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Abstract

Clifford Theory gives us a method to construct irreducible characters of a group G, by 

inducing up certain irreducible characters of subgroups H  of G. In this thesis, we w ill apply 

Clifford Theory to construct three types of irreducible characters of groups G L (2, Z /praZ) 

and GL(  3, Z /p"Z ).

Since the method in the G L (2 ,Z /p nZ) case is similar to the one used in the 

G L(3,Z /pnZ) case, this thesis focusses on constructing these three types of irreducible 

characters of G =  G L(3, Z /p nZ). We start with three different irreducible characters 0 of 

K ,  a normal subgroup of G, and calculate the corresponding stabilizers of these characters. 

Then find some irreducible characters ij) of the stabilizers, which also satisfy the conditions 

in the Clifford’s Theorem. Finally, we induce i> up to G and tj)G is an irreducible character 

of G.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Acknowledgements

I  would like to thank my supervisor, Dr. Gerald Cliff, for introducing me to representation 

theory, which will benefit me in my later research. I  would also thank him for his direction, 

time and financial support.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Contents

1 Introduction 1

2 Preliminary 5

2.1 Character T h eo ry .............................................................................................. 5

2.2 Clifford Th eo ry ................................................................................................. 7

2.3 Useful results...................................................................................................  11

3 Characters of GL  (2, Z /p n Z) 14

3.1 Characters of GL(2, Z /p 2m,L)  ........................................................................  15

3.1.1 The character of degree p2m~1 (p +  1 ) ................................................ 15

3.1.2 The character of degree p2m-2(p2 — 1 ) ...............................................  18

3.1.3 The character of degree p2m_1(p — 1 ) ...............................................  19

3.2 Characters of G I,(2 ,Z /p 2m+1Z ) .....................................................................  21

3.2.1 The character of degree p2m(p +  1 ) ................................................... 22

3.2.2 The character of degree p2m_1(p2 — 1 ) ................................................... 24

3.2.3 The character of degree p2m (p — 1 ) ...................................................... 25

4 Characters of GL  (3, Z /p nZ) 27

4.1 Characters of G L (3 ,Z /p 2TOZ) ............................................................................27

4.1.1 The character of degree p4m~2(p2 + p  +  1 ) .......................................... 28

4.1.2 The character of degree p4m_4(p3 — 1) (p +  1 ) ....................................... 31

4.1.3 The character of degree p6m-3(p — l ) 2(p + 1 ) ....................................... 35

4.2 Characters of G L (3 ,Z /p 2m+1Z ) .....................................................................  37

4.2.1 The character of degree p4m(p2 +  p +  1)  38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.2.2 The character of degree p4m 2(p2 — l) (p 2 +  p +  1 ) ............................. 41

4.2.3 The character of degree p6m(p — 1 )2(p + 1 ) ..........................................44

Bibliography 51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Introduction

Nowadays, people are more and more interested in the representations of GL(n, Z p) , where 

Zp are the p-adic integers. Since every continuous irreducible representation of GL(n, Zp) 

comes from a representation of GL(n, Zp/pmZp) and Zp/pmZp =  Z /p mZ, this thesis 

focuses on finding some irreducible characters of GL(n, Z /p mZ).

Let G be a group and H  be its subgroup. Suppose 0 is an irreducible character of H, 

we know <pG is a character of G. However, we can not tell directly whether 0G is still 

irreducible. Clifford Theory gives us a method to determine when the induced character 

<pG is still irreducible. So we can apply this theory to construct some irreducible characters 

of G. In this thesis, we will apply Clifford Theory to construct some irreducible characters 

of groups G L (2, Z /p nZ) and G L{3, Z /p nZ).

The main idea of the Clifford’s Theorem is as follows.

Let ./V <1 G be a normal subgroup of G. For any character 0 of N, we can define

0s : N  —> C] <pP(n) =  4>{gng~l ) , Vg € G ,n  € N.

Then 4>a is also a character of N. Let 0 G I r r ( N ) ,  denote / g (0) =  {g £ G  | 0s =  0 }. If  

'ip E rrrU c jiP )) ,  such that [ipN, 0] ^  0, then the Clifford’s Theorem tells us that ipG is an 

irreducible character of G.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



To apply Clifford’s Theorem to the group G =  GL(n, Z/pmZ), we first need to choose 

an appropriate normal subgroup of G. As we will see in the following chapters, we 

have two cases, depending on whether m  is even or odd. When G =  G L (n ,Z /p 2mZ), 

we pick K rn — { I  +  pmA \ A  G M nXn(Z /pmZ ) }  as the normal subgroup N  in the 

Clifford’s Theorem. While G =  G L (n ,Z /p 2m+1Z), we will use the normal subgroup 

K m+1 =  { I +  pm+1 A  | A  G Mnxra(Z/pmZ)}.

Secondly, we also need some irreducible characters of the normal subgroups K m of 

GL(n, Z /p2mZ) and K m+1 of GL(n, Z /p2m+1Z) to start with. Since K m and K m+i 

are abelian, all their irreducible characters are of degree one, which are also group 

homomorphisms that are easy to construct. There are three kinds of irreducible characters 

in each case and they are defined on K m and K m+\ similarly.

Thirdly, we will calculate the stabilizers I G{A) corresponding to different A and G. With 

all the three kinds of irreducible characters we start with, the stabilizers can be computed 

directly and the calculations are also similar in the even and odd cases, no matter whether 

n =  2 or n =  3.

Finally, in order to construct irreducible characters of G, we have to find some 

irreducible characters A of the stabilizer I G(A), such that [ipKm, </>] ^  0 or [AKm+l,A] /  0. 

Then by Clifford Theory, we know that A °  £ I r r (G ) .  In this step, we will see that the even 

case is much easier than the odd case. In the even case, we can actually extend A of K rn 

to its stabilizer Ig{4>)- While in the odd case, we need some subgroup H  between K m+1 

and Ig{4>) t° construct an irreducible character A of Ig{4>) that satisfies [Ai<m+1, A] ^  0. 

We will also notice that when G =  G L(2, Z /p2mZ) or G =  G L{2, Z /p 2m+1Z ), with each 

character 4> defined on G, we can only construct one kind of A that satisfies the condition 

of Clifford’s Theorem. While in the G =  G L(3, Z /p nZ) case, there are more irreducible 

characters A corresponding to the same 0. Hence, there are more irreducible characters A °  

of G.

Clifford’s Theorem only gives us a method to construct irreducible characters of G, 

but we can not always tell the character values unless we know the character values of A 

of I g {A). In this thesis, we only care about the degrees of the irreducible characters of 

GL(n, Z /pmZ). For k <  m, it is clear that any irreducible character of GL(n, Z /p kZ) can

2
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be lifted as an irreducible character of GL(r>n Z /p mZ). Hence, we only focus on finding 

irreducible characters of GL(n, Z /p mZ) that do not come from G L (n ,Z /p kZ), for any 

k <  n. We also want to know whether the degrees of the irreducible characters found 

in this thesis are complete. Since the complete degrees of the irreducible characters of 

G L (2, Z /p rtZ) are already known, in [3], by comparing them with the ones found in this 

thesis, we know that we indeed find out all the possible degrees of the irreducible characters 

of G L (2 ,Z /p nZ). However, we still do not know whether the ones we construct in the 

G L (3, Z /p nZ) case are complete or not.

Although we only discuss G L(2, Z /p nZ) and GL(3, Z/p^Z) in this thesis, the methods 

can be applied into the general GL(n, Z /p mZ), Vn. However, as n increases, it will become 

more complicated and more irreducible characters will appear.

In Chapter 3, we apply Clifford Theory to G L(2 ,Z /p2mZ) and GL(2, Z /p 2m+1Z) 

separately to construct three types of irreducible characters. Then we will see that the 

degrees of the characters constructed in this chapter do not depend on whether n is even or 

odd. There are general formulas for the degrees of irreducible characters of GL(2, Z /p nZ ).

Degrees of the irreducible characters of GL(2, Z /p 2mZ) constructed in Chapter 3 are :

p2m_1(p +  1 ),p 2m_2(p2 — 1 ),p2m~1{p — 1)-

Degrees of the irreducible characters of G L(2, Z /p 2m+1Z) constructed in Chapter 3 are:

p2m(p +  l) ,p 2m -1(p2 -  l) ,p 2m( p -  1).

And we will see that the general formulas for the degrees of the irreducible characters of 

G L (2, Z /p nZ) found by Clifford Theory are:

pn_1(p +  l) ,p n_1( p -  l) ,p n_2(p2 -  1),

which are all the possible degrees of irreducible characters that come from G L (2, Z /p "Z ) 

directly.

In Chapter 4, we construct some irreducible characters of GL(3, Z /p nZ ). Again, we 

consider G L (3 ,Z /p 2mZ) and GL(3, Z /p 2m+1Z) separately and find the corresponding 

irreducible characters. In this case, we can also apply Theorem 2.2.6 to construct some

3
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more irreducible characters. It is interesting that some the degrees we find can not be 

generalized.

Degrees of the irreducible characters of G L{3, Z /p 2mZ) constructed in Chapter 4 are :

p i m —2 ^ 2  _j_ p  ^ ^  p i m —2  ̂ 2  _j_ ̂  p 4 m _ 2  ( p 2 +  p  +  1 )  ( p  +  1 ) ,  p 4 m ~ 2 ( p 2 +  p  +  1 )  ( p  -  1 ) ,

p 4 m - 2 ( p 2 + p + l ) p m - 1 ( P + l ) , P 4 m “ 2 ( p 2 + P + l ) p m _ 1 ( p - l ) , P 4 m _ 2 ( p 2 + P + l ) p m _ 2 ( p 2 - l ) ,

P4m- 4(p3 _  i) (p +  l)y m -4 (p3 _  !)(p +  - p m-l),p6™ -3(p_ i ) 2(p +  i) .

Degrees of the irreducible characters of G L(3, Z /p 2m+1Z) constructed in Chapter 4 are:

p 4 - ( p 2 +  p  +  i ) ,  p 4- ( p 2 +  p  +  l ) p ,  p 4 m ( p 2 +  p  +  l ) ( p  +  l ) , p 4 m ( p 2 +  p  +  l ) ( p  -  1 ) ,

p 4 m ( p 2 +  p  +  l ) ( p  +  l ) p m - \ p 4 m ( p 2 +  p +  l ) ( p -  l ) p m - 1 , p 4 m ( p 2 +  p +  l ) ( p 2 -  l ) p m - 2 , 

p 4 m —2 ( p 2  _  1 ) ( p 2 +  p  +  1 ) ,  p 4 m - 2 ( p 2 _  ^ 2  +  p  +  _  1 ) 2 ( p  +  ^

For G L (3 ,Z /p nZ), there are three kinds of regular irreducible characters with the 

following degrees:

p2" - V  + p  +  i) ,p 2" - V  -  i )(p  +  i ) ,p3”- 3(p -  i )2(p +  i) .

However, there are also some irregular ones. We can not find a general formula for all the 

degrees of the above irreducible characters of G L(3, Z /p"Z ).

