Implementation of Path Profiling in the
Low-Level Virtual-Machine (LLVM) Compiler Infrastructure

Adam Preuss™
Dept. of Computing Sciences
University of Alberta
apreuss@ualberta.ca

Abstract

Profiling monitors a program’s execution flow via the in-
sertion of counters at key points in the program. Profiling
information can then be used by a compiler’s optimization
passes to increase the performance of frequently executed
sections of code. This document describes the implemen-
tation of edge profiling, path profiling and a method with
which to combine profiles in the Low Level Virtual Ma-
chine (LLVM) compiler infrastructure.

1 Introduction

Profiling is a method of feedback directed optimization
(FDO) that inserts additional instructions into a program
to monitor its execution. Using gathered profiling in-
formation from program execution, optimizing compilers
can perform code transformations which aim to enhance
the performance of frequently executed (hot) code sec-
tions. Profiling can be separated into two categories: on-
line and offline. Online profiling provides feedback while
a program is running, allowing the program to change
based on the current hot code sections. Offline profil-
ing generates runtime information which is intended to
be used, once a program’s execution is complete, for op-
timization during a second (non-profiled) compilation. In
both situations, profiling incurs time and memory over-
head to a program’s runtime and compilation.

This document discusses the implementation and usage
of the following types of offline profiling of a program’s
control flow graph (CFG):

*This development of profiling for the LLVM compiler infrastruc-
ture was funded in part by the Natural Science and Engineering Re-
search Council of Canada through two Undergraduate Student Research
Awards (URSAs). The first was granted in 2009 to Slobodan Pejic and
the second in 2010 to Adam Preuss.

e Naive edge profiling (NEP): A frequency measure-
ment of each edge between basic blocks (BBs) — se-
quences of instructions without incoming or outgo-
ing branches — of a program’s CFG. Counters are
positioned in either the source or target BB. If an
edge’s source node has multiple successors and it’s
target node has multiple predecessors, it is deemed
a critical edge — there is no safe place to insert in-
strumentation exclusive to that edge. Thus, the edge
is split by inserting a new BB between its source and
target, where profiling instrumentation may be safely
placed.

e Optimized edge profiling (OEP): A frequency mea-
surement of a program’s CFG edges. It is an opti-
mization of the naive method, where instrumented
edges are based on a maximum spanning tree — all
edges do not require instrumentation [1]. The instru-
mented edges provide enough information to calcu-
late all edge frequencies at a later time, due to con-
servation of flow.

e Path profiling (PP): A frequency measurement of ex-
ecuted paths in a program’s CFG. If the CFG con-
tains back-edges, the number of potential paths is
unbounded. Thus, path numbering (PN) is based on
the algorithm proposed by Ball and Larus [2], which
transforms a function’s CFG into a directed acyclic
graph (DAG) with a bounded number of potential
paths, assigning each path a unique number.

The goals of this project were to implement PP into the
LLVM compiler and to incorporate a method of combin-
ing the accumulated profiles of NEP and PP. LLVM only
supports offline profiling. Currently, it contains instru-
mentation passes for NEP and OEP, and an interface to
the compiler that loads the accumulated profiling infor-
mation.

Traditionally, profiling information is gathered from a

$ cd SHOME

$ mkdir 1lvm 1llvm/llvm llvm/llvm-gcc llvm/src llvm/build \

1lvm/build/11lvm 1lvm/build/llvm-gcc

cd llvm/src/llvm
patch -p0 -i $HOME/llvmprof.patch
cd ../../build/1lvm

r O O 0 U U

--enable-optimized --disable-assertions
$ make; make install
cd ../llvm-gcc

Ur

svn co http://llvm.org/svn/llvm-project/llvm/trunk llvm/src/llvm
svn co http://llvm.org/svn/llvm-project/llvm-gcc-4.2/trunk llvm/src/llvm-gcc

../../src/llvm/configure —-prefix=S$HOME/1llvm/1llvm \

$../../src/llvm-gcc/configure —-prefix=S$HOME/1llvm/llvm-gcc \
--program-prefix=11vm- --enable-languages=c,c++, fortran \

——enable-11lvm=$HOME/1lvm/llvm --enable-optimized

$ make; make install

--disable-assertions

Figure 1: Example commands which install llvm and llvm-gcc into a linux user’s home directory. It is assumed that
the LLVM profiling patch is saved in the home directory as well.

single training run (usually a smaller input); optimizations
are performed based on the profiling results of that run.
However, edge frequency might be highly input depen-
dent.

