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Abstract

In this thesis, we present our work on two combinatorial optimization problems. The first problem

is the Bandpass problem, and we designed a linear time exact algorithm for the 3-column case. The

other work is on the Complementary Maximal Strip Recovery problem, for which we designed a

3-approximation algorithm.

The Bandpass problem arises in designing optimal communication networks which aims to min-

imize the communication cost by packing data flows into groups. In the mathematical definition of

this problem, a network is represented by a binary matrix, and we let a bandpass stand for a data

group. Given a binary matrix A and a positive integer B, a bandpass is a sequence of B consecutive

1’s in a column. Our goal is to maximize the non-overlapping bandpasses in A by doing row permu-

tations. The general Bandpass problem is NP-hard and was claimed to be NP-hard when the number

of columns is three. Previously, a Row-Stacking algorithm for the 3-column case was proposed to

produce a solution that is at most one less than the optimum. We show that for any given matrix A

of three columns with a bandpass number B ≥ 2, our Remainder-Driven algorithm can achieve an

optimal solution in linear time.

The Complementary Maximal Strip Recovery (CMSR) problem is formulated from research on

genome comparison. In this problem, given two sequences G1 and G2 of n gene markers, in which

each marker occurs exactly once, we aim to partition G1 and G2 into a set of common substrings

of length at least 2 after deleting a minimum number of markers. This problem has been shown

NP-hard and APX-complete, and there is no constant ratio approximation algorithm. We designed a

3-approximation algorithm for the CMSR problem with a performance ratio analysis done through

a novel inverse sequential amortization.
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Chapter 1

Introduction

In this chapter, we introduce the background of the two combinatorial optimization problems that

we worked on. The Bandpass problem arises in designing optimal communication networks which

aims to minimize the communication cost. In this problem, we process the given binary matrix rep-

resenting a network by doing row permutations to find an optimal placement. The CMSR problem

is formulated from the research on genome comparison. Given two sequences of gene markers,

we aim to map all common substrings of length at least two between the two given sequences by

deleting a minimum number of markers.

1.1 The Bandpass Problem

The Bandpass problem was first formulated and presented in the Annual INFORMS meeting, Octo-

ber 2004, USA [2, 15]. Given an m×n matrix A of binary elements {0,1} and a positive integer B,

a bandpass is a sequence of non-zero entries of length B in a column of A. The goal of this com-

binatorial optimization problem is to find an optimal row permutation of the matrix A to maximize

the number of bandpasses in it, in which no two bandpasses share any entries.

This problem arises in designing optimal communication networks which aims to minimize the

communication cost by packing information flows into groups. In a communication network, a

sending point has m information packages to be sent to n different destination points. We can use

a matrix A of dimension m × n to represent the sending point, where A = {aij}, i = 1, · · ·m,

j = 1, · · ·n and aij = 1 if the information package i is not destined for the destination point j,

otherwise aij = 0. Then, for a given positive integer B, the cable of the sending point could reduce

the communication cost by merging the information packages to the same destination using Dense

Wavelength Division Multiplexing (DWDM) technology [2]. More details of the application can be

referred to [2].

The general Bandpass problem is proven to be NP-hard when B ≥ 2 [2, 15]. Dr. Lin proposed

the Row-Stacking algorithm which produces a solution that is at most one bandpass less than the

optimum when the given matrix has three columns [15]. Based on the Row-Stacking scheme, we

1



designed a Remainder-Driven algorithm that can generate the optimal solution in linear time.

1.2 The CMSR Problem

In comparative genomics [4], one of the first steps is to decompose two given genomes into synthetic

blocks — segments of chromosomes that are deemed homologous in the two input genomes. Many

decomposition methods have been proposed [21, 20, 10], but they are vulnerable to ambiguities

and errors. A few years back, the Maximal Strip Recovery (MSR) problem was formulated for

eliminating noise and ambiguities in genomic maps [23], which are isolated points that do not co-

exist with other points [9, 22]. In the more precise formulation, we are given two genomic maps G1

and G2 each of n distinct gene markers, and we want to retain the maximum number of markers in

both G1 and G2 such that the resultant subsequences, denoted as G∗1 and G∗2, can be partitioned into

the same set of maximal substrings of length greater than or equal to two. Each retained marker thus

belongs to exactly one of these substrings, which can appear in the reversed and negated form and

are taken as nontrivial chromosomal segments. The deleted markers are regarded as noise or errors.

The MSR problem, and its several close variants, have been shown NP-hard [19, 5, 8]. More

recently, it is shown to be APX-complete [5, 12], admitting a 4-approximation algorithm [8, 18].

This approximation algorithm is a modification of an earlier heuristics for computing a maximum

clique (and its complement, a maximum independent set) [5, 22, 16], to convert the MSR problem to

computing the maximum independent set in t-interval graphs [6], which admits a 2t-approximation

[8, 17]. In our work, we investigate the complementary optimization goal to minimize the number of

deleted markers — the complementary MSR problem, or CMSR for short. CMSR is certainly NP-

hard, and was proven to be APX-hard recently [13]. Nevertheless, there is no known constant ratio

approximation algorithm. We present here a 3-approximation algorithm which is the first constant

ratio approximation algorithm.

2



Chapter 2

A Linear Time Exact Algorithm for
the Bandpass Problem 1

In this chapter, we introduce the exact algorithm for the 3-column Bandpass problem in two sections.

In Section 2.1, we give several important definitions which are frequently referred to in the next

section. Then in Section 2.2, we consider a complete set of subcases for a given general 3-column

Bandpass instance. Through case by case analysis, we present the solution for every case and prove

its optimality.

2.1 Preliminaries

Definition 1 (Bandpass [2]) B consecutive non-zero entries in the same column of the given m×n

binary matrix A form a bandpass.

Definition 2 (Bandpass Problem [2, 3, 15]) Given an m × n matrix A of binary elements {0,1}

and a positive integer B, find a row permutation of A with the maximum number of non-overlapping

bandpasses.

In our work, we deal with a matrix of three columns. There are at most eight types of rows: (0,

0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0) and (1, 1, 1) in a three-column binary

matrix. For convenience, we use m1 to represent the rows of type (0, 0, 0), so that |m1| stands for

the number of (0, 0, 0) rows in the given matrix. Furthermore, we let |m1| = q1B + r1, where q1

and r1 are the quotient and remainder respectively of dividing |m1| by B. The symbols for every

row type are shown in Table 2.1. Since m1 does not contribute to any bandpass, we can ignore them

hereafter.

Definition 3 (Maximum) MAX represents the maximum possible number of bandpasses we can

achieve. It is the upper bound of the optimal solution. We compute MAX using Equation (2.1).

MAX =

⌊
# of 1′s in column1

B

⌋
+

⌊
# of 1′s in column2

B

⌋
+

⌊
# of 1′s in column3

B

⌋
(2.1)

1The main result in this chapter appears as ”Z. Li, G. Lin. The three column Bandpass problem is solvable in linear time.
Theoretical Computer Science. 412:281–299, 2011.” [14]
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Symbol Row Type Quantity Representation
m1 0 0 0 |m1| = q1B+r1
m2 0 0 1 |m2| = q2B+r2
m3 0 1 1 |m3| = q3B+r3
m4 0 1 0 |m4| = q4B+r4
m5 1 1 0 |m5| = q5B+r5
m6 1 1 1 |m6| = q6B+r6
m7 1 0 1 |m7| = q7B+r7
m8 1 0 0 |m8| = q8B+r8

Table 2.1: Symbols for row types.

P1 P2 P3

m2 0 0 1 |m2|
m3 0 1 1 |m3|
m4 0 1 0 |m4|
m5 1 1 0 |m5|
m6 1 1 1 |m6|
m7 1 0 1 |m7|
m8 1 0 0 |m8|

m2 0 0 1 |m2|
m7 1 0 1 |m7|
m8 1 0 0 |m8|
m5 1 1 0 |m5|
m6 1 1 1 |m6|
m3 0 1 1 |m3|
m4 0 1 0 |m4|

m4 0 1 0 |m4|
m3 0 1 1 |m3|
m2 0 0 1 |m2|
m7 1 0 1 |m7|
m6 1 1 1 |m6|
m5 1 1 0 |m5|
m8 1 0 0 |m8|

P4 P5 P6

m4 0 1 0 |m4|
m5 1 1 0 |m5|
m8 1 0 0 |m8|
m7 1 0 1 |m7|
m6 1 1 1 |m6|
m3 0 1 1 |m3|
m2 0 0 1 |m2|

m8 1 0 0 |m8|
m7 1 0 1 |m7|
m2 0 0 1 |m2|
m3 0 1 1 |m3|
m6 1 1 1 |m6|
m5 1 1 0 |m5|
m4 0 1 0 |m4|

m8 1 0 0 |m8|
m5 1 1 0 |m5|
m4 0 1 0 |m4|
m3 0 1 1 |m3|
m6 1 1 1 |m6|
m7 1 0 1 |m7|
m2 0 0 1 |m2|

Table 2.2: Six alternative solutions of the Row-Stacking Algorithm.

Though we might not always be able to find a row permutation with MAX bandpasses for

a given matrix, the Row-Stacking algorithm can construct a placement with at least MAX − 1

bandpasses. The Row-Stacking Algorithm [15] is that, given an m×3 matrix A of binary elements

{0,1} and a positive integer B, place the rows according to one of the six schemes shown in Table

2.2. We can get at least MAX − 1 bandpasses in each of the six placements.

Ideally, for a given matrix, if we can make the 1’s in every column consecutive, then we get

MAX bandpasses. Actually, we can not make it most of the time, for example when we have all

types of rows or we simply have m3, m5 and m7 in the given matrix. The key point of the Row-

Stacking algorithm is that, always make the 1’s in two columns consecutive, and then the 1’s in the

other column may be consecutive or separated into two bands.

Take the placement P1 in Table 2.2 for instance, apparently, we can acquire the maximum num-

ber of bandpasses in the first two columns in which the 1’s are consecutive. Then whether we can

get MAX bandpasses depends on the third column. If the 1’s in it are consecutive, then it is an

optimal placement. Otherwise, the 1’s in the third column are broken into two bands of 1’s, then we

group the 1’s into bandpasses successively, until the remainders are less than B. This procedure is

4



Figure 2.1: Extracting bandpasses in the Placement 1.

shown in Figure 2.1. Let the two remainders be r and r
′
, respectively. If r+ r

′
< B, the placement

P1 is an optimal solution, because even there is a way to connect the two bands together, we can not

get more bandpasses. Else, we have r + r
′ ≥ B which means we get MAX − 1 bandpasses.

There are six alternative placements in the Row-Stacking scheme, the corresponding values of r

and r
′

are shown in Table 2.3. Therefore, we can get MAX bandpasses as long as there exists one

of the six placements with the corresponding r + r
′
< B. Otherwise, we have r + r

′ ≥ B for all

the six placements.

Definition 4 (OPT) We let OPT represent the number of bandpasses that we can get in the optimal

placement. Thus, we have OPT ≤MAX .

Based on the Row-Stacking algorithm, we further proposed the Remainder-Driven Algorithm

which can get the optimal solution in linear time. For a given instance (A,B), we first use the Row-

Stacking algorithm. If it can not achieve MAX bandpasses, then the Remainder-Driven algorithm

will further process the given matrix to reach the optimum. Specifically, it first tries to construct an

optimal placement by using the matrix consists of the remainder part of each type of rows, and put

the integral part of each type of rows aside, since the matrix consists of the integral parts certainly can

produce a maximum number of bandpasses by placing the rows of the same type together. If it can

not achieve MAX bandpasses, then it will make use of the integral part if there is any. Otherwise,

we will prove that OPT = MAX − 1.

5



Placement r r
′

P1 (r2 + r3)%B (r6 + r7)%B
P2 (r2 + r7)%B (r6 + r3)%B
P3 (r4 + r3)%B (r6 + r5)%B
P4 (r4 + r5)%B (r6 + r3)%B
P5 (r8 + r7)%B (r6 + r5)%B
P6 (r8 + r5)%B (r6 + r7)%B

Table 2.3: Remaider values of the six placements.

Placement Inequation
P1 (r2 + r3)%B + (r6 + r7)%B ≥ B
P2 (r2 + r7)%B + (r6 + r3)%B ≥ B
P3 (r4 + r3)%B + (r6 + r5)%B ≥ B
P4 (r4 + r5)%B + (r6 + r3)%B ≥ B
P5 (r8 + r7)%B + (r6 + r5)%B ≥ B
P6 (r8 + r5)%B + (r6 + r7)%B ≥ B

Table 2.4: The conditions when the Row-Stacking algorithm can not achieve MAX bandpasses.

2.2 The Algorithm and Proofs of Optimality

In this section, we introduce how the Remainder-Driven algorithm works based on the Row-Stacking

scheme. When the Row-Stacking algorithm can not achieve MAX bandpasses, we have r+r
′ ≥ B

for all six placements. It is shown in Table 2.4 according to Table 2.3.

Generally speaking, for a given case which can not be optimized by the Row-Stacking scheme,

the Remainder-Driven algorithm will first try to find a permutation with MAX bandpasses, but

when it can not make it, we will prove that the solution with MAX − 1 bandpasses is already

optimal. Based on this idea, we consider a complete set of four subcases for a given 3-column

Bandpass instance, which is shown in Figure 2.2.

Figure 2.2: The skeleton of the Remaider-Driven algorithm.
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2.2.1 Two Base Cases

Before stepping into the four subcases, we introduce two base cases first. Base case 1: we only have

m3,m5,m7 in the given matrix; Base case 2: the complement of Base case 1, where we only have

m2,m4,m6,m8 in the given matrix. We present three lemmas for these two base cases which will

be referenced frequently by later proofs of optimality.

Lemma 1 If ∀mi ∈ {m2,m4,m6,m8}, s.t. |mi| = 0, and r3+r5 ≥ B, r3+r7 ≥ B, r5+r7 ≥ B,

r3 + r5 + r7 < 2B, then OPT = MAX − 1.

PROOF. We first show that if one of q3, q5, q7 is zero, then OPT = MAX − 1. Without loss of

generality, assume q7 = 0. From the definitions, we have MAX = 2q3 +2q5 +3, and if there is an

optimal row placement P ∗ achieving MAX bandpasses, then there are q5 + 1, q3 + q5 + 1, q3 + 1

bandpasses in each column of P ∗.