4
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2
Preliminary

This chapter presents an overview of the character theory and Clifford Theory that is used 

throughout the remainder of this thesis. For results in 2.1 and 2.2, see [1]. This chapter 

also includes some useful results and lemmas that are used in the following two chapters. 

In this chapter, H  <  G means H  is a subgroup of G, and H  <  G means H  is a normal 

subgroup of G.

2.1 Character Theory

2.1.1 Definition Let V  be a finite-dimensional vector space over C. A representation 

p of a group G is a group homomorphism p : G —> GL(V).  And d im (V)  is also called the

dimension of p, denoted by dirn(p).

We know that if we choose a basis of V, then G L(V ) =  GL(n, C), where n =  d im (V). 

So it is equivalent to say that a group homomorphism p : G —* G L (n , C) is also a 

representation. In particular, a group homomorphism A : G —> C x is a representation.

2.1.2 Definition A subspace W  of V  is invariant under p if  for each w G W  and for all 

g € G, p(g)(w) E W. A representation p : G —>• G L(V )  is irreducible if there is no proper

5
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nonzero invariant subspace W  of V  under p.

We usually use character theory to determine whether a representation is irreducible.

2.1.3 Definition Let p : G —*■ GL(n, C) be a representation of G. Then the character x  

of G afforded by p is the function given by x {q) =  tr(p(g)). x  is called irreduciblee if  p 

is irreducible. And the degree of x  is defined by deg(x) =  dim(p) =  x ( l) .

From now on, let I r r (G )  represent the set of all irreducible characters of the group G.

2.1.4 Proposition Let x  and 0  be characters of G. Define x 0  ° n G by setting (x 0 )  (<?) =  

x(g)0(r/). Then %0 is ais° a character of G.

From the definitions above, it is clear that a 1 — dimensional representation p is 

irreducible. Moreover, suppose % is the character afforded by p, we have p =  x- Namely, 

a 1 — dimensional character is also a representation. We will use this fact in the next two 

chapters very often.

2.1.5 Definition Let N  <  Gbe a subgroup and suppose that 0 is a character of N. We 

say 0 is extendible to G if 30, a character of G, such that 0/v =  0. We call 0  an extension 

of 0  to G.

2.1.6 Definition Let 0 and 9 be characters of a group G. Then

is the inner product of 0 and 9.

2.1.7 Corollary Let A and 0  be characters of G. Then [A, 0] =  [0, A] is a nonnegative 

integer. Also A is irreducible if and only if  [A, A] =  1.

2.1.8 Definition Let H  <  G be a subgroup and let 0 be a character of H. Then 0G, the 

induced character on G, is given by

6
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where <jf is defined by <jf{h) =  (j>{h) if  h e H  and 4>°(y) =  0 if  y H.

By the definition above, it is easy to calculate that

deg(<f)G) =  deg{<f))\^ l.

Also from the definition of induced character, we have the following proposition.

2.1.9 Proposition Let H  <  K  <  G and suppose that ^ is a character of H. Then

=  < f .

2.1.10 Lemma (Frobenius Reciprocity) Let H  <  G and suppose that <j> is a

character on H  and that 9 is a character on G. Then

=  [<t>G,Q]-

2.2 Clifford Theory

Let H  <\G. If  9 is a character of H  and g e G, we define 99 : H  —> C by 69{h) =  d(ghg~1). 

We say that 09 is conjugate to 9 in G.

2.2.1 Lemma Let H  < G  and let 0, 6 be characters of H  and x /y  £ G. Then

(a) 4>x is a character;

(b) ( r ) 9 =  <jfy;

(c) [F ,  & ] =  [</>, 9];

(d) [x h , 4>x] =  [x h , 4>] for characters x  of G.

The Lemma follows from direct calculation.

2.2.2 Definition Let H  o  G and let 0 G I r r ( H ) .  Then

W )  =  { g £ G \ 9 9 =  6}

is the inertia group of 9 in G.

We also call I g (9) the stabilizer of 9 in G. When Ig (9) =  G, we say 9 is stable under

7
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G, or invariant in G.

2.2.3 Theorem (C l i f f o r d , [1]) Let H  <  G, 9 G I r r ( H ) ,  and T  =  Ig(9)- Let

A =  {ip G I r r ( T ) | [ipH, 9] ±  0}, B  =  { x  € I r r (G )  \ [ x h ,  9] ±  0}.

Then

(a) If  rip G A, then rwc  is irreducible;

(b) The map ^  ipG is a bijection of A  onto B;

(c) If  ipG =  x, with w G A, then ip is the unique irreducible constituent of X t  which lies 

in A;

(d) If  ipG =  x, with i) G A, then [ipH, d] =  [x h , 0}-

In general, it is hard to tell whether the character of G induced from an irreducible 

character of H  <  G is still irreducible. But this Theorem tells us when the induced 

character stays irreducible . So we can apply this theorem to construct some irreducible 

characters of G, from certain irreducible characters of the normal subgroup H. Part (a) of 

this theorem is used throughout the following two chapters.

2.2.4 Corollary Let N  <  G and 9 G I r r ( N ) .  Then 6G e I r r ( G ) if  and only if

I g (9) =  N.

The I g (9) =  N  => 9G <E I r r {G )  direction follows immediately from (a) of last theorem 

and we will use this result very often in the next two chapters.

2.2.5 Corollary Let N  < 3  G and let x  £ I r r (G )  and 9 e I r r ( N )  with [xiv, 9] ^  0. Then 

the following are equivalent:

(a) X n  =  e9, with e2 = | G : N  |;

(b) x vanishes on G -  N  and 9 is invariant in G\

(c) x  is the unique irreducible constituent o f 9°  and 9 is invariant in G.

2.2.6 Theorem (Gallagher, [1]) Let N < G , x  £ I r r (G )  be such that x n  — 9 G I r r ( N ) .  

Then the characters 6 \  for (3 G I r r ( G /N )  are irreducible, distinct for distinct /3, and are 

all of the irreducible constituents of 9°.

Note that there is a projection n : G —> G /N .  Thus, for any group representation p

8
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of G /N , p o % is a representation of G. And if p is irreducible, p o tt is also irreducible. 

As a result, we can consider the character (5 G I r r [ G / N ) as an irreducible character of 

G.Therefore, f ix  above is well defined.

Consider set A  in Theorem 2.2.3, we have

A =  { 0  e I r r ( T )  | [0H , 9} ±  0} =  { 0  G I r r { T )  | [0, dT} ±  0}.

In order to apply theorem 2.2.3 to construct irreducible characters of G, we need to induce 

up the characters in A. Theorem 2.2.6 tells us that, if we can actually extend 9 to T, then 

by finding out all the irreducible characters o iT / H ,  we can construct all the irreducible 

characters in A  and, as a result, we will find more irreducible characters of G.

We will apply Theorem 2.2.6 in chapter 4.

2.2.7 Theorem Let N  <  G with G /N  cyclic and let 9 G I r r ( N )  be invariant in G. Then 

9 is extendible to G.

By applying this theorem, we will come up with some crucial results. The following 

three lemmas are useful in the following two chapters to construct certain extensions of 

some characters of degree one.

2.2.8 Lemma Let G be a group, N  < ]G ,H  <  G and G — N H .  Let 0 G I r r ( N ), 0  £ 

I r r ( H )  be such that deg(4>) =  deg/ip) =  1. Assume 0jvrw =  ^nh h  and V/t G H,(f>h — 0. 

Then 39 G I r r {G )  such that deg(9) =  1 and 9n =  0.

Proof:

Define

9 : G -> C x ]9(nh) -  0 (n )^ (/t) ,  Vn e N , h e H .

Since 0 and 0  are of degree one, they are also group homomorphisms. And since 

cpNnH =  0/vnff? we know that 6 is well-defined. In addition, V n i,ri2 G N ,h i,h ,2 G H,

9
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we have
9(n ih in2h2) =  9 (n ih in2hp1h ih2)

=  (p{ni)(p(hin2K [ l )ip{hi)ip{h2) 

=  <fi(ni)4>hl {n2)e(hi)9{h2) 

=  <f>(ni)(t>(n2)9(hi)d(h2) 

=  9 (n ih i)9(n2h2).

Thus, 9 is of degree one. And it is clear that 9n  =  (f>. m

2.2.9 Lemma Let G be a finite abelian group, let N  <  G and A e I r r ( N ) ,  then A is 

extendible to G.

Proof:

Since G is a finite abelian group, it is a direct product of cyclic groups. Thus, we can 

find the subgroups N i, N 2, ..., Nm of G, such that N i/N ,  N 2/N i , .. .,Nm/N m- i  and G /N m 

are all cyclic. Thus, by Theorem (1.10), A can be extended to N i.  Call the extension Ai. 

Since G is abelian, we have that any character of any subgroup of G is stable under G. 

Therefore Ax is stable under G, so is stable under N 2. Hence it is extended to N 2. So A is 

extended to N 2. Keeping doing this, we know that finally A will be extended to G. m

2.2.10 Lemma Let G be a group, N  <  G ,S  <  G, S is abelian, and G =  NS. Let 

<t> € I r r ( N )  be such that deg{4>) — 1. Assume 0 is stable under G, then </> is extendible to 

G.

Proof:

Let ip =  (psnN, then ip e I r r ( S  fl N). Since S is abelian, we know S fl N  <  S. By 

Lemma 2.2.9, 39 G I r r (S )  such that 9sdn =  ip — (psnN- Apply Lemma 2.2.8, we know 

that <p is extendible to G. ■

Lemma 2.2.10 will be used a lot.

10
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2.3 Useful results

In this section, we will calculate the orders of groups GL(2, Z /p nZ), GL(3, Z /p nZ) and 

some of their important subgroups.

In G L {k ,Z /p nZ ), define K  =  { /  +  pA \ A  G M ^ Z / p ^ Z ) } .  Then | K  |=|

M kxk{Z /pn~l Z) \ = p k2(n~V.

k
2.3.1 Proposition | G L (k ,Z /p nZ) |= p fc2(n_1) Yl(pk — p<_1).

Proof:

Recall that there is a group homomorphism

4>: Z /p nZ  —> Z/pZ; 4>(a) =  a, Va G Z /p nZ.

Thus, we can define

/ : G L (k ,Z fp nZ ) GL(k, Z /pZ); ip (A) =  A,

where A  G GL{k, Z /p nZ) and Ai:j =  4>{Aij). Then it is easy to check that ^  is a surjective 

group homomorphism. Moreover, Ker(ip) =  K. Hence, we have

And since it is known that | G L (k , Z /p Z ) | =  (pk — pf 1), the proposition follows. ■

2.3.2 Corollary | G L(2 ,Z /pnZ) |=  (p2 -  p)(p2 -  l)p 4"~4, | G L (3 ,Z /p nZ ) |=

(p3 — l)(p 3 — p)(p3 — p2)p9n~9.

Next, we will calculate the orders of two important subgroups of G L (2 ,Z /p nZ ) and 

G L (3 ,Z /pnZ).