We implemented a new methodology called combined
profiling (CP) that enables a variation-preserving combi-
nation of profiles from multiple training runs. When using
CP, an optimizing compiler can not only examine an aver-
age of event frequencies across the different inputs, but it
may also perform statistical queries about the distribution
of these events across multiple inputs. For instance, some
inputs might execute parts of a program’s code with ex-
tremely high frequency while others do not execute those
parts at all. In such situations, one would observe high
variance in the profiling results that might influence code
transformations more heavily than only examining aver-
ages.

The profiling for LLVM was developed under the su-
pervision of Professor Jose Nelson Amaral and Paul
Berube. Slobodan Pejic began work on this project in
the summer of 2009, designing a layout and writing the
PP instrumentation pass. Adam Preuss has completed and
tested the project, making modifications to the existing in-
strumentation pass, reimplementing the PP interface and
creating a toolset to manage both combined edge profil-
ing (CEP) and combined path profiling (CPP). Kaiven
Zhou has created a set of scripts to benchmark the vary-
ing types of profiling in LLVM.

2 Obtaining Patched Compiler

The LLVM compiler is language independent. A separate
front end compiles code to LLVM’s intermediate repre-
sentation, LLVM bitcode, that has equivalent binary and
textual representations. Profling related transformations
and instrumentation all act exclusively on the bitcode in
the back end, which can be compiled to native machine
code or executed with 11i, LLVM’s just-in-time (JIT)
compiler.

The most recent release of the LLVM compiler may
be downloaded via svn from http://1llvm.org/svn/
llvm-project/1llvm/trunk. The profiling patch should
then be applied in the svn directory. Figure 1 shows sam-
ple commands on a linux machine which download, patch
and compile LLVM and llvm-gcc — one of the most com-
monly used front ends for c, c++ and fortran. One should
set up the PATH environment variable to include the com-
piler executables, located in insall-dir/bin, for both
llvm and llvm-gcc.

3 Profiling Implementation

Profiling in LLVM can be separated into three (mostly in-
dependent) phases: instrumentation, execution and analy-
sis. The instrumentation phase performs a code transfor-
mation pass where profiling instructions are inserted into
a given program. At execution, profiled programs must
be linked to a lightweight dynamic library: profile_rt,
that contains functions responsible for storing profiling in-

uint32 ArgumentInfo
uint32 | Argument String Length
uint871] Argument String
uint8[] | Zero Padding to 32bits
Profiling Data
uint32 ArgumentInfo
uint32 | Argument String Length
uint8[] Argument String
uint8[] | Zero Padding to 32bits
Profiling Data

Figure 2: The profiling header file storage format, present
at the beginning of each profiling run. ArgumentInfo is
an identification number used by the compiler.

formation and writing it to disk. If a profiling output file
already exists from a previous run, profile_rt appends
the new profiling data (this is equivalent to cat). Once
profiling information has been obtained, it can be loaded
into the LLVM optimizer opt and analyzed to optimize
the original, uninstrumented program. This paper’s pri-
mary focus is the first two phases of profiling which gather
varying types of CFG profiles.

3.1 Profiling Header

A header is associated with each profiling trial. It is ap-
pended to the profiling output file ahead of any other pro-
filing information for the current run. A profiling file that
has accumulated over several runs will have a separate
header for each run. The header contains the command
line arguments associated with program execution, to aid
in differentiating among profiling trials. Figure 2 outlines
the profiling header storage format.

3.2 Edge Profiling

The NEP and OEP instrumentation passes share simi-
lar implementation: each creates a global array of zero-
initialized unsigned 32 bit profile counters (the counters
will overflow if the integer width becomes saturated).
Edges of a procedure’s CFG grow linearly with the num-
ber of BBs, making an array a suitable intermediate pro-
filing storage form. Once program execution is complete,
the profile_rt dynamic library is responsible for writ-

uint32 | EdgeInfo/ OptEdgeInfo
uint32 Number of Counters
uint32 Counter 0
uint32 Counter 1
uint32 Counter 2
uint32 Counter 3

Figure 3: NEP and OEP data storage formats — each
field is an unsigned 32 bit integer. EdgeInfo and
OptEdgeInfo are identification numbers used by the
compiler.

ing the gathered profile to disk. LLVM contains an inter-
face that exposes profiling information to profile-guided
optimization passes. The table in Figure 3 outlines the
format for NEP and OEP.

