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Abstract

One of the principal applications of machine learning in psychiatry is

to build automated tools that can help clinicians predict the diagnosis and

prognosis of mental disorders using available data from patients’ profiles.

Here, in two different studies, we investigate ways to use machine learn-

ing to produce models that can predict mental disorders and their progno-

sis, using different neuroimaging modalities, genotype data, and clinical

information.

The first study addresses the challenge of producing a classifier that a

human clinician can interpret and potentially use in clinical practice. In

this study, we were seeking a simple and accurate classifier that can cor-

rectly distinguish Alzheimer’s disease (AD) patients from healthy controls

(HC). We wanted to learn this classifier from the data in the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) database, using just a fairly small

set of input features, including grey matter volumes of 33 regions of inter-

est derived from brain structural MRI, as well as the APOE genotype. Run-

ning our overall learner, involving standard feature selection processes

and three simple base-learners on these features, produced a 7-feature

elastic net model that achieved accuracy of 89.28% on the test set. Next, we

ran the same overall learner using two more-complex base-learners over

the same initial dataset. The accuracy of the best model here (SVM-RBF
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over 23 features) was 90.47%, which was not statistically different from

the performance of our much simpler linear model, over just 7 features.

We, therefore, introduce this simple 7-feature model as our accurate and

simple classification model.

Our second study explored the utility of machine learning methods

in predicting the response of a group of schizophrenia patients (n= 51

to 90, depending on the response criterion) to a specific treatment, given

their functional magnetic resonance imaging data, structural magnetic res-

onance imaging data, diffusion tensor imaging data, and clinical infor-

mation. In this study, we explored various clinical measures for defining

treatment response, various feature types for imaging and non-imaging

data, various machine learning tasks and learning algorithms, but (proba-

bly due to the small sample size), we were not able to obtain any signifi-

cant results.
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Preface

The third chapter of this dissertation, Alzheimer’s diagnosis prediction,
is taken from our collaborative research manuscript, “A Simple Classifi-
cation Framework for Predicting Alzheimer’s Disease from Region-based
Grey Matter Volume and APOE Genotype Status” by Reyhaneh Ghoreishi-
amiri, Graham Little, Matthew R.G. Brown, and Russell Greiner.

Data preprocessing and feature extraction in Chapter 2 was performed
by Graham Little. Data preprocessing and feature extraction in Chapter 3
is my original work, under the supervision of Dr. Sunil Kalmady. The
script that was used for brain parcellation in Section 3.3.2 and Section 3.3.3
was developed by Dr. Sunil Kalmadi.

The survival regression tools, mentioned in Section 3.6, were devel-
oped by Humza Heidar and Dr. Russell Greiner.
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Chapter 1

Introduction and Background

With the gradual collection of large psychiatric datasets, psychiatric re-
search has also entered the era of Big Data. These datasets often include
thousands of heterogeneous variables, including clinical, neuroimaging,
genomic measures and possibly other modalities [6]. Analyzing such datasets
is challenging, especially when dealing with a high number of measure-
ments and a high number of individuals, and may be further complicated
by highly correlated variables [6]. Supervised machine learning or pre-
diction modelling is a branch of statistical research that focuses on first,
effectively learning the relationship between a large group of input vari-
ables and a target variable, and then, predicting the target variable for
previously unseen instances. Therefore, prediction modelling allows for
individualized prediction of early diagnosis and treatment outcome (as
target variables) in psychiatry research [7].

This dissertation is composed of two psychiatric prediction modelling
studies: Alzheimer’s diagnosis prediction and schizophrenia prognosis
prediction. The two following chapters, Chapter 2 and Chapter 3, are
dedicated to each of these studies. The first study, Alzheimer’s diag-
nosis prediction, is taken from our manuscript, “A Simple Classification
Framework for Predicting Alzheimer’s Disease from Region-based Grey
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Matter Volume and APOE Genotype Status”. This study aims to build a
simple classifier that can accurately distinguish Alzheimer’s patients from
healthy controls using their structural magnetic resonance imaging and
a single genotype, APOE. In this study, we were successful building a 7-
feature elastic net model – 6 regional grey matter volumes and one geno-
type, APOE – with 89.28% accuracy, 84.00% specificity, and 93.54% sensi-
tivity and show that the accuracy of this model is not statistically signifi-
cantly different from those of more-complex classifiers. The second study
aims to classify responder schizophrenia patients from non-responders us-
ing their functional magnetic resonance imaging data, structural magnetic
resonance imaging data, diffusion tensor imaging data, and clinical infor-
mation. In this study, despite exploring many different machine learning
tasks and methodologies, we were not able to achieve any significant re-
sults. Each of the Chapters 2 and 3 will include their own introduction
sections (Sections 2.1 and 3.1), which discusses the background and moti-
vations of each of these studies in more detail.

The rest of this chapter provides relevant background material in order
to clarify the remaining chapters of this thesis.

1.1 Types of Magnetic Resonance Imaging

A magnetic resonance (MR) scanner uses superconducting electromagnets
to create a static high-strength magnetic field, usually ranging from 1.5 to
3 Tesla for hospital scanners [5] (see Figure 1.1). The radio-frequency coils
inside the scanner generate magnetic pulses; when a pulse is turned on, it
modifies the alignment of hydrogen protons (mostly in water molecules)
within the magnetic field and when it is turned off, the protons relax to
their original state, which releases energy that forms the raw MR signal [5].
Another magnetic source, known as gradients, is responsible for creating
the spatial resolution; as the strength of each gradient varies linearly along

2



each dimension, the three orthogonal gradients create a signal in three
spatial dimensions [5].

Figure 1.1: Illustration of a MRI Scanner (taken from [1])

Despite using similar equipment settings, different categories of MR
imaging techniques – structural MR, functional MR and diffusion tensor
imaging – serve different purposes. Structural MR aims for capturing
anatomical abnormalities by measuring the density of water molecules [5];
functional MR aims at capturing the functional activity of different areas
of brain by measuring the changes in the blood oxygen-level dependent
(BOLD) signal [5]; and diffusion tensor imaging aims at capturing the
anatomical abnormalities of the brain (specifically, white matter integrity)
by measuring the shape of diffusion of water molecules [3]. In this section,
we will briefly introduce each of these MR imaging techniques.

1.1.1 Structural Magnetic Resonance Imaging

The goal of structural MRI (sMRI) is usually to measure the density of wa-
ter molecules (hydrogen protons, specifically) at a given location, which
reveals much information about the normal or abnormal underlying tis-
sue – e.g., bone, gray matter, white matter or tumor [5]. sMR scans are
high-resolution (spatial resolution) images that not only provide elabo-
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rate details about the underlying anatomy of the brain, but can be used
as reference images for other imaging modalities (like fMRI and DTI) for
co-registeration and normalization purposes [5]. We will discuss the mea-
sures that we have derived form sMRI data in Section 3.3.2.

1.1.2 Diffusion Tensor Imaging

Diffusion tensor imaging is a means of exploring the tissue structure of the
brain by measuring the shape of diffusion of water molecules, which re-
veals the complex structure of the fiber tracts in the brain and white matter
integrity [3]. As diffusion of water molecules in the tissue can vary with
direction (anisotropic diffusion, as opposed to isotropic diffusion, which is
the same in all orientations; see Figure 1.2), modeling this diffusion reveals
much information about the orientation of the underlying tissue [3].

Figure 1.2: Isotropic vs anisotropic diffusion (taken from [2])

Diffusion tensor (DT, a.k.a. diffusion model) models the diffusion of
water molecules using a Gaussian distribution. At each voxel, DT is mod-
eled as a 3× 3 positive definite and symmetric matrix with three eigen-
vectors, where the major one shows the fastest diffusion direction which
often corresponds to the fiber tract axis of the underlying tissue [3]; see
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Figure 1.3. The diffusion tensor matrix for anisotropic diffusion has form:Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (1.1)

where the three diagonal elements (Dxx, Dyy, Dzz) represent diffusion coef-
ficients along each of the principal (x, y and z) axes and the six off-diagonal
terms (Dxy, Dyz, ...) represent the correlation of motions between each pair
of directions [8]. The diffusion tensor matrix for isotropic diffusion, on the
other hand, has form: D 0 0

0 D 0
0 0 D

 (1.2)

where the diagonal elements are all equal and the off-diagonal elements
are all zero. The three orthogonal eigenvectors at each spatial position
in the brain form a local coordinate system. Thus, the three orthogonal
eigenvectors, alongside the three positive eigenvalues, showing the direc-
tion of diffusity in each of the eigenvectors, are described as an ellipsoid
that shows the isosurface of diffusion probability [3]; see Figure 1.4.

Figure 1.3: Illustration of anisotropic diffusion of water molecules in the
tissue, measured via DTI (taken from [3])

To measure diffusion using magnetic resonance imaging, external mag-
netic field gradients are applied to create an image that reflects diffusion

5



Figure 1.4: Diffusion ellipsoid (diffusion tensor model) with 3 eigenvec-
tors: v1, v2 and v3, and 3 eigen-values: λ1, λ2 and λ3 as an estimation for
the diffusion of water molecules (taken from [4])

in each orientation. Then, this process is repeated in multiple directions to
estimate a three-dimensional diffusion model or tensor [3]. As a result, a
diffusion tensor raw image is a 4D image with the first 3 dimensions show-
ing the spatial position in the brain and the fourth dimension showing the
diffusion-sensitizing directions that have been applied during acquisition.
We will discuss the scalar measures that are derived form DTI data in Sec-
tion 3.3.4.

1.1.3 Funtional Magnetic Resonance Imaging

Functional magnetic resonance imaging is a means of capturing the neu-
ral activity by measuring the real-time changes in the blood oxygen-level
dependent (BOLD) signal [5], which reveals much information about the
neural and cognitive architecture of the brain. When the neural activity in
a region of brain increases, oxygenated hemoglobin races to the region due
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to the increased metabolic need, which causes a rise in the BOLD signal [5].
The BOLD signal is a measure of the ratio of oxygenated to deoxygenated
hemoglobin, a molecule in the blood that is responsible for carrying oxy-
gen.

In an fMRI scanning session, the spatial resolution in the functional
scan is sacrificed for temporal resolution, so the functional image is typi-
cally accompanied by a high-resolution structural scan [5]. The scanning
session parameters are among the factors that drastically affect the fMRI
signal and should not be disregarded, particularly when using collected
data from multiple sites. These parameters include scanner magnetic field
(which is a key parameter for all MR modalities), repetition time (TR),
which is the time between each of the whole brain scans and the voxel size,
which determines the spatial resolution of the functional brain scan [5].

Another issue is that the BOLD signal that we extract from the fMRI
data is not the neural activity itself, but a function of it [5]:

Bi( t ) = f [ Ni( t ) ] (1.3)

where Bi(t) is the BOLD response at time t and location i, and Ni(t) is the
neural activation at time t and location i. Neural activation is mostly con-
sidered as a latent variable that is inferred from observed BOLD response.
Thus, to derive the relationship between the observable variable and the
latent variable, assuming the superposition principle holds for BOLD re-
sponse, we can model the BOLD response to any neural activation func-
tion as [5]:

B(t) =
∫ t

0
N(τ) h(t− τ) dτ (1.4)

where h(t) is the hemodynamic (impulse) response function or hrf, which
is typically a gamma function or difference of two gammas in most of the
studies [5]. Time origin (time 0) is the time when the an event happens or
the neural activity is induced.
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Figure 1.5: The relationship between BOLD signal, Bi( t ), and neural ac-
tivity, Ni( t ), at location i (taken from [5]).