Let e e  Z /pZ  be such that s/e 0  Z/pZ, i.e. there is no a G Z /pZ  such that a2 — s.

t=l

GL(k, Z lp nZ ) j K  *  G L (k , Z /pZ)

=H G L (k ,Z /p nZ ) |=| GL(k, Z /p Z ) || AT | .

t=l

Let

5 ' = *  I s ' € G L(2 ,Z /pZ)

Then S' <  G L (2, Z /p Z ). Moreover, we can prove that

5 ' ^  (Z /p Z [V i])x =H 5 ' |=  P2 -  1.

11
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The proof is exactly the same as the one in the G L(3, Z /p nZ) case and we will talk about 

it later. Consider e as an element of Z /p nZ, e.g. 3 € Z /5Z , 3 is also an element of Z /25Z . 

Define

2.3.3 Proposition | S \= (p2 — 1 )p2n 2.

Proof:

Let

0  : G L(2 ,Z /pnZ) -► GL(2, Z /pZ)

be the projective group homomorphism defined in the proof of Proposition 2.3.1 in the case 

k — 2. Consider the restriction of 0  to S, then it is clear that 0  maps S onto S' and

kenl, =  \ t = (  1+P X  P f
I  \  py i + p x )  j

Clearly, | kenp |=  p2n~2. And since S/kerip =  S', we have that

| S | =  | S' || ker'tp |=  (p2 — 1 )p2n~2.

2.3.4 Corollary Suppose n >  m.  Let G =  G L(2 ,Z /pnZ ) ,K m =  { I  +  pmA \ A  e 

M 2)<2(Z /p " -’" Z )}a n d S '= { ( '^  Vp

Proof:

It is clear that

^  n 5  =  {  (  1 +£ a ! ) \  a, b e  Z /p— z }  ,

so | K m n S |=  (pn~rn)2. Since we also have | K m |=  and | S |=  (p2 — l)p 2n-2,

we can conclude that | K rnS |=  =  p6m~2(p2 — 1). ■

In particular, when G =  GL(2, Z /p 2mZ ), K m =  { /  +  pmA \ A  G M 2x2(Z /p mZ ), 

we have | K mS |=  p6m~2(p2 — 1); and if  G =  GL(2, Z /p 2m+1Z), we have | K mS |=  

p6m+2(p2 — 1). The subgroups S and K mS above play an important role in Chapter 3.

In the G L(3, Z /p nZ) case, there is a similar subgroup and we will now talk about it.

Let t3 — ct2 — bt — a be an irreducible polynomial in Z/pZ[t\. Then we have a field 

extension o iZ /p Z  corresponding to the polynomial t 3—ct2—bt—a. Call the field extension

12
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Z/pZ[a], then a3 — ca2 — ba — a =  0. We know that Z/pZ[a] is a 3 - dimensional linear 

space over Z /p Z , the basis is {1, ct, a2}.

Consider

1 —» a, a —> a2, a 3 —> a 3

as a linear transformation from Z/pZfct] to Z /pZ[a]. Then the corresponding matrix is

/  0 0 a \
5 = 1 0 6 .

\ 0  1 c /

Thus,

5 ' =  {s' =  x I  +  yB  +  zB 2 \ s’ G GL(3, Z /p Z )} -  {Z /p Z [a ])x =H 5 ' |=  p3 -  1. 

Consider B  above as a matrix in G L(3, Z /p ”Z ), then

5  =  {5 =  x / +  y 5  +  zB 2 | x, y, z E Z /p nZ, s e GL(3, Z /p ”Z } <  GL(3, Z /p nZ).

2.3.5 Proposition Let 5  be the same as above. Then | 5  |=  (p3 -  l)p 3n_3.

Proof:

By the same argument as in (2.3.3), we know that | S |=| S' || kerip \ . In this case,

ker'ip =  {s =  ( l  + p x ) I  + p y B  + p z B 2 \ s G GL(3, Z /p "Z )}. Clearly, | kerip \— p3(n_1), 

and the proposition follows. ■

2.3.6 Corollary Suppose n >  m. Let G =  GL(3, Z /p nZ ), K m — { /  +  pmA  | A  G 

^ 3x3(Z /p n_mZ )}, and S be the same as above. Then | K mS |=  (p3 — l)p 9n“6m-3.

Proof:

By the same argument as in Corollary (2.3.4), note that in this case,

K mC\S =  {s -  (1 +pmx ) I+ p myB + p mzB 2 \ x , y , z e  Z /p n- mZ }  = |̂ K mnS \=  (pn- m)3. 

And the corollary follows. ■

Again from the above corollary, when G =  G L (3, Z /p 2mZ), | K mS |=  p12m“3(p3 -  1); 

and if G =  GL(3, Z /p 2m+1Z), | K mS |=  p12m+6(p3 -  1). As we will see in Chapter 4, 

the above two subgroups are the stabilizers of the characters of K m in G L (3, Z /p 2mZ) and 

K m+1 in G*L(3,Z/p2m+1Z) respectively.

13
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3
Characters of GL(2, Z/pnZ)

The degrees of all the irreducible characters of G L (2 ,Z /p nZ ), which do not come from 

G L {2, Z /p fcZ) for any /c <  n, are already known, in [3], they are:

pn- \ p + l ) , p n- \ p - l ) , p n- 2{p2 -  I).

In this chapter, we will use Clifford Theory to find some irreducible characters with degrees 

pn~l (p +  1 ) ,pn~1{p — 1) and pn~2{p2 — 1). In certain cases, we can also easily find 

the character values, while in the other cases, we could only construct some irreducible 

characters without knowing their values.

In order to apply the Clifford Theory, we will discuss G L (2 ,Z /p 2mZ) and 

GL(2, Z /p 2m+1Z) separately. And we will find that the GL(2, Z /p 2mZ) case is easier 

than the other. But finally we will find the characters we want and we w ill see that their 

degrees do not depend on whether n is even or odd. We will skip some details of calculating 

the stabilizers of some characters, because the calculations are similar to the ones in next 

chapter where we will give all the details.

Let p be a prime number, p ^  2 and let m  be a positive integer.

14
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3.1 Characters of GL{2, Z/p2mZ)

In this section, G — G L (2 ,Z /p2mZ ) ,K m =  { I  +  pmA \ A  G M 2X2(2 /p mZ )}. We will 

apply Clifford Theory to construct three kinds of irreducible characters of G. We start with 

a 1 - dimensional character 0 of the normal subgroup K m, calculate its stabilizer I  a (0), 

extend 0 to 0' G /r r ( /c (0 )), then induce 0' up to G. By Theorem 2.2.3, we know that 

0  =  (0/)G G I r r (G ) .  We begin with three different 1 - dimensional characters of K m, so 

there are three cases.

3.1.1 The character of degree p2m~1(p +  1)

Since p /  2, we know that (Z /pmZ )x is cyclic. Thus we can find A : (Z /p 2mZ )x —> C x 

such that A is an injective homomorphism.

Define

So 0 is a group homomorphism. Clearly, 0 is also a character of degree one.

0 : K m -  C x; 0(1 +  pmA) =  A(1 +  pmA n ).

Then
0 [(/ +  pmA ) ( /  +  pmB)] =  0[7 +  pm(A +  5 )]

=  A[1 +  pm(A  +  £?)n]

=  A(1 + p™An + p mB n )

=  \ { ( l + p mA 11) ( l + p mB n )] 

=  X ( l + p mA n ) \ ( l + p mB n )

=  0 ( / +  praA )0 (/ +  pmS ).

Claim:

/ g (0) =  T  = T  |= p 6m- 2( p -  l ) 2.

Proof:

(pmtA t  =  pmaAna 1 =  pmA n

15
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=» 0(7 +  pmA ) =  </>\I +  pmA)

0 =  0* 

f <G T  

= > T  C IG((j>).

On the other hand, suppose B  e 7g(0), then

0s ( /  +  pmA) =  0(7 +  pmB A B ~ l ) =  (f)(I + p m A).

By the definition of 0, we have

A(1 + p m(B A S -1)u ) =  A(1 + p mA n ).

Since A is injective, we have

1 + p m(B A B ~ 1)n  =  l + p mA 11 

^ p m( B A B - 1)u = p mA u .

Denote

A = ( a  n  a 1 2 \ B = / b n  b n  \  B_, =  /  6'u f>'12 N
y 021 «22 /  \  021 022 /  \  021 022 /

then

(B A B  1)n  =  ^ (friiO n  +  612021) +  2̂i(^ n ai2 +  bi2a22).

Since pm(B A B ~ 1)n  =  pmA u , ' ia ij  E M 2x2(Z /pmZ), we have

(1) p"Wn 6u = p m;

(2) pmb'n bi2 =  0;

(3) pmM n  =  0.

By multiplying fen on the both sides of (2), we get pmb'n bn bi2 =  0. By (1), we have

pmbl2 =  0 

=*► 612 =  P m b.

Similarly from (3), we get that

b'21= p md'.

16
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Note that we also have jB-1 G T, thus we can replace B  with B  1. By the same argument 

above, we can conclude that

b2i =  pmd 

=> B  G T

=* I G{<t>) C T

=* / g (0) -  T-
And it is clear that | T  |=  (j9m)2(p2m — p2m -i 2̂ _  ^6m-2^  _  ^ 2_ ■

Define

<*' : I a W  -  CX\4>{B) = A(o),B = (  p“ c )  6 Jo(0.

Since VS, B ' G I G(4>), we have {B B ')n  =  S u S ^ . Therefore, f t  is a character of degree 

one, and so it is irreducible. Clearly, <f>'Km =  (p. Thus, [cf)'K , <j>\ — 1 7̂  0. By Theorem 2.2.3, 

we have

ip =  (0 ')G G I r r (G ) ,

and

i£ s W = r H i = p l" 1 0 ,+ 1 )'
In fact, as we will see in the G L (3 ,Z /p 2mZ) case, this method will work for any

GL(n, Z /p 2m),\/n. Let K m =  { I  +  pmA \ A  £ M nXn(Z /pmZ ) j ,  A be the same as above, 

define

0 : K m -  C x;0 ( / +  pmA) =  A (l+ p mAn ).

Then the stabilizer would be of the similar form and we can extend (f> to it. Then we can 

induce the extension <p' up to G to construct an irreducible character of G. Moreover, the 

values of the extensions <p' are easily known, hence the character values of {(p')G are also 

known.

Notice also that in this case, Ia {(p)/Km is abelian, any irreducible character of 

I g {4>)/Km is of degree one. Thus, although we can still apply Theorem 2.2.6 to construct 

more irreducible characters of T  that can substitute <//, the degree would not change. As 

a result, the degree of (pP)G will stay the same. However, as in G L {3, Z /p 2mZ) case, 

I G{<p)/Km is not abelian anymore, we can actually find more irreducible characters of T

17
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with different degrees, which also satisfy the condition in Theorem 2.3.3. Therefore, we 

can construct some more irreducible characters of G L(3, Z /p 2mZ) with different degrees. 

And it is easy to see that as n increases, more irreducible characters will be found by this 

method.

