will look at the advantages and disadvantages of a simple approach used in previous work 
in Section 5.3, followed by considerations required for finding optimal paths in Section 5.4, 
and finally we will discuss the search used in this work which incorporates these concerns 
in Section 5.5.

5.1 Introduction to  A* Search
Here we introduce some definitions used in search. We start with a state space S. For each 
state s 6 S', we have a set Succ(s) C S  such that Vs' € Succ(s), s ' can be reached by a 
single action a from s. These states are called the children of s. Additionally, there is a cost 
associated with this action c(s,a, s') > 0 .

We will also define a state s as the parent state of another state s' if and only if s' is a 
child of s. Also, an ancestor of a state s' is any state s such that s is either the parent state 
of s' or an ancestor to the parent state of s'.

The g-value of a search state, also referenced here as the distance travelled so far, is the 
cost associated with reaching the current state from the starting state via the states which 
preceded it. For pathfinding in a triangulation, it is the length of the path from the starting 
position, reaching some point on the triangle associated with the current search state. We 
see already some of the uncertainty inherent in searching a triangulation; it is not clear 
which point in the triangle to which this value should correspond. Here we assume it to 
be the closest point to the start on the edge by which search entered the current triangle. 
Implications of this are explored further in Section 5.2.

The h-value, or heuristic value of a state, also referenced here as the distance remaining, 
is an estimate of the distance between the current state and the goal state via the least cost 
path. We consider this to be the least distance between anywhere on the edge by which the 
current search state entered the triangle, and the goal position.

The /-value is calculated for a state s as /(s )  =  g{s) +  h(s). This is equivalent to the 
cost of the entire path between the start and the goal, given that the path between the start 
state and the current state is given by the states preceding the current state, and the path 
between the current state and the goal is optimal. It is an underestimate of the distance 
between the start and the goal positions along the current path.

A* is a widely-used search algorithm which works by using a priority queue which orders 
search states by /-value. First the start state is put on the queue, and then at each step the
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search state on the queue with the least /-value is removed from the queue (or expanded), 
and its children are generated by the successor function, and put on the queue.

Since the h -value is an estimate, its value will not be exact. However if this value has 
certain properties, one can make some claims about the behaviour of A* search when using 
them. First, it is important that the heuristic is admissible, meaning no state’s h-value ever 
overestimates the distance from that state to  the goal. That is, Vs € S, h(s) < h*(s), where 
h*(s) is the true shortest distance between state s and the goal. This guarantees that A* 
search is complete, and that the first time the goal is expanded, the path along which it was 
expanded, is optimal [23].

A heuristic may also be consistent. This is a version of the triangle inequality which says 
that for any state s € S  and its successor s' € Succ(s) C S, h(s) < h(s') + c(s,a ,s'). This 
means tha t by moving from one state to another, one cannot get closer to the goal by more 
than the cost of moving between those two states. A heuristic with this property is both 
intuitive, and guarantees that the corresponding A* search is optimal, and that whenever 
any state s £ S  is expanded for the first time, the path along which it was expanded, is an 
optimal path to this state. In addition, all heuristics which are consistent are also admissible
[23].

5.2 A* in a Triangulation
The main advantage to pathfinding in a grid world over a triangulation is the fact that in 
a grid world, as the pathfinding search is being done, the distance travelled to the point 
corresponding to  each search state is known exactly. This is because the object’s path is 
assumed to  travel between midpoints of adjacent cells, in straight lines. Since the cells are 
small relative to the size of the object, this path can be very accurate.

By contrast, when pathfinding in a triangulation, assuming that the object will travel 
along a simply-defined path, in straight lines between triangle midpoints for instance, is 
problematic for two reasons. First, in several cases, this path may intersect an obstacle or 
even cross one or more triangles other than those whose midpoints are being connected, even 
though they are adjacent. Figure 5.1 illustrates this for such a straight-line path between 
triangle midpoints.

Second, even when they do not produce invalid paths, usually such simple approximations 
can form poor estimates in path length as shown in Figure 5.2. This is because the triangles

Figure 5.1: A path between midpoints of two adjacent triangles crossing other triangles and 
being obstructed
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% -  -  -  0  Triangle midpoint based path estimate

Actual shortest path

Figure 5.2: A path between triangle midpoints poorly estimating the length of the shortest 
path through them

Figure 5.3: The path to a particular triangle depends on where the path continues

are often large in comparison to the size of the object, and because their placement is a 
result of the environment, generally forming a path between them in such an uninformed 
manner results in an estimate which does not reflect the actual path of the object.

As shown in Figure 5.3, even if during the search we take advantage of a complex 
technique such as the funnel algorithm (Section 4.4) or modified funnel algorithm (Section 
4.5), we cannot be sure of the exact distance travelled to any particular triangle without 
knowing where the search will continue. Obviously once we have enough knowledge of the 
final path to determine this value, it is of little use.

Therefore, we need to perform search in the face of this uncertainty. Next, in Section
5.3, we explore the advantages and disadvantages of methods which deal with this simply 
by assuming exact knowledge of the path length during search.

5.3 Na'ive Search
Despite the drawbacks discussed in Section 5.2, assuming during the search that the exact 
path length to the triangle associated with the current search state is known does have merit. 
Such an approach is taken in [27]. Here the path is estimated to be straight segments between 
the midpoints of each edge through which it travels. The midpoint of the (unconstrained) 
edge by which the search enters a triangle is considered to  be the point by which the
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# ■ ■ ■ ■ #  Path estimated by edge midpoints 

Figure 5.4: A case where the distance estimate results in a suboptimal channel being chosen

measurements are taken for the search state corresponding to  that triangle.
The 5-value for a search state is, as discussed above, the sum of the lengths of the seg­

ments between the midpoints of the edges crossed by that path so far. The h-value is calcu­
lated as the Euclidean distance between this point and the goal. In 2 dimensions, the Eu­
clidean distance d between two points p  and q is calculated as d — -\J{qx — px)‘2 +  (qy — py)2. 
d is also the length of a line segment with endpoints p  and q.

For pathfinding, the Euclidean distance is known to be both admissible and consistent 
[36]. Thus, A* search is guaranteed that the path by which the current search state reached 
its triangle is optimal whenever any triangle is expanded during search, assuming we know 
the exact g-values of each state. Therefore, each triangle is only expanded once.

Of course since the 5-values of each triangle are not known during the search, this isn’t 
necessarily true. Thus, the search will never expand a triangle twice since under normal 
conditions this could only result in suboptimal paths. Under these conditions, the search 
may neglect to expand a triangle by a search state whose actual path is optimal but whose 
estimated distance (here the length of the edge-midpoint path) was greater than that of 
another search state.

Therefore assuming that the 5-values for each search state are exactly known during 
the search can result in suboptimal paths overall. Such a situation is illustrated in Figure
5.4. Here, the edge-midpoint distance between the start and goal points going through the 
top of the environment is longer than that going through the bottom below the obstacle. 
Thus, the channel corresponding to the bottom of the environment is chosen and the funnel 
algorithm finds the shortest path traversing this channel. However, the globally shortest 
path goes through the upper portion of the environment, but was not explored due to  the 
search expanding any triangle at most once.

5.4 A ccum ulated and A pproxim ated Costs
The solution to the suboptimality problem of this approach is first not to eliminate expansion 
of a triangle during search whether or not a potentially better path to this triangle was found
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through another search state. Because we will not know exactly when we have found the 
best path to a triangle during search, we cannot eliminate any of these paths since it could 
potentially make up part of an optimal path.

Similarly, we are no longer guaranteed that the path by which the search first expands 
the goal is optimal. Therefore, finding an optimal path between the start and goal in 
a triangulation requires that the search continues after the goal is expanded, to consider 
shorter paths whose estimated distances may have been greater than those of some longer 
paths.

In this way we wish to search using the anytime algorithm paradigm, where an initial, 
possibly suboptimal solution is found, and search continues finding better and better paths 
until it converges on an optimal solution. Anytime algorithms are very flexible in that they 
often find an initial solution quite quickly, and will yield a solution if stopped any time 
between this point and when it completes the search, which is better the longer the search 
has been running.

Each time the goal is expanded, the exact length of the path by which is was found can 
be determined, in this case by a funnel algorithm. This path is retained if it is either the 
first path found, or if it has a lower cost (less distance) associated with it than the best path 
it had previously found. Search then continues in this way, finding progressively lower cost 
solutions, until an optimal path is found, or more often, when it determines that its best 
path is indeed optimal.

This approach is quite advantageous when working within the constraints of real-time, 
because for various reasons, a given search may have more or less resources assigned to  it, but 
should still provide a solution. Also, in many cases, such a search actually finds an optimal 
path long before it determines that the best path it has found is indeed optimal. Therefore, 
stopping an anytime algorithm before it finishes can still yield an optimal solution.

This raises another concern: how the search can determine when it has found an optimal 
solution. Basically we desire to know when no path corresponding to  the states the search 
has yet to expand could possibly yield a lower cost solution (shorter path) than the best 
already found. The cost of the best path found is known exactly, so the search must 
determine when the other search states correspond to longer paths.

The solution to this problem is to force the g-value to be a lower bound, or underestimate, 
of its true value, during the search. That is, Vs £ S,g(s) < g*(s), where g*(s) is the true 
distance between the start and state s via the path determined by that state. Then, we 
have that Vs € S,g(s) < g*(s) A h(s) < h*(s) => f(s )  < f*(s), where /*(s) is the shortest 
path between the start and goal going through the path dictated by the state s.

Now let s* € S' be the search state corresponding to an optimal path. That is, Vs € 
S', f*(s*) < /*(s). Also, let s' € Q be the state on the front of the search queue Q C S', or 
in other words Vs £ Q, f(s ')  < /(s ) . Now, if / ( s ')  > /*(s*), we have that Vs € Q, f*(s) > 
f ( s) > f ( s') > /*(s*), or equivalently that the actual cost of the best path through all 
states on the queue are at least as costly as that already found once the /-value of the state 
at the front of the queue exceeds the actual cost of the best path found.

This extends from the states on the queue to the entire state space since all children of 
the start state were put on the queue and all paths originating from the start state must 
pass through its children and so there are no possible alternative paths to be considered. 
This then gives us the criterion for stopping search with the knowledge that an optimal 
solution has been found.

Therefore for the search to converge on an optimal solution in spite of such inexact 
(/-values, we must consider multiple paths to the same triangle and continue search after 
the initial solution is found by way of the anytime algorithm described above. Also, to 
achieve an effective stopping condition for this search, these ^-values must be estimated as 
a lower bound of the true values. Next we discuss a search algorithm which incorporates
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these modifications to search for an optimal path in a triangulation.

5.5 Triangulation A* (TA*)
We develop a search algorithm Triangulation A*, or TA* for short, for pathfinding in a 
triangulation. It works by first finding in which triangle the start point is located by a 
technique further detailed in Section 8.1. A search state corresponding to  this triangle 
Sstart is put on the search queue with values g(sstart) — 0 and h(sstart) being the Euclidean 
distance between the start and goal points.

At each step of the search, the search state with the smallest /-value is taken off the 
queue and expanded. The successor function generates a child state corresponding to each 
triangle adjacent to the current triangle across an unconstrained edge. This edge is used in 
calculation of the g- and h-values for these new states. The h-value is the Euclidean distance 
between the goal point and the closest point to  it on this edge. This heuristic is known to 
be both admissible and consistent, and these properties are used in calculating the (/-value.

The accuracy of the (/-value has a considerable impact on the number of extraneous 
states searched, therefore it is important to estimate it as well as possible, while avoiding an 
overestimate. Therefore we calculate this estimate as the maximum of a number of known 
lower bounds, resulting in another lower bound. The lower bound estimates for a state s' 
with parent state s for an object of radius r, are described below:

• The first and simplest is the distance between the start point and the closest point 
to  it on the entry edge of the corresponding triangle. As with the h-value, this does 
not overestimate the true value, and it satisfies the triangle inequality in that g(s) < 
g(s') + c{s,a,s').

• The second is g(s) plus the distance between the triangles associated with s and s'. 
We assume that the (/-value of s is a lower bound, and so we wish to  add the shortest 
such distance to achieve another lower bound. Again, we take this measurement using 
the edges by which the triangles were first reached by search. Since the triangles are 
adjacent, this is the distance of moving through the triangle associated with s. In 
Theorem 4.2.12, we proved that the shortest distance between two edges in a triangle 
was an arc path around the vertex shared by these edges. Thus, if the entry edges of 
the triangles corresponding to s' and s form an angle 0, this estimate is calculated as 
g(s) + rO.

• Another lower bound value for g(s') is g(s) +  (h(s) — h(s')), or the parent state’s (/-value 
plus the difference between its h-value and that of the child state. This is an underes­
timate because the Euclidean distance metric used for the heuristic is consistent. To 
prove that with g(s') = g(s)+h(s)—h(s'), g(s') < g*(s'), we take that the parent state’s 
g-value is an underestimate, org(s) < g*(s) to get g(s') < g*(s)+ h(s)-h(s'), then that 
the Euclidean distances used for the heuristic is consistent, or h(s) < h(s') +  c(s, a, s') 
to  get g(s') < g*(s) + h(s') +  c(s,a, s') — h(s'), or g(s') < g*(s) +  c(s, a, s'), and since 
g* (s') =  g*(s) +  c(s,a ,s') by definition of the true (/-values, we have g(s') < g*(s'), as 
desired.

The maximum of these values often provides a fairly accurate (/-value for each state, 
without overestimating the true value.

As a side note, a child of a search state will not be generated for a particular adjacent 
triangle if a state corresponding to that triangle is already an ancestor of that state. This 
exclusion can be done because it will never eliminate an optimal path, only one that could 
become shorter by removing part of it, as stated in Theorem 4.3.4.
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This is important since the fact that we can consider multiple states corresponding to a 
triangle could otherwise lead to an infinite search space with the search continuing in cycles. 
This elimination reduces the search space and speeds up the search.

These modifications to the method presented in Section 5.3 provide an algorithm for 
finding optimal paths in a triangulation. They are fairly minor but allow the comparison 
between algorithms for finding an optimal path in a triangulation against those for finding 
one in a grid world, for example A*.

