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Abstract

This thesis concerns dynamical systems subject to small noise perturbations. Our

purpose is to obtain a deep understanding of how small noise perturbations influence

the original unperturbed dynamical system, especially over long but finite time inter-

vals. We consider two special systems, the random linear recurrence equation which

is a discrete system, and the underdamped Langevin equation which is a continuous

system.

According to the classical perturbation theory, small perturbations do not impact

much of the dynamics over a short time. When the time tends to infinity, in many

situations, the flow can eventually merge with one of the steady states of the perturbed

system. As far as we know, small perturbations gradually influence the dynamics in

an accumulative way over time, resulting in the so-called transient behavior which

describes the process of such a gradual change of dynamics from the unperturbed

system to the steady state of the corresponding perturbed system.

We demonstrate this change by utilizing the cut-off phenomenon in the random

linear recurrence system. We find the time window when the solution evolves from

a deterministic value to the limiting distribution. The underdamped Langevin equa-

tion is essentially a slow-fast system admitting three time scales. The unperturbed

Hamiltonian system plays a dominant role in the short time scale. In the intermediate

time scale, the fast variables have already tended to their stationary distributions and

the slow variables transition from their initial deterministic values to the marginal

distribution of the slow variables with respect to the system’s stationary distribution.

Finally, in the long time scale, all variables are slaved by the stationary distribution.
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Chapter 1

Introduction

1.1 Motivation and objectives

There are many uncertainties which are introduced by the environment and objects

themselves. To deal with those uncertainties, modellers add small noise perturbations

to the deterministic systems, such as the predator-prey model [1], the population

model [2] and the general circulation model [3]. There is much excellent research

analyzing the existence and uniqueness of equilibria (stationary distributions) of cor-

responding stochastic systems [4]. In this work, we study when and how solutions

transition from their initial values to equilibria.

In general, the deterministic system is called the unperturbed system. Its solution

is denoted as X0
t . Because of the lack of knowledge of the environment, we often

use white noise to represent it without loss of generality. Then the perturbed system

becomes a stochastic system. We useXϵ
t to denote its solution, where ϵ is the intensity

of the perturbation.

There are two well-known results of the dynamical system with a small perturba-

tion. One is that the perturbed system is mainly slaved by the unperturbed system

when ϵ tends to zero in any finite time interval by the classical perturbation theory

[5]. The expression is as follows:

lim
ϵ→0

P
{︃
max
t∈[0,T ]

⃓⃓
Xϵ

t −X0
t

⃓⃓
> δ

}︃
= 0,

for every T > 0 and δ > 0. It implies that a small enough perturbation does not

much affect the unperturbed system within the initial finite time. We name this

convergence as the perturbation limiting behavior. The other significant result is that,
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with any fixed ϵ, Xϵ
t tends to one of the equilibria of the perturbed system when time

tends to infinity. Let Xϵ
∞ be a random variable defined on a common probability

space, whose distribution is the same as the equilibrium. With a suitable distance,

we have

lim
t→∞

d (Xϵ
t , X

ϵ
∞) = 0,

which is the classical limiting behavior.

The first result shows that there is not much difference between the unperturbed

and perturbed systems at the beginning. The small perturbation has barely begun

to affect the unperturbed system. We are interested in when the small perturbation

starts to powerfully impact the system. The second result presents that the small

noise perturbations ultimately affect the unperturbed systems when time tends to

infinity. We want to know, rather than the infinite time, when Xϵ
t and Xϵ

∞ are close

enough.

After knowing the start time and end time of the influence introduced by the small

perturbation, we plan to track where the solution is during the intermediate time, i.e.,

how the flow transforms from the almost deterministic solution X0
t to an equilibrium

of the perturbed system Xϵ
∞. The primary purpose of this work is to understand this

type of transition named the transient behavior. In the past, the following three types

of phenomena have been found in the first order systems.

i) Metastability

The classic example to present the metastability behavior is one-dimensional

diffusion in a double-well landscape at low temperature. The position of a

particle is governed by the following stochastic differential equation:

dxt = −V ′ (xt) dt+
√
2ϵdWt,

where W is a Brownian motion, ϵ is the intensity of the temperature, and V is

a double-well potential as follows:

2



Figure 1.1: Double-well potential

In the unperturbed system, positions 1 and 3, wave troughs in Figure 1.1, are

asymptotical stable states. All particles starting from the left basin converge to

position 1, while those starting from the right converge to position 3. Because of

the small noise perturbation, some particles inside a basin can be transitioned

to the critical point, position 2, after an exponentially long time. Then, those

particles enter one of the basins randomly and converge to the corresponding

asymptotical stable states exponentially fast. We refer to [6] for details on the

mathematical description of the transition from the metastable to the ultimate

stationary distribution.

ii) Cut-off Phenomenon

The cut-off phenomenon was firstly introduced by Aldous and Diaconis to mea-

sure how many times the cards can be shuffled evenly [7]. The shuffle is modeled

by a discrete Markov chain Xn
t , where X is the order of n cards after t random

shuffles. Its stationary state is denoted as πn. The total variation distance is

utilized to measure the distance between Xn
t and πn. There is an abrupt conver-

gence of this distance in a specific cut-off window. The cut-off time is 3
2
log2 n

which has entered popular science as “7 shuffles are enough”. This phenomenon

can be drawn with a fixed parameter n as follows:

3



Figure 1.2: Cut-off phenomenon

Figure 1.2 is a schematic graph which demonstrates the abrupt drop of the

distance between Xn
t and πn in the cut-off window. We provide the rigorous

definitions of the cut-off time and the cut-off window in Section 2.1.

iii) Quasi-stationary Distribution

The quasi-stationary distribution is applied to the population model [8]. We

choose the Logistic Feller diffusion process as an example. The population’s

size is governed by the following stochastic differential equation:

dZϵ
t = Zϵ

t (r − cZϵ
t ) dt+ ϵ

√︁
Zϵ

tdWt.

0 is the global absorbing state. Zt reaches extinction in finite time almost surely.

Let T0 be the first hitting time at 0. It is necessary to observe the long time

behavior conditioned on the time before T0. The quasi-stationary distribution

is defined as a measure α such that for all t > 0,

Pα (Zt ∈ A|T0 > t) = α (A) .

The existence and uniqueness of this quasi-stationary distribution have been

proved in [8]. Thus, Zt transitions to this quasi-stationary state after a relatively
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short time. Then, it maintains the quasi-stationary distribution over a long

time, and is extinct at the very end.

The above three phenomena describe the transient behavior from different angles,

including microscopic particles and macroscopic distribution. They are all derived

from the first order systems with noise perturbation. We are more interested in the

transient behavior in the second order systems case. The second order systems can

be converted to the first order systems. However, that transformation will introduce

singularity in the noise party. Thus, there are not too many mathematical tech-

niques developed. This work will discuss discrete and continuous second order cases

separately.

1.2 Thesis outline

1.2.1 Discrete second order system with small noise pertur-
bation.

We first analyze a random linear recurrence equation in Chapter 2. We initially

focused on the Brownian oscillator, a classical second order system with a small

perturbation as follows:

ẍt + γẋt + κxt = ϵẆ t for any t ≥ 0.

The existence and uniqueness of the strong solution are demonstrated in [4]. We

utilize the forward difference scheme to obtain a discretization which is

Xϵ
t+2 = (2− γh)Xϵ

t+1 −
(︁
1− γh+ κh2

)︁
Xϵ

t + ϵh
3/2ξt+2 for any t ∈ N0,

where h is the step size of time and {ξt} is white noise.

We prove that if h < min {2/γ, γ/κ}, then the limiting random variable Xϵ
∞ exists.

Because of the 2-string past, Xϵ
t is not a Markov process anymore. Diaconis presented

that even for the finite Markov chains, there are not always cut-off phenomena [9].

For our non-Markov process, we discuss the existence of the cut-off phenomenon with

respect to the initial conditions and the eigenvalues of its characteristic polynomial in

Section 2.3. When the eigenvalues are real, the cut-off phenomenon exists for almost
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all initial conditions. When the argument of the eigenvalues is rational, we found a

non-empty set of initial conditions such that the cut-off phenomenon exists. When

the argument is irrational, we cannot find a suitable initial condition for the cut-off

phenomenon.

The general linear recurrence equation with a small white noise has been applied in

various models, such as Zellner’s structural econometric model [10], the stock price’s

model [11] and the forecasting the unemployment rate [12]. We generalize our result

in the pth order case as follows:

Xϵ
t+p = ϕ1X

ϵ
t+p−1 + ϕ2X

ϵ
t+p−2 + · · ·+ ϕpX

ϵ
t + ϵξt+p for any t ∈ N0.

In Section 2.1, we state the main result of the cut-off phenomenon and its conse-

quences. The solution Xϵ
t abruptly merges with its limiting distribution in a cut-off

window under suitable conditions. The cut-off time and window are

tϵ = O
(︁
ln
(︁
ϵ−1
)︁)︁

and wϵ = O(1).

We provide the proof of them in Section 2.2. For the sake of completeness, some

results about the distribution of the random linear recurrence and its limiting behavior

are demonstrated in Appendix A. Appendix B summarizes some properties about the

total variation distance between Gaussian distributions. Moreover, Appendix D states

some elementary limit behaviors.

1.2.2 Continuous second order system with small noise per-
turbation.

In Chapter 3, we analyze the underdamped Langevin equation,

dxϵ
t = yϵtdt,

dyϵt = (−∇V (xϵ
t)− ϵyϵt) dt+

√︁
2ϵβ−1dWt,

(1.1)

where V is the potential energy and Wt is a d-dimensional Brownian motion. The

corresponding unperturbed system is a Hamiltonian equation,

dx0
t = y0t dt,

dy0t = −∇V (x0
t )dt.

(1.2)
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For consistency, we still use Xϵ
t and X0

t to denote the solutions of (1.1) and (1.2),

respectively. Since (1.1) has a unique invariant measure which does not depend on ϵ

[13], let X∞ be the random variable whose distribution is the same as the distribution

of the invariant measure.

In order to understand the transient behavior precisely, in Section 3.1, we study

the one-dimensional harmonic case where V (x) = 1
2
kx2. The explicit solution can be

obtained in this case. We generalize the perturbation limiting behavior from finite

time to a short time scale, tϵ ≪ 1
ϵ
. Xϵ

t is still close to X0
t during this relatively long

time. When tϵ =
θ
ϵ
, we find that a part of the distribution of Xϵ

t coincides with the

distribution of X∞. Thus, the transient behavior occurs in this critical time scale. In

the long time scale, tϵ ≫ 1
ϵ
, Xϵ

t merges with X∞ when ϵ tends to zero.

We study the d-dimensional non-harmonic case in Section 3.3. In the same long

time scale, tϵ ≫ 1
ϵ
, Xϵ

t is close to X∞ in the total variation distance. When tϵ ≪ 1
ϵ
,

we obtain the perturbation limiting behavior of the total energy,

E(x, y) :=
1

2
∥y∥22 + V (x),

which is one of the conserved quantities of (1.2). In the short time scale, Eϵ
t tends to

E0
t ≡ E0. Therefore, X

ϵ
t is far from X∞ whose density function’s support is R2d [13].

During the critical time scale, we study the one-dimensional case in Section 3.4.

We apply the averaging principle on E which is also a slow variable of (1.1). The

averaged equation is

dEc
t =

(︃
1

2
− I(Ec

t)ω(E
c
t)

)︃
dt+

√︂
I(Ec

t)ω(E
c
t)dWt, (1.3)

where I is the action variable and ω is the frequency. (1.3) approximately describes

the transient behavior of E with respect to θ when ϵ is small enough. We provide

some general properties of (1.3) in Section 3.4.3.

The last objective is understanding the transient behavior in full coordinates, espe-

cially in the one-dimensional case. The numerical simulations are utilized to demon-

strate the transition of the fast variable of (1.1). In order to simulate in a rela-

tively long time, we develop an efficient data-driven method in Section 3.2, which is

a hybrid method combining the Monte-Carlo simulation and the simulation of the

Fokker-Planck equation of (1.1) [14, 15]. The data-driven method treats the rough
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Monta-Carlo result as a dataset, which reduces the large number of iterations in

the classical Monte-Carlo simulation. Then, it utilizes the numerical Fokker-Planck

equation’s scheme as a constraint to obtain the optimal solution.

In Section 3.2.3, we demonstrate the transition of the angle which is a fast variable

of (1.1). It seems that the fast variable has started to transition in the short time scale.

However, to date, we cannot provide a rigorous theorem to describe the transient

behavior of the fast variable. For integrity, the Matlab code of our data-driven method

and the simulation of (1.3) are presented in Appendix E.
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Chapter 2

The cut-off phenomenon in a linear
recurrence equation with a small
perturbation

Linear recurrence equations have been widely used in several areas of applied math-

ematics and computer science. In applied science, they can be used to model the

future of a process that depends linearly on a finite string, for instance: in population

dynamics to model population size and structure [16–18]; in economics to model the

interest rate, the amortization of a loan and price fluctuations [19–21]; in computer

science for analysis of algorithms [22, 23] and in statistics for the autoregressive linear

model [24, 25]. In theoretical mathematics, people apply it to find the coefficients of

series solutions in differential equations, whose details are presented in Chapters 4–5

of [26]; to prove Hilbert’s tenth problem over Z [27] and to provide expansions of some

second order operators in approximation theory [28]. For a complete understanding

of applications of the linear recurrence equation, we recommend the introduction of

the monograph by [29] and the references therein.

We consider random dynamics that arise from a linear homogeneous recurrence

equation with a control term given by independent and identically distributed (i.i.d.

for short) random variables with Gaussian distribution. To be precise, given p ∈ N,

ϕ1, ϕ2, . . . , ϕp ∈ R with ϕp ̸= 0, we define the linear homogeneous recurrence of degree

p as follows:

xt+p = ϕ1xt+p−1 + ϕ2xt+p−2 + · · ·+ ϕpxt for any t ∈ N0, (2.1)

where N0 denotes the set of non-negative integers. To single out a unique solution
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of (2.1) one should assign initial conditions x0, x1, . . . , xp−1 ∈ R. Recurrence (2.1)

is called a recurrence with p-history since it only depends on a p-number of earlier

values.

We consider a small perturbation of (2.1) by adding Gaussian noise as follows:

given ϵ > 0 fixed, consider the random dynamics

Xϵ
t+p = ϕ1X

ϵ
t+p−1 + ϕ2X

ϵ
t+p−2 + · · ·+ ϕpX

ϵ
t + ϵξt+p for any t ∈ N0, (2.2)

with initial conditions Xϵ
0 = x0, . . . , X

ϵ
p−1 = xp−1, and (ξt : t ≥ p) is a sequence

of i.i.d. random variables with Gaussian distribution with zero mean and variance

one. Since the random linear recurrence (2.2) depends on its p-string past, it is not

Markovian. However, it is straightforward to convert as a linear first order random

matrix recurrence, which is Markovian. Denote by (Ω,F ,P) the probability space

where the sequence (ξt : t ≥ p) is defined, then the random dynamics (2.2) can be

defined as a stochastic process in the probability space (Ω,F ,P).

Notice that ϵ > 0 is a parameter that controls the magnitude of the noise. When

ϵ = 0 the deterministic model (2.1) is recovered from the stochastic model (2.2). Since

(ξt : t ≥ p) is a sequence of i.i.d. random variables with Gaussian distribution, the

model (2.2) could be understood as a regularization of (2.1).

To our knowledge, this model was initially used by [30] (p = 2) to model the

presence of random disturbances of a harmonic oscillator for investigating hidden

periodicities and their relation to the observations of sunspots.

In this chapter we obtain a nearly-complete characterization of the convergence

in the total variation distance between the distribution of Xϵ
t and its limiting dis-

tribution as t increases. Under general conditions, we state in Section 2.1 when the

intensity of the control ϵ is fixed. Then, the random linear recurrence goes to a lim-

iting distribution in the total variation distance as time passes. We show that this

convergence is abrupt in the following sense: the total variation distance between

the distribution of the random linear recurrence and its limiting distribution drops

abruptly over a negligible time (time window) around a threshold time (cut-off time)

from near one to near zero. It means that if we run the random linear recurrence

before a time window around the cut-off time, the process is not well mixed and after

a time window around the cut-off time becomes well mixed. This fact is known as a
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cut-off phenomenon in the context of stochastic processes.

Suppose that we model a system by a random process (Xϵ
t : t ≥ 0), where the

parameter ϵ denotes the intensity of the noise and assume that Xϵ
∞ is its equilibrium.

A natural question that arises is the following: with a fixed ϵ and an error η > 0, how

much time τ(ϵ, η) do we need to run the model (Xϵ
t : t ≥ 0) in order to be close to its

equilibrium Xϵ
∞ with an error at most η in a suitable distance? The latter is known

as a mixing time in the context of random processes. In general, it is hard to compute

and/or estimate τ(ϵ, η). The cut-off phenomenon provides a strong answer in a small

regime ϵ. Roughly speaking, as ϵ goes to zero, it means that after a deterministic

time τ ∗(ϵ), the system is “almost” in its equilibrium within any error η. We provide

a precise definition in Section 2.1.

The cut-off phenomenon was extensively studied in the eighties to describe the

phenomenon of abrupt convergence, which appears, for example, in models of cards’

shuffling, Ehrenfests’ urn, and random transpositions, see for instance [9]. In gen-

eral, it is a challenging problem to prove that a specific model exhibits a cut-off

phenomenon. It requires a complete understanding of the dynamics of the specific

random process. For an introduction to this concept, we recommend Chapter 18 in

[31] for discrete Markov chains in a finite state, [32] for discrete Markov chains with

infinite countable state space and [33–35] for Stochastic Differential Equations in a

continuous state space.

2.1 Main theorem

One of the most important problems in dynamical systems is the study of the limit

behavior of their evolution for forward times. To the linear recurrence (2.1) we can

associate a characteristic polynomial

f(λ) = λp − ϕ1λ
p−1 − · · · − ϕp for any λ ∈ C. (2.3)

From now on to the end of this chapter, we assume

(H) all the roots of (2.3) have modulus strictly less than one.

From (H) we can prove that for any string of initial values x0, . . . , xp−1 ∈ R, xt goes

exponentially fast to zero as t goes to infinity (see Theorem 1 in [36] for more details).
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In the stochastic model (2.2), (H) implies that the process (Xϵ
t , t ∈ N0) is strongly

ergodic, i.e., for any initial conditions x0, . . . , xp−1, the random recurrence Xϵ
t con-

verges in the so-called total variation distance as t goes to infinity to a random variable

Xϵ
∞. For further details see Lemma 27 in Appendix A.

Given m ∈ R and σ2 ∈ (0,+∞), denote by N (m,σ2) the Gaussian distribution

with meanm and variance σ2. Later on, we see that for t ≥ p, the random variable Xϵ
t

has distribution N (xt, ϵ
2σ2

t ), where xt is given by (2.1) and σ2
t ∈ (0,+∞). Moreover,

the random variable Xϵ
∞ has a distribution N (0, ϵ2σ2

∞) with σ2
∞ ∈ (0,+∞).

Since the random recurrence (2.2) is linear in the inputs which are independent

Gaussian random variables, the distribution of Xϵ
t (for t ≥ p) and its limiting distri-

bution Xϵ
∞ is also Gaussian. For details, see Lemma 26 and Lemma 27 in Appendix

A. Then a natural way to measure its discrepancy is by the total variation distance.

Given two probability measures P1 and P2 on the measure space (Ω,F), the total

variation distance between the probabilities P1 and P2 is given by

dTV(P1,P2) = sup
F∈F

|P1(F )− P2(F )|.

When X, Y are random variables defined on the probability space (Ω,F ,P) we write

dTV(X, Y ) instead of dTV(P(X ∈ ·),P(Y ∈ ·)), where P(X ∈ ·) and P(Y ∈ ·) denote

the distribution of X and Y under P, respectively. Then we define

dϵ(t) := dTV (Xϵ
t , X

ϵ
∞) = dTV

(︁
N (xt, ϵ

2σ2
t ),N (0, ϵ2σ2

∞)
)︁

for any t ≥ p. Notice that the above distance depends on the initial conditions

x0, . . . , xp−1 ∈ R. To make the notation more fluid, we avoid its dependence from our

notation. For a complete understanding of the total variation distance between two

arbitrary probabilities with densities, we recommend Section 3.3 in [37] and Section

2.2 in [38]. Nevertheless, for the sake of completeness, we provide an Appendix B that

contains the properties and bounds for the total variation distance between Gaussian

distributions that we used to prove Theorem 2, which is the main theorem of this

chapter.

The goal is to study the so-called cut-off phenomenon in the total variation distance

when ϵ goes to zero for the family of the stochastic processes

(Xϵ := (Xϵ
t : t ∈ N0) : ϵ > 0)

12



for fixed initial conditions x0, . . . , xp−1.

In the sequel we introduce the formal definition of cut-off phenomenon. Recall that

for any z ∈ R, ⌊z⌋ denotes the greatest integer less than or equal to z. Consider the

family of stochastic processes (Xϵ : ϵ > 0). According to [39], the cut-off phenomenon

can be expressed in three increasingly sharp levels as follows:

Definition 1 The family (Xϵ : ϵ > 0) has

i) cut-off at (tϵ : ϵ > 0) with cut-off time tϵ if tϵ goes to infinity as ϵ goes to zero

and

lim
ϵ→0+

dϵ(⌊δtϵ⌋) =

{︄
1 if 0 < δ < 1,

0 if δ > 1.

ii) window cut-off at ((tϵ, wϵ) : ϵ > 0) with cut-off time tϵ and time cut-off wϵ if tϵ

goes to infinity as ϵ goes to zero, wϵ = o(tϵ) and

lim
b→−∞

lim inf
ϵ→0+

dϵ(⌊tϵ + bwϵ⌋) = 1

and

lim
b→+∞

lim sup
ϵ→0+

dϵ(⌊tϵ + bwϵ⌋) = 0.

iii) profile cut-off at ((tϵ, wϵ) : ϵ > 0) with cut-off time tϵ, time cut-off wϵ and profile

function G : R → [0, 1] if tϵ goes to infinity as ϵ goes to zero, wϵ = o(tϵ),

lim
ϵ→0+

dϵ(⌊tϵ + bwϵ⌋) =: G(b) exists for any b ∈ R

together with lim
b→−∞

G(b) = 1 and lim
b→+∞

G(b) = 0.

Bearing all this in mind, we can analyze how this convergence happens, precisely

the statement of the following theorem.

Theorem 2 (Main theorem) Assume that (H) holds. For a given initial condition

x = (x0, . . . , xp−1) ∈ Rp \ {0p} assume that there exist r = r(x) ∈ (0, 1), l = l(x) ∈

{1, . . . , p} and vt = v(t, x) ∈ R such that

i)

lim
t→+∞

⃓⃓⃓ xt

tl−1rt
− vt

⃓⃓⃓
= 0,

13



ii) sup
t≥0

|vt| < +∞,

iii) lim inf
t→+∞

|vt| > 0.

Then the family of random linear recurrences

(Xϵ := (Xϵ(t) : t ∈ N0) : ϵ > 0)

has window cut-off as ϵ goes to zero with cut-off time

tϵ =
ln(1/ϵ)

ln(1/r)
+ (l − 1)

ln
(︂

ln(1/ϵ)
ln(1/r)

)︂
ln(1/r)

and time window

wϵ = C + oϵ(1),

where C is any positive constant and lim
ϵ→0+

oϵ(1) = 0. In other words,

lim
b→−∞

lim inf
ϵ→0+

dϵ(⌊tϵ + bwϵ⌋) = 1

and

lim
b→+∞

lim sup
ϵ→0+

dϵ(⌊tϵ + bwϵ⌋) = 0,

where dϵ(t) = dTV (Xϵ
t , X

ϵ
∞) for any t ≥ p.

Roughly speaking, the argument of the proof consists of fairly intricate calculations

of the distributions of Xϵ
t , t ≥ p and its limiting distribution Xϵ

∞ whose distributions

are Gaussian. Then the cut-off phenomenon is proved from a refined analysis of their

means and variances and “explicit calculations and bounds” for the total variation

distance between Gaussian distributions. This analysis also provides a mild case

where the cut-off phenomenon does not occur.

Remark 3 Notice that sup
t≥0

|vt| < +∞ and lim sup
t→+∞

|vt| < +∞ are actually equivalent.

However, lim inf
t→+∞

|vt| > 0 does not always imply inf
t≥0

|vt| > 0.

Remark 4 Roughly speaking, the number r corresponds to the absolute value of some

roots of (2.3) and l is related to their multiplicities.
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Remark 5 Under the conditions of Theorem 2, the total variation distance between

the distribution of Xϵ
t and its limiting distribution Xϵ

∞ changes abruptly from one to

zero in a time window wϵ of constant order around the cut-off time tϵ of logarithmic

order in ϵ.

We introduce the definition of maximal set. We say that a set A ⊂ Rp is a

maximal set that satisfies the property P if and only if any set B ⊂ Rd that satisfies

the property P is a subset of A.

In the case when all the roots of (2.3) are real numbers we will see in Lemma 9 that

there exists a maximal set C ⊂ Rp such that any initial condition x := (x0, . . . , xp−1) ∈

C fulfills Condition i), Condition ii) and Condition iii) of Theorem 2. Moreover, C has

full measure with respect to the Lebesgue measure on Rp. If we only assume (H) and

no further assumptions, we will see in Corollary 13 that Condition iii) of Theorem 2

may not hold. We conjecture that cut-off phenomenon does not hold when condition

iii) fails.

Remark 6 If (H) does not hold, then it is not hard to prove that the variance of

Xϵ
t tends to +∞ as t → +∞. As a consequence, the random linear recurrence (2.2)

does not converge in distribution. Therefore the cut-off phenomenon problem is not

well-posed.

2.2 Proof

Observe that for any t ≥ p, Xϵ
t has Gaussian distribution with mean xt and variance

σ2(t, ϵ, x0, . . . , xp−1) ∈ (0,+∞). By Lemma 26 in Appendix A, under assumption

(H), we obtain σ2(t, ϵ, x0, . . . , xp−1) = ϵ2σ2
t , where σ2

t ∈ [1,+∞) and it does not

depend on the initial conditions x0, x1, . . . , xp−1.

The following lemma asserts that the random dynamics (2.2) is strongly ergodic

when (H) holds.

Lemma 7 Assume that (H) holds. As t goes to infinity, Xϵ
t converges in the total

variation distance to a random variable Xϵ
∞ that has Gaussian distribution with zero

mean and variance ϵ2σ2
∞ ∈ [ϵ2,+∞).
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For the sake of brevity, the proof of the last lemma is given in Lemma 27 in Appendix

A. Recall that

dϵ(t) = dTV

(︁
N (xt, ϵ

2σ2
t ),N (0, ϵ2σ2

∞)
)︁

for any t ≥ p.

In order to analyze the cut-off phenomenon for the distance dϵ(t), for the convenience

of computations we first study another distance, as the following lemma states.

