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Abstract

We developed a marker based infinitesimal model for quantitative trait analysis. In contrast to the classical infinitesimal
model, we now have new information about the segregation of every individual locus of the entire genome. Under this new
model, we propose that the genetic effect of an individual locus is a function of the genome location (a continuous
quantity). The overall genetic value of an individual is the weighted integral of the genetic effect function along the
genome. Numerical integration is performed to find the integral, which requires partitioning the entire genome into a finite
number of bins. Each bin may contain many markers. The integral is approximated by the weighted sum of all the bin
effects. We now turn the problem of marker analysis into bin analysis so that the model dimension has decreased from a
virtual infinity to a finite number of bins. This new approach can efficiently handle virtually unlimited number of markers
without marker selection. The marker based infinitesimal model requires high linkage disequilibrium of all markers within a
bin. For populations with low or no linkage disequilibrium, we develop an adaptive infinitesimal model. Both the original
and the adaptive models are tested using simulated data as well as beef cattle data. The simulated data analysis shows that
there is always an optimal number of bins at which the predictability of the bin model is much greater than the original
marker analysis. Result of the beef cattle data analysis indicates that the bin model can increase the predictability from 10%
(multiple marker analysis) to 33% (multiple bin analysis). The marker based infinitesimal model paves a way towards the
solution of genetic mapping and genomic selection using the whole genome sequence data.

Citation: Hu Z, Wang Z, Xu S (2012) An Infinitesimal Model for Quantitative Trait Genomic Value Prediction. PLoS ONE 7(7): e41336. doi:10.1371/
journal.pone.0041336

Editor: Zhaoxia Yu, University of California, Irvine, United States of America

Received March 15, 2012; Accepted June 20, 2012; Published July 18, 2012

Copyright: � 2012 Hu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The project was supported by the United States Department of Agriculture National Institute of Food and Agriculture Grant 2007-02784 to Dr. Xu, The
Alberta Ingenuity Bio Solution Grant RES0008133 to Dr. Wang and The Alberta Livestock and Meat Agency/Alberta Agricultural Research Institute Grant
G550000127 to Dr. Wang. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Shizhong.Xu@ucr.edu

Introduction

The infinitesimal model of quantitative traits has dominated

quantitative genetics for over 70 years until the end of 1980’s when

interval mapping of quantitative trait loci (QTL) was first

introduced by Lander and Botstein [1]. The infinitesimal model

states that a quantitative trait is controlled by an infinite number of

loci and each locus has an infinitely small effect [2,3], the model is

also called the polygenic model [4]. Under this model, the effect of

each locus is unrecognizable and thus these loci must be studied

collectively under the general framework of classical quantitative

genetics [5]. Consider that all the small effect genes are linearly

arranged in a genome, the infinitesimal model is essentially a

continuous genome model. Prior to the genome era, it was

impossible to directly validate the infinitesimal model other than

using resemblance between relatives to estimate the collective

contribution of all loci on the genome for a quantitative trait. With

the advent of advanced molecular technology, DNA marker data

are available and they have been used to identify major genes for

some quantitative traits [6,7,8,9]. The major gene identification

approach is based on a modified version of the infinitesimal model,

called oligogenic model [10], which states that a quantitative trait

is controlled by a few genes with large effects and many genes with

small effects. In the context of linkage analysis, these genes are

called QTL. Using markers to detect QTL is called QTL

mapping. QTL mapping may only detect genes with large and

median sized effects. The small effect QTL may not be detected

separately at all for the sample sizes affordable in a current

experiment.

The high density SNP data provide a way to capture the

polygene. Using a Bayesian approach, effects of the high density

markers can be estimated jointly to predict the genomic values for

a quantitative trait without performing marker selection. This

approach is called genomic selection [11,12]. Simulation studies

showed that genomic selection using markers alone can fit the

model with an accuracy up to 85% [11]. The 85% accuracy is the

correlation between the true genetic values and the predicted

values of individuals in the next generation. True genetic values

are only known in simulation studies. In real data analysis, the

predictability of a model must be drawn from a cross validation

study. The predictability obtained from cross validation and the

goodness of model fit do not necessarily agree to each other.

Starting from a small number of markers, they may both increase

as the number of markers increases. Further increasing the

number of markers may continue to increase the goodness of

model fit but the predictability may fall down [13,14].

In the genome era, the number of SNP markers can easily reach

up to one million [15]. In the near future, one million SNP
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markers may be available for many species. No methods are

available to estimate one million effects jointly in a single model. If

we treat each marker as a QTL, the model is virtually an

infinitesimal model. How to handle such a model with an infinite

dimension remains a challenging problem. We will introduce a

continuous genome model by replacing the summation of infinite

terms by an integral and then used a numerical integration

approach to calculate the integral. The numerical integration will

be achieved via dividing the entire genome into many small

intervals (also called bins). The bin effects are then subject to

estimation, instead of the individual marker effects. Each bin may

contain many markers and the bin effect represents the total effects

of all markers within that bin. This special model dimension

reduction approach has never been proposed before for genomic

prediction.

We first present an infinitesimal model to handle populations

initiated from line crossing experiments. Such populations

represent the ones with high linkage disequilibrium. We then

extend to model to handle populations with low or no linkage

disequilibrium.

Materials and Methods

Concept of the Infinitesimal Model
Let yj be the observed phenotypic value for individual j in a

population of size n. The linear model for a usual regression

analysis is

yj~bz
Xp

k~1

Zjkckzej , Vj~1,:::, n ð1Þ

where b is the intercept, ck is the effect of locus k, Zjk is a known

genotypic indicator variable for individual j at locus k and

ej*N(0,s2) is the residual error with an unknown variance s2.

The genotype indicator variable Zjk for locus k is defined as

Zjk~

z1

0

{1

8><
>:

for

for

for

A1A1

A1A2

A2A2

ð2Þ

where A1A1, A1A2 and A2A2 are the three genotypes for locus k.