For this reason, TA* provides a base-line for comparison of triangulations to grid worlds 
as an environment representation. Our predictions in Chapter 3 are confirmed by the results 
in Chapter 9, where we see that TA* working on the base triangulation finds paths faster 
on average than PRA*, which works on an abstraction of a grid world based on the same 
environment.
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Chapter 6

Abstraction

While using triangulations as an environment representation provides advantages in pathfind­
ing over grid-world-based methods in speed (as seen in Chapter 9) and accuracy, they also 
afford possibilities for efficient abstraction. The fact that in a Constrained Triangulation, 
triangles always extend to touch obstacles in the environment, is useful in reducing an 
environment to  a simplified graph reflecting its topology. A process for achieving such a 
reduction is described in this chapter.

As introduced in Section 1.4, we desire to partition the environment into a set of useful 
structures, in this case: decision points, corridors, dead ends, and to a lesser extent, islands. 
We do this by classifying each triangle as a node whose defining characteristic is its level, 
which is a number between 0 and 3 inclusive, indicating the number of structures on the 
resulting graph to which this node is conceptually adjacent.

6.1 T ypes o f N odes
An environment represented by a Constrained Triangulation has a graph inherently associ­
ated with it, referred to here as the base-level graph. The vertices of this graph correspond to 
the triangles in the triangulation and the edges join vertices whose corresponding triangles 
are adjacent across an unconstrained edge. Such a graph reflects the topological structure 
of the environment.

Another graph which we call the most abstract graph will be created as a result of the 
abstraction process. To illustrate the structure of these abstract graphs and to introduce the 
conventions used in the diagrams in this chapter, see Figure 6.1. This figure has the triangles 
removed for clarity, these will be added to other diagrams with the established convention 
of solid lines indicating constrained edges and dotted lines indicating unconstrained edges.

Here one can see various nodes and their classifications. There are some patterns of which 
to  take note: level-0  nodes appear by themselves—these are equivalent to the “islands” 
mentioned earlier, level-1 nodes form trees and become the “dead ends” of the environment, 
level-2 nodes appear in chains, forming the “corridors” in the environment, and level-3 nodes 
appear where three such corridors meet, at a “decision point”.

For use with pathfinding, this most abstract graph will be considered the minimal rep­
resentation of these structures. On this graph, level-3 nodes form the vertices and chains 
of level-2 nodes the edges. In this way, pathfinding decisions must only be made at points 
in the environment we have determined are important and moving between them has been 
reduced to  a single step. Level-1 and level-0 nodes disappear as they are only become 
necessary to the pathfinding task when the start or goal resides in such nodes.
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O Level-0 Node

^  Level-1 Node

♦  Level-2 Node

#  Level-3 Node 

 Level-1 Tree

P.

Level-2 Ring 
or Corridor

Figure 6.1: An example of an abstract graph

Below, we will give more formal definitions and illustrative descriptions of each kind of 
node and its role in the environment, pathfinding, and the graph resulting from this process.

6.1.1 Level-0 Nodes
Triangles which have all three edges constrained are classified as level-0 nodes. These are 
equivalent to  the “islands” mentioned earlier. They do not connect to any larger graph 
structure. If either the start or goal position is within a triangle classified as this type of 
node, the only possibility for a valid path between them is if they both are in this same 
triangle.

See Figure 6.2 for an example of a triangle abstracted as a level-0 node. The shaded 
areas, which indicate obstructed areas, will not be classified here for clarity, although in 
practice these areas are implicit and would be treated the same as traversable space.

6.1.2 Level-1 Nodes
Level-1 nodes form conceptual “dead ends” . The base case for such a node is a triangle 
with two constrained edges. This is obviously such a dead end because there is only one 
triangle to which an object can move from it: the one across the single unconstrained edge. 
However, this only classifies the very corners of the environment.

Figure 6.2: A triangle classified as a level-0 node
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Figure 6.3: A dead-end area classified as level-1 nodes

Therefore we also define level-1 nodes as those which have two or more edges such that 
either the edge is constrained, or across that edge is a triangle classified as a level-1 node. 
In this way, the effects of the dead ends propagate to a series of level-1 nodes. Keep in 
mind that only two edges of a triangle classified as a level-1 node could be constrained, 
if all three were constrained, the triangle would be classified as a level-0 node. Graphs of 
adjacent level-1 nodes form trees, which can have at most one “root” , which is a level-2 
node adjacent to one level-1 node.

If the start or goal is in a triangle classified as this type of node, the goal can either be 
in another level-1 node in the same tree, or elsewhere. In the former case we can search 
for a path within this tree, and in the latter, we can move from the triangle containing the 
start point to the root of this tree and begin searching from there, since we know the goal 
is not in this tree.

In Figure 6.3, the leftmost and bottom-left triangles are immediate dead ends because 
they have two constrained edges. These are classified as level-1 nodes. Now the triangles 
adjacent to them have one constrained edge, and one level-1 node adjacent across an uncon­
strained edge, and so these become classified as level-1 nodes. This process continues until 
all the indicated triangles in the diagram are classified as level-1 nodes.

Figure 6.4 shows a traversable region without “floating” obstacles, which are completely 
inside and not touching the barrier which surrounds the region, and will hence be referred

Figure 6.4: An unrooted tree of level-1 nodes
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to  simply as obstacles. Every triangle in this kind of area will be classified as a level-1 node 
since the dead ends will propagate through the entire region.

6.1.3 Level-2 Nodes
Triangles classified as level-2 nodes have exactly one edge that is either constrained, or across 
which is a triangle classified as a level-1 node. Groups of adjacent triangles corresponding 
to level-2 nodes indicate “corridors” in the environment and form conceptual edges between 
vertices formed by level-3 “decision point” nodes, or alternately, can form “rings” without 
level-3 nodes. They can serve as roots for level-1 trees and contain information about the 
level-3 nodes (if any) at the endpoints on the corridor.

If the start and goal points are on level-2 nodes (or in trees rooted at level-2 nodes), 
we check if the nodes are on the same corridor. If so, one path can be formed along this 
corridor, and then further searching outside this corridor must be performed to see if it is 
the shortest. If they are not on the same edge, search begins on the abstract graph using 
the level-3 nodes connected to the start and goal.

I 'vX x.v.v.v.v.v

Figure 6.5: Corridors of triangles classified as level-2 nodes

Figure 6.5 shows a triangulated environment with the triangles classified as level-2 nodes 
indicated. Note that the blank triangles in the dead ends at the bottom left and right of the 
diagram would be classified as level-1 nodes. The other blank triangles towards the middle 
of the figure would be level-3 nodes.

Figure 6.6: A ring of triangles classified as level-2 nodes
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While level-2 nodes often form conceptual corridors between two areas of the environ­
ment, sometimes a series of adjacent level-2 nodes have no start or end, as is the case in 
Figure 6.6. This situation occurs when a traversable (or obstructed) area of the environ­
ment contains exactly one obstacle. In this case, level-2 nodes form a “ring” around it. 
Pathfinding in such a component is reduced to deciding which direction around the single 
obstacle the path should go.

6.1.4 Level-3 Nodes
Triangles classified as level-3 nodes have neither constrained edges, nor adjacent level-1 
nodes. Triangles with this important designation represent the “decision points” in the 
environment, and the vertices of the most abstract graph.

During pathfinding, if either the start or goal point is in a level-3 node or search reaches 
one as described above, regular search can be done simply between level-3 nodes on the 
most abstract graph.

The number of level-3 nodes in a connected component of a graph is linearly proportional 
to  the number of obstacles in that component, as we prove below in Theorem 6.1.1.

T heorem  6.1.1 There are 2n — 2 level-3 nodes in a component with n  obstacles.

P ro o f Consider the most abstract graph of which the level-3 nodes are the vertices and the 
level-2 corridors are the edges. The obstacles in the component are surrounded by level-2 
corridors, and thus form the faces of the most abstract graph, along with the additional face 
surrounding the entire graph. In other words, if n  is the number of obstacles, F  = n  +  1. 
Since we know that each level-3 node is incident with three level-2 corridors, and the number 
of edges is half the sum of degrees of all the vertices, we can calculate the number of edges 
in this component of the most abstract graph as

1 v  1 v  W
E = - Y f D eg reeW  = - j 2  3 =  —

t = 0  t = 0

Then, by Euler’s Formula,
V  -  E  + F  = 2

V - E = 2 - F
W

V - { — ) = 2 - F  

2V - W  = A - 2 F

V  = 2 F - A

V  =  2(n +  1) -  4

V  =  2n -  2

Therefore, the number of level-3 nodes in a component of the most abstract graph with n
obstacles is 2n — 2. |

Figure 6.7 shows which triangles in an environment are classified as level-3 nodes. Notice
that there are 4 for this component with 3 obstacles.
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Figure 6.7: Triangles classified as level-3 nodes

6.2 Different Graph Structures
Unlike the base-level graph, the most abstract graph only has vertices with 3 attached edges, 
hence being formed by level-3 nodes. This eliminates the dead ends formed by level-1 nodes 
and collapses entire chains of level-2 nodes by simply considering the level-3 nodes across 
these chains to be adjacent.

The main factor in the size of the search space—the number of vertices in the graph—are 
significantly reduced as shown in Theorem 6.1.1. Thus, the search is no longer complicated 
by the nature of the obstacles in the environment, such as shapes of the barriers or concavities 
therein, only their number.

However, this definition of a graph warrants some discussion, since some structures can 
result which are atypical in some domains. In this section, we briefly discuss these different 
structures and their impact on the resulting pathfinding search.

6.2.1 Level-0 Islands
Level-0 nodes form a component of the base-level graph consisting of a single vertex. Tech­
nically, they do not exist in the most abstract graph. Obviously if the start or goal of a 
pathfinding search occurs in a triangle classified as such a node, though, they will neverthe­
less have to  be dealt with. This is covered by one of the special cases of searching the most 
abstract graph, described in Section 7.1.

6.2.2 Level-1 Trees
If a traversable (or obstructed) component of the environment (also called a connected 
component) contains no obstacles, then the abstracted version of this component will contain 
only level-1 nodes in a tree, with no level-2 root. Such a situation is shown in Figure 6.4. 
While this does not provide as much information as having level-2 and level-3 nodes, we can 
note that in a tree, only one path between any two points exists, excluding those with cycles, 
which unnecessarily lengthen the path, as stated in Theorem 4.3.4. Therefore, if both the 
start and goal positions are within this tree, we can use a simple search to find any channel 
between the two, and it will contain the shortest path. Also one can note that because of 
the existence of a single acyclic path, the concern for searching any triangle multiple times 
is not an issue.
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6.2.3 Level-2 Rings
If a connected component contains exactly one obstacle, the abstracted graph will contain 
level-2 nodes forming an edge as a ring with no level-3 endpoints. The result on the most 
abstract graph is an edge with no start or end point, a case not seen in most graphs. In 
this instance, when finding a path between start and goal points in different level-2 nodes 
(or in level-1 trees rooted in different level-2 nodes), the pathfinding task is simplified to 
checking whether it is shorter to join the points by travelling clockwise or counterclockwise 
around the ring. Figure 6.6 depicts an environment where the traversable space has a single 
obstacle around which a level-2 ring forms.

6.2.4 Loops
On the most abstract graph, there can be edges going from a vertex to itself. Such a situation 
is caused by a single obstacle in one portion of the graph, for example on the right side of 
Figure 6.8. When searching between level-3 nodes on the most abstract graph, following 
such an edge would increase the resulting path length and is unnecessary (again, as stated 
in Theorem 4.3.4). However, it is important when the start or goal is on this type of edge, to 
consider paths going both directions to get to the level-3 node which forms both endpoints, 
to reach the most abstract graph and continue searching.

Figure 6.8: A corridor of level-2 nodes both starting and ending at the same level-3 node

6.2.5 Multiply-Connected Nodes
Another possibility is there being two (or even three) edges between the same two vertices. 
The case with three edges sharing the same endpoints is illustrated in Figure 6.9, while 
the case with two can be seen in Figure 6.8 with the two leftmost level-3 nodes. The 
consequences of this arrangement is that search might have to explore paths using both (or 
all three) edges as part of a channel because the actual path lengths cannot be known until 
the funnel algorithm is run on the complete channels. In the worst case, this could result 
in the number of channels to be considered being exponential in the number of obstacles, 
although a clever search algorithm should be able to prune most of these and still find the 
shortest.
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Figure 6.9: Three level-2 corridors sharing the same two level-3 endpoints

6.3 Inform ation Contained
Obviously pathfinding cannot be done very well on the most abstract graph if the only 
information stored is the level designation for each triangle in the triangulation. This section 
discusses the information stored for each triangle, and the role it plays in the pathfinding 
search described in Chapter 7.

6.3.1 Level
The level of the node to which a triangle is classified is the most fundamental characteristic 
of the triangle. It relates whether the triangle forms an island, resides in a dead end, makes 
up part of a corridor, or is a decision point. The level of the node determines the first steps 
of the search, further described in Chapter 7.

6.3.2 Connected Component
Each node contains an index for the connected component of the environment to which 
it belongs. This is used during search to check, in constant time, if a path can possibly 
exist between the start and goal points. Obviously if the start and goal reside in different 
traversable components of the environment, no path between them is possible.

Apart from this convenience, the connected component is necessary to determine whether 
the start and goal are in the same unrooted level-1 tree, since there is no root to compare, 
without having to do a complete search. Similar cases exist for level-2 rings and the level-3 
search in general.

6.3.3 Adjacent Structures
The purpose of the abstraction is for the search to be able to move out of dead ends without 
having to find its way out, get from anywhere in a corridor to the connected decision 
points without needing to take several steps, and skip over corridors between decision points 
without exploring them. For this to be possible, each node must store the nodes to  which 
it is conceptually adjacent.

For nodes in rooted level-1 trees, this is the level-2 node forming the root of the tree, for 
those in a level-2 corridor, they are the level-3 nodes at both ends of the corridor, and for 
level-3 decision point nodes, they are the 3 decision points at the other ends of each level-2
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corridor to which it forms one endpoint. Level-0 islands, nodes forming unrooted level-1 
trees, and those in level-2 rings do not have any adjacent structures.