3.3 Path Profiling

The instrumentation and analysis phases of PP share the
same code for PN logic (a set of classes to represent
nodes, edges and DAGs). The path identification and
numbering algorithms assign 32 bit unsigned integer val-
ues to paths. They convert a function’s CFG into a DAG,
thus eliminating the possibility of infinite paths in a pro-
cedure [2]. If the number of potential paths becomes very
large, the PN logic splits DAGs to produce shorter paths.
(Currently, the splitting threshhold is set to 100,000,000.)
Otherwise, for certain DAGs, the total number of potential
paths can quickly exceed the integer width.

3.3.1 Path Profiling Instrumentation

The PP instrumentation pass uses a new set of classes that
are derived from those used for PN, incorporating addi-
tional procedures specific to the instrumentation process.
Once a DAG has been derived from the CFG, the place-
ment of path counters in a bitcode file is reorganized to
produce the lowest runtime overhead. The reorganization
is accomplished by minimizing the number of additional
instructions along any particular path [4]. Critical edges
are split to accommodate the requirements of instrumen-
tation, ensuring a proper PN scheme. One must take care
to use the original uninstrumented bitcode file when load-
ing PP information, because the instrumented CFG might
not be a perfect match — instrumented code might have
additional BBs due to edge splitting.

uint32 PathInfo Number of Functions uint32
uint32 Function 1 Number of Path Entries | uint32
uint32 | Path Number Path Counter uint32
uint32 | Path Number Path Counter uint32
uint32 | Path Number Path Counter uint32
uint32 Function 2 Number of Path Entries | uint32
uint32 | Path Number Path Counter uint32
uint32 | Path Number Path Counter uint32
uint32 | Path Number Path Counter uint32

Figure 4: Path profiling data storage format — each field is an unsigned 32 bit integer. PathInfo is an identification

number used by the compiler.

3.3.2 Path Profiling Runtime

At runtime, the profiling external library is responsible
for intermediate PP storage and, upon program termina-
tion, for writing the path profiles to disk. For maximum
processing and memory efficiency, executed path counts
are stored in arrays for those functions with a small num-
ber of potential paths. If the potential path count reaches
100 000, path counters are stored in a hash table. In the
event of arithmetic overflow, path counts saturate at the
maximum integer width. If a path count exceeds the in-
teger width, the profiler has provided enough information
to deem this a hot path. The table in Figure 4 outlines the
file storage format for path profiles.

3.3.3 Path Profile Analysis

The path profile loader (PPL) interface is implemented
as an analysis pass and is designed separately from the
generic profile-loader interface to reduce both process-
ing and memory overhead. Further, PP information su-
persedes edge profiling (EP). A verification pass has
been created, which demonstrates that EP can be precisely
derived from PP. LLVM currently has no optimization
passes that use PP, thus it is difficult to determine the kind
of queries that will be made to the PP interface. As the use
of PP in LLVM evolves, the PP interface can be changed
to attend to new needs of the code generator.

During analysis, path numbers and their respective fre-
quencies are loaded into memory. Should an optimizer
pass require PP information, any path can be generated
“on the fly”, by traversing the DAG of the function of in-
terest, because the path number is known [2].

3.4 Early Procedure Termination

Early or unexpected termination of functions further com-
plicates the implementation of profiling, which might re-
sult in inaccurate profiling counter values. If a function
does not return, an increment instruction might never be
executed if it resides after the function call. NEP can
avoid this problem by careful placement of edge coun-
ters; the issue is increasingly complex for OEP and PP.
Currently, OEP does not support early termination (ET).

The path profiler can optionally assign additional
unique paths from function entry points to each function
call present in the CFG. Thus, if a function does not re-
turn, path counting information (over the entire function
call chain) will not be lost. The introduction of these new
potential paths incurs an execution runtime overhead. Be-
fore each function call, there must be a path increment
in the event that said function does not return. If it re-
turns, the path counter is decremented and normal execu-
tion continues.

3.5 Combined Profiling

CP has been implemented as a tool in the LLVM com-
piler, which has been designed to support CEP and CPP.
The tool will merge any number of profiling files or CP
files for both CEP and CPP. Combined profiles consist of
a calculated mean, variance and histogram to measure the
average frequency and distribution of each of their stored
profiling counters. CEPs files contain histograms for ex-
ecuted edges; CPPs files contain histograms for the exe-
cuted paths in the program.

uint64 Sum
float64 | Sum of Squared Deviations
float64 Bin Width
float64 Lower Bound
float64 Upper Bound
uint32 Counter ID
uint32 Non-Zero Trial Count
uint8 Bins Used
uint8 Bin Index
float64 Bin Value
uint8 Bin Index
float64 Bin Value
uint8 Bin Index
float64 Bin Value

Figure 5: The CP histogram file storage format.