Lemma 8 For any t ≥ p we have

|dϵ(t)−Dϵ(t)| ≤ R(t)

where

Dϵ(t) = dTV

(︃
N
(︃

xt

ϵσ∞
, 1

)︃
,N (0, 1)

)︃
and

R(t) = dTV(N (0, σ2
t ),N (0, σ2

∞)).

Proof. Notice that the expressions dϵ(t) and Dϵ(t) depend on the parameter ϵ and

the initial conditions x0, x1, . . . , xp−1. Nevertheless, the term R(t) does not depend on

ϵ and on the initial conditions x0, x1, . . . , xp−1. Let t ≥ p. By the triangle inequality

we obtain

dϵ(t) ≤ dTV

(︁
N (xt, ϵ

2σ2
t ),N (xt, ϵ

2σ2
∞)
)︁
+ dTV

(︁
N (xt, ϵ

2σ2
∞),N (0, ϵ2σ2

∞)
)︁
.

By i) and ii) of Lemma 28 we have

dϵ(t) ≤ R(t) +Dϵ(t).

On the other hand, by ii) of Lemma 28 we notice

Dϵ(t) = dTV

(︁
N (xt, ϵ

2σ2
∞),N (0, ϵ2σ2

∞)
)︁
.

By the triangle inequality we obtain

Dϵ(t) ≤ dTV

(︁
N (xt, ϵ

2σ2
∞),N (xt, ϵ

2σ2
t )
)︁
+ dTV

(︁
N (xt, ϵ

2σ2
t ),N (0, ϵ2σ2

∞)
)︁
.

Again, by i) and ii) of Lemma 28 we have

Dϵ(t) ≤ R(t) + dϵ(t).
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Gluing all pieces together we deduce

|dϵ(t)−Dϵ(t)| ≤ R(t) for any t ≥ p.

Now, we have all the tools to prove Theorem 2.

Proof of Theorem 2. By Lemma 7 and Lemma 31 we have

lim
t→+∞

R(t) = 0.

In order to analyze Dϵ(t) we observe that

xt

ϵσ∞
=

tl−1rt

ϵσ∞

(︂ xt

tl−1rt
− vt

)︂
+

tl−1rt

ϵσ∞
vt, (2.4)

where l ∈ {1, . . . , p}, r ∈ (0, 1), and vt are given by Condition i). By Lemma 34 in

Appendix D we have

lim
ϵ→0+

(tϵ)l−1rt
ϵ

ϵ
= 1.

For any t ≥ 0, define pt =
tl−1rt

ϵσ∞

(︁
xt

tl−1rt
− vt

)︁
and qt =

tl−1rt

ϵσ∞
vt. Then for any b ∈ R we

have

|p⌊tϵ+bwϵ⌋| ≤
(︃
tϵ + bwϵ

tϵ

)︃l−1
(tϵ)l−1rt

ϵ+bwϵ−1

ϵσ∞
×⃓⃓⃓⃓

x⌊tϵ+bwϵ⌋

(⌊tϵ + bwϵ⌋)l−1r⌊tϵ+bwϵ⌋ − v⌊tϵ+bwϵ⌋

⃓⃓⃓⃓
.

By Condition i) we have

lim
ϵ→0+

p⌊tϵ+bwϵ⌋ = 0 for any b ∈ R. (2.5)

Now, we analyze an upper bound for |q⌊tϵ+bwϵ⌋|. Notice that

|q⌊tϵ+bwϵ⌋| ≤
(︃
tϵ + bwϵ

tϵ

)︃l−1
(tϵ)l−1rt

ϵ+bwϵ−1

ϵσ∞
M,

where M = sup
t≥0

|vt|. By Condition ii) we know M < +∞. Then

lim sup
ϵ→0+

|q⌊tϵ+bwϵ⌋| ≤
MrbC−1

σ∞
for any b ∈ R. (2.6)

From equality (2.4), relation (2.5), inequality (2.6) and ii) of Lemma 33 we have

lim sup
ϵ→0+

|x⌊tϵ+bwϵ⌋|
ϵσ∞

≤ MrbC−1

σ∞
for any b ∈ R.
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Using i) of Lemma 32 we have

lim sup
ϵ→0+

dTV

(︃
N
(︃
|x⌊tϵ+bwϵ⌋|

ϵσ∞
, 1

)︃
,N (0, 1)

)︃
≤

dTV

(︃
N
(︃
MrbC−1

σ∞
, 1

)︃
,N (0, 1)

)︃
for any b ∈ R. Since r ∈ (0, 1), by Lemma 31 we have

lim
b→+∞

lim sup
ϵ→0+

dTV

(︃
N
(︃
|x⌊tϵ+bwϵ⌋|

ϵσ∞
, 1

)︃
,N (0, 1)

)︃
= 0. (2.7)

In order to analyze a lower bound for |q⌊tϵ+bwϵ⌋|, note

|q⌊tϵ+bwϵ⌋| ≥
(︃
tϵ + bwϵ − 1

tϵ

)︃l−1
(tϵ)l−1rt

ϵ+bwϵ

ϵσ∞
|v⌊tϵ+bwϵ⌋|

for any b ∈ R. By Condition iii) and iii) of Lemma 33 we have

lim inf
ϵ→0+

|q⌊tϵ+bwϵ⌋| ≥
rbC

σ∞
lim inf
ϵ→0+

|v⌊tϵ+bwϵ⌋| ≥
mrbC

σ∞
, (2.8)

where m = lim inf
t→+∞

|vt| ∈ (0,+∞). From equality (2.4), relation (2.5), inequality (2.8)

and ii) of Lemma 33 we have

lim inf
ϵ→0+

|x⌊tϵ+bwϵ⌋|
ϵσ∞

≥ mrbC

σ∞
for any b ∈ R.

From ii) of Lemma 32 we have

lim inf
ϵ→0+

dTV

(︃
N
(︃
|x⌊tϵ+bwϵ⌋|

ϵσ∞
, 1

)︃
,N (0, 1)

)︃
≥

dTV

(︃
N
(︃
rbC

σ∞
m, 1

)︃
,N (0, 1)

)︃
for any b ∈ R. Since r ∈ (0, 1), by iii) Lemma 29 we have

lim
b→−∞

lim inf
ϵ→0+

dTV

(︃
N
(︃
|x⌊tϵ+bwϵ⌋|

ϵσ∞
, 1

)︃
,N (0, 1)

)︃
= 1. (2.9)

From (2.7) and (2.9) we have

lim
b→+∞

lim sup
ϵ→0+

Dϵ(⌊tϵ + bwϵ⌋) = 0 and lim
b→−∞

lim inf
ϵ→0+

Dϵ(⌊tϵ + bwϵ⌋) = 1.

Recall that lim
t→+∞

R(t) = 0. By Lemma 8 and i) of Lemma 33 we obtain

lim sup
ϵ→0+

dϵ(⌊tϵ + bwϵ⌋) ≤ lim sup
ϵ→0+

Dϵ(⌊tϵ + bwϵ⌋).
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Now, sending b → +∞ we have

lim
b→+∞

lim sup
ϵ→0+

dϵ(⌊tϵ + bwϵ⌋) = 0.

Similarly, by Lemma 8 and ii) of Lemma 33 we obtain

lim inf
ϵ→0+

Dϵ(⌊tϵ + bwϵ⌋) ≤ lim inf
ϵ→0+

dϵ(⌊tϵ + bwϵ⌋).

Now, sending b → −∞ we have

lim
b→−∞

lim inf
ϵ→0+

dϵ(⌊tϵ + bwϵ⌋) = 1.

Now, we provide a precise estimate of the rate of the convergence to zero of (2.1).

Let us recall some well-known facts about p-linear recurrences. By the celebrated

Fundamental Theorem of Algebra we have at most p roots in the complex numbers

for (2.3). Denote by λ1, . . . , λq ∈ C the different roots of (2.3) with multiplicity

m1, . . . ,mq respectively, where 1 ≤ q ≤ p. Then

xt =

m1∑︂
j1=1

c1,j1t
j1−1λt

1 +

m2∑︂
j2=1

c2,j2t
j2−1λt

2 + . . .+

mq∑︂
jq=1

cq,jqt
jq−1λt

q (2.10)

for any t ∈ N0, where the coefficients c1,1, . . . , c1,m1 , . . . , cq,1, . . . , cq,mq are uniquely

obtained from the initial conditions x0, . . . , xp−1 (see Theorem 1 in [36] for more

details). Moreover, for any initial conditions (x0, . . . , xp−1) ∈ Rp \ {0p} we have

(c1,1, . . . , c1,m1 , . . . , cq,1, . . . , cq,mq) ∈ Cp \ {0p}.

Notice that the right-hand side of (2.10) may have complex numbers. When all the

roots of (2.3) are real numbers we can establish the precise exponential behavior of

xt as t goes by.

Lemma 9 (Real roots) Assume that all the roots of (2.3) are real numbers. Then

there exists a non-empty maximal set C ⊂ Rp that satisfies the following: for any

x = (x0, . . . , xp−1) ∈ C there exist r := r(x) > 0, l := l(x) ∈ {1, . . . , p} and vt :=

v(t, x) ∈ R such that

lim
t→+∞

⃓⃓⃓ xt

tl−1rt
− vt

⃓⃓⃓
= 0.

Moreover, we have sup
t≥0

|vt| < +∞ and lim inf
t→+∞

|vt| > 0.
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Proof. Recall that the constants c1,1, . . . , c1,m1 , . . . , cq,1, . . . , cq,mq in representation

(2.10) depend on the initial conditions x0, x1, . . . , xp−1. In order to avoid technicalities,

without loss of generality we assume that for each 1 ≤ j ≤ q there exists at least

one 1 ≤ k ≤ mj such that cj,jk ̸= 0. If the last assumption is not true for some

1 ≤ j ≤ q, then the root λj does not appear in representation (2.10) for an specific

initial conditions x0, x1, . . . , xp−1, then we can remove it from representation (2.10)

and apply the method described below.

Denote by r = max
1≤j≤q

|λj| > 0. Since all the roots of (2.3) are real numbers, after

multiplicity at most two roots of (2.3) have the same absolute value. The function

sign(·) is defined over the domain R\{0} by sign(x) = x/|x|. Only one of the following

cases can occur.

i) There exists a unique 1 ≤ j ≤ q such that |λj| = r. Let

l = max{1 ≤ s ≤ mj : cj,s ̸= 0}.

Then

lim
t→+∞

⃓⃓⃓ xt

tl−1rt
− cj,l(sign(λj))

t
⃓⃓⃓
= 0.

In this case C = Rp \ {0p}.

ii) There exist 1 ≤ j < k ≤ q such that |λj| = |λk| = r. Without loss of generality,

we can assume 0 < λk = −λj. Let

lj = max{1 ≤ s ≤ mj : cj,s ̸= 0}

and

lk = max{1 ≤ s ≤ mk : ck,s ̸= 0}.

If lj < lk or lk < lj then by taking l = max{lj, lk} we have

lim
t→+∞

⃓⃓⃓ xt

tl−1rt
− c⋆,l(sign(λ⋆))

t
⃓⃓⃓
= 0,

where ⋆ = j if lj = l and ⋆ = k if lk = l. In this case C = Rp \ {0p}. If lj = lk

then by taking l = lj, vt = (−1)tcj,l + ck,l we have

lim
t→+∞

⃓⃓⃓ xt

tl−1rt
− vt

⃓⃓⃓
= 0.
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Notice that sup
t≥0

|vt| < +∞. By taking

C = {(x0, . . . , xp−1) ∈ Rp : −cj,l + ck,l ̸= 0 and cj,l + ck,l ̸= 0}

we have lim inf
t→+∞

|vt| > 0.

Remark 10 From the proof of Lemma 9, we can state precisely C. Moreover, C has

full measure with respect to the Lebesgue measure on Rp.

Rather than the real roots case, the following lemma provides a fine estimate about

the behavior of (2.1) as t increases in general setting.

Lemma 11 (General case) For any x = (x0, . . . , xp−1) ∈ Rp \ {0p} there exist

r := r(x) > 0, l := l(x) ∈ {1, . . . , p} and vt := v(t, x) ∈ R such that

lim
t→+∞

⃓⃓⃓ xt

tl−1rt
− vt

⃓⃓⃓
= 0,

where

vt =
m∑︂
j=1

(αj cos(2πθjt) + βj sin(2πθjt))

with (αj, βj) := (αj(x), βj(x)) ∈ R2 \ {(0, 0)}, m := m(x) ∈ {1, . . . , p}, and θj :=

θ(x) ∈ [0, 1) for any j ∈ {1, . . . ,m}. Moreover, sup
t≥0

|vt| < +∞.

Proof. From (2.10) we have for any t ∈ N0

xt =

m1∑︂
j1=1

c1,j1t
j1−1λt

1 +

m2∑︂
j2=1

c2,j2t
j2−1λt

2 + . . .+

mq∑︂
jq=1

cq,jqt
jq−1λt

q.

Without loss of generality we assume that for any k ∈ {1, . . . , q} there exists j ∈

{1, . . . ,mk} such that ck,j ̸= 0. Let lk := max{1 ≤ j ≤ mk : ck,j ̸= 0}. Then xt can

be rewritten as

xt =

l1∑︂
j1=1

c1,j1t
j1−1λt

1 +

l2∑︂
j2=1

c2,j2t
j2−1λt

2 + . . .+

lq∑︂
jq=1

cq,jqt
jq−1λt

q,

where ck,lk ̸= 0 for each k. For each k let rk := ∥λk∥ be its complex modulus. Without

loss of generality we assume:
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i) r1 ≤ · · · ≤ rq,

ii) there exists an integer h̃ such that rh̃ = · · · = rq,

iii) lh̃ ≤ · · · ≤ lq,

iv) there exists an integer h ≥ h̃ such that lh = · · · = lq.

Let r := rq and l := lq. By taking vt = r−t(ch,lλ
t
h + · · ·+ cq,lλ

t
q) we have

lim
t→+∞

⃓⃓⃓ xt

tl−1rt
− vt

⃓⃓⃓
= 0,

where λh, . . . , λq have the same modulus r, but they have different arguments θj ∈

[0, 1). Then

vt =

q∑︂
j=h

(αj cos(2πθjt) + βj sin(2πθjt)) .

Since ck,lk ̸= 0 for each h ≤ k ≤ q, αj and βj are not both zero for any h ≤ j ≤ q.

After relabelling we have the desired result.

Remark 12 Under no further conditions on Lemma 11, we cannot guarantee that

lim inf
t→+∞

|vt| > 0. For instance, the following corollary provides sufficient conditions for

which lim inf
t→+∞

|vt| = 0.

Following [40], the numbers ϑ1, . . . , ϑm are rationally independent if

k1ϑ1 + . . .+ kmϑm /∈ Z for any (k1, . . . , km) ∈ Zm \ {0m}.

Corollary 13 Assume that θ1, . . . , θm are rationally independent. Then lim inf
t→+∞

|vt| =

0.

Proof. For any j ∈ {1, . . . ,m} notice that dj :=
√︂

α2
j + β2

j > 0, and let cos(γj) =

αj/dj and sin(γj) = βj/dj. Then vt can be rewritten as

vt =
m∑︂
j=1

dj cos(2πθjt− γj).

Let γ = −( γ1
2π
, . . . , γm

2π
) be in the m-dimensional torus (R/Z)m. Then the set {(γ +

(θ1t, . . . , θmt)) ∈ (R/Z)m, t ∈ N} is dense in (R/Z)m (see Corollary 4.2.3 in [40] for

more detials). Consequently, lim inf
t→+∞

|vt| = 0.
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2.3 Example

In this section, we consider the celebrated Brownian oscillator

mẍt + γẋt + κxt = ϵẆ t for any t ≥ 0, (2.11)

where xt denotes the position at time t of the holding mass m with respect to its

equilibrium position, γ > 0 denotes the damping constant, κ > 0 denotes the restora-

tion constant (Hooke’s constant) and (Wt : t ≥ 0) is a Brownian motion. For each

initial displacement from the equilibrium position x0 = u and initial velocity ẋ0 = v

we have a unique solution of (2.11). For further details, see Chapter 8 in [4].

Without loss of generality, we can assume that the mass m is one. Using the

classical forward difference approximation with the step size h > 0 (fixed), we obtain

1

h2
(x(n+2)h − 2x(n+1)h + xnh) +

γ

h
(x(n+1)h − xnh) + κxnh =

ϵ

h
(B(n+3)h −B(n+2)h)

for any n ∈ N0 with the initial condition x0 = u and xh = x0 + ẋ0h = u + vh. For

consistency, let Xt = xth for any t ∈ N0. The latter can be rewritten as

Xϵ
t+2 = (2− γh)Xϵ

t+1 −
(︁
1− γh+ κh2

)︁
Xϵ

t + ϵh(B(t+3)h −B(t+2)h) (2.12)

for any t ∈ N0. Notice that the sequence (B(t+3)h−B(t+2)h : t ∈ N0) are i.i.d. random

variables with Gaussian distribution with zero mean and variance h. Therefore

Xϵ
t+2 = (2− γh)Xϵ

t+1 −
(︁
1− γh+ κh2

)︁
Xϵ

t + ϵh
3/2ξt+2 for any t ∈ N0,

where (ξt+2 : t ∈ N0) is a sequence of i.i.d. random variables with standard Gaussian

distribution. This is exactly a linear recurrence of degree 2 with control sequence

(ϵh3/2ξt+2 : t ∈ N0), and its characteristic polynomial is given by

λ2 + (γh− 2)λ+ (1− γh+ κh2). (2.13)

To fulfill assumption (H) we deduce the following conditions.

i) If γ2 − 4κ > 0, then polynomial (2.13) has two distinct real roots. In this case

a sufficient condition to verify (H) is h ∈ (0, 2/γ).

ii) If γ2 − 4κ = 0, then polynomial (2.13) has two repeated real roots. In this case

(H) is equivalent to h ∈ (0, γ/κ).
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iii) If γ2−4κ < 0, then polynomial (2.13) has two complex conjugate roots. In this

case (H) is equivalent to h ∈ (0, γ/κ).

In other words, there exists h∗ ∈ (0, 1) such that for each h ∈ (0, h∗) the characteristic

polynomial (2.13) satisfies assumption (H). From here to the end of this section, we

assume that h ∈ (0, h∗).

Now, we compute r, l, vt and C which appear in Lemma 9. Let λ1 and λ2 be roots

of (2.13). Denote r1 = ∥λ1∥ and r2 = ∥λ2∥. Recall the function sign(·) is defined over

the domain R \ {0} by sign(x) = x/|x|. We assume that (x0, x1) ̸= (0, 0). We analyze

as far as possible when the conditions of Theorem 2 are fulfilled for the model (2.12).

i) Real roots with different absolute values. λ1 and λ2 are real and r1 ̸= r2.

In this case,

xt = c1λ
t
1 + c2λ

t
2 for any t ∈ N0,

where c1 and c2 are real constants determined by initial conditions x0, x1. Since

(x0, x1) ̸= (0, 0), we have (c1, c2) ̸= (0, 0). Without loss of generality assume

that r1 > r2.

i.1) If c1 ̸= 0 then

lim
t→+∞

⃓⃓⃓⃓
xt

rt1
− c1(sign(λ1))

t

⃓⃓⃓⃓
= 0.

i.2) If c1 = 0 then c2 ̸= 0. Therefore

lim
t→+∞

⃓⃓⃓⃓
xt

rt2
− c2(sign(λ2))

t

⃓⃓⃓⃓
= 0.

Consequently, C = R2 \ {(0, 0)}.

ii) Real roots with the same absolute value. λ1 and λ2 are real and r := r1 =

r2.

ii.1) If λ1 = λ2 = rsign(λ1) then

xt = c1r
t(sign(λ1))

t + c2tr
t(sign(λ1))

t for any t ∈ N0,

where c1 and c2 are real constants determined by initial conditions x0, x1.

Since (x0, x1) ̸= (0, 0), we have (c1, c2) ̸= (0, 0). The following cases are

analyzed.
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ii.1.1) If c2 ̸= 0 then

lim
t→+∞

⃓⃓⃓ xt

trt
− c2(sign(λ1))

t
⃓⃓⃓
= 0.

ii.1.2) If c2 = 0 then c1 ̸= 0. Therefore

lim
t→+∞

⃓⃓⃓xt

rt
− c1(sign(λ1))

t
⃓⃓⃓
= 0.

Consequently, C = R2 \ {(0, 0)}.

ii.2) If λ1 ̸= λ2 then

xt = c1r
t + c2(−r)t for any t ∈ N0,

where c1 and c2 are real constants determined by initial conditions x0, x1.

Therefore

lim
t→+∞

⃓⃓⃓xt

rt
− (c1 + c2(−1)t)

⃓⃓⃓
= 0.

Consequently,

C ={(x0, x1) ∈ R2 : c1 + c2 ̸= 0 and c1 − c2 ̸= 0}

={(x0, x1) ∈ R2 : x0 ̸= 0 and x1 ̸= 0}.

iii) Complex conjugate roots. Since the coefficients of the characteristic poly-

nomial are real, if λ is a root of the polynomial, then conjugate λ is also a

root. We can assume that λ1 = rei2πθ and λ2 = re−i2πθ with r ∈ (0, 1) and

θ ∈ (0, 1) \ {1/2}. In this setting

xt = c1r
t cos(2πθt) + c2r

t sin(2πθt) for any t ∈ N0,

where c1 and c2 are real constants determined by initial conditions x0, x1. Thus

lim
t→+∞

⃓⃓⃓xt

rt
− (c1 cos(2πθt) + c2 sin(2πθt))

⃓⃓⃓
= 0.

Since (x0, x1) ̸= (0, 0), we have (c1, c2) ̸= (0, 0). Let c =
√︁
c21 + c22 and define γ

satisfying cos(γ) = c1/c and sin(γ) = c2/c. Consequently,

vt := c1 cos(2πθt) + c2 sin(2πθt) = c cos(2πθt− γ) for any t ∈ N0.

Observe that γ depends on the initial conditions x0 and x1. Let us analyze

under which conditions on x0 and x1 we have lim inf
t→+∞

|vt| > 0.
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iii.1) If θ is a rational number then the sequence (cos(2πθt − γ), t ∈ N0) takes

finite number of values. Notice that there exists t0 ∈ N0 such that 2πθt0−

γ = π/2 + kπ for some k ∈ Z, if and only if cos(2πθt0 − γ) = 0. Therefore,

lim inf
t→+∞

|vt| > 0 if and only if

C = {(x0, x1) ∈ R2 : 2πθt− γ ̸= π

2
+ kπ for any t ∈ N0, k ∈ Z}.

iii.2) If θ is an irrational number, then by Corollary 4.2.3 in [40] the set {(θt−
γ/2π) ∈ R/Z : t ∈ N0} is dense in the circle R/Z. Consequently, the set

{cos(2πθt− γ) : t ∈ N0} is dense in [−1, 1].

Therefore, for any γ we have lim inf
t→+∞

|vt| = 0, which implies C = ∅.

2.4 Summary

To our knowledge, there is no general theory about the existence of the cut-off phe-

nomenon in the discrete system with a small noise perturbation. Even for the finite

Markov chains, Diaconis presented that drunkard’s walk does not show the cut-off

phenomenon. The meticulous analysis is necessary for the random linear recurrence

(2.2), which depends on its p-string past.

Like the famous shuffle model, when the intensity of the small noise perturbation ϵ

is fixed, under the assumptions in Theorem 2, we provide the large enough iteration

number after which Xϵ
t is close enough to Xϵ

∞, which is tϵ = O (ln (ϵ−1)) . Meanwhile,

this cut-off time can be obtained for the discretization of the pth order system with

a small noise perturbation. We only need a sufficient condition, which is

lim inf
t→+∞

|vt(x)| > 0, where lim
t→+∞

⃓⃓⃓ xt

tl−1rt
− vt

⃓⃓⃓
= 0

and r is the spectral radius of its characteristic equation. Thus, in the pth order

system with a small noise perturbation, we can find an appropriate truncation time

to improve iterative efficiency when we simulate its stationary distribution.
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Chapter 3

The evolution of the Langevin
equation through multiple time
scales

The Langevin equation reveals the motion of a Brownian particle (position x) in a

fluid with much smaller particles. The following shows the equation under Newton’s

second law,

mẍt = −∇V (xt)− γẋt +
√
2DẆ t, in Rd for t ≥ 0 (3.1)

where m is the mass of the Brownian particle, V (x) is the potential energy function,

γẋ is the frictional force and
√
2DẆ t is the thermal noise. The Brownian motion Wt

introduced by Einstein in 1905 describes stochastic fluctuations. Moreover, because

of the fluctuation-dissipation theorem [41, 42], the coefficients in (3.1) satisfy

D = γκBTabs,

where κB is Boltzmann’s constant and Tabs is the absolute temperature.

By denoting β−1 = κBTabs and setting m = 1, (3.1) can be written as

ẍt = −∇V (xt)− γẋt +
√︁

2γβ−1Ẇ t, (3.2)

where γ > 0 and β > 0. Introducing the momentum yt = ẋt, we can rewrite the

Langevin equation (3.2) in the phase space representation,⎧⎨⎩ dxt = ytdt,

dyt = (−∇V (xt)− γyt) dt+
√︁

2γβ−1dWt.
(3.3)
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Also, let (x0, y0)
T ∈ R2d be the initial condition. In order to represent the long time

behavior of system (3.3), we focus on its invariant measure whose definition is as

follows:

Definition 14 Let Xt be a Markov process with Markov semigroup Pt. A probability

measure µ is invariant under Xt if and only if

P ∗
t µ = µ,

where P ∗
t is the corresponding adjoint semigroup.

Therefore, when the initial conditionX0 is distributed according to µ, the distribution

measure of Xt is µ for each t.

When V (x) is a smooth confining function [13],

lim
|x|→+∞

V (x) = +∞ and e−βV (x) ∈ L1
(︁
Rd
)︁
for β ∈ R+,

(3.3) has a unique invariant measure whose distribution is called Gibbs distribution.

The density of the measure is

ρβ(x, y) = Z−1e−βH(x,y), (3.4)

where the corresponding Hamiltonian is

H(x, y) =
1

2
y2 + V (x)

and the normalization factor is

Z =

∫︂
R2d

e−βH(x,y)dxdy,

(see Proposition 6.1 in [13] for more details). For a fixed damping coefficient γ, the

solution of (3.3) converges to its invariant measure in distribution. We call this type

of convergence as the time limiting behavior.

The perturbation theory, as another perspective, can be applied to analyze the

limiting behavior of the Langevin equation in terms of the parameter γ on a finite

time interval [0, T ]. This convergence type is called the perturbation limiting behavior.

In general, two limit regimes are established by γ, which are the overdamped case

(γ ≫ 1) and the underdamped case (γ ≪ 1).
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In the overdamped case, the damping coefficient tends to infinity. In order to

characterize the perturbation limiting behavior, we choose the time scale τ = γt. Let

xγ(t) = x(γt). Then the Langevin equation (3.2) can be written as

γ−2ẍγ
t = −∇V (xγ

t )− ẋγ
t +

√︁
2β−1Wt

̇ .