Each node stores 3 adjacent structures corresponding to the edges of the triangle. If 
the path to an adjacent structure is formed by crossing that edge, the value for that edge 
is set to  that structure. This is used in retrieving the triangles to form the channels for 
calculating the actual length of each path found with the search algorithm.

Because of the possible graph structure discussed in Subsection 6.2.5, two (or even three) 
of the adjacent structures for a level-3 node could be the same decision point. Also, because 
of the structure discussed in Subsection 6.2.4, one structure adjacent to a level-3 node could 
be itself, or both adjacent to a level-2 node could be the same decision point.

6.3.4 Choke Points
On the base-level graph, the search can check for each triangle it traverses, if that triangle’s 
width allows for the object’s size to pass through. However, while searching the most 
abstract graph, such information would not be available while still passing over triangles 
when moving out of dead ends, corridors, and between decision points in a single step.

Therefore, what is needed is to record, for each structure adjacent to a node, the least 
width between the triangle associated with this node, and those with the adjacent nodes. 
This way, before deciding to move to that next structure, the search can know if that entire 
distance can be traversed by an object of given size. This allows the search to find valid 
paths for any size of object while still avoiding dealing with individual triangles.

Similarly to  adjacent structures, values are stored for nodes in rooted level-1 trees that 
indicate the diameter of the largest object that can reach the root of the tree. For nodes 
in a level-2 corridor, these are the size of the largest object that can reach the respective 
level-3 endpoints, and for level-3 nodes, they are the diameter upper bounds for reaching the 
decision points that lie at opposite ends of the 3 corridors of which this node is an endpoint. 
Again, level-0 islands, unrooted level-1 trees, and level-2 rings need no such values.

6.3.5 Triangle Widths
For convenience and to  avoid having to calculate them multiple times, each node also stores 
the widths of its associated triangle as decribed in Section 4.1. One width is stored for each 
of the three pairs of edges, and corresponds to  the diameter of the largest object which can 
pass between these two edges.

This is calculated and stored even if one (or both) of these edges is constrained, because 
even though and object cannot pass between these two edges, it may start or end on this 
triangle, having to pass through its narrowest point (as described in Section 4.4), in which 
case this value is needed.

6.3.6 Lower Bound Distances
As described in Chapter 5, search requires an estimate of the distance travelled between the 
start point and the current triangle being expanded, and in our case we want this to  be a 
lower bound. For the search of the base-level graph, we used the maximum of a number of 
lower bounds. Some were based on global information such as the position of the current 
triangle with relation to  the start and goal points. However, we also measured the shortest 
distance to  get through each triangle.

Similarly to the choke points, we want access to this value for all the triangles in be­
tween pairs of adjacent structures, however calculating this information from the individual 
triangles themselves would eliminate the benefit of moving directly to the next adjacent
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structure. Therefore we similarly measure the distance between the current triangle and 
those to  which it is adjacent during the abstraction process, and store them with the nodes.

As with the base-level graph, this is a measurement of the interior angle of all the 
triangles between which the distance is to be measured. The lower bound distance given 
by this value, then, is calculated as this total angle multiplied by the radius of the object 
currently being considered.

6.4 A bstraction  A lgorithm
In this section, we present an algorithm which can convert a Constrained Triangulation into 
the most abstract graph while providing the information necessary to perform efficient and 
accurate pathfinding at that level of abstraction. Furthermore, this algorithm is linear in the 
number of triangles in the triangulation, which is quite reasonable, especially when coupled 
with how many fewer triangles there are in a triangulated environment compared to cells in 
a reasonably-accurate grid. Below, we will walk through the application of this algorithm 
in general terms, applied to  an example environment. Pseudocode for the implementation 
of this algorithm is given after, in code listings 9, 8, 10, 11, and 12.

Consider the environment in Figure 6.10. There are four traversable components—three 
on the left consisting of a triangle which will be classified as a Level-0 node, one with no 
obstacles which will result in an unrooted level-1 tree, and one with a single obstacle which 
forms a level-2 ring—and one taking up the majority of space and more closely resembling 
a typical component of an environment.

In the first step of the algorithm, we identify the level-0 nodes as the triangles with 
all three edges being constrained. In the diagram, this is the traversable component at 
the bottom left, but would also be the triangular obstacles in the component on the right, 
however for now we are ignoring these. The component attribute of these triangles are all 
assigned different values.

Here we also identify the triangles with two constrained edges. These are the most 
obvious kind of level-1 dead ends. For each of these that are identified, we put the triangle 
across the unconstrained edge on a queue, since these might now be classified as level-1 
nodes.

All other triangles are put on another queue for processing as possible level-2 and level-3 
nodes after the level-1 nodes are identified. Figure 6.11 shows the environment after this 
step. Triangles marked with a “q” are those that are on the first queue awaiting evaluation

Figure 6.10: An example environment for the abstraction algorithm
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Figure 6.11: The environment after the first step of the algorithm

as possible level-1 nodes.
Then the triangles on the first queue are examined to determine if each is now a level-1 

node. If the triangle being checked has two edges such that either the edge is constrained, 
or across that edge is a level-1 node, then this triangle is a level-1 node and the triangle 
across from the edge other than the two above is put on the queue for processing. In this 
way, the effect of the immediate dead ends with two constrained edges, propagates outward, 
filling the dead end with level-1 nodes as seen in Figure 6.12.

If a triangle being checked has three edges being either constrained or having a level-1 
node adjacent, then the whole component is an unrooted level-1 tree. See the traversable 
component to the right of the level-0 node in Figure 6.12 for an illustration. This component 
should then be “collapsed”, which mainly involves setting the component attribute of all the 
triangles therein to a unique value, to indicate it is not connected to any other traversable 
regions.

At this point the first queue is empty and we turn our attention to the second, which we 
filled with those triangles which had fewer than two constrained edges. These are candidates 
for level-2 and level-3 nodes. We examine each triangle from this queue which has not yet 
been classified as a type of node, and determine which are level-3 nodes. With all level-1 
nodes identified, the level-3 nodes are those that have neither constrained edges nor adjacent 
level-1 nodes.

Figure 6.12: The environment after the second step of the algorithm

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



m

Figure 6.13: The environment after the third step of the algorithm

When a level-3 node is identified, it is put on a stack for processing. Until this stack is 
empty, we process the level-3 node on top of it by following each of the three corridors for 
which the current triangle is an endpoint. Until this process reaches another triangle which 
qualifies as a level-3 node, those in between are classified as level-2 nodes.

The distance along this corridor is accumulated as it is followed, and the choke point 
is maintained as the narrowest triangle width in the direction of the original level-3 node. 
These values for the level-2 nodes along the way, and their adjacent structure as the original 
level-3 node, are set in the appropriate direction. Additionally, all triangles are marked with 
the identifier for the current component.

Any level-2 nodes which have a level-1 node adjacent (across an unconstrained edge), 
have this level-1 tree “collapsed” into the corridor. This means performing a stack-based 
traversal of the tree, setting the component attribute of each triangle to that of the corridor, 
the choke point to the narrowest point between the current triangle and the root, and the 
angles to  the sum of the interior angles of all the triangles between this one and the root.

Once the next level-3 node is reached along each corridor, it is put on the stack for 
processing next. In this way, each corridor gets traversed once in each direction, setting 
the values in the directions of the level-3 nodes at each end. Once the stack is empty, the 
entire component has been traversed, and a new component identifier can be selected. The 
processing of the queue then continues, finding and previously unclassified level-3 nodes. 
Figure 6.13 shows the environment after this technique has been performed on one of the 
level-3 nodes in the main traversable component.

When this process has gone through all the triangles in the queue, all components with 
level-3 nodes have been identified. Together with identifying level-0 islands and unrooted 
level-1 trees, this leaves only one kind of component yet to be processed: level-2 rings.

The queue is processed once more, this time removing triangles as they are visited. Any 
remaining unclassified triangles must be part of a level-2 ring. Each time one of these is 
found, a new component identifier is selected and assigned to all triangles in the ring as they 
are visited one by one. Other information is not necessary as distances and choke points 
become irrelevant without end points. However, if there are level-1 nodes adjacent to  any 
triangles in a ring, their respective trees are collapsed into the root node on the ring as 
would be done on a corridor.

After this final process has completed, the result will look like in Figure 6.14. One can see 
the island, ring, and tree identified on the left side while in the main component, dead ends, 
corridors, and decision points have been correctly classified. More detailed pseudocode for 
this algorithm is presented below, with AbstractLevel2 in listing 12 being the main algorithm
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Figure 6.14: The environment after the fourth step of the algorithm

which one would run on a triangulation, which uses the others. Here subscripts refer to the 
attributes of a particular variable and superscripts are used as part of the variables’ names, 
for readability. Chapter 7 examines how the resulting structure of this most abstract graph 
is exploited to create a search that is faster and more efficient than one on the base-level 
graph.

A lgorith m  8 CollapseUnrootedTree(Triangle t, Component c)
1 Stack s
2 s. Push (t)
3 w h ile  -is.Empty( )  do
4 Triangle t “ rrent <- s.Pop()
5 j c u r r e n t  ,__ «

c o m p o n e n t
6 for i  — 1 to 3 do
7 Edge e *— GetEdge(fc“" ent, i )

8 tT d j Z e n U  NULL
9 ^ c o n s tr a in e d  tllGH

10 j.c u r r e n t _̂_ q
angles

11 j .c u r r e n t ,__ n
choker  U

12 else
13 j.cu r r e n t  ,_

angles
14 j .c u r r e n t ,_

ch o ke i 0 0
15 Triangle t next < -  GetlViangleAcross(fcurrent, e)
16 i f  ^c o m p o n e n t =  NULL th en
17 s.Push(tne0!t)
18 en d  if
19 end if
20 end for
21 en d  w hile
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A lgorithm  9 CollapseRootedTree(Triangle r, Triangle t )
1
2
3
4
5
6
7
8 
9

10
11

12

13
14
15
16
17
18
19
20 
21 

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

C 4 T  c o m p o n en t
Stack s 
s.Push(t)
Stack a 
a.Push(O)
w h ile  -i.s.Empty() do

Triangle t currKnt *- s.Pop()
f c u r r e n t  ,  r

c o m p o n e n t
for i  =  1 to 3 do

Edge e <— GetEdge(tc“" ent, i)
Triangle t last <— TriangleAcross(lcurrent, e) 
i f  Component =  NULL th en

f c u r r e n t  ^ ~  
a d ja c e n t i

-  a.PopQ 
i f  tiast -  r  th en  

tThoktf -  Length(e) 
else

for j  — 1 to 3 do 
i f  t ^ c e n u  *  NULL th en  

Edge eback <— GetEdge(iiast, j)  
tchokV?1 Minimum(tl̂ * kej, WidthBetween(e, eback)
break  

end  if  
end for 

end  if
Edge eright <- GetEdge(fcnrrent, (i +  1)%3) 
s.Push(TriangleAcross(tctir'rent, ertght)) 
a.Push(AngleBetween(e, ena ))
Edge e‘e-U <- GetEdge(t°“rrent, (i +  2)%3) 
s .Push(TriangleAcross(tcnrr<int, eleft))
a.Push(AngleBetween(e, e,e-U)) 

else
t^ A  -  NULL
i f  ® co n s tra in ed  t h e n

■ fcurrent ,  A
choke*

^ .c u rre n t . a
a n g le i

else
j c u r r e n t  ,  /s-
z choke*  0 0

tZ 7 i l f  -
end  if  

en d  if  
en d  for 

en d  w h ile
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A lgorithm  10 AbstractLevelOandl (Triangulation T,  Component c) : Queue
1 Queue q, r
2 for a ll Triangles t  € T  do
3 f(e-uel * NULL
4 ^c o m p o n e n t * NULL
5 CalculateWidths(f)
6 n  <— NumConstrainedEdges(f)
7 if n  =  3 th e n
8

01"31■«r

9 f c o m p o n e n t  * 6

10 C <— C +  1

11 for i —  1 to 3 do
12 ta n g le i  * 0 , tc h o k e i  * 0 , ta d ja c e n ti.  * NULL
13 end  for
14 else if n  =  2 th e n
15 fleuel * 1
16 for i = 1 to 3 do
17 Edge e *— GetEdge(t, i)
18 if '^'COTistr a i l ) ’:d  th e n
19 q.Enqueue(TriangleAcross(t , e))
20 b reak
21 end  if
22 end  for
23 else
24 r. Enqueue (f)
25 end  if
26 e n d  for
27 w hile -ig.EmptyQ do
28 Triangle t  <— q.DequeueQ
29 if  tuvei 7̂  NULL th e n
30 n  <— NumConstrainedEdges(t)
31 m -f— NumAdjacentLevel(t, 1)
32 if n  + m  > 2 th e n
33 t l e v e l  1

34 for i  = 1 to  3 do
35 Edge e *— GetEdge(t, i)
36 Triangle t next <— TriangleAcross(t, e)
37 if ^ c o n s t r a i n e d  A j = NULL th en
38 9 .Enqueue(tnext)
39 end  if
40 end  for
41 end  if
42 if n + m  — 3 th e n
43 CollapseUnrootedTree(t, c)
44 c <— c +  1
45 end  if
46 en d  if
47 en d  w hile
48 re tu rn  r
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A lg o rith m  11 AbstractLevel3(Triangle t, Component c)
1
2
3
4
5
6
7
8 
9

10
11

12
13
14
15
16
17
18
19
20 
21 

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Queue q 
g.Enqueue(t) 
w hile -Mj.EmptyQ do 

Triangle t base ■*— g.Dequeue()
./.base ,  o
Vlev e l  "  °
fb a s e   ̂  c

c o m p o n e n t
fo r i = 1 to 3 do

Edge e <— GetEdge(Case, i) 
w <— Length(e)
6 *—0
Triangle t current <— GetTriangleAcross(t6ase, e)
Triangle t last <- t base
loop

Triangle t next <— NULL 
n  *— NumConstrainedEdges(ic“rrent) 
m  <— NumAdjacentLevel(tcrlrrent, 1) 
if  n  +  m  = 0 th e n

if t fe v ir 1 = NULL th e n  
q.Enqueue(tcurrent) 

end  if
jb a s e   ̂  . . .  j.base  ̂  a .  jb a s e   ̂ j .cu r re n t
^ch o ke i  i a n g le i u  i 1a d ja c e n ti
b reak  

else if n  +  m  = 1 th e n  
if =  NULL th e n

4c u r r e n t  ,  o
l le ve l  z

end  if
Edge enext <- NULL 
Edge elast <- NULL 
for j  = 1 to 3 do

e <- GetEdge(iCTlrrent, j)
Triangle t lemp <- GetTriangleAcross(fCTlrrent, e) 
if  t temp = t last th e n

