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Abstract

1. Organisms are constantly making tradeoffs. These tradeoffs may be behavioural (e.g.,

whether to focus on foraging or predator avoidance) or physiological (e.g., whether to

allocate energy to reproduction or growth). Similarly, wildlife and fisheries managers must

make tradeoffs while striving for conservation or economic goals (e.g., costs versus rewards).

Stochastic dynamic programming (SDP) provides a powerful and flexible framework within

which to explore these tradeoffs. A rich body of mathematical results on SDP exist but have

received little attention in ecology and evolution.

2. Using directed graphs—an intuitive visual model representation—we reformulated

SDP models into matrix form. We synthesized relevant existing theoretical results which we

then applied to two canonical SDP models in ecology and evolution. We applied these matrix

methods to a simple illustrative patch choice example and an existing SDP model of

parasitoid wasp behaviour.

3. The proposed analytical matrix methods provide the same results as standard numerical

methods as well as additional insights into the nature and quantity of other, nearly optimal,

strategies, which we may also expect to observe in nature. The mathematical results

highlighted in this work also explain qualitative aspects of model convergence. An added

benefit of the proposed matrix notation is the resulting ease of implementation of Markov

chain analysis (an exact solution for the realized states of an individual) rather than Monte

Carlo simulations (the standard, approximate method). It also provides an independent

validation method for other numerical methods, even in applications focused on short-term,

non-stationary dynamics.

4. These methods are useful for obtaining, interpreting, and further analysing model

convergence to the optimal time-independent (i.e., stationary) decisions predicted by an SDP

model. SDP is a powerful tool both for theoretical and applied ecology, and an understanding

2



of the mathematical structure underlying SDP models can increase our ability to apply and

interpret these models.

key words: backwards induction, Markov chain, Markov decision process, optimality

models, stochastic dynamic programming, stationary decisions, value iteration

Introduction

Tradeoffs are an unavoidable part of being alive. Tradeoffs may be physiological (e.g., how much

energy to allocate to growth versus reproduction (Rees et al., 1999)), or behavioural (e.g, how to

balance energy gain with predator avoidance (Mangel and Clark, 1986; McNamara and Houston,

1986). What constitutes a successful strategy is ultimately influenced by natural selection, as

strategies that increase population mean fitness will tend to spread in the population if they have a

heritable component.

Similarly, conservation ecologists and wildlife or fisheries managers must also make

tradeoffs while striving to achieve conservation or management goals. In this context, tradeoffs

are often between immediate and future rewards (e.g., how much to harvest now while

maintaining a sufficient population to harvest later (Runge and Johnson, 2002)). The objective

may be to control an invasive species (Bogich and Shea, 2008) or ensure the long term viability of

a population.

Optimal control theory predicts how an individual should navigate a series of risks and

rewards to achieve an objective, subject to relevant constraints. Often, the rewards may be

probabilistic (e.g., the probability of individual finding food), and the optimal control may depend

on both the state of the individual (e.g., an animal’s physiological state) and a temporal
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component (e.g., how many days remain in a season). We use the word decision (rather than

control) to describe the action taken by an individual whenever there is more than one possible

action. These decisions include events beyond cognition such as the decision by an animal to

abort a pregnancy based on their level of energy reserves. An optimal decision question may be

framed as a state-dependent Markov decision process.

Stochastic dynamic programming (SDP) is a common method to deal with state-dependent

Markov decision processes. It is common in both ecology and resource management to refer to

both the model and the method of solving the model as SDP (Marescot et al., 2013) and we

follow this convention. SDP has a rich history of application and theoretical developments in a

wide array of disciplines (Puterman, 1994), including engineering (Sheshkin, 2010), finance

(Bäuerle and Rieder, 2011), and artificial intelligence (Sigaud and Buffet, 2010). However, many

of these theoretical advances have not been popularized in the biological literature, despite their

powerful implications both for model analysis and biological interpretation.

SDP has been used in many areas of biology, including behavioural biology, evolutionary

biology, and conservation and resource management (for reviews in each of these areas, see

McNamara et al. (2001) and Mangel (2015), Parker and Smith (1990), and Marescot et al. (2013),

respectively).

In some applications of SDP, one is interested in the temporal aspects of the optimal

decisions, especially near some terminal time; these are finite time horizon problems. For

example, we may expect an individual to make riskier foraging decisions near the end of a

feeding season (Bull et al., 1996; Reimer et al., 2019). In many cases, the optimal decisions are

stationary (i.e., not varying from one time step to the next) when they are sufficiently far away

from the terminal time. In some applications of SDP, these stationary decisions are used for

prediction (Mangel, 1989; Chan and Godfray, 1993; Shea and Possingham, 2000), rather than the
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transient dynamics near the end of the optimization period; we refer to these as stationary

decision problems. Finally, other questions do not concern a finite time period at all (Venner et al.,

2006; Mangel and Bonsall, 2008), but are infinite horizon problems. For example, managers may

wish to maximize the total number of animals that may be harvested indefinitely (Runge and

Johnson, 2002).

Stationary decision problems and infinite horizon problems in biology are often solved

using essentially the same numerical, iterative method, though it appears in the literature under

different names: backwards induction or value iteration (Puterman, 1994; Clark and Mangel,

2000). Several software packages have been created to run these, and other (e.g., policy iteration)

numerical routines for a wide range of applications in biology (Lubow, 1995; Chadès et al., 2014;

Marescot et al., 2013).