3.5.1 Histogram Storage

The CP histogram is a set of bins that covers a continu-
ous range, holding a total weight equal to the number of
profiling trials. The bin count is specified by the user via
the command-line option -bc=<bin count>, before his-
togram generation. There exists an epsilon, currently set
to 0.01, which maintains a mimimum bin width to avoid
point distributions. In addition, the mimimum range is
never allowed to drop below zero. Figure 5 shows the
data structure of a CP histogram, along with additional
fields used to calculate the mean and variance explained
in section 3.5.2.

3.5.2 Incremental Computation of the Mean and
Variance

In addition to histogram representation, CP reports the
mean and variance of a distribution. CP histograms may
be built from a combination of single-input profiles and
CPs; hence, incremental computation of these statistical
values is crucial. For n trials xj...x,, the formulae for
calculating the sum and sum S of squared deviations SS of
single-input histogram values are as follows:

ey

2

Parallel calculations for histograms A and B are computed
using the following formulae [5]:

S=S8S44+Sp 3)

$ opt -insert-edge-profiling \
-dot-edge-numbers \
-0 example.bc example.ep.bc
$ 1lvm-1d -lprofile_rt -native \
-0 example example.ep.bc
$./example -1llvmprof-out \
example.llvmprof.out

Figure 6: Sample commands to obtain a NEP file and pro-
duce CFG graphs of the program’s edge numbers.

L (SASB>2)

S8 = 854 +8Sp +

ng+ng \na np
Mean % and variance 6 are then easily calculated as fol-
lows: S
X=- 5)
n
= (6)
n

3.5.3 Frequency Storage

CPs cannot be stored as raw frequencies, otherwise there
would be no context in which to compare the gathered
profiles over many different inputs. Consider a compiler
— instrumented with profiling — that compiles first, a small
source file and then a very large one. The counters from
the small input might be insignificant, completely over-
shadowed by those of the large one. To maintain continu-
ity, CEP edge frequencies are stored as fractions with re-
spect to their most immediate dominating edges; CPP path
frequencies are saved as fractions relative to the number
of times their containing function is executed.

4 Profiling User Guide

Profiling instrumentation is accomplished through opti-
mization passes, using LLVM’s tool opt. Before running
any passes, all object files that are part of the program
must be linked into a single LLVM bitcode file. As a
precaution, the instrumentation passes perform checks to
ensure that they do not insert profiling instructions into
modules without an entry point (i.e. amain () function).
Due to critical edge splitting, it is unwise to instrument a
program with more than one type of profiling.

Once an instrumented program has been obtained,
it must be executed to generate the profiling informa-
tion. The output file name containing profiling informa-
tion may be specified with 11lvmprof-out <filename>
as a first command-line argument to the instrumented

$ opt -insert-path-profiling -dot-pathdag -process-early-termination -o example.bc example.pp.bc

Ur

1lvm-1d -native -o example example.pp.bc
$./example -llvmprof-out example.llvmprof.out

Figure 7: Sample commands to obtain a path profile.

$ opt example.bc --o /dev/null -path-profile-loader -path-profile-verifier \
-process-early-termination -path-profile-loader-file example.llvmprof.out \
-path-profile-verifier-output example.edgefrompath.llvmprof.out

$ cmp example.edgefrompath.out example.edge.llvmprof.out

Figure 8: Sample commands to load and verify a path profile.

program; otherwise, the profiling filename defaults to
1lvmprof.out. The following sections present many ex-
amples of instrumenting and executing programs for vary-
ing types of profiling:

4.1 Obtaining Edge Profiles

The NEP and OEP instrumentation passes
are invoked with the respective command—
line options -insert-edge-profiling and
-insert-optimized-edge-profiling. There ex-

ists an additional pass -dot-edge-numbers, generating
.dot graphs with associated edge numbers for each
function’s CFG in the program [3] . An example of the
instrumentation/execution phases for NEP is shown in
Figure 6.

4.2 Obtaining Path Profiles

The PP instrumentation pass is invoked with the
command-line option insert-path-profiling. Should
a user wish to view the derived DAGs of each function in
the instrumented program, the option dot -pathdag must
be specified. The optimizer outputs a DAG of each graph
in a .dot file named pathdag.<function-name>.dot.
An example of the instrumentation/execution phase for
the program example.bc is shown in Figure 7.