Since the total number of rows is |m3|+ |m5|+ |m7| < (q3+ q5+2)B, we conclude that in P ∗

there must be some bandpasses in the first column overlap (that is, share rows) with bandpasses in

the third column. But none of the bandpasses in the first column would overlap with two bandpasses

in the third column due to the non-existence of (1, 1, 1)-rows. Equivalently, there are pairs of

overlapping bandpasses, one in the first column and the other in the third column. These overlapping

regions, consisting of solely (1, 0, 1)-rows, separate the rows of P ∗ into chunks. For every bandpass

(in the first or the third column) participating in the overlapping pairs, if a part of it belongs to a

chunk, then the bandpass is said to belong to that chunk. Because there are q3 + q5 + 1 bandpasses

in the second column of P ∗, we conclude that there is (at least) one chunk in which the number

of bandpasses in the second column is strictly less than the total number of bandpasses in the first

and the third columns. Recall that inside a chunk, no bandpass in the first column would overlap

with any bandpass in the third column. It follows that in this chunk strictly greater than B − r7

1’s in the second column are not involved in any bandpasses. Nevertheless, in order to achieve

MAX bandpasses, at most r3 + r5−B 1’s in the second column of P ∗ can sit outside of generated

bandpasses. This is a contradiction since r3+r5−B < B−r7. This implies that OPT = MAX−1.

When all q3, q5, q7 are positive, we assume that OPT = MAX = 2q3 + 2q5 + 2q7 + 3 is

achieved by a row placement P ∗. Then we examine where the topmost bandpass is in P ∗. Assume

without loss of generality that it occurs in the first column, then the second topmost bandpass should

not occur in the first column, for otherwise at least B 1’s would not be involved in any generated

bandpasses in P ∗. Again assume without loss of generality that the second topmost bandpass occurs

in the second column. These two bandpasses must overlap for the same reason above. Due to

the non-existence of (1, 1, 1)-rows, the third topmost bandpass does not overlap with the topmost

bandpass. Suppose there are l (1, 0, 1)-rows in the topmost bandpass. If we take away the B rows

in the topmost bandpass from the instance, the resultant new instance I
′

contains |m′

3| = |m3| (0,

1, 1)-rows, |m′

5| = (m5 − B + l) (1, 1, 0)-rows, and |m′

7| = (|m7| − l) (1, 0, 1)-rows. Apparently
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l ≤ r3 + r7 −B, implying that r
′

7 = r7 − l ≥ B − r3 > 0, r
′

5 = r5 + l ≤ r3 + r5 + r7 −B < B,

r
′

3 + r
′

5 = r3 + r5 + l ≥ B, r
′

5 + r
′

7 = r5 + r7 ≥ B, r
′

3 + r
′

7 = r3 + r7 − l ≥ B, and

r
′

3 + r
′

5 + r
′

7 = r3 + r5 + r7 ≤ 2B. This new instance I
′

satisfies the premises in the lemma, with

B fewer rows than the original instance and again with OPT (I
′
) = MAX(I

′
).

It follows that if we were to apply the same reduction procedure, we will eventually end up with

an instance that satisfies the premises in the lemma and with OPT = MAX , but one of q3, q5, q7 is

zero. This is a contradiction to the fact proven in the first half. Therefore, for all instances satisfying

the premises, their optimal row placement contains only MAX − 1 bandpasses, suggesting that the

Row-Stacking solutions are already optimal. This proves the lemma. �

Corollary 2 If ∀mi ∈ {m2,m4,m8}, s.t. |mi| = 0, and |m6| = r6, r3 + r6 < B, r5 + r6 < B,

r7 + r6 < B, r3 + r5 + r6 ≥ B, r3 + r7 + r6 ≥ B, r5 + r7 + r6 ≥ B, r3 + r5 + 2r6 + r7 < 2B,

then OPT = MAX − 1.

PROOF. For a given instance I , assume there is a placement P ∗ with maximum bandpasses.

Now we want to construct a new instance I
′

from I by changing m6 rows to m3,m5,m7 without loss

of any bandpass in I . For each (1, 1, 1)-row, if it participated in three bandpasses, we change it to the

corresponding two of {m3,m5,m7}; else if it participated in one or two bandpasses, we change it to

the corresponding m3, m5 or m7; else, remove this row since it didn’t participate in any bandpass.

Suppose we changed r
′

6 rows to m3, r
′′

6 rows to m5 and r
′′′

6 rows to m7. Then in I
′
, r

′

3 = r3 + r
′

6 <

B, r
′

5 = r5+r
′′

6 < B, r
′

7 = r7+r
′′′

6 < B, where r
′

6+r
′′

6 ≥ B−(r3+r5), r
′

6+r
′′′

6 ≥ B−(r3+r7),

r
′′

6 + r
′′′

6 ≥ B− (r5 + r7) and r
′

6 + r
′′

6 + r
′′′

6 ≤ 2r6. Thus r
′

3 + r
′

5 + r
′

7 ≤ r3 + r5 +2r6 + r7 < 2B,

r
′

3+ r
′

5 ≥ B, r
′

3+ r
′

7 ≥ B, r
′

5+ r
′

7 ≥ B. By Lemma 1, we have OPT (I
′
) = MAX(I

′
)− 1. Since

MAX(I
′
) = MAX(I) and OPT (I

′
) ≥ OPT (I), then OPT (I) = MAX − 1. �

Lemma 3 When ∀mi ∈ {m3,m5,m7}, s.t. |mi| = 0, and r2+r6 ≥ B, r4+r6 ≥ B, r8+r6 ≥ B,

r2 + r4 + r6 < 2B, r4 + r8 + r6 < 2B, r2 + r8 + r6 < 2B, if r2 + r4 + r8 + 2r6 < 3B or

q2, q4, q8 = 0, then OPT = MAX − 1.

PROOF. From the lemma premises and Eq. (2.1), we have MAX = q2+q4+q8+3q6+3, and

if there were an optimal row placement P ∗ achieving MAX bandpasses, then there are q8 + q6 +1,

q4 + q6 + 1, q2 + q6 + 1 bandpasses in the first, second, third columns of P ∗, respectively.

Since (0, 0, 1)-rows are not involved in any bandpasses formed in the first and the second

columns, these bandpasses must overlap at least (q8+q6+1+q4+q6+1)B−(|m4|+|m6|+|m8|) =

q6B + 2B − r4 − r6 − r8 rows. These rows have 1 in both the first and the second columns, and

thus must be (1, 1, 1)-rows. If one of these rows is involved in a bandpass generated in the third

column, that is, there are three bandpasses, one from each column, overlapping at a (1, 1, 1)-row,

then there are B consecutive rows of type m6 in the optimal placement (which includes the shared
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Placement r r
′

P1 (r2 + r3)%B r7
P2 (r2 + r7)%B r3
P3 (r4 + r3)%B r5
P4 (r4 + r5)%B r3
P5 (r8 + r7)%B r5
P6 (r8 + r5)%B r7

Table 2.5: Remaider values of the six placements when r6 = 0.

(1, 1, 1)-row). Removing these B consecutive (1, 1, 1)-rows, on one hand we obtain a reduced

instance I
′

for which all the premises hold except that q6 decreases by 1; on the other hand, we

obtain a row placement for I
′

achieving MAX(I
′
) = MAX(I) − 3 bandpasses. It follows that

by repeatedly reducing the instance whenever possible, we may assume without loss of generality

that none of the q6B + 2B − r4 − r6 − r8 (1, 1, 1)-rows is involved in any bandpasses in the third

column. Consequently, the maximum possible number of bandpasses in the third column becomes⌊
|m2|+ |m6| − (q6B + 2B − r4 − r6 − r8)

B

⌋
=

⌊
q2 +

r2 + r4 + r8 + 2r6 − 2B

B

⌋
(2.2)

Therefore, if r2 + r4 + r8 + 2r6 < 3B, this maximum possible number is q2, a contradiction to

q2 + q6 + 1 = q2 + 1.

Note that r2+r4+r8+2r6 < 4B. Therefore, if q2, q4, q8 = 0, this maximum possible number is

1 ≤ q6+1 and the equality holds only when q6 = 0. In such a case, the bandpass in the third column

may overlap with at most one of the bandpass in the first column and the bandpass in the second

column, a contradiction to the fact that these three bandpasses must pairwise overlap. Hence, for all

instances satisfying the premises, their optimal row placement contains only MAX−1 bandpasses.

This proves the lemma. �

2.2.2 Case 1 (r6 = 0)

We separate this case into two disjoint subcases according to whether q6 = 0. One can verify that

since r6 = 0, Table 2.3 reduces to Table 2.5. If there exists a permutation satisfying r + r
′
< B,

then it is the optimal solution. Otherwise we have (r2 + r3)%B+ r7 ≥ B, (r2 + r7)%B+ r3 ≥ B,

(r4+r3)%B+r5 ≥ B, (r4+r5)%B+r3 ≥ B, (r8+r5)%B+r7 ≥ B and (r8+r7)%B+r5 ≥ B

simultaneously.

• Case 1.1 q6 = 0

In this case, since both q6 = 0 and r6 = 0, we have no (1, 1, 1)-row in the given matrix. We

separate Case 1.1 into the following subcases.

– If ∃mi ∈ {m2,m4,m8}, s.t. |mi| ≥ B.
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m2 0 0 1 |m2|
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m
′

2 0 0 1 |m2| − (r2 + r3)%B
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m8 1 0 0 r8
m7 1 0 1 r7
m

′′

2 0 0 1 (r2 + r3)%B

Table 2.6: Placement 1.1.01

m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m
′

2 0 0 1 B − r3
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m8 1 0 0 r8
m7 1 0 1 r7
m

′′

2 0 0 1 r2 + r3 −B

Table 2.7: Placement 1.1.02

Since m2,m4,m8 can be symmetrically discussed, without loss of generality, here we

assume |m2| ≥ B. We can get MAX bandpasses by using Placement 1.1.01 shown

in Table 2.6, in which we take (r2 + r3)%B (0, 0, 1)-rows down to the bottom of the

matrix to make the first band in the third column of length a multiple of B, together with

that the 1’s in the first and second columns are consecutive, thus the resultant matrix is

optimal. (In Placement 1.1.01, m2, m
′

2 and m
′′

2 represent the same type of rows. We

are indicating that the set of m2 rows in the left matrix is splitted into two sets, m
′

2

and m
′′

2 , in the resulting matrix to the right. We adopt this way of representation

in every placement in the sequel.)

– Else if r2 + r3 ≥ B (We can symmetrically consider the cases when r4 + r5 ≥ B or

r8 + r7 ≥ B).

In this case, we can use a similar way as what we did in Placement 1.1.01 to get MAX

bandpasses, and for the same reason, the resultant matrix in Placement 1.1.02 is optimal,

which is shown in Table 2.7.

– Else if r2 + r3 + r5 + r7 + r8 ≥ 2B (We can symmetrically consider the cases when

r2 + r3 + r5 + r7 + r4 ≥ 2B or r4 + r3 + r5 + r7 + r8 ≥ 2B).

We can get MAX bandpasses by using Placement 1.1.03 shown in Table 2.8. Since we

have r2 + r3 < B, by taking B − (r2 + r3) (1, 0, 1)-rows up, we can make the first

band in the third column of length a multiple of B, but meanwhile, these B − (r2 + r3)

(1, 0, 1)-rows are not involved in any bandpass in the first column. Since we have
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m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m
′′

7 1 0 1 B − (r2 + r3)
m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m8 1 0 0 r8
m

′

7 1 0 1 r7 + r2 + r3 −B

Table 2.8: Placement 1.1.03

r2 + r3 + r5 + r7 + r8 ≥ 2B, which means we can get one bandpass that we are

supposed to get by using the remaining 1’s in the first column. Thus, Placement 1.1.03

is optimal.

– Else if r2 + r4 + r8 + r3 + r5 + r7 < 2B.

Here we claim that OPT = MAX − 1. We can reduce the current instance I to I
′

by

changing m2 (|m2| = r2) to m3, m4 (|m4| = r4) to m5 and m8 (|m8| = r8) to m7.

Then in I
′
, r

′

3 = r2 + r3 < B, r
′

5 = r4 + r5 < B, r
′

7 = r7 + r8 < B, r
′

3 + r
′

5 ≥ B,

r
′

3 + r
′

7 ≥ B, r
′

5 + r
′

7 ≥ B and r
′

3 + r
′

5 + r
′

7 < 2B. By Lemma 1, we can conclude that

OPT (I
′
) = MAX(I

′
)− 1. Since MAX(I

′
) = MAX(I) and OPT (I

′
) ≥ OPT (I),

we have OPT (I) = MAX(I)− 1.

– Else, r2 + r4 + r8 + r3 + r5 + r7 ≥ 2B.

In this case, if ∃mi ∈ {m3,m5,m7} s.t. |mi| ≥ B, we can get MAX bandpasses.

Since m3,m5,m7 can be symmetrically discussed, without loss of generality, here we

assume |m3| ≥ B. Because r7+ r8 < B, together with the premise of this case, we will

have r2 + r3 + r4 + r5 > B. Then if r2 + r3 + r4 < B, by making use of extra B (0, 1,

1)-rows, we can get MAX bandpasses by using Placement 1.1.04 shown in Table 2.9.

In this case, we are supposed to get one bandpass in the first column, two in the second

column and two in the third column, so Placement 1.1.04 is optimal. Else we will have

r2 + r3 + r4 ≥ B, similar to Placement 1.1.04, we use m4 to adjust the matrix, which is

illustrated by Placement 1.1.05 in Table 2.10, and for the same reason, Placement 1.1.05

is optimal. Else, |m3|, |m5|, |m7| < B, then we are supposed to get one band in each

column. Because r2 + r3 + r5 + r7 + r4 < 2B, r2 + r3 + r5 + r7 + r8 < 2B and

r4 + r3 + r5 + r7 + r8 < 2B, which means the three bandpasses we are supposed to get

are pairwise overlapping. This is impossible because they will form a circle. Thus we

can get MAX − 1 bandpasses.

• Case 1.2 q6 > 0

In this case, we have at least B (1, 1, 1)-rows. First, we try to get an optimal placement

without using m6 in the way which was introduced in Case 1.1. If we can not make it, then
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m2 0 0 1 r2
m3 0 1 1 r3 +B
m4 0 1 0 r4
m5 1 1 0 r5
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m2 0 0 1 r2
m

′

3 0 1 1 B − r2
m

′

5 1 1 0 r2 + r3 + r4 + r5 −B
m8 1 0 0 r8
m7 1 0 1 r7
m

′′

3 0 1 1 r2 + r3
m4 0 1 0 r4
m

′′

5 1 1 0 B − (r2 + r3 + r4)

Table 2.9: Placement 1.1.04

m2 0 0 1 r2
m3 0 1 1 r3 +B
m4 0 1 0 r4
m5 1 1 0 r5
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m2 0 0 1 r2
m

′

3 0 1 1 B − r2
m

′′

4 0 1 0 r2 + r3 + r4 −B
m5 1 1 0 r5
m8 1 0 0 r8
m7 1 0 1 r7
m

′′

3 0 1 1 r2 + r3
m

′

4 0 1 0 B − (r2 + r3)

Table 2.10: Placement 1.1.05

we will have |m2| = r2, |m4| = r4, |m8| = r8, r2 + r3 < B, r4 + r5 < B, r8 + r7 < B,

r2+ r3+ r5+ r7+ r8 < 2B, r2+ r3+ r5+ r7+ r4 < 2B and r4+ r3+ r5+ r7+ r8 < 2B.