SDP models are typically constructed component-wise, separately considering an individual

in each possible state at each time. This component-wise model formulation hides the elegant

mathematical structure underlying SDP. The theoretical results in the SDP literature outside of

ecology (Puterman, 1994) depend on this mathematical structure. In this paper, we promote the

use of vector and matrix notation for SDP applications, allowing for consideration of an

individual in all possible states at each time. A few examples of this approach in ecology do exist

(McNamara, 1990, 1991; McNamara et al., 2001). For example, McNamara (1990) analyzed

tradeoffs in the context of risk-sensitive foraging by formulating an SDP model in the language of

matrices and analyzing the eigenvalue equation, which led to one of the main results we use

here—a generalization of the Perron-Frobenius theorem for the SDP operator (McNamara, 1991).

We build on this foundation, applying results from general SDP theory to another broad class of

SDP models in ecology (so-called “resource allocation models”). We demonstrate how

formulating an SDP model in the language of matrices leads to analytic methods for obtaining
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optimal decisions for both stationary decision and infinite horizon problems. We provide

step-by-step instructions for implementing these analytic methods for two canonical equations of

SDP in ecology (Mangel, 2015) and illustrate key steps with a simple example.

These analytic matrix methods have several notable additional benefits. A byproduct of

obtaining the optimal decisions in this way is a comprehensive picture of all other possible

decisions. This provides a sense of which other, nearly optimal, decisions we could also expect to

observe in nature, or a range of possible management options with comparable outcomes. The

intuition behind these analytic results also allows us to explain non-intuitive transient oscillating

decisions. Further, ecologists interested in how an optimally behaving individual’s state changes

over time typically run thousands of Monte Carlo simulations (an approximate method).

Alternatively, Markov chains provide an exact method for determining the probability distribution

of an individual’s realized state at each time (Mangel and Clark, 1988). We illustrate how the

Markov transition matrix is conveniently constructed as a by-product of formulating an SDP

model using matrices.

We apply these matrix methods to an existing study of host feeding behaviour in parasitic

wasps (Chan and Godfray, 1993).

Methods

Stochastic dynamic programming

SDP models contain several key components (Clark and Mangel, 2000). These include discrete

time steps t and a time horizon, which may either be finite with a terminal time T , or infinite. The

set of possible state variables x ∈ χ = {x1, . . . , xk} must be defined, and any relevant constraints

on the states included. The actions available to an individual in a given state at each time must be
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made explicit. We assume a finite number of actions available to an individual. The probabilistic

state dynamics (e.g., the probability of survival or reproduction), which may vary depending on

the individual’s decision, must be defined. The fitness function f(x, t), also known as the reward

or value function, describes the expected future reward for an optimally behaving individual in

state x at time t. Its value is determined by specifying the dynamic programming equation, so that

f(x, t) = maxE[future reward, given state x at time t], where the maximum is taken over all

possible decisions and the expectation is taken over all possible future rewards. For finite horizon

problems, with T <∞, a terminal fitness function f(x, T ) = Φ(x) must be specified. Relevant

boundary conditions (i.e., critical levels of the state variable) must also be specified; e.g., if x = 0

implies mortality, then f(0, t) = 0 for all t, as there can be no further future fitness gains. Note

that we used lowercase f to describe the fitness function for an individual in a given state. When

we later consider all states simultaneously, we will use capital F to denote the fitness vector. We

follow this convention throughout, using lowercase letters to denote scalar quantities and capital

letters to denote vectors and matrices.

Most applications of SDP in biology find their roots in one of two canonical equations

(Mangel, 2015). Both have an individual’s energy stores x as the state variable, µ is the mortality

rate (excluding starvation), η is the probability of finding food, and y is the energy gained if the

individual finds food. In the first canonical equation, c is the daily energetic cost. This equation

describes a model of activity choice, with an individual choosing between two possible foraging

patches, so the decision is i = {patch 1 or 2}:

f(x, t) = max
i=1,2

e−µi︸︷︷︸
survival

ηif(x− ci + yi, t+ 1)︸ ︷︷ ︸
obtain food

+ (1− ηi)f(x− ci, t+ 1)︸ ︷︷ ︸
do not obtain food

 . (1)

Here the probability of survival, the probability of finding food, the energetic costs, and the

7



energetic gains from finding food all vary depending on patch choice, so are subscripted by i.

The second canonical equation describes a model of resource allocation, such as how much

energy to devote to reproduction at a given time, so the decision is the amount of energy r to

allocate to immediate reward:

f(x, t) = max
r

 g(r)︸︷︷︸
immediate

rewards

+ e−µ︸︷︷︸
survival

[
η f(x− r + y, t+ 1)︸ ︷︷ ︸

obtain food

+ (1− η)f(x− r, t+ 1)︸ ︷︷ ︸
do not obtain food

]
︸ ︷︷ ︸

future rewards

 . (2)

Here the probabilities of survival and finding food do not vary with the individual’s choice.

Rather, the individual must balance the immediate rewards g(r) of spending r resources against

any possible future rewards. In both (1) and (2), survival acts as a discount factor on future

rewards. Applications in resource management also tend to be structured like this second

canonical equation (Marescot et al., 2013).