By default, the path profiler does not insert instrumen-
tation to handle incomplete paths in those methods with
ET - for instance, a call to exit (). In some cases, PP
might not produce accurate profiles. Specifying the com-
mand line option process-early-termination in both
the instrumentation and analysis phases modifies the path
numbering scheme to handle ET, subsequently allowing
path profiles to produce exact edge frequencies. ET han-
dling might incur a significant overhead depending on the
position and frequency of method calls in a program.

4.2.1 Loading Path Profiles

PP information must be readily available to future FDO
passes. A PPL pass must exist to satisfy its potential de-
pendents. The PPL defines an interface, such that other
passes may access specific PP information. Invocation of
the PPL is accomplished with the command-line option
path-profile-loader, with an optional command-line
argument, path-profile-loader-file <filename>,
specifying the file with PP information. By default, the
PP filename is 11vmprof.out.

4.2.2 Verification

In this project, a verification pass was created to help in-
still confidence in LLVM developers that the information
generated by PP is accurate. The path profiling verifier
(PPV) analyzes information provided by the PPL and de-
rives an edge profile, creating a file that can be compared
with the output of LLVM’s edge profiler. A byte-per-
byte comparison showing that the two files are identical
should build confidence that PP is producing information
that is consistent with the independently developed edge
profiler. Although the PPV runs through LLVM’s opti-
mizer, it does not perform any code transformations.

The PPV pass is invoked with the command-line
option path-profile-verifier. Additionally, an EP
output file name may be specified with the argument
path-profile-verifier-output <filename>. By
default, this file name is edgefrompath.llvmprof.out.
A combined example of the PPL and PPV passes is
shown in figure 8. This example assumes that the
uninstrumented bitcode file is named example.bc,
and that PP and EP information are available in
files named example.path.llvmprof.out and
example.edge.llvmprof.out, respectively.

For cmp to detect an exact match, the program bina-
ries for PP and NEP must be identically named because

./example.nep -llvmprof-output ol.nep inputl
./example.nep -llvmprof-output o02.nep input2
./example.nep -llvmprof-output o3.nep input3

./example.nep -llvmprof-output o4.nep inputd
./example.nep -llvmprof-output o5.nep input5
./example.nep -llvmprof-output o6.nep inputé

r O O Uy Uy Uy Uy

1lvm-cprof example.bc ol.nep o2.nep o3.nep -eo edgel.cp -bc=100

llvm-cprof example.bc od4.nep o5.nep o06.nep edgel.cp -eo edge2.cp -bc=15

Figure 9: Example commands which gather and combine naive edge profiles.

command-line arguments at runtime are stored in the pro-
filing files.

The verification pass was tested on a multitude of dif-
ferent programs and inputs, including many in the SPEC
CPU2006 suite; all native NEPs matched the path-derived
profiles. Note that when performing verifications, if path
or edge counters overflow, it is likely that the edge profile
will not be a perfect match.

4.3 Building Combined Profiles

A new tool 1lvm-cprof has been created for LLVM
which is responsible for building combined profiles. It
must take the filename of the profiled program’s unin-
strumented bitcode file as the first command-line argu-
ment. It can take any number of NEP, PP, CEP and CPP
filenames as additional command-line arguments, which
are used to build the associated CEP and CPP files. The
flag ~eo=<filename> specifies the name of the CEP out-
put file (edge. cp by default); -po=<filename> specifies
the name of the CPP output file (path.cp by default);
-bc=<integer> specifies the number of bins in the output
CP histograms (15 by default). Figure 9 shows example
commands which gather and combine naive edge profiles;
the same procedure applies to CPP. There also exists a
perl script print-cp.pl which can be used to view com-
bined profiles

S Experimental Results

The verification pass was tested on a multitude of differ-
ent programs and inputs, including all ¢ benchmarks in
the SPEC CPU2006 suite; all NEP files matched the PP
derived EP files. Verification tests were performed on a
slightly modified version of the compiler in which path
counters were allowed to overflow. Had counter values
been restricted to the maximum integer width, it is likely
that the verification process would fail due to common
edges among executed paths.