4 c u r r e n t  ,  ,. j .c u r r e n t    n . ^ c u r r e n t  , j .6 a se
ch o ke  j  i a n g le  j  i a d ja c e n t j

e la s t  e

e l s ©  i f  “ '̂ c o n s tr a in e d  A  ^ l&vel 7^ ^
^ n e x t   ̂ ^ t e m p

e n e x t  e

else if  ~'f*c.oiistrrii ned A — 1 th en  
CollapseRootedTree(fc“rrent, tnexi) 

end  if 
end  for
w «— Minimum(w, WidthBetween(elasi, enerA))
0 *- 0+ AngleBetween(eiast, enext) 

end  if
^ c u r r e n t   ̂ j .n e x t

en d  loop 
en d  for 

en d  w hile
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A lgorithm  12 AbstractLevel2(Triangulation T)
1
2
3
4
5
6
7
8 
9

10
11
12
13
14
15
16
17
18
19
20 
21 

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

C 1
Queue q «— AbstractLevelOandl(T, c) 
for a ll Triangles t  £ q do  

n  <— NumConstrainedEdges(t) 
m  *— NumAdjacentLevel(f, 1) 
i f  n  + m =  0 A tievei =  NULL th en  

AbstractLevel3(£, c) 
c <— c +  1 

end  if  
en d  for
w h ile  - 15.Empty() do 

Triangle t  *— q.DequeueQ 
i f  ti&vei = NULL th en  

Triangle t currRnt * - 1 
w h ile  tcurrent ±  NULL do

4.c u r r e n t  ,  9
l le v e l L
Triangle t next <- NULL 
for i =  1 to  3 do

Edge e *— GetEdge(icurrent, i)
Triangle t temp GetTriangleAcross(u, e)
if  ^ c o n s tr a in e d  V =  1 th en

if  “'ec o n s tr a in e d  th en
CollapseRootedT'ree(tc“” 'ent, t iemp) 

en d  if
j.c u r r e n t  ,  n

a n g la
./■current , n

choke/,
^■current NULL

cloq a c e n t i
else

if  =  NULL th en
j .n e x t   ̂ j .tem p

en d  if
■/.current ,__1 angle/, 0 0
j .c u r r e n t  ,__

choke/, 0 0
-  n u l l

end  if  
end  for
^ c u r r e n t   ̂ j-n ex t

end  w hile  
end if  

en d  w hile
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Chapter 7

Abstraction Search

In Chapter 5, we searched the base-level graph, and now, we wish to search the most abstract 
graph to  take advantage of the reduction afforded by the abstraction of the environment 
from Chapter 6, while still finding an optimal path. This chapter explores the adjustments 
that must be made to our original TA* algorithm in order to effectively utilize the additional 
information afforded by the abstracted representation of the environment.

Before even performing a search of the most abstract graph, it is important to first check 
for a number of special situations that exist because of the structure of the graph and the 
placement of the start and goal positions. These are explored in Section 7.1 below. If none 
of these cases are present, then the regular search of the most abstract graph can begin. 
Section 7.2 deals with the actual search of the most abstract graph and how it differs from 
our original TA* algorithm.

7.1 Special Cases
The first step of the search is to find in which triangle both the start and the goal points 
reside. This is in contrast to only finding the surrounding triangle for the start point, 
which was done in TA* (Section 5.5). Certainly if this process takes excessively long, any 
advantage gained by searching the most abstract graph would be lost due to the extra point 
location search. Thus, in Section 8.1 we discuss an improved method for performing this 
process which increases its speed sufficiently to allow the efficiency of searching the most 
abstract graph to materialize.

After the triangles in which the start and goal points are encompassed are found, the 
information from their respective nodes is examined to determine the existence of one of the 
following special cases. If such a situation exists, often no search is needed, and the shortest 
path (or lack thereof) can be found even more quickly. These cases, how they are found, 
and their resulting resolution, are described below.

7.1.1 In Separate Components
When examining the information contained by the nodes corresponding to the start and 
goal points, the most fundamental requirement for a path to  exist between them is that 
they must be in the same component. If the component indices of the start and goal nodes 
do not match, there can be no possible path between them, and the search can be halted 
immediately. If these indices do match, the only possibility for the lack of a path between 
the start and the goal would be due to the size of the object not being able to  fit through 
certain areas, as a point object could move anywhere in a component.
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Figure 7.1: The start and goal are in two different connected components

Figure 7.1 shows a case where the start s and goal g are in different components and 
thus no path exists between them.

7.1.2 On a Level-0 Island
Once we have established that the start and goal are in the same connected component of 
the environment, finding that one is on a level-0 island implies that the other is as well. 
Furthermore, all pairs of points in a triangle can be joined by a straight line entirely within 
the triangle (since triangles are necessarily convex), and so such a path is valid, and since 
the shortest path between two points is a straight line, it is also optimal.

The only possibility for a path not to exist would be for either the start or goal position to 
be invalid due to  being too close to the triangle’s constrained edges. However, this situation 
should be found at the onset of the search using a technique similar to  that of finding the 
closest obstacle to a vertex in a triangle (Section 4.1) for both the start and goal points to 
make sure they are valid. However, often we can assume that these points are valid simply 
from the application. In many cases, this check could be omitted at least for the start point, 
as the object is usually centered on this point, indicating that it is indeed valid.

This same logic applies when both the start and goal positions are located within the 
same triangle—unless one or both points are invalid, an optimal path is given simply by a

Figure 7.2: The start and goal are in the same level-0 island or otherwise the same triangle
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straight line between them. Figure 7.2 shows the start and goal s and g in the same level-0 
island, and s' and g1 are both in the same triangle. In each case, if the radius of the object 
was large enough, the goal (and if it was even larger, the start as well) would be invalid and 
the path would not exist.

7.1.3 From a Tree to the Root
If either the start or the goal is inside a rooted level-1 tree and the other point is in the 
level-2 node forming the root of the tree, the shortest path between the two can be found 
immediately. Since the group of level-1 nodes adjacent to the level-2 root form a tree, there 
is a single channel of triangles between this root and any triangle in the tree, excluding those 
with cycles, which was stated in Theorem 4.3.4 to unnecessarily lengthen the resulting path.

First the choke point value of the node in the tree is checked to determine if the single 
channel linking it to the root is wide enough to accommodate the object in question. If it is 
not, no path exists and the algorithm can be stopped. Otherwise, the channel is constructed 
out of the triangle in the tree, the one opposite the edge indicated as the one adjacent to the 
root (see Subsection 6.3.3), and continuing in this manner until reaching the root. A funnel 
algorithm is then run on this channel, which yields an optimal path between the start and 
goal points.

Figure 7.3: The start is the root of a tree containing the goal

Figure 7.3 shows a situation where the goal g is in a level-1 tree of which the level-2 
node containing the start s is the root. The channel is constructed by “walking” from the 
goal to  the start through the tree. It is then reversed and used by the funnel algorithm to 
yield the optimal path between them.

7.1.4 In a Level-1 Tree
If the start and goal point are both on triangles classified as level-1 nodes in an unrooted 
tree (we know they are in the same tree by the earlier check of the component index), or in a 
rooted tree with the same level-2 root, another situation exists. As mentioned in Subsection
6.2.2, there is a single channel in this tree which connects the triangles containing the start 
and goal points and has no cycles, and this channel yields an optimal path between them.

This shortest path between the start and goal can be found by a simple search within 
this tree, starting at one point and generating adjacent level-1 nodes at each step to  avoid 
leaving the tree unnecessarily. Because of the inherent simplicity of this space, we can take 
some liberties in the search such as taking the distance measures from the triangle midpoints
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Figure 7.4: The start and goal are in the same level-1 tree

and assuming the distance travelled is the length of the straight segments between them. 
We can do this because the existence of the single path means that the g- and h-values used 
in the search are used solely as guides to find the only channel. Again, consideration of any 
triangle multiple times is not an issue in this simplified search.

Once the channel is found connecting the triangles surrounding the start and goal points, 
it is checked to make sure the object in question can indeed traverse it. If it cannot, no 
other channel could, as stated in Theorem 4.3.4, and the algorithm reports the lack of a 
valid path. If the object can indeed traverse the channel, a funnel algorithm is run on it to 
determine the actual path for the particular object, which is guaranteed to be optimal.

If the start and goal are not in the same level-1 tree but one or both is in a rooted 
level-1 tree, then we know there must be a path between the start or goal to the root of 
their respective trees if a path between them is possible. For either the start or goal, if 
the node associated with the surrounding triangle is in such a rooted level-1 tree, the choke 
point indicating the diameter of the largest object which can reach the root, is checked. If 
this value for either the start or goal is less than the diameter of the object in question, 
then no valid path exists for this object between the start and goal points since the object 
could either not get out of the level-1 tree in which the start point resides, or not get into 
the goal’s tree (or both).

Figure 7.4 shows an unrooted level-1 tree on the left, with s and g, as well as the pro­
gression of such a search in that component. On the right is a rooted level-1 tree containing 
s' and g' where this search occurs; notice the dotted arrow indicating that search is not 
performed outside the tree.

7.1.5 In a Level-2 Loop or Ring
Another situation exists when both the start and goal are each on level-2 nodes or in level-1 
trees rooted in level-2 nodes, that are on the same level-2 ring or loop. If they are on a ring, 
both corresponding level-2 nodes will have no endpoints. They must be on the same ring 
since they are in the same component, and there can only be a single ring in any component. 
If they are in the same level-2 loop, both endpoints of each corresponding level-2 node will 
be the same level-3 node.

In either case, as mentioned in Subsection 6.2.3, there exists two possible channels: going 
around the obstacle in the center of the ring clockwise, and counterclockwise. Channels are 
constructed for each, and the funnel algorithm is run on both, yielding an optimal path as 
the shorter resulting path.
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Figure 7.5: The start and goal are on a level-2 ring or loop

If the start point is in a level-1 tree, the method used in Subsection 7.1.3 is used to 
construct the portion of the channel moving from the start point to the root of the tree. We 
know from the test performed earlier (Subsection 7.1.4) that this portion of the channel is 
valid.

The two possibilities for the center portion of the channel are constructed by following 
the level-2 nodes forming the ring both clockwise and counterclockwise between the level-2 
nodes associated with the start and goal points. If, while one of these portions is being 
constructed, a triangle is encountered through which the object cannot pass, that portion 
is invalid. If one portion is invalid, the other is the only candidate for a valid path between 
the start and goal, and if they are both invalid, no valid path exists between them.

Finally, if the goal point is in a level-1 tree, part of the channel is constructed between 
the triangle in which it resides, and the root of the tree. Again, we know this portion of the 
channel to be valid for the current object. If both center paths were valid, complete channels 
are constructed between the start and goal points, going each way around the channel, and 
the funnel algorithm run on both to determine which is optimal. If one center path was 
invalid, the other complete channel is constructed and the path calculated by running the 
funnel algorithm on this channel is optimal.

Figure 7.5 shows a component that forms a level-2 ring on the left, and one that forms 
two level-2 loops on the right. With s and g, both channels between the start and goal 
triangles leave the level-1 tree in which the start lies and enter that containing the goal. 
However, each goes a different direction around the obstacle in the center. The result is 
that the path calculated from the channel going below the obstacle is shorter than from that 
going above and thus it is optimal (provided the given object can fit through this channel). 
Similarly, between s' and g' on the right, the path passing beneath the obstacle at the center 
of the loop is shorter than that passing above.

7.1.6 On a Level-2 Corridor
If the start and goal are on level-2 nodes, or level-1 nodes in trees whose roots are level-2 
nodes, such that they have the same two distinct endpoints, these corresponding level-2 
nodes could be on the same level-2 corridor. This is still not certain because multiple level-2 
corridors can have the same two endpoints as discussed in Subsection 6.2.5, so this possibility 
must first be checked.

First the distances from each corresponding level-2 node to one of the level-3 endpoints 
are checked against each other. If the two are indeed on the same edge, then when moving
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Figure 7.6: The start and goal are on a level-2 corridor

from the one with the larger such distance to this level-3 node, we will pass other other 
node. This is because the distance to this level-3 node will necessarily decrease along this 
corridor by the way the abstraction is built.

Thus, we begin constructing a channel starting at the farther level-2 node and working 
its way to the chosen level-3 endpoint. If this reaches the level-3 endpoint (or the distance 
of the current triangle being processed from this level-3 node is less than that of the other 
level-2 node), then the level-2 nodes corresponding to the start and goal points are not on 
the same level-2 corridor, and the search should proceed as described in Section 7.2.

Otherwise, once this process reaches the other level-2 node, this channel is combined, if 
necessary, with those which connect the triangles in which the start and goal points reside 
to  the roots of their respective level-1 trees, to form a complete channel between the start 
and goal points along this corridor.

The funnel algorithm is run on this channel to determine the length of the shortest path 
through this channel, however this may not be a globally optimal path. Therefore the path 
found is stored and the anytime algorithm described later in Section 7.2 is run in an attempt 
to  find a shorter path. For this search, the level-3 endpoint of this corridor which is closer to 
the level-2 node corresponding to the start than that corresponding to the goal is considered 
the start of the search of the most abstract graph, and the other is considered its goal.

However, as always, if the channel linking the two edges along the corridor is not wide 
enough to accommodate the object, this path is not considered. Similarly, if the corridor 
between either of the level-2 nodes associated with the start or goal and the level-3 endpoint 
in the opposite direction from the other level-2 node is too narrow, then the abstract graph 
search cannot be done.

Figure 7.6 shows two cases where the start and goal are on the same level-2 corridor. 
An optimal path between s and g on the left goes through the channel which traverses that 
corridor, whereas on the right the search of the most abstract graph must be done in order 
to  find an optimal path between s' and g', shown here as a dotted line.

