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Abstract 

Evaluation of steam-assisted gravity drainage (SAGD) performance that 

involves detailed compositional simulations is usually deterministic, 

cumbersome, expensive (manpower and time consuming), and not quite suitable 

for practical decision making and forecasting, particularly when dealing with 

high-dimensional data space consisting of large number of operational and 

geological parameters. Data-driven modeling techniques, which entail 

comprehensive data analysis and implementation of machine learning methods 

for system forecast, provide an attractive alternative.   

In this thesis, Artificial Neural Network (ANN) is employed as a data-driven 

modeling alternative to predict SAGD production in heterogeneous reservoirs. 

Numerical flow simulations are performed to construct a training data set 

consists of various attributes describing characteristics associated with reservoir 

heterogeneities and other relevant operating parameters. Finally, several case 

studies are studied to demonstrate the improvements in robustness and accuracy 

of the prediction when cluster analysis techniques are performed to identify 

internal data structures and groupings prior to ANN modeling.  
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Chapter 1: General Introduction 

1.1 Introduction 

Steam-Assisted Gravity Drainage (SAGD) is an Enhanced Oil Recovery (EOR) 

method for extracting heavy crude oil and bitumen, in which a pair of horizontal 

wells called injector and producer are drilled into the formation with an inter-

well spacing of 5 meters. High quality steam is injected through the injector well 

(upper well) into the reservoir. Steam propagates as a steam chamber vertically 

and laterally in the formation, causing the heated bitumen or heavy oil to drain 

into the lower wellbore, where it is produced.  

The Steam Assisted Gravity Drainage (SAGD) provides more efficient recovery 

of unconventional oil resources, such as heavy oil and bitumen, as compared to 

the other thermal recovery methods. As a supply for future fuel and energy 

demand, the 95% of the bitumen deposits in North America which are located in 

Alberta oil sands are expected to become a major source. Due to these issues, the 

demand for SAGD technique is significantly increasing. 

Numerical modeling of SAGD recovery performance can be carried out with 

traditional compositional thermal simulators. The current flow simulators require 

a huge number of input parameters such as initial saturations and pressure 

distributions, porosity, permeability, multi-phase flow functions, and well 

parameters. Inference of these input parameters is time-consuming, while 

accurate measurements are often not readily available. Furthermore, many 

assumptions associated with the process physics are often invoked for the 
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numerical solution. Given the extremely non-linear relationships between input 

and output variables (e.g. oil production profile), the computational time is also 

extremely high. Therefore, there has been an increased drive and interest to 

integrate data-driven approaches for modeling the recovery response of SAGD 

process. 

Data-driven modeling provides a viable alternative for quantitative ranking of 

different operating areas and assessment of uncertainty due to reservoir 

heterogeneities, which are crucial elements in optimization of production and 

development strategies in oil sands operations. High-dimensional data including 

large number of operational and geological parameters can be processed for 

efficient decision-making. 

Data-driven modeling is based on analysis of all data characterizing the system 

of interest and focuses on using the machine learning methods to build models 

that describe the behavior of the corresponding physical processes. Examples of 

some popular methods used in data-driven modeling are statistical methods, 

artificial neural networks, and fuzzy logic. The methods used nowadays have 

advanced significantly beyond the ones used in conventional empirical 

regression. They are used for solving numerical prediction problems, 

reconstructing highly non-linear relationships, performing data classification, 

and building rule-based expert systems.  

The general subject of data-driven modeling has been developed with 

contributions from many overlapping disciplines including virtual intelligence, 

data mining, knowledge discovery in databases, computational intelligence, 
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machine learning, statistical data analysis, soft computing, and pattern 

recognition.  

Artificial neural network (ANN) is a virtual intelligence technique useful for 

identifying or approximating a complex non-linear relationship between input 

and target variables. It utilizes a series of neurons (nodes) in the hidden layers 

that apply nonlinear activation functions to the weighted sum of input variables. 

The network is trained using a data set consisting of both input (or predicting) 

and target variables, and the unknown parameters of the network, typically the 

weights and biases that connect between all the neurons, are estimated in an 

inverse problem where the mismatch between the network output and the known 

values of the target variables is minimized. Figure 1.1 presents a typical flow 

chart for network training. Since variables can be both categorical and 

continuous, common applications of ANN include proxy for function evaluation 

and pattern classification. History and improvements for ANN technology 

including learning rules, network architecture, convergence behavior, and hybrid 

techniques can be found in Mehrotra et al. (1997), Suh (2012), and Poulton 

(2001). 
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Figure 1.1 General flow chart for neural network training (adapted from Demuth & Beale 

1998) 
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1.2 ProblemStatement 

Ultimate oil recovery factor and production profile are two key factors in 

evaluating the amount of oil that is recoverable and also the possible monetary 

benefits that can be generated over the years. Recovery factor (RF) is the ratio of 

recoverable oil to estimated initial oil in place. It depends on many factors 

related to rock, fluid, and operation properties. The profile of cumulative oil 

production as a function of time is referred to as oil production profile. 

Although detailed compositional simulators are available for recovery 

performance evaluation for SAGD, the simulation process is usually 

deterministic, cumbersome, expensive (manpower and time consuming), and not 

quite suitable for real-time decision making and forecasting. This motivates a 

substitute (alternative) approach of oil recovery evaluations using existing 

reservoir data set that could be used as a proxy-data-driven model to estimate 

recovery factor and production profile. 
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1.3 ResearchObjectives 

Data-driven proxy model is an alternative model which stands in the place of 

currently used models (e.g., detailed compositional flow simulations) and aims 

to relate the model inputs to the desired outputs only by means of the 

information coming from the data. The comprehensive data set is used to drive 

the model and lead us to the desired output. Data-driven proxy models can 

utilize any artificial intelligence techniques to develop a solution to the defined 

problem. 

Among the SAGD industries, a large amount of data is coming from 

interpretation and analysis of well logs.  Production data is also readily available 

from the public domain. However, details regarding the operating conditions 

(e.g., bottom-hole flowing pressure, injected steam quality and rate) remain 

proprietary. Therefore, the research objective is to develop a data-driven 

modeling workflow to estimate the relationship between input attributes derived 

from well log analysis to output attributes including recovery factor and 

production profile. As the available data do not include linguistic variables and 

employing the expert knowledge to the well logs is difficult, artificial neural 

network (ANN) is selected to be the most suitable technique for this study. Due 

to the extremely non-linear equations used in flow simulators, ANN is an 

appropriate method to identify and approximate these equations relating model 

inputs to the desired outputs.  

In the past, ANN and other non-linear regression methods have been employed 

to predict formation characteristics, such as permeability, porosity and reservoir 
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fluids saturation using available seismic and well-logs analysis, but applications 

that aim to predict SAGD recovery performance by incorporating heterogeneity 

measurements as input attributes are lacking. Heterogeneity-associated 

parameters can be directly inferred from well-logs and have the potential to be 

used as inputs for the data-driven proxy model to assess and predict the recovery 

performance of the well.  

The principal objective of this thesis is to develop a data-driven proxy model 

using Artificial Neural Network (ANN) as an alternative to predict SAGD 

recovery performance in heterogeneous reservoirs. This research aims to assess 

the key pertinent predicting parameters in relation to SAGD recovery prediction 

in heterogeneous reservoirs. Synthetic data set is used to investigate the 

feasibility of this approach in recovery prediction of SAGD reservoirs. 

Given that the field data contain noises and considering the need for continues 

updating when incorporating new field data into reservoir models, in this work, 

new approaches are proposed to identify and reduce extrapolations in 

predictions. This study also illustrates how various data-driven modeling 

approaches, both deterministic and fuzzy-based can be integrated for production 

estimation.  Since there is a lack of application of ANN for SAGD recovery 

prediction for heterogeneous reservoirs in the literature, the work presented here 

provides a promising tool of using large amount of operating data for robust 

forecasting and optimization in a time-efficient manner.  Five case studies are 

implemented to highlight the potential of ANN as a data-driven proxy model 

alternative for SAGD process. 
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1.4 ThesisLayout 

The research methodology consists of numerical reservoir simulation and proxy 

model development, model testing and validation against flow simulation results.   

The work in this thesis is divided into six chapters. Chapter 1 (the current 

chapter) provides the background and the scope of this research including the 

general methodology adopted to address the problem statement. Chapter 2 

contains the introduction of Artificial Neural Network (ANN). A detailed 

literature review on the application of this method in petroleum engineering, 

along with ANN’s most recent modifications is also included in this chapter. 

Chapter 3 presents in details the data-driven modeling methodology. 

Backpropagation Neural Network (BPNN) algorithm, Principal Component 

Analysis (PCA) methods, cluster analysis and parameterization of oil production 

time series are all explained in this chapter. Chapter 4 comprises data-driven 

modeling approach for recovery performance prediction in SAGD operations. 

Three case studies are performed to assess ANN predictability for recover factor  

(RF) during SAGD process. Chapter 5 investigates the integrated application of 

cluster analysis and ANN for SAGD recovery performance prediction in 

heterogeneous reservoirs. Two case studies presented in this chapter highlight 

the improvements in ANN predictability for recovery factor (RF) and production 

profile, after incorporating of cluster analysis into the data-driven modeling 

approach. Chapter 6 summarizes the major findings of the conducted research 

and presents suggestions for future research on this topic. 
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Chapter 2: A Review and  

Background of the Methodology 

2.1 Introduction 

Data-driven modeling involves comprehensive analysis of all available data 

associated with the system and utilization of machine learning methods for 

constructing models to forecast system behavior in the presence of new data. The 

data-driven model employs virtual intelligence techniques including neural 

networks, fuzzy logic and genetic algorithm for complementing or replacing 

physically based models. A major challenge in data-driven modeling is 

continuous integration of massive available information into the systems real-

time.   

2.2 ABriefBackgroundofArtificialNeuralNetwork 

Artificial neural network (ANN) is a virtual intelligence method used to identify 

or approximate a complex non-linear relationship between input and target 

variables. In computer science and related fields, artificial neural networks are 

biologically inspired computationalmodels based on human’s central nervous

systems (in particular the brain) that are capable of machine learning and pattern 

recognition. It employs a bunch of neurons (nodes) in the hidden layers that 

apply nonlinear activation functions to the weighted sum of input variables. A 

data set consisting of both input (or predicting) and target variables is used to 

train the network, and the unknown parameters of the network (weights and 
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biases) are estimated in an inverse problem procedure where the mismatch 

between the network output and the known values of the target variables is 

minimized. 

