
University of Alberta

DEPARTMENT OF COMPUTING SCIENCE
The University of Alberta
Edmonton, Alberta, Canada

Enterprise in Context:
Assessing the Usability of Parallel Programming Environments

by

Gregory V. Wilson
Jonathan Schaeffer

Duane Szafron

Technical Report TR 93-09
June 1993

- 1 - Technical Report TR93-09

Enterprise in Context:
Assessing the Usability of Parallel Programming

Environments

Gregory V. Wilson
Jonathan Schaeffer

Duane Szafron

Department of Computing Science,
University of Alberta,
Edmonton, Alberta,
CANADA T6G 2H1

{jonathan, duane}@cs.ualberta.ca

ABSTRACT

The explosive growth of commercial and academic interest in parallel and distributed

computing during the past fifteen years has been accompanied by a corresponding increase in the

number of available parallel programming systems, and in the variety of approaches to parallel

programming being taken. However, little or no work has been done to compare or evaluate

different systems, or to develop criteria by which such comparisons could be made. As a result, a

typical parallel programming system is usually evaluated by the ease or difficulty with which its

author(s) can implement a small set of trivially-parallel algorithms.

This paper is a step toward rectifying this situation. We present several criteria by which

parallel programming systems might be quantitatively evaluated, and assess the importance and

measurability of each. Of these criteria, we feel that usability is the most important but also the

least frequently quantified. For illustration, we compare the Enterprise system under development

at the University of Alberta, and the approach it embodies, with several existing systems and their

approaches. We also predict the results we expect from these comparisons. Finally, we argue that

while the cost of performing quantitative measurements of usability might seem large, the cost of

not performing them, as borne by a group which selects an inappropriate or low-performing

programming system, is likely to be much larger.

Keywords: programming environment, parallel computing, distributed computing, performance
evaluation, usability.

- 2 - Technical Report TR93-09

1. Introduction

In the past decade, parallel and distributed computing (henceforth simply "parallel

computing") has become a viable commercial technology. A large infusion of research and

development money has accompanied this transition, and has accelerated the development of a

diverse collection of new and innovative architectures including hypercubes, massively-parallel

processor arrays, networks of workstations and shared memory machines. Each architecture can

achieve high performance for some classes of applications but does poorly on others. This adds an

extra dimension of complexity to any purchase decision.

While hardware technology has advanced rapidly, the same cannot be said of the software

provided to program these machines. Parallel software development has to contend with problems

not found in a sequential environment, such as non-determinism, communication, synchronization,

fault-tolerance, heterogeneity, shared and/or distributed memory, deadlock and race conditions.

Further, if the parallelism in an application is not suited to the topology of a given parallel

architecture, the designer may have to contort the program to match the machine. Underlying all of

this is the implicit need for high performance.

A large number of parallel programming systems have been developed to simplify the task of

developing parallel software. At one extreme, some of these systems support specialized

programming models that allow the user to quickly achieve high performance for selected

applications, but poor performance on others. At the other extreme, some systems provide a set of

low-level primitives that allow the programmer to achieve high performance by custom application

crafting, but drastically increase software development time. In the literature, parallel

programming systems are often illustrated and compared using trivial programs (such as matrix

multiplication, prime number generation or Mandelbrot set), usually with conflicting results. There

are no established guidelines for comparing these systems based on their run-time performance,

ease of use, applicability and the time it takes to develop correct programs. This paper is a step

toward rectifying this situation.

Enterprise is a programming environment currently under development at the University of

Alberta. It supports the development of distributed applications that execute on a network of

workstations. Like other parallel programming systems, it would benefit from an objective,

scientific evaluation. Early feedback from such an evaluation can also be used to identify

components that can be improved during the development of the system.

Section 2 presents a taxonomy which groups parallel programming systems according to

how they present parallelism to the user. In Section 3, we give a brief description of the Enterprise

- 3 - Technical Report TR93-09

system which is used in Sections 4 and 6 as a point of comparison with other systems. In Section

4, we present several criteria according to which parallel programming systems might be evaluated,

and assess the importance and measurability of each. Since performance issues are described in

other places in the literature, we focus our attention on usability; Section 5 discusses experiments

to measure it. In Section 6, a representative system from each taxonomic class is analyzed, and we

make some predictions on how the systems will fare. In Section 7, we make some concluding

remarks about the future of parallel programming systems.