Now we make use of extra B m6 to get MAX bandpasses, and we separate this case into the

following subcases.

– If ∃ri ∈ {r2, r4, r8}, s.t. ri = 0.

Here we can get MAX bandpasses. For m2,m4,m8 can be symmetrically discussed,

without loss of generality, assume r4 = 0. Thus |m4| = r4 = 0, there is no (0, 1, 0)-row

in the matrix. In Placement 1.2.01 which is shown in Table 2.11, we use m6 to adjust

the matrix, then the 1’s in the first two columns are consecutive, and the second band in

the third column is of length exactly B. Thus, Placement 1.2.01 is optimal.

m2 0 0 1 r2
m3 0 1 1 r3
m5 1 1 0 r5
m6 1 1 1 B
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m2 0 0 1 r2
m3 0 1 1 r3
m

′′

6 1 1 1 r7
m5 1 1 0 r5
m

′

6 1 1 1 B − r7
m7 1 0 1 r7
m8 1 0 0 r8

Table 2.11: Placement 1.2.01
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m2 0 0 1 r2
m3 0 1 1 r3 +B
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 B
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m8 1 0 0 r8
m7 1 0 1 r7
m

′′

6 1 1 1 B − (r7 + r8)

m
′′

3 0 1 1 r8
m4 0 1 0 r4
m

′

5 1 1 0 r5 + r7 + r8 −B

m
′

3 0 1 1 r3 +B − r8
m2 0 0 1 r2
m

′

6 1 1 1 r7 + r8
m

′′

5 1 1 0 B − (r7 + r8)

Table 2.12: Placement 1.2.02

m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 B
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m8 1 0 0 r8
m7 1 0 1 r7
m

′′

6 1 1 1 B − (r7 + r8)

m
′′

3 0 1 1 r8
m4 0 1 0 r4
m

′

5 1 1 0 r5 + r7 + r8 −B

m
′

3 0 1 1 r3 − r8
m2 0 0 1 r2
m

′

6 1 1 1 r7 + r8
m

′′

5 1 1 0 B − (r7 + r8)

Table 2.13: Placement 1.2.03

– Else if ∃mi ∈ {m3,m5,m7}, s.t. |mi| > B.

In this case, we can get MAX bandpasses. Since m3,m5,m7 can be symmetrically

discussed, without loss of generality, we assume |m3| > B. Then we can make use of

extra B (0, 1, 1)-rows to get an optimal solution, which is shown in Placement 1.2.02.

We are supposed to get two bandpasses in the first column, three in the second and third

columns, so Placement 1.2.02 is optimal.

– Else if r3 ≥ r8 (We can symmetrically consider the cases when r5 ≥ r2 or r7 ≥ r4).

Similar to Placement 1.2.02, we can get MAX bandpasses. The optimal solution is

shown in Placement 1.2.03.

– Else if r3 + r5 + r7 ≥ B.

In this case, we can get MAX bandpasses. Since we have r5 ≥ B − (r3 + r7), in

Placement 1.2.04, we make use of both m5 and m6 to adjust the matrix, then we can

get two bandpasses in each column that we are supposed to get. Thus, Placement 1.2.04

which is shown in Table 2.14 is optimal.

– Else, r3 + r5 + r7 < B.
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m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 B
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m2 0 0 1 r2
m3 0 1 1 r3
m

′

6 1 1 1 r7
m

′

5 1 1 0 B − (r3 + r7)
m8 1 0 0 r8
m

′′

5 1 1 0 r3 + r5 + r7 −B
m4 0 1 0 r4
m

′′

6 1 1 1 B − r7
m7 1 0 1 r7

Table 2.14: Placement 1.2.04

Placement r r
′

P1 (r2 + r3)%B (r6 + r7)%B
P2 (r2 + r7)%B (r6 + r3)%B
P3 r3 (r6 + r5)%B
P4 r5 (r6 + r3)%B
P5 (r8 + r7)%B (r6 + r5)%B
P6 (r8 + r5)%B (r6 + r7)%B

Table 2.15: Remaider values of the six placements when r4 = 0.

In this case, OPT = MAX−1. We can reduce the original instance I to I
′

by changing

m3, m5, m7 to m6, then in I
′
, we have r

′

6 = r3 + r5 + r7, |m2| = r2, |m4| = r4,

|m8| = r8, r2 + r
′

6 + r4 < 2B, r2 + r
′

6 + r8 < 2B and r4 + r
′

6 + r8 < 2B. By Lemma

3, we can conclude that OPT (I
′
) = MAX(I

′
)−1. Since MAX(I

′
) = MAX(I) and

OPT (I
′
) ≥ OPT (I), we have OPT (I) = MAX(I)− 1.

2.2.3 Case 2 (r6 > 0 and r2 · r4 · r8 = 0)

In this case, since we have ∃ri ∈ {r2, r4, r8}, s.t. ri = 0, without loss of generality, we assume

r4 = 0 hereafter, and then Table 2.3 will reduce to Table 2.15. If there exists a permutation satisfying

r + r
′
< B, it is the optimal solution. Otherwise, we have (r2 + r3)%B + (r6 + r7)%B ≥

B, (r2 + r7)%B + (r6 + r3)%B ≥ B, r3 + (r6 + r5)%B ≥ B, r5 + (r6 + r3)%B ≥ B,

(r8 + r5)%B + (r6 + r7)%B ≥ B and (r8 + r7)%B + (r6 + r5)%B ≥ B simultaneously. In the

following, we separate this case into two disjoint subcases according to whether q4 = 0.

• Case 2.1 q4 = 0

In this case, since both q4 = 0 and r4 = 0, it means that we have no (0, 1, 0)-row in the given

matrix. We separate this case into the following subcases.

– If |m2|+ r7 ≥ B (We can symmetrically consider the case when |m8|+m3 ≥ B).

In Placement 2.1.01, we can make the 1’s in the first two columns consecutive and one

of the two bands in the third column of length exactly B. Thus Placement 2.1.01 is

14



m2 0 0 1 r2 +B
m3 0 1 1 r3
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m2 0 0 1 |m2|+ r7 −B
m3 0 1 1 r3
m6 1 1 1 r6
m5 1 1 0 r5
m8 1 0 0 r8
m7 1 0 1 r7
m

′′

2 0 0 1 B − r7

Table 2.16: Placement 2.1.01

m2 0 0 1 r2
m3 0 1 1 r3
m5 1 1 0 r5
m6 1 1 1 |m6|
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m2 0 0 1 r2
m3 0 1 1 r3
m

′′

6 1 1 1 B − r3
m7 1 0 1 r7
m

′

6 1 1 1 |m6|+ r3 −B
m5 1 1 0 r5
m8 1 0 0 r8

Table 2.17: Placement 2.1.02

optimal.

– Else if |m6|+ r3 ≥ B (We can symmetrically consider the cases when |m6|+ r5 ≥ B

or |m6|+ r7 ≥ B).

In this case, we use m6 to adjust the matrix which is shown in Placement 2.1.02. The 1’s

in the first and third columns are consecutive, and in the second column the first band is

of length B. Thus we can get MAX bandpasses in Placement 2.1.02.

– Else if r2 + r3 + r6 ≥ B.

For |m6| = r6 and r6 + r3 < B, together with the premise of this subcase, we have

r2 ≥ B−(r6+r3). In Placement 2.1.03, the 1’s in the first two columns are consecutive,

and one band in the third column is of length exactly B. Thus Placement 2.1.03 is

optimal.

– Else if r5 + r6 + r8 ≥ B.

m2 0 0 1 r2
m3 0 1 1 r3
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m
′

2 0 0 1 B − (r6 + r3)
m3 0 1 1 r3
m6 1 1 1 r6
m5 1 1 0 r5
m8 1 0 0 r8
m7 1 0 1 r7
m

′′

2 0 0 1 r2 + r3 + r6 −B

Table 2.18: Placement 2.1.03

15



m2 0 0 1 r2
m3 0 1 1 r3
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m
′′

8 1 0 0 B − (r6 + r5)
m5 1 1 0 r5
m6 1 1 1 r6
m3 0 1 1 r3
m2 0 0 1 r2
m7 1 0 1 r7
m8 1 0 0 r8 + r6 + r5 −B

Table 2.19: Placement 2.1.04

m2 0 0 1 r2
m3 0 1 1 r3
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m
′′

7 1 0 1 B − (r2 + r3 + r6)
m2 0 0 1 r2
m3 0 1 1 r3
m6 1 1 1 r6
m5 1 1 0 r5
m8 1 0 0 r8
m

′

7 1 0 1 r2 + r3 + r6 + r7 −B

Table 2.20: Placement 2.1.05

Similar to the previous subcase, Placement 2.1.04 shown in Table 2.19 is optimal.

– Else if r2 + r3 + r5 + 2r6 + r7 + r8 ≥ 2B

In Placement 2.1.03, if r2 + r3 + r6 < B, we can take some (1, 0, 1)-rows up to make

the first band in the third column of length B, and the corresponding 1’s are not involved

in any bandpass in the first column. For the premise of this subcase, we can get one

bandpass that we are supposed to get in the first column. Thus Placement 2.1.05 shown

in Table 2.20 is optimal.

– Else, we have OPT = MAX − 1.

Now |m2| = r2 and r2 + r3 + r6 < B; |m6| = r6 and r6 + r3 < B, r6 + r5 < B,

r6+r7 < B; |m8| = r8 and r5+r6+r8 < B, r2+r3+r5+2r6+r7+r8 < 2B. From

the current instance I , we change m2 to m3, m8 to m5. Then in the new instance I
′
, we

have r
′

3 = r2 + r3, r
′

5 = r5 + r8, r
′

7 = r7, satisfying that r
′

3 + r
′

5 + r
′

7 +2r6 < 2B, and

r
′

3 + r
′

7 + r6 = r2 + r3 + r6 + r7 ≥ B, similarly r
′

3 + r
′

5 + r6 ≥ B, r
′

5 + r
′

7 + r6 ≥ B.

By Corollary 2, we have OPT (I
′
) = MAX(I

′
) − 1. Since MAX(I

′
) = MAX(I)

and OPT (I
′
) ≥ OPT (I), then OPT (I) = MAX(I)− 1.

• Case 2.2 q4 > 0

In this case, we can make use of B (0, 1, 0)-rows. First, we try to get an optimal placement

without using m4 in the way which was introduced in Case 2.1. If we can not make it, then

we will have |m2| = r2, |m8| = r8, |m6| = r6, r2 + r3 < B, r2 + r7 < B, r8 + r5 < B,
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m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 B
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m
′

4 0 1 0 r5
m3 0 1 1 r3
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8
m5 1 1 0 r5
m

′′

4 0 1 0 B − r5

Table 2.21: Placement 2.2.01

m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 B
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m
′

4 0 1 0 r5
m3 0 1 1 r3
m6 1 1 1 r6
m2 0 0 1 r2
m7 1 0 1 r7
m8 1 0 0 r8
m5 1 1 0 r5
m

′′

4 0 1 0 B − r5

Table 2.22: Placement 2.2.02

r8 + r7 < B, r6 + r3 < B, r6 + r5 < B, r6 + r7 < B. Now we are supposed to get one

bandpass in each column. We separate this case into the following subcases.

– If r3 + r6 + r7 ≥ B (We can symmetrically consider the case when r5 + r6 + r7 ≥ B).

Here we can get one bandpass that we are supposed to get without using r2 (0, 0, 1)-rows

in the third column. In Placement 2.2.01, by making use of B (0, 1, 0)-rows, we get one

bandpass in the first and third columns respectively, and two in the second column. Thus

Placement 2.2.01 is optimal.

– Else if r5 + r7 + r8 ≥ B.

We are supposed to get one bandpass in the first column, and we can get it without

using m6. Placement 2.2.02 is similar to Placement 2.2.01, the only difference is that by

making use of r2 (0, 0, 1)-rows, the third column can achieve one bandpass while the

first column wasted all the m6 1’s. The first column can achieve one bandpass for the

premise of this case. Thus Placement 2.2.02 is optimal.

– Else if r2 + r3 + r5 + r6 + 2r7 + r8 ≥ 2B.

Now we have r5+ r7+ r8 < B and r5+ r6+ r7+ r8 ≥ B, so r6 ≥ B− (r5+ r7+ r8).

In Placement 2.2.03, the second band in the second column is exactly one bandpass, and

the first column can achieve one bandpass. For the premise of this case, we can get one

bandpass in the third column. Thus Placement 2.2.03 is optimal.

– Else if r2 + 2r3 + 2r5 + 2r6 + 2r7 + r8 ≥ 3B.
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m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 B
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m
′

4 0 1 0 B − (r7 + r8)

m
′

6 1 1 1 r5 + r6 + r7 + r8 −B
m3 0 1 1 r3
m2 0 0 1 r2
m7 1 0 1 r7
m8 1 0 0 r8
m5 1 1 0 r5
m

′′

6 1 1 1 B − (r5 + r7 + r8)

m
′′

4 0 1 0 r7 + r8

Table 2.23: Placement 2.2.03

m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 B
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m
′

4 0 1 0 r2 + r3 + r5 + r6 + r7 −B

m
′

6 1 1 1 r5 + r6 + r7 + r8 −B
m3 0 1 1 r3
m2 0 0 1 r2
m7 1 0 1 r7
m

′′′

6 1 1 1 2B − (r2 + r3 + r5 + r6 + 2r7 + r8)
m8 1 0 0 r8
m5 1 1 0 r5
m

′′

6 1 1 1 r2 + r3 + r6 + r7 −B

m
′′

4 0 1 0 2B − (r2 + r3 + r5 + r6 + r7)

Table 2.24: Placement 2.2.04

In Placement 2.2.03, since now r2 + r3 + r5 + r6 + 2r7 + r8 < 2B, we can not get

one bandpass in the third column. We take 2B − (r2 + r3 + r5 + r6 + 2r7 + r8) (1, 1,

1)-rows up to make the first column able to achieve one bandpass, but these rows are not

involved in any bandpass in the second column. By using m4, we can make the second

band in the second column of length exactly B, and then the first band is long enough to

produce one bandpass for the premise of the case. Thus Placement 2.2.04 is optimal.

– Else if |m3| ≥ B (We can symmetrically consider the case when |m5| ≥ B or |m7| ≥

B).