Illustrative example

We illustrate key concepts using a simple patch choice example. Consider an individual in a

non-breeding season of length T who may take one of 5 states x ∈ χ = {x1, . . . , x5}

corresponding to their level of energy reserves (i.e., x1 < . . . < x5). Each day,

t = 1, 2, . . . , T − 1, the individual chooses one of two foraging patches, with the objective of

maximizing survival to time T . Patch 1 is low risk and low reward (η1 = 0.4, e−µ1 = 0.99) and

Patch 2 is high risk and high reward (η2 = 0.8, e−µ2 = 0.891). Probabilistic state changes may be

represented by arrows in directed graph (Figure 1). If an individual finds food in either patch,

their reserves increase by 2 units (y1 = y2 = 3; dashed arrows). If an individual does not find

food, their reserves decrease by 1 unit (c1 = c2 = 1; solid arrows). An individual in state x1 who
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does not find food that day dies (i.e., transitions to state x0, the absorbing death state). An

individual survives each of these transitions with probability e−µin ; an individual in any state dies

with probability 1− e−µin (dotted arrows). These probabilities all depend on the patch decision

in ∈ {patch 1, patch 2} made by an individual in state xn. We are interested in the stationary

decision problem, i.e., predicting the patch an individual in state x at time t uses, away from any

transient effects of the terminal time. To answer this question, we use an SDP model with the first

canonical equation (1) as the fitness function.

Existing methods for obtaining stationary decisions

Backwards induction is typically used to solve stationary decision problems (see Clark and

Mangel (2000) for an overview). This is a numerical routine that exploits the recurrence relation

between f(x, t) and f(x′, t+ 1), for each x and some x′ ∈ χ. Backwards induction starts by

defining the terminal fitness function, f(x, T ) = Φ(x), for all x. One then calculates f(x, T − 1)

for all x, using the values of f(·, T ). After f(x, T − 1) is calculated, one goes on to calculate

f(x, T − 2), and continues in this way until f(x, 1) is computed for all x. For large T , the optimal

decisions are often stationary from one time step to the next, depending only on state, for t far

from T , i.e., T − t >> 1.

In a similar fashion, one may solve infinite horizon problems using the method of value

iteration, which is analogous to backwards induction applied repeatedly from a zero terminal

rewards function φ(x) = 0 for all x, until some convergence criterion for f(x, t) is reached (see

Marescot et al. (2013) for an overview). We compare results obtained using these numerical

methods with the proposed matrix methods. All computations were performed in Matlab (2018b)

and all code is available at doi:10.5281/zenodo.2547815. For those who prefer working in R, we

have also included an overview of key R commands (S1, online Supplementary Material).
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Matrix notation

While applications of SDP in biology typically describe the fitness function component-wise for

each state x, such as in (1) or (2), mathematical results follow more readily if these equations are

reformulated in matrix notation. A few papers and software programs use the language of

matrices (e.g., Marescot et al. (2013); Chadès et al. (2014)) but do not discuss the rich theory of

nonnegative matrices (bolded terms in Glossary, Appendix A) we use here.

We let F (t) = [f(x1, t), · · · , f(xk, t)]
> denote a column vector of fitness functions for each

state at time t. We do not here explicitly consider death, the absorbing state x0 (grey arrows in

Figure 1). This exclusion of death is necessary for the primitivity of Pπ, a condition required for

the results described below. Further, each matrix Pπ is substochastic due to the discounting effect

of survival, which ensures convergence in the mathematical results that follow.

We create a square k × k matrix of state transition probabilities Pπ, where each entry

pπ(xj, xk) describes the probability of transitioning from state xj to state xk. A policy π is a

k-tuple of decisions, one for each state. Π denotes the set of all possible policies. In (1), each

entry in π may take one of two values, patch 1 or patch 2, and so Π contains 2k possible policies

(i.e., (number of possible actions)ˆ(number of states in χ)). Each policy has a corresponding

matrix Pπ, so there are 2k possible matrices Pπ.

We rewrite (1) using matrix notation as

F (t) = max
π∈Π

Pπ F (t+ 1), (3)

where the maximum is taken over each of the independent vector components. Letting
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Gπ = [gπ,1, . . . , gπ,k]
T be a vector of immediate rewards, we can similarly rewrite (2) as

F (t) = max
π∈Π

[Gπ + Pπ F (t+ 1)] . (4)

Matrix notation for illustrative example

For our illustrative patch choice example,

Pπ =



0 0 e−µi1ηi1 0 0

e−µi2 (1− ηi2) 0 0 e−µi2ηi2 0

0 e−µi3 (1− ηi3) 0 0 e−µi3ηi3

0 0 e−µi4 (1− ηi4) 0 e−µi4ηi4

0 0 0 e−µi5 (1− ηi5) e−µi5ηi5


, (5)

and π = {i1, . . . , i5} describes the patch choices for individuals in states x1 through x5. Intuition

may be gained by comparing Pπ with Figure 1, where a black arrow from state xj to xk

correspond to entry pπ(xj, xk) in Pπ. In our example, each patch choice i1, . . ., i5 is equal to patch

1 or patch 2, giving rise to values of µ1 or µ2, and η1 or η2. Thus there are 25 possible matrices Pπ.

Note that in this example, the locations of the nonzero entries in Pπ are the same for all

π ∈ Π. In other applications, this need not be the case. A nonzero entry of Pπ will change

location between different policies if the corresponding arrow in the directed graph changes the

nodes that it connects, rather than just changing the probability associated with that arrow (e.g.,

the parasitoid wasp example below).
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Analytic method for activity choice problems

We now describe a method for obtaining the stationary policy for SDP models of form (3) using a

generalization of the Perron-Frobenius theorem1 by McNamara (1991). We highlight relevant

mathematical results and include full technical details in S2, online Supplementary Material.