Note that p is the number of loci included in the model. When

p~?, the model becomes

yj~bz
X?
k~1

Zjkckzej , Vj~1,:::, n
ð3Þ

This is the infinitesimal model of quantitative trait [2]. The

regression coefficient ck cannot be estimated because (a) the model

has an infinite size and (b) the model is ill-conditioned, e.g., high

multicollinearity. Now let us replace k by the corresponding

genome location of the locus, denoted by l, which is continuous

and ranges from 0 to L where L is the genome size. The

infinitesimal model may be replaced by

yj~bz

ðL
0

Zj(l)c(l)dlzej , Vj~1,:::, n ð4Þ

where Zj(l) is known for genome saturated with markers and c(l)

is the genetic effect expressed as an unknown function of the

genome location. Our purpose is to estimate c(l) using the data,

which include y~ yj

� �
and Z(l)~ Zj(l)

� �
. The parameters

include b, s2 and c(l),Vl[(0,L). The estimation should be

obtained by optimizing some well-defined criteria, such as

minimizing the sum of squared differences

Q~
Xn

j~1

yj{b{

ðL

0

Zj(l)c(l)dl

� �2

ð5Þ

or maximizing the log likelihood function

L(h)~{
n

2
ln (s2){

1

2s2

Xn

j~1

yj{b{

ðL

0

Zj(l)c(l)dl

� �2

ð6Þ

The likelihood function is obtained based on the assumed normal

distribution yj*N(mj ,s
2), where mj~bz

Ð L

0
Zj(l)c(l)dl is the

expectation of yj . The ultimate purpose of the infinitesimal model

is to find the unknown function c(l) so that we can use

mNew~bz

ðL

0

ZNew(l)c(l)dl ð7Þ

to predict an unobserved yNew, where the subscript New means a

new individual with known ZNew(l) but unknown yNew.

The infinitesimal model given in equation (3) is represented by

the continuous genome model in equation (4). There is no explicit

expression of the integral and thus numerical integration is

required to approximate the integral. Let us divide the entire

genome by m bins (a bin is also called an interval of the genome)

indexed by k for the kth bin. Let Dk be the size of bin k, which may

be the same for all bins or vary across different bins. The

numerical approximation of the continuous genome model is

yj~bz
Xm

k~1

�ZZj(lk)�cc(lk)Dkzej ð8Þ

where lk is the middle point position of the kth bin in the genome,
�ZZj(lk) is the average value of Zj for all markers covered by the kth

bin, �cc(lk) is the average effect of all QTL in that bin and Dk is the

size of this bin. Note that �ZZj(lk) is a known quantity and �cc(lk)Dk

is unknown that is subject to estimation. When m??, the bin size

Dk?0 and the model becomes the exact continuous genome

model. The unknown function �cc(lk) can be estimated from the

data. The number of bins m depends on the sample size n and the

level of linkage disequilibrium. A larger sample size allows a larger

m. High linkage disequilibrium can be dealt with a small number

of bins. Because �ZZj(lk) is an average value of all markers within

the bin, markers of the entire genome have been utilized. When

the interval Dk covers a large number of markers, �cc(lk) can be

very small (not estimable). This is why the model is called the

infinitesimal model.

In reality, the number of markers within a bin can be finite. Let

Zj(h) and c(h) be the genotype indicator variable and the effect of

marker h in bin k for h~1, � � � , pk where pk is the number of

markers in bin k for
Pm

k~1 pk~p. In real data analysis, the bin size

Dk is replaced by the number of markers in bin k and the genome

size is represented by the total number of markers p. The mean of
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Zj for all markers in bin k is

Zjk~�ZZj(lk)~
1

pk

Xpk

h~1

Zj(h) ð9Þ

The total effect of all markers in the bin is

ck~�cc(lk)pk~
Xpk

h~1

c(h) ð10Þ

The working model for m bins becomes

yj~bz
Xm

k~1

Zjkckzej ð11Þ

in which all parameters can be estimated provided that m is not

too large.

From model (10), we can see that the effect of bin k is the sum

of effects of all markers within that bin. Two assumptions are

required for this infinitesimal model to work: (1) high linkage

disequilibrium and (2) homogeneous effects of markers within a

bin. For example, if the effects of individual markers are not in

the same direction, positive and negative effects may be cancelled

out each other, leading to a zero net effect for the bin. The first

condition (high linkage disequilibrium) is satisfied in line crossing

data analysis (QTL mapping), especially in F2, BC and DH

populations. Recombinant inbred lines (RIL) usually have low

linkage disequilibrium and thus application of the infinitesimal

model to RIL is problematic. The second condition (homoge-

neous effect) appears to be out of our control. However, we can

choose bin sizes as small as a program can manage so that the

chance of more than one markers having effects per bin is

minimum. This will at least avoid cancellation of effects in

opposite directions. If the number of QTL in the entire genome is

not extremely large and the locations of these QTL are randomly

distributed along the genome, a small bin containing more than

two QTL may have a negligible probability, and thus the second

condition may well be satisfied. Theoretical investigation of the

infinitesimal model is provided in the next section. Although p

can be infinitely large, the reduced model has a dimensionality of

m. A model with a small number of effects can be handled by the

ordinary least squares method. If mwn, a penalized regression

may be used, e.g., the Lasso method [16] or the Bayesian

shrinkage method [12]. The idea of the proposed bin analysis is

to reduce the model dimension from a virtually unlimited number

of markers to a finite number of bins that can be managed easily

using existing software packages.

Theory of the Infinitesimal Model
We now show the theoretical basis of the infinitesimal model

and explain why this model requires the two assumptions (high

linkage disequilibrium and homogenous effects within a bin). We

now use an F2 population derived from the cross of two inbred

lines as an example to demonstrate the theory. The genotype

indicator variable for marker h within bin k is defined as

Zj(h)~

z1

0

{1

8><
>:

for

for

for

A1A1

A1A2

A2A2

ð12Þ

The average of the indicator variables for all the pk markers

within bin k is

Zjk~
1

pk

Xpk

h~1

Zj(h) ð13Þ

The variance of Zjk across individuals determines the efficiency

of the model. Let dhl be the recombination fraction between loci h

and l within bin k. The variance of Zj(h) is 1/2 and the covariance

between Zj(h) and Zj(l) is (1{2dhk)=2. The variance of Zjk

across individuals is

var(Zjk)~
1

p2
k

Xpk

h~1

var Zj(h)
� �

z2
Xpk

lwh

cov Zj(h), Zj(l)
� �( )

~
1

p2
k

1

2
pkz2|

1

2

Xpk

lwh

(1{2dhl)

( )

~
1

2

1

pk

z
2

p2
k

Xpk

lwh

(1{2dhl)

( )
ð14Þ

This variance will take a value between 0.5 and 0 corresponding

to pk~1 and pk~?, respectively. When pk~1, the second term

of the above equation will vanish and thus var(Zjk)~1=2. The bin

analysis becomes the individual marker analysis. When pk~?
and the pk markers do not overlap, then var(Zjk)~0. However,

the reduction of the variance also depends on the pair-wise

recombination fractions. If all the markers within the bin are

jammed together (complete linkage), we have

Xpk

hwl

(1{2dhl)~
1

2
pk(pk{1) ð15Þ

which also leads to var(Zjk)~1=2. It is well known that the

statistical power of a simple regression analysis depends on

the variance of the independent variable. A larger variance of the

independent variable leads to a higher power to detect the

regression coefficient. In the proposed bin analysis, the indepen-

dent variable is Zjk and thus a larger var(Zjk) corresponds to a

higher power for bin detection. The high linkage disequilibrium of

markers within a bin will slow down the reduction of var(Zjk)

from 1/2 to 0. This is why a high linkage disequilibrium within a

bin is required for the infinitesimal model.