Artificial neural network is developed by training the network to represent the 

intrinsic relationships existing within the data. The idea of neural network 

alludes back to 1943 when neurophysiologist Warren McCulloch and 

mathematician Walter Pitts wrote a paper on how neurons might work 

(McCulloch & Pitts 1943). They modeled a simple neural network using 

electrical circuits to explain how neurons function in the brain. With 

advancements in computer science and technology 1950's, it was finally possible 

to simulate a hypothetical neural network. In previous decades, it has been 

pointed out combination of many neurons in neural networks can be more 

promising than single neurons. McClelland and Rumelhart (1986) developed and 

promoted the learning rules applicable to large neural networks based on 

gradient descent methods. Recently, researchers have performed huge 

contributions to neural networks and developed novel techniques such as self-

organizing maps associative memories (Mehrotra et al. 1997). Mehrotra et al. 

(1997), Poulton (2001) and Suh (2012) provide detailed information on history, 

background and improvements of artificial neural network. 

Any neural network is trained using a learning algorithm and training data set. In 

general there are two types of neural network learning algorithms classification; 

unsupervised learning and supervised learning. The supervised learning is used 

to find hidden structure in unlabeled data. The objective is to categorize or 
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discover features or regularities in the training data. Cluster analysis is the most 

common use of unsupervised learning. In contrast, the supervised learning 

method requires that target values be provided. A training dataset is needed as 

the input vector and will generate the rules according to the desired output by 

adjusting the weights. The weights are then used for processing the inputs of test 

data set. After providing the desired output to the net, the weights will be 

adjusted to match the model to the desired goal. The learning process iteration 

will be continued until the desired goal is reached. 

2.3 ArtificialNeuralNetworkArchitecture 

An artificial neural network is composed of many artificial neurons that are 

linked together according to specific network architecture. The two most 

common types of  network architectures are Single Layer Perceptron (SLP) and 

Multilayer Perceptron (MLP) which consists of one input and output layer with 

any number of hidden layers, as illustrated in Figure 2.1. Design of a neural 

network involves the selection of the number of layers and the number of 

neurons (nodes) in each layer. There is a tradeoff between accuracy and 

overfitting of data: mismatch between network predictions and actual values of 

target variables could be not minimized with insufficient number of neurons, 

while too many neurons can cause an overfitting of network parameters. The 

number of free parameters (i.e. number of weights and bias connections) in the 

hidden layer remains a function of input vector dimension and the total training 

data set size. The selection of the number of neurons is typically established 

based on some rules of thumb. The number of independent (input) variables is 
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generally much larger than the number of dependent (target) variables. Ferreira 

et al. (2012) suggested that the number of neurons should be between the 

number of input parameters and the number of output parameters; in particular, 

the number of neurons should be two thirds of the number of input parameters, 

plus the number of output parameters, but no more than twice the number of 

input parameters. Haykin (2005) explained that the number of free parameters 

(i.e. number of weights and bias connections) in the hidden layer should be a 

function of input vector dimension and the total training data set size. In each of 

our case study, sensitivity analysis on the network configuration is performed; 

the optimal architecture is selected by comparing the error/mismatch in network 

prediction between different configurations. 

 

Figure 2.1 Schematic of the interaction of node j with n input signals and a single output 
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2.4 ApplicationofArtificialNeuralNetworkinPetroleum

Engineering 

A wide variety of neural network applications can be found in petroleum 

engineering (Mohaghegh 2002; Bravo et al. 2012; Saputelli et al. 2002; Stundner 

2001), particularly in the areas of: classification (Stundner 2001), reservoir 

characterization or property prediction (Tang et al. 2011; Raeesi et al. 2012; 

Aminian et al. 2003), proxy for recovery performance prediction (Awoleke & 

Lane 2011; Lechner & Zangl 2005), history matching (Ramagulam et al. 2007), 

and design or optimization of production operations and well trajectory (Stoisits 

et al. 1999; Luis et al. 2007; Artun et al. 2012; Yeten & Durlofsky 2003; 

Oberwinkler et al. 2004; Malallah & Sami Nashawi 2005; Zangl et al. 2006).  

In particular, neural networks have been utilized in recent years as a proxy 

model to predict heavy oil recoveries (Queipo et al. 2002; Popa et al. 2011; Popa 

& Patel 2012; Ahmadloo et al. 2010); to perform EOR (enhanced oil recovery) 

screening (Zerafat et al. 2011; Karambeigi et al. 2011; Parada & Ertekin 2012); 

to characterize reservoir properties in unconventional plays (Holdaway 2012); 

and to evaluate performance of CO2 sequestration process (Mohamadpour et al. 

2012). 

The number of free parameters (i.e. number of weights and bias connections) in 

the hidden layer remains a function of input vector dimension and the total 

training data set size. Several relationships exist in the literature relating the 

training data set size to some user-defined error parameter (Haykin 2005), with 

some mechanisms implemented to detect extrapolations (Lohninger 1993). A 
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recent review of a range of design issues related to ANN development in 

petroleum industry can be found in Al-Bulushi et al. (2012).  

Regarding the design of network architecture, most works follow some basic 

rules of thumb and determine the optimal network architecture via the process of 

trial-and-error, while others have proposed to generalize training to include 

learning the appropriate architecture with Bayesian methods, where treatments 

of probabilistic networks can be found in Poulton (2002) and Khan & Coulibaly 

(2006). 

 Recent works in the literature also proposed the use of functional neural 

networks where activation functions and weight connections associated neurons 

could vary and be estimated through training (El-Sebakhy et al. 2012). Most 

works utilize back-propagation or other gradient-based optimization techniques 

as the learning algorithm, while only a few authors have discussed the use of 

more general global optimization algorithms such as genetic algorithm (Saemi et 

al. 2007).  

Numerous works also highlight the importance of data pre-processing (the input 

and target data to be used in the training stage), which includes normalization 

and outlier detection (Tang et al. 2011). Furthermore, in applications where 

responses from detailed flow simulations are used to train a network that would 

serve as a proxy for reservoir performance prediction, experimental design is 

often performed to reduce redundancy in training data and to minimize 

computational time (Queipo et al. 2002).  
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Some authors have also proposed that indices such as permeability ratio of 

adjacent layers and Dykstra Parsons coefficient should be included in the set of 

predicting variables to account for heterogeneity and uncertainty in reservoir 

properties (Ahmadloo et al. 2010). 

2.5 ApplicationofClusterAnalysisinPetroleumEngineering 

To reduce the dimension of input vector, Principal Component Analysis (PCA), 

a linear technique for pattern identification in data set (Smith, 2006) can be 

utilized to (1) reduce the number of variables of a dataset; and (2) identify 

hidden patterns among data set (Sharma, 2008). PCA is a linear operation that 

converts the set of correlated variables into a reduced set of linearly uncorrelated 

(orthogonal) variables. PCA has been widely integrated in a number of pattern 

recognition applications in the area of petroleum engineering:  pattern extraction 

from seismic amplitude data (Strebelle et al. 2003), lithofacies characterization 

(Gilbert et al. 2004), and time series analysis of production data (Bhattacharya & 

Nikolaou 2013). 

Data clustering methods should be integrated along with other techniques when 

facing a large amount of data. Data clustering is a common technique for 

statistical data analysis that is used in many fields including machine learning, 

data mining, and pattern recognition (Sharma, 2008). There are several 

algorithms for data clustering.  For example, K-means clustering is a commonly 

adopted technique because of its robustness and computational efficiency for the 

small data sets with limited variables (Sharma, 2008). Good predictive results 

were revealed after using k-means clustering to classify 3D seismic data for 
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permeability prediction (Scheevel & Payrazyan 2001). Chen & Durlofsky (2008) 

applied k-means clustering prior to two-phase flow functions upscaling, where 

different statistical procedures are applied to individual groups of grid blocks at 

the coarse scale with similar fine-scale single-phase flow velocities. K-means is 

employed to identify clusters of reservoir models exhibiting similar flow 

response behavior. Reservoir models were mapped on to a lower-dimensional 

space where clustering is performed (Scheidt & Caers 2009). Awoleke & Lane 

(2011) applied this clustering technique to identify groups of wells with different 

water throughput in a shale gas reservoir. Their corresponding physical 

characteristics are compared in order to mitigate the risk of water production in 

new wells. 

2.6 ApplicationofFuzzyLogicinPetroleumEngineering 

Fuzzy logic is another artificial intelligence modeling framework that has been 

adopted successfully in a variety of petroleum engineering applications 

(Mohaghegh 2000), since description of uncertainty due to the random nature of 

events or imprecision and vagueness of the information associated with the 

problem can be facilitated using fuzzy sets (Zadeh 1965). These examples 

include development of rule-based models for screening of enhanced oil 

recovery (EOR) (Chung et al. 1995), reservoir anisotropy quantification 

(Zhanggui et al. 1998), lithofacies and permeability forecasting (Hambalek & 

Gonzalez 2003; Al-Anazi et al. 2009), and well design and placement (Garrouch 

& Lababidi 2001; Popa 2013). 
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While neural networks are useful to learn and recognize complex non-linear 

relationships or patterns in data set, they are not suitable for explaining how 

these relationships are derived. Fuzzy logic systems, on the other hand, are good 

at reasoning with vague information, but they generally require subjective expert 

input in order to formulate the rules for decision-making (Takagi & Hayashi 

1991; Yager 1992). Both neural networks and fuzzy logic are powerful design 

techniques that have their strengths and weaknesses. In recent years, hybrid 

systems have attempted to merge the two modeling techniques (Lin & Lee 

1996). 

Hybrid neural network and fuzzy logic systems can be classified into three main 

categories. The first category is a neural fuzzy system in which the main 

architecture is a fuzzy rule-based system; however, resultant error between 

model prediction and the actual response for a particular training data set is 

back-propagated through the system, as in most neural networks, to adjust fuzzy 

parameters including membership functions. The second type is fuzzy neural 

networks in which elements of a neural network are fuzzified; for example, 

weights are replaced by membership values, while transfer and activation 

functions of a crisp neuron are substituted with fuzzy operations (Canuto 2001). 

Finally, the third category is one where the fuzzy logic and neural network 

methods are executed independently, and their results are assembled and 

aggregated in a way to reach the assigned goal such as process control or pattern 

recognition (Lin & Lee 1996). 
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Applications of these hybrid systems can be found in petroleum engineering 

(Mohaghegh 2000), particularly in the areas of reservoir lithology identification 

and property prediction (Zhou et al. 1993; Lim 2005; Aminzadeh & Brouwer 

2006), reservoir management (Nikravesh et al. 1998; Alimonti & Falcone 2004; 

Popa & Cassidy 2012), and optimization of well operations design (Mohaghegh 

& Reeves 2000; Murillo et al. 2009; Attia et al. 2013). 