Each matrix Pπ has k eigenvalues λπ,j , which we order according to their magnitude with

subscripts j = 1, . . . , k so that |λπ,1| ≥ . . . ≥ |λπ,k|. Each eigenvalue λπ,j has a corresponding

right eigenvector Vπ,j . The optimal policy π∗ is defined as the policy satisfying

Pπ∗V
∗ = max

π
PπV

∗,

for V ∗ satisfying PπV ∗ = λ∗V ∗. If Pπ∗ is primitive (see S3, online Supplementary Material for

details), the generalized Perron-Frobenius states that Pπ∗ has a uniquely defined dominant

eigenvalue λπ∗,1 and corresponding right eigenvector Vπ∗,1, which determine the asymptotic

behaviour of F (t) according to

lim
t→−∞

(λπ∗,1)−tF (t) ∝ Vπ∗,1,

i.e., F (t) decays exponentially according to (λπ∗,1)−t and converges in structure to Vπ∗,1 as

t→ −∞. This dominant eigenvalue satisfies λπ∗,1 = maxπ λπ,1 (McNamara, 1991). If we are

interested in obtaining the stationary policy analytically, without using backward induction or

value iteration, we may thus follow the steps in Box 1.

1For the classical Perron-Frobenius theorem in the context of matrix population models see Caswell (2001).
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Box 1. Stationary policy for activity choice problems

1. Determine the set of all possible policies π ∈ Π and construct the corresponding

matrices Pπ

2. Calculate the dominant eigenvalue λπ,1 of each matrix Pπ

3. Find the largest of these dominant eigenvalues: λπ∗,1 = maxπ∈Π λπ,1

4. Confirm that the corresponding matrix Pπ∗ is primitive, and if so, π∗ is the stationary

policy

Note that primitivity is a sufficient but not necessary condition for π∗ to be the optimal

stationary strategy. The assumption of primitivity can usually be satisfied by omitting any

absorbing, or otherwise redundant, states (McNamara et al., 2001). If there truly are multiple

optimal strategies (i.e., step 3 in Box 1 does not have a unique answer), this method will identify

all of them.

What is more likely than multiple truly optimal policies is that there are several policies

which are nearly optimal, with corresponding dominant eigenvalues just slightly smaller than

λπ∗,1 (Mangel, 1991). This is one of the strengths of this type of approach; by calculating the

asymptotic properties of the SDP model explicitly for each possible policy, we not only find the

optimal policy, but also obtain information about which other policies are nearly optimal.

We applied the steps in Box 1 to the illustrative patch choice example to obtain the

stationary decisions. We also found policies which are nearly optimal by looking at which

matrices Pπ have dominant eigenvalues within 1% of λπ∗,1. The properties of Pπ∗ are not only

relevant as t→∞, but also for understanding transient behaviour during convergence. For an

example illustrating how the other eigenvalues of Pπ∗ may lead to surprising oscillations, see S4,
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online Supplementary Material.

Analytic method for resource allocation problems

Using results from general SDP theory (S2, online Supplementary Material), we know that an

optimal stationary policy π∗ exists for equations of form (4) and that for any policy π there exists

a unique solution F̃ satisfying F̃π = Gπ + PπF̃π. This solution has the form F̃π = (I − Pπ)−1Gπ,

which can be seen using the recursive nature of this equation. For a given stationary policy π,

F (T − 1) = Gπ + PπF (T )

F (T − 2) = Gπ + Pπ [Gπ + PπF (T )]

= Gπ + PπGπ + PπPπF (T )

...

F (T − τ) =
τ−1∑
q=0

(Pπ)qGπ︸ ︷︷ ︸
A

+ (Pπ)τF (T )︸ ︷︷ ︸
B

.

If we increase T , the number of time steps under consideration increases. Alternatively, we may

fix T and look increasingly far back in time (i.e., letting τ →∞). Mathematically, these are

equivalent; we are making the time period under consideration very large, whether by changing

the initial time or the terminal time. As τ →∞, Part B→ 0, since |λπ,1| < 1 for substochastic

matrices such as these (S2, online Supplementary Material). Part A is a matrix geometric series

with |λπ,1| < 1, so
τ−1∑
q=0

(Pπ)qGπ → (I − Pπ)−1Gπ (6)
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as τ →∞, where I is the k × k identity matrix. The solution corresponding to π∗ is the largest of

the solutions corresponding to all π ∈ Π, i.e.,

F̃π∗ = max
π∈Π

F̃π.

Thus for SDP problems following the second canonical equation, the steps in Box 2 determine the

optimal stationary policy.

Box 2. Stationary policy for resource allocation problems

1. Determine the set of all possible policies π ∈ Π and construct the corresponding Pπ

and Gπ

2. Calculate F̃π = (I − Pπ)−1Gπ for each policy

3. Determine which policy π∗ yields the largest F̃π; π∗ is the optimal stationary policy

Host feeding behaviour of parasitic wasps

The evolution of insect parasitoid behaviour has been an especially fruitful area of SDP research

(Charnov and Skinner, 1984; Mangel, 1989; Clark and Mangel, 2000). We apply our method to

Chan and Godfray’s (1993) resource pool model of host feeding behaviour in parasitoid wasps,

where an adult female wasp requires host resources both for maintenance as well as the

maturation of eggs. Upon encountering a host, she must choose whether to use it for host feeding

or for oviposition. If she uses the host for food, she forgoes immediate fitness rewards but gains

energy with which she may obtain future rewards. Chan and Godfray’s goal was to predict the

optimal state-dependent feeding strategy of such parasitic wasps, specifically the stationary

energetic threshold xc below which an adult female wasp is predicted to host feed rather than
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oviposit, provided she was neither close to some terminal time nor running out of eggs.

Chan and Godfray described an individual’s physiological state with a single variable x.

Time was scaled so that each time step corresponds to the amount of time it takes to lose one unit

of energy; e.g., if an individual’s state is x = 10, that individual can survive 10 time steps without

feeding before death by starvation occurs.