We now discuss why homogeneous effects of markers within a

bin are required. Recall that we defined

�cck~
1

pk

Xpk

h~1

c(h) ð16Þ

as the average effect of all markers within bin k. The bin effect is

ck~�cckpk, the total effects of all markers within that bin. When the
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marker effects within the bin are heterogeneous, especially when

they are in opposite directions, the average value may end up

being zero. Therefore, homogeneous marker effects within a bin

are important; at least, they should not be in opposite directions.

The exact genetic value of bin k for individual j is

ajk~
Xpk

h~1

Zj(h)c(h)

~
Xpk

h~1

Zj(h){ZjkzZjk

� �
c(h){�cckz�cck½ �

~Zjk�cckpkz
Xpk

h~1

Zj(h){Zjk

� �
c(h){�cck½ �

~Zjkckz
Xpk

h~1

Zj(h){Zjk

� �
c(h){�cck½ �

ð17Þ

where ck~�cckpk is the total genetic effect for bin k. The second

term in the above equation is the sum of cross products of Zj(l)

and c(l) in the bin, denoted by jjk

jjk~
Xpk

h~1

Zj(h){Zjk

� �
c(h){�cck½ � ð18Þ

The bin implemented infinitesimal model actually assumes jjk~0

and thus ajk~Zjkck. Either one of the two assumption described

early will make the ignorance safe. Under the assumption of high

linkage disequilibrium, Zj(h) is pretty much a constant across the

markers within the bin (not a function of h) and thus

jjk& Zj(h){Zjk

� �Xpk

h~1

c(h){�cck½ �~

Zj(h){Zjk

� � Xpk

h~1

c(h){pk�cck

" #
~0 ð19Þ

Under the assumption of homogeneous marker effects within a

bin, the second condition, c(h) is pretty much the same across all

markers within the bin. Therefore,

jjk& c(h){�cck½ �
Xpk

h~1

Zj(h){Zjk

� �
~

c(h){�cck½ �
Xpk

h~1

Zj(h){pkZjk

" #
~0 ð20Þ

The above discussion seems to be contradictory to the main

purpose of the proposed bin analysis. The maximum power is

obtained by choosing bins that contain only a single marker per

bin. This would end up with an infinite number of bins and thus

the model is not a working model. What we want here is to decide

a finite number of bins that can be handled by a program, yet the

power should not be lost too much: a new way to handle an

infinite number of markers.

Concept of the Adaptive Infinitesimal Model
We now modify the infinitesimal model so that it can analyze

infinite number of markers for populations in low or no linkage

disequilibrium. Let us define a weighted average of Zj for all

markers in bin k by

Z�jk~
1

pk

Xpk

h~1

whZj(h)~
1

pk

Xpk

h~1

Z�j (h) ð21Þ

The weighted average effect for this bin is defined as

c�k~�cc�kpk~
Xpk

h~1

w{1
h c(h)~

Xpk

h~1

c�(h) ð22Þ

where wh is a weight assigned to marker h within bin k. The

working model under the weighted strategy is

yj~bz
Xm

k~1

Z�jkc�kzej ð23Þ

Since c�k is the effect of bin k and it is a quantity subject to

estimation, we really do not need w{1
h . We only need wh to find

the weighted average of the genotype indicator variable Z�jk. As a

result, the weight can take zero as a legal value. The weighted

model actually estimates the sum of the weighted effects of all

markers within a bin. Our purpose here is to choose a weight so

that the effects within the bin are homogenized. The weight should

also be chosen from a preliminary analysis of the same data. With

a proper selection of the weight, the two assumptions described in

the unweighted infinitesimal model may be relaxed. There might

be many different ways to choose the weight, but we proposed the

following weight,

wh~
pkb̂bhPpk

h~1

Db̂bhD
ð24Þ

where b̂bh is the least squares estimate of the hth marker in a single

marker analysis. A special property of the weight isPpk
h~1 DwhD~pk. Because the weights depend on the least squares

estimates of the marker effects and thus depend on the data, we

call the modified model the adaptive infinitesimal model. The

theory behind the adaptive infinitesimal model is given below.

Theory of the Adaptive Infinitesimal Model
We now show that the adaptive model can homogenize the

marker effects within a bin so that it can handle populations in low

or no linkage disequilibrium. Let us redefine the effect of bin k for

individual j by

ajk~
Xpk

h~1

Zj(h)c(h)~
Xpk

h~1

Zj(h)whw{1
h c(h)~

Xpk

h~1

Z�j (h)c�(h) ð25Þ

where wh is a weight for marker h, Z�j (h)~Zj(h)wh is a weighted

genotype indicator variable and c�(h)~w{1
h c(h) is a weighted

effect. Let us define
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Z�jk~
1

pk

Xpk

h~1

whZj(h)~
1

pk

Xpk

h~1

Z�j (h) ð26Þ

as the weighted average indicator variable for bin k and

�cc�k~
1

pk

Xpk

h~1

w{1
h c(h)~

1

pk

Xpk

h~1

c�(h) ð27Þ

as the weighted average of all marker effects in bin k. The total

effect of bin k is c�k~�cc�kpk. Let us rewrite equation (25) as

ajk~
Xpk

h~1

Z�j (h){Z�jkzZ�jk

h i
c�(h){�cc�kz�cc�k
� �

~Z�jk�cc�kpKz
Xpk

h~1

Z�j (h){Z�jk

h i
c�(h){�cc�k
� �

~Z�jkc�kzj�jk

ð28Þ

where

j�jk~
Xpk

h~1

Z�j (h){Z�jk

h i
c�(h){�cc�k
� �

ð29Þ

Recall that the weight is,

wh~c{1
k b̂bh ð30Þ

where b̂bh is the least squares estimate of the effect of the hth marker

in a single marker analysis and

ck~
1

pk

Xpk

h~1

Db̂bhD ð31Þ

is the average of the absolute values of the least squares estimates

of all marker effects within bin k. This weight leads toPpk
h~1 DwhD~pk. The weighted effect for marker h in bin k is