In a task-based fMRI study, the patients perform a particular task ac-
cording to the experiment design to analyze the changes in their neural
activity, while in resting-state, a.k.a. task-free fMRI, the patient is only
asked to rest and not perform any tasks, as the goal here is to analyze the
interaction between their brain regions. We used resting-state fMRI data
in this study. We will discuss the measures that we have derived form
fMRI data in Section 3.3.3.

1.2 Treatment Response Measures

There are currently several different categories of symptomatic and func-
tional severity measures for schizophrenia. To have a well-defined cri-
terion for treatment response (how well a patient responds to a certain
treatment), it is crucial to first, select the severity measure and second, de-
termine the treatment response, based on the selected measure. In this
section, we will present a brief description of each of these severity mea-
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sures.

1.2.1 Clinical Global Impression (CGI)

CGI provides an overall measure that encapsulates all the available infor-
mation, including patient’s history, symptoms, behavior, cognitive state
and functioning, measured by an expert clinician (completely based on
the clinician’s subjective assessment) [9].

The CGI includes two companion one-item measures: First, CGI sever-
ity (CGI-S) describes, on a scale of 1 (normal) to 7 (among the most ex-
tremely ill patients), how mentally ill the patient is at the time of visist,
based on the clinician’s total clinical experience with the particular popu-
lation which the patient belongs to [9]. Second, CGI improvement (CGI-I)
compares the severity of illness between one week before the initiation of
medication and the visit after taking the prescribed medication, on a scale
of 1 (very much improved) to 7 (very much worse) [9]. Section 3.2.1 will
discuss our treatment response definition based on CGI-S and CGI-I crite-
ria.

1.2.2 SAPS and SANS

SANS (Scale for the Assessment of Negative Symptoms) and SAPS (Scale
for the Assessment of Positive Symptoms) are each applied frequently in
clinical settings as a reliable and consistent measure of severity of schizophre-
nia [10]. SAPS asks the clinician to report values for positive symptoms
using 34 items, each on a 6-point (0-5) scale. Items fall under 4 categories:
hallucinations, delusions, bizarre behavior, and positive formal thought
disorder (FTD). SANS, on the other hand, asks the clinician to report val-
ues for negative symptoms using 25 items, each on a 6-point (0-5) scale.
Items fall under five categories: affective blunting, alogia, avolition, anhe-
donia, and attention. Note that this scaling is different from the positive
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and negative symptom scale (PANSS) [10]. Section 3.2.2 will discuss our
treatment response definition based on SAPS and SANS criteria.
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Chapter 2

Alzheimer’s Diagnosis Prediction

2.1 Introduction

Alzheimer’s disease (AD) is a highly prevalent neurodegenerative disease
affecting an estimated 5.5 million Americans [11]. In Alzheimer’s disease,
neurons in all areas of the brain are eventually damaged or destroyed, in-
cluding those that enable a person to perform basic daily functions such
as walking and swallowing [11]. People in the final stages of AD are bed-
bound and demand uninterrupted care and the disease is ultimately fa-
tal [11]. Patients with AD experience progressive cognitive impairment
associated with patterns of structural brain atrophy more severe than the
volumetric loss typical of healthy aging populations, but some of these
structural changes may not be may not be visible to a clinician’s eye by
looking at the patient’s MRI scan until the late stages of the disease. The
high prevalence of AD combined with downstream progressive impair-
ment has motivated investigations into advanced diagnosis strategies ca-
pable of early detection of the disease. Moreover, recent investigations
that apply machine learning techniques to structural brain imaging have
shown promise in accurately discriminating AD patients from controls.
Multiple studies have used voxel-based morphometry (VBM) to distin-
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guish AD patients from controls. In four consecutive studies, VBM fea-
tures combined with different feature selection methods showed high pre-
diction accuracies of 89% to 96% [12, 13, 14, 15]. VBM combined with tex-
ture analysis features has also been successful in classifying AD patients
achieving 92.86% accuracy [16]. Another study, using multimodal features
– including voxel-wise structural MR and fluorodeoxyglucose (FDG)-positron
emission tomography (PET) imaging features, cerebrospinal fluid (CSF)
biomarkers, cognitive scores and APOE genotype data – to predict conver-
sion of Mild Cognitive Impairment (MCI) patients to Alzheimer’s disease,
achieved an accuracy of 92.4% [17]. Additionally, applying a 3D convo-
lutional neural network (CNN) on 3D T1-weighted structural MR images
has shown 99.2% accuracy, 99.5% specificity, and 98.5% sensitivity [18] in
classifying AD patients vs controls (to our knowledge, this is the current
best accuracy result with this dataset on classifying AD patients vs con-
trols). Note that in all of these studies, the diagnostic labels are determined
by expert clinicians. Despite achieving impressive accuracies of 92% to
99% in classifying AD patients, all of these methods use a large number
of features (ranging from 100 to 2000) and complicated diagnostic models
that are difficult for a human to interpret [19] and thus, are not applica-
ble in clinical environments where troubleshooting diagnostic tools is of
critical importance; see Section 2.5.1.

Regional brain features, based on cortical/subcortical segmentation,
involve many fewer variables than voxel-based features; this is more ap-
propriate for simple classification models. One study – which combined
segmentation-based features of cortical thickness, cortical area, cortical
curvature, grey matter density, subcortical volumes and hippocampal shape
– achieved 0.98 AUC1 [20]. A multimodal study achieved 93% accuracy by
combining region-based features from structural MRI, FDG-PET and CSF
proteins (189 features total) [21]. Such models, which use the features for

1AUC = Area Under the Curve of the Receiver Operating Curve (ROC)
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all brain regions (one feature for each region, at least), involve a total of
hundreds of brain features; this means they are necessarily very complex.

A priori selection of the brain regions typically impacted by AD has
been a successful strategy for reducing the complexity of classification
models. Using 6 features – namely the left and right hippocampus volume,
amygdala volume and entorhinal cortical thicknesses – a support vec-
tor machine (SVM) classifier with the radial basis function (RBF) kernel,
scored 0.89 AUC [22], suggesting that only few brain features are needed
to discriminate AD from healthy controls. Additionally, grey matter vol-
umes and diffusion-based MRI parameters over predetermined brain re-
gions have shown utility in classifying MCI patients from healthy controls,
achieving 89.7% accuracy [23]. Taken together, these studies suggest that
simple classification models, on a limited number of brain features, are
sufficient to discriminate AD patients from controls. However, more work
is needed to assess whether simple predictive models involving a limited
number of features can achieve classification results comparable to those
of more complex diagnostic models.

This chapter explores the challenge of learning a simple classifier that
can accurately distinguish patients with Alzheimer’s disease (AD) from
healthy controls. Section 2.2 describes the dataset we used, that describes
each of the 752 patients using a small set of 33 brain volumes along with
the APOE genotype status. Section 2.3 describes how we use that database
to produce an accurate classifier. This process involves the pre-processing
and feature extraction step, base-learners, feature selection methods, eval-
uation method, and overall learners. Section 2.4 presents our training, test,
and feature selection results. Using these 34 features, we first compare the
value of applying our overall learner, involving standard feature selection
processes, with 3 base-learners selected for their simplicity – decision tree,
elastic net and linear SVM – versus 2 relatively complicated base-learners
– SVM with RBF kernel and extreme gradient boosting learner. Section 2.5
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then compares the result of our simple classifier, produced by our over-
all learner with the simple base-learners, to other studies that also classify
Alzheimer’s patients versus healthy controls.

2.2 Participants / Imaging Data

This analysis used data from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in
2003 as a public-private partnership, with the primary goal of testing whether
a combination of serial magnetic resonance imaging (MRI), positron emis-
sion tomography (PET), other biological markers, and clinical and neu-
ropsychological assessment can be used to measure the progression of
mild cognitive impairment (MCI) and early Alzheimer’s disease (AD) [24,
25]. For up-to-date information, see www.adni-info.org.

Out of initially 793 subjects from various ADNI projects who had base-
line scans, 35 subjects were excluded due to segmentation problems and 6
due to missing APOE genotype data. Our analysis considers the remain-
ing (n=752) individuals, described using their baseline MR imaging and
genetic sequencing (including the APOE genotype status, indicating the
number of the APOE4 alleles at the APOE gene locus) – including 337
with a diagnosis of AD (age 75.26± 7.81, 44.8% ♀) and 415 controls (age
74.79± 5.72, 49.6% ♀). Mini-mental state examination (MMSE) [26] scores
as well as clinical dementia rating sum of boxes (CDRSB) [27] scores were
collected for all subjects. MMSE scores ranged from 18-28 for AD patients
and from 24-30 for controls, and CDRSB scores ranged from 1-10 for AD
patients and from 0-1 for controls.

The ADNI data was acquired from 60 different sites across US and
Canada and the diagnostic status of the subjects was labeled by expert
clinicians. To demonstrate our methodology, we merged data from 48 of
their sites to become the training set, ADNI TRAIN (with n=584 subjects)
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Training Set (ADNI TRAIN) Test Set (ADNI HO)
AD HC AD HC

Number 149 ♂/ 113 ♀ 160 ♂/162 ♀ 37 ♂/ 38 ♀ 49 ♂/44 ♀
Age 75.04± 7.87 75.03± 5.66 74.54± 7.40 73.92± 5.90

MMSE 23.16± 2.08 29.07± 1.13 23.42± 2.07 29.06± 1.09
CDRSB 4.45± 1.64 0.03± 0.13 4.25± 1.71 0.03± 0.11

Number of APOE4 0.86± 0.70 0.31± 0.53 0.84± 0.75 0.25± 0.43

Table 2.1: Demographic information for the participants included in the
training and test datasets (divided based on the data acquisition sites).
Numbers for age, MMSE, CDRSB, and the number of APOE4 alleles are
each shown as mean ± STD.

and merged the remaining 12 sites into the held-out test set, ADNI HO
(with n=168 subjects). Note these two sets are disjoint. Table 2.1 provides
demographic information, showing the sex, age, diagnostic distributions
and other information, for the training and test sets.

2.3 Materials and Methods

2.3.1 Image Acquisition and Segmentation

As part of the ADNI data collection, standardized structural MR imag-
ing data was acquired for all participants using a sagittal magnetization-
prepared rapid gradient echo sequence, with 1 × 1mm2 in-plane resolu-
tion, 1.2mm slice thickness, and a field of view of 192 × 192mm2 [28]. The
scanner field strength varied from 1.5 to 3.0T, depending on the site [28].
Here, we focused on the participants’ baseline imaging data. We used
the Freesurfer (version 5.3) segmentation pipeline to extract regional cor-
tical and subcortical volumetric measurements from each subject’s MRI
scan [29]. This process generated 68 regional cortical volumes (34 in each
hemisphere), as well as 43 subcortical volumes for each subject. To com-
pensate for the possible existing variance in the brain sizes of individuals,
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we used the normalized percent volumes of each region, which is 100 times
the ratio of the volume of that region, divided by the total intracranial
volume, for each individual.

