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Abstract

The location of the neural source causing epileptic seizures can be found by 

solving the inverse problem from the EEG signal. This study analyzed the effects of head 

model precision and a priori information on accuracy of inverse source localization 

results.

Inaccurate representation of geometric and electromagnetic properties of the head 

and electrode positioning on the scalp may propagate as errors in the inverse problem. 

We found that variations in conductivity properties and electrode positioning affected 

source localization, while segmentation errors did not have a significant effect.

Two a priori constraints were incorporated into the inverse problem. The source 

orientation was restricted normal to the cortical surface and information from Single 

Photon Emission Computed Tomography (SPECT) functional images was incorporated. 

Both constraints had a significant impact on source localization accuracy.
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Chapter 1 

Introduction

Epilepsy is a neurological disorder that affects 1.3% of Canadians and presents 

itself in the form of seizures. An epileptic seizure is characterized by sudden and 

excessive electrical neural discharge in the grey matter of the brain. Approximately 60% 

of epileptic patients suffer from partial seizures (Siegel, 2004), which are seizures that 

originate in a localized region of the cortex (Shorvon, 2004). Patients with medically 

intractable partial seizures require surgery in order to remove the neural source causing 

seizures.

Pre-surgical investigation of epileptic patients attempts to identify the region of 

the brain that must be resected in order to eradicate seizures. This region of the cortex is 

termed the epileptogenic zone. Currently, pre-surgical clinical analysis is a multi-step 

process that involves the following: medical history and examination, psychiatric 

assessment, video-electroencephalogram (EEG) monitoring, magnetic resonance imaging 

(MRI), functional imaging, and neuropsychological evaluation (Shorvon, 2004; Siegel, 

2004). Oftentimes the region of the cortex that needs to be resected cannot be resolved by 

these non-invasive inspections alone. Invasive inspection with intracranial EEG 

recordings is often required as well since it is difficult to localize accurately the 

epileptogenic zone with only non-invasive analysis (Siegel, 2004).

The electroencephalogram plays the most critical role in seizure detection because 

of its high temporal resolution and its ability to measure neural activity in real time both
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during (ictal) and in between (interictal) epileptic seizures. Currently, clinical analysis of 

scalp EEG recordings involves qualitative inspection of the time series of the signal to 

locate electrode locations with deviations from normal waveforms. The location of the 

epileptogenic source is assumed to be the region of the brain associated with the 

electrodes with these abnormal waveforms. This visual analysis of the EEG recordings 

provides limited localization of the epileptogenic zone, often only indicating at best 

which lobe was involved during epileptic activity. Recently, research has focused on 

extracting more information from the EEG by mathematically solving the inverse 

problem for the neural source of the signal (Sherg and Von Cramon, 1986; Mosher et al., 

1992; Scherg, 1992; Hamalainen and Illmoniemi, 1994; Gorodinsky et al., 1995; Pascual- 

Marqui, 1995; Koles and Soong, 1998; Fuschs et al., 2001; Liu et al., 2002; Grova et al., 

2006). The solution of the inverse problem finds the underlying current distribution in the 

brain that best describes the potentials measured on the scalp. A realistic volume 

conductor model of the patient’s head is required for the inverse problem to link the 

measured EEG signal to the bioelectric neural activity.

There is uncertainty in source localization because of the imprecision of the 

volume conductor model and the ill-posed nature of the inverse problem. The inverse 

problem is ill posed since an infinite number of distinct source configurations can 

generate the same potential distribution on the scalp and the solution is not stable with 

regard to small changes in data. Research has focused on improving source localization 

by introducing a priori information in order to reduce the number of possible solutions 

and to increase the stability of the problem (Dale and Sereno, 1993; Liu et al., 1998; 

Fuschs et al., 1999; Dale et al., 2000; Haueisen et al., 2002; Phillips et al., 2002a; Michel
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et al., 2004; Lin et al., 2006). In addition, the volume conductor model has become 

progressively more realistic as a means to improve source localization accuracy (Dale 

and Sereno, 1993; Awada et al., 1998; Huiskamp et al., 1999; Cuffin et al., 2001; Baillet 

et al., 2001b; Liu et al., 2002; Ding et al., 2005; Grova et al., 2006; Lin et al., 2006; Liu et 

al., 2006; Ramon et al., 2006).

The purpose of this thesis is twofold: to study the effects of head model precision 

and a priori information on source localization accuracy. The ultimate goal of this 

research is to be able to incorporate EEG source localization techniques as a clinical pre- 

surgical tool for epileptic patients. To ensure feasibility in a clinical setting, the study is 

restricted to clinically available resources from the University of Alberta Hospital.
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Chapter 2 

Background and Fundamentals

2.1 Epilepsy

Epileptic seizures are classified as either partial or general. Partial seizures arise 

in a restricted region of the brain within one hemisphere, while general seizures involve 

both hemispheres of the brain from the onset (Shorvon, 2004). Partial seizures can be 

further classified as follows: simple partial, with the patient remaining conscious during 

the seizure; complex partial, with consciousness impaired during the episode; and partial 

secondary generalized, a partial seizure that evolves into a general seizure (Shorvon, 

2004).

The most common form of treatment for epilepsy patients is long-term drug 

therapy. However, for some patients medication fails to control the epileptic seizures. For 

these cases, surgical resection of the cortical source of the seizures may be possible. 

Surgery is an option only if the seizure is confined to a small area (partial) that can be 

removed without having a significant negative impact on the person’s brain function.

For some cases of epilepsy, a small region of the brain from which the seizure 

originates (epileptic focus) may be identified for surgical resection. However, some 

seizures involve a more widespread and complex network of neurons. Therefore, the term 

epileptogenic zone is used instead, which refers to the minimal amount of cortical area 

that needs to be surgically removed to ensure the eradication of seizures (Shorvon, 2004).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The irritative and ictal onset zones may also be identified during pre-surgical evaluation. 

The irritative zone is the area of the cortex that generates interictal spikes; this area may 

extend beyond the epileptogenic zone. The ictal onset zone is the region of the brain 

activated at the onset of the ictal EEG recording. This zone may give a rough indication 

of the target region for resection.

Currently, pre-surgical clinical analysis is a multi-step process that involves 

medical history and examination, psychiatric assessment, video-EEG monitoring, 

magnetic resonance imaging (MRI), functional imaging, and neuropsychological 

evaluation (Shorvon, 2004; Siegel, 2004). However, invasive inspection with intracranial 

EEG is often required since it is difficult to localize accurately the epileptogenic zone 

with non-invasive analysis (Siegel, 2004).

2.2 Electroencephalogram

German psychiatrist Hans Berger developed the first human EEG instrument in 

the 1920s, measuring the electrical activity generated by nerve cells in the brain (Berger, 

1929; Tyner, 1983). The EEG exhibits superior temporal resolution compared to other 

functional brain imaging techniques, but has poor spatial resolution. The relatively small 

number of electrodes measuring the scalp potential and the uncertainty of the inverse 

problem limit the spatial resolution of the EEG (Baillet et al., 2001a).

2.2.1 EEG Instrumentation

EEG instrumentation consists of electrodes with conductive jelly, amplifiers, an 

A/D converter, and a recording device. The conductive jelly ensures minimum 

impedance between the skin and the electrode surface. The most common type of scalp 

electrodes are disks made of Ag-AgCl (Tyner, 1983). The potential difference between
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electrodes placed on the scalp is amplified from microvolts to a level that can be digitized 

and recorded (Tyner, 1983). Two different electrode reference configurations are 

typically used: bipolar and unipolar. Bipolar electrodes measure the potential difference 

between pairs of electrodes, while unipolar electrodes measure the difference between 

each electrode and a reference electrode or each electrode and the average signal of all 

electrodes.

Figure 1 (A) and (B) display the standardized 10-20 electrode placement system 

(Jasper, 1958) used to place electrodes on the patient’s scalp. The reference points of the 

coordinate system are the nasion (intersection of nasal and frontal bones on the skull), 

inion (most prominent projecting point of occipital bone at the base of the skull), and left 

and right preauricular points. The electrodes are placed at 10% and 20% intervals 

between these reference points, and labelled according to the region of the brain the 

electrode covers: C (central), F (frontal), O (occipital), P (parietal), and T (temporal). The 

labels on the left side of the head are odd numbers, while the right side are even.

Additional electrodes to the standard 21 electrodes of the 10-20 system montage 

can be added at intermediate 10% intervals, and labelled based on the standards of the 

American Electroencephalographic Society (Sharbrough et al., 1991). This new montage 

is termed the 10-10 system and is shown in Figure 1 (C). This system has been expanded 

yet again recently to the 10-5 system, with additional electrodes placed at intermediate 

5% intervals (Oostenveld and Praamstra, 2001).
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Figure 1 Standard Electrode Placement Systems. (A) and (B) show the 10-20 electrode placement 
system while (C) illustrates the 10-10 electrode placement system. The reference points for the system are 
the nasion, inion, and preauricular points. The electrodes are labelled according to the region of the brain 
covered: C (central), F (frontal), O (occipital), P (parietal), and T (temporal). The label Fp denotes the 
frontal polar region. The labels on the left side of the head are odd numbers, while the right side are even.

1 Figure 1 (A) and (B) from: http://butler.cc.tut.fi/~malmivuo/bem/bembook/13/13.htm 
Figure 1 (C) from Oostenvel and Praamstra, 2001.
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2.2.2 EEG Signal

Pyramidal cells situated in the cortical sheet generate all but the smallest 

magnitude of potentials measured by the scalp EEG. Figure 2 demonstrates the pyramidal 

cell activation within the cortical sheet. A single pyramidal cell excited by other neurons 

in the brain produces an excitatory postsynaptic potential (EPSP) at the apical dendrites 

of the cell (Hodgkin, 1964; Nunez, 1981). The membranes of the apical dendrites then 

depolarize, creating a negative extracellular charge with respect to the soma and distal 

basal dendrites of the same neuron. This depolarization causes primary current to flow 

intracellularly, and secondary current to flow extracellularly throughout the volume of the 

entire body to complete the flow loop (Hodgkin, 1964; Nunez, 1981; Baillet et al., 

2001a).

The scalp electrodes cannot measure electrical potential from a single pyramidal 

cell because the magnitude of the potential is too small and the neuron location is too far 

from the scalp. Instead, the EEG measures the potential difference from a group of 

synchronously activated pyramidal cells. This is possible because the majority of 

pyramidal cells in the cortex are arranged together in columns perpendicular to the 

cortical surface. In addition, there are a large number of interconnections between the
■5

cortical neurons, with over 10 synapses per neuron, leading to synchronous activation of 

tens of thousands of pyramidal cells (Nunez, 1981). The potential difference from the 

cumulative sum of a group of simultaneously active pyramidal cells is large enough to 

measure on the scalp with electrodes.
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Figure 2 Interconnected pyramidal cells are the main source of EEG signals. (Left) An excited 
pyramidal cell produces an excitatory postsynaptic potential at the apical dendrites of the pyramidal cell, 
causing primary current to flow from the soma and basal dendrites to the apical dendrites. The current loop 
is closed by secondary currents that flow throughout the volume conductor. (Center, Left) The pyramidal 
cells are oriented in perpendicular columns that when activated simultaneously produce a potential 
difference large enough to measure on the scalp with electrodes. Baillet et al., 2001a

The potentials measured over time by the EEG have been categorized into four 

different sinusoidal groups of brain waves: beta, alpha, theta, and delta. Beta waves have 

the highest frequency (>13 Hz) and are typically detected over the parietal and frontal 

lobes. The alpha waves have a frequency range of 8-13 Hz, measured from the occipital 

region of the brain when the patient’s eyes are closed. The theta frequency is from 4-8 

Hz, while the delta range is from 0.5-4Hz. The shape and frequency of EEG signals 

changes as the level of consciousness of a patient changes from awake to sleep.

One of the challenges with analyzing EEG signals is recognizing and eliminating 

artefacts. Physiological artefacts are from non-neural sources such as eye movements, 

cardiac and muscle activity, and changes in electrical activity of the skin. Non- 

physiological artefacts originate from such sources as electrode/switch contacts, cable 

movements, and 60Hz from the surrounding environment.
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For epileptic patients, seizures are characterized by sudden and excessive 

neuronal discharges in the brain (Tyner, 1983). Due to this distinct electrophysiological 

activity, the EEG signal of an epileptic patient deviates from typical waveforms. Thus, 

scalp EEG recording can provide valuable information about the epileptogenic zone of 

the patient both during (ictal) and in between (interictal) seizures. A patient with epilepsy 

typically shows epileptiform abnormalities on the EEG recording during both of these 

periods. Interictal discharges consist of spikes or sharp waves, which are focal, multi­

focal, or generalized (Duncan et al., 1995). Ictal EEG abnormalities usually show 

sustained, rhythmic activity with a variety of forms, depending on the type of seizure 

spread (Duncan et al., 1995).

2.3 Inverse Problem

The inverse solution determines the source locations and magnitudes that best 

describe the potentials measured on the scalp. The relationship between the neuronal 

source configuration and the associated measured electrode potentials is mathematically 

represented by the lead field matrix (LFM). This relationship is determined by first 

solving the forward problem for all cortical sources. The forward problem determines the 

electrode potential distribution for a given electromagnetic source.

In order to solve both the forward and inverse problems, an electrical model must 

be incorporated for both the electromagnetic source and the head volume conductor. The 

source model used in this thesis is the dipolar model and the realistic head model is 

constructed from MRI by the finite volume method (FVM, Rosenfield et al., 1996; 

Neilson et al., 2005)
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2.3.1 Source Model for the Inverse Problem

As explained in section 1.3.2, the bioelectric source of the measured EEG signal 

is a group of synchronously active pyramidal cells within the cortical layer of the brain. 

At large distances compared to dimensions of the pyramidal cells, the measured potential 

difference is equivalent to that generated by a dipole (Nunez, 1981). This is the case for 

potential distribution detected by the scalp EEG. Thus, the source of the EEG signal is 

modelled by a current dipole.

It is imperative to recognize that the current dipole is not actually a real physical 

element in the cortex, but it is a representation of the activity of a group of pyramidal 

cells. The dipole represents the center of gravity of volume of current. For activity over 

an extended area of the cortex, a collection of dipoles can be used as the source model.

2.3.2 Head Model for the Inverse Problem

The volume conductor model defines both the geometric and electromagnetic 

properties of the head. The mathematical description of the volume conductor is used to 

calculate the scalp potential distribution due to the activity of the dipolar sources. This is 

termed the solution to the forward problem.

The earliest head models used to solve the forward problem were spherical 

volume conductors, with concentric shells representing gray matter, skull, and scalp 

tissue (Kavanagh et al., 1978). The advantage of this type of model is that the relationship 

between source activity and scalp potential can be analytically determined. However, it 

has been shown that this model is too simplistic for most clinical applications, especially 

for more critical situations such as EEG source localization for epilepsy research 

(Ebersole, 1997; Cuffm et al., 2001). The geometry and conductivity of the various
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tissues in a patient’s head affect the scalp potential measured by electroencephalograms 

(Cuffin, 1993; Haueisen et al., 1997; Ramon et al., 2004). Thus, a more realistic head 

model created from magnetic resonance images is essential for EEG source analysis.