We can make use of extra B (0, 1, 1)-rows. In Placement 2.2.02, the first band in the

third column is not long enough to achieve one bandpass, but now we have enough (0, 1,

1)-rows to make it exactly one bandpass, and the second band is long enough to achieve

one bandpass for r2 + r3 + r6 + r7 ≥ B. In the second column, the second band is

exactly two bandpasses. The first column can achieve one bandpass. Thus we can get

all bandpasses that we are supposed to get in Placement 2.2.04, which is an optimal

placement.

– Else, we have the following instance I satisfying that OPT = MAX − 1.
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m2 0 0 1 r2
m3 0 1 1 r3 +B
m4 0 1 0 B
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

m
′

4 0 1 0 r2 + r3 + r5 + r6 + r7 −B

m
′

3 0 1 1 2B − (r2 + r5 + r6 + 2r7 + r8)

m
′

6 1 1 1 r5 + r6 + r7 + r8 −B
m2 0 0 1 r2
m7 1 0 1 r7
m8 1 0 0 r8
m5 1 1 0 r5
m

′′

6 1 1 1 B − (r5 + r7 + r8)

m
′′

3 0 1 1 r2 + r3 + r5 + r6 + 2r7 + r8 −B

m
′′

4 0 1 0 2B − (r2 + r3 + r5 + r6 + r7)

Table 2.25: Placement 2.2.05

m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 q4B
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

satisfying

r3 + r6 + r7 < B,
r5 + r6 + r7 < B,
r2 + r3 + r5 + 2r6 + r7 + r8 < 2B,
r2 + r3 + r5 + r6 + 2r7 + r8 < 2B,
r2 + 2r3 + 2r5 + 2r6 + 2r7 + r8 < 3B.

In this case, we are supposed to get one bandpass in each of the first and third columns

and q4+1 bandpasses in the second column. Since r2+r3+r5+r6+r7+r8 < 2B, the

bandpass that we are supposed to get in the first column and that in the third column must

overlap at least 2B−(r2+r3+r5+r6+r7+r8) rows, which consist of m6 and m7. The

bandpasses in the second column can not make use of this overlapping area. Otherwise,

we can get one bandpass in the first column without using m8 or get one bandpass in

the third column without using m2, which contradicts to that r5 + r6 + r7 < B and

r3 + r6 + r7 < B.

Suppose we can get q4 + 1 bandpasses in the second column, then the total number of

rows should be at least

T = (q4 + 1)B + 2B − (r2 + r3 + r5 + r6 + r7 + r8) + r2 + r8.

While the actual total number of rows is

T
′
= q4B + r2 + r3 + r5 + r6 + r7 + r8.

Because T −T
′
= 3B− (r2+2r3+2r5+2r6+2r7+ r8) > 0. This is a contradiction.

So we can get at most MAX − 1 bandpasses.

2.2.4 Case 3 (r6, r2, r4, r8 > 0 and r3 · r5 · r7 = 0)

In this case, we have ∃ri ∈ {r3, r5, r7}, s.t. ri = 0, without loss of generality, we assume r5 = 0

hereafter, and then Table 2.3 reduces to Table 2.26. If there exists a permutation satisfying r+ r
′
<
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Placement r r
′

P1 (r2 + r3)%B (r6 + r7)%B
P2 (r2 + r7)%B (r6 + r3)%B
P3 (r3 + r4)%B r6
P4 r4 (r6 + r3)%B
P5 (r8 + r7)%B r6
P6 r8%B (r6 + r7)%B

Table 2.26: Remaider values of the six placements when r5 = 0.

m2 0 0 1 r2
m3 0 1 1 r3 +B
m4 0 1 0 r4
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m2 0 0 1 r2
m

′

3 0 1 1 B − r2
m4 0 1 0 r4
m

′′

3 0 1 1 r2 + r3
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

Table 2.27: Placement 3.1.01

B, it is the optimal solution. Otherwise we have (r2+ r3)%B+(r6+ r7)%B ≥ B, (r2+ r7)%B+

(r6 + r3)%B ≥ B, (r3 + r4)%B + r6 ≥ B, r4 + (r6 + r3)%B ≥ B, r8 + (r6 + r7)%B ≥ B and

(r8 + r7)%B + r6 ≥ B simultaneously. In the following, we separate this case into two disjoint

subcases according to whether q5 = 0.

• Case 3.1 q5 = 0

In this case, since both q5 = 0 and r5 = 0, it means we have no (1, 1, 0)-row in the given

matrix. We separate this case into the following subcases.

– If |m3| ≥ B (We can symmetrically consider the case when |m7| ≥ B).

In Placement 3.1.01, the 1’s in the first two columns are consecutive, and the first band

in the third column is of length B. Thus Placement 3.1.01 is optimal.

– Else if r2 + r3 > B (We can symmetrically consider the case when r2 + r7 > B).

Similar to Placement 3.1.01, we can get MAX bandpasses in Placement 3.1.02.

– Else if r3 + r4 > B (We can symmetrically consider the case when r7 + r8 > B).

In the premises of Case 3, we have (r3 + r4)%B + r6 ≥ B. If r3 + r4 > B, then we

have r3+r4+r6 ≥ 2B, and r4 < B, so r3+r6 > B. In a similar way, we can show that

r3 + r6 > B leads to r3 + r4 > B. Therefore, r3 + r4 > B iff r3 + r6 > B (Similarly

r7 + r8 > B iff r7 + r6 > B). In this case, we assume r3 + r4 > B. In Placement

3.1.03, the 1’s in the first and third columns are consecutive, and the first band in the

second column forms exactly one bandpass. Thus Placement 3.1.03 is optimal.
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m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 r4
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m2 0 0 1 r2
m

′

3 0 1 1 B − r2
m4 0 1 0 r4
m

′′

3 0 1 1 r2 + r3 −B
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

Table 2.28: Placement 3.1.02

m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 r4
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m4 0 1 0 r4
m

′′

3 0 1 1 B − r4
m2 0 0 1 r2
m

′

3 0 1 1 r3 + r4 −B
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

Table 2.29: Placement 3.1.03

– Else if r3 + r6 + r7 ≥ B.

Here we can get one bandpass without using m2 in the third column. Thus Placement

3.1.04 is optimal since the 1’s are consecutive in each column.

– Else if r2 + r3 + r6 + r7 + r4 ≥ 2B (We can symmetrically consider the cases when

r2 + r3 + r6 + r7 + r8 ≥ 2B or r4 + r3 + r6 + r7 + r8 ≥ 2B).

In this case, since r3 + r4 < B, then r2 + r6 + r7 > B. This together with r2 + r7 < B

implies r6 > B − (r2 + r7). In Placement 3.1.05, we can get one bandpass in each

column, so this placement is optimal.

– Else, we have r3+r6+r7 < B, r2+r3+r6+r7+r4 < 2B, r2+r3+r6+r7+r8 < 2B

and r4 + r3 + r6 + r7 + r8 < 2B simultaneously.

In this case, if ∃mi ∈ {m2,m4,m8}, s.t. |mi| > B, without loss of generality, we

assume |m2| > B. At the same time, if r2+r4+r8+2(r3+r6+r7) ≥ 3B, we can get

m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 r4
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m4 0 1 0 r4
m3 0 1 1 r3
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

Table 2.30: Placement 3.1.04
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m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 r4
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m2 0 0 1 r2
m7 1 0 1 r7
m

′

6 1 1 1 B − (r2 + r7)
m8 1 0 0 r8
m

′′

6 1 1 1 r2 + r6 + r7 −B
m3 0 1 1 r3
m4 0 1 0 r4

Table 2.31: Placement 3.1.05

m2 0 0 1 r2 +B
m3 0 1 1 r3
m4 0 1 0 r4
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m
′

2 0 0 1 r2 + r3 + r4 + r6 + r7 −B

m
′′

6 1 1 1 r6 + r7 + r8 −B
m3 0 1 1 r3
m4 0 1 0 r4
m

′′′

6 1 1 1 2B − (r3 + r4 + r6 + r7 + r8)
m8 1 0 0 r8
m7 1 0 1 r7
m6 1 1 1 r3 + r4 + r6 −B

m
′′

2 0 0 1 2B − (r3 + r4 + r6 + r7)

Table 2.32: Placement 3.1.06

MAX bandpasses by Placement 3.1.06 shown in Table 2.32. For the premises of this

case, we can get one bandpass in the first column, one in the second column, and two in

the third column, because r2 + r4 + r8 + 2(r3 + r6 + r7) ≥ 3B.

Otherwise, we have (1) ∃mi ∈ {m2,m4,m8}, s.t. |mi| > B and r2 + r4 + r8 +

2(r3 + r6 + r7) < 3B; or (2) ∀mi ∈ {m2,m4,m8}, s.t. |mi| < B; In both two cases,

we have OPT = MAX − 1. In the first case, assume the current instance is I . By

changing |m3| = r3, |m7| = r7 to m6, we get a new instance I
′
, in which there is no

m3,m5,m7 rows. For the premises of this case, we have r
′

6 = r3 + r6 + r7 < B,

r2+r
′

6+r4 < 2B, r2+r
′

6+r8 < 2B, r4+r
′

6+r8 < 2B and r2+r4+r8+2r
′

6 < 3B.

By Lemma 3, we have OPT (I
′
) = MAX(I

′
)− 1. Since MAX(I

′
) = MAX(I) and

OPT (I
′
) ≥ OPT (I), then OPT (I) = MAX(I) − 1. In the second case, we have

q2, q4, q8 = 0. By changing |m3| = r3, |m7| = r7 to m6, we can get a new instance I
′

in

which r
′

6 = r3+r6+r7 < B. By Lemma 3, we have OPT (I
′
) = MAX(I

′
)−1. Since

MAX(I
′
) = MAX(I) and OPT (I

′
) ≥ OPT (I), then OPT (I) = MAX(I)− 1.

• Case 3.2 q5 = 0

In this case, we can get MAX bandpasses by using Placement 3.2.01 shown in Table 2.33. It

is necessary to mention that, now we have r3 + r6 + r7 < B, and in the premises of Case 3,

we have r6 + r7 + r8 > B. So r8 > r3. In Placement 3.2.01, we can get two bandpasses in
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m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 B
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m4 0 1 0 r4
m

′

5 1 1 0 r3 + r6
m

′

8 1 0 0 r8 − r3
m7 1 0 1 r7
m2 0 0 1 r2
m3 0 1 1 r3
m6 1 1 1 r6
m

′′

5 1 1 0 B − (r3 + r6)

m
′′

8 1 0 0 r3

Table 2.33: Placement 3.2.01

each of the first two columns and one in the third column. Thus Placement 3.2.01 is optimal.

2.2.5 Case 4 (r6, r2, r4, r8, r3, r5, r7 > 0)

In this case, we have to refer to Table 2.3, which can not be reduced, to see the remainder makeup for

each of the six placements. Same to the other three cases, we first use the Row-Stacking algorithm,

if it can not produce MAX bandpasses, then we have the following conditions simultaneously.

(r2 + r3)%B + (r6 + r7)%B ≥ B

(r2 + r7)%B + (r6 + r3)%B ≥ B

(r4 + r3)%B + (r6 + r5)%B ≥ B

(r4 + r5)%B + (r6 + r3)%B ≥ B

(r8 + r5)%B + (r6 + r7)%B ≥ B

(r8 + r7)%B + (r6 + r5)%B ≥ B

In the following, we separate this case into two subcases. In Case 4.1, we have ∃ri ∈ {r3, r5, r7},

s.t. r6 + ri ≥ B. Then in Case 4.2, we have r6 + r3 < B, r6 + r5 < B and r6 + r7 < B.

Case 4.1 ∃ri ∈ {r3, r5, r7}, s.t. r6 + ri ≥ B

In this case, we assume r6 + r7 ≥ B (We can symmetrically consider the cases when r6 + r3 ≥ B

or r6 + r5 ≥ B). We separate this case into the following subcases.

• If |m2|+ r3 ≥ B (We can symmetrically consider the case when |m8|+ r5 ≥ B).

Here we have r7 ≥ B − r6 and |m2| ≥ B − r3. In Placement 4.1.01, the 1’s in the first two

columns are consecutive, and there are three bands in the third column, and two of them are

of length exactly B. Thus we can get MAX bandpasses in Placement 4.1.01.
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m2 0 0 1 |m2|
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m
′

2 0 0 1 B − r3
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 r6
m

′

7 1 0 1 B − r6
m8 1 0 0 r8
m

′′

7 1 0 1 r6 + r7 −B

m
′′

2 0 0 1 |m2| − (B − r3)

Table 2.34: Placement 4.1.01

m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 |m4|
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m
′′

4 0 1 0 |m4| − (B − r3)
m5 1 1 0 r5
m6 1 1 1 r6
m

′

7 1 0 1 r2 + r3 + r7 −B
m8 1 0 0 r8
m

′′

7 1 0 1 B − (r2 + r3)
m2 0 0 1 r2
m3 0 1 1 r3
m

′

4 0 1 0 B − r3

Table 2.35: Placement 4.1.02

• Else if |m4|+ r3 ≥ B (We can symmetrically consider the case when |m4|+ r5 ≥ B).

Since r2 + r3 < B, r6 + r7 ≥ B and (r2 + r3)%B + (r6 + r7)%B ≥ B, we have r2 + r3 +

r6 + r7 ≥ 2B. For r6 < B, then r2 + r3 + r7 > B. Therefore, we have r7 > B − (r2 + r3)

and |m4| ≥ B − r3. In Placement 4.1.02, the 1’s in the first column are consecutive, and in

each of the second and third columns, there are two bands of 1’s, one of which is exactly one

bandpass. Thus Placement 4.1.02 is optimal.

• Else if |m3| ≥ r8 (We can symmetrically consider the case when |m5| ≥ r2).

This case is similar to last case. Since r5 + r8 < B, r6 + r7 ≥ B and (r5 + r8)%B +

(r6 + r7)%B ≥ B, we can get r5 + r6 + r8 > B. In Placement 4.1.03, the 1’s in the third

column are consecutive, and in each of the first and second columns, there are two bands, one

of which is of length B. Thus Placement 4.1.03 is optimal.

• Else if r6 + r3 < B (We can symmetrically consider the case when r6 + r5 < B).

In the premises of Case 4, r6 + r7 ≥ B, then r3 + r6 + r7 ≥ B, so r7 ≥ B − (r6 + r3). In

Placement 4.1.04, the 1’s in the second column are consecutive, in each of the first and third

columns, there are two bands, one of which is of length exactly B. Thus Placement 4.1.04 is

optimal.
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m2 0 0 1 r2
m3 0 1 1 |m3|
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m8 1 0 0 r8
m5 1 1 0 r5
m

′

6 1 1 1 B − (r5 + r8)
m3 0 1 1 r8
m2 0 0 1 r2
m7 1 0 1 r7
m

′′

6 1 1 1 r5 + r6 + r8 −B
m3 0 1 1 |m3| − r8
m4 0 1 0 r4

Table 2.36: Placement 4.1.03

m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m2 0 0 1 r2
m

′′

7 1 0 1 r3 + r6 + r7 −B

m
′′

8 1 0 0 r8 − r3
m5 1 1 0 r5
m4 0 1 0 r4
m3 0 1 1 r3
m6 1 1 1 r6
m

′

7 1 0 1 B − (r6 + r3)

m
′

8 1 0 0 r3

Table 2.37: Placement 4.1.04

• Else if |m7| ≥ r4.