From the segmentation output, we selected the 33 normalized regional
brain volumes that have shown robust group-level differences in previ-
ous imaging studies of AD: 10 subcortical regions (left and right thala-
mus [30], putamen [30], amygdala [31], hippocampus [32] and lateral ven-
tricles [32]), 10 medial temporal regions [31] (right and left parahippocam-
pal gyrus, entorhinal cortex, inferior temporal gyrus, middle temporal
gyrus and superior temporal gyrus regions), 8 parietal regions [33] (left
and right posterior cingulate gyrus, isthmus of cingulate gyrus, inferior
parietal lobule and precuneus), 3 callosal regions [34] (posterior, central
and anterior corpus callosum), and bilateral cerebellar cortex [35]. In ad-
dition to these brain imaging results, Corder et al. [36] showed that the
number of the APOE4 alleles at the APOE gene locus is widely associated
with late onset Alzheimer’s disease. Our dataset therefore described each
patient using this one genotype, as well as the normalized grey matter
volumes of these 33 regions.

We z-scored each feature to have a mean value of 0 and a standard
deviation of 1. Our training dataset describes each subject

x = [x1, ..., x34]

based on normalized brain volumes from 33 brain regions (xi for i ∈
{1, 2, ..., 33}), and the APOE genotype status x34.
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2.3.2 Base Learning Algorithms

We input this data to various base learning algorithms, all implemented
in the Python software packages scikit-learn1 and XGBoost2. Binary deci-
sion trees (DT) are one of the most visually simple classifiers; they are also
similar to clinical algorithms used for sequential diagnosis in medicine.
We limited the depth of our decision trees to 10 and the number of leaf
nodes to 20 for further simplicity and also to reduce the chance of overfit-
ting. We also consider two linear models, each learning a weight vector
W = [w0, w1, ..., w34] ∈ <34, using the function

yW( x ) =
34

∑
i=1

wi × xi + w0 (2.1)

Here, the model predicts the subject x has AD ⇐⇒ yW( x ) is larger than
0. One linear model, logistic regression with elastic net penalty (EN), was our
second simple classifier, combining L1 (Lasso) and L2 (Ridge) regulariz-
ers with a ratio (L1 ratio) that weighs the two penalties and an α parame-
ter that weights the penalty term [37]. Support Vector Machines (SVM) is
one of the most commonly used classifiers in Alzheimer’s prediction stud-
ies [12, 13, 14, 15, 21]. In this study, we consider SVM classifiers with two
different kernels: the linear and radial basis function (RBF) kernel [38].
The linear SVM (`SVM) is an example of a simple classifier while SVM
with RBF kernel (rSVM) is used as an example of a more complex non-
linear method. Extreme Gradient Boosting (XGB) [39] is a gradient boosted
decision method, which is also used as as an example of a more complex
non-linear base-learner in this study.

”Overall learner” OL is the system that invokes the pre-processing steps,
etc., before running the base-learners. It also does the grid-searches to find

1See the scikit website, http://scikit-learn.org/
2See the XGBoost website, https://xgboost.readthedocs.io
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the best learning algorithm and feature selection parameter settings, and
also selects the best of these learners, based on the performance over the
training data (see Figure 2.1).

2.3.3 Learning Process

We ran our OL twice, over different sets of base-learners: once for the sim-
ple base-learners – `SVM, EN, DT – and once for the more-complex base-
learners – rSVM and XGB; for further clarity, we name the first one S.OL

and the second one C.OL. Each of these runs produced a classifier, one
simple and one complex.

Recall we used a training set ADNI TRAIN, of 584 subjects, and a dis-
joint test set ADNI HO, of 168 subjects. In both cases, OL partitioned
ADNI TRAIN into 5 folds and and used the same folds for all 5 base-
learners. Each base-learner had to determine the best values for a set of
hyper-parameters (described below), and use these when learning its clas-
sifier. The learning algorithm identified the best settings for these hyper-
parameters based on average 5-fold cross-validation (CV) accuracies using
grid search.

OL then used the 5-fold cross-validation accuracies of these base-learners
(accompanied by various feature selection methods, described in Section 2.3.4)
with these selected hyper-parameters, to identify the best-learners. It then
ran that best base-learner on the entire training set to produce classifiers;
we then tested the learned classifiers (simple and complex) on the test set,
ADNI HO. We evaluated our final models using specificity and sensitiv-
ity, as well as accuracy. For all three measures, for each model (simple and
complex), we reported the performance of that model on the test set, as
well as the mean and standard deviation, over the 5 folds of the training
set.

For SVM methods, the C hyper-parameter was chosen from {1E-5, 1E-
4, ..., 1E3, 1E4}, and γ was chosen from {1E-6, 1E-5, ..., 1E1, 1E2}. For

18



elastic net, the α hyper-parameter was chosen from {1E-4, 1E-3, 1E-2, 1E-
1, 2E-1, ..., 9E-1} values and L1 ratio from {0, 5E-2, 1E-1, ..., 9E-1, 9.5E-1,
1} values 1. Note that setting the L1 ratio to 1 means the learner only ap-
plies L1 regularization (aka Lasso classification) and setting it to 0 only
applies L2 regularization (aka Ridge classification). For the decision tree
base-learner, we set the maximum depth of the tree to 10 for further sim-
plicity of our tree model and then used internal cross-validation to find
the best values of three hyper-parameters: minimum samples split is the
minimum percentage of training set instances required to split an inter-
nal node, chosen from a range of values between 0.005 to 0.480 (of total
number of samples); minimum samples leaf is the minimum percentage of
instances required to be at a leaf node, chosen from a range of values be-
tween 0.005 to 0.480 (of total number of subjects); and maximum number of
leaf nodes controls the width of the tree at its leaf level, chosen from range
of 2 to 20. For the extreme gradient boosting learner, the number of tree es-
timators was chosen from {50, 100, 150, 200}, the maximum depth of the trees
from {2, 4, 6, 8}; the learning rate from {0.0001, 0.001, 0.01}; the minimum
child weight (which is the minimum sum of instance weight that is needed
in a child) from {1, 3, 5}; the subsample (which is the subsample ratio of the
training instance) from {0.6, 0.7, 0.8, 0.9}; and column sample by tree is the
subsample ratio of the columns when constructing each of the trees from
{0.6, 0.7, 0.8, 0.9}2.

To statistically compare the accuracy of our classifiers (on ADNI HO)
against each other and see if their classification rates are significantly dif-
ferent, we used the mid-p-value McNemar test [40] and reported the null
hypothesis test result at β = 0.05 significance level, as well as the p-values.
Any p-value smaller than β suggests rejection of the null hypothesis.

1See Elastic Net’s API, https://scikit-learn.org/stable/modules/generated/sklearn.linear˙model.ElasticNet.html
2See XGBoost’s API, https://xgboost.readthedocs.io/en/latest/python/python api.html
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2.3.4 Feature Selection

First, note that the decision tree learner (similarly, extreme gradient boost-
ing learner, which is a tree-based learner) has its own inherent way of
choosing the best subset of features. At each internal node, this learner
splits the available training instances based on the feature that best sepa-
rates the class labels in terms of reducing the Gini impurity criterion. This
process stops when the current node is sufficiently pure; this means the re-
sulting decision tree will typically only use a small subset of the features.

The OL system also considered several approaches to learn yet simpler
models, which involved fewer features. Here, it explored two filtering fea-
ture selection methods, each as a pre-processing step to reduce the num-
ber of features that are given to the base-learner (and hence the learned
classifier): a simple univariate feature selector (UFS), and minimum re-
dundancy maximum relevance (mRMR) [41]. Univariate feature selection
method selects the top k features based on ANOVA 1 F-values [42]. This
method first computes the F-value for each individual feature, and then
selects those with top k∗ values, using k∗ found by grid-searches. Such
univariate feature selection methods, however, do not consider the corre-
lation between the features [42]. The mRMR method addresses this by se-
quentially seeking a set of features that maximizes the mutual information
between each feature and the target classification variable while minimiz-
ing the mutual information between the currently-selected features.

For the linear models (SVM-linear and elastic net), S.OL also considered
the “recursive feature elimination (RFE)” algorithm [43]: a wrapper feature
selection method that sequentially removes the least important features,
based on the value of learned linear weights – i.e., initially the feature in-
dexed by i∗ = argmini∈{1,..,34}|wi|. (There are fewer feature weights to
consider in successive iterations.)

1Analysis of Variance
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All of our feature selection methods – i.e., UFS, mRMR and RFE – take
as input, both the initial dataset and a number k∗, which is the number
of features to use. To determine k∗, OL first computes the average cross-
validation accuracy âcc( k ) for each number of features k ∈{1, 2, . . . , 34};
then sets a∗ = maxk{âcc( k )} to be the most accurate, and k∗ = arg maxk{âcc( k )}
to be the associated value. To find this k∗, OL of course ran the feature se-
lection methods “in-fold” – i.e., determining the best size-k subset of fea-
tures for each fold during training. Note that setting k = 34 in each of the
of feature selection methods is equivalent to applying no feature selection.

Figure 2.1 summarizes our method, showing the combinations of base-
learners and feature selection methods, within each version of OL.

2.4 Results

This section first describes our cross-validation results on the training set
ADNI TRAIN (composed of subjects’ data from 48 acquisition sites), i.e.,
the cross-validation accuracies of the best classifiers – one from S.OL and
one from C.OL (Section 2.4.1). This analysis identified the best learners;
we then ran just these two resulting classifiers on the independent held-
out test set, ADNI HO; those results appear in Section 2.4.2. Section 2.4.3
describes the features selected by the simple classifier, EN7.

2.4.1 Cross-validation Accuracy on the Training Set, ADNI TRAIN

Table 2.2 and Figure 2.2 show the mean and standard deviation of the
cross-validation performance of our best simple and complex learners,
EN7 and rSVM23. Note that the mean cross-validation accuracy, specificity,
and sensitivity of the two models are close to each other – i.e., within the
boundaries of each other’s error bars.
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Figure 2.1: Our overall framework: Left-to-right is the training compo-
nent, to produce both a simple classifier (here EN7, on top, using S.OL)
and a complicated classifier (here rSVM23, on bottom, using C.OL). Each
of these OLs considered a set of feature selection methods, from { RFE,
UFS, mRMR }, and a given set of possible base-learners – S.OL considered
EN, `SVM and DT, while C.OL: rSVM and XGB. (Note that DT did not
use RFE). The RED arrow, in each, is the combination of feature selection
method and base-learner with the best 5-fold cross-validation accuracy.
We then evaluated each of these classifiers, by running each on the
ADNI HO (vertical, on right).