Roughly speaking, when γ → ∞, the second order term vanishes, resulting in the

following Smoluchowski stochastic differential

ẋS
t = −∇V (xS

t ) +
√︁
2β−1Wt

̇ .

In fact, one can prove rigorously that when E|ẋγ
t |2 ≤ C(︂

E
⃓⃓
xγ
t − xS

t

⃓⃓2)︂ 1
2 ≤ Cγ−1,

where xγ
τ and xS

τ have the same initial conditions (see Section 6.5.1 in [13] for more

details). In literature xS
τ is called the Smoluchowski limit of xγ

τ .

In the underdamped case, the damping coefficient tends to zero. Set ϵ = γ to

emphasize that the parameter is small and to distinguish it from the overdamped

case. Then (3.3) can be written as⎧⎨⎩ dxϵ
t = yϵtdt,

dyϵt = (−∇V (xϵ
t)− ϵyϵt) dt+

√︁
2ϵβ−1dWt.

(3.5)

The corresponding Hamiltonian system is⎧⎨⎩ dx0
t = y0t dt,

dy0t = −∇V (x0
t )dt.

By [5, Theorem 1.3], for any T > 0 and δ > 0

lim
ϵ→0

P

⎧⎨⎩max
t∈[0,T ]

⃓⃓⃓⃓
⃓⃓
⎛⎝xϵ

t

yϵt

⎞⎠−

⎛⎝x0
t

y0t

⎞⎠⃓⃓⃓⃓⃓⃓ > δ

⎫⎬⎭ = 0. (3.6)

The solution of the corresponding Hamiltonian system is called the Freidlin-Wentzell

limit of the solution of (3.5).The perturbation limiting behavior describes that in a

fixed time interval [0, T ], the perturbed dynamical system tends to the unperturbed
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one when the perturbation tends to zero. The Smoluchowski limit is an Ornstein-

Uhlenbeck process, whose unique invariant measure has the density

ρβ(x) = Z−1e−βV (x),where Z =

∫︂
Rd

e−βV (x)dx. (3.7)

On one hand, we first let γ → ∞ in (3.3) to obtain its Smoluchowski limit, and then

set t → ∞ to find the invariant measure (3.7). On the other hand, when we first

let t → ∞, the solution of (3.3) will tend to the invariant measure (3.4). Although

(3.4) does not depend on the perturbation parameter γ, we can set γ → ∞. Then the

position variable xt will still tend to the invariant measure (3.7), which is the marginal

distribution of (3.4) on x. Thus, the two limits in terms of γ and t commute.

However, the above commutative property does not take place in the underdamped

case. On one hand, we first let ϵ → 0 to obtain its Freidlin-Wentzell limit, which only

has periodic solutions. On the other hand, similarly, the time limit (3.4) is reached

first. Since (3.4) is independent of ϵ, when set ϵ → 0, the solution of (3.3) will tend to

the invariant measure. Thus the time limiting process and the perturbation limiting

process cannot commutate with each other in the underdamped case. Thus we need

to establish a proper connection between those two limiting process. The following

question arises.

• Are there appropriate time scales to describe the evolution from the perturba-

tion limiting behavior to the time limiting behavior?

We can describe the underdamped Langevin dynamics more precisely if we have a

positive answer to the above question. When the solution is close to the Hamiltonian

system, the perturbation limiting behavior is only analyzed in finite time. In compar-

ison, the time limiting behavior indicates that the solution will tend to its invariant

measure after a long time. We want to find a critical time scale tcϵ in between. Any

time duration shorter than tcϵ is called the short time scale tsϵ . Up to tsϵ the solution is

restricted around a Hamiltonian. We denote tlϵ as a long time scale, which is longer

than tcϵ. After tlϵ the solution will eventually tend to the invariant measure (3.4).

Thus we expect the following results.
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Expected Results

i) There exists a short time scale tsϵ; such that when tϵ ≪ tsϵ,

lim
ϵ→0

d1

(︂(︁
xϵ
tϵ , y

ϵ
tϵ

)︁T
,
(︁
x0
tϵ , y

0
tϵ

)︁T)︂
= 0.

ii) There exists a long time scale tlϵ; such that when tϵ ≫ tlϵ,

lim
ϵ→0

d2

(︂(︁
xϵ
tϵ , y

ϵ
tϵ

)︁T
, (x∞, y∞)T

)︂
= 0,

where (x∞, y∞)T is a random variable with the density function ρβ.

Notice that we need to find suitable distances, d1 and d2, in order to describe the

limiting behaviors. For instance, in the short time scale,
(︁
x0
tϵ , y

0
tϵ

)︁T
is a point on the

deterministic Hamiltonian, and consequently the total variation distance between the

point and any distribution supported on R2d is equal to 1. Thus, the total variation

distance should not be chosen as d1.

3.1 Analysis of the one-dimensional harmonic os-

cillator with external noise

We start with a case, when d = 1 and V (x) = 1
2
kx2 (V ′(x) = kx is a linear function)

where k > 0 . This potential V is called the Harmonic Potential. Without loss of

generality, we set β = 2.

3.1.1 The explicit solution

(3.5) can be written as

d

⎛⎝xϵ
t

yϵt

⎞⎠ =

⎛⎝ 0 1

−k −ϵ

⎞⎠⎛⎝xϵ
t

yϵt

⎞⎠ dt+

⎛⎝ 0
√
ϵ

⎞⎠ dWt, (3.8)

where Wt is a one-dimensional Brownian motion. Note that this is a linear system.

The corresponding Hamiltonian system is

d

⎛⎝x0
t

y0t

⎞⎠ =

⎛⎝ 0 1

−k 0

⎞⎠⎛⎝x0
t

y0t

⎞⎠ dt.
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Set xϵ
0 = x0

0 = x0 and yϵ0 = y00 = y0, such that two systems have the same initial

conditions. Let

A :=

⎛⎝ 0 1

−k −ϵ

⎞⎠ , B :=

⎛⎝ 0
√
ϵ

⎞⎠ , Xϵ
t :=

⎛⎝xϵ
t

yϵt

⎞⎠ , and X0
t :=

⎛⎝x0
t

y0t

⎞⎠ .

By [43, (6.6)], we have

Xϵ
t = eAt

[︃
Xϵ

0 +

∫︂ t

0

e−AsB dWs

]︃
. (3.9)

Let mϵ
t and Σϵ

t be the mean and covariance matrix of Xϵ
t respectively. Since Xϵ

t is

the solution of a linear stochastic differential system, it is a Gaussian process and

Xϵ
t

D
= N (mϵ

t,Σ
ϵ
t).

Since ϵ2 ≪ 4k, the eigenvalues of A are

λ1 = − ϵ

2
+

√
4k − ϵ2

2
i and λ2 = − ϵ

2
−

√
4k − ϵ2

2
i,

which are complex conjugates. Set b := 1
2

√
4k − ϵ2. We compute mean and covariance

matrix of Xϵ
t as follows:

mϵ
t = eAtXϵ

0

=

[︃
e−

ϵ
2
t cos(bt) I+

1

b
e−

ϵ
2
t sin(bt)

(︂
A+

ϵ

2
I
)︂]︃⎛⎝x0

y0

⎞⎠
= e−

ϵ
2
t

⎛⎝ x0 cos(bt) +
1
b

(︁
ϵ
2
x0 + y0

)︁
sin(bt)

y0 cos(bt)− 1
b

(︁
kx0 +

ϵ
2
y0
)︁
sin(bt)

⎞⎠ , (3.10)

where I denotes the 2× 2 identity matrix. By [43, (6.14)],

Σϵ
t = eAt

[︃∫︂ t

0

e−AsB
(︁
e−AsB

)︁T
ds

]︃
eA

T t

= ϵ

∫︂ t

0

eA(t−s)

⎛⎝0 0

0 1

⎞⎠ eA
T (t−s) ds

= ϵ

∫︂ t

0

eAs

⎛⎝0 0

0 1

⎞⎠ eA
T s ds =:

⎛⎝σ1,1 σ1,2

σ2,1 σ2,2

⎞⎠ , (3.11)
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where

σ1,1 = ϵ

∫︂ t

0

e−ϵs 1

b2
sin2(bs) ds

=
e−ϵt

4b2 + ϵ2

[︃
2
(︁
eϵt − 1

)︁
− ϵ

sin(2bt)

b
− ϵ2

1− cos(2bt)

2b2

]︃
;

σ1,2 = σ2,1 = ϵ

∫︂ t

0

e−ϵs

[︃
1

b
sin(bs) cos(bs)− ϵ

2b2
sin2(bs)

]︃
ds

=
ϵe−ϵt

4b2 + ϵ2

[︃
1− cos(2bt) + ϵ2

1− cos(2bt)

4b2

]︃
;

σ2,2 = ϵ

∫︂ t

0

e−ϵs

[︃
cos2(bs)− ϵ

b
sin(bs) cos(bs) +

ϵ2

4b2
sin2(bs)

]︃
ds

=
e−ϵt

4b2 + ϵ2

[︃
2b2
(︁
eϵt − 1

)︁
+ ϵb sin(2bt) + ϵ2

cos(2bt) + eϵt − 2

2

+ϵ3
sin(2bt)

4b
+ ϵ4

1− cos(2bt)

8b2

]︃
.

Since Xϵ
0 is deterministic (Σϵ

0 = 0), Σϵ
t is independent of (x0, y0)

T .

On one hand, for any fixed ϵ, when t → ∞ we have

mϵ
t → 0 and Σϵ

t →

⎛⎝ 1
2k

0

0 1
2

⎞⎠ =: Σ.

Let Xϵ
∞ be the random variable whose distribution is N (0,Σ). Then Xϵ

∞ is the limit

of Xϵ
t in distribution. We known that the density of the unique invariant measure of

(3.8) is

ρ2(x, y) = Z−1e−2( 1
2
y2+ 1

2
kx2) = Z−1e−y2−kx2

, (3.12)

which is exactly N (0,Σ). Since Xϵ
∞ does not depend on ϵ, we denote X∞ as Xϵ

∞ for

simplicity.

On the other hand, for any fixed t, we let ϵ → 0 to find

mϵ
t →

⎛⎝x0 cos
(︂√

kt
)︂
+ 1√

k
y0 sin

(︂√
kt
)︂

y0 cos
(︂√

kt
)︂
−
√
kx0 sin

(︂√
kt
)︂
⎞⎠ = X0

t and Σϵ
t → 0. (3.13)

Thus the mean of Xϵ
t converges to the solution of the corresponding Hamiltonian

solution for any t. Meanwhile, there is no variation of the limit of Xϵ
t . Roughly

speaking, Xϵ
t tends to the Hamiltonian solution X0

t as ϵ tends to zero, which is the

perturbation limiting behavior.
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3.1.2 Multi-scale behaviors

We first analyze the mean mϵ
t. Notice that e−

ϵ
2
t controls the value of mϵ

t in (3.10).

Thus we use its exponent to classify different time scales. There three time scales as

follows:

1) Let tϵ ≪ 1
ϵ
. When ϵ → 0, we have

ϵtϵ → 0, b =
1

2

√
4k − ϵ2 →

√
k and btϵ −

√
ktϵ → 0,

and hence,

mϵ
tϵ = e−

ϵ
2
tϵ

⎛⎝ x0 cos(btϵ) +
1
b

(︁
ϵ
2
x0 + y0

)︁
sin(btϵ)

y0 cos(btϵ)− 1
b

(︁
kx0 +

ϵ
2
y0
)︁
sin(btϵ)

⎞⎠
→

⎛⎝x0 cos(
√
ktϵ) +

1√
k
y0 sin(

√
ktϵ)

y0 cos(
√
ktϵ)−

√
kx0 sin(

√
ktϵ)

⎞⎠ = X0
tϵ ,

which is equal to the solution of the Hamiltonian system at time tϵ.

2) Let tϵ =
θ
ϵ
. When ϵ → 0,

ϵtϵ → θ and btϵ −
√︃

ktϵ
2 − θ2

4
→ 0,

resulting in

mϵ
tϵ → e−

θ
2

⎛⎜⎜⎝x0 cos

(︃√︂
ktϵ

2 − θ2

4

)︃
+ 1√

k
y0 sin

(︃√︂
ktϵ

2 − θ2

4

)︃
y0 cos

(︃√︂
ktϵ

2 − θ2

4

)︃
−
√
kx0 sin

(︃√︂
ktϵ

2 − θ2

4

)︃
⎞⎟⎟⎠ .

Although the limit is not exactly equal to e−
θ
2X0

tϵ , it is on the same Hamilto-

nian with the initial condition e−
θ
2X0

0 . Thus, we define a rotation map on the

Hamiltonian orbit Rotθ : R2 → R2 by setting

Rotθ
(︁
X0(t)

)︁
= X0

(︄√︃
t2 − θ2

4k

)︄
, (3.14)

when t ≥ θ
2
√
k
.

3) Let tϵ ≫ 1
ϵ
. Then ϵtϵ → ∞. Since the exponential multiplier tends to zero and

the vector multiplier is bounded, we have mϵ
tϵ → 0. Then the mean of Xϵ

tϵ has

already tended to the mean of its invariant measure.
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Next, we use the same time scales to analyze the covariance matrix Σϵ
t.

1) Let tϵ ≪ 1
ϵ
. Then we have

σ1,1(tϵ) =
e−ϵtϵ

4b2 + ϵ2

[︃
2
(︁
eϵtϵ − 1

)︁
− ϵ

sin(2btϵ)

b
− ϵ2

1− cos(2btϵ)

2b2

]︃
→ 2e−ϵtϵ (eϵtϵ − 1)

4k
→ 0,

σ1,2(tϵ) = σ2,1(tϵ) → 0 and σ2,2(tϵ) → 0,

as ϵ tends to zero. Since Σϵ
tϵ → 0, Xϵ

tϵ only depends on its mean value.

2) Let tϵ =
θ
ϵ
. When ϵ → 0,

σ1,1(tϵ) =
e−ϵtϵ

4b2 + ϵ2

[︃
2
(︁
eϵtϵ − 1

)︁
− ϵ

sin(2btϵ)

b
− ϵ2

1− cos(2btϵ)

2b2

]︃
→ 2e−ϵtϵ (eϵtϵ − 1)

4k
→ 1

2k

(︁
1− e−θ

)︁
,

σ1,2(tϵ) = σ2,1(tϵ) → 0 and σ2,2(tϵ) →
1

2

(︁
1− e−θ

)︁
,

Therefore Σϵ
tϵ → Σ ·

(︁
1− e−θ

)︁
, where Σ is the covariance matrix of X∞.

3) Let tϵ ≫ 1
ϵ
. Then ϵtϵ → ∞. Letting ϵ → 0 we obtain

σ1,1(tϵ) =
e−ϵtϵ

4b2 + ϵ2

[︃
2
(︁
eϵtϵ − 1

)︁
− ϵ

sin(2btϵ)

b
− ϵ2

1− cos(2btϵ)

2b2

]︃
→ 2e−ϵtϵ (eϵtϵ − 1)

4k
→ 1

2k
,

σ1,2(tϵ) = σ2,1(tϵ) → 0 and σ2,2(tϵ) →
1

2
,

i.e., Σϵ
tϵ → Σ. In this time scale the covariance matrix of Xϵ

tϵ has already tended

to the covariance matrix of its invariant measure.

3.1.3 Core Observations

In summary, the multi-scale behaviors of the mean and covariance matrix lead to the

following results:⎧⎪⎪⎪⎨⎪⎪⎪⎩
mϵ

tϵ −X0
tϵ

ϵ→0−−→ 0, Σϵ
tϵ

ϵ→0−−→ 0 tϵ ≪ 1
ϵ

(3.15)

mϵ
tϵ − Rotθ(X

0
tϵ) · e

− θ
2

ϵ→0−−→ 0, Σϵ
tϵ

ϵ→0−−→ Σ ·
(︁
1− e−θ

)︁
tϵ =

θ
ϵ

(3.16)

mϵ
tϵ

ϵ→0−−→ 0, Σϵ
tϵ

ϵ→0−−→ Σ tϵ ≫ 1
ϵ

(3.17)
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where Rotθ(·) is the rotation map given by (3.14).

When tϵ ≪ 1
ϵ
, the solution Xϵ

tϵ as a Gaussian process tends to the corresponding

Hamiltonian solution X0
tϵ . This time scale is named the short time scale, which is

denoted as tsϵ . When tϵ ≫ 1
ϵ
, Xϵ

tϵ has already tended to its stationary measure. Thus

we call this time scale the long time scale, denoted as tlϵ.

When tϵ =
θ
ϵ
, Xϵ

tϵ is transient from the Hamilton solution to the invariant measure.

Roughly speaking, the total energy has already decreased 1− e−θ times. Meanwhile

the solution starts to demonstrate a certain degree of variation which is 1− e−θ times

as large as the variation of the invariant measure.

3.1.4 The main result

In this section, we determine a proper distance to measure the difference among the

solution Xϵ
t , the corresponding Hamiltonian solution X0

t , and the invariant measure

X∞. To do so, we need to check whether the covariance matrix of Xϵ
t is singular.

Lemma 15 The distribution of Xϵ
t is absolutely continuous with respect to the Lebesgue

measure on R2 for t > 0.

Proof. By [43, Proposition 6.4], for the non-degeneracy, we need to fulfill the control-

lability of the pair of functions (A,B). Since A and B are constant matrices, by [43,

Proposition 6.5], we only need to verify that the controllability matrix C = (B,AB)

has full rank. Clearly,

rank(C) = rank

⎛⎝⎛⎝ 0
√
ϵ

√
ϵ −ϵ

√
ϵ

⎞⎠⎞⎠ = 2,when ϵ ̸= 0.

Since the distributions of Xϵ
t and X∞ are absolutely continuous with respect to

the Lebesgue measure on R2, we use the total variation distance to measure their

discrepancy. The following theorem describes how far away the solution Xϵ
t is from

its invariant measure X∞ in the different time scales by using the total variation

distance.

36



Theorem 16

i) If ϵtϵ ≪ 1, then

lim
ϵ→0

dTV

(︁
Xϵ

tϵ , X∞
)︁
= 1.

ii) If ϵtϵ = θ where θ ∈ R+, then there exists a constant c(x0, y0, θ) ∈ (0, 1) such

that

lim
ϵ→0

dTV

(︁
Xϵ

tϵ , X∞
)︁
= c.

iii) If ϵtϵ ≫ 1, then

lim
ϵ→0

dTV

(︁
Xϵ

tϵ , X∞
)︁
= 0.

Proof.

i) In (3.15) we know that when ϵ → 0,

Σϵ
tϵ → 0.

Therefore, we have by ii) of Lemma 29,

lim
ϵ→0

dTV

(︁
Xϵ

tϵ , X∞
)︁
= lim

ϵ→0
dTV

(︁
N
(︁
mϵ

tϵ ,Σ
ϵ
tϵ

)︁
,N (0,Σ)

)︁
= 1.

ii) Using iii) of Lemma 31 we can first standardize the stationary measure to obtain

dTV

(︁
Xϵ

tϵ , X∞
)︁
= dTV

(︁
N
(︁
mϵ

tϵ ,Σ
ϵ
tϵ

)︁
,N (0,Σ)

)︁
= dTV

(︂
N
(︂
Σ− 1

2mϵ
tϵ ,Σ

− 1
2Σϵ

tϵΣ
− 1

2

)︂
,N (0, I)

)︂
. (3.18)

(3.16) then yields

ϵtϵ = θ and Σ− 1
2Σϵ

tϵΣ
− 1

2 → (1− e−θ) I,

as ϵ → 0. It remains to deal with the mean of the first component in (3.18).
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We note that

lim
ϵ→0

⃓⃓⃓⃓⃓⃓
Σ− 1

2mϵ
tϵ

⃓⃓⃓⃓⃓⃓2
2

= lim
ϵ→0

e−ϵtϵ

⃓⃓⃓⃓
⃓⃓
⃓⃓⃓⃓
⃓⃓
⎛⎝√

2k 0

0
√
2

⎞⎠⎛⎝ x0 cos (btϵ) +
1
b

(︁
ϵ
2
x0 + y0

)︁
sin (btϵ)

y0 cos (btϵ)− 1
b

(︁
kx0 +

ϵ
2
y0
)︁
sin (btϵ)

⎞⎠⃓⃓⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
2

2

= lim
ϵ→0

e−ϵtϵ

[︄
2k

(︃
x0 cos (btϵ) +

1

b

(︂ ϵ
2
x0 + y0

)︂
sin (btϵ)

)︃2

+2

(︃
y0 cos (btϵ)−

1

b

(︂
kx0 +

ϵ

2
y0

)︂
sin (btϵ)

)︃2
]︄

= lim
ϵ→0

e−ϵtϵ

[︃
2kx2

0 cos
2 (btϵ) +

2k

b2
y20 sin

2 (btϵ) + 2y20 cos
2 (btϵ)

+
2k2

b2
x2
0 sin (btϵ) +O(ϵ)

]︃
=e−θ

[︂
2kx2

0

(︂
cos2

(︂√︁
ktϵ

2 − 4−1θ
)︂
+ sin2

(︂√︁
ktϵ

2 − 4−1θ
)︂)︂

+2y20

(︂
cos2

(︂√︁
ktϵ

2 − 4−1θ
)︂
+ sin2

(︂√︁
ktϵ

2 − 4−1θ
)︂)︂]︂

=2e−θ
(︁
kx2

0 + y20
)︁
.

Let Kθ :=
√
2e−

θ
2

√︁
kx2

0 + y20 > 0. Applying i) of Lemma 29 and Lemma 32, we

obtain the limit of the mean and the covariance respectively. Since θ > 0, we

have

lim
ϵ→0

dTV(X
ϵ
tϵ , X∞)

=dTV

⎛⎝N

⎛⎝⎛⎝Kθ

0

⎞⎠ ,
(︁
1− e−θ

)︁
I

⎞⎠ ,N (0, I)

⎞⎠ ∈ (0, 1).

iii) In (3.17) we obtain that

mϵ
tϵ → 0 and Σϵ

tϵ → Σ,

as ϵ → 0. Therefore, according to i) of Lemma 29, the limiting distance

lim
ϵ→0

dTV(X
ϵ
tϵ , X∞) = lim

ϵ→0
dTV(N (mϵ

tϵ ,Σ
ϵ
tϵ),N (0,Σ)) = 0.
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Before we move on, let us remark that Theorem 16’s part iii) gives an estimate

about the long time scale tlϵ where tlϵ ≫ ϵ−1. In this time scale, the distribution of

Xϵ
tϵ eventually tends to its invariant measure when ϵ → 0. In part ii), a portion

of the mass of the distribution of Xϵ
tϵ has been transferred to its invariant measure.

We denote this scenario as a transient state. We call tcϵ the critical time scale when

ϵtcϵ = θ. Part i) simply says that when tϵ ≪ ϵ−1 the solution is far from the invariant

measure.

Recall in the short time scale tsϵ , we have that Xϵ
tsϵ

tends to X0
tsϵ
. This limit is a

degenerate Gaussian distribution and the support of X∞ is R2. Consequently,

lim
ϵ→0

dTV(X
ϵ
tsϵ
, X∞) = 1.

Because of part i) our short time scale should be no longer than tϵ ≪ ϵ−1. In order to

verify whether tϵ ≪ ϵ−1 is the exact short time scale, it is necessary to compare the

solution Xϵ
t with the Hamilton solution X0

t . However, X0
t is a point mass for each t

and the support of Xϵ
t is R2. Similarly,

dTV(X
ϵ
t , X

0
t ) ≡ 1 for any t ∈ R+.

Therefore the total variation distance does not properly describe the discrepancy

between Xϵ
t and X0

t . We start to use the type of the law of large numbers in order

to describe the convergence in the short time scale as follows:

Theorem 17 (Law of Large Numbers) Let ϵtϵ ≪ 1. Then

lim
ϵ→0

P
(︁⃓⃓
Xϵ

tϵ −X0
tϵ

⃓⃓
> δ
)︁
= 0 for every δ > 0.

Proof. By Chebyshev’s inequality and the triangle inequality, for every δ > 0

P
(︁⃓⃓
Xϵ

tϵ −X0
tϵ

⃓⃓
> δ
)︁
≤

E
⃓⃓
Xϵ

tϵ −X0
tϵ

⃓⃓2
δ2

≤ 2

δ2
E
⃓⃓
Xϵ

tϵ −mϵ
tϵ

⃓⃓2
+

2

δ2
(︁
mϵ

tϵ −X0
tϵ

)︁2
,

where mϵ
tϵ is the mean of Xϵ

tϵ . According to (3.15), the first term

E
⃓⃓
Xϵ

tϵ −mϵ
tϵ

⃓⃓2
= Σϵ

tϵ → 0, as ϵ → 0.
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Similarly, when ϵ → 0 the second term

(︁
mϵ

tϵ −X0
tϵ

)︁2 → 0

Combining these two limits, we have the theorem proved.

Theorem 17 asserts that when ϵtϵ ≪ 1 the solutions Xϵ
t and X0

t can be arbitrarily

close to each other in probability one. Therefore we set this time scale as the short

time scale tsϵ . Applying the explicit solution, we obtain a stronger result in the spirit

of the central limit theorem.

Since the Harmonic potential is smooth, we can follow the expansion in [44, (1.6)]

to obtain

Xϵ
t = X

(0)
t +

√
ϵX

(1)
t +Rϵ

2(t), (3.19)

where Rϵ
2 is the remainder which is controlled by ϵ [5, Theorem 2.2]. Expanding both

sides of (3.8) in powers of
√
ϵ, we compare the equal power terms of ϵ on both sides

to obtain the following differential equations:

d

⎛⎝x
(0)
t

y
(0)
t

⎞⎠ =

⎛⎝ 0 1

−k 0

⎞⎠⎛⎝x
(0)
t

y
(0)
t

⎞⎠ dt

⎛⎝x
(0)
0

y
(0)
0

⎞⎠ =

⎛⎝x0

y0

⎞⎠ .

d

⎛⎝x
(1)
t

y
(1)
t

⎞⎠ =

⎛⎝ 0 1

−k 0

⎞⎠⎛⎝x
(1)
t

y
(1)
t

⎞⎠ dt+

⎛⎝0

1

⎞⎠ dWt

⎛⎝x
(1)
0

y
(1)
0

⎞⎠ = 0.

In the above, X
(0)
t is exactly the solution of the corresponding Hamiltonian systemX0

t .

X
(1)
t is a Markov Gaussian process, whose mean and covariance matrix are denoted

by m
(1)
t and Σ

(1)
t respectively. Similar to (3.10) and (3.11) we obtain

m
(1)
t = 0 and Σ

(1)
t =

⎛⎝ t
2k

− sin(2
√
kt)

4k
√
k

sin2(
√
kt)

2k

sin2(
√
kt)

2k
t
2
+

sin(2
√
kt)

4
√
k

⎞⎠ .