Similar to Placement 4.1.03, we can get MAX bandpasses in Placement 4.1.05.

• Else if r3 + r5 ≥ B.

Now we have r2 > r5 and r6 + r7 ≥ B. In Placement 4.1.06, there are two bands of 1’s in

each column, one of which is of length B. Thus Placement 4.1.06 is optimal.

• Else if r3 + r5 + r6 + r7 ≥ 2B.

m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 |m7|
m8 1 0 0 r8

⇒

m4 0 1 0 r4
m5 1 1 0 r5
m

′

6 1 1 1 B − (r4 + r5)

m
′

7 1 0 1 r4
m2 0 0 1 r2
m3 0 1 1 r3
m

′′

6 1 1 1 r4 + r5 + r6 −B

m
′′

7 1 0 1 |m7| − r4
m8 1 0 0 r8

Table 2.38: Placement 4.1.05
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m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m
′

2 0 0 1 r5
m

′

3 0 1 1 B − r5
m5 1 1 0 r5
m8 1 0 0 r8
m

′

7 1 0 1 r6 + r7 −B

m
′′

2 0 0 1 r2 − r5
m

′′

7 1 0 1 B − r6
m6 1 1 1 r6
m

′′

3 0 1 1 r3 + r5 −B
m4 0 1 0 r4

Table 2.39: Placement 4.1.06

m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m
′

2 0 0 1 r5
m3 0 1 1 r3
m6 1 1 1 B − (r3 + r5)
m5 1 1 0 r5
m8 1 0 0 r3
m4 0 1 0 r4
m6 1 1 1 r3 + r5 + r6 −B
m7 1 0 1 r7

Table 2.40: Placement 4.1.07

For r7 < B, then r3 + r5 + r6 > B. In Placement 4.1.07, there are two bands of 1’s in each

column, one of which is of length B. Thus Placement 4.1.07 is optimal.

• Else if r2 + r3 + r5 + r6 + r7 + r4 ≥ 3B (We can symmetrically consider the cases when

r2 + r3 + r5 + r6 + r7 + r8 ≥ 3B or r4 + r3 + r5 + r6 + r7 + r8 ≥ 3B).

For r2 + r3 < B and r7 < B, then r4 + r5 + r6 > B. Also for r4 + r5 < B, then

r6 > B − (r4 + r5). In Placement 4.1.08, the 1’s in the first column are consecutive, there

are two bands of 1’s in the second column, one of which is exactly one bandpass. In the third

column, since r2 + r3 + r5 + r6 + r7 + r4 ≥ 3B, we can get two bandpasses that we are

supposed to get. Thus Placement 4.1.08 is optimal.

• Else, we have OPT = MAX − 1.

From the current instance I , we can get a new instance I
′

by changing m3(|m3| = r3),

m5(|m5| = r5) and m7(|m7| = r7) to m6. Then in I
′
, we only have m2,m4,m6,m8, and

|m2| = r2, |m4| = r4, |m8| = r8, r
′

6 = r3 + r5 + r6 + r7 −B, satisfying that

r2 + r
′

6 + r4 = r2 + r3 + r5 + r6 + r7 + r4 −B < 2B,

r2 + r
′

6 + r8 = r2 + r3 + r5 + r6 + r7 + r8 −B < 2B,
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m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m4 0 1 0 r4
m5 1 1 0 r5
m

′

6 1 1 1 B − (r4 + r5)
m8 1 0 0 r3
m7 1 0 1 r7
m

′′

6 1 1 1 r4 + r5 + r6 −B
m3 0 1 1 r3
m2 0 0 1 r2

Table 2.41: Placement 4.1.08

r4 + r
′

6 + r8 = r4 + r3 + r5 + r6 + r7 + r8 −B < 2B.

By Lemma 3, we have OPT (I
′
) = MAX(I

′
) − 1. Since MAX(I

′
) = MAX(I) and

OPT (I
′
) ≥ OPT (I), then OPT (I) = MAX(I)− 1.

Case 4.2 ∀ri ∈ {r3, r5, r7}, s.t. r6 + ri < B

In this case, we have ∀ri ∈ {r3, r5, r7}, s.t. r6 + ri < B, then we can induct the following three

conditions:

(1) r2 + r3 ≥ B iff r2 + r7 ≥ B

(2) r4 + r3 ≥ B iff r4 + r5 ≥ B

(3) r8 + r5 ≥ B iff r8 + r7 ≥ B

Since they can be symmetrically discussed, without loss of generality, we only prove (1). For r6 +

r7 < B, if r2 + r3 ≥ B, together with the premise of Case 4: (r2 + r3)%B + (r6 + r7)%B ≥ B,

then we will have r2+r3+r6+r7 ≥ 2B. Since r6+r3 < B, then r2+r7 ≥ B. Thus r2+r3 ≥ B

leads to r2 + r7 ≥ B. Similarly, we can prove that r2 + r7 ≥ B leads to r2 + r3 ≥ B. In the

following, we separate this case into subcases according to how many of the three conditions above

are satisfied.

• At least two of (1), (2), (3) are satisfied. Since (1), (2), (3) can be symmetrically discussed,

without loss of generality, here we assume that (1) and (3) are satisfied simultaneously. Then

in Placement 4.2.01, the 1’s in the second column are consecutive, and there are two bands

in each of the first and third columns, one of them is exactly one bandpass. Thus Placement

4.2.01 is optimal.

• Exactly one of (1), (2), (3) is satisfied, without loss of generality, we assume (1) is satisfied

here. We separate this case into the following subcases.

– If |m6| > B.

We can make use of extra B (1, 1, 1)-rows. Since r2 + r3 ≥ B and r6 + r7 < B,

together with the premise of Case 4 that (r2 + r3)%B + (r6 + r7)%B ≥ B, then we
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m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m
′

2 0 0 1 B − r3
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 r6
m

′′

7 1 0 1 r7 + r8 −B

m
′′

2 0 0 1 r2 + r3 −B

m
′

7 1 0 1 B − r8
m8 1 0 0 r8

Table 2.42: Placement 4.2.01

m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 r6 +B
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m2 0 0 1 r2
m

′′

3 0 1 1 r3 + r6 + r7 −B
m4 0 1 0 r4
m

′

3 0 1 1 B − (r6 + r7)

m
′′

6 1 1 1 r6 + r7
m5 1 1 0 r5
m

′

6 1 1 1 B − r7
m7 1 0 1 r7
m8 1 0 0 r8

Table 2.43: Placement 4.2.02

have r2+r3+r6+r7 ≥ 2B. For r2 < B, then r3+r6+r7 > B. Also for r6+r7 < B,

then r3 > B − (r6 + r7). In Placement 4.2.02, the 1’s in the first two columns are

consecutive, and there are three bands in the third column, two of them are of length

exactly B. Thus Placement 4.2.02 is optimal.

– Else if |m4| > B (We can symmetrically consider the case when |m8| > B).

In Placement 4.2.03, the 1’s in the first column are consecutive, and there are two bands

in each of the second and third columns, one of which is exactly one bandpass. Thus

Placement 4.2.03 is optimal.

– Else if |m3| > B (We can symmetrically consider the cases when |m5| > B or |m7| >

B).

In Placement 4.2.04, the 1’s in the first two columns are consecutive, and there are three

bands in the third column, two of them are of length exactly B. Thus Placement 4.2.04

is optimal.

– Else if r3 + r5 + r6 ≥ B.

In this case, we can get one bandpass in the second column without using m4. In Place-

ment 4.2.05, the 1’s in the first two columns are consecutive, and there are two bands

in the third column, one of them is exactly one bandpass. Thus Placement 4.2.05 is
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m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 r4 +B
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m2 0 0 1 r2
m

′

3 0 1 1 B − r2
m

′′

4 0 1 0 r4 + r5
m

′′

3 0 1 1 r2 + r3 −B
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8
m5 1 1 0 r5
m

′

4 0 1 0 B − r5

Table 2.44: Placement 4.2.03

m2 0 0 1 r2
m3 0 1 1 r3 +B
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m
′

2 0 0 1 B − r7
m7 1 0 1 r7
m8 1 0 0 r8
m5 1 1 0 r5
m6 1 1 1 r6
m

′

3 0 1 1 B − r6
m4 0 1 0 r4
m

′′

3 0 1 1 r3 + r6
m

′′

2 0 0 1 r2 + r7 −B

Table 2.45: Placement 4.2.04

optimal.

– Else if r5 + r6 + r7 ≥ B.

Similar to the previous case, we can get one bandpass without using m8 in the first

column. For the same reason which was discussed in Placement 4.2.05, in this case,

Placement 4.2.06 is optimal.

– Else if r3 + r4 + r6 ≥ B.

We are supposed to get one bandpass in the second column. By the premise of this case,

we can get the bandpass in the second column without using m5. For the same reason

which was discussed in Placement 4.2.05, in this case, Placement 4.2.07 is optimal.

m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m
′

2 0 0 1 B − r7
m7 1 0 1 r7
m8 1 0 0 r8
m5 1 1 0 r5
m6 1 1 1 r6
m3 0 1 1 r3
m

′′

2 0 0 1 r2 + r7 −B

Table 2.46: Placement 4.2.05
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m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m
′

2 0 0 1 B − r3
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7
m

′′

2 0 0 1 r2 + r3 −B

Table 2.47: Placement 4.2.06

m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m2 0 0 1 r2
m

′

7 1 0 1 B − r2
m8 1 0 0 r8
m5 1 1 0 r5
m

′′

7 1 0 1 r2 + r7 −B
m6 1 1 1 r6
m3 0 1 1 r3
m4 0 1 0 r4

Table 2.48: Placement 4.2.07

– Else if r2 + r3 + r7 ≥ 2B.

Here we can get two bandpasses without using m6 in the third column. For the same

reason which was discussed in Placement 4.2.05, in this case, Placement 4.2.08 is opti-

mal.

– Else if r3 + r4 + r5 + 2r6 + r7 + r8 ≥ 2B.

Since r3 + r4 + r6 < B and r3 + r4 + r5 + r6 ≥ B, then r5 ≥ B − (r3 + r4 + r6).

From r2 + r3 + r6 + r7 ≥ 2B, r2 < B and r6 + r7 < B, we have r3 > B − (r6 + r7).

In Placement 4.2.09, we can get one band in the first column from the premise of this

case, one in the second column and two in the third column. Thus Placement 4.2.09 is

optimal.

m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m
′

2 0 0 1 B − r3
m3 0 1 1 r3
m4 0 1 0 r4
m6 1 1 1 r6
m5 1 1 0 r5
m8 1 0 0 r8
m7 1 0 1 r7
m

′′

2 0 0 1 r2 + r3 −B

Table 2.49: Placement 4.2.08
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m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m2 0 0 1 r2
m

′′

3 0 1 1 r3 + r6 + r7 −B

m
′

5 1 1 0 B − (r3 + r4 + r6)
m4 0 1 0 r4
m

′

3 0 1 1 B − (r6 + r7)
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8
m

′′

5 1 1 0 r3 + r4 + r5 + r6 −B

Table 2.50: Placement 4.2.09

m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m
′′

2 0 0 1 r2 + r7 −B

m
′

6 1 1 1 2B − (r2 + r3 + r7)
m3 0 1 1 r3
m4 0 1 0 r4
m

′′

6 1 1 1 r2 + r3 + r6 + r7 − 2B
m5 1 1 0 r5
m8 1 0 0 r8
m7 1 0 1 r7
m

′

2 0 0 1 B − r7

Table 2.51: Placement 4.2.10

– Else if r2 + r3 + r5 + r6 + 2r7 + r8 ≥ 3B.

Since r2 + r3 + r7 < 2B and r2 + r3 + r6 + r7 ≥ 2B, then r6 ≥ 2B − (r2 + r3 + r7).

In Placement 4.2.10, we can get one bandpass in the first column for r2+ r3+ r5+ r6+

2r7 + r8 ≥ 3B, one in the second column and two in the third column. Thus Placement

4.2.10 is optimal.

– Else if r2 + r4 + r8 + 2r3 + 2r5 + 2r6 + 2r7 ≥ 4B.

Since r3 + r4 < B and r5 + r6 + r7 < B, then r2 + r3 + r5 + r6 + r7 + r8 > 2B. This

together with r7+r8 < B and r3+r5+r6 < B implies r2 > 2B−(r3+r5+r6+r7+r8).

Now we have r2 + r3 + r5 + r6 + 2r7 + r8 < 3B, r2 + r3 + r6 + r7 ≥ 2B and

r5 + r6 + r7 + r8 ≥ B, then r6 > 3B − (r2 + r3 + r5 + r6 + 2r7 + r8). In Placement

4.2.11, we can get one bandpass in the first column, one in the second column and two

in the third column. Thus Placement 4.2.11 is optimal.

– Else, we have |m3| = r3, |m4| = r4, |m5| = r5, |m6| = r6, |m7| = r7, |m8| = r8, then

OPT = MAX − 1.

Suppose we can get MAX bandpasses. Since r3 + r4 + r5 + r6 + r7 + r8 < 2B,

the bandpasses in the first column and the second column must overlap at least 2B −

r3 − r4 − r5 − r6 − r7 − r8 rows, which consist of m5 and m6. The bandpasses
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m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m
′′

2 0 0 1 2B − (r3 + r5 + r6 + r7 + r8)

m
′

6 1 1 1 r5 + r6 + r7 + r8 −B
m3 0 1 1 r3
m4 0 1 0 r4
m

′′

6 1 1 1 r2 + r3 + r6 + r7 − 2B
m5 1 1 0 r5
m8 1 0 0 r8
m

′′′

6 1 1 1 3B − (r2 + r3 + r5 + r6 + 2r7 + r8)
m7 1 0 1 r7
m

′

2 0 0 1 r2 + r3 + r5 + r6 + r7 + r8 − 2B

Table 2.52: Placement 4.2.11

in the third column can not make use of the overlapping area of the first and second

columns. Otherwise, we will have r3 + r5 + r6 ≥ B or r5 + r6 + r7 ≥ B or r3 +

r4 + r5 + 2r6 + r7 + r8 ≥ 2B, which is a contradiction. Assume we can get q2 + 2

bandpasses in the third column, then the total number of rows should be at least T =

(q2 + 2)B + (2B − r3 − r4 − r5 − r6 − r7 − r8) + r4 + r8. It is greater than the

actual number of rows which is T
′
= q2B + r2 + r3 + r4 + r5 + r6 + r7 + r8, because

T − T
′
= 4B − (r2 + r4 + r8 + 2r3 + 2r5 + 2r6 + 2r7) > 0. This is a contradiction.