2.4.2 Results on the Held-Out Test Set, ADNI HO

As described in Section 2.3.3, we twice ran our overall learner OL over
the training set ADNI TRAIN (composed of 48 sites, with a total of n=584
patients) to produce two classifiers – here, the elastic net model with 7-
features, EN7, and the RBF SVM model with 23-features, rSVM23. Then, to
evaluate and compare the effectiveness of these classifiers, we ran those
classifiers on the held-out test set, ADNI HO (composed of 12 sites, with
a total of n=168 patients). Table 2.3 shows the test accuracies of these
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EN7 rSVM23

Accuracy 87.50± 1.76 87.67± 3.16
Specificity 83.56± 2.98 82.40± 5.44
Sensitivity 90.70± 3.19 91.93± 3.92

Table 2.2: Mean and standard deviation (STD) of the 5-fold cross-
validation (CV) performance of EN7 and rSVM23 models

Figure 2.2: Mean and standard deviation (STD) of the 5-fold cross-
validation (CV) performance of EN7 and rSVM23 models, on ADNI TRAIN.
The red dots show the hold-out performance of these models, on
ADNI HO.

two produced classifiers, along with the result of their statistical com-
parison, based on the McNemar test. Since the p-value of the McNemar
test was above 0.05 (0.4531), no statistical difference was found between
the accuracy of the simple and complex models on the held-out dataset
(ADNI HO).

2.4.3 Feature Importance, Based on EN7

EN7 selected APOE and 6 brain regions; Figure 2.3 shows the locations of
the 6 regions, and Table 2.4 shows their associated weights, which cor-
responds to their “importance”. Note that interestingly, the automatic
feature selection results show 3 regions in both hemispheres (3 bilateral
regions).
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Model p-value
EN7 rSVM23

Accuracy 89.28 90.47 0.4531
Specificity 84.00 86.66
Sensitivity 93.54 93.54

Table 2.3: Test (hold-out) results using EN7 and rSVM23 models and the
p-value of the statistical comparison of their accuracy based on McNemar
test

Name Location Weight
Left hippocampus top left 0.4221

Right hippocampus bottom left 0.2896
Left inferiortemporal volume top middle 0.3036

Right inferiortemporal volume bottom middle 0.2535
Left entorhinal volume top right 0.3802

Right entorhinal volume bottom right 0.2181
APOE -0.3621

Table 2.4: EN7’s weights for the features. (The 1st column refers to the
name of the features and the 2nd column refers to the location in Figure
3.)

2.5 Discussion and Analysis

2.5.1 Performance of Simple Alzheimer’s Disease Classifi-

cation (EN7)

In this study, we applied various machine learning algorithms to APOE
genotype status, and regional grey matter volumes from 33 brain regions
(that previous clinical studies have shown to be influenced by progression
of AD) to learn a model that can predict Alzheimer’s disease. We consid-
ered five base learners (including three simple models within S.OL). We
also considered the effect of feature selection.

As noted in Section 2.1, there are many previous studies on prediction
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Figure 2.3: Locations of the features used by the EN7 models. Color is
based on the absolute value of EN7’s weight of the feature.

of AD using structural MRI. Most of these previous studies concentrated
on either achieving high prediction accuracy or mere simplicity (by using
the grey matter volumes for a very small number of recognized brain re-
gions), but this study is an attempt to create a balance between prediction
accuracy and simplicity of the prediction framework. An earlier study
demonstrated that a 3D convolutional neural network could achieve high
accuracy (99%) using a large number of voxel-based features [18]. There
were other region-based studies using structural MRI data, either com-
bining a variety of measures with regional grey matter volumes, includ-
ing cortical thickness, surface area and cortical curvature [20], or combin-
ing regional data from different imaging modalities [21], that can achieve
high classification performances of 0.98% AUC and 93% accuracy, respec-
tively. The problem with these approaches is that a system that involves
too many features might not be used in a clinical environment. This means
that even though they have high accuracies, clinicians may be uncomfort-
able using them because clinicians might find it difficult to understand

25



processes that involve a large number of features.
In another study, Jongkreangkrai et al. [22] learned an RBF-kernel SVM

over bilateral hippocampus and amygdala grey matter volumes and en-
torhinal cortical thickness features. This achieved an AUC of 0.89, which
is especially impressive as it used only 6 features. However, the result-
ing “SVM with RBF kernel“ classifier involves a complex combination of
the features, which prevents users from reasoning about the influence of
each feature. By contrast, it is easy to reason about linear classifiers (Equa-
tion 2.1) as the sign of the coefficient wi tells whether increasing that fea-
ture’s value xi (mutatis mutandis) increases the risk of AD, or decreases it;
see Table 2.4.

2.5.2 Explaining EN7’s Feature Selection Results

Table 2.4 shows the weights for the 7 features that appeared in EN7. Jongkre-
angkrai et al. [22]’s 6-feature RBF SVM model, mentioned in Section 2.5.1,
also used the cortical thickness for 4 of these brain regions: left and right
hippocampus and entorhinal cortex. However, there is no easy way to
read off the influence of a variable, nor even the directionality, in non-
linear models, like RBF SVM or decision trees, in general. This is possi-
ble in linear models, such as EN: here finding a feature whose associated
weight is positive, means the chance of AD increases as that variable’s
value increases, mutatis mutandis.

Previous studies on dynamics of grey matter loss in Alzheimer’s dis-
ease suggest that bilateral hippocampus regions are areas of the brain that
are most strongly affected by AD, which makes them appear as the most
discriminating features in the classification task [44]. We also saw that the
feature weights of bilateral regions are not similar to each other. This is
consistent with the findings of clinical studies that claim grey matter loss
in AD is asymmetric [45]. Studies claim that entorhinal cortex, which is
the gateway to hippocampus, is one of the first areas that AD begins to af-
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fect, which suggests that grey matter volume for this area may help iden-
tify patients at early stages of AD [46]. All of these 6 marked areas were
located in the temporal lobe, which is consistent with the previous liter-
ature on diagnosis of AD [47]. Genetic studies show that the number of
the APOE4 alleles at the APOE gene locus is strongly associated with late
onset Alzheimer’s disease [36], explaining why APOE genotype appears
among discriminating features in our AD diagnosis prediction framework.

2.6 Conclusion

In this study, we attempted to build a classification framework for learning
a simple model that can accurately distinguish patients with Alzheimer’s
disease from healthy controls. The performance results, on the 168 subjects
in our test set, show that a learned simple linear classifier using only a
small set of features – grey matter volume for 6 brain regions and a single
genotype datum – can accurately distinguish Alzheimer’s patients from
controls. We found that the APOE genotype status had one of the highest
feature importance in our EN7 linear classifier (Table 2.4).

Although we started from 34 features that were already identified as
relevant to AD, we provide a learned linear classifier using just 7 of these
features that is statistically as accurate as its more complex counterparts.
The best accuracy on this task and dataset in the literature (99%) [18] was
achieved using a much more complicated, non-interpretable model (con-
volutional deep neural network). Our simple method, achieving 89% ac-
curacy, approaches clinical relevance, which justifies future research into
simple systems whose decision process would be accessible to clinicians
and could help improve clinical diagnosis.
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Chapter 3

Schizophrenia Prognosis
Prediction

3.1 Introduction

Schizophrenia is a chronic psychotic disorder that often begins at young
adult ages and persists for a lifetime, affecting 1% of the general popu-
lation [48]. Due to the heterogeneous nature of this disease [49] and the
intertwined symptoms of mental disorders [50], computational measures
– based on patient’s clinical history, neuroimaging scans, genetic profile
or an ensemble of all – has become prevalent in the world of clinical sci-
ence. Machine learning tools, with their ability to learn models that con-
nect combinations of many variables to a label (e.g., disease state), can help
clinicians diagnose this complicated disease in an automated manner, ei-
ther without using any prior knowledge or with the help of domain-based
knowledge of psychiatrists.

In addition to diagnosis – distinguishing schizophrenia patients from
healthy controls – another challenge is prognosis – i.e., , accurately pre-
dicting how a patient responds to a particular treatment, given his/her
clinical or/and imaging profile. This question is especially important to
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address because few of the current antipsychotic treatments consider the
heterogeneous nature of schizophrenia and thus, few incorporate the del-
icate symptomatic distinctions between the patients, which leads to many
hit-and-miss treatment policies [51].

Given the adverse side-effects of most of the antipsychotic drugs, ac-
curate prediction of the impact of consuming a particular drug on a par-
ticular patient would be significantly valuable.

Recently, there has been a growing research on the statistical associa-
tion between neuroimaging/clinical markers and treatment response. In a
systematic review, Dazzan et al. [51] list 11 clinical studies, based on struc-
tural MRI data, that attribute particular markers in brain anatomy to treat-
ment outcome (functional and symptomatic) of first-episode schizophre-
nia patients in the first 12 months of their treatment period. These anatom-
ical markers include alterations in medial temporal and prefrontal cor-
tical regions of the brain [51]. In a study on 76 schizophrenia subjects,
Doucet et al. [52] studied the relationship between resting-state functional
network (default mode network) connectivity (Z-transformed Pearson’s
correlation coefficients)/brain structure and 24-weeks clinical outcome of
antipsychotic treatment. Despite not noticing any significant anatomical
predictors, they found that functional network connectivity or higher in-
ternal cohesiveness of default mode network (a fMRI-based a.k.a func-
tional predictor) is strongly linked to improvement in positive and anxi-
ety/depression symptoms [52]. In another study, Sarpal et al. introduce
baseline striatal connectivity index, calculated based on functional con-
nectivity of 91 regions that are functionally connected to striatum, as a
predictor of treatment outcome [53]. Siegel et al. studied the relationship
between clinical variables – demographics and cognitive and symptomatic
measures – and long-term (2–8 years) functional outcome in two groups
of first-episode and previously treated schizophrenia patients. This study
found that initial functioning level, positive/negative symptoms, gender,
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education level and duration of illness are strongly associated with func-
tional outcome [54]. In a study on 44 first-episode psychosis patients,
Luck et al. found that abnormal fronto-temporal connectivity, measured by
white matter fractional anisotropy in three main tracts that connect frontal
and temporal regions of the brain is linked to poor short-term clinical out-
come [55]. Altogether, these studies have observed associations between
different baseline clinical/brain characteristics and treatment outcome in
several different schizophrenic populations.

While there are many clinical univariate testing studies, seeking vari-
ables that are, by themselves, related to the treatment outcome, there are
relatively few research studies that apply machine learning methodologies
to build discriminative models to predict the treatment outcome for previ-
ously unseen schizophrenia patients [56]. This may be due to the unavail-
ability of large public datasets with follow-up diagnostic measures. Cao et
al. conducted one of the very first studies trying to predict treatment out-
come in schizophrenia patients. In a study on a group of 43 drug-naive
first-episode schizophrenia patients, using functional connectivity – corre-
lation and mutual information – between bilateral superior temporal cor-
tex and all the other cortical regions (68 regions in total), they were able to
reach an accuracy of 82.5% by applying a linear support vector regression
model to discriminate responders, defined as the subjects showing more
than 30% reduction in their total PANSS score, from non-responders [57].

Our study explores ways to learn a prediction model of treatment re-
sponse, defined by different measures of clinical and functional outcome,
using patients’ data collected at baseline: clinical data, functional mag-
netic imaging data, structural magnetic imaging data and diffusion tensor
imaging data. Our general stacking procedure [58] combined best models
from each data modality (if better than chance, independently). In ad-
dition to the responder vs non-responder classification experiments, we
also explored several other questions: First, predicting follow-up posi-

30



tive/negative symptoms (9 symptoms in total) using a multitask artifi-
cial neural network regressor. One of the most clinically important ques-
tions regarding the prognosis of schizophrenia is to predict how each cat-
egory of positive and negative symptoms change with consumption of
the prescribed medication; we address this critical question using a multi-
task neural network. Second, predicting the time when the patients leave
their medication using survival regression models. The motivation be-
hind this task is that: with having an accurate estimation of the amount of
time the patients adhere to their treatment, the clinicians can choose the
type of medication and its dosage more insightfully. Third, classifying pa-
tients based on the type of their CGI severity progression in order to avoid
putting the resistant or relapse patients under the risk of dealing with un-
necessary side effects. Unfortunately, we could not achieve any significant
results in any of these tasks, possibly due to the small number of patients.