2. A Taxonomy for Parallel Programming Systems

From the point of view of "traditional" programmers (i.e. those trained in sequential

imperative languages such as Fortran and C), parallel programming systems may be classified

using two criteria. The first is whether the parallel system is an evolutionary advance on an

existing sequential imperative system, or a revolutionary break with the imperative tradition.

Vectorizing compilers such as Parafrase-2 [PGH90], which accept sequential code as-is and find

fine-grained parallelism automatically, are at the evolutionary end of this scale. Systems such as

PCN [CT92], in which serial Fortran fragments are nested in a parallel "harness" constructed in a

system based on dataflow and logic programming, represent a radical departure from the

mainstream programming tradition and are at the revolutionary end of the scale. Many systems fall

in between these two extremes, with evolutionary systems and their variants predominating. For

example, Fortran-D [HKK91] and Vienna Fortran [BCZ92], in which users provide directives or

"hints" to control data distribution, are evolutionary, but do require some knowledge of how

parallelism can be exploited to be used effectively. Thinking Machines Corporation's CM-Fortran

[TMC91], which adds new data-parallel operators and semantics to Fortran, is a significant

enhancement to its sequential predecessor, yet from the user's point of view, the changes are not a

revolutionary departure from the conventional programming view.

A complementary classification scheme describes how a system presents parallelism to users.

We begin by distinguishing between systems in which parallelism is implicit and systems in which

it is explicit, as shown in Figure 1. In the former, users cannot force program units to execute

concurrently or serially, and are not responsible for protecting data against race conditions; these

issues are handled automatically by the compiler or run-time system. In the latter, users have at

least partial responsibility for execution order and data management.

Most parallel programming systems in use today are explicit. Such systems may be

differentiated according to how users describe parallelism; either by adding annotations to serial

code, or by modifying the source of their programs. Annotation-based systems include the

Fortran-D and Vienna Fortran systems mentioned previously. They also include the Enterprise

- 4 - Technical Report TR93-09

system described in Section 3, in which the annotations are expressed graphically by selecting one

of a restricted (but powerful) set of options.

implicitexplicit

annotations source

library syntax

skeletalad hoc

ad hoc skeletal

Enterprise
HPF

Cole's skeletons

PVM
Shared Memory Libraries

PUL

Actors
Ada
C-Linda
CHARM
Concert-C
Dataparallel-C
Occam
Orca
SR

SISAL
Fortan-77
Parafrase

Figure 1: A taxonomy for parallel programming systems.

Systems in which parallelism is expressed in a program's source fall into two categories:

those in which new syntax is introduced, and those which encapsulate parallelism in a set of

libraries, so that the syntax of the original serial language is unaltered. There are many examples

of syntax-based systems. Four based on C are Dataparallel-C [HQ91], Concert/C [Gol93],

CHARM [SK91] (originally called the Chare Kernel), and C-Linda [CG89, CG90]. The first of

these allows users to specify domains, which are collections of identical records on which

operations may be performed concurrently. Concert/C allows the user to create typed ports and

use them to communicate between processes. These ports can be passed like data from process to

process. CHARM is based on active messages, i.e. messages which can turn into processes, or

which activate an existing process. Finally, C-Linda provides users with four new operations on a

virtual shared memory. Three of these move data in and out of the shared memory, while the

fourth causes new processes to be created.

The PVM message-passing system [GS92] and libraries for shared-memory programming

(e.g. those provided by Sequent for its Symmetry product range) are two well-known examples of

the library approach. The former provides routines for sending a message (i.e. a block of bytes)

- 5 - Technical Report TR93-09

from one process to another, for broadcasting a message to all other processes, and for receiving a

block of bytes from an arbitrary or a selected process. The latter provides an interface to

semaphores, barriers, and fork-style process creation.