2.7 Conclusion 

Application of different data-mining techniques in petroleum engineering was 

briefly reviewed in this chapter. The stated problem in this thesis that is to be 

solved, as mentioned in Chapter 1, is to predict the SAGD recovery performance  

in heterogeneous reservoirs using data-driven modeling techniques such as 

ANN.  

As presented in this chapter, previous works in this area have considered only 

the operational parameters as the input parameters of the proxy model, while 

ignoring the significant role of reservoir heterogeneity in heavy oil recovery 

evaluation. Including more geological control in the data-driven models should 

increase the proxy predictability and robustness.  

The other issue that has not been widely addressed by these previous works is 

proposing schemes when facing extrapolations in data-driven proxy modeling to 

boost the network predictability.  
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Chapter 3: Data-Driven Modeling Methodology 

In this chapter, the methodology section is presented which details the 

formulations, network architecture, and training algorithm for estimation of the 

network parameters. Algorithms employed in cluster analysis including k-means 

clustering and fuzzy c-means (FCM) clustering are explained and 

parameterization of oil production time series is discussed. As a quantification 

tool for matching evaluation between data-driven proxy results and results from 

flow simulation Root Mean Square Error (RMSE) method is provided. The 

aforementioned algorithms will be explained in detail. The modeling workflow 

is illustrated in Figure 3.1.  

A series of numerical case studies are presented in chapters 4 & 5. This 

workflow has the potential to integrate other data-mining techniques and can 

establish and identify the complex nonlinear relation between heterogeneity 

measurements (inputs) and target outputs. 
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Figure 3.1 General data-driven proxy model methodology flow chart 

 

 

Special considerations should be exercised in the construction of an efficient 

ANN model.  They include (1) network properties and formulations of its input, 

hidden, and output layers (Suh 2012); (2) network architecture that includes the 

number of nodes and hidden layers; and (3) the training algorithm for estimating 

the unknown network parameters (e.g., weights and biases). In this research, 

experimental design is implemented in construction of the training data set. The 
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proposed framework also integrates numerous implementations for handling 

extrapolations and improving network predictability. 
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3.1 NeuralNetworkFormulation 

In a feedforward neural network, signal is passed from an input layer of neurons 

through a series of hidden layer to an output layer of neurons. The input layer of 

neurons or input nodes represent the independent variables that are non-linearly 

related to a set of dependent or target variables, represented by a series of 

neurons at the output layer. As shown in Figure 2.1, the input and output layers 

are connected via a series of neurons in the hidden layer(s) or hidden nodes. 

Weights and biases are assigned to each connection; their values are determined 

via a supervised learning process using a training data set in which the mismatch 

between network predictions and known values of the target variables is 

minimized (Francis 2001).  

A schematic of signal transmission from the input layer through a node j to the 

output layer is shown in Figure 3.2.  

 

Figure 3.2 Schematic of the interaction of node j with n input signals and a single output 
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The input signals are multiplied by their corresponding weights to give the value 

of Y as in Eq. (3-1.  





n

i

iijj xwwY
1

0
 (3-1) 

 

Where Yj is weighted sum of input signals at node j; w0 is threshold (bias) value; 

wij is the weight associated with the connection between node j and the input 

node i; xi = value of input node i; n = number of input nodes.  An activation 

function (e.g., sigmoid function as shown in Eq.(3-2 is applied to the weighted 

sum.  
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Another function often used in neural networks is the hyperbolic tangent 

function that takes on values between –1 and 1. The value calculated from Eq. 

(3-2 is the output signal from node j, which can be considered as the input signal 

to the next layer. The signal is transmitted in the same fashion using Eqs. (3-1 & 

(3-2, until t he final output layer is reached and value for the target variable z is 

calculated.  

Due to large disparity in scales of different data sources, normalization is often 

performed (Francis 2001): 
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3.2 EstimationofUnknownNetworkParameters: 

BackpropagationNeuralNetwork(BPNN)Model 

The most common algorithm for estimating the unknown network parameters 

(weights and biases) is the Feedforward Backpropagation Neural Network or 

Backpropagation Neural Network (BPNN) model. BPNN is a gradient-based 

minimization technique that utilizes a supervised learning process with 

feedforward network architecture. Errors are propagated backwards from the 

output nodes to the input nodes. The algorithm estimates the gradient of error 

associated with the network's unknown parameters. A gradient-descent 

algorithm is then applied to estimate parameters that would minimize the error 

(Werbos 1994). An epoch refers to a cycle (or iteration) in which the entire 

training data set has been presented to the network. The entire training process 

typically takes many epochs and the total mismatch/error is expected to decline 

with increasing number of epochs. A BPNN is easy to implement and suitable to 

handle complex pattern recognition; hence it is one of the most common 

techniques for training a MLP neural network (Suh 2012). Figure 3.3 illustrates 

how signal and error would flow forward and backward, respectively, in a 

BPNN. 
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Figure 3.3 Flow of signal and error in a back propagation neural network (BPNN) 

 

BPNN algorithm can be expressed through the following steps (Suh 2012): 

1- Set the parameters of the network and the uniform random numbers for Wxh, 

Why, θh,andθy. 

2- Obtain an input training vector X and the desired output vector T. 

3- The output vector Y as is calculated as follows: 
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Where i is the number of input nodes, j is the number of hidden nodes, Wxh, is 

the weight matrix of node connections between input layer and hidden layer, 

Why, is the weight matrix of node connections between hidden layer and output 

layer, θh, is the threshold matrix associated with hidden layer and θy, is the 

threshold matrix associated with output layer. 

4- The error in each layer is calculated using Eqs. 3-7 & 3-8. 
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5- At the output layer the weights and thresholds are adjusted using Eqs. 3-9 & 

3-10.  

hjY Hw
hj

   (3-9) 

jYj
   (3-10) 

6- At the hidden layer the weights and thresholds are adjusted using following 

Eqs.: 

ihX Xw
ih

   (3-11) 

hhh    (3-12) 

7- Weights and thresholds at the output layer are updated by:  

hjhjhj YYY www   (3-13) 

jjj YYY    (3-14) 

8- Weights and thresholds at the hidden layer are updated using:  

ihihih XXh www   (3-15) 

hhh hhh    (3-16) 

9- Steps 3-7 is repeated until the network converges and the error evolution is 

stabilized. 
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3.3 PrincipalComponentAnalysis(PCA)Algorithm 

PCA is a mathematical procedure that converts a set of correlated variables into 

a set of orthogonal variables called principal components, which are sequenced 

in the order of decreasing variance. The mean of each variable is subtracted from 

the data values of respective variables as shown in Eq.(3-17. Individual element 

of the data covariance matrix is calculated according to Eq. (3-18.  

jijij XXX   (3-17) 
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Where Xij and Xik are the j
th

 and k
th

 variable in data record i, n is the total number 

of data records and
jX  corresponds to the arithmetic average of variable Xj.  

Next, eigen decomposition of the covariance matrix is performed. The 

eigenvalues are sorted in decreasing order, and those with highest magnitudes 

and their corresponding eigenvectors (principal components) are retained. Each 

eigenvalue represents the individual contribution of the corresponding 

eigenvector in expressing the total variability observed in the original data. This 

transformation allows us to retain only a reduced basis of principal components 

that capture majority of variability exhibited in the data. Finally, principal scores 

(PS), which are considered as inputs to the ANN model, are calculated using 

Eq.(3-19. 

TMatrix) (Data Matrix)Component  (Principal Scores Principal   (3-19) 
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3.4 ClusterAnalysis 

Cluster analysis or clustering is the classification of data into different subsets or 

groups, so that the data in each cluster behave similarly or share some common 

feature according to a particular distance measure (Everitt et al. 2011). Different 

algorithms including: k-means clustering, fuzzy c-means, and EM clustering 

exist, and they can be categorized as either hard-clustering (deterministic), in 

which each object belongs to a single unique cluster, or soft-clustering (fuzzy-

based), where each object belongs to each cluster to a certain degree. 

3.4.1 K-MeansClustering 

This method clusters n objects into k (k<n) partitions by minimizing the total 

squared error function given by (MacQueen 1967): 
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( 3-20) 

Where k is the number of clusters in the data, μh is the center of cluster h, and x 

is the data point in the cluster h. Each data point is allocated to a cluster 

distinctly:  data points have a belonging degree of 1 to the cluster they are 

assigned to and belonging degrees of 0 to the neighboring clusters. Silhouette 

plots are used to illustrate how close each point in one cluster is to points in the 

neighboring clusters (Kaufman and Rousseeuw 1990). Each cluster is visualized 

by a silhouette that indicates the inter-cluster separation. The average silhouette 

value gives an assessment of clustering validity and may be used to choose the 

optimum number of clusters (Rousseeuw 1987). Different solutions can be 
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attained depending on the initial guess of cluster centers; therefore, the 

procedure should be repeated multiple times, and the final solution is selected as 

the one that gives the maximum separation between clusters. 

3.4.2 FuzzyC-Means(FCM)Clustering 

As opposed to the deterministic clustering with k-means, membership degrees of 

each data point corresponding to each cluster center are assigned based on the 

distance between the cluster center and the data point (Dunn 1973; Bezdek 

1981). Membership value is inversely proportional to the distance away from a 

particular cluster center (Cai et al. 2007). After each iteration, membership and 

cluster centers are updated according to the Eqs. 3-21 & 3-23. 
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Where n is the number of data points,  m is the fuzziness index that m є [1,∞]

measures the tolerance of the required clustering, c is the number of cluster 

centers,  μij is the membership of i
th

 data belonging to j
th

 cluster, and  dij is the 

Euclidean distance between i
th

 data and j
th

 cluster center, which is denoted by vj. 

The cluster centers are estimated by minimizing the following objective 

function: 
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J is the objective function, ||xi –vj|| is the Euclidean distance between i
th

 data and 

j
th

 cluster center (vj). 

3.5 ParameterizationofOilProductionTimeSeries 

In order to parameterize the continuous time series of oil production, the 

empirical Arps decline equations are adopted. Arps (1945) proposed a series of 

decline models to curve-fit the production rate-time data. Due to the empirical 

nature, these equations are valid for most reservoir conditions, and they are 

summarized as follow:  
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Where b is decline exponent, Di is decline rate, qi is initial oil rate, Qp is 

cumulative oil production, and t is elapsed time from start of production. 

Parameters b, Di, and qi are used as output variables of the ANN models. 