Thus OPT = MAX − 1.

• None of (1), (2), (3) is satisfied. Then we have r2 + r3 < B, r2 + r7 < B, r4 + r3 < B,

r4 + r5 < B, r8 + r5 < B, r8 + r7 < B simultaneously. We separate this case into two

subcases. In the first one, ∃mi ∈ {m3,m5,m7}, s.t. |mi| > B; in the second one, we have

∀mi ∈ {m3,m5,m7}, s.t. |mi| < B.

– If ∃mi ∈ {m3,m5,m7}, s.t. |mi| > B.

Since m3,m5,m7 can be symmetrically discussed, without loss of generality, we as-

sume |m7| > B in the sequel. It means we can make use of extra B rows of m7. We

separate this case into the following subcases.

∗ If |m6| > B.

We can make use of extra B rows of m6. In Placement 4.2.12, the 1’s in the first

column are consecutive. In each of the second and third columns, there are two

bands, one of which is exactly one bandpass. Thus Placement 4.2.12 is optimal.

∗ Else if |m2| > B (We can symmetrically consider the cases when |m4| > B or

|m8| > B).

Here we can make use of extra B rows of m2. In Placement 4.2.13, the 1’s in the

second column are consecutive. In each of the first and third columns, there are two

bands, one of which is exactly one bandpass. Thus Placement 4.2.13 is optimal.
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m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 r6 +B
m7 1 0 1 r7 +B
m8 1 0 0 r8

⇒

m4 0 1 0 r4
m3 0 1 1 r3
m

′

6 1 1 1 B − (r3 + r4)

m
′

7 1 0 1 r4
m8 1 0 0 r8
m5 1 1 0 r5
m

′′

6 1 1 1 r3 + r4 + r6
m

′′

7 1 0 1 B + r7 − r4
m2 0 0 1 r2

Table 2.53: Placement 4.2.12

m2 0 0 1 r2 +B
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7 +B
m8 1 0 0 r8

⇒

m
′

2 0 0 1 B − r3
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 r6
m

′′

7 1 0 1 r7 + r8
m

′′

2 0 0 1 r2 + r3
m

′

7 1 0 1 B − r8
m8 1 0 0 r8

Table 2.54: Placement 4.2.13

∗ Else if r4 + r5 + r6 ≥ B.

In this case, we can get one bandpass without using m3 in the second column. In

Placement 4.2.14, we can get two bandpasses in each of the first and third columns,

one in the second column. Thus Placement 4.2.14 is optimal.

∗ Else if r6 + r7 + r8 ≥ B.

Here we can get one bandpass without using m5 in the first column. In Placement

4.2.15, the 1’s in the second column are consecutive, and we can get two bandpasses

in each of the first and third columns. Thus Placement 4.2.15 is optimal.

m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7 +B
m8 1 0 0 r8

⇒

m8 1 0 0 r8
m

′

7 1 0 1 B − r8
m2 0 0 1 r2
m3 0 1 1 r3
m

′′

7 1 0 1 r7 + r8
m6 1 1 1 r6
m5 1 1 0 r5
m4 0 1 0 r4

Table 2.55: Placement 4.2.14
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m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7 +B
m8 1 0 0 r8

⇒

m2 0 0 1 r2
m

′

7 1 0 1 B − r2
m8 1 0 0 r8
m

′′

7 1 0 1 r2 + r7
m6 1 1 1 r6
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5

Table 2.56: Placement 4.2.15

m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7 +B
m8 1 0 0 r8

⇒

m8 1 0 0 r8
m

′

7 1 0 1 B − r8
m

′′

2 0 0 1 r2 + r6 + r7 + r8 −B
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 r6
m

′′

7 1 0 1 r7 + r8
m

′

2 0 0 1 B − (r6 + r7 + r8)

Table 2.57: Placement 4.2.16

∗ Else if r2 + r6 + r7 + r8 ≥ B.

Since r6 + r7 + r8 < B, then r2 > B − (r6 + r7 + r8). In Placement 4.2.16, the

1’s in the second columns are consecutive. In each of the first and second columns,

there are two bands, one of which is exactly one bandpass. Thus Placement 4.2.16

is optimal.

∗ Else if r2 + r3 + r4 + r5 + 2r6 + r7 + r8 ≥ 2B.

Since r2 + r6 + r7 + r8 < B and r2 + r3 + r6 + r7 + r8 > B, then r3 >

B − (r2 + r6 + r7 + r8). In Placement 4.2.17, we can get one bandpass in the

second column, two in each of the other two columns. Thus Placement 4.2.17 is

optimal.

∗ Else, we have OPT = MAX − 1.

From the current instance I , we can construct a new instance I
′

by changing m2

(|m2| = r2) and m8 (|m8| = r8) to m7, m4 (|m4| = r4) to m5. Then in I
′
, we

only have m3, m5, m6 and m7, satisfying that r
′

3 = r3, r
′

3 + r6 < B, r
′

5 = r4 + r5,

r
′

5 + r6 < B, r
′

7 = r2 + r8 + r7, r
′

7 + r6 < B and r
′

3 + r
′

5 + 2r6 + r
′

7 < 2B. By

Corollary 2, we have OPT (I
′
) = MAX(I

′
) − 1. Since MAX(I

′
) = MAX(I)

and OPT (I
′
) ≥ OPT (I), then OPT (I) = MAX(I)− 1.

– Else |m3| = r3, |m5| = r5, |m7| = r7.
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m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7 +B
m8 1 0 0 r8

⇒

m8 1 0 0 r8
m

′

7 1 0 1 B − r8
m

′′

3 0 1 1 r2 + r3 + r6 + r7 + r8 −B
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 r6
m

′′

7 1 0 1 r7 + r8
m

′

3 0 1 1 B − (r2 + r6 + r7 + r8)
m2 0 0 1 r2

Table 2.58: Placement 4.2.17

m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m
′′

7 1 0 1 y
m2 0 0 1 r2
m3 0 1 1 r3
m

′′

6 1 1 1 x
m4 0 1 0 r4
m5 1 1 0 r5
m

′

6 1 1 1 r6 − x

m
′

7 1 0 1 r7 − y
m8 1 0 0 r8

Table 2.59: Placement 4.2.18

Here we are supposed to get one bandpass in each column in the remainder matrix. We

separate this case into the following subcases.

∗ If r2 + r3 + r5 + r6 + r7 + r8 ≥ 2B (We can symmetrically consider the cases

when r2 + r3 + r5 + r6 + r7 + r4 ≥ 2B or r4 + r3 + r5 + r6 + r7 + r8 ≥ 2B).

In this case, keeping the 1’s in the second column consecutive, we take some m6 up

to between m3 and m4 and/or some m7 up to the top lines of the matrix, in order

to make the first band of 1’s in the third column is of length exactly B. To reach

this goal, we have to take B − (r2 + r3) this many m6 and/or m7 up, which are

inevitably not involved in any bandpass in the first column. To make the remaining

band of 1’s in the first column is of length at least B, we must have r5 + r6 + r7 +

r8−(B−r2−r3) ≥ B, which is right the premise of the case, thus we have enough

1’s in the first column to form a bandpass. This is shown in Placement 4.2.18.

∗ Else if ∃mi ∈ {m2,m4,m8}, s.t. |mi| > B.

Without loss of generality, here we assume |m2| > B and separate this case into

the following subcases.

+ If r3+r4+r5 ≥ B (We can symmetrically consider the case when r5+r7+r8 ≥

B).
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m2 0 0 1 r2 +B
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m
′

2 0 0 1 B − r3
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m8 1 0 0 r8
m6 1 1 1 r6
m7 1 0 1 r7
m

′′

2 0 0 1 r2 + r3

Table 2.60: Placement 4.2.19

m2 0 0 1 r2 +B
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m
′′

2 0 0 1 r2 + r7
m3 0 1 1 r3
m6 1 1 1 r6
m5 1 1 0 r5
m8 1 0 0 r8
m7 1 0 1 r7
m

′

2 0 0 1 B − r7

Table 2.61: Placement 4.2.20

It means we can get one bandpass without using the r6 (1, 1, 1)-rows in the

second column. Then by Placement 4.2.19, we have room for adjustment by

making use of extra B rows of m2. We can get four bandpasses which we are

supposed to get. Thus Placement 4.2.19 is optimal.

+ Else if r3 + r5 + r6 ≥ B (We can symmetrically consider the case when r5 +

r6 + r7 ≥ B).

It is similar to the previous case, here we can get a bandpass without using the

r4 (0, 1, 0)-rows in the second column. In Placement 4.2.20, after dropping

those rows, we have room for m2 to adjust the matrix. Then we can get four

bandpasses which we are supposed to get. Thus Placement 4.2.20 is optimal.

+ Else if r3 + r4 + 2r5 + r6 + r7 + r8 ≥ 2B.

Since r5+r7+r8 < B and r5+r6+r7+r8 > B, then r6 > B−(r5+r7+r8).

In Placement 4.2.21, we can get four bandpasses. Thus Placement 4.2.21 is

optimal.

+ Else if r2 + r4 + r8 + 2r3 + 2r5 + 2r6 + 2r7 ≥ 3B.

Since the previous case failed to get MAX bandpasses, now we have r3+r4+

2r5 + r6 + r7 + r8 < 2B. It means the band of 1’s in the second column is not

enough to form a bandpass, because too many (1, 1, 1)-rows are not involved

in any bandpass in the second column. Thus we move exactly 2B− (r3 + r4 +

2r5+ r6+ r7+ r8) rows of m6 up to between m5 and m8 to make sure there is
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m2 0 0 1 r2 +B
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m
′

2 0 0 1 B + r2 − (r5 + r8)

m
′

6 1 1 1 r5 + r6 + r7 + r8 −B
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m8 1 0 0 r8
m7 1 0 1 r7
m

′′

6 1 1 1 B − (r5 + r7 + r8)

m
′′

2 0 0 1 r5 + r8

Table 2.62: Placement 4.2.21

m2 0 0 1 r2 +B
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m
′

2 0 0 1 r2 + r3 + r4 + r5 + r6 + r7 −B

m
′

6 1 1 1 r5 + r6 + r7 + r8 −B
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m

′′

6 1 1 1 2B − (r3 + r4 + 2r5 + r6 + r7 + r8)
m8 1 0 0 r8
m7 1 0 1 r7
m

′′′

6 1 1 1 r3 + r4 + r5 + r6 −B

m
′′

2 0 0 1 2B − (r3 + r4 + r5 + r6 + r7)

Table 2.63: Placement 4.2.22

exactly one bandpass in the second column. At the same time the 1’s in the rows

we just moved are wasted in the third column. By keeping the second band in

the third column a bandpass, we can get another bandpass for the premise of

this case. Thus Placement 4.2.22 is optimal.

+ Else if |m6| > B.

In this case, we can make use of extra B rows of m6. If r5 ≥ r2, then in

Placement 4.2.22, we can make the 1’s in the first column consecutive, and there

are two bands in each of the second and third columns, one of them is exactly

one bandpass. Thus Placement 4.2.22 is optimal. Else if r3 + r5 + r6 ≥ B.

In Placement 4.2.23, since now we have r5 < r2, the premise of this case

is r3 + r5 + r6 ≥ B, then we have r2 + r3 + r6 ≥ B. We can get three

bandpasses, so Placement 4.2.23 is optimal. Else if r3 + r5 + r6 + r7 ≥ B,

since r3 + r5 + r6 < B, then r7 > B − (r3 + r5 + r6). In Placement 4.2.24,

we can get two bandpasses in each column. Thus Placement 4.2.24 is optimal.

Else, we have OPT = MAX − 1. Suppose the current instance is I , then

we can get another instance I
′

by changing m3,m5,m7 to m6. Apparently,

OPT (I
′
) ≥ OPT (I). In I

′
, we only have m2,m4,m6,m8, satisfying that
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m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 r6 +B
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m2 0 0 1 r2
m3 0 1 1 r3
m

′

6 1 1 1 B − (r2 + r3)

m
′

5 1 1 0 r2
m8 1 0 0 r8
m7 1 0 1 r7
m

′′

6 1 1 1 r6 + (r2 + r3)

m
′′

5 1 1 0 r5 − r2
m4 0 1 0 r4

Table 2.64: Placement 4.2.23

m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m2 0 0 1 r2
m3 0 1 1 r3
m6 1 1 1 r6
m5 1 1 0 r5
m7 1 0 1 r7
m8 1 0 0 r8

Table 2.65: Placement 4.2.24

r
′

2 = r2, r
′

4 = r4, r
′

8 = r8, r
′

6 = r3 + r5 + r6 + r7 < B, and

r
′

2 + r
′

6 + r
′

4 = r2 + r3 + r5 + r6 + r7 + r4 < 2B,

r
′

2 + r
′

6 + r
′

8 = r2 + r3 + r5 + r6 + r7 + r8 < 2B,

r
′

4 + r
′

6 + r
′

8 = r4 + r3 + r5 + r6 + r7 + r8 < 2B,

r
′

2 + r
′

4 + r
′

8 + r
′

6 = r2 + r4 + r8 + 2r3 + 2r5 + 2r6 + 2r7 < 3B.

By Lemma 3, we have OPT (I
′
) = MAX(I

′
) − 1. Since MAX(I

′
) =

MAX(I) and OPT (I
′
) ≥ OPT (I), then OPT (I) = MAX(I)− 1.

m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 r6 +B
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m4 0 1 0 r4
m3 0 1 1 r3
m

′

6 1 1 1 r5 + r6
m

′

7 1 0 1 B − (r3 + r5 + r6)
m8 1 0 0 r8
m

′′

7 1 0 1 r3 + r5 + r6 + r7 −B
m2 0 0 1 r2
m

′′

6 1 1 1 B − r5
m5 1 1 0 r5

Table 2.66: Placement 4.2.25
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m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8 +B

⇒

m
′

8 1 0 0 B − r5
m5 1 1 0 r5
m4 0 1 0 r4
m3 0 1 1 r3
m6 1 1 1 r6
m7 1 0 1 r7
m

′′

8 1 0 0 r5 + r8

Table 2.67: Placement 4.2.26

+ Else if |m8| > B (We can symmetrically consider the case when |m4| > B).