Both of the above library approaches allow unstructured (or ad hoc) programming. An

alternative is to provide libraries tailored for particular situations. The Parallel Utility Libraries

(PUL) [BCM93] are an example of such a system. The PUL packages are a set of skeletons, or

templates, within which users may nest their own code fragments. There are, for example,

packages to support task farming, divide-and-conquer algorithms, and regular and irregular mesh

decomposition. These packages manage the mechanical details of parallelism; the user simply

supplies the routines which (for example) generate, process, and consume work packages in a task

farm. These systems act as "skeletons" for structured parallel programs.

This same distinction between ad hoc and skeletal systems can be made for implicit parallel

programming systems as well. Ad hoc implicit systems include automatically vectorized or

parallelized Fortran, and parallel functional and dataflow languages such as Sisal [FCO90], in

which it is the compiler's responsibility to find and take advantage of concurrency. However, one

can also construct a parallel functional language in which parallelism is expressed through the use

of higher-order functions, such as divide-and-conquer, for which efficient parallelization

techniques are known. Cole's "algorithmic skeletons" [Col89] is a representative of this category.

The characteristics in this taxonomic scheme have been chosen in part to allow predictions to

be made about the power and usability of parallel programming systems based on their

classification. We would expect, for example, that implicit systems would be easier to use than

explicit systems; however, it is generally (though not invariably) the case that implicit systems

deliver lower performance, since they are completely dependent on the intelligence of the compiler

being used. Similarly, we would expect that users of skeletal systems would make fewer errors

than users of ad hoc systems, for the same reason that someone using a form-based editor is less

likely to omit important information than someone editing freehand. However, if the user's

application is not matched by one of the skeletons provided by the system, the performance

delivered by the skeletal system will be poor. We also expect that annotation-based systems will

be better-suited to recycling pre-existing serial programs than systems which require modification

of program source, and that keeping annotations outside the source, as Enterprise does, will allow

faster code development.

One issue which we are unable to predict is the relative strengths and weaknesses of adding

new syntax versus providing a library using conventional syntax. The former is often more

concise, but high-quality compilers take a long time to produce, and it is not yet clear whether any

of the syntactic supersets which have been proposed for serial languages such as C and Fortran (or

- 6 - Technical Report TR93-09

any of the Algol descendents such as Orca [BKT92] and SR [AOC88, And91]) actually cover all

the interesting cases. It is far easier to extend a library than to add yet another bit of syntax to a

language. However, it is often clumsy to express simple programs in a library-based system, and

users must often accept responsibility for low-level operations such as marshalling and un-

marshalling linked data structures.

Figure 1 shows the taxonomy and illustrates each data point with a number of representative

programming systems that have been developed. It is interesting to observe the apparent research

emphasis on explicit/syntax/source parallel programming systems. However, in practice, systems

that currently have (or will have) wide use (HPF and PVM) are often drawn from other places in

the taxonomy. This indicates that there is a large gap between where the computer scientists and

the user community perceive the research efforts should go.

3. An Overview of Enterprise

In Enterprise, the interactions of processes in a parallel computation are described using an

analogy based on the parallelism in a business organization [LLM92]. Since business enterprises

coordinate many asynchronous individuals and groups, the analogy is beneficial to understanding

and reducing the complexity of parallel programs. Inconsistent parallel terminology (master-slave,

pipelines, divide-and-conquer, etc.) is replaced with more familiar business terms (assets called

departments, receptionists, individuals, divisions, representatives, etc.). Every sequential

procedure that will execute concurrently is assigned an asset type that determines its parallel

behavior. The user code for each of these procedures is sequential C, but a procedure call to such

an asset is automatically translated to a message send by Enterprise.

Consider the following user C code, assuming that func is an asset in the program:

result = func(x, y);
/* other C code */
a = result;

When Enterprise translates this code to run on a network of workstations, the parameters x and y

are packed into a message and sent to the process that executes the asset func. The caller

continues executing and only blocks and waits for the function result when it accesses the result (a

= result). Allowing concurrent actions until the result of a previous computation is required is

called a future [Hal85].