Compilation time and runtime experiments were con-
ducted on a series of two processor machines with the fol-
lowing specifications:

e Red Hat 4.1.2-42
e Linux Version 2.6.18-92.1.18.el5 x86_64

e 2x Quad-Core AMD Opteron™Processor 2350
2000Mhz, 128KB L1, 512KB L2, 2MB L3 shared.

e 2x 4GB Memory

Times were measured for NEP, PP and PP with ET sup-
port. Results show that EP, PP and PP with ET compila-
tion time overheads are 49%, 26% and 41% with respect
to the uninstrumented compilation time. Runtimes over-
heads are 28%, 80% and 154%, respectively. OEP is a
very recent addition to the LLVM compiler and was not
included in the benchmarking experiments because its ac-
curacy has not yet been evalutated.

Table 1 shows the compile time overhead measure-
ments; the associated graph is shown in Figure 10. Ta-
ble 2 shows the run time overhead measurements. Each
benchmark was executed and compiled 3 times; the aver-
age time and 95% confidence interval values are recorded
in the tables.

All associated runtime graphs for individual benchmark
results are included at the end of the document.

6 Future Work

The following is a list of features that are either incom-
plete or not yet supported by the existing profiling infras-
tructure in LLVM:

e Unconventional Jumps in Path Profiling: Cur-
rently, the path profiler does not support many more
complicated jumping or branching instructions used
by c++ exceptions, longjmp()/ setjmp() func-
tions or signals.

e Combined Optimized Edge Profiling:
llvm-cprof could be extended to allow the
combination of OEP files. A new edge-number
identification system would be necessary for users
to identify the appropriate edges in OEP.

e Incremental Combined Profiling: A future exten-
sion of combined profiling would allow profile_rt
to write directly to CP files. Unfortunately, this
is a tedious procedure because profile_rt does
not have any code in common with the com-
piler. In addition, a program at runtime has
no knowledge of its own CFG. An optimiza-
tion pass ~generate-edge-dominance was created
which outputs edge dominance information to a file
(by default edgedom.out, specified with the argu-
ment ~edge-dominance-file=filename) useful to
CEP.

e Larger Profiling Event Counters: Profiling coun-
ters are stored as 32 bit unsigned integers and thus,
are prone to arithmetic overflow. The path profiler
caps the counters at maximum integer width; the
other profiling methods do not test for counter over-
flow.

e Multithreaded Programs: Currently, none of the
profiling inplementations in the LLVM compiler sup-
ports multithreaded programs; this is not a signifi-
cant problem for NEP and OEP because they both
store their path counters in arrays. However, for large
functions, PP makes use of a hash to store profiling
counters, creating an issue if two threads are modify-
ing a hash bin at the same time. This problem could
potentially be solved by placing counter increment
instructions in critical sections, though there could
be a drastic performance decrease in those programs
with more than one thread.

7 Conclusion

Profiling information is important to optimizing compil-
ers, which perform code transformations in an effort to
produce more efficient code. Ideally, multiple training in-
puts of a single program will guide a compiler to make
better code transformations. The compiler will be able
to examine an entire statistical distribution, as opposed to
information from a single trial (which might not be rep-
resentative of the entire population). The LLVM com-
piler currently contains instrumentation passes and a pro-
file loader for NEP and OEP. In this project, PP instru-
mentation and analysis passes were incorporated into the

compiler, along with a new tool to combine NEP and PP
files. A perl script was written to examine the CP files;
future optimization passes in LLVM should make use of
the CP information. This project provides the necessary
foundation to future FDO passes in the LLVM compiler
infrastructure.

References

[1] Thomas Ball, James R. Larus. Optimally Profiling
and Tracing Programs. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 16(4):
1319 - 1360, July 1994.

[2] Thomas Ball, James R. Larus. Efficient path pro-
filing. International Symposium on Microarchitec-
ture: Proceedings of the 29th annual ACM/IEEE in-
ternational symposium on Microarchitecture, Paris,

France, pages 46 — 57, 1996.
(31
(4]

http://www.graphviz.org/

Thomas Ball. Efficiently counting program events
with support for on-line queries. In ACM Transactions
on Programming Languages and Systems (TOPLAS),
16(5): 1399-1410, September 1994.

[5] Tony F. Chan, Gene H. Golub, Randall J. LeV-
eque. Updating Formulae and a Pairwise Algorithm
for Computing Sample Variances. Technical Report
STAN-CS-79-773, Department of Computer Science,

Stanford University, 1979.