7.2 Triangulation R eduction A* (TR A *)
In this section, we introduce the algorithm Triangulation Reduction A*, or TRA* for short, 
for searching the most abstract graph using the techniques developed thus far. After this 
algorithm has started, and none of the special cases listed in Section 7.1 have been found 
to  exist (except that in Subsection 7.1.6, which still necessitates this search, although with

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



slightly different starting conditions), the actual search must be performed on the abstrac­
tion.

While incorporating the same basic principles as the search of the base-level graph de­
scribed in Chapter 5, there are still a few details to be covered. Here we describe the 
remaining considerations for this search of the most abstract graph.

7.2.1 Moving onto the Most Abstract Graph
Since we wish to search on the most abstract graph, whose vertices are the level-3 nodes 
identified by the abstraction, the search must first reach these vertices from the start and 
goal point. For both the start and the goal, there are three cases which could result in a 
search of the most abstract graph: the point could be on a level-3 decision point, along a 
level-2 corridor, or in a rooted level-1 tree. These possibilities are covered below. All other 
situations are handled in the special cases covered in Section 7.1 and would not result in 
this search.

The possibilities for both the start and goal can result in either one or two vertices on 
the most abstract graph. For the start position, this corresponds to  the one or two level-3 
nodes which would initially be put on the priority queue used by the search. For the goal 
position, there would be accordingly one or two level-3 nodes at which the search would be 
considered to have found the goal.

If the point in question resides on a triangle classified as a level-3 node, then there is one 
start or goal vertex for the search of the most abstract graph, corresponding to that node. 
If it is on a level-2 node, there are two start or goal vertices corresponding to  the level-3 
nodes which form the endpoints of the corridor of which this level-2 node is part. Finally, 
if the point is on a level-1 node, there are again two resulting vertices, corresponding to  the 
level-3 endpoints of the corridor containing the level-2 root of the tree in which the level-1 
node lies. Basically this equates to  the vertex or vertices on the most abstract graph which 
are conceptually adjacent to the triangle containing the start or goal point.

For an example of this process, see Figure 7.7. Here, the start point s lies on a level-3 
node, so the search queue is initialized with a single state corresponding to this node. The 
goal point g, on the other hand, is in a level-1 tree. The arrows indicate the “walk” from 
the triangle surrounding the goal point to  the root of its level-1 tree, and then to  the level-3 
nodes g\ and <72 forming the ends of the corridor containing this root.

Another possible situation is shown in Figure 7.8. Here, the start point s is on a level-2 
node, so states corresponding to the level-3 endpoints of the corridor (si and S2) containing

Figure 7.7: Abstract search starts with one state and has two goals
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Figure 7.8: Abstract search starts with two states and has one goal

this node are put on the search queue. Even though both endpoints are the same node, they 
are both added. This is because depending on the rest of the path found, an optimal path 
might go either direction around the obstacle in the middle of the loop. The goal point g is 
also on a level-2 node, but only one of its level-3 endpoints (gi) becomes a possible goal for 
the search of the most abstract graph. This is because we assume the object to be of such 
size that it cannot pass through one of the triangles to the left.

7.2.2 Accumulated Distance Measures
In addition, when the starting point is inside a triangle classified as a level-1 or level-2 node, 
the distance between the start point and the level-3 nodes which initialize the search is 
included in the g-values of the search states corresponding to those nodes.

For a start point on a level-3 node, there is no additional associated distance. For one 
on a level-2 node, it is the distance between the corresponding triangle and the ends of the 
corridor, as stored in the node itself. For one on a level-1 node, it is the distance associated 
with reaching the root of the tree as stored in the node, together with the distance from the 
root to the adjacent level-3 nodes similar to above, plus the distance of travelling through 
the root node, which is not incorporated in either measurement.

For simplicity, this was not done for the paths between the goal point and its adjacent 
level-3 nodes, thus the measurements for the heuristic were still taken between the triangles 
corresponding to  each state, and the goal point itself. Alternately if this distance was 
considered for the level-3 nodes adjacent to the goal point, the heuristic for each state could 
be that to  the closer of the two goal vertices, plus the distance from that vertex to the goal.

7.2.3 Checking Channel Widths
Similar to how the distances are considered, the widths must also be checked when the 
start or goal point is in a level-2 node. This is done by checking the choke point value for 
the section of the corridor between the current node and the level-3 node at each end. If 
the corridor is too narrow for the object to  get to one end, the abstract graph search only 
considers the vertex associated with the node at the other. If the corridor leading to both 
ends is too narrow, the search fails (or if the case in Subsection 7.1.6 found an initial path, 
that one is returned).

We know from checking before that if the start or goal point is in a level-1 tree, the 
width of the channel connecting the triangle around that point to the root of its tree, is 
enough to accommodate the given object. The width between the level-2 root of this tree
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and its adjacent level-3 nodes is checked in the same way as above, except that the width 
must also be checked through the root node between the edge connecting the root to  the 
attached tree, and that connecting it to the rest of the corridor across which is the level-3 
node in question.

7.2.4 Corridor Lengths and Choke Points
Searching the most abstract graph differs from searching the base-level graph in that in­
formation regarding the g- and /i-values and triangle width cannot be taken directly from 
the individual triangles without nullifying the benefit of the reduced search space. There­
fore this value must be extrapolated from the information calculated during the abstraction 
process.

For any level-3 node generated by TRA*, its heuristic is calculated as before, as with 
the distance travelled measurements relying on global information such as the placement of 
the start and goal positions, but the one that increments the value of its parent state must 
take advantage of the abstraction information. This value is determined by adding that of 
the parent state, to a measure of the distance to get from the entry edge of its triangle to 
that associated with the current state.

As with TA*, this is done by multiplying the interior angle by the radius of the object in 
question, however, because we are now traversing an entire corridor, we use the accumulated 
interior angle of the corridor as stored in the abstraction. On top of this, we add the interior 
angle of the parent state’s triangle, to add the distance for moving from it’s entry edge to 
the start of the corridor. This combined angle is then multiplied by the radius of the object 
and summed with the distance value of the parent state.

Similarly the search must take advantage of the information provided in the abstraction 
when determining which channels can yield a valid path for the object. Since we have already 
determined whether there are valid paths for this object between the start and goal points 
and their adjacent level-3 nodes, it remains to determine if the object can move through 
and between the level-3 nodes searched.

The abstraction provides the width of the narrowest point along each corridor, so as 
long as this value is at least the diameter of the object for which we are finding a path, the 
channel traversing that corridor will yield a valid path. However, we must also check that 
the object can move between the edges of each level-3 node which connect it to the corridors 
being traversed. For this, the appropriate width of the level-3 node is checked.

If either of these checks fail, the search will not consider searching the level-3 node at 
the opposite end of that corridor from this node. This guarantees that for any state in the 
search, there is a valid path between the start point and the triangle associated with that 
state, passing through the level-3 nodes specified by that state’s ancestors.

7.2.5 Searching the Most Abstract Graph
In other respects, the search proceeds similarly to  TA* described in Chapter 5 by considering 
any triangle multiple times, having the same anytime algorithm paradigm, and using the 
same g- and fi-values, with slight modification as described above. The key difference is 
that the states in TRA* correspond to  level-3 nodes, or vertices of the most abstract graph, 
whereas the states in TA* correspond to individual triangles, or vertices of the base-level 
graph.

In Chapter 9, we explore the speed of TRA* as well as TA* when compared with the 
standard A* and PRA* searches performed on a grid-world representation of the same 
environment. We also explore the behaviour of the anytime algorithms in how they converge 
on optimal paths, and the times required for the preprocessing of the environments tested,
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including the initial triangulation, the abstraction thereof, and the computation associated 
with the improved point location described in Chapter 8. This chapter also describes a 
technique we applied to both TA* and TRA* to make the performance more predictable 
and suitable for the anytime algorithm paradigm and the application areas for which they 
were designed.
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Chapter 8

Other Enhancements

This chapter briefly describes two enhancements added to both TA* and TRA* which are 
tangent to  the main work of this thesis. The first such enhancement is a faster method of 
point location in the triangulation introduced to keep the benefits of the triangulation-based 
searches from being lost to a slower version of this task, and is described in Section 8.1. 
The second is a minor modification made to the anytime algorithm associated with both 
searches which decreases the time between the start of the search and when the first solution 
is found, while at the same time retaining the convergence on an optimal solution, presented 
in Section 8.2.

.1 Sector-B ased Point Location
To search for a path between two points in a triangulation, the first task is to find the 
triangle in which one of the points is contained, and then search for a path to the other. 
This first process is called point location. Point location is typically done in a triangulation 
by “walking” from some start triangle towards the desired point [19]. See Figure 8.1 for an 
example; here, the grey point is found by a walk indicated by the arrows, starting at the 
triangle in the upper-left comer of the triangulation.

This can be done, for example, by checking each edge of a triangle if the point lies to 
the left, when traversing these edges in counterclockwise order. If it lies to this side of all 
three edges (or along one edge), then the point is inside the current triangle. If the point is 
outside one of the edges, the triangle opposite that edge can be checked next. In this way, 
the algorithm gets progressively closer to the point in question.

However, in [27], the point location was done starting at a fixed triangle, similar to in 
Figure 8.1. On average, then, this process had to “walk” halfway across the triangulation 
to  find each point for which this process was done. Not surprisingly, this was determined to 
take a large portion, if not the majority of the time required by the pathfinding algorithm.

This delay threatened to overshadow the benefits TA* received from using the triangu­
lation, and also those that TRA* received from using the most abstract graph constructed 
from it, since this second algorithm requires that both the start and goal points be located 
in this way, instead of just one. Because we wanted our triangulation-based methods to be 
competitive with grid-based methods, an improved point location technique was in order.

There are a number of methods which offer improved performance: the triangulation 
refinement method [31], the chain method [20], persistent search trees [42], persistency 
using similar lists [15], and a randomized incremental method [40]. These techniques all 
find points in 0 (n  log n) time and require 0{n) memory for the structures associated with
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Figure 8.1: Point location from a fixed triangle
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Figure 8.2: Decomposition of the environment into sectors, and their midpoints

them. However, these techniques would be difficult to update in the presence of changes in 
the triangulation, and thus were not desirable.

While methods are available that deal with the changes possible in a representation such 
as a DCDT, for example those summarized in [14], we desired a simple solution which was 
both easily updated in the event of repairs to the environment representation, and did not 
require complex structures to maintain. For this reason, we developed another method for 
improved point location, which we detail below.

Our redesigned method consists of conceptually decomposing the environment into sec­
tors, in our case, forming a grid of rectangles over the environment, because points are 
defined by their horizontal and vertical coordinates, thus allowing the corresponding sector 
for a point to be calculated easily in constant time. Figure 8.2 shows the same environ­
ment as in Figure 8.1 with such sectors overlaid on it. Midpoints for these sectors can be 
calculated easily as well, and appear in Figure 8.2 as grey circles.

When preprocessing of an environment, such as the abstraction process described in 
Chapter 6, is being done, each triangle visited is checked to see if it overlaps any sector 
midpoints. This is done by taking the bounding rectangle for the triangle and checking each 
of the sector midpoints it overlaps, if they are within this triangle by using the same method 
as described earlier. When the triangle enclosing each sector midpoint is determined, the 
pointer corresponding to that sector is set to this triangle. These pointers are stored in a 
two-dimensional rectangular array to allow constant time access.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 8.3: Sector-based point location

Now, for each point for which the location process is to be performed, the sector in 
which it is contained is calculated by its coordinates. With this information, the triangle 
enclosing the sector midpoint is retrieved from the array of these values. Then, the same 
“walk” process [19] is started, but from this triangle, resulting in a much shorter distance 
to  the point and fewer triangles visited. An example of this is shown in Figure 8.3, with 
the active sector outlined and the midpoint shown, and the point being located indicated 
by another grey circle. Notice how many fewer steps are required to find such a point using 
this process.

Indeed, the “walk” is reduced in expected length to half the dimension of a sector. This 
results in enough of a performance gain to allow the benefits of TA* and TRA* to become 
apparent. For the experiments presented in Chapter 9, a modest 10 x 10 grid of sectors 
was used on each environment. As shown in that chapter, the preprocessing time associated 
with this technique is almost negligible, and the execution times resulting from TA* and 
TRA* are impressive, despite performing point location once and twice, respectively, for 
each path tested.

One can note that the repair of this array of pointers to  triangles surrounding sector 
midpoints can be easily repaired if the triangulation changes using the mechanisms described 
in Section 3.4. Each triangle that was changed or added is simply checked, as all others, if 
it overlaps any sector midpoints, and the pointers are set accordingly. The time required 
for such a repair is minimal, as with the initial preprocessing. If, for some reason, there is 
no triangle corresponding to the midpoint of the sector containing the point for which this 
process is being performed, the point location “walk” can simply be started from some fixed 
triangle as before.

8.2 Finding a First Solution Quickly
During an initial run of the experiments presented in Chapter 9, some cases appeared that 
would be unacceptable for application in real time, despite that the vast majority of solutions 
were found very quickly. In certain situations such as that shown in Figure 8.4, the fact 
that any triangle in the case of TA*, or level-3 node in the case of TRA*, can be considered 
multiple times during the search, creates a weakness for these algorithms which extends 
their runtimes beyond even those of the standard A* algorithm.

The Euclidean distance heuristic draws these searches into a kind of “canyon” , at which 
point it gets caught up in the many triangles or level-3 nodes therein. The many small 
obstacles in the canyon pose a problem to both TA* and TRA*. For TA*, these obstacles
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Figure 8.4: Situation which hinders TA* and TRA* searches

increase the number of triangles in this region, which increase the state space for this 
algorithm considerably. For both TA* and TRA*, these obstacles increase the number 
of level-3 nodes in the most abstract graph. TRA* searches these nodes directly, so this 
increases the size of its state space, but also for TA*, these points allowed the search to 
overlap, so each one increased the number of times the triangles in the canyon could be 
considered.

Because both TA* and TRA* will attempt paths going each direction around these 
obstacles, the number of states searched will increase considerably. In the case of such small 
obstacles, the distance measures, in avoiding an overestimate, will not increase by much 
with each state searched. This causes many combinations of paths to be attempted inside 
the canyon before these values finally increase enough for the search to venture out and find 
a correct path.