Enterprise has three components: an object-oriented graphical interface, a pre-compiler, and a

run-time executive. The user specifies the application parallelism by drawing a hierarchical

enterprise that consists of assets. At run-time, each asset corresponds to a process. Sequential

procedure calls in C are translated into message send/receives across a network by the pre-

- 7 - Technical Report TR93-09

compiler. The execution of the program (process/processor assignment, establishing

communication links, monitoring network load) is done by the run-time executive.

For example, consider a Simulation program that displays a group of fish swimming across a

display screen (this problem was contributed by a research group in our Department and is more

complex than portrayed by the following description). The main procedure, Model, consists of a

loop that, for each frame in the simulation, performs some work on the frame and calls PolyConv.

PolyConv manipulates the image received from Model and calls Split. Split polishes the frame and

writes it to disk. There will be three assets: Model, PolyConv and Split.

The user could enter all of the code for Model, PolyConv and Split into this individual and

run the program sequentially. However, there is no reason why Model should wait until

PolyConv completes the first simulation frame to start processing the second frame. Similarly,

PolyConv does not need to wait for Split. In the parallel processing community this type of

parallelism is often called a pipeline. Using the Enterprise analogy, these three routines act like an

assembly or production line and are represented by a line. Therefore, the user can transform the

individual into a line containing the receptionist, Model, and two subordinate individuals,

PolyConv and Split.

Enterprise programs are not edited by free-hand drawing in which users connect assets in

arbitrary topologies. Instead, the programming model limits users to four very powerful

operations: transforming the kind of an asset, expanding and collapsing an asset to reveal its

components and replicating an asset. This approach is designed to eliminate programming errors.

One of the strengths of the Enterprise model is that it is easy to experiment with alternate

parallelization techniques without changing C source code. Each asset represents at least one

process. If a call is made to the individual Split, it is executed by a process; if a subsequent call is

made to Split before the first call is complete, the second call must wait for the first call to finish.

However, if the Split asset is replicated then multiple processes can be used to execute calls

concurrently.

When PolyConv calls Split, a process is activated and if a subsequent call is made to Split

before the first call is done then a second process is activated (if there is an available machine).

Replication can be dynamic in Enterprise so that as many processors as are available on the

network may be used, subject to a lower and upper bound supplied by the user. Several other

asset kinds are supported by Enterprise and they can be combined in arbitrary hierarchies.

Figure 2 shows the structure of the Simulation program. The double line rectangle represents

the enterprise. The dashed-line rectangle represents the line and each inner icon represents a

component. The first component is a receptionist that shares the name, Model, with the line that

- 8 - Technical Report TR93-09

contains it. All calls to a line are received by the receptionist. The other two components are

subordinate individuals. The last individual in the line, Split, is replicated with one to five replicas.

Figure 2: A program in the Enterprise programming environment.

Because the diagrams are at a high level, many common types of parallel programming

errors are not possible in Enterprise, and correct applications can be generated more quickly.

The disadvantage is that not every application is well-suited to the Enterprise approach.

When a user compiles a program, the Enterprise pre-compiler automatically inserts code to

handle the distributed computation and compiles the program. When a user executes a program,

the Enterprise run-time executive allocates as many processors as are necessary to start the

program, initiates processes on the processors and dynamically allocates work to processes,

ensuring that the work is evenly distributed.

4. Assessment Factors

There are many considerations that can go into the assessment of parallel programming

systems, but the majority fall into three categories:

1) Performance: For the applications of interest, what kind of run-time performance will be

achieved? In many organizations, performance is usually considered to be a feature of

- 9 - Technical Report TR93-09

hardware alone, without proper consideration of programming systems and the

performance they are (in)capable of achieving.

2) Usability: How easy is application design, development, coding, testing and debugging?

Some programming systems address one of these activities, without providing support for

the rest of the software development cycle.

3) Availability: Is the programming system available on a variety of hardware platforms, and

will it achieve high performance on each? Although a system might be available on a

variety of machines, it may only achieve high performance on a specific platform.

Within each of these categories, there are a number of issues that are worth evaluating. Table 1

lists some of the most important.

CATEGORY ASSESSMENT METRIC

Performance speed of code generated

memory usage

turnaround time

Usability learning curve

probability of programming errors

functionality

integration with other systems

deterministic performance

compatibility with existing software

suitability for large-scale software engineering

power in the hands of an expert

ability to do incremental tuning

Availability portability

hardware dependence

programming languages supported

Table 1: Assessment factors.