CPU2006 Non-Profiled Percentage Overhead
Benchmark Raw Time (s) | Edge Profiling \ Path Profiling \ PP w/ Early Termination
400.perlbench | 48.88 £ 0.05 93+3 31+2 55+2
401.bzip2 2.28 +0.01 68 +2 28 +2 42 +2
403.gcc 188.8 0.5 48 £2 21 £2 35+2
429.mcf 0.84+ 0.01 3242 20£2 28 +£2
433.milc 4.66 + 0.01 37+£2 18+ 2 38 +2
445.gobmk 110+ 9 45 +2 30+2 50+2
456.hmmer 8.82 £ 0.01 30+£2 18 £2 39+2
462.libquantum | 1.13 £ 0.01 3342 24 £2 42 +2
464.h264ref 24.29 £+ 0.08 75+2 18 £2 29 +2
470.Ibm 0.42 + 0.01 36 £2 30+2 48 +2
482.sphinx3 6.61 +0.01 37+2 25+2 49 +2
Average N/A 49 4+ 12 26+ 4 41 £ 5

Table 1: Compile time overhead numerical results with 95% confidence.

100
90
80
70
60
50
40
30
20
10

Overhead (%)

[Edge Profiling
[Path Profiling
B PP with ET

400.perlbench [[#H [|
401.bzip2 [[[H |
403.gcc [#H |

429.mef |1 |
433.milc [H{ |

464.h264ref L H

Average [[[FH |

479.0bm [[[|

482.sphinx3 [[[H|

Figure 10: Compile time overhead graph with respect to non-profiled compile time

CPU2006 Non-Profiled Percentage Overhead
Benchmark Raw Time (s) | Edge Profiling \ Path Profiling \ PP w/ Early Termination
400.perlbench — train 1 6.95 + 0.02 41 £2 69 +2 117£3
400.perlbench — train 2 10.1 £0.3 24 +2 31+£2 78 £3
400.perlbench — train 3 | 23.11 + 0.06 3942 124+ 3 209 + 4
400.perlbench — train 4 0.94 +0.01 314+2 49 +2 98 +3
400.perlbench — ref 1 521.1 £ 0.3 3542 158 +£4 305+ 4
400.perlbench — ref 2 167.0 + 0.5 3242 73+2 151 +£4
400.perlbench — ref 3 274+ 3 36 £2 11943 199 +4
400.perlbench — average N/A 34+4 89 + 31 166 + 54
401.bzip2 — train 237 £2 22+2 26 +2 25+2
401.bzip2 — ref 215+ 1 28+ 2 3342 3242
401.bzip2 — average N/A 25+4 29+5 20+5
403.gcc — train 2.09 + 0.01 3442 67 +2 130 £3
403.gcc —ref 1 85.1 +£0.2 2042 3242 53+2
403.gcc —ref 2 106.8 + 0.1 27+ 2 55+2 114 +3
403.gcc —ref 3 137.2 £0.2 24 £ 2 34+2 5242
403.gcc —ref 4 2 +1 28+ 2 37+2 59+2
403.gcc —ref 5 108 £ 1 244+ 2 3342 48 +2
403.gcc —ref 6 148 £ 1 25+2 35+2 53+2
403.gcc —ref 7 215+1 17+2 20+2 43 +2
403.gcc —ref 8 177 £ 1 2242 28 +2 42 +2
403.gcc —ref 9 37+0.1 33+2 69 +2 144 £+ 3
403.gcc — average N/A 25+3 42+9 74 + 23
429.mcf — train 87.1 £ 0.7 441 2+1 6+1
429.mcf — ref 1822 4+ 44 10+2 -1+1 11+2
429.mcf — average N/A 7+4 -1.44+0.7 944
433.milc — train 33.36 £+ 0.08 441 10+2 17+2
433.milc — ref 1022 + 4 441 10+2 17+2
433.milc — average N/A 3.7+0.3 99+0.2 16.8 £ 0.1
445.gobmk — train 1 12.00 4+ 0.01 3742 139 +£3 290 £ 6
445.gobmk — train 2 103.50 + 0.02 37+2 221 £5 490 £+ 8
445.gobmk — train 3 16.28 4+ 0.04 374+2 165 £ 4 356 £ 6
445.gobmk — train 4 3.35+0.01 37+2 126 £3 270 £ 5
445.gobmk — train 5 2.55+0.01 3442 101 +£3 205+ 4
445.gobmk — train 6 24.76 4+ 0.04 374+2 148 £ 4 327+£6
445.gobmk — train 7 9.29 + 0.01 394+2 127+3 273+5
445.gobmk — train 8 22.28 + 0.04 3542 156 £ 4 335+6
445.gobmk — ref 1 143.1+ 0.4 36 +2 209 + 4 433 + 8
445.gobmk — ref 2 364.9 + 0.7 3742 241 £ 5 505+9
445.gobmk — ref 3 197.5 4+ 0.3 3342 180 + 4 354+ 6
445.gobmk — ref 4 14194+ 0.4 3742 233 +£5 490 £+ 8
445.gobmk — ref 5 186.2 + 0.3 37+2 255+5 563 +9
445.gobmk — average N/A 36 £0.7 177 £ 26 376 £ 57
456.hmmer — train 1143 + 0.1 394+2 41 +£2 39+2
456.hmmer — ref 819+ 5 38 +2 39+2 36 +2
456.hmmer — average N/A 38+1 40+1 38+2

Continued on next page ...

Table 2: Runtime overhead numerical results with 95% confidence.

10

Table 2 continued from previous page.

CPU2006 Non-Profiled Percentage Overhead
Benchmark Raw Time (s) | Edge Profiling ‘ Path Profiling ‘ PP w/ Early Termination
462.libquantum — train 3.49 +0.03 76 £3 77+3 8243
462.libquantum — ref 1520 + 4 19+£2 29£2 312
462.libquantum — average N/A 47 £ 40 54 £35 57 £36
464.h264ref — train 217 £1 26 £2 48 £2 72 +£2
464.h264ref —ref 1 216 £ 1 26 £2 48 £2 71+£2
464.h264ref — ref 2 136 £1 21+£2 41+£2 562
464.h264ref — ref 3 1256 £ 11 21+2 41+2 56 +2
464.h264ref — average N/A 24 +£2 4443 64 £7
470.1bm — train 94 +3 3+1 9+2 9+2
470.1bm — ref 962 £ 27 3+1 12+£2 13£2
470.1bm — average N/A 26+0.1 104 +£3 11+3
482.sphinx3 — train 26.41 £0.02 942 16 £2 17+2
482.sphinx3 — ref 4204 £ 0.1 9+2 17+£2 17+£2
482.sphinx3 — average N/A 9+03 16 £1 17£0.2
Average \ N/A \ 28 +4 | 80+20 | 154 £+ 44

Average Runtime Overhead
200 T —

180

160

140

120

[Edge Profiling
[Path Profiling
B PP with ET

100

80

Overhead (%)

60

40

o
0

Instrumentations

11

Overhead (%)

Overhead (%)

350

300

250

200

150

100

50

160

140

120

100

80

60

40

20

400.perlbench —— Run Time Overhead

T T T T T T T T
T [Edge Profiling
[Path Profiling
B PP with ET
trainl train2 train3 train4 refl ref2 ref3 average

403.gcc — Run Time Overhead

T B Edge Profiling

[Path Profiling
B PP with ET

train refl ref2 ref3 ref4 refS ref6 ref7 ref§ ref9 average

Overhead (%)

Overhead (%)

14

12

10

20
18
16
14
12
10

(= S)

429.mcf —— Run Time Overhead

T T T
T -
'|' [Edge Profiling
[Path Profiling
B PP withET
train ref average

433.milc — Run Time Overhead

T T T
T T
T - B Edge Profiling
[Path Profiling
| = B PP with ET
T
train ref average

13

Overhead (%)

Overhead (%)

600

500

400

300

200

100

45

40

35

30

25

20

15

10

445.gobmk — Run Time Overhead

tr2 3 trd 5 6 tr7 8 refl ref2 ref3 refd ref5S avg

456.hmmer — Run Time Overhead

[Edge Profiling
[Path Profiling
B PP with ET

[Edge Profiling
[Path Profiling
B PP with ET

IIHII

train average

14

Overhead (%)

Overhead (%)

100
90
80
70
60
50
40
30
20
10

462.libquantum — Run Time Overhead

[Edge Profiling
] [Path Profiling

Bl PP with ET

train ref average

464.h264ref —— Run Time Overhead

80

70

60

50

[Edge Profiling

40

[Path Profiling
B PP with ET

30

20

10

train refl ref2 ref3 average

15

Overhead (%)

Overhead (%)

16

14

12

10

20
18
16
14
12
10

(= S)

479.1bm — Run Time Overhead

[Edge Profiling
[Path Profiling
B PP with ET

train ref average

482.sphinx3 — Run Time Overhead

T

Hi—

[Edge Profiling
[Path Profiling
B PP with ET

T
I '

train ref average

16