Numerical methods are necessary for solving the forward problem for realistic 

head models. One technique is the boundary element method (BEM) (Hamalainen and 

Sarvas, 1989; Fuchs et al., 2001). In this approach, tissue boundaries taken from 

segmented magnetic resonance images are tiled as discrete triangular elements. Although 

the BEM is a more geometrically accurate head model than the spherical model, it cannot 

account for holes in tissue boundaries such as the skull or for anisotropic conductivity in 

tissues such as skull or white matter.

A technique that can account for both tissue boundary holes and anisotropic tissue 

conductivity is the finite element method (FEM) (Miller and Henriquez, 1990; Rosenfeld 

et al., 1996; Buchner et al., 1997). This method discretizes the entire head into finite 

volumetric elements. Restrictions on the element size, smoothness, and inter­

compartment distance ensures the stability of this type of realistic head model, but makes 

it more complex to generate (Michel et al., 2004). In addition, many volumetric elements 

are needed to incorporate all the details of a patient’s head, leading to high computational 

demands when solving the forward problem.

An alternative is to discretize the head directly from the volume elements (voxels) 

of the MRI. This can be accomplished by using the finite volume method (FVM, 

Rosenfield et al., 1996; Neilson et al., 2005), which centers the cubic voxels onto nodes 

placed on a regular Cartesian grid. This model is equivalent to a three-dimensional mesh 

circuit with Kirchhoffs Current Law applied to each node (Neilson et al., 2005). The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



13

advantage of this method is that since the elements are the same dimensions as the 

voxels, mesh generation is simpler than for the finite element method.

2.3.2.1 Lead Field Matrix

To solve the inverse problem, the relationship between neural source activity and 

electrode potential distribution first needs to be determined. This relationship is 

mathematically represented by the lead field matrix (LFM). Specifically, multiplying the 

LFM with an estimated source current density vector gives the potential values at the 

scalp electrodes. Determination of the LFM depends only on the volume conductor 

model and the electrode distribution.

The traditional method for constructing the LFM is to compute the potential at the 

electrodes for each dipolar source of unit strength, in each of the orthogonal directions. 

This would correspond to computing (Nx3) forward solutions, where N is the number of 

sources in the cortex. However, the reciprocity property of linear volume conductors 

simplifies the forward problem calculations needed to determine the LFM. The 

reciprocity principle states that the potential difference between electrodes A and B due to 

a dipole source is equivalent to the dot product of the dipole source moment, d, with the 

electric field, E, generated at the dipole location by a unit current injected between the 

two electrodes:

—(E»d)
® A B    (1)

AB

where is the potential measured between electrodes A and B and I AB is the 

magnitude of current injected at electrode A and removed at electrode B  (Plonsey, 1963;
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Rush and Driscoll, 1969). Therefore, if a unit current is used, the lead field for each 

dipolar source is simply equivalent to the electric field produced at that location.

For each electrode site, the lead field is calculated by first placing a unit current 

source at the electrode site and a current sink at the reference electrode. The forward 

problem is then solved for potentials everywhere within the volume conductor model. 

The gradient of the computed potential field at the dipolar source locations gives the 

corresponding electric field vector E. With a unit current source injected at each electrode 

site, the lead field is equivalent to this electric field.

2.3.3 Source Localization Methods

There are two different approaches to solving the inverse problem: dipolar models 

or distributed source models. The basic assumption for dipolar models is that a small 

number of sources can account for EEG measurements, with fewer dipolar sources than 

the number of electrodes used to measure the signal (overdetermined inverse problem). 

Alternatively, the distributed source models use a great deal more dipolar sources than 

the number of electrodes used to measure the signal (underdetermined inverse problem). 

The overdetermined dipolar model cannot uniquely fit all the EEG data, but can 

determine a unique source configuration in a least squares fashion. On the other hand, the 

underdetermined distributed source model has an infinite number of source 

configurations that can account for the same measured potential distribution. Therefore, a 

priori information needs to be introduced into the inverse problem to be able to find an 

“optimal” solution.
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2.3.3.1 Dipolar Models

The idea behind dipolar model source localization is to compare the computed 

scalp potential from a small group of dipoles placed at a given location and orientation to 

the measured scalp signal. The computed potential from the forward model is compared 

to the measured potential by calculating the squared error. Usually, the dipolar 

configuration with minimum squared error is accepted as the solution to the inverse 

problem: this is the least-squared source estimation.

An exhaustive search of all possible dipole locations and orientations is 

computationally demanding, especially if more than one dipole is involved in the 

configuration. Instead of performing an exhaustive search, directed search algorithms 

have been developed with the intention of reducing the computational load (Khosla et al., 

1997; Uutela et al., 1998). A risk with these methods is the algorithms become trapped in 

local minima and thus cannot locate the global minimum.

The simplest form of source localization using the dipolar model is the 

instantaneous single moving dipole. This method models the neural source as a single 

dipole with a specific orientation and location at a single point in time. The dipole moves 

in orientation and location as the measured potential changes with time. This technique 

has been applied to epileptiform potentials. It is an adequate model only if the neural 

source is small and geometrically simple, the propagation of the source in the cortex is 

not complex, and the propagation ends before repolarisation occurs at the original source 

location (Ebersole, 1997). Often, epileptic activity will have several simultaneous sources 

throughout the brain, which cannot be modelled by this technique. Spatiotemporal 

multiple dipole modelling considers both the spatial and temporal components of the
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dipolar model, thus taking into account overlapping activity from several sources (Sherg 

and Von Cramon, 1986; Scherg, 1992). This method fixes the dipole orientation and 

location of the dipoles while varying the strength and polarity over time.

The difficulty with using dipolar models is determining beforehand the correct 

number of sources needed for the inverse problem. If the estimated number of sources is 

incorrect, it is expected that the assumed locations of the sources are also incorrect. 

Different mathematical techniques have been developed in an attempt to estimate the 

number of active sources a priori to improve on the source localization accuracy (Mosher 

et al., 1992; Koles and Soong, 1998).

2.3.3.2 Distributed Source Models

Instead of trying to determine the number of neural sources beforehand, 

distributed source models set up a solution space with a fixed number of dipoles much 

greater than the number of electrodes. Only the orientations and strengths of these dipoles 

vary with time, simplifying the equations for distributed inverse solutions to a linear 

format.

The inverse solution for distributed source models is the configuration of current 

activity in the solution space that best describes the EEG signal. To solve the 

underdetermined inverse problem of distributed source models, constraints from a priori 

information need to be introduced. Different techniques have been developed which use 

mathematical, physiological, structural imaging, and/or functional imaging information. 

Regularization parameters are also introduced into the inverse problem to account for 

noise in EEG signals, providing stability so that small variations in the data due to noise 

do not propagate as large errors in estimated source configuration.
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One popular method for source localization, especially if no other a priori 

information is available, is the Minimum Norm (MN) solution (Hamalainen and 

Illmoniemi, 1994). This method uses the mathematical assumption that the correct 

current distribution in the source space has the least amount of energy, solving for the 

current distribution with the minimum L2-norm. This method favours superficial sources 

because dipoles situated closer to the electrodes require less energy to provide a 

particular surface potential distribution than dipoles deeper in the cortex.

Weighted Minimum Norm (WMN) solutions attempt to compensate for the depth 

bias of MN solutions. The simplest weighting strategy is a normalization of the lead field 

matrix (Lawson and Hanson, 1974). An alternative strategy termed FOCUSS (Focal 

Underdetermined System Solution, Gorodinsky et al., 1995) recursively determines the 

weights based on the solution estimated from the previous step. The result is a more 

focalized solution than typical distributed inverse problems. However, due to the 

focalized nature of this method, if the electric activity is extensive, as is the case for some 

epileptic seizures, the FOCUSS solution provides less reliable estimates than other 

distributed source methods (Gorodinsky et al., 1995).

Another popular distributed source inverse method is Low Resolution Brain 

Electromagnetic Tomography (LORETA, Pascual-Marqui et al., 1994). This method adds 

a Laplacian weighting to the Weighted Minimum Norm solution, finding the smoothest 

possible 3-dimensional current distribution by minimizing the Laplacian of the weighted 

sources. The solution produces a blurred image of a point source because of the 

smoothness constraint, but conserves the location of the source (Pascual-Marqui et al., 

1994). The physiological rationale for this constraint is that neighbouring pyramidal cells
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are simultaneously and synchronously active. Researchers have debated this rationale, 

since the scale of smoothness of the solution is much larger than the scale of 

neighbouring neurons (Pascual-Marqui., 1995). However, when compared to the 

Minimum Norm and Weighted Minimum Norm methods, LORETA has been shown to 

provide more consistent source localization results (Pascual-Marqui., 1999).
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Accuracy of Inverse Source Localization

3.1 Lead Field Matrix Accuracy

It has been shown that a spherical head model is too simplistic for EEG source 

localization for epilepsy research (Ebersole, 1997; Cuffin et al., 2001). Instead, a realistic 

patient-specific head model developed from MRI is a more feasible alternative. However, 

source localization errors still occur if inaccurate or limited information about the lead 

field matrix parameters are available. Specifically, inaccuracy in the geometric and 

electromagnetic properties of the head and in the electrode positions on the scalp of the 

head can propagate as errors in the inverse problem, leading to inaccurate estimations of 

neural source locations.

One common area of concern is the correct positioning of electrodes on the head 

model (Khosla et al., 1999; Wang and Gotman, 2001; Michel et al., 2004). The locations 

of the electrodes on the scalp need to be identified for the inverse problem calculations. 

Ideally, the exact patient-specific locations of the electrodes should be determined either 

by MRI-visible localizing markers (Wang et al., 1996) or by a 3D digitizer (Towle et al., 

1993). However, these electrode-positioning identification techniques are not always 

clinically available. As an alternative, the standard 10-10 electrode placement system 

identifies landmark locations in order to reconstruct approximate electrode positions on 

the head model. This introduces inaccurate electrode locations and, in turn, source 

localization errors. However, it has been shown that source localization errors caused by
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misplaced electrodes may be negligible compared to errors caused by the noise in the 

measured EEG signals (Khosla et al., 1999; Wang and Gotman, 2001). Therefore, it may 

be feasible to use the 10-10 placement system in order to approximate the electrode 

locations.

The number and distribution of electrodes on the scalp may also affect the 

accuracy of the inverse problem. Michel et al. (2004) studied the effect of EEG 

distribution on source localization and demonstrated that if electrodes sample only a 

portion of the scalp, the inverse problem produces erroneous results. However, it has also 

been shown that the electrode distribution may be non-uniform as long as it samples the 

entire head (Benar and Gotman, 2001). Therefore, if a limited number of electrodes are 

available for source localization, it may be possible to concentrate the electrode 

distribution in regions with the greatest potential difference.

For volume conductor models produced by segmented MR images, the accuracy 

of the head model is limited by the amount of information available from the MRI. In a 

typical clinical setting, only T1-weighted MR images are available for segmentation, 

which have no distinct delineation between cerebrospinal fluid (CSF) and skull tissue. 

CSF is a water-like fluid that protects the brain and spinal cord, providing a cushion 

between the brain and the skull. The reason there is no distinct delineation in T l- 

weighted magnetic resonance images is tissues with low proton density such as bone and 

tissues with high water content such as CSF both appear dark on T1-weighted MR 

images. There are other MRI acquisition techniques, such as proton density and T2- 

weighted, which have a distinct boundary between CSF and skull, but they have poor 

contrast between other cephalic tissue types. Therefore, although there is improved
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contrast between CSF and skull with these MR images, segmentation between other 

cephalic tissues will be difficult to perform.

In the past, researchers excluded the CSF layer from the head model since it was 

could not be easily segmented with T1-weighted MRI. However, Ramon et al. (2004, 

2006) demonstrated that including this CSF layer in the head model is essential for 

accurate source localization results. Furthermore, due to the skull’s low conductivity, 

inaccurate modelling of skull thickness has a strong influence on EEG source localization 

results (Cuffin, 1993; Hauesien et al., 1997; Ramon et al., 2004; Ramon et al., 2006). 

Thus, the CSF tissue needs to be included in the head model, and the effect of the CSF 

segmentation errors on localization accuracy should be studied.

The effect of precise conductivity values for the various tissues in the head model 

has also been investigated and determined to influence scalp potentials (Haueisen et al., 

1997; Awada et al., 1998; Haueisen et al., 2002; Gencer and Acar, 2004; Ramon et al.,

2004). There are significant variations in estimations of the conductivity properties of the 

different tissues, especially for the skull (Geddes and Baker, 1967; Oostendorp et al., 

2000; Gongalves et al., 2003a; Gonsalves et al., 2003b; Lai et al., 2005). This is because 

there is no direct, reliable method to measure the conductivity properties of a patient’s 

head. Nonetheless, only the relative strengths of the localized sources are typically of 

interest, and it can be shown that this only requires the skull-to-brain conductivity ratio. 

Until recently the skull-to-brain ratio was commonly accepted as 1/80, but the latest 

measurements have shown that this ratio is closer to 1/15 (Oostendorp et al., 2000; 

Gongalves et al., 2003 a, b; Baysal and Haueisen, 2004; Lai et al., 2005). Such a large 

discrepancy in the conductivity ratio may affect the source localization results. Therefore,
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the inverse source solutions for varying skull-to-brain conductivity ratios were compared 

in this study.

Including the realistic anisotropic conductivity properties from cephalic tissues 

such as white matter may also affect the accuracy of source localization (Haueisen et al., 

2002, Wolters et al., 2006). Anisotropy in white matter is attributed to the fibre bundles 

in this type of tissue, with conductivity greater in the direction of the fibre tract (Geddes 

et al., 1967). This gives a conductivity ratio of 1:9 for directions normal and parallel to 

the white matter fibres, respectively (Nicholson, 1965). The anisotropic conductivity of 

tissue can be deduced from diffusion tensor magnetic resonance images (DTI, Tuch et al., 

2001).

It has been shown that white matter tissue anisotropy has a major influence on the 

forward calculation results, and should therefore affect the accuracy of the inverse 

problem (Haueisen et al., 2002, Wolters et al., 2006). Currently, the FVM developed by 

Neilson et al. (2005) cannot incorporate generalized anisotropic information. Thus, we 

performed a preliminary analysis of the effect of orthotropic white matter conductivity on 

the accuracy of source localization.

In summary, the following may affect source localization accuracy:

• location of electrodes on the scalp of the head model;

• distribution of electrodes across the scalp;

• definition of the boundary between CSF and skull;

• skull-to-brain conductivity ratio in the head model; and

• white matter orthotropic conductivity in the head model
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In this work, the effect of changing these properties of the lead field matrix is 

studied for a LORETA-like inverse problem.