In general, small obstacles pose a problem for these techniques. Their consideration of 
triangles or level-3 nodes multiple times results in an exponential number of potential paths, 
and the distance measures are required to prune the majority of these. However, when the 
obstacles are small these distance measures can only increase slightly at each step, causing 
many more combinations of these paths to be followed than would be with larger obstacles.

Interestingly, the abstraction technique harnessed by TRA* would simply disregard such 
an enclosed area as a dead end if it did not contain obstacles. In this case, only abstracting 
the environment to the point where it does not lose information about its topology, is not 
enough to provide an efficient mechanism for dealing with such situations.

There were several possibilities for dealing with this drawback, however many simply 
would reduce the effect of very specific such situations instead of addressing the overall 
problem. A pathfinding system which completely solves this problem remains an open 
question, however there are several possibilities for further abstraction of the environment 
beyond the most abstract graph (losing some information about the topological structure of 
the environment and thus unable to guarantee optimal solutions) discussed in Section 10.2.

For now, the focus was put on the anytime algorithm aspect of these searches, since 
the spirit of such an algorithm is to return an initial path quickly and then converge on 
an optimal solution. However, in doing so, we did not want to sacrifice the ability of these 
algorithms to guarantee such convergence to optimal like many approaches would. Therefore 
a simple adjustment was made to prevent them from searching any triangle or level-3 node 
multiple times until the first solution is found.

This was done simply by checking, until the first solution is found, if the triangle asso­
ciated with each state about to  be expanded by the search has been marked as previously
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expanded. If so, the search state is put on a secondary search queue instead of being ex­
panded, and if not, the state is expanded as usual and the associated triangle is marked 
as having been expanded. When the first solution is found, all the states in the secondary 
queue are put back in the primary queue and search continues as normal without this extra 
check at each state expansion.

This modification does not change the fundamental aspects of the search, only decreases 
the time required by both algorithms to find the initial solution. In this respect, TA* and 
TRA* become more useful for real-time applications, lengthening the window of time in 
which a solution is available, producing an initial solution in even the degenerate cases 
mentioned above, early enough for such time requirements. Of equal importance is the fact 
that this technique does not affect the production of subsequent solutions, and thus still 
guarantees the convergence of both searches to an optimal solution.

In Chapter 9, the paths for which these algorithms could not find the optimal path in 
the time allotted, can be attributed to this type of exceptional situation. Since the searches 
were stopped after a multiple of the time required to find their first solution, these cases will 
not yield an optimal path since the first solution is found so quickly, and an optimal one 
takes so long. These mostly occurred in the environments taken from WarCraft III maps, 
which had many trees consisting of single tiles, and often resulted in the small obstacle 
pathology mentioned above.

While only a small fraction of the paths tested resulted in such a situation, and TRA* 
still being able to find such optimal paths eventually, it is important to develop solutions 
for such cases when the target application works in real time. An occasional suboptimal 
solution is far more desirable, in these conditions, than one that takes excessively long or 
returns no solution at all.
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Chapter 9

Experim ents

This chapter covers the experiments done to validate and measure the benefit of searching 
both the base-level graph (TA*) and the most abstract graph (TRA*) against both standard 
(A*) and abstracted (PRA*) grid-based techniques.

Section 9.1 discusses the details of the experiments, including both how they were done 
in the previous paper and how they were modified so that the techniques presented in this 
thesis could be meaningfully compared to the others. The results given by the experiments 
performed on our techniques are given in Section 9.2, and compared to the previous results. 
The immediate implications of these results are also discussed in that section. Following 
this, Section 9.3 further explores what these results could mean for further work.

9.1 Experim ental Setup
For the experiments, we desired to test both TA* and TRA* against the benchmark A* and 
recent PRA* presented in [47], Thus, the setup for these experiments is identical to that in 
this paper to  allow a direct comparison of these methods. 116 environments were included 
in the experiment: 75 maps from the game Baldur’s Gate and 41 from WarCraft III, which 
were selected as being interesting for having sufficient size and complexity.

These environments were particularly useful in that they come from successful com­
mercial games, and therefore provided a unique opportunity to  test these methods for the 
very application for which they were designed. Providing sufficient performance to  allow 
pathfinding effectively in real-time in such environments would certainly indicate that the 
methods developed in this thesis successfully accomplished their goal.

The Baldur’s Gate maps consisted of a grid of tiles, each marked either traversable 
or obstructed. Each of these maps were scaled to 512 x 512 tiles without changing the 
connectivity of the resulting graph. To convert these into a polygonal representation which 
can be triangulated, each traversable region is traced by placing line segments between pairs 
of traversable and obstructed tiles, in sequence to form a polygon around them. Similarly, 
obstacles are added to  the representation. In this way, constrained edges of the triangulation 
equate to barriers between traversable and obstructed space in the environment. All paths 
were found between two tiles in the same component of traversable space.

The WarCraft III maps were slightly different in that each tile had both a type of terrain 
and a height value associated with it. Any tile could have a type indicating it was grass, 
swamp, water, a tree, or outside the play area. Furthermore, a tile could be a ramp which 
allowed paths to  cross a height difference. These maps were also scaled to 512 x 512 tiles 
while maintaining their structure. Similarly to the Baldur’s Gate maps, each component of 
a different terrain type was traced by line segments forming a polygon around it. For this
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purpose, grass and swamp tiles were considered the same type so paths could cross between 
their respective tiles. After that, line segments were added between tiles of different height 
values where the associated tiles were not ramps. In this way, tile type boundaries and 
“cliffs” , or abrupt height differences with no ramps, could not be crossed by paths. Paths 
in these maps were always within components of the same tile type (paths between two 
positions in water were allowed, for example), with at least one valid path between the start 
and goal (not separated by a cliff).

It is interesting to note that while the borders of the tiles were followed exactly during 
the conversion from tile-based to polygonal environments, often it was apparent that the 
tiles formed an inaccurate representation of the actual structure of the environment. For 
example, there were several “staircase” patterns in the tiles, which if originating in a polyg­
onal representations could be represented by a single diagonal line. This would significantly 
reduce the number of triangles in the triangulation while at the same time improving its 
accuracy. Similarly if the tiles were arranged to approximate a curved barrier in the en­
vironment, this could be approximated more accurately in a polygonal representation and 
result in fewer triangles in the resulting triangulation.

If extrapolating these structures was done, TA* would receive a significant performance 
increase due to the reduction of the number of triangles in the triangulation, which in itself is 
already low compared to the number of cells in the corresponding grid. TRA* would remain 
unchanged for the most part, since such detail would not affect the number of vertices in 
the most abstract graph which it searches, only the distance measures slightly.

On each map, pairs of points are used where the optimal path between them on the 
grid is between 0 and 511 tile lengths, inclusive. Each pair is put into one of 128 buckets 
numbered 0 to  127 based on this length. In particular, a pair of points whose optimal path 
on a grid is I tile lengths, is put into bucket i, where i = [_Z/4j. 10 pairs of points were 
generated for each bucket on each map, resulting in 1280 paths per map, or 1160 paths per 
bucket, and 148480 paths overall.

For the results showing percentiles, the data point at any path length relates the data in 
the corresponding bucket. A data point for the n th percentile is the value of the [n/100 x 
1160]th value, typically ordered from best to worst. Standard deviations were not used 
because it was not certain that the data was normally distributed.

For the experiments involving TA* and TRA*, the radius of the object was taken to be 
just less than half the length of a tile, so that the object would have to stay in the centers of 
tiles unless moving through free space, keeping it from having too much advantage over the 
grid-based methods in terms of path length. It was kept just short of half the width to  avoid 
floating-point calculation errors in the modified funnel algorithm, and the determination of 
the object’s traversability through triangles or corridors.

In the experiments using the grid-based methods A* and PRA*, an object could move 
to  any of its 8-neighbours which were unmarked. However, cutting corners was disallowed, 
that is, moving diagonally across a 2 x 2 block of times was only permitted if none of the 
four tiles were obstructed.

The experiments were done on a computer with a Socket 754 AMD Athlon 64 3200+ 
processor and 2 sticks of 512 MB PC3200 CAS2-3-3-6 RAM and a motherboard with an 
NVIDIA nForce3 250 chipset. The code was created and compiled in Microsoft Visual Studio 
.NET 2003, and single-threaded.

To avoid having to re-implement the techniques used in [47], we simply took the exact 
paths tested there for these experiments to compare the results directly. These results were 
also single-threaded, and run on a dual-CPU Power-Mac running at 2 GHz with 1 GB of 
RAM and compiled in gcc 3.3. To compensate for the difference in system speeds between 
the two result sets, the running times for the original results were halved to facilitate more 
accurate comparison.
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9.2 R esu lts
Here we will show and discuss the results found in the experiments described earlier. The 
first thing to  notice is the size and complexity of the environments in question. Since all 
environments have been scaled to 512 x 512 tiles, there are 262,144 cells in the grid used 
by both A* and PRA* for all 116 maps tested.

However, when the tracing operation is performed on the components of the environ­
ment to convert it to  a polygonal representation, it is significantly simplified. Consider the 
“constraints” line in Figure 9.1. Here the maps were ordered by the number of triangles in 
the corresponding triangulation and given indices to arrange them from left to  right.

There are more than 20 times more cells in a grid than there are constraints in the polyg­
onal representation of even the most complex environment, and for many environments, this 
factor increases to above 100. This is a testament to  the efficiency of polygonal represen­
tations over grid worlds, especially when one considers that often there would be far fewer 
still had the original environment been represented this way, instead of forcing diagonal and 
curved barriers to be “rasterized” to be represented by a grid.

Map Statistics (Counts)
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Level-3 nodes
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Figure 9.1: Triangles, contraints, and level-3 nodes in environments tested

Now, consider the “triangles” line in the figure. Again, there are far fewer cells in a 
triangulation than a grid, with the grid-world representation having over 10 times more cells 
than the most complex triangulation, and over 65 times more than the median. Since this 
reflects the base-level graph searched by TA*, we can see already that it offers a significant
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Figure 9.2: Preprocessing times divided into triangulation, reduction, and sector processing

advantage over the grid-based techniques.
Finally, and most importantly, notice the “level-3 nodes” line at the bottom of the 

graph. Not only are there significantly fewer of these than there are grid cells, constraints, 
or triangles, but their number hardly changes as the complexity of the environment forces 
the numbers of triangles and constraints up. This is the benefit of the independence of the 
most abstract graph from the nature of the obstacles in the environment and only their 
number. Even the maps with the most level-3 nodes have only a few hundred of them, far 
below the figures for other representations. Most maps have far fewer level-3 nodes still. 
The fact that TRA* searches the most abstract graph of which these are the vertices, gives 
it an even greater advantage.

Figure 9.2 shows the times required to perform the preprocessing of each environment. 
Again, this uses the same system of indexing the maps by the number of triangles in the 
resulting triangulation from Figure 9.1. While the times are long enough that this could 
not likely be done in real time, it might be able to be performed if the computation is 
spread out somewhat. This means it could be used if changes in the environment happen 
occasionally, however it would not be suited to incorporating constantly moving objects, 
such as other objects, in the environment. Possibilities for dealing with such situations are 
given in Section 10.2. This process could easily be done as a map is loaded at the onset of 
a level, for example, with the resulting wait being almost imperceptible.

It is important to notice that these times are indeed linear in the number of triangles
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Figure 9.3: Percentiles of A* running times by path length

in the resulting triangulation, so as the environments become more complex, these times 
will not increase excessively. Given the results here, processing of a single triangle takes 
approximately 20 microseconds. The total preprocessing time is fairly evenly split between 
creating the Constrained Triangulation from the constraints using the implementation de­
scribed in Section 3.4, and creating the most abstract graph using the algorithm given in 
Chapter 6. An almost negligible amount of time is spent doing the preprocessing for the 
point-location technique described in Section 8.1.

Figure 9.3 shows the execution times for the standard A* algorithm on the grid represen­
tation of the environment. Such times are certainly prohibitive to a real time setting with 
some of the longer paths taking over a quarter of a second. Something else to notice is the 
way the time increases more and more the longer the path gets. Certainly this solution does 
not scale well to longer paths, and on top of its long execution times, its behaviour can be 
hard to predict, as evidenced by the spread of the percentile lines, which can be important 
for application areas such as commercial games.

The execution times for PRA* (described in more detail in Section 2.4) are given in 
Figure 9.4. Looking at the time scale on the left and comparing it to that in Figure 9.3 
indicates how much of a significant performance increase PRA* has over the standard A* 
algorithm. Considering that it works on a grid like A*, this algorithm performs quite well. 
This can be attributed to the selection of a layer of abstraction on which to perform the 
search, which reduces the search space significantly, but still provides sufficient details about
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Figure 9.4: Percentiles of PRA* running times by path length

the environment to  provide a high quality path.
In addition to the raw speed of this algorithm, the execution times increase in a more 

linear fashion than those of A*, when presented with longer paths. This is because the 
further the start and goal points are away from each other in terms of path length, the more 
abstract the layer where they meet at the same state, and subsequently, the more abstract 
the layer where the initial search is done.

Furthermore, the lines representing the percentiles are significantly closer together, indi­
cating that the running time is much more predictable than A*, which makes it more suited 
to real time applications such as commercial games. Again, this is caused by many of the 
details of an environment that can complicate the execution of a pathfinding search being 
removed during the abstraction process.

This loss of information also has a negative effect on the lengths of the paths found 
using this algorithm; since details of the environment are lost the further the layer being 
searched is from the original graph, an optimal path on this layer can sometimes translate 
into suboptimal paths on the environment. Luckily in practice, the paths returned by PRA* 
are very likely either optimal, or very close.

Before looking at the execution times for the TA* and TRA* algorithms, some termi­
nology must be introduced. For both of these algorithms, we designate a parameter F  to 
denote the progress of the anytime algorithm. The value of this attribute designates the 
multiple of the time required by the algorithm to find the first path.
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Figure 9.5: Percentiles of TA* running times by path length

For example, in Figures 9.5 and 9.6, the execution time with F  =  1 indicates it is the 
time required by the algorithm to find its first solution. Later, in Figures 9.10, 9.11, 9.12, 
and 9.13, this value represents the multiple of this time at which the length of the current 
best path is taken. We also use TA*(/) to denote TA* with F  =  /  and similarly TRA*(/) 
to  denote TRA* with F  = / .