The probability of finding a host over one time step is η. If a host is not encountered, the

wasp’s state decreases by 1 for daily maintenance. If a host is encountered and the wasp decides

to host feed, her state decreases by 1 for daily maintenance but increases by α, the energy gained

from host feeding. If instead she parasitizes the host, her state decreases by 1 for daily

maintenance and then further decreases by β, the cost of egg maturation. However, she receives

an immediate fitness gain of 1 unit. Her daily survival probability is e−µ, where µ is the

instantaneous risk of mortality. If x = 0, the wasp dies of starvation. Chan and Godfray used

parameters η = 0.2, α = 30, and µ = 0.0125. They considered two values for the cost of egg

maturation, β = 4 and 16, but we consider only β = 4. The largest possible x value and the

terminal time T were chosen to be large enough that they did not affect the threshold value

between host feeding and parasitizing. As they did not state these values explicitly, we used 75 as

an upper bound for x and T = 1000.

The resulting SDP equation is ,

f(x, t) = max

encounter host︷ ︸︸ ︷{
η
[
1 + e−µf(x− 1− β, t+ 1)

]︸ ︷︷ ︸
parasitize

, e−µf(x− 1 + α, t+ 1)︸ ︷︷ ︸
host feed

}
+

(1− η)e−µf(x− 1, t+ 1)︸ ︷︷ ︸
no host encountered

,

(7)
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with boundary conditions f(x, T ) = 0 and f(0, t) = 0 for all x and t. We rewrite (7) as

f(x, t) = max
i∈{1,2}

η

[
gi + e−µf(x− 1 + ci, t+ 1)

]
+ (1− η)e−µf(x− 1, t+ 1) (8)

where i = 1 denotes parasitizing and i = 2 denotes host feeding, g1 = 1, g2 = 0, c1 = −β, and

c2 = α. This now resembles the second canonical equation (2) and can thus be written as (4),

where each π ∈ Π is a k-tuple of ones and twos. Each π has a corresponding Pπ and Gπ (for more

details, see S5, online Supplementary Material). For each π ∈ Π, we calculated

F̃π = (I − Pπ)−1Gπ and then determined which was largest. The corresponding policy π∗ is the

optimal stationary policy.

A computational note

The number of policies π which need to be explored grows exponentially as the number of states

k increases. In both of our examples, Π contained 2k possible policies (= (number of possible

actions)ˆ(number of states in χ)). It quickly becomes computationally unwieldy to explore each

of these options. Fortunately, this is not necessary because the decision made in each state is

independent of the optimal decision of any other state; observe that f(x, t) does not depend on

f(x′, t) for any other state x′. For example, in the parasitic wasp problem, we first considered

π = {1, 1, . . . , 1}. We then checked whether F̃π increased if π = {2, 1, . . . , 1}. If so, we left 2 in

that location, if not, we returned it to 1. We then checked whether F̃π was greater when the

second entry of π was 2, again retaining 2 in that location if so, and discarding it if not.

Continuing in this way reduced the number of policies considered from 2k to k + 1.
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Forward iteration using Markov chains

Monte Carlo simulations are often used to study the realized states of an optimally behaving

individual over time (see Clark and Mangel (2000) for details). Many such simulations are

required to get an approximation of the probability distribution of the individual’s state over time.

One way to obtain the exact solution, rather than these approximations, is through the use of

Markov chains (Mangel and Clark, 1988). Component wise formulation of SDP models, however,

means that this approach is often not considered. We suspect this is because it appears far

removed from the paradigm of component wise backwards induction already in use, and may

seem less intuitive than Monte Carlo simulations. However, it may be simpler to obtain exact

Markov chain results than the approximate Monte Carlo results, provided the problem is already

formulated using matrices.

To see this, let M denote a Markov matrix, where m(xk, xj) = Pr(transitioning from state

xj to state xk in one time step). Recall that pπ(xj, xk) = Pr(transitioning from state xj to state xk

in one time step) under policy π and that Pπ is a substochastic matrix. This can easily be

modified to be a true stochastic matrix P̂π, with rows summing to 1, by adding the appropriate

column and row for any absorbing states such as death (grey arrows in Figure 1). The Markov

matrix corresponding to the SDP model for a given policy π is then M = P̂
>
π , the transpose of

matrix P̂π. Let z(x, t) = Pr(an optimally behaving individual is in state x at time t), with vector

notation Z(t). We obtain the probability of the individual being in each state using the forward

recursion equation

Z(t+ 1) = M(t)Z(t) = (P̂π(t))
> Z(t), Z(0) = z0 (9)

where z0 is a probability mass function for the individual’s initial state.
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We calculated the probability that an individual is in state x at time t for the parasitic wasp

example using this method of Markov chains. We assumed z0 ∼ Poisson(40), and considered

t = 1, . . . , 15.

Results

Illustrative example

In the patch choice example, an individual in each of the 5 states has the same 2 available patch

choices, so there are 25 = 32 possible policies, π1, . . . , π32 (Table 1). Each of these policies

corresponds to a matrix Pπ, which takes the form of (5). We calculated the dominant eigenvalue

of each of these 32 matrices (Table 1) and found the largest of these dominant eigenvalues was

λπ∗,1 = 0.97, corresponding to policy π∗ = {patch 2, patch 2, patch 1, patch 1, patch 1}. The

corresponding matrix is

Pπ∗ =



0 0 0.71 0 0

0.18 0 0 0.71 0

0 0.59 0 0 0.40

0 0 0.59 0 0.40

0 0 0 0.59 0.40


. (10)

By checking sequentially whether (Pπ∗)
ξ is positive for ξ = 1, 2, . . ., we found that (Pπ∗)

6 is

positive, so Pπ∗ is primitive. Thus the conditions of the generalized Perron-Frobenius theorem are

satisfied and we know that the rewards vector F (t) will asymptotically decay exponentially

according to λtπ∗,1, its structure will tend towards that of the corresponding right eigenvector Vπ∗,1,
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and policy π∗ is the stationary policy. We confirmed this using the typical method of backwards

induction (Figure 2).