We are now ready to obtain a result of central limit theorem type as follows:

Theorem 18 (Central Limit Theorem) Let ϵtϵ ≪ 1. Then

lim
ϵ→0

dTV

(︃
Xϵ

tϵ −X0
tϵ√

ϵ
,X

(1)
tϵ

)︃
= 0.
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Proof. Xϵ
tϵ and X

(1)
tϵ are random variables with Gaussian distribution. Therefore, by

ii) of Lemma (31) we have

dTV

(︃
Xϵ

tϵ −X0
tϵ√

ϵ
,X

(1)
tϵ

)︃
= dTV

(︃
N
(︃
mϵ

tϵ −m0
tϵ√

ϵ
,
Σϵ

tϵ

ϵ

)︃
,N
(︂
0,Σ

(1)
tϵ

)︂)︃
= dTV

(︄
N
(︃
mϵ

tϵ −m0
tϵ√

ϵtϵ
,
Σϵ

tϵ

ϵtϵ

)︃
,N

(︄
0,

Σ
(1)
tϵ

tϵ

)︄)︄

≤ dTV

(︃
N
(︃
mϵ

tϵ −m0
tϵ√

ϵtϵ
,
Σϵ

tϵ

ϵtϵ

)︃
,N (0,Σ)

)︃
+ dTV

(︄
N

(︄
0,

Σ
(1)
tϵ

tϵ

)︄
,N (0,Σ)

)︄
=: C1 + C2.

Supposing tϵ → ∞ as ϵ → 0, we have tϵ
−1Σ

(1)
tϵ → Σ. Applying i) of Lemma 29, we

have C2 → 0 as ϵ → 0. For C1 we consider the mean and the variance separately.

When ϵtϵ ≪ 1,

lim
ϵ→0

Σϵ
tϵ

ϵtϵ
= lim

ϵ→0

⎛⎝(ϵtϵ)
−1 σ1,1 (ϵtϵ)

−1 σ1,2

(ϵtϵ)
−1 σ2,1 (ϵtϵ)

−1 σ2,2

⎞⎠ , (3.20)

where σi,j’s are defined as in (3.11). Then

lim
ϵ→0

σ1,1

ϵtϵ
= lim

ϵ→0

e−ϵtϵ

ϵtϵ (4b2 + ϵ2)

[︃
2
(︁
eϵtϵ − 1

)︁
− ϵ

sin(2btϵ)

b
− ϵ2

1− cos(2btϵ)

2b2

]︃
= lim

ϵ→0

1

2k

1− e−ϵtϵ

ϵtϵ
+

e−ϵtϵ

tϵ
B1(ϵ) +

ϵe−ϵtϵ

tϵ
B2(ϵ) =

1

2k
, where

B1(ϵ) = − sin(2btϵ)

4b3 + ϵ2b
, and

B2(ϵ) = −1− cos(2btϵ)

8b4 + 2ϵ2b2

are bounded functions. Similarly,

lim
ϵ→0

σ1,2

ϵtϵ
= lim

ϵ→0

σ2,1

ϵtϵ
→ 0 and lim

ϵ→0

σ2,2

ϵtϵ
→ 1

2
.

Thus the limit in (3.20) is Σ.

We now estimate the mean. Since

mϵ
tϵ −m0

tϵ

=

⎛⎝ e−
ϵ
2
tϵ
[︁
x0 cos(btϵ) +

1
b

(︁
ϵ
2x0 + y0

)︁
sin(btϵ)

]︁
−
[︂
x0 cos

(︂√
ktϵ

)︂
+ 1√

k
y0 sin

(︂√
ktϵ

)︂]︂
e−

ϵ
2
tϵ
[︁
y0 cos(btϵ)− 1

b

(︁
kx0 +

ϵ
2y0
)︁
sin(btϵ)

]︁
−
[︂
y0 cos

(︂√
ktϵ

)︂
−
√
kx0 sin

(︂√
ktϵ

)︂]︂
⎞⎠
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has a complicated expression in the L2 norm, we only estimate its L1 norm for the

sake of simplicity. ⃓⃓⃓⃓⃓⃓⃓⃓
mϵ

tϵ −m0
tϵ√

ϵtϵ

⃓⃓⃓⃓⃓⃓⃓⃓
1

≤ I1 + I2 + I3 + I4 +O(ϵ),

where I1(ϵ) =
1√
ϵtϵ

⃓⃓⃓
e−

ϵ
2
tϵx0 cos(btϵ)− x0 cos

(︂√
ktϵ

)︂⃓⃓⃓
,

I2(ϵ) =
1√
ϵtϵ

⃓⃓⃓⃓
1

b
e−

ϵ
2
tϵy0 sin(btϵ)−

1√
k
y0 sin

(︂√
ktϵ

)︂⃓⃓⃓⃓
,

I3(ϵ) =
1√
ϵtϵ

⃓⃓⃓
e−

ϵ
2
tϵy0 cos(btϵ)− y0 cos

(︂√
ktϵ

)︂⃓⃓⃓
, and

I4(ϵ) =
1√
ϵtϵ

⃓⃓⃓⃓
k

b
e−

ϵ
2
tϵx0 sin(btϵ)−

√
kx0 sin

(︂√
ktϵ

)︂⃓⃓⃓⃓
.

The structures of these four terms are similar. For I1 we have

I1(ϵ) ≤
1√
ϵtϵ

⃓⃓⃓
e−

ϵ
2
tϵx0 cos(btϵ)− e−

ϵ
2
tϵx0 cos

(︂√
ktϵ

)︂⃓⃓⃓
+

1√
ϵtϵ

⃓⃓⃓
e−

ϵ
2
tϵx0 cos

(︂√
ktϵ

)︂
− x0 cos

(︂√
ktϵ

)︂⃓⃓⃓
= |x0|

⃓⃓⃓
cos(btϵ)− cos

(︂√
ktϵ

)︂⃓⃓⃓ e− ϵ
2
tϵ

√
ϵtϵ

+
⃓⃓⃓
x0 cos

(︂√
ktϵ

)︂⃓⃓⃓ 1− e−
ϵ
2
tϵ

√
ϵtϵ

=: D1(ϵ) +D2(ϵ).

When ϵtϵ ≪ 1, we let ϵ tend to 0 to obtain

D1(ϵ) ≤ |x0|
⃓⃓⃓
cos(btϵ)− cos

(︂√
ktϵ

)︂⃓⃓⃓ e− ϵ
2
tϵ

√
ϵtϵ

= |x0| |sin(θ)|
e−

ϵ
2
tϵ
(︂√

ktϵ − btϵ

)︂
√
ϵtϵ

≤ |x0|
e−

ϵ
2
tϵtϵ√
ϵtϵ

(︃√
k − 1

2

√
4k − ϵ2

)︃
=

|x0|
8

e−
ϵ
2
tϵtϵ

1
2 ϵ−

1
2

(︁
ϵ2 + O

(︁
ϵ2
)︁)︁

→ 0 and

D2(ϵ) ≤ |x0|
(︃√

ϵtϵ
2

+ O
(︁√

ϵtϵ
)︁)︃

→ 0.

So, lim
ϵ→0

I1(ϵ) = 0. Similarly, we obtain that lim
ϵ→0

I2(ϵ) = lim
ϵ→0

I3(ϵ) = lim
ϵ→0

I4(ϵ) = 0.

Thus,

lim
ϵ→0

⃓⃓⃓⃓⃓⃓⃓⃓
mϵ

tϵ −m0
tϵ√

ϵtϵ

⃓⃓⃓⃓⃓⃓⃓⃓
2

≤ lim
ϵ→0

√
2

⃓⃓⃓⃓⃓⃓⃓⃓
mϵ

tϵ −m0
tϵ√

ϵtϵ

⃓⃓⃓⃓⃓⃓⃓⃓
∞

≤ lim
ϵ→0

√
2

⃓⃓⃓⃓⃓⃓⃓⃓
mϵ

tϵ −m0
tϵ√

ϵtϵ

⃓⃓⃓⃓⃓⃓⃓⃓
1

= 0.
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The theorem now follows by applying i) of Lemma 29.

Following the same arguments, we can still prove the theorem if tϵ is bounded when

ϵ → 0.

Theorem 18 asserts that under the normalization of the order
√
ϵ the difference

between Xϵ
t and X0

t , as a random process, is close to the first order approximation

X
(1)
t . The variance of X

(1)
t plays a crucial role in demonstrating the variation of the

solution.

In conclusionIn, for the one-dimensional harmonic case, there exists a short time

scale tsϵ ≪ 1
ϵ
over which the corresponding Hamiltonian solution captures the solution

Xϵ
t . Meanwhile, there exists a long time scale tlϵ ≫ 1

ϵ
when the solution is close enough

to its invariant measure. tcϵ = O
(︁
1
ϵ

)︁
naturally becomes the critical time scale when

the solution evolves from the Hamiltonian solution to the invariant measure. Because

of the rotation (3.14) it is hard to construct a transition system in R2 from the

Hamiltonian solution to the invariant measure. We will use the averaging system to

approximate the above transient behavior in Section 3.4.

3.2 Simulation of the one-dimensional Langevin

equation

In the last section, we explore an exquisite transient behavior of the one-dimensional

Langevin equation under the harmonic potential. In this section, we will visualize the

short and long time behaviors using numerical methods developed in [45]. In order

to simulate a relatively long time behavior, we need to use a cost-effective algorithm.

Then we can apply this algorithm to the non-harmonic potential case and intuitively

determine the short and long time scales.

3.2.1 Algorithm of the one-dimensional Langevin equation

In order to simulate (3.8), there are two classical approaches: the Monte–Carlo simu-

lation and the simulation of the Fokker-Planck equations. [14] and [15] are elaborate

surveys of main techniques.

We utilize the Monte–Carlo simulation to observe the transient phenomenon. Then,

using the first order stochastic Taylor series, we have the following Euler-Maruyama
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scheme:

xn+1 = xn + yn∆t,

yn+1 = yn − kxn∆t− ϵyn∆t+
√
ϵ∆Wn,

where ∆Wn is a Gaussian random variable with expected value 0 and variance ∆t.

Given an initial condition, an application of the above scheme provides a sample path.

We denote
(︂
x
(i)
n , y

(i)
n

)︂
as the ith sample path where n denotes the particle at time

n∆t. Then we will use the Monte-Carlo simulation to approximate the probability

density function un(x, y).

Because of the symmetric property of the Hamiltonian differential equations, we

set a symmetric domain [−L,L]2. We construct the regular grid with the even space

steps r. Denote M as the total number of steps in each direction. Let u∗
n(i, j) be the

numerical approximation of the density at (−L+ ir,−L+ jr), where i, j = 0, · · · ,M .

In our discrete domain, we naturally consider the density of the element

Oi,j :=
[︂
−L+ ir − r

2
, −L+ ir +

r

2

)︂
×
[︂
−L+ jr − r

2
, −L+ jr +

r

2

)︂
.

Let N be the total number of sample paths. The Monte-Carlo simulation can be

implemented by

uN
n (i, j) =

1

Nr2

∞∑︂
k=1

1Oi,j

(︁
x(k)
n , y(k)n

)︁
.

When N tends to infinity, by the Law of Large Numbers we have

uN
n (i, j) → un (−L+ ir,−L+ jr) .

We use MATLAB to implement the Monte-Carlo scheme. The code is in Appendix

E.2. We fix the initial condition at (2, 2) with the parameters k = 0.25 and ϵ = 0.1.

Figure 3.1 demonstrates the updates of the probability density function with respect

to time.
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(a) t = 5 (b) t = 10

(c) t = 15 (d) t = 20

(e) t = 40 (f) t = 100

Figure 3.1: Time evolution with k = 0.25 and ϵ = 0.1

As for the first observation, when the time passes 30, the distribution becomes

stable, which gives rise to the time limiting behavior or the stationary distribution.

Recall that N (0,Σ) is the stationary distribution. We can compare it with our time

evolution results in the total variation distance. The comparison code is provided
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in Appendix E.3. Figure 3.2c indicates the convergent phenomenon in a non-linear

shape. However, the simulated distance between the solution and the stationary

distribution does not converge to zero exactly. At least there is a lower bound larger

than 0.05 in that figure.

(a) Extremely Lack (N = 103) (b) Lack (N = 104)

(c) Regular (N = 105) (d) Abundant (N = 106)

Figure 3.2: Convergence of the difference

On one hand, the error increases tremendously when we only gather a lack of

sample paths in Figure 3.2a and 3.2b. Especially when we gather a significant lack

of samples, the limit of the total variation distance almost everywhere exceeds 0.5

with a visible variation. On the other hand, in Figure 3.2d, when we have abundant

samples (106), the convergence curve seems the least noisy. The limiting value seems

close to zero in the abundant case. Simultaneously, the variation of that curve is the
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smallest among the four cases.

In conclusion, such an inaccuracy is mainly produced by the lack of the number

of samples in the Monte-Carlo simulation. Of course, one could try to generate a

large number of samples, but this will cost massive iterations. Even in Figure 3.2d,

the terminal time is a mere 100; it takes more than an hour to simulate the densities

based on 106 samples. Since our problem applies the multi-scale analysis, we need

a more cost-effective algorithm, especially in the long time scale (tϵ ≫ ϵ−1). For

instance, in the time scale tϵ = ϵ−1.5, we need to observe the densities when ϵ tends

to zero. If ϵ = 10−4, the terminal time will be 106.

Application of the data-driven method

We are inclined to use the data-driven method to keep the balance between the

computational cost and the accuracy. Roughly speaking, the data-driven method, as

an approach in between, takes the Monte–Carlo’s data as a reference, then searches

for the optimal solution subjecting to the Fokker-Planck equation. This novel idea

was first introduced by Li [46], in which he mainly focuses on the simulation of the

steady state of small noise SDE. Since for every single time we can collect Monte-

Carlo data as a proper reference, we will generalize it to the simulation of the densities

of Xϵ
t at every moment. We demonstrate this technique in the harmonic potential

problem as follows:

By [13] we deduce the corresponding Fokker-Planck equation of (3.8) as follows:

ut = − ∂

∂x
[yu]− ∂

∂y
[(−kx− ϵy)u] +

1

2
ϵuyy,

=
ϵ

2
uyy − yux + (kx+ ϵy)uy + ϵu,

with an initial condition

u(x, y, 0) = δ (x0, y0) .

The traditional finite difference approach is to design a large enough space domain

[−L,L]2. Gridding the area into M ×M pieces, we obtain (M + 1)× (M + 1) nodes

in total. The space step is denoted by r as before. Discretize the time interval [0, T ]

into N pieces, and let ∆t be the time step. The discretized value is

un
i,j := u(−L+ ir,−L+ jr, n∆t),
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where i, j = 0, · · · ,M and n = 0, · · · , N . The second-order finite difference dis-

cretizations of the differential operator in space are

δ2yui,j =
1

r2
[ui,j+1 − 2ui,j + ui,j−1] ,

δxui,j =
1

2r
[ui+1,j − ui−1,j] ,

δyui,j =
1

2r
[ui,j+1 − ui,j−1] .

We apply the Crank-Nicolson scheme in time. Then

un+1
i,j − un

i,j

∆t
=

1

2

[︁
Dun+1

i,j −Dun
i,j

]︁
,

where the linear operator

Dui,j :=
ϵ

2
δ2yui,j − yδxui,j + (kx+ ϵy)δyui,j + ϵui,j.

Rearrange the discretized value in a vector as follows:

u := [u0,0, . . . , uM,0, u0,1, . . . , uM,1, . . . , u0,M , . . . , uM,M ]T .

As a variable in a linear system, u has (M + 1) × (M + 1) components. The

Crank-Nicolson scheme demonstrates the recurrence relationships among the nodes

in the inner part of the space domain. The total number of that relationships is

(M − 1) × (M − 1). Since the space domain is large enough, a convectional way is

to implement the free boundary condition, which introduces 4M relationships on the

boundary nodes. In general, we can write down the recurrence relationships as

T1u
n+1 = T2u

n,

where T1 is a nonsingular (M + 1) × (M + 1) matrix. Since u is the solution of the

density, we have an extra equation which is

1Tun+1 = r−2. (3.21)

We call it the unit-one condition. Because of that extra condition, the system becomes

an overdetermined problem. Denote

T :=

⎛⎝T1

1T

⎞⎠ and b :=

⎛⎝T2u
n

r−2

⎞⎠ .
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The last step of the traditional technique is an optimization problem as follows:

min ||Tu− b||2 .

The traditional method is valuable, especially when we have preliminary estimates

for Fokker-Planck’s solution. However, if a portion of masses escapes from the space

domain, it is hard to count this portion with this technique. Therefore, selecting the

space domain becomes the key to make the above method working.

In order to overcome the above difficulty, the data-driven method makes use of

the Monte-Carlo simulation. Even though the simulation provides rough and noisy

data, it can be used as a preliminary estimate. While it does not seem easy to fix the

boundaries and the boundary conditions in the traditional method, the data-driven

method avoids all of them. What we have left is only the PDE mechanism given by

the Crank-Nicolson scheme. Those (M − 1)× (M − 1) equations become constraint

conditions. We denote it as

Aun+1 = Bun.

Because of the lack of equations, the above linear system has infinite solutions. We

want to find the closest one to the Monte-Carlo reference. With a similar definition,

we can rewrite our Monte-Carlo result as a vector vn. Denote

b := Bun.

Then the optimization problem is

min
⃓⃓⃓⃓
un+1 − vn+1

⃓⃓⃓⃓
2

subject to Aun+1 = b.

For simplicity of the simulation, by Theorem 3.1 in [46], we can define the correction

term xn+1 := un+1 − vn+1. The above optimization problem can be rewritten as

min
⃓⃓⃓⃓
xn+1

⃓⃓⃓⃓
2

(3.22)

subject to Axn+1 = d,

where d := b− Avn+1.

We note that even the unit-one condition (3.21) is eliminated. Thus the optimiza-

tion is much more dependent on the reference data from the Monte-Carlo simulation.
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Even if a portion of masses is transported out of the observing space domain, the

Monte-Carlo reference will preserve this information and update the optimization’s

solution un+1. This allows us to visualize the distribution locally rather than having

to establish a sufficiently large domain that covers almost all samples. The code of

the Crank-Nicolson scheme with the above optimization is provided in Appendix E.4.

We utilize this scheme in our SDE system with a determinate initial condition. This

type of initial condition becomes a delta function in the Fokker-Planck equation. In

the following example we set x0 = y0 = 1, k = 1 and ϵ = 0.1.

(a) t = 0.5 (b) t = 0.5

(c) t = 5 (d) t = 5
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(e) t = 10 (f) t = 10

The figures on the left are the reference data provided by the Monte-Carlo simula-

tion. We list the corresponding data-driven results on the right. There is an enormous

difference in the initial time period. At the beginning, t = 0.5, and the exact solution

of the density should be close to a delta function as the Monte-Carlo result. How-

ever, the data-driven result is fully supported in our compact domain, and obtains

negative values in a non-empty set. When t = 5, the main portion is concentrated

on our expected Gaussian distribution. Nevertheless, there is still a visible error that

some masses escape from our expectation: a Gaussian distribution. Eventually, when

t = 10, the data-driven method selects the correct density function.

The cause of this phenomenon should be the delta function. When we input a

delta function as the reference in the data-driven method, there should be more than

one optimal solution satisfying the Crank-Nicolson scheme. It will lead to difficulty

in optimization.We set up a threshold, Density Max Threshold in Appendix E.4.

When the maximum of the reference density is larger than the threshold, this density

is regarded as a delta-type of density. In this situation, we stop the optimization and

directly copy the reference as our simulation. We operate the optimization only when

the maximum reference density is less than the threshold. With this threshold, we

have the following simulation.
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(a) t = 0.5 (b) t = 0.5

(c) t = 2 (d) t = 2

(e) t = 10 (f) t = 10

Monte-Carlo’s reference is demonstrated on the left, while the results of the data-

driven method with the threshold are on the right. When t = 0.5 we borrow Monte-
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Carlo’s result as our simulation. We set the threshold,

Density Max Threshold = 2. (3.23)

Through the simulation, the threshold succeeds when t = 1.95. After passing the

threshold, the data-driven method operates smoothly and successfully selects the

expected solution. Thus, we avoid this error from the source.

We compare the data-driven results with the stationary distribution among differ-

ent samples’ scales. In Figure 3.6 we select the sufficient large scales which are 105

and 106. We know there is an improvement in the Monte-Carlo method when we col-

lect large samples from the comparison between Figure 3.6a and 3.6c. However, when

we treat Monte-Carlo result as reference data and implement the optimization 3.22,

the feedback of the simulations of both cases is almost the same. This phenomenon

is demonstrated by Figure 3.6b and 3.6d. Thus the convergence curve is stable with

respect to the samples’ scales. As a fair deduction, if we generate samples more than

our large scale, for instance, N = 1010, its data-driven result should keep the same

shape as the results shown in Figure 3.6b and 3.6d.

(a) Regular (N = 105) (b) Data-Driven (N = 105)

Figure 3.6a: Enough samples (first form)
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(c) Abundant (N = 105) (d) Data-Driven (N = 105)

Figure 3.6b: Enough samples (second form)

Recall that there is a significant error when we generate a lack of samples in

Monte-Carlo. We give such noisy data a chance to be the reference, since it saves

computational expense.

Figure 3.7d demonstrates the data-driven result with lack of samples’ Monte-Carlo

(N = 104). This data-driven result is consistent with the abundant samples’ Monte-

Carlo (N = 106) in Figure 3.6d intuitively. Without considering the numerical PDE

part, we save 99 percent of computing time but obtain a similar result. When we

choose the worst Monte-Carlo reference (N = 103 and present in Figure 3.7a), the cor-

responding data-driven result unexpectedly stays the same as the abundant samples’

Monte-Carlo. However, it saves 99.9 percent of computing time. In Figure 3.7b there

is only a small difference in the initial time period. During that time, the threshold

does not succeed. Thus, this difference is produced by the lack of information of

Monte-Carlo part.
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(a) Extremely Lack (N = 103) (b) Data-Driven (N = 103)

(c) Lack (N = 104) (d) Data-Driven (N = 104)

Figure 3.7: Lack of samples

Therefore, Monte-Carlo’s data preserves more information beyond direct observa-

tion, a noisy step function. With the strong constraint conditions provided by the

scheme of the Fokker-Planck equations, only a few samples will recover the density

function. The data-driven method is stable in simulating the densities, especially for

a long time.

We analyze the accuracy heuristically. We need to compare the simulation given

by the data-driven method with the exact solution (3.9). The simulation code of

that exact solution is demonstrated in Appendix E.1. We still use the total variation

distance to measure the difference. It will not be accurate when discretizing a delta

function, even in the exact solution. Any tiny error causes the total variation to be
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equal to 1. Therefore the starting time of the following error estimates is 0.5 rather

than 0. We will discuss the initial time period in Section 3.2.2, which is called short

time scale in that section. Keep the same initial setting. Let 20 be the end of the

time. We make the comparison among different scales in the number of samples.

(a) Extremely Lack (N = 103) (b) Data-Driven (N = 103)

(c) Lack (N = 104) (d) Data-Driven (N = 104)

Figure 3.8a: Error analysis (first form)
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(e) Regular (N = 105) (f) Data-Driven (N = 105)

Figure 3.8b: Error analysis (second form)

When N = 105 the threshold of time is 1.96. In Figure 3.8f the error is the same as

Monte-Carlo reference before that threshold. After that time, the error curve becomes

smooth because the simulation result is an optimal solution for a PDE. A low level of

error captures the curve. The overall decline should be expected to continue because

the simulation and the exact solution tend to have a stationary distribution. In Figure

3.8e, when the time crosses the threshold, the error fluctuates around 0.04, which is

mainly caused by the noise of the Monte-Carlo method.

In general, compared with Monte-Carlo references, the data-driven method pro-

vides more accurate results indeed. However, enriching the sample paths only de-

creases the errors in the initial time period, when only the Monte-Carlo scheme is in

the running status and the optimal scheme is not invoked. When the time passes the

threshold, the optimal scheme is in the running status as well. Because of the mech-

anism given by the Fokker-Planck equation, there is almost no difference between

N = 104 and N = 105. Thus 104 samples are sufficient as reference data.

It is not hard to find that there are always some densities simulated by the data-

driven method that have negative values, especially at the beginning of utilizing the

data-driven method. In Figure 3.9b we accumulate the negative part of densities at

each time. There is a noticeable portion right after the threshold time.
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(a) Data-Driven (N = 104) (b) Masses in the Negative Domain

Figure 3.9: Negative density problem

That phenomenon does not lead by the Crank-Nicolson scheme. For the same data

reference, there should be several optimal solutions. Unfortunately, the minimum

norm least-squares solution, provided by lsqminnorm in MATLAB, is separate from

the exact solution. Therefore, we use the lsqnonneg in MATLAB to extract the

non-negative solution.

Figure 3.10: 10 steps non-negative optimization

Since the operand of lsqnonneg is large, after the threshold, we attempt 10 steps

of the non-negative optimization. The negative densities arise again when we start

to solve the minimum norm least-squares solution after the 10 steps. However, it

prevents more than half of the masses from being transported to negative compared

with Figure 3.9b. More importantly, as time passes, it is far more accurate than
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before. The total variation distance in Figure 3.9a maintains 0.01, while with our

new technique it almost decreases to 0 after t = 5.

Figure 3.11: 50 steps non-negative optimization

When increasing the number of steps to 50, we should obtain a better result natu-

rally. However, compared with the right ones in Figure 3.10 and Figure 3.11, the result

is quite different from what we expected. After 50 steps of non-negative optimiza-

tion, the negative mass’s error is almost identical to the 10 steps’ case. Nevertheless,

that process costs 3343 seconds which is more than 10 times expending of the 10

steps’ case. The full of non-negative least-squares optimizations without considering

the computing power should be prime. However, in our multiscale analysis, we need

to consider the efficiency of long time simlulation. Therefore, we suggest using the

10 steps’ non-negative least-squares optimizations. The technological process can be

generated as follows:
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Start

104 samples
as the data

Threshold detection

Hunt for the
time of threshold

Expand the amount
of samples to 106

10 steps lsqnonneg ;
then lsqminnorm

uMC uDD

Expand the amount
of samples to 106

Stop

uMC

Below

Before After

Mentioned

In the threshold detection, we will search for the maximum value of the densities

of the last 10 steps. If any values in the last 10 steps exceeds the threshold, then

the Monte-Carlo still provides a delta-like data reference. Thus we will not operate

our data-driven method. Instead, we increase the number of samples to sufficiently

large. Let the Monte-Carlo result uMC represent the numerical solution. In general,

the short time scheme always follows this flow.