c�(h)~w{1
h c(h)~ck

c(h)

b̂bh

ð32Þ

If the least squares estimate b̂bh is proportional to c(h), the ratio

c(h)=b̂bh will be roughly a constant across all markers within the

bin, i.e., c(h)=b̂bh~r for all h~1,:::, pk. This is what we called

homogenization of the effects. The homogenization will lead to

�cc�k~
1

pk

Xpk

h~1

c�(h)~
ck

pk

Xpk

h~1

c(h)

b̂bh

~rck~
r

pk

Xpk

h~1

Db̂bhD ð33Þ

Therefore, the bin effect defined by c�k is

c�k~�cc�kpk~r
Ppk

h~1

Db̂bhD ð34Þ

which is roughly proportional to the sum of the absolute values of

all markers in bin k. In addition, we can safely assume j�jk&0

because of the homogenization. The adaptive working model with

m bins is now expressed as

yj~bz
Xm

k~1

Z�jkc�kzej ð35Þ

Because c�k is either zero or positive, it is called the score of bin k,

which can be tested using any regression methods that can handle

m bin effects.

Parameter Estimation and Cross Validation
When the number of bins is much smaller than the sample size,

the effects of the bins can be estimated using the ordinary least

squares method. However, the number of bins should be

sufficiently large to achieve a high resolution for the purpose of

QTL mapping. Therefore, the situation is often reversed in reality,

i.e., the number of bins is often larger than the sample size. For

example, if we choose a bin size of 1 cM, the entire human

genome will be divided into over 3000 bins. To estimate 3000

effects in a single model using the ordinary least squares method,

we need at least 3000 subjects just to make sure exist of a unique

solution of c. We may need a sample size of at least 5000 to get a

reasonable good estimate of c. If the number of bins is larger than

the sample size, we need a penalized regression method, e.g., the

Lasso method [16] and the Bayesian shrinkage method [12]. In

this study, we chose the Lasso method implemented in the

GLMNET/R package [17] for parameter estimation because of its

fast computational speed.

Although the main purpose of the infinitesimal model is to

predict the genomic value, the method can serve as a QTL

mapping procedure. A QTL effect in a traditional mapping

experiment is simply replaced by a bin effect in the current model.

The GLMNET/R program does not provide such a test statistic

and thus we calculated the test statistics from the output of the

GLMNET/R program. We first calculated the estimation error

for each bin effect using sk~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(ck)

p
, where the variance is

approximated by

var(ck)&
Xn

j~1

Z�2jk z
ŝs2

ĉc2
k

 !{1

ŝs2~
ĉc2

kŝs2

ĉc2
k

Pn
j~1 Z�2jk zŝs2

ð36Þ

and ŝs2 is the estimated residual error variance. The Lasso estimate

often generate many zero estimated bin effects, for which the

estimation errors are forced to be zero and thus tests are not

performed for those zero effect bins. Given the estimated effect ĉck

and its error sk, we are able to calculate the t-test statistic or its

square, the F-test statistic. The F-test statistics is equivalent to the

Wald test [18] when the numerator degree of freedom is one.

Therefore, we can present the test statistic as the Wald test statistic,

Wk~
ĉc2

k

var(ck)
~

ĉc2
k

ŝs2

Xn

j~1

Z�2jk z
ŝs2

ĉc2
k

 !
~

ĉc2
k

ŝs2

Xn

j~1

Z�2jk z1 ð37Þ

This test is also very much like a likelihood ratio test statistic and

thus it can be transformed into a LOD score test

An Infinitesimal Model for Genomic Prediction
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LODk~
Wk

2 ln (10)
ð38Þ

As a convention in LOD score test, we may choose LOD = 3 as

the criterion to declare statistical significance for each bin.

For purpose of genomic prediction, we used the mean squared

error (MSE) obtained from the 10-fold cross validation [19] as a

criterion to evaluate the predictabilities of the models under

various bin sizes. In the first step of the cross validation, individuals

of the population were random partitioned into 10 subsamples

(parts). In the second step, we used nine parts of the sample to

estimate parameters and used these estimated parameters to

predict the phenotypes of individuals in the remaining part. The

cross validation concluded after all parts have been predicted. The

MSE [20] is defined as

MSE~
1

n

Xn

j~1

(yj{ŷyj)
2 ð39Þ

where

ŷyj~b̂bz
Xm

k~1

Zjk ĉck ð40Þ

is the predicted value of individual j using parameters, b̂b and ĉc,

that are estimated from samples excluding individual j. A small

MSE means a better prediction. The MSE can be transformed

into a quantity between 0 and 1, with 0 being no predictability and

1 being prefect prediction. This quantity is denoted by R2 and

expressed by

R2~1{
MSE

SS
~1{

Pn
j~1

(yj{ŷyj)
2

Pn
j~1

(yj{�yy)2
ð41Þ

which can be interpreted as the proportion of the phenotypic

variance contributed by all the bins and thus markers of the entire

genome.

Competing Methods of Genomic Selection
The adaptive infinitesimal model was compared to five

competing models commonly used in genomic selection. The five

competing models are: (1) empirical Bayes (eBayes) [21], (2) ridge

regression [22], also called BayesA [11] or G-Blup [23,24], (3)

BayesB-1 [11], (4) BayesB-2 [11] and (5) least absolute shrinkage

and selection operator (Lasso) [16,17]. For the paper to be self-

contained, we briefly describe these competing methods in this

section. The eBayes method is a mixed model approach by

treating intercept and co-variates as fixed effects and the marker

effects as random effects with independent marker specific normal

distributions, i.e., each marker effect has a normal distribution

with mean zero and its own variance. It is called empirical Bayes

because the marker effects are considered as parameters and their

normal distributions considered as prior distributions. The method

estimates the variance components first, independent of the

marker effects, and then uses the estimated variance components

as prior variances to generate Bayesian estimates of the marker

effects. The G-Blup method is essentially the same as the eBayes

method except that all markers share the same normal distribution

with mean zero and the same variance for all markers. The BayesB

methods use a mixture prior distribution for each marker effect

(ck),

ck~ppN(0, S1)z(1{p)N(0, S0) ð42Þ

where S1 is a variance either estimated from the data or set as a

large constant and S0 is a small positive number (a constant close

to zero). The parameter p is the proportion of markers with effects

large enough to be included in the model. If p is estimated from

the data by using BayesCP [25], the BayesB method is called

BayesB-1 in this study. If the p value is set as a constant, say 0.95,

the BayesB method is called BayesB-2. The Lasso method can be

interpreted as the eBayes method except that the marker specific

variance s2
k is assigned an exponential prior distribution. The

eBayes, the G-Blup and the Lasso methods are rule based methods

in the sense that parameter estimation is obtained via an iteration

process up to convergence. BayesB-1 and BayesB-2 are stochastic

approaches via a Markov chain Monte Carlo (MCMC) sampling

process. As a result, the BayesB methods are computationally very

intensive.