In this case, we can make use of extra B (1, 0, 0)-rows. If r3 + r6 + r7 ≥ B,

then we can get one bandpass without using the r2 (0, 0, 1)-rows in the third

column. In Placement 4.2.25, we can get four bandpasses. Thus Placement

4.2.25 is optimal. Else, we have OPT = MAX − 1. Suppose we can get

MAX bandpasses, then we should get q8 + 1 bands in the first column, q4 + 1

bands in the second column, q2 + 1 bands in the third column and the total

number of rows is

T = (q2 + q4 + q8)B + r2 + r3 + r4 + r5 + r6 + r7 + r8.

Since (q4+q8)B+r3+r4+r5+r6+r7+r8 < (q4+q8+2)B, the bandpasses

in the first column must overlap with that in second column. The bandpasses in

third column can not make use of the overlapping area of the first and second

columns. Otherwise, we will have r3 + r5 + r6 ≥ B or r5 + r6 + r7 ≥ B or

r3 + r6 + r7 ≥ B, which is a contradiction. If we can get q2 +1 bandpasses in

the third column, then the total number of rows should be

T
′
= (q2+1)B+ q4B+ r4+ q8B+ r8+2B− (r3+ r4+ r5+ r6+ r7+ r8).

Because T
′ − T = 3B − (r2 + r4 + r8 + 2r3 + 2r5 + 2r6 + 2r7) > 0, which

is a contradiction. Thus OPT = MAX − 1.

+ Else if r3 + r6 + r7 ≥ B and r3 + r4 + r5 + 2r6 + r7 + r8 ≥ 2B.

It means we can get one bandpass without using m2 in the third column. For

r3 + r4 + r5 + 2r6 + r7 + r8 ≥ 2B, we can get two bandpasses in each

of the first two columns by adjusting the matrix with m5, which is shown in

Placement 4.2.26. Thus Placement 4.2.26 is optimal.

+ Else, we have OPT = MAX − 1.

Suppose we can get MAX bandpasses, then we should get one bandpass in the

first column, one bandpass in the second column, q2+1 bandpasses in the third
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m2 0 0 1 r2
m3 0 1 1 r3
m4 0 1 0 r4
m5 1 1 0 r5
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8

⇒

m
′

5 1 1 0 x
m4 0 1 0 r4
m3 0 1 1 r3
m6 1 1 1 r6
m7 1 0 1 r7
m8 1 0 0 r8
m

′′

5 1 1 0 r5 − x

Table 2.68: Placement 4.2.27

column and the total number of rows is

T = q2B + r2 + r3 + r4 + r5 + r6 + r7 + r8.

Since r3+r4+r5+r6+r7+r8 < 2B, the bandpasses in the first column must

overlap with that in the second column. The bandpasses in the third column can

not make use of the overlapping area of the first and third columns. Otherwise,

we will have r3 + r5 + r6 ≥ B or r5 + r6 + r7 ≥ B or r3 + r6 + r7 ≥ B and

r3 + r4 + r5 + 2r6 + r7 + r8 ≥ 2B, which is a contradiction. If we can get

q2 + 1 bandpasses in the third column, then the total number of rows should be

T
′
= (q2 + 1)B + r4 + r8 + r5 + 2B − (r3 + r4 + 2r5 + r6 + r7 + r8).

Because T
′ − T = 3B − (r2 + r4 + r8 + 2r3 + 2r5 + 2r6 + 2r7) > 0, which

is a contradiction. Thus, OPT = MAX − 1.

∗ Else if |m6| > B.

This case is the same as the subcase (|m6| > B) in the previous case.

∗ Else if r3+r4+r5 ≥ B and r2+r3+r5+2r6+r7+r8 ≥ 2B (We can symmetrically

consider the cases when r5 + r6 + r7 ≥ B and r2 + r3 + r4 + r5 +2r6 + r7 ≥ 2B

or r3 + r6 + r7 ≥ B and r3 + r4 + r5 + 2r6 + r7 + r8 ≥ 2B), we can get MAX

bandpasses, the solution is similar to Placement 4.2.26.

∗ Else, we have OPT = MAX − 1.

Now we have ∀mi ∈ {m2,m3,m4,m5,m6,m7,m8}, s.t. |mi| = ri, we are sup-

posed to get one bandpasses in each column, and they pairwise overlap, which is

impossible. Thus, we can get MAX − 1 bandpasses at most.

Through Case 1 to Case 4, we have considered a complete set of subcases for a given instance

of the 3-column Bandpass problem. For each subcase, we have presented the optimal placement

and proved its optimality. Because the complete set of subcases is finite, the 3-column Bandpass

problem can be solved in linear time. This conclusion is proved by Thereome 12 in Chapter 4.
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Chapter 3

A 3-approximation Algorithm for the
CMSR Problem 2

In this chapter, we present our 3-approximation algorithm for the CMSR problem in three sections.

In Section 3.1, we introduce this problem through an example, and define some terms which are fre-

quently used in later sections. In Section 3.2, we present some structural properties of this problem,

based on which we designed the 3-approximation algorithm. At last, the algorithm and the proof of

its approximation ratio are presented in Section 3.3.

3.1 Preliminaries

In the sequel, we use a lower case letter to denote a gene marker. A negation sign together with

the succeeding gene indicate that the gene is in its reversal and negated form. We reserve the “•”

symbol for connection use. For example, a • b means gene b comes directly after gene a. When a

common substring (also called strip, or synthetic block) of G1 and G2 is identified, we will (often)

label it using a capital letter. We abuse this capital letter a bit to also denote the set of genes in the

substring.

We first look at an example instance of the CMSR problem (which is also an instance of the

MSR problem), in which

G1 =< a, b, c, d, e, f, g, h, i, j, k, l >,

G2 =< −i,−d,−g,−f, h, a, c, b,−l,−k,−j,−e > .

(we use commas to separate the gene markers for easier reading). By deleting markers c, d, e, h from

both G1 and G2, the resultant subsequences are

G∗1 =< a, b, f, g, i, j, k, l >,

G∗2 =< −i,−g,−f, a, b,−l,−k,−j > .

2The main result in this chapter appears as ”H. Jiang, Z. Li, G. Lin, L. Wang, B. Zhu. Exact and approximation algorithms
for the complementary maximal strip recovery problem. Journal of Combinatorial Optimization, (Nov 2010).” [11]

41



These two resultant subsequences can be decomposed into three maximal substrings S1 = a • b,

S2 = f • g • i (appearing in the reversal and negated form in G∗2 ), and S3 = j • k • l (appearing in

the reversal and negated form in G∗2 ). For this small instance, one can prove that the optimal solution

to the MSR problem has size 8, and (consequently) the optimal solution to the CMSR problem has

size 4.

We use OPT to denote an optimal solution to the instance of the CMSR problem. That is,

OPT is a minimum-size subset of letters that, deleting them from G1 and G2 gives the remainder

sequences G∗1 and G∗2, respectively, which can be partitioned into maximal common substrings.

Given any CMSR instance, in at most quadratic time, we can determine all maximal common

substrings of length at least two in G1 and G2 and the remaining are isolated letters. Note that the

quadratic time could be improved to a linear time, with proper data structure such as suffix-tree.

We use unit to refer to a maximal common substring or an isolated letter. A unit and its reversed

negated form are considered identical. The above determined units form a common partition of G1

and G2, i.e. every letter in G1 occurs in exactly one of these substrings. For ease of presentation,

the maximal common substrings are called type-0 substrings; the isolated letters are called isolates.

In our algorithm Approx-CMSR, all type-0 substrings are kept in the resultant sequences and

our goal is to eliminate the isolates, by deleting them to “merge” some letters into substrings. Here

“merge” refers to either appending an isolate to some existing substring, or merging two isolates

into a novel common substring.

3.2 Structural Properties

Lemma 4 For any CMSR instance, there exists an optimal solution OPT such that

(1) for each type-0 substring S, either S ⊂ OPT or S ∩OPT = ∅;

(2) if |S| ≥ 4, then S ∩OPT = ∅.

PROOF. For a type-0 substring S, assume to the contrary that some but not all of its letters are in

OPT . We know that the letters of S−OPT appear consecutively in both G∗1 and G∗2, and they form

or participate in a single maximal substring, denoted as T . We may put letters of S ∩OPT back to

G∗1 and G∗2 according to their positions in G1 and G2, respectively. These letters do not break but

participate in the maximal substring T . This contradicts the optimality of OPT . Therefore, either

S ⊂ OPT , or S ∩OPT = ∅.

If S has length of 4 or greater and S ⊂ OPT , we again put the letters of S back to G∗1 and G∗2

according to their positions in G1 and G2, respectively. This added S, as a consecutive segment,

might break into maximal substrings of G∗1 and G∗2 to give rise to at most 4 distinct letters that

no longer belong to any maximal substrings. Since S becomes a (or part of a) maximal common

substring, we can delete the (at least 4) letters of S from OPT while adding to OPT the (at most

4) letters that fall out of maximal substrings. The added letters certainly do not belong to any type-0
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substrings. Therefore, this letter-swapping process gives another optimal solution that contains one

less type-0 substring of length at least 4. Repeating the same argument if necessary, at the end we

will achieve an optimal solution that does not contain any type-0 substring of length at least 4. �

The above Lemma 4 tells that for every type-0 substring, either all its letters are kept in OPT

or none of them is in OPT . Thus we can partition OPT into a subset O3 of length-3 type-0

substrings, a subset O2 of length-2 type-0 substrings and a set O1 of isolates, then we have OPT =

O3 ∪O2 ∪O1. It follows that the number of letters in OPT is

|OPT | = 3|O3|+ 2|O2|+ |O1| (3.1)

3.3 The Approximation Algorithm

By Lemma 4, all type-0 substrings of length 4 and greater are retained in our approximation al-

gorithm to be presented next. The output of our algorithm will be compared against an optimal

solution OPT which also retains all these substrings. In the following, we only deal with length-3

and length-2 type-0 substrings, and isolates.

Here we use an example to illustrate our 3-step greedy algorithm. Given

G1 =< a, x, b, u, e, f, g, i, j, h, y, k, c, z, d, v >,

G2 =< e, z, f, g, v, x, h, k, a, b, c, d, u, i, y, j > .

In the first step, our algorithm maps all maximal common substrings and retains all type-0 substrings.

This can be shown by Figure 3.1, in which we reserved {fg} in Step 1. In the second step, our

algorithm recursively removes a target isolate, denoted as u; such a removed isolate has to satisfy

the condition (C) listed in the following, with the goal that removing it from (the current) G1 and

G2 gives rise to (at least) a new common substring of length 2. This procedure may consist of

several iterations. We continue use the example. In the first iteration, our algorithm deleted x and

merged a and b into a substring ab. This can be shown by Figure 3.2. Then in the second iteration,

it deleted y and reserved hk, ij. In the third iteration, it deleted z to merge c, d and attach e to

an existing substring fg. These two iterations can be illustrated by Figure 3.3 and 3.4 separately.

Each of these new generated common substrings is not a common substring to the original G1 and

G2, thus is called a type-1 substring for distinction purpose. Note that after such isolate removal,

some units (type-0 and/or type-1 substrings, and/or isolates) might be able to be merged into longer

maximal common substrings. For consistency we do not merge two existing substrings; but we will

append isolates to existing substrings (type-0 or type-1) whenever possible, since our goal is to get

rid of isolates. These appended isolates are no longer isolates, and the extended substrings keep

their type (type-0 or type-1). When none of the isolates satisfying condition (C) can be identified,

the algorithm enters the last step to remove all the remaining isolates, if any. This can be shown by

Figure 3.5.
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Figure 3.1: Step 1: Mapping maximal common substrings.

Figure 3.2: Step 2: Deleting x and reserve a,b.

Definition 5 Condition (C): In either G1 or G2, two neighboring units of u are also isolates; and

after removing u, they form into a type-1 common substring of length 2.

It could be the case that in both G1 and G2, the two neighboring units of u form into a type-1

common substring of length 2 after deleting u; our algorithm will identify the case and subsequently

all these isolates become no longer isolates. There is another (disjoint) case in which, besides

forming the type-1 common substring of length 2, another neighboring isolate of u in the different

sequence can be appended to an existing, or the newly formed, substring; our algorithm will iden-

tify this case too and subsequently the appended isolate becomes no longer an isolate. Intuitively,

removing isolate u saves (i.e., retains) at least two other isolates, and can save one or two more

isolates.

For ease of discussion, let U = {u1, u2, ..., um} denote the set of isolates located in sequential

order by our algorithm, which are all removed. Associated with each uj , let Vj denote the set of

neighboring isolates of uj in the current G1 and G2 that become no longer isolates after removing

uj . We have |Vj | ≥ 2, for j = 1, 2, ...,m. In particular, the two neighboring isolates of uj that

form a type-1 substring after deleting uj are denoted as aj and bj (where there are two such pairs,

aj and bj refer to an arbitrary one of them). Let R denote the set of remaining isolates at the time

Figure 3.3: Step 2: Deleting y and reserve h,i,j,k.
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Figure 3.4: Step 2: Deleting z and reserve c,d,e.

Figure 3.5: Step 3: Deleting all remaining isolates.

the algorithm finds no isolates satisfying condition (C); that is, R is the set of isolates deleted by our

algorithm at the last step. The following two lemmas state some preliminary observations.

Lemma 5 The set of all isolates I is the union of the disjoint sets U, V1, V2, ..., Vm, and R, that is,

I = U ∪ (
⋃m

j=1 Vj) ∪R; moreover, the algorithm deletes all isolates of U ∪R, but no others.

Lemma 6 In the original input sequences G1 and G2, the letters in between aj and bj all belong to

{u1, u2, ..., uj−1, uj}; moreover, uj is in between aj and bj in exactly one of G1 and G2.

Recall that we use in the discussion an optimal solution OPT which satisfies the two properties

listed in Lemma 4. Consider the inverse process of deleting units of OPT from G1 and G2 to obtain

the final sequences G∗1 and G∗2 . In this inverse process, we add the units of OPT back to G∗1 and

G∗2 using their original positions in G1 and G2 to re-construct G1 and G2. At the beginning of this

process, there are no isolated letters in G∗1 or G∗2; all the isolates of I are thus either units of I ∩O1,

or generated by inserting units of OPT back, which break the maximal common substrings into

fragments of which some are single letters. At any time of the process, inserting one unit of OPT

back to the current G1 and G2 can generate at most four fragments of single letters, since in the

worst case two current length-2 substrings can be broken into four such fragments. Some of these

single letters might not be the isolates of U ∪R; those that are in U ∪R, as well as the inserted unit

when it belongs to (U ∪R)∩O1, are said to be associated with the inserted unit of OPT .We firstly

insert units of O3 and O2, one by one; each of them is associated with at most four isolates of U ∪R

(Lemma 7); the resultant sequences are denoted as G0
1 and G0

2.