3.2 Schizophrenia Dataset

We received this schizophrenia dataset from a hospital in India, which
includes clinical, fMRI, sMRI and DTI data for schizophrenic patients,
each with some of the follow-up scores: some patients only have CGI
scores, some only SAPS/SANS, and some both. Based on the availabil-
ity of follow-up severity measures, we created two versions of the dataset
(see Figure 3.1). Here, we will describe each of the versions.

3.2.1 CGI Dataset

This dataset includes a total of 90 patients, whose CGI scores are available
at a follow-up time point, ranging from 32 to 1099 days from the baseline
visit. See Table 3.1 and Table 3.2 for more details on this dataset. We define
two types of response for this dataset, each corresponding to a separate
criterion; the “response”, based on CGI-S criterion, is defined as having a

31



Figure 3.1: The two versions of the dataset featuring patients with avail-
able follow-up CGI scores and follow-up SAPS/SANS scores

follow-up CGI-S score that is less under 3 and based on CGI-I criterion,
the “response” is defined as having a CGI-I score that is under 3.

3.2.2 SAPS/SANS Dataset

This dataset includes a total of 57 patients whose SAPS/SANS scores are
available at a follow-up time point, ranging from 85 to 270 days. We define
two types of response for this dataset, each corresponding to a separate
criterion; the “response”, based on SAPS criterion, is defined as full remis-
sion of positive symptoms (100% reduction in the total SAPS score - i.e.,
having a follow-up total SAPS score of 0) and based on SANS criterion, it
is defined as having a less-than-median (median across the patient popu-
lation) follow-up total SANS score. See Tables 3.3 and 3.4 for more details
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R NR R NR
Clinical Data fMRI Data

Number 27♂/ 21♀ 25♂/ 17♀ 26♂/ 18♀ 25♂/ 17♀
Age 30.69± 7.22 31.15± 6.37 30.40± 7.24 31.15± 6.37

Baseline CGI-S 4.60± 0.91 5.02± 0.89 4.59± 0.92 5.02± 0.89
sMRI Data DTI Data

Number 27♂/ 20♀ 25♂/ 17♀ 27♂/ 18♀ 24♂/ 16♀
Age 30.45± 7.10 31.15± 6.37 30.38± 6.79 31.01± 6.49

Baseline CGI-S 4.6170± 0.92 5.02± 0.89 4.64± 0.93 5.02± 0.89

Table 3.1: Demographic information for the responders (R) and non-
responders (NR), based on follow-up CGI-S criterion. Numbers for age
and baseline CGI-S are shown as mean ± STD.

R NR R NR
Clinical Data fMRI Data

Number 45♂/ 29♀ 7♂/ 9♀ 44♂/ 26♀ 7♂/ 9♀
Age 30.47± 6.86 32.21± 6.13 30.42± 6.65 31.96± 6.55

Baseline CGI-S 4.74± 0.92 5.06± 0.92 4.74± 0.92 5.06± 0.92
sMRI Data DTI Data

Number 45♂/ 28♀ 7♂/ 9♀ 45♂/ 26♀ 6♂/ 8♀
Age 30.47± 6.86 32.21± 6.13 30.42± 6.65 31.96± 6.55

Baseline CGI-S 4.75± 0.92 5.06± 0.92 4.77± 0.92 5.07± 0.91

Table 3.2: Demographic information for the responders (R) and non-
responders (NR), based on follow-up CGI-I criterion. Numbers for age
and baseline CGI-S are shown as mean ± STD.

on this dataset.

3.3 Data Preprocessing and Feature Extraction

3.3.1 Clinical Data Cleaning and Imputation

We began with 351 features, including: socio-demographic information,
physical measurements, baseline functional and clinical measures, psy-
chopathology, lifetime symptoms, family history and medication log (see
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R NR R NR
Clinical Data fMRI Data

Number 15♂/ 11♀ 19♂/ 12♀ 13♂/ 8♀ 19♂/ 11♀
Age 30.85± 6.72 32.33± 7.00 31.13± 7.51 31.93± 6.44

BL SAPS 22.19± 7.91 31.25± 13.16 25.95± 11.31 27.83± 12.54
BL SANS 24.65± 21.67 35.80± 27.45 32.0± 30.07 31.36± 23.07

sMRI Data DTI Data
Number 11♂/ 12♀ 22♂/ 8♀ 12♂/ 9♀ 20♂/ 10♀

Age 30.18± 6.89 32.69± 6.47 31.89± 7.08 30.97± 6.36
BL SAPS 23.69± 10.00 29.23± 12.68 29.04± 12.57 25.1± 11.12
BL SANS 24.30± 22.60 35.13± 27.97 34.04± 30.25 28.86± 23.39

Table 3.3: Demographic information for the responders (R) and non-
responders (NR), based on follow-up SAPS criterion. Numbers for age,
baseline total SAPS score, and baseline total SANS score are shown as
mean ± STD.

Figure 3.2).
We started cleaning the clinical dataset by removing the features with

more than 30% missing values – this removed 62 features. After apply-
ing one-hot encoding to convert categorical nominal variables to numer-
ical values, we eliminated the constant features. To put all of the med-
ication measures into the same scale, we used the Chlorpromazine dose
equivalents for each patient’s medication entry. We condensed the 59 psy-
chopathology entries (SAPS/SANS) into 9 categories (total hallucination
score, total delusion score etc., as described in Section 1.2.2). Our final
cleaned clinical dataset contained a total of 242 features, all viewed as real-
valued – as even 1-hot encoded features are {0,1}.

After eliminating the columns with more than 30% missing values, we
used Multivariate Imputation by Chained Equations (MICE) [59] to im-
pute the remaining missing values in the clinical feature set, which we
assume are missing at random (MAR) [60].

In the MICE method, at first, all of the missing values across the whole
dataset are replaced by column-wise mean values; then, missing values
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R NR R NR
Clinical Data fMRI Data

Number 21♂/ 9♀ 13♂/ 14♀ 18♂/ 11♀ 14♂/ 8♀
Age 30.26± 7.52 33.21± 5.78 32.60± 6.55 30.28± 7.13

BL SAPS 26.53± 12.64 27.77± 11.21 28.93± 12.05 24.59± 11.67
BL SANS 36.06± 27.12 24.77± 22.33 32.82± 23.53 30.04± 29.22

sMRI Data DTI Data
Number 20♂/ 9♀ 13♂/ 11♀ 19♂/ 10♀ 13♂/ 9♀

Age 30.98± 7.74 32.35± 5.27 33.26± 6.48 28.83± 6.03
BL SAPS 27.48± 13.09 26.04± 10.30 28.41± 11.93 24.5± 11.46
BL SANS 36.58± 28.16 23.0± 21.68 33.72± 25.58 27.40± 27.33

Table 3.4: Demographic information for the responders (R) and non-
responders (NR), based on follow-up SANS criterion. Numbers for age,
baseline total SAPS score, and Baseline total SANS score are shown as
mean ± STD.

are sequentially set back to null, imputed and replaced by regression mod-
els – linear regression for continuous variables and logistic regression for
discrete variables – using other observed variables [59]. For all of the clas-
sification methods, we used MICE as our imputation method, except for
Extreme Gradient Boosting (XGBoost) learning algorithm, which provides
its own way of choosing a default path for missing values and therefore,
does not require prior imputation of missing values.

3.3.2 sMRI Preprocessing and Feature Extraction

We used SPM’s CAT12 toolbox for preprocessing and feature extraction of
structural MRI data in this study [61]. In CAT12’s pipeline, data was first
normalized to the MNI1 standard space, and then segmented (hard seg-
mentation) into gray matter (GM), white matter (WM) and cerebrospinal
fluid (CSF), using SPM’s Tissue Probability Map (TPM) [61]. After this
step, we applied spatial smoothing with a Gaussian kernel of 8mm width

1Montreal Neurological Institute, https://www.mcgill.ca/neuro/
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Figure 3.2: Clinical features diagram (lines represent inclusion relation-
ship)

at half of the maximum value (full-width-half-maximum, or FWHM) to
the modulated normalized grey matter images to reduce the noise and
improve the signal-to-noise ratio (SNR).

We then parcellated the resulting smoothed modulated normalized grey
matter images using 9 different brain atlases – AAL [62], MSDL [63], Harvard-
Oxford cortical and subcortical atlases distributed with FSL (see FSL’s web-
site), Destrieux [64] and BASC (Bootstrap Analysis of Stable Clusters) mul-
tiscale atlases [65] – and computed the regional grey matter volume for
each of the parcellations, which resulted in the 9 different sMRI feature
sets that we used in our classification framework. The number of fea-
tures in each of the created feature sets depends on the number of brain
regions in the corresponding brain atlas. To compensate for the possible
existing variance in the brain sizes of individuals, we regressed out age,
gender and total intracranial volume (TIV) as covariates. In this residual
approach, we used a linear regression between the regional volumes and
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these 3 covariates – i.e., age, gender and total intracranial volume – to pre-
dict the normalized volumes [66].

3.3.3 fMRI Preprocessing and Feature Extraction

Preprocessing is a critical step in fMRI data analysis to remove uninterest-
ing variations in data, caused by various sources of noise, and preparing
the data for feature extraction and statistical analysis [67]. We used the
DPARSF toolbox (Advanced version) [68] for preprocessing our resting-
state fMRI dataset. DPARSF is a SPM-based Matlab toolbox for pipeline
processing of resting-state fMRI data, providing a wide variety of mea-
sures, derived from the signal. For parcellation of preprocessed brain im-
ages and extracting region-based measures, using a Nilearn1 script writ-
ten by Dr. Sunil Kalmadi, we created 13 different brain parcellations,
based on 13 brain atlases – AAL [62], MSDL [63], Harvard-Oxford cor-
tical and subcortical atlases distributed with FSL (see FSL’s website), De-
strieux [64], BASC (Bootstrap Analysis of Stable Clusters) multiscale at-
lases [65], Smith [69], Craddock [70], Power [71] and Dosenbach [72]. In
this section, we briefly explain the steps of our fMRI preprocessing pipeline.
Figure 3.3 presents the pipeline.

Merging Since the functional magnetic resonance imaging data is ac-
quired in form of 3D images, each belonging to a particular time point,
these 3D images were merged to form a 4-dimensional fMRI image for
each patient, as the beginning step.

Removing First 10 Time Points Each of our 4D functional images origi-
nally consisted of 153 3D volumes, but we removed the first 10 volumes to
account for the patients’ adjustment to the scanner noise [68], leaving 143
volumes for each subject.

1A machine learning library for neuro-imaging in Python, https://nilearn.github.io/
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Figure 3.3: fMRI preprocessing / feature extraction pipeline

Slice Timing Correction In fMRI acquisition, each of the whole brain
volumes are acquired one slice at a time, within the repetition time (TR =
2s) [68]. Because these slices are acquired at different time points (within
each TR), we corrected the timing when merging them into a whole brain
volume using the slice ordering information, a parameter in scanning time [68].