The eBayes method was implemented via the SAS/IML

program of Xu [21]. The Mixed Procedure in SAS (PROC

MIXED) [26] was used to perform the G-Blup analysis. The

BayesB and BayesCP methods were implemented using the online

tool GenSel provided by the BIGS project at Iowa State University

(http://bigs.ansci.iastate.edu). The p value for the BayesB-1

method was obtained from the data by using BayesCP. For the

BayesB-2 method, p~0:95 was used, which is suggested by the

GenSel investigators as the default value.

Results

Simulated Data Analysis
Design I: Oligogenic model. In this experiment, we

simulated several QTL in the genome with effects varying from

small (explaining 1% of phenotypic variance) to large (explaining

15% of phenotypic variance). This experimental setup mimics the

usual experimental setup for QTL mapping. In this experimental

design, we simulated an F2 population (high linkage disequilibri-

um) with various sample sizes, 200, 300, 400, 500 and 1000. A

single large chromosome was simulated with 2400 cM in length.

We placed 120,001 SNP markers evenly on the genome with one

marker per 0.02 cM. We simulated 20 main effect QTL with

positions and effects depicted in Figure 1 (panel a). In addition, we

generated 20 pair-wise interaction (epistatic) effects. Collectively,

the 20 main effect QTL contributed 64.12 of the genetic variance

and the 20 epistatic effects contributed 26.52 of the genetic

variance. Since we only estimated the main effects, the epistatic

effects would go to the residual (ignored). The proportion of

phenotypic variance contributed by the 20 main effects was

determined by

h2~
64:12

64:12z24:52zs2
ð43Þ

where s2 is a pure random environmental error variance. We

chose four levels of the s2 to control h2. The four levels of s2 were

10, 20, 40 and 100, corresponding to four levels of h2, 0.64, 0.58,

0.49 and 0.34. The bin size was chosen at the following seven

levels, 1 cM, 2 cM, 5 cM, 10 cM, 20 cM, 40 cM and 100 cM.
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These bin sizes corresponded to 50, 100, 250, 500, 1000, 2000 and

5000 markers per bin. The corresponding numbers of bins for the

seven bin sizes were 2400, 1200, 480, 240, 120, 60 and 24. The

largest model contained 2400 bins and the smallest model

contained just 24 bins. The GLMNET/R [17] program was used

to analyze the data. We chose the Lasso option of the program (L1

penalty) using a shrinkage factor (lambda value) of exp ({2) that

was predetermined via cross-validation implemented by the

GLMNET/R program.

We now present the result of the simulation experiment under

sample size n~500 and heritability h2~0:58 (corresponding to a

pure environmental error variance s2~20). The bin size ranged

from 1 cM to 100 cM. The simulation experiment was replicated

100 times and the average estimated effects of the bins across the

Figure 1. True QTL effects and estimated bin effects for design I. The bin effect estimates were obtained from 100 replicated simulations. The
total number of markers was 120,001. The sample size was n~500. The pure environmental error variance was s2~20. The 20 simulated QTL
collectively explained 0.581 of phenotypic variance. The three symbols represent the size of bin (Dk), the number of markers (model dimension)
within a bin (m) and the number of markers per bin (pk). Since the bin size and number of markers per bin are constant across bins, the subscript k
has been removed from the figure legends.
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replicates were represented. The true effects of the 20 QTL are

given in Figure 1 (panel a). The estimated bin effects under

different bin sizes are also given in Figure 1 (panels b – h). For bin

size of 1 cM, corresponding to 2400 bins, the visual plots of the

estimated bin effect against the genome location is given in Figure 1

(panel b). Compared with the true effects (panel a), the estimated

bin effects showed similar pattern, but with seriously downward

biases. Many small to median sized QTL were missed. As the bin

size increased, the estimated bin effects visually matched the true

QTL effects more closely until the bin size reached about 20 cM

(panel f). Further increasing the bin size caused a reduction of the

resolution of bin effect estimation. When the bin size reached

100 cM (panel h), some QTL were combined into the same bins

and much of the resolution were lost. The estimated bin effects

were larger than the simulated QTL effects due to the low

resolution. The conclusion was that there appears to be an optimal

bin size, at which both the estimated effects and the patterns

(locations) of the bins closely match the simulated QTL effects.

The close match was obtained visually at the moment. In the next

paragraph, we will use the mean squared error (MSE) to evaluate

the closeness of match under various bin sizes.

The best measurement of the predictability of a model is the

MSE. We now examine the effect of bin size on the MSE of the

infinitesimal model under various sample sizes and various levels

of heritability. Figure 2 shows the MSE under four different levels

of the residual error variance (and thus four different levels of

heritability). When the residual error variance s2~10 and 20,

corresponding to high heritabilities, the MSE curves all have a

minimum value at around bin size of 10 cM to 20 cM. When s2

increased to 50 (corresponding to low heritability), the minimum

MSE shifted to bin size of 20 cM to 40 cM. When the sample size

was 200, the MSE can be larger than the phenotypic variance by

chance for smaller bins. Further increasing s2 to 100 caused the

minimum MSE to shift further to the right. The conclusion from

Figure 2 is that the size of bin influences the MSE and the pattern

in the change of MSE also depends on the sample size and the

heritability.

Design II: Clustered polygenic model. In this design, we

split each of the 20 QTL given in Design I into 500 equal sized

small QTL within 65 cM of the original QTL position. In other

words, each of the 20 QTL in Design I was replaced by a cluster of

equal sized small QTL in Design II, which explains why the model

is called clustered polygenic model. The total genetic variance

contributed by all these small QTL was 80:77. The heritability was

calculated using h2~80:77=(80:77zs2), which is a function of the

residual error variance. Four levels of s2 was investigated,

including 10, 20, 50 and 100, corresponding to four different

levels of h2, 0.89, 0.80, 0.62 and 0.45. Five different samples sizes

were investigated, including 200, 300, 400, 500 and 1000. Figure 3

(panels a, b, c and d) shows the MSE plotted against the bin size.

The general observation is that there seemed to be an optimal bin

size that produced a minimum MSE. The optimal bin size shifted

towards the right as the sample size increased. Exception of this

general trend occurred when the sample size was small and the

heritability was low (see panel d of Figure 3).