The execution times for the TA* algorithm described in Chapter 5 with F  =  1 appear 
in Figure 9.5. Again, a glance at the time scale indicates the improvement this technique 
makes over A* and even PRA*. Even though this algorithm only searches the base-level 
graph, the benefit of the reduced number of triangles required to represent the environment 
over the number of cells required by the grid-world techniques, results in shorter execution 
times. This indicates how efficient a triangulation is for environment representation.

Despite its reduced execution times, however, the execution times of TA*(1) resemble 
those of A* in how they increase as the corresponding A* paths get longer, and how much 
the times for the different percentiles differs. Unlike PRA* and TRA*, TA* does not take 
advantage of an abstraction, and as such, the number of search states expanded increases 
significantly the farther the search must extend, especially considering that it is required to 
consider multiple states corresponding to any triangle. Furthermore, this lack of an abstract 
representation means that variations in the environment affect TA*’s performance more so 
than that of PRA* or TRA*, which are not affected by such details, resulting in more 
varied execution times than for those algorithms. Below we will explore the behaviour of
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Figure 9.6: Percentiles of TRA* running times by path length

the anytime algorithm and how it converges on an optimal solution.
Figure 9.6 displays the execution times of the TRA* algorithm described in Chapter 

7, with F  — 1. The execution times of this algorithm are less than the other algorithms 
tested, because it benefits from both the improved representation efficiency afforded by the 
triangulation, and the reduced search space resulting from the abstraction process.

In addition to these short execution times, both the variation in these times and the way 
they increase as the lengths of the corresponding A* path lengths change are more akin to 
those features of the PRA* algorithm. Again, the abstraction reduces the details which cause 
the variation in the execution times. There is more variation here than with PRA* because 
the abstraction mechanism used by TRA* described in Chapter 6 reduces the environment to 
the minimal representation which still contains the topological structure of the environment, 
whereas the abstraction mechanism used in PRA* can reduce the environment further, at 
the cost of the ability to  guarantee finding an optimal path.

Similarly, the execution times for TRA*(1) increase in a slightly less linear fashion than 
PRA* as the corresponding A* path lengths change, because of this inherent limit in the 
abstraction used by TRA*. As the distance between the start and goal increases, PRA* can 
simply perform the search on a more abstract representation of the environment, resulting 
in a smaller increase in the resulting execution time, however TRA* has only a single layer of 
abstraction at its disposal. The behaviour of the anytime algorithm associated with TRA* 
and its convergence of an optimal solution is explored below.
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Figure 9.7: Median ratio of execution times of PRA*, TA*(1), and TRA*(1) to  A*

We present a more direct comparison between the algorithms tested in terms of speed 
and the number of node expansions in Figures 9.7 and 9.8, respectively. Figure 9.7 shows 
the median speedup of PRA*, TA*(1), and TRA*(1) over A*. The speedup of PRA*, while 
less than that of TA*(1) and TRA*(1), increases steadily with the A* path lengths, as its 
abstraction allows its execution times to avoid the performance hit taken by A* with this 
increase.

TA*, while offering a greater speedup than PRA*, shows a decrease in this benefit 
as paths increase in length. Indeed, while the initial benefit of the reduced search space 
offered by the triangulation of the environment creates a large initial speedup, the lack of 
an abstraction to help it deal effectively with longer paths, makes it level off, eventually 
becoming parallel to the horizontal axis, indicating only a linear increase in performance.

While such an increase is certainly beneficial, TRA* performs even better. The even 
further reduced search space afforded by the abstraction process allows TRA* to gain a large 
initial speedup over A*, moreso than the other algorithms. On top of this, however, this 
speedup steadily increases as the corresponding A* paths get longer because, as mentioned 
before, the abstraction removes many details which make searches such as A* expand with 
this distance.

The results shown in Figure 9.8 echo these patterns in the 90th percentile of search state 
expansions. As with its times, the number of states expanded by A* is significantly more 
than the other methods, and only gets worse as the paths increase in length. PRA* again
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Figure 9.8: 90th percentile of number of search states expanded by A*, PRA*, and TA*

does not exhibit this behaviour, and shows much improvement over the number of states 
expanded by A*.

TA* expands even fewer search states, being barely visible at the bottom of the graph, 
showing again the benefit of triangulations as an environment representation. TRA*, com­
bining this benefit with that of its abstraction, expands even fewer nodes than TA* and was 
not included in this graph because it would not be visible.

Another trade-off between pathfinding techniques such as PRA* which use abstractions 
that can lose information about the environment, and those in this thesis, is the solution 
quality. Of the algorithms compared in this section, A* returns a single path which is 
guaranteed to be optimal, but which takes significant time and memory to find.

In contrast, PRA* returns a single path which, with a high degree of probability, is 
very close to optimal. This algorithm itself provides the opportunity to trade-off execution 
time and path quality by selecting the abstraction layer on which the initial search is given. 
The fact that the first (and only) solution provided by this technique is likely very close 
to  optimal is an advantage, however, if the abstraction is used to any benefit (the search 
is performed on any but the original representation), one cannot be guaranteed an optimal 
solution.

The anytime algorithm format of the TA* and TRA* algorithms provides a different 
trade-off between execution time and path quality. Neither the base-level graph utilized by 
TA* nor the most abstract graph for TRA* provide options for differing levels of detail.
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Figure 9.9: Calculation of the constant C to determine the “bound” line

The base-level graph presents the environment in complete form and the most abstract 
graph provides as few details as possible while still retaining the topological structure of the 
environment.

Thus, the time for these algorithms to find the initial solution and the quality of this 
solution cannot be easily controlled, as with the time required to converge on an optimal 
solution. However, at any time between these, the searches can be stopped and will yield 
a solution whose quality is between these two. In this way, giving more time to TA* and 
TRA* results in a better quality solution, which is a useful compromise, especially in a 
real-time setting when such computation might have to be halted if resources are needed 
elsewhere.

Figures 9.10, 9.11, 9.12, and 9.13 display the ratio of the length of the paths found by 
TA* and TRA* with various values for the F  parameter, to the length of TA*(10). While 
most of the time TA* will converge on an optimal solution given 10-fold the time required 
to  find the first solution, in some instances this was not the case. To cover such possibilities, 
we wanted to add a factor indicating how short an optimal solution could potentially be.

We know that the paths returned by A* are optimal, but because it is a grid-based 
method, they are constrained to moving between centers of tiles and the paths returned by 
the triangulation-based methods TA* and TRA* are not. Therefore, even suboptimal paths 
given by these last two methods are capable of being shorter than the optimal path while 
constrained to a grid. So we determined the maximum ratio of a grid-constrained path to 
its arbitrary-motion equivalent.

This is shown in Figure 9.9, where half of the grid path (shown by a solid line) is axis- 
aligned and the other half at a diagonal, and the arbitrary-motion path (shown by a dotted 
line) moves between the same endpoints. One can check that modifying this configuration 
necessarily increases the ratio of the length of the arbitrary-motion path to  the grid one.

If we take the length of the grid path to  be 1 like in the figure, we need to determine 
the length of the corresponding path in free space. First we must calculate the verti­
cal and horizontal measurements of the diagonal section of the path (these will be equal 
because the line is on a 45° angle from the horizontal and vertical axes). Using Pythago­
ras’ Theorem, these dimensions are ^ =  y /x2 +  x 2 => |  = \ / 2 x 2 =>■ (A)2 =  (y/2x2)2 =4>
53- =  2 a ;2 =j- i  =  2 a ;2 =4- ^ =  a ;2 =4* =  Vcc2 =£■ =  x  =4- x  «  0.3536. Now,
the arbitrary path is |  +  x  in length along one axis and x  in length along the other,

yielding a length of C  =  +  x ) 2 + (x)2 = + x +  x 2) +  (x2) -  \ J \ + x  +  2x2 m

V(0.25) +  (0.3536) +  2(0.3536)2 =  V0.25 +  0.3536 +  0.25 =  V0.8536 «  0.9239.
With this knowledge, a “bound” line was added to Figures 9.10, 9.11, 9.12, and 9.13 

corresponding to the minimum length the optimal path with arbitrary motion could be. For 
the graph of the n th percentile path length, this bound was calculated to be the (100  — n)th
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Figure 9.10: Ratio of 75th percentile of TA* path length to TA*(10)

percentile of the A* path length, multiplied by this constant C.
We see in Figure 9.10 the 75th percentile length of the initial paths returned by TA* 

(F  = 1) and those returned given twice this amount of time (F  = 2). Again, for the most 
part, and especially on this particular graph, TA*(10) is optimal, and thus the line at ratio 
1 represents roughly the optimal path length. This is less true for the longer paths on the 
higher percentile graphs, where the optimal path length might be slightly less, moving this 
line down slightly towards the right of the graph.

Here we see that most of the time, TA* finds an optimal path first (indicated by the 
fact that most of the time, the line for TA*(1) lies on the ratio 1, meaning it is the same 
value the algorithm would return given 10 times as long). For some paths whose A* length 
is greater than 400 tile widths, the initial path returned is slightly longer than optimal, 
although by small fractions of a percent. In these cases, the final path is reached before 
F  =  2, as this line lies entirely at the ratio 1.

Notice that the length of the path returned by TA*(10) is still within 4% of the minimum 
length possible for the optimal path for the majority of these paths. Also, even when the 
initial solution is longer than the final one returned, it is still much shorter than the optimal 
path on the grid returned by A*.

Figure 9.11 shows the 95th' percentile for the TA* path lengths. We see that in these 
rare cases, the first path returned by TA* (F = 1) is longer than that returned by TA*(10) 
on paths whose A* length is as short as 150 tile widths, and reaches roughly 5% longer than
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Figure 9.11: Ratio of 95th percentile of TA* path length to TA*(10)

TA*(10). Looking at the line for TA*(2), we see it yields the same solution as TA*(10) until 
the A* length of the paths reach about 250 tile widths, and the path at this point can be 
up to 3% greater.

Similarly we see how on paths with longer A* lengths, a greater multiple of the time 
required to  find the first path (or F  parameter) is needed to provide an optimal path. In 
this case we see that TA*(6) finds paths of the same length as TA*(10) for 95% of the paths 
tested, for all but a few of the longest, where it deviates from this value slightly.

Now turning to TRA* for Figure 9.12, we see a slightly different situation. The initial 
path returned by TRA* is only equivalent in length to TA*(10) 75% of the time for paths 
whose A* length is less than 200 tile widths, whereas with TA* almost all tested paths found 
initially were equivalent to this figure. Increasing F  to 2 finds paths of the same length as 
TA*(10), 75% of the time, up to an A* length of about 400 tile lengths, and a higher value 
for this parameter (and thus more time) is required to yield this value for all paths.

This is because TA* has inherently more accurate 3 -values, which is possible because 
visiting each triangle individually allows a better estimate, whereas TRA* skips entire corri­
dors of triangles, only having the opportunity to adjust these values a fraction as often. This 
means that the initial solution returned by TRA* is often longer than that for TA*, and 
TRA* also takes longer to converge on an optimal solution, in relation to  the time required 
to  find its first solution. Note, however, that while TRA* requires a greater F  parameter 
value to find an optimal solution, its first solution is so fast that converging on an optimal
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Figure 9.12: Ratio of 75th percentile of TRA* path length to  TA*(10)

solution with TRA* still takes a fraction of the time that TA* requires to find arrive at the 
same solution.

In Figure 9.13, we see this effect becomes even more pronounced at the 95tfe percentile. 
Occasionally, the length of the first path found by TRA* is significantly longer even than 
that of an optimal path constrained to the grid (A* path). The lengths of the paths returned 
by TRA*(2) are fortunately less, with this figure decreasing as more time is allotted to the 
algorithm.

Although in these rare cases, it takes TRA* several times longer to  yield a path close to 
that of TA*(10), than it took to find the first solution, these are likely the cases where TA* 
requires a higher F  parameter to find such a value as well, and the initial solution is returned 
by TRA* several times faster than by TA*, so TRA* will still, in most cases, converge on 
an optimal solution first. Thus, although the initial path returned by TRA* is often longer 
than tha t returned by TA* and it takes longer in relation to the time to find this first path, 
to  converge on an optimal path, it still most often reaches this value long before TA* does. 
The benefit of the smaller state space afforded by the most abstract graph, then, outweighs 
the drawback created by the less accurate distance measures resulting from it.
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9.3 D iscussion
The behaviour seen in the anytime algorithms associated with TA* and TRA* could be 
exploited using a clever algorithm. One can see that in most cases, when the first path 
found by these algorithms is short or found in a very short amount of time, this path is 
very close to optimal, if any longer at all. Conversely, when the first path found is quite 
long or requires more time to find, this path is often farther from optimal and the algorithm 
requires longer to converge.

Using this knowledge, one could devise an algorithm which takes the length of the first 
path found or the time required to find it, and determines a multiple of this time at which a 
solution very close to optimal is likely. Therefore in the case of short or quickly-found paths, 
the algorithm could be stopped immediately and in the case of paths which are longer or 
require more time to find, it could be given more time to converge.

This type of setup would be useful in cases where there is a certain, fixed amount of time 
in which some number of paths must be found. Such a situation is common for example in 
Real-Time Strategy games where a number of objects could be ordered to move somewhere 
with a single command. This way less time is wasted on simpler paths allowing more for 
more difficult ones, and providing better quality paths on average.

This also alleviates another problem common to anytime algorithms: the fact that an 
optimal solution is often found long before the algorithm can determine that it has found one.
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This approach halts the algorithm when it is likely that an optimal solution has been found, 
which can sometimes result in a suboptimal path being returned. However, in commercial 
games, a slightly suboptimal path is often more desirable than one which requires more 
resources to find.

When comparing our algorithms TA* and TRA* to A* and PRA*, a number of patterns 
emerged. First, the use of a triangulation to represent the environment gave TA* and 
TRA* an advantage over the other methods, which used a grid. Even TA* found solutions 
faster than PRA*, despite that the latter benefitted from an abstraction mechanism and the 
former worked on the environment itself. TRA* performed the best of all the algorithms 
tested, by having both the superior environment representation, and an efficient abstraction 
thereof.