3.2 a priori Information

To deal with the non-uniqueness of the distributed sources (underdetermined) 

inverse problem, a priori information needs to be integrated into the problem. In this 

study, two different constraints were incorporated into the LORETA algorithm, and their 

effects on the accuracy of source localization studied. The constraints are to:

• restrict the orientation of the dipolar sources to be normal to the cortical 

surface; and

• include information from functional imaging modalities such as SPECT

3.2.1 Normal Dipolar Source Orientation

Rather than allowing the dipoles to rotate freely, the dipole orientation can be set 

normal to the cortical surface. The physiological basis for this constraint is that the 

majority of pyramidal cells, the neuronal sources of measured scalp potentials, have a 

columnar organization orientated perpendicular to the cortical sheet (Nunez, 1981). This 

is a common constraint in linear inverse methods (Dale and Sereno, 1993; Liu et al., 

1998; Liu et al., 2002; Phillips et al., 2002a; Lin et al., 2006). Recently, Lin et al. (2006) 

studied the effect of cortical orientation constraints on the accuracy of various inverse 

techniques, but did not study the effect on the LORETA inverse method.

3.2.2 Functional Imaging Information

Source location information from functional imaging modalities such as 

functional MRI (fMRI) and Single Photon Emission Computed Tomography (SPECT)
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can also be incorporated into the inverse problem. The rationale for utilizing functional 

constraints is that the blood flow measured by functional imaging is closely linked to the 

neural activity measured by EEG (Jezzard et al., 2001). EEG signals have excellent 

temporal resolution but limited spatial resolution due to the limited number of 

measurement sites and the volume conduction effect (Nunez, 1981). The spatial 

resolution can be improved upon by using functional imaging information as a spatial 

constraint in the inverse problem.

Functional MRI provides an indirect non-invasive measurement of variations in 

neural metabolic activity. When neurons are activated, there is an increase in metabolism 

followed by an increase in surrounding cerebral blood flow. This alters the ratio of 

oxygenated to deoxygenated blood in the local blood vessels, which in turn changes the 

magnetic state of haemoglobin and creates local alterations in the MR signal (Jezzard et 

al., 2001). Functional MRI measures this blood-oxygenation-level-dependent (BOLD) 

response. fMRI has relatively high spatial resolution, but its temporal resolution is limited 

by the delay of the hemodynamic response (Jezzard et al., 2001).

Although fMRI-weighted source localization is a popular research area (Liu et al., 

1998; Dale et al., 2000; Gonzalez Andino et al., 2001; Jezzard et al., 2001; Wagner and 

Fuchs, 2001; Phillips et al., 2002a; Babiloni et al., 2003; Gotman et al., 2006; Liu et al., 

2006), fMRI acquisition for epileptic patients is not always clinically available and is 

impractical for some ictal events. An alternative functional imaging technique that is 

frequently used for clinical epilepsy diagnosis is SPECT. This imaging modality also 

measures blood flow changes, but with a lower spatial resolution. The advantages of
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SPECT are that it can measure ictal as well as interictal events and it is already currently 

used in a clinical setting for epileptic patients.

SPECT images are formed from measuring the photon emission from radiotracers 

intravenously injected and trapped within the brain for an extended period, creating a 

“snapshot” of cerebral blood flow as it was during injection (Henry et al., 2000). During 

ictal events, blood flow increases in the epileptogenic region (focal hyperperfusion) while 

during interictal events, some patients show decreased blood flow (focal hypoperfusion). 

To identify perfusion changes, ictal SPECT images are compared to baseline interictal 

images by using the technique termed SISCOM (Subtraction Ictal SPECT Coregistered to 

MRI) (O’Brien et al., 1998, 1999), as shown in Figure 3. Researcher So (2000) 

demonstrated that for a group of patients whose epilepsy was difficult to localize with 

only MRI and EEG, SISCOM improved source localization, with a sensitivity of 88% 

compared to 64% for ictal EEG.

There is no simple relationship between increased neural activity measured by 

EEG and increased cerebral blood flow measured by SPECT/fMRI (Logothetis et al., 

2001). Since EEG and SPECT/fMRI measure different physical aspects of brain function, 

there may be differences in the location and/or extent of foci shown by each method. The 

uncertainty in source localization from EEG measurements is due to the imprecision of 

the volume conductor model and the ill-posed nature of the inverse problem. On the other 

hand, uncertainty from SPECT/fMRI information is from the discrepancy between the 

measured signal and the actual neural activity location as well as the lack of 

understanding of the relationship between neural activity and blood flow (Logothetis et 

al., 2001). In addition, false localization may occur in SPECT if the radiotracer is injected
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Figure 3 Example SPECT and SISCOM images from a patient. Ictal (A) and interictal (B) SPECT 
images can be combined using subtraction ictal SPECT (SISCOM) (C) with magnetic resonance images 
(MRI) (D) to show a hyperperfusion area in the right frontotemporal region. Kaiboriboon et al, 2002

after the seizure has already spread to distant locations from the epileptogenic zone (So, 

2000). Due to these uncertainties between the EEG and SPECT/fMRI signals, functional 

imaging information is best used as a soft constraint for source localization (Liu et al., 

1998; Dale et al., 2000; Gonzalez Andino et al., 2001; Wagner and Fuchs, 2001; Phillips 

et al., 2002a; Babiloni et al., 2003; Liu et al., 2006)
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Chapter 4 

Setup of Head Model and Inverse Problem

4.1 Realistic Head Model from MRI

We constructed a finite volume head model from segmented MRI slices of an 

adult female epileptic patient. The slices are Tl-weighted with lx lx l mm sized voxels, 

228x171 in-plane resolution, and 176 continuous slices. The total number of voxel 

elements used for the FVM was over two million. The head was segmented using 

segmentation software termed mtrack (Withey, 2006) into seven different tissue types: 

scalp, fat and muscle, skull, CSF, gray matter, cerebellum and pons, and white matter. 

The segmentation method used is a statistically based edge tracing method that utilizes 

the Kalman filter (Withey, 2006). Although this semiautomatic technique can provide 

very detailed segmentation results, the method is user-dependent. Therefore, there is a 

correlation between the amount of time a user spends on each MRI slice and the level of 

segmentation detail, as illustrated in Figure 4. For this study, a compromise between user

30 minutes 15 minutes 10 minutes

Figure 4 Segmentation results for a single MRI slice using mtrack tool. The more user input into the 
segmentation program (corresponding to more time for processing) is consistent with more detailed 
segmentation results.
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input and segmentation details was used, which corresponds to segmentation results 

similar to those shown in the middle image of the Figure.

The largest difficulty in segmenting MR images with the mtrack technique is that
/

the CSF-skull boundary is not easily discernible in T1-weighted MRI. This is illustrated 

in Figure 5B, a blown-up image of the bottom left comer of the same MRI slice as shown 

in Figure 5A. Instead of using the user-dependent edge-based mtrack method, an initial 

approximation of the CSF-skull boundary was obtained from the FMRIB Software 

Library’s (FSL) automated tools BET (Brain Extraction Tool, Smith, 2002) and FAST 

(FMRIB’s Automated Segmentation Tool, Zhang et al., 2001). These tools are 

completely automated pixel-classification segmentation techniques. The automated BET 

tool is first applied to 3D MR images in order to separate the brain tissue (CSF, grey, and 

white matter) from the surrounding tissues. This tool employs a deformable model that 

uses a set of locally adaptive model forces in order to fit to the brain surface. The brain 

tissue is then further segmented into CSF, grey, and white matter with the FAST tool, 

which utilizes a hidden Markov random field model and statistical clustering.

Figure 5C shows the same horizontal slice as Figure 5A for the initial 

approximation of the segmented CSF tissue class as obtained from FSL software. The 

segmented CSF tissue was then cleaned by removing isolated pixels and by 

morphologically closing the surface with a spherical structuring element in order to 

remove small holes, as shown in Figure 5D & E. Because the CSF surface was 

determined by a different segmentation method than the remainder of the tissues, the two 

different segmentation results needed to be combined. Specifically, the segmented 

cortical sheet overlapped with the approximated CSF layer, as shown in Figure 5E. This
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Figure 5 Segmentation of CSF tissue in MRI. A) Slice of MRI from a patient. The CSF/Skull boundary is 
difficult to delineate in Tl-weighted images, as shown in (B). The initial segmentation of the CSF is shown 
in (C), with the cleaned version in (D). When this is added to the outside of the segmented cortical sheet 
(E), the CSF is not a closed surface. Therefore, this CSF tissue is expanded slightly to the final segmented 
image shown in (F) (tissues grey matter, white matter, and CSF shown)
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is unrealistic, since the cortical surface should be surrounded by protective cerebrospinal 

fluid. Therefore, the final step in defining the CSF-skull boundary was to ensure the 

cortical surface was surrounded by cerebrospinal fluid tissue. This was accomplished by 

setting all pixels connected to the outer cortical boundary as CSF tissue, as shown in 

Figure 5F.

The combined segmentation results for all the tissue types and for the same MRI 

slice are shown in Figure 6. The resistivity values assigned to the various tissue classes 

are given in Table 1. These values were derived from literature (Geddes and Baker, 1967; 

Foster and Schwan, 1986; Ferree et al., 2000; Gon§alves et al., 2003 a, b; Baysal and 

Haueisen, 2004). The skull-to-brain ratio of 1/15 was obtained from the most recent 

measurements in literature (Gonsalves et al., 2003; Baysal and Haueisen, 2004; Lai et al.,

2005).

White

Scalp

Grey

Muscle/Fat

Skull

CSF

Figure 6 Final M RI Segmentation Result. A) Horizontal slice of patient’s Tl-weighted MR image. The 
final segmentation result for this slice is shown in B)
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Table 1 Resistivity values of segmented tissue. Values were derived from literature for the seven different 
segmented tissue types in the volume conductor model.

Tissue Type Resistivity (ilm ) Reference

Scalp 2.75 Geddes and Baker, 1967; Ferree et al., 
2000;

Fat and Muscle 15 Ferree et al., 2000;

Skull 45 Gonsalves et al., 2003; Baysal and 
Haueisen, 2004; Lai et al., 2005

CSF 0.65 Geddes and Baker, 1967

Gray Matter 3 Geddes and Baker, 1967; Foster and 
Schwan, 1986

Cerebellum and Pons 3 Geddes and Baker, 1967; Foster and 
Schwan, 1986

White Matter 7 Geddes and Baker, 1967

4.1.1 Setup of Solution Space

Before defining the grey-matter solution space, the inner and outer surfaces of the 

segmented cortex were smoothed using a linear Savitzky-Golay filter (Rajagopalan and 

Robb, 2003). This was done to reduce the noise in the segmented surfaces caused by the 

limited resolution of the model and by errors introduced from segmentation and surface 

reconstruction processes. A Savitzky-Golay filter was used to preserve higher moments, 

in order to maintain edges while still removing noise from the surface. The Savitzky- 

Golay filter is a linear finite impulse response (FIR) filter, which replaces each data value 

fi by a linear combination g, of itself and its surrounding neighbours:

Si  = X Cnfi+n (2)
n= -nL

where c„ is the filter coefficients for m  points to the left of the data point i and hl points 

to the right of the data point i. The simplest filters approximate the underlying function 

within the filter window by a constant value, but a filter such as Savitzky-Golay 

preserves higher moments by least squares fitting a polynomial of higher order to all
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Figure 7 Smoothing the cortical surface. (A) Original segmented outer cortical surface and (B) smoothed 
cortical surface using the Savitsky-Golay filter

points in the window. The output of the filter g, is then set to the value of the polynomial 

at position i. The effects of this filter for the segmented cortical surface are shown in 

Figure 7. The number of neighbours for the filter was empirically chosen as two points to 

the left and right (nL and nR, respectively). In order to smooth the surface, this filter was 

applied in all 3-dimensions instead of only in 1-dimension. The Savitzky-Golay filter not 

only smoothed noise from the cortical surface, but also preserved the details of the gyri 

and sulci.

The solution space was defined as a single layer of voxels following the contours 

of the cortical sheet. In order to model the cortical sources as dipoles, each source in the 

solution space needed to be defined across three voxels of grey matter. This enabled 

modelling the separation of charges inherent in the dipolar sources. Thus, only voxels 

surrounded by grey matter were selected as the center of a dipolar source within the 

single-layer solution space. In order to keep only voxels with surrounding grey matter 

while also following the contours of the cortical sheet, the solution space was defined 

along a median surface in between the outer and inner surface boundaries of the grey

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.3

matter. The median surface was found by calculating a Euclidean distance map from the 

outer white matter boundary across the cortical sheet towards the outer grey matter 

boundary, and then finding the median distance from the inner to the outer surface. Then, 

only the voxels along this median surface that were surrounded by grey matter in each 

orthogonal direction were kept as dipolar sources in the solution space.

The average Euclidean distance between solution voxels was less than 2mm, with 

the maximum distance only 5mm. The total number of voxels in the cortex defined as 

dipolar solution points was 61,041. The solution space can also be expanded to include 

the full cortex instead of a single layer. Although such a solution space may provide a 

more detailed depiction of neural activity, the number of solution points more than 

doubles, increasing the memory requirements for inverse calculations.

4.1.2 Electrode Locations on the Head Model

The voxel locations of the electrodes on the scalp of the head model were 

determined using the standard 10-10 coordinate system (Sharbrough et al., 1991). There 

were 32 electrodes total: the standard 20 electrodes typically used in epilepsy analysis, 

plus additional electrodes placed in the frontal region of the head. These extra electrodes 

were included because the epilepsy patient was assumed to have frontal lobe epilepsy. 

The electrode locations on the head model are illustrated in Figure 8.

In order to locate the voxels on the head model’s scalp corresponding to the 

electrode positions, the center of the head model was first calculated by determining the 

best-fit sphere to the scalp surface. We approximated the center coordinates of the head 

surface by minimizing the mean squared error with respect to the center point coordinates 

(xc, yc, zc) and radius (r) of a sphere:
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MSE = £ ( ( x ( / ) - * c)2 + (y(i)~ yc)2 + (z ( i) -z c)2 - r2) (3)
<=1

with the sum over the N  different Cartesian coordinates of the head surface.

The patient’s MRI was only segmented to the eye mid-line instead of to the 

bottom of the head, which leaves a scalp surface that is only a half-spherical shape 

instead of a full spherical shape. Thus, the Zc coordinate calculated from equation 3 was 

manually adjusted to line up with the appropriate bottom transverse plane of the 10-10 

coordinate system. This plane includes electrodes Fpi, T7, Oz, and Tio, as shown in Figure 

2. Before locating the bottom transverse plane of the 10-10 system, we first found the 

intersection site of the estimated nasion, inion, and preauricular points, since these 

locations are the references that define the coordinate system (Jasper, 1958; Sharbrough 

et al., 2001). The bottom transverse plane was then set as 18 degrees (180/10) above the

Figure 8 Electrodes positioned on the scalp surface of the head model. (A) and (B) illustrate electrode 
positions for the estimated center coordinate of the head. The red circles represent the standard 20 electrodes 
typically used in epilepsy research, while the blue circles are the electrodes that were added for more detailed 
frontal lobe analysis.
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plane of the reference points’ intersection site, giving the final reconfigured zc coordinate 

(Pascau et al., 2000).