Design III: Polygenic model. Under this design, we

simulated 1000 normally distributed QTL evenly placed on the

genome. Each QTL explained 1/1000 of the total genetic

variance (81.94). The total heritability was calculated using

h2~81:94=(81:94zs2). The first 500 QTL had positive effects

(located on the first half of the genome) and the second 500 QTL

had negative effects (located on the second half of the genome).

The heritability is a function of the residual error variance. Four

levels of s2 was investigated, including 10, 20, 50 and 100,

corresponding to four different levels of h2, 0.89, 0.80, 0.62 and

0.45. Five different samples sizes were investigated, including 200,

300, 400, 500 and 1000. Figure 4 (panels a, b, c and d) shows the

MSE plotted against the bin size. The general observation is that

the minimum MSE occurred when the bin size was 100 cM,

which was the largest bin in the simulation experiment. When the

heritability was high, the changes of MSE did not seem to be large

across different sizes of bin. Further increasing the bin size actually

increased the MSE (data not shown).

Design IV: Oligogenic model under low linkage

disequilibrium. This design was similar to Design I except

that we now expanded the genome from 2400 cM to

12,000,000 cM, which was 5000 times the genome size of Design

I. In addition, we did not simulate epistatic effects in this design.

The number of markers remained 120,001 but each marker

interval covered 100 cM. The linkage disequilibrium level was

very low or null. We expected that the infinitesimal model would

break down due to the low linkage disequilibrium, but the adaptive

infinitesimal would fix it. We simulated n~500 individuals under

a residual error variance of s2~20, corresponding to h2~0:80 for

all the 20 simulated QTL. The experiment was replicated 100

times. This time, we only presented the MSE to show the

difference in predictability of the infinitesimal model and the

adaptive infinitesimal model. Figure 5 shows the plot of the MSE

against the bin size (log10 cM) for both the infinitesimal model

(filled circles) and the adaptive infinitesimal model (open circles).

The infinitesimal model had all MSE above the actual phenotypic

variance (89.71, indicated by the horizontal line in the middle of

the figure). When the MSE is larger or equal to the phenotypic

variance, it means no predictability. This simulation study did

show the failure of the infinitesimal model under low linkage

disequilibrium. We now evaluate the adaptive model under this

low linkage disequilibrium design. The open circles represent the

MSE under the adaptive infinitesimal model. All the MSE were

smaller than the phenotypic variance, indicating that the adaptive

model was effective for low linkage disequilibrium. The MSE

actually decreased as the bin size increased. For the smallest bin

(largest number of bins), the MSE was 48.53, corresponding to an

R2 value of 0.459. As the bin size increased (number of bins

decreased), the MSE progressively decreased until it reached

25.31, corresponding to an R2 value of 0.718. The predictability

was consistently improved as the bin size increased. However, we

expect that further increasing the bin size would decrease the

predictability.

Carcass Weight Analysis in Beef Cattle
The carcass weight data used in this study were resulted from

residual feed intake (RFI) trials on 922 beef composite steers at the

Kinsella Research Ranch of the University of Alberta, Canada

from 2004 to 2009. These beef composite steers were progenies

from crosses between Angus, Charolais, or University of Alberta

hybrid bulls and the University of Alberta’s experimental hybrid

dam line. The phenotypic observations of carcass weight were

collected in the abattoir, which was described by Nkrumah et al.

[27,28,29]. DNA samples were extracted from blood samples of

the 922 beef steers during the feedlot trials. High-throughput

genotyping was carried out at the Bovine Genomic Laboratory at

the University of Alberta using the Illumina BovineSNP50

BeadChip. Those SNP that were not mapped to the Btau4.0

reference assembly (http://www.hgsc.bcm.tmc.edu/ftp-archive/

Btaurus/fasta/Btau20070913-freeze/) were excluded from the

analysis. All SNP with minor allele frequency (MAF) ,0.05 were
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removed from this analysis [30]. After the filtering with the above

criterion, a total of 40,809 SNP remained for the analysis. A total

of 86 animals with missing phenotypic observations were excluded

from the analysis, resulting in 836 animals with carcass weight

observations subject to the analysis. Co-factors considered in the

analysis included sire breed, test group and the slaughter age. The

systematic effects of the three co-factors were pre-adjusted via a

linear model analysis and the residuals resulted from the linear

model adjustment were subjected to the analysis.

The sample size was n~836 and the number of SNP markers

was p~40809. The sample size was sufficiently large to handle all

the 40809 markers without using the bin analysis by Lasso method

implemented in the GLMNET/R program. However, we still

performed the bin analysis by defining various bin sizes with a

log10bp unit. Phenotypic variance of the carcass trait after

adjusting for the fixed effects was 670.36. The MSE under both

the infinitesimal model (filled circles) and the adaptive infinitesimal

model (open circles) are presented in Figure 6. First, all the MSE

values were below the phenotypic variance (670.36, dashed line),

meaning that both models were useful for prediction. Secondly,

the MSE under the marker analysis (one marker per bin) was

about 603.75 (the blue horizontal line), less than the phenotypic

variance (the dashed line). The corresponding R2 value was

R2~(670:36{603:75)=670:36~0:099, meaning that the 40809

markers collectively explained only about 9.9% of the phenotypic

variance for the original marker analysis. Thirdly, as the bin size

increased, the MSE of the infinitesimal model (filled circle)

progressively increased until it reached the phenotypic variance

(670.36), e.g., no predictability. This analysis showed that the beef

population had some level of linkage disequilibrium, but not high

enough to make the unweighted bin analysis more effective.

Finally, we evaluated the MSE of the adaptive infinitesimal model.

In contrast to the infinitesimal model, the adaptive model showed

a sharp decrease in MSE as the bin size increased. The MSE

reached the minimum value of 447.10 when the bin size was about

5.9 log10bp. The corresponding R-square was

R2~(670:36{447:10)=670:36~0:333, meaning that the bin

effects collectively explained 33.3% of the phenotypic variance.

As the bin size further increased, the MSE progressively increased.

The bin analysis showed a significant improvement of the

predictability of the model. The results of MSE and R-squares

were obtained from the multiple regression models in the sense

that all model effects were included in a single model. The

software package used is GLMNET/R [17].