On the contrary, when all of those density values are below the threshold, we can at

least accomplish 10 steps non-negative optimization. Therefore, we apply our data-

driven scheme. Combine the Monte-Carlo result uMC in the front and the data-driven

result uDD in the back as our numerical solution.
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3.2.2 Multiscale simulation in the harmonic potential

So far, we have enough tools to implement the multiscale analysis numerically. Let

us recall our theoretical results first. Theorem 17 and Theorem 18 demonstrate that,

in the short time scale (tϵ ≪ ϵ−1), the solution of the Langevin equation Xϵ
tϵ is close

to the solution of the Hamiltonian system at the same time X0
tϵ with small ϵ. In the

long time scale (tϵ ≫ ϵ−1), Theorem 16 ensures Xϵ
tϵ eventually tends to its stationary

distribution when ϵ tends to zero.

Numerical simulation of the short time scale

The limiting distribution theoretically satisfies a delta function at X0
tϵ . When ϵ is

small, tϵ is not long enough to escape the front time interval of delta-like densities.

Thus our data-drive method is reduced to the Monte-Carlo method. The accuracy

depends on both the scales of samples and the iteration scheme.

Theoretically, we need to compare the distribution of Xϵ
tϵ with a single point on the

Hamiltonian orbit X0
tϵ . Since Xϵ

tϵ is a random variable with 2 dimensional Gaussian

distribution, the first two moments are sufficient to represent it. By Theorem 17 and

Theorem 18, the mean will tend to X0
tϵ while the variance will tend to zero when ϵ

tends to zero, where X0
tϵ is on the Hamiltonian orbit with the same initial condition

as Xϵ
tϵ .

We determinate the end time point tϵ = ϵ−0.5 as a short time scale. The initial

settings are k = 1, xϵ
0 = 2 and yϵ0 = 2. Operating the code in Appendix E.6 we

obtain the densities of Xϵ
tϵ where ϵ changes from 10−1 to 10−4. We select the Euler-

Maruyama iteration in our Monte-Carlo simulation. The result is demonstrated in

Figure 3.12. The black curve is the Hamiltonian orbit. The red star denotes the

corresponding Hamiltonian solution X0
t at tϵ. When ϵ is small, the distribution of

Xϵ
t exactly tends to a delta-like distribution as we expect. However, there is a visible

difference between the mean of that distribution and Xϵ
tϵ in Figure 3.12d. Intuitively,

the differences will diverge when ϵ tends to zero. It seems that the algorithm properly

maintains the value on the angle direction but accumulates errors in the energy level

direction.
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(a) ϵ = 0.1 (b) ϵ = 0.01

(c) ϵ = 0.001 (d) ϵ = 0.0001

Figure 3.12: Evolution of densities in the short time scale

The iteration scheme provides this mistake. Even for the deterministic Hamiltonian

system, both the Euler iteration and the implicit Euler iteration will destroy the

Hamiltonian orbit. In order to keep the conservative property of a Hamiltonian

system, people need to use a conservative algorithm. The conservative algorithm

of the deterministic system is provided in Appendix C. Unfortunately, in the Euler-

Maruyama iteration, the deterministic part is exact the Euler iteration. In order

to eliminate this error, we need to utilize a stochastic version of the conservative

algorithm.
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By Section 2.3 of [47], the stochastic version of the leapfrog method is

xhs = xn − yn
∆t

2
,

yn+1 = yn − kxhs∆t− ϵyn +
√
ϵ∆Wn,

xn+1 = xhs + yn+1
∆t

2
,

which is a conservative algorithm. We change the iteration scheme in Appendix E.6

to the leapfrog method above. Keep the same initial settings above. The evolution is

presented in Figure 3.13

(a) ϵ = 0.1 (b) ϵ = 0.01

(c) ϵ = 0.001 (d) ϵ = 0.0001

Figure 3.13: Evolution of densities in the short time scale with the leapfrog scheme

Intuitively our numerical result of Xϵ
tϵ gets closer to the Hamiltonian solution X0

t
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at t = tϵ. Since X
ϵ
t is a Gaussian process in the harmonic case, the mean and variance

can entirely determine it. In order to evaluate the difference between Xϵ
tϵ and X0

tϵ ,

we can directly simulate the mean and variance of Xϵ
tϵ . Then compare the mean

with X0
tϵ . Simultaneously, compare the variance with zero. In Appendix E.6 variable

diff 2norm accumulates the differences between EXϵ
tϵ and X0

tϵ in the second norm.

Meanwhile use sigma x and sigma y to collect the variances of marginal distributions

of Xϵ
tϵ in the x-direction and y-direction respectively.

(a)
⃓⃓⃓⃓
EXϵ

tϵ −X0
tϵ

⃓⃓⃓⃓
2
depends on ϵ

(b) Variance in x depends on ϵ (c) Variance in y depends on ϵ

Figure 3.14: Convergency of the mean difference and the variances

With the leapfrog scheme, we successfully visualize our Theorem 17 and Theorem

18 in Figure 3.14. In the short time scale Xϵ
tϵ indeed tends to the point X0

tϵ . We will

utilize a similar scheme in the nonlinear case to estimate the short time scale before

giving a theoretical proof.
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Numerical simulation of the long time scale

We follow our data-driven method introduced in the last section. With each fixed ϵ

we can simulate the densities of Xϵ
t evolving with time. We set the end time point

as tϵ, where tϵ ≫ ϵ−1. In the following simulation we determinate tϵ = ϵ−1.5. For

convenience of the simulation, in system (3.8) we make the initial settings where

k = 1, xϵ
0 = 1 and yϵ0 = 1. Let ϵ change from 1 to 10−2. We obtain a sequence of

densities of Xϵ
tϵ with respect to ϵ. The code of this simulation is in Appendix E.5.

(a) ϵ = 1 (b) ϵ = 0.5

(c) ϵ = 0.01 (d) Stationary Distribution

Figure 3.15: Evolution of densities in the long time scale

The last figure in Figure 3.15 presents the corresponding stationary distribution.

(3.12) is the explicit form of it. Intuitively when ϵ = 0.01, the distribution of Xϵ
tϵ is
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almost the same as the stationary distribution on the right. We use the total variation

distance in Theorem 16 to measure the above difference. Therefore we compare the

sequence of simulations with the stationary distribution in the total variation distance.

Figure 3.16: dTV

(︁
Xϵ

tϵ , X∞
)︁
depends on ϵ

When ϵ tends to zero, the total variation distance is precisely zero. With this data,

in the future, we will estimate the convergency rate as a function depending on the

small variable ϵ.

3.2.3 Multiscale simulation in the non-harmonic potential
case

In the non-harmonic case, the only difference is the derivative of the potential term,⎧⎨⎩ dxϵ
t = yϵtdt,

dyϵt = (−V ′(xϵ
t)− ϵyϵt) dt+

√︁
2ϵβ−1dWt.

(3.24)

Rather than being kx in the harmonic case (3.8), it is a general nonlinear function.

Therefore the corresponding Hamiltonian orbit will be modified by the structure of

the potential.

But the forms of the damping−ϵydt and noise
√︁

2ϵβ−1dWt do not change. Roughly

speaking, the damping term will lead the solution to its stable equilibrium, and the
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noise term will introduce the variation of the solution. In the harmonic case, we know

those two terms do not take effect in the short time scale. The Hamiltonian system

dominates the solution. In the long time scale, they are fully functional in the system,

such that the solution tends to its stationary distribution, which is the equilibrium

of the stochastic differential equation. We suppose the above two terms provide the

multiscale phenomenon. Thus the short time scale and long time scale of the system

(3.24) should be the same as the harmonic case, which are tsϵ ≪ ϵ−1 and tlϵ ≫ ϵ−1

respectively.

In this section, we utilize a single well potential,

V (x) =
1

2
x2 +

1

4
x4,

as a toy model of the non-harmonic potential, and let β = 2. Like the harmonic

case, we will still select different time scales to observe the short time and long time

behaviors.

Numerical simulation of the short time scale

In the short time scale, the distribution of the limiting result is degenerate. We

directly apply the Monte-Carlo method as what we do in the harmonic case. The

leapfrog method is chosen as the iteration algorithm to preserve the Hamiltonian

dynamics. The initial settings are xϵ
0 = 1 and yϵ0 = 1. Let the time scale tϵ = ϵ−0.5

where ϵ changes from 10−2 to 10−5. The result is demonstrated in Figure 3.17. The

blue curve is the corresponding Hamiltonian orbit.

As the first observation, when ϵ tends to zero, the simulation result gets closer to

the Hamiltonian orbit. However, it does not tend to have a delta-like distribution as

in the harmonic case. In this specific time scale, the limiting distribution seems to be

supported on the entire curve with a certain degree of variation around it. We must

understand whether the Langevin dynamics or numerical discretization provides this

phenomenon.

Two reasons lead us to believe that numerical discretization introduces this vari-

ation. First, the simulation will present this singular phenomenon even if the real

limiting distribution is a delta distribution at X0
tϵ . Our initial condition is a delta

function at (xϵ
0, y

ϵ
0). In order to discretize it, we have to approximate it by a uniform
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(a) ϵ = 0.1 (b) ϵ = 0.05

(c) ϵ = 0.001 (d) ϵ = 0.0001

Figure 3.17: Evolution of densities in the short time scale

distribution at the grid covering the initial condition. In the harmonic case, this ap-

proximation introduces a nonnegligible error at the front period of the time, which is

demonstrated in Figure 3.8e. In the non-harmonic case, this type of error cannot be

avoided in a short time scale.

Consider the Langevin dynamics in the energy and angle variables. The time

derivative of the angle variable is the frequency along a fixed Hamiltonian orbit. The

error which is introduced by the initial condition influences both the energy and the

angle. In the harmonic case, the frequencies are the same on all energy levels. Then

the errors of the energy and the angle are independent. Thus the ranges of errors in

both directions are similar, and the limiting distribution is a delta-like distribution
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which is demonstrated in Figure 3.13. In the non-harmonic case, the frequency is a

function that depends on energy. A slight variance in the energy causes a noticeable

change in the angle. Even if there is only a tiny energy error, the nonlinear dynamics

will multiply the error in the angle direction. This should be one of the reasons for

us to observe the mixing in the angle in Figure 3.17d.

We will prove in the short time scale, tsϵ ≪ ϵ−1, the energy is close to the initial

energy almost surely. Thus the visible variance of the energy in Figure 3.17d should

also be introduced by the numerical discretization.

In conclusion, this error can be relieved by utilizing finer gridding, collecting more

samples, and selecting smaller ϵ. However, each method will cause exponential growth

in the computation cost. Those methods also do not overcome the essential part of

the error. In the non-harmonic case, any energy error leads to the mixing in the

angle. Thus, how we can visualize the short time behavior in the non-harmonic case

is an interesting and unsolved problem.

Numerical simulation of the long time scale

In this section, we will compare the simulation result of Xϵ
t with its equilibrium in

the total variation distance. By (3.4), the stationary distribution is

ρ2(x, y) = Z−1e−y2−x2− 1
2
x4

,

where Z is the normalization factor. We select the time scale tϵ = ϵ−1.5 as an example

of the long time scale. Let xϵ
0 = 1, yϵ0 = 1 and ϵ change from 1 to 10−2. Then the

sequence of densities of Xϵ
tϵ presents in Figure 3.18. In this specific time scale, the

distributions of Xϵ
tϵ tend to its stationary distribution. Figure 3.19 demonstrates the

difference’s evolution. When ϵ tends to zero, the difference tends to zero.
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(a) ϵ = 1 (b) ϵ = 0.5

(c) ϵ = 0.01 (d) Stationary Distribution

Figure 3.18: Evolution of densities in the long time scale

When we determine the time scale tϵ = ϵ−1.3 or tϵ = ϵ−1.7, the densities still

converge to the stationary distribution when ϵ tends to zero. Therefore, the above

verified time scales are long time scales. Of course, we cannot obtain all of the long

time scales by the enumeration method. However, after enumerating more cases, we

can conclude that the density always tends to the stationary distribution when the

time passes tϵ = ϵ−1. We suppose that the long time scale is tlϵ ≫ ϵ−1.
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Figure 3.19: dTV

(︁
Xϵ

tϵ , X∞
)︁
depends on ϵ

3.3 Analysis of the non-harmonic oscillator with

external noise

This section provides some theoretical results regarding the short and long time be-

haviors of the non-harmonic Langevin equation (3.5). The simulation in the previous

section provides us with an estimate of the time scales in the one-dimensional case.

We will generalize the short and long time scales to d-dimensional Langevin equation.

3.3.1 Short time behavior

We aim to obtain results similar to Theorem 17 and Theorem 18 in the short time

scale. In the nonlinear case, it appears to be challenging to track all of the coordinates

of Xϵ
tϵ . The simulation in Section 3.2.3 presents the complexity of the angle variable

in the one-dimensional case. Thus we start to analyze the total energy

E(x, y) =
1

2
||y||22 + V (x),

where the first term is the kinetic energy and the second term is the potential energy.

The total energy is one of the conserved quantities in the Hamiltonian system.
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Directly differentiating the total energy of X0
t , we have

dE
(︁
x0
t , y

0
t

)︁
= ∇E ·

⎛⎝dx0
t

dy0t

⎞⎠ = ∇V (x0
t ) · y0t dt+ y0t ·

(︁
−∇V (x0

t )
)︁
= 0.

Therefore E (x0
t , y

0
t ) ≡ E(x0, y0) for any t. Denote the value as E0 for convenience in

the following theorem.

The Hamiltonian orbit should capture the solution Xϵ
t in a proper short time scale.

Then the energy of Xϵ
t is more or less the same as that at the initial energy E0. The

simulation in Section 3.2.3 did not entirely visualize the short time behaviors because

of the sensitive angle variable. However, it illustrates that when tϵ ≪ ϵ−1 the energy

does not start to dissipate, and the majority distribution of Xϵ
t stays around the

Hamiltonian orbit. Therefore we suppose the short time scale is tϵ ≪ ϵ−1.

Theorem 19 (Law of Large Numbers on the total energy) Let ϵtϵ ≪ 1. Then

lim
ϵ→0

P
(︃

sup
0≤t≤tϵ

|E (xϵ
t, y

ϵ
t)− E0| > δ

)︃
= 0 for every δ > 0.

Proof. Applying the Itô formula on E(xϵ
t, y

ϵ
t), we obtain

dE (xϵ
t, y

ϵ
t) = ϵ

(︁
β−1d− ||yϵt ||22

)︁
dt+

√︁
2ϵβ−1yϵt · dWt. (3.25)

Since V (x) ≥ 0, we obtain

1

2
||yϵt ||22 ≤ E (xϵ

t, y
ϵ
t) = E0 + β−1dϵt− ϵ

∫︂ t

0

||yϵs||22ds+
√︁

2ϵβ−1

∫︂ t

0

yϵs · dWs.

Taking the expectation in the above yields

E||yϵt ||22 ≤ 2E0 + 2β−1dϵt. (3.26)

Then, the integral form of (3.25) can be estimated as follows:

|E (xϵ
t, y

ϵ
t)− E0| ≤ β−1dϵt+ ϵ

∫︂ t

0

||yϵs||22ds+
√︁

2ϵβ−1

⃓⃓⃓⃓∫︂ t

0

yϵs · dWs

⃓⃓⃓⃓
.

Therefore,

sup
0≤t≤tϵ

|E (xϵ
t, y

ϵ
t)− E0| ≤ β−1dϵtϵ + ϵ

∫︂ tϵ

0

||yϵs||22ds+
√︁

2ϵβ−1 sup
0≤t≤tϵ

⃓⃓⃓⃓∫︂ t

0

yϵs · dWs

⃓⃓⃓⃓
.
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Since ϵtϵ → 0 as ϵ → 0, there exists a ϵ0(δ) such that when ϵ < ϵ0 we have 2β
−1dϵtϵ <

δ. It follows that

P
(︃

sup
0≤t≤tϵ

|E (xϵ
t, y

ϵ
t)− E0| > δ

)︃
≤ P

(︃
ϵ

∫︂ tϵ

0

||yϵs||22ds+
√︁

2ϵβ−1 sup
0≤t≤tϵ

⃓⃓⃓⃓∫︂ t

0

yϵs · dWs

⃓⃓⃓⃓
>

δ

2

)︃
≤ P

(︃
ϵ

∫︂ tϵ

0

||yϵs||22ds >
δ

4

)︃
+ P

(︃√︁
2ϵβ−1 sup

0≤t≤tϵ

⃓⃓⃓⃓∫︂ t

0

yϵs · dWs

⃓⃓⃓⃓
>

δ

4

)︃
. (3.27)

By using the Fubini’s theorem and (3.26), we have

E
[︃
ϵ

∫︂ t

0

||yϵs||22ds
]︃
= ϵ

∫︂ t

0

E||yϵs||22ds ≤ 2E0ϵt+ β−1dϵ2t2.

Applying the Markov’s inequality to the first term of (3.27), we have

P
(︃
ϵ

∫︂ tϵ

0

||yϵs||22ds >
δ

4

)︃
≤ 4

δ
E
[︃
ϵ

∫︂ tϵ

0

||yϵs||22ds
]︃
≤ 8E0

δ
ϵtϵ +

4β−1d

δ
ϵ2tϵ

2,

whose upper bound tends to zero when ϵ → 0.

By using the Cauchy–Schwarz inequality and the multidimensional Itô isometry,

we have

E
[︃√︁

2ϵβ−1

⃓⃓⃓⃓∫︂ t

0

yϵs · dWs

⃓⃓⃓⃓]︃
=
√︁

2ϵβ−1 E
[︃⃓⃓⃓⃓∫︂ t

0

yϵs · dWs

⃓⃓⃓⃓
1{|∫︁ t

0 yϵs·dWs|≥0}

]︃

≤
√︁
2ϵβ−1 E

[︄(︃∫︂ t

0

yϵs · dWs

)︃2
]︄ 1

2

P
(︃⃓⃓⃓⃓∫︂ t

0

yϵs · dWs

⃓⃓⃓⃓
≥ 0

)︃ 1
2

=
√︁

2ϵβ−1 E
[︃∫︂ t

0

||yϵs||22ds
]︃ 1

2

≤
(︁
4β−1E0ϵt+ 2β−2dϵ2t2

)︁ 1
2 .

Applying the Doob’s martingale inequality on the second term of (3.27), we have

P
(︃√︁

2ϵβ−1 sup
0≤t≤tϵ

⃓⃓⃓⃓∫︂ t

0

yϵs · dWs

⃓⃓⃓⃓
>

δ

4

)︃
≤ 4

δ
E
[︃√︁

2ϵβ−1

⃓⃓⃓⃓∫︂ tϵ

0

yϵs · dWs

⃓⃓⃓⃓]︃
≤ 4

δ

(︁
4β−1E0ϵtϵ + 2β−2dϵ2tϵ

2
)︁ 1

2 ,

which tends to zero when ϵ → 0.

This theorem indicates that, in the short time scale tϵ, the energy of Xϵ
t is close to

E0 for any t ≤ tϵ almost surely. The result validates in [0, tϵ]. At the endpoint tϵ, the

energy of Xϵ
tϵ is obviously close to E0. Thus, we obtain the following corollary.
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Corollary 20 (Law of Large Numbers on the total energy) Let ϵtϵ ≪ 1. Then

lim
ϵ→0

P
(︁⃓⃓
E
(︁
xϵ
tϵ , y

ϵ
tϵ

)︁
− E0

⃓⃓
> δ
)︁
= 0 for every δ > 0.

Notice that Corollary 20 is a generalization of Theorem 17 in the non-harmonic d-

dimensional case. The difference is that we investigate all coordinates in Theorem

17, but only one slow variable in Corollary 20, which is the total energy E. The total

energy remain close to its initial value in the short time scale. It is a piece of partial

evidence that tϵ ≪ 1
ϵ
is a proper short time scale.

3.3.2 Long time behavior

In the harmonic case, Xϵ
tϵ eventually tends to its equilibrium state X∞ which is the

unique invariant measure of the Langevin equation. In general, the same holds for

the non-harmonic cases. In order to find the proper time scale in the non-harmonic

case, we exam the convergence rate in detail.

The generator of the underdamped Langevin equation (3.5) is

L = [y · ∇x −∇xV (x) · ∇y] + ϵ
[︁
−y · ∇y + β−1∆y

]︁
=: Lham + ϵLFD,

where Lham is the Liouville operator of the corresponding Hamiltonian system and

LFD is the fluctuation-dissipation part. The density function ρ(x, y, t) of the distri-

bution of Xϵ
t satisfies the Fokker–Planck equation

∂tρ = −y · ∇xρ+∇xV · ∇yρ+ ϵ
(︁
∇y · (yρ) + β−1∆yρ

)︁
,

ρ(x, y, 0) = ρ0(x, y),

where ρ0 is the initial density. Let ρβ denote the density of the stationary distribution.

Let h(x, y, t) satisfy ρ(x, y, t) = h(x, y, t)ρβ(x, y). It is straight forward to check that

∂th = −Lhamh+ ϵLFDh =: Lkinh,

h(x, y, 0) = ρ−1
β (x, y)ρ0(x, y).

The equation of h is named as the kinetic Fokker-Planck equation. Write ρ(x, y, t) =

f(x,−y, t)ρβ(x, y). By direct differentiation we have

∂tf = Lf,

f(x, y, 0) = ρ−1
β (x,−y)ρ0(x,−y).
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Thus f satisfies the backward Kolmogorov equation. ρ, h and f have similar time

evolutions. Since L is not self-adjoint, the Poincaré inequality is not applicable.

Therefore one cannot use the classical techniques of the convergence of the Smolu-

chowski equation, whose details are demonstrated in [13, Section 4.5] and [48, Section

2].

In this degenerate case, one uses hypocoercivity to control the convergence. Villani

demonstrates the convergence of h in the following H1 norm

||h||2H1(ρβ)
:=

∫︂
Rn×Rn

(︁
|∇xh(x, y)|2 + |∇yh(x, y)|2

)︁
ρβ(x, y)dxdy.

The main reason to chose this norm is to satisfy the Gronwall inequality [49, Section

3]. He provides the first assumption of convexity.⃓⃓
∇2V

⃓⃓
≤ c (1 + |∇V |) ,

which avoids the potential V to growth faster than exponential function. The second

assumption he made is a modified Poincaré inequality∫︂ (︁
|∇xh|2 + |∇yh|2

)︁
ρβdxdy ≥ κ

[︃∫︂
h2ρβdxdy −

∫︂
hρβdxdy

]︃2
.

With above two assmptions he proves the exponential decay in the H1 norm [50]. In

[49, Section 3] he provides the L2(ρβ) version⃓⃓⃓⃓⃓⃓⃓⃓
ht −

∫︂
h0ρβdxdy

⃓⃓⃓⃓⃓⃓⃓⃓
L2(ρβ)

≤ Ce−λt

⃓⃓⃓⃓⃓⃓⃓⃓
h0 −

∫︂
h0ρβdxdy

⃓⃓⃓⃓⃓⃓⃓⃓
L2(ρβ)

,

where ||h||2L2(ρβ)
:=

∫︂
Rn×Rn

|h(x, y)|2 ρβ(x, y)dxdy.

We can write ht = ρt/ρβ, then⃓⃓⃓⃓⃓⃓⃓⃓
ht −

∫︂
h0ρβdxdy

⃓⃓⃓⃓⃓⃓⃓⃓2
L2(ρβ)

= ||ρt − ρβ||2L2(ρ−1
β ) = χ2 (ρt, ρβ) , (3.28)

where the last term is χ2-divergence. By [51, Lemma 2.7] we have

dTV (ρt, ρβ) ≤
√︂

χ2 (ρt, ρβ). (3.29)

Thus rather than L2 norm, we obtain an exponential convergence of the densities in

the total variation distance. However, the convergence rate λ is not analyzed precisely

in those pioneering results.
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There are other studies considering this exponential convergence with the different

norms or in the different spaces. With the bounded condition of the Hessian of

V (x), Baudoin proves the exponential convergence of the densities in Wasserstein

distance via the Bakry-Émery machinery [52]. In [53], CAO, LU, and WANG estimate

the convergence rate precisely in a modified Banach space which includes a finite

time interval, I = (0, T ). With a fixed Poincaré constant they estimate that the

convergence rate is O(ϵ), when ϵ → 0. Because of the framework of the technique,

this result validates in a finite time.

Grothaus and Stilgenbauer provide a rigorous derivation of the convergence rate

as a function of the damping coefficient ϵ [54]. Rather than the kinetic Fokker-

Planck equation, they directly analyze the backward Kolmogorov equation. The two

assumptions are similar to what Villani assumes. The difference is that the Poincaré

inequality is in the L2 norm. Their result is⃓⃓⃓⃓⃓⃓⃓⃓
ft −

∫︂
f0ρβdxdy

⃓⃓⃓⃓⃓⃓⃓⃓
L2(ρβ)

≤ ν1e
−ν2t

⃓⃓⃓⃓⃓⃓⃓⃓
f0 −

∫︂
f0ρβdxdy

⃓⃓⃓⃓⃓⃓⃓⃓
L2(ρβ)

, (3.30)

where ν1 ∈ (0,∞),

ν2 =
ν1 − 1

ν1

ϵ

n1 + n2ϵ+ n3ϵ2
,

and positive constants ni, i = 1, . . . , 3 only depend on V (x) and β. By (3.28) and

(3.29) we can deduce the total variation version of (3.30). Therefore we have a similar

result as part iii) of Theorem 16.

Corollary 21 Assume the probability measure ρβdxdy satisfies a Poincaré inequal-

ity

||∇ϕ||2L2(ρβ)
≥ Λ

⃓⃓⃓⃓⃓⃓⃓⃓
ϕ−

∫︂
Rn×Rn

ϕρβdxdy

⃓⃓⃓⃓⃓⃓⃓⃓
L2(ρβ)

,

for Λ ∈ (0,∞) and all ϕ ∈ C∞
c (R2n). Also assume that there exists a constant c such

that ⃓⃓
∇2V (x)

⃓⃓
≤ c (1 + |∇V (x)|) for all x ∈ Rn.

If ϵtϵ ≫ 1, then

lim
ϵ→0

dTV

(︁
Xϵ

tϵ , X∞
)︁
= 0.

When ϵ tends to zero, we have ϵν2 tends to infinity. Then the right hand side of

the inequality (3.30) tends to zero, which is the result we want to prove. As expected,

the solution fully merges with its stationary measure in the long time scale.
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3.4 Transient behavior of the one-dimensional Langevin

equation

We have shown that, in the short time scale (tϵ ≪ ϵ−1), Xϵ
t is captured by the initial

Hamiltonian orbit. In the long time scale (tϵ ≫ ϵ−1), Xϵ
t eventually tends to its

stationary measure. Then the solution undergoes a transition from a deterministic

curve to the stationary measure during the critical time scale tϵ = O (ϵ−1). In this

section, we will demonstrate how the solution evolves from the Hamiltonian orbit to

its stationary measure in the critical time scale
(︁
tϵ =

θ
ϵ

)︁
.