T1 Image Co-Registeration and Segmentation In this step, first the T1
image was co-registered to the mean realigned functional image and was
then segmented into different tissues (grey matter, white matter and CSF)
using unified T1 segmentation [73].

Realignment and Head Motion Correction When head moves during
the scanning time, the location of the brain volumes varies from one time
point to another. The goal of head motion correction is to reposition all
of the volumes in the time series to the same location [67]. In this step,
all of the volumes were realigned and co-registered to a reference volume
(average volume) using Friston 24-parameter model [74] and then, the ef-
fects of head motion (24 parameters) were regressed out from the signal.
Also, during this step, the individuals with excessive head movements
were identified and removed from the study.
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Nuisance Covariate Regression To remove the impact of non-neuronal
and psysiological artifacts from the fMRI signal, mean global signal, CSF,
and white matter signal were linearly regressed out, as covariates. In this
residual approach, a linear regression between the BOLD signal and these
3 covariates – i.e., mean global signal, CSF, and white matter signal – is
used to predict the cleaned BOLD signal and remove possible artifacts. In
recent studies, mean global signal or whole-brain signal is associated with
the effect of respiration [68].

Normalization Because the size, shape and brain anatomy of individuals
is different and this factor might influence the result of statistical analyses,
all of the scans are spatially normalized to a standard brain template [68].
Using DARTEL tool [75], each functional brain scan was nonlinearly co-
registered to MNI standard space.

Smoothing Spatial smoothing with a Gaussian kernel of 4mm width at
half of the maximum value (full-width-half-maximum, or FWHM) was
applied to the functional images to reduce the noise (random Gaussian
noise) and improve signal to noise ratio (SNR).

Bandpass Filtering Most studies associate low-frequency fluctuations of
fMRI signal between 0.01Hz-0.08Hz to neuronal activity that originates
from grey matter tissue of the brain, while associating the higher frequen-
cies to white matter and non-neuronal activities [68]. Therefore, a band-
pass filter (0.01Hz-0.08Hz) was applied to the data to reduce the effect of
non-neuronal artifacts.

Extracting Regional Homogeneity Regional homogeneity (ReHo) is a
measure of regional spontaneous neuronal activity that is measured for
each voxel by calculating Kendall’s coefficient of concordance (KCC) of
time series of the voxel with those of its 27 nearest neighbors (sharing the
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same faces, edges, or corners) [76]. Once the KCC for each voxel is calcu-
lated, it is divided by the global mean regional homogeneity value within
the whole-brain mask to reduce global variability effects [68]. Regional
Homogeneity of a region is the average of the ReHo values of its voxels.

Extracting ALFF and fALFF ALFF, which is the power spectral density
or mean square root of the power spectrum of low-frequency fluctuations
(LFF, 0.01Hz-0.08Hz), is another measure of regional spontaneous neu-
ronal activity; however, since some studies have shown that ALFF is prone
to large fluctuations of high frequency physiological noise, Zou et al. [77]
introduced a more robust measure, fALFF, as the ratio of total amplitude
within the low-frequency range to the total amplitude of the entire de-
tectable frequency range. Since the predictive value of these two mea-
sures in between-group studies is still unknown [68], we extracted both
and used them in the classification framework.

Extracting Functional Connectivity Measures Functional connectivity
is a measure that is commonly used in analysis of resting-state functional
MRI, taking into account the inter-regional correlations in the BOLD sig-
nal [68]. Using the image after realignment, head motion correction, nui-
sance removal, normalization, smoothing and bandpass-filtering steps,
we computed the inter-regional correlation, partial correlation, precision
and covariance measures, using Nilearn library.

Extracting Functional Graph Characteristic After extracting functional
correlation matrix, we converted it to a binary matrix, representing a bi-
directional graph, known as brain’s functional graph, by thresholding it
by a cut-off value of 0.7 (chosen by trying values from {0.7, 0.75, 0.8}) on
the absolute value of entries. We included local (nodal) characteristics of
the graph in our feature set, including node degree, which is the number of
neighbors of each node (region), and local efficiency, which is the average
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Figure 3.4: DTI preprocessing / feature extraction pipeline

inverse shortest path length in the sub-network that is created by a node’s
(region) immediate neighbors [78].

3.3.4 DTI Preprocessing and Feature Extraction

For preprocessing and feature extraction of DTI data, we followed Engima
Group’s DTI processing protocols and templates. All the preprocessing
steps were performed in FSL through Nipype’s pipelines and interfaces. In
this section, we briefly explain the steps of our DTI preprocessing pipeline.
The pipeline is shown in Figure 3.4.

Merging As the diffusion tensor imaging data is acquired in form of 3D
images (65 images, in this dataset), each belonging to a particular direc-
tion, these 3D images were merged to form a 4-dimentional DTI image,
as the beginning step. The first 3 dimensions show the spatial position
in the brain and the fourth dimension shows each of the scalar diffusion-
sensitizing directions that have been applied during acquisition.
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Eddy Current and Head Motion Correction The two main artifacts in
DTI acquisition are eddy current distortions and head motion [79]. In DTI,
the gradients are much longer than in other magnetic resonance imaging
acquisitions, which means there might be changes in the local magnetic
field that result in induction of circular electric currents in the different
conducting surfaces of the MRI scanner creating image distortions [79].
Eddy currents vary with the diffusion gradient direction and, therefore,
there might be misregistration between successive volumes [79]. We used
FSL’s eddy correction method, which removes both eddy current distor-
tions and head motion artifacts – by rigid-body co-registration to a refer-
ence volume (average volume).

Brain Extraction Brain extraction or brain/non-brain segmentation is con-
sidered as the preparation step for registration and segmentation. We used
FSL’s BET tool that is reportedly capable of removing non-brain tissues
with various contrasts and geometries (skull, marrow and etc) and is ro-
bust to local intensity changes [80]. We set the brain extraction threshold
manually by trying different values and picking the value that worked
the best (0.4) by visual checking. This step creates a binary mask for
brain/non-brain separation.

Fitting the Tensor Model In this step, using FSL’s dtifit, a diffusion ten-
sor model was fit at each voxel, as described in Section 1.1.2. The resulting
model includes the 3D maps of 1st, 2nd and 3rd eigenvectors and eigen-
values, Mean Diffusity (MD) and Fractional Anisotropy (FA) with voxel-
wise entries. Axial Diffusivity (AD) is the first eigenvalue (i.e., largest
eigenvalue) and Radial Diffusivity (RD) is the average of second and third
eigenvalues (λ2+λ3

2 ) [3]. MD, a.k.a the apparent diffusion coefficient (ADC),
is the average of tensor’s eigenvalues and relates to the total amount of
diffusion in a voxel [3]. FA measures are ratios of the eigenvalues that are
used to quantify the shape of the diffusion and is basically a normalized
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variance of the eigenvalues [3].

FA =

√
(λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2√

λ2
1 + λ2

2 + λ2
3

(3.1)

where λ1,λ2, and λ3 are the 3 eigenvalues [3]. FA is commonly used as a
measure of white matter integrity.

Tract-Based Spatial Statistics Using FSL’s TBSS method [81] and follow-
ing the Enigma protocol, we registered and skeletonized all of the 3D FA
images (maps) to Enigma’s DTI atlas. In this step, the images were first
slightly eroded and zero padded to remove the possible outliers from
the tensor model fitting; then, they were non-linearly registered to the
Enigma DTI template and linearly registered to the MNI space. All of
the standardized FA images were masked using Engima’s mask template
and consequently, skeletonized by projecting the ENIGMA skeleton onto
them. These steps were repeated for dtifit’s MD, AD and RD maps, creat-
ing individual-specific skeletonized AD, MD, FA and RD images.

Extracting DTI Regional Scalar Measures Using Engima’s protocol for
ROI analysis, for each of the FA, MD, AD and RD measures, mean ROI val-
ues were extracted based on the JHU atlas (ICBM-DTI-81 white-matter la-
bels atlas) parcellation, alongside an average value across the entire skele-
ton. In the second feature extraction step, information from the first out-
put was used to average related (e.g., average of L and R external cap-
sule) regions to get an average value weighted by volumes of the regions
– AD avg, FA avg, MD avg and RD avg.
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3.4 Machine Learning Methods

3.4.1 Unsupervised Dimensionality Reduction for Functional

Connectivity Features

Among the set of fMRI features that we used in our schizophrenia progno-
sis prediction experiments, functional connectivity features – i.e., , correla-
tion, partial correlation, covariance and precision – are high-dimensional
feature vectors of size n×(n−1)

2 , where n is the number of regions in a given
brain atlas that is used for parcellation. Considering the size of our datasets,
finding ways to reduce the dimensionality of these large feature vectors
before using them in the classification framework is absolutely necessary,
in order to overcome the curse of dimensionality. For these features, we
tried two unsupervised methods to reduce the dimensionality: First, a lin-
ear compression method, Prinicipal Component Analysis (PCA) and sec-
ond, a non-linear transformation method, denoising autoencoder.

In the first approach, we simply reduced the dimensionality of the
dataset to m − 1, where m is the number of instances, using PCA based
on Singular Value Decomposition (SVD) [82]. In the second approach, we
used a denoising autoencoder structure to learn a compact representation
of the data that produces the least reconstruction error a.k.a. L2 loss (see
Section 3.6). For the framework, described in Sections 3.4.2 to 3.4.5, all
of the fMRI-driven functional connectivity features are compressed using
PCA, after standard scaling to have a mean value of 0 and a standard de-
viation of 1.

3.4.2 Base Learners

In this framework, for each of the data modalities – fMRI, sMRI, DTI and
clinical – we tried 6 different classes of base learners, including tree-based
methods: extreme gradient boosting (XGB) and random forest (RF), linear
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methods: linear support vector machine (`SVM) and logistic regression with
lasso penalty (lasso), and kernelized support vector machines: SVM with
RFB kernel (rSVM) and SVM with polynomial kernel (pSVM). We briefly de-
scribed support vector machines and extreme gradient boosting in Sec-
tion 2.3.2. Lasso is similar to elastic net, described in Section 2.3.2, but it
only uses L1 penalty (L1 ratio = 1); we chose the lasso penalty due to the
high dimensionality of our feature space. Similar to the extreme gradient
boosting learner, random forest [83] is an ensemble tree-based method, but
instead of boosting, it uses bagging, which grows each tree from a random
selection (without replacement) of instances in the training set and then,
combines their results.

3.4.3 Feature Selection

Each of these learners were accompanied by a feature selection method to
improve their computational speed and also, to avoid overfitting. For lin-
ear methods, `SVM and lasso, we performed feature selection by thresh-
olding the absolute value of the linear weights and pruning the features
whose absolute weight is less than the selected threshold. Due to its non-
recursive approach, thresholding the linear weights is a faster alternative
for the RFE method, described in Section 2.3.4, when we have a high-
dimensional feature space. The thresholds were chosen from {median,
2*median, 3*median, 4*median, 5*median} of the absolute value of the
weights.