3.6 RootMeanSquareError(RMSE) 

RMSE is applied to assess the quality of the model prediction in comparison 

with the actual data (Nash and Sutcliffe 1970) as shown in Eq. 3-28.   
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Where Qp,obs,t is observed (actual) cumulative oil production obtained from flow 

simulation at time step t, while Qp,t is predicted value from ANN at time t. Nt is 

the total number measurement time steps. The RMSE value derived from this 

formula can range from -∞to1,whereavalueof1(RMSE=1)resemblestoa

perfect match. 

3.7 Conclusion 

In this chapter, a brief description of the algorithms used in our data-driven 

proxy modeling is explained. These numerical studies aim to illustrate how 

various techniques can be integrated to achieve the stated research objectives.   
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Chapter 4: Data-Driven Modeling Approach for Recovery 

Performance Prediction in SAGD Operations 

 

Experimental design (ED) techniques are used to generate input variables that 

are evenly distributed in the solution space and reduce the redundancy among 

samples (Algosayir et al. 2012). A basic factorial design is employed in this 

chapter by incorporating combinations of all design elements at different 

prescribed levels. Other ED techniques such as orthogonal arrays can be easily 

integrated into the proposed workflow if needed.  

 

Three case studies are presented in this chapter to illustrate the efficient 

application of ANN in recovery performance prediction of SAGD operations. In 

each case, ED techniques, as described in the previous section, are used to 

determine the levels of each input variable to be used. Each set of input 

parameters is subjected to numerical SAGD simulation and the resultant 

recovery factor is recorded as the output response. These numerical simulation 

cases create a comprehensive data set for training and testing the ANN models. 

Selection of input parameters will be discussed in detail. Furthermore, new 

modifications to the workflow are proposed to handle extrapolations and 

improve network predictability. These procedures are explained in case study 3.  
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4.1 CaseStudy1 

Heterogeneity in hydrocarbon reservoirs creates a great amount of risk during 

SAGD process. In this case study, ANN is applied to predict SAGD recovery for 

a series of layered reservoirs with varying porosity and permeability values 

between layers. Each 2D model (in x-z orientation) consists of 12 layers; each 

layer has a thickness of 5 m. Porosity (ϕ) is assigned to each layer following a 

normal distribution N(μϕ, σϕ), where μϕ and σϕ are the corresponding mean and 

standard deviation.  Permeability values (k in mD) are related to porosity as 

3330ϕ
2
.  

Three different normal distributions illustrated in Figure 4.1, are used to generate 

a total of 60 reservoir models. Each model is subject to SAGD flow modeling 

with three levels of injection pressure (Pinj = 1900, 2200, or 2500 psi) using 

CMG STARS (Computer Modeling Group, 2009). Therefore, a total of 60 x 3 = 

180 simulation cases are used to construct the training data set.  
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Figure 4.1 Crossplotoflog(ϕ)vs.log(k)usedinthecasestudy1 

An ANN is set up with only one output/target variable (node): recovery factor or 

RF and 6 input variables (nodes): mean and variance of porosity values in each 

reservoir: ϕavg, Var(ϕ); mean and variance of permeability values in each 

reservoir: kavg, Var(k); Dykstra-Parsons coefficient: VDP; and Pinj. Other 

researchers have also used VDP (Dykstra & Parsons 1950) to describe 

heterogeneous permeability distribution in layered reservoirs (Charles 2008). A 

sensitivity analysis of the network configuration is performed where the 

mismatch between network predictions and actual values of target variables after 

a fixed number of epochs is compared among different configurations. We 

conclude that for this application, a network of 2 hidden layers with 8 and 16 

nodes in the 1
st
 and 2

nd
 hidden layer, as shown in Figure 4.2, provides the 

optimal design with the least mismatch between network predictions and actual 

values of target variables. It should also be noted that 55% of the training data 

set is used for training while the remaing 45% is used for verification or testing.  
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There is always a tradeoff between having sufficient data for training and the 

ability to validate the  quality of model prediction. Most of researchers have 

proposed of using a 75% percent of original data set for training and the rest for 

testing (Haykin 2005). In this case study, sensitivity analysis was performed for 

different split percentage of training and testing data set. The results revealed 

that we can still have a robust model in terms of predictability when using 55% 

of data cas training. The reason can be that range of predicted range of output 

attribute (i.e., recovery factor) is approximately between 70 to 80 %. This 

relatively narrow range enabled us to reduce the percentage of training data from 

75 % to the 55 % of the original data set. The backpropagation network is 

implemented to estimate the unknown network parameters such as weights and 

thresholds explained in prevoius chapter in Eq. (3-1.  

 

Figure 4.2 Neural network architecture used in the case study 1 

 



36 

 

Cross-plots between actual target values and network predictions for the training 

and testing data sets are shown in Figure 4.3. The figure demonstrates that good 

agreement between the actual values and predictions is obtained. Figure 4.4 

shows the decrease in error/mismatch between network predictions and actual 

target values as a function of number of epochs (training cycles) for the training 

data set.   

 

Figure 4.3 Cross plot of actual flow simulation results (target values) against network 

predictions for case study 1: a) Training data set; b) Testing data set 
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Figure 4.4 Mismatch between network predictions and actual target values in the training 

data set as a function of number of epochs for case study 1 
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4.2 CaseStudy2 

This case study aims to identify additional key predicting variables that would 

have significant impacts on recovery performance. For example, most 

practitioners suggest that continuity of sand bodies, influenced by the presence 

of shale strings should be considered as an important variable. Given that the 

location and thickness of shale layers are important factors to consider, a series 

of layered reservoirs with varying amount of low-permeability (shaly) layers are 

used. Each model is in 2D (x-z) and consists of 30 layers, with each layer being 

2m in thickness. Sand porosity and permeability values for each layer are first 

assigned based on a normal distribution of N(μϕ= 0.25, σϕ = 0.04). Next, low-

permeability layers (ϕ = 15% and k = 5mD) with different thicknesses are 

randomly distributed in each reservoir model. An example of a reservoir model 

with four low-permeability or shaly layers is shown in Figure 4.5. Also shown in 

the figure are the two additional parameters defined for each shaly layer: hsh 

(thickness) and dsh (distance to the injection well). 
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Figure 4.5- An example of reservoir model with 4 randomly-distributed shaly (low-

permeability) layers for case study 2 

 

The injection pressure is kept constant at 2526 kpa. A total of 100 reservoir 

models with different porosity/permeability and distributions of shaly layers are 

subjected to flow simulation and the corresponding recovery factor are recorded 

as part of the training data set. In this case study, 75% of the training data is used 

in the training stage, while the remaining 25% is used for the verification/testing 

purpose. 

Next, an ANN model is constructed involving one output/target variable (RF) 

and a total of eight input variables that include Nsh (number of shaly layers in 

each model), dsh_avg (average distance of shaly layers to the injection well), 

Var(dsh) (variance of the distance of shaly layers to the injection well), dsh_min (dsh 

of the shaly layer that is located at the shortest distance to the injection well), 

Σhsh (total thickness of shaly layers), hsh_avg (average thickness of shaly layers), 

Var(hsh) (variance of the thickness of shaly layers), shale indicator (SI). The last 
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input variable (SI) is proposed as a new normalized shale continuity indicator 

defined as the thickness-to-distance ratio of the shaly layer located at the shortest 

distance to the injector, i.e., hsh_min/dsh_min: a large value would indicate a thick 

shale barrier that is located close to the injector, impeding the formation of steam 

chamber. Figure 4.6 illustrates the relationships between dsh_min   and SI with RF 

based on all 100 cases in the training data set. The plot on the left shows that as 

dsh_min increases, RF also increases since shaly layers could act as barriers for 

steam chamber development. The plot on the right shows that there is a strong 

inverse relationship between the proposed shale indicator SI and RF; as a result, 

it can be considered as an appropriate input variable for the ANN model. 

 

Figure 4.6 Effect of distance (dsh_min) and thickness (hsh_min) of the closest shaly layer to 

the injection well on the recovery factor (RF) 

 

 

Cross-plots between actual target values and network predictions for the training 

and testing data sets are shown in Figure 4.7. Good agreement between the 

actual values and predictions can be observed. Figure 4.8 presents the decline of 

error/mismatch as a function of number of epochs; significant error reduction is 

achieved as the training progresses. The results suggest that the chosen input 
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variables including the new shale indicator can be used successfully to predict 

recovery performance.  

 

Figure 4.7 Cross plot of actual flow simulation results (target values) against network 

predictions for case study 2: a) Training data set, b) Testing data set 

 

 

Figure 4.8 Mismatch between network predictions and actual target values in the training 

data set as a function of number of epochs for case study 2 

 

4.3 CaseStudy3 

In this section, we would like to investigate the robustness of the ANN model in 

scenarios where extrapolations may be required. The trained ANN model from 

the previous section has been used to predict recovery performance for a number 
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of reservoirs larger in size (with 50 layers and a total reservoir thickness of 

100m) than those in the training data set (with 30 layers with a total reservoir 

thickness of 60m). The ANN model trained in the last section is applied to a new 

set of 100 50-layered reservoir models. These models are also subjected to flow 

simulationsandthe“true”RFvaluesareobtained.ValuesofRFpredictedbythe

network are then compared to the true values as shown in the cross-plot 

Figure 4.9. It is observed that the flow simulation values and the network 

predictions do not exhibit an acceptable match, particularly for cases with RF 

greater than 25%. It appears that the network consistently overestimates in those 

cases. 

 

Figure 4.9 Crossplot of actual flow simulation results (target values) against network 

predictions for the testing data set in case study 3 without network updating 
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Data driven modeling techniques do not typically provide reliable predictions 

when there is extrapolation beyond the range of values represented by the 

training data. Algosayir et al. (2012) has shown significant improvement in the 

predictability of their response surface model after being updated periodically 

with additional conditioning (training) data. A new procedure is proposed in 

which extrapolations are identified and used to generate additional simulation 

results to be incorporated into the training data set. Using the expanding training 

data set, the ANN model is updated periodically.  

A preliminary analysis reveals that due to the larger domain size (thickness) in 

this new data set, many cases have input variables that are outside of the ranges 

of values found in the training data set. In particular, much of the extrapolation is 

associated with these three input variables: (1) dsh_min, (2) dsh_avg, and (3) SI. 

Since RF represents the fraction of initial fluid in place to be recovered, it would 

be influenced by the position of shaly layers in relation to the well locations. In 

addition to these extrapolations in the input variables, it is noted that network 

overestimation occurs primarily when predicted RF is greater than 25%. 