In the one-dimensional harmonic case, for each fixed θ the mean of the total energy

decreases 1 − e−θ times from the initial total energy. Meanwhile, the variance Xϵ
t

increases 1− e−θ times the variance of its stationary measure. When θ tends to zero,

both factors are equal to zero, which means the initial Hamiltonian orbit precisely

captures the solution. When θ tends to infinity, both factors are equal to one, which

means the solution reaches its stationary measure. Therefore, the variation of θ

demonstrates the transient behavior. However, because of the rotation map (3.14) we

cannot find a proper system to describe the behavior with respect to θ in the critical

time scale.

In the one-dimensional non-harmonic case, from the simulation, we know the angle

variable becomes even more sensitive than the harmonic case. We cannot describe

the transient behavior in the full dimensions. Fortunately, the Langevin equation is

a slow-fast system. In the critical time scale, the energy as a slow variable plays a

more important role than the angle variable. We will analyze the transition of energy

in detail.

3.4.1 Construct the averaging system of the energy

We first construct the slow-fast structure of the Langevin equation. By changing

variables into the position and the energy space, (x,E). The energy is defined as

E(x, y) =
1

2
y2 + V (x).

Applying Itô’s formula, we find

dE (xϵ
t, y

ϵ
t) = ϵ

(︁
β−1 − yϵt

2
)︁
dt+

√︁
2ϵβ−1yϵtdWt.
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Without loss of generality, we set β = 2. We drop the superscript ϵ to simplify the

notation. Since we focus on the distribution, the above equation can be rewritten as

dEt = ϵ

(︃
1

2
− y2t

)︃
dt+

√︁
ϵy2t dWt,

= ϵ

[︃
1

2
− 2 (Et − V (xt))

]︃
dt+

√︁
2ϵ (Et − V (xt))dWt,

=: ϵb (xt, Et) dt+
√
ϵσ (xt, Et) dWt.

For the position variable

dxt = ytdt =

{︄√︁
2 (Et − V (xt))dt, yt ≥ 0

−
√︁
2 (Et − V (xt))dt, yt < 0

=: f (xt, Et) dt.

Compared with x, E is the relatively slow variable. In order to apply the averaging

principle to our SDEs [55], we need to change the time scale to the critical time scale.

Let Ec
t = E t

ϵ
and xc

t = x t
ϵ
. Then the SDEs are

dEc
t = b (xc

t , E
c
t ) dt+ σ (xc

t , E
c
t ) dWt, (3.31)

dxc
t =

1

ϵ
f (xc

t , E
c
t ) dt.

We drop the superscript and subscript. The generator of (3.31) is

L =
1

ϵ
f(x,E)

∂

∂x
+ b(x,E)

∂

∂E
+

1

2
σ2(x,E)

∂2

∂E2
=:

1

ϵ
L0 + L1.

Let uϵ be the solution of the backward Kolmogorov equation

∂uϵ

∂t
=

(︃
1

ϵ
L0 + L1

)︃
uϵ.

We seek a series expansion of uϵ

uϵ = u0 + ϵu1 +O
(︁
ϵ2
)︁
.

Then in different scales of ϵ we have

O
(︁
ϵ−1
)︁

L0u0 = 0, (3.32)

O (1) L0u1 = −L1u0 +
∂u0

∂t
. (3.33)
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(3.32) implies that u0 is in the null space of L0. Thus u0 is independent of x, which

means u0 = u0(E, t). Let ρ∞(x;E), as a density function, be the element in the null

space of L∗
0. Fixing E, we obtain

L∗
0ρ

∞(x;E) = 0 (3.34)

and

∮︂
C(E)

ρ∞(x;E)dx = 1, (3.35)

where the integral is taken over one complete period on

C(E) =

{︃
(x, y)

⃓⃓⃓⃓
1

2
y2 + V (x) = E

}︃
.

The Fredholm alternative of (3.33) indicates

−L1u0 +
∂u0

∂t
⊥ Null{L∗

0},

which implies∮︂
C(E)

ρ∞(x;E)

(︃
∂u0

∂t
− b(x,E)

∂u0

∂E
− 1

2
σ2(x,E)

∂2u0

∂E2

)︃
dx = 0.

Since ρ∞ is a density function, the equation can be simplified as

∂u0

∂t
=

∮︂
C(E)

b(x,E)ρ∞(x;E)dx
∂u0

∂E
+

1

2

∮︂
C(E)

σ2(x,E)ρ∞(x;E)dx
∂2u0

∂E2
,

which is a backward Kolmogorov equation of a one-dimenstional averaged equation

dE = b(E)dt+ σ(E)dWt, (3.36)

where

b(E) =

∮︂
C(E)

b(x,E)ρ∞(x;E)dx,

σ(E) =

[︃∮︂
C(E)

σ2(x,E)ρ∞(x;E)dx

]︃ 1
2

.

In order to obtain b and σ precisely, we need to find the density of the steady state

of the fast variable, which is ρ∞(x;E). According to (3.34), the steady state satisfies

L∗
0ρ

∞(x;E) = − ∂

∂x
(f(x,E)ρ∞(x;E)) = 0.
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Thus there exists a function h(E), which only depends on E, such that

ρ∞(x;E) =
h(E)

f(x,E)
=

h(E)

y
.

Since ρ∞(x;E) is a density function, applying (3.35) we have∮︂
C(E)

ρ∞(x;E)dx =

∮︂
C(E)

h(E)

y
dx = 1.

Therefore,

h(E) =
1

⟨y−1⟩
, where ⟨y⟩ =

∮︂
C(E)

ydx.

We plug ρ∞ back into (3.36) to obtain

b(E) =
1

2
− ⟨y⟩

⟨y−1⟩
and σ(E) =

√︄
⟨y⟩
⟨y−1⟩

.

We introduce the classical action variable I and the frequency ω to simplify the

expression of the averaged equation.

I(E) =
1

2π

∮︂
C(E)

ydx,

ω(E) = 2π

(︃∮︂
C(E)

dt

)︃−1

= 2π

(︃∮︂
C(E)

dx

y

)︃−1

.

Therefore the averaged equation can be rewritten as

dE =

(︃
1

2
− I(E)ω(E)

)︃
dt+

√︂
I(E)ω(E)dWt. (3.37)

Changing the time scale back to the original one, the averaged equation reads

dEϵ
t = ϵ

(︃
1

2
− I(Eϵ

t)ω(E
ϵ
t)

)︃
dt+

√︂
ϵI(Eϵ

t)ω(E
ϵ
t)dWt.

Applying the averaging principle [57], let Eϵ
t be the energy at (xϵ

t, y
ϵ
t), then

Theorem 22 (Averaging Principle of Total Energy)

i) The marginal distribution of Ec
t converges to the distribution of Ec

t as ϵ → 0 for

any t ∈ [0, T ].

ii) The marginal distribution of Eϵ
t converges to the distribution of Eϵ

t for any

t ∈
[︁
0, T

ϵ

]︁
.
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In Section 3.3 we knew that, for the d-dimensional non-harmonic case, Eϵ
t tends to

E0 in the short time scale. In the long time scale, Eϵ
t tends to E∞ which is the energy

of the stationary measure. We specifically consider that d = 1 in this section. There

exists θ ∈ R+ such that ϵtϵ = θ in the critical time scale. By part ii) of Theorem 22,

Eϵ
t weakly converges, as ϵ → 0, to Eϵ

t when t = θ
ϵ
. Let E(θ) and E(θ) be the above

two limits respectively. Then E(θ) is a proper approximation of E(θ) which is our

target system. Meanwhile, by definition

lim
ϵ→0

Eϵ
θ
ϵ

= E(θ).

Then E(θ) is the solution of (3.37) at time θ. Therefore, in the critical time scale, the

averaged equation (3.37) demonstrates the evolution from the energy of the initial

Hamiltonian to the energy of the stationary measure.

3.4.2 The averaged system of the harmonic oscillator with
external noise

In this section, we consider the Harmonic Potential, V (x) = 1
2
kx2. By Green’s theo-

rem, we have

I(E) =
1

2π

∮︂
C(E)

ydx =
1

2π

∫︂∫︂
D(E)

dxdy =
E√
k
,

where D(E) is the region in R2 bounded by C(E). By directly differentiation, we

have

dI

dE
=

1

2π

d

dE

∮︂
C(E)

√
2E − kx2dx =

1

2π

∮︂
C(E)

dx√
2E − kx2

=
1

2π

∮︂
C(E)

dx

ẋ
=

1

2π

∮︂
C(E)

dt =
T

2π
=

1

ω(E)
,

then I(E)ω(E) =
E√
k

(︃
dI

dE

)︃−1

= E.

Therefore, in the harmonic case, the averaged equation (3.37) is

dE =

(︃
1

2
− E

)︃
dt+

√︁
EdWt; E0 = E0.

which is a Cox–Ingersoll–Ross (CIR) model.

[58] provided the corresponding moment generating function which is

E
(︂
euEθ

)︂
=

[︃
1− 1− e−θ

2
u

]︃−1

× exp

{︄
E0e

−θu

1− 1−e−θ

2
u

}︄
. (3.38)
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When θ = 0, we have E
(︂
euE0

)︂
= euE0 . This is to say that the averaged process starts

from the energy of the initial Hamiltonian as we construct. When θ tends to infinity,

we have

lim
θ→∞

E
(︂
euEθ

)︂
=

2

2− u
.

Thus the stationary distribution of E is an exponential distribution whose rate equals

2. We will discuss this limit when comparing the averaged process with the original

process in the critical time scale.

In the harmonic case, we know the explicit means and variances of the Gaussian

process Xϵ
t . In Section 3.1.2 we compute the limiting state in the critical time scale.

When ϵtϵ = θ, as ϵ → 0, the means and variances of Xϵ
tϵ respectively tend to

mθ = e−
θ
2

⎛⎜⎜⎝x0 cos

(︃√︂
ktϵ

2 − θ2

4

)︃
+ 1√

k
y0 sin

(︃√︂
ktϵ

2 − θ2

4

)︃
y0 cos

(︃√︂
ktϵ

2 − θ2

4

)︃
−
√
kx0 sin

(︃√︂
ktϵ

2 − θ2

4

)︃
⎞⎟⎟⎠ =:

⎛⎝m1

m2

⎞⎠ ,

Σθ =

⎛⎝ 1
2k

(︁
1− e−θ

)︁
, 0

0, 1
2

(︁
1− e−θ

)︁
⎞⎠ =:

⎛⎝σ2
1, 0

0, σ2
2

⎞⎠ .

Then the moment generating function of the energy of Xϵ
tϵ is

E
(︁
euEθ

)︁
=

∫︂∫︂
R2

eu(
1
2
y2+ 1

2
kx2) 1

2πσ1σ2

e
− 1

2

[︃
(x−m1)

2

σ2
1

+
(x−m2)

2

σ2
2

]︃
dxdy

=
1√︁

1− kσ2
1u

e

km2
1σ

2
1u

2σ2
1(1−kσ2

1u) 1√︁
1− σ2

2u
e

m2
2σ

2
2u

2σ2
2(1−σ2

2u)

=

[︃
1− 1− e−θ

2
u

]︃−1

× exp

{︄[︁
k
2
m2

1 +
1
2
m2

2

]︁
u

1− 1−e−θ

2
u

}︄

=

[︃
1− 1− e−θ

2
u

]︃−1

× exp

{︄
E0e

−θu

1− 1−e−θ

2
u

}︄
,

which is exactly the moment generating function of Eθ in (3.38). This result implies

E
(︁
Xϵ

tϵ

)︁
converges to Eθ in distribution with fixed θ, which is given by the averaging

principle.

With a similar computation, the moment generating function of the energy of the

stationary measure is

E
(︁
euE∞

)︁
=

2

2− u
= lim

θ→∞
E
(︂
euEθ

)︂
.
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The stationary distribution of the averaged equation (3.37) happens to be the distri-

bution of the energy of X∞. Therefore, at least in the harmonic case, the averaging

principle can be generated to include the stationary distribution. Moreover, the av-

eraged equation demonstrates the entire transition of the energy. It starts from the

energy of the initial Hamiltonian and converges to the energy of the stationary state

of Xϵ
t .

3.4.3 The averaged system of the non-harmonic oscillator
with external noise

In the averaged equation (3.37), the term, F (E) := I(E)ω(E), plays a critical role.

In the harmonic case F (E) = E. Since it is a linear function, (3.37) becomes a CIR

model whose density is well-known explicitly for each θ. In the non-harmonic case,

we try to find a suitable type of potential such that F (E) is still a linear function.

Since it is impossible to have the explicit form of F (E) with general potentials,

we start to simulate F (E) among the following different types of potentials, and to

collect the general properties from simulations. We select the code of the double-well

potential as an example in Appendix E.7.

i) Harmonic potential: V (x) = 1
2
x2

(a) V (x) (b) I(E)
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(c) ω(E) (d) F (E)

ii) Single-well potential: V (x) = 1
4
x4

(a) V (x) (b) I(E)

(c) ω(E) (d) F (E)
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iii) Single-well potential: V (x) = 1
10
x10

(a) V (x) (b) I(E)

(c) ω(E) (d) F (E)

iv) Single-well potential: V (x) = 1
2
x2 + 1

4
x4

(a) V (x) (b) I(E)
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(c) ω(E) (d) F (E)

v) Double-well potential: V (x) = 1− 2x2 + x4

(a) V (x) (b) I(E)

(c) ω(E) (d) F (E)
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The function F (E) is almost linear with different slopes in the first four cases,

which are single-well potentials. We use Maple to compute F (E) among those cases.

In the first three cases, F (E) are linear functions. But the symbolic computation

does not provide a linear result when V (x) = 1
2
x2 + 1

4
x4. Therefore, we consider

V (x) = 1
2n
x2n first.

Proposition 23 If V (x) = 1
2n
x2n, where n ∈ Z+. Then F (E) = 2n

n+1
E. Furthermore,

the averaged equation is a CIR model.

Proof. The intersection points are x+ = (2nE)
1
2n and x− = −(2nE)

1
2n . Since

V (x) is an even function we have

F (E) =

∫︁ x+

0
(2E − 2V (x))

1
2 dx∫︁ x+

0
(2E − 2V (x))−

1
2 dx

= 2

∫︁ x+

0
(E − V (x))

1
2 dx∫︁ x+

0
(E − V (x))−

1
2 dx

=: 2
p(E)

q(E)
.

By changing of variables and integration by part, we have

p(E) =

∫︂ (2nE)
1
2n

0

(︃
E − 1

2n
x2n

)︃ 1
2

dx = 2
1
2nn

1
2n

−1

∫︂ √
E

0

t2
(︁
E − t2

)︁ 1
2n

−1
dt

= (2n)
1
2n

∫︂ √
E

0

(︁
E − t2

)︁ 1
2n dt = (2n)

1
2n E

1
2n

+ 1
2

∫︂ 1

0

(1− s2)
1
2nds.

By the similarly changing of variables, we have

q(E) =

∫︂ (2nE)
1
2n

0

(︃
E − 1

2n
x2n

)︃− 1
2

dx = 2
1
2nn

1
2n

−1

∫︂ √
E

0

(︁
E − t2

)︁ 1
2n

−1
dt

= 2
1
2nn

1
2n

−1E
1
2n

− 1
2

∫︂ 1

0

(1− s2)
1
2n

−1ds.

Therefore,

F (E) = 2n

∫︁ 1

0
(1− s2)

1
2nds∫︁ 1

0
(1− s2)

1
2n

−1ds
E

= 2n
Γ
(︁
1
2
+ 1

2n

)︁
Γ
(︁
1 + 1

2n

)︁
Γ
(︁

1
2n

)︁
Γ
(︁
3
2
+ 1

2n

)︁ E =
2n

n+ 1
E.

For this particular potential, we trace the solution Et and derive the following

proposition.
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Proposition 24 Assume V (x) = 1
2n
x2n, where n ∈ Z+, and E0 > 0. If n = 1, the

process of Et is a strictly positive process. If n > 1, the boundary 0 is accessible and

instantaneously reflecting.

Proof. Since the solution Et is a CIR process, the behavior of Et can be estimated

by the Feller condition (see [59] for more details). We need to modify the equation

back to the classical form

drt = k (θ − rt) dt+ σ
√
rtdWt,

and compare 2kθ to σ2.

If n = 1, we obtain F (E) = E. Then kθ = 1
2
, k = 1, and σ = 1. Therefore,

2kθ = 1 ≤ 1 = σ2,

i.e., the Feller condition holds. Thus, the solution stays strictly positive for any

positive initial value.

If n > 1, we obtain F (E) = 2n
n+1

E. Then kθ = 1
2
, k = 2n

n+1
, and σ =

√︂
2n
n+1

.

Therefore,

0 ≤ 2kθ = 1 <
2n

n+ 1
= σ2,

i.e., the Feller condition does not hold. Thus, the solution can hit 0. Since 0 ≤ 2kθ,

the origin strongly reflecting.

For more general potential V (x), since F (E) is a nonlinear function, the solution

of the averaged equation (3.37) is not a CIR process. The corresponding moment

generating function is hard to obtain. Using the Laplace transform, Feller presents

the positivity preserving of the CIR process (F (E) is a linear function) [60]. The

following theorem provides the non-negativity preserving in the general potential

case.

Proposition 25 The solution of the averaged equation (3.37) is non-negativity pre-

serving.

Proof. The averaging equation can be rewritten as

dEt =

(︃
1

2
− F (Et)

)︃
dt+

√︁
F (Et)dWt. (3.39)
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Since 1
2
− F (E) > −F (E), we make a comparison between (3.39) and

d˜︂Et = −F
(︂˜︂Et

)︂
dt+

√︃
F
(︂˜︂Et

)︂
dWt, (3.40)

with the same initial condition. Because of the comparison principle, Et ≤ ˜︂Et a.e..

Suppose that 0 is an absorbing state for ˜︂Et. For any E0 = ˜︂E0 ≥ 0 , we have ˜︂Et ≥ 0

a.e.. Therefore, Et ≤ 0 a.e..

For the absorbing state, we need to prove F (0) = 0. Recall that

F (E) = I(E)ω(E) =

∮︁
C(E)

ydx∮︁
C(E)

y−1dx
,

which is a continuous function. When E → 0, we treat V (x) as a single-well potential

locally. Therefore,

I(E) =
1

π

∫︂ x+

x−

(2E − 2V (s))
1
2 ds

where x+ and x− are the x-coordinates of the intersection points with V (x) and E,

and they are in the positive and negative domains separately. Since the integrand is

bounded and limits of integral tend to 0 as E → 0, we obtain

lim
E→0

I(E) = 0.

Since V (0) = V ′(0) = 0, V (x) can be approximated by V ′′(0)
2

x2 when x is small

enough. Therefore,

ω(E) =
π∫︁ x+

x−
(2E − V (s))−

1
2 ds

≈ π

2

1∫︁ √︂
2E

V ′′(0)

0
(2E − V ′′(0)s2)−

1
2 ds

=
√︁

V ′′(0).

Consequently, we obtain

lim
E→0

ω(E) =
√︁
V ′′(0), and F (0) = lim

E→0
F (E) = 0.

We start to simulate the averaged equation and summarize the general properties.

The corresponding Fokker–Planck equation is

ρθ =
∂2

∂E2

[︃
1

2
F (E)ρ

]︃
− ∂

∂E

[︃(︃
1

2
− F (E)

)︃
ρ

]︃
.
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Directly applying the Euler-Maruyama scheme to the averaged equation, we have

En+1 = En +

[︃
1

2
− F (En)

]︃
∆t+

√︁
F (En)∆Wn.

Because ∆Wn is a Gaussian random variable, the iteration enters the domain such

that F (En) is negative with non-zero probability. Then square root of F (En) is not

well-defined. The algorithms have been analyzed for the classical CIR process during

the last few years. The full truncation technique of the simulation of a CIR model is

proposed in [59], and [61]. It overcomes the square root’s problem by replacing the

negative value with zero. This idea will be applied in our simulations.

The logarithmic Euler-Maruyama is another ingenious scheme to simulate the

strictly positive process [62]. It generates a new variable by logarithmic transfor-

mation. Then the domains of variables change from R+ to R. We known that the

Feller condition is rarely satisfied when V (x) = 1
2n
x2n. Then the process hits the

origin with positive probability when n > 1. Simultaneously, the new variable tends

to negative infinity. Therefore, it is hard to apply the logarithmic Euler-Maruyama

in the averaged equation.

We introduce the generalized full truncation scheme as follows:

En+1 = En +

[︃
1

2
− F+ (En)

]︃
∆t+

√︁
F+ (En)∆Wn,

where F+ = max(F, 0). For each potential energy mentioned above, we can simulate

the process directly. Meanwhile, we collect the properties of their means and vari-

ances. We continuously select the code of the double-well potential as an example in

Appendix E.8.

90



i) Harmonic potential: V (x) = 1
2
x2

(a) t = 0.04 (b) t = 0.3

(c) t = 5 (d) Mean

(e) Variance
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ii) Single-well potential: V (x) = 1
4
x4

(a) t = 0.02 (b) t = 0.4

(c) t = 5 (d) Mean

(e) Variance
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iii) Single-well potential: V (x) = 1
2
x2 + 1

4
x4

(a) t = 0.03 (b) t = 0.3

(c) t = 5 (d) Mean

(e) Variance
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iv) Double-well potential: V (x) = 1− 2x2 + x4 and E0 = 2

(a) t = 0.01 (b) t = 0.5

(c) t = 1.4 (d) t = 5

(e) Mean (f) Variance
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For different potential energies, we first show the change in the density of total

energy with respect to time. The tendencies of their means and variances are pre-

sented in the last two graphs. In the single-well cases, the evolution of densities of

Et is similar, which is demonstrated in cases i), ii) and iii). Intuitively, the density

moves from a unimodal distribution to its stationary distribution, which looks like an

exponential distribution.

In our symmetric double-well case shown in case iv), we know the critical potential

energy is V (0) = 1. When V > 1, the local behavior is the same as a single-well

potential. When V < 1, the particle stays in one of the small wells. Because of the

potential’s symmetry, the wells’ selection can be ignored. In the evolution simulation,

a barrier at V = 1 decelerates the transition of the densities. Meanwhile, analyzing

the stationary distribution, this barrier collects more densities inside the domain,

0 < E < 1. Therefore, the stationary distribution looks like a piecewise exponential

distribution. Different potential energies lead to different transient behaviors of the

total energies. We want to find common ground for the evolution of Et among different

potentials.

We record the characteristics of the evolutions by mean and variance. For all the

different potential energy functions, the trend of the mean of Et remains consistent.

The same goes for its variance. In general, the mean of the total energy monotonously

converges to the mean of its stationary distribution. The variation of the variance

generates a unimodal function. It starts from zero and converges to the variance of

the stationary distribution. The incipient zero is caused by our initial total energy,

which is a one-point distribution. To date, we do not find the essential mechanism

inducing the peak. We need to pay more effort in this generalized CIR process (3.37)

to comprehend the transition from the short to the long time limit.

3.5 Summary

In this chapter, we analyze the underdamped Langevin equation (3.5). It is well-

known that there is perturbation limiting behavior when ϵ tends to zero in a compact

time interval. The perturbation limit is a solution on the corresponding initial Hamil-

tonian without damping and noise. For any fixed ϵ, there is a time limiting behavior.
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When t tends to infinity, the solution tends to its invariant measure (3.4). We attempt

to construct the connection between those limits in the d-dimensional space.

The analysis starts from the one-dimensional harmonic case. The underdamped

Langevin equation has an explicit solution which is a Gaussian process. We obtain

the following three time scales by discussing the means and variances of the solution

precisely.

i) The short time scale is tsϵ ≪ 1
ϵ
. In this time scale, when ϵ tends to zero, the

solution tends to the perturbation limit. This result increases the time interval

of the perturbation theorem, which is a compact interval.

ii) The critical time scale is tcϵ =
θ
ϵ
. When ϵ tends to zero, the limiting distribution

is in the transition from the initial Hamiltonian to the invariant measure. Both

damping and noise influence the solution. The degree of that influence only

depends on θ.

iii) The long time scale is tlϵ ≫ 1
ϵ
. Let ϵ tend to zero. Then, the solution eventually

merges with the invariant measure.

Theorem 16, 17 and 18 present different behaviors in the different time scales.

In the d-dimensional non-harmonic case, we analyze the total energy E in the

short time scale tsϵ ≪ 1
ϵ
, which is one of the conserved quantities of the unperturbed

Hamiltonian equation. By applying the conservation property and Itô’s formula, we

estimate Eϵ
t tends to E0

t ≡ E0 in the short time scale when ϵ tends to zero in Theorem

19. Therefore, the small perturbations have not started to affect E, and there is no

transient behavior of E until tsϵ . In the long time scale tlϵ ≫ 1
ϵ
, by applying the

classical hypocoercivity technique and a refined estimation of the convergence rate,

we conclude the solution Xϵ
t converges to its invariant measure in the total variation

distance when ϵ tends to zero in Corollary 21. Thus, the transition of E should still

occur in the critical time scale tcϵ =
θ
ϵ
.

In the critical time scale, we only analyze the one-dimensional case. Having applied

the averaging principle to our slow-fast systems, we deduce the averaged equation

(3.37) of the averaged total energy E. The averaging principle demonstrates that E

converges to the distribution of E as ϵ → 0, which is presented in Theorem 22. Thus,
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we utilize (3.37) to approximate the evolution of the total energy from E0 to its limit.

(3.37) is a generalized CIR process. There is no previous work in this non-negative

square root process, whose non-negativity preserving is proved in Proposition 25.

In order to gather more characteristics of (3.37), we generalize the full truncation

scheme, which simulates the classical CIR process. Under a variety of potentials, we

observe the common monotone decrease of the mean and the common trend of the

variance.

After understanding the transient behavior of E, we focus on the remaining fast

variable in the one-dimensional case. Naturally, we choose the angle as the fast

variable. Since we need to simulate (3.5) in a relatively long time, we develop a

data-driven method. We apply a rough Monte-Carlo simulation (104 samples) to

generate a dataset as a reference. Then, we borrow the equations in the numerical

Fokker-Planck equation’s scheme as constraints. Finally, we search for the closest

solution to the reference. Compared with the classical Monte-Carlo simulation (106

samples), our algorithm gives a smoother and more accurate solution while reducing

the number of sample paths. Compared with the classical numerical Fokker-Planck

equation’s scheme, we avoid iterating on a large space and provide a local numerical

solution of the density function.

By using the data-driven method, we simulate the full coordinates of (3.5) in

Section 3.2.3. Due to the numerical results, especially in the short time scale, we

speculate that the fast variable starts to transition in a time scale shorter than tcϵ,

and finishes the transition right before tcϵ. We will provide a rigorous theorem in the

future.
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Chapter 4

Conclusions and future works

In this work, we study the transient behavior in random linear recurrence equation

(2.2) and the underdamped Langevin equation (3.5). Both of them are subject to

small noise perturbations. We aim to understand how the small perturbations influ-

ence the original deterministic systems. Roughly speaking, the classical perturbation

theorem asserts that, in any finite time interval, when the small parameter ϵ tends to

zero, the unperturbed dynamics play a dominant role in the movements of particles.