We determined which of the dominant eigenvalues λπ,1 of Pπ for each policy π (Table 1),

were within 1% of λπ∗,1 and found five such policies: {1, 2, 1, 1, 1}, {1, 2, 2, 1, 1}, {2, 1, 1, 1, 1},

{2, 1, 2, 1, 1}, and {2, 2, 2, 1, 1}, where 1’s and 2’s denote patches 1 and 2, respectively.

Host feeding behaviour of parasitic wasps

Using the method outlined in Box 2, the optimal stationary policy π∗ is to host feed if

x ≤ xc = 27, the stationary threshold, and to parasitize otherwise. This stationary policy was the

same as that found using backwards induction (Figure 3).

We performed Monte Carlo simulations (Figure 4 (a)), against which we compared the

exact solutions obtained with the method of Markov chains (Figure 4 (b)). We also calculated the

probability that the individual is in each state, conditional on the individual surviving to that time

(Figure 4 (c)).

Discussion

Formulating an SDP problem using matrices alowed us to analytically determine optimal

stationary policies and interpret the nature of convergence to these stationary policies. One of the

most notable benefits of applying matrix tools to SDP analysis is a better understanding of the

relative performance of other stationary policies. Numerical methods result in a single, optimal

stationary policy. However, there may be several stationary policies which perform nearly as well

so as to be indistinguishable in light of the uncertainty in parameter estimates and model structure

(Mangel, 1991). Gaining a better picture of all policies with comparable fitness values can
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provide a range of good options for managers, or help interpret field observations. For example,

two distinct colour morphs of the desert flower Linanthus Parryae coexist in many areas (Epling

and Dobzhansky, 1942; Wright, 1943), and multiple life history strategies—annual, biennial, and

iteroparous—also coexist within a single population of Streptanthus tortuosus, a Californian

wildflower (Gremer et al., in review). Stable coexistence suggests similar lifetime fitness between

distinct strategies.

The matrix of state transition probabilities Pπ is useful not only for finding stationary

decisions but also for studying the evolution of an optimally behaving individual’s state over time

using Markov chains as the Markov transition matrix M(t) is constructed as a by-product of

constructing Pπ.

In stationary decision and infinite horizon problems, numerical iterative methods require the

user to specify a suitable stopping time criterion. This may be the number of time steps over

which the optimal policy does not change or a requirement that the max norm, || · ||∞ (or,

alternatively, the span seminorm (Puterman, 1994)) between successive iterations of the fitness

function be very small (Marescot et al., 2013). For example, if we set a stopping criterion for

backwards induction of ||F (:, T − (t+ 1))− F (:, T − t)||∞ < ε = 0.001, in the model for the

parasitic wasp, we would stop at time T − 391. However, we can see in Figure 3, that this

terminates the iterative method before the stationary policy is achieved. If, instead, we used the

stopping criterion of Boutilier et al. (2000), which requires

||F (:, T − (t+ 1))− F (:, T − t)||∞ < ε(1− e−µ)/(2e−µ), where e−µ is the discount factor in this

example, then we would stop at time T − 791, by which time the stationary policy has been

reached. Analytic computation using matrix analytic methods can confirm that convergence to the

true optimal solution has been reached by the stopping time.

For applications with a level of complexity similar to those discussed here, computational
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constraints will likely be minor. For example, all of the code required in our examples using any

of the methods considered (i.e., backwards induction or matrix methods) ran in less than 20

seconds on a modern laptop PC (Intel(R) Core(TM) i7 CPU, 32 GB of RAM, and a 64-bit

operating system). We suspect that the numerical iterative methods will tend to find solutions

faster than the matrix analytic methods in most cases, though we have not given this a thorough

treatment here. For both matrix and numerical methods, computational complexity increases

exponentially with the addition of more state variables (e.g., simultaneous consideration of an

individual’s age, reproductive state, energetic state, etc.), leading to the “curse of dimensionality”

(Bellman, 1957). If multiple state variables must be considered, other methods may become more

appropriate, requiring approximate dynamic programming methods (Powell, 2007) such as

reinforcement learning (Frankenhuis et al., 2018), or more heuristic methods (Nicol and Chadès,

2011).

There are similarities between the mathematical SDP results described here and other areas

of ecological theory. For example, analytical eigenvalue equations have been used to study the

evolution of optimal life history strategies (Charnov and Schaffer, 1973; Bulmer, 1994). Selection

on life history strategies has also been considered in the context of matrix population models,

where sensitivity analysis on expected lifetime reproduction (R0) indicates the strength of

selection acting on a given life history parameter (see Caswell (2001) for an overview).

Theoretical results on Markov chains with rewards initially developed in the context of stochastic

dynamic programming (Howard, 1960) have recently been applied to studies in demography

(Caswell, 2011; van Daalen and Caswell, 2017).

We do not propose that these matrix methods replace backwards induction or value

iteration, but rather that they are additional tools. The two approaches are complementary, and,

ideally, will be used in concert. Even if one is interested in transient dynamics near the terminal
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time, running that same model until it reaches its stationary decision state and then confirming

that it has reached the correct state with our proposed matrix methods would be an excellent

check for errors in the numerical code.