- 10 - Technical Report TR93-09

There are a variety of commonly used measures for assessing performance. Recently, the

parallel/distributed computing community has focussed its attention on the development of

benchmark test suites, consisting of a diverse collection of programs. Given the diversity of

algorithmic techniques and communication patterns in these test suites, it is difficult for any system

to provide uniformly high performance across all tests. Usually, a system does very well on a

handful of test programs and gets poor or mediocre performance on the rest. Since this issue is

being addressed by the community, we do not elaborate on it further.

There are a number of ways of assessing the availability of a programming system.

Portability is an important issue in the sequential world but has an extra dimension of complexity in

the parallel world. Any programming system can be ported to a variety of hardware platforms.

However, its performance may be low if its special hardware needs are not met. Availability can

be assessed either globally (over a wide range of machines) or locally (meeting an individual

organization's needs). Clearly, high availability of a system is meaningless if it does not support

your machine or base language.

The least frequently measured aspect of a programming system is its usability. Nevertheless,

it may be the most important dimension since it influences the productivity of the programmers,

which has a big impact on time-to-market and other factors that directly affect corporate profits.

Given the extra complexity of debugging and testing parallel and distributed software, it is essential

that a programming system eliminate, simplify or at least mask the complexity.

5. Measuring Usability

Quantifying and measuring usability involves human-factors considerations that are often

ignored in "main-stream" computing science. Several features of a parallel programming system

determine its usability. Among these are:

1) Learning curve: How long does it take an expert or an inexperienced parallel programmer

to be able to use the programming system productively? Note that some systems

specifically address the needs of experts, while others are targeted at novices; few do both.

2) Programming errors: Some systems restrict the kinds of parallelism to prevent errors (e.g.

Enterprise). Other systems, such as PVM, allow the user to do anything, trading flexibility

for a greater chance of introducing logic errors. Usually the potential for errors is directly

related to the number of lines of user code. Therefore systems that require more user code

are more susceptable to errors.

- 11 - Technical Report TR93-09

3) Deterministic performance: Non-determinism, common in the implementation of some

algorithms and inherent in some programming systems, can significantly increase the

overhead in application debugging.

4) Compatibility with existing software: Legacy software cannot be ignored. Ideally, the

programming system must support the integration of existing software with minimal effort.

5) Integration with other tools: A programming system should either come with, or provide

access to, debugging, monitoring and performance evaluation tools.

Although there have been many human-factors studies of the productivity of sequential

programmers [Bro80], we know of no comparable studies for programmers developing parallel

software. We propose two experiments to assess the productivity of parallel programming

systems. The first measures the ease with which novices can learn the programming system and

produce correct, but not necessarily efficient, programs. The second measures the productivity of

the system in the hands of an expert. The mechanics of these experiments are quite simple: put a

group of programmers in a room, give them instructions for a programming system, give them

some problems to solve, and measure what they do. For novices, we are interested in measuring

how quickly they can learn the system and produce correct programs. For experts, we want to

know the value of p1/2, the time it takes to produce a correct program that achieves at least half the

performance of the machine. (This is analagous with Hockney's n1/2, which is the vector length on

which a pipline delivers half its peak performance [Hoc91]).

There are a number of considerations that must be taken into account in the design of the

experiment to obtain fair results:

1) The subjects used in an experiment must be chosen with care. The novices should have no

previous experience in parallel computing. To eliminate the cumulative effects of learning,

a subject can only be used in one experiment. On the other hand, the experts should have

full knowledge of the programming systems they are using. For each experiment, the test

groups must be balanced to ensure the subjects have equivalent abilities and experience.

2) Given that all the programming systems will not run on the same hardware, the execution

times of the system and the application must be normalized across all hardware platforms.

For example, if a machine A is ten times faster than machine B, then system response on A

(such as compilation) and application execution times must be presented to the user ten

times slower than real time. This allows the hardware speeds to be factored out of the

experiment.