We want to introduce various time scales tϵ to learn more refined dynamics over long

time intervals under small perturbations.

The linear recurrence equation with additive white noise is a classical model in

applied science. In Section 2.3 we provide an example of a stochastic differential

equation simulated by the forward difference approximation. That explicit scheme

can be simplified as a random linear recurrence equation of degree 2. When (H)

holds, there always exists a limit of the random linear recurrence equation. We

analyze the cut-off phenomenon which describes the convergence of the Gaussian

process generated by the random linear recurrence equation. The distances between

random variables in the process, Xt, and its limit, X∞, abruptly drop from one to

zero around the cut-off time, tϵ. Thus, before implementing the recurrence precisely,

we can estimate the time when the process is close enough to its equilibrium by the

structure of the equation.

In the underdamped Langevin equation, we still focus on the transient process from

the initial distribution to the stationary distribution. We distinguish three time scales

in Section 3.1 in the one-dimensional harmonic oscillator. In the short time scale, tsϵ ,
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particles are mainly governed by the unperturbed system, which is the corresponding

Hamiltonian system. In the critical time scale, tcϵ, the solution starts to make a

transition from the initial Hamiltonian orbit to its stationary distribution. In the

long time scale, tlϵ, the solution merges with the stationary distribution eventually.

Because of the structure of the Langevin equation, we suppose the different time

scales still exist in the d-dimensional non-harmonic oscillator, which is presented by

the 2d-dimensional non-linear Langevin system. By the hypocoercivity technique,

we know tlϵ is still a long time scale for the d-dimensional non-harmonic oscillator.

During the long time scale the solution is close enough to its stationary distribution

(Section 3.3.2). For the other two time scales, we have the following intermediate

results.

Within the short time scale tsϵ we find that the total energy remains very close to

its initial value (Theorem 19), which is the same phenomenon as that for the one-

dimensional harmonic oscillator. In order to make an understanding at the dynamics

level of the Langevin system in tsϵ , we plan to analyze the other d− 1 slow variables

first. The observed quantities that need to be verified are d slow variables. For a

future study, we aim to prove that those d variables remain close to their respective

initial values in this time scale.

Within the critical time scale tcϵ, by using the averaging principle for the stochastic

slow-fast system, we know that the averaged equations are useful in understanding

the transition of slow variables from the initial Hamiltonian to their stationary dis-

tribution. Having chosen the total energy as the slow variable, we verify this in the

one-dimensional harmonic case (Section 3.4.2). In the one-dimensional non-harmonic

case, we derive the averaged equation of the total energy and use it to describe

certain behaviors of that transition (Section 3.4.1 and 3.4.3). We will consider the

d-dimensional non-harmonic case using averaging techniques in future studies.

We also have conducted multiscale simulations. Since the simulations is in a rela-

tively long time, when ϵ is small, we introduce an efficient scheme in Section 3.2. We

call it the data-driven method which is a hybrid with the Monte-Carlo method and

the simulation of the corresponding Fokker-Planck equation. With the data-driven

method, we nicely capture the three time scales for the one-dimensional case. The

simulation not only provides visualizations of our results in the different time scales,
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but also leads us to phenomena which need some rigorous theoretical proofs.

For instance, in the short time scale, we observe that the total energy is close to its

initial value. Then we prove it in Theorem 19. But the angle, as a fast variable, is not

precise even in simulation. The averaging principle is proved up to the critical time

scale. We find the limit of the averaged equation is close to the stationary distribution

of the corresponding slow variable in the one-dimensional case. In future studies, we

might extend the time interval of the averaging principle. Thus, the d-dimensional

simulation needs to be implemented.

For the d-dimensional oscillator, the Monte-Carlo method can be directly general-

ized to this 2d-dimensional system. However, since the corresponding Fokker-Planck

equation has 2d spatial variables, the classical finite difference method is not compe-

tent for simulating this equation. Fortunately, we find there is an innovative approach

for the simulation of the high dimensional PDEs, which applies neural network [63].

In the future, we will utilize this approach as the second part of our data-driven

method, and simulate those slow variables as data evidence of different time scales.

After developing the d-dimensional data-driven scheme and advanced theoretical

proofs’ techniques, we will investigate the different time scales in the general slow-

fast system. Meanwhile, we will analyze how the averaged equations demonstrate

the transient behaviors of slow variables from their initial values to corresponding

stationary distributions.
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Appendix A: Variance

representation of X
(ϵ)
t

Since (ξt : t ≥ 0) is a sequence of i.i.d. random variables with standard Gaussian

distribution, it is not hard to see that for any t ≥ p the random variable X
(ϵ)
t has

Gaussian distribution, whose expectation is xt. The next lemma provides a represen-

tation of its variance under assumption (H).

Now, for the sake of intuitive reasoning and in a conscious abuse of notation we

introduce the following notation. For each s ∈ N0 denote by
∑︁

kj = s the set{︄
(k1, . . . , kp) ∈ Np

0 :

p∑︂
j=1

kj = s

}︄

and denote by
∑︁∑︁
kj=s

the sum of
∑︁

(k1,...,kp)∈
∑︁

kj=s

.

Lemma 26 Assume that (H) holds. For any t ≥ p, X
(ϵ)
t has Gaussian distribution

with mean xt and variance ϵ2σ2
t , where

σ2
t = 1 +

⎛⎝ ∑︂
∑︁

kj=1

λk1
1 · · ·λkp

p

⎞⎠2

+ · · ·+

⎛⎝ ∑︂
∑︁

kj=t−p

λk1
1 · · ·λkp

p

⎞⎠2

and λ1, . . . , λp are the roots of (2.3).

Proof. By the superposition principle, the solution of the non-homogeneous linear

recurrence (2.2) can be written as the general solution of the homogeneous linear

recurrence (2.1) plus a particular solution of the non-homogeneous linear recurrence

(2.2) as follows:

X
(ϵ)
t = xgen

t +X
(par,ϵ)
t for any t ∈ N0,

where X
(par,ϵ)
t solves the non-homogeneous linear recurrence (2.2), xgen

t solves the

homogeneous linear recurrence (2.1) but possible both solutions do not fit the pre-
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scribed initial conditions. The initial conditions are fitting after adding themselves

(see Section 2.4 in [64] for more details).

To find a particular solution, we introduce the Lag operator L which acts as follows:

xt−1 = L ◦ xt. Its inverse, L−1, is defined as L−1 ◦ xt = xt+1. For more details about

the Lag operator we recommend Chapter 2 in [65]. Notice that the random linear

recurrence (2.2) can be rewritten as

(L−p − ϕ1L−p+1 − · · · − ϕp) ◦X(par,ϵ)
t = ϵL−p ◦ ξt.

Then

(1− λ1L)(1− λ2L) · · · (1− λpL) ◦X(par,ϵ)
t = ϵξt,

where λ1, . . . , λp are the roots of (2.3). Since the modulus of the roots of (2.3) are

strictly less than one, we have

X
(par,ϵ)
t = (1 + λ1L+ λ2

1L2 + · · · ) · · · (1 + λpL+ λ2
pL2 + · · · ) ◦ ϵξt

for any t ≥ p. Since ξt is only defined for t ≥ p, we have

X
(par,ϵ)
t =

⎛⎝1 +
∑︂

∑︁
ki=1

λk1
1 · · ·λkp

p L+ · · ·+
∑︂

∑︁
ki=t−p

λk1
1 · · ·λkp

p Lt−p

⎞⎠ ◦ ϵξt.

Consequently,

X
(ϵ)
t = xgen

t + ϵ

⎛⎝ξt +
∑︂

∑︁
ki=1

λk1
1 · · ·λkp

p ξt−1 + · · ·+
∑︂

∑︁
ki=t−p

λk1
1 · · ·λkp

p ξp

⎞⎠ (A.1)

for t ≥ p, where xgen
t satisfies (2.1). After fitting the initial conditions, we see that

(xgen
t : t ∈ N0) is the solution of (2.1) with initial data x0, . . . , xp−1. Therefore

xgen
t = xt for any t ∈ N0. Since (ξt : t ≥ p) are i.i.d. Gaussian random variables with

zero mean and unit variance, X
(ϵ)
t is a Gaussian distribution for any t ≥ p. Therefore

it is characterized by its mean and variance. Since the expectation of X
(ϵ)
t is xt, we

only need to compute its variance. From (A.1) for any t ≥ p we have

Var
(︂
X

(ϵ)
t

)︂
= ϵ2

⎛⎝1 +

⎛⎝ ∑︂
∑︁

kj=1

λk1
1 · · ·λkp

p

⎞⎠2

+ · · ·+

⎛⎝ ∑︂
∑︁

kj=t−p

λk1
1 · · ·λkp

p

⎞⎠2⎞⎠ .
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Lemma 27 Assume that (H) holds. As t goes to infinity, X
(ϵ)
t converges in the total

variation distance to a random variable X
(ϵ)
∞ that has Gaussian distribution with zero

mean and variance ϵ2σ2
∞ ∈ [ϵ2,+∞).

Proof. From Lemma 26 we have that for any t ≥ p, X
(ϵ)
t has mean xt which is the

solution of (2.1) and variance ϵ2σ2
t where

σ2
t = 1 +

⎛⎝ ∑︂
∑︁

kj=1

λk1
1 · · ·λkp

p

⎞⎠2

+ · · ·+

⎛⎝ ∑︂
∑︁

kj=t−p

λk1
1 · · ·λkp

p

⎞⎠2

.

Since all the roots of (2.3) have modulus strictly less than one, relation (2.10) yields

that xt converges to zero when t goes to infinity. By a simple counting argument one

can see that

Card
(︂∑︂

kj = s
)︂
≤ (s+ 1)p for any s ∈ N0,

where Card denotes the cardinality of the given set. Then for any t ≥ p

σ2
t = 1 +

⎛⎝ ∑︂
∑︁

kj=1

λk1
1 . . . λkp

p

⎞⎠2

+ · · ·+

⎛⎝ ∑︂
∑︁

kj=t−p

λk1
1 . . . λkp

p

⎞⎠2

≤ 1 + (2pκ)2 + · · ·+ ((t− p+ 1)pκt−p)2

=

t−p∑︂
j=0

(j + 1)2pκ2j ≤
∞∑︂
j=0

(j + 1)2pκ2j < +∞,

where κ = max
1≤j≤n

|λj| < 1. Since 1 ≤ σ2
t ≤ σ2

t+1 ≤
∞∑︁
j=0

(j + 1)2pκ2j < +∞ for any t ≥ p,

we deduce lim
t→+∞

σ2
t exists. Denote by σ2

∞ its value. Observe that σ2
∞ ∈ [1,+∞). It

follows from Lemma 31 that X
(ϵ)
t converges in the total variation distance to X

(ϵ)
∞ as

t goes to infinity, which has Gaussian distribution with zero mean and variance ϵ2σ2
∞.
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Appendix B: Total variation
distance between Gaussian
distributions

In this section we provide some useful properties for the total variation distance be-

tween Gaussian distributions. Recall thatN (m,σ2) denotes the Gaussian distribution

with mean m ∈ R and variance σ2 ∈ (0,+∞). A straightforward computation leads

dTV

(︁
N
(︁
m1, σ

2
1

)︁
,N
(︁
m2, σ

2
2

)︁)︁
=

1

2

∫︂
R

⃓⃓⃓⃓
⃓ 1√

2πσ1

e
− (x−m1)

2

2σ2
1 − 1√

2πσ2

e
− (x−m2)

2

2σ2
2

⃓⃓⃓⃓
⃓ dx

for any m1,m2 ∈ R, σ2
1, σ

2
2 ∈ (0,+∞). For details see Lemma 3.3.1 in [37].

Lemma 28 Let m1,m2 ∈ R and σ2
1, σ

2
2 ∈ (0,+∞). Then

i) dTV(N (m1, σ
2
1),N (m2, σ

2
2)) = dTV(N (m1 −m2, σ

2
1),N (0, σ2

2)).

ii) dTV(N (cm1, c
2σ2

1),N (cm2, c
2σ2

2)) = dTV(N (m1, σ
2
1),N (m2, σ

2
2)) for any c ̸= 0.

Proof. The proofs of i) and ii) proceed from the Change of Variable Theorem.

Lemma 29

i) For any m ∈ R and σ2 ∈ (0,+∞) we have

dTV(N (m,σ2),N (0, σ2)) =
2√
2π

|m|
2σ∫︂
0

e−
x2

2 dx ≤ |m|
σ
√
2π

.

ii) For any m1,m2 ∈ R and σ2 ∈ (0,+∞) such that |m1| ≤ |m2| < +∞ we have

dTV(N (m1, σ
2),N (0, σ2)) ≤ dTV(N (m2, σ

2),N (0, σ2)).
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iii) If lim
t→+∞

|mt| = +∞ and σ2 ∈ (0,+∞) then

lim
t→+∞

dTV(N (mt, σ
2),N (0, σ2)) = 1.

Proof. Notice that ii) and iii) follow immediately from i). Therefore we only prove

i). From ii) of Lemma 28 we can assume that m ≥ 0. Observe that

dTV(N (m,σ2),N (0, σ2))

=
1

2
√
2πσ

m
2∫︂

−∞

(︃
e−

x2

2σ2 − e−
(x−m)2

2σ2

)︃
dx+

1

2
√
2πσ

+∞∫︂
m
2

(︃
e−

(x−m)2

2σ2 − e−
x2

2σ2

)︃
dx

=
2√
2πσ

m
2∫︂

0

e−
x2

2σ2 dx.

The latter easily implies the result.

Lemma 30 For any σ2 ∈ (0, 1) ∪ (1,+∞) we have

dTV(N (0, σ2),N (0, 1)) =
2√
2π

max{x(σ),x(σ)
σ }∫︂

min{x(σ),x(σ)
σ }

e−
x2

2 dx ≤ 2√
2π

x(σ) |1/σ − 1| ,

where x(σ) = σ
(︂

ln(σ2)
σ2−1

)︂1/2

. Moreover, we have lim
σ2→1

x(σ) = 1.

Proof. In this case a formula for dTV(N (0, σ2),N (0, 1)) can be computed explicitly

as we did in the proof of i) of Lemma 29. Indeed, if σ2 ∈ (0, 1) observe that

dTV(N (0, σ2),N (0, 1)) =
1

2
√
2π

+∞∫︂
−∞

⃓⃓⃓⃓
1

σ
e−

x2

2σ2 − e−
x2

2

⃓⃓⃓⃓
dx

=
1√
2π

+∞∫︂
0

⃓⃓⃓⃓
1

σ
e−

x2

2σ2 − e−
x2

2

⃓⃓⃓⃓
dx

=
1√
2π

⎡⎢⎣ x(σ)∫︂
0

(︃
1

σ
e−

x2

2σ2 − e−
x2

2

)︃
dx+

+∞∫︂
x(σ)

(︃
e−

x2

2 − 1

σ
e−

x2

2σ2

)︃
dx

⎤⎥⎦
=

2√
2π

x(σ)∫︂
0

(︃
1

σ
e−

x2

2σ2 − e−
x2

2

)︃
dx

=
2√
2π

x(σ)
σ∫︂

x(σ)

e−
x2

2 dx ≤ 2√
2π

x(σ)(1/σ − 1).
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On the other hand, if σ2 ∈ (1,+∞) one can also deduce that

dTV(N (0, σ2),N (0, 1)) =
2√
2π

x(σ)∫︂
x(σ)
σ

e−
x2

2 dx ≤ 2√
2π

x(σ)(1− 1/σ).

The second part of the lemma is a direct computation.

Lemma 31 If lim
t→+∞

mt = m ∈ R and lim
t→+∞

σ2
t = σ2 ∈ (0,+∞), then

lim
t→+∞

dTV(N (mt, σ
2
t ),N (m,σ2)) = 0.

Proof. The proof follows from the triangle inequality together with i) of Lemma 28,

i) of Lemma 29 and Lemma 30.

Lemma 32 Let σ2 ∈ (0,+∞).

i) If lim sup
t→+∞

|mt| ≤ C0 ∈ [0,+∞) then

lim sup
t→+∞

dTV(N (mt, σ
2),N (0, σ2)) ≤ dTV(N (C0, σ

2),N (0, σ2)).

ii) If lim inf
t→+∞

|mt| ≥ C1 ∈ [0,+∞) then

lim inf
t→+∞

dTV(N (mt, σ
2),N (0, σ2)) ≥ dTV(N (C1, σ

2),N (0, σ2)).

Proof.

i) Let L := lim sup
t→+∞

dTV(N (mt, σ
2),N (0, σ2)). Then there exists a subsequence

(tn : n ∈ N) such that lim
n→+∞

tn = +∞ and

lim
n→+∞

dTV(N (mtn , σ
2),N (0, σ2)) = L.

Since lim sup
t→+∞

|mt| ≤ C0, we have lim sup
n→+∞

|mtn| ≤ C0. Then there exists a subse-

quence (tnk
: k ∈ N) of (tn : n ∈ N) such that lim

k→+∞
tnk

= +∞ and lim
k→+∞

|mtnk
|

exists. We define C := lim
k→+∞

|mtnk
| and notice that 0 ≤ C ≤ C0. From Lemma

31 we obtain

lim
k→+∞

dTV(N (mtnk
, σ2),N (0, σ2)) = dTV(N (C, σ2),N (0, σ2)).

Notice that lim
k→+∞

dTV(N (mtnk
, σ2),N (0, σ2)) = L, then by item ii) of Lemma

29 we deduce

L = dTV(N (C, σ2),N (0, σ2)) ≤ dTV(N (C0, σ
2),N (0, σ2)).
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ii) The proof of ii) follows from similar arguments as we did in i). We left the

details to the interested reader.
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Appendix C: The Conservative
Algorithm of The Hamiltonian
Dynamics

In order to show this nonconservative phenomenon contributed by different algo-

rithms. We consider the most straightforward Hamilton system.⎧⎨⎩ dx = ydt,

dy = −xdt.

The corresponding Hamiltonian is

H(x, y) =
1

2
x2 +

1

2
y2.

One can easily check
dH

dt
=

∂H

∂x

dx

dt
+

∂H

∂y

dy

dt
= 0,

which is the conservation of that Hamiltonian. When we fix an initial condition, the

flow will be captured by its own Hamiltonian orbit. Mathematically we have the

following identity,

H(xt, yt) = H(x0, y0) for any t.

When discretizing the time variable, we denote ∆t as the step size. By the Euler

method, the iteration can be written as

xn+1 = xn + yn∆t,

yn+1 = yn − xn∆t.

Let x(0) = 0 and y(0) = 1 be the initial condition. We known the exact solution is

x(t) = sin(t) and y(t) = cos(t). For the conciseness of the figure, set time starts from
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0 to 6. Figure C.1 exhibits that the accumulation of errors destroys the conservation

law, where the iterative solution is marked black, and the exact solution is marked

grey.

(a) dt = 0.2 (b) dt = 0.05

Figure C.1: Divergency of the Euler method

In figure C.1a, there is a distinct divergence from the exact solution when dt = 0.2.

By refining the time steps to 0.05 we can alleviate the above divergency. However,

with time going on, this divergence can not be ignored, especially when we observe

the long time behaviors.

The leapfrog method plays a vital role in preserving conservation. By introducing

the half-step point, the iteration becomes

yhs = yn − xn
∆t

2
,

xn+1 = xn + yhs∆t,

yn+1 = yhs − xn+1
∆t

2
.

We take the same initial condition as before.

114



(a) dt = 0.2, tmax = 6 (b) dt = 1, tmax = 12

Figure C.2: Divergency of the Leapfrog method

In figure C.2a, comparing with the Euler method(Figure C.1a), the Leapfrog

method preserves the exact solution. Even when we select a tremendous time step,

dt = 1, in figure C.2b, the iterated solution will almost maintain the same energy

level as the exact solution. However, it leads to some errors in the angle variable.

This type of error might cause some misunderstandings about the short time scale

of the simulation. We will discuss it more in Section ??. For more details of the

Leapfrog method and other high order algorithms see [66] and [67].

In general, implicit methods always provide more stability than explicit methods.

However, the implicit methods cannot preserve the conservation as well. We will

demonstrate the implicit Euler method at the end. The iteration is

xn+1 = xn + yn+1∆t,

yn+1 = yn − xn+1∆t.

As a toy model we can simplify it as an explicit expression,

xn+1 =
xn + yn∆t

1 + ∆t2
,

yn+1 = yn − xn+1∆t.

The simulation result is as follows:
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(a) dt = 0.2 (b) dt = 0.05

Figure C.3: Divergency of the implicit Euler method

Roughly speaking, it is a reverse result compared with the explicit Euler method.

Rather than diverge to infinity, the iterated solution will converge to zero when the

time is large enough. This convergency cannot be eliminated no matter how good

the time step is. In figure C.3b we select dt = 0.05. People can generate a smaller dt

but a larger tmax in order to understand this convergency better.

In conclusion, the above two types of Euler methods essentially destroy the con-

servative property. Therefore, the Leapfrog method should be our priority when we

want to analyze the energy level in the conservative field.
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Appendix D: Other mathematical
Tools

In this section we state some elementary tools that we used all along this work. We

state them here for the sake of completeness.

Lemma 33 Let (aϵ : ϵ > 0) and (bϵ : ϵ > 0) be functions of real numbers. Assume

that lim
ϵ→0+

bϵ = b ∈ R. Then

i) lim sup
ϵ→0+

(aϵ + bϵ) = lim sup
ϵ→0+

aϵ + b.

ii) lim inf
ϵ→0+

(aϵ + bϵ) = lim inf
ϵ→0+

aϵ + b.

iii) lim inf
ϵ→0+

(aϵbϵ) = b lim inf
ϵ→0+

aϵ when b > 0.

Proof. The proofs proceed by definition of limit superior and limit inferior using

subsequences.

Lemma 34 For any α ∈ R and r ∈ (0, 1) we have

lim
ϵ→0+

(t(ϵ))αrt
(ϵ)

ϵ
= 1,

where t(ϵ) = ln(1/ϵ)
ln(1/r)

+ α
ln
(︂

ln(1/ϵ)

ln(1/r)

)︂
ln(1/r)

.

Proof. Note that t(ϵ) = logr(ϵ) − α logr(logr(ϵ)), where logr(·) denotes the base–r

logarithm function. A straightforward computation shows

lim
ϵ→0+

(t(ϵ))αrt
(ϵ)

ϵ
= lim

ϵ→0+

(︃
1− α

logr(logr(ϵ))

logr(ϵ)

)︃α

= 1.
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Appendix E: Matlab Code

E.1 Exact solution

u exac t 1 = zeros ( x s i z e , y s i z e , t s i z e ) ;
u exact = zeros ( x s i z e , y s i z e , t s i z e ) ;
Mean = zeros (2 , 1 ) ;
Variance = zeros (2 , 2 ) ;
b = 1 / 2 ∗ sqrt (4 ∗ k − ep ˆ2 ) ;

%Initial distribution

x i n i t i a l = 1 + floor ( ( x 0 − x min + dh/2)/dh ) ;
y i n i t i a l = 1 + floor ( ( y 0 − y min + dh/2)/dh ) ;
if x i n i t i a l > 0 && x i n i t i a l <= x s i z e && y i n i t i a l > 0 && y i n i t i a l <= x s i z e

u exac t 1 ( x i n i t i a l , y i n i t i a l , 1) = u exac t 1 ( x i n i t i a l , y i n i t i a l , 1) + 1/ dh ˆ2 ;
u exact ( x i n i t i a l , y i n i t i a l , 1) = u exact ( x i n i t i a l , y i n i t i a l , 1) + 1/ dh ˆ2 ;

end

for kk = 2 : t s i z e
Mean(1 ) = exp(−ep / 2 ∗ t c o o rd i n a t e ( kk ) ) ∗ ( x 0 ∗ cos (b ∗ t c o o rd i n a t e ( kk ) )
+ 1 / b ∗ ( ep / 2 ∗ x 0 + y 0 ) ∗ sin (b ∗ t c o o rd i n a t e ( kk ) ) ) ;

Mean(2 ) = exp(−ep / 2 ∗ t c o o rd i n a t e ( kk ) ) ∗ ( y 0 ∗ cos (b ∗ t c o o rd i n a t e ( kk ) )
− 1 / b ∗ ( k ∗ x 0 + ep / 2 ∗ y 0 ) ∗ sin (b ∗ t c o o rd i n a t e ( kk ) ) ) ;

Variance (1 , 1 ) = exp(−ep ∗ t c o o rd i n a t e ( kk ) ) / (4 ∗ bˆ2 + ep ˆ2) ∗ (2 ∗
( exp ( ep ∗ t c o o rd i n a t e ( kk ) ) − 1) − ep ∗ sin (2 ∗ b ∗ t c o o rd i n a t e ( kk ) ) / b
− epˆ2 ∗ (1 − cos (2 ∗ b ∗ t c o o rd i n a t e ( kk ) ) ) / 2 / b ˆ2 ) ;

Variance (1 , 2 ) = ep ∗ exp(−ep ∗ t c o o rd i n a t e ( kk ) ) / (4 ∗ bˆ2 + ep ˆ2) ∗
(1 − cos (2∗b∗ t c o o rd i n a t e ( kk ) ) + epˆ2 ∗ (1 − cos (2∗b∗ t c o o rd i n a t e ( kk ) ) )/4/b ˆ2 ) ;

Variance (2 , 1 ) = Variance ( 1 , 2 ) ;

Variance (2 , 2 ) = exp(−ep ∗ t c o o rd i n a t e ( kk ) ) / (4 ∗ bˆ2 + ep ˆ2) ∗ (2 ∗
bˆ2 ∗ ( exp ( ep ∗ t c o o rd i n a t e ( kk ) ) − 1) + ep ∗ b ∗ sin (2 ∗ b ∗ t c o o rd i n a t e ( kk ) )
+ epˆ2 ∗ ( cos (2 ∗ b ∗ t c o o rd i n a t e ( kk ) ) + exp ( ep ∗ t c o o rd i n a t e ( kk ) ) − 2) / 2
+ epˆ3∗ sin (2∗b∗ t c o o rd i n a t e ( kk ))/4/b+epˆ4∗(1−cos (2∗b∗ t c o o rd i n a t e ( kk ) ) )/8/b ˆ2 ) ;

VV = det ( Variance ) ;
for i = 1 : x s i z e

for j = 1 : y s i z e
u exac t 1 ( i , j , kk ) = exp(−1 / 2 ∗ ( [ x coo rd ina t e ( i ) − Mean ( 1 ) ;
y coo rd ina t e ( j ) − Mean ( 2 ) ] . ’ ∗ inv ( Variance ) ∗ [ x coo rd ina t e ( i )
− Mean ( 1 ) ; y coo rd ina t e ( j ) − Mean ( 2 ) ] ) ) ;

end

end

S = sum ( u exac t 1 ( : , : , kk ) , ’all’ ) ;
u exact ( : , : , kk ) = u exac t 1 ( : , : , kk ) / (S ∗ dh ˆ2 ) ;

end
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E.2 Time evolution

%Fix Parameters

k = 0 . 2 5 ;
ep = 0 . 1 ;
x 0 = 2 ;
y 0 = 2 ;