Inspecting the range of RF values in the training data set, it can be readily 

observed that there is insufficient conditioning data with large RF values. As a 

result, a procedure is implemented such that for those cases where extrapolation 

is encountered in any of the input variables (dsh_min, dsh_avg and SI), a flag is 

activated; furthermore, if the predicted RF is greater than 25%, a portion (e.g., 

1/3) of those cases are also flagged. A total of 7 extrapolation cases are identified 

in this case study based on the above selection criteria.  
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Once these extrapolation cases are identified, they can be used to generate 

additional flow simulation data and be added to the training data set. Two 

schemeshavebeenimplementedinwhichthenetworkisupdatedor“re-trained”

at different stages. Prior to re-training, all network parameters are initialized 

using the previously-tuned values; hence fewer epochs are required in each of 

theseupdatingor“re-training”stages.Detailsofeachscheme, aswellas their

performances, are discussed next.  

4.3.1 Implementation#1–BatchUpdating 

All 100 cases of the 50-layered models in the testing data set are screened for 

extrapolations simultaneously in a batch operation. Each case that is flagged is 

subjected to flow simulation and the results are added to the existing training 

data set, which is used subsequently to update the network parameters. The 

updated network model is used at the end to generate predictions for the 

unflagged cases in the testing set. This workflow is summarized in Figure 4.10. 

Together with the first training stage involving the original training data set, a 

total of two training stages are used to obtain the final RF predictions for all test 

cases. Cross-plots between actual target values and network predictions for the 

testing data set after ANN model updating are shown in Figure 4.11. The results 

show significant improvements in network predictability, particularly for RF 

values that are greater than 25%.  
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Figure 4.10 Flow chart of implementation #1 in case study 3 to handle extrapolations 
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Figure 4.11 Crossplot of actual flow simulation results (target values) against network 

predictions for the testing data set in case study 3 with ANN model updating using 

implementation #1 

 

 

4.3.2 Implementation#2–UpdatingAfterEveryOccurrenceof

Extrapolation 

Cases in the testing data set are screened sequentially for extrapolations. Every 

time a case is flagged, it is subjected to flow simulation. The results are added to 

the existing training data set, which is used immediately to update the network 

model. The workflow of this implementation is schematically illustrated in 

Figure 4.12.  Comparison of the ANN model predicted values with the actual 

target values in Figure 4.13 indicates significant improvement in the network 

predictability is achieved with this updating scheme. 
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Figure 4.12 Flow chart of implementation #2 in case study 3 to handle extrapolations 
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Figure 4.13 Crossplot of actual flow simulation results (target values) against network 

predictions for the testing data set in case study 3 with ANN model updating using 

implementation #2 

 

 

 

 

An important consideration is computational efficiency. Additional effort is 

required to perform flow simulations on extrapolation cases, which are then used 

to re-train the network. A comparison of computational time for the base case 

(no network updating) and the two proposed implementations is presented in 

Table 4-1.  Both implementations require additional flow simulations to be 

performed for the 7 extrapolation cases; however, a single updating/re-training 

stage is required in implementation #1, as opposed to the 7 additional updating 

stages for implementation #2. A training stage is complete when data mismatch 

has been reduced by 85% of its initial value. As compared to the various 

updating stages in implementation #2, the single updating stage in 
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implementation #1 employs fewer epochs but entails slightly higher 

computational time. Re-training the network parameters with the entire 

expanded training data set of all original 100 cases plus 7 extrapolation cases in 

a batch operation involves higher computational effort per epoch. Nevertheless, 

less extra cost is incurred in implementation #1 when considering the total 

number of epochs and computational time for all training stages. Also, since in 

each updating stage, the network parameters are initialized using values obtained 

from the last training stage, the number of epochs required in a subsequent 

updating stage is less than the first training stage. It should be emphasized that in 

order to incorporate more new information in a training data set, the amount of 

time needed to achieve the same level of error reduction would also increase.  

Table 4-1 Comparison of computational time in case study 3 

 

Comparing Figure 4.11 with Figure 4.13, it can be observed that implementation 

#1 provides a better match between actual target values and network predictions. 

Updating network parameters after every occurrence of extrapolation leads to 

 

No updating due to 

extrapolations 

Implementation 1 – 

batch updating 

Implementation 2 –  

updating after every  

occurrence of extrapolation 

Size of original training 

data set 100 100 100 

# Extrapolation cases 0 7 7 

# Flow simulations 100 107 107 

Computational time for 

each flow simulation(sec) 360 360 360 

# Training stages 1 2 8 

# Epochs in each stage 

(training terminates when 

error reduction exceeds 

85% of its initial value) 

{1148} {1148, 768} 
{1148, 948, 935, 915,  

870, 855, 828, 822} 

Computational time for 

each training cycle {10} {10, 11} 
{10, 10, 10, 10.5,  

10.8, 10.8, 11, 11} 
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overfitting. In many practical applications where training data is comprised of 

real-time actual measurements that are prone to errors, our results suggest that 

periodic updating of network models in a batch mode could improve network 

predictability. 

4.4 Conclusion 

In this chapter, 3 case studies were presented and can be summarized as 

following: 

 Case study 1:using both operational and geological parameters as input 

variables, ANN was employed to predict recover factor as a sole 

output/target value in a heterogeneous reservoir. A neural network of 2 

hidden layers with 8 and 16 nodes in the 1
st
 and 2

nd
 hidden layers was 

used in this study. Presented results revealed good agreement between 

recovery factor values recorded from flow simulator and predicted results 

from proxy model. 

 Case study 2: additional key predicting variables that would have 

significant impacts on recovery performance were identified. ANN 

model was constructed involving one output/target variable (RF) and a 

total of eight input variables. An input variable, SI, was proposed as a 

new normalized shale continuity indicator defined as the thickness-to-

distance ratio of the shaly layer located at the shortest distance to the 

injector. Actual target values and network predictions for the training and 

testing data sets were in a good agreement. 
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 Case study 3:  two implementations were proposed to improve the 

robustness of network predictions in cases of extrapolations. In batch 

updating, all cases in the testing data set were screened for extrapolations 

simultaneously in a batch operation. Each case that was flagged was 

subjected to flow simulation and the results were added to the existing 

training data set, which is used subsequently to update the network 

parameters. In second implementation, updating is performed after every 

occurrence of extrapolation: every time a case was flagged, it was 

subjected to flow simulation. The results were added to the existing 

training data set, which were used immediately to update the network 

model. Implementation #1 provided a better match between actual target 

values and network predictions. Updating network parameters after every 

occurrence of extrapolation leads to overfitting. Our results suggest that 

periodic updating of network models in a batch mode could improve 

network predictability, in most practical applications where training data 

is comprised of real-time actual measurements that are prone to errors. 
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Chapter 5: An Integrated Application of Cluster Analysis and 

Artificial Neural Networks for SAGD Recovery 

Performance Prediction in Heterogeneous Reservoirs 

Two case studies are presented in this chapter to demonstrate the application of 

the proposed modeling framework for SAGD performance recovery. Each set of 

input parameters representing a particular heterogeneous reservoir is subjected to 

numerical SAGD flow simulation; the resultant oil recovery profile is recorded 

as the output response.  

These numerical simulation cases are assembled into a comprehensive data set 

for training and testing the cluster-ANN models. Selection of input parameters 

will be discussed in detail.  
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5.2 ConstructionofTrainingDataSet 

A total of 150 layered reservoir models with varying porosity and permeability 

values between layers are generated according to three heterogeneous reservoir 

settings: low-side, expected, and high-side. For each setting, 50 reservoir models 

are built. Each model is in 2-D (in the x-z plane) with 40 3m-thick layers. Sand 

porosity and permeability values for each layer are sampled randomly from 

normal distributions, whose statistics are summarized in Table 5-1.  

Table 5-1 Statistics of porosity and permeability distributions corresponding to each 

heterogeneous reservoir setting 

Reservoir setting 

Permeability Porosity 

mean (μk, D) standard deviation (σk) mean (μϕ) 
standard deviation (σϕ) 

#1 low-side 0.1 0.04 0.25 0.04 

#2 expected 1.5  0.04 0.30 0.04 

#3 high-side 4.5 0.04 0.40 0.04 

 

Additional low-permeability or shaly layers (ϕ = 15% and k = 20mD) with 

different thicknesses are randomly placed within each reservoir. An example of a 

model constructed based on reservoir setting #2 is shown in Figure 5.1.  
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Figure 5.1 An example of expected reservoir setting model with 7 randomly-distributed 

shaly (low-permeability) layers for case study 1 

 

Two additional parameters are introduced for characterizing each shaly layer: hsh 

(thickness) and dsh (distance to the injection well). Properties of reservoir 

simulation model are tabulated in Table 5-2. 

Table 5-2 Properties of the dynamic flow simulation model 

Property Value Unit 

Bitumen properties 
Viscosity: 41 Pa.s 

API: 10 °API 

Initial reservoir temperature 15 °C 

Initial reservoir pressure 1000 kPa 

Operating bottom-hole pressure 
Injector: 2526 kPa 

Producer: 1560 kPa 

Rock heat capacity 2.35e6 J/(m3.°C) 

Rock thermal conductivity 1.35 W/(m.°C) 

 

A total of twelve input variables are identified including Nsh (number of shaly 

layers in each model), dsh_avg (average distance of shaly layers to the injection 

well), Var(dsh) (variance of the distance of shaly layers to the injection well), 
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dsh_min (dsh of the shaly layer that is located at the shortest distance to the 

injection well), Σhsh (total thickness of shaly layers), hsh_avg (average thickness of 

shaly layers), Var(hsh) (variance of the thickness of shaly layers), ϕavg (average 

porosity), Var(ϕ) (variance of  porosity), kavg (average permeability), Var(k) 

(variance of permeability) and shale indicator (SI). The variable (SI) is a 

normalized shale continuity indicator defined as the thickness-to-distance ratio 

of the shaly layer located at the shortest distance to the injector, i.e., 

hsh_min/dsh_min: a large value would indicate a thick shale barrier that is located 

close to the injector, impeding the formation of steam chamber.  

In this chapter, these 150 reservoir models are subjected to the flow simulator. In 

case study 1, recovery factor (RF) defined as the cumulative production divided 

by the total in-place oil volume is considered as the output variable for the 

cluster-ANN model, while Arps decline parameters (b, Di, and qi) are utilized to 

parameterize the entire oil production time series in case study 2.  

PCA is applied to the input variables to reduce the dimensionality of the data set. 

The cumulative variance is plotted to identify how variability within the data set 

is distributed among the corresponding principal components. As illustrated in 

Figure 5.2, the first two components capture the majority of variability within 

the data set. Using only these two principal scores (PSs) as input parameters and 

120 cases as training data set for ANN modeling do not provide satisfactory 

results: even with a large number of epochs, a match could not be achieved 

between the model predictions and the target values during the training stage.  
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Figure 5.2 Pareto-screeplot of the principal component analysis (PCA) 

 

Increasing the number of principal components improves the training results, but 

results with the testing/validation cases are poor, as shown in Figure 5.3. It is 

concluded that given that internal patterns exist among the data set, separate 

ANN model should be developed for each individual grouping. The top three 

principal scores for all 150 cases are plotted against each other in Figure 5.4, and 

their corresponding reservoir settings are also labeled on these plots.  
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Figure 5.3 Crossplot of ANN model predicted RF against simulator output RF, using 9 

PCs; (a) Training data set, (b) Test data set. 

 

 

Figure 5.4 Scatter-plot between principal scores: (a) Principal scores 1 & 2; (b) Principal 

scores 1 & 3 
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5.3 CaseStudy1:K-MeansAssistedArtificialNeuralNetworks

forRecoveryFactorPrediction 

A statistical measure called average silhouette value can be used to identify the 

optimum number of clusters, for which the average silhouette value would be the 

maximum. Figure 5.5 illustrates cluster numbers against silhouette value for two, 

three, four and five clusters. As shown in this plot, the optimal number is three 

with the maximum average silhouette value.  

 

Figure 5.5 Silhouette plots and average silhouette values for 2, 3, 4 and 5 clusters for case 

study 1 
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The entire data set of 150 cases is classified into 3 clusters. For each cluster, a 

separate ANN model is trained using 75% of the data and tested using the 

remaining 25% of the data.  This split of data into training and testing has been 

proposed by previous researchers. Our sensitivity analysis on training and testing 

percentage for this case study also revealed that 75% of the data can be used in 

training and the rest as testing data set.  Once again, PSs and RF (%) are 

considered as input and output variables, respectively, in the ANN models. To 

investigate the sensitivity to data dimensionality reduction, different numbers of 

PSs are employed. Cross-plots between actual target values and network 

predictions for the training and testing data sets using 9 PSs are shown in 

Figure 5.6. Good agreement between the actual values and predictions can be 

observed. 
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Figure 5.6 Cross plot of actual flow simulation results (target values) against network 

predictions using 9 PSs for case study 1:  

a) Cluster 1, training data set, b) Cluster 1, testing data set  

c) Cluster 2, training data set, d) Cluster 2, testing data set  

e) Cluster 3, training data set, f) Cluster 3, testing data set 
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Comparing Figure 5.3 & Figure 5.6 reveals that clustering the original data set 

into subsets has increased the ANN predictability. Data in clusters 1 and 2 are all 

coming from reservoir setting #3 shown in green color, and data from reservoir 

settings #1 and #2 indicated by red and blue markers, respectively, are included 

in cluster 3. It suggests that there is more variability among the models generated 

using reservoir setting #3 than those using reservoir settings #1-2. This is 

because the non-linear relationship between permeability and porosity is more 

exaggerated for high porosity values (as depicted in reservoir setting #3). 

Reducing the number of PSs to either 7 or 5 does not have a significant impact 

on the network predictability. As shown in Figure 5.7 and Figure 5.8, the 

predicted values are still in a good agreement with the actual values. Comparing 

Figures 5.6-5.8, it is interesting to note that reducing the number of PSs could 

potentially improve the ANN predictability with the testing data for cluster no. 2. 

This observation might be attributed to the ability to avoid overfitting with fewer 

input variables. 
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Figure 5.7 Cross plot of actual flow simulation results (target values) against network 

predictions using 7 PSs for case study 1: 

 a) Cluster 1, training data set, b) Cluster 1, testing data set 

 c) Cluster 2, training data set, d) Cluster 2, testing data set 

e) Cluster 3, training data set, f) Cluster 3, testing data set 
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Figure 5.8 Cross plot of actual flow simulation results (target values) against network 

predictions using 5 PSs for case study 1:  

a) Cluster 1, training data set, b) Cluster 1, testing data set  

c) Cluster 2, training data set, d) Cluster 2, testing data set  

e) Cluster 3, training data set, f) Cluster 3, testing data set 
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Finally, a set of 9 new reservoir models are generated for further 

validation/testing purposes. As each data point is presented to the cluster-ANN 

model, it is assigned to a particular cluster with the minimum Euclidean distance 

between the data point and the cluster center. Weights of the ANN model trained 

and tested in the previous step are applied to this new data point, and a predicted 

value of RF is obtained. This result is compared against the actual RF obtained 

by subjecting the reservoir model to detailed flow simulation. Figure 5.9 

compares the predicted values from ANN model with actual values obtained 

from flow simulation for these nine cases. The validation results show good 

agreement with simulation results. 

 

Figure 5.9 Cross plot of actual flow simulation results (target values) against network 

predictions for nine new cases for case study 1 
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It is clear from the results that clustering data into several subsets prior to ANN 

modeling has significantly improved the general predictability and robustness of 

the model over a range of reduced data dimensionality. The integrated procedure 

helps to recognize hidden patterns within the data set, and training separate ANN 

model for each identified pattern is important in capturing the highly non-linear 

relationship exhibited by the data. PCA aims to project the data in the original 

space onto a set of orthogonal variables, without altering the relative distance 

among the data points. Therefore, k-means clustering in either the physical space 

(original data space) or the transformed space does not have significant impact 

on the ensuing solution. However, performing clustering prior to PCA can 

capture local variance exhibited within an individual cluster, but global variance 

exhibited by the entire data set might not be fully taken into account.  

5.4 CaseStudy2:Fuzzy-BasedArtificialNeuralNetworksforOil

ProductionTimeSeriesPrediction 

The data-driven modeling techniques are applied to predict cumulative oil 

production (Qp) profile. Empirical Arps decline parameters (b, Di, qi) are used 

for parameterization of cumulative production profile of all 150 reservoir models 

and considered as outputs of the ANN models. A curve-fitting procedure that 

minimizes the RSME described in Eq.(3-28) is applied to the cumulative 

production data for all 150 reservoir model; the corresponding Arps decline 

parameters are calculated and recorded.  

Parameterization results reveal that the empirical parameter b is approximately 

one for the 50 reservoir models constructed based on setting #1, which 
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corresponds to a harmonic Arps decline curve equation Eq. (3-25. As a result, 

only two output variables, Di and qi, are assigned to these 50 reservoir models in 

the data set. Now that the data set contains cases with different number of output 

variables, it is proposed that two separate data-driven models should be 

considered for those reservoir models with only two output variables (Di and qi) 

and those with all three output variables (b, Di, qi).   

To investigate the feasibility of parameterization with Arps decline variables, 

ANN modeling is performed with the 50 cases constructed based on reservoir 

setting #1, in which 44 cases are used for training, while 6 cases are selected as 

testing data. Cumulative oil production profile of actual flow simulation results 

(target values) are compared against network predictions for each testing case in 

Figure 5.10, where 12 PSs are used as input variables. Modeling is later repeated 

using 6 PSs to investigate the effect of dimensionality reduction, and the results 

are illustrated in Figure 5.11. Comparing Figure 5.10 with Figure 5.11, it is 

noted that reducing the number of input variables would result in good 

agreement between actual target values and network predictions. 
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Figure 5.10 Cumulative oil production profile of actual flow simulation results (target 

values) against network predictions for each testing case using 12 PSs for reservoir setting 

#1 in case study 2 
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Figure 5.11 Cumulative oil production profile of actual flow simulation results (target 

values) against network predictions for each testing case using 6 PSs for reservoir setting 

#1 models in case study 2 
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Table 5-3 summarizes quantitatively the root mean square error (RMSE) of the 

cumulative production match using Eq.(3-28 for all 6 testing cases; the RSME 

values are close to one, indicating an excellent match.  

It is interesting to note that incorporating b (which is supposed to be constant in 

this case) into the ANN modeling degrades the overall prediction quality. It 

suggests that output variables should be selected carefully by excluding 

parameters that are redundant but including those that are strongly correlated to 

the input variables. In this case, the prediction variables, Di and qi, are highly 

sensitive to reservoir heterogeneities and properties of shaly layers.  

Table 5-3 RMSE values calculated using Eq. 3-28 for the entire production period for the 6 

testing cases corresponding to reservoir setting #1 in case study 2 

 

 

 

 

 

 

 

 

 

 

 

 

5.4.1 IntegrationofFuzzyC-MeansClustering 

There are 100 cases (corresponds to reservoir settings #2 and #3) remaining from 

the original data set. A subset of 88 out of 100 cases is selected as training data 

set, while the other 12 cases are designated as validation/testing data. K-means 

clustering is initially attempted. Based on Figure 5.12, the maximum average of 

silhouette value corresponds to 3 clusters. The training data set is subsequently 

RMSE 

Case no. 12 PSs 6 PSs 

1 0.998 0.998 

2 0.996 0.995 

3 0.999 0.999 

4 0.999 0.998 

5 0.999 0.999 

6 0.999 0.999 
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assigned into 3 clusters as shown in Figure 5.13, and the 12 validation cases are 

denoted by blue circle markers.  

 

Figure 5.12 Silhouette plots and average silhouette values for 2, 3, 4 and 5 clusters for case 

study 2 
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Figure 5.13 Scatter-plot between principal scores for case study 2: (a) Principal scores 1 & 

2; (b) Principal scores 1 & 3 

 

Applying k-means clustering prior to ANN modeling, in a fashion similar to the 

procedure described in case study 1, does not produce satisfactory results this 

time with three output variables (b, Di, qi). More training data is needed when 

the number of output variables increases. The problem is further exacerbated for 

data points that are located near the cluster boundaries. K-means clustering 

categorizes all cases deterministically based on minimum Euclidian distance, 

which leads to the 0 and 1 binary belonging degrees.  

We then explore the use of fuzzy c-means (FCM) clustering method alongside 

with ANN model. FCM is applied to the data set and the degrees of membership 

are calculated according to Eq. 3-23. Summation of the three membership values 

for the three clusters equals to one. Once again, separate ANN model is trained 

and tested for each cluster, with 75% of the data for training and the remaining 

25% for testing.  
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The split percentage of training and testing data set in this case study is based on 

the proposed split by the previous researchers. Our sensitivity analysis also 

confirmed this percentage to be efficient in terms of network predictability. The 

number of validation cases should be also between 10 to 15 % of the original 

data set. In this case study, the models are tested using the 12 validation cases 

(12% of the original data set), which have not been presented to the cluster-ANN 

modeling previously. Cluster membership values, together with the 

corresponding ANN model predictions, are computed. A defuzzification scheme 

is proposed to calculate a weighted average, where individual ANN model 

prediction is weighted by the associated membership value. The approach is 

repeated with 12 PSs and 6 PSs as ANN input variables. The predicted oil 

production profiles after defuzzification for 6 randomly-selected validation cases 

are shown in Figure 5.14 & Figure 5.15 for 12PSs and 6 PSs, respectively.  
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Figure 5.14 Comparison of cumulative oil production profiles of actual flow simulation 

results (target values) and network predictions using k-means and fuzzy-based clustering 

for validation cases no. 1-6 using 12 PSs in case study 2   
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Figure 5.15 Comparison of cumulative oil production profiles of actual flow simulation 

results (target values) and network predictions using k-means and fuzzy-based clustering 

for validation cases no. 1-6 using 6 PSs in case study 2 
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Results for validation cases no. 1, 3, 4 and 5, which are located near the 

boundaries between clusters, demonstrate substantial improvement in 

comparison to the k-means assisted scheme. On the other hand, for validation 

cases no. 2 & 6 that are situated close to a particular cluster center, both k-means 

and fuzzy-based clustering methods yield similar results because the 

membership value assigned to the closest cluster is approximately equal to 1. 

Similar observations can be made when using 6 PSs. RMSE values representing 

the mismatch between predicted production profile with the actual flow 

simulation results are computed and tabulated in Table 5-4. Results in 

Figure 5.14 & Figure 5.15 and Table 5-4 encourage the integration of fuzzy-

based clustering techniques with ANN model for enhancing overall 

predictability and efficiency of these data-driven proxies. 

Table 5-4 RMSE values calculated using Eq. 3-28 for the entire production period for 6 

randomly-selected validation cases in case study 2 

RMSE 

 ANN-kmeans ANN-FuzzyBased 

Validation case 12 PSs 6 PSs 12 PSs 6 PSs 

1 0.843 0.861 0.997 0.995 

2 0.977 0.969 0.981 0.978 

3 0.876 0.872 0.974 0.979 

4 0.839 0.845 0.997 0.998 

5 0.848 0.852 0.985 0.980 

6 0.976 0.982 0.999 0.997 

 

 

5.5 Conclusion 

Materials presented in this chapter can be concluded as following: 

 Case study 1: integration of cluster analysis into proxy data-driven model 

was presented in this study. PCA and kmeans clustering methods were 
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employed to highlight the efficient use of cluster analysis in ANN. In 

addition, 9 validation cases were used to verify the framework 

predictability. Presented results revealed that clustering data into several 

subsets prior to ANN modeling has significantly improved the general 

predictability and robustness of the model over a range of reduced data 

dimensionality.  

 Case study 2: unlike the previous case studies, here, data-driven 

modeling techniques were applied to predict cumulative oil production 

(Qp) profile. Empirical Arps decline parameters (b, Di, qi) were 

utilized for parameterization of cumulative production profile of all 

150 reservoir models and considered as outputs of the ANN models. 

Furthermore, fuzzy c-means clustering method was also integrated 

into the proxy model. 12 validation cases, which have not been 

presented to the cluster-ANN modeling previously, were used to 

verify the network predictability. The results assured the integration of 

fuzzy-based clustering techniques with ANN model for enhancing 

overall predictability and efficiency of the data-driven proxy.  
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Chapter 6: Conclusion 

This thesis has described the application of data-driven proxy modeling for 

recovery performance prediction in SAGD operations. ANN was employed to 

model a data-driven proxy to predict SAGD recovery in heterogeneous 

reservoirs. The research methodology consists of static reservoir modeling, 

numerical flow simulation and proxy model development, model testing and 

validation against flow simulation results.  

The artificial neural network (ANN) approach for recovery performance 

prediction in SAGD operations using operational and geological predicting 

parameters seems very promising approach for characterizing heterogeneous 

reservoirs during SAGD process. This chapter summarizes the key points that 

can be concluded from this research.  

6.1 Conclusion 

 Present workflow that entails static reservoir modeling and numerical 

flow simulations is generally quite cumbersome and time-consuming, 

limiting its application in real-time optimization. Data-driven modeling 

processes such as artificial neural networks are still considered recent 

advancements and have not been widely adopted in most sectors of the 

oil sands industry.  

 In this study, numerical flow simulations are performed to construct a 

training data set consisting of various input attributes describing reservoir 

heterogeneities and relevant production/injection parameters with the 
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corresponding recovery factor as output. A series of ANN models are 

trained using the training data set and later used as a proxy to predict the 

recovery factor and cumulative oil production profile as target (output) 

variables during SAGD process. 

 In order to select the optimal network configuration, sensitivity studies 

are performed by comparing the error/mismatch in network prediction.  

 To enhance the robustness of the modeling procedure, new schemes are 

implemented to identify extrapolations and periodically update the 

network parameters. 

 Various pertinent predicting parameters in relation to SAGD recovery 

prediction in heterogeneous reservoirs are investigated. In addition, a 

new normalized shale continuity indicator (SI), which quantifies the 

impact of the closest shaly barrier to the injection well on the recovery 

factor during SAGD process, is introduced.  

 Empirical Arps decline parameters are tested successfully for 

parameterization of cumulative production profile.  

 To reduce dimensionality of input data, PCA is performed. Results of the 

case study suggest that prediction quality is improved, while over-fitting 

is limited, when using a reduced set of principal components as input 

attributes.  

 Schemes for incorporating various deterministic and fuzzy-based 

clustering techniques with ANN modeling are presented. It is shown that 

robustness and accuracy of the prediction capability are greatly enhanced 
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when cluster analysis are performed to identify internal data structures 

and groupings prior to ANN modeling.  

 In particular, FCM could improve neural network predictability when 

input vectors are located along cluster boundaries. A membership 

weighting scheme is proposed to defuzzify the model outputs in order to 

obtain a unique prediction. 

 In terms of academic contribution, this study investigated the feasibility 

of integrating a number of data-based modeling approaches with artificial 

neural networks (ANN) for SAGD recovery performance prediction in 

heterogeneous reservoirs.  

 In terms of industrial contribution, modeling approaches presented in this 

work can be applied to analyze the vast amounts of complex field data 

(and its uncertainty) available to recovery process evaluation. The 

periodic updating procedure discussed here can be used to integrate 

continuous dynamic data in a convenient fashion.  

 The approaches presented in this work can be integrated directly into 

most existing reservoir management routines. They represent a 

significant potential of assisting real-time decision-making for field 

activities, development planning, and uncertainty quantification. 

6.2 RecommendationsforFutureWork 

For further data-driven proxy modeling studies during enhanced oil recovery 

(EOR) processes, the following future research is recommended: 
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 The idealization of pertinent input parameters for ANN model during 

SAGD process requires further investigation. Selection of more 

representative input parameters associated with the desired output 

parameter would improve the ANN network predictability. For example, 

anisotropic permeability tensor (instead of scalar isotropic permeability 

values) and variogram parameters can be used as input attributes. For 

instance, permeability can be used as a tensor instead of a single value 

for each layer or even each grid block within reservoir model. 

 Other types of neural networks such as: probabilistic neural networks can 

be used to solve the classification problem associated with the variability 

of data set.  

 Proper application of other artificial intelligence methods such as genetic 

algorithm and fuzzy logic in a hybrid manner alongside with neural 

networks could be used for practical applications. To hybridize the 

solution, each problem has to be divided into some sub-problems and any 

of these sub-problems have to be resolved by one of the artificial 

intelligence techniques. Optimization aspects can be solved by genetic 

algorithm, handling of linguistic and qualitative term or imprecision in 

model boundaries can be handled by fuzzy logic and prediction or 

approximation of non-linear relation between inputs and desired outputs 

can be addressed by artificial neural network. 

 Given that quantitative ranking of operating areas, robust forecasting, and 

optimization of heavy oil recovery processes are major challenges faced 
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by the industry, the proposed research highlights the significant potential 

of applying effective data-driven modeling approaches in analyzing other 

solvent-additive steam injection projects. 
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Appendixes 

AppendixA:CodeforBPNNTraining 

%----------------------BPNN Training Algorithm------------------- 

clear; clc; 

close all force; 

%------------------------Import Training Data-------------------- 

X=importdata('input.txt');  

T=importdata('ouput.txt'); 

[e,f]=size(X); 

[ee,ff]=size(T); 

%--------------------Normalizing X(inputs) and T(Outputs)-------- 

for i=1:f; 

    X(:,i)=(X(:,i)-min(X(:,i)))/(max(X(:,i))-min(X(:,i))); 

end 

for i=1:ff; 

    T(:,i)=(T(:,i)-min(T(:,i)))/(max(T(:,i))-min(T(:,i))); 

end 

eta=0.5; % Velocity term 

%-----------------------Assigning Network Architecture----------- 

nh=input('Enter the Number of Hidden Layers= '); 

for i=1:nh 

    nnodes(i)=input('Enter the Number of Nodes in Hidden Layers= 

'); 

end 

nnodes=horzcat(e,nnodes,ee); % Matrix including no. of nodes in 

each layer 

DoA=max(nnodes); 

%------------------Randomly Initialize Weights 3D-Matrix, A------ 

for m=1:nh+1 

    A(:,:,m)= randi([-10 10],DoA,DoA)/10; 

    for j=1:DoA 

        for i=1:DoA 

        if A(j,i,m)==0  %Make the weights to be a nonzero value-- 

            A(j,i,m)=0.15; 

        end 

        end 

    end 

end 

for ii=2:nh+2 

    for i=1:nnodes(ii-1) 

        for j=nnodes(ii)+1:DoA 

            A(i,j,ii-1)=0; 

        end 

    end 

end 

for ii=2:nh+2 

    for i=nnodes(ii-1)+1:DoA 

        for j=1:DoA 

            A(i,j,ii-1)=0; 

        end 

    end 

end 
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%-----------------Randomly Initialize Threshold 2D-Matrix, B----- 

C=zeros(DoA); 

for i=1:nh+1 

    threshold=rand([1 -1],DoA)'; 

    C=horzcat(threshold,C); 

end 

for j=1:nh+1 

    for i=nnodes(j+1)+1:DoA 

        C(i,j)=0; 

    end 

end 

for i=1:DoA 

    for j=1:nh+1 

        B(i,j)=C(i,j); 

    end 

end 

%----------------------------Training Cycles--------------------- 

H=zeros(DoA,nh+2); 

net=zeros(DoA); 

deltaW=zeros(DoA,DoA,nh+1); 

deltaThres=zeros(DoA,nh+1); 

for run_count=1:2000  % No. of training epoches 

    dY_out(run_count)=0; 

    for l=1:f 

        net=zeros(DoA); 

        for rr=1:e 

            H(rr,1,l)=X(rr,l); 

        end 

         

        for m=1:nh+1 

            for i=1:nnodes(m+1) 

                for j=1:nnodes(m) 

                    net(m,i)=net(m,i)+A(j,i,m)*H(j,m,l); 

                end 

                net(m,i)=net(m,i)-B(i,m); 

                H(i,m+1,l)=1/(1+exp(-net(m,i))); 

            end 

        end 

         

        Y_out(1:nnodes(nh+2),l)=H(1:nnodes(nh+2),nh+2,l);% Output 

         

        for icc=1:nnodes(nh+2) 

            dY(icc,l)=H(icc,nh+2,l)*(1-H(icc,nh+2,l))*(T(icc,l)-

H(icc,nh+2,l));  

dY_out(run_count,l)=dY_out(run_count,l)+abs(H(icc,nh+2,l)-

T(icc,l)); %The total mismatch in each training epoch 

        end 

%-----------dh Matrix (includes the deltaj and deltah)----------- 

        %dh= differences in the net values of nodes in each layer 

        dh=zeros(DoA,nh+1); 

        for i=1:nnodes(nh+2) 

            dh(i,1)=dY(i,l); 

        end 

        for m=nh+2:-1:3 

            for i=1:nnodes(m-1) 

                for j=1:nnodes(m) 
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                dh(i,nh-m+4)=dh(i,nh-m+4)+dh(j,nh-m+3)*A(i,j,m-

1); 

                end 

                dh(i,nh-m+4)=H(i,m-1,l)*(1-H(i,m-1,l))*dh(i,nh-

m+4); 

            end 

        end 

%--------Adjustment Value of the Weights and Treshholds---------- 

        for i=1:nnodes(nh+2) 

            for j=1:nnodes(nh+1) 

                deltaW(j,i,nh+1)=eta*dh(i,1)*H(j,nh+1); 

                deltaThres(i,nh+1)=-eta*dh(i,1); 

            end 

        end 

        for m=1:nh 

            for i=1:nnodes(m) 

                for j=1:nnodes(m+1) 

                    deltaW(i,j,m)=eta*dh(j,nh+2-m)*H(i,m,l); 

                    deltaThres(j,m)=-eta*dh(j,nh+2-m); 

                end 

            end 

        end 

%--------------Updating Weight & Treshhold Matrixes, A & B------- 

        for m=1:nh+1 

            for i=1:nnodes(m) 

                for j=1:nnodes(m+1) 

                    A(i,j,m)=A(i,j,m)+deltaW(i,j,m); 

                    B(j,m)=B(j,m)+deltaThres(j,m); 

                end 

            end 

        end 

    end 

end 

%% 

%-----------------------------Plotting options-------------------

---------- 

l=1:1:size(T');  

figure(1); 

plot(l,Y_out(1,:),'ko','MarkerFaceColor','k','MarkerSize',6);hold 

on;plot(l,T(1,:),'r^','MarkerFaceColor','r','MarkerSize',6);grid 

on;set(gca, 'GridLineStyle', '-');grid(gca,'minor') 

xlabel('Realization No. for Training Data Set','FontName','Times 

New Roman','FontSize', 12');ylabel('Di(Decline Rate, t^(-

1))','FontName','Times New Roman','FontSize', 12);hleg = 

legend('ANN Model Predicted Di','Flow simulator 

Di','FontName','Times New Roman','FontSize', 

30);set(hleg,'FontName','Times New Roman','FontSize', 12); 

figure(2); 

plot(l,Y_out(2,:),'ko','MarkerFaceColor','k','MarkerSize',6);hold 

on;plot(l,T(2,:),'r^','MarkerFaceColor','r','MarkerSize',6);grid 

on;set(gca, 'GridLineStyle', '-');grid(gca,'minor') 

xlabel('Realization No. for Training Data Set','FontName','Times 

New Roman','FontSize', 

12');ylabel('qi(m^3/day)','FontName','Times New 

Roman','FontSize', 12);hleg = legend('ANN Model Predicted 

qi','Flow simulator qi','FontName','Times New Roman','FontSize', 

30);set(hleg,'FontName','Times New Roman','FontSize', 12); 



97 

 

figure(3); 

plot(Y_out(1,:),T(1,:),'r.','MarkerSize',9');xlim([0 1]),ylim([0 

1]);xlabel('ANN Model Predicted Di','FontName','Times New 

Roman','FontSize', 12');ylabel('CMG STARS-CF Di 

)','FontName','Times New Roman','FontSize', 12'); 

hold on; 

xx=1:1:100;yy=xx;plot(xx,yy); grid on; 

hold off; 

figure(4); 

plot(Y_out(2,:),T(2,:),'r.','MarkerSize',9');xlim([0 1]),ylim([0 

1]);xlabel('ANN Model Predicted qi','FontName','Times New 

Roman','FontSize', 12');ylabel('CMG STARS-CF qi 

)','FontName','Times New Roman','FontSize', 12'); 

hold on; 

xx=1:1:100;yy=xx;plot(xx,yy); grid on; 

hold off; 

figure(3);plot(dY_out,'k', 'linewidth',2);xlabel('No. of 

Epoch','FontName','Times New Roman','FontSize', 

12');ylabel('Error','FontName','Times New Roman','FontSize', 

12'); 

 

AppendixB:CodeforValidationorTesting 

%-------------------------Validation or Testing ----------------- 

clear; clc; 

close all force; 

%------------------------Import Testing Data--------------------- 

X_test=importdata('input_test.txt');  

T_test=importdata('ouput_test.txt'); 

[e,f]=size(X_test); 

[ee,ff]=size(T_test); 

%-----------Normalizing X_test(input_test) and 

T_test(output_test)--------- 

for i=1:f 

    X_test(i,:)=(X_test(i,:)-min(X_test(i,:)))/(max(X_test(i,:))-

min(X_test(i,:))); 

end 

for i=1:ff; 

    T_test(:,i)=(T_test(:,i)-min(T_test(:,i)))/(max(T_test(:,i))-

min(T_test(:,i))); 

end 

for l=1:f 

        net=zeros(DoA); 

        for rr=1:e 

            H_test(rr,1,l)=X_test(rr,l); 

        end 

         

        for m=1:nh+1 

            for i=1:nnodes(m+1) 

                for j=1:nnodes(m) 

                    net(m,i)=net(m,i)+A(j,i,m)*H_test(j,m,l); 

                end 

                net(m,i)=net(m,i)-B(i,m); 

                H_test(i,m+1,l)=1/(1+exp(-net(m,i))); 
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            end 

        end 

         

        

Y_out_test(1:nnodes(nh+2),l)=H_test(1:nnodes(nh+2),nh+2,l);% 

Predicted outputs 

end 

%-----------------------------Plotting options------------------- 

l=1:1:size(T_test'); 

figure(4); 

plot(l,Y_out_test,'ko','MarkerFaceColor','k','MarkerSize',6);hold 

on;plot(l,T_test,'r^','MarkerFaceColor','r','MarkerSize',6);grid 

on;set(gca, 'GridLineStyle', '-');grid(gca,'minor'); 

AppendixC:CodeforPrincipalComponentAnalysis(PCA) 

%------------------------------PCA------------------------------- 
clear; clc; 
close all force; 
%------------------------------Import Data----------------------- 
data=importdata('all.txt'); 
data1=data'; 
[m,n]=size(data1); 
for i=1:m 
    for j=1:n 
        data_zero_mean(i,j)=data1(i,j)-mean(data1(m,:)); 
    end 
end 
[V,F,U]=svd(data_zero_mean); 
singv = svd(data_zero_mean);% singv is a vector containg the 

singular values  
D = sort(singv,'descend');% arrange the singular values in 

descending order 
% sort the columns of P to match the sorted columns of D (going 

from largest to smallest) 
S=input('Enter the number of components to be considered=  '); 
V1=V(:,1:S); 
scores = zeros(S,n); 
for i=1:n 
    scores(:,i)=V1\data_zero_mean(:,i); 
end 
all_scores=scores'; 
save('all_scores','all_scores'); 
%------Silhouette plot and optimum number of k-means clusters---- 
NC=input('Enter the number of clusters to be considered= '); 
[cidx,ccntr] = kmeans(all_scores,NC,'distance','sqeuclid'); 
[s,h] = silhouette(all_scores,cidx,'sqeuclid'); 
Silh_Avg=(sum(s(:,1)))/150; 
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AppendixD:CodeforK-MeansClustering 

%-----------------------K-Means Clustering----------------------- 
clear; clc; 
close all force; 
%--------------------------Import Data--------------------------- 
load('all_scores'); 
all_rf=importdata('all_rf.txt'); 
k=4; %No. of clusters 
[IDX,C] = kmeans(all_scores,k); 
%--Adding Cluster Numbers,Scores Matrix and rf for Each Data 

Point-----  
all_scores_rf_IDX=horzcat(all_scores,all_rf,IDX); 
[e,f]=size(all_scores_rf_IDX); 
A=zeros(100,f,k);j=1; 
for iii=1:k 
    for i=1:e 
        if all_scores_rf_IDX(i,f)==iii 
           A(j,:,iii)=all_scores_rf_IDX(i,:);   
           j=j+1; 
        end 
    end 
end 

AppendixE:CodeforFuzzyC-MeansClustering 

%-----------------------Fuzzy C-Means Clustering----------------- 
clear; clc; 
close all force; 
%------------------------------Import Data-----------------------

load('all_scores'); 
Data=all_scores; 
[m,n]=size(Data); 
for i=1:n 
    for j=1:m 
        X(j,i)=(Data(j,i)-min(Data(1:m,i)))/(max(Data(1:m,i))-

min(Data(1:m,i))); 
    end 
end 
[center,U,obj_fcn] = fcm(Data, 3); 
maxU = max(U); 
index1 = find(U(1,:) == maxU); 
index2 = find(U(2, :) == maxU); 
index3 = find(U(3, :) == maxU); 
%% 
%------------------------Group Each Cluster Data----------------- 
Cluster1=zeros(length(index1),n+1); 
for i=1:length(index1) 
    Cluster1(i,1:n)=Data(index1(1,i),1:n); 
end 
Cluster2=zeros(length(index2),n+1); 
for i=1:length(index2) 
    Cluster2(i,1:n)=Data(index2(1,i),1:n); 
end 
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Cluster3=zeros(length(index3),n+1); 
for i=1:length(index3) 
    Cluster3(i,1:n)=Data(index3(1,i),1:n); 
end 

 

 

 

 

   