3) Ideally, the test problems would be chosen in a way which did not introduce any significant

biases into the experiment. For example, the problems should not favour one system over

- 12 - Technical Report TR93-09

another. As this is impossible, one solution is to partition typical "real world" applications

into a number of classes (matrix manipulation, combinatorial search, Monte-Carlo

simulations, etc.) and include a representative problem from each of the classes. The

arguments for and against this solution are the same as the arguments for and against any

performance evaluation suite

4) A uniform way of introducing the programming system to novices must be developed. We

do not want the experiment adversely influenced by the quality of the instruction or

documentation provided for each system. Novices will be taught be a neutral party.

Instruction will be constrained by time and the number and type of sample programs

presented.

Some of the important items to measure during each experiment include: the time taken to

solve each problem, the number of lines of code written, the number of compilations required, the

number of program executions, the number and type of run-time errors uncovered and the

program's performance achieved over time.

Although the details outlined here are sketchy, they nevertheless convey a sense of the human

factors issues in parallel programing systems that have been neglected to date. We propose that the

above experiment (or variations on it) should be a priority. Given the diversity of programming

systems available, as evident in Section 2, researchers need more feedback into what works well

and why. We recognize that the cost of performing such quantitative measurements will be large.

However, the cost of not performing them, as borne by a group which selects an inappropriate or

low-performing programming system, will certainly be much larger.

6. Anticipating the Results

As discussed in the previous section, we intend to compare parallel programming systems by

measuring the time required by novices to produce correct programs, and the rate at which

experienced programmers can produce programs with good performance. In Table 2, we outline

the results we expect from these tests for several of the programming systems introduced in

Section 2, and justify our expectations. In this, we assume that a novice programmer is one with

experience of sequential programming in either C or Fortran (or, where noted, with functional

programming), while an expert is someone who has worked with a system extensively. The

rating column is an assessment of parallel programming system's usability, measured by the speed

of the learning curve for novices (fast = high rating), and the speed by which experienced

programmers can achieve p1/2 (fast = high rating).

- 13 - Technical Report TR93-09

Rating Novice Expert

High C-Linda HPF (right problem)

Enterprise (right problem) Enterprise (right problem)

Sisal (functional prog.)

Skeletons (functional prog.)

Medium Concert/C Concert/C

HPF C-Linda

PUL (right problem) PUL (right problem)

PVM

Sisal

Low Enterprise (wrong problem) Enterprise (wrong problem)

PVM Skeletons

Sisal (imperative prog.)

Skeletons (imperative prog.)

Zero PUL (wrong problem) PUL (wrong problem)

Table 2: Expected assessments.

The revolutionary systems are exemplified by functional languages like Sisal and by the

higher-order skeletons of Cole. To date, these have only delivered poor to moderate performance,

although it is improving steadily [Can92]. We predict that novices will find such systems either

very difficult to learn (if they have no previous experience with functional programming), or very

easy (if higher-order function application, streams, and similar concepts are already part of their

repertoires).

The first evolutionary system we consider is C-Linda. This is a "conservative" extension of

C in that it introduces very little new syntax, and a small (but powerful) set of new concepts. The

authors' experience is that novices can learn and use C-Linda quickly. Typically, a half-hour of

instruction is all that is required. Similarly, expert users are often able to build prototypes of

parallel systems in C-Linda quickly. However, it is no easier to improve the performance of C-

Linda programs than those based on any other system. This is primarily because C-Linda allows

less of the underlying hardware to show through than, for example, PVM, but it is exactly this

underlying hardware which must be taken into consideration when programs are tuned.

- 14 - Technical Report TR93-09

Concert/C is a less conservative set of extensions to C. While its basic RPC model is easy to

understand, the language contains a great deal of extra syntax. Thus, we expect that novices

would require more time to produce working programs in Concert/C than in C-Linda. However,

we expect that expert users would find program tuning equally easy (or hard) in the two systems.