For SVM with RBF or polynomial kernels, we performed univariate
feature selection (UFS), based on the mutual information [84] between
each of the features and the labels. We used the mutual information mea-
sure for univariate feature selection, instead of the standard F-value or
chi2 statistics, in order to be able to cover positive, negative, discrete and
continuous features of our heterogeneous dataset. The number of features
for univariate feature selection was chosen from {10, 20, 30, 40, 50}.
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The tree-based learners, XGBoost and random forest, have their own
inherent way of choosing the best subset of features. At each internal node
of each tree, the tree splits the available training instances using the feature
that best separates the class labels in terms of reducing the Gini impurity
criterion. This process stops when the current node is sufficiently pure;
this means the resulting tree will typically only use a small subset of the
features. These ensemble tree-based learners then combine the results of
these trees using bagging (random forest) or boosting (XGBoost).

3.4.4 Evaluation

We ran our “overall learner” OL1 24 times, over different sets of base-
learners – `SVM, EN, rSVM, pSVM, RF, and XGB – and different data
modalities – clinical, sMRI, DTI, and fMRI; each of these runs produced
a classifier.

In each iteration of our 10 × 3 external cross-validation (10-fold cross-
validation, repeated 3 times), we divided the dataset into a train (90% of
instances) and a test set (10% of instances). OL partitioned the train set into
5 internal folds and used the same internal folds for all of the runs. OL then
used the 5-fold cross-validation accuracies of these base-learners (accom-
panied by various feature selection methods, described in Section 3.4.3)
to identify the best feature hyperparameters (described below), feature se-
lection hyperparameters (described in Section 3.4.3), and base-learner hy-
perparameters (described below). It then ran that best model on the entire
training set to produce classifiers; we then tested the learned classifiers
on the test set. As for the choice of evaluation metric, for predicting re-
sponse based on CGI-S, SAPS and SANS scores, because the dataset was
almost balanced (55%-60% baseline accuracy), we used accuracy as our

1OL is the system that invokes the pre-processing steps, etc., before running the base-
learners. It also does the randomized-searches [85] seeking the best learning algorithm,
feature, and feature selection parameter settings, based on the performance over the
training data; see the text.
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performance measure, while for predicting CGI-I score, we used balanced
accuracy:

Balanced Accuracy =
Speci f icity + Sensitivity

2
(3.2)

since the dataset was highly imbalanced toward the positive class. In this
case, we also used a weighted cost function for all of the base-learners to
compensate for the imbalance in our dataset by penalizing false positives
more than false negatives. In this approach, we weighted the false posi-
tive cost by the ratio of the number of positive instances to the number of
negative instances.

For SVM methods, the C hyper-parameter was chosen from {1E-5, 1E-
4, ..., 1E3, 1E4}, γ was chosen from {1E-6, 1E-5, ..., 1E1, 1E2}, and degree of
the polynomial kernel from {1, 2, 3, 4, 5}. For lasso, the α hyper-parameter
was chosen from {1E-4, 1E-3, 1E-2, 1E-1, 2E-1, ..., 9E-1} values and L1 ratio
was set to 1 1, which means the learner only applies L1 regularization (aka
Lasso classification). For the random forest base learner, the number of tree
estimators was chosen from {50, 100, 150, 200, 300, 500}; the maximum depth
of the trees from {2, 4, 6, 8}; minimum samples split is the minimum percent-
age of training set instances required to split an internal node, chosen from
a range of values between 0.005 to 0.480 (of total number of samples); min-
imum samples leaf is the minimum percentage of instances required to be at
a leaf node, chosen from a range of values between 0.005 to 0.480 (of the
total number of samples); and maximum number of leaf nodes controls the
width of the trees at their leaf level, chosen from range of 2 to 20. For the
extreme gradient boosting learner, the number of tree estimators was chosen
from {50, 100, 150, 200}, the maximum depth of the trees from {2, 4, 6, 8}; the
learning rate from {0.0001, 0.001, 0.01}; the minimum child weight (which is
the minimum sum of instance weight that is needed in a child) from {1,

1See Elastic Net’s API, https://scikit-learn.org/stable/modules/generated/sklearn.linear˙model.ElasticNet.html
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3, 5}; the subsample (which is the subsample ratio of the training instance)
from {0.6, 0.7, 0.8, 0.9}; and column sample by tree is the subsample ratio
of the columns when constructing each of the trees, chosen from {0.6, 0.7,
0.8, 0.9}1.

In this classification framework, our overall learner tuned the feature
hyperparameters alongside the base learner and feature selection hyper-
parameters, based on average 5-fold inner cross-validation performance
using randomized search [85] in the hyperparameter space. Feature hy-
perparameters include choice of brain parcellation atlas for sMRI and fMRI
data and choice of feature type for fMRI and DTI data. Brain parcellation
atlas for sMRI was chosen from {AAL, MSDL, Harvard-Oxford cortical
atlas, Harvard-Oxford subcortical atlas, Destrieux, BASC multiscale at-
lases (4 atlases)}; brain parcellation atlas for fMRI was chosen from {AAL,
MSDL, Harvard-Oxford cortical atlas, Harvard-Oxford subcortical atlas,
Destrieux, BASC multiscale atlases (4 atlases), Smith, Craddock, Power,
Dosenbach}; feature type for fMRI was chosen from {correlation, partial
correlation, covariance, precision, ALFF, fALFF, ReHo, node degree, local
efficiency}; and feature type for DTI was chosen from {FA, MD, AD, RD,
FA avg, MD avg, AD avg, RD avg}. The workflow of our overall frame-
work is shown in Figure 3.5.

3.4.5 Combining Modalities

To create a multimodel model, we used a stacking classifier to combine the
best models from each modality, based on average internal cross-validation
performance. We avoided simple concatenation of the feature sets for two
reasons. First, our small sample size already imposes a significant chal-
lenge on the classification task, which would even get worse after con-
catenating the feature sets. Second, our feature sets include features with
different scales and types – continuous, categorical nominal, and categori-

1See XGBoost’s API, https://xgboost.readthedocs.io/en/latest/python/python api.html
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Figure 3.5: Overall framework for schizophrenia prognosis prediction

cal ordinal – and if the model that we are using is not a tree-based learning
algorithm (XGBoost and random forest), it might be adversely affected by
these scale/type discrepancies. So, after finding the best model for each
modality, using 5-fold inner cross-validation and randomized search, we
combined their predictions into a new train and test set and trained the
meta-classifier (XGB) on the new train set and evaluated it on the new
test set (for each iteration of 10 × 3 outer cross-validation). The advan-
tage of using a stacking algorithm over averaging the decisions made by
each of the models or manual voting (weighting the decisions) is that the
stacking algorithm automatically tunes the decision weights, based on the
predictive power of each model (in our case, each modality). Our stacking
framework is shown in Figure 3.6.

3.5 Prognosis Prediction Results and Discussion

Using the classification framework, described in Sections 3.4.2 to 3.4.4, we
tried to classify patients into {responder, non-responder}, based on each
of the treatment response criterion, described in Section 1.2. The classifi-
cation results for each prediction task are shown in Tables 3.5 to 3.8. As it
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Figure 3.6: Stacking method for combining modalities

is observable in these tables, none of the results were significantly above
the baseline performance. The huge errorbars could be mainly attributed
to the small size of our dataset. Another factor that might be affecting
the results is our missing information on the adherence level of individ-
uals to the prescribed medication. While we know that the medications
were prescribed for the patients by an expert clinician, the patients were
not hospitalized to take the medications under an authorized supervision.
In addition, in our dataset, there were significant differences between the
medication type and follow-up duration of patients that might be influenc-
ing the outcome variable, particularly when using neuroimaging features
per se for the classification task.
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Clinical
Baseline
50%

fMRI
Baseline
50%

DTI
Base-
line
50%

sMRI
Baseline
50%

Multimodal
Baseline
50%

Accuracy
Baseline
82.22%

Accuracy
Baseline
81.39%

Accuracy
Base-
line
83.52%

Accuracy
Baseline
82.02%

XGBoost 60.92 ±
21.69

42.38 ±
15.42

43.45±
17.16

54.16 ±
19.01

Random Forest 45.62 ±
16.78

44.88 ±
14.24

39.61±
12.43

54.37 ±
16.02

Linear SVM 43.21 ±
18.46

43.69 ±
21.75

43.45±
17.16

36.45 ±
19.37

RBF SVM 49.52 ±
16.95

48.57 ±
12.07

62.11±
16.68

51.48 ±
19.04

Poly SVM 49.73 ±
14.14

53.80 ±
23.52

45.83±
17.40

40.74 ±
17.43

Lasso 45.44 ±
12.19

45.95 ±
23.26

50 ±
0.0

50.65 ±
15.21

Stacking Classi-
fier

48.25 ±
15.28

Table 3.5: Treatment response prediction results, based on CGI-I score
(CCG-I ≤ 2 or not). The performance measure for this task is balanced
accuracy and the results show average 10-fold × 3 (repeated 3 times) bal-
anced accuracy.

3.6 Other Experiments

We also investigated other clinically relevant questions with regards to
the dataset, in addition to prognosis prediction experiments, described in
Section 3.5. Here, we briefly explain these experiments.

Using denoising autoencoder for fMRI dimensionality reduction For
this approach, we picked regional functional correlation features, based on
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Clinical
Baseline
53.33%

fMRI
Baseline
51.16%

DTI
Base-
line
52.95%

sMRI
Baseline
51.69%

Multimodal

XGBoost 56.45 ±
13.74

40.13 ±
12.59

44.49±
12.08

39.90 ±
12.79

Random Forest 50.99 ±
12.23

52.06 ±
15.88

49.25±
15.19

42.96 ±
14.67

Linear SVM 50.75 ±
8.77

54.82 ±
16.58

43.65±
13.00

46.47 ±
14.84

RBF SVM 47.50 ±
12.62

43.14 ±
19.38

42.54±
13.47

41.27 ±
17.25

Poly SVM 48.67 ±
16.25

46.34 ±
13.56

49.90±
10.12

48.85 ±
13.83

Lasso 47.67 ±
9.40

56.26 ±
15.64

49.81±
3.92

46.89 ±
10.52

Stacking Classi-
fier

43.33 ±
15.28

Table 3.6: Treatment response prediction results, based on CGI-S score
(CCG-S ≤ 2 or not). The performance measure for this task is accuracy
and the results show average 10-fold × 3 (repeated 3 times) accuracy.

aal parcellation. The encoder architecture includes 116×115
2 = 6670 nodes in

the input layer, 1000 and 100 nodes in the first and second hidden layers,
respectively, and {10, 20, 30, 40, 50} nodes in the code or representation
layer. The decoder architecture includes 100 and 1000 nodes in the first
and second hidden layers, respectively and 6670 nodes in the output layer.
We used soft sign ( f (x) = x

1+|x| ) activation function, which produces val-
ues in (−1, 1) interval, the same range as functional correlation values and
does not saturate easily (we also tried relu as the activation function for
hidden units, but this increased the L2 reconstruction loss). The architec-
ture of a denoising autoencoder is shown in Figure 3.7. Unfortunately, we
couldn’t achieve any positive results using these dimensionality-reduced
fMRI datasets.
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Clinical
Baseline
54.39%

fMRI
Baseline
56.87%

DTI
Base-
line
54.91%

sMRI
Baseline
54.72%

Multimodal
(Clinical-
DTI) Base-
line 54.91%

XGBoost 65.88 ±
26.37

46.72 ±
17.62

67.72±
21.66

45.44 ±
22.86

Random Forest 61.93 ±
25.58

49.77 ±
18.78

55.49±
20.78

39.83 ±
22.65

Linear SVM 47.34 ±
18.66

47.55 ±
20.71

42.66±
16.97

51.50 ±
19.22

RBF SVM 58.22 ±
21.22

50.55 ±
14.88

47.55±
15.74

58.00 ±
21.24

Poly SVM 47.05 ±
12.01

53.77 ±
15.22

47.05±
12.01

46.77 ±
23.90

Lasso 49.66 ±
7.06

45.16 ±
21.21

49.66±
7.06

54.11 ±
15.12

Stacking Classi-
fier

55.05 ±
23.39

Table 3.7: Treatment response prediction results, based on follow-up SAPS
score (CCG-I ≤ 2 or not). The performance measure for this task is accu-
racy and the results show average 10-fold × 3 (repeated 3 times) accuracy.