3.1.2 The character of degree p2m2(p2 — 1)

Let A : (Z /p 2mZ )+ —> C x be an injective homomorphism.

Define

Thus, 0 is a character of degree one. And by the same calculation as in 4.1.2, we have

0 : K m -  C x ]<fi(I +  pmA) =  X(pmA 21).

Then
d>[(I +  pmA ) ( I  +  pmB )] =  <f>[(I +  pm(A +  B )]

=  X\pm(A +  B )21\

=  X(pmA 21)X(pmB 21)

=  </>(/ +  pmA)<f>(I +  pmB).

W  =  { b  =  ( pmc a + pmd
a b

)  | a € (Z /p 2mZ )x; b e Z /p ^ Z ; c, d e Z/pmz | ,

and

/ G(0) =  (p2m -  p 2m- 1)p2m(p m) 2 =  p 6m- \ p  -  1).

Define

0' : I g (4>) ^  C x ;<p'(B) =  X(pmca~1), B  =
a b 

pmc a +  pmd
e G .

Let
a b 

pmc a + pmd
a' b' 

pmc' a' +  pmd'

then

B B '  = aa! +  pmbd ab' +  a'b +  pmbd' 
pm{a'c +  ad) aa' +  pm{b'c +  ad' +  a

18
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We have,
4>'(BB') =  X[pm(ac> +  a'c)(aa' +  pmbc')~1]

=  X[pm(ac' +  a!c)(ao!)~l ]

=  X(pmca-1 +  pmda!~l )

=  X(pmca~1)X(pmc'a,~1)

=  t ' W i B ' ) .

Hence, d' is a character of degree one. And for I  +  pmA  G K m, we have

</>'(/ +  pm A) =  X\pmA n ( l + p mA u ) - 1} 

=  X\pmA 21( l - p mA u )\

=  A (pmA 21)

— <j>(I +  pm A).

Namely, <p'Km =  </>. Thus, [4>'K , <j>] =  1 ^  0. By Theorem 2.2.3, we have

4> =  (^ )G e I r r ( G ),

and

deg(il)) =  |"jQ̂  | =  P2m~2{p2 ~  !)•

Again, this method can be generalized similarly to any G L (n ,Z /p 2mZ), Vn. And the 

character values can also be computed easily. In addition, when n >  2, Ia{4>)/Km is 

not abelian anymore and as a result, more irreducible characters of G L (2, Z /p 2mZ) will 

come up.

3.1.3 The character of degree p2m“1 (p — 1)

Let e G Z /p Z  be such that y/e is not in Z/pZ.  Consider e as an element of Z /p 2mZ, let A 

be the same as in 3.1.2. Let 5  =  ( J jQ g G L (2, Z /p 2mZ).

Define

0 : K m -  C x;</>(/ +  p"M) =  A[fr(pmAS)]-

19
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Then
0[(7 +  pmA ) ( I  +  pmC)} =  (j>[I +  pm(A +  C)}

=  X [tr(pm(A +  C)B)

=  X[tr(pmAB)\X[tr(pmCB)\

=  <j>{I +  pmA)<l>{I+pmC).

As a result, 0 is a character of degree one.

Claim: 7g(0) = K mS, where ^ = | s = ^ y  ^   ̂ S e ’

Proof: Let s e S  and note that sB =  Bs, we have

0s ( /  +  pmA ) =  0(7 +  pmsAs~1)

=  X[tr(pmsAs~1B)

— X[tr(pmsABs~1}

=  X[tr{pmA B )]

=  4>(I+pmA).

So s stabilizes 0, and we have S  C 7g(0). Hence, K mS  C / G(0 ).

On the other hand, let (7 G 7g(0), then 0C =  0. Thus, VJ +  pmA G 77m, we have

0C(7 +  pmA ) =  0(7 +  pmCAC~1) =  0(7 +  pmA)

=> A ^ r ^ C A C -1# ))  =  A(fr(pmA 5 )).

Since A is injective, we have

tr(pmCAC~1B) =  tr (pmAB).

Therefore,

t r (A (pm(B  -  C~l BC ))  =  0, VA.

Since the A above is an arbitrary matrix in M 2X2(Z /p mZ), we know pmB C  =  pn 

Denote
q  _ (  1̂1 1̂2

C21 C22
then

  f  *̂"21 £̂ -22 \  (JB    ^ ^̂ "11
C11 C22 /  \  C22 £C2i

20
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Since pmB C  =  pmC B, we have

pmci2 =  pmec2i ,p mcu =  pmc22.

Thus,

p™C =  pmcn I  +  pmc21B  ^ C  =  cn I  +  c 21B  +  pmD,

for some D  G M 2y2(Z /pmZ ) . Since C  G I g {4>) is invertible, C  — pmD  =  C n/ +  c2\B  is 

also invertible. Hence, cn I  +  c2iB  G S. Let A  =  D ( c n l  +  c2\B )~ l , then

C = ( J  +  pTOA )(C ll/  +  c21J5).

Therefore, C' G /vm5. which implies I g {4>) ^  A'mS. And the claim follows. ■

From 2.3.6, we have | K mS |=  p6m~2(p2 — 1). Moreover, by Lemma 2.2.10, we can find 

(j)' G I r r { K mS), such that (j)'Km =  (p. Thus, [4>'Km, 4>\ =  1 ^  0. By Theorem 2.2.3, we have

xp — {(p')G G I r r (G ) ,

and

desW = T ^ =J’2”"1(?’-1 ) -
This construction will also work for any GL(n, Z /p2mZ), Vn. However, as n  increases, 

we should choose different matrix B. And 0 is defined similarly, but the corresponding 

stabilizer would become a little more complicated to calculate. However, in this case, we 

only know the existence of the extension 0' G I r r ( K rnS), without knowing its value, so it 

is hard to tell the value of the induced character 0  =  (0 ')G G I r r (G ) .

3.2 Characters of GL(2, Z/p2m+1Z)

In this section, G =  6V ,l2,Z /7)s’" * lZ ),/i',„^ 1 =  { /  I p ' " + ' A  \ A  e M 2, 2(Z /p ”‘Z )}. 

We start with certain irreducible characters of the normal subgroup K m+1. Like in last 

section, there are also three cases and the three 1 - dimensional characters of K m+1 are 

defined similarly. Note that in this case p2m+l =  0, and by a similar calculation, we can 

still find the corresponding stabilizer T. However, unlike the case in the last section, we
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cannot extend 0 to T  directly. But we are still able to find a character </>' G I r r ( T )  such 

that [0Km+1,0] 7̂  0- Then by Theorem 2.2.3, we know that ^ =  (0 ')G G I r r (G ) .

In 3.2.3, we will also use the normal subgroup K m =  { /  +  pmA \ A  G

-^2x2(^ /p m+1Z )}. And we have

| G |=  p8m+1(p -  1 ) \ p  +  1), | K m |=  pim+\  | K m+1 |=  p4m.

3.2.1 The character of degree p2m(p +  1)

Let A : (Z /p 2m+1Z )x —>• C x be an injective homomorphism.

Define

cj> : K m+i -  C x; </>(/ +  pm+lA) =  A(1 +  pm+lA n ).

Then 0 is a character of degree one. By the same calculation as in 3.1.1, note that
p2m +l =  we have

T  =  =  { *  =  (  p“ c 7 ) l M e  (Z /p 2”>+1Z )*;& ,c  € Z / jT + 'z }  ,

and

| T  \=  (p2m+1 - p 2m)2(pm+1)2 =  p6m+2(p -  l ) 2.

Let

N  =  |n  = (  1 +jT c a f l +̂ d )  I a , c , d e  Z/p™+1Z; b e Z /p -Z ; }  .

Denote

/  a pmb \  i _  /  a' pmb' \  _  (  1 +  pmx pm+ly \
y pmc d J  ’ y pmd d' J  ,n  y pmz 1 +  pmw J  ’

Note that p2m+l =  0 and pmab' +  pmbd! =  0, we have

{ t n r 1) ^  =  pm+1{pm- 1ab'x +  ad'y + p m~1bd'w).

Thus, tn t ” 1 G N  and we have N  <  T. Moreover, VX, Y  G N, ( X Y ) n  =  X n Yn . Thus,

4> : N  —> C x -,<ft'(n) — A (nn),Vn G N  

is a character of degree one and clearly, <j>Km+1 =  'i’ 

l l
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Let

H  =  j / i  =  (  p“ c P" l+̂ b ^ | b G Z /p mZ; c € Z /p m+1Z; a, d G (Z /p 2m+1Z )x J . 
Then H  is a subgroup of T. We want to show =  H.

Denote

. _  /  1 +  pma pm+16 \  _  /  a; pm+1p \  , _x _  /  x' pm+V  \
y pmc 1 +  pmd J ’ ^ pm.z to j ’ y p"V  w/ J  ’

then =  x(l +  pma)x' =  1 +  pma. Thus, h stabilizes <f>' and hence we have

H  C / r (0 ').

On the other hand, consider

, /  1 f \ r i j  i + p 2m - p™ ^
v, p™ i  p  \  “ p”  i + p2" /

Then

(L4£_1)n =  1 +  pma + p 2mc 7̂  An.

As a result, t  <£ I t (<(>') h'{<p') £  T. Note also that

| H  |=  (p2m+1 -  p2m)2pm+1pm =  p6ra+1(p -  l ) 2.

So |̂ J| — p. And since H  C It((/>') C T, we have H  =  I r i f t ) -  

Define

0 : H ^ C x -,6 {h) =  X(hn ),\fh  £ H.

Since VYi, h' G H, (/?,/?/) 11 =  huh'n , 9 is a character of degree one and 0jv =  4>'■ So 

[On , (j)'] =  1, hence G I r r ( T ), and deg(0T) =  =  p. Note that we also have

[ O 3! =  [*£ ,*] =  i^ o ,

thus, îcm+1 is an irreducible constituent of • Since

0Km+l =  (0jv)iCm+i =  ^Km+l ~  ~  OJcm+l ’

we have 7̂  0. By Theorem 2.2.3, we know

( ^ ) G =  0G G Ir r (G ) ,

and

* s («G) =  f | | = p 2’”(p + i ) .
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3.2.2 The character of degree p2m 1(p2 — 1)

Let A : (Z /p 2m+1Z )+ —> C x be an injective homomorphism.

Define

4 : K m+l C * ;4 ( I+ p m+1) =  A(pm+1A21), 

then 4  is a character of degree one. By the same calculation as in 4.2.2, we have

T  =  / o W  =  { B = ( p“ c B e a } .

Let

N  =  { U =  (  Pm+1° a + Pmd^) I n G T }  •
Then | iV |=  pGm+2(p — 1). Moveover, let

/ a  b A i f  a' b' A (  x y
y p“ c a +  pmd J  ’ \  pmd a, -\-pmd ! j ' U \ p m+1z x + p m‘

note that plm+l =  0 and pmca! +  pmda  +  p2md,d =  0, we have

(tn t~ 1)21 =  pm+1(aa'z +  pm~1cdy +  pm~1adw).

Thus, tn t -1 G T  and we know that N  < T .