PVM is a much lower-level system than either of these. It is presented as a set of libraries

rather than as syntactic extensions, and leaves the responsibility for such things as data marshalling

and un-marshalling entirely in the users' hands. The model it implements is also lower-level than

those used in C-Linda and Concert/C. In essence, PVM is "just" a way of moving bytes from one

processor to another. Our experience is that such message-passing systems are significantly more

difficult to learn than higher-level systems. In part, this is because the number of initialization and

parameter-packing calls required by such systems means that there is no such thing as a short

message-passing program, and that there are therefore many more lines of code in which novices

might make errors. However, expert users can produce most of this code quickly and correctly.

In addition, since PVM more accurately reflects the hardware on which it runs, it sometimes allows

for easier tuning of programs. Thus, while C-Linda and Concert/C are rated less highly for

experts than for novices, we expect that PVM's rating would be pulled up as its users' experience

grew.

High Performance Fortran (HPF) combines Fortran90's data-parallel operators with

mechanisms for decomposing and distributing array structures. We predict that novices will find

writing parallel programs in HPF as easy, or as difficult, as writing serial programs in Fortran, and

so place it with Concert/C. When used on the right sorts of problems (i.e. large arithmetic

calculations), we expect that HPF will allow experts to obtain very good performance very

quickly. On the wrong sorts of problems (for example, game tree search or database

manipulations) we would expect HPF to do poorly, since its features were not designed with such

problems in mind. We return to this topic in the final section.

Since PUL hides the details of parallelism from its users, it is relatively simple to use, if the

problem being implemented is one which PUL supports. Thus, PUL's rating in the hands of

novices is either medium (medium, rather than high, because there are a lot of little details about

parameter passing and the like which novices have to master), or zero. Similarly, PUL is rated

highly for expert use on the right sorts of problems, since those cliches which it supports are

supported very efficiently.

Our predicted ratings for Enterprise are similar, as are their justifications. Enterprise's

graphical interface makes it even easier to use than PUL, provided the framework required is one

which Enterprise offers, so it is highly-rated for novice use. In expert hands, Enterprise is also

highly-rated for the right sorts of problems, but rated above PUL for other problems, since service

- 15 - Technical Report TR93-09

assets can always be used to model general message-passing. We note that a combination of

Enterprise and PUL, i.e. a system in which users provided code fragments to be nested in pre-

arranged configurations of assets, would probably be more powerful than either of its halves.

7. Conclusions

This paper has identified an area where the parallel/distributed computing community has

been negligent in providing quantitative data. Hardware vendors are quick to cite measures that

flatter the performance of their machines (MIPS, SPECmarks, Whetstones, etc.) but neglect to

quantify the quality of their software. The growing parallel computing user base could

significantly benefit from an objective assessment of parallel programming systems.

Although there have been numerous research and industrial efforts at developing parallel

programming tools, few will gain wide acceptance. Two systems, in particular, will have a big

impact on parallel computing in the 1990s. Because of the large vector-processing community and

the legacy of Fortran, High Performance Fortran (HPF) will emerge as the dominant system in this

area. In the area of distributed computing, PVM is rapidly becoming a de facto standard, largely

because the system is free and because there is a large effort to support and enhance the system.

However, HPF is targeted to only a small part of the entire user community, while PVM is low-

level system that needs a high-level interface.

Much of the success of data parallel systems like HPF is due to the fact that they hide the

low-level details of fine-grained parallelism. This success can be attributed to the completeness of

its data-parallel model. Unfortunately no similar model yet exists for coarse-grained parallelism.

To date, the best we can do is provide a tool-kit that supports the most commonly used techniques

like pipelines, task farms and divide and conquer. Using Enterprise's graphical annotations to hide

the details of a lower-level message-passing kernel like PVM seems to be the best approach in the

medium term.

The Enterprise effort is committed to the approach of using sequential code with parallel

annotations expressed graphically. This approach is not an all-encompassing general-purpose

solution for all parallel applications, but allows an important class of problems to be solved more

quickly. We believe these high-level approaches to parallel computing will become more

prevalent, as their obvious software engineering advantages become recognized. It is easy to make

comparisons on paper, emphasizing our perception that Enterprise has high degree of usability.

However, until scientific experiments are done to compare programming systems, anyone's claim

is as valid as any other.