Follow-Up 9-Score SAPS/SANS Prediction Using Multitask Regression
One of the most clinically import questions regarding treatment outcome
prediction in psychosis is to predict how each of the 9 subcategories of
SAPS/SANS – hallucinations, delusions, bizarre behavior, positive formal
thought disorder, affective blunting, alogia, avolition, anhedonia, and at-
tention – are influenced by the prescribed treatment. For this experiment,
we used a multitask artificial neural network (ANN) architecture with an
additional hidden layer, shared among all the tasks and trained simul-
taneously for all the tasks, to be able to use domain-specific information
learned from one task to improve the results of all other related tasks [86].
Figure 3.8 shows the architecture of this ANN. In this experiment, we
used a subset of our original dataset for which the follow-up SAPS/SANS
scores are available (n = 51 to 57, depending on the data modality). But,
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Clinical
Baseline
52.63%

fMRI
Baseline
50.98%

DTI
Base-
line
50.98%

sMRI
Baseline
50.94%

Multimodal

XGBoost 57.11 ±
19.25

65.83 ±
19.24

48.27±
20.83

46.38 ±
22.83

Random Forest 49.44 ±
13.93

66.50 ±
19.28

43.38±
17.10

49.77 ±
18.77

Linear SVM 51.66 ±
17.69

52.77 ±
17.34

34.55±
16.75

31.38 ±
21.14

RBF SVM 54.33 ±
16.55

68.27 ±
19.37

44.44±
12.95

49.11 ±
18.00

Poly SVM 45.55 ±
15.13

53.44 ±
24.30

38.88±
18.54

42.77 ±
13.46

Lasso 56.11 ±
18.50

60.77 ±
18.13

49.66±
3.14

48.61 ±
14.27

Stacking Classi-
fier

54.77 ±
24.83

Table 3.8: Treatment response prediction results, based on follow-up SANS
score (SANS ≤ 2 or not). The performance measure for this task is accu-
racy and the results show average 10-fold × 3 (repeated 3 times) accuracy.

because the multitask assumption biases the learner toward hypotheses
that explain more than one task [86], we also tried an alternative archi-
tecture, eliminating the shared representation layer; but we were not able
to reach a significant performance – measured by computing a separate
R2 error for each of the tasks – despite considering several different net-
work architectures, number of hidden layers, number of hidden units, loss
functions and activation functions.

Classifying patients, based on type of CGI Severity Progression In this
experiment, we first tried to label the patients, based on the pattern of
change in their CGI severity scores using available follow-up data at 1-3
time points (See Figure 3.9). We labeled the patients with a consistent de-
crease in their CGI severity as responders (n = 61), the patients with either
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Figure 3.7: Denoising autoencoder architecture

no change or increase in their CGI severity as resistant (n = 10) and the
patients switching between increase/decrease/no change (n = 19) as re-
lapse patients. In Figure 3.9, subject S0004 represents a responder; subject
S0003 represents a resistant and subject S0034 represents a relapse patient.
We then tried to classify responder versus resistant versus relapse patients
using a combination of MRI and clinical features in the same classification
framework as described in Section 3.4, but we were not able to reach any

Figure 3.8: Multitask neural network architecture
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significant results.

Survival regression Our CGI dataset, recorded 19/90 patients who claim
to have stopped their medication at some point in their follow-up visits.
First, we tried to classify these patients, who have a tendency of leaving
medication, from adherent patients, but we were not able to obtain a sig-
nificant performance on this task. Thus, we took a survival regression
approach to predict the time a patient leaves medication. For the uncen-
sored patients, we consider the first time point when they claim to have
left medication as the the event (in this case, leaving medication) time and
for the censored patients, we consider the last time point that they were
recorded to be taking medication as the event time.

Applying various survival regression algorithms including multi-task
logistic regression [87] (See PSSP website, http://pssp.srv.ualberta.ca/),
cox proportional hazards regression, cox regression with elastic net penalty
and random survival forest (using a R library, developed by Humza Hei-
dar), we were not able to reach a significant concordance index or D-
calibration measure on this task. One issue that might be affecting the
results is that in addition to being right-censored, our dataset is also left-
censored because we only have the patients’ records at certain follow-up
time points and the exact time that they left their medication is not avail-
able. Since most of these tools only deal with right-censored data, the
interval-censored nature of our data might probably be one of the factors
affecting the results of this survival regression task.
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Figure 3.9: Prognosis curves, based on CGI severity. Each of the curves
show the progression of CGI severity from the baseline time point to the
existing follow-up time points (based on availability)
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Chapter 4

Conclusions

Medical imaging data, particularly magnetic resonace imaging, has shown
high potential for building automated tools for predicting diagnosis and
prognosis status in mental disorders. In our first study, we addressed the
challenge of building a simple classification framework that is explainable
to the clinical society, without losing accuracy. Simple models are easy to
follow and explain and thus, more likely to be accepted as a reliable diag-
nostic tool by clinicians. Still, coming up with a measure to quantify the
balance between accuracy and simplicity is an ongoing challenge, mostly
as we lack an objective definition for simplicity or interpretability. Thus,
reaching a consensus on ways to quantify these model attributes would
be of great value. In addition, for the Alzheimer’s prediction task, there’s
still room for building more accurate, yet still simple diagnostic tools.

Our second study attempts to build a multimodal classification frame-
work that can combine the information from different data modalities to
predict the response of schizophrenia patients to treatment. Although we
investigated various tasks and methods in this study, we were not able to
reach any significant results. This may be partly attributed to the small
number of patients, while dealing with high-dimensional features. While
the small size of hospital datasets does make it challenging to produce
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predictive models of the treatment outcome, we anticipate that gathering
large logitudinal datasets with detailed information on the patients’ medi-
cation log and follow-up severity measures would significantly contribute
to the growth of research in this area. Another issue that might be affect-
ing our results in the second study is the subjective nature of our response
criteria, especially CGI scores. Because of this issue, there may be discrep-
ancies between the scores recorded by different clinicians, and even when
using the scores from a single clinician, we cannot be sure about the exact
mapping between these rankings and numerical values. Therefore, one
of the main steps for future work would be to analyze these subjective
measures and find a more numerically meaningful mapping for them.
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H. Ahlström, L. Lind, L.-O. Wahlund, E.-M. Larsson, E. Westman,

68



A. D. N. Initiative, et al., The effects of intracranial volume adjust-
ment approaches on multiple regional mri volumes in healthy aging
and alzheimer’s disease, Frontiers in aging neuroscience 6 (2014) 264.

[67] S. Huettel, A. Song, G. McCarthy, Signal, noise, and preprocessing of
fmri data, Functional Magnetic Resonance Imaging 2.

[68] C. Yan, Y. Zang, Dparsf: a matlab toolbox for” pipeline” data analysis
of resting-state fmri, Frontiers in systems neuroscience 4 (2010) 13.

[69] S. M. Smith, P. T. Fox, K. L. Miller, D. C. Glahn, P. M. Fox, C. E.
Mackay, N. Filippini, K. E. Watkins, R. Toro, A. R. Laird, et al., Cor-
respondence of the brain’s functional architecture during activation
and rest, Proceedings of the National Academy of Sciences 106 (31)
(2009) 13040–13045.

[70] R. C. Craddock, G. A. James, P. E. Holtzheimer III, X. P. Hu, H. S. May-
berg, A whole brain fmri atlas generated via spatially constrained
spectral clustering, Human brain mapping 33 (8) (2012) 1914–1928.

[71] J. D. Power, A. L. Cohen, S. M. Nelson, G. S. Wig, K. A. Barnes, J. A.
Church, A. C. Vogel, T. O. Laumann, F. M. Miezin, B. L. Schlaggar,
et al., Functional network organization of the human brain, Neuron
72 (4) (2011) 665–678.

[72] N. U. Dosenbach, B. Nardos, A. L. Cohen, D. A. Fair, J. D. Power,
J. A. Church, S. M. Nelson, G. S. Wig, A. C. Vogel, C. N. Lessov-
Schlaggar, et al., Prediction of individual brain maturity using fmri,
Science 329 (5997) (2010) 1358–1361.

[73] J. Ashburner, K. J. Friston, Unified segmentation, Neuroimage 26 (3)
(2005) 839–851.

69



[74] K. J. Friston, S. Williams, R. Howard, R. S. Frackowiak, R. Turner,
Movement-related effects in fmri time-series, Magnetic resonance in
medicine 35 (3) (1996) 346–355.

[75] J. Ashburner, A fast diffeomorphic image registration algorithm,
Neuroimage 38 (1) (2007) 95–113.

[76] Y. Zang, T. Jiang, Y. Lu, Y. He, L. Tian, Regional homogeneity ap-
proach to fmri data analysis, Neuroimage 22 (1) (2004) 394–400.

[77] Q.-H. Zou, C.-Z. Zhu, Y. Yang, X.-N. Zuo, X.-Y. Long, Q.-J. Cao, Y.-F.
Wang, Y.-F. Zang, An improved approach to detection of amplitude of
low-frequency fluctuation (alff) for resting-state fmri: fractional alff,
Journal of neuroscience methods 172 (1) (2008) 137–141.

[78] J. Kim, J. R. Wozniak, B. A. Mueller, X. Shen, W. Pan, Comparison
of statistical tests for group differences in brain functional networks,
NeuroImage 101 (2014) 681–694.

[79] J. Soares, P. Marques, V. Alves, N. Sousa, A hitchhiker’s guide to dif-
fusion tensor imaging, Frontiers in neuroscience 7 (2013) 31.

[80] S. M. Smith, Fast robust automated brain extraction, Human brain
mapping 17 (3) (2002) 143–155.

[81] S. M. Smith, M. Jenkinson, H. Johansen-Berg, D. Rueckert, T. E.
Nichols, C. E. Mackay, K. E. Watkins, O. Ciccarelli, M. Z. Cader, P. M.
Matthews, et al., Tract-based spatial statistics: voxelwise analysis of
multi-subject diffusion data, Neuroimage 31 (4) (2006) 1487–1505.

[82] M. E. Tipping, C. M. Bishop, Probabilistic principal component anal-
ysis, Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 61 (3) (1999) 611–622.

[83] L. Breiman, Random forests, Machine learning 45 (1) (2001) 5–32.

70
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