The center coordinates of the head model plus the tip and spin angles defining 

each electrode position were then used to calculate the voxel coordinates of the electrodes 

on the scalp of the head model. For each electrode, this was accomplished by projecting a 

ray from the center point of the model outwards towards the scalp surface, with the angle 

of the ray corresponding to the spherical coordinates of the electrode. The voxel location 

closest to the intersection point of the scalp surface with the ray was set as the electrode 

position for the volume conductor model.

4.1.3 Calculation of the Lead Field Matrix

Before solving the inverse problem, the lead field matrix (LFM) needs to be 

calculated. The LFM maps the relationship between all possible current sources in the 

brain and the measured electrode potentials on the scalp. As described in section 1.4.2.1, 

this relationship is determined by solving the forward problem for a current source at 

each electrode site and a current sink at the reference electrode, for potentials at every 

node in the solution space.

To model the electric and magnetic fields produced from brain activity, the 

quasistatic Maxwell equations are used (Plonsey, 1969). The Poisson equation governs 

the behaviour of the electric field from the neural sources:

V • oV<l> = V • I i (4)

where a is the conductivity of the volume (Qm)'1, <J> is the electric potential, and l i is the 

source current density (A/m2) (Plonsey, 1969). Discretization of Poisson’s equation using
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the FYM developed by Neilson et al. (2005) leads to the following equation for each 

voxel in the head model

L_  0
h

(5)

where <t>o is the potential at the center node, <Pn is the potential at each neighbouring 

node, a effn is the conductivity between the center node and each adjacent node, /(l is the

total current flow into the center node, and h is the edge length of each voxel. Most nodes 

have a current 7o equal to zero, except for if a current sink or source is located at the node. 

Each voxel in the solution space is centered on a node coupled to six adjacent nodes via 

resistors, as shown in Figure 9. The effective conductivity between two nodes is simply 

the series combination of the conductivities of the two adjacent half-voxels. For example, 

the effective conductivity between the nodes centered at voxels 0 and 1 from Figure 9 is 

2cr0o-1
<r0+oi (6)

Figure 9 Finite Volume Method. A set of adjacent voxels modelled as 
nodes in a 3D mesh circuit. A node linked to six neighbouring nodes by 
resistors characterizes each voxel.
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Applying Eq. 4 to every node in the source space leads to a system of equations 

governed by Ohm’s law that can be represented in matrix-vector form 

Ad> = I0 (7)

where A is the tissue conductivity matrix, O is a column vector of nodal potentials, and Io 

is a column vector of unit nodal current sources and sinks. The forward problem is then 

solved for the potential differences, <D, using the conjugate-gradient method (Neilson et 

al., 2005).

The potential difference at the electrode locations is related to the source current 

density by the lead field matrix, K

0> = KJ (8)

where J  is the vector of unknown current densities. The LFM was calculated from the 

forward problem calculations using the reciprocity property of linear volume conductors, 

as mentioned in Section 1.4.2.1. Specifically, the lead field was calculated for each 

electrode location and all dipolar sources by solving the forward problem for a unit 

current source injected at that electrode site and a current sink at the reference electrode. 

The potential values were extracted at all the nodes within the volume conductor. The 

electric field at each node of the solution space was calculated as the gradient of the 

computed electrical potential, which with a unit current source was equivalent to the lead 

field matrix, as shown in Equation 1.
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4.2 Inverse Problem

The inverse method we used to localize the sources of the EEG signal is based on 

the LORETA method (Pascual-Marqui et al., 1994, Pascual-Marqui, 1995). The goal of 

the inverse problem is to solve the following linear equation for the neural current 

distribution:

0» = K J + b  (9)

where O  is a P-sized vector of instantaneous EEG recordings, K is the lead field Px3M 

matrix with each row specifying the lead field of a given electrode, b is a P-sized noise 

vector, and J is the 3M vector of unknown current densities. M  refers to the number of 

dipolar sources in the solution space and P  refers to the number of electrode sites. Each 

dipole moment is represented by three components placed along the three-dimensional 

Cartesian coordinate system.

This distributed source inverse problem is underdetermined. Thus, additional 

constraints are needed in order to obtain a stable and unique solution. For LORETA 

solutions, an additional constraint included in the inverse problem is that of 

neighbourhood spatial smoothing. For instantaneous EEG measurements, the discrete 

solution of LORETA is obtained by solving the following:

rrnn under constraint: <D = KJ (10)

The discrete 3M x  3M matrix B implements roughening, which when minimized results 

in spatial smoothing, while the diagonal 3M x 3M  matrix Wd implements depth 

weighting. Wd is obtained by normalizing the three components of the dipole moment of 

the lead field matrix for each electrode placement. Specifically, Wd is equal to:
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Wd = Q ® I ( 11)

where ® represents the Kronecker product of the diagonal M x M  matrix fl and 3 x 3  

identity matrix I. The diagonal elements of Q. are obtained by:

with kni equivalent to the lead field vector for electrode number rj and source location i.

In order to deal with noise-contaminated EEG recordings as well as to insure 

stability, regularization needs to be applied to the inverse problem. In our case, Tikhonov 

regularization was used, which chooses the solution that solves the minimization 

problem:

The regularization parameter a  provides a compromise between fitting the model and 

fitting the a priori assumptions, the first and second terms of Equation 13, respectively. If 

the value of (X  is too large, the solution is over-smoothed and over-regularized (i.e. -  too 

much information lost in the inverse solution); however if a  is too small, the solution is 

dominated by noise and under-regularized (i.e. -  not enough noise was filtered out). The 

optimal value of CSC was calculated using the L-curve method (Hansen and O’Leary, 

1993). The L-curve is a parametric logarithmic plot of the first term of Equation 13 

versus the second term. The comer of the L-shaped curve represents a good balance 

between minimization of the two terms of the equation, and the corresponding 

regularization value a  for the comer of the curve is optimal for inverse calculations.

The solution to the inverse problem expressed in Equation 13 is:

(12)

m in { |0 > -K jf +ar||BWdj f } (13)

J = TO (14)
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where T is the 3M x P transformation matrix, and J  is the estimated current distribution 

of the cortical sources. The transformation matrix for this underdetermined inverse 

problem is given by:

with W equivalent to WjB.

The transformation matrix in Equation 15 is valid only if KKT is of full rank, as is 

the case when the location of the reference electrode is known. The lead field matrix, K, 

can be made reference-independent by centering the LFM with an average reference 

operator H, which references the electrodes to the mean of all recording channels. 

Applying the average reference operator insures that the net potential summed over the 

entire surface is zero. The inverse problem in (13) is then consistently described as:

where 1 represents a Pxl vector of ones and I the PxP identity matrix. With this 

transformation, the Moore-Penrose pseudo-inverse must be used to calculate the 

transformation matrix:

with K  equivalent to HK and Z>+ indicating the Moore-Penrose pseudo-inverse of D.

Typically, for LORETA solutions, the weighting matrix B is a Laplacian operator,

dipolar sources in the brain is substantial, which is typically the case for high-resolution

T = ( w t W )_1 K t {K(W t W )’1 K t  +al}~i (15)

(16)

with average reference operator, H, equal to:

(17)

T = (W TW )_1 K t {K  ('WTW )J K t + aH }+ (18)

and the inverse matrix B '1 then implements a spatial smoothing operator. If the number of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



41

realistic head models, the computational effort to invert the matrix B is considerable since 

it is sparse but not diagonal (Fuchs et al., 1999). An alternative is to use a low-pass 

spatial smoothing operator directly in the calculation of the transformation matrix T, 

instead of inverting a high-pass Laplacian operator. Thus, the transformation matrix 

calculated in (18) is equivalent to:

T = (Wd,SSTWdI) K J {K  (Wd ]'SS’ W ;1) K J + a l l} + (19)

where S is a 3D low-pass spatial smoothing operator,

4.2.1 Normal Dipolar Orientation Constraint

With the orientation vector of the dipoles fixed to be normal to the cortical 

surface, the potentials measured at the electrode sites are now described by 

^  = (KN)J0 (20)

where Jo is an M-sized vector of the current density magnitude at each dipole source 

location in the cortex (Pascual-Marqui, 1995). N is a 3M x M  matrix giving the outward 

normal vector coordinates of each dipole, such that J=NJo-

The normal vector orientation can also provide information about the relative 

positioning of the dipolar sources. Specifically, due to the smooth shape of the cortical 

sheet, if the angle between two neighbouring dipoles is larger than 135 degrees, it can be 

assumed that the dipoles are on opposite sides of the sulcus. Therefore, these two dipoles 

should not be defined as neighbours. This information alters the smoothing matrix S, with 

the spatial operator no longer smoothing the current density of the sources that are on 

opposite sides of the sulcus.
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The solution to the inverse problem with the normal orientation constraint is now 

given by

J d = T 0O  (21)

with the transformation matrix To defined as

T0 = (Wd_1SST Wd_1) NTlirT |  KN  (W^’SS7 W,,'1) Nt jK't  + (22)

and To now an M  x P size matrix instead of a 3M x P matrix.

4.2.2 Incorporation of SPECT Image Information

Source location information from SISCOM SPECT images is incorporated into 

the inverse problem by introducing another weighting matrix to the inverse problem, 

changing the transformation matrix to:

To = {Wa 1SSTWa 1)NrK r { m ( W (d1SSJWm1)NrK T+ccli}+ (23)

The weighting matrix Wfd is given by

Wfd= W fWd (24)

where Wf is a diagonal matrix, with a value of 1.0 if there is corresponding SPECT 

information. The value at source locations with no SPECT activity should be greater than 

one in order to incorporate SPECT as a soft constraint (Liu et al., 1998; Dale et al., 2000; 

Gonzalez Andino et al., 2001; Wagner and Fuchs, 2001; Phillips et al., 2002a; Babiloni et 

al., 2003; Liu et al., 2006).
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Computer Simulations and Results

The effects of head model precision and a priori constraints were tested with a 

LORETA-like solution to the inverse problem and analyzed both qualitatively with 

clinical EEG and quantitatively with validation metrics calculated from randomly placed 

dipolar sources. To evaluate quantitatively the effects of head model precision and a 

priori constraints on source localization, the inverse problem was calculated for 2500 

separate randomly placed dipolar sources. Each change in the volume conductor model or 

addition of a priori constraint was compared to the same Base Model, corresponding to 

the head model with typical information available from clinical data and no additional 

constraints as given in Section 2.2.

For each dipolar source, the forward problem was solved for the Base Model 

using its corresponding lead field matrix to give the potential distribution on the 

electrodes. The orientation of each source for forward calculations was set to the normal 

cortical vector direction. The spatial extent of the dipolar source was randomly set to 

1mm2, 1cm2, or 6cm2. Most inverse localization accuracy tests are conducted with 1 mm2 

dipoles, but Ebersole (1997) has shown that 6 cm2 should be considered as the minimum 

source area required to observe spike and sharp waves on the scalp electrodes. The source 

current density was fixed at 5nA.m2, uniform within the source extent.

Before solving the inverse problem, zero-mean Gaussian noise was added to the 

electrode potentials to give four different levels of signal to noise ratio (SNR): INF (no
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noise), 20, 10 and 5 dB. SNR is the ratio of signal intensity to noise intensity, measured 

on a logarithmic scale. This range of SNR was chosen to correspond to clinical EEG 

recordings, which have shown signal to noise ratio between 10 and 20 dB for highly 

synchronized and spatially focused activity such as epileptic spikes (Babiloni et al., 

2003). For other motor or cognitive activities, the SNR values are typically 5 dB (Regan, 

1989). After adding noise to the EEG signal, the inverse problem was solved using the 

altered head model or the additionally constrained inverse problem. These results were 

then quantitatively compared to the Base Model using the validation metrics described in 

Section 2.3.1.

Qualitative evaluation was performed with clinical EEG data obtained from a 

patient with frontal lobe epilepsy. The different models were compared to the Base 

Model by creating a movie of the reconstructed cortical source current density over time. 

The noisy EEG data was sampled at a rate of 245 samples per second and pre-filtered 

with a band pass filter with a 1-20 Hz band. The covariance matrix of the pre-filtered 

signal was then further filtered using singular value decomposition (SVD). Specifically, 

the SVD of covariance matrix C of the pre-filtered signal, which is of size PxP, is:

C = U E lf  (25)

where U and UT are orthonormal PxP matrices and E is a PxP diagonal matrix with 

eigenvalues of C along the diagonal of the matrix, in descending order. The U matrix 

contains a series of linearly independent principal component vectors of the pre-filtered 

EEG, with the first vector representing the most prominent feature of C. If the signal to 

noise ratio is relatively high, as in the case for the pre-filtered EEG signal, then only the 

first s columns of the SVD matrices represent the source signals, while the remaining
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terms are assumed to represent noisy signals. Thus, the matrices can be split into the 

signal and noise matrices, with the columns of the new Us matrix termed the signal 

subspace. Noise can be reduced from the pre-filtered EEG signal by an orthonormal 

projection of the pre-filtered EEG signal onto this signal subspace:

E E G ^ = U X E E G  (26)

with EEG equivalent to the pre-filtered EEG matrix with P electrode sites.

Finally, instead of calculating the source current density (SCD) for each moment 

in time, the SCD was averaged over nine time-slices:

J ave = sum(diag(T(EEG/(7l9)EEG yi//9r Tr )) = sum(diag(TRTr )) (27)

with EEG///,,9 representing the Px9 vector of EEG///, time-slices and R the PxP covariance 

matrix of the EEG/,/? matrix. The sum in (27) is over the three x, y, and z components for 

the averaged source current density of each dipole, which gives an M xl vector of the 

mean-squared values. For analysis with the normal orientation constraint, the T matrix is 

replaced with To from equation 22, and the sum is simplified to one dimension.

We performed the forward problem computations, which in turn were used to 

calculate the corresponding lead field matrix for the different head models, on 1 GHz 

Intel Pentium3 parallel processors with 2 GB memory. The forward problem calculation 

for each individual electrode took approximately 35 minutes. The forward and inverse 

solutions calculated for the randomly placed dipoles, as well as post-processing and 

visualizations, were computed using Matlab 7.0 software on a 3.2 GHz Intel Pentium 4 

processor with 2 GB memory.
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5.1 Validation Metrics

A performance metric that measures the accuracy of the inverse problem in 

reconstructing the source location is localization error (LE) (Pascual-Marqui, 1995). 

Localization error is measured as the Euclidian distance between the actual current source 

location and the maximum value of the estimated source current density. For spatial 

extents greater than 1mm2, the center of mass was chosen as the location of the actual 

current source location.