Define

4 ':  N  ^  C*-,4'(n) =  ( Z lc a + bf nd ) ^ N .

Denote
/ a  b A , _  (  a' b' A

n y pm+1c a +  pmd J  ’ n y pm+1d  a +  pmd' J  ’
then

nn'n =  ao! 4- pm+1bd, nn'2l =  pm+l(ad +  a'c).

Thus,
d)(nn') =  A[pm+1(ac' +  a!c){aa! +  pm+16c/)-1]

=  A[pm+1(ac/ +  a'c)(aa')_1]

=  A(pm+1ca-1 +  pm+1c'a'-1 )

=  A(pm+1ca_1)A(pm+1c/a'_1)
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Hence, <p' is a character of degree one and (j>'Km+1 — 4>-

Moreover, since ^  =  p and  ̂ =  pm i  ^ e does not stabilize (j)1, we have

I T((f/) =  jV =t> 0  =  (,i>')T G I r r (T ) .

Since [ipN, (j)'} =  [0 , 0 ] =  1 ^ 0  and 4>'Km+1 =  0, we have [^Km+1,4>] +  0. Thus,

0G = m Tf  = (0')G G Irr{G),

and

deg(i>°) =  t ^ = p 2m- 1( j ? - l ) .

3.2.3 The character of degree p2m(p — 1)

Let £ be a non square element in Z /p Z  and consider it as an element in Z /p 2m+1Z. Let A 

be the same as above and let B  =  ^  ̂ 0 )  ^ GL(2, Z /p 2m+1)Z.

Define

0 : K m+1 -> C x;0 ( / +  p™+1A) =  A[tr(p™+1AB)].

Since in ( /  +  pm+1A ) ( I  +  pm+1B) =  I  +  pm+1(A  +  B), we know that 0 is a

character of degree one. And by the same calculation as in 3.1.3, note that p2m+l =  0, we 

have T  =  I g {4>) =  K mS, where

And by Corollary 2.4.4, | K mS |=  p6m+2(p2 -  1). Moreover, we can find 0  G I r r (T ) ,  

such that

degi'ip) =  p, [0 * m+1, 0] ^ 0 =► 0 G G Jrr(G ),

and

deg{gpG) =  p | y |  =  p2m(p -  1).

The idea to construct an irreducible character 0  of T such that [0;rm+1, 0] /  0 is exactly 

the same as the one used in 4.2.3 and the details will be given in next chapter.The main idea 

is as follows.
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Let

K 1 =  { I  +  p A \ A e  M 2x2(Z /p 2mZ )}, N  =  K x n S, N m =  K mN, Nm+1 =  K m+1.

Then iVm+1 o T. In particular, iVm+i <  Arm.

Step 1, we extend ft of K m+ ito 4>' of ATm+i. The existence of f t  is guaranteed by Lemma 

2.2.10. Moreover, we can also show that f t  is stable under T.

Step 2, find an appropriate subgroup H  between Nm+i  and Nm such that we can extend 

f t  of 7Vm+i to 6 of H. In addition, / Wm(0) =  H. Then apply Corollary 2.2.4, we know that 

f t  =  0Nm G I r r ( N m).

Step 3, we will show that f t^ m+1 =  f t  f t  f° r some integer i. In this case, i  =  1, and we 

w ill see in the next chapter that i  =  3. Moreover, f t  vanishes on N m — iVm+1. Since f t  is 

stable under T, we know f t  is also stable under T.

Step 4, since T /N m is cyclic and f t  e I r r ( N m) is stable under T, by Theorem 2.2.8, we 

can extend f t  to ft  of T. And this ft is what we want.

A ll the three constructions can be applied to GL(n, Z /p 2m+1Z ), Vn. But it w ill become 

more involved as n increases and more irreducible characters will appear.

From the characters constructed in 3.1 and 3.2, we find that their degrees do not depend 

on 2m  or 2m +  1. For any n, there exist characters of G L (2 ,Z /p nZ) with degrees: 

pn~1(p +  1 ),p n~1(p — 1), andpn-2(p2 — 1).

26
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Characters of GL(3, Z/pnZ)

In this chapter, we will apply Clifford Theory to construct some irreducible characters 

of G L (3 ,Z /p nZ). Like in the G L (2 ,Z /p nZ) case, we discuss GL(3, Z /p 2mZ) and 

G L(3, Z /p 2m+1Z) separately. Still, the even case is easier. We w ill use the similar method 

as in the last chapter and we can find some irreducible characters whose degrees do not 

depend on whether n  is even or not. However, in 4.1.1,4.1.2,4.2.1,4.2.2, by Theorem 

2.2.6, we can construct some more irreducible characters, the degrees of which would 

depend on the number n.

Let p be a prime number, p /  2. Let m  G Z, m >  1.

4.1 Characters of GL(3, Z/p2mZ)

Let

G  =  GX(3, Z / p 2mZ ) , K m =  { /  +  p mA  | A  € M Zx3{ Z / p mZ ) } .

Then

| G |=  p9<2m- 1)(p3 -  l)(p 3 -  p)(p3 — p2), | K m |=  p9m.

In this section, we use the same method as in 3.1. Start with a 1-dimensional character 

4> of the normal subgroup K m, find its stabilizer T, extend 4> to character (ft of T, then the
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induced character (0 ') °  G Ir r (G ) .  In the G L (2 ,Z /p mZ) case, there is only one kind of 

irreducible character. But in this case, since T /K m is not abelian, we can construct some 

more irreducible characters by applying Theorem 2.2.6.

4.1.1 The character of degree p hn' 2(p2 +  p 4-1)

Let A : (Z /p 2mZ )x —► C x be an injective homomorphism.

Define

0  : K m -> C x; 0 ( / + P mA) =  A(1 + p mA n ).

Then 4> is a character of degree one.

Claim;

Proof:
/  a pmb pmc \

It is easy to check that if t  — I pmd x y I G T, then
y pme z w I

(pmtA t 1)n =  pmaAn a 1 =  pmA n  

= X f){I +  pmA) =  (f)t ( I  +  pmA)

=►0 =  0*

= ^ t e T

C I G(<t>).

On the other hand, suppose B  G then

+  pmA) =  <j>{I +  pmB A B ~ 1) =  4>{I + p mA).

By the definition of 0, we have

A(1 + p m{B A B -1) u ) =  A(1 + p mA n ).

Since A is injective, we have

1 +  pm(B A B ~ 1) 11 =  1 +  pmA 11
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=>pm( B A B - l )n = p mA n .

Denote

(an  0,12 ai3 \  /  fell & 1 2  fel3 \  /  feu fe ].2  1̂3 \
0>21 °22 2̂3 1, 5=1 &21 &22 fe23 I ) B 1 = I fe21 fo22 &23 J >

0.31 a32 3̂3 / \  fe31 fe32 fe33 / \  &3i fê2 3̂3 /

then

(BAB  1)u = fe/11(feiiOii+fei2021+fel3O3l)+fe2l(fella12+fel2022+fel3O32)+fe3l(fellOl3+fel2O23+fel3033)- 

Since pm(B A B ~l )n  =  prM n ,V a ij G M 3xz(Z/pmZ), we have

( 1 )  p - f e ' n f e n  =  p m ;

(2) pmb'n bi2 =  0;

(3) pmfe/11fe13 — 0;

(4) p m b /21b n  =  0;

(5) pmfe f̂en =  0.

Multiply fen on the both sides of (2), we get pmfe/11feufei2 — 0. By (1), we have

P m f e i2  =  o

= »  & 1 2  -  P m b.

Similarly from (3), (4), (5), we get that

fei3 =  Pmc, b '21 =  p m d ' ,  fe'31 =  p V .

Note that we also have 5 _1 G T, thus we can replace B with B~l , by the same argument

above, we can conclude that

fe2 i  —  P m d ,  fe3 i  =  p m e  

= j> B g T

=* / g (0) C T

=* =  T.

And it is clear that | T  |=  (p2m — p2m_1)(pm)4 | G L (2 ,Z /p mZ) |= p 14m_4(p — l ) 3(p + l) .

■
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Since VA, B e T ,  (A B )n  =  A u B u ,  we have 0 ': T  —»• Cx, defined by

( a pmb pmc \
pmd x y J £ G,

pme z w J
is a group homomorphism, so is a character of degree one. Clearly, 0'fcm =  <f>. Thus 

[<j>'Km, <t>\ =  [4>i <t>\ =  1 7̂  0. By Theorem 2.2.3, we know that

-0 =  (0 ')G £ I r r {G ) ,

and

=  t y |  =  p4m_2(p2 +  p +  1).
Note that

a  0  0

(*) T / K m ^ { A = \  0 x y | , A £ GL(3, Z /p mZ)
0 z w

> “  (Z /p mZ )x x G L (2 ,Z /p mZ).

By Theorem 2.2.6, we know that V/3 € I r r ( T / K m), (dcj)' is an irreducible constituent of 

4>T. Thus,

[/V ,0T] =  W ) k m,(t>} (P<t>')G G Ir r (G ) .

And we also have

cfeg[(/30')G] =  ^ ( / 3 0 ' ) | y |  =  deg{(d)pim~2{p2 + p +  1).

By (*), we know that any 7 £ /rr[G L (2 . Z /p mZ)] can be lifted as an irreducible character 

of T. And since we know the degrees of the irreducible characters of G L{2, Z /p mZ) are

p , p +  i , p - i , +  i) ,p “ - 1( p - i ) , Pm- V - i ) ,

we can find some new irreducible characters of G with the following degrees:

pAm~2{p2 + p +  l)p ,p Am- 2(p2 + p +  l) (p +  l),;p4m- V  + P +  l)(p  -  1), 

p4m- 2(p2+ p + l)p m- 1(p + l))p4m- 2(p2+ p+ l)pm- 1( p - l ) )p4m- 2(p2+ p + l> m- 2(l)2- l ) .
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4.1.2 The character of degree p4m 4(p3 — l ) (p  +  1)

Let A : (Z /p 2mZ )+ —> C x be an injective homomorphism.

Define

0 : K m -  C x; 0(7 +  pmA) =  X(pmA 31).

Then 0 is a character of degree one.

Claim:

> , \ T  \= p Um~2 ( p - l ) 2.
a x  y

JG(0) =  T  =  { t =  \ pmb z w | | i  e G
pmc pmd a +  pme

Proof:

( a x  y
pmb z w ) e T, then

pmc pmd a +  pme

( ^  \
C o lit 1 =  I pmb' I ,Row3 (pmtA ) =  ( pmaA31 pmaA32 pmaA33 ) .

y pmd J

Since p2m — 0, we have

i j r t A t - 1) ^  =  pmaAZia~ l =  pmA 31.

Thus, 0(7 +  pmA) =  0*(7 +  pmA ) , \ / I  +  pmA  6 K m. Hence, t  stabilizes 0 and we have 

T C / g (0).

On the other hand, suppose B  e 7G(0), then

0B( /  +  pmA) =  0(7 +  pmB A B ~ 1) =  0(7 +  pmA).