Lemma 7 The number of isolates of U ∪R associated with each unit of O3 ∪O2 is at most four.
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Next, we insert isolates of O1 ∩ (uj ∪ Vj) back into G0
1 and G0

2, for j = 1, 2, ...,m sequentially.

At the end of the inserting isolates of O1 ∩ (uj ∪ Vj), the resultant sequences are denoted as Gj
1 and

Gj
2.We emphasize that this sequential order is very important, as we need it in the proofs of Lemmas

8 and 9. Lemma 9 counts the average number of isolates of U ∪ R associated with each isolate of

O1 ∩ (uj ∪ Vj).

Lemma 8 For any j , uj is an isolated letter in Gj
1 and Gj

2.

PROOF. We prove this lemma by (finite) induction. Firstly, we notice that a1, b1, and u1 cannot

co-exist in G∗1 and G∗2 , since otherwise u1 would be the only letter in between a1 and b1 in exactly

one of G∗1 and G∗2 , and thus an isolated letter. Therefore, O1 ∩ (u1 ∪ V1) 6= ∅. After inserting

isolates of O1 ∩ (u1 ∪ V1) back, a1, b1, and u1 are all present in G1
1 and G1

2. For the same reason

that u1 is the only letter in between a1 and b1 in exactly one of G1
1 and G1

2, u1 is an isolated letter.

That is, the lemma holds for j = 1.

Assume the lemma holds for all i = 1, 2, ..., j − 1, that is, u1, u2, ..., uj−1 are isolated letters

in Gj−1
1 and Gj−1

2 , and thus they are all isolated letters in Gj
1 and Gj

2. Due to the co-existence of

aj , bj , and uj in Gj
1 and Gj

2, Lemma 6 tells that if uj is not an isolated letter, then it can only pair

with some letter of {u1, u2, ..., uj−1} to sit together in a substring. This is a contradiction to the

inductive assumption. Therefore, uj is an isolated letter in Gj
1 and Gj

2. �

Lemma 9 For any j , the average number of isolates of U ∪ R associated with isolates of O1 ∩

(uj ∪ Vj) is at most 2.5. Moreover, by the end of this iteration of inserting process, uj is associated

to some unit of OPT .

PROOF. Recall that we insert isolates of O1 ∩ (uj ∪ Vj) back into G0
1 and G0

2 in sequential

order of j. When we start to insert isolates of O1 ∩ (uj ∪ Vj), all isolates of O1 ∩
(
∪j−1i=1ui ∪ Vi

)
have been inserted and the resultant sequences are Gj−1

1 and Gj−1
2 .

Firstly, if O1 ∩ (uj ∪ Vj) = ∅, then the lemma is proved automatically. So we assume in the

following that O1 ∩ (uj ∪ Vj) 6= ∅. Let aj and bj be the two neighboring isolates of uj when the

approximation algorithm located uj , as in Lemma 6, such that by removing uj , aj · bj became a

type-1 length-2 substring. We consider the following two disjoint cases: uj ∈ O1 and uj /∈ O1.

In the first case, uj ∈ O1. When aj , bj ∈ O1 and aj and bj are separated by certain letters

of {u1, u2, . . . , uj−1} in G1 (G2, respectively), inserting aj and bj into Gj−1
1 (Gj−1

2 , respectively)

does not generate any new isolates of U ∪ R; when aj , bj ∈ O1 and aj and bj are separated by

no letters of {u1, u2, . . . , uj−1} in G1 (G2, respectively), inserting aj and bj into Gj−1
1 (Gj−1

2 ,

respectively) can generate at most two isolates of U ∪R. When one and only one of aj and bj is in

O1, then inserting it into Gj−1
1 and Gj−1

2 does not generate any new isolates of U ∪R.

If |Vj | = 4, then the other two letters, cj and dj , have the same properties as aj and bj . When

|Vj ∩ O1| = 4, that is, aj , bj , cj , dj ∈ OPT , inserting aj , bj and cj , dj can generate at most 8
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new isolates of U ∪ R; When |Vj ∩ O1| = 3, and assuming aj , bj , cj ∈ OPT , inserting aj , bj can

generate at most 4 new isolates of U ∪R, but inserting cj generates no new isolates of U ∪R; When

|Vj∩O1| = 2, and in the first scenario assuming aj , bj ∈ OPT , inserting aj , bj can generate at most

4 new isolates of U ∪ R; in the second scenario assuming aj , cj ∈ OPT , inserting aj , cj generates

no new isolates of U ∪R; When |Vj ∩O1| = 1, and assuming aj ∈ OPT , inserting aj generates no

new isolates of U ∪R. After inserting isolates of O1 ∩ Vj , if any, inserting uj back into the current

Gj−1
1 and Gj−1

2 does not generate any new isolates of U ∪R. In summary, for |O1∩Vj | = 4, 3, 2, 1,

and 0, respectively, the total number of isolates of U ∪R associated with isolates of O1 ∩ (uj ∪ Vj)

is at most 8, 4, 4, 0, and 0, respectively. It follows that the average number of isolates of U ∪ R

associated with isolates of O1 ∩ (uj ∪ Vj) is at most 8/5.

If |Vj | = 3, then the third letter, cj , was appended to an existing (type-0 or type-1) substring

S when the approximation algorithm removed uj . Similarly to the discussion on aj and bj , cj and

S can only be separated by letters of {u1, u2, . . . , uj−1}, besides uj , in G1 and G2. Moreover, uj

is in between cj and S in at most one of G1 and G2. Therefore, when cj ∈ O1, inserting it into

Gj−1
1 and Gj−1

2 can generate at most one new isolate of U ∪R. After inserting isolates of O1 ∩ Vj ,

if any, inserting uj back into the current Gj−1
1 and Gj−1

2 does not generate any new isolates of

U ∪R. Therefore, for |O1 ∩ Vj | = 3, 2, 1, and 0, respectively, the total number of isolates of U ∪R

associated with isolates of O1 ∩ (uj ∪ Vj) is at most 5, 4, 1, and 0, respectively. It follows that the

average number of isolates of U ∪R associated with isolates of O1 ∩ (uj ∪ Vj) is at most 4/3.

If |Vj | = 2, after inserting isolates of O1 ∩ Vj , if any, inserting uj back into the current Gj−1
1

and Gj−1
2 can generate at most two isolates of U ∪ R. Therefore, for |O1 ∩ Vj | = 2, 1, and 0,

respectively, the total number of isolates of U ∪ R associated with isolates of O1 ∩ (uj ∪ Vj) is at

most 6, 2, and 0, respectively. It follows that the average number of isolates of U ∪ R associated

with isolates of O1 ∩ (uj ∪ Vj) is at most 2.

In the second case, uj /∈ O1. Assume without loss of generality that uj is in between aj and

bj in G1 in Lemma 7. When aj ∈ O1 (bj ∈ O1, respectively) and aj (bj , respectively) and uj are

separated by certain letters of {u1, u2, . . . , uj−1} in G1, inserting aj (bj , respectively) into Gj−1
1

does not generate any new isolates of U ∪ R. When aj ∈ O1 (bj ∈ O1, respectively) and aj

(bj , respectively) and uj are separated by no letters of {u1, u2, . . . , uj−1} in G1, inserting aj (bj ,

respectively) into Gj−1
1 can generate at most two isolates of U∪R, including uj . Nonetheless, when

aj , bj ∈ O1 and aj and bj are separated by no letters of {u1, u2, . . . , uj−1} in G1, inserting aj and

bj into Gj−1
1 can generate at most three isolates of U ∪R, including uj . Similarly, when aj , bj ∈ O1

and aj and bj are separated by certain letters of {u1, u2, . . . , uj−1} in G2, inserting aj and bj into

Gj−1
2 does not generate any new isolates of U ∪ R; when aj , bj ∈ O1 and aj and bj are separated

by no letters of {u1, u2, . . . , uj−1} in G2, inserting aj and bj into Gj−1
2 can generate at most two

isolates of U ∪R.

If |Vj | = 4, then the other two letters, cj and dj , have the same properties as aj and bj . Note
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that when inserting aj and bj into Gj−1
1 generates new isolates of U ∪R, these isolates will be seen

again when inserting cj and dj into Gj−1
2 . Therefore, for |O1 ∩ Vj | = 4, 3, 2, 1, and 0, respectively,

the total number of isolates of U ∪R associated with isolates of O1 ∩ (uj ∪ Vj) is at most 7, 4, 2, 0,

and 0, respectively. It follows that the average number of isolates of U ∪R associated with isolates

of O1 ∩ (uj ∪ Vj) is at most 7/4.

If |Vj | = 3, then the third letter, cj , was appended to an existing (type-0 or type-1) substring S

when the approximation algorithm removed uj . Similarly to the discussion on aj and bj , cj and S

can only be separated by letters of {u1, u2, . . . , uj−1} in G1 and G2, besides uj in G2. Therefore,

when cj ∈ O1, inserting cj into Gj−1
2 can generate at most one new isolate of U ∪ R, which

will be seen when inserting bj into Gj−1
1 . Note that S might start with aj or end with bj . For

|O1∩Vj | = 3, 2, 1, and 0, respectively, the total number of isolates of U ∪R associated with isolates

of O1∩(uj ∪ Vj) is at most 4, 2, 0, and 0, respectively. It follows that the average number of isolates

of U ∪R associated with isolates of O1 ∩ (uj ∪ Vj) is at most 4/3.

If |Vj | = 2, for |O1 ∩ Vj | = 2, 1, and 0, respectively, the total number of isolates of U ∪ R

associated with isolates of O1 ∩ (uj ∪ Vj) is at most 5, 2, and 0, respectively. It follows that the

average number of isolates of U ∪R associated with isolates of O1 ∩ (uj ∪ Vj) is at most 5/2.

From the above case analysis, we conclude that the average number of isolates of U ∪R associ-

ated with isolates of O1 ∩ (uj ∪ Vj) in the worst case is 5/2 = 2.5. �

Lastly, we insert isolates of O1 ∩ R back into Gm
1 and Gm

2 . At the end of this last inserting

process, we achieve the input sequences G1 and G2.

Lemma 10 The average number of isolates of U ∪ R associated with each isolate in O1 ∩ R is at

most 3.

PROOF. The key fact used in the proof is that after locating isolate um, removing it from the current

sequences, and making letters in Vm non-isolates, the approximation algorithm finds no more iso-

lates to iterate the process. That is, for any two remaining isolates r, s ∈ R that are not separated by

any existing (type-0 or type-1) substring in both sequences (that is, r and s can potentially form into

a substring, or participate together), there are at least two other isolates, duplications are separately

counted, in between them, counting from both sequences.

In sequences Gm
1 and Gm

2 obtained after inserting units of O3 ∪ O2 ∪
(
O1 ∩

(
U ∪ ∪mj=1Vj

))
into G∗1 and G∗2, some units of R are already isolates, while the other reside in substrings (of length

at least two). These units residing in substrings are to be singled out by inserting units of O1 ∩ R

into Gm
1 and Gm

2 ; and it is these units that are associated with isolates of O1 ∩R.

Let S1, S2, . . . , Sk denote the substrings in Gm
1 and Gm

2 that are made of isolates of R; and

T1, T2, . . . , T` denote the fragments of substrings in Gm
1 and Gm

2 , where the substrings are not

purely made of isolates of R, but the fragments are. Note that |Si| ≥ 2 for every i. To single out

all letters of
(
∪ki=1Si

)
∪
(
∪`j=1Tj

)
, we first need at least one isolate of O1 ∩ R to chop each Ti off
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its host substring; Afterwards, the above argument states that for every two adjacent letters in Si or

Tj , there are at least two isolates of O1 ∩ R in between them, counting from both sequences. This

gives a lower bound on the minimum number of isolates of O1 ∩ R. Since each isolate of O1 ∩ R

can appear in two places, we have

2|O1 ∩R| ≥ `+

k∑
i=1

2(|Si| − 1) +
∑̀
j=1

2(|Tj | − 1) ≥
k∑

i=1

|Si|+
∑̀
j=1

|Tj |.

Therefore, the total number of isolates of U∪R (in this case, R only) that are associated with isolates

of O1 ∩R is at most
∑k

i=1 |Si|+
∑`

j=1 |Tj |+ |O1 ∩R|, which is less than or equal to 3|O1 ∩R|.

This proves the lemma. �

Theorem 11 The CMSR problem admits a 3-approximation algorithm.

PROOF. To summarize, all isolates of U ∪ R are associated with units of OPT . From Lemmas 7,

9, and 10, we have

|U∪R| ≤ 4|O3∪O2|+2.5|O1∩
(
U ∪

(
∪mj=1Vj

))
|+3|O1∩R| ≤

4

3
×3|O3|+2×2|O2|+3×|O1| ≤ 3|OPT |,

where |OPT | denotes the number of letters in OPT and thus |OPT | = 3|O3|+2|O2|+ |O1|. Note

that the approximation algorithm deletes all isolates of U ∪ R, but no others, and therefore it is a

3-approximation algorithm. �
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Chapter 4

Conclusions and Future Work

In this chapter, we first summarize our results on the Bandpass and the CMSR problems, respec-

tively. Then we introduce the future work for these two combinatorial optimization problems.

In Chapter 2, we presented our Remainder-Driven algorithm for the 3-column Bandpass problem

through a case by case analysis style. Now we can conclude the following Theorem 12.

Theorem 12 The three column Bandpass problem with any bandpass number B ≥ 2 can be solved

exactly in linear time.

PROOF. In analysis from Case 1 to Case 4 in Chapter 2, we have shown that in most cases,

the six solutions returned from the Row-Stacking algorithm include an optimum; all the exceptional

cases are recognized and solved by the Remainder-Driven algorithm in Section 2.2. Because the

complete set of subcases for a 3-column instance considered by the Remainder-Driven algorithm is

finite, the 3-column Bandpass problem can be solved in linear time. �

In Chapter 3, we presented a 3-approximation algorithm for the CMSR problem. The key design

technique is greedy, and the performance ratio is proven using a novel inverse amortized analy-

sis, through which we can construct a mapping between our algorithm’s solution and the optimal

solution.

In the future, we will investigate the general Bandpass problem which is proven to be NP-hard.

For a general matrix A and B = 2 instance, a 2-approximation algorithm [15] was proposed based

on results of the maximum weighted set packing problem [7, 1]. But there is no constant ratio

approximation algorithm for the given matrices with B > 2, and we may work on it. For the CMSR

problem, we are currently working on improved approximation algorithms. Furthermore, it is more

practical and challenging to deal with multiple genome sequences. Our greedy algorithm still works,

but we have to examine if the approximation ratio is 3. Although still given two genome sequences,

it is much more difficult to deal with if the makers in each sequence can occur more than once. In

this case, we have to revise the weight function and design a new scheme for computing gains in our
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greedy algorithm. Also we need to check and prove its approximation ratio.
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