The center of mass error (CME) may also be calculated to evaluate source 

localization accuracy. The CME is the distance between the center of mass of the 

estimated source current density and the center of mass of the actual source current extent 

(Lin et al., 2006). This performance metric takes into account the source distribution of 

the inverse solution instead of only the maximum value. Only sources with magnitude 

moments equal to or greater than 50% of the maximum value were included in the 

calculation to avoid shift from insignificant background dipolar activity. The error value 

is equal to:

( 0 * * x z ( 0  Z - '  ( 0 * ^ ( 0
CME = distance^—=;------—........., -*— —.„  ----- ) (28)

Z ̂ true (0 Z (0
I I

where xyz{i) is the Cartesian x, y, and z coordinates of dipole i in the solution space (x 

coordinate from left to right, y coordinate from posterior to anterior, z coordinate from 

superior to inferior). JtrUe(i) is the magnitude of the original simulated source current 

density and J(i) is the estimated source current density of dipole i. A larger CME value in 

comparison to a smaller LE value indicates that the dipolar activity is spread away from 

the original source position, but the maximum value of current density is still near the
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correct location. A larger LE value than CME indicates that there is some activity near 

the correct location in the cortex, but the highest activity is further from the original 

source location.

Another assessment criterion used in this study is the degree of focalization (DF), 

which measures the inverse method’s ability to estimate the source within the area of the 

original source location (Im et al., 2003; Im and He, 2006). The DF is defined as the 

reconstructed energy of the current vector in the original source area divided by the 

overall reconstructed energy of the current vector in the solution space.

where 0 a represents the neighbourhood of simulated dipolar sources. Again, only

dipoles with magnitude moments equal to or greater than 50% of the maximum value are 

included in the calculation to ensure that background activity does not affect the degree 

of focalization value. A high DF value indicates not only a more focalized source 

distribution, but also that the inverse method localized the estimated source to the correct 

location. A small DF value indicates either a blurred solution (if the LE/CME value is 

low) or mislocalized source reconstruction and/or spurious sources (if the LE/CME value 

is high).

These validation metrics were used to compare the different models and 

constraints to the original model at varying noise levels and with varying source spatial 

extents.

D F  = (29)
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5.2 Head Model Setup for Lead Field Matrix Analysis

5.2.1 Electrode Positioning

Two additional electrode sets were generated by repositioning the zc center 

coordinate at varying levels from the original location. Model Zc- and Model Zc+ shift the 

center coordinate below (Zc-) and above (Zc+) the initial center, respectively, with an 

average displacement of 4.5mm and range of 0-7mm. The displacements of each 

electrode from the Base Model are shown in Table 2 and Figure 10. The electrode shifts 

were measured as the Euclidean distance between the original electrode positions and the 

new positions. The source localization accuracy for these shifted electrode locations was 

compared to the head model with the original electrode positioning (Base Model).

Table 2 Displacement of electrodes. Electrode locations move as the center shifts below (Zc-) and above 
(Zc+) the initial center of the head model. The Euclidean distance between the original and new electrode 
locations are displayed below.

No. Label Zc -  (mm) Zc+ (mm) No. Label Zc -  (mm) Zc+ (mm)
1 Fp1 4.1 6.0 17 T5 3.7 7.1
2 Fp2 4.1 6.0 18 T6 5.7 6.0
3 F3 3.7 4.5 19 FZ 5.1 3.6
4 F4 5.7 4.5 20 CZ 0.0 0.0
5 C3 3.7 3.0 21 PZ 1.4 4.2
6 C4 3.5 3.0 22 Fpz 4.1 6.1
7 — 5.8 4.0 23 3.7 1.0
8 — 3.6 5.0 24 — 3.7 1.4
9 P3 2.4 4.5 25 — 5.2 6.7
10 P4 4.1 5.4 26 — 6.7 5.4
11 01 4.1 6.1 27 — 4.4 4.2
12 02 5.4 6.1 28 — 5.7 5.0
13 F7 4.9 6.1 29 F37 6.2 5.0
14 F8 5.1 6.0 30 F48 5.4 6.1
15 T3 5.1 6.0 31 FC3 4.6 2.0
16 T4 4.2 6.0 32 FC4 4.1 2.2
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Figure 10 Electrodes shift as center position of head model shifts. (A) illustrates electrode positions 
for the estimated center coordinate of the head (Base Model), while (B) is for the Zc- Model, and (C)
Zc+ Model. The red circles represent the standard 20 electrodes typically used in epilepsy research, 
while the blue circles are the electrodes that were added for more detailed frontal lobe analysis.

5.2.2 Electrode Distribution

The effect of a non-uniform electrode distribution was tested by removing the 

following electrodes: numbers 7-8 and 23-32. Figures 8 and 10 illustrate this 20-electrode 

uniform distribution in comparison with the original non-uniform 32-electrode 

configuration (Elec20 Model vs. Base Model). The red circles represent the 20-electrode 

configuration, while the blue circles designate the extra electrodes placed at the front of 

the scalp for the 32-electrode configuration (Base Model).

5.2.3 CSF-Skull Boundary Delineation

We shifted the CSF-skull boundary by increasing the thickness of the 

cerebrospinal fluid by 2mm. This effectively thinned the skull layer while extending the 

CSF tissue of the volume conductor model. The CSF layer was thickened by adding a 

boundary of voxels (1mm3) twice to the existing CSF layer. This head model is termed 

CSF2.

5.2.4 Variations in Skull-to-Brain Conductivity Ratio

Two different head models were created to test the effect of the skull-to-brain 

conductivity ratio on source localization accuracy. The original Base Model employed
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the recently accepted ratio of 1/15, while Model 1/30 altered the conductivity ratio 

slightly to 1/30 to represent the possible variations in the ratio as found in recent 

literature (Geddes and Baker, 1967; Oostendorp et al., 2000; Gonsalves et al., 2003a; 

Gonsalves et al., 2003b; Lai et al., 2005). Model 1/80 decreased the skull-to-brain 

conductivity ratio to the formerly accepted value of 1/80 (Geddes and Baker, 1967).

5.2.5 White Matter Anisotropy

We constructed three different head models to study the effect of white matter 

orthotropic conductivity on source localization. Model WhiteY had the same conductivity 

properties as the Base Model, except that white matter conductivity increased tenfold in 

the y direction (y coordinate from posterior to anterior, x  coordinate from left to right, z 

coordinate from superior to inferior). The conductivity of white matter increased in the x  

direction for the WhiteX Model and in the z direction for the WhiteZ Model.

5.3 Inverse Problem Setup for a priori Constraints

Two different constraints were introduced to the inverse problem: normal source 

orientation and SPECT information.

5.3.1 Normal Dipolar Orientation

Source localization results from the Base Model with no fixed dipolar orientation 

were compared to the same head model with the sources constrained to normal 

orientation (Normal Model). The orientation of the dipoles was fixed to be perpendicular 

to the inner cortical surface along the solution space, pointing towards the outside of the 

brain. This orientation was determined by finding the three dimensional gradient of the 

smoothed surface along the dipolar solution space. The gradient vector field was oriented
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at each dipolar source along the largest variation of the smoothed cortex along the 

solution space. The surface was smoothed by a linear Savitzky-Golay filter. The normal 

orientation vector was normalized to a length of one in order to ensure equal magnitude 

for all dipole locations. In order to compare the source localization results from the 

normal orientation constraint to no orientation constraint, the absolute value of the 

estimated current density for the normal orientation constraint was calculated.

5.3.2 SPECT Information

The functional SPECT constraint was added to the inverse problem with the 

normal orientation constraint (Section 2.3.3.1). The size of the SPECT activity was set to

2 • 2an area of 3cm instead of the typically tested 1mm area in order to represent the 

relatively lower spatial resolution of SPECT as well as to represent a realistic area of 

activation found on SISCOM images. To quantitatively evaluate the effects of varying 

SPECT weighting levels, we set up the following cases: (1) no a priori SPECT constraint 

(Normal Model); (2) SPECT constraint centered on the midpoint of the original source 

(accurate a priori information); and (3) SPECT constraint placed at increasing distances 

from the original source location (inaccurate a priori information). For both the accurate 

and inaccurate cases, the diagonal components of the weighting matrix Wf were set to a 

value of 1.0 at the source locations with SPECT activity. The diagonal components of Wf 

corresponding to no SPECT activity were set to three different weights: 1.5 (light SPECT 

weighting), 2.5 (medium weighting) or 10 (strong weighting). If the diagonal components 

without SPECT signal were set to a value of one, this would correspond to no SPECT 

weighting (case 1).
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For quantitative tests and the inaccurate a priori case, the distance between the 

center of the SPECT activity and the center of the original source location was divided 

into the following ranges: 1-20, 20-40, 40-60, and >60 mm. The specific location of the 

center of SPECT activity was randomly selected from these four ranges. The inverse 

problem was solved for each of these forward simulations. Noise was added to the 

simulated EEG signal at SNR levels of Infinity, 20, 10, and 5 dB.

For qualitative analysis, in order to test the effects of a priori SPECT information 

on clinical EEG data, the area of SPECT activity was set to the right frontal lobe, as 

shown in Figure 11. Three different SPECT weightings were tested and compared for this 

same activated region: 1.5 (light SPECT weighting), 2.5 (medium weighting) or 10 

(strong weighting).

Figure 11 Qualitative setup for SPECT analysis.
The highlighted region shows the assigned area of 
SPECT activity used for qualitative analysis

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



53

5.4 RESULTS

The effects of head model precision and a priori information were evaluated by 

comparing the different source localization results to the same head model termed Base 

Model. The inverse problem was solved for 2500 trials of randomly placed dipoles with 

strengths of 5nA.m2, and with varying spatial extents of 1mm2, 1cm2, and 6cm2. The 

mean values of the validation metrics for the Base Model are presented in Table 3 with 

the standard error of mean values in parentheses. Since most validation metric values are 

very similar for spatial extents of 1mm2 and 10mm2, these findings are typically 

presented as combined results.

The average localization error (LE) for neural sources with a spatial area of 

60mm2 was slightly higher than for smaller dipolar sources (SNR=Inf, LE = 24 vs. 20 

mm). On the other hand, the center of mass error (CME) for the varying spatial extents 

were very similar (SNR=Inf, CME = 12 vs. 13mm), which implies that localization 

accuracy was comparable across the varying neural source sizes. The slightly higher 

deviation in localization error for the larger dipolar sources may be a result of the 

localization error distance metric considering only the maximum position of the 

reconstructed activity instead of its center of mass. With a larger original dipolar source, 

the maximum value of the reconstructed current density may deviate from the original 

source location, while the center of mass remains unaffected by the source size, as 

indicated by the center of mass error. Our results indicate that the typically used LE 

metric is not as sensitive of a technique for comparing localization accuracy across 

different source sizes in comparison to the CME metric. Therefore, in order to compare
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localization results across different-sized dipolar sources, we used the CME metric in this 

study.

For low noise levels (SNR >= 20dB), the average center of mass error for the 

estimated source current density with the Base Model was less than 2cm. However, for 

higher noise levels (SNR <= lOdB), the average center of mass error was considerably 

higher (>=4cm), especially considering that the length of the patient’s scalp was only 

approximately 15cm. Such large CME indicates that the LORETA-like inverse method 

was unable to regularize noisier EEG signals.

For all noise levels, the degree of focalization (DF) of the source current density 

varied dramatically as the size of the dipolar source changed. The small DF for both 

1mm2 and 10mm2 sources demonstrate the inability of the inverse problem to yield 

focused current density within the original spatial distribution of the source (SNR=Inf, 

DF = 3.9E-04 and 4.6E-02, respectively). This is expected with LORETA-like solutions, 

since the smoothness constraint of this inverse method typically leads to blurred current 

density. The inverse problem was only capable of localizing the majority of the energy 

for the larger 60mm2 sized sources, as indicated by the higher degree of focalization 

values (SNR=Inf, DF = 0.77). For all source sizes, as the noise in the EEG signal 

increased, the DF decreased. With correspondingly high center of mass error, this 

indicates that the magnitude of the current density reduced within the correct region of 

the cortical sheet, and spurious sources were reconstructed within the SCD.

Figures 12 and 13 illustrate the qualitative source localization results from the 

clinical EEG data for the Base Model. The SCD distribution is shown for time-slices 185 

and 390 from the EEG, with both time-slices corresponding to moments of activation of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



55

the neural sources from epileptic activity. For time-slice 185, the Base Model 

reconstructed source current distribution concentrated on the right frontal lobe. Time- 

slice 390 had more overall activity, with a hotspot at the right side of the frontal lobe as 

well as the mid-frontal section of the cortex. Although the concentrated activity for slice 

390 extended further along the right lobe, there was also activity along the left lobe of the 

cortex. Time-slice 390 also illustrated very mild activity at the top of the cortical surface.

The results for the Base Model of both the validation metrics and the clinical EEG 

data were compared and contrasted to the source localization results from varying volume 

conductor models and a priori constraints, as described in Sections 3.1 and 3.2. The 

source current densities obtained from clinical EEG were normalized to the same 

maximum and minimum values across the different head models such that the activity 

could be compared.

Table 3 M ean values and (standard erro r of mean) for the Base Model. The Localization Error (LE), 
Center of Mass Error (CME), and Degree of Focalization (DF) validation metrics are shown for varying 
source spatial extents (1, 10, and 60mm2) and varying noise levels (Inf, 20, 10, and 5dB).

Validation
Metric

Spatial
Extent

SNR
INF 20 dB 10 dB 5 dB

LE (mm) l-10mm2 19.6 (0.2) 22.0 (0.3) 49.4 (0.9) 67.7 (0.9)

60mm2 23.5 (0.2) 26.3 (0.5) 58.1 (0.9) 70.0 (0.8)

CME (mm) l-10mm2 13.4 (0.1) 14.0 (0.2) 34.9 (0.6) 54.3 (0.7)

60mm2 12.3 (0.2) 13.9(0.3) 39.7 (0.8) 55.9 (0.9)

DF 1mm2 3.9E-04
(1.3E-05)

3.8E-04
(1.3E-05)

3.0E-04
(9.9E-06)

2.1E-04 
(6.9 E-06)

10mm2 4.6E-02
(1.1E-03)

4.5E-02
(1.1E-03)

3.6E-02
(1.1E-03)

2.5E-02
(0.9E-03)

60mm2 0.77
(0.8E-02)

0.75
(0.9E-02)

0.65
(1.0E-02)

0.45
(0.9E-02)
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Figure 12 Source current 
density of time slice 185 for 
head model variations. The
source current density is shown 
for the clinical EEG data of 
(A) Base Model, (B) Zc- Model 
with center coordinate shifted 
below the initial center , (C) 
Zc+ Model with center shifted 
above the initial center, (D) 
Elec20 with 20-electrode 
configuration, (E) CSF2 with 
2mm thicker CSF layer, (F) 
1/30 Skull-to-Brain ratio, and 
(G) 1/80 Skull-to-Brain ratio.
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Figure 13 Source current density 
of time slice 390 for head model 
variations. The source current 
density is shown for the clinical 
EEG data of (A) Base Model, (B) 
Zc- Model with center coordinate 
shifted below the initial center ,
(C) Zc+ Model with center shifted 
above the initial center, (D) Elec20 
with 20-electrode configuration,
(E) CSF2 with 2mm thicker CSF 
layer, (F) 1/30 Skull-to-Brain ratio, 
and (G) 1/80 Skull-to-Brain ratio.
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5.4.1 Effects of Lead Field Matrix Accuracy

This section presents the effects of variations of the volume conductor model on 

the source localization accuracy, using standard validation metrics (CME, DF) and 

qualitative analysis (clinical EEG data). The validation metrics were calculated for 2500 

trials of randomly placed dipoles with strengths of 5-nA.m2 and varying spatial extents of 

1mm2, 10mm2, and 60mm2. The potentials measured at the scalp electrodes of the Base 

Model from the forward problem were used as inputs to the inverse problem for the 

various volume conductor models. The source current density (SCD) at each source 

location was obtained by calculating the magnitude of the reconstructed dipolar activity.