The examples we have considered here were chosen for their simplicity and general

applicability. One of the benefits of SDP, however, is model flexibility. For example, some SDP

applications include variable time increments; e.g., f(x, t) is a function of both f(x, t+ τ) and

f(x, t+ 1) for some integer τ (Mangel, 1987). Others require more than one state variable

(Brodin et al., 2017), which would need to be dealt with using either tensors or matrices

incorporating multiple states. These modifications will need to be dealt with on a case-by-case

basis, building from the foundations of the two canonical equations.

Conclusion

We have illustrated an alternative formulation of SDP models in biology, using the language of

matrices, as well as highlighted useful applications of relevant mathematical results. For two

canonical equations of SDP in ecology, we used these mathematical results to analytically obtain

the optimal stationary decisions. This resulted in additional insights into the existence and nature

of alternate, nearly optimal policies, as well as novel insight into the nature of convergence. The

transition matrices required for this method also allowed for straightforward implementation of

Markov chains to study the probability distribution of an individual’s state. We hope this will

encourage the incorporation of further results from SDP theory outside ecology and expand the

standard toolkit used to analyse SDP models in ecology, evolutionary biology, conservation, and

resource management.
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Brodin, A., Nilsson, J. Å., and Nord, A. (2017). Adaptive temperature regulation in the little bird
in winter: predictions from a stochastic dynamic programming model. Oecologia, 185:43–54.

Bull, C. D., Metcalfe, N. B., and Mangel, M. (1996). Seasonal matching of foraging to anticipated
energy requirements in anorexic juvenile salmon. Proc. R. Soc. B Biol. Sci., 263(1366):13–18.

Bulmer, M. (1994). Life-history evolution. In Theor. Evol. Ecol., pages 70–101. Sinauer,
Sunderland, MA.

Caswell, H. (2001). Matrix Population Models. Sinauer, Sunderland, MA, second edition.

Caswell, H. (2011). Beyond R0: Demographic models for variability of lifetime reproductive
output. PLoS One, 6(6).

Chadès, I., Chapron, G., Cros, M. J., Garcia, F., and Sabbadin, R. (2014). MDPtoolbox: a
multi-platform toolbox to solve stochastic dynamic programming problems. Ecography,
37(9):916–920.

Chan, M. S. and Godfray, H. C. (1993). Host-feeding strategies of parasitoid wasps. Evol. Ecol.,
7(6):593–604.

Charnov, E. L. and Schaffer, W. M. (20191973). Life-history consequences of natural selection:
Cole’s result revisited. Am. Nat., 107(958):791–793.

Charnov, E. L. and Skinner, S. W. (1984). Evolution of host selection and clutch size in parasitoid
wasps. Florida Entomol., 67(1):5–21.

Clark, C. W. and Mangel, M. (2000). Dynamic State Variable Models in Ecology. Oxford
University Press, New York.

Epling, C. and Dobzhansky, T. (1942). Genetics of natural populations. VI. Microgeographic
races in Linanthus Parryae. Genetics, 27:317–332.

Frankenhuis, W. E., Panchanathan, K., and Barto, A. G. (2018). Enriching behavioral ecology
with reinforcement learning methods. Behav. Processes, (January):0–1.

Howard, R. A. (1960). Dynamic programming and Markov processes. MIT Press, Cambridge,
MA.

Lubow, B. C. (1995). Generalized software for solving stochastic dynamic optimization
problems. Wildl. Soc. Bull., 23(4):738–742.

Mangel, M. (1987). Opposition site selection and clutch size in insects. J. Math. Biol.,
25(1):1–22.

Mangel, M. (1989). Evolution of host selection in parasitoids: does the state of the parasitoid
matter? Am. Nat., 133(5):688–705.

25



Mangel, M. (1991). Adaptive walks on behavioural landscapes and the evolution of optimal
behaviour by natural selection. Evol. Ecol., 5:30–39.

Mangel, M. (2015). Stochastic dynamic programming illuminates the link between environment,
physiology, and evolution. Bull. Math. Biol., 77(5):857–877.

Mangel, M. and Bonsall, M. B. (2008). Phenotypic evolutionary models in stem cell biology:
replacement, quiescence, and variability. PLoS One, 3(2).

Mangel, M. and Clark, C. (1986). Towards a unified foraging theory. Ecology, 67(5):1127–1138.

Mangel, M. and Clark, C. W. (1988). Dynamic Modeling in Behavioral Ecology. Princeton
University Press, Princeton, NJ.

Marescot, L., Chapron, G., Chadès, I., Fackler, P. L., Duchamp, C., Marboutin, E., and Gimenez,
O. (2013). Complex decisions made simple: a primer on stochastic dynamic programming.
Methods Ecol. Evol., 4(9):872–884.

McNamara, J. M. (1990). The policy which maximises long-term survival of an animal faced
with the risks of starvation and predation. Adv. Appl. Probab., 22(2):295–308.

McNamara, J. M. (1991). Optimal life histories: a generalization of the Perron-Frobenius
Theorem. Theor. Popul. Biol., 40:230–245.

McNamara, J. M. and Houston, A. I. (1986). The common currency for behavioral decisions. Am.
Nat., 127(3):358–378.

McNamara, J. M., Houston, A. I., and Collins, E. J. (2001). Optimality models in behavioral
biology. SIAM Rev., 43(3):413–466.

Nicol, S. and Chadès, I. (2011). Beyond stochastic dynamic programming: A heuristic sampling
method for optimizing conservation decisions in very large state spaces. Methods Ecol. Evol.,
2(2):221–228.