By the definition of 0, we have

A(pm(5 A S -1)31) =  A(proA31).

Since A is injective, we have

pm{B A B ~ 1)z l = p mA 3i.

Denote

&11 &12 &i3
&21 &22 2̂3
3̂1 b32 b33

31

1f  a  n O l2 O l3

4 = &21 022 023
1
V 0.31 0 32 O33

* i l 1̂2 ^13
b'21 2̂2 ^23

&31 ^32 ^33
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then

(B A B  1),3i =  6/11(63i<2ii+632a21+^33a3l)+^2l(^31a12+&32n22+^33a32)+^3i(^31a13+^32a23+^33a33)- 

Since pm{ B A B ~l )n  =  pmA n y a lJ G M 3x3(Z /p mZ), we have

(1) P m b 'n b 33 =  P m -,

(2) pmb'n b3 1 = 0 ;

(3) pmb'n b32 =  0;

(4) p -6'21633 - 0 .

By multiplying 633 on the both sides of (2), we get

pTO&'n &33&31 =  0.

By (1), we have

Pm&3i =  0 

^ b 31= p mc.

Similarly from (3), (4), we get that

b32 =  P m d ,  b'2l =  pmb'.

SinceS-1 G T, we can replace B  with B _1, by the same argument as above, we can 

conclude that

b2 1 = p mb.

Note that we also have

(5) pm{B A B -1) l l ^ p mb11b'1 1 ^ p m.

Let (1) — (5), we have

(6) pmb'xx(b33 -  bn) =  0.

Multiply 633 on the both sides of (6) and by (1), we have

6 3 3  -  bn  =  Pme.
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Thus,

( a x  y
pmb z w | <ET.

pmc pmd a +  pme

So T  =  I G(<f>). And I T  \=  (p2m -  p 2m" 1)2(pm)3(p2m)3 =  p U m - 2 (p  _  ^ 2_
Define

Let

then

b' : T  -> C x . Jj
a x  y

pmb z w j =  A (pmca~1).
pmc pmd a +  pme

a x  y
t =  | pmb z w

pmc pmd a +  pme

a
P -  I pmy

x V
w'

pmd pmd' a' +  pme'

( tt ')u  =  aa! +  pm(xbl +  yd), (tt')s i =  pm(ad +  a!c).

So — pmca~1 +  pmda'~ l . As a result, qb' is a group homomorphism, and so

is a character of degree one. Moreover, since pmc( 1 +  pma) ~ 1 =  pmc, we have (j)'km — 4>. 

Thus — [4>, 4>] — 1 /  0. By Theorem 2.2.3, we have that

4, =  (4>’f  e I r r (G ) ,d e g ( i>) = | f j  = P4”- “ (P3 -  1)Cp+ 1).

We will turn next to apply Theorem 2.2.6 to construct one more irreducible character of

G.

Note that

Let N  — < 

Define

T /K m H

a x y 
n — | 0 a z 

0 0 a

a x y
A =  I 0 b z ) | A E G L(3 ,Z /p mZ ) 

0 0 a

n G H  >, then N  <  H.

.

Oj x  y  \

9 : N  —> C x; 9 | 0 a z =  a{xa~l ),
0 0 a )

where a : (Z /p mZ )+ —> C x is an injective group homomorphism. Let

a x y \  /  a' x1 y'
n =  | 0 a z 1 , n' =  ( 0 a1 z' , ,

0 0 a J \  0 0 a'
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then

inn ') 11 =  aar, (nn1) 12 =  ax' +  a'x.

So (nn/) i2(nn ')111 =  xa 1 +  x'a ' 1. Hence we have 9 is a character of degree one. 

Let

( a0 x 0 y0 \  (  ao1 x'Q y '0 \  /  a x  y \
0 b0 z0 ] , h~l =  0 bg1 4  , n =  0 a 2 J ,

0 0 a0 /  \  0 0 Oq 1 /  \  0 0 a J

then

(hnh~l ) 11 =  a0aao1 =  a, (hnhT1) i2 =  a(aoXo +  ^ o )  +  ao&o1;E =  ao^o1;r-

Since
h e i h {9) ^ e h =  e

0(n) =  0ft(n) VnG JV

4=4- 0(n) =  9{hnh~l )

4=>- cr(xa_1) =  cr(a0&o 1a;a_1)

xa-1 =  ao&o 1xa_1 since a is in jec tive

agbol x  =  £

ao =  60

< = > h e N .

Thus, /.h-(<t) =  i¥. By Corollary 2.2.4, we have

(3 =  aH G I r r (H ) ,

and

Then by Theorem 2.2.6, we have

[<y/?)rsrm,0] 7̂  0 

=► X =  O T )°  G Ir r (G ) ,
and

dep(x) = deg(p)\^p- =  p4m 4(p3 -  1 )(p +  l)(pm -  pm 1).
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4.1.3 The character of degree p6m 3(p — 1 )2(p +  1)

Let
/  0 0 a \

B =  1 0 6 G G L (3 ,Z /p 2mZ)
\ 0  1 c )

be the same as we discussed in 2.3. Let

S = { s  =  x I  +  y B +  z B2 \ s e  GL(3, Z /p 2mZ } C G L{ 3, Z /p 2mZ)

then by Corollary 2.3.6, we have | S |=  (p3 — l)p 6m_3.

Let A : (Z /p 2mZ )+ —► C x be an injective homomorphism.

Define

0 : K m -> C x;0(7 +  pmA) =  X(tr(pmA B )).

Then
0[(7 +  p”M ) (7 +  pmC)] =  0[7 +  pm(A +  C)]

=  X[tr(pm(A +  C)B\ 

=  X [tr (pmAB)} X [tr (pmCB)}

=  0(7 +  pmA )0(7 +  pmC).

So 0 is a character of degree one.

Claim: Denote T  — 7G(0), we have T  =  K mS and | T  |=  p12m_3(p3 — 1). 

Proof:

Let s G S', since S' is abelian and B  £ S, we have sB =  Bs.

Thus,
0a(7 +  pm A) =  0(7 +  p ^ s " 1)

=  X(tr(pmsAs~1B)) 

=  X(tr(pTnsABs~1))

=  A(tr(pmA B ))

=  0(7 +  p"L4).

So 0s =  0, s G T  and we have S C T . Clearly, K m C T , therefore 77mS C T. 

On the other hand, let C £ T ,  then 0C =  0. Thus,

0C(7 +  pmAl) =  0(7 +  p ^ A C - 1) =  0(7 +  p"M ), V7 +  pmvf G 7C,
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By the definition of cf>, we have

X(tr(pmC AC  B )) =  X (tr(pmA B )).

Since A is injective, this yields

tr(p mC A C -l B) =  tr(p mA B ) => tr(A p mB ) =  tr(A p mC~1BC )

=> tr(A (p m(B -  C~XB C )) =  0.

Since the A  above is an arbitrary matrix in M 3x3(Z /p mZ), we conclude that

p™(£ _  C~l BC ) =  0 

=* pmB C  =  pmCB.

Denote
C l l  C12 C13

( 7 = |  c2i c22 c23
C31 C32 C33

then

0 0 3 1  OC32 0 C 3 3  \  /  C12 C13 a c u  +  b c \2  +  CC13

BC  = |  C11 + bon C12 + &C32 C13 + bc33 j , CB  =  I C22 C23 ac2i +  bc22 + CC23 
C21 + CC31 C22 + CC32 c23 4- CC33 J \  C32 C33 0031 + bcz2 +  CC33

Since pmBC  = pmC B , we have

P m c i 2 =  P m a c s  1, 

p m C22 =  P m { c n  +  & C 31), 

p m C32 =  P m ( c 2 i  +  C C 3 1 ),

Pmcu = Pm(ac21 +  accgi),

P m C2 -i =  P m { a c 3 1 +  b c 2 1 +  & CC31), 

p m C33 —  pm(cn +  bc3i +  CC21 +  c2c3i ).

Thus,

/  p m c n  P m a c 31 p m (a ,C 21 + acc3i)
pmC = j pmc2i pm(cXi + 6c3i) pm(ac3i + &C21 + 6cc3i)

\  P m c 3i  P m ( c 2 i  +  C C 31) p m ( c n  +  6c3i +  cc2i +  c2c3i )
= pmcn I  + pmc21B  + pmc31B 2.
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Hence,

C =  cn I  +  c2lB  +  c3l B 2 +  pmD, D  G M 3x3 (Z /p mZ).

Since C € T  is invertible, C -  pmD  =  cu I  +  c2XB  +  c:nB 2 is also invertible. Hence,

C \\I +  c2\B  +  c3\B 2 g S. Let A =  D {c i\ I  T  c2\B  c3XB 2) then

C =  { I  +  pmA)(cn I  +  c2lB  +  c3l B 2).

So C  G K mS, and we have T  C K mS. Therefore, T  =  K mS. And by Corollary 2.3.6, we 

have | T  |=  p i 2 'm ~ :!( p '5 — 1). ■

By Lemma 2.2.10, we can find 0  G I r r ( K mS) such that ipKm =  0- Therefore, [0Km, 0] =  

1 ^  0. By Theorem 2.2.3, we have

X =  € Ir r (G ) ,

and

< % (*) =  | - ^ j  =  p6m~3(p -  l ) 2(p +  1).

Since

T /K m =  K mS/S  “  { x / +  yB  +  z fi2} <  GL(3, Z /p mZ)

is abelian, any /? G I r r ( T / K m) is of degree one. So deg(tp(3) =  degfy) and we can not 

find other irreducible characters of G with different degrees.

4.2 Characters of GL(3, Z/p2m+1Z)

Let G — GL(3, Z /p 2m+1Z),

A'm =  { /  +  pmA | A G M 3x3 (Z /pm+1Z )}, K m+1 =  { /  +  pm+1A \ A  G M 3x3(Z/p™ Z)}. 

Then

I G h  Pi8m( /  -  1)(P3 -  P)(P3 - P 2),l K m+1 \= p9m, | h  P9m+9-

In this section, we start with a 1 - dimensional character 0 of the normal subgroup K m+X, 

find its stabilizer T, then find <fi' G I r r ( T ) such that [00m+1 >0] ^  0. Then apply Theorem 

2.2.3 to find the corresponding irreducible characters of G. Like in the last section, we can 

still apply Theorem 2.2.6 to construct some more irreducible characters of G.
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4.2.1 The character of degree p n(p +  p  +  1)

Let A : (Z /p 2m+1Z )x —> C x be an injective homomorphism.

Define

0 : K m+1 -  C x; 0 ( /  +  pm+1A) =  A(1 + p m+1A n ).

By the same argument as in 4.1.1 and note that in this case p2m+1 =  0, we can conclude 

that 0 is a character of degree one. Moreover, by the similar method in 4.1.1 to calculate 

the stabilizer of 0 , we have

a pmb pmc
H4>) =  T  

Let

t = \ p md x y I | t G G > , | T  |=  p + (p -  l ) 3(p +  1)
pme z w

1 +  pma pm+1b pm+1c
N  =  =  J pmd 1 +  pmx pmy | | n G G

pme pmz 1 +  pmw

Then K m+1 <  N  <  T  and we can extend 0 to N  as follows.