5.4.1.1 Electrode Positioning

Table 4 demonstrates the mean values for validation metrics (CME and DF) of the 

altered electrode positions, with the center of the head model shifted above (Zc+) and 

below (Zc-) the original zc position. The results for the Base Model, with the center of the 

head positioned at the original zc location, are presented again in this Table for 

comparison. Although the degree of focalization varied significantly for the different 

spatial extents, the values changed consistently across the different head models for the 

different dipolar source sizes. Therefore, the DF values for only the 60mm2 dipolar 

sources are shown.

The mean values for CME and DF metrics for the 2500 randomly placed dipoles 

did not vary by more than 3.3mm and 0.3, respectively, as the electrode positions shifted 

away from the Base Model. These results indicate that, in general, the accuracy of the 

inverse problem did not change significantly as the electrode positions moved by an 

average of 4.5mm and a maximum of 7mm.
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The source current distribution for the clinical EEG data is shown in Figures 12 

and 13; the source current density in Figures 12/13B is for the Zc- Model and Figures 

12/13C is for the Zc+ Model. For the Zc- Model and time-slice 185, the region of 

activation was smaller and much lower in magnitude than the Base Model. The hotspot 

remained in relatively the same region of the brain, although the concentrated area for the 

Base Model extended slightly higher on the cortical surface than the area for model Zc-. 

In time-slice 390, the mid-frontal region of the cortical surface had relatively the same 

activity for both the Zc- and the Base Model. However, the activity on the right frontal 

lobe extended further up the cortical sheet for the Base Model. For the Zc+ head model 

and time-slice 185, the activity was again relatively the same as the Base Model, but the

Table 4 Mean and (standard error of mean) for the Base Model and for variations in the head model.
The variations shown are with: the center of the head shifted above (Zc+) and below (Zc-) the original zc 
position; thicker CSF tissue (CSF2); increase in white matter conductivity in the x (WhiteX), y, (WhiteY), 
and z (WhiteZ) direction; and normal orientation constraint (Normal).

Validation
Metric

Head
Model

SNR (dB)
INF 20 10 5

Center of 
Mass Error 
(CME, mm)

Base 13.0 (0.1) 14.0 (0.1) 36.5 (0.5) 54.8 (0.6)
zc+ 13.7 (0.1) 15.0 (0.2) 39.8 (0.5) 56.1 (0.6)
Zc- 13.7 (0.1) 14.5 (0.1) 38.0 (0.5) 56.7 (0.6)
CSF2 13.6 (0.1) 14.0 (0.1) 32.6 (0.5) 51.8 (0.6)
WhiteX 13.0 (0.1) 13.4 (0.1) 30.4 (0.4) 49.7(0.5)
WhiteY 13.5 (0.1) 14.1 (0.1) 33.4 (0.5) 52.5 (0.6)
WhiteZ 13.3 (0.1) 14.6 (0.1) 34.1 (0.5) 52.2 (0.6)
Normal 13.7 (0.1) 14.7 (0.1) 36.3 (0.5) 54.0 (0.5)

Degree of
Focalization
(DF)

Base 0.77 (0.8E-02) 0.75 (0.9E-02) 0.65 (1.0E-02) 0.45 (0.9E-02)
Zc+ 0.77 (0.8E-02) 0.78 (1.1E-02) 0.67 (1.1E-02) 0.47 (1.1 E-02)
Zc- 0.77 (0.9E-02) 0.77 (0.9E-02) 0.67 (1.1 E-02) 0.46 (0.9E-02)
CSF2 0.77 (0.8E-02) 0.77 (0.9E-02) 0.63 (1.1 E-02) 0.44 (1.0E-02)
WhiteX 0.79 (0.8E-02) 0.77 (0.8E-02) 0.68 (1.0E-02) 0.48 (0.9E-02)
WhiteY 0.82 (1.0E-02) 0.84 (1.0E-02) 0.75 (1.1 E-02) 0.53 (1.0 E-02)
WhiteZ 0.81 (0.9E-02) 0.82 (1.0E-02) 0.65 (1.1 E-02) 0.44 (0.9E-02)
Normal 1.36 (1.5E-02) 1.39 (1.9E-02) 1.07 (1.8E-02) 0.69 (1.5E-02)
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hotspot spread twice as far upwards along the cortical sheet. This was also true for time- 

slice 390, with the Zc+ head model leading to the most amount of activity on the cortical 

surface from the three different electrode position models, and with the hotspot 

expanding upwards along the cortical surface. There was also more current density at the 

top of the cortex for the Zc+ head model.

Comparing the three electrode position models, as the center of the head model 

shifted from Zc- to Zc to Zc+, the concentrated region of SCD spread further upwards 

along the cortical surface. However, the hotspot region reconstructed from the Zc- Model 

continued to remain active for the other two models (Zc and Zc+) as the center position 

progressed up the head model. The hotspot of the reconstructed current density simply 

expanded upwards along with the movement of the electrode positions.

Although the quantitative validation metrics indicate the electrode positions did 

not have an effect on the estimated source current density, the qualitative results from the 

clinical EEG data suggest that the shift in electrode positions does have an effect on the 

source localization results. The electrode positioning had the greatest effect on the dipolar 

sources situated near the right frontal region of the cortex, with the source current 

distribution spreading upwards as the electrode positions shifted upwards. The electrodes 

located near the right frontal region of the head were numbers 4, 14, 26, and 30. These 

electrodes had an average displacement of 5.7mm for the Zc- Model and 5.5mm for the 

Zc+ Model. These results imply that dipolar sources situated near electrode locations that 

shifted may be affected more by the position alterations.
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5.4.1.2 Electrode Distribution

In order to compare quantitatively the head model with fewer overall electrodes 

(Elec20) to the Base Model, the validation metrics for the Elec20 Model were calculated 

with no noise added to the simulated EEG signal. Removing electrodes from the Base 

Model would modify the noise distribution in the inverse calculations. The average center 

of mass error with no noise for the Elec20 Model was 14.9mm, in comparison to 13mm 

for the Base Model. The mean degree of focalization for the 60mm2 dipolar sources and 

the Elec20 Model was 0.6, while the mean degree of focalization for the Base Model was 

0.77. The degree of focalization also reduced for the smaller source size (1mm : 2.6e-2 

(Elec20) vs. 4.6e-2 (Base); 10mm2: 2.4e-4 vs. 3.9e-4). The lower degree of focalization 

with relatively the same center of mass error indicates that the source current density was 

localized to the same location, but that less energy was reconstructed within the original 

source location. This may imply spurious sources within the reconstructed signal or a 

properly estimated source current density but with reduced magnitude.

The source current density from clinical EEG data (Figures 12 and 13) gives more 

insight into the source localization results for the Elec20 Model. With the same threshold 

set as for the Base Model, no activity was illustrated at time-slice 185, while the only 

hotspot in time-slice 390 was in the mid-frontal region of the cortex. The inverse problem 

with Elec20 reconstructed activity with reduced magnitude within the right frontal area of 

the cortical surface for time-slice 390, spreading twice as far upwards along the cortical 

sheet. Further, the source current density in the mid-frontal region of the cortex was more 

focused along the right side of the fissure, while the left side contained a larger area of 

intense current density. Thus, removing extra frontal electrodes (Elec20 Model) led to
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reduced reconstructed activity near these electrode locations and a change in the overall 

current distribution. Both quantitative and qualitative results indicate that removing the 

extra frontal electrodes removed valuable information about the source activity, with a 

major impact on the source current density distribution.

5.4.1.3 CSF-Skull Boundary Delineation

The validation metrics for the head model with an extended 2mm CSF boundary 

(CSF2 Model) are shown in Table 4. The mean value for all metrics was the same as for 

the Base Model, with the largest difference in average CME only 3.9mm and in average 

DF only 0.02. These results imply that adding 2mm to the width of the CSF boundary 

does not have a major impact on the localization accuracy of the inverse solution.

The quantitative results agree with qualitative source localization results obtained 

from clinical EEG data, as shown in Figures 12 and 13. The source current density 

distribution for Model CSF2 for both time-slices 185 and 390 was nearly identical to the 

Base Model, with a slight reduction in intensity of signal. The 2mm thicker CSF 

boundary produced more focused current density than the Base Model, but the difference 

between the two different source distributions was almost indistinguishable in time-slice 

390. For a smaller signal such as in time-slice 185, thickening the CSF tissue had a 

greater impact on the intensity of the reconstructed source current density.

5.4.1.4 Skull-to-Brain Conductivity Ratio

Figure 14 displays the mean CME and DF for the three different head models 

with skull-to-brain conductivity ratios of 1/15 (Base Model), 1/30, and 1/80 for 2500 

random trials. Although the DF metric varied significantly for the different spatial 

extents, we only present the results for the 60mm2 sources since changes in the DF metric
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were consistent across the different source sizes. The mean value of the validation 

metrics are displayed for signal to noise ratios of: INF (No Noise), 20 dB, 10 dB, and 5 

dB.

For minimal noise levels (SNR >= 20 dB), the center of mass error was smallest 

for the Base Model with a conductivity ratio of 1/15. The mean center of mass error 

increased slightly as the skull to brain ratio decreased to 1/80, but only by approximately 

5mm. The difference between validation metrics for the 1/30 skull-to-brain conductivity 

ratio in comparison to the Base Model were minimal, especially as the noise levels 

increased. On the other hand, the validation metrics for the 1/80 model shifted 

significantly from the Base Model as the EEG noise levels increased. The mean center of 

mass error for the head model with 1/80 conductivity ratio was moderately lower than the 

other head models for higher noise levels, with a reduction in mean CME from the Base 

Model of 5.1mm for SNR = lOdB and of 8.4mm for SNR = 5dB. At the same time, the 

DF values for the 1/15 and 1/30 skull-to-brain ratios decreased considerably more than 

the 1/80 ratio as the noise levels increased. The relatively lower center of mass error and 

higher degree of focalization indicates that the head model with the 1/80 conductivity 

ratio was less sensitive to noisy signals, with more activity reconstructed to the correct 

location in the cortex and fewer spurious sources for noisier signals.

Figures 12 and 13 show the source localization results for clinical EEG data for 

several time-slices. The alteration in the skull-to-brain conductivity ratio from 1/15 to 

1/80 modified the source current distribution. Specifically, the source current density for 

the Base Model (1/15) spread further than the 1/80 head model, as illustrated in both 

time-slices 185 and 390. The overall area of activation remained relatively the same in
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slice 185 for the two different head models, but the 1/80 model had much more focused 

current density. The discrepancy between the models was more obvious with time-slice 

390. The overall source current density was much more focused for the 1/80 model, with 

the concentration of the current density focusing towards the fissure of the cortex. The 

intensity of the source current density on the right-frontal area of the lobe was 

approximately half as intense as the mid-frontal region for the 1/80 model, while the SCD 

intensity between the two cortical regions was more comparable for the Base Model. 

There was no activity at the top of the head for the 1/80 head model, while there was 

small amounts of activity for the 1/15 (Base) Model. For a skull-to-brain conductivity 

ratio of 1/30, the reconstructed activity was almost identical to the results from the Base 

Model. For slice 185, the SCD was slightly more focused, but with the center of mass in 

the same location; this was also true for time-slice 390.
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Figure 14 Validation metrics for variations in the skull-to-brain conductivity ratios. Mean Center of 
Mass Error (above) and Degree of Focalization (below) for head models with skull-to-brain ratios of 1/15 
(Base Model), 1/30, and 1/80. The Center of Mass Error was highest for the 1/80 ratio for low noise levels, 
but lowest for high noise levels. The Degree of Focalization was highest for all noise levels for the head 
model with 1/80 skull-to-brain conductivity ratio.
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5.4.1.5 White Matter Anisotropy

The mean values for the validation metrics of models WhiteX, WhiteY, and 

WhiteZ are listed in Table 4. The average CME values for SNR >= 20dB were relatively 

the same across the various volume conductor models, with the largest difference in 

average CME from the base model only 0.6mm. For SNR <= lOdB, the CME was the 

same for the Base, WhiteY, and WhiteZ Models, with the largest change in error only 

2.6mm. The WhiteX Model’s average CME shifted somewhat more from the Base 

Model, with a maximum change of 6.1mm. On the other hand, the mean DF for the 

WhiteX volume conductor remained more or less unchanged from the Base Model, while 

WhiteY and WhiteZ changed by a maximum amount of 0.1 and 0.07, respectively.

The reconstructed SCD for the clinical EEG data of the three different white 

matter orthotropic conductivity models are illustrated in Figures 15 and 16. The SCD for 

the WhiteX Model was almost identical to the Base Model, as demonstrated in time-slice 

185 and especially in slice 390. The current density was slightly stronger for the WhiteX 

Model for time-slice 185, with a small shift in location of the strongest region of the 

source current density. The WhiteY Model yielded a more focused current density at 

time-slice 185 with the concentrated region of activity approximately half in size. There 

was also a change in SCD distribution illustrated at time-slice 390, with the activity in the 

right-frontal region splitting somewhat from the mid-frontal region of the cortex. The 

magnitude of the current density in the right frontal region of the cortex was also reduced 

in comparison to the Base Model. Source localization with the WhiteZ Model led to 

slightly more intense SCD for both time-slices, but the activity was contained within the 

same region of the cortical surface.
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Figure 15 Source current density 
of time slice 185 for white matter 
orthotropic conductivity. SCD of
the (A) Base Model, and the (B) 
WhiteX, (C) WhiteY, and (D) 
WhiteZ Models, with increased 
white matter conductivity in the x, 
y, and z direction, respectively.
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Figure 16 Source current 
density of time slice 390 for 
white matter orthotropic 
conductivity. SC D  o f  (A ) B ase  
M odel, and the (B ) W hiteX , (C) 
W hiteY , and (D ) W hiteZ  
M odels, with increased white 
matter conductivity in  the x, y, 
and z direction, respectively.
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These results indicate that the SCD distribution altered to some extent with 

changing white matter orthotropic conductivity properties, especially the magnitude of 

the reconstructed current. The quantitative results also point towards a change in SCD 

distribution as the white matter conductivity increased in the x, y, and z directions, with 

small alterations in the CME or DF depending on the direction of increased conductivity. 

Both results imply that dipolar sources are affected differently by each directional change 

in conductivity, depending on the position of the source within the cortex (i.e. -  dipoles 

along the side of the cortex may be affected differently than those at the front and back of 

the cortex).