Parker, G. and Smith, J. M. (1990). Optimality theory in evolutionary biology. Nature,
348:27–33.

Powell, W. B. (2007). Approximate dynamic programming: Solving the curses of dimensionality.
John Wiley & Sons, Hoboken, NJ.

Puterman, M. L. (1994). Markov Decision Processes; Discrete Stochastic Dynamic
Programming. John Wiley & Sons, Hoboken, New Jersey.

Rees, M., Sheppard, A., Briese, D., and Mangel, M. (1999). Evolution of size-dependent
flowering in Onopordum illyricum: a quantitative assessment of the role of stochastic selection
pressures. Am. Nat, 154(154):628–651.

Reimer, J., Mangel, M., Derocher, A. E., and Lewis, M. A. (2019). Modeling optimal responses
and fitness consequences in a changing arctic. Global Change Biology, doi:
10.1111/gcb.14681.

26



Runge, M. C. and Johnson, F. A. (2002). The importance of functional form in optimal control.
Ecology, 83(5):1357–1371.

Shea, K. and Possingham, H. P. (2000). Optimal release strategies for biological control agents:
an application of stochastic dynamic programming to population management. J. Appl. Ecol.,
37(1):77–86.

Sheshkin, T. J. (2010). Markov chains and decision processes for engineers and managers. CRC
Press, Boca Raton, FL.

Sigaud, O. and Buffet, O., editors (2010). Markov decision processes in artificial intelligence.
Wiley, Hoboken, NJ.

van Daalen, S. F. and Caswell, H. (2017). Lifetime reproductive output: individual stochasticity,
variance, and sensitivity analysis. Theor. Ecol., 10(3):355–374.

Venner, S., Chadès, I., Bel-Venner, M. C., Pasquet, A., Charpillet, F., and Leborgne, R. (2006).
Dynamic optimization over infinite-time horizon: web-building strategy in an orb-weaving
spider as a case study. J. Theor. Biol., 241(4):725–733.

Wright, S. (1943). An analysis of local variability of flower color in Linanthus Parryae. Genetics,
28(March):139–156.

27



Tables

Table 1: All possible policies π (i.e., the patch choice between patch 1 and 2 for an individual in
each of the 5 possible states) and the dominant eigenvalue λπ,1 of each policy’s associated matrix
Pπ. The stationary policy π∗ is the one with the largest dominant eigenvalue, in grey.

policies Π
π1 π2 π3 π4 π5 · · · π∗ · · · π32

pa
tc

h
ch

oi
ce i1 1 1 1 1 1 2 2

i2 1 1 1 1 1 2 2
i3 1 1 1 1 2 · · · 1 · · · 2
i4 1 1 2 2 1 1 2
i5 1 2 1 2 1 1 2
λπ,1 0.94 0.90 0.94 0.89 0.96 · · · 0.97 · · · 0.89
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Figures

x0 x1 x2 x3 x4 x5
e−µi4ηi4

e−µi4 (1− ηi4)

(1− e−µi4 )

Figure 1: State and decision dependent transition probabilities for the patch selection example.
A living individual may be in 1 of 5 states (x1, . . . , x5). State x0 is the absorbing state of dead
individuals. Due to space constraints, we have only written transition probabilities corresponding
to each arrow for an individual in state x4. All arrows in grey are associated with the absorbing
state and not included in the matrix Pπ (but are included in the Markov matrix P̂π).
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Figure 2: Solution (obtained using backwards induction; arrow at top) of the illustrative patch
choice stochastic dynamic programming example. Top: Asymptotic exponential decay of the fit-
ness vector F (t) backwards in time, as t becomes further away from the terminal time. The bottom
curve is f(x1, t) and the top curve is f(x5, t), with the fitness curves for states x2 to x4 in between.
Middle: Normalized solution of F (t) converging backwards in time to the right eigenvector Vπ∗,1
(grey dashed lines) corresponding to the stationary policy π∗. Bottom: Convergence backwards in
time to the stationary policy, π∗ = {patch 2, patch 2, patch 1, patch 1, patch 1}.
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Figure 3: Optimal decisions of the parasitic wasp model of Chan and Godfrey (1993), obtained
using backwards induction. The policy at time t = 1 is the stationary policy, which is the same as
that obtained using our proposed matrix method.
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Figure 4: Changes in an optimally behaving individual’s state in the parasitic wasp example. (a)
20 Monte Carlo simulations. If we continued to run more of these, and calculated the proportion
of simulations in each state at a given time, we would end up with (b). (b) Heat map of the
probability of being in a given state at a given time, obtained using Markov chains. (c) Heat map
of the probability of being in a given state at a given time, conditional on surviving to that time,
obtained using Markov chains.
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A Glossary of matrix terminology
For a square matrix P , of size k × k, we remind the reader of the following definitions:

• dominant eigenvalue of P : the largest (in magnitude) of all eigenvalues of P

• eigenvector of P : a vector of length k which, when multiplied by P , changes only by
multiplication with a scalar, i.e., PV = λV , where λ is the associated eigenvalue

• eigenvalue of P : a scalar (real or complex number) λ with the property that PV = λV ,
where V is the eigenvector corresponding to λ

• Markov matrix: a nonnegative matrix whose rows (or, equivalently, columns) sum to 1;
also known as a stochstic matrix

• nonnegative matrix: a matrix where each of the entries is ≥ 0

• positive matrix: a matrix where each of the entries is > 0

• primitive matrix: a matrix for which P ξ is positive for some integer ξ

• substochastic matrix: a nonnegative matrix whose rows sum to ≤ 1, with at least one row
summing to < (or, equivalently, columns)
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