Define

( 1 + p ma pm+1b pm+1c 
pmd 1 + p mx pmy J = A ( l+ p ma).

pme pmz 1 +  pmw

Note that V A  B  G Ar, we have (A B )n  =  A n B n . Thus,0' is a character of degree one. 

Clearly, 0'w  =  0.

Let
/  1 +  pmnu  pm+1n 12 pm+1n i3 \

n =  j pmn21 1 +  pmn 22 pmn 23 J 6 N,
\  P m n 31 P m n Z2 1 + p mn3S J

a pmb pmc \  f a' Pmb' pmc'
t  =  I prnd x y I , t~ l =  [ pmd' x ' y ' ) G T.pme z w )  \  pme' z' w'

Then

(■tn t A i  =  ad  +  p2mbd! +  p2mce' +  pma d n n  +  p2mbn2id  +  p2mcn3id .  

Note that

( t r ^ n  =  aa' +  p2mbd! +  p2mce' =  1 ,pmad  =  pm( t f - 1) l l  =  pm,
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we get

[ tn t~ l ) 1 1  =  1 +  pmn n  +  p2mbn2ia ' +  p2mcri3ia '.

Since A is injective, a' is invertible and n2i and n31 can be any number in Z /p 2m+1Z, we 

have
£ G <==$■ <p'{tnt~1) =  0;(n) Vn G iV

«=» A^fnt^j1] =  A(1 + p mnu )

4=>- (^ni_1)n  =  1 +  pmnu

1 +  pmnn 4- p2mbn2ia ' +  p2mcn3ia ' =  1 +  pmn n  

p2mbn21 +  p2mcn31 =  0 Vn2i, n u  G Z /p 2m+1Z

p2mb =  0 ,p2mc =  0
a pm+l \) pm+l c 

t  =  I pmd x  y
pme z w

Thus,
a pm+lb pm+1c

I T{<j>') =  H = {

Define

h =  pmd x y , h e T > .
pme z w

a pm+1b pm+1c
d : H  ^ C x ;0 | pmd x y | =  A(a).

pme z w

Since \/h, h! G H, (hh!)n  =  hn h'n , we know 6 is a character of degree one. And clearly,

0N — <t>'- Therefore, [0N, <?'] =  1- By Theorem 2.2.3, we have

O' =  0T G Irr(T ),de g (0 ')  =  j - ^ j  =  p2.

Since [O', O'] =  [0'H,0\ =  1 ^  0 and 0Km+l =  (0 jv)jW i =  <P'Km+1 =  <t>, we have

[0'Km+1 ,</>] 7̂  0. By Theorem 2.2.3 again, we have

(q')G =  9g =  1p e I r r (G),

and

deg(ip) =  | - ^ j  =  PAm{p2 +  P +  1).

We just constructed an irreducible character ip of G, and will turn next to apply Theorem 

2.2.6 to find some more irreducible characters.
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Since N  <  K m and lK m((p') =  I t (<!>') fl K m =  H  f\ N  =  N ,b y  Corollary 2.2.4, we have 

a =  (4>')Km e I r r ( K m), deg(a) =  j j j r j  =  P2- 

Since 4>'K  =  4> and c6 is stable under K m, Vk G A"m+i, we have

a(k) =  <t>(k)

x€Km

= O f t E
X&Km

=  | F T  E  * * >
x€Km 

=  p2(t>(k).

Therefore, a * m+1 =  p20 .

Claim 1: ct is extendible to T  and the extension is 0'. Namely, 0'Km — a.

Proof:

Since a  is irreducible and deg{9) =  deg{9'Km) — deg(a) =  p2, it suffices to show 

[0Km>«] ^  °- And note that it suffices to show

6'n, <j/] 7̂  0. Indeed, since [0#, 0] — 1 /  0, we know that 0 is an irreducible constituent of 

d'H. Hence, (j/ =  9N is an irreducible constituent of (9'h )n  — 6 'n- Therefore, [0^, q!>'] /  0. 

Hence, [0#m, q] ^  0. And the claim follows. ■

Claim 2: I G( a ) = T .

Proof:

Since 9'Km =  a and 9' =  9T is a character of T ,\ / t  G T ,k  G K m, we have

=  (0')*O ) =  =  9'(k) =  a(Jfc).

Thus, T  C I g { ol) .

On the other hand, note that a Krn+1 =  p2(j>, we know I G(®) C / g (<£). And since 

/ G(^) =  T, we have / G(a) C T. The claim follows. ■

By Theorem 2.2.6, V/5 G I r r ( T / K m), (36T is an irreducible constituent of a T. Then by
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Theorem 2.2.3, we have

(pdTf  G Ir r (G ) ,

and

deg(f39T) =  deg(B)deg((9Tf )  =  deg(>3)deg(9G).

Since

f a  0 0 
T /K m =  A  =  0 x y A  G G L(3, Z /p mZ) {Z /p mZ )x x G L {2 ,Z /p mZ),

0 z w

any (3 G Ir r (G L (2 ,  Z /p mZ )) can be viewed as an element in I r r ( T / K m). Since we 

already know the degrees of the irreducible characters of G L{2, Z /p mZ ), we can find new 

irreducible characters of G with the following degrees:

pAm(p2 + p  +  1 )p,p4m(p2 + p + l ) ( p +  1 ),p4m(p2 + p + l ) ( p -  1), 

p4m(p2 + p +  l)(p  +  1 )pm- \ p 4m(p2 + p  +  1 )(p -  1 )pm- \ p 4m{p2 + p +  1 )(p2 -  1 )pm~2.

4.2.2 The character of degree p4m~2(p2 — I )  (p2 +  p +  1)

Let A : (Z /p 2m+1Z )+ —> C x be an injective homomorphism.

Define

Since Vk, k' G K m + 1 , (kk')si =  k31 +  k'31, we know that 0 is a character of degree one. 

And by the same calculation as in 4.1.2, note that p2m+1 =  0, we have

a x  y
prnb z w
pmc pmd a +  pme

and

T  |=  {pm+lf { p p 2 m ) 2 ^ 2 m + 1^3 =  p U m + 7 _  -q2_

Let
a x y

pmb z w
pm+1c pm+1d a +  pme
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Then by the same argument as in 3.2.2, we know that N  <  T. And | N  |=
(pm)^ 1 ) 2 1  — p2m̂ 2^p2m+1̂ 3 _  1̂4m+5̂ p _  2

Define

( a x y \
pmb z w X(pm+1ca~1).

pm+1c pm+1d a + p me J
Then by the same argument as in 4.1.2, we can check that 4>' is a character of degree one.

And since pm+1c(l + p m+1a)~1 =  pm+1c, we have (f>'Km+1 =  4>•

Claim 1: =  N.

Proof:

Let

/  1 0 0 \  /  1 0 0 \  f a  x  y
t  = j 0 1 0 J , t~^ =  I 0 1 0 I , n =  I pmb z w

\  pm 0 1 /  \  - p m 0 1 /  \  pm+1c pm+ld a +  pme

then

( tn t^ )  =  a -  pmy , (fn r^ a i =  pm+1c -  p2my -  p2me.

Since A is injective and by the definition of </>', we know that

t  G /t(0 O  •<=>■ (fwf_1)3i[(fn f-1 )n ]_1 =  pm+1ca-1 , Vri G IV.

However, when y =  0, e =  1, the above equality fails. Namely, t  does not stabilize </>'.
( 1  0 0 \

Similarly, we can show that 0 1 0 I does not stabilize 0', either.
\  0 pm 1 /

Since

f  /  1 °  0 \  )
T /iV  ^  N ' =  I  r i  =  0 1 0 | r i  G G L(3, Z /p m+1Z) } ,[  \  pmx pmy 1 J  J

I t (4>')/N should be a subgroup of A '. However, from we just showed, we know that 

I t {<P')/N must be the identity subgroup of N '. As a result, — N. ■

By Corollary 2.2.4, we have

^ =  (0 ')T e I r r ( T ), dey(^) =  =  p2.
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Also, s i n c e [ i p N ,<p'] =  [ ip, ip] -  1 /  0, we can conclude that [ i p K m + i , ^ m+1 ] =  

[*pKm+1, 4>\ 7̂  0. By Theorem 2.2.3, we have

ipG e Ir r (G ) , deg(ipG) =  dey(^)-j-^-j- =  p4m_2(p2 -  l)(p 2 + p  +  1).

We have already constructed an irreducible character of G , we will turn next to apply 

Theorem 2.2.6 to construct one more irreducible character.

Consider

N 0 =  N  f] K m =
1 +  pma pmb pmc

pmd 1 +  pmx pmy
pm+1e pm+1z 1 +  pmw

.

Then | AT0 |=  (pm+1)7(pm)2 =  p9m+7. Thus,

I N  II K  I „ 1 4 m + 5 („  _  i \2 „ 9 m + 9  
I | _  1 iV II | _  P {P *-) V _  ^ 1 4 m + 7 /„  1 \2

| N 0 | p9m+7

Since N  C T, K m C T, we have =  T. 

Define

p

1 +  pma pmb pmc
9' : N0 —> Cx;0' | pmd 1 + p ms pmy ) = A(pm+1e).

pm+1e pm+1z l + p mw

Since pm+1e =  pm+1e (l +  pma)~1, we know that 9' =  <//Nq. Hence, &  is a character of 

degree one. It is clear that we also have 9'K — <p. Moreover,

=  K m n  / T(0') =  K m nJV =  iv0.

Thus, by Corollary 2.4.4, we have

6 =  € I r r ( K m),

and

deg(9) — K n =  p1 =  deg(ip), 9km+1 =  p 2 0 .
, No | "

Claim 2: 9 is extendible to T  and the extension is ip. Namely, ipKm =  9.

Proof:

It suffices to show [ipKm, 9} =  [ipN0 ,9'\ ^  0 because we know 9 is irreducible and

deg(ipKm) — deg(ip) =  deg(9) =  p2. Since [ip, ip] =  [ipN,(p'\ =  1, i.e. <p! is an irreducible
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constituent of ipN, we have (f>'N — 9' is an irreducible constituent of 0 n0- Therefore,

Claim 3: I G(d) =  T.

Proof:

By claim 2, since 9 is extendible to T, we know that T  C Iq ( 8 ).

On the other hand, since Q'Km+, =  0 and 0 is stable under K m, \/k £ A ^+ i, we have

8{k)  =

Thus, 6km+1 =  p20. Therefore, 7g(0) ^  ^g(0)- Note that /g (0 ) =  T, the claim follows. ■

Up to now, we have 9 £ I r r ( K m), I q {9) =  T  and 9 is extendible to T. The extension is 

ip. Thus, we can apply Theorem 2.2.6.

Since

and we have already known, in last section, that 3f3 £ I r r ( H )  such that deg{0) — 

pm — pm~l . Then by Theorem 2.2.3, 2.2.6, we have

f  0 =>• x  =  ( ip p f  £ Ir r (G ) ,

[ipNoi 9'} =  [ipKm> 9] 0  0. And the claim follows.

p2(j>{k).

and

deg(x)  =  d e g { ( 3 ) \^ r  =  p4m 2(p2 -  l ) ( p 2 +  p +  l ) { p m -  pm 1).