5.4.2 Effects of a priori Constraints

5.4.2.1 Normal Orientation Constraint

Table 4 compares the validation metrics for the normal orientation constraint (Normal 

Model) to no orientation constraint (Base Model). The mean DF values are shown only 

for the 6cm2 dipolar sources since the values varied comparably across the different 

source sizes for the two head models.

The mean CME was consistent for both models, even with varying noise levels. In 

comparison, the average DF increased significantly for the normal orientation constraint,

/j
over all source sizes and noise levels. For the larger 60mm sources, the inverse results of 

the Normal Model focused the majority of the energy to the original area of the dipolar 

source. Although the normal orientation constraint led to a more focused source 

reconstruction, the center of the current density was the same as for the Base Model, as 

indicated by the same CME values. Thus, although the spatial resolution was improved
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upon with the normal constraint, this a priori information did not affect the center of 

mass of the reconstructed source distribution.

Figures 17B and 18B show the SCD for the normal orientation inverse results for clinical 

EEG data, in comparison to the Base Model (Figures 17A and 18A). Both time-slice 185 

and 390 illustrated much more focalized SCD in comparison to the inverse problem with 

no orientation constraint (Base Model), with the size of the intense region of current 

density reduced by half for slice 185 and by approximately a third for slice 390. 

However, for both time-slices the center of mass remained in relatively the same position 

of the cortical surface. These results agree with the quantitative analysis of the Normal 

Model.

S.4.2.2 SPECT Information Constraint

Figures 19 and 20 demonstrates the average CME and DF for the three different 

cases of the SPECT constraint and for varying levels of SPECT weighting. The three 

cases for the SPECT constraint shown are: (1) no a priori SPECT information (Normal 

Model); (2) SPECT information centered on the midpoint of the neural source location 

(accurate a priori information); and (3) SPECT constraint placed at increasing distances 

from the center of the original source (inaccurate a priori information). The validation 

metrics were compared for different weighting levels of the SPECT constraint: 1.5 (light 

weighting), 2.5 (medium weighting), or 10 (strong weighting). The results from case (1) 

correspond to the results obtained in Section 3.2.1. For the inaccurate a priori 

information (case 3), the distance between the center of SPECT activity and the center of 

neural source spatial extent was divided into the following ranges: 1-20, 20-40, 40-60, 

and >60 mm. All results correspond to a SPECT activity size of 3cm2. The DF values
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Figure 17 Source current density of time slice 185 for a priori constraints. The reconstructed source 
current density o f  the clin ical EEG  data is show n for the B ase M odel (A ) vs. the Norm al M odel (B ), with  
the orientation o f  the d ipoles restricted to be normal to the cortical surface. The current density from  the 
Norm al M odel was compared to the inverse results from the “strong” (C), “m edium ” (D ), and “light” 
SPECT w eighting.
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Figure 18 Source current density of time slice 390 for a priori constraints. R econstructed source current 
density for time slice  390  o f  the clin ical EEG data for the B ase M odel (A ) vs. the Norm al M odel (B ), with the 
orientation o f  the d ipoles restricted to be normal to the cortical surface. The current density from  the Norm al 
M odel (B) was compared to the inverse results from  the “strong” (C ), “m edium ” (D ), and “light” SPECT  
w eivhtinv.
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Figure 19 Center of mass error for different weighting levels of S P E C T . CM E is  show n for SNR: INF, 
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Figure 20 Degree of Focalization for different weighting levels of SPECT. DF is shown for SNR: 
INF, 20, 10, and 5dB and distances between SPECT and source activity of: 0, 1-20, 20-40, 40-60, and 
>60mm
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varied significantly for the different sizes of the original sources, but the overall pattern 

of change was the same. Therefore, only the results for the 60mm2 sources are shown.

For a “strong” SPECT constraint with a weighting of 10, the center of mass error 

was much lower for accurate a priori information (case 2) than for no SPECT 

information (case 1), over all levels of noise. For example, for SNR = 20dB, the average 

center of mass error for case (1) was 15.2mm while for case (2) it was 9mm. However, as 

the distance between the SPECT activity and the neural source location increased (case 

3), the mean center of mass error increased correspondingly. With no noise in the signal, 

even small distances (<= 2cm) between the SPECT information and dipolar source 

activity led to center of mass error that was higher than with no SPECT constraint. For 

example, for SNR = INF and distances of 4 to 6cm, the average CME was 5.7cm with the 

inaccurate SPECT constraint, while the mean CME was only 1.3cm with no SPECT 

constraint. The rise in center of mass error for increasing distances signifies that the 

SPECT information holds too much weight in comparison to the source information from 

the EEG signal.

The degree of focalization results for the noise-free EEG signal agree with this 

finding. The degree of focalization dropped dramatically as the distance increased 

between the SPECT and dipolar activity, up until a 6cm separation, indicating that the 

reconstructed source was not localized to the correct location. The DF increased slightly 

for distances greater than 6cm; with correspondingly high CME; this denotes that current 

density was present in the correct location, but there were also spurious sources.

As the noise of the EEG signal increased, the center of mass error increased 

slightly for both cases (2) and (3). This suggests that the source localization results were
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still dependent on noise, as well as on SPECT information. The average center of mass 

error was still lower for accurate a priori information for all noise levels, and for 

distances < 2cm for SNR = lOdB and distances < 4cm for SNR = 5dB. However, the 

average center of mass error was smaller for these distance ranges from case (3) in 

comparison to case (1) only because the strong SPECT constraint shifted the 

reconstructed source activity to a distance smaller than the CME from the noisy EEG 

signal alone (case 1).

For all noise levels, the degree of focalization decreased considerably for all 

inaccurate SPECT a priori information in comparison to case (1), even for large 

distances. The smallest average DF equals 0.12 for SNR = 5dB, in comparison to 0.70 for 

case (1). The only instances when the degree of focalization was higher for the SPECT 

weighting than for no SPECT weighting was for accurate a priori information and for 

SNR <= 10 dB with distances <= 2cm.

For the clinical EEG data, the only reconstructed activity for the “strong” 

constraint was within the region of the original SPECT activity, as shown in Figures 17 

and 18. In time-slice 185, minimal activity was reconstructed within the SPECT region 

and no activity was reconstructed from the EEG data. For time-slice 390, the 

reconstructed hotspot was again only within the area of the SPECT activity, with a higher 

magnitude of source current density because the SPECT and EEG data aligned within 

this region. Both time-slices illustrated that SCD that would typically be reconstructed 

from the EEG information was ignored if it did not align with the SPECT information.

For a “medium” SPECT constraint with a weighting of 2.5, the average CME for 

the accurate SPECT information (case 2) was still smaller than for no SPECT
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information (case 1), similar to the “strong” constraint. For low noise levels (SNR >= 

20dB), as the distance between the center of SPECT and dipolar activity increased 

towards 4cm, the CME also increased. For distances closer to the dipolar activity (1mm- 

2cm), the degree of focalization decreased while the center of mass error increased; this 

suggests that the SPECT information was influencing the final source localization result. 

For distances slightly further away from the dipolar source (2-4cm) and for low noise 

levels, the DF increased while the CME still also increased. This indicates that although 

the hottest spot was affected by the increasingly distant SPECT activity, there was still 

reconstructed activity both at the neural source and at the SPECT activity.

The increase in error as the distance increased was not as substantial as with the 

“strong” SPECT constraint, with the largest rise in mean CME for SNR=INF reaching a 

value of 28mm for a distance range of 2-4cm. These results indicate that for low noise 

levels (SNR >= 20 dB), the SPECT constraint still influenced the source localization 

results for distances up to 4cm between the center of the SPECT and dipolar activity. For 

the distance range 4-6cm, the CME decreased again to 19mm (in comparison to the 

Normal Model value of 14mm) while the mean DF remained relatively high with an 

average of 1.73 (Normal Model = 1.36). The center of mass error decreased slightly more 

for distances greater than 6cm. Therefore, for large distances and low noise levels, the 

SPECT constraint has limited influences on the reconstructed source activity.

For SNR <= lOdB, the center of mass error continued to increase as the distances 

between the dipolar and SPECT activity increased, as a result of the noisy EEG signal. 

The increase in CME was not as substantial as for the “strong” SPECT constraint. 

Although the degree of focalization decreased slightly as the noise levels increased, the
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mean values for case (2) and (3) remained higher than for case (1). Therefore, although 

the CME still increased with increasing noise levels, more of the energy of the 

reconstructed source current density was localized to the correct area of the dipolar 

source, no matter what the SPECT information, in comparison to the Normal Model.

The reconstructed activity from clinical EEG data for the “medium” SPECT 

constraint was still concentrated within the SPECT activity area, but the EEG data had a 

stronger influence on the source current density. For example, in slice 185, although the 

majority of the activity remained within the SPECT region of activation, the hotspot was 

localized within very close proximity to the original location from case (1). In time-slice 

390, the region where the SPECT and EEG data aligned on the cortex had the strongest 

level of activity, while there was relatively mild activity in the region corresponding to 

only EEG information.

For a “light” constraint of 1.5, the CME was still smaller for accurate SPECT a 

priori information (case 2) than for no SPECT information (case 1) for all noise levels, 

but only by a minor amount. For example, the CME for case (2) with SNR = INF was 

11mm while for case (1) it was 14mm. Unlike the “medium” and “strong” constraint 

results, the center of mass error increased with increasing noise even for accurate SPECT 

information. However, for higher noise levels, the CME for the accurate SPECT 

information was still lower than for no SPECT constraint. The degree of focalization 

remained relatively high for all noise levels and distances (cases 2 and 3), with the degree 

of focalization dropping off to levels comparable to no SPECT constraint (case 1) only at 

high noise levels (5dB). This implies that there was more source current density localized 

to the correct location, but there were still spurious results. Both the CME and DF results
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indicate that the accurate SPECT “light” a priori constraint was less susceptible to noise 

than the inverse problem with no SPECT constraint.

The major improvement for the “light” SPECT constraint was that the center of 

mass of the reconstructed activity did not change substantially for inaccurate SPECT 

information (case 3). The only mean CME values from case (3) that were slightly higher 

than the error for case (1) were for distances smaller than 2cm and for SNR >= 20dB. For 

example, the CME for SNR = INF for a distance range of l-20mm was 16mm while for 

case (1) it was 14mm. This is a reasonable result, since SPECT information within 2cm 

of the original dipolar source may be relevant to the overall reconstructed source activity. 

At the same time, the degree of focalization was higher for the SPECT-constrained 

inverse results than for no SPECT information, regardless of the level of noise or the 

amount of distance between the SPECT activity and dipolar source. The lowest average 

DF value for the “light” SPECT constraint was for SNR=5dB and distances of 2-4cm 

with a value of 0.7, which was equal to the value for case (1). These results imply that the 

“lightly” constrained inverse problem provided more accurate and focalized results for 

almost all scenarios. At the same time, the source localization results were a balance 

between the dipolar source activity and SPECT information, placing emphasis on the 

EEG information when the SPECT information did not align closely with the EEG data.

The “light” SPECT constraint provided the biggest compromise between the 

SPECT and EEG information, as shown with the clinical EEG analysis in Figures 17 and 

18. The SCD distribution was not limited to the SPECT area of activation, as 

demonstrated in time-slice 185. The center of mass of the SCD shifted slightly towards 

the SPECT region in comparison to the Normal Model results, but the prevalent area of
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current density remained slightly outside the SPECT area. Thus, the SPECT constraint 

affected the overall source current distribution by shifting the SCD slightly to the right, 

utilizing both the EEG data and SPECT information in reconstructing the source.

For slice 390, the current density was prominent at both the SPECT region of 

activation and the cortical area that would be reconstructed from EEG data alone. The 

spatial resolution was reduced for the “light” constraint in comparison to no a priori 

SPECT information. This is because the region of SPECT activation was larger than the 

area reconstructed from case (1). Therefore, the spatial resolution of the SCD may be 

limited by the spatial resolution of the SPECT data.
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Discussion

The goal of this study was to obtain the most accurate source localization results 

with clinically available data. Therefore, we studied the effects of head model variations, 

specifically those due to clinical data uncertainties, on the accuracy of the inverse 

problem. The effects of a priori information on source localization precision were also 

analyzed. All tests were done with a LORETA-like solution to the inverse problem and 

were analyzed both qualitatively with clinical EEG data and quantitatively with 

validation metrics calculated for randomly placed dipolar sources in the source space. 

The variations in both the volume conductor model, represented by the LFM, and in a 

priori information, characterized by modifications in the inverse problem, were compared 

to the same model termed Base Model. This model corresponded to the volume 

conductor head model with conventional information available from clinical data and 

with no additional constraints.

The source localization results from the Base Model illustrated that the LORETA- 

like inverse method tended to blur the estimated source current density. However, most 

of the energy of the source current density was reconstructed to within the spatial extent 

of the larger neural sources (6cm2). This dipolar source size corresponded to the assumed 

minimum source area required to observe spike and sharp waves on the scalp electrodes 

(Ebersole, 1997). If this assumption is correct, then the blurring from the LORETA 

inverse method is a reasonable result. It was also observed that the CME validation 

metric was a more accurate metric for comparing localization accuracy across the
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different dipolar source sizes than the LE metric. Finally, the validation metrics for the 

Base Model suggested that the LORETA-like inverse problem was unable to regularize 

the EEG signal for higher noise levels, leading to spurious sources within the 

reconstructed source current density. The LORETA-like method was able to regularize 

noisy signals with SNR >= 20dB, but produced high localization error for SNR <= lOdB. 

Epileptic spikes are assumed to have noise levels between 10-20dB, so the inverse 

method may be able to correctly localize most of the relevant activity for epileptic 

patients, as demonstrated by the qualitative analysis of clinical EEG data.

6.1 Head Model Precision

A major concern with EEG source localization is uncertainty in electrode 

positions on the scalp of the volume conductor model (Khosla et al., 1999; Wang and 

Gotman, 2001; Michel et al., 2004). Recent studies have shown that electrode variations 

do not have a major effect on source localization accuracy in comparison with 

uncertainty due to noisy EEG signals (Khosla et al., 1999; Wang and Gotman, 2001). Our 

quantitative analysis agrees with these findings. For electrode position adjustments with 

an average displacement of approximately 4.5mm, the source localization accuracy was 

not affected even as the noise levels increased, as demonstrated by the validation metrics 

remaining relatively the same. However, as shown in our qualitative analysis, the source 

current distribution may vary for dipolar sources situated near the electrode locations, 

with the center of mass shifting slightly as the positioning changed. As the electrode 

positions shifted up the scalp of the head model, the source current density, especially in 

the right frontal region of the cortex, spread upwards as well.
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Based on these findings, realistic shifts in electrode positions on the scalp have a 

small affect on the source distribution for dipolar sources close to these positions. 

However, these shifts in positions do not have an effect on the overall accuracy of the 

inverse problem across the entire cortical surface. This implies that the standard 10-10 

electrode coordinate system can be used in approximately locating electrodes on the 

volume conductor model’s scalp without adversely influencing the inverse solution 

results, as long as the area of interest is not situated near the bottom transverse plane of 

the coordinate system.