Finally, we showed the LOD scores of 3186 bins across the

entire beef cattle genome in Figure 7 (panel b). The LOD scores

were obtained from the adaptive infinitesimal model analysis with

a bin size of 5.9 log10bp (the optimal bin size). The top panel of

Figure 7 gives the LOD scores for all the 40809 markers (not the

bins) using a simple regression analysis (not from the Lasso

method). The LOD scores of the two analyses do not agree with

each other. The individual marker analysis showed that chromo-

somes 20 and 24 each had a major marker with a very high LOD

score. However, the bin model analysis did not show any evidence

of major effects for these two chromosomes; instead, chromosomes

6 and 11, each had a major bin with LOD scores over 60. Note

that the 40809 estimated marker effects (regression coefficients)

corresponding to the LOD scores in this figure were only used to

Figure 2. Mean squared error expressed as a function of bin size for design I. The mean squared errors were obtained from 100 replicated
simulations. The overall proportion of the phenotypic variance contributed by the 20 simulated QTL was calculated using
h2~64:41=(64:41z26:53zs2). Each panel contains the result of five different sample sizes (n). The phenotypic variance of the simulated trait is
indicated by the dashed horizontal line in each panel (each panel represents one of the four different scenarios).
doi:10.1371/journal.pone.0041336.g002
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find the weights for the adaptive infinitesimal model. They were

not used in the MSE and R-square comparisons.

The infinitesimal model developed here is not a new statistical

method. It generates new data (the bin data) and uses the new data

to perform genomic selection. Any multiple regression methods

can be used to perform the bin model analysis, as long as the

model can handle the finite number of bins. We choose the Lasso

method because it is computationally more efficient than all other

competing methods. We have shown that the bin model is

significantly better than the Lasso method that uses the original

marker data. One reviewer stated that Lasso is not the standard

method for genomic selection and other competing methods

should be compared. Both reviewers suggested comparison be

made between the bin model and other competing models.

Following their suggestion, we compared our bin data analysis

with the following competing methods, (1) eBayes, (2) G-Blup, (3)

BayesB-1, (4) BayesB-2 and (5) Lasso. Brief descriptions of these

methods are given in the methodology section.

Again, we used the MSE and the R-square values generated

from the 10-fold cross validation analysis as criteria for the

comparison. In all the five competing methods, the original 40809

SNP markers were included in the model. The MSE and the R-

square values of all six models (five competing models plus the bin

model) are given in Table 1. The MSE of all models are smaller

than the phenotypic variance (670.36), meaning that all methods

are effective to a certain degree. The bin model has the smallest

MSE (447.10), followed by Lasso (603.75), G-Blup (632.46),

eBayes (648.11), BayesB-1 (655.59) and BayesB-2 (658.19). The

best competing model is Lasso. On contrary to the common belief

that BayesB is the best method for genomic selection, this study

shows that BayesB is the worst one among these competing

models. One may argue that the comparison is not fair because the

bin model estimates bin effects rather than marker effects. If we

use eBayes and BayesB methods for the bin data, they can be more

efficient than the corresponding methods using the marker data.

This is exactly the point we are trying to address: the bin model

uses new data (bin data) and such a model has not been available

yet before this study.

Discussion

Our analysis shows two bins with very large LOD scores. One

bin is on chromosome 6 (bin 900, LOD score 65.48) and the other

on chromosome 11 (bin 1652, LOD score 75.54). The first bin

covers 19 SNP and the second bin covers 8 SNP. Information of

the two bins and the SNP covered by the two bins are presented in

Tables S1 and S2. Nine out of the 19 SNP covered by the bin on

chromosome 6 have LOD scores .3.0, based on individual

marker analyses. Some of the individual effects are positive while

others are negative. None of the 8 SNP covered by the bin on

chromosome 11 have LOD score .3.0, based on individual

marker analyses. Without the bin analysis, none of the 8 SNP in

the bin on chromosome 11 would be detected. However, the

collective effect of the 8 SNP is very significant. This observation

clearly demonstrates the power of the bin model.

We used the Lasso method to analyze the bin data. The other

competing methods, except the G-BLUP method, can also be

used to analyze the bin data. We anticipated that those methods

would also improve the predictability if applied to the bin data

compared to the analyses with the original SNP marker data.

Figure 3. Mean squared error expressed as a function of bin size for design II. The mean squared errors were obtained from 100 replicated
simulations. The overall proportion of the phenotypic variance contributed by all simulated QTL was calculated using h2~80:77=(80:77zs2). Each
panel contains the result of five different sample sizes (n). The phenotypic variance of the simulated trait is indicated by the dashed horizontal line in
each panel (each panel represents one of the four different scenarios).
doi:10.1371/journal.pone.0041336.g003
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However, we do not expect these methods to be better than the

Lasso method for the bin data based on the results of the SNP

marker analysis. It will be an excellent topic for further

Figure 4. Mean squared error expressed as a function of bin size for design III. The mean squared errors were obtained from 100 replicated
simulations. The overall proportion of the phenotypic variance contributed by all simulated QTL was calculated using h2~81:94=(81:94zs2). Each
panel contains the result of five different sample sizes (n). The phenotypic variance of the simulated trait is indicated by the dashed horizontal line in
each panel (each panel represents one of the four different scenarios).
doi:10.1371/journal.pone.0041336.g004

Figure 5. Mean squared error for the simulated data under
design IV plotted against the bin size. Design IV was for
populations with low levels of linkage disequilibrium. The sample size
of the simulated population was n~500. The residual error variance was
s2~20, corresponding to h2~0:777. The filled circles indicate the MSE
under the infinitesimal model while the open circles indicate the MSE
under the adaptive infinitesimal model. The dashed horizontal line
represents the phenotypic variance of the simulated trait (89.71).
doi:10.1371/journal.pone.0041336.g005

Figure 6. Mean squared error for the carcass trait of beef cattle
plotted against the bin size. The filled circles indicate the MSE under
the infinitesimal model while the open circles indicate the MSE under
the adaptive infinitesimal model. The dashed horizontal line represents
the phenotypic variance of the simulated trait (670.36). The solid
horizontal line along with the two dotted lines represents the MSE and
the standard deviation of the MSE in the situation where the bin size
was one (one marker per bin). The sample size was n~836 and the
number of SNP markers was p~40809. The bin size was defined as log10

bp. For example, the largest bin size log10bp~8:3 means that the bin
size contains 2|108 base pairs.
doi:10.1371/journal.pone.0041336.g006
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investigation to compare all available genomic selection proce-

dures under the bin model.