- 16 - Technical Report TR93-09

Acknowledgements

This research has been funded by NSERC grant OGP-8173. The Enterprise project is

funded in part by IBM Canada Limited. Financial assistance for Greg Wilson's stay at the

University of Alberta was provided the University of Alberta's Central Research Fund.

References
[And91] G. Andrews. Concurrent Programming: Principles and Practice.

Benjamin/Cummings, 1991.
[AOC88] G. Andrews, R. Olsson, M. Coffin, I. Elshoff, K. Nilsen, T. Purdin and G.

Townsend. An Overview of the SR Language and Implementation. A C M
Transactions of Programming Languages and Systems, Vol. 10, No. 1, January
1988.

[BCM93] R. Bruce, S. Chapple, N. MacDonald, A. Trew. CHIMP and PUL: Support for
Portable Parallel Computing. Fourth Annual Conference of the Meiko User Society
Proceedings, 1993.

[BCZ92] S. Benkner, B. Chapman and H. Zima. Vienna Fortran 90. Scalable High-
Performance Computing Conference Proceedings, ed. R. Voigt and J. Saltz, IEEE
Computer Society Press, 1992.

[BKT92] H. Bal, M. Kaashoek and A. Tanenbaum. Orca: A Language for Parallel
Programming of Distributed Systems. IEEE Transactions on Software Engineering,
Vol. 18, No. 3, March 1992.

[Bro80] R. Brooks. Studying Programmer Behavior Experimentally: The Problems of Proper
Methodology. CACM, Vol. 23, No. 4, 1980.

[Can92] D. Cann. Retire Fortran? A Debate Rekindled. CACM, Vol. 35, No. 8, August
1992.

[CG89] N. Carriero and D. Gelernter. Linda in Context. CACM, Vol. 32, No. 4, April 1989.
[CG92] N. Carriero and D. Gelernter. How to Write Parallel Programs. MIT Press,

Cambridge, Mass., 1990.
[Col89] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computation.

MIT Press, Cambridge, Mass., 1989.
[CT92] K. Chandy and S. Taylor. An Introduction to Parallel Programming. Jones and

Bartlett, 1992.
[FCO90] J. Feo, D. Cann and R. Oldehoeft. A Report on the Sisal Language Project. Journal

of Parallel and Distributed Computing, Vol. 10, 1990.
[Gol93] A. Goldberg. Concert/C: A Language for Distributed C Programming, IBM T.J.

Watson Research Center, Yorktown Heights, New York, 1993.
[GS92] G. Geist and V. Sunderam. Network-Based Concurrent Computing on the PVM

System. Concurrency: Practice and Experience, Vol. 4, No. 4, June 1992.
[Hal85] R. Halstead. Multilisp: A Language for Concurrent Symbolic Computation. ACM

Transactions of Programming Languages and Systems, October 1984.
[HQ91] P. Hatcher and M. Quinn. Data-Parallel Programming on MIMD Computers. MIT

Press, Cambridge, Mass., 1991.
[Hoc91] R. Hockney. Performance Parameters and Benchmarking of Supercomputers Parallel

Computing, Vol. 17, 1991.

- 17 - Technical Report TR93-09

[LLM92] G. Lobe, P. Lu, S. Melax, I. Parsons, J. Schaeffer, C. Smith and D. Szafron. The
Enterprise Model for Developing Distributed Applications. Technical Report TR 92-
20, Dept. of Computing Science, University of Alberta, 1992.

[LMP92] S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer and C. Tseng. An Overview
of the Fortran D Programming System. Technical Report CRPC-TR91121, Center
for Research on Parallel Computation, Rice University, 1991.

[PGH90] C. Polychronopoulos, M. Girkar, M.Haghighat, C. Lee, B. Leung and D. Schouten.
The Structure of Parafrase-2: an Advanced Parallelizing Compiler for C and Fortran.
Languages and Compilers for Parallel Computing, ed. D. Gelernter, A. Nicolau and
D. Padua, Pitman, London, 1990.

[SK91] W. Shu and L. Kalé. Chare Kernal: a Runtime Support System for Parallel
Computations. Journal of Parallel and Distributed Computing, Vol. 11, 1991.

[TMC91] Thinking Machines Corporation. CM-Fortran Users' Manual. 1991.