The results from the head model with reduced number of electrodes covering the 

scalp show the importance of properly covering the cortical region of interest with a 

denser distribution of electrodes. The quantitative results indicate that a sparser 

distribution of electrodes leads to a lower overall degree of focalization. This implies that 

the reconstructed current density becomes more diffuse as the distance between 

electrodes increases. This agrees with research that has shown that the source localization 

accuracy increases with increasing electrode density on the scalp up until 100 electrodes 

(Lantz et al., 2003). Further, in the clinical EEG analysis, excluding extra electrodes at 

the front of the head led to losing information about the overall current distribution. The 

concentrated activity at the right-frontal region of the cortex was not localized for either 

time-slice, with the only hotspot located at the mid-frontal area of the cortex. The 

reduction in electrodes led to a completely different source current density configuration 

from the model with the added frontal electrodes on the head.

Another issue with clinically available information is that the CSF-skull tissue 

boundary of a patient’s head is difficult to segment with accessible T1-weighted MRI.
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This study evaluated the effect of changes in CSF thickness resulting from segmentation 

errors on the inverse problem. Increasing the CSF layer by 2mm, which in turn decreased 

the thickness of the skull tissue layer, did not considerably change or affect the validation 

metrics in comparison with the Base Model. In addition, qualitative results show almost 

identical source current density over time for clinical EEG data. Therefore, although it 

may be imperative to include the CSF layer in the head model (Ramon et al., 2004 and 

2006), our results indicate that slight variations in CSF segmentation do not have a major 

affect on source localization accuracy.

The skull-to-brain conductivity ratio is another unknown parameter in the volume 

conductor model. Previous inverse problem studies used a ratio of 1/80 (Geddes and 

Baker, 1967), but the most recent commonly accepted value is 1/15 (Oostendorp et al., 

2000; Gongalves et al., 2003 a, b; Baysal and Haueisen, 2004; Lai et al., 2005). There are 

still variations in literature on the conductivity ratio, with values ranging from 1/15 to 

1/30 (Oostendorp et al., 2000; Gonsalves et al., 2003 a, b; Baysal and Haueisen, 2004; 

Lai et al., 2005). It is well known that the skull has a major impact on source localization 

results, due to its exceedingly low conductivity in comparison to all other cephalic 

tissues. The change in the skull-to-brain conductivity ratio from the previously accepted 

value of 1/80 to the new value of 1/15 has not been studied, to our knowledge. Therefore, 

we analyzed the change in source localization accuracy attributable to variations in the 

skull-to-brain conductivity ratio. As well as comparing the previous ratio to the most 

recently accepted value, we also compared the new ratio to a value of 1/30 in order to 

evaluate the effect of smaller variations in conductivity ratio. If small changes in skull-to-
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brain conductivity ratios adversely affect the inverse results, it may be necessary to 

acquire patient-specific conductivity ratios to obtain accurate source localization.

Our results indicate that the source current distribution was affected by the shift of 

the conductivity ratio from 1/80 to 1/15, with the distribution less focused for the new 

1/15 value. For higher noise levels, the center of mass error was also smaller for the 1/80 

ratio. Thus, the previously accepted skull-to-brain conductivity ratio provided more 

focalized results and the reconstructed source current was less susceptible to high noise 

levels. The qualitative results with the clinical EEG data also showed a more focused 

SCD for the head model with the 1/80 skull-to-brain conductivity ratio. The more focused 

results may be explained by the increased resistivity of the skull tissue for the 1/80 ratio, 

causing the source current originating from the cortical pyramidal cells to spread further 

outwards as it crossed the skull, away from the original source location. An extended 

spread of current density in the volume conductor model would correspond to a more 

blurred potential distribution measured by the scalp electrodes in comparison to the Base 

Model. Therefore, for the inverse problem to account for the same potential distribution 

on the scalp calculated from the forward problem of the Base Model, the estimated SCD 

would be more focused for the 1/80 skull-to-brain conductivity ratio than for the 1/15 

ratio. Based on the results obtained for CME and DF, the LORETA-like inverse method 

is more susceptible to noise if the new 1/15 skull-to-brain conductivity ratio is used. 

Quantitative and qualitative analysis imply that for low noise levels, the 1/15 ratio 

provides slightly improved localization, but still with lower spatial resolution.

The quantitative and qualitative results for the 1/15 and 1/30 skull-to-brain 

conductivity ratios were comparable, with a slight improvement in spatial resolution for
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the 1/30 ratio. This indicates that slight patient-specific deviations in skull-to-brain 

conductivity ratios do not have a significant impact on source localization accuracy. 

Consequently, the new generally accepted value of 1/15 may be employed as the skull-to- 

brain conductivity ratio as long as the deviation within different patients does not vary to 

the extent of the previously accepted 1/80 value.

We performed a preliminary study on the effect of white matter anisotropy on 

source localization results. It has been shown that white matter anisotropy affects the 

forward problem for EEG analysis (Haueisen et al., 2002, Wolters et al., 2006). We 

extended this analysis by studying the effects of white matter orthotropic conductivity on 

inverse results. The quantitative and qualitative analyses suggest that the source current 

distribution was affected by orthotropic conductivity changes, which implies that white 

matter anisotropy will have an effect on the SCD of the inverse solution, specifically the 

magnitude of the current density.

6.2 a priori Constraints

A common constraint in linear inverse methods is to set the orientation of the 

dipolar sources normal to the cortical surface (Dale and Sereno, 1993; Liu et al., 1998; 

Liu et al., 2002; Phillips et al., 2002a; Lin et al., 2006). This constraint is physiologically 

based on neural sources of measured scalp potential having an orientation perpendicular 

to the cortical sheet of the brain (Nunez, 1981). For the LORETA-like method used in 

this study, the normal orientation focused the source current distribution. Although the 

normal orientation constraint focused the solution energy, the center of the source activity 

was localized to the same site as with no orientation constraint. Based on these results,
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the normal orientation constraint does not improve the localization accuracy, but it does 

improve the spatial resolution of the inverse method.

The more focused source current distribution may aid in defining a smaller area of 

the cortex for pre-surgical analysis for epileptic patients. Since the LORETA inverse 

problem method tends to produce blurred results, this reduction in the spatial extent of 

the foci is especially relevant. The study performed by Lin et al. (2006) did not directly 

measure the degree of focalization of the reconstructed SCD for the different inverse 

methods, but the qualitative results showed a more focalized SCD for most tests, which 

correspond with our findings. The localization error was also affected by the normal 

orientation constraint, which differs from our findings. However, different inverse 

methods were used in comparison to the LORETA method used in our study.

Another constraint that can improve the spatial resolution of source localization 

results is incorporating information from functional imaging techniques that measure 

blood flow. Because of its high spatial resolution, fMRI has the most promise for 

improving source localization results from EEG recordings (Liu et al., 1998; Dale et al., 

2000; Gonzalez Andino et al., 2001; Jezzard et al., 2001; Wagner and Fuchs, 2001; 

Phillips et al., 2002a; Babiloni et al., 2003; Gotman et al., 2006; Liu et al., 2006). Since 

fMR images for epileptic patients are not always clinically available and are impractical 

for some ictal events, we studied the effect of constraining the inverse method with 

SPECT information, which is more clinically accessible and can currently measure both 

ictal and interictal events. Although SPECT can measure the blood flow changes caused 

by neural activity, it has a much lower spatial resolution than fMRI.
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Because of the uncertainties between the origins of EEG and SPECT signals, 

SPECT information was used as a soft constraint for source localization (Liu et al., 1998; 

Dale et al., 2000; Gonzalez Andino et al., 2001; Wagner and Fuchs, 2001; Phillips et al., 

2002a; Babiloni et al., 2003; Liu et al., 2006). We studied the effect of applying SPECT 

information with varying levels of weighting on the LORETA-like inverse problem: 

“strong”, “medium”, and “light” SPECT weighting. The different weights were tested for 

different scenarios: accurate a priori information with the SPECT constraint centered on 

the midpoint of the original source and inaccurate a priori information with the constraint 

placed away from the original source. The inaccurate a priori scenario corresponded to 

possible uncertainties that occur between the EEG and SPECT signals. Both of these 

scenarios were compared to source localization results without any SPECT constraint.

For the “strong” SPECT constraint, the reconstructed source current density was 

localized to within the region of the cortex with SPECT activation, and the EEG 

information was essentially disregarded. As the SPECT information moved away from 

the neural source location, the center of mass shifted with the increasing distance. 

Although the “strong” constraint led to a much lower center of mass error than no SPECT 

information for the accurate a priori scenario, especially as the noise levels increased, the 

center of mass error was much more substantial for the inaccurate a priori scenario. The 

distance between the SPECT information and the original source location had to be 

greater than 6cm with low noise levels before at least some activity was reconstructed in 

the correct location of the cortex. However, the majority of the reconstructed activity was 

still at the inaccurate SPECT location. The qualitative results agreed with these findings 

as well, with SCD reconstructed only within the region of the SPECT activity. For this
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level of weighting, the source localization results were almost solely dependent on the 

SPECT information, and the inverse problem essentially disregarded the EEG potential 

distribution in reconstructing the source.

Based on these results, the “strong” weighting of 10 is not a viable option for 

functional image weighting such as SPECT. This agrees with Wagner and Fuch’s 

findings (2001), which showed that the LORETA inverse problem was unable to localize 

a source without a corresponding fMRI hotspot when the fMRI weighting was 10. 

However, Liu et al. (1998, 2006) have shown that the optimal weighting for fMRI in 

source localization was 90%, which is equivalent to the strong weighting performed in 

our analysis. This discrepancy may be due to analyzing the functional weighting with a 

different inverse method than from the LORETA approach used in this thesis.

Depending on how much emphasis of the SPECT information is desired, the 

functional weighting can be incorporated into the inverse problem either as a “medium” 

constraint of 2.5 or as a “light” constraint of 1.5. A “medium” weighting provided much 

more precise source localization results for the accurate a priori case, especially for 

higher noise levels. The compromise was that the center of mass might be further from 

the original source location for inaccurate SPECT information. Analysis of the validation 

metrics indicated that if the EEG noise level was low and the SPECT information was 

considered accurate, or if the noise level was high and the SPECT information was 

assumed to be within 4cm of the actual source location, the “medium” constraint 

provided improved source localization results. The qualitative results show that although 

the “medium” SPECT weighting did produce current density within the region of the 

cortex with neural sources, the magnitude of the SCD was particularly limited outside of
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the SPECT area of activation. Thus, the “medium” constraint should be utilized only if 

the SPECT information is assumed reasonably accurate.

If confidence in the provided SPECT information is low, then the “light” 

weighting of 1.5 is recommended as a constraint on the inverse problem. Although this 

constraint provided minimal improvements in the center of mass error value for low noise 

levels, the source localization results were improved on to a larger extent with noisy EEG 

signals. As well, the center of mass did not shift significantly from the original source 

location for inaccurate SPECT information over all distances and all noise levels. The 

degree of focalization of the reconstructed source distribution also remained relatively 

high for small distances between the center of SPECT and dipolar activity. The 

qualitative results agree with these findings, with activity reconstructed in both the 

overlap region of SPECT and EEG activity as well as the region with only EEG activity. 

However, the spatial resolution of the source localization results may be limited by the 

spatial resolution of the SPECT information, as shown in the qualitative analysis.

The “light” constraint weighting of 1.5 provided moderate improvements in the 

source localization results without sacrificing accurate source localization for incorrect 

SPECT information. These results correspond with Wagner and Fuch’s findings (2001), 

which showed that for the LORETA problem, a weighting of 1.4 focalized the sources 

with corresponding fMRI hotspots while also reconstructing concentrated activity for the 

fMRI hotspot with no corresponding source. They also demonstrated that for weightings 

greater than 1.6, LORETA was incapable of reconstructing a source without the 

corresponding functional hotspot. Our results for a weighting of 1.5 indicate that although 

the source localization accuracy was influenced by SPECT activity outside the source
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area, the LORETA inverse problem was still capable of reconstructing reasonably 

accurate source current density. Specifically, source activity without corresponding 

SPECT activity was still reconstructed with clinical EEG data. Thus, this “light” 

constraint provides a compromise between improving the source localization results with 

accurate functional information while maintaining reasonably accurate results for 

inaccurate functional information.
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Conclusions

We proposed analyzing the effects of both head model precision and a priori 

information on the accuracy of the EEG inverse problem. The motivation for this study 

was to determine the most accurate source localization results within the constraints of 

the present clinically available data from the University of Alberta hospital. Five different 

variations in the head model were analyzed in this study: electrode locations on the scalp, 

electrode distribution, CSF-skull tissue boundary placement, skull-to-brain conductivity 

ratio, and white matter orthotropic conductivity. The a priori information we investigated 

were including the normal orientation of the dipolar sources and incorporating functional 

information from SPECT imaging. In this work, the effect of both head model precision 

and a priori information was studied with the LORETA inverse problem.

Our results indicate that electrode placement errors do not have an effect on 

overall source localization accuracy, but may affect sources situated near electrodes with 

high position errors. The distribution of the electrodes has a major impact on the 

reconstructed source current distribution, especially if electrodes near the concentrated 

dipolar activity are excluded. Changing the location of the CSF-skull boundary and 

adjusting the skull-to-brain conductivity ratio by small amounts did not have a major 

influence on the localization accuracy. However, the source current density was affected 

by adjusting the skull-to-brain conductivity ratio from the previously accepted value of
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1/80 to the new value of 1/15. Incorporating white matter orthotropic conductivity had a 

small influence on the reconstructed current density.

The a priori information had a strong effect on the source localization accuracy, 

with the normal orientation constraint focusing the reconstructed activity. The SPECT 

information provided more accurate source localization results as long it was used as a 

light constraint. However, spatial resolution of the reconstructed source current density 

was limited by the spatial resolution of the SPECT information. The SPECT constraint 

provided the biggest improvement in accuracy when the SPECT activity correlated with 

the source location.

In summary, we found in this study that:

• electrode placement errors do not affect overall source localization 

accuracy, but may affect sources near electrodes with high position errors;

• electrode distribution has a major impact on reconstructed source current 

distribution;

• segmentation error of the CSF-skull boundary do not have a major influence 

on localization accuracy;

• large variations in the skull-to-brain conductivity ratio affect the source 

current distribution;

• restricting sources normal to the cortical surface focuses the source current 

distribution; and

• utilizing SPECT information as a light constraint provides more accurate 

source localization results.
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Future Considerations

Expanding upon this study to incorporate current research areas that may improve 

source localization results and that may ultimately become available in a clinical setting 

would be ideal. This includes, but is not limited to, analyzing the effects of: fMRI 

information, skull (Ollikainen et al., 1999) and white matter anisotropy, and new MRI 

segmentation techniques. Further, the analysis of source localization accuracy could be 

expanded upon by calculating validation metrics for greater than one source activated at 

the same time. Since the LORETA method tends to produce blurred source current 

density, investigating a more accurate inverse method for analysis would be beneficial.
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