%Space grid

x min = −10;
x max = 10 ;
y min = −7;
y max = 7 ;
dh = 0 . 1 ;
x s i z e = (x max − x min ) / dh + 1 ;
y s i z e = (y max − y min ) / dh + 1 ;
x coo rd ina t e = linspace ( x min , x max , x s i z e ) ;
y coo rd ina t e = linspace ( y min , y max , y s i z e ) ;
[ x graph , y graph ] = meshgrid ( x coord inate , y coo rd ina t e ) ;

%Time grid

t min = 0 ;
t max = 100 ;
dt = 0 . 0 1 ;
t s i z e = ( t max − t min ) / dt + 1 ;
t c o o rd i n a t e = linspace ( t min , t max , t s i z e ) ;

u mc = zeros ( x s i z e , y s i z e , t s i z e ) ;

%Initial distribution

x i n i t i a l = 1 + floor ( ( x 0 − x min + dh/2)/dh ) ;
y i n i t i a l = 1 + floor ( ( y 0 − y min + dh/2)/dh ) ;

if x i n i t i a l >0 && x i n i t i a l <=x s i z e && y i n i t i a l >0 && y i n i t i a l <=x s i z e
u mc ( x i n i t i a l , y i n i t i a l , 1) = u mc ( x i n i t i a l , y i n i t i a l , 1)+1/ dh ˆ2 ;

end

f = @( t , x , y ) y ;
g = @( t , x , y ) − k ∗ x − ep ∗ y ;

numsp = 10ˆ4 ;
x s ea r ch = 0 ;
y sea r ch = 0 ;

for i = 1 : numsp
%MC Value Init

x va lue = x 0 ;
y va lue = y 0 ;

for j = 2 : t s i z e
x va lue = x va lue + dt ∗ f ( t c o o rd i n a t e ( j −1) , x value , y va lue ) ;
y va lue = y va lue + dt ∗ g ( t c o o rd i n a t e ( j −1) , x value , y va lue )
+ sqrt ( ep ∗ dt ) ∗ randn ;
x s ea r ch = 1 + floor ( ( x va lue − x min + dh/2)/dh ) ;
y s ea r ch = 1 + floor ( ( y va lue − y min + dh/2)/dh ) ;

if x search>0 && x search<=x s i z e && y search>0 && y search<=y s i z e
u mc ( x search , y search , j ) = u mc ( x search , y search , j )
+ 1/(numsp ∗ dh ˆ2 ) ;

else

disp ( [ ’Iteration:’num2str ( i ) ’ ’ ’Time:’num2str ( t c o o rd i n a t e ( j ) ) ] )
end

end

end
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E.3 Comparison

%Define the stationary distribution

u s t a t i ona r y 1 = zeros ( x s i z e , y s i z e ) ;
u s t a t i ona ry = zeros ( x s i z e , y s i z e ) ;

for i = 1 : x s i z e
for j = 1 : y s i z e

u s t a t i ona r y 1 ( i , j )
= exp (−( y coo rd ina t e ( j ) )ˆ2 − k∗( x coo rd ina t e ( i ) )ˆ2
− k/2∗( x coo rd ina t e ( i ) ) ˆ 2 ) ;

end

end

S = sum ( u s t a t i ona r y 1 , ’all’ ) ;
u s t a t i ona ry = u s t a t i ona r y 1 / (S ∗ dh ˆ2 ) ;

%Comparison

TVMC = zeros (1 , t s i z e ) ;
TV Hybrid = zeros (1 , t s i z e ) ;
for i i = 1 : t s i z e

for i = 1 : x s i z e
for j = 1 : y s i z e

if u s t a t i ona ry ( i , j ) > u mc ( i , j , i i )
TVMC( i i )=TVMC( i i )+( u s t a t i ona ry ( i , j )−u mc ( i , j , i i ) )∗dh ˆ2 ;

end

if u s t a t i ona ry ( i , j ) > u hybr id ( i , j , i i )
TV Hybrid ( i i ) = TV Hybrid ( i i ) + ( u s t a t i ona ry ( i , j )
− u hybr id ( i , j , i i ) ) ∗ dh ˆ2 ;

end

end

end

end

E.4 Crank-Nicolson scheme with the optimization

%Data -driven method

u hybr id = zeros ( x s i z e , y s i z e , t s i z e ) ;
u hyb r i d co l = zeros ( x s i z e ∗ y s i z e , t s i z e ) ;
u mc col = zeros ( x s i z e ∗ y s i z e , t s i z e ) ;
u hybr id ( : , : , 1) = u mc ( : , : , 1 ) ;

%Change MC result to a column

for kt = 1 : t s i z e
flag = 1 ;
for kx = 1 : x s i z e

for ky = 1 : y s i z e
u mc col ( flag , kt ) = u mc (kx , ky , kt ) ;
flag = flag+1;

end

end

end

%matrix A B b for PDE

A = zeros ( ( x s i z e − 2) ∗ ( y s i z e − 2) + 1 , x s i z e ∗ y s i z e ) ;
A( ( x s i z e − 2) ∗ ( y s i z e − 2) + 1 , : ) = ones (1 , x s i z e ∗ y s i z e ) ;
B = zeros ( ( x s i z e − 2) ∗ ( y s i z e − 2) + 1 , x s i z e ∗ y s i z e ) ;
B( ( x s i z e − 2) ∗ ( y s i z e − 2) + 1 , : ) = ones (1 , x s i z e ∗ y s i z e ) ;
b = zeros ( ( x s i z e − 2) ∗ ( y s i z e − 2) + 1 , 1 ) ;
b ( end ) = dhˆ(−2);
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for i = 2 : ( x s i z e − 1)
for j = 2 : ( y s i z e − 1)

A( ( i − 2) ∗ ( y s i z e − 2) + j − 1 , ( i − 2) ∗ y s i z e + j )
= −y coo rd ina t e ( j )/ (4 ∗ dh ) ;
A( ( i − 2) ∗ ( y s i z e − 2) + j − 1 , ( i − 1) ∗ y s i z e + j − 1)
= k∗ x coo rd ina t e ( i )/(4∗dh)+ep∗ y coo rd ina t e ( j )/(4∗dh)−ep /(4∗dh ˆ2 ) ;
A( ( i − 2) ∗ ( y s i z e − 2) + j − 1 , ( i − 1) ∗ y s i z e + j )
= 1/dt − ep/2 + ep /(2 ∗ dh ˆ2 ) ;
A( ( i − 2) ∗ ( y s i z e − 2) + j − 1 , ( i − 1) ∗ y s i z e + j + 1)
= −k∗ x coo rd ina t e ( i )/(4∗dh)−ep∗ y coo rd ina t e ( j )/(4∗dh)−ep /(4∗dh ˆ2 ) ;
A( ( i − 2) ∗ ( y s i z e − 2) + j − 1 , i ∗ y s i z e + j )
= y coo rd ina t e ( j )/ (4 ∗ dh ) ;

B( ( i − 2) ∗ ( y s i z e − 2) + j − 1 , ( i − 2) ∗ y s i z e + j )
= y coo rd ina t e ( j )/ (4 ∗ dh ) ;
B( ( i − 2) ∗ ( y s i z e − 2) + j − 1 , ( i − 1) ∗ y s i z e + j − 1)
= −k∗ x coo rd ina t e ( i )/(4∗dh)−ep∗ y coo rd ina t e ( j )/(4∗dh)+ep /(4∗dh ˆ2 ) ;
B( ( i − 2) ∗ ( y s i z e − 2) + j − 1 , ( i − 1) ∗ y s i z e + j )
= 1/dt + ep/2 − ep /(2 ∗ dh ˆ2 ) ;
B( ( i − 2) ∗ ( y s i z e − 2) + j − 1 , ( i − 1) ∗ y s i z e + j + 1)
= k∗ x coo rd ina t e ( i )/(4∗dh)+ep∗ y coo rd ina t e ( j )/(4∗dh)+ep /(4∗dh ˆ2 ) ;
B( ( i − 2) ∗ ( y s i z e − 2) + j − 1 , i ∗ y s i z e + j )
= −y coo rd ina t e ( j )/ (4 ∗ dh ) ;

end

end

A = sparse (A) ;
B = sparse (B) ;

%Initial Setting

%Find a step to start by Threshold

Density Max Threshold = 2 ;
Density Max t = 0 ;
Hybr id Start = 0 ;

for Hybr id Start = 1 : t s i z e
Density Max t = max ( u mc col ( : , Hybr id Start ) ) ;
if Density Max t > Density Max Threshold

u hybr id ( : , : , Hybr id Start ) = u mc ( : , : , Hybr id Start ) ;
else

break ;
end

end

t c o o rd i n a t e ( Hybr id Start )
u hyb r i d co l ( : , Hybr id Start − 1) = u mc col ( : , Hybr id Start − 1 ) ;

%Optimization part

for l = Hybr id Start : t s i z e
b = B ∗ u hyb r i d co l ( : , l − 1 ) ;
d = b − A ∗ u mc col ( : , l ) ;
dx = lsqminnorm (A, d ) ;
u hyb r i d co l ( : , l ) = u mc col ( : , l ) + dx ;

end

%Change the hybrid column back to matrix

for kt = Hybr id Start : t s i z e
flag = 1 ;
for kx = 1 : x s i z e

for ky = 1 : y s i z e
u hybr id (kx , ky , kt ) = u hyb r i d co l ( flag , kt ) ;
flag = flag + 1 ;

end

end

end
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E.5 Long time simulation

clear all

close all

%Fix Parameters

k = 1 ;
x 0 = 1 ;
y 0 = 1 ;
t min = 0 ;

%%Space %In here we just use the uniform dh(which can be change by dhx and dhy~)

x min = −3.2;
x max = 3 . 2 ;
y min = −3.2;
y max = 3 . 2 ;
dh = 0 . 1 ;
x s i z e = (x max − x min ) / dh + 1 ;
y s i z e = (y max − y min ) / dh + 1 ;
x coo rd ina t e = linspace ( x min , x max , x s i z e ) ;
y coo rd ina t e = linspace ( y min , y max , y s i z e ) ;
[ x graph , y graph ] = meshgrid ( x coord inate , y coo rd ina t e ) ;

%modify epsilon and t^epsilon

ep v = fliplr ( [ [10ˆ −2 : 10ˆ−2 : 1 ] ] ) ;
t max v = ep v . ˆ ( −1 . 5 ) ;
e p s i z e = numel ( ep v ) ;
u mc 1 = zeros ( x s i z e , y s i z e , e p s i z e ) ;

%Initial distribution

u mc i = zeros ( x s i z e , y s i z e ) ;
x i n i t i a l = 1 + floor ( ( x 0 − x min + dh/2)/dh ) ;
y i n i t i a l = 1 + floor ( ( y 0 − y min + dh/2)/dh ) ;

if x i n i t i a l > 0 && x i n i t i a l <= x s i z e && y i n i t i a l > 0 && y i n i t i a l <= x s i z e
u mc i ( x i n i t i a l , y i n i t i a l ) = u mc i ( x i n i t i a l , y i n i t i a l ) + 1/ dh ˆ2 ;

end

for kep = 1 : e p s i z e

ep = ep v ( kep ) ;

%Vector Field

f = @( t , x , y ) y ;
g = @( t , x , y ) − k ∗ x − ep ∗ y ;

t max = round ( t max v ( kep )∗100)/100 ;
dt = 0 . 0 1 ;
t s i z e = floor ( ( t max − t min ) / dt + 1 ) ;
t c o o rd i n a t e = linspace ( t min , t max , t s i z e ) ;

u mc = zeros ( x s i z e , y s i z e , t s i z e ) ;
u mc ( : , : , 1) = u mc i ;

%MCMC set up

numsp = 10ˆ4 ;
x s ea r ch = 0 ;
y sea r ch = 0 ;

%MCMC Main Part

for i = 1 : numsp
%MC Value Init
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x va lue = x 0 ;
y va lue = y 0 ;

for j = 2 : t s i z e
x va lue = x va lue + dt∗ f ( t c o o rd i n a t e ( j −1) , x value , y va lue ) ;
y va lue = y va lue + dt ∗ g ( t c o o rd i n a t e ( j −1) , x value , y va lue )
+ sqrt ( ep ∗ dt ) ∗ randn ;

x s ea r ch = 1 + floor ( ( x va lue − x min + dh/2)/dh ) ;
y s ea r ch = 1 + floor ( ( y va lue − y min + dh/2)/dh ) ;

if x search>0 && x search<=x s i z e && y search>0 && y search<=y s i z e
u mc ( x search , y search , j ) = u mc ( x search , y search , j )
+ 1/(numsp ∗ dh ˆ2 ) ; %Density function

else

disp ( [ ’Iteration:’ num2str ( i ) ’ ’ ’Time:’ num2str ( t c o o rd i n a t e ( j ) ) ] )
end

end

end

%PDE method

u hybr id = zeros ( x s i z e , y s i z e , t s i z e ) ;
u hyb r i d co l = zeros ( x s i z e ∗ y s i z e , t s i z e ) ;
u mc col = zeros ( x s i z e ∗ y s i z e , t s i z e ) ;

u hybr id ( : , : , 1) = u mc ( : , : , 1 ) ;

%Change MC result to a column

for kt = 1 : t s i z e
flag = 1 ;
for kx = 1 : x s i z e

for ky = 1 : y s i z e
u mc col ( flag , kt ) = u mc (kx , ky , kt ) ;
flag = flag+1;

end

end

end

%matrix A B b for PDE

A = zeros ( ( x s i z e − 2) ∗ ( y s i z e − 2) + 1 , x s i z e ∗ y s i z e ) ;
A( ( x s i z e − 2) ∗ ( y s i z e − 2) + 1 , : ) = ones (1 , x s i z e ∗ y s i z e ) ;

B = zeros ( ( x s i z e − 2) ∗ ( y s i z e − 2) + 1 , x s i z e ∗ y s i z e ) ;
B( ( x s i z e − 2) ∗ ( y s i z e − 2) + 1 , : ) = ones (1 , x s i z e ∗ y s i z e ) ;

b = zeros ( ( x s i z e − 2) ∗ ( y s i z e − 2) + 1 , 1 ) ;
b ( end ) = dhˆ(−2);

for i = 2 : ( x s i z e − 1)
for j = 2 : ( y s i z e − 1)

A( ( i − 2) ∗ ( y s i z e − 2) + j − 1 , ( i − 2) ∗ y s i z e + j )
= −y coo rd ina t e ( j )/ (4 ∗ dh ) ;
A( ( i − 2) ∗ ( y s i z e − 2) + j − 1 , ( i − 1) ∗ y s i z e + j − 1)
= k∗ x coo rd ina t e ( i )/(4∗dh) + ep∗ y coo rd ina t e ( j )/(4∗dh) − ep /(4∗dh ˆ2 ) ;
A( ( i − 2) ∗ ( y s i z e − 2) + j − 1 , ( i − 1) ∗ y s i z e + j )
= 1/dt − ep/2 + ep /(2 ∗ dh ˆ2 ) ;
A( ( i − 2) ∗ ( y s i z e − 2) + j − 1 , ( i − 1) ∗ y s i z e + j + 1)
= −k∗ x coo rd ina t e ( i )/(4∗dh) − ep∗ y coo rd ina t e ( j )/(4∗dh) − ep /(4∗dh ˆ2 ) ;
A( ( i − 2) ∗ ( y s i z e − 2) + j − 1 , i ∗ y s i z e + j )
= y coo rd ina t e ( j )/ (4 ∗ dh ) ;

B( ( i − 2) ∗ ( y s i z e − 2) + j − 1 , ( i − 2) ∗ y s i z e + j )
= y coo rd ina t e ( j )/ (4 ∗ dh ) ;
B( ( i − 2) ∗ ( y s i z e − 2) + j − 1 , ( i − 1) ∗ y s i z e + j − 1)
= −k∗ x coo rd ina t e ( i )/(4∗dh) − ep∗ y coo rd ina t e ( j )/(4∗dh) + ep /(4∗dh ˆ2 ) ;
B( ( i − 2) ∗ ( y s i z e − 2) + j − 1 , ( i − 1) ∗ y s i z e + j )
= 1/dt + ep/2 − ep /(2 ∗ dh ˆ2 ) ;
B( ( i − 2) ∗ ( y s i z e − 2) + j − 1 , ( i − 1) ∗ y s i z e + j + 1)
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= k∗ x coo rd ina t e ( i )/(4∗dh) + ep∗ y coo rd ina t e ( j )/(4∗dh) + ep /(4∗dh ˆ2 ) ;
B( ( i − 2) ∗ ( y s i z e − 2) + j − 1 , i ∗ y s i z e + j )
= −y coo rd ina t e ( j )/ (4 ∗ dh ) ;

end

end

A = sparse (A) ;
B = sparse (B) ;

%Initial Setting

%Find a step to start

Density Max Threshold = 2 ;
Density Max t = 0 ;
Hybr id Start = 0 ;

for Hybr id Start = 1 : t s i z e
Density Max t = max ( u mc col ( : , Hybr id Start ) ) ;
if Density Max t > Density Max Threshold

u hybr id ( : , : , Hybr id Start ) = u mc ( : , : , Hybr id Start ) ;
else

break ;
end

end

t c o o rd i n a t e ( Hybr id Start )
u hyb r i d co l ( : , Hybr id Start − 1) = u mc col ( : , Hybr id Start − 1 ) ;

%Optimization part

for l = Hybr id Start : t s i z e
b = B ∗ u hyb r i d co l ( : , l − 1 ) ;
d = b − A ∗ u mc col ( : , l ) ;
dx = lsqminnorm (A, d ) ;
u hyb r i d co l ( : , l ) = u mc col ( : , l ) + dx ;

end

%Change the hybrid column back to matrix

for kt = Hybr id Start : t s i z e
flag = 1 ;
for kx = 1 : x s i z e

for ky = 1 : y s i z e
u hybr id (kx , ky , kt ) = u hyb r i d co l ( flag , kt ) ;
flag = flag + 1 ;

end

end

end

u mc 1 ( : , : , kep ) = u hybr id ( : , : , end ) ;
end

E.6 Short time simulation

%Fix Parameters

k = 1 ;
x 0 = 2 ;
y 0 = 2 ;
t min = 0 ;
dt = 0 . 0 1 ;
numsp = 10ˆ5 ;

%%Space %In here we just use the uniform dh

x min = −5;
x max = 5 ;
y min = −5;
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y max = 5 ;
dh = 0 . 1 ;
x s i z e = (x max − x min ) / dh + 1 ;
y s i z e = (y max − y min ) / dh + 1 ;
x coo rd ina t e = linspace ( x min , x max , x s i z e ) ;
y coo rd ina t e = linspace ( y min , y max , y s i z e ) ;
[ x graph , y graph ] = meshgrid ( x coord inate , y coo rd ina t e ) ;

%modify epsilon and t^epsilon

ep v = fliplr ([10ˆ−4 : 10ˆ−3 : 10ˆ−1 + 10ˆ −4]) ;
t max v = ep v . ˆ ( −0 . 5 ) ; %Short time scale

e p s i z e = numel ( ep v ) ;
u mc 1 = zeros ( x s i z e , y s i z e , e p s i z e ) ;

%Only linear muti Gaussian Mean

x mean = zeros ( ep s i z e , 1 ) ;
y mean = zeros ( ep s i z e , 1 ) ;
x exact = zeros ( ep s i z e , 1 ) ;
y exact = zeros ( ep s i z e , 1 ) ;

d i f f 2norm = zeros ( ep s i z e , 1 ) ;

for kep = 1 : e p s i z e

ep = ep v ( kep ) ;

%Vector Field k x^2 case

f = @( t , x , y ) y ;
g = @( t , x , y ) − k ∗ x − ep ∗ y ;

t max = round ( t max v ( kep )∗100)/100 ;
t s i z e = floor ( ( t max − t min ) / dt + 1 ) ;
t c o o rd i n a t e = linspace ( t min , t max , t s i z e ) ;

u mc = zeros ( x s i z e , y s i z e ) ;

%MCMC set up

x sea r ch = 0 ;
y sea r ch = 0 ;

%MCMC Main Part

for i = 1 : numsp
%MC Value Init

x va lue = x 0 ;
y va lue = y 0 ;
x h i s = 0 ;

for j = 2 : t s i z e
x h i s = x va lue ;
x va lue = x va lue + dt ∗ f ( t c o o rd i n a t e ( j −1) , x value , y va lue ) ;
y va lue = y va lue + dt ∗ g ( t c o o rd i n a t e ( j −1) , x h i s , y va lue )
+ sqrt ( ep ∗ dt ) ∗ randn ;

end

x sea r ch = 1 + floor ( ( x va lue − x min + dh/2)/dh ) ;
y s ea r ch = 1 + floor ( ( y va lue − y min + dh/2)/dh ) ;

if x search>0 && x search<=x s i z e && y search>0 && y search<=y s i z e
u mc ( x search , y s ea r ch ) = u mc ( x search , y s ea r ch ) + 1/(numsp∗dh ˆ2 ) ;
x mean ( kep ) = x mean ( kep ) + x coo rd ina t e ( x s ea r ch ) ∗ 1/numsp ;
y mean ( kep ) = y mean ( kep ) + y coo rd ina t e ( y s ea r ch ) ∗ 1/numsp ;

else

disp ( [ ’Iteration:’ num2str ( i ) ’ ’ ’Time: ’num2str ( t c o o rd i n a t e ( j ) ) ] )
end

125



end

x exact ( kep ) = x 0 ∗ cos ( t max ) + y 0 ∗ sin ( t max ) ;
y exact ( kep ) = y 0 ∗ cos ( t max ) − x 0 ∗ sin ( t max ) ;

d i f f 2norm ( kep )=((x mean ( kep)−x exact ( kep ))ˆ2+(y mean ( kep)−y exact ( kep ) ) ˆ 2 ) ˆ ( 1 / 2 ) ;

u mc 1 ( : , : , kep ) = u mc ( : , : ) ;
end

E.7 F (E) of the double-well potential

function [F ] = Double F energy (EA)

[ x p , x n ] = Doub le t e rmina l po in t (EA) ; %use newton method find the properbound

if EA >= 0.03
if (EA <= 0.9998) | | (EA > 1)

integrand numerator = @( s ) (2 ∗ EA − 2 + 4 .∗ s . ˆ2 − 2 .∗ s . ˆ 4 ) . ˆ ( 1 / 2 ) ;
integrand denominator = @( s ) (2 ∗ EA − 2 + 4 .∗ s . ˆ2 − 2 .∗ s . ˆ4 ) . ˆ ( −1/2 ) ;
numerator = i n t e g r a l ( integrand numerator , x n , x p ) ;
denominator = i n t e g r a l ( integrand denominator , x n , x p ) ;
F = numerator / denominator ;

else

F = 0 ;
end

else

F = 0 ;
end

end

function [ upper , lower ] = Doub le t e rmina l po in t (EE)

if EE >= 0.03
if EE > 1 %untrapped orbits

v = @(x ) 1 − 2 ∗ xˆ2 + xˆ4 − EE;
upper = fzero (v , 2 ) ;
lower = − upper ;

elseif EE <= 0.9998
v = @(x ) 1 − 2 ∗ xˆ2 + xˆ4 − EE;
upper = fzero (v , 1 . 5 ) ;
k = fzero (v , 0 . 1 ) ;
if k > 0

lower = k ;
else

lower = fzero (v , 0 . 9 ) ;
end

else

v = @(x ) 1 − 2 ∗ xˆ2 + xˆ4 − EE;
upper = fzero (v , 2 ) ;
lower = 0 ;

end

else

upper = 1 ;
lower = 1 ;

end

end
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E.8 Process of the double-well potential

clear all

close all

%Fix Parameters and initial condition

k = 1 ;
x 0 = 2 ;

%Space

t min = 0 ;
t max = 5 ;
dt = 0 . 0 1 ;
t s i z e = floor ( ( t max − t min ) / dt + 1 ) ;
t c o o rd i n a t e = linspace ( t min , t max , t s i z e ) ;

x min = 0 ;
x max = 8 ;
dh = 0 . 0 1 ;
x s i z e = (x max − x min ) / dh + 1 ;
x coo rd ina t e = linspace ( x min , x max , x s i z e ) ;

%Density function set up

u x = zeros ( x s i z e , t s i z e ) ;

%Initial distribution

u x i = zeros ( x s i z e , 1 ) ;
x i n i t i a l = 1 + floor ( ( x 0 − x min + dh/2)/dh ) ;
if x i n i t i a l > 0 && x i n i t i a l <= x s i z e

u x i ( x i n i t i a l ) = u x i ( x i n i t i a l ) + 1/ dh ;
end

u x ( : , 1) = u x i ;

%MCMC set up

numsp = 2∗10ˆ4;
x s ea r ch = 0 ;

%MCMC Main Part as reference

for i = 1 : numsp

%MC Value Init every sample start from the same IC

x va lue = x 0 ;
for j = 2 : t s i z e

F = Double F energy ( x va lue ) ;
M = max (0 ,F ) ;
x va lue = x va lue + (1/2 − M) ∗ dt + sqrt (M) ∗ sqrt ( dt ) ∗ randn ;
x va lue = max (0 , x va lue ) ;
if imag ( x va lue ) ˜= 0

break

end

x sea r ch = 1 + floor ( ( x va lue − x min + dh/2)/dh ) ;
if x sea r ch > 0 && x sea rch <= x s i z e

u x ( x search , j ) = u x ( x search , j ) + 1/(numsp ∗ dh ) ;
else

disp ( [ ’Iteration: ’ num2str ( i ) ’ ’ ’Time: ’ num2str ( t c o o rd i n a t e ( j ) ) ] )
end

end

end

%% plot density of energy

f i l ename = ’Mid_Energy_AveSys_Double.gif’ ;

fmat = moviein ( t s i z e ) ;

for i = 1 : t s i z e
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plot ( x coord inate , u x ( : , i ) )
xlim ( [ 0 3 ] )
ylim ( [ 0 3 . 5 ] )
xlabel ( ’Total energy ’ ) ;
ylabel ( ’Density ’ ) ;
title ( [ ’Time = ’ num2str ( t c o o rd i n a t e ( i ) ) ] ) ;

fmat ( : , i ) = getframe ;
f = getframe ( gcf ) ;
imind = frame2im ( f ) ;
[ imind , cm] = rgb2ind ( imind , 256 ) ;
if i == 1

imwrite ( imind , cm, f i l ename , ’gif’ , ’Loopcount ’ , i n f , ’DelayTime ’ , 0 . 1 ) ;
else

imwrite ( imind , cm, f i l ename , ’gif’ , ’WriteMode ’ , ’append ’ , ’DelayTime ’ , 0 . 1 ) ;
end

end
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