4.2.3 The character of degree p&rn(p — 1 )2(p + 1)

0 0 a \
1 0  6 G G L (3 ,Z /p 2m+1Z) 
0 1 c /
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be the same as we discussed in 2.3. Let

S =  {s =  x l  +  yB  +  zB 2 | s £ G L{3, Z /p 2m+1Z } C G L{3, Z /p 2m+1Z),

then by Corollary 2.3.6, we have | 5  |=  p6m(p3 -  1).

Let A : (Z /p 2m+1Z )+ —> C x be an injective homomorphism.

Define

0 : K m+1 -  C x; 4>{I +  pm+1A) =  X[(tr(pm+1AB)\.

Since ( /  +  pm+1A ) ( I  +  pm+lB) =  I  +  pm+1(A +  B ), we know that 0 is a character of 

degree one. By the same calculation as in 4.1.3, we have

T  =  / G(0) =  K mS, | T  |=  p12m+\ p z -  1).

Let

K ± =  { I  +  pA , A £ M 3x3(Z /p 2mZ )}, ^  =  ^ ( 1 5 , ^  =  K mN, N m+1 =  K m+1N. 

Claim 1: N m <  T , N m+1 < T , \  N  \=  p6m, \ Nm |=  p12™+6, | ATm+1 |=  p12™.

Proof:

By the definition of N, we have

AT =  {(1 +  p x ) I  +  pyB  +  pzB2, x , y , z  £ Z /p 2mZ}.

As a result, | N  |=  (p2m)3 =  p6m.

Since S is abelian and K m <  T  =  we know that T /K m is abelian. Clearly,

ATm C N m C T, thus A'T,m <  T. Note that K rn c  K i,  we have

n AT =  ATm n S =  {(1 +  pmz ) /  +  pmyB  +  pmzB, x , y , z £  Z /p m+1Z }.

Thus, | D AT |=  (p"^1)3 =  p3™+3. And | |=  j g g j  =  p12™+6.

Since N  D K m+1 =  K m+iC \S  =  { { l + p mx ) I  + p myB  +  pmz B ,x , y, z £ Z /p mZ }, we 

know | N  n K m+1 |=  p6™ Thus, | N m+1 \=  J M | (  =  p12™.

To prove N m+1 <  T , let /  +  pmA £ K m, I  +  pC £ N, then

( I  +  pmA) ( /  +  pC) ( /  -  pmA +  p2mA) =  I +  PC +  pmU {AC  -  CA)

=  ( I  + p C ) [ I  + p m( I  + p C )~ 1(AC  -  CA)].
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Namely, VA; G K m,k N k  1 C Nm+i . Since K m+X <  K m, we know V/c € K m,k N m+ik  1 C  

N m+i. Note that N  C S, S is abelian, and i f m+i <G , we have Vs G S, sA^+is-1 C ATm+1.

Since N is abelian, by Lemma 2.2.10 we know that 0 G I r r ( K m+1) can be extended to

ATm+i, i.e. 3<// G I r r ( N m+i), such that <jfKm+1 =  $■

Claim 2: 3 9 G I r r { N m) such that 0Arm+1 =  P'V', and 0 vanishes on 7Vm — iVm+i.

Claim 3: <j>' is stable under T.

Suppose the two claims above are correct, then the 0 in Claim 2 is stable under T. Note 

that T  =  K mS =  N mS, we have

is cyclic, thus by Theorem 2.2.7, 9 is extended to T, i.e. we can find O' G I r r ( T )  such that 

0'N — 6 . Therefore,

Hence, N m+i <  T.

T /N m =  NmS /N m *  S /(N m n S) =  S /{K X n S)

l0>K m + 1 ^ \  =  [ ° K m +1>] =  \p3<f>'Km+1,<l>] =  ±  0.

By Theorem 2.2.3, we know that

x  =  (0')G g I r r (G )

and

Proof of Claim 2:

a# G Z /p 2m+1Z,m+l

t fm+1 <  Ar! <3 K m, N i n iVm+i =  K m+1, 1 M  h  P9m+3

Let H  =  N m+1N U then H  <  N m and \ H  |=  =  p12™+3.
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Define

0 i : N\ —> Cx; 0i (n) = A(tr(B(n — /))), n G N\.

Let
l+ p man pm+1a 12 pm+1ai3 \  /  l 4-pma'n pm+1a'12 pm+1a':

n = | pma21 1 + pma22 pm+1a23 I , n' = I pma'2l 1 +  pma'22 pm+1a23
pm+1a31 pm+1a32 1 + pm+1a33 /  V pm+1a'31 pm+1a32 1 + pm+1a

then

Thus,

and

* pm+1(ai2 +  a'12) *
nn' — | * * pm+l(a 23 + «23)

Pm+1 (asi + a^) pm+l (a32 + a y  1 + pm+1(a33 + a'33)

tr[B(n -  /)] = pm+1a12 + pm+1a23 + pm+1(aa3i + ba32 + ca33),

tr [B (n n ' — I) ]  =  tr [B (n  — /)] +  tr [B (n ' — /)].

Hence, 0 1 is a character of degree one and (0 i)^ m+1 =  0 =  0Km+1.

Moreover, Vs G S' fl K x, since S is abelian and B  G S, we know s5  =  5s. Denote

n — I  +  pmi i i  G S7!, we have

0i (n) =  A [tr(5(sns-1 — /))]

=  A[fr(5pmsnis_1]

=  A[fr(s5pmnis_1]

=  A[fr(5pmni)]

=  0 i(n ).

Notice that H  =  JViiVm+i =  N iK m+i(S  fl K x) =  N X(S fl K x), and we just showed 0 1 is

stable under S C \KX. Therefore, 0 i is stable under H. Namely, H  C 7jvm(0 i).

On the other hand, we can actually show that H  =  Tvm(0i)- Indeed, let

1 0 0 \  /  1 0 0 \  (  l + p man  pm+la12 pm+1aX3

A; =  I 0 1 0 ) ,  k~x =  ( 0 1 0 I , n =  I pma2i 1 + p ma22 pm+1a23

then

pm 0 1 /  \  - p m 0 1 /  \  pm+1a3i pm+1a32 1 + pm+1a33

l + p man pm+1ai2 pm+1ai3
knk~l = | pma2i l+ p ma22 pm+1a23

p2man + pm+1a3i pm+1a32 1 + pm+1a33
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Thus,

tr [B (k n k ~ l -  1)] =  pm+1a12 +  pm+1a23 + p m+1(oa3i +  6o32 +  ca33) +  p2maan 

^  pm+1a12 +  pm+1a23 +  pm+1(aa31 +  6a32 +  ca33)

=  tr [B {n  — I)] .

As a result,

0 i(n ) =  4>i(knk_1) 7̂  ^ i(n ).

Namely, k does not stabilize 0 i. Similarly, we can show that

1 0 0 \  /  1 0 0
0 1 0 , 0 1  0
0 pm 1 /  \  0 0 1 + p m

do not stabilize 0 1, either. Hence, we know that is at least p3. Since we already

have H  C ijvm(0 i) and note that =  p3, we can conclude that i f  =  /,wm(0 i).

Define

0 i • H  ► C , 0i(7im_|_i/ii) =  0 (nm+i)0 i(n i), nm+i G Âm_)_i, n i G iVi-

Since =  N iN m+i, N x D N m+1 =  K m+1 and (0 i) * m+1 =  0km+1 =  0, by Lemma 2.2.8, 

we know that (j)[ is a well-defined character of degree one. And clearly, (0^)^  =  (j)[. 

Therefore, lNm{<t>'\) Q /.vm(0 i) =  H. Hence, /wm(0 i) =  By Corollary 2.2.4, we have

9 =  (# )*" * G I r r ( N m).

By claim 3, we know that 0' is stable under T, in particular, 0' is stable under N m C T. 

Thus, Vn G lVm+1, we have

9^  =  n r r  S  ^ i ) ° i x nx  x)
xeNn,

1

xeN„,

= iil E
1 1 x£Nm

=  p30 '(n ).

Therefore, #jvm+1 =  p30'. Apply Corollary 2.2.5, claim 2 follows.
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Proof of Claim 3:

Note that K m+iS  =  N m+] S and S is abelian, by lemma 2.2.10, 4>' can be extended to 

K m+iS, and hence 4!>' is stable under K m+iS. Thus, it suffices to show that <j>' is stable 

under K rn. In the proof of Claim 2, we know that <// is extended to (f>[ of H  — Nm+iN i.  

Thus, <j)' is stable under H  =  Nm+iN x. In particular, it is stable under N x. In fact, we can 

replace the N x with

No =
pmaX21 + p m+1an  

pm+la21 1 +  pm+1a2 2 pma23
Pma 13

pm+1a3i pm+1a32 1 +  pm+1a33

aij G Z /p2m+1Z

or

pm+1ai3
No

1 +  pm+1axx pm+1ax2 

pm+1a21 1 +  pm+1a22 pm+1a23

pma31 pma32 1 +  pm+1a33

aij G Z /p 2m+1Z .

This is because both

(j>2 : N 2 ^  C x; 02(n2) =  X (tr(B (n 2 -  / ) ) ) ,n 2 G N 2,

and

4>3 : N 3 —> C x;</>3(n3) — A( tr (B (n 3 — I ) ) ) , n3 G iV3, 

are well-defined characters of degree one. And they are both stable under iVm+1. Also,

N 2 n N m+1 -  N 3 fl Nm+1 — K m+1 , (02)i<rm+1 — ((j)3)Km+i — (t),K m + 1 =  4>-

Therefore, $  can also be extended to H 2 =  Nm+iN 2 and H 3 =  so it is stable

under H 2 and H 3. In particular, <p' is stable under N XN 2N 3 <1 K rn.

Let
f /  1 + p rna 0 0 \

a G Z /p m+1ZNA =
1 +  prna 0 0

0 1 + p ma 0
0 0 1 +  pma

since N 4 is in the center of G, we have Vn G iV4, ((i>')n =  (/>'. Thus, we can conclude that 

4>' is stable under N\ N2N 3N4 <] K m. But

N xN 2N 3N 4 1=1 K m K  N XN 2N 3N4 =  K m.
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Another way to see N iN 2N 3N± =  K m is that, by the definition of N i and N 2, N 1N 2 will

generate all the matrices in K m of the form

1 +  pman  pma12 pma13
pma21 1 +  pma22 pma23

pm+1a31 pm+1a32 1 +  pm+1a33

By the definition of iV3, all the matrices in K m of the form

1 +  pman  pma12 pma iZ
pma21 1 +  pma22 pma23
pmaz 1 pmaz 2 1 +  pm+1a33

will be generated in N i N 2N 3. By multiplying jV4, we will have all the elements of K v 

Therefore, N \N 2N 3N^ — K rn. And Claim 2 follows.
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