Second, an abstraction mechanism not only allowed the methods PRA* and TRA* to find 
solutions faster than their counterparts with no abstraction, but also made these methods 
more predictable and less hampered by the length of the path. PRA*, which searched an 
abstraction of the grid-world environment, performed better than A*, which searched the 
grid world directly. Similarly, TRA* performed better searching the most abstract graph of 
the triangulated environment than TA* did searching its base-level graph.

The fact that PRA* was not as affected by the length of the path can be attributed to 
the fact that the longer the path between these points, the more abstract the layer at which 
they meet and therefore the more abstract the layer at which the search is performed, thus 
keeping the number of states searched from increasing as much with this distance. These 
layers of abstraction make PRA* the better of the two abstraction-based methods in dealing 
with longer paths effectively. While the most abstract graph used by TRA* has a single 
layer, its vertices again depend only on the number of obstacles in the environment, so an 
algorithm searching this reduced representation of the environment is affected less by the 
length of the resulting path by virtue of paths requiring fewer vertices.

Similarly, the abstractions allow these two methods to be more predictable (with less 
variation in the times to find solutions) than their counterparts. In both cases, this is a 
result of the details which complicate pathfinding tasks being lost to the abstracted version 
of the environment. In the case of TRA*, such details as dead ends, long corridors, and 
complexities in component barriers, are identified explicitly during the abstraction process. 
For PRA*, these are removed as increasingly abstract representations of the environment 
lose more information about the original environment.

To conclude, PRA* was the most predictable and least affected by path length, of all the 
methods tested. Considering the grid-world environment on which it was based, it showed 
vast improvement over A*, the other algorithm based on this representation. TRA* also 
showed that it handled such increasing distances well, and its running times did not vary 
as much as the methods which did not benefit from abstractions. The main strengths of 
TRA* are first its raw speed, which was greater than any other method, and second, the 
ability of its anytime algorithm to converge on an optimal solution.

TA* also offered significant speed, being faster than all but TRA*, and similarly afforded 
convergence to an optimal path. While it did not handle distance as well as the abstraction- 
based methods, it was still faster than both grid-based methods. TA* could still be useful 
over TRA* in situations where the environment changes often enough that updating the 
most abstract graph for each modification becomes prohibitive. In this case, the triangu­
lation could be repaired by the mechanisms provided by the DCDT technique described in 
Section 3.4, and TA* can search on this environment directly, while still returning paths 
quite quickly.
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Chapter 10

Conclusion and Extensions

In Section 10.1, a number of the advantages apparent from the work done to  this point are 
discussed, while the many possible directions for further work and their expected benefits 
are explored in Section 10.2.

10.1 Conclusion
In this section, we will discuss the findings and contributions of the work in this thesis. Sub­
section 10.1.1 will summarize the findings regarding using triangulations as an environment 
representation and Subsection 10.1.2 will discuss the further work with regard to  using 
triangulations to efficiently find paths for nonpoint (specifically, circular) objects. Then 
Subsection 10.1.3 will conclude the main contribution of this work—the reduction technique 
applied to the triangulation graph. Finally, Subsection 10.1.4 revisits the work done in 
terms of faster point location.

10.1.1 Triangulations
First we have seen the advantages of using polygonal representations for pathfinding. This 
reduces the state space significantly, especially in cases of line segment obstacles, and more 
so when these are not axis-aligned, forcing grid representations to either greatly increase 
their resolution or risk missing paths. Even in tiled environments which are designed to 
work with grid-based pathfinding solutions, polygonal representations have a smaller state 
space, representing any area similarly regardless of size.

The benefits of this representation alone can be seen in the results of our experiments with 
TA*. Triangulations in particular are an ideal polygonal representation for environments 
for a number of reasons. First, they provide a simple, uniform interface for pathfinding, 
second, there are fast algorithms for representing the environment in this way, third, they 
are conducive to repair in the presence of changes in the environment, and finally, they have 
useful properties for defining enhancements, which we will discuss next.

10.1.2 Base-level Enhancements
Because of the simple structure of a triangle, we have been able to introduce enhancements 
to  the triangulation to improve base-level search. Such an improvement was the elimination 
of multiple representations of the graph and undesirable sliver-like triangles resultant from 
applying the Minkowski Sum operation to  “grow” obstacles. This was achieved by calculat­
ing maximum radius for a circular object to travel between any two edges of a triangle.
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This idea was extended to allow calculation of the shortest path for such an object 
through a channel of triangles in time linear in the number of triangles in that channel. 
This was important because in searching for an optimal path for an object between two 
points, it is often necessary to determine the lengths of the shortest paths through several 
channels.

Another enhancement to which triangulations lend themselves was the main contribution 
of this work: abstraction of the graph induced on the base triangulation. The results of this 
are concluded next.

10.1.3 Graph Abstraction
The homogeneous manner in which triangulations represent the environment allowed for 
the abstraction process to be performed on it. By identifying dead ends, corridors, decision 
points, trees, rings, and other graph structures, the pathfinding task was simplified to de­
termining on which side of each obstacle to go. This is the most abstract graph one can 
search when looking for optimal paths.

This abstraction allowed us to identify several situations where this path can be found 
without using search, and when search was required, greatly decreasing the search space. 
The main advantage of this approach was that pathfinding not only did not depend on the 
size and orientation of areas, but it also did not depend on the properties of the individual 
constraints, only the number of obstacles.

As we saw in our experiments with TRA*, this abstraction was very successful in provid­
ing an efficient representation for pathfinding. It also provided an excellent basis for further 
research. This is discussed in more detail in Section 10.2.

10.1.4 Point Location
Finally, since the most time-consuming part of pathfinding was often found to be finding 
the triangle in which the start or end point is contained, it was necessary to implement an 
improved point location technique. This was doubly true due to the fact that pathfinding 
on the abstract graph involved finding the containing triangles for both the start and goal 
points and slow point location would threaten to overshadow the benefits of TA* and TRA*.

Point location was previously done by taking the “first” triangle in the triangulation and 
crossing edges toward the desired point until arriving at the triangle containing the point. 
This was prohibitively slow, taking time proportionate to the number of triangles in the 
environment.

To combat this, a number of rectangular “sectors” were defined covering the environment 
and whose midpoints were determined. When dealing with a triangle while either creating or 
repairing the triangulation, the algorithm would check if it overlapped any sector midpoints, 
and if so, would associate that triangle with the corresponding sector.

When point location was performed, the closest sector midpoint to the desired point 
was calculated and the point location “walk” was started from the triangle associated with 
that sector, which could be accessed in constant time. Even with a relatively sparse grid 
of sectors, this technique improved point location considerably, effectively eliminating the 
process as a bottleneck to pathfinding.

10.2 E xtensions
There remain numerous possibilities for application of both triangulations and abstractions 
thereof, to pathfinding, motion, and other areas. Nonstatic environments are an area of 
particular interest. The three main situations in this area involve mobile obstacles, group
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pathfinding, and multiple objects, which are discussed in Subsections 10.2.1, 10.2.2, and 
10.2.3, respectively. Then we discuss possible extensions to this work other representations 
for the graph in Subsection 10.2.4, concerns regarding maintaining multiple, size-dependent 
graphs in Subsection 10.2.5, and finally offer some concluding remarks on the work in Sub­
section 10.2.6.

10.2.1 Mobile Obstacles

obstructed path 

new path /

Figure 10.1: Object steering around a mobile obstacle within its channel

obstructed path

new path

Figure 10.2: Object finding another channel when blocked by a mobile obstacle

Mobile obstacles is the situation involving either obstacles or other objects which may 
move into the path of ours, but whose motion we can neither control nor know beforehand.
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In this case, the fact that the result of our pathfinding efforts is a channel of triangles as 
opposed to a single path can work to our advantage. If we predict that an obstacle will 
enter our object’s channel about the time our object will reach that point, we have a few 
options for what to do to resolve such a collision.

The first possibility is that the collision occurs in a very wide triangle, and our object 
can simply move around the obstacle easily within the channel. Such a situation is shown 
in Figure 10.1. If it occurs in a narrow triangle and such a trivial fix is not possible, it 
may be that the obstacle will soon leave the channel or move to a wider triangle in the 
channel so our object can continue within the channel without waiting long. Finally, if the 
obstacle will block our channel and significantly hinder our object’s progress, we can search 
the triangulation for a new channel and continue from there. A situation involving a mobile 
obstacle blocking most of a channel, and an alternative path being found is illustrated in 
Figure 10.2.

10.2.2 Group Pathfinding

Figure 10.3: Group of objects travelling through a wide channel

Group pathfinding is a situation common in Real-Time Strategy (RTS) games and in­
volves multiple objects all starting roughly in the same area and searching for a path to  some 
other area. In this case, our determination of choke points can greatly aid us in pathfinding.

Once a channel is found between the start and goal areas, we can easily determine the 
narrowest point along the path. If this point is wide enough that our objects will not be 
significantly slowed, we can allow the objects to travel between the start and goal areas 
within the channel using some form of local control. Figure 10.3 shows such a case.

If the objects have varying top speeds, it would even be possible to send faster objects 
ahead of the group before narrower points of the channel so fewer have to  travel through it 
once, as is shown in Figure 10.4, reducing congestion and speeding up the group as a whole.

If the narrowest point of the channel would slow the group of objects too much, one 
could search for other channels, and split up the objects between the channels based on the 
narrowest point of each. This way one could send more objects through wider channels, 
and in the case of varying object speeds, faster objects through longer channels as shown
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( p  slower object 

O  faster object

Figure 10.4: Group of objects spreading out to go through a choke point

slower object 

O  faster object

V P

Figure 10.5: Group of objects splitting up into different channels
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in Figure 10.5. One could view this problem of the fastest path for a particular group as a 
type of network flow problem.

Another consideration lies in the possibility of a group of objects being attacked when 
in an RTS game. In such an occurrence, it is more advantageous that a group of objects 
be close together so as to repel the attack more effectively. Thus, early in the game if the 
terrain and enemy positions are not known, it might be better to  sacrifice group speed and 
keep the objects close together within one channel in case of an attack, whereas later in the 
game when terrain and enemy positions are known, one could split up a group travelling 
through unhostile terrain to get the objects to  the goal sooner.

10.2.3 Multiple Objects
Finally, the problem of multiple objects is when we control a number of objects which all 
want to move from their unique starting positions to different goals. An approach to this 
problem in a discrete-time grid world [45, 46] can be applied to triangulations with minor 
adjustments. Instead of reserving cells completely for a time step, objects could partially 
reserve triangles for time intervals. This way a small object would only reserve a small 
portion of a large triangle.

crowded path 

valid path

Figure 10.6: Object selecting a less crowded channel

When an object is searching for a path, it would disregard triangles that were reserved 
to  a certain threshold based on that object’s size, at the time when the object would pass 
through that triangle given the path. Figure 10.6 shows an object rejecting a channel 
containing a crowded triangle in favour of one which is less congested. As each object 
chooses a path, it reserves a portion of the triangles in the path (proportionate to the size of 
the object and that of the triangle) for the time intervals that it would pass through them.

This would prevent triangles from being too congested at any one time, and some local 
control should be sufficient to create valid paths for each object within its channel. Because 
this is done in continuous space, one would have to adjust a threshold dictating when an 
object would regard a triangle as too crowded for traversal, in order to  retain as many paths 
as possible while avoiding over-congestion.
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10.2.4 Further Abstraction
There are other extensions that are possible for the graph and abstraction layers. Further 
abstraction is possible if one collapses doubly-connected components of the abstract graph 
into single nodes of a more abstract graph. Where on the abstract graph the nodes represent 
decision points for which way to go around an obstacle, in this new graph, they would 
represent “rooms” in the environment which contain multiple paths between their entry 
and exit points.

Figure 10.7: Graph of level-3 nodes

This graph would then be a tree of doubly-connected components. Because it is a tree, 
the highest level of the pathfinding problem would become trivial as there is only one path 
between any two points in a tree. The best paths between each pair of entry points of each 
doubly-connected component could even be cached, and then the search function would 
only have to get from the start and goal points on to this new abstracted graph, after which 
the pathfinding task would be simple. An abstract graph is shown in Figure 10.7 and its 
corresponding tree of doubly-connected components in Figure 10.8.

This approach may find suboptimal paths since the pathfinding is being done in con­
tinuous space and the shortest path between points in two triangles can change depending 
on where in those two triangles the points are. However, if the triangulation has certain 
properties, this suboptimality may be negligible, and in large environments it may be a 
welcome trade-off for faster searches. If this is not the case, the paths can always be refined

Figure 10.8: Tree of doubly-connected components 
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when needed on a less abstract version of the graph.

10.2.5 Size-Dependent Graphs
Another possible extension of this technique is apparent when considering that with certain 
object sizes, some edges of the graph will not be traversable. This means that during the 
search, some resources can be wasted searching dead ends, and the width must always be 
checked when moving between nodes. A solution to this problem would be to have multiple 
abstract graphs for different sized objects.

Figure 10.9: Abstract graph for a small object

Figure 10.9 shows an abstract graph for a small object, whereas Figure 10.10 shows the 
abstract graph for a larger object in the same environment. This second graph is missing 
edges corresponding to narrower corridors through which the larger object could not fit, and 
therefore has fewer edges. Although this is not as general as simply recording the widths 
through triangles, it would use less memory than creating multiple copies of the base-level 
graph, and allows for more efficient searching at the cost of more preprocessing, which is 
often desirable in commercial games.

If there are few different sizes of objects, the abstract graphs could simply be calculated 
and stored for each size of object. However, if there are more sizes of objects than there are 
different sizes of choke points in the environment, one could let the environment determine

Figure 10.10: Abstract graph for a large object 
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the abstract graphs. Thus, if all objects are within a certain size range, each time there is a 
choke point of a new width in that range, we could create an abstract graph to reflect this 
connectivity. Thus, only objects smaller than the width of this choke point would see an 
edge crossing it. Then for any object, one would check into which range of sizes it fits and 
use the appropriate abstract graph in the ensuing search.

10.2.6 Final Thoughts
Indeed, there are many possible extensions of both polygonal pathfinding using Constrained 
(Delaunay) Triangulations and topological abstractions thereof. Hopefully these and more 
techniques will find further merit in academia and eventually application in commercial 
games and robotics.
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