INFORMATION TO USERS

This manuscript has been reproduced from the microfim master. UMt films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.9.. maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6 x 9° black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

University of Alberta

META-PROGRAMMING WITH PARALLEL DESIGN PATTERNS

by

Steven Bromling @

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Spring 2002

i+l

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et)
Bibliographic Services services bibliographiques
- , rue Wellin
Ottawa O K1A ONA Ofitwa ON K1 04
Canada Canada
Your e Votre réidrence
Our e Notre relérence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

The author retains owrership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-69690-1

Canadi

University of Alberta

Library Release Form

Name of Author: Steven Bromling
Title of Thesis: Meta-programming with Parallel Design Patterns
Degree: Master of Science

Year this Degree Granted: 2002

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific

research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as hereinbefore provided, neither the thesis nor
any substantial portion thereof may be printed or otherwise reproduced in any
material form whatever without the author’s prior written permission.

Steven Bromling

#1010, 10149 Saskatchewan Drive
Edmonton, AB

Canada, T6E 6B6

}w 4, 4004,

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Grad-
uate Studies and Research for acceptance, a thesis entitled Meta-programming
with Parallel Design Patterns submitted by Steven Bromling in partial fulfill-

ment of the requirements for the degree of Master of Science.

Date: ﬂ&(— 20; 6&”(

{De<"Jonathan Schaeffer,

Dr. Duane ymn C/

Carbonaro

M.z.%

Dr. Paul Lu

Abstract

A critical shortcoming of template- or pattern-based systems for parallel program-
ming is their lack of extensibility. Templates are typically limited in number or
scope, thereby narrowing the applicability of a given system. This dissertation
describes my approach for addressing the extensibility problem in the CO2P3S par-
allel programming system. The tool I developed, called MetaCO,P3S, provides the
ability for pattern designers to design and add new pattern templates to CO2P3S.
These pattern templates are equivalent in form and function to those provided by
the developers of CO,P;3S, although stored in a system-independent format. This
makes them suitable for storing in a repository to be shared throughout the user
community. The validity of MetaCO3P3S is illustrated through the creation of new

pattern templates.

Acknowledgements

First, I would like to thank my fiancée, Phoebe Jane Elliot, for her love, support
and inspiration during the writing of this dissertation, and the research leading up
to it.

[would like to extend my gratitude to the CO2P3S research team, for their efforts
that made this work possible. Steve MacDonald, John Anvik and Kai Tan all proved
instrumental in the completion of this MetaCO;P3S research. Thanks especially
to my supervisors, Jonathan Schaeffer and Duane Szafron, for their guidance and
patience.

[would also like to acknowledge the efforts of my thesis committee, for the
suggestions that they provided for the improvement of this dissertation.

I would like to thank my family and friends, for their support and understanding,
in particular as my attentions were diverted towards this goal.

Lastly, am grateful to the Natural Science and Engineering Research Council of
Canada and the Alberta Informatics Circle of Research Excellence for their financial
support of this research. In addition, the funding provided by the University of
Alberta through a Walter H. Johns Graduate Fellowship, and the Department of
Computing Science through a Teaching Assistantship was greatly appreciated.

Contents

1 Introduction
1.1 Motivation
1.2 Contributions
1.3 Organisation
2 An Introduction to CO,P3S
2.1 Parallel Design Patterns
2.1.1 From Design Patterns to Frameworks
2.2 The Original COyP3S Implementation
23 CO2P3SUsage e
2.4 Available Parallel Design Pattern Templates
2.4.1 The Mesh Pattern Template
2.4.2 The Distributor Pattern Template
2.4.3 The Phases Pattern Template
2.5 Case Study: Image Processing
2.6 Adding Parallel Design Pattern Templates
2.6.1 Motivation L o
3 A Meta-programming Tool for CO,P3S
3.1 The Necessary Components of a Pattern Template
3.1.1 Pattern Template Identification and Documentation
312 ClassNames
3.1.3 Parameters
3.14 GUI Configuration
3.1.5 User Interaction Capabilities
3.1.6 State Maintenance
3.1.7 The Framework Template
3.2 Modifying CO2P;S to Support Modular Pattern Templates

3.2.1 Decoupling the Framework Template and Pattern Description
Components
3.2.2 Supporting the Pattern Description Component in CO2P3S .

N N =

00 3 O &

14
15
15
16
16
16
17
18

19
20
20
21
21
22
22
22
22
23

23

3.2.3 Supporting the Framework Template Component in CO,P3S 24

3.3 The Design of MetaCO,P3S 25
3.4 The Pattern Template Architecture 26
3.4.1 XML for System-independent Pattern Template Storage . . . 28
3.4.2 Javadoc for Framework Template Code Generation 29
3.5 Pattern Template Creation using MetaCO2P3S 30
3.5.1 Pattern Settings in MetaCO,P3S 31
3.5.2 Constants in MetaCO;P3S 32
3.5.3 Class Names in MetaCO2;P3S 32
3.5.4 Parameters in MetaCO,P3S 36
3.5.5 GUI Configuration in MetaCO;P3S 39
3.6 Framework Template Creation 39
3.6.1 Building the Framework Classes 41
3.6.2 Implementing Extended and List Parameters 47
3.7 Testing the Pattern Template 50
3.8 Importing Pattern Templates into CO,P3S 50
Validating MetaCO,P3S 51
4.1 Recreating CO2P3S., 51
4.2 Case Study: Genetic Sequence Alignment 51
4.2.1 Isolating the Wavefront Design Pattern 52
4.2.2 Creating the Wavefront Pattern Template 52
423 Analysis o 57

4.3 Extending CO,P3S from Shared-memory to Networks of Workstations 58

Pattern Template Repositories 59
5.1 The Generality of My Meta-programming Approach 60
Related Research 61
6.1 Design Patterns and Frameworks 62
6.2 Extensible Pattern-based Programming Tools 62

6.2.1 Generic Programming Environments 62

6.2.2 Parallel Programming Environments 63
6.3 Code Generation 63
6.4 Pattern Repositories 63
6.5 Conclusions 64
Summary and Conclusions 65
7.1 Contributions of this Research 65
7.2 Ongoing Enhancements to CO2P3S and MetaCO,P3S 65

7.3 Directions for Future Work 66

Bibliography

A Installing CO.P3;S and MetaCO,P;S
A.l Downloading the System
A.2 Configuring CO2P3S
A3 BuildingCO2P3S
A4 RunningCO2P3S
A.5 Adding Supplied Patterns to CO,P3S

B Pattern Template File Formats
B.1 DTD for CO2P3S Pattern Template Definitions
B.2 XML Pattern Template Description for Mesh

67

70
70
70
71
71
71

List of Tables

4.1 Execution times using the Wavefront for sequence alignment.

57

List of Figures

2.1 A new CO,P;3S application.
2.2 The user’s view into the framework generated by CO;P3S.
2.3 Theoriginal CO.P3SGUL.
2.4 A new application with one pattern template instance.
2.5 Parameterisation of the pattern template.
2.6 Setting a framework classname.
2.7 Generating the frameworkcode..
2.8 Viewing the framework code in COP3S.
2.9 Editing a framework method.
2.10 Setting the applicationoptions.
2.11 Compiling the parallel application.

3.1 The pattern template architecture.
3.2 Files and interactions in CO;P3S and MetaCO,P3S.
3.3 Launching the MetaCO;P3S editor.
3.4 The Mesh Pattern Settings in MetaCO,P3S.
3.5 Constants used in the Mesh pattern.
3.6 The Class Name pattern settings in MetaCO,P3S.

3.7

3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19

Editing a user-known class in the Mesh pattern template.
Editing a framework class in the Mesh pattern template.
The Parameter pattern settings in MetaCO,P3S.
Editing a basic parameter in the Mesh pattern template.
Editing a list parameter in the Phases pattern template.
The visual GUI elements pattern settings in MetaCO,P3S.
Editing a visual text element in the Mesh pattern template.
Editing a visual graphical element in the Mesh pattern template. . .
Adding images to a visual graphical element in the Mesh.

Configuring the name of a visual graphical element in the Mesh.

Mesh template code example.
User parameterisation from CO,P3S.
Mesh template code in framework instance after parameterisation.

34
34
35
36
37
37
38
38
38
42
43
44

3.20 Mesh template code in CO,P3S Template Viewer after parameterisa-

LA T) + TR U 45
3.21 Mesh method body framework template example. 46
3.22 Mesh method body generated after parameterisation. 46
3.23 Directory layout of pattern templates in CO,P3S. 49
3.24 Importing a pattern template into CO,P3S. 50

4.1 Solving the sequence alignment problem with a dynamic program-

MIing MatriX. o . o .o 52
4.2 The Wavefront pattern template in MetaCO,P3S. 53
4.3 The Wavefront pattern template class settings. 54
4.4 The Wavefront pattern template parameter settings. 54
4.5 The Wavefront pattern template in CO;P3S.. 55
4.6 The Wavefront pattern template GUI settings. 56

4.7 Speedups using the Wavefront for sequence alignment. 58

Chapter 1

Introduction

Computer programs can enjoy potential performance benefits by exploiting para-
llelism. However, parallel programming is challenging for most developers, due to
the issues raised by concurrency. Unfortunately, even though the field of parallel
programming is not young, the high-level tool support for parallel programming is
still immature. This is partly due to the belief that adding layers of abstraction will
adversely affect overall performance.

There are a number of forms that concurrency can take, depending on the re-
quirements of a given algorithm. Finding the appropriate parallel design for a par-
ticular program can be a difficult problem. There is an arguable need for tools to
assist developers with this problem, in particular for those who are new to parallel
programming.

The struggle between the requirements for speed and developer assistance sug-
gests that a compromise is necessary. One approach being taken to meet this com-
promise is the development of parallel programming environments that employ tem-
plates to assist with program design and implementation. One such system, from our
research group at the University of Alberta, is called CO,P;S' [MSSB00a, MSS97].
CO2P3S uses design patterns to generate frameworks for parallel programs.

1.1 Motivation

In over twelve years of experience with template-based parallel programming envi-
ronments, our research group has identified a number of problems that are prevent-
ing their widespread acceptance [SSS98]. One of these problems is the rigidity and
narrow scope of the environments. Current academic tools only support a small
number of templates and, with only a few exceptions, do not allow the creation
of new templates. The lack of a rich set of templates is one of the major reasons

preventing these tools from moving out of academia and into mainstream use.

'Correct Object-Oriented Pattern-based Parallel Programming System, pronounced “cops.”

Finding a solution to this problem is not easy. Building a template-based parallel
programming system is already a difficult task. Ensuring that the same environment
can support the addition of new templates adds further complications. Our com-
munity needs a meta-programming tool that enables the creation of new templates
and the modification of existing ones. The templates must be generic enough to be
usable in a variety of systems. If the templates are defined in a system-independent
manner, they can be stored in a central repository. Submissions could be made to
the repository from throughout the parallel programming community, and it would
serve to remove a major impediment to the acceptance of template-based systems.

1.2 Contributions

This dissertation describes my approach to adding extensibility to template-based
parallel programming environments. This undertaking was rife with challenges.
First, I needed to determine what information was required to make a complete
template description, and how that information could be stored. Then CO2P3S had
to be abstracted so that it could integrate with template descriptions, including
their graphical representations, in a modular fashion. Finally, I needed to specify
how parameters could be used to specialise templates by generating different code
instances, and how parameter values could be gathered from a user.

My tool for creating new pattern templates is called MetaCO,P3S, since it was
built as an extension to our CO2P3S environment. MetaCQO,P3S creates first-class
pattern templates that integrate seamlessly with the CO2P3S environment, since
they are identical in form and equivalent in function to the pattern templates sup-
plied with the tool. This dissertation describes the meta-programming approach
taken in MetaCO2P3S, and extends a challenge to the community to leverage our

technology to create a pattern template repository.

1.3 Organisation

Chapter 2 introduces the CO2P3S environment, describing its status prior to the
research in this dissertation, and its available palette of pattern templates. Further
motivation for my meta-programming extension is included.

Chapter 3 discusses the development of the MetaCO2P3S tool and how I met
my goal of extensibility. This begins with a definition of the required components
of a pattern template. It goes on to describe the modifications I made to the
CO3P3S environment to support modular pattern templates. Finally, the design of
the MetaCO,P3S tool and its underlying architecture are introduced, complete with
a description of the pattern creation process from the pattern designer’s perspective.

Chapter 4 shows how [validated the MetaCO2P3S tool. As part of this process,

I not only recreated all of the patterns in the original CO,P3S, but I also added
new patterns. As part of this work, MetaCO,P3S was used to extend CO4P3S from
its target shared-memory parallel platform to distributed memory environments on
networks of workstations.

In Chapter 5, I promote the need for a pattern repository. We also demonstrate
the generality of my meta-programming approach, showing how generic patterns
can be created using MetaCO,P3S. This finding extends the power of CO2P3S and
MetaCO2P3S beyond the domain of parallel programming.

Chapter 6 describes research related to MetaCO,P3S, and Chapter 7 summarises
the contributions of this dissertation, introducing ongoing enhancements to CO,P3S
and describing directions for future work.

Appendix A gives instructions for the installation of CO,P3;S and MetaCO,P3S.
Examples of the system-independent file formats for pattern templates, as intro-

duced in this research, are given in Appendix B.

Chapter 2

An Introduction to CO,P3S

Our parallel programming system, called CO2P3S, uses object-oriented program-
ming techniques to simplify parallel programming [Mac01, MSSB00a, MSSBO0Ob).
This research follows the previous parallel programming system from our group,
called Enterprise [SSLP93], which evolved from an earlier prototype called Frame-
Works [SSG89). Enterprise used a business model as an abstraction for the com-
munication patterns in programs for networks of workstations. The environment
included many supporting tools, such as detailed debuggers and animated playback
mechanisms. The research goal for both Enterprise and CO2P3S was to provide
a means for software developers to parallelise and speed up their sequential pro-
grams with little effort, while minimising the possibility of new errors being intro-
duced. Using CO,P3S, developers can create, compile and execute programs for
concurrent architectures. This chapter describes the state of CO2P3S prior to the
meta-programming extension, and motivates the work done in this dissertation.

In CO,P3S, developers identify parallel design patterns that describe their ap-
plication’s basic structure, parameterise the patterns to specialise them for their
needs, and implement application-specific code within the automatically generated
framework that hides the entire parallel infrastructure. CO2P3S targets program-
mers looking for reasonable speedups in their sequential applications in return for a
modest programming effort.

A parallel design pattern template, or pattern template for short, consists of two
main components. The first is a parallel design pattern, and is described in Section
2.1. The second is a set of framework implementations representing the various
forms that the design pattern can take. The transition process from design patterns
to frameworks is described in Section 2.1.1.

There is currently no support in the CO,P3S environment for the design pattern
selection process. The onus is on the developer to deduce the appropriate pattern
templates for their application. It is possible that this process can be automated in
the future, based on the results of pattern language research [MMS00].

<

7]
f'
a8
Z

R ey
] S

Figure 2.1: A new CO,P3S application.

ERLDR AR LA ST i ME

/'i
* Returns whether this mesh node is not finished computing.
*

/

1 n n h)

return false;

T

S Vi A L

yValue_ = (left.getValue() + right.getValue())

/e

* Prepares this node for the

/ (up.getValue() + down.getValue()):

ublic i r

/It

* [teration method for an interior node in a 4 point mesh.

'/ T

gublic voigd p p p p - o MechNgde p rig 2

Va

% yh

myValue_ » (left.getValue() + right.getValue()) F?

! i Y

; / (up.getValue() + down.getValue()); 28t .

1}

i

Figure 2.2: The user’s view into the framework generated by CO,P3S.

One of the key features of CO,P3S is its separation of system-generated paral-
lel code and user-provided sequential code. Parallel code sections are typically the
most complicated part of an application. CO2P3S hides them from the user in the
frameworks it generates. This separation helps to maintain correctness in applica-
tions, and it greatly simplifies users’ implementation efforts. We ensure that the
separation does not limit CO2P3S users by providing a programming model that
has three layers of abstraction. The highest layer does not provide any access to
parallel code. In the intermediate layer, a high-level explicitly parallel program-
ming language enables manipulation of the parallel structure. At the lowest layer,
CO,P3S provides native object-oriented code for the entire application.

Figure 2.1 shows CO,P3S with a user application involving two design pattern
templates. The pattern template selected in the middle segment of the user inter-
face and displayed in the pattern window on the right represents a two-dimensional
parallel mesh computation, which supports iterative computations across a surface.
Using the pattern window, a CO2P3S user can customise the pattern template in-
stance by setting class names for the framework and parameterising the pattern
template so that it matches their application. One of the parameters available for
the Mesh pattern template is the boundary condition that allows the mesh to be
a rectangular surface, a cylinder or a torus. Another parameter switches the num-
ber of neighbours for the nodes in the mesh from four to eight. After customising
the pattern template, the user requests that the appropriate framework code be
generated. The current pattern templates in CO2P3S are configured to generate
shared-memory Java code. Figure 2.2 illustrates the user’s view of the framework,
showing a class that represents a single node in the mesh structure. Users are not
allowed to edit the class in this window. This prevents them from modifying method
or class signatures. Instead, hyper-links are provided for user-modifiable locations
in the code. The inset window is the result of following one such hyper-link, and

allows the user to enter the selected method’s body.

2.1 Parallel Design Patterns

Design patterns, as popularised by Gamma, Helm, Johnson and Vlissides [GHJV95],
capture and document recurring problems in object-oriented software design. Nec-
essary components of a design pattern document include both a description of a
problem and its solution. The problem description incorporates a discussion of
the pattern’s applicability. There should be sufficient detail in the solution for a
developer to fully complete the associated aspect of their design.

As an innovative subset of the more general realm, parallel design patterns deal
with problems related to concurrent programming. There are many difficulties that
make parallel programming a daunting endeavour for developers, including:

e the identification of the parallelism in a given application, if any.

e the construction of the parallelism, ensuring that the threads of execution syn-
chronise at key points and transfer data between threads in a timely fashion.

e the target architecture (whether it be a distributed network of workstations
or a shared memory multi-processor) can affect the implementation language

and the algorithms used.

e errors or omissions can cause the program to function erratically and incor-
rectly, making it difficult to debug.

e various performance enhancements may be required to attain reasonable pro-
gram speedups, including increasing task granularity, balancing the load be-

tween threads of execution and reducing communication.

e the application may need to scale to machines with different capabilities, or

be portable across platforms.

The cumulative time for all of these activities can make the cost of developing
parallel programs prohibitive. Traditionally, the onus was almost entirely on the
developer to deal with these issues. A design pattern catalogue can help by not only
identifying the type of parallelism that best captures their problem, but also by
prescribing an appropriate solution. An example parallel design pattern catalogue
is included in [MacO1].

2.1.1 From Design Patterns to Frameworks

Every design pattern includes an abstract solution to a particular design problem.
The solution is general, to avoid dependencies on a particular architecture or pro-
gramming language. If this restriction is relaxed, the result is no longer a design
pattern, by definition. Our alternative is to use design patterns to generate code
skeletons, which can serve as the basis for a collection of different programs.

A framework embodies the intent of a particular design pattern. It provides
a set of abstract classes, and is customised for a specific domain through the im-
plementation of one or more subclasses. The application structure is provided by
the framework, and is not modified by the developer. Because of this, a properly
constructed framework can guarantee structural correctness. In the domain of par-
allel programming this is particularly useful, since a framework can encapsulate the
synchronisation and communication needed for concurrency, freeing the developer
from a difficult part of their application.

A small complication arises in the conversion process from design patterns to

frameworks because of the possibility of design pattern parameters. Often there are

slight variations in a design pattern that affect its implementation. These varia-
tions, or parameters, remove the possibility of a one-to-one mapping between design
patterns and frameworks. Instead, many different frameworks may be required to
provide all possible parameterisations of a given design pattern. A parameter in a
design pattern does not correspond to a single argument in a framework method.
In fact, a parameter choice at the design pattern level may result in the existence or
absence of a set of methods or portions of method bodies in the generated frame-
work. Equipping developers for this situation requires a system that automatically
generates correct frameworks from a selected design pattern with the appropriate
parameterisation. This is one of the roles of the CO,P3S system, as discussed in
[MSSB00a] and [MSS97].

2.2 The Original CO,P3;S Implementation

A system that automatically generates framework code from design patterns can
be built on any combination of architecture and programming language, provided
support is available for parallelism. Early in the development of CO,P3S, Java
was selected as the programming language, and shared-memory machines as the
parallel environment. That decision has provided some degree of architectural in-
dependence, allowing CO2P3S to be run on many different flavours of UNIX, from
dual-processor Linux machines to large SGI Origin 2000 supercomputers. Parallel-
ism on these shared-memory systems is achieved through Java native threads. The
object-oriented capabilities of Java are needed for the generated frameworks. It
should be stressed that the design of CO,P3S does not preclude the use of other
programming languages or architectures (e.g. C++ on a distributed network of
workstations).

CO;P3S has been in development for a number of years now. It began with
a code generator, which given a design pattern and a specific parameterisation as
input, automatically produced framework code. There was no user interface, and
therefore no easy way to view the pattern catalogue or provide the parameterisation
for a selected pattern.

As a summer research assistant, I implemented a graphical user interface (GUI)
for CO2P3S [MSSBO0ODb], also in Java. The main purpose of the GUI is to gather de-
sign pattern parameter information, and interface with the code generator to create
the appropriate framework code. Development efforts attempted to ensure that the
GUI representation of pattern templates was modular, and thus both maintainable
and extensible. Figure 2.3 shows the three functional areas of the main GUI window.
The inner window, entitled Example, contains the start of a parallel application.

e On the left, the Palette displays iconic representations of the parallel pattern

A

Mage:ﬂ;:esmn : :x Coz&s fanlclij ‘

The collection of design The visual design pattemn
patterns in this application representation, used to parameterise

Figure 2.3: The original CO2P3S GUIL

templates currently in the catalogue. As the figure shows, rolling the mouse
over one of the icons displays the name of the corresponding pattern. In
addition, by right-clicking the mouse on an icon, one can choose to view the

associated design pattern document.

e The middle Program panel contains the list of pattern templates selected by
the developer for inclusion in their application. In this case, only the Mesh
pattern is being used. However, it is possible to combine more than one pattern

when building an application.

e The segment on the right is where the developer parameterises a pattern tem-

plate, and sets the class names to be used in the framework.

The original CO2P3S is the result of a large implementation effort. The GUI
code consists of 56 Java classes with an NCSS! line count of 5844. Adding the
framework creation code and three design patterns totals 89 Java classes with an
NCSS line count of 7,762.

Section 2.3 provides further discussion related to the CO2P3S implementation,
by describing typical system usage. Section 2.4 describes three design patterns that
were implemented in the original CO,P;3S.

Figure 2.4: A new application with one pattern template instance.

Figure 2.5: Parameterisation of the pattern template.

10

et

B R o
v 7

ESNNTTENY

AT IS

TV

N

Figure 2.6: Setting a framework class name.

Figure 2.7: Generating the framework code.

11

B oublic class MeshNode

i |extends Object

/* MeshNode */

/* inftialize */

// User enters code here

Figure 2.9: Editing a framework method.

12

m ExampleMesh

@ D otherpattems

[
i{am Phases

[
& a Drstnbutor

Figure 2.10: Setting the application options.

Figure 2.11: Compiling the parallel application.

13

2.3 CO,P;S Usage

Figures 2.4 to 2.11 step us through a typical usage of the CO2P3S GUI. A more
detailed usage description of CO2P3S, and the Mesh pattern in particular, is in
[MSSB0Ob]. In Figure 2.4, a single Mesh? parallel pattern template instance has
been added to a new application. Prior to this, the CO2P3S user would have spent
time analysing their application to identify the pattern template that most aptly
described their parallel design problem.

The parameter affecting the mesh boundary condition is being set through a
graphical dialog in Figure 2.5. The name for one of the framework classes is being
set in Figure 2.6. These two examples demonstrate the ease with which a pattern
template can be parameterised in the CO,P3S GUIL

Figures 2.7 through 2.9 show the process of creating and editing the framework
code. The template viewer only allows the user to edit the code of certain methods,
called the framework hook methods, thereby preventing accidental modification of
method signatures, or other damaging changes. The user enters only sequential code
at these hooks, as the parallelism is hidden by the framework.

An application in which a user has composed multiple pattern templates is shown
in Figure 2.10. This figure also shows the capability for adding external user classes
to an application. Once all of the necessary pattern templates for an application have
been added, parameterised, and had their framework code templates completed, the
application can be compiled and run, as in Figure 2.11. It should be noted that an
effort was made during the development of each of the CO;P3S pattern templates
to always generate framework code that compiles without any modifications. This
allows developers to incrementally modify and test their pattern instances.

One of the important features surfacing early in the design of CO;P3S was a
three layered approach to parallel program development. Thus far, this section
has discussed only the highest level of abstraction, called the Patterns Layer. This
layer includes the concept of framework code, as generated by parameterised par-
allel pattern templates. User-supplied hook methods are used to create a complete
application. This layer also provides a guarantee of correctness, by ensuring that
users have no effect on the constructs of concurrency in their programs.

Two further abstraction layers were described in [MSS97]. They are called the
Intermediate Code Layer, and the Native Code Layer. Both are meant to increase the
openness of CO,P3S applications by allowing developers to gain access to the frame-
work code, in two different formats, for the purpose of performance tuning. The
framework code was designed for safety, to prevent the possibility of errors. How-

!Non-Commenting Source Statements, approximately equivalent to the number of “” and “{”
characters in Java source code.
2The Mesh pattern is described in Section 2.4.1.

14

ever, some applications may not require all the safety features built into a particular
framework, and it is important to allow the developer to make modifications. At
the Intermediate layer, abstract concurrent constructs are represented in a high-level
format. The Native layer removes the parallel abstractions, and provides access to

the entire object-oriented code-base of the framework.

2.4 Available Parallel Design Pattern Templates

Prior to the start of my research, only three fully implemented pattern templates
existed in CO;P3S. The implementation effort required to add new pattern templates
was too high to justify adding more, as will be discussed in Section 2.6. The three
patterns are briefly described below. A more in-depth discussion of these patterns
can be found in [MSS99] and [Mac01].

2.4.1 The Mesh Pattern Template

i The Mesh pattern template supports surface mesh computations. General
mesh computations are not supported by the pattern, which instead focuses on
regular meshes consisting of n x m points on a two-dimensional surface. In a mesh
computation, a sequence of steps affects each point on the surface. Each point
changes state based on its previous state, and that of each of its neighbours. The
computation typically concludes when all of the mesh points have reached some final
agreed upon state. The pattern template solution ensures that each iteration, or
step, affects every point in the mesh before the following iteration begins. This task
is made more difficult by the fact that different points may have been computed by
different threads of execution.

The pattern template user does not have to worry about the issues of concur-
rency. Instead, they only provide a termination condition, and write code that
describes how a mesh point computes its state, based on the provided states of each
neighbour.

In addition to specifying class names for the generated framework code, the Mesh
pattern template user must specify two parameters. The first parameter determines
whether the boundaries of the mesh have edges connecting them to neighbours on
the opposite edge. This means that there can be meshes that are fully toroidal,
horizontal-toroidal, vertical-toroidal or non-toroidal. The second parameter sets
the number of neighbours for each point in the mesh. There can be either four
neighbours (up, down, left and right), or eight (also includes the diagonals). The
size of the mesh is not required during the design phase, as it is provided as a

run-time parameter to the Mesh framework.

15

2.4.2 The Distributor Pattern Template

é The Distributor pattern template provides a form of data parallelism. It di-
vides the execution of methods that contain arrays of data in their arguments, and
delegates computation for each array segment to a different child thread. Meth-
ods that have too fine a granularity to allow efficient parallelisation can be run
sequentially. The Distributor pattern user must provide a list of methods to be ex-
ecuted. For each method that can be parallelised (i.e. has an argument which is a
one-dimensional array of elements), they must specify the distribution amongst the

children. The valid distributions are:

Pass-Through the entire array is passed to each child.
Striped child i (of n children) receives the array elements at (7,7 + n,i + 2n,...).
Neighbour child i receives elements i and i + 1 from the input array.

Block n contiguous sections of the array are distributed amongst the n children.

2.4.3 The Phases Pattern Template

7. The Phases pattern template, also referred to as Method Sequence, is a
special pattern that provides no concurrency. Instead, the Phases pattern can act as
the glue between other pattern templates in an application. It takes a list of methods
as its only parameter, and is responsible for the sequentially ordered execution of

those methods.

2.5 Case Study: Image Processing

Prior to the commencement of this dissertation research, I performed a study on
the usability and performance of the CO2P3S environment. The study used the

following set of simple image processing algorithms:

Contrast Stretching: Each pixel in an image that falls within a given input

range is stretched to fit a given output range.

Sobel Edge Detection: Applies a mask that filters each pixel in a given im-
age, creating an output image that highlights the “edges,” or areas of rapid

frequency change.

16

Median Noise Reduction: Reduces the number of “noisy” pixels in a given im-

age by applying a simple mask to each pixel.

Each of the algorithms was implemented three different ways using Java. The first
implementation was a simple sequential solution. The second was a hand-coded
parallel implementation. The third implementation used the CO,P3S environment.

The only parallel design pattern template that was available in CO2P3S and
could be applied to the image processing problems was the Mesh. Unfortunately,
this selection was not ideal. One reason for this was that although the Mesh pattern
template was designed to operate on flat n x m surfaces, it was meant to be used
for iterative processes that repeat a computation at each element over time. This is
in contrast to the image processing operations, which computes only once at each
pixel, or surface location.

As might be expected, the performance numbers achieved in this study were
disappointing. However, a positive result surfaced from this work. In determining
that the Mesh pattern template was inappropriate for the selected image processing
algorithms, we concluded that a new pattern template would be required in the
CO,P;S environment. An implementation for this pattern template could emulate
my hand-written parallel solution, which segmented a given image into n equal
blocks and then ran n parallel threads of execution to process it. Our need for a

new pattern template further motivated and supported my extensibility research.

2.6 Adding Parallel Design Pattern Templates

The small parallel pattern template catalogue was a severe limitation for CO,P3S.
If a developer’s application required a pattern template that was not provided by
CO,P3S, the system was rendered virtually unusable to them. Thus, it was crucial
for CO,P3S to allow new pattern templates to be added easily. The GUI was built
in a modular way to allow for this necessity. However, a large implementation effort
was still required to add each new pattern template. Each pattern addition consisted
of two stages.

The first step was the implementation of a plug-in GUI module. This required
sub-classing an abstract module that provided assistive functionality. Next, a visual
representation of the pattern had to be developed. This included parameter set-
tings and framework class names. Certain parameters needed tailored dialogues for
retrieving user requirements. Action handlers had to be written, and the pattern
needed to have a method to capture a run-time snapshot of itself for permanent
storage.

In addition to the GUI module, a framework generator interface was required.
This module was responsible for gathering data from the GUI component at the

17

appropriate time and packaging it in a format usable by the code generator. Tem-
plate code for each of the framework classes had to be provided, with optional code
for each of the pattern template parameters. The code generator needed to be
instructed to create the framework based upon the provided parameterisation.

Finally, after implementing and testing both of these modules, the new pattern
template could be added to the GUI by adding its name to the CO,P;3S configuration
file.

2.6.1 Motivation

As a means for the CO2P3S internal development team to add new pattern tem-
plates, the status quo was sufficient, but unpleasant. It stalled the addition of a
number of known pattern templates, and limited the size of the provided catalogue.
Furthermore, it was thought that advanced CO;P3S users should be given the ability
to add patterns themselves, since the provided catalogue would never be complete.
It became apparent that a simpler procedure for adding pattern templates was re-
quired to make CO2P3S a viable system for parallel programming.

With these thoughts in mind, the aim of my research was to realise the goal of
extensibility in CO,P3S by creating a meta-programming tool for adding new par-
allel pattern templates into the system. To achieve this goal, I needed to normalise
the representation of pattern templates, and create a simplified high-level abstrac-
tion for pattern template creation. [then needed to design and implement a tool to

support this abstraction.

18

Chapter 3

A Meta-programming Tool for
CO-9P3S

The previous chapters motivated the need for extending our pattern-based parallel
programming system by providing the ability to add new templates. They described
the lack of extensibility as a major impediment to the acceptance of template-based
parallel programming environments. If an application cannot be implemented using
a given programming environment, it calls into question the utility of that tool.
Programmers are unlikely to invest effort learning an environment that may not
meet their needs in the future.

My hypothesis is that not only is there a need for a large number and variety
of pattern templates to cover all parallel programming needs, but also that there
are still undiscovered parallel design patterns. Even if posterity proves me wrong,
and demonstrates that only a handful of complete pattern templates suffice to cover
the domain of parallel programming, MetaCO2P3S will still be regarded as a useful
tool. Pattern templates are seldom complete after their first design iteration. and
MetaCO,P3S makes the task of pattern modification much simpler.

To address the extensibility problem, I have created a tool that allows parailel
and object-oriented programming experts, called pattern designers, to create new
pattern templates. The new pattern templates are first-class, meaning they are in-
distinguishable in form and equivalent in function to the pattern templates included
with CO2P3S. Analogous to the manner in which CO2P3S makes it easier to write
parallel programs using pattern templates, MetaCO2P3S makes it easier to write
pattern templates for CO2P3S.

This chapter describes the extensibility research. Section 3.1 enumerates the
necessary components for a parallel design pattern template. Section 3.2 describes
the modifications required in CO,P3S to support modular pattern templates. Sec-
tions 3.3 through 3.6 describe the design of MetaCO2P3S, and how it is used to
create new pattern templates. Finally, Sections 3.7 and 3.8 describe the process of

testing pattern templates and importing them into the CO2P3S environment.

19

3.1 The Necessary Components of a Pattern Template

Before embarking upon the development of the MetaCO;P3S tool, it was impor-
tant for us to identify and define the necessary components of a pattern template.
As part of this investigation, I needed to assess the possible differences between
pattern templates to ensure that my definition was complete. The three parallel
pattern templates in the original CO2P3;S implementation were my primary source
of inspiration for this task.

The entire skeleton of a pattern template, as described below, was defined at the
outset of my research. However, a number of the details, particularly to do with the
implementation, were determined later or arose through trial and error.

I have left the responsibility of identifying new design patterns to the pattern
designer. This task involves isolating newly-discovered recurring patterns and the
various forms that they can take based on pattern parameters, then creating a
framework that hides the parallelism details. Designers should note the aspects of
their frameworks that are affected by different parameter settings.

Neither CO2P3S nor MetaCO2P3S were built to support design pattern discov-
ery, since it is a hard problem that has yet to be solved. One example of research
that relates to the discovery problem is the PatternLint tool [SSC96], which checks a
program to ensure that it follows the design pattern contracts that were specified as
part of its design. However, PatternLint does not discover known design patterns in
an application. Furthermore, even if PatternLint could be extended to discover the
design patterns in a program, it would still be unable to identify unknown design
patterns. This last problem is one of many that would need to be solved before
automation of the pattern discovery process could be realised.

The rest of this section introduces the components that I identified as being

necessary for a pattern template.

3.1.1 Pattern Template Identification and Documentation

Two key features of every pattern template are its name and its documentation.
As with generic design patterns, the name gives developers the ability to converse
about the given problem and its recommended solution. It is important that the
chosen name be memorable, and indicative of the pattern’s role. This will also help
pattern users with the selection process.

I have extended the naming requirement for pattern templates to include an
iconic representation. The chosen icon will represent the pattern template in a
graphical user interface. It is important that the icon is useful to pattern template
users.

The pattern documentation is at least as important as the name. Like a design
pattern document, it describes the problem being solved and the form that the

20

solution takes. Pattern template documentation also includes usage information.
The documentation must suffice to serve as the basis for a developer’s selection of

that pattern for their application.

3.1.2 Class Names

A pattern template must include each of the class names that exist in its framework
instances. The template must use generic placeholder names for each of the classes,
which define their function in the framework, yet can be replaced by user-supplied
values in a particular framework instance. This condition is necessary to allow
multiple copies of the same pattern template to be instantiated in a single program.
The pattern user will be required to supply at least one class name for each pattern
template instance. The remainder of the placeholder class names, necessary to
complete the implementation of the design pattern, can be generated simply by

adding suffixes or prefixes to the user-supplied class name.

3.1.3 Parameters

The parameters that act on a pattern template allow it to have different behaviours,
in order to match a user’s requirements. Every possible combination of parameter
settings causes a different framework instance to be generated. I have chosen to

have three parameter types, and each is described below:

Basic Parameters

Basic parameters cover most common parameter usage cases. They are comprised
of either an arbitrary string value, or an enumerated list of choices that must be sup-
plied by the pattern designer. The set of possible configurations range from boolean
switches to more elaborate list choices. Pattern users are required to select one and
only one value for a given parameter, although a default value can be supplied by
the pattern designer. In the Mesh pattern template, introduced in Section 2.4.1,
only basic parameters appear. One example is the number of neighbours parameter,

which can be set to either four or eight.

Extended Parameters

Extended parameters deal with the relatively uncommon case in which parameter
values are in an arbitrary form. Since extended parameters must deal with cases
that cannot be covered by basic parameters, extra work is required of the pattern
designer. For each extended parameter, the designer must provide a way for users
to specify the parameter’'s value, and the manner in which the given value will
affect framework code generation. The Distributor pattern template, introduced in
Section 2.4.2, uses a list parameter (see below) composed of extended parameters.

21

Each entry in the list is 2 method signature with additional information that alters

the distribution of methods with array arguments.

List Parameters

List parameters are a useful subset of extended parameters. They deal with situa-
tions in which a pattern template user needs to supply a list of values. The list values
can range in complexity from simple strings to complicated extended parameters.
As with extended parameters, the pattern designer is required to specify the man-
ner in which a list parameter setting affects framework code generation. However,
support is provided for gathering the list values from the pattern template user,
and iterating through the list during code generation. The Phases pattern template,
introduced in Section 2.4.3, uses a list parameter to gather method names from the

user.

3.1.4 GUI Configuration

Pattern templates must integrate with programming environments that have graph-
ical user interfaces, or GUIs. Therefore, it is important that they enable users to
visualise their parameter settings through a graphical representation. As an ex-
ample, Figure 2.1 depicts the Mesh pattern template in the CO,P3S environment.
Images and textual data are combined to inform the pattern user of the pattern

template settings.

3.1.5 User Interaction Capabilities

Since pattern templates are used in GUIs, they must handle user interaction. Pat-
tern users need to set class names and parameter values. They must also be able
to generate a framework instance, and populate it with their application code. All
of these operations must be dealt with by the pattern template, for example by

presenting a dialog of choices to the user.

3.1.6 State Maintenance

The pattern template must be capable of maintaining the run-time state of any of its
instances. In addition to the parameter and class name settings, the state includes
the programming abstraction layer currently being accessed by the pattern user.
The state information must be serialisable to a string, so that a user’s programming

session can be saved to disk or transmitted across a network.

3.1.7 The Framework Template

In order to generate different framework code for each of its possible parameter-

isations, a pattern template must include a framework template. A framework

22

template consists of the set of classes that are in each of the framework instances.
These classes contain normal Java code, and include additional meta-programming

information that indicates the effect of parameters on certain sections.

3.2 Modifying CO-2P3S to Support Modular Pattern Tem-
plates

CO,P;S was originally designed with future extensibility in mind, and our research
group had the foresight to plan for the continual addition of pattern templates to the
system. However, little time was spent optimising the modularity of pattern tem-
plates or automating the template creation process. Therefore, the task of creating
and adding a pattern template required a significant amount of time and program-
ming effort. One of the first research tasks, after my identification of the pattern
template components, was to modify the CO;P3S environment to support plug-in

pattern template modules.

3.2.1 Decoupling the Framework Template and Pattern Descrip-
tion Components

The first step was to decouple the GUI representation and user interaction compo-
nents of pattern templates from the framework code generation aspects. We made
this choice because of the high degree of similarity across pattern descriptions, and
the independence of the framework templates from this similarity. The data flow
between these two components now consists only of textual data representing the
class name and parameter settings gathered from the pattern user.

This decoupling of the two primary components of pattern templates had a
number of advantages. Foremost among these was the ability it gave for us to
concentrate on the implementation of each part in isolation. Furthermore, since
the pattern descriptions were already closely tied to the CO,P3S environment, and
the framework generation was a separate component, the decoupling married nicely
with the realities of the CO2P3S implementation.

3.2.2 Supporting the Pattern Description Component in CO,P;S

Since the CO,P3S GUI was written in Java, the obvious choice for the implemen-
tation language of the pattern description component was also Java. This choice
allowed us to use object-oriented abstractions in the design of the plug-in GUI
module. The similarities between components are enforced by making their im-
plementations subclasses of an abstract class called PatternPane, which is supplied
with CO,P3S. The abstract class provides implementations to support each of the

following aspects of a pattern template:

23

Identification: the PatternPane stores the name of the pattern template, and the

icons that represent it in the CO,P3S environment.

Documentation: the PatternPane contains links to the associated pattern template

documentation.

Class Names: with the help of the PatternClass class, the PatternPane stores each
of the run-time class names for a pattern template, and supplies a dialog that
gathers this information from the pattern user. The PatternPane also provides
operations that automatically verify the correctness of a given class name and

prevent name clashes with other pattern templates in an application.

Parameters: with the help of the PatternParameter class, the PatternPane stores
the user-supplied parameterisation of a pattern template. Dialogs are provided
to support gathering the values of basic parameters and list parameters.

Graphical Display: the PatternPane has operations that allow for the easy addi-
tion of images and text to the CO2P3S GUI display. The layout and display
of these elements is handled by the PatternPane. Also, if any images or text
values are supposed to dynamically change to represent the current param-
eterisation of a pattern template instance, these changes are handled by the

PatternPane.

User Interaction: in addition to the dialogs provided for class name and parame-
ter value input, the PatternPane provides menu options that enable operations
such as framework code generation. It also provides windows for viewing

framework code and editing the framework hook methods.

State: the PatternPane maintains all of the state information for a pattern template
instance, and provides operations that allow it to be serialised for long-term

disk storage or network transfer.

The PatternPane abstract class was part of the original CO,P3S implementation,
but its scope was much smaller than that of the current incarnation. Subclasses of
the new PatternPane class are short and simple, consisting primarily of initialisation

code.

3.2.3 Supporting the Framework Template Component in CO,P;S

Due to its decoupling from the pattern description, research on framework templates
was able to proceed independently. As such, it was not until after the updates to
CO,P3S and the creation of MetaCO,P3S that my attention turned to this problem.
The macro language that had been used for code generation in the original CO2P3S

24

environment had been powerful enough to support our needs, but was rather un-
wieldy, making framework template creation and maintenance difficult. In Section
3.4, the design and architecture of my new framework template is described. The
only changes to CO2P3S required to support the new format were updates to the
PatternPane to allow parameter and class name settings to be written to a text file

for use during code generation.

3.3 The Design of MetaCO,P3S

At the outset, my research plan was to create an integrated meta-programming tool
that would automate as much of the pattern template creation process as possible.
Unfortunately, it turned out that a complete solution was beyond the scope of this
dissertation. MetaCO,P3S deals completely with the pattern description portion,
but the planned tool support for the framework template component is not complete.

The MetaCO,P3S tool allows a pattern designer to create a new pattern tem-
plate or modify an existing one. Since I defined a standardised format for pattern
templates, the information required of the pattern designer is well-formed and min-
imal. I strove to ensure that pattern designers were not required to supply anything
beyond GUI configuration and the names and types of class names and parameters.

Another design choice was to store pattern template information in a system-
independent format. Since our CO,P3S environment requires plug-in Java modules
of a particular format, this meant that I needed to come up with an intermediate
storage representation. My purpose behind this approach was to allow pattern
templates to be shared not only amongst CO2P3S users, but also throughout a
broader community, as more parallel programming environments begin to support
the format. Chapter 5 discusses the usefulness of pattern template sharing. Section
3.4 describes the system-independence.

In my current implementation, pattern designers must write the Java code for
their framework templates, complete with the meta-programming information for
parameterisation. However, I designed this process to be done in a tool that auto-
mates adding the meta-programming information.

Because of my choice of Java as the framework template language, the pattern
templates generated are completely system-independent. The use of Java reflects
only my design choice, and is not a necessity. The generic pattern descriptions could,
in fact, be used with framework templates in different languages. The unfortunate
aspect of this approach would be that it would separate pattern templates into
different categories, based on their implementation languages.

25

C Pattern Designer)

Creates
Utilises
Y
MetaCOPS Framework Template
(Annotated Source)
Creates

Framework
Instance
(Java)

CoPs

XML Pattern
Description

Interacts with

COPS User

Figure 3.1: The pattern template architecture.

3.4 The Pattern Template Architecture

This section discusses the architecture of the pattern template creation process. I
describe how my approach minimises the amount of user interaction required, and
show how my implementation is hidden from the user. Figure 3.1 gives an overview
of the architecture. My decoupling of the pattern description and framework tem-
plate components is clearly shown.

Figure 3.2 briefly describes the files used in the CO;P3S environment, and the
interactions between them. At the top, the creation of the pattern template is
depicted. The pattern designer uses MetaCO,P3S to generate an XML pattern
description, and manually creates the framework template files. At the bottom, the
two roles of the pattern user are shown. The first, importing a pattern description
into CO2P3S, takes an XML file as input, generates a plug-in Java module, and
inserts it into the palette of the CO2P3S GUI. This step only needs to be done
once, as the pattern template becomes part of the user’s CO;P3S environment. The
second role consists of a pattern user’s instantiation of a pattern template. After
the user has selected their desired parameterisation, they can generate a framework
instance. This process takes as input the framework template and a file containing
the user’s parameter settings. The user can then use the template viewer in the
CO,P3S GUI to put their application-specific code into the hook methods of the

framework, and generate a finished application.

26

EEm—— ()

LIy . ,\——’/
Paftern
Desagner

Puatern Template
creates
Framework
. Jave pagn
enerate
imports
Paftern
User
nstantiates
Pattern
-. Instance
parametenses
and generates
Provides
l apphcaton-specific Freshed
coce Appicahon
Framereorx I
nstance |}

Figure 3.2: Files and interactions in CO2P3S and MetaCO,P3S.

27

3.4.1 XML for System-independent Pattern Template Storage

In addition to storing the pattern templates in a system-independent format, I
chose to use a textual, human readable format, although this feature was secondary
to expressiveness and machine readability. After some research we selected the
XML! format [XML]. XML has become a well-known standard for data storage
and sharing, and is published by the World Wide Web Consortium [W3C]. XML
descended from SGML, and is similar to the HTML language used in web pages,
but much more general. One important advantage of XML is that there a number of
companion specifications published by the World Wide Web Consortium that greatly
expand its usefulness. Furthermore, there is a large number of tools, including
parsers, available for every computer platform.

XML is completely textual, and therefore serialises easily for storage on disk
or transfer across a network. DTD? files (or the recent XML Schema standard)
can be used to specify the allowable contents for a set of XML files. Since the
requirements for pattern templates are strict and well-formed, [decided to have
CO2P3S use a DTD to verify the format of XML files before they are imported
into the programming environment. Appendix B describes the XML and DTD file
formats used for MetaCO,P3S, and provides some examples.

XML is stored in a strict, hierarchical format. This fits well with the hierarchy of
data required to create a pattern template. In fact, the MetaCO,P3S GUI mirrors
this format by presenting a tree of choices to the pattern designer, each branch of
which must be completed.

One specification related to XML that was particularly useful for my research
was XSL3 [XSL]. The intended purpose of XSL is to perform conversions on XML
files. The documented uses of XSL included converting XML to HTML, mining
the data to format it for different uses, or converting it to a binary format. XSL
resembles a simple programming language, as it provides conditional tests, variables
and operations for looping through lists.

I built a custom XSL style-sheet that converts the pattern template XML docu-
ments into Java source code files that subclass the PatternPane abstract class. This
procedure, followed by a source file compilation, is performed automatically by the
CO,P3S import feature, and requires no user intervention.

Since MetaCO2P3S saves the information entered by the pattern designer into
XML transparently, and CO2P3S automatically converts it into a plug-in module
using XSL, neither pattern users nor designers ever need to look at the pattern
template XML files. However, this does not detract from my decision to use a
human readable format, as it allows for easier pattern template debugging.

!'Extensible Markup Language
*Document Type Definition
*Extensible Stylesheet Language

28

3.4.2 Javadoc for Framework Template Code Generation

Javadoc [Jav] is a tool, included with the Java distribution, whose original purpose
was to generate HTML API documentation for Java libraries. Javadoc runs a mod-
ified Java compiler on Java source code files to parse the declarations and specially

formatted comments. Javadoc comments have the following format:

/%

* A comment describing the following Java construct.
*

* @sampleTag a tag that is parsed by Javadoc

*/

public void samplelJavaDeclaration()

The most important features of Javadoc comment formatting are:
e the comment blocks must start with “/##”.
e the comment blocks must end with “=/”.

e the Javadoc tag names may either be predefined (i.e. the ones used by Javadoc

to create API documentation) or user-defined.

e Javadoc comment blocks must immediately precede one of the following Java

constructs:

— a class declaration.

a constructor declaration.

a method declaration.

a field declaration.

Javadoc was eventually extended to allow pluggable Doclets. Doclets are Java pro-
grams that satisfy a contract allowing them to receive the parsed data from a Javadoc
execution. This data includes the declarations and comments from each of the parsed
classes. Method bodies and field initialisations are not provided, since they are ig-
nored by Javadoc. The parsed Javadoc output is provided to the Doclet using the
Doclet API [Doc], which provides access to the following information for each class:

e the imported classes and packages.
o the package of the class.
e the class declaration.

the constructor declarations.

the method declarations.

29

Figure 3.3: Launching the MetaCO,P3S editor.

o the field declarations.

For each of the declarations, Javadoc provides the text and tags from the associated
comment, if any.

When I started to look at the code generation problem, and the replacement
of the macro language used in the original CO;P3S implementation, my research
eventually uncovered one group’s use of Javadoc for code generation [Pol00]. Their
experience only covered very simple uses, but I felt that it would be an ideal solution
if extended. Javadoc allows us to have framework templates written in normal Java
code, with the meta-programming hidden entirely in the comments. This means not
only that my framework templates are much easier to read and edit, but also that
they can be successfully compiled with no preprocessing, to aid in testing.

The new framework code generation implementation is a source code to source
code transformation using Javadoc. There are two inputs to the process. One is a
set of Java source code files that have been annotated by the pattern designer. The
other is the pattern template parameters selected by a CO,P3S user.

The biggest pitfall that I experienced during my adoption of Javadoc as a frame-
work code generator was its inability to provide method bodies through the Doclet
API. My original intent was to modify the Javadoc parser to fix this drawback, but
that proved impossible since the Javadoc parser source code was not available. To
work around this short-coming, I decided to store the text for method bodies in
separate files. The benefit to this was that a similar approach was already needed
to provide parameterisation.

3.5 Pattern Template Creation using MetaCO,P;S

The MetaCO;P3S tool is launched from the CO2P3S GUI, as shown in Figure
3.3. The MetaCO,P3S GUI is pictured in Figure 3.4. This section describes the
MetaCO,P;3S portion of the pattern template creation process, using the Mesh as

30

© I patern Sewtings

© [constants

© [class Names

© (Jparameters

© [Gui Configuration

Figure 3.4: The Mesh Pattern Settings in MetaCQO,P;S.

an example. Another example of the steps used in MetaCO2P3S during the pattern
template creation process is given in Chapter 4.

In MetaCO,P3S, pattern templates can be saved to disk at any time, and
loaded later for subsequent modifications. Figure 3.4 shows the Pattern Settings,
the top level of the pattern template hierarchy, after the Mesh has been loaded
into MetaCO,P3S. As this and subsequent figures show, MetaCO,P3S is well doc-
umented, informing the pattern designer about each field they need to fill in. This
inline help serves to expedite the pattern creation process.

Figure 3.4 shows the two main panes in the MetaCO,P3S window. On the left is
an expandable tree that represents the hierarchy of data in my definition of pattern
templates, and also mirrors the layout of my XML files. Since a pattern template can
have an arbitrary number of some elements such as class names and parameters, the
pattern designer adds new leaf elements to the category tree using the buttons shown
in Figures 3.6, 3.9 and 3.12. In the right pane, the pattern designer is responsible
for filling in the necessary data fields, as directed by the inline help.

3.5.1 Pattern Settings in MetaCO,P;S

The settings pane for the Pattern Settings category serves to gather the pattern
template identification details. It is here where the pattern designer enters the
pattern name, and where the path names for extra files are defined. The inline help
describes how to name the pattern icons, and where they should be located.

31

tegosies— -

Medify Sel tingiis o
T RS,

(g

® Oeattern settings

- [LOUNDARV AL

® O conseants

D) MesH _Num_NEIGHBOURS LBL

D) mesH_sounDaRY conDs _LBL
DY mEsH_STATE CLASS L8t

D) MEsH_cLass name oL

DY mesH_sTaTe super_cLass.Ls
[MESH_ORDERING L8L
DY mesk oL

DY mesn_state_LoL

D) MesH _sTATE super_LoL

D) osject _crass

- ———— e e ey

D sounpanv.on

D) non_T_sounpary

Figure 3.5: Constants used in the Mesh pattern.

3.5.2 Constants in MetaCO,P;S

The only category in the tree that was not mentioned in Section 3.1 is the one named
Constants. Constants are string variables that the pattern designer can define and
use in other fields, later in the pattern creation process. Figure 3.5 shows one
such constant in the Mesh pattern template. Although I originally intended for
the MetaCO2P3S GUI to provide constants in a selectable widget in all locations
where their use is suitable, other implementation choices made this difficult, and it
is not featured in the current version. Instead, when supplying information for fields
needing a string literal, the pattern designer must either type a constant name (e.g.
CONSTANT_NAME) or a string literal in quotation marks (e.g. “theString”). This
nuance is described in the MetaCO,P3S inline help. The Delete Setting button at
the bottom of the settings pane is a common feature in all leaf nodes, and allows
the pattern designer to remove a setting that they no longer want.

3.5.3 Class Names in MetaCO,P;S

The Class Names category is shown in Figure 3.6. The pattern designer must specify
every class that is to be involved in their framework template. I provide both user-
known classes. shown in Figure 3.7 and framework classes, shown in Figure 3.8.
Either type of class may be designated a template class, which is one that pattern
users can enter application code into using hook methods. A pattern template can

32

1@ I pattern settings

(] constants

.

© () Class Names |
—t

© Jparameters

LJue X1 Configuration

Figure 3.6: The Class Name pattern settings in MetaCO,P3S.

© (3 Constants

© CAClass Names

i Default value: ilmcsn_sur:_l.u
DCnlIeaal . LTI T

Divar

D MeshStaeSuper

D {AbstractColiector]

D [AbstractMesh}

. 1

D [Voundedmesharray] |{ 41 [F m!&.ll 'll.. (‘ﬂ

D) Meshsime)
D [MeshStrategy]
©(Jrarameters

Lo 1T} Configurstion

Figure 3.7: Editing a uscr-known class in the Mesh pattern template.

33

© (J Conscants

® O Class Names

D Collector

D mesn

D MeshStateSuper
D 1abstracecontecrar
Dtastrmtmtesh)

D [FoundedMeshA

Figure 3.8: Editing a framework class in the Mesh pattern template.

© (O constants

© (JClass Names
e

& Cpaametarsi

& (3 Gut Configuration

Figure 3.9: The Parameter pattern settings in MetaCO,P;S.

34

RO K
> "'."e’__.—-—-«.,:‘—r—p_—

f ® Oprartern Settings

© Y conseants

© (] Class Names

= s »
Zhl. v “OOUNDARY _LOL
® Orarameters % J,!v ¢ '._,!'-‘4:.;‘,. aoh— :L i

Dvounder,

D numNeighbours _

e[Tcu Configuraticn

AT L T MRS, =

rx
,%[NON_TJOUNDARY
PR T LT

NON_T _BOUNDARY

JFULLY _T_BOUNDARY o

[HORIZ_ T _BOUNDARY

VERT _T_BOUNDARY

Figure 3.10: Editing a basic parameter in the Mesh pattern template.

& Constants

& class Names

® Cracumeters

] ufc pmul;-

A Vet oy o o e

| g 1] Coafiguration

4
E
E:
3
o
4

AT AR e =

Figure 3.11: Editing a list parameter in the Phases pattern template.

have more than one template class.

User-known classes are those that are visible to pattern template users. One
user-known class should be chosen by the pattern designer to represent the pattern
instance in the CO,P3S GUI. The user-supplied name for this class will be displayed
in the CO,P3S program panel. User-known classes can also be used to allow pattern
users to integrate external classes into the framework, such as a superclass that
provides application-specific functionality.

Framework classes are typically not known to the pattern user. To avoid name
clashes, the pattern designer must add prefixes or suffixes to one of the user-known

classes when forming a framework class name.

3.5.4 Parameters in MetaCO,P;S

The Parameters category is shown in Figure 3.9. The buttons that allow a pattern
designer to add each of the three types of parameters defined in Section 3.1.3 are
shown. Figures 3.10 and 3.11 show the settings pane for basic and list parameters,
respectively. For each type of parameter, the pattern designer must provide a unique
identification, and a name that will be displayed in the CO,P3S GUI.

The basic parameter has two additional pieces of required information. The first

36

® Drattem Settings

& Jconstants

f
1
0
i
!
|
il

BN
i

© ([Class Names
© (Joarameters

¢ Ccu Configuration

Q'G\Mud lumnu ‘

B e e

Figure 3.12: The visual GUI elements pattern settings in MetaCO,P;S.

© 3 eattern settngs . ¢
1. Name: jmesnNameT

& (J conseants

© (I Class Names

¢ Qe Configuration

I
]
|
|
© (Jparameters i
|
!
® Avisus tlements |
!
]
t

® O meshc

& Jimages

.'clm.ge Nlm

D meshStSuperT

{;
g]
D ardenngT ‘
|
1
!

D meshseaer

LT oAy

Figure 3.13: Editing a visual text element in the Mesh pattern template.

37

9 A Configurmion

¢ Avisual Erements

? Cmesnc

& Fimages

& (D image Name Parts

D) meshnamer
D ordenngT
P —— A~D.-.l.‘.lml_._._,_.

Figure 3.14: Editing a visual graphical element in the Mesh pattern template.

® Avisual Elements

® OAmesnc

D mesncruitys

’ D meshCHonzontale

D meshCHonzontals

Figure 3.15: Adding images to a visual graphical element in the Mesh.

® A meshc

& (Jimages

® Oimage Name Parts

D "meshG®

D meshnamer

Figure 3.16: Configuring the name of a visual graphical element in the Mesh.

is an optional default parameter value. The second, for basic parameters with an
enumeration of possible choices, is the list of valid options that are to be presented
to the pattern user.

List parameters also have two additional pieces of required information. First
is the parameter class, to be written by the pattern designer, that interfaces with
the code generator to supply appropriate code to framework instances. Second,
for list parameters with extended elements, is the parameter class for the extended

parameters.

3.5.5 GUI Configuration in MetaCO,P;S

The GUI Configuration category is shown in Figure 3.12. The pattern designer can
add both graphical and textual elements to the pattern template GUI display. Figure
3.13 shows the configuration settings for a text element. Figures 3.14 through 3.16
show the settings needed for graphical elements. Both element types require a name
and a coordinate location for the pattern pane.

Text elements have a number of other configuration options. Two of these,
the maximum length and justification deal only with the aesthetics of the visual
display. Pattern designers must supply the default text string to be displayed. The
text elements can also be set to update dynamically with the value of a given class
name or parameter.

Graphical elements can also be made to dynamically represent the value of basic
parameters. To achieve this, the pattern designer must specify one or more image
name parts. Each of the parts can be a static string, or the value of a basic pa-
rameter. The concatenation of the parts is used to dynamically create a filename
that should be found in the list of images supplied by the pattern designer. As
exemplified by the Mesh pattern template, multiple parameter values can be used

in the dynamic selection of a single graphical element.

3.6 Framework Template Creation

Given a pattern template and a specific parameterisation, CO2P3S must generate an
appropriate object-oriented framework instance. The pattern designer must create
a framework template that can accurately perform this task in conjunction with the
MetaCO2P3S-generated pattern template description. It is the pattern designer’s
responsibility to ensure that the generated frameworks are error-free, and correctly
implement the intended parallelism.

An annotated source code template must be written for each of the classes in the
framework. It should be noted that I designed the framework template format to be
used in a rich graphical editing environment. Because of this design, the annotations

39

discussed in this section can easily be encapsulated in a programming environment.

The following transformations must be supported by the supplied annotations:

Placeholder class names in the annotated source files must be replaced with

the unique names that are supplied by the CO,P3S user.

Methods or variables may be selectively generated based on the user’s basic
parameter settings. The pattern designer must specify the combination of
parameter settings that allows a given construct to be generated.

Portions of method bodies may be selectively generated based on the given

basic parameter settings.

New methods or sections of method bodies may be generated based on ex-

tended or list parameter settings.

In the template classes that were specified in MetaCQ,P3S, selected methods
must be marked as modifiable by the user. This allows CO,P3S to display

hyper-links in the code template viewer.

The pattern description file created by MetaCO,P3S is stored within the CO2P3S
installation directory as “patterns/[PatternName] .xml”. When the pattern tem-
plate is saved, MetaCO2P3S also creates the framework template directory, at

“patterns/[PatternName] /”. The directory layout for patterns is depicted at the

end of this section, in Figure 3.23. The framework template directory has the fol-

lowing contents:

Java source files for each of the class names provided in MetaCO,P3S. The
source files each have the prefix “FrameworkCLASS_", to clearly differentiate
them from classes in framework instances. MetaCO,P3S automatically creates
these files, which must then be edited by the pattern designer as discussed in
Section 3.6.1.

a “framework_methods” directory that contains subdirectories for each of the
classes in the pattern. These subdirectories are where the pattern designer
must put the default method bodies for each of their classes. The subdirecto-
ries are automatically created by MetaCO,P3S.

a “framework.prop” Java properties file that links extended and list param-
eters (if any) to the Factory class used to create them. This file is created
automatically by MetaCO,P;S.

40

3.6.1 Building the Framework Classes

The framework classes need to be written as compilable Java source files. Since the
framework code generator uses the Javadoc tool, Javadoc comment formatting fea-
tures prominently in these classes. They are written with all the necessary method
declarations, but no method bodies. Default method bodies are put into separate
files. The code generator does not support inner classes, although interfaces and
abstract classes are supported. However, it is recommended that pattern design-
ers supply dummy method bodies as needed, to ensure that the template can be

compiled.

The Template Classes

The template classes are those that were selected by the pattern designer to be
visible to the user. In the CO,P;S Template Viewer, the pattern user does not have
the ability to edit method signatures in these classes. Instead, they are shown an
unmodifiable view of the entire class, and allowed to click on hyper-links for the
hook methods specified by the pattern designer.

To make hook methods, the pattern designer needs to put an “0editable” tag
in the preceding Javadoc comment. To allow the user to add their own methods
to the template class, the “QuserCodeAllowed” tag should be put in the Javadoc
comment preceding the class declaration. If the pattern designer wishes to allow the
user to import additional classes or packages to the template class, they can place
an “QuserImports” tag in the class declaration Javadoc comment.

Figure 3.17 displays an excerpt from the MeshState template class from the Mesh,
including some of the Javadoc tags described above. Figure 3.18 shows the output
from CO,P3S after a pattern user has selected one possible parameterisation of the
Mesh. Given this parameterisation as input, the code generator creates the Java
framework instance code shown in Figure 3.19, and provides the CO,P3S GUI with
the template class shown in Figure 3.20. The following sections provide further
descriptions of the inputs and outputs to the code generation example shown in

these figures.

The Connection to MetaCO,P;S

The framework template example in Figure 3.17 necessarily has connections to the
information given by the pattern designer in MetaCO,P3S. Each of the class names
or types that are prepended by “FrameworkCLASS_" are placeholder references to
framework classes, and will be replaced with user-supplied names during framework
instance generation. In addition, each instance of the “Oparameter” Javadoc tag is
directly followed first by the name of a parameter, as supplied by the pattern designer
in MetaCO,P3S, and second by one of the enumerated values for that parameter.

41

/’t#ttﬁt##‘#‘C#tit##”"tttt’ttttt’Itttt'#‘#8#3‘*#"*‘#‘##"3‘tttt#ttt’tt#tt"itt

* This class represents a single node in a mesh computation.
*
* @userImports
* @userCodeAllowed
* @frameworkSuperclass FrameworkCLASS_MeshStateSuper
Y/

public class FrameworkCLASS_MeshState

{

/"#
* @initialValue 50
Y/
public static final int MAX_COUNT;

/"‘
* Constructor.
P

¥ @editable
Y/
public FrameworkCLASS_MeshState(int i, int j, int surfaceWidth,
int surfaceHeight, Object initializer)
{

}
/l#

* Iteration method for a top right corner node in an 8 point mesh.
*
* @parameter numNeighbours. 8

* @parameter boundary_ Non
* @editable
Y/
public void topRightCorner(FrameworkCLASS_MeshState south,
FrameworkCLASS_MeshState southwest, FrameworkCLASS_MeshState west)
{

}
/tt

* Iteration method for a top right corner node in a 4 point mesh.
*
* @parameter numNeighbours_ 4
* @parameter boundary_ Non
¥ @editable
Y/
public void topRightCorner(FrameworkCLASS_MeshState left,
FrameworkCLASS_MeshState down)
{

}

Figure 3.17: Mesh template code example.

42

#MeshClass User Properties

PatternName=MeshClass

ordered_=Ordered Computation

boundary_=Non

numNeighbours_=4

FrameworkCLASS _MeshStateSuper=0bject
FrameworkCLASS_BoundedMeshArray=BoundedMeshNodeArray
FrameworkCLASS_MeshState=MeshNodeState
FrameworkCLASS_Mesh=MeshNode

Figure 3.18: User parameterisation from CO,P;S.

The Java construct immediately following the Javadoc comments containing these
tags are generated only if the pattern user selects the given parameterisation in
CO2P3S prior to framework generation.

External Class References

The pattern designer may use the “O@frameworkSuperclass [referenceClass]”
tag in the Javadoc comment directly preceding the class declaration if they wish
to allow pattern users to supply an external superclass for one of the framework
classes. The supplied referenceClass should be one of the class identifiers supplied
in MetaCQO,P3S for which the “Reference to external class” check box is selected. Fig-
ure 3.17 shows an example usage of this Javadoc tag. The generated framework code
shown in Figure 3.19 does not have a superclass, since the user-supplied parameteri-
sation of Figure 3.18 does not include a setting for the appropriate referenceClass
(although it has the default Java superclass setting of Object).

Initialising Class Fields

If the pattern designer wants to declare class-level fields, such as instance variables
or constants, they can simply use normal Java syntax. However, if a field initial-
isation is required, the pattern designer must attach a Javadoc comment with a
“QinitialValue [valuel]” tag. The initialiser should not include either an *="
sign or a “;” terminator. An example initialisation is shown in Figure 3.17, for the
MAX_COUNT constant.

Conditional Construct Generation Using Basic Parameters

The pattern designer can specify which methods, constructors and fields should be
generated by using the “@parameter [paramld] [paramValuel” tag in the pre-
ceding Javadoc comment. The paramld refers to the parameter identification from
MetaCO,P;S. The paramValue refers to the user-selected value of the given param-

eter.

43

// user imports

BEXFIEEBE2F258 23R B85F 3550 0B82 PSR RSBEBFEREERE R SRR E R R RSV LSRR E USRS 82R
* This class represents a single node in a mesh computation.
Y/

public class MeshNodeState

/#‘
* Constructor.
Y/
public MeshNodeState(int i, int j, int surfaceWidth, int surfaceHeight,
Object initializer)
{

}
/I#

* Iteration method for a top right corner node in a § point mesh.
Y/
public void topRightCorner(MeshNodeState left, MeshNodeState down)

{
}

// user code

public static final int MAX_COUNT = 50;

Figure 3.19: Mesh template code in framework instance after parameterisation.

If multiple entries are supplied with the same parameter identification (but differ-
ent values), generation of the associated construct occurs if any one of the given set-
tings is true. This gives the ability to selectively generate constructs using Boolean
“OR" logic. If multiple entries are listed, each with different parameter identifica-
tions, the associated Java construct is generated only if all of the given values are
true. This Boolean “AND” logic can be combined with the “ORing” of values on
a single parameter identification to create expressive and powerful conditional code
generation statements.

Figure 3.17 gives an example of conditional construct generation using basic
parameters. Since the conditions in the second iteration method header match the
user-supplied parameterisation shown in Figure 3.18, only the second method gets
generated to the framework code shown in Figure 3.19.

44

,.'. /."i".""""."."i'.i'iii'i"'.'.i"".""i'i"'"'l""ii"""'.""..."

* This class represents a single node in a mesh computation.
*/
Ljpub11c class MeshNodeState

oK
v /"

* Constructor.

*/

publi¢ MeshNodeState(int 1, int j, int surfaceWidth, int surfaceHeight,

* Iteration method for a top right corner node in a 4 point mesh.
*/
14 i lefy, MeshNodeState down)

Figure 3.20: Mesh template code in CO,P3S Template Viewer after parameterisa-
tion.

45

// This method body is located at:
// patterns/Mesh/framework_methods/FrameworkCLASS._AbstractMesh/topRight Corner

// The following class name, enclosed in # characters, gets replaced with
// the user class name in the pattern template instance at framework code
// generation time

#FrameworkCLASS_BoundedMeshArray# state = state_;

// The following text within the MACRO delimiters is only generated when the
// pattern user sets the number of neighbours to eight
#FrameworkMACRO#(numNeighbours_ == 8)

<iteration code deleted>

executelnteriorNodes(state, 0, width — 1, 1, height) ;
#FrameworkMACROend#

#FrameworkMACRO#(numNeighbours_ == 4)
<iteration code deleted>

executelnteriorNodes(state, 0, width — 1, 1, height) ;
#FrameworkMACROQOend#

Figure 3.21: Mesh method body framework template example.

BoundedMeshNodeArray state = state_;

<iteration code deleted>
executelnteriorNodes(state, 0, width — 1, 1, height) ;

Figure 3.22: Mesh method body generated after parameterisation.

Construct Generation Using Extended and List Parameters

The pattern designer can add code to a class from extended or list parameters by
putting the “OextParameter [paramId]” tag in the Javadoc comment preceding
the class declaration. Further discussion of extended and list parameter code gen-
eration is in Section 3.6.2.

Supplying Default Method Bodies

Each default method body needs to be supplied in a separate file in the subdirec-
tory of framework_methods matching the containing framework class. For methods
marked @editable, the given default method bodies are used until they are modified
by the pattern user. The filenames for default method bodies must be unique within
a class, so they consist of the method or constructor name followed by the each of
the parameter types. Each of the name is separated by a “.” character. For exam-
ple, a method with the signature “public void read(Reader r, boolean b);”

46

would have its default method body stored in a file called “read.Reader.boolean.”

Method Body Expansion

Method bodies may contain macros that cause their contents to vary based on a
given parameter value. The framework code generator expands these macros using

the following order of operations:

1. sections of code wrapped by basic parameter macros are generated only if the

given parameter conditions hold,
2. code fragments are inserted using extended or list parameter macros, and
3. placeholder class names are replaced by user-supplied class names.

Macros for basic parameters must have delimiters at the beginning and end of the
code fragment that is to be conditionally generated. The syntax of the opening de-
limiter is “#FrameworkMACRO#([paramId] [op] [valuel).” where paramld refers
to the parameter identification, op can be either “==" or “!=" to indicate the con-
ditional test to be performed, and value is the value to test in the conditional
statement. The syntax of the closing delimiter is simply “#FramewvorkMACROend#.”
The code fragment contained within the macro delimiters is generated only if the
given conditional statement is true. The macros can be nested, so that code frag-
ments will be conditionally generated based on multiple parameter values.

The syntax of macros that insert code fragments based on extended and list
parameter settings is “#FrameworkPARAM_([paramId]#.” The paramld is the appro-
priate parameter identification. The expansion of these macros is discussed further
in Section 3.6.2.

Since placeholder class names need to be replaced by user-supplied class names
during code generation, their references in default method bodies must be specially
encoded. The encoding takes the form “#FrameworkCLASS_[className]#,” where
className refers to the class name identification supplied in MetaCO,P3S.

Given the user-supplied parameterisation from Figure 3.18, the default method
body example in Figure 3.21 generates to the framework code in Figure 3.22.

3.6.2 Implementing Extended and List Parameters

The Distributor and Phases pattern templates both use list parameters. The im-
plementations of these pattern templates serve as an excellent example for pattern
designers that need to use either extended or list parameters. The first part of the
extended parameter design requires that a parameter class provided with CO,P3S
be sub-classed to provide a module that can be used to obtain and store parameter
settings in CO,P;S. Since the code generator module runs in a sand box that is

47

decoupled from CO,P3S, the second piece of the design is a class that can create an
instance of the appropriate parameter. This class must subclass a provided template
that is designed using the well known Abstract Factory design pattern [GHJV95].

During code generation, extended and list parameters can be used either to add
code at the class level, such as methods or fields, or to add code fragments to method
bodies. Both cases are treated similarly. Since extended parameters can store
information in an arbitrary format, the pattern designer must write code to define
what gets generated. This code must be placed in the package defined in the Pattern
Settings of MetaCO,P3S, which is typically “cops .gui.patterns. [patternName].”

The pattern designer must provide a means by which the code generator can
gain access to an extended parameter. This is done by creating a subclass of
the “AbstractParameterFactory” class, which is included in the CO,P;3S dis-
tribution. The name of the factory subclass is written by MetaCO;P3S into the
“framework.prop” file. The only requirement of the factory class is that it imple-
ment a method that calls the constructor of the appropriate extended parameter
class. The location of each of the files making up a pattern template is depicted in
Figure 3.23.

The parameter class must also be written by the pattern designer. For extended
parameters, the parameter class subclasses “AbstractPatternParameter.” For list
parameters, it subclasses “PatternListParameter.” Each of these super-classes is
provided with CO,P;S.

In AbstractPatternParameter subclasses, the pattern designer must implement

methods that perform the following functions:

o test whether a parameter has been set by the pattern user, and is therefore

ready for code generation,
e create a dialog to gather parameter settings from the user,
e save the parameter settings to a string,
e load the parameter settings from an equivalent string, and
e provide code to the framework generator for a given class.

For list parameters, CO,P3S automatically handles the first four functions.

To provide methods and fields to the code generator, the pattern designer must
use the “CopsMethod.” “CopsField” and “CopsArgument” data types supplied with
the CO,P3S distribution. The purpose of these classes is to provide code fragments
to the framework generator in a structured and standardised format. Method body
code fragments are supplied to the code generator using simple strings.

48

4 ﬂ?ops?roj Directory
& Jiibs Directory
© (A cops Directory
©(Jprograms o o _ Directory
® O patterns o " .. .Directory

? (AMesh Directory
© [framework_methods Directory
© [Framework CLASS_AbstractMesh Directory
© [rramework CLASS_AbstractCollector Directory
& (rram ework CLASS_MeshStrategy Directory
® (Y rramework CLASS BoundedMeshArray Directory
© (I Framework CLASS_Mesh Directory
©- (] Framework CLASS Collector Directory
@ (I rramework CLASS_MeshState Directory
D notDone File
D Framework CLASS_MeshState java File
D Framework CLASS _AbstractMesh java File
D Framework CLASS BoundedMeshArray.java File
D Framework CLASS_AbstractCollector.java File
D Framework CLASS _Mesh java File
D Framework CLASS _Collector.java File
D Framework CLASS_MeshStrategy.java File
D framework.prop File
© (I wavefront Directory
© (J pistributor Directory
DMesh.xml File
D Distributor.xml File
D Wavefront.xmi File
DPhases.xml File
®(Jrhases Directory
© M pinutil Directory
? CIxsi Directory
D CopsPattern.xs! File
¢ Qoto Directory
D CopsPattern.dtd File
L 4 Uimages Directory
DMesh.gif File
DsmallMesh,gif File
D wavefront.gif File
D oistributor.gif File
D Phases.gif File
smallwavefront. gif File
D smallDistributor.gif File
DsmallPhases.gif File
D runCops File

Figure 3.23: Directory layout of pattern templates in CO,P3S.

49

Figure 3.24: Importing a pattern template into CO;P3S.

3.7 Testing the Pattern Template

It is crucial that pattern designers thoroughly test their pattern template creations
prior to their release. As part of this testing, the pattern templates can be imported
into the CO,P3S environment, as described in the following section. If changes are
made to the pattern template, the pattern designer can easily update the pattern

template in CO,P3S for further testing.

3.8 Importing Pattern Templates into CO,P3S

[have made it easy to import new parallel design pattern templates into CO,P3S,
or to update existing ones. The CO,P3S user simply needs to select the “Import
Pattern” menu item from the “Environment” menu as shown in Figure 3.24, then
browse to the appropriate directory and select the desired pattern template file.
During the import process, CO2P3S automatically converts the selected XML file
into a plug-in Java module, and adds a button containing the pattern icon to the

palette.

50

Chapter 4

Validating MetaCO,P3S

[designed and implemented the CO,P3S meta-programming extension so that it
would allow any design pattern to be transformed into a pattern template. This

section describes the steps I have taken to validate my approach.

4.1 Recreating CO,P3S

My first step in testing the coverage and correctness of the MetaCO;P3S tool
was to regenerate each of the pattern templates from the original CO2P3S en-
vironment. The Mesh, Distributor and Phases pattern templates have all been
successfully regenerated, and the standard CO,P3S distribution now is the one
generated by MetaCO,P3S. Since these pattern templates formed a basis for the
MetaCO,P;S development, their creation was not completely straightforward. How-
ever, as MetaCO2P3S was continuously refined to deal with the issues that arose
during their creation, I could see that my work was greatly simplifying the overall
pattern creation process. The short pattern template development times required
for the work described in Sections 4.2 and 4.3 are evidence of my tool’s success in

attaining the goal of enabling and simplifying pattern creation.

4.2 Case Study: Genetic Sequence Alignment

A common problem in bioinformatics lies in finding an optimum alignment for a pair
of DNA or protein sequences {CSS00]. Typical algorithms for sequence alignment
construct a dynamic programming matrix with the sequences on the top and left
edges. A score is propagated from the top left corner to the bottom right. The value
of each entry in the matrix depends on three previously computed values, above, to
the left, and in the above-left diagonal, as shown in Figure 4.1(a). Once all of the
values in the matrix have been calculated, another algorithm can be used to trace
backwards through the matrix to get the maximal cost path, or optimum sequence

alignment.

v

>
(a) Score prop- (b) The wave-
agation. front computa-

tion ordering.

Figure 4.1: Solving the sequence alignment problem with a dynamic programming
matrix.

4.2.1 Isolating the Wavefront Design Pattern

John Anvik, one of the graduate students in our research group, was studying the
dynamic programming problem, and attempted to parallelise it using CO,P3S. He
identified a wavefront parallel design pattern in the dynamic programming algo-
rithm, but no Wavefront pattern template was available, preventing further progress.

Wavefront design patterns apply to problems where a computation needs to
sweep breadth-first through a tree, with child nodes having data dependencies on
their parents. The wavefront describes the edge separating the processed nodes
at the top of the tree from the nodes waiting to be processed. The dynamic pro-
gramming problem is easily expressed as a wavefront due to the dependency of each
matrix entry on three of its neighbours. Figure 4.1(b) shows how the data dependen-
cies in Figure 4.1(a) can be transformed to a wavefront computation. Blocks with
the same number are computed concurrently after the blocks with smaller numbers
have been computed. The wavefront design pattern can be implemented using a
work queue, where nodes at the edge of the wavefront whose data dependencies
have been satisfied are available to be computed. A user’s view into a wavefront
framework requires only that they provide the node processing implementation. A
single parameter affects the implementation of the wavefront design pattern, deter-
mining whether notifications of computation completion are pushed to child nodes,

or pulled from parents.

4.2.2 Creating the Wavefront Pattern Template

The lack of a Wavefront pattern template in CO,P3S provided an opportunity to
use MetaCO3,P3S. John Anvik had not been involved in the MetaCO,P3S research,
which also made the exercise of adding a pattern template a test-bed for the usability

of my tool.

52

© (] constants

© [Class Names

& [parameters

L K] Configuration

Figure 4.2: The Wavefront pattern template in MetaCO,P3S.

The first step used to create the Wavefront pattern template was to specify the
pattern description using MetaCO,P3S. After launching the tool, John Anvik named
the new pattern template and supplied an icon to identify the Wavefront in CO,P3S.
Figure 4.2 illustrates this process. Note that the text, “yourPattern”, supplied as
part of the default pattern images directory has been replaced by “wavefront”, as
suggested by the accompanying inline help.

Next, the class names for the framework template were supplied. One of these,
called Wavefront, was sclected as a user-known class, and also as a user-modifiable
class. Six framework classes were defined, the names of which were made dependent
on Wavefront for their uniqueness, with suffixes added to indicate their role in the
framework. The class settings in MetaCO,P3S are shown in Figure 4.3. Referring
back to Figures 3.6 through 3.8, we see how Delete Setting buttons are at the bottom
of every class (or parameter) setting, and that new classes (or parameters) are
created using buttons at the bottom of their respective tree elements. Note that
since the Default value and Menu text fields require a Java String literal, the quotation
marks shown are required.

The lone Wavefront pattern parameter, described in Section 4.2.1, was defined as
a basic parameter using MetaCO2P3S. The parameter was called notification, and
was given an enumeration of two possible values: push and pull Figure 4.4 shows
the notification parameter being defined.

The last step in the pattern description process was providing a GUI configura-
tion. The result of this configuration is shown in Figure 4.5. At the top, a textual
element is displayed that automatically updates to display the user-supplied name

a3

Ey ry

CO.P;S m—

352 mmnnstoor

N B

PRt

Figure 4.5: The Wavefront pattern template in CO,P3S.

59

D Pattern Settings

© [consrants

© (I Class Names

© (I parameters

¢ QAacu Configuration

¢ (Jvisual Elements

& (Y wavefront_image
D ClassName

© ([Notification Jmage

ES e

Label

INonfication

-

R W A X R et

Figure 4.6: The Wavefront pattern template GUI settings.

56

Execution Time (seconds)
Notification Seq 2P| 3P| 4P
Push 2290 | 117.3 | 83.2 | 65.4
Pull 230.1 | 118.5 | 83.5 | 66.4

Table 4.1: Execution times using the Wavefront for sequence alignment.

for the Wavefront class. To do this, the pattern designer provided the text loca-
tion, and the class name to display in MetaCO,P3S. Below the class name is an
image of a wavefront. The pattern designer provided this image and its location
in the GUI using MetaCO,P3S. At the very bottom of the display, the graphical
figure and the text display are both representing the notification parameter setting.
In MetaCO2P3S the pattern designer provided two images, and identified which
one should be displayed with both possible parameter value. Figure 4.6 shows the
textual representation of the notification parameter being defined in MetaCO,P;S.

After entering the pattern description using MetaCO,P3S, John Anvik needed
to provide annotated framework source code for each of the defined classes. This en-
tailed writing normal Java source code, with the addition of conditional compilation
sections that depended on the setting of the notification parameter.

At this point, the initial version of the Wavefront pattern template was com-
pletely specified. John Anvik imported it into the CO,P3S environment, and tested
the pattern template prior to implementing the sequence alignment dynamic pro-

gramming program.

4.2.3 Analysis

The new Wavefront pattern template was used with CO,P3S to implement the
dynamic programming matrix algorithm for genetic sequence alignment. Two se-
quences of 10,000 random proteins each were used as test data. The sequential and
parallel implementations of the algorithm were run using a Java 1.3 virtual machine
with native threads on a four-processor shared-memory SGI O2. The push and
pull notification parameter settings were both used independently as a performance
comparison. Table 4.1 shows the average execution times for 20 runs of each im-
plementation. The parallel speedups are compared in Figure 4.7. There were no
significant diflerences in the performance numbers for the push and pull notification
parameter values. This could indicate that the parameter is unnecessary. If so,
MetaCO,P3S makes it easy to remove the parameter from the pattern template.

The Wavefront pattern template described in this dissertation is still undergoing
modifications. There is work being done in our research group to refine the pattern
template with new parameters, making it more general.

57

|
3 —
a
a
3 ‘-—Sequemiall
iz | ® Push |
{ & Pull '
(7]
1
0 . .
0 1 2 3 a

Processors

Figure 4.7: Speedups using the Wavefront for sequence alignment.

4.3 Extending CO,;P3;S from Shared-memory to Net-
works of Workstations

Kai Tan, another graduate student in our research group, has a research goal of
extending the CO,P3S programming environment from using shared-memory par-
allel computers to using distributed networks of workstations. One of the tasks that
this entails is making modified copies of the existing CO2P3S pattern templates
(called DMesh, DDistributor, and DPhases) that will run on networks of workstations.
MetaCO;P3S has been instrumental in this task, enabling Kai Tan to perform the
bulk of the conversions with relative ease. This has freed up time for him to concen-
trate on developing efficient distributed implementations of the pattern templates,

and tools to support their use.

58

Chapter 5

Pattern Template Repositories

The primary goal of this research was to overcome a major limiting factor in the ac-
ceptance of template-based parallel programming environments, by providing a tool
for extensibility. Sections 1.1 and 2.6 motivated this goal, describing how CO,P3S
and other template-based parallel programming environments will not become vi-
able until their available templates cover a wide variety of parallel problems. With
my introduction of the MetaCO;P3S tool, the creation of new pattern templates has
become much easier, and the coverage of template-based programming environments
can be made arbitrarily wide.

Even though new pattern templates can now be created by the parallel program-
ming community, there must also be a way to share them. To facilitate this sharing,
I propose that a central repository be created. Since my pattern templates consist
only of XML, Java and image files, they are system-independent, and can easily be
packaged in a downloadable format for distribution on the Internet.

In addition to allowing new pattern templates to be shared, another advantage to
a central repository is the ability it provides for pattern templates to be refined with
new parameters or implementation improvements. The Mesh pattern template went
through one such iteration after the discovery of an application that required mesh
nodes having eight neighbours instead of four. Our original pattern template only
supported mesh nodes with four neighbours. The pattern template was modified
by adding a new parameter, and specifying the effect that this new parameter had
on the generated framework code. The research being done to extend CO2P3S to
run on networks of workstations is another example of the usefulness of repositories.
Each of the available pattern templates has been copied and modified to support
distributed processing.

The creation of a pattern template repository would also extend a challenge to
the template-based parallel programming community. Currently, the research being
done by different groups on template-based programming environments is almost
completely independent. MetaCO,P3S provides the the ability for these efforts to

59

be unified. I would like to see this challenge taken up by the community, either
through the modification of programming environments to support my pluggable
pattern templates, or through the submission of new pattern templates to the shared
repository that will eventually make our template-based environments usable and
practical.

A number of issues need to be resolved in order to make our vision of a pattern

template repository possible, including but not limited to:

e determining what organisation or individual will be responsible for the main-

tenance and hosting of the repository.

o deciding whether repository access levels are required (e.g. to provide different
levels of service to pattern users and pattern designers).

o defining a hierarchy or categorisation for pattern templates.

e providing some means (manual or automatic) for pattern template verification.

5.1 The Generality of My Meta-programming Approach

At one point during the development of the MetaCO2P3S tool I made an important
discovery about my meta-programming approach. Although the CO,P3S environ-
ment was built for parallel programming, the generality of the MetaCQO,P3S tool can
make CO,P3S independent of the parallel programming domain. My definition of a
pattern template is widely applicable, encompassing more than just parallel design
patterns. Because of this generality, I surmise that eventually a segmentation of the

repository will occur, along with a categorisation of pattern templates.

Chapter 6

Related Research

The history of the CO,;P3S environment is described in Chapter 2. MacDonald
[Mac01] systematically compares CO2P3S to a wide variety of parallel program-
ming methodologies. This chapter has a narrower focus, relating the CO,P3S meta-
programming extension to related research in high-level extensibility techniques.
The parameterisation of design patterns, and their instantiation into object-oriented
frameworks, is at the core of CO,P3S. Therefore, this chapter also briefly discusses
related research in design patterns and frameworks, including solutions to the code
generation problem.

One goal of parallel programming systerns is simplifying the parallel development
process. Pursuing this goal often necessitates compromises elsewhere in a system.
One common sacrifice is application performance. However, there is much to judge a
system by in addition to its balance of speed and simplicity. The compiled knowledge
from almost a decade of research on the predecessors to CO2P3S was used to create
a list of desirable characteristics for template-based parallel programming systems,
as enumerated by Singh [SSS98]. These characteristics were used by MacDonald
[Mac01] to evaluate CO,P3S, and found that it had done much to advance prior
research. One of the major shortcomings that the study identified was the lack of
extensibility in CO,P3S. The aim of this dissertation was to remove that obstacle,
and this chapter compares my approach to the way other systems have dealt with
the same problem.

Specific parallel programming languages and parallel libraries are not discussed,
since their development process differs dramatically from that of CO,P3S. Languages
are typically quite general, presenting few restrictions to the programmer. However,
they require parallelisin to be interwoven with application code, placing the onus
on the developer for correct parallelism. Libraries for general parallel communica-
tion also suffer from this problem. Domain-specific libraries may be successful at
hiding parallel constructs, but they are not applicable to a wide variety of prob-
lems. In contrast, template-based systems like CO,P3S, although limited by their

61

available templates, are applicable over many domains. Furthermore, development

is simplified by separating user application code from parallelism.

6.1 Design Patterns and Frameworks

Design patterns have been defined in Chapter 2.1. Johnson [Joh97] gives a concise
definition of a framework. It identifies code and design patterns as the two basic
constituents of a framework. In CO2P3S, our pattern template abstraction bridges
the gap between design patterns and frameworks, and is the mechanism by which
we simplify the programming task for our tool’s users.

The goals and abstractions of code skeletons are similar to those of our pattern
templates. A detailed comparison of the two techniques is presented by Danelutto
[Dan01]. However, the tools provided by the skeleton community take a different
approach than CO,P3S. P3L [BDO%95] is a parallel programming language based
on skeletons. It provides a set of language constructs, or skeletons, that correspond
to different types of parallelism. Application-specific code can be supplied to the
skeletons, and in turn, the skeletons can be composed by connecting their input and
output data streams. The skeletons provided with P3L are fixed, and cannot be

extended.

6.2 Extensible Pattern-based Programming Tools

6.2.1 Generic Programming Environments

A prototype tool for supporting the use of object-oriented patterns is presented by
Florijn [FMvW97]. It provides three views into a program: the code, the design,
and the design pattern occurrences. After a pattern instance has been added to a
program, the tool can generate the necessary classes, but program elements must
then be bound to particular roles in the pattern. A refactoring package is provided
that allows one to either design a new program using design patterns or document
the design patterns in an existing program. The tool does not prevent a user from
modifying the pattern semantics in their application. This approach to program-
ming with design patterns is in contrast to CO2P3S, which guides programmers
through the entire process of pattern template use, and prevents them from mod-
ifying pattern semantics. However, one advantage of the tool presented by Florijn
[FMvW97] is its tight integration of multiple patterns in a single application. In
addition, provisions were made to allow new design patterns to be added to the tool,
but the procedure is undocumented.

Two commercial tools that harness design patterns for business application de-
velopment are available. Both provide extensibility by allowing new design patterns
to be added, although no tool is provided to aid in this task. In OmniBuilder [Omn],

62

design patterns represent low-level tasks for user interfaces in business applications.
In ModelMaker [Mod], design pattern instances act as macros that insert code into
the classes or methods they are told to act upon. Unlike CO,P3S. ModelMaker does

not separate user code from design pattern immplementations.

6.2.2 Parallel Programming Environments

Although many research groups study pattern-based parallel programming environ-
ments, few address the need for extensibility. Two such exceptions are DPnDP
and Tracs. DPnDP [Siu96, SSGS96] helps to create distributed message-passing
programs. Like CO,P3S, design patterns in DPnDP are modular, supporting ex-
tensibility. However, DPnDP does not provide a tool like MetaCO;P3S for creating
new patterns, but rather specifies a C++ framework under which patterns can be
built. Patterns created using this framework have only a structural specification; all
behavioural aspects, such as communication and synchronisation, must be supplied
by the DPnDP user. The patterns supplied with DPnDP automatically implement
any pattern-specific behaviours. Therefore, new patterns may not have the same
level of functionality as those provided with the system, unlike the first-class pattern
templates created by MetaCO,P3S.

Tracs [BCDP95] allows pattern designers to define architectural models for new
patterns using a formal graph to specify task and communication structures. How-
ever, the architectural models do not include implementations, so the level of func-

tionality is not comparable to CO,P;S.

6.3 Code Generation

Automatic code generation has been studied by many groups with different agen-
das. In the original CO2P3S implementation, the framework code generation took
its inspiration from the CORRELATE [MJR*98] and COGENT [BFVY96] macro
languages. COGENT was designed as the code generator for a system that au-
tomatically generated frameworks for each of the “Gang of Four” design patterns
[GHJV95]. Their system did not have any extensibility features.

After the introduction of MetaCO,P3S, a more sophisticated code generation
mechanism was required to simplify the creation of pattern templates. My idea to
use Javadoc for code generation came from Pollack {Pol00]. The current code gen-
erator in MetaCO,P3S mixes ideas from the CORRELATE approach with Javadoc.

6.4 Pattern Repositories

Pattern repositories are central to the acceptance of pattern-based programming
environments like CO,P3S. The ACE Catalogue [Sch94] is one such repository, but

63

its patterns centre around network communication mechanisms, and are therefore
targeted at an audience with lower level requirements than CO2P3S users. The
concurrent design patterns in Lea’s book [Lea99] also provide lower level parallel
constructs.

The Portland Pattern Repository [Cat|, although not targeting parallel patterns,
has the interesting feature of being built on the WikiWikiWeb system, which allows
pattern designers to easily add patterns to the catalogue. None of these repositories
store patterns that have the ability to automatically integrate with programming

environments, which is one of the key features we are recommending.

6.5 Conclusions

Research groups and commercial interests have started to explore building program-
ming environments using ideas from the design pattern community. Of these, only
a handful are targeting the parallel programming community. A major drawback
to the majority of these systems is their lack of extensibility. Template-based pro-
gramming environments are limited in applicability by their available library of
templates, unless some provision for extensibility has been made. Only a handful
of groups have identified this problem and attempted to solve it. Foremost among
these are DPnDP and Tracs. MetaCO;P3S is an ambitious effort that has gone
beyond previous research. It makes CO,P3S the first pattern-based parallel pro-
gramming system with a tool for extending the environment with new patterns,
both indistinguishable in form and equivalent in functionality to the patterns that

are predefined.

64

Chapter 7

Summary and Conclusions

This dissertation has described a research project that enables the creation of parallel
design pattern templates. This research stemmed from the need for extensibility in
CO,P3S. My tool, called MetaCO,P3S, allows a pattern designer to create a pattern
description and annotated framework template in a standard format that can be
imported into CO,P3S, or any other compatible parallel programming system.

7.1 Contributions of this Research

There are a number of contributions from this research. Foremost among these
is the solution provided by MetaCO2P3S to a critical problem in template-based
programming systems, namely their lack of available templates. I have defined a
system-independent pattern template, including a parameterisable framework tem-
plate format. My tool creates first-class pattern templates that easily plug in as
modules to the CO,P3S environment.

Through this extensibility research, I have enabled the creation of a pattern
template repository. This extends a challenge to the template-based programming
environment community to submit new or improved pattern templates that could

be shared with others.

7.2 Ongoing Enhancements to CO;P3;S and MetaCO,P;S

There are a three avenues of new work on the CO,P3S environment currently un-
derway in our research group. As introduced in Chapter 4, this work includes an
enhancement that will generate frameworks for distributed networks of worksta-
tions, in addition to our current shared-memory implementation. We are also using
MetaCO,P3S to generate new pattern templates for CO,P3S. The other body of
work that is currently being tackled is the documentation of pattern templates.
This enhancement includes the definition of a standard format for documentation,

65

and the integration of the documentation into the CO,P3S environment. The doc-
umentation will target both CO2P3S pattern users, and pattern designers.

7.3 Directions for Future Work

I have identified a number of future enhancements for the MetaCO,P;S tool. One
is the completion of the user interface to include a wizard that guides pattern de-
signers through the framework template creation process. To tailor a version of
MetaCO;P3S for parallel pattern template creation, it would also be good to pro-
vide a language of parallel primitives that could be used during framework template
creation.

Our research group has discussed the implementation of analytical approaches for
the parameterisation of framework templates. These could help provide correctness
by ensuring that the effects of each possible parameter value are handled correctly.

As introduced in Chapter 5, I propose that a pattern template repository be set
up to provide a much-needed resource for the template-based programming com-
munity. However, the large number of pattern templates in a central repository
introduce another area for future work. Since the status quo requires developers
to choose pattern templates for their application with no guidance beyond a de-
sign pattern document, a better pattern selection mechanism is needed. Pattern
languages [MMS00] may eventually provide a solution to this problem. However,
a good short-term fix for the pattern selection problem may lie in segmenting the
repository into well-defined categories.

Finally, it would be helpful to gather usability data for the MetaCO,P3S tool,
to empirically measure the ease with which pattern designers can leverage the tool

for their purposes.

66

Bibliography

[BCDP95)

[BDO*95]

[BFVY96)

[Cat]
[CSS00]

[Dan01]
[Doc]

[FMvW97]

[GHIV95)

[Jav]
[Joh97]

{Lea99]

[Mac01]

[MIR*98]

A. Bartoli, P. Corsini, G. Dini, and C. Prete. Graphical Design of Dis-
tributed Applications Through Reusable Components. IEEE Parallel
& Distributed Technology, 3(1):37-51, 1995.

B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi.

P3L: a Structured High-level Parallel Language, and its Structured
Support. Concurrency: Practice and Ezperience, 7(3):225-255, 1995.

F. Budinsky, M. Finnie, J. Vlissides, and P. Yu. Automatic Code Gen-
eration from Design Patterns. IBM Systems Journal, 35(2):151-171,
1996.

CategoryPattern, Portland Pattern Repository. http://c2.com/ppr/.

K. Charter, J. Schaeffer, and D. Szafron. Sequence Alignment using
FastLSA. In Proc. of the 2000 International Conference on Mathemat-
ics and Engineering Techniques in Medicine and Biological Sciences
(METMBS’2000), pages 239-245, 2000.

M. Danelutto. On Skeletons and Design Patterns. In Proceedings of
PARCO’01 (to appear), 2001.

Javadoc Doclet API. http://java.sun.com/j2se/1.3/docs/tooldocs/
javadoc/doclet/.

G. Florijn, M. Meijers, and P. van Winsen. Tool Support for
Obect-Oriented Patterns. In Object-Oriented Programming 11th Euro-
pean Conference (ECOOP’97), volume 1241, pages 472-495. Springer-
Verlag, 1997.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

Javadoc Tool Home Page. http://java.sun.com/j2se/javadoc/.

R. Johnson. Frameworks = (Components + Patterns). Communications
of the ACM, 40(10):39-42, October 1997.

D. Lea. Concurrent Programming in Java: Design Principles and Pat-
terns. Addison-Wesley, 2nd edition, 1999.

S. MacDonald. From Patterns to Frameworks to Parallel Programs.
PhD thesis, Department of Computing Science, University of Alberta,
November 2001. Available at www.cs.ualberta.ca/~systems.

F. Matthijs, W. Joosen, B. Robben, B. Vanhaute, and P. Verbaeten.
Multi-level Patterns. In Object-Oriented Technology (ECOOP’97
Workshop Reader), volume 1357 of Lecture Notes in Computer Science,
pages 112-115. Springer-Verlag, 1998.

67

[MMS00]

[Mod]
[MSS97]

[MSS99]

[MSSB00a)

[MSSBOOb]

[Omn]

[Pol00]

[Sch94]

[Siu96)

[SSC96]

[SSG89)

[SSGS96]

[SSLP93)

(5SS98]

B. Massingill, T. Mattson, and B. Sanders. A Pattern Language for
Parallel Application Programs. In European Conference on Parallel
Processing, pages 678 681, 2000.

ModelMaker CASE Tool. http://www.modelmaker.demon.nl/mm.htm.

S. MacDonald, J. Schaeffer, and D. Szafron. Pattern-based Object-
Oriented Parallel Programming. In Lecture Notes in Computer Science
1343: 1st International Scientific Computing in Object-Oriented Paral-
lel Environments Conference (ISCOPE '97), pages 267-274. Springer-
Verlag, December 1997.

S. MacDonald, D. Szafron, and J. Schaeffer. Object-Oriented Pattern-
Based Parallel Programming with Automatically Generated Frame-
works. In 5th USENIX Conference on Object-Oriented Tools and Sys-
tems (COOTS '99), pages 29-43, May 1999.

S. MacDonald, D. Szafron, J. Schaeffer, and S. Bromling. From
Patterns to Frameworks to Parallel Programs. Submitted to
Journal of Parallel and Distributed Computing. Available at
www.cs.ualberta.ca/~systems, December 2000.

S. MacDonald, D. Szafron, J. Schaeffer, and S. Bromling. Generat-
ing Parallel Program Frameworks from Parallel Design Patterns. In
Euro-Par 2000, Parallel Processing, volume 1900 of Lecture Notes in
Computer Science, pages 95-104. Springer-Verlag, August 2000.

OmniBuilder Design Patterns. http://www.omnibuilder.com/overview/
design.htm.

M. Pollack. Code Generation using Javadoc. http://www.javaworld.
com/javaworld/jw-08-2000/jw-0818-javadoc_p.html, August 2000.

D. Schmidt. The ADAPTIVE Communication Environment:
Object-Oriented Network Programming Components for Developing
Client/Server Applications. In Proceedings of the 12th Sun Users Group
Conference, 1994.

S. Siu. Openness and Extensibility in Design-Pattern-Based Program-
ming Systems. Master’s thesis, Department of Electrical and Computer
Engineering, University of Waterloo, August 1996.

M. Sefika, A. Sane, and R. Campbell. Monitoring Compliance of a
Software System with its High-Level Design Models. In Proceedings
of the 18th International Conference on Software Engineering, pages
387-396. IEEE Computer Society Press, 1996.

A. Singh, J. Schaeffer, and M. Green. Structuring Distributed Algo-
rithms in a Workstation Environment. In Proceedings of the Interna-
tional Conference on Parallel Processing, pages 89-97, 1989.

S. Siu, M. De Simone, D. Goswami, and A. Singh. Design Patterns
for Parallel Programming. In Proceedings of the 1996 International
Conference on Parallel and Distributed Processing Techniques and Ap-
plications (PDPTA’96), pages 230240, 1996.

J. Schaefler, D. Szafron, G. Lobe, and I. Parsons. The Enterprise Model
for Developing Distributed Applications. IEEE Parallel € Distributed
Technology, 1(3):85-96, 1993.

A. Singh, }. Schaeffer, and D. Szafron. Experience with Parallel Pro-
gramming Using Code Templates. Concurrency: Practice €/ Ezperience,
10(2):91-120, 1998.

68

(W3C] World Wide Web Consortium. http://www.w3.org/.
[XML] XML Home Page. http://www.w3.org/XML/.
[XSLj XSL Home Page. http://www.w3.org/Style/XSL/.

69

Appendix A

Installing CO5P3S and
MetaCO-oP3S

A.1 Downloading the System
The CO,P;3S environment is available for download at:
e http://wwu.cs.ualberta.ca/~systems/
After downloading and unpacking the package, the root of the CO,P3S installation
will be at “[InstallationDir]/copsProj/”.
A.2 Configuring CO,P;S

Copy the “copsProj/copsrc.xml” file to your home directory, and rename it to:
“.copsrc.xml”. Edit this file, and set up the following options:

copslInstallationDirectory This should be set to the the directory in which CO,P3S
is installed. You can use a pathname relative to your home directory. If you
installed CO,P3S directly in your home account, set this to: “copsProj”.

userProgramDirectory Set this to the directory in which you want your user
programs stored by default. This value can also be set in the preferences
dialog of the CO,P3S GUI.

defaultEditor Set this to the binary of the editor you wish to use within the
CO2P3S environment. For instance, “gvim” or “emacs”. This can also be set
in the preferences dialog of the CO,P3S GUI.

patterns You can leave this setting blank, as it will be modified automatically

when new patterns are added.

70

Java version 1.3 or greater needs to be installed on your system. You need to set
up your CLASSPATH environment variable to work with CO,P3S. Use the follow-
ing setting, modifying values that refer to your installation directory and the Java

installation directory as necessary:

e CLASSPATH=(instDir]:.:[instDir]/1libs/jdom. jar:
[instDir]/libs/xerces. jar: [instDir]/libs/xalan. jar:
[javaInstDir}/lib/tools. jar: [javaInstDir]/1lib/jini-core. jar:
{javaInstDir]/1ib/jini-ext. jar:$CLASSPATH

A.3 Building CO,P;S

To build CO,P3S, change into the “copsProj/” installation directory, and execute

the “make” command.

A.4 Running CO,P;S

To run CO,P3S, change into the “copsProj/” installation directory, and execute
the command: *“./runCops”. If any problems occur during the initialisation or
execution of the CO2P3S environment, inspect the “copsProj/cops.log” file. The
system log can also be viewed within the CO;P3;S environment. While running
CO,P;S, it is advised that the keyboard’s NumLock key be turned off, as otherwise

it will conflict with certain aspects of GUI operation.

A.5 Adding Supplied Patterns to CO,P;S

While running CO;P3S patterns can be added to the environment by selecting the
menu item: “Environment — Add/Update Pattern”. This brings up a file chooser in
the “copsProj/patterns” directory, allowing the user to import a pattern file, such
as “Mesh.xml”. Once added, patterns will remain in the CO,P3S system across
executions. Patterns can be removed from the system using the “Environment -

Remove Pattern” menu item.

71

Appendix B

Pattern Template File Formats

B.1 DTD for CO,P;3S Pattern Template Definitions

<!ELEMENT CopsPattern:patternInfo (CopsPattern:patternName,CopsPattern:imagesDir.
CopsPattern:patternPackage, CopsPattern:constants,CopsPattern:classNames,
CopsPattern:parameters, CopsPattern:guilnfo)>

<!ATTLIST CopsPattern:patternlnfo

xmins:CopsPattern CDATA sREQUIRED

>

<!ELEMENT CopsPattern:patternName (8PCDATA)>

<!ELEMENT CopsPattern:imagesDir (8PCDATA)>

<!ELEMENT CopsPattern:patternPackage (8PCDATA)>

<!ELEMENT CopsPattern:constants (CopsPattern:constant)*>

<!ELEMENT CopsPattern:constant (CopsPattern:constantID,CopsPattern:constant Value)>
<!ATTLIST CopsPattern:constant type CDATA "noLongerUsed">

<!ELEMENT CopsPattern:constantID (8PCDATA)>

<!ELEMENT CopsPattern:constantValue (8PCDATA)>

<!ELEMENT CopsPattern:parameters (CopsPattern:parameter®,
CopsPattern:listParameter®, CopsPattern:extParameter*)>

<!ELEMENT CopsPattern:parameter (CopsPattern:parameterName,
CopsPattern:parameterMenuText,CopsPattern:parameterDefault ?,
CopsPattern:parameterValidates?, CopsPattern:parameter Values?) >

<!ATTLIST CopsPattern:parameter id CDATA sREQUIRED>

<!ELEMENT CopsPattern:parameterName (8PCDATA)>

<!ELEMENT CopsPattern:parameterMenuText ($PCDATA)>

<!ELEMENT CopsPattern:parameterDefault ($PCDATA)>

<!ELEMENT CopsPattern:parameterValidates EMPTY >

<!ELEMENT CopsPattern:parameterValues (CopsPattern:parameterValue)*>

<!ELEMENT CopsPattern:parameterValue (8SPCDATA)>

<!ELEMENT CopsPattern:listParameter (CopsPattern:listParameterName,
CopsPattern:listParameterMenuText, CopsPattern:listParameterClass,
CopsPattern:listParameterStrings?, CopsPattern:listParameterEntryClass?) >

<!'ATTLIST CopsPattern:listParameter id CDATA sREQUIRED>

<!ELEMENT CopsPattern:listParameterName (8PCDATA)>

<IELEMENT CopsPattern:listParameterMenuText (8PCDATA)>

<!ELEMENT CopsPattern:listParameterClass (8PCDATA)>

<!ELEMENT CopsPattern:listParameterStrings EMPTY >

<!ELEMENT CopsPattern:listParameterEntryClass (8PCDATA)>

<!ELEMENT CopsPattern:extParameter (CopsPattern:extParameterName,
CopsPattcrn:extParamcterMenuText.CopsPattern:cxtParamcterClass)>

72

<!ATTLIST CopsPattern:extParameter id CDATA sREQUIRED>
<!ELEMENT CopsPattern:extParameterName (8PCDATA)>
<!ELEMENT CopsPattern:extParameterMenuText (8PCDATA)>
<!ELEMENT CopsPattern:extParameterClass (8PCDATA)>

<!ELEMENT CopsPattern:classNames (CopsPattern:userClassName?,
CopsPattern:frameworkClassName*) >

<!ELEMENT CopsPattern:userClassName (CopsPattern:userClassNamelD,
CopsPattern:userClassNameDefValue?, CopsPattern:userClassNameMenuText,
CopsPattern:userClassNameDefInsufficient ?,CopsPattern:userClassNamelsPatternName?,
CopsPattern:userClassNamelsTemplate? CopsPattern:userClassNameExternalRef?)+ >

<!ELEMENT CopsPattern:userClassNamelD (#PCDATA)>

<!ELEMENT CopsPattern:userClassNameDefValue (8PCDATA)>

<!ELEMENT CopsPattern:userClassNameMenuText ($PCDATA)>

<!ELEMENT CopsPattern:userClassNameDefInsufficient EMPTY >

<IELEMENT CopsPattern:userClassNamelsPatternName EMPTY >

<!ELEMENT CopsPattern:userClassNamelsTemplate EMPTY >

<!ELEMENT CopsPattern:userClassNameExternalRef EMPTY >

<IELEMENT CopsPattern:frameworkClassName (CopsPattern:frameworkClassNamelD,
CopsPattern:frameworkClassNameRef,CopsPattern:frameworkClassNamelsTemplate?)+ >

<!ELEMENT CopsPattern:frameworkClassNamelID (#PCDATA)>

<!ELEMENT CopsPattern:frameworkClassNameRef ($PCDATA)>

<!ELEMENT CopsPattern:frameworkClassNamelsTemplate EMPTY >

<!ELEMENT CopsPattern:guilnfo (CopsPattern:visualElements)>

<!ELEMENT CopsPattern:visualElements (CopsPattern:gElement®, CopsPattern:tElement*)>

<!ELEMENT CopsPattern:gElement (CopsPattern:gElementID,
CopsPattern:gElementLocationX,CopsPattern:gElementLocationY,
CopsPattern:gElementImages? CopsPattern:gElementCurlmageParts?)>

<!ELEMENT CopsPattern:tElement (CopsPattern:tElementID,
CopsPattern:tElementLocationX,CopsPattern:tElementLocationY,
CopsPattern:tElementMaxLength,CopsPattern:t Element Justification,
CopsPattern:tElementText,CopsPattern:tElement UpdateType?,
CopsPattern:tElementUpdateVal?)>

<!ELEMENT CopsPattern:gElementID (sPCDATA)>

<!ELEMENT CopsPattern:gElementLocationX (8PCDATA)>

<!ELEMENT CopsPattern:gElementLocationY ($PCDATA)>

<!ELEMENT CopsPattern:gElementImages (CopsPattern:gElementImage)*>

<!ELEMENT CopsPattern:gElementImage (CopsPattern:gElementlmageName,
CopsPattern:gElementImageLoc)>

<!ELEMENT CopsPattern:gElementimageName ($PCDATA)>

<!ELEMENT CopsPattern:gElementimageLoc (8PCDATA)>

<!ELEMENT CopsPattern:gElementCurlmageParts (CopsPattern:gElementCurlmagePart*)>

<!ELEMENT CopsPattern:gElementCurlmagePart (CopsPattern:gElementCurlmagePartVal,
CopsPattern:gElementCurlmagePartType)>

<!ELEMENT CopsPattern:gElementCurlmagePartVal ($PCDATA)>

<!ELEMENT CopsPattern:gElerzentCurlmagePartType (8PCDATA)>

<!ELEMENT CopsPattern:tElementID ($PCDATA)>

<!ELEMENT CopsPattern:tElementLocationX (8PCDATA)>

<!ELEMENT CopsPattern:tElementLocationY (8PCDATA)>

<!ELEMENT CopsPattern:tElementMaxLength ($PCDATA)>

<!ELEMENT CopsPattern:tElementText (8PCDATA)>

<!ELEMENT CopsPattern:tElementJustification (8PCDATA)>

<!ELEMENT CopsPattern:tElementUpdateType (8PCDATA)>

<!ELEMENT CopsPattern:tElementUpdateVal (8PCDATA)>

73

B.2 XML Pattern Template Description for Mesh

<?xml version="1.0" encoding="UTF-8"7>
<!'DOCTYPE CopsPattern:patternlnfo SYSTEM ". ./DTD/CopsPattern.dtd">
<CopsPattern:patternlnfo xmins:CopsPattern=

"http://wwv.cs.ualberta.ca/ systems/cops.html">
<CopsPattern:patternName>Mesh < /CopsPattern:patternName>
<CopsPattern:imagesDir>IMAGES_DIR + "mesh" + File.separator</CopsPattern:imagesDir>
< CopsPattern:patternPackage>cops.gui.patterns.mesh < /CopsPattern:patternPackage>
< CopsPattern:constants>
<CopsPattern:constant>
<CopsPattern:constantID>MESH.NUM _NEIGHBOURS_LBL< /CopsPattern:constantID>
<CopsPattern:constant Value>"Set Number of Neighbours"</CopsPattern:constantValue>
< /CopsPattern:constant>
< CopsPattern:constant >
<CopsPattern:constantID>MESH_BOUNDARY .CONDS_LBL < /CopsPattern:constantID>
<CopsPattern:constantValue>"Set Mesh Boundary Conditions"

< /CopsPattern:constant Value>
< /CopsPattern:constant >
<CopsPattern:constant>
<CopsPattern:constantID>MESH_STATE_CLASS_LBL</CopsPattern:constant|D>
<CopsPattern:constant Value>"Set Mesh State Class"</CopsPattern:constantValue>
< /CopsPattern:constant>
<CopsPattern:constant >
<CopsPattern:constantID>MESH_CLASS_NAME_LBL</CopsPattern:constantID>
<CopsPattern:constantValue>"Set Mesh Class Name" </CopsPattern:constantValue>
< /CopsPattern:constant>
<CopsPattern:constant >
<CopsPattern:constantID>MESH_STATE_SUPER_CLASS_LBL< /CopsPattern:constantID>
<CopsPattern:constant Value>"Set Mesh State Superclass"</CopsPattern:constantValue>
< /CopsPattern:constant>
<CopsPattern:constant>
<CopsPattern:constantID>MESH_ORDERING _LBL < /CopsPattern:constantID>
<CopsPattern:constant Value>"Set Mesh Ordering"</CopsPattern:constantValue>
< /CopsPattern:constant>
<CopsPattern:constant >
<CopsPattern:constantID>MESH_LBL < /CopsPattern:constantID>
<CopsPattern:constant Value>"Mesh" < /CopsPattern:constant Value>
< /CopsPattern:constant>
<CopsPattern:constant>
<CopsPattern:constantID>MESH_STATE_LBL < /CopsPattern:constantID>
<CopsPattern:constant Value>"Mesh State Class"</CopsPattern:constantValue>
< /CopsPattern:constant>
<CopsPattern:constant>
<CopsPattern:constantID>MESH_STATE_SUPER_LBL < /CopsPattern:constantID>
<CopsPattern:constant Value>"Mesh State Superclass"</CopsPattern:constantValue>
< /CopsPattern:constant>
<CopsPattern:constant >
<CopsPattern:constantID>OBJECT _CLASS</CopsPattern:constantID>
<CopsPattern:constant Value>"0bject" </CopsPattern:constant Value>
< /CopsPattern:constant >
<CopsPattern:constant>
<CopsPattern:constantID>BOUNDARY _.LBL< /CopsPattern:constantID>
<CopsPattern:constant Value>"Boundary Topology"</CopsPattern:constantValue>
< /CopsPattern:constant>
<CopsPattern:constant>
<CopsPattern:constantID>NON_T_BOUNDARY </CopsPattern:constantID>
<CopsPattern:constant Value> "Non" < /CopsPattern:constant Value >

74

< /CopsPattern:constant >
<CopsPattern:constant>
<CopsPattern:constantID>FULLY _T_BOUNDARY < /CopsPattern:constantID>
<CopsPattern:constant Value>"Fully" < /CopsPattern:constant Value >
< /CopsPattern:constant >
<CopsPattern:constant >
<CopsPattern:constantID>HORIZ_T_BOUNDARY < /CopsPattern:constant!D>
<CopsPattern:constant Value>"Horizontal" < /CopsPattern:constant Value>
< /CopsPattern:constant>
<CopsPattern:constant>
<CopsPattern:constantID>VERT_T_.BOUNDARY < /CopsPattern:constantID>
<CopsPattern:constant Value>"Vertical"</CopsPattern:constant Value>
</CopsPattern:constant >
<CopsPattern:constant >
<CopsPattern:constant]D>ORDERING _.LBL < /CopsPattern:constantID>
<CopsPattern:constantValue>"Computation Order"</CopsPattern:constantValue>
< /CopsPattern:constant>
<CopsPattern:constant >
<CopsPattern:constantID>ORDERED< /CopsPattern:constantID>
<CopsPattern:constant Value>"0Ordered Computation"”</CopsPattern:constantValue>
< /CopsPattern:constant>
<CopsPattern:constant>
<CopsPattern:constant]D>CHAOTIC< /CopsPattern:constantID>
<CopsPattern:constant Value>"Chaotic Computation"</CopsPattern:constantValue>
< /CopsPattern:constant >
<CopsPattern:constant>
<CopsPattern:constantID>NEIGHBOURS_LBL < /CopsPattern:constantID>
<CopsPattern:constant Value>"Number of Neighbours"</CopsPattern:constantValue>
< /CopsPattern:constant>
<CopsPattern:constant >
<CopsPattern:constantID>FOUR_POINT</CopsPattern:constantID>
<CopsPattern:constant Value>"4" < /CopsPattern:constant Value>
</CopsPattern:constant >
<CopsPattern:constant >
<CopsPattern:constantID>EIGHT_POINT < /CopsPattern:constantID>
<CopsPattern:constant Value>"8" < /CopsPattern:constant Value>
< /CopsPattern:constant>
< /CopsPattern:constants>
<CopsPattern:classNames>
<CopsPattern:userClassName>
<CopsPattern:userClassName]D>Collector< /CopsPattern:userClassNamelD >
<CopsPattern:userClassNameDefValue>MESH _LBL < /CopsPattern:userClassNameDefValue >
<CopsPattern:userClassNameMenuText>MESH_CLASS_NAME_LBL

< /CopsPattern:userClassNameMenuText>
< CopsPattern:userClassNameDeflInsufficient >

< /CopsPattern:userClassNameDefInsufficient >
<CopsPattern:userClassNamelsPatternName> < /CopsPattern:userClassNamelsPatternName>
< /CopsPattern:userClassName>
<CopsPattern:userClassName>
< CopsPattern:userClassNamelD>Mesh < /CopsPattern:userClassNamelD >
<CopsPattern:userClassNameDefValue>MESH_STATE_LBL

< /CopsPattern:userClassNameDefValue>
<CopsPattern:userClassNameMenuText>MESH_STATE_CLASS_LBL

< /CopsPattern:userClassNameMenuText >
< CopsPattern:userClassNameDefInsufficient >

< /CapsPattern:userClassNameDeflnsufficient >
< /CopsPattern:userClassName>
<CopsPattern:userClassName>
<CopsPattern:userClassNamelD>MeshStateSuper< /CopsPattern:userClassNameID >

75

<CopsPattern:userClassNameDefValue>OBJECT.CLASS

< /CopsPattern:userClassNameDefValue>
<CopsPattern:userClassNameMenuText >MESH_STATE_SUPER_.CLASS_LBL

< /CopsPattern:userClassNameMenuText >
<CopsPattern:userClassNameExternalRef > </CopsPattern:userClassNameExternalRef >
< /CopsPattern:userClassName>
<CopsPattern:frameworkClassName>
<CopsPattern:frameworkClassNamelD> Abstract#< /CopsPattern:frameworkClassNamelD>
<CopsPattern:frameworkClassNameRef >Collector< /CopsPattern:frameworkClassNameRef >
< /CopsPattern:frameworkClassName>
<CopsPattern:frameworkClassName>
<CopsPattern:frameworkClassNamelD> Abstract#< /CopsPattern:frameworkClassNamelID >
<CopsPattern:frameworkClassNameRef >Mesh < /CopsPattern:frameworkClassNameRef >
< /CopsPattern:frameworkClassName>
<CopsPattern:frameworkClassName>
<CopsPattern:frameworkClassNamelD>Bounded$Array

< /CopsPattern:frameworkClassNamelD >
<CopsPattern:frameworkClassNameRef >Mesh < /CopsPattern:frameworkClassNameRef >
< /CopsPattern:frameworkClassName>
<CopsPattern:frameworkClassName>
<CopsPattern:frameworkClassNamelD > #State< /CopsPattern:frameworkClassNamelD >
<CopsPattern:frameworkClassNameRef >Mesh < /CopsPattern:frameworkClassNameRef >
<CopsPattern:frameworkClassNamelsTemplate>

< /CopsPattern:frameworkClassNamelsTemplate>
< /CopsPattern:frameworkClassName>
<CopsPattern:frameworkClassName>
<CopsPattern:frameworkClassNamelD > #Strategy < /CopsPattern:frameworkClassNamelID>
<CopsPattern:frameworkClassNameRef >Mesh< /CopsPattern:frameworkClassNameRef >
< /CopsPattern:frameworkClassName>
< /CopsPattern:classNames>
<CopsPattern:parameters>
<CopsPattern:parameter id="ordered_">
<CopsPattern:parameterName>ORDERING_LBL< /CopsPattern:parameterName>
<CopsPattern:parameterMenuText>MESH_ORDERING _LBL

< /CopsPattern:parameterMenuText>
<CopsPattern:parameterDefault>ORDERED< /CopsPattern:parameter Default >
<CopsPattern:parameter Validates> < /CopsPattern:parameter Validates>
<CopsPattern:parameter Values>
<CopsPattern:parameter Value>ORDERED < /CopsPattern:parameter Value>
<CopsPattern:parameter Value>CHAOTIC< /CopsPattern:parameter Value>
< /CopsPattern:parameter Values>
< /CopsPattern:parameter>
<CopsPattern:parameter id="boundary_">
<CopsPattern:parameterName>BOUNDARY _LBL</CopsPattern:parameterName>
<CopsPattern:parameter MenuText >MESH_BOUNDARY _CONDS_LBL

< /CopsPattern:parameterMenuText>
<CopsPattern:parameterDefault >NON_T_BOUNDARY < /CopsPattern:parameter Default >
<CopsPattern:parameter Validates> < /CopsPattern:parameter Validates >
<CopsPattern:parameter Values>
<CopsPattern:parameter Value>NON_T_BOUNDARY < /CopsPattern:parameterValue>
<CopsPattern:parameterValue>FULLY _T_BOUNDARY </CopsPattern:parameter Value>
<CopsPattern:parameter Value>HORIZ_T_BOUNDARY < /CopsPattern:parameter Value>
<CopsPattern:parameterValue>VERT _T_BOUNDARY < /CopsPattern:parameterValue>
< /CopsPattern:parameter Values>
</CopsPattern:parameter>
<CopsPattern:parameter id="numNeighbours_">
<CopsPattern:parameterName>NEIGHBOURS_LBL < /CopsPattern:parameterName>
<CopsPattern:parameterMenuText > MESH_NUM_NEIGHBOURS_LBL

< /CopsPattern:parameterMenuText >

76

<CopsPattern:parameterDefault>FOUR_POINT < /CopsPattern:parameterDefault >
<CopsPattern:parameter Validates> < /CopsPattern:parameter Validates>
<CopsPattern:parameter Values>
<CopsPattern:parameter Value>FOUR_POINT < /CopsPattern:parameter Value >
<CopsPattern:parameterValue>EIGHT _POINT < /CopsPattern:parameter Value>
< /CopsPattern:parameter Values>
< /CopsPattern:parameter>
< /CopsPattern:parameters>
<CopsPattern:guilnfo>
<CopsPattern:visualElements>
<CopsPattern:gElement >
<CopsPattern:gElementID>meshG < /CopsPattern:gElementiD>
<CopsPattern:gElementLocationX>10</CopsPattern:gElementLocationX >
<CopsPattern:gElementLocationY >45</CopsPattern:gElement LocationY >
<CopsPattern:gElementImages>
<CopsPattern:gElementImage>
<CopsPattern:gElementImageName>meshGFully4</CopsPattern:gElementImageName>
<CopsPattern:gElementImageLoc>meshGFully4.gif < /CopsPattern:gElementImageLoc>
< /CopsPattern:gElementImage>
<CopsPattern:gElementImage>
<CopsPattern:gElementImageName>meshGFully8</CopsPattern:gElementimageName>
<CopsPattern:gElementImageLoc>meshGFully8.gif < /CopsPattern:gElementImageLoc>
</CopsPattern:gElementImage>
<CopsPattern:gElementImage >
<CopsPattern:gElementImageName>meshGHorizontal4< /CopsPattern:gElementimageName>
<CopsPattern:gElementImageLoc>meshGHorizontald.gif < /CopsPattern:gElementImageLoc>
< /CopsPattern:gElementimage>
<CopsPattern:gElementimage>
<CopsPattern:gElementImageName>meshGHorizontal8 < /CopsPattern:gElementImageName>
<CopsPattern:gElementImageLoc>meshGHorizontal8.gif < /CopsPattern:gElementImageLoc>
</CopsPattern:gElementImage>
<CopsPattern:gElementlmage>
<CopsPattern:gElementImageName>meshG Verticald</CopsPattern:gElementImageName >
<CopsPattern:gElementImageLoc>meshG Verticald.gif < /CopsPattern:gElementImageLoc>
< /CopsPattern:gElementImage>
<CopsPattern:gElementImage>
<CopsPattern:gElementImageName>meshG Vertical8 < /CopsPattern:gElementImageName>
<CopsPattern:gElementImageLoc>meshG Vertical8.gif < /CopsPattern:gElementimageLoc>
< /CopsPattern:gElementImage>
<CopsPattern:gElementImage>
<CopsPattern:gElementImageName>meshGNon4 < /CopsPattern:gElementImageName>
<CopsPattern:gElementImageLoc>meshGNon4 gif < /CopsPattern:gElementImageLoc>
< /CopsPattern:gElementIlmage>
<CopsPattern:gElementImage>
<CopsPattern:gElementImageName>meshGNon8< /CopsPattern:gElementImageName >
<CopsPattern:gElementImageLoc>meshGNon8.gif < /CopsPattern:gElementImageLoc>
< /CopsPattern:gElementImage>
< /CopsPattern:gElementImages>
<CopsPattern:gElementCurlmageParts>
<CopsPattern:gElementCurlmagePart>
<CopsPattern:gElement CurlmagePart Val > "meshG" < /CopsPattern:gElementCurlmagePart Val>
<CopsPattern:gElementCurlmagePart Type>String

< /CopsPattern:gElementCurlmagePart Type>
< /CopsPattern:gElementCurlmagePart >
<CopsPattern:gElementCurlmagePart>
<CopsPattern:gElementCurlmagePartVal>boundary -

< /CopsPattern:gElementCurlmagePart Val>
<CopsPattern:gElementCurlmagePartType>Parameter

< /CopsPatteru:gElementCurlmagePart Type>

77

< /CopsPattern:gElementCurlmagePart>
<CopsPattern:gElementCurlmagePart>
<CopsPattern:gElementCurlmagePart Val>numNeighbours_

< /CopsPattern:gElementCurlmagePart Val>
<CopsPattern:gElementCurlmagePart Type>Parameter

< /CopsPattern:gElementCurlmagePart Type>
< /CopsPattern:gElementCurlmagePart >
< /CopsPattern:gElementCurlmageParts>
< /CopsPattern:gElement >
<CopsPattern:tElement>
<CopsPattern:t ElementID>meshNameT < /CopsPattern:tElementID>
<CopsPattern:tElementLocationX>90</CopsPattern:tElementLocationX>
< CopsPattern:t ElementLocationY >40</CopsPattern:tElementLocationY >
<CopsPattern:t ElementMaxLength>28</CopsPattern:tElementMaxLength>
<CopsPattern:t ElementJustification>CENTER < /CopsPattern:tElementJustification >
<CopsPattern:t Element Text>MESH_LBL</CopsPattern:tElement Text >
<CopsPattern:tElementUpdateType>Class< /CopsPattern:tElementUpdateType>
<CopsPattern:t ElementUpdateVal>Collector < /CopsPattern:tElementUpdateVal>
< /CopsPattern:tElement >
<CopsPattern:tElement >
<CopsPattern:tElementID>orderingT < /CopsPattern:tElement1D>
<CopsPattern:t ElementLocationX>90< /CopsPattern:tElementLocationX >
<CopsPattern:tElementLocationY >240< /CopsPattern:tElementLocationY >
<CopsPattern:tElementMaxLength>28< /CopsPattern:tElementMaxLength>
<CopsPattern:tElementJustification>CENTER < /CopsPattern:tElementJustification>
<CopsPattern:tElementText >ORDERED< /CopsPattern:tElement Text >
<CopsPattern:tElementUpdateType>Parameter</CopsPattern:tElementUpdateType>
<CopsPattern:tElementUpdateVal>ordered_< /CopsPattern:tElementUpdateVal >
< /CopsPattern:tElement >
<CopsPattern:tElement >
<CopsPattern:tElementID>meshStSuperT < /CopsPattern:tElementID>
<CopsPattern:tElementLocationX>260</CopsPattern:tElement LocationX >
<CopsPattern:tElementLocationY >140</CopsPattern:tElementLocationY >
<CopsPattern:tElementMaxLength>28</CopsPattern:tElementMaxLength>
<CopsPattern:tElementJustification>CENTER < /CopsPattern:tElementJustification>
<CopsPattern:tElementText>MESH_STATE_SUPER.LBL</CopsPattern:tElement Text >
<CopsPattern:tElementUpdateType>Class< /CopsPattern:tElementUpdateType>
<CopsPattern:tElementUpdateVal>MeshStateSuper < /CopsPattern:tElement UpdateVal >
</CopsPattern:tElement >
<CopsPattern:tElement >
<CopsPattern:t Element]ID >meshStateT < /CopsPattern:tElementID>
<CopsPattern:tElementLocationX>260< /CopsPattern:tElementLocationX >
<CopsPattern:tElementLocationY >200< /CopsPattern:tElementLocationY >
<CopsPattern:tElementMaxLength>28</CopsPattern:tElementMaxLength>
<CopsPattern:tElementJustification>CENTER < /CopsPattern:tElementJustification>
<CopsPattern:tElementText >MESH_STATE_LBL < /CopsPattern:tElement Text>
<CopsPattern:tElement UpdateType>Class< /CopsPattern:tElementUpdateType>
<CopsPattern:tElementUpdateVal>Mesh< /CopsPattern:tElementUpdateVal>
< /CopsPattern:tElement >
< /CopsPattern:visualElements>
< /CopsPattern:guilnfo>
< /CopsPattern:patterninfo>

78