Prior to the genome era, quantitative genetics was dominated by

the infinitesimal model [31]. Effects of individual genes were not

recognizable and thus the collective effects of genes had to be

studied using pedigree information. Genetically related individuals

share a proportion of their genetic material and the shared

proportion varies as the degrees of relationship varies, which

provides the foundation for genetic parameter estimation and

breeding value prediction. The best linear unbiased prediction

(BLUP) technique [32] marked the peak of the classical

quantitative genetics. By the end of 1980’s, the classical

quantitative genetics reached its end in terms of methodology

development, although it is still the basis for plant and animal

breeding and the methods are still effective in modern breeding

programs. The advent of molecular technology provided an

opportunity to revise the model and quantitative genetics faced a

transition from classical quantitative genetics to modern quanti-

tative genetics. This transition was mainly due to the landmark

work in QTL mapping by Lander and Botstein [1]. The interval

mapping procedure proposed by Lander and Botstein [1] was

based on the oligogenic model in which a quantitative trait is

controlled by a few major genes plus a collection of many genes

with small effects. QTL mapping targets these major genes. Using

this QTL mapping technology, people have detected many QTL

for many quantitative traits [6,7,8,9]. This means that many

quantitative traits are indeed guided by the oligogenic model. For

the last two decades, numerous statistical methods have been

developed for QTL mapping [33,34,35,36,37,38,39,40,41]. These

methods mainly addressed the problem of missing genotypes in

places where markers are not available (sparse map). With large

sample sizes and the high density SNP markers currently available

for many species, median and small sized QTL may be detectable

now. The problem faced in interval mapping has been reversed;

rather than inserting pseudo markers in an interval flanked by two

markers, we now have to selectively delete markers because the

marker density is too high to be handled by any advanced

statistical methods. In the near future, high density SNP data and

whole genome sequence data may be available for many species.

Advanced statistical methods alone may not be sufficient to deal

with the high density markers. The infinitesimal model proposed

here serves as a technical preparation to handle such virtually

infinite number of markers. Rather than estimating marker effects,

we now try to estimate the collective effect of all markers in each

interval (bin) of the genome. This requires a new model (the bin

model) using currently available statistical methods, e.g., the Lasso

method. This new model can take advantage of all markers in the

genome and estimate collective effects of all genes regardless how

small each gene effect is.

This study emphasizes genomic value prediction. However, the

method also applies to QTL mapping. If a trait is indeed

Figure 7. LOD scores of individual markers and bins of the carcass trait of beef cattle. (a) The top panel shows the LOD scores of
individual marker analysis (simple regression analysis for each marker). (b) The panel at the bottom shows the LOD scores of the bins obtained from
the adaptive infinitesimal model analysis with a bin size of 5.9 log10bp (the optimal bin size). The number of bins under this optimal size was 3186.
doi:10.1371/journal.pone.0041336.g007

Table 1. Mean squared error (MSE) and R-square values
obtained from the 10-fold cross validation analysis for the
beef carcass trait using five competing models and the
proposed bin model.

Model MSE2 R-square

eBayes 648.11 0.0332

G-Blup 632.46 0.0565

BayesB-1 655.59 0.0220

BayesB-21 658.19 0.0182

Lasso 603.75 0.0994

Bin model 447.10 0.3330

1The Pi value for BayesB-2 is set at 0.95.
2The phenotypic variance of the beef carcass trait is 670.36. The magnitude of
MSE value smaller than 670.36 indicates the effectiveness of the model
predictability.
doi:10.1371/journal.pone.0041336.t001

An Infinitesimal Model for Genomic Prediction

PLoS ONE | www.plosone.org 12 July 2012 | Volume 7 | Issue 7 | e41336



controlled by a few large effect QTL, we can detect the bins that

contain these QTL (see Design I and Figure 1). Further research

can be focused on these significant bins. Each of the significant

bins may be further divided into many smaller bins and these small

bins are subject to the same analysis. The process may be

continued for several iterations until the effects are nailed down to

particular markers. For example, the analysis of the carcass trait of

beef cattle showed that chromosomes 6 and 11 each had a bin with

a large LOD score. In the next step analysis, we may divide each

of the two bins into several smaller bins. These smaller bins are

then included in a single model for further analysis.

An obvious extension of the model is to investigate epistatic

effects by including bin by bin interaction effects. The greatest

challenge of epistatic analysis is the high dimension of the model

[42]. Since the number of bins can be substantially smaller than

the number of markers, including the bin by bin interaction effects

can be easily implemented. A bin by bin interaction represents the

total epistatic effects of all markers from one bin with all markers

from another bin. If the first bin has pk markers and the second

bin has pk0 markers, the bin by bin interaction effect is the sum of

all the pk|pk0 epistatic effects. This requires investigators to

calculate the average of pk|pk0 products of genotype indicator

variables for the two bins. This step of calculation is performed

before the actual data analysis and thus will not significantly

increase the computational burden.

The adaptive infinitesimal model was developed for populations

with low and no linkage disequilibrium. An obvious question is

whether it can also be applied to populations with high linkage

disequilibrium. The answer is YES but we do not recommend it.

We used the adaptive model to analyze simulated data from

Design I, an F2 population with high linkage disequilibrium. The

results were not as good as the original model analyses in terms of

predictability, although the predictability remains relatively high

(data not shown). The reason was that the weights introduced for

the adaptive model also introduced some noise (estimation errors

for the weights). The population disequilibrium level should be

lower than a certain level before the benefit appears for the

adaptive model. Further study is required to find this level of

linkage disequilibrium.

As stated in the main text, there are many different ways to

choose the weight for the adaptive model. Consider the estimated

effect for marker h in bin k (denoted by b̂bh), we proposed to use the

simple regression analysis for each marker. An alternative method

may be the multiple regression analysis for all pk markers

simultaneously within each bin. If pk is large, a penalized

regression may be used. These alternative methods have not been

investigated. Given the b̂bh‘s, how to use them to construct the

weight wh is also worth of further investigation. A simple extension

of our weight system may be.

wh~

ffiffiffiffiffi
pk
p

b̂bhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPpk
h~1 b̂b2

h

q ð44Þ

One property of this weight is
Ppk

h~1 w2
h~pk. Other properties

of this weight system are unknown. A comparison of this weight

with our weight will be an interesting project.

Finally, the continuous genome model presented in equation (4)

is numerically integrated with a finite number of bins. Within each

bin, the number of markers is assumed to be finite also. When the

number of markers really approaches to infinity, the data becomes

extremely large. Data storage will become a problem, not even

mentioning computation. The solution is to use the actual

breaking points (recombination events) of the genome as the data.

The super saturated marker data will actually tell the breaking

points. In fact, it is the actual breaking points that are informative

for genetic analysis. Breaking point mapping is a new concept

derived from the infinitesimal model. The idea of bin analysis

[43,44] and breaking point mapping will open a new avenue to

study unlimited volume of genomic data.
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