
Annotating Web Tables Using Surface Text Patterns

by

Andong Wang

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Andong Wang, 2016



Abstract

While the World Wide Web has always been treated as an immense source of

data, most information it provides is usually deemed unstructured and some-

times ambiguous, which in turn makes it unreliable. But the web also contains

a relatively large number of structured data in the form of tables, which are

constructed elaborately by human. Unfortunately, each relational table on the

Web carries its own “schema”. The semantics of the columns and the rela-

tionships between the columns are often ill-defined; this makes any machine

interpretation of the schema difficult and even sometimes impossible.

We study the problem of annotating Web tables where given a table and

a set of relevant documents, each describing or mentioning the element(s) of

a row, the goal is to find surface text patterns that best describe the contexts

for each column or combinations of the columns. The problem is challenging

because of the number of potential patterns, the amount of noise in texts and

the numerous ways rows can be mentioned. We develop a 2-stage framework

where candidate patterns are generated based on sliding windows over texts

in the first stage, and in the second stage, patterns are generalized and the

redundant patterns are removed. Experiments are conducted to evaluate the

quality of the annotations in comparison to human annotations.

ii



Acknowledgements

First, I would like to thank my supervisor Dr. Davood Rafiei for the continuous

support and patience with me. With his expertise, he gave me a lot of valuable

advice.

Also, I would like to thank my family for their love and support.

iii



Table of Contents

1 Introduction 1
1.1 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Literature Review 5
2.1 Annotating Web Tables . . . . . . . . . . . . . . . . . . . . . 5
2.2 Sequential Pattern Mining . . . . . . . . . . . . . . . . . . . . 7
2.3 Learning Surface Text Patterns . . . . . . . . . . . . . . . . . 8

3 Problem Statement and System Overview 9
3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Desired Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Pattern Extraction And Processing 13
4.1 Pattern Extraction . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Basic Screening . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Generalizing Patterns 18
5.1 Generating Generic Pattern . . . . . . . . . . . . . . . . . . . 18
5.2 Measuring Pattern Coverage and Specificity . . . . . . . . . . 20

5.2.1 Specificity . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.2 Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.3 Generalization Methods . . . . . . . . . . . . . . . . . . . . . 22
5.3.1 Selecting Generic Patterns . . . . . . . . . . . . . . . . 23
5.3.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3.3 Analysis and Comparison . . . . . . . . . . . . . . . . 27

6 Filtering Redundant Patterns 29
6.1 Pattern Boundary Filtering . . . . . . . . . . . . . . . . . . . 29

6.1.1 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.1.2 Boundary Detection using a Prefix Tree . . . . . . . . 30
6.1.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 31

6.2 Substring Filtering . . . . . . . . . . . . . . . . . . . . . . . . 34
6.2.1 Generality and the frequency of mentions . . . . . . . . 34
6.2.2 Substring Detection using a Suffix Tree . . . . . . . . . 34

6.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

iv



7 Pattern Ranking 39
7.1 Quality of Useful Patterns . . . . . . . . . . . . . . . . . . . . 39
7.2 Ranking Method . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

8 Conclusions 45
8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Bibliography 47

A User Settings 49

B Experiment Tables and Result Patterns 50

v



List of Tables

1.1 Example Table . . . . . . . . . . . . . . . . . . . . . . . . . . 1

6.1 Example detected patterns with their superstring pattern . . . 32
6.2 Precision of detecting redundant patterns as the threshold on

frequency drop varies . . . . . . . . . . . . . . . . . . . . . . . 33
6.3 Precision of detecting redundant patterns as the threshold on

frequency closeness varies . . . . . . . . . . . . . . . . . . . . 37

7.1 Experiments result for Homepage dataset of different weight ρ
for top N patterns . . . . . . . . . . . . . . . . . . . . . . . . 42

7.2 Experiments result for Birth dataset of different weight ρ for
top N patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.3 Precision of extraction of top N patterns for different weight ρ 43

A.1 User setting file explanation . . . . . . . . . . . . . . . . . . . 49

B.1 Table in Homepage dataset . . . . . . . . . . . . . . . . . . . . 52
B.2 Top patterns for Homepage dataset . . . . . . . . . . . . . . . 53
B.3 Table in Birth dataset . . . . . . . . . . . . . . . . . . . . . . 54
B.4 Top patterns for Birth dataset . . . . . . . . . . . . . . . . . . 54
B.5 Table in Olympic dataset . . . . . . . . . . . . . . . . . . . . . 55
B.6 Top patterns for Olympic dataset . . . . . . . . . . . . . . . . 56
B.7 Table in NBA dataset . . . . . . . . . . . . . . . . . . . . . . 57
B.8 Top patterns for NBA dataset . . . . . . . . . . . . . . . . . . 58

vi



List of Figures

3.1 Wikipedia page for Wolfgang Amadeus Mozart . . . . . . . . . 10
3.2 Plain text describing Wolfgang Amadeus Mozart . . . . . . . . 10

5.1 Demonstration of structure of generic and candidate pattern set
and links between them . . . . . . . . . . . . . . . . . . . . . 19

5.2 Specificity-Coverage curve for 5 methods on Homepage dataset 26
5.3 Specificity-Coverage curve for 5 methods on Birth dataset . . 26
5.4 Specificity-Coverage curve of 5 methods on Olympic dataset . 26
5.5 Specificity-Coverage curve for 5 methods on NBA dataset . . . 26
5.6 Example structure of candidate and generic pattern set . . . . 28

6.1 Example prefix tree . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 Example suffix tree . . . . . . . . . . . . . . . . . . . . . . . . 36

vii



Chapter 1

Introduction

The Web may be viewed as a huge corpus of unstructured documents, but a

large volume of well-structured information is contained in these documents

as well, and this provides an abundant source of what we refer to as relational

data. This relational data is usually presented in the form of tables, each

consisting of data values in the form of a two dimensional grid. An example

is Table 1.1 with three rows and three columns, listing the birth year and

the death year. The Web offers a corpus of over 100 million such tables on a

wide range of topics [4]. Each Web table can be viewed as a single relational

Mozart 1756 1791
Einstein 1879 1955

Alan Turing 1912 1954

Table 1.1: Example Table

table providing factual and relational information. Some of these tables are

elaborately designed and populated by knowledgeable people, describing useful

facts and relationships.

The wide-spread use of tables for presenting data, in general, may be traced

back to their high information density. Because of the semantic relations im-

plied in a table layout and structure, only few descriptive words are needed for

human to interpret semantics of the rows and the columns, and no additional

information but relevant data entries (or entities) may be listed.

However, such structural information is not accessible to the machines. It

lacks the metadata that is traditionally used in the interpretation of struc-

1



tured data. In Table 1.1, it may be obvious to human what the table records

because of the listed values and the formatting. But, without help of any an-

notation or understanding of the table structure (metadata), deciphering this

information can be challenging. This is the problem we study in this thesis,

i.e. understanding table semantics through annotations.

A guiding principle in our work is that all rows in a table are expected to

describe the same relationships between the columns. For the same reason,

each annotation describes a property or a relationship that is expected to

hold for all rows of the table. We do not require a header row or any type

information that may describe the content beneath it, and this makes the

problem more general.

There are many different ways of expressing an annotation [1, 8, 14]. Pre-

defined labels or classes from an ontology can be selected to indicate the entity

types or the relationships between the types. On the other hand, meaning-

ful text patterns can represent semantic relations as well. For example, the

relation between the first and the second columns in Table 1.1 can either be

indicated by predefined type label such as “BirthYear” or represented by a set

of patterns such as “FLD1 was born in FLD2”, “FLD1’s birth year is FLD2”

where FLD1 and FLD2 respectively denote the first and the second columns

of the table1. There are some shortcomings for the predefined label approach

which will be discussed in Chapter 2.

In this thesis, we use text patterns to annotate web tables and to describe

the semantics of the columns. Text patterns can provide useful information

that can assist other processing techniques [9, 2]. Given relevant documents

of a web table, where terms and entities of the table are discussed, we identify

informative contexts surrounding the data entities in these documents. Some

of the problems to be addressed here are (1) identifying the patterns, (2)

ensuring their qualities and (3) selecting only a few patterns that best describe

the relationships. The evaluation in our work is done by human annotators.

Textual contexts (or patterns) identified for a table can be used as meta-

1The content of a cell can be a sequence of words. If the sequence contains multiple
words, it can be broke down into parts. More details on this can be found in Chapter 4.

2



data, allowing better use of tables in other applications. For example, this

metadata can benefit information retrieval tasks over a corpus of tables. In

particular, the content of a table can be indexed according to its semantic

context, as described by the annotations. Search engines may use this infor-

mation, for example, in detecting entities that share similar contexts or belong

to the same class. Even for a general purpose search, the metadata can help

better integrate tables into the search results. In the example of Table 1.1,

knowing the relation between the first column and the second column would

be useful when user searches “Mozart birth year”. The keyword “birth” and

“year” are expected to be mentioned frequently in the patterns linking the

first and the second columns, and “Mozart” is an entity in the first column.

In that case, the table may be regarded as closely related and returned as a

result. Close to 30 million results containing discovered tables are clicked on

Google within one day [4], which indicates that tables are a useful source of

information to search engine users. Metadata can also assist in additional pro-

cessing on table data. Two tables may share not many common data entries

but express the same relationships between their columns. Such cases may be

used, for example, in entity linking and entity resolution.

A challenging part of our approach, as the example shows, is that a given

semantic meaning may be expressed using multiple text patterns, and a small

change in an unimportant part of a pattern can result in another pattern. Two

patterns can have common substrings or be substrings of a larger pattern and

those patterns may or may not describe the same relationships. These factors

contribute to redundancy in text patterns.

1.1 Thesis Statement

Our thesis statement is that high-quality textual contexts can be used to ex-

press the semantic relations between or within the columns of a table, and

that text patterns are viable annotations for relational tables on the Web.

3



1.2 Thesis Contribution

The contributions of this thesis are as follows:

• Based on the observation that text patterns can represent a semantic

meaning, we propose an unsupervised framework which annotates a web

table with text patterns.

• We develop processing steps to enhance the quality of the text patterns,

based on generalization and filtering.

• We study the problem of ranking the patterns, with different parameter

settings evaluated and their performance compared.

• We evaluate our work on some real-world datasets, crawled from the

Web, and against the human annotators.

1.3 Thesis Organization

The remainder of this thesis is organized as follows. We review related work in

Chapter 2 and discuss their relationships to ours. Chapter 3 defines the prob-

lem and gives an overview of our framework. Chapter 4 introduces the first

step, extracting text patterns from input documents, and some basic process-

ing on the documents and extracted patterns. Chapter 5 presents methods for

generalizing text patterns; also some notion of pattern quality is introduced

and evaluated. In Chapter 6, we study the problem of eliminating patterns

that are considered redundant. Chapter 7 studies the problem of pattern

ranking. In Chapter 8 we summarize our thesis and discuss the future work.

4



Chapter 2

Literature Review

In this chapter, we review the literature closely related to ours. Our review

includes the approaches on annotating tables with predefined labels, where the

labels can be either from a handcrafted ontology or extracted from a corpus

including the Web. The literature on sequential pattern mining is related in

that it deals with the problem of extracting frequent sequences, similar to ours.

We also review some utilization of text patterns on Question-Answering and

Semantic Relation Extraction to express relationships.

2.1 Annotating Web Tables

Annotating tables can be viewed as a classification task where the goal is to

classify the rows and columns into different categories. Adelfio and Samet [1]

utilize similarities and differences between nearby rows to extract table schema.

In their work, rows of a table may not describe the same relationships, which

is fundamentally different from ours. A broad set of row classes is defined to

label each row with a row functions (e.g data or header), and row features

are manually designed to preserve the formatting and structure information

(e.g. capital or not, numeric or not). As a final step, a Conditional Random

Field (CRF) based classifier is trained with human labeled data and is used

to classify each row. CRF is designed to maximize the probability of a row

label sequence Y given row sequence X, i.e. P (Y |X), where each row in X is

represented by a feature vector. Compared to our work, this work focuses on

the functions of a row, and the breadth of the designed row classes can affect

5



the accuracy of the method. Also, it is not clear how useful the row labels are,

and they may be better utilized in combination with other annotations.

Limaye et al. [8] leverage an existing type hierarchy with binary relations

and entities that are instances of types. The authors annotate a table by

associating cells with entities, columns with types and pairs of columns with

binary relations between types. Different sets of features and similarity func-

tions are utilized to compute scores for all the assignments over the table.

Then, the authors use the joint inference over these scores to compute the

probabilities for all assignment combinations, boosting the quality of assigned

labels. The assignment combination with the highest probability is returned

as the annotation for the table.

The same kind of annotation is done by Mulwad et al. [10]. In their ap-

proach, to predict a semantic class that characterizes a column, a ranked list

of classes is first retrieved by submitting complex queries about the cells to a

knowledge base. Thus a score can be computed for each class and cell string

pair, (ci, sj), based on the rank of class ci for cell string sj and its predicted-

Page Rank [13]. Then the class label that maximizes the score over the entire

column is chosen as the column label.

Similarly, Venetis et al. [14] leveraged two databases for their labeling, and

label the columns and the relations in a table. In this work, the two databases

are extracted from the Web, instead of from an ontology, and the annotations

are used to facilitate table search in their follow-up experiments. To label a

column or a relation, they use a maximum likelihood method, which computes

the probability of values {v1, . . . , vn} in a column having label li as follows

Pr [v1, . . . , vn|li] =
∏

j

Pr [li|vj]× Pr [vj]

Pr [li]
∝

∏

j

Pr [li|vj]

Pr [li]

where Pr [li] and Pr [li|vj] are computed based on the scores associated with

the value and label pair (vj, li). The labeling method attaches a class label to

a column if sufficient number of values in the column are identified with that

label in the database of class labels and analogously for binary relationships.

Unlike ours, these approaches do not handle nor produce surface text pat-

terns to annotate a table. In addition, these approaches focus on binary rela-

6



tions whereas in our framework relations can have more than two columns.

2.2 Sequential Pattern Mining

Given a set of sequences, where each sequence consists of a list of elements

and each element consists of a set of items, sequential pattern mining aims

at finding frequent subsequences, i.e. subsequences whose frequency is no less

than a minimum support threshold specified by user. If we treat a document

as a sequence of words, then the existing algorithms for sequential pattern

mining, such as PrefixSpan, are applicable to our problem.

Sequential pattern mining algorithms at first finds the set of frequent pat-

terns of length one, P = {a, b, c, . . . , n}. In our case, those will be patterns

that have a single word. Next, the sequence database is shrank based on the

frequent patterns and a new frequent item set I = {i1, i2, i3, . . . , in} in the

shrunk database is obtained. The next step is to check if the catenation of

each pattern in P with each item in I is a valid pattern1 and store the newly

discovered length-two patterns in another set P ′. Then the database is shrunk

based on P ′ and the whole procedure is repeated to grow the pattern length

by one. Sequential pattern mining algorithms shrink the size of the database

in various ways and the choice of shrinking methods affects the performance

the most [11].

However, there are major differences between surface text patterns and se-

quential patterns. First, sequential patterns can have arbitrary gaps between

the terms whereas the size of the gap (if any) in a surface text pattern is more

controlled, with sentences and phrases retaining their structure. For instance,

the pattern “is the of ” is constructed by frequent words and probably a se-

quential pattern with high frequency. However, there is no phrases or sentence

structure in it and such a pattern is not valid in our case. Even if the gap

constraints can be added to a sequential pattern mining algorithm to maintain

the structure, those algorithms are not efficient when the minimum support is

1The result of such catenation is (a, i1) , (i1, a) , . . . , (b, i1) , (i1, b) , . . . , (k, in) , (in, k),
where (a, i1) means the pattern constructed by concatenating pattern a and item i1

7



low, simply because not many patterns will be pruned. In particular, the min-

imum support for surface text patterns is usually low (e.g. in the range of 2),

hence a large portion of the vocabulary would be considered frequent. More-

over, to get longer patterns in these algorithms, the whole database (whether

projected or pruned) needs to be scanned to get the frequent items (in our

case, words) to be concatenated to the current patterns. And the number of

times the database is shrank depends on the desired pattern length. Thus, it

is a stretch to use sequential pattern mining algorithms as they do not well fit

the problem of finding surface text patterns.

2.3 Learning Surface Text Patterns

Surface text patterns are studied and applied in many areas of information

retrieval, and there have been some studies on learning surface text patterns.

Ravichandran and Hovy [12] studied the problem in the context of a ques-

tion answering system. The input to their algorithm is a question phrase with

an associated answer phrase. A query is formed by the keywords from the

question and the answer phrases and is submitted to a search engine; the re-

turned documents are used to identify frequent text patterns that link question

words to answer words. In these patterns, the literal mentions are replaced

with question and answer tags. These patterns are used to locate answers for

new questions. In a follow-up work, Hovy et al. [7] associate text patterns with

question answer types and attempt to replace answer types with more specific

type markers. Also, to address the problem of generalization, Greenwood and

Gaizauskas [6] utilize external resources (i.e. a gazetteer and a named en-

tity tagger) to tag dates and locations. Thus, date and location mentions are

replaced with class tags.

The aforementioned methods extract text patterns to catch the semantics

between objects the same as we do. However, these methods usually handle

exactly one question term and one answer term. Another drawback is excessive

redundancy and the lack of a generalization.

8



Chapter 3

Problem Statement and System

Overview

In this chapter, we introduce the problem and discuss some qualitative features

of an expected result.

3.1 Problem Definition

The problem can be formalized as follow:

Given a table T that consists of rows {r1, r2, . . . , rn} and columns {c1, c2,

. . . , cp}, for example, representing n data points and their feature val-

ues, and a set of documents or text segments {f11, . . . , f1m, f21, . . . , f2m,

. . . , fn1, . . . , fnm}, where fi1, . . . , fim describe row ri in the table, the

goal is to extract surface text patterns that best describe the contexts in

which a column is mentioned or which exhibit the inner relationships

between multiple columns.

An example of input data is Table 1.1, and a set of relevant documents

describing the rows of the tables can be, for example, Wikipedia pages (as in

Figure 3.1) or text fragments (as in Figure 3.2).

3.2 Dataset

Four datasets are used in our experimental evaluations. They are referred to

as Homepage, Birth, Olympic and NBA, ordered based on the sizes of their

documents from the smallest to the largest. The Homepage dataset consists

9



Figure 3.1: Wikipedia page for Wolf-
gang Amadeus Mozart

No other great composer kept
so detailed a chronological list
of their works as the catalogue
compiled by Mozart during the
last eight years of his life. It
was begun in 1784 to bring or-
der to his increasingly busy sched-
ule of composing and perform-
ing. Mozarts meticulous note-
book provides unique insight into
the creation of some of historys
most celebrated music.

Figure 3.2: Plain text describing Wolf-
gang Amadeus Mozart

of a table with 46 instance rows and 6 columns. Each row describes the con-

tact information of a faculty member, e.g. office location, phone number and

email address, in the department of Computing Science at the University of

Alberta. Each faculty has a home page where the contact information is of-

ten mentioned; our dataset contains those pages as well. The Birth dataset

describes the death year and the birth year relationships; the dataset consists

of a table (similar to Table 1.1) with 17 rows and 3 columns. Each row is

described by 3 documents. In Olympic dataset, the table has 36 rows and 4

columns, with each row introducing a host city for summer Olympic Games.

NBA dataset consist of a table with 30 rows and 6 columns, listing the infor-

mation related to NBA teams, e.g. their names and cities, etc. In the Olympic

and the NBA datasets, each row of a table is described by one document and

all the documents are from the same source, i.e. Wikipedia.

3.3 Desired Result

There are a few characteristics that can make a surface text pattern a “good”

annotation.

First, the text patterns must be relevant; we expect the contexts surround-

ing the mentions of entries from the target table to be relevant. Accordingly,

one may set a constraint that at least one entry from the target table must be

10



mentioned in the resulting patterns. Second, the extracted text patterns must

be representative. Uncommon patterns are less reliable to describe a column

or a relationship. A pattern that is rarely seen or encountered is less likely

to be a good representative, and because of its low frequency in documents,

it is also less likely that the pattern can be utilized to locate similar entries.

However, a pattern such as “FLDi is”, where “FLDi” is a tag that can be

replaced by a literal in column i, is expected to have a high frequency because

of its short length and the commonness of the terms in spite of its low quality.

Thus, the specificity of a pattern is also characteristic that should not be ig-

nored. In this thesis, we study some methods for measuring the specificity and

discuss some approaches to balance the generality and the specificity. Third,

many patterns may not have enough support; however, these patterns can be

small variations of each other. To collapse such patterns into more general

patterns, we introduce the concept of gaps inside the textual contexts. In

our case, gaps are wildcards that can represent one or more words. However,

the introduction of wildcards requires setting constraints on the locations, the

number of wildcards and the number of words a wildcard can replace. For

example, a greedy replacement may not be a good idea since it can replace

too many words, changing the meaning of the initial pattern.

3.4 System Overview

The input to our system is a table and a set of documents as described above,

and the output is a set of patterns, ordered based on some notion of quality.

We assume each document describes one and only one row in the target table.

There can be multiple documents describing the same row but there cannot

be one document associated with multiple rows. This is because if two rows

are mentioned in the same document, patterns extracted from the document

may describe relationships across rows; the space of such relationships is huge

(quadratic on the size of the table) and annotating the relationships in this

space is beyond the scope of this thesis.

Our system can be broken down to two stages.

11



• In the first stage, all candidate patterns are extracted and collected from

the input set of documents, based on their co-occurrences with table

entries.

• The quality of the patterns are enhanced in the second stage through

generalization and filtering. Generalizing the patterns aims at increasing

the coverage of patterns by collapsing similar patterns into a single one.

Filtering aims at removing all redundant patterns.

We have built a system that does the aforementioned tasks, allowing different

parameter settings by the user, and this system is used in our experiments.

The parameters are introduced in Table A.1 of the Appendix A.

12



Chapter 4

Pattern Extraction And

Processing

This chapter introduces the first processing stage, i.e. extracting the candidate

patterns.

4.1 Pattern Extraction

Given a table and a set of documents that mention the table entries, each

mention of a table entry gives rise to an annotation pattern. We want to

collapse the patterns that match different table rows but otherwise the same.

For this, we need some preprocessing and normalization on the documents as

preparation work.

The first preparation is to replace all mentions of the table literals inside

documents with tags that symbolize the columns and the part of the column

they belongs to. It should be noted that the replacement is done word by word.

For example, “Turing” is the second literal on the first column of Table 1.1,

and inside all documents that describe the first row, the mentions of “Turing”

are replaced by “FLD1 2”. The first “1” in the tag indicates that the tag

corresponds to column one. The second “2” means this tag represent the

second part of the entry. There are some benefits in breaking cell strings into

words. In particular, the relationship between different parts of a column can

be caught and patterns mentioning only part of the cells will be extracted.

Moreover, word-wise matching is easier for patterns to extract instances. A

13



drawback is that the relationship between different columns as a whole is vague

when only parts of the columns are displayed.

The second preparation involves HTML tags in Web pages. The choice

of keeping or deleting HTML tags is subjective. Sometimes they are distrac-

tions in texts and may prevent us from finding “good” text patterns while

in other times they can be part of a pattern. For example, HTML tags in

“FLD1 1 in 〈a〉 University of Alberta〈/a〉 ” seem useful since they include an

related entity. However, the tags in “〈font〉FLD1 1 FLD1 2〈/font〉’s Home Page ”

do not provide any useful information.

The third preparation focuses on text processing. All word are converted

into low case. The text in the document is chunked into words or punctuation

sequences.

After the preprocessing, the pattern extraction is done by placing a sliding

window over text and extracting the candidate patterns (the steps are shown

in Algorithm 1).

Algorithm 1 only extracts patterns containing the field tags to ensure that

all candidate patterns are relevant. And a pattern’s representativeness is mea-

sured in terms of the support the pattern has. For this, instead of using the

number of mentions of a pattern in all documents, we use the number of dis-

tinct documents the pattern appears in. This will prevent taking a pattern

because of its high frequency in a single document.

The lengths of the candidate patterns in the algorithm are controlled by

the parameters min and max. In experiments, we normally set the minimum

pattern length to 3, 4 or 5 and the maximum to 13, 14. min cannot be

too small nor too large. A small min would lead to a large number of short

patterns which may not be much descriptive, while a large min would make

the algorithm miss some good short patterns. Similarly, a small value of max

can result in a loss (of some useful patterns) and a large max can generate

many patterns that are not expected to be frequent.

Regarding efficiency of Algorithm 1, there are two nested loops in Step

3-12, but this is not a performance bottleneck considering that min and max

are small numbers (between 1 and 20). The document scanned only once in

14



Algorithm 1 Pattern Generation
Input:

F: a document after preprocessing
min,max: minimum and maximum pattern length

Output:

P: a set of patterns containing field tags with their occurrence

1: Initialize P as empty set
2: Set variable last to 0 //last records the index of latest field tag
3: for i = 0 to max do //Iterate over first max words
4: for j = min to max do

5: if there exists field tag inside string F [i : i+ j − 1] then
6: Add pattern F [i : i+ j − 1] to P

7: if the largest index of field tag > last then
8: Set last = the index of the field tag

//Update last to the latest field tag index
9: end if

10: end if

11: end for

12: end for

13: for i = max+ 1 to length of F do //Iterate over the rest of document
14: if F[i] is a field tag then

15: Set last = i //Update last to the latest field tag index
16: end if

17: for j = min to max do //Iterate for different pattern lengths
18: if i− j + 1 ≤ last ≤ i then //Check if last is in the covered range
19: Add pattern F [i− j + 1 : i] to P
20: end if

21: end for

22: end for

15



Steps 13-22.

For long documents or a large number of documents to be processed, this

algorithm can be naturally converted into a MapReduce [5] version since there

is no global communication required during processing. Each mapper can scan

its own chunk of documents (as in Algorithm 1) and generates key-value pairs,

where a key is a pattern and value is the pattern frequency. This processing

can miss boundary patterns that spread over two chunks. The ratio of missing

patterns depends on the size of the chunks, and the bigger each chunk is, the

smaller the ratio is. For Hadoop, with a data block size in the range of 64MB,

loss ratio is negligible1.

4.2 Basic Screening

Our pattern extraction, as discussed in the previous section, introduces some

redundancy since whenever we identify a field tag, patterns of all possible

lengths containing the tag are generated and this can produce some overlapping

patterns. Here is an example. If the text “he was born in FLD2 1 ” exists in

our pattern set, so is the text “was born in FLD2 1 ”. We can use some simple

heuristics to remove some of these patterns.

One heuristic is to remove patterns starting with or ending with common

words. This is because there will be shorter variants of these patterns that

exclude these redundant words. In our example, the pattern starting with

“he ” can be discarded. In general, we can probably exclude patterns starting

with or ending with words belonging to connecting words or stop words, which

refer to extremely common words of little significance on their own2.

Similarly we remove patterns that start with or end with punctuations.

We also require each pattern to contain at least one word or one informative

punctuation besides the field tags, catching patterns like “FLD1 1 (FLD2 1-

1Assuming that a character takes one byte, a 64MB chunk can store 64×10242 characters.
On average, each word contains 5, 6 letters and roughly

(

64× 10242
)

/5 ≈ 12×10242 words
can be stored in a chunk. Patterns starting in the last max words will spread beyond the
chunk boundary and cannot be detected. Thus the loss ratio is max/

(

12× 10242
)

.
2There is no single universal list of stop words used. The one we used is from http:

//www.ranks.nl/stopwords.

16



FLD3 1)”, which can describe the birth-year and death-year relationship be-

tween the columns of Table 1.1.

Our last basic filtering is based on pattern support, or the number of doc-

uments that mention a pattern. We want each pattern to describe more than

one row of the table; for the same reason, every pattern of frequency one can be

dropped. Also if there are k documents that describe a single row, we can say

that the frequency of a pattern must be large than k to describe a relationship

in the table. That is, patterns of frequency k or less can be dropped.

17



Chapter 5

Generalizing Patterns

In this chapter we focus on the problem of pattern coverage and specificity.

5.1 Generating Generic Pattern

A typical approach to generalize a pattern is introducing wildcard symbols in

the pattern text. But there are questions that need to be addressed, such as

where to put a wildcards symbol, and how many wildcards should be intro-

duced, etc.

The first question we want to tackle here is where these symbols should be.

The most obvious option is putting no constraint on the location of a wildcard

symbol. However, this would lead to the problem of over-generalization since

this can collapse many unrelated patterns into one generic pattern. Consider-

ing that a wildcard symbol should not be too far from the field tags, a position

constraint based on the distance to the field tags may be introduced. In our

experiments, we assume the distance between wildcard symbols and field tags

is at most one.

The next constraint is the number of words a wildcard symbol can represent

or match. We make a conservative choice and in our experiments, we assume a

wilcard can represent at most two words. The consideration is that we would

rather not collapse less similar patterns than over-generalizing patterns, which

would produce undescriptive generic patterns with a high frequency.

The last question is how many wildcards there should be in a pattern.

Even though this is a parameter that can be set by user, we cannot think of

18



many cases where more than 1-3 wild cards can be introduced without over-

generalizing the patterns. Wildcard symbols aim at generalizing parts around

field tags and extra wildcards can over-generalize the patterns.

For the generation of generic patterns, the whole pattern set is scanned and

for each pattern, we replace parts satisfying the above conditions with wild-

cards to produce a generic pattern. For instance, when scanning “FLDi was

born in ”, wildcard symbols replacing “was ” and “was born ” satisfy the above

conditions. Thus, generic pattern “FLDi * born in ” and “FLDi * in ” are

generated.

For each generic pattern that is introduced, the relationship between the

generic pattern and the candidate patterns it covers or represents are kept.

Treating the generic and the candidate patterns as two disjoint sets, the rela-

tionship between the two sets can be described using a bipartite graph with

each edge showing if a candidate pattern is covered by a generic pattern. This

is demonstrated in Figure 5.1 for two generic patterns and three candidate

patterns they cover. Two generic patterns can cover the same candidate pat-

tern(s), as shown in Figure 5.1.

Figure 5.1: Demonstration of structure of generic and candidate pattern set
and links between them

Since generic patterns are introduced in one scan of the candidate patterns

and without a join between candidate patterns, a generic pattern may only

cover one candidate pattern. Such patterns are redundant and provide no

19



extra information; we want to filter out these patterns.

Next we discuss some qualitative measures to identify good generic patterns

from the set.

5.2 Measuring Pattern Coverage and Speci-

ficity

Each candidate pattern can only cover itself. By introducing wildcard symbols

(or gaps), which can match any words or continuous punctuation sequences,

a pattern can cover more candidate patterns. For instance, there are patterns

“FLDi comes from FLDj ” and “FLDi is from FLDj ”. After introducing one

wildcard symbol, we have “FLDi * from FLDj ”, which covers both candidate

patterns. Through this generalization process, the coverage of a pattern set

increases and its specificity declines. However, there should be a balance

between the two. As we mentioned in Chapter 3, we can replace all words

with wildcards except field tags. The replacement will maximize the coverage,

but the resulting pattern may be of no use.

5.2.1 Specificity

We define the specificity of a pattern as the probability that a random text

does not match the pattern, which equals to one minus the probability that it

does match.

Based on the definition, we can measure the specificity of a pattern p,

symbolized as specificity (p). Let Pr (p) denote the probability that a ran-

dom text matches pattern p. Given that pattern p is a sequence of words,

〈w1, w2, . . . , wn〉, if we assume the matching of words are independent of each

other, the probability of p matching a random text is the product of all prob-

abilities of matching each compositional word. Thus, we have:

specificity (p) = 1− Pr (p) , (5.1)

where Pr (p) = Pr (w1)× Pr (w2)× · · · × Pr (wn) . (5.2)

Here Pr (w) is the probability of a term w. Since wildcard symbols and

20



field tags can match any text, their probability of a match is set to 1, e.g.

Pr (“*”) = 1 and Pr (“FLDi”) = 1

Brin [3] uses another formula to measure the specificity, even though the

underlying definition is similar to ours. The definition he gives is based on the

log-likelihood that a uniformly distributed random variable matches a pattern.

But, for quick computation, the formula for the specificity of pattern p is

specificity (p) = |p.prefix||p.middle||p.suffix|

where |s| denotes the length of s. Since in his work, patterns allow only two

entities (corresponding to our field tags), pattern p can be split into three

parts, namely p.prefix, p.middle, p.suffix. This is a bit simplistic model that

only cares about the number of characters in a pattern.

As for a set of patterns, a naive way to compute the specificity of the

set is to use the mean or the median specificity. However, there is no good

explanation for this. Instead, we generalize our definition of specificity to a set

as follows. The specificity of a set of patterns is the probability that a random

text does not match any pattern in the set.

If S : { p1, p2, . . . , pn} denotes a set of patterns, the specificity of S can be

expressed as

specificity(S) = (1− Pr (p1))× (1− Pr (p2))× · · · × (1− Pr (pn))

= specificity (p1)× specificity (p2)× · · · × specificity (pn) (5.3)

where Pr (p) can be computed as in Equation 5.2. The definition may seem

problematic when comparing two pattern sets of different sizes. The set with

more members may have a lower specificity even if the specificity of each

of its members is higher than that of the other set, just because its size is

larger. However, in our work, specificity is only compared between pattern

sets derived from the the same set, and is used to demonstrate the difference

between generalizing processes. Thus it is not a problem here.

21



5.2.2 Coverage

The coverage of a candidate pattern (without wildcards) is one since it can

only cover itself, and the coverage of a generic pattern can be larger than one.

However, instead of directly working with the number of covered patterns, we

normalize it by dividing the number of patterns covered the set the patterns

belong to. Thus the coverage for pattern p is

coverage (p) =
number of patterns p covers

number of patterns the set covers
. (5.4)

The semantics expressed by all patterns in the set that p belongs to can be seen

as a semantic space. Then the coverage of the pattern p can be alternatively

interpreted as the portion of the semantic space that p covers.

The coverage of a set can be taken as the mean coverage of its members,

and this gives a number between 0 and 1, which is comparable to the specificity.

5.3 Generalization Methods

Given a set of candidate patterns Pc and a set of generic patterns Pg, our goal is

to select a set P ⊆ (Pc ∪ Pg) such that P covers the patterns in Pc and is more

“concise”. An algorithm to find P is to initially set P = Pc and iteratively

update it by replacing some of the patterns in P with more generic patterns

in Pg. In the process, when adding a generic patterns, all covered candidate

patterns are removed from P , and the selected generic pattern is also removed

from Pg. The selection process aims at optimizing an objective function based

on the coverage and the specificity (see Section 5.3.1 for details). Our next

statement shows that the specificity either decreases or remains the same in

each iteration.

Proposition 5.3.1. Consider candidate patterns, P1, . . . , Pn that are covered

by a generic pattern P ′. After replacing P1, . . . , Pn with P ′, the specificity of

the set cannot increase.

Proof. Since generic pattern P ′ covers patterns P1, . . . , Pn, any random string

that matches at least one of P1, . . . , Pn must also match P ′. Furthermore,

22



any string that does not match any of P1, . . . , Pn may still match P ′. As a

result, the probability that a random string does not match any of P1, . . . , Pn

is higher than or equal to the probability that it does not match P ′, i.e.

1− Pr (P ′) ≤ (1− Pr (P1)) · · · (1− Pr (Pn))

or specificity (P ′) ≤specificity (P1) · · · specificity (Pn)

This completes the proof.

It is noteworthy that the removal of covered candidate patterns in previous

iterations can affect the coverage of other unselected generic patterns, because

different generic patterns may cover the same candidate patterns. Take Fig-

ure 5.1 as an example. If we pick the generic pattern “FLDi * Canada ” and add

it to P , candidate patterns “FLDi was from Canada ”, “FLDi comes from Canada ”

and “FLDi lived in Canada ” will be removed from Pc . Thus in the next itera-

tion, the absolute coverage (not normalized) of pattern “FLDi * from Canada ”

will decrease by 2 since two of the candidate patterns it covers are already re-

moved.

A question to be addressed now is how to pick the generic patterns. This is

the problem we study next; we present some objective functions that optimize

one or both of coverage and specificity.

5.3.1 Selecting Generic Patterns

We propose four methods based on specificity and coverage for selecting generic

patterns:

Real Coverage Method This method focuses on the coverage. At each

iteration, we pick the generic pattern currently covering the most candidate

patterns. It is a greedy method and at each step we make a locally optimal

choice. In our experiments, the process continues until in one iteration, the

coverage for the selected pattern is one or all generic patterns are selected.

Potential Coverage Method This method is similar to the previous one

with a difference that in this method, we compute the potential coverage in

23



terms of the number of possible matches for a wildcard, instead of the real

coverage. To compute the potential coverage, the coverage for each wildcard

symbol is needed, which can be derived based on the number of possible text it

can represent. In Figure 5.1, the wildcard in “FLDi * Canada ” can replace a

certain set of words, including “was ” and “comes ”. As a result, the coverage

for that wildcard in the particular generic pattern can be denoted as the size of

the set of words it replaces. In this example, the coverage for the wildcard is 2.

Now given a generic pattern p with wild card symbols s1, s2, . . . , sn, let set (s)

denotes the set of text that s can replace. The potential (possible) coverage

for p can be expressed as

p coverage (p) = |set (s1) | × |set (s2) | × . . .× |set (sn) | (5.5)

Sometimes the potential coverage is the same as the real coverage. How-

ever, when the real coverage becomes large, most of the time they will differ.

The selection process is the same as before, with the generic pattern that has

the most potential coverage selected in each iteration. In the experiments, the

selection process stop when the potential coverage for the selected pattern is

equal to 1 or there are no more patterns to be selected.

Specificity Method This method focuses on the specificity, instead of cov-

erage. At each iteration, we select the most specific pattern in the set of generic

patterns. The selection process continues until the coverage for the selected

pattern equals to 1 or the generic pattern set is empty.

Unlike the methods discussed earlier, there is an additional update after

each iteration to the set of generic patterns Pg. After each iteration, the

generic patterns that now cover one candidate patterns must be removed.

Otherwise, the selected generic pattern may cover only one pattern and the

process stops, while there may be another pattern less specific, covering more

than one pattern. In that case, the process should continue.

With the updating action, one of the stopping conditions in our experi-

ments (i.e the coverage for a selected pattern is equal to 1) can never be true

for this method. The process only stops when the generic pattern set is empty.

24



Balanced Method Taking both coverage and specificity into consideration,

this method aims to find a balance between the two. As a result, instead of

simply maximizing one of them, the area below the coverage-specificity curve

is maximized. Suppose after the i-1th selection process, the coverage and the

specificity values are ci−1,si−1; this pair forms a data point on the coverage-

specificity curve. In the next selection process, a generic pattern set containing

n different patterns will provide n different coverage and specificity value pairs

or points, (ci1, si1) , . . . , (cin, sin). From these n points, we want to find the

point, denoted as (ci, si), that maximizes the area of a trapezoid formed by

data points (ci−1, si−1), (ci, si) and points on axes (ci−1, 0), (ci, 0). The area

for the trapezoid can be computed as (ci − ci−1) (si + si−1) /2. The pair giving

the maximum area is selected in each iteration.

Random Method This method can be used as a baseline. Each time we

randomly choose a pattern from the generic pattern set until the set is empty.

Since the selection is random, the problem with the stopping condition, as

arises for the specificity method, also arises. There is also a need for filtering

generic patterns that cover only one candidate pattern after each iteration.

Consequently, the stopping condition is when the generic pattern set is empty.

5.3.2 Experiment

In our experimental evaluation, we wanted to see if there is a significant dif-

ference between the methods studied here and if one method finds a better

balance between coverage and specificity

The performance of all five methods is tested on aforementioned four

datasets (introduced in Section3.2) and are demonstrated in Figures 5.2 to

5.5. In the experiments, the maximum number of wildcard symbols per pat-

tern is set to two. For Random method, each data point is a average of 5

runs.

Because of overlaps, some methods are not well-shown, but as the size of

the datasets becomes larger and the number of patterns increase, the difference

and trends become more obvious.

25





5.3.3 Analysis and Comparison

Several observations can be made about the comparison. The first is about the

nice performance of the balanced method. Even though it is a greedy method

and makes locally optimal choices at each iteration, it shows a better perfor-

mance on all four datasets, maintaining a high specificity while the coverage

increases. The method does not seem to over-generalize or under-generalize

candidate patterns, compared to the other methods. In our experiments, the

coverage is pushed to its maximum to observe the performance of the methods.

However, in practice, the generalizing process can stop earlier, for example,

when the slope of the curve is getting big.

The next observation is the problem of over-generalization of the Possible

Coverage method. This method is based on the number of combination that

the wildcards can be assigned, instead of the real coverage. The method

uses only partial coverage information and derives the rest of the information

through an induction. For instance, consider candidate patterns “A X B I C ”,

“A Y B J C ”, “A Y B I C ” and generic pattern “A * B * C ”. Since the

generic pattern can cover all three candidate pattern, its real coverage is 3.

However, the first “* ” in the generic pattern can be replaced by {X,Y } and

the second “* ” can be replaced by {I, J }. Thus the possible coverage of the

generic pattern is 2 × 2 = 4. We expect this to happen more often when the

dataset size increases, leading to more candidate patterns. In Figures 5.2 and

5.3, the RealCov and PossCov almost perform the same. But in Figures 5.4

and 5.5, they totally differ. Particularly in Figure 5.5, the specificity drops

dramatically when the coverage grows, which is an indication that PossCov

favors coverage more than RealCov.

Another noticeable phenomenon is the strange performance of the Speci-

ficity method. Unlike other methods, the specificity maintains high specificity

when the coverage grows. However, the coverage does not increase much com-

pared to other methods. We will explain this in the context of the patterns

shown in Figure 5.6.

There are two different ways of covering the nodes 1, 2 and 3 shown in the

27



Figure 5.6: Example structure of candidate and generic pattern set

figure. One covering is {a,c} and another covering is {b}. Since node b covers

more patterns than node a or c, node b’s coverage is higher than the average

coverage of nodes a and c, and its specificity must be less than or equal to the

specificity of node a or c. As a result, for the pattern set, the covering {a, c}

can result in lower coverage and higher specificity than covering {b}. In our

setting, the Specificity Method will select {a, c}, and this leads to a higher

specificity and a lower coverage as, which is consistent with what is shown in

Figures 5.2 to 5.5.

28



Chapter 6

Filtering Redundant Patterns

In the previous chapters, we have addressed the problem to generate and gen-

eralize the patterns. Our goal in this chapter is to eliminate patterns that

provide no additional information. We did filter patterns of low frequency

in Section 4.2, because uncommon patterns are not expected to carry much

general semantic meaning. This type of filtering requires no comparison be-

tween the patterns and is merely based on the texts of the patterns and their

frequencies. However, the filtering we enforce in this chapter requires compar-

isons between the patterns to identify the patterns that are redundant in the

presence of other patterns.

6.1 Pattern Boundary Filtering

Our pattern generation can produce many overlapping patterns. In this pro-

cessing step, the goal is to eliminate patterns that are unnecessarily long.

However, a criterion to determine whether the length of a pattern is appropri-

ate is required. From our observation, we propose a hypothesis and based on

the hypothesis, a criterion is built.

6.1.1 Hypothesis

A pattern cannot be considered too long unless there are resembling patterns

that are shorter. Thus, the criterion to remove such patterns must involve

comparisons between the patterns.

Consider two patterns ps and pl such that ps is a substring of pl. When

29



ps is frequent, there is a good chance that pl is also frequent. We want to

detect cases where pl can be removed in favor of ps. We observe that when

a pattern spreads beyond its boundary, in most cases there is a sudden drop

in its frequency. For instance, in our Homepage dataset, we observe that

there are multiple versions of pattern “phone : (FLD4 2 ) FLD4 3−FLD4 4 ”,

which is at its ideal length, with a relatively high frequency. Here “FLD4”

is the column for phone numbers and this pattern gives the format for phone

numbers. However, there are other redundant patterns that are not at their

ideal length, such as “phone : (FLD4 2 ) FLD4 3−FLD4 4 fax ”, which include

unrelated text, or text that should belong to a different pattern. In this

particular case, adding the term “fax ” leads to a over 40% drop in the pattern

frequency.

Based on this observation, we hypothesize that a sudden drop in frequency

can be a sign of a meaningless extension. We have also considered the cases

where unrelated text is at the front of a pattern, but in practice this seems to

be a rare case. That is consistent with the fact that English is read left-to-

right, and that the new content is always expected to be on the rightmost end

of the patterns, which means one needs to check the new content and detect

whether it is a continuation of the previous text. For the same reason, we only

detect redundant text at the end of the patterns.

6.1.2 Boundary Detection using a Prefix Tree

Assuming that any redundant text is at the end of a pattern, for each redun-

dant pattern, there must be a prefix pattern in the pattern set. A prefix tree

can be constructed to efficiently detect the prefix relationships between pat-

terns. The prefix tree also stores, for each node, the frequency of the pattern

represented by the node. Figure 6.1 shows an example prefix tree.

Each edge in the tree is associated with a word or a sequence of punctua-

tions, describing the text that must be seen to reach the next node, i.e. the

children nodes. Each node stands for a particular pattern constructed by the

text along the path to the node. Additionally, the frequencies of the patterns

are stored in their corresponding nodes. If one pattern is not seen yet, its

30





are detected.

To examine the detected patterns, a sample is drawn from the set of de-

tected nodes and the patterns represented by the nodes in the sample are

compared to the patterns represented by their parent nodes. Table 6.1 shows

some examples of the detected patterns together with their parent patterns.

The annotators were asked to focus on whether two patterns convey the same

meaning, and mark patterns that they are certain to be redundant as a correct

detection. In cases where annotators were not sure or the patterns being com-

pared seemed ambiguous, the patterns were marked as an incorrect detection

since we are not sure whether it should be kept. Example 5 in Table 6.1 is an

example of such cases. The semantic meaning of two patterns in the Example

5 is not clear and it is marked as incorrect detection, because we are not sure

if it is safe to discard the detected pattern.

Example 1
Detected pattern fax: (FLD4 2) FLD4 3-1071 email

Parent Pattern fax: (FLD4 2) FLD4 3-1071

Example 2
Detected pattern

in the olympic games - FLD4 1 FLD1 1
notes

Parent Pattern in the olympic games - FLD4 1 FLD1 1

Example 3

Detected pattern
FLD4 1 summer olympics in FLD1 1,
FLD2 1 africa

Parent Pattern
FLD4 1 summer olympics in FLD1 1,
FLD2 1

Example 4
Detected pattern basketball team based in FLD2 1 FLD1 2

Parent Pattern basketball team based in FLD2 1

Example 5
Detected pattern [edit] olympics portal FLD4 1 summer

Parent Pattern [edit] olympics portal FLD4 1

Table 6.1: Example detected patterns with their superstring pattern

Since the datasets Homepage and Birth were small, all detected redundant

patterns were passed to the annotators. For the Olympic dataset, we took a

30% sample of the detected redundant patterns using reservoir sampling and

for NBA, a 10% sample is used. The result is shown in Figure 6.2.

In our experiments, three different values for threshold t were tried: 60%,

50% and 40%, respectively corresponding to frequency drops of 40%, 50% and

32



Threshold
40% 50% 60%

True Total Precision True Total Precision True Total Precision

Homepage 15 17 88.23% 19 25 76% 19 33 57.58%

Birth 21 25 84% 26 33 78.79% 28 39 71.79%

Olympic 23 35 65.71% 36 61 59.02% 48 82 58.54%

NBA 38 61 62.3% 56 91 61.54% 62 101 61.39%

Table 6.2: Precision of detecting redundant patterns as the threshold on fre-
quency drop varies

60%. For larger values of t, the constraint becomes more relaxed and more pat-

terns are considered redundant. However, the precision decreases at the same

time. Lower threshold values means stricter conditions and larger frequency

criterion, which leads to fewer detected patterns and higher precision. In the-

ory, this will also lead to a lower recall. But we do not have much knowledge of

the total number of redundant patterns, and thus we are not able to measure

the recall. Nevertheless, we prefer a high precision over a high recall. Because

a high precision here means discarding a set of patterns most of which are

truly redundant while leaving some redundant patterns undetected. A high

recall means discarding a large set of patterns, some of which can be of good

quality. In a filtering step, the retention of good patterns is more important

than the removal of all unnecessary patterns.

From Table 6.2, when the size of a dataset becomes larger, the precision

seems to drop overall, except for the largest dataset NBA. Its precision stabi-

lizes around 62% and almost does not change for different thresholds.

Moreover, Table 6.2 confirms our hypothesis that for patterns in all four

categories, a rapid drop in frequency in most cases signals an unrelated content

at the end. The precision is higher than 50% in all experiments, which means

the number of false positive is smaller than the number of correct predictions.

Another interesting observation in this experiment is that there were less

than ten generic patterns reported to be redundant, out of all the patterns

passed to the annotators, which means the generic patterns we generate in the

last step contain less redundancy.

33



6.2 Substring Filtering

In Section 6.1, we studied the problem of redundancy for long patterns. In

this step, on the other hand, we aim at removing short redundant patterns.

To demonstrate the concept, consider pattern “phone : (FLD4 2 ) FLD4 3−

FLD4 4 ” and its substring “phone : (FLD4 2 ) FLD4 3− ”, which is one token

shorter and provide no additional information.

In general, for any pattern p, its substring p′ must also be in the pattern

set as pattern p′ as long as pattern p′ is longer than the minimum length and

not filtered in the previous steps. This is because if pattern p is frequent, its

substrings must also be frequent. We need an approach to determine whether

pattern p′ provides any useful additional information.

6.2.1 Generality and the frequency of mentions

Since pattern p′ is a substring of pattern p, any text that matches p must also

match p′. As a result, the frequency of the mentions of p′ must be higher than

or equal to that of p. If a shorter pattern p′ is truly more general than a longer

pattern p, then the frequency of mentions of p′ must be much larger than p.

We can use this observation about the frequency of mentions to determine

whether pattern p′ is redundant in the presence of pattern p.

As mentioned, the frequencies of patterns p′ and p need to be compared,

and if the frequency of p′ is close to that of p, then p′ can be removed in favor

of p. Otherwise, pattern p′ cannot be removed since is more general.

6.2.2 Substring Detection using a Suffix Tree

For an efficient implementation of our substring filtering, we need a data struc-

ture that can identify the substring relationships between the patterns. We

adopt a suffix tree to detect such cases.

Unlike a prefix tree, a suffix tree needs to store each possible suffix for a

pattern. For instance, for the pattern “phone : (FLD4 2 ) FLD4 3−FLD4 4 ”,

a prefix tree only needs to store the sequence of words. To insert the same

pattern into a suffix tree, all its suffixes need to be generated and stored. The

34



suffixes of this pattern include “FLD4 3−FLD4 4 ”2, “) FLD4 3−FLD4 4 ”,

“FLD4 2 ) FLD4 3− FLD4 4 ”, “ : (FLD4 2 ) FLD4 3− FLD4 4 ” and itself.

All these suffixes will be stored in the same way as prefix tree does, as shown

in Figure 6.2. When one pattern is needed to be compared, we traverse the

suffix tree to check if it is the prefix of one of the suffixes. Since in a suffix

tree there is no information pointing out which pattern has the suffix we are

dealing with, the frequency of each suffix needs be stored. However, compared

to a prefix tree, there are two changes on the way the frequency data is stored.

First, the frequency needs to be store in each node of the path leading to a

suffix, rather than only in the node where the suffix is stored. Hence, whenever

a substring relation is confirmed, the frequency of the substring pattern can

be directly compared to that of the node where the traversal ends. Second,

because two different patterns can share a suffix, a suffix can have multiple

frequencies, each corresponding to a pattern. Thus, a set of frequencies needs

to be stored in each node, instead of a single frequency.

In Figure 6.2, a suffix tree is shown, where all suffixes of patterns “phone :

(FLD4 2 ) FLD4 3−FLD4 4 ” and “phone : (FLD4 2 ) FLD4 3−FLD4 4 fax ”

are in the tree. Since many suffixes share visiting paths, a number of nodes in

the tree have two frequencies, {4, 7}. Furthermore, we do not want a pattern

to match itself in the suffix tree when checking whether it is a substring. Thus,

the node representing a pattern does not include the pattern’s frequency. This

is shown on the leftmost branches of the tree, where the second last node has

frequency {4} and the last node has the empty set. This modification avoids

matching a pattern to itself.

Suppose we need to check whether pattern “FLD4 2 ) FLD4 3 ” is a sub-

string of any pattern. We can use this pattern to traverse the tree. The end

of the pattern is hit when it traverses along the path for “FLD4 2 ) FLD4 3−

FLD4 4 ”. Thus it is confirmed that this pattern is a substring of another

pattern. Then, we need to check the frequency difference. Since it is a sub-

string of two patterns, a comparison is needed for both cases at the end node.

2There is also minimum length requirement when generating suffix. Suffix shorter than
minimum length can never match any pattern.

35



Figure 6.2: Example suffix tree

In addition, there is another problem that needs to be addressed, which is

similar to the problem we encounter in the boundary detection. How close the

frequencies should be for a substring pattern to be qualified as a redundant

pattern.

The criterion we enforce here is as follows. Denote the frequency of the

substring pattern that node i corresponds to as fi and the set of frequencies

stored in node i as {fi1, fi2, . . . , fin}, which correspond to the frequencies of

the superstring patterns. Given a threshold t, if there exists an fij in the set

satisfying fij/fi > t, the substring pattern can be deemed redundant. Next,

we experiment with different values of t.

36



6.3 Experiment

Similar to our experiment in Section 6.1.3, different values for the threshold

are tried and the experiment is conducted on our all four different datasets.

In this step, the goal is to remove patterns that are part of other pat-

terns but not general enough. Frequency is just a measure of generality and

the annotators need to decide if a detected pattern p is general or not com-

pared to the superstring patterns {p1, p2, . . . , pn}. However, among patterns

{p1, p2, . . . , pn}, some may have frequency close to pattern p while some may

not. To simplify the task, the annotators only compare pattern p with pattern

pi (1 ≤ i ≤ n) such that the difference in frequency between the patterns is

within the threshold. And to determine whether pattern p is more general,

the annotators detect whether pattern pi and substring pattern p express the

same meaning and if it is safe to discard pattern p. In the case that both

substring pattern p and pattern pi provide no concrete semantic meaning, it

is safe to discard a detected pattern p and it is marked as a correct detection.

But when the annotators are not certain about the removal of a substring

pattern, it is marked as incorrect.

For dataset Homepage and Birth, we take a 20% random sample of the

removed patterns. For dataset Olympic and NBA, due to their sizes, the

sample size was set to 5% of the removed patterns. The result is shown in

Table 6.3.

Filter
Threshold

80% 90%

True Total Precision True Total Precision

Homepage 19 29 65.52% 24 34 70.56%

Birth 21 35 60% 23 33 69.70%

Olympic 26 37 70.27% 24 35 68.57%

NBA 42 61 68.85% 41 60 68.33%

Table 6.3: Precision of detecting redundant patterns as the threshold on fre-
quency closeness varies

As the table shows, a fairly high threshold is needed to ensure all patterns

removed are genuinely shorter duplicate of another pattern. For the datasets

37



Homepage and Birth, when the threshold drops, the precision decreases to

approximately 60%.

However, for the Olympic and the NBA datasets, the decline of the thresh-

old seems to have little effect on the precision. This may be because all the doc-

uments in Olympic and NBA datasets come from the same source, Wikipedia.

Thus among these documents, there can be some phrases describing the struc-

ture and formatting. Since they appear almost in every document and in the

same format, they are most likely to be detected in this step. In our experi-

ments, the annotators ran across this type of substring patterns the most. As

a result, even when the threshold drops, these patterns still account for a large

portion of the detected patterns. In turn, the precision will not change much.

On the other hand, this phenomenon shows that Substring Filtering works for

homogeneous documents and such patterns are detected.

As for selecting a selecting threshold, the performance on the datasets

Olympic and NBA should not be taken into account since they are not affected

much by the threshold. Based on the performance on the other two datasets,

the threshold should be set high, in the range of 90%.

38



Chapter 7

Pattern Ranking

After adding generic patterns and removing redundant ones, we expect the

generality of the patterns to increase and the redundancy to drop. However,

there still can be a large number of patterns and it would be better if we can

order these patterns according to some measure of quality. This will make it

more convenient for users, for example, if they want to adopt top n patterns

instead of searching through a large set.

To sort the resulting patterns, we need some measures of quality or useful-

ness, and our discussions in the previous chapters provide us some clues.

7.1 Quality of Useful Patterns

In Chapter 5, it has been discussed that a pattern should be general. However,

adoption of that measure of generality will lead to high ranks for all generic

patterns, since non-generic patterns can only represent themselves and will

be ranked down the list. This kind of bias against non-generic pattern is a

problem. Another notion for generality is briefly discussed in Section 6.2.1.

This notion focuses on the relationship between generality and the frequency

of mentions. The logic here is if a pattern is general, it must be mentioned

more often in the relevant documents. Also as mentioned in Section 3.3, the

frequency of mentions is naturally a sign for popularity and representativeness.

As a result, a large number of mentions of a pattern may indicate not only

this pattern is representative, but also general.

The notion of specificity, as introduced in Chapter 5 can be applied here

39



because it shows no preference on generic patterns or other patterns. Patterns

with wildcard can still be more specific than some patterns without.

7.2 Ranking Method

We decided to order the patterns based on a mixture of their generality and

specificity. Directly operating on the absolute values of the two measures is

unsound due to differences in their scale. The frequency of mentions is an

integer typically larger than 1 while specificity is a decimal between 0 and 1,

which represents a probability.

To solve the problem of scale, candidate patterns are sorted first, based on

the frequency of their mentions and specificity from the highest to the lowest.

Thus, for a given pattern p, it has two ranking positions. Let Rg (p) and

Rs (p) denote the ranks of pattern p based on respectively its generality and

its specificity.

A simple mixture model is simply adding the two ranks, i.e. R (p) =

Rg (p) + Rs (p). In this way, the model treats both the specificity and the

frequency of the same importance. But in reality, one quality may be more

important than the other. An alternative ranking is to give the two quantities

different weights, i.e.

ρ·Rg (p) + (1− ρ)·Rs (p) (7.1)

where ρ is the weight between 0 and 1 that is given to the generality measure.

We refer to this mixture model as Simple Additive method (SA).

The second approach is inspired by the Mean Reciprocal Rank. Mean

Reciprocal Rank (MRR) is a simple relevancy measure of performance of any

process that produces a list of possible responses, for example, to match a

query1. Consider a process that responds with a list of possible answers to a

query. If the correct answer is at the ith position in the list, then the score

of the answers given by the process is 1/i, which is called the reciprocal rank.

For a series of queries, the performance of the process is usually measured by

the mean score for the queries.

1https://en.wikipedia.org/wiki/Mean_reciprocal_rank

40



In our case, we treat the reciprocal rank given to a pattern in a ranking

method as an importance score. If a pattern ranks 1st according to the gen-

erality, the score the pattern gets is 1. Ranking 2nd means the score of 1/2.

Consequently, for each pattern, it acquires two importance scores assigned by

the aforementioned ranking methods. Now we can integrate these two scores

in an additive model similar to Formulation 7.1, i.e.

ρ·
1

Rg (p)
+ (1− ρ)·

1

Rs (p)
(7.2)

where ρ is, as in Equation 7.1, the weight assigned to generality. We refer to

this ranking as Additive Reciprocal Rank (ARR).

The difference between these two methods (i.e. Eq. 7.1 and 7.2) is that re-

ciprocal rank emphasize the difference in ranking positions on top but neglects

the difference in positions further down the list. In a reciprocal ranking, the

score difference between ranking 1st and 2nd is far more larger than ranking

10th and 11th. On the other hand, simple additive model treats them the same

since the distance between two ranking position are all 1. The next section

reports our experiments on evaluating the two ranking methods.

Another difference is the ranking order. In SAM, a smaller score means a

better pattern, while in SAM the larger

7.3 Experiment

In our experiment, we compare the performance of the two ranking methods

in terms of the quality of top 5, 10, 20 and 30 results. We also try differ-

ent mixture ratios to determine which aspect (i.e. generality and specificity)

should be given more weight.

our experiments in previous steps aimed at detecting the redundancy, while

here the annotators check whether a given pattern describes the semantics

behind the table. The annotators were given the following guideline:

A pattern is relevant if (1) it gives a context where the field is ex-

pected to appear in, (2) it is not vague (e.g. it gives the context for only

part of the field) nor redundant (e.g. the pattern can be shortened).

41



With this guideline, the annotators are able to mark the holistic quality of the

patterns, with each pattern marked as good or not. The percentage of good

patterns are computed respectively for top 5, 10, 20 and 30 patterns.

From our experiments reported earlier in this thesis, it can be seen that

documents from the same site can generate an overwhelmingly large number of

patterns describing the format. For that reason and due to the evaluation cost,

we decided not to use the NBA and the Olympic datasets in this experiment.

Thus the pattern ranking methods are tested on the Homepage and Birth

datasets. The result is shown in Tables 7.1 and 7.2. As a baseline, the last

column in our tables shows the performance of ordering the patterns solely

based on the number of mentions.

Top N
Additive Reciprocal Rank Simple Additive Model

Frequency
0.4 0.5 0.7 0.9 0.4 0.5 0.7 0.9

5 80% 80% 80% 80% 80% 80% 80% 80% 80%

10 80% 80% 80% 80% 80% 80% 90% 80% 70%

20 75% 80% 80% 70% 55% 60% 75% 70% 60%

30 56.67% 56.67% 63.33% 63.33% 53.33% 56.67% 56.67% 63.33% 56.67%

Table 7.1: Experiments result for Homepage dataset of different weight ρ for
top N patterns

Top N
Additive Reciprocal Rank Simple Additive Model

Frequency
0.4 0.5 0.7 0.9 0.4 0.5 0.7 0.9

5 60% 60% 60% 80% 60% 40% 60% 80% 80%

10 60% 60% 60% 70% 40% 40% 70% 70% 70%

20 55% 50% 60% 60% 45% 50% 60% 55% 60%

30 46.67% 46.67% 46.67% 46.67% 46.67% 68.33% 46.67% 46.67% 50%

Table 7.2: Experiments result for Birth dataset of different weight ρ for top
N patterns

In the table for the Homepage dataset, the performance difference between

methods for different weights seems little. However, for the Birth dataset, the

ranking that gives more weight to occurrence seem to perform better, which

indicates that the frequency may be more important than specificity. This is

reasonable because the frequency represents the popularity, and that may be

42



primary factor to be taken into consideration when selecting good patterns.

In our experiment, the performance difference seems to be negligible between

the two methods. As we looked into the result, we found that the sets of pat-

terns ranked top by the two methods are similar, with small differences in the

orderings. One possible reason is that the patterns may be truly meaningful,

and the two methods both identify these patterns and rank them top on the

list.

In order to evaluate the performance of our ranking functions in placing

“good” patterns on top, we used the top N patterns returned by each method

(for different values ofN) to find more instances of the rows. For the Homepage

dataset, we randomly chose a half of its rows and used it as the training set

to construct our pattern sets. The other half was used as the evaluation set.

In other words, the training set and their corresponding documents were the

input to our system. The top N patterns in the output were used to extract

instances from the documents of the evaluation set and these instances were

examined to see if they were truly the indicated rows and columns (or part of

columns) of the table. The precision shown in Table 7.3 is the average precision

over three runs, with each run taking different sets for training and testing.

As shown, the baseline method that orders the patterns based on frequency

Top N
Additive Reciprocal Rank Simple Additive Model

Frequency
0.4 0.5 0.7 0.9 0.4 0.5 0.7 0.9

5 51.52% 54.07% 53.40% 48.40% 62.67% 62.67% 68.29% 64.58% 38.94%

10 47.16% 45.00% 44.93% 45.97% 53.35% 53.35% 53.35% 52.45% 31.02%

20 40.55% 41.40% 40.39% 40.39% 41.98% 41.98% 41.98% 41.55% 16.71%

Table 7.3: Precision of extraction of top N patterns for different weight ρ

does not do well; this method returns general patterns that can extract many

matches but few of them are correct. Of the two methods Additive Reciprocal

Rank (ARR) and Simple Additive Model (SAM), SAM returns patterns with

higher precision. To better understand this, consider a pattern ranked 1st

and 99th respectively according to its specificity and frequency; the score this

pattern gets using ARR is still larger than most patterns since the score is

larger than one. But this is not a problem in SAM since the positions are

43



treated equally. And this results in the precision difference between these two

methods.

44



Chapter 8

Conclusions

In this thesis, we investigate in the problem of annotating web tables using sur-

face text patterns. Our work shows that text patterns can be extracted to rep-

resent the semantics of a table, in terms of relationships between the columns,

and that we can improve the pattern quality through increasing the generality

and reducing the redundancy. It is observed that we need to balance between

the generality and the specificity to avoid a possible over-generalization. Also,

we have filtered patterns that are redundantly long and short. The experi-

ments show these processings have a positive effect. Moreover, we construct a

ranking method considering both frequency and specificity. Our experiments

indicate that the pattern frequency should be given more weight.

8.1 Future Work

First, external resources such as Part of Speech tags and other forms of types

may be used to improve the quality of our text patterns to make them more

informative.

Second, text patterns may be used to associate a column with a predefined

types from a database. As introduced in related work, linking table columns

with predefined types may allow more structured operations on a table. A

particular type can have a distinct set of text patterns describing it. Columns

of a table can be associated with such types by checking the similarity between

patterns describing them.

Third, with these text pattern as annotation, many operations can be avail-

45



able for the table. For instance, text patterns can be used for table integration.

If two columns from different tables share a similar set of text patterns, they

may represent the same type of objects. Another example for such application

is entity resolution for table cells. And the most straightforward application is

table enlargement. Text patterns can be utilized to locate additional entities

and relationships that may not be mentioned in the table, and to enlarge the

content of a table.

46



Bibliography

[1] Marco D. Adelfio and Hanan Samet. Schema extraction for tabular data
on the web. Proc. VLDB Endow., 6(6):421–432, apr 2013. ISSN 2150-
8097. doi: 10.14778/2536336.2536343. URL http://dx.doi.org/10.
14778/2536336.2536343.

[2] Danushka Tarupathi Bollegala, Yutaka Matsuo, and Mitsuru Ishizuka.
Relational duality: Unsupervised extraction of semantic relations between
entities on the web. In Proc. of the 19th International Conference on
World Wide Web, WWW ’10, pages 151–160, New York, NY, USA, 2010.
ACM. ISBN 978-1-60558-799-8. doi: 10.1145/1772690.1772707. URL
http://doi.acm.org/10.1145/1772690.1772707.

[3] Sergey Brin. Extracting patterns and relations from the world wide
web. In Selected Papers from the International Workshop on The World
Wide Web and Databases, WebDB ’98, pages 172–183, London, UK, UK,
1999. Springer-Verlag. ISBN 3-540-65890-4. URL http://dl.acm.org/
citation.cfm?id=646543.696220.

[4] Michael J. Cafarella, Alon Halevy, Daisy Zhe Wang, Eugene Wu, and
Yang Zhang. Webtables: Exploring the power of tables on the web. Proc.
VLDB Endow., 1(1):538–549, August 2008. ISSN 2150-8097. doi: 10.
14778/1453856.1453916. URL http://dx.doi.org/10.14778/1453856.
1453916.

[5] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data pro-
cessing on large clusters. Commun. ACM, 51(1):107–113, January 2008.
ISSN 0001-0782. doi: 10.1145/1327452.1327492. URL http://doi.acm.
org/10.1145/1327452.1327492.

[6] Mark A Greenwood and Robert Gaizauskas. Using a named entity tag-
ger to generalise surface matching text patterns for question answering.
In Proc. of the Workshop on Natural Language Processing for Question
Answering (EACL03), pages 29–34. Citeseer, 2003.

[7] Eduard Hovy, Ulf Hermjakob, and Deepak Ravichandran. A ques-
tion/answer typology with surface text patterns. In Proc. of the Second
International Conference on Human Language Technology Research, HLT
’02, pages 247–251, San Francisco, CA, USA, 2002. Morgan Kaufmann
Publishers Inc. URL http://dl.acm.org.login.ezproxy.library.
ualberta.ca/citation.cfm?id=1289189.1289206.

[8] Girija Limaye, Sunita Sarawagi, and Soumen Chakrabarti. Annotating
and searching web tables using entities, types and relationships. Proc.
of VLDB Endow., 3(1-2):1338–1347, September 2010. ISSN 2150-8097.

47



doi: 10.14778/1920841.1921005. URL http://dx.doi.org/10.14778/
1920841.1921005.

[9] Rada Mihalcea and Andras Csomai. Wikify!: Linking documents to en-
cyclopedic knowledge. In Proceedings of the Sixteenth ACM Conference
on Conference on Information and Knowledge Management, CIKM ’07,
pages 233–242, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-803-
9. doi: 10.1145/1321440.1321475. URL http://doi.acm.org/10.1145/
1321440.1321475.

[10] Varish Mulwad, Tim Finin, Zareen Syed, and Anupam Joshi. Using linked
data to interpret tables. In In Proc. 1st Int. Workshop on Consuming
Linked Data, 2010.

[11] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Helen Pinto, Qiming Chen,
Umeshwar Dayal, and Mei-Chun Hsu. Prefixspan: Mining sequential
patterns efficiently by prefix-projected pattern growth. In 2013 IEEE
29th International Conference on Data Engineering (ICDE), pages 0215–
0215. IEEE Computer Society, 2001.

[12] Deepak Ravichandran and Eduard Hovy. Learning surface text patterns
for a question answering system. In Proc. of the 40th Annual Meeting
on Association for Computational Linguistics, ACL ’02, pages 41–47,
Stroudsburg, PA, USA, 2002. Association for Computational Linguis-
tics. doi: 10.3115/1073083.1073092. URL http://dx.doi.org.login.
ezproxy.library.ualberta.ca/10.3115/1073083.1073092.

[13] Zareen Syed, Tim Finin, Varish Mulwad, and Anupam Joshi. A.: Ex-
ploiting a web of semantic data for interpreting tables. In Proc. of the
Second Web Science Conference, 2010.

[14] Petros Venetis, Alon Halevy, Jayant Madhavan, Marius Paşca, Warren
Shen, Fei Wu, Gengxin Miao, and Chung Wu. Recovering semantics of
tables on the web. Proc. of VLDB Endow., 4(9):528–538, June 2011. ISSN
2150-8097. doi: 10.14778/2002938.2002939. URL http://dx.doi.org/
10.14778/2002938.2002939.

48



Appendix A

User Settings

Table A.1: User setting file explanation
inputlistfile Indicates the path of the input table file

inputwebpagesdirectory
Indicates the path of the directory

containing all the input documents

outputpatternfile
Indicates the path of the output file

containing the text patterns

keycolumnnum
Indicates the column in which entries are unique across

all rows and distinguishes one row from all other

filterthreshold
Indicate the minimum occurrence that result

patterns must have

removehtmltag
Indicate whether to remove HTML tags from

textual context or not

substringfilter
Indicate whether to remove patterns that are

sub-string of another pattern with close occurrence

numofgaps
Indicate whether removing patterns that are sub-string

of other patterns with close occurrence

windowsize
Indicate maximum number and minimum number of

words a text pattern can contain

49



Appendix B

Experiment Tables and Result

Patterns

J Nelson

Amaral
Professor

Athabasca Hall

352

1-780-

492-5411

amaral

@cs.ualberta.ca
amaral

Denilson

Barbosa

Associate

Professor

Athabasca Hall

451

1-780-

492-9920

denilson

@cs.ualberta.ca
denilson

Anup

Basu
Professor

Athabasca Hall

402

1-780-

492-3330

anup

@cs.ualberta.ca
anup

Walter

Bischof
Professor

Athabasca Hall

419

1-780-

492-3114

wfb

@cs.ualberta.ca
wfb

Pierre

Boulanger
Professor

Athabasca Hall

411

1-780-

492-3031

pierreb

@cs.ualberta.ca
pierreb

Michae

Bowling
Professor

Athabasca Hall

339

1-780-

492-1766

bowling

@cs.ualberta.ca
bowling

Vadim

Bulitko

Associate

Professor

Athabasca Hall

338

1-780-

492-3854

bulitko

@cs.ualberta.ca
bulitko

Michael

Buro
Professor

Athabasca Hall

337

1-780-

492-1763

mburo

@cs.ualberta.ca
mburo

Renee

Elio

Associate

Vice

President

Athabasca Hall

320

1-780-

492-1734

ree

@cs.ualberta.ca
ree

Ehab

Elmallah
Professor

Athabasca Hall

309

1-780-

492-9917

ehab

@cs.ualberta.ca
ehab

Zac

Friggstad

Assistant

Professor

Athabasca Hall

306

1-780-

492-2983

zacharyf

@cs.ualberta.ca
zacharyf

Randy

Goebel

President

and CEO

Athabasca Hall

347

1-780-

492-2683

goebel

@cs.ualberta.ca
goebel

Russ

Greiner
Professor

Athabasca Hall

359

1-780-

492-5461

greiner

@cs.ualberta.ca
greiner

50



Janelle

Harms
Professor

Athabasca Hall

324

1-780-

492-2763

harms

@cs.ualberta.ca
harms

Ryan

Hayward

Professor

and

Outreach

Athabasca Hall

301

1-780-

492-3895

hayward

@cs.ualberta.ca
hayward

Abram

Hindle

Assistant

Professor

Athabasca Hall

447

1-780-

492-2285

hindle1

@cs.ualberta.ca
hindle1

Robert

Holte
Professor

Athabasca Hall

349

1-780-

492-3105

holte

@cs.ualberta.ca
holte

Jim

Hoover
Chair

Athabasca Hall

308

1-780-

492-5290

hoover

@cs.ualberta.ca
hoover

Martin

Jagersand

Associate

Professor

Athabasca Hall

401

1-780-

492-5496

jag

@cs.ualberta.ca
jag

Greg

Kondrak

Associate

Professor

Athabasca Hall

351

1-780-

492-1779

kondrak

@cs.ualberta.ca
kondrak

Guohui

Lin

Associate

Professor

Athabasca Hall

353

1-780-

492-3737

ghlin

@cs.ualberta.ca
ghlin

Paul

Lu
Professor

Athabasca Hall

340

1-780-

492-7760

paullu

@cs.ualberta.ca
paullu

Mike

MacGregor
Professor

Athabasca Hall

319

1-780-

492-7434

macg

@cs.ualberta.ca
macg

Martin

Mueller
Professor

Athabasca Hall

345

1-780-

492-3703

mmueller

@cs.ualberta.ca
mmueller

Mario

Nascimento
Professor

Athabasca Hall

434

1-780-

492-5678

mn

@cs.ualberta.ca
mn

Ioanis

Nikolaidis
Professor

Athabasca Hall

322

1-780-

492-5757

yannis

@cs.ualberta.ca
yannis

Davood

Rafiei

Associate

Professor

Athabasca Hall

436

1-780-

492-2374

drafiei

@cs.ualberta.ca
drafiei

Nilanjan

Ray

Associate

Professor

Athabasca Hall

406

1-780-

492-3010

nray1

@cs.ualberta.ca
nray1

Mohammad

Salavatipour

Associate

Professor

Athabasca Hall

303

1-780-

492-1759

mreza

@cs.ualberta.ca
mreza

Joerg

Sander

Associate

Professor

Athabasca Hall

432

1-780-

492-5084

joerg

@cs.ualberta.ca
joerg

Jonathan

Schaeffer

Dean

of Science

Athabasca Hall

415

1-780-

492-5471

jonathan

@cs.ualberta.ca
jonathan

Christian

Schlegel

Adjunct

Professor

Athabasca Hall

323

1-780-

492-3255

schlegel

@cs.ualberta.ca
schlegel

Dale

Schuurmans
Professor

Athabasca Hall

409

1-780-

492-4806

dale

@cs.ualberta.ca
dale

51



Paul

Sorenson

Professor

Emeritus

Athabasca Hall

317

1-780-

492-1564

sorenson

@cs.ualberta.ca
sorenson

Lorna

Stewart
Professor

Athabasca Hall

302

1-780-

492-2982

stewart

@cs.ualberta.ca
stewart

Eleni

Stroulia
Professor

Athabasca Hall

452

1-780-

492-3520

stroulia

@cs.ualberta.ca
stroulia

Rich

Sutton
Professor

Athabasca Hall

313

1-780-

492-4584

rsutton

@cs.ualberta.ca
rsutton

Duane

Szafron

Vice Provost

and

Associate

Vice President

Athabasca Hall

358

1-780-

492-5468

duane

@cs.ualberta.ca
duane

Csaba

Szepesvari

Associate

Professor

Athabasca Hall

311

1-780-

492-8581

szepesva

@cs.ualberta.ca
szepesva

David

Wishart
Professor

Athabasca Hall

341

1-780-

492-0383

dwishart

@cs.ualberta.ca
dwishart

Ken

Wong

Associate

Professor

Athabasca Hall

305

1-780-

492-5202

kenw

@cs.ualberta.ca
kenw

Herb

Yang
Professor

Athabasca Hall

413

1-780-

492-3059

yang

@cs.ualberta.ca
yang

Jia

You
Professor

Athabasca Hall

354

1-780-

492-5779

you

@cs.ualberta.ca
you

Li-Yan

Yuan
Professor

Athabasca Hall

356

1-780-

492-7171

yuan

@cs.ualberta.ca
yuan

Osmar R.

Zaiane
Professor

Athabasca Hall

443

1-780-

492-2860

zaiane

@cs.ualberta.ca
zaiane

Hong

Zhang
Professor

Athabasca Hall

407

1-780-

492-7188

zhang

@cs.ualberta.ca
zhang

Table B.1: Table in Homepage dataset

[[FLD4 2]]) [[FLD4 3]]-[[FLD4 4]]

[[FLD2 1]] department of computing science university of alberta

: ([[FLD4 2]]) [[FLD4 3]]-[[FLD4 4]] fax: ([[FLD4 2]]) [[FLD4 3]]-1071

: ([[FLD4 2]]) [[FLD4 3]]-[[FLD4 4]]

phone: ([[FLD4 2]]) [[FLD4 3]]-[[FLD4 4]]

phone: ([[FLD4 2]]) [[FLD4 3]]-[[FLD4 4]] fax: ([[FLD4 2]]) [[FLD4 3]]-1071

fax: ([[FLD4 2]]) [[FLD4 3]]-1071

52



[[FLD2 1]] department of computing science

tel: ([[FLD4 2]]) [[FLD4 3]]-[[FLD4 4]] fax: ([[FLD4 2]]) [[FLD4 3]]-1071

[[FLD4 2]]***[[FLD4 3]]-1071

[[FLD4 2]]***[[FLD4 3]]-[[FLD4 4]] fax

Table B.2: Top patterns for Homepage dataset

53



Mozart 1756 1791 Salzburg

Gandhi 1869 1948 Porbandar

Newton 1642 1727 Woolsthorpe

Einstein 1879 1955 Ulm

Washington 1732 1799 Westmoreland

Churchill 1874 1965 Blenheim Palace

Roosevelt 1882 1945 Hyde Park

Patton 1885 1945 San Gabriel

Hitler 1889 1945 Braunau am Inn

Armstrong 1930 2012 Wapakoneta

Turing 1912 1954 Paddington

Gates 1955 Seattle

Kennedy 1917 1963 Brookline

Edison 1847 1931 Milan

Bell 1847 1922 Edinburgh

Tesla 1856 1943 Smiljan

Bohr 1922 2009 Copenhagen

Table B.3: Table in Birth dataset

([[FLD2 1]]***[[FLD3 1]])

born in [[FLD4 1]]

persondata name [[FLD1 1]]

[[FLD1 1]] ([[FLD2 1]]***[[FLD3 1]]

([[FLD2 1]]***[[FLD3 1]]

[[FLD2 1]] place of birth [[FLD4 1]]

jump to: navigation, search “[[FLD1 1]]” redirects

[[FLD1 1]]” redirects here. for other uses, see

was born in [[FLD4 1]]

place of birth [[FLD4 1]]

search “[[FLD1 1]]” redirects here. for other uses

[[FLD1 1]] was born

Table B.4: Top patterns for Birth dataset

54



Athens Greece Europe 1896

Paris France Europe 1900

St. Louis United States North America 1904

Athens Greece Europe 1906

London United Kingdom Europe 1908

Stockholm Sweden Europe 1912

Berlin Germany Europe 1916

Antwerp Belgium Europe 1920

Paris France Europe 1924

Amsterdam Netherlands Europe 1928

Los Angeles United States North America 1932

Berlin Germany Europe 1936

Tokyo Japan Asia 1940

London United Kingdom Europe 1944

London United Kingdom Europe 1948

Helsinki Finland Europe 1952

Melbourne Australia Oceania 1956

Rome Italy Europe 1960

Tokyo Japan Asia 1964

Mexico City Mexico North America 1968

Munich West Germany Europe 1972

Montreal Canada North America 1976

Moscow Soviet Union Europe 1980

Los Angeles United States North America 1984

Seoul South Korea Asia 1988

Barcelona Spain Europe 1992

Atlanta United States North America 1996

Sydney Australia Oceania 2000

Athens Greece Europe 2004

Beijing China Asia 2008

London United Kingdom Europe 2012

Table B.5: Table in Olympic dataset

medal count[edit] main article: [[FLD4 1]] summer olympics

edit] main article: [[FLD4 1]] summer olympics medal table

commons has media related to [[FLD4 1]] summer olympics

55



references[edit] ”[[FLD1 1]] [[FLD4 1]]”. olympic.org. international olympic

the [[FLD4 1]] games

[[FLD4 1]] summer olympics -

] medal count[edit] main article: [[FLD4 1]] summer

olympiad ([[FLD4 1]]) succeededby

venues[edit] main article: venues of the [[FLD4 1]]

[[FLD1 1]] 1900-39 the blitz 1945-2000 21st

count[edit] main article: [[FLD4 1]] summer olympics medal

the [[FLD4 1]]*** olympics

performance-enhancing drugs in the olympic games -[[FLD4 1]]

Table B.6: Top patterns for Olympic dataset

56



Boston Celtics Boston MA TD Garden 1946

Brooklyn Nets New York City NY Barclays Center 1967 1976

New York Knicks New York City NY Madison Square Garden 1946

Philadelphia 76ers Philadelphia PA Wells Fargo Center 1946 1949

Toronto Raptors Toronto ON Air Canada Centre 1995

Chicago Bulls Chicago IL United Center 1966

Cleveland Cavaliers Cleveland OH Quicken Loans Arena 1970

Detroit Pistons Auburn Hills MI The Palace of Auburn Hills 1941 1948

Indiana Pacers Indianapolis IN Bankers Life Fieldhouse 1967 1976

Milwaukee Bucks Milwaukee WI BMO Harris Bradley Center 1968

Atlanta Hawks Atlanta GA Philips Arena 1946 1949

Charlotte Hornets Charlotte NC Time Warner Cable Arena 1988

Miami Heat Miami FL American Airlines Arena 1988

Orlando Magic Orlando FL Amway Center 1989

Washington Wizards Washington D.C. Verizon Center 1961

Denver Nuggets Denver CO Pepsi Center 1967 1976

Minnesota Timberwolves Minneapolis MN Target Center 1989

Oklahoma City Thunder Oklahoma City OK Chesapeake Energy Arena 1967

Portland Trail Blazers Portland OR Moda Center 1970

Utah Jazz Salt Lake City UT EnergySolutions Arena 1974

Golden State Warriors Oakland CA Oracle Arena 1946

Los Angeles Clippers Los Angeles CA Staples Center 1970

Los Angeles Lakers Los Angeles CA Staples Center 1947 1948

Phoenix Suns Phoenix AZ US Airways Center 1968

Sacramento Kings Sacramento CA Sleep Train Arena 1923 1948

Dallas Mavericks Dallas TX American Airlines Center 1980

Houston Rockets Houston TX Toyota Center 1967

Memphis Grizzlies Memphis TN FedExForum 1995

New Orleans Pelicans New Orleans LA Smoothie King Center 2002

San Antonio Spurs San Antonio TX AT&T Center 1967 1976

Table B.7: Table in NBA dataset

main article: list of [[FLD1 1]] [[FLD1 2]]

main article: list of [[FLD2 1]] [[FLD1 2]]

records[edit] main article: list of [[FLD2 1]]

1969) pittsburgh pipers/condors ([[FLD5 1]]-1968; 1969-

[edit] main article: list of [[FLD2 1]] [[FLD1 2]]

57



[edit] main article: list of [[FLD1 1]] [[FLD1 2]]

commons has media related to [[FLD1 1]] [[FLD1 2]]

coaches[edit] main article: list of [[FLD1 1]]

based in [[FLD1 1]]

founded in [[FLD5]] based in [[FLD2 1]]

records[edit] main article: list of [[FLD1 1]]

commons has media related to [[FLD2 1]] [[FLD1 2]]

the [[FLD1 1]] [[FLD1 2]]

pittsburgh pipers/condors ([[FLD5]]-1968; 1969-1972)

basketball nba***[[FLD1 1]] [[FLD1 2]]

” categories: [[FLD1 1]]

-1969) pittsburgh pipers/condors ([[FLD5 1]]-1968; 1969

Table B.8: Top patterns for NBA